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" Any serious consideration of a physical theory must take into
account the distinction between the objective reality, which is
independent of any theory, and the physical concepts with which
the theory operates. These concepts are intended to correspond
with the objective reality, and by means of these concepts we
picture this reality to ourselves.”

- A. Einstein, B. Podolsky, N. Rosen, [1]

"It is also important never to forget that physics is ultimately an
experimental subject.”

- A.R.P.Ray, [2, p. 137]






ABSTRACT

Preparing quantum states is essential for quantum information pro-
cessing since any process must start at a well-defined initial state.
State conversion describes techniques to transform a specific initial-
into a predefined target state. This dissertation investigates quantum
state conversion for two interacting qubits and its specialization to a
constrained system where only adjacent levels are connected. Further-
more, it shows its applicability in a system of three qubits supposed
to model interacting Rydberg atoms.

A general Lie-algebraic approach is discussed, allowing a wide
range of unitary transformations of the interacting two-qubit system
to be described by two independent pseudospin degrees of freedom.
Although restricting the representable transformations, the approach
offers a simple description of many different conversion schemes and
is well-suited to discuss the mentioned constrained situation.

For this constrained Hamiltonian, a specific state conversion scheme
is developed, which can be adopted in a reduced system of three
qubits. These three qubits are supposed to model a Rydberg-atom
trimer, and the developed conversion scheme maps onto the trans-
formation between the three-atomic W state and the corresponding
Greenberger-Horne-Zeilinger state. This mapping is achieved by re-
ducing the eight-dimensional system to an effective four-level sys-
tem. Two possible reduction schemes are presented. One depends on
phase-matching conditions and the other on lifting degeneracies and
employing multiple separated time scales in the eight-dimensional
dynamics. The control over the atomic ensemble is established via the
interaction with coherent states of the electromagnetic field.

All topics are presented in the framework of quantum optics which
is the theoretical foundation of much of the developing field of quan-
tum technologies.

The presented research shows how to design quantum state conver-
sion protocols for two interacting qubits and apply such conversion
protocols to more complex systems by employing reduction schemes.
These reduction schemes allow for an effective description by lower-
ing the dimension of the considered dynamics. The presented W to
Greenberger-Horne-Zeilinger state conversion protocol in the Rydberg-
trimer model outperforms previously proposed solutions for the same
task.



ZUSAMMENFASSUNG

Die Praparation von Quantenzustdnden ist eine grundlegende Frage-
stellung der Quanteninformationsverarbeitung, da jeder Prozess in ei-
nem wohldefinierten Anfangszustand beginnen muss. Zustandstrans-
formation beschreibt Methoden der Umwandlung zwischen festge-
legten Anfangs- und Endzustdnden eines Quantensystems. Diese Dis-
sertation prasentiert Untersuchungen zur Quantenzustandstransfor-
mation im System zweier miteinander wechselwirkender Qubits und
spezialisiert sie auf Fille, die der Nebenbedingung unterliegen, dass
nur benachbarte Level verbunden sind. Die Anwendbarkeit der ent-
wickelten Transformationsprotokolle auf ein System aus drei Qubits
ist eine weitere Fragestellung. Dieses letztgenannte System modelliert
drei miteinander in Wechselwirkung stehende Rydbergatome.

Zuerst wird ein allgemeiner Zugang diskutiert, der auf den dynami-
schen Symmetrien des Systems basiert. Obwohl zur Vereinfachung nur
eine Teilmenge aller unitarer Transformationen betrachtet wird, kann
eine Vielzahl von Zustandsumwandlungen innerhalb des Systems dar-
gestellt werden. Auch wenn einige Transformationen ausgeschlossen
werden, ist der entwickelte Ansatz besonders geeignet, die Dynamik
unter den oben genannten Nebenbedingungen zu beschreiben.

Unter Berticksichtigung dieser Nebenbedingungen wird ein Ver-
fahren fiir eine konkrete Quantenzustandstransformation entwickelt.
Dieses kann auf ein System aus drei Qubits angewandt werden und
entspricht hierin der Umwandlung vom W zum Greenberger-Horne-
Zeilinger Zustand. Um das hoherdimensionale System durch ein Vier-
niveausystem beschreiben zu konnen, werden Reduktionsmethoden
angewendet. Zwei konkrete Beispiele werden diskutiert: eins basiert
auf Phasenanpassung, das andere nutzt eine Separierung verschiede-
ner dynamischer Zeitskalen. Die Kontrolle der Ubergénge innerhalb
des Quantensystems wird durch treibende optische Felder bewerkstel-
ligt.

Die quantenmechanische Beschreibung elektromagnetischer Fel-
der und ihrer Wechselwirkung mit Materie, bzw. im vorliegenden
Fall mit Atomen, wird in der theoretische Quantenoptik untersucht.
Quantenoptik bildet die Grundlage fiir eine Vielzahl der aktuell auf-
kommenden Quantentechnologien.

Die in dieser Arbeit vorgelegten Forschungsergebnisse beschreiben
Moglichkeiten zur Kontrolle des Zustandes zweier miteinander Wech-
selwirkenden Qubits. Weiterhin zeigen sie, wie komplexere Systeme
auf dieses einfachere System abgebildet werden konnen. Die entwi-
ckelte W zu Greenberger-Horne-Zeilinger Zustandstransformation
ermoglicht eine effizientere Umwandlung beider Zustande als friihere
Protokolle.
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INTRODUCTION AND OUTLINE

With all its different aspects and branches, the theory of quantum
mechanics is one of the modern pillars of physics and lies at the heart
of much of current [3] and future technology [4]. Since the first in-
troduction of the quantization of black body radiation by Max Planck
in 1900 [5, 6] and the explanation of the photoelectric effect by Albert
Einstein in 1905 [7], the theory of quantum physics was further devel-
oped and able to explain a lot of different experimentally observed
phenomena, such as atomic spectral lines of hydrogen [8, 9] and di-
atomic molecules [10, 11] or the alpha decay of heavy elements [12]
via the tunnel effect [13].

After its first culmination into a thorough physical theory — among
others by John von Neumann [14] and Paul Dirac [15] — quantum me-
chanics was developed in different branches to tackle different ques-
tions from fundamental physics to applied science and technology.
Though many of these questions are already answered, there are still
numerous unresolved issues [16, 17], and quantum physics continues
to be an active field of research, maybe, today even more than ever
before.

Two of these branches are quantum optics and quantum informa-
tion. This dissertation deals with a particular aspect of these two: the
interconversion of quantum states of two constrained qubits and the
reduction of a specific quantum optical model to such a two-qubit
system. It is part of the author’s application for the German academic
degree Doctor rerum naturalium (Dr. rer. nat.).

Although the applicant is the sole author of this dissertation, the
plural form is used throughout this text. We believe science and
research is almost always a dedicated team effort. As such, some of
the following content was already published elsewhere with several
co-authors or originated from students’” (under)graduate projects co-
supervised by the author’. All such content is labeled accordingly, and
contributions by others are clearly acknowledged.

1.1 INTRODUCTION

Although many contributions were already made before it, the dis-
cussion by Richard Feynman about how to simulate physics with com-
puters [18] is sometimes considered the starting point of quantum
information. It is one of the newest and fastest developing branches

Compare the list of publications and the list of co-supervised (under)graduate projects
on p. 139.
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of quantum physics.” As the bit in classical information theory, the
qubit is the basic element of quantum information. It is represented
by a two-level quantum system (TLS). Its most general pure’ state is a
superposition of the computational basis states |0) and |1)4, i.e.,

) = «|0) + B[1), (1.1)

where a,8 € C and |a|> + |8|*> = 1. Preparing and manipulating
strings of such qubits lies at the heart of any task in quantum infor-
mation processing (QIP).

To execute a quantum algorithm, such as Shor’s algorithm for prime
factorization [21], single qubits have to interact with each other in
a controlled manner. In chapter 4 of this dissertation, we present
investigations for quantum state conversion in the second most basic
system of QIP: the two-qubit system.

In general, quantum state conversion is the task of manipulating a
quantum system, which occupies an initial state at time ¢y, over time
T such that at the end of the manipulation, it occupies a predefined
target state. We restrict this discussion to pure states |¢(t)), such that

iy

[9(t0)) = 190) =5 [plta-+T)) = [0 (12)
Due to the Schrodinger equation, the Hamiltonian H(t) ofa quantum
system is the generator of its time evolution. Therefore, quantum state
conversion results in finding and applying appropriate (potentially
time-dependent) Hamiltonians to control the time evolution of the
quantum system under consideration.

Another aspect investigated in quantum information theory is quan-
tum entanglement.> It constitutes one of the main features in which QIP
differs from classical information processing. In 1935, Erwin Schrodinger
defined the (originally German) term "Verschrankung" using his fa-
mous example of a cat being in a state of superposition of dead and
alive that is entangled with a radioactive particle, either disintegrated
or not [23]. Earlier the same year, Einstein-Podolsky-Rosen (EPR) for-
mulated what was later called the EPR-paradox. They found that
quantum mechanics and entangled states contradict their assumptions
of physical reality [1]. John S. Bell, reformulating their arguments,
derived a set of inequalities that allow for an experimental test if
physical reality is consistent with the EPR assumptions of local re-
alism [24]. Many experiments so far confirmed the predictions of

2 For an extensive overview of most aspects of quantum information, we suggest the
seminal textbook by Nielsen & Chuang [19].

3 With one exception, we will only consider pure states throughout this dissertation.
A density operator p and mixed states only appear in the context of open system
dynamics in section 5.6.

4 We use Dirac’s notation [20] throughout this dissertation. Ket states |) represent
elements of a Hilbert space, Bra states (| elements of the dual space, and BraKets (|)
the scalar product.

5 For an extensive review of quantum entanglement, see Horodecki et al. [22].
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quantum mechanics (e.g., [25—28]), although usually, not all loopholes
are simultaneously closed in such experiments. For example, the de-
tection loophole sets bounds for the efficiencies of detectors [29, 30].
Due to the convincing experimental evidence, entanglement is nowa-
days considered a confirmed aspect of quantum mechanical systems.
However, many of its features, especially in higher dimensions are not
easy to characterize [22] and are ongoing research topics [31].

In the context of quantum state conversion, the existence of different
entanglement classes and the interconversion of states representing
different classes are particularly interesting. Local operations and clas-
sical communication (LOCC) define two examples of such classes. They
are the setup for many protocols in quantum communication, such as
quantum key distribution [32, 33] or quantum teleportation [34—36].
Prominent examples of multipartite entangled states are W states
and Greenberger-Horne-Zeilinger (GHZ) states. They cannot be trans-
formed into each other by LOCC alone [37, 38]. A W state® is the
superposition of states of precisely one excitation, e.g., in a three-qubit
system

_ L

V3

It is a multipartite entangled state most robust against particle loss [40,
41]. The GHZ state [42, 43] is a superposition of maximal possible and
vanishing excitation in the qubit string, e.g, in the three-qubit system

|W) (]001) 4 |010) + |001)) . (1.3)

1
\ﬁ

It is maximally entangled as a complete qubit string, but if one qubit
is lost or measured, all pairwise entanglement vanishes. The GHZ
state allows for testing local realism without formulating inequalities.
[43—45]-

Due to their LOCC inequivalency, a quantum state conversion
|[W) o, |IGHZ) or vice versa is only possible if either U(t) acts
globally on the complete system or real quantum communication, i.e.,
the transmission of qubits, is performed. Chapter 5 of this dissertation
discusses the first possibility for a system of three qubits interacting
with the electromagnetic field. The qubits model an ensemble of
pairwise interacting Rydberg atoms’.

Rydberg atoms are “atoms in states of high principal quantum number, n,
[...] with exaggerated properties.” [46, p. 1] Arranged in arrays of optical
tweezers, they are a promising quantum optical platform for QIP [47,
48]. Since the invention of the laser, it has been possible to control

IGHZ) = — (|000) + [111)) . (1.4)

6 According to A. Cabello [39], W states are named after Wolfang Diir. He is one of the
authors describing the LOCC inequivalency [38].

7 They are named after Johannes R. Rydberg. "Discoverer of the formula that bears his name
for spectral lines from an atom when it changes from one energy level to another.” [2, p. 34]
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quantum mechanical aspects of specific systems with ever increasing
precision. Although it cannot considered as QIP, laser cooling of atom
clouds [49, 50] is an early example of such a control, and it is a
working tool in almost all experiments controlling single quantum
emitters such as trapped atoms or ions. Such experimental techniques
are now so sophisticated that experiments are not only able to trap
single quantum emitters in different geometries [51] but also whole
ensembles of more than a hundred single atoms [52].

All of the referenced examples of experiments use quantum optical
setups to investigate OIP or fundamental physics. In general, quantum
optics is the quantum theory of the electromagnetic field and its inter-
action with matter. Because further developing quantum technologies
allow for controlling quantum systems very precisely, quantum state
conversion in specific systems is on the brink of becoming experi-
mentally feasible. In chapter 4, we present research focusing on the
quantum state conversion in the second most basic element of quan-
tum information, the two-qubit system. It is an important building
block for QIP, since qubits must interact which each other. Further, we
show the reduction of a quantum optical model of Rydberg atoms to
an effective system of lower dimension in chapter 5. In the particular
case of three Rydberg atoms, the results of the preceding chapter are
then applied to achieve a W to GHZ quantum state conversion.

1.2 OUTLINE

This section presents an overview of the content of this dissertation.
We start with what it does not include.

Right at the beginning, we mentioned some early achievements
of the theory of quantum mechanics. Even though some of the ex-
amples [9, 11] used the formulation in terms of matrix mechanics
by Heisenberg, Born, and Jordan [53-55], the last one [13] used the for-
mulation in terms of the wave function by Schridinger [56-59], both
descriptions were soon recognized to be equivalent [60, 61]. Although
it is the foundation of all following discussions, we do not thoroughly
introduce quantum physics since plenty of textbooks cover the topic.
Such a fundamental account would by far exceed the scope of this
dissertation. For example, Ballentine’s book [62] offers a well-written
introductory account of basic quantum mechanics. It also features
some aspects of advanced topics including the basics of quantum
optics. We especially want to emphasize the textbook by Nielsen and
Chuang [19] about quantum computation and quantum information. It
gives a thorough overview of most of the relevant aspects of quantum
information theory. Additionally, since it is written for computer sci-
entists and physicists alike, it gives a well-structured introduction to
finite quantum systems, which are the main topic of theoretical quan-
tum information. It explains most of the mathematical tools needed
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in chapter 4, which contains the author’s research on quantum state
conversion in a constrained two-qubit system.

However, we do give a short introduction to some aspects of quan-
tum theory. We focus on quantum optics, which offers the more
advanced theoretical background for the research on state conversion
in a model system of neutral Rydberg atoms presented in chapter 5.

The following account gives a chapter-wise overview of the remain-
ing content. This dissertation is structured into two main parts:

e Part I gives an overview of some aspects of quantum theory
important for understanding part II and, in particular, chapter 5.
The covered topics are the fundamentals of quantum optics and
the theory of effective Hamiltonians. We always try to reference
textbooks or reviews with different foci, which offer the reader
the possibility for a more extensive study of the different subjects.

— Chapter 2 summarizes the fundamentals of quantum op-
tics. It starts with the quantization of the electromagnetic
field. In this context, we briefly discuss the topic of differ-
ent modes in quantum optics. It continues by discussing
special classes of quantum states of the electromagnetic
field. Coherent field states form one of these classes. They
well-represent classical fields. The chapter concludes by
describing their interaction with discrete and finite quan-
tum systems as the standard quantum optical model for
light-atom interaction.

— Chapter 3 summarizes the theory of effective Hamiltonians.
Under well-defined circumstances, such effective Hamilto-
nians allow describing the dynamics of a complex system
approximately by a simpler one. In section 5.3, we derive
effective Hamiltonians for a discrete quantum system inter-
acting with several classical light fields.

e Part Il covers the author’s research on quantum state preparation
and interconversion. It presents two different topics:

— Chapter 4 discusses a Lie-algebraic approach to quantum
state conversion in a two-qubit system. It presents a specific
conversion scheme for a constrained Hamiltonian, which
only allows for adjacent connections between the four quan-
tum levels of the two-qubit system. Although presented
there in the more specialized context of Rydberg trimers,
some of the chapter’s content was already published as

+ Haase, T., Alber, G. & Stojanovi¢, V. M. Conversion
from W to Greenberger-Horne-Zeilinger states in the
Rydberg-blockade regime of neutral-atom systems:
Dynamical-symmetry-based approach. Physical Review
A 103, 032427. doi:10 . 1103 / PhysRevA . 103 . 032427
(Mar. 2021), [63].


https://doi.org/10.1103/PhysRevA.103.032427
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— Chapter 5 discusses a model of a system proposed for QIP:
neutral Rydberg atoms in the blockade regime. It presents a
theoretical description of the atomic ensemble via effective
Hamiltonians, which allow describing the global control
of the finite-dimensional Rydberg system via laser fields,
and it introduces reductions of the degenerated system to
effectively non-degenerated systems of lower dimension.
The particular case of three neutral Rydberg atoms, a Ryd-
berg trimer, is used as an example to apply the quantum
state conversion scheme presented in the preceding chapter.
Although presented in more detail in this dissertation, the
main content of this chapter was already published as

+ Haase, T., Alber, G. & Stojanovi¢, V. M. Dynami-
cal generation of chiral W and Greenberger-Horne-
Zeilinger states in laser-controlled Rydberg-atom
trimers. Physical Review Research 4, 033087. doi:10 .
1103/PhysRevResearch.4.033087 (July 2022), [64].

Both chapters containing excerpts of the author’s research activities
feature a summary explaining which parts already have appeared in
the aforementioned publications, and how the content differs from the
presentation given in this dissertation.

The two main parts are followed by closing remarks, appendices,
and technical aspects, such as the bibliography and declarations:

— Chapter 6 contains the conclusion of this dissertation and the
presented topics. It summarizes the findings and lays down
some open questions for possible further research.

— Appendices A to C depict some mathematical aspects or lengthy
calculations of part II in more detail.


https://doi.org/10.1103/PhysRevResearch.4.033087
https://doi.org/10.1103/PhysRevResearch.4.033087
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FUNDAMENTALS
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FUNDAMENTALS OF QUANTUM OPTICS

The aim of this chapter is to introduce quantum optics. Primarily, we
want to give a short overview of its fundamentals, on which many
of the research topics presented in part II are based on. Additionally,
its sections and also the following chapter introduce notation and
conventions used throughout the remaining content.

Naturally, quantum optics is based on the theory of electromag-
netism and classical optics in particular. As a basic theory of classical
physics, the first is introduced in many textbooks (e.g., [65-67]). The
seminal compendium by Born and Wolf [68] gives a thorough ac-
count of the latter. Elaborate and extensive overviews of quantum
optics itself are given, e.g., by Mandel and Wolf [69], Loudon [70] or
Cohen-Tannoudji et al. [71, 72]. More recent and, in some ways, more
specialized presentations of quantum optics can be found, e.g., in the
freely online-available lecture notes by Steck [73] and the textbooks by
Agarwal [74] or Schleich [75]. The following discussion of the funda-
mentals of quantum optics is partly based on all of these references
and influenced by the lecture Theoretical Quantum Optics hold on a
regular basis at Technische Universitdt Darmstadt by Prof. Dr. Gernot
Alber.

2.1 QUANTIZATION OF THE ELECTROMAGNETIC FIELD

Since quantum optics is the quantum theory of the electromagnetic
field, classical electromagnetism acts as a starting point for our discus-
sion. Already in classical optics, the notion of electromagnetic field
modes is essential. These modes are then taken as individual harmonic
oscillators and treated via canonical quantization. The author already
gave a similar account of some of this section’s content in his master’s
thesis [76].

2.1.1  The free electromagnetic field

Maxwell’s equations (here given in SI-units)"

(V-E)(x 1) = P& (2.12)
€0

(V-B)(x,t) =0, (2.1b)

Although many textbooks on electromagnetism use Gauf$ units, we use Sl-units
throughout this dissertation. For an overview of translations from one in the other,
see, e.g., [65, App. A].
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(VX E)(x,t) = —éy:(x,t) , (2.10)
and
i(x, d
(V x B)(x,t) = ]E::Ci) + éa—f(x,t) (2.1d)

are the fundamental basis of electromagnetism and all of optics. They
describe the dynamics of the electric field E and the magnetic induc-
tion B and their interaction with matter represented by the charge
density p and the electric current j in space and time (x, t). € is the
vacuum permittivity, and c is the speed of light in vacuum. With the
Lorentz force acting on charged particles, Maxwell’s equations allow
deducing all relevant aspects of classical electrodynamics [65, ch. 16].

Introducing the vector potential A(x,f) and the scalar potential
®(x,t), we can describe the electric and magnetic field as

E(x,t) = (—V@ — %?) (x,t) (2.2a)
and
B(x,t) = (V x A) (x,t). (2.2b)

Since both the curl of a gradient field and the gradient of a purely
rotational field vanish, this description automatically incorporates
egs. (2.1b) and (2.1¢).

Most of the time, quantum optics only considers the free electro-
magnetic field. Hence, we set p(x,t) and j(x, t) to zero. Matter is often
considered via models in certain ranges of approximations. The inter-
action of the quantized field with such a model of matter as a finite
discrete quantum system is discussed in section 2.3.

In the Coulomb gauge, i.e, V- A = 0, eq. (2.1a) reduces to the
homogeneous Laplace equation for ®. If we choose proper boundary
conditions, its solution is unique, and we do not have to consider it a
dynamical degree of freedom. Therefore, we concentrate on the vector
potential A.

Due to Helmholtz’s theorem we can describe any vector field via its
transverse and its longitudinal component. The magnetic induction
is always transverse since V - B = 0, but we can split up the electric
field as

E(x,t) = E|(xt) + E|(x,1), (2.3a)
where
(V-EL)(x,t)=0 (2:3b)
and
(V X Ej) (x,t) =0. (2.3¢)

In the Coulomb gauge, the vector potential completely determines the
transverse component E | of the electric field, while the scalar potential
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determines the longitudinal component E|. Since we do not consider
the latter a dynamical variable, we only discuss the transverse field
in the following discussion. As long as not stated otherwise, E(x, t)
denotes the transverse component only.

With the aforementioned assumptions, eq. (2.1d) reduces to

<1 %A

C'Zat‘z_VZA> (x/t):()/ (24)

constituting a wave equation for the vector potential.
The product ansatz

A(x, t) = a(t)g(x) +cc., (2.5)

ensuring a real valued vector potential, seperates temporal and spatial
derivatives in eq. (2.4), such that

82
;;gt) = —w?a(t) . (2.6)

The complex conjugated part fulfills an analogous equation. Hence,
a(t) fulfills the differential equation of a harmonic oscillator. We
describe its solution as a(t) = a(tg)e (1) where w > 0 and a(t) €
C. The parameters «;(tp) incorporate the initial conditions.”

The introduced ansatz is called mode ansatz, and the spatial mode
function g(x) then fulfills the Helmholtz equation

2
<f2g +v? -g> (x) =0. (2.7)

The mode functions are determined by boundary conditions to the
Helmholtz equation. The vector potential expanded in such a set of
mode function is

A(x,t) =) (gl(x)oq(to)e_i“”t + c.c.) , (2.8)
l
The electric field E(x,t) and the magnetic induction B(x,t) can be
calculated from egs. (2.2).

Different boundary conditions to the Helmholtz equation lead to
different mode functions. Plane waves are one of the simplest exam-
ples. They correspond to periodic boundary conditions on a cube of
size L. In this case, the wave vector k = 27in/L with n € Z and the
polarization parameter A completely determine a mode function

1 ik-x

8 (x) = €A 73/2¢ (2.9)

A differentiates two orthogonal polarization directions (either linear,
circular, or more complex and &y , - ¢ »» = 0, ) fulfilling the Coulomb
gauge k - g, = 0.

2 We often shift the time scale such that tg = 0.

11
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2.1.2  Electromagnetic modes

Although plane-wave modes are used throughout most of this disserta-
tion, we briefly want to discuss other types of modes. The particular set
of mode functions only marginally affects the quantization discussed
afterward. However, it is often one of the main aspects, in which
quantum optical applications differ from each other. In the following,
we briefly discuss a selection of different sets of modes and exam-
ples of their applications linked to some research topics the author
was involved in’, which are not discussed in more detail throughout
this dissertation. For a thorough overview of electromagnetic modes
with an extensive discussion of mode types most commonly used in
quantum optics, we refer to the review by Fabre and Treps [77].

In principle, modes are solutions f(x,t) of the wave equation (2.4)
fulfilling the Coulomb gauge V - f(x,t) = 0, and the integral over
their squared modulus | f(x, t)|? over the whole space of interest () is
finite. It is most convenient to work with a complete set of orthonormal
modes { f;(x, t)} which are all normalized and fulfill the orthogonality
condition

/QdQ filx ) fi(x,t) =& (2.10)

at any time t. Starting from one particular mode it is always possible
to construct a complete orthogonal set [77].

Often, the space of interest is the volume containing the whole phys-
ical system under consideration. However, sometimes it is sufficient
to consider one-dimensional modes, e.g., if quantum optics along
a waveguide is considered [78-80]. In this case, we can reduce the
equations describing the modes to scalar equations.

In such a one-dimensional scenario, a mode function is completely
determined by its scalar wave number |k| = wy/c and its direction of
propagation. Allowing the frequency and the wave number to extend
to the negative real numbers offers a one-to-one correspondence of
wave number and frequency, where the direction of propagation is re-
flected in their signs =+. In this context, it is possible to define temporal
modes [81, 82]. They are convenient in some quantum communication
protocols, such as time-bin quantum key distribution [83] or for the
characterization of the temporal response of a photon detector used
in such protocols [33, 84].

In three dimensions, still, plane waves are not always the most con-
venient choice. If the electromagnetic field is considered inside a cavity,
ideal metallic boundary conditions must be applied. It means the elec-
tric field proportional to g(x) and the magnetic flux proportional to
the normal component of V x g(x) have to vanish at the metallic
surface. The geometry of the cavity plays a decisive role. Plane waves

3 Compare the list of publications on and co-supervised (under)graduate projects on
p- 139
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remain the ideal choice of mode functions if rectangular cavity bound-
aries are considered. In a spherical cavity, mode functions composed
of vector spherical harmonics [85, ch. 11] fulfill the aforementioned
boundary conditions [86].

Often approximations allow simplifying the considered mode func-
tions. For example, metallic boundary conditions on the surface of
an infinite parabolic mirror give rise to a set of very complex mode
functions [87]. However, it is possible to use the only non-vanishing
mode function of a spherical cavity at the focal point if the parabolic
mirror’s focal length is very large compared with the considered
optical wavelength [76, 88—91].

Another example is a beam of laser light for which the amplitude
of the electromagnetic field diminishes rapidly with growing distance
to the beam center and the direction of propagation is predominantly
aligned along an particular axis. In such a situation, the paraxial
approximation reduces the problem essentially to one dimension. For
example, spatial Hermite-Gauss modes are a convenient mode basis
for quasi one-dimensional cavities made of spherical mirrors [77].

In the following section, we discuss the canonical quantization of
the electromagnetic field.

Each mode will be seen as an independent harmonic degree of
freedom of the quantum system. Although the particular choice of
mode functions does not play a decisive role in the quantization,
it is important to choose the appropriate mode functions for each
situation. Especially, one has to take care of the range of applicability
of approximations made to derive at a certain set of mode functions.

2.1.3 The canonical quantization

In order to quantize the electromagnetic field, we have to formulate
a Hamiltonian description of it. In the following, V will denote the
volume of interest, and we assume the mode functions g;(x) to fulfill
the Helmholtz equation with appropriate boundary conditions and to
form a complete set of modes. The energy of the electromagnetic field
can be expressed as (see, e.g., [65, ch. 16])

H(t) = % /VdV (E*(x,t) + *B2(x,1)) = 2e9 Zl:wﬂle(t)\z . (2.11)

The integral of E?(x, t) over space can be directly performed using the
orthogonality condition eq. (2.10) fulfilled by a set of mode functions.
The same argument does not apply to the integral of ?B?(x, t). It in-
volves products of the form (V x g;) - (V x g;). For mode functions
fulfilling metallic boundary conditions, it can be shown that the or-
thogonality condition translates to the curls of the mode functions [75,
ch. 10, 62, ch. 19]. A similar orthogonality condition for the curls can
be directly shown for the plane wave modes of eq. (2.9). Under these

13
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conditions, the particular form of the mode functions g;(x) does not
enter the Hamiltonian form, which leads to the quantization of the
electromagnetic field.

Hence, in the following, we derive a quantum theory only for the
time dependence of the electromagnetic field. The dynamical degrees
of freedom are the functions ;(t) of all modes. All spatial aspects are
described by the mode functions g (x).

We introduce real variables

qi(t) = a(t) +aj(t), (2.12a)

referring to the real part of «(t), and

pi(t) = —ieow; (a(t) — a*(t)) (2.12b)

referring to the imaginary part of a(t).
These variables allow us to reformulate the field energy in Hamilto-
nian form

2
CIOEDY (p s ieow%q%u)) . (213)

1

We recognize a set of harmonic oscillators of frequency w;. Compared
with the classical harmonic oscillator describing the movement of a
particle, €y can be seen as analogous to the mass.

For the quantization of the electromagnetic field, we perform the
canonical quantization for each harmonic oscillator separately. It al-
lows us to take over all aspects well-known from this basic system of
quantum mechanics, such as eigenstates, its time evolution, and the
concept of ladder operators 4 and a**.

We replace all pairs of variables with pairs of non-commuting
operators 4; and p; fulfilling the canonical commutation relations

[4:(), pr(t)] = ihdyr, (2.14a)

[1(t),4r(t)] =0, (2.14b)
and

[Pu(t), pr(t)] =0. (2.14¢)

From the canonical variables, we form dimensionless ladder opera-
tors, i.e., the annihilation or lowering operator

2e¢ow; (. . P 2eqwy
) =29 (a+i 2 ) = 2 (2150)

and the creation or raising operator

. 2eqw; (. . P 2epwy
a0 =y 25 (g-i 2 ) = 20 (215b)

4 See, e.g., [62, ch. 6] for a fundamental discussion of the quantum harmonic oscillator
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by inverting the transformations for g4 and p above. They are raising
and lowering operators for single modes. These non-hermitian opera-
tors obey the dimensionless version of the commutation relations (2.14)

[él(t),é}t(t): = (511/ (2.16&)

[al(t),al/(t)' —0, (2.16b)
and

[al*(t),a,*,(t) = 0. (2.16¢)

The time evolution of these operators is to be interpreted in terms of
the Heisenberg picture. In the Schrodinger picture, the operators are
constant.

Hence, we can write the Hamiltonian of the electromagnetic field
by the correspondence principle as

A= ;hz“” (a,a} +él+a,) - Zl:hwl (a}al + ;) . (2.17)

fi; = a4, are number operators. They measure the number of photons
in the mode enumerated by .

The second term #w; /2 for each mode is the zero-point contribution
to the energy. It results in a non-vanishing ground state energy of
the quantum harmonic oscillator. Although countable, the number of
modes in a given system is usually infinite. This countable infinity
leads the energy as sum over all these modes to diverge even if not a
single mode is excited, i.e., containing no photons. Renormalization
can deal with such kind of infinite values but is not always satisfactory
either.

Although we will neglect the zero-point contribution in the follow-
ing, it can yield real physical results. For example, comparing the
different zero-point contributions of a free field and the field between
two conducting surfaces leads to the Casimir effect [92], resulting
in a force onto the two surfaces, even when there is no excitation
in the electromagnetic field [75, sec. 10.4]. Such an effect has been
experimentally measured, e.g., by Lamoreaux in 1997 [93].

We will be quite pragmatic regarding the zero-point contribution.
From the viewpoint of the correspondence principle, we demand our
quantum theory to agree with electrodynamics in the classical limit,
i.e.,, when photon numbers are high. Then, we can neglect the constant
part in the energy since the number of photons 7 = 4/4; dominates
the energy per mode [69, sec. 10.3]. From this pragmatic viewpoint,
we adopt as Hamiltonian of the free electromagnetic field

ﬁF = Zhwléfél . (2.18)
1

15
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From the correspondence principle, we can also find operator iden-
tities of the electromagnetic vector potential, the electric field, and the
magnetic induction. Exchanging a;(t) — &; in eq. (2.8) results into

A(x) = x)+H.c. = Z (x)a; + H.c. (2.19a)

Zeow

and for egs. (2.2a) and (2.2b) into

E(x) = E+( )+Hec = le/ 2¢q hgl( )4 +H.c., (2.19b)

and

B(x) = B’ x) + H.c. —Z V x g)(x)a;+Hc.,

260(1)1
(2.19¢)

respectively. Here we introduced the field operator’s positive or clock-
wise rotating parts indicated with an upper index 4+, whereby the
negative or counterclockwise rotating parts are their hermitian conju-
gates, and thus, e.g.,

~— ~+

E (x)=[E ()] (2.19d)

The notation indicates their time dependency stemming from the
solutions «(t) in the product ansatz for the vector potential in eq. (2.5).

For now, we have found operators describing the quantized elec-
tromagnetic field and its Hamiltonian. In quantum theory, the Hamil-
tonian describes the time evolution of a system according to the
Schrodinger equation

., 0 ~
i) = Hlg(t)) . (2.20)

We have not yet discussed what kind of states |i) these operators are
supposed to act on. All these states form a Hilbert space ﬁF. In the
next section, we discuss this state space to complete our quantum
theory of the electromagnetic field.

2.2 QUANTUM STATES OF THE ELECTROMAGNETIC FIELD

In the last section, we derived the Hamiltonian describing the dynam-
ics of the electromagnetic field. To complete this quantum system, we
must define on which states these operators act. In principle, we could
work either in the position representation defining wave functions
¢({q,}) or in the momentum representation with ¢({p,}), as known
from basic quantum mechanics. Here {¢,;} and {p,} are the sets of
all coordinates. Such a representation allows for visualizing quantum
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states via phase space functions. All physics of the electromagnetic
field can be described in phase space.”

We choose a different representation for the electromagnetic field’s
Hilbert space Hg. We start from the ground state of the Hamiltonian
in eq. (2.18). We call it the vacuum state |vac) and define it as the
state of photon number zero. If we neglect zero-point contributions
(alternatively, we renormalize the energy), it fulfills the eigenvalue
equation

Hg|vac) = 0. (2.21)

In this case, the Hamiltonian is up to the mode weights fiw; equivalent
to the photon number operator N = ¥, a/4;. We assume the energy
level associated with the vacuum state to be non-degenerate. A de-
generate vacuum would lead to completely separated branches in the
Hilbert space of the electromagnetic field.

The creation operators allow defining single-photon states

f() = Zl:f(l)éﬂva@, (2.22)

where Y f(I) = 1. With the help of the commutation relations from
eq. (2.16), verifying that such a state has eigenvalue one regarding the
number operator N is easy.

Single photon states are of high interest in QIP and especially in
quantum communication. For example, storage proposals for quan-
tum information exist via their interaction with single quantum emit-
ters [78, 94]. Also, creating entanglement between distant quantum
emitters is possible using single-photon states in a waveguide [79, 8o].

We want to emphasize that the term single-photon state is not
synonymous with state of a single photon in a given mode. The
number of exited modes depends drastically on our choice of mode
functions. In fact, we can take any single-photon state, define it as
as single-mode state, and can construct a complete set of orthogonal
modes starting from its corresponding mode function.

As for the single-photon state, we can build the whole Hilbert space
using the different creation operators. For a given set of modes, we
define Fock states® or number states

é_+ ny
) = (H ( lf)l) jvac) (223)

I

All Fock states form an infinite orthonormal basis of the Hilbert space
Hr.

For an extensive discussion of quantum optics in phase space, see [75].
Fock states are named after Vladimir A. Fock, who worked, among other topics, on
the canonical quantization [95].

17
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Coherent states are another essential class of field states. Roy Glauber
introduced them as eigenstates of the annihilation operator [96]. An
equivalent approach is to define them as displaced vacuum

{a;}) = D({a;})|vac) HD a;)|vac) (2.24a)
with the displacement operators
D(w) = emdi —4i%, (2.24b)

. . . At
where a; € C. 7 The displacement operators are unitary, i.e., DD =1,
and transform the ladder operators as

~t AT A

D (a)aD(a;) = & + (2.25a)
and

~t AT A *

D (#)a/D(a;) = & +af . (2.25b)

For brevity in notation, we discuss some properties of the coherent
state only for a single mode of arbitrary frequency w. They are all
easily extended to the multimode case. For a more extensive discussion
of coherent states and their properties, we refer to [75, sec. 11.2].

Here, we only state the most important characteristics we will need
in the discussions below. A coherent state can be represented in the
Fock basis as

o) = e 2lal? Z\%W ) (2.26)

n

where |n) is the single-mode Fock state. Therefore, its photon number
statistics P(n) = |{n|a)|? is a Poisson distribution with mean value
or mean photon number |«|?. Its Fock state representation allows the
time evolution of the coherent state to be deduced from the action of
the creation and annihilation operators onto the number states. We
find

1wtn

T 2
|0¢(t)> :e_lHFt/h|a —e —3lal 2
n vn

Hence, coherent states rotate in phase but stay constant in absolute
value |a|. They are often called the most classical states of the elec-
tromagnetic field because they minimize the uncertainty relations
considering the operators E and B of the electromagnetic field with
symmetric uncertainties in both of these conjugated variables.

We now have completed the basic quantum theory of the electro-
magnetic field. We defined the field states forming the underlying

1wt> .

= |ae” (2.27)

«; as the coherent-state parameter must not be confused with the complex function
a;(t) in the product ansatz in eq. (2.5), but it should never be ambiguous because we
replaced a;(t) — &; during the canonical quantization.
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Hilbert space and found an appropriate Hamiltonian describing the
dynamics via the Schrodinger equation. Many interesting aspects of
quantum optics can be studied only by considering the free field and
its dynamic, but in many applications, its interaction with matter is
vital. We discuss a model for such an interacting theory in the next
section.

2.3 FIELD—MATTER INTERACTION

"Dirac’s theory of radiation is based on a very simple idea;
instead of considering an atom and the radiation field with which
it interacts as two distinct systems, he treats them as a single
system whose energy is the sum of three terms: one representing
the energy of the atom, a second representing the electromagnetic
energy of the radiation field, and a small term representing the
coupling energy of the atom and the radiation field.”

- E. Fermi, [97]

In the spirit of this quote by Enrico Fermi, we start our discussion by
developing an appropriate interaction Hamiltonian ﬁim describing the
coupling between single quantum emitters (atoms, ions, quantum dots,
or other examples) and the quantized electromagnetic field. Afterward,
we discuss the specific case of a coherent state of the electromagnetic
tield interacting with a two-level system as the most simple model of
such a quantum emitter.

2.3.1 Interaction in the dipole approximation

Before defining the interaction between the electromagnetic field and
matter, we have to describe the latter. In the previous section 2.1,
we discussed the free electromagnetic field and assumed vanishing
charge and current densities, but these two describe matter in the
theory electromagnetism and thus, cannot vanish in an interacting
theory.

We consider matter as an ensemble of charged point-like particles
of charges g; and masses m;. Neglecting particle movement (and other
aspects such as spin), we can describe it solely via its charge density®

N
p(x) = Z qnd (x —14) , (2.28)
n=1

where 7; is the position of particle 7, and 5(x — x’) is the delta distribu-
tion.

To start this account with a general charge distribution instead of modeling an atom
is inspired by [98, sec. 2.2].

19
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From classical electrodynamics, it is known that an appropriate
Green’s function G(x, x"), which solves

V3G(x,x') =8(x—«'), (2.29)

constructs the electromagnetic potential for a given charge distribution
as

N
d(x) = —610 Z;lqnG(x,rn) + B [G(x,x)] . (2.30)

B [G(x,x")] is a boundary term and does not depend on the charge
distribution [66, sec. 1.10]. Hence, with an appropriate Green’s func-
tion, the electric potential is still defined, and we can calculate the
potential energy of the charge distribution by successively adding the
point-like charges to the considered volume. With this treatment, we
still can argue that we do not have to consider the scalar potential
a dynamical variable. Hence, we take over our quantum theory of
the transverse field from the previous section 2.1, but additionally,
quantize the considered system of charged particles.

We introduce canonical operators p, and #, for each particle’s
position and momentum variables. Each of these operators fulfills
canonical commutation relations in each spatial coordinate, and oper-
ators describing different particles commute. Analogous to the field
quantization,

(), (Pj)w] = ih8uwbij, (2.31a)

[(fi)nr (?j)n’} =0, (2.31b)
and

[(Pi)n, (Pj)w] = 0. (2.31¢)

All of the operators act on a Hilbert space H, distinct from the
Hilbert space Hr of the electromagnetic field. An interacting theory
must be considered on the tensor product space

H =Hr @ Ha . (2.32)

All operators that only act on one part of such a product space com-
mute with operators from another part. We have to introduce operators
acting on both parts simultaneously to achieve interaction.

The minimal coupling scheme is the standard approach to couple
the electromagnetic field with charged particles. It transforms all
canonical momenta of the particles as

Pp— Py — GnAlfn). (2.33)

It can be deduced from a combination of gauge invariances of both
electrodynamics and quantum mechanics. For a more detailed discus-
sion of the deeper reasoning of the minimal coupling scheme and its
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origin from gauge theory, we refer to the discussion by Schleich [75,
sec. 14.2].
The resulting minimal coupling Hamiltonian is

(fan —qn?l(?n)>2 1

2m, €0

n N
I/—\I = I/—\IF + 2 Z qﬂqu(?ﬂ/ i‘m) . (2-34)
n=1 n<m

Here, the first term is the free field Hamiltonian as deduced in sec-
tion 2.1, the second describes the kinetic energy of the charged particles
under the minimal coupling scheme, and the last one is the potential
energy of the charge distribution. We neglected constant contribu-
tions arising from the boundary term B and possible self-interaction
of single particles. They would shift the energy levels of the charge
distribution and are comparable to zero point contributions of the
electromagnetic field [71, App.3].

In the following, we will make a significant approximation to the full
system Hamiltonian. Since optical wavelengths (A 2 10~7m) are much
larger than the typical extent of quantum emitters (a9 ~ 10~ 19m),
we can employ the so called dipole approximation and assume that
the electromagnetic field does not change much between different
positions #, and just consider its value at r: the center of mass of
the charge distribution. Therefore we evaluate the field operators
A(#,) ~ A(#) at this common position.

Further, we introduce the Goppert-Mayer transformation®

U = @A) , (2.35)

where d = Y n—1 qnPn is the dipole-operator of the charge distribution.
It affects certain parts of the Hamiltonian in eq. (2.34). We have

~t

0" (pn - 0:A(r)) U = p, (2.362)
and

~

St _fBF_5. 5 |- g(r)?
U HU=H dE(r)+Zl: e (2.36b)

We neglect the last term since if we consider large volumes the mode
function g,(r) at a single point in space scarcely contributes. The third
part of eq. (2.34) is not affected since it commutes with U. Altogether,
we find the transformed Hamiltonian

PP H2 1 XN ~ o
AU=F+ Y 2% - = Y 4,guG (o, #n) —d-E(r). (2.37)
2me € =,

The interaction term
H —d-E (2.38)

int —

The transformation is named after Maria Goppert-Mayer. She recognized the equiva-
lence of the minimal and dipole coupling schemes. The latter directly postulates the

interaction Hamiltonian H; ,, as deduced in this section [99, 75, secs. 14.4-6].
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describes the field—matter interaction in dipole approximation. We
group the two unnamed terms as H A anticipating that most of the
time, we describe the interaction with a single atom. In conclusion, we
adopt the full system Hamiltonian

H=Hp+H,+ ﬁint . (2.39)

The resulting Hamiltonian has precisely the form indicated in the
quote at the beginning of this section. We must emphasize that we
made several approximations to derive this result. Most prominent is
the dipole approximation itself, but we also described the particles as
spinless and neglected their relative movement together with several
terms appearing during the deduction of the interaction Hamiltonian.
Depending on the situation, these aspects can rise in prominence and
become important.

However, Iflint is the most commonly used interaction model in
all quantum optics. It describes wide variations of light particle in-
teractions in good agreement with experimental results. Therefore,
it will serve as our primary model for all further considerations of
field—matter interaction. In the following section, we will simplify it
further by making additional approximations regarding the form of
the atomic Hamiltonian.

2.3.2 A two-level quantum system interacting with coherent light

In the previous section, we derived the basic model of field-matter
interaction. It resulted in the interaction Hamiltonian ﬁint in the dipole
approximation. Although it already simplifies the interaction signifi-
cantly, real atoms are still very hard to describe. There exist almost no
analytical solutions for atoms more complex than hydrogen-like atoms.
The whole branch of atom physics is dedicated to finding suitable
models and approximations to describe atoms’ energy levels and other
aspects. Many textbooks discuss this area of physics from introductory
accounts to extensive compendiums of specific topics, e.g., Rydberg
atoms [46] which will be of importance in part II of this dissertation.

Here, we only want to highlight particular aspects of the field—
matter interaction. We already will find them in the most basic model
imaginable: The two-level atom. Although such atoms do not exist in
reality, it is often possible to approximate them as such when their
internal energy level spacing (in frequency terms) is much broader
than the frequency width of the considered light fields, and their center
of mass motion can either be described classically via a position vector
x(t) or can assumed to be constant over the considered interaction
time. The last assumption of constant position x is sometimes called
frozen dynamics and will be adopted in the following discussion.

To be more precise, we describe the atom (or ion, molecule, quantum
emitter) by its energy levels: Its ground state |g) of energy Eg, a
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distinguished excited level |r)'® with energy E, and other levels |s)
with energies E;. If we set the energy origin such that E; — 0, we can
write E, = hw4 with the two-level resonance frequency w 4. The light
field is assumed to populate only modes of frequencies w; around
a center frequency @, such that |w; — w| < Aw, where 2Aw is the
considered bandwidth. Assuming w4 € [ — Aw, @ + Aw]| and |E; —
Ey|/h ¢ [0 — Aw, @ + Aw] for all s,s" # g, r, we can ignore all other
states and simplify the atomic Hamiltonian as

Hy = hwalr)(r]. (2.40a)
The dipole operator of the two level system is
d=d|r)(g| +Hdc., (2.40b)

where d = (r|d|g).

To be able to concentrate on the interaction between field and
two-level system, we transform the system Hamiltonian in dipole
approximation in eq. (2.39) according to the unitary transformation
U = e iH:+HI/M Hence, we consider the interaction picture for
which the interaction Hamiltonian transforms as

H,U=— (dei“’/*t]rﬂg] —|—H.c.) : <E+(x,t) + H.c.> ,

(2.41a)

EJr(x, t) = ZI:iH ;]ézlgl (x)a o lwit (2.41b)

is the electromagnetic field’s part rotating positive or clockwise in time.
We observe four different frequencies per mode. Two near-resonant
terms rotate with low frequencies £A = +(w; — w4), and two far off-
resonant terms rotate with a high frequencies +(w; + w4 ). Applying
the so-called rotating wave approximation (RWA) allows neglecting
the fast rotating terms. It is an argument of the separation of time
scales, where fast oscillations are considered to be averaged over time
and not observable on the time scale of the slower oscillations. The
RWA is usually well satisfied in optical systems, where the transition
frequency wj, and thus the central frequency w is much larger than
all other typical frequencies. Transforming back into the Schrodinger
picture results in the system Hamiltonian

= +H, - (yr><gyd-ﬁ+(x) +H.c.) (2.42)

with the interaction Hamiltonian in RWA and dipole approximation.
Since in the RWA we only consider combinations of atomic excitation

The notation |r) already anticipates its usage in part II where we model Rydberg
atoms as two-level systems.
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operator |r)(g| and annihilation operators &; or of the atomic de-
excitation operator |g)(r| and creation operators af, the dynamics
induced by this system Hamiltonian conserves the total number of
excitations.

Now, we want to discuss the special case of a classical field driving
the two-level atom. As discussed in the previous section, a coherent
state |a) of high mean photon number |a|?> well-presents a classical
field. Although the following arguments also hold for a multi-mode
coherent state, we want to avoid terms considering the sum over all
modes. In essence, we tighten the former approximations to Aw < @
so that w; &~ w = w holds for all considered modes.

Due to the conversation of the total excitation number, we expect
the change in the coherent states” photon number to be negligible com-
pared to its high mean value. As a result, we assume the coherent state
is not affected by the interaction, and its time evolution is described
by |a(t)) from eq. (2.27). Tracing over the field’s degrees of freedom
results in the dynamics of the two-level system. For the single mode
case,

Trr H = (a| H|a) = howla|> + Hy — (Q(x,1)|g) (]| + Hee.)

(2.43a)
where due to the eigenvalue relation for the coherent state
Q(x, t) =ia @ g. g(x)e W = O (x)e !, (2.43b)
2€Qh

Here and throughout all following considerations, we call the co-
efficient corresponding to a jump operator in a Hamiltonian from
some atomic state to another the Rabi frequency ("' of the transition
1g) < [r)."

Subtracting (i.e., renormalizing) the constant field energy from the
result and transforming it into a rotating frame via the unitary trans-
formation U(t) = e“!N{'l, we find the basic Rabi Hamiltonian

FIRS — —hAr) (r| + (Qlg) (r| + He) , (2.44)

where we have omitted the spatial variable for the Rabi frequency. Its
eigenenergies are

. mA /A 40P
4+ = —— _—
2 2

Assuming the atom is in the ground state at some starting point t = to,
the possibility of finding it in the excited state at time ¢t > t is

(2.45)

—ifRabi ¢ /1 2_4|Q|2 . 2 (WR
(e B0 g) = =5 sin (5°) - (2.46)

It is named after Isidor I. Rabi, who won the Nobel Prize in physics “for his resonance
method for recording the magnetic properties of atomic nuclei” [100].

Note that an additional factor of two is often included in the definition of the Rabi
frequency (see, e.g., [73, sec. 5.1]), such that it equals the generalized Rabi frequency
on resonance. We avoid this factor for later convenience.
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Hence, we see Rabi oscillations of amplitude 4|(}|>/w?%. The frequency
wr = /A% +4|Q)|? is called generalized Rabi frequency'?. Although
we neglected many aspects of real atoms, already this simple model
allows discussing the magnitude of the interaction with classical fields.
On resonance, i.e., A — 0, the amplitude is unity; thus, the atom is
excited at times t = (2n + 1)7t/wg with n € INy. Off resonance, i.e.,
|A| # 0, the amplitude is less than unity, but a higher Rabi frequency
can partly compensate for it, resulting in faster Rabi oscillations. The
magnitude of the oscillations and their different frequencies will be of
importance when we discuss effective Hamiltonians of more compli-
cated systems.

Rabi oscillations are one of the most common phenomena in quan-
tum optics. Many others can be discussed if the interaction with other
states as coherent states of high photon number is discussed. For
example, the vacuum state is the coherent state with & = 0, and its
interaction with an initially excited atom allows for a simple theory of
spontaneous decay, as shown by Weisskopf and Wigner already at the
beginning of quantum theory [101]. Spontaneous decay is also crucial
if the back-action onto the field is not entirely neglected. An extensive
discussion of effects such as damping and saturation in the excitation
probability or photon scattering was discussed by Mollow [102]. Con-
sidering the center of mass motion of the atom leads to mechanical
effects of light onto atoms, and, e.g., used to cool down and trap atoms
with light fields [76, 91, 103]. As we discussed only the most basic
version of light-matter interaction, we refer to extensive descriptions
in the literature, e.g., in [71, 73, 75]. They discuss the mentioned phe-
nomena and many other aspects of light-matter interaction in more
detail.
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EFFECTIVE HAMILTONIANS

This chapter briefly introduces the theory of effective Hamiltonians via
an expansion of the resolvent operator. It is based on a private lecture
by Prof. Dr. Gernot Alber. Also, the textbook by Galindo and Pascual [104,
sec. 10.7] presents an overview of it. Steck [73, ch. 15] discusses the
resolvent with a focus on its applications in quantum optics. Here,
we do not claim any mathematical rigorousness, and only want to
motivate how to deduce effective Hamiltonians. For a mathematical
sound discussion of the properties of the resolvent operator, see, e.g.,
the textbook by Richtmyer on advanced mathematics in physics [105,
ch. 8].

To derive effective Hamiltonians we use the resolvent operator of
the system Hamiltonian. For a Hermitian operator H, the resolvent
G(z) fulfills the defining equation

1=(z—H)G(z), (3-1)

where z € C. For simplicity, we assume H features a discrete and
countable spectrum, but we allow for degenerate eigenvalues.

Using the defining property of the resolvent, we find for a projection
operator P (P2 = P) and its complementary projection Q (P +Q = 1)

= (z—PHP)PG(2z)P —PHQQG(2)P (3.2a)
and
0=0(z—H)P +Q)G(z)P
= —QHPG(z)P + (z— QHQ)QG(2)P. (3.2b)

We find (AQCA}(Z)IAD from the second equation and substitute it into the

first to get
f faﬁ@%
-QHQ

=
’1)

PG(z)P

[
:[Z_

Therefore, we find %(z) akin to H in a defining equation for the
resolvent restricted onto the subspace defined by P and call it the
effective Hamiltonian in this subspace.

We define the projectors

"TJ>
’U)

(3.2¢)

Pp = ;!EMEA (3.3)
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projecting onto the subspace of H spanned by orthogonal eigenstates
|E;) of equal energy E. mp is the multiplicity of E. Using these projec-
tors, we can rewrite the Hamiltonian as a sum over its whole spectrum
as

~ ~ PP OPNPN 1 ~ o~ )\~
Eco(H) E—-QgHQg
Rewriting alone does not allow us to investigate the Hamiltonian
any further, but if we can decompose it as H = H, +A H,, where
H, is supposed to be a small correction to H,, we can discuss the
Hamiltonian in a perturbative approach. We then expand

1 1 AH,

——— = ~————=— + ~——=——= +... (3.5
E-QrHQr E-QgH,Qf (E—-QgH,Qg)?
around A ~ 0.

We have motivated here how to construct effective Hamiltonians
via a perturbation theory. If the perturbation is small enough, i.e., the
parameter A is much smaller than all energy differences appearing
in the sum over all energies, we can cut off such an expansion early
on and approximate the Hamiltonian dynamics of a system by using
the projectors onto the unperturbed eigenstates of the system. We will
make use of this theory of effective Hamiltonians in chapter 5 to find
effective descriptions of a multi-atom system interacting with several
classical laser fields.

An alternative describing the interaction of the atomic ensemble
with classical fields is Floquet theory [106] and for our case of multiple
laser fields, many-mode Floquet theory [107]. It maps the oscillatory
time dependence of the interaction onto an infinite number of Floquet
modes described by a time-independent Hamiltonian. Perturbation
theory gives quantities such as transition frequencies between different
atomic states within this formulation. However, we prefer the resolvent
formalism in our effective description for the atomic ensemble since it
directly gives the effective Hamiltonian rather than only the dynamics
of a specific initial state.
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QUANTUM STATE CONVERSION IN A TWO-QUBIT
SYSTEM

In this chapter, we discuss an abstract concept of quantum state conver-
sion. Without any specific physical realization in mind, we investigate
the conversion in a system of two qubits realizing a four-level quantum
system. Abstract Rabi frequencies describe transition rates between
different levels and represent the control over the system’s dynamics.

After the qubit, the two-qubit system is the most basic system in
quantum information. Besides total control over single qubits, at least
one two-qubit gate is necessary to form a complete set of quantum
operations to implement a general quantum logical circuit [108]. The
conversion schemes developed in this chapter are later used in the
context of a quantum system modeling neutral Rydberg atoms driven
by external laser fields.

We begin with defining the two-qubit system and developing a
Lie-algebraic approach to describe quantum state conversion within it
in sections 4.1 to 4.3. Sections 4.4 and 4.5 present some examples using
the developed approach and discuss some limitations. Section 4.6
then discusses quantum state conversion in a constrained two-qubit
system. The specific constraints on the Hamiltonian will be reflected
in dimensional reduction of quantum systems discussed in chapter 5,
where we present a quantum optical model to implement the specific
state conversion scheme developed in section 4.7.

Some content of this chapter was already published as a W to GHZ
state conversion scheme for a quantum system of three neutral Ryd-
berg atoms in the blockade regime [63]. To apply the aforementioned
scheme, we used a reduction of the eight-level quantum system to
an effective four-level system, which was first presented by Zheng
et al. [109]. However, sections 4.6 and 4.7 of this chapter present the
developed conversion scheme in the generalized context of a generic
two-qubit system. A discussion of the Rydberg-atom system is de-
ferred to chapter 5. A more detailed description of how some of the
content already appeared in other publications can be found in the
summary (section 4.8.2).

4.1 THE FOUR-LEVEL QUANTUM SYSTEM

We consider a system of two qubits, i.e., two two-level quantum
systems, each described in a two-dimensional Hilbert space H;. The
Hilbert space describing two qubits is the tensor product of the Hilbert
spaces of the two individual qubits, i.e., H1 ® Ho. It has dimension
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00) = [0)
o3 o1
Qo2
I 0 |
[11) = [3) 13 01) = |1)
(o3
10) = [2)

Figure 4.1: Schematic drawing of the four-level quantum system. All depicted
levels are eigenlevels of the Hamiltonian, fulfilling the eigenvalue
relation H4MS|i) = Ej|i) (i € 0,1,2,3) [cf. eq. (4.2)]. Rabi frequen-
cies ();; (i < j € 0,1,2,3) are the off-diagonal elements of the
Hamiltonian driving transitions between levels i and j.

four. We use the computational basis and identify each of the first four
binary numbers with one four-dimensional unit vector as

T
\0>1®’0>2=\00>=!0>—>(1 00 o) , (4.1a)
|0>1®|1>2=|01>=|1>—>(0 10 o)T, (4.1b)
|1>1®|0>z=|10>=|2>—>(0 0 1 o)T, (4.10)
and
T
me=11=p -0 00 1) (4:1d)

Most of the time, we will use the binary notation (00,01,10,11) for
quantum states of the two-qubit system, but especially in definitions
of operators, it is often easier to count the basis states and refer to
them as |i), where i € {0,1,2,3}." Hence, in definitions we often use
the decimal notation.

In quantum mechanics, the Hamiltonian governs the dynamics of a
quantum system. For the four-level quantum system (4L5), the most
general Hamiltonian in terms of the computational basis is

3 3
HAS (1) /h = ;)eim(i\ + Y (1)) (jl + He) (4.2)

i<j=0

where the parameters e; = E; /I describe the energies of the four levels
and ();(t) are the abstract Rabi frequencies of the quantum transitions
|i) <> |j). Figure 4.1 shows a schematic drawing of the considered
system.

Of course, it is possible to count in binary notation, but we are far more used to the
decimal number system.



4.2 DYNAMICAL SYMMETRY

In this chapter’s discussion, we will neglect the energy differences
between the four levels, and we set E; = 0 for all i. An equivalent
approach is a transformation into the interaction picture regarding
the diagonal part of H4S(1). In real quantum systems, such as atoms,
the energy differences of the energy levels play a crucial role but can
often considered to induce dynamics on a different time scale than
the dynamics introduced by the Rabi frequencies. Such a hierarchy
of different time scales will be used in chapter 5 when we discuss
quantum state conversion in a system of neutral Rydberg atoms.

In the following, we discuss quantum state conversion in the in-
troduced quantum system. In general, quantum state conversion de-
scribes the controlled transition from an initial quantum state |¢(o))
at time ) = 0 to a final or target quantum state |(T)) at time t = T.
We present an approach describing such a transition via curves in a
Lie algebra and connecting it to time-dependent Hamiltonians of the
form of H4S(t).

4.2 DYNAMICAL SYMMETRY

We utilize its dynamical symmetries to find suitable state conversion
schemes in the system under consideration. Symmetries are an es-
sential concept of modern physics as they often simplify theoretical
descriptions of the considered system. Noether’s* theorem connects
each symmetry with a conservation law. The resulting invariants can
be exploited to find solutions to time-dependent problems. For exam-
ple, using such invariants Lewis & Riesenfelds constructed solutions
for the time-dependent quantum harmonic oscillator [110]. Together
with the dynamical algebra of the considered system, it is possible to
find time-dependent Hamiltonians which implement a specific state
conversion [109, 111]. For an extensive discussion of the group the-
oretical background of dynamical symmetries, Lie groups, and Lie
algebras, we refer to the textbook by Barut and Rqczka [112]. Aspects
of it, which we will apply in the following can also be found in, e.g.,
in the textbooks by Richtmyer or Hall [113, 114].

The Lie algebra su(4) describes the complete dynamical symmetry
of two qubits and is described by 16 elements. There are many pos-
sibilities for choosing a set of 16 linearly independent matrices as a
set of generators of the dynamics of the two qubits [115]. Rau & Alber
thoroughly discussed this system’s symmetries, possible subalgebras,
and analogies to other quantum systems [116]. In addition, the first
of these authors gave a general review of Symmetries and Geometries
of Qubits, and their Uses [117]. Here, we concentrate on applying these
dynamical symmetries to describe quantum state conversion.

"Emmy Noether, 1882-1935, [...] Many major physicists described her as the most important
woman in the history of mathematics” [2, p. 118]
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In the following, we will restrict all discussions to the Lie algebra
so(4), i.e., a subalgebra of su(4). It corresponds to the group of ro-
tations in R*. This restriction reduces the number of generators to
six. The smaller dimension of the subalgebra simplifies the follow-
ing approach significantly. Although we cannot describe all unitary
transformations of the four-level quantum system, we can still find
solutions for interesting state-conversion problems. Furthermore, the
smaller Lie algebra perfectly suits the Hamiltonian constraints we will
impose onto the system later in sections 4.6 and 4.7.

First, we have to choose a representation for the considered Lie
algebra. The six matrices

0100 01 0
~ 1|1 000 ~ 1|10 o0
S1=+= , T = , (4.3a)
210 0 0 1 2100 0 -1
0010 00 -1 0
0 00 -1 000 1
~ 110 01 o0 ~ 110010
S, == , To==2 , (4.3b)
0 10 0 210100
-1 00 0 1000
0 0 —i 0 00 —i 0
~ 1lo 0o o0 i ~ 00 0 —i
Ss=5 1. , Ts3=1" (4.30)
215 0o 0 o0 i 00 0
0 —i 0 0 0i 0 0

constitute a four-dimensional representation of the Lie algebra
so(4). In the following, we subsume these matrices into two three-
dimensional vectors, S and T, in which §i and Ti constitute respective
Cartesian components. We build the two independent invariant
operators,

[$M]

I= L <§12 + T,2> = g (4.4a)
and
= 23; (5 -T7) =o0. (4.4b)
i=
Hence, each set S and T fulfills
igzzzi:ﬁ: %(1‘*'%) (4.4¢)
i i

Further, the two sets of matrices fulfill the Lie bracket or commutation
relations

[
T

,Sj] = ieinSk, (4.5a)
,T]] = ieijka , (45b)

i
i

—
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and

A~

[Si, Tj] =0. (4.50)

The properties in egs. (4.4) and (4.5) of our chosen representation
explicitly show that a subspace of the dynamical symmetry of our
system is su(2) @ su(2) = so(4). Here, the Lie algebra so(4) represents
a combination of two independent pseudospin-1/>-degrees of freedom.
It is not a surprising fact since we describe two two-level systems.
However, we will see in the following that one of the pseudospin-
1/2—degrees of freedom cannot be identified with an individual qubit.
Changing the representation in egs. (4.3) to the six Pauli operators
of the individual qubits (three per qubit) does allow for such an
identification.

We construct a suitable eigenbasis for the two independent pseu-
dospins in analogy to a system of arbitrary angular momentum. We
start from the state of highest eigenvalue for the operator S3 4 T3, i.e.

|TT>—>L(' 0 1 o)T (3.62)
\/i —1 . 4.
The state of highest pseudospin is not identical to state |11), which,
considering each qubit as a spin-1/>—particle, represents the state of
highest total spin.

We apply the individual lowering operators S; —iS; and Ty —iT;
onto |11) o obtain the remaining orthonormal basis states of the
combined pseudospins. We get

~ . 1 T

T1—iTz|TT>=!N>—>ﬁ(0 -0 -1) (4.6b)

~ ~ 1 T

sl—iszmzmwﬁ(o —i01), (4.6¢)
and

S~ 1Sl 1) = [1) = = (- ) (4.6d)

1132 = A -i 0 -1 0) - 4.

We decompose any unitary transformation acting independently on
the first and second pseudospin, respectively, and write such a trans-
formation using vectors « and B in the Lie-parameter space as

U(a, B) = e S 1T, (4.7)

In the following, we will use the transformed eigenstates U(a, )|9),
where ) € {|T1), 1)), [41), [4d)}, to describe unitary transforma-
tions onto the considered four-level system via time-dependent Hamil-
tonians.

The chosen representation of the Lie algebra [cf. eqs.(4.3)] fulfills

(2R;)(2R;) = ie;x(2Ry) + &y, (4.8)
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where i,j,k € {1,2,3} and R stands for S or T, respectively. This
property allows to simplify each of the two individual exponentials in

eq. (4.7) as

. ‘R
R — cos bl Zi’ym sin il , (4-9)

where R is either S or T. Recalling the pseudospin-1/2—properties, the
action of the exponential including « - § onto the first pseudospin is

eS|t v) = Moo (@)1 v) + My— ()] L), (4.10a)
eS| vy = =M (a)[tv) + M (a)|Lv), (4.10b)

where v € {1, ]} and

My () = cos |;| - ir;j sin ’;| , (4.100)
M, _(a) = (—10(|1““|’062) sin @. (4.10d)

The action of the exponential including - T onto the second pseu-
dospin (|v 1) and |v |)) is analogous. Since it involves some extended
expressions with several different combinations of the functions M ;
and M _, we relegate the explicit presentation of the four transformed
pseudospin eigenvectors to appendix A.1.

The unitary transformation in eq. (4.7) describes an arbitrary unitary
transformation on the system of two independent pseudospin-1/2—
degrees of freedom. With our restrictions to the Lie algebra so(4), we
set aside all possible unitary transformations in which the action onto
one pseudospin depends on the other. We discuss some examples of
operations which are non-representable in our chosen description in
section 4.5.

In quantum mechanics, the system’s dynamics are described via
the unitary time-evolution operator U(t), and the Schrédinger equa-
tion connects U(t) with the Hamiltonian of the system. The following
section concentrates on reverse engineering a time-dependent Hamil-
tonian H() given an arbitrary unitary transformation U(a, ).

4.3 TIME-DEPENDENT HAMILTONIANS

This section will connect arbitrary unitary transformation of the system
of two independent pseudospin-1/>—degrees of freedom as described
in eq. (4.7) to a unitary time evolution induced by a time-dependent
Hamiltonian acting onto the four-level quantum system.

To do so, we consider one-dimensional curves y(t) — (a(t), B(t))
in the six-dimensional real parameter space of the Lie algebra so(4).
In the following, we call this space Lie-parameter space. For each
curve y(t), we identify the corresponding unitary transformation



4.3 TIME-DEPENDENT HAMILTONIANS

Ula(t), B(t)] with the time-evolution operator of the four-level quan-
tum system. The relation between the time-evolution operator and
Hamiltonian is given by the Schrodinger equation

Lod S
in L Ola(t), B(1)] = FL(1) Dla(t), ()] (4.10)
Since [S;, Tj] = 0, we can decompose U(e, B) into two commuting

exponential maps. We use the derivative of the exponential map [114,
ch. 5] to find the relation between the time derivative of the curve in
the Lie-parameter space and the Hamiltonian.

The following statement holds for any differentiable curve (t) in
any Lie (sub)algebra’

e*)‘(t)%e)‘(t) = f([A(B),"]) d};(tt) (4.11)
with
4 o  qnn-—1
f(z) = 1 ze =1-Y 172' (4.112)
n=2 :

For our purpose, the curves are —ia(t) - S and —ifB(t) - T, respectively,
and we will use the time derivative of the exponential map to manip-
ulate the left-hand side of the Schrodinger equation (4.10).

Here and in the following, we often have to use iterated commuta-
tors of the form

[—ia(t)-g,'y(t)-gh - [—ia(t)-§,[...,[—ia(t)-g,'y-g]...]

(4.12)

Due to the property (4.8), we can split up infinitive sums of such
iterated commutators into series of even and odd iteration steps.
Such split-ups result in simplified expressions including sin- and cos-
functions of the absolute values |a(f)| and |B(t)| of the two vectors
forming the curve 7(t). A detailed discussion of the specific iterated
commutator and the split-up into even and odd terms is presented in
appendix A.2.

Using eq. (4.11), we find for a curve in our chosen Lie-algebra
representation

ei"‘(t)'geiﬁ(t)'?iei"‘(t)'geiﬁ(t)'T =@at)]-S+@[Bt)] T (413)
with

mwm:—wm—ljjﬁmeowm>

(4.13a)

4 )l B?f)]gw(t)’)v(t) % (v(E) x (1)),

3 For a proof, see, e.g., [114, Theorem 5.4] or [113, Lemma 25.9].
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where () stands for the time derivative of the vector 7(t). Here, we
have used the evaluation of the iterated commutator in eq. (4.12) as
mentioned above. We transform this result as*

e M Raply(t)] - ReTR = [_w'R'a;P(t)] s

, (4.14)
n=0

to find the relation between the curve in the Lie-parameter space and
the Hamiltonian to be

A1) /h = wla(t)]-§ + w[p(1)] - T, (415)
where
wla() = Sl <t>+W[a<t>xa<t>1

el )t (4.15a)

|o(

|
M=ol r) - s ace).
|a(t)]
w[B(t)] is analogously defined. We call w[a(t)] and w[B(t)] vectorial
Rabi frequencies. To evaluate the relation (4.14), we again used the
iterated commutator (4.12).
Each time-dependent and continuous curve () = («(t), B(t))

_|_

induces a time-dependent Hamiltonian H(t). The reversed conclusion
is not valid. There are Hamiltonians H of the four-level quantum
system for which

) # i{T (88 + T (A1) 7. (4.16)

Hence, the trace with all generators §i and Ti vanishes, at least for
some part of H. Such a Hamiltonian cannot be represented by a
real linear combination of our representation S and T, which is a
consequence of the restriction to a su(4)-subalgebra. By only using the
generators of so(4), we cannot describe an arbitrary transformation
onto the four-level quantum system. We give some examples of such
non-representable transformations in section 4.5.

However, the Hamiltonian in eq. (4.15) implements a quantum state
conversion in the considered four-level system. It connects the initial
state

Ul(0), B(0)][(0)) = e [1(0)) (4.172)
at t = 0 with the target state
Ola(T), B(T)]1(0)) = e fgp(t)) (4.17b)

at time t = T. T is the conversion time in which the target state is
reached. The global phases ®; take into account that specific quantum

4 For a proof of the following general relation, see, e.g., [114, Proposition 3.35].
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states correspond to rays in the Hilbert space rather than to specific
elements of it. There are many different curves and, therefore, many
different state conversions with different time-dependent Hamiltoni-
ans connecting specific initial- and target states.

In the subsequent section, we discuss some examples of quantum
state conversions in the four-level quantum system, employing of the
approach developed from this section.

4.4 EXAMPLES OF STATE CONVERSIONS

This section presents state conversion schemes in the four-level quan-
tum system applying the Lie-algebraic approach depicted in the pre-
ceding section. We discuss some simple examples of state conversion
using the chosen representation of the Lie algebra so(4) in egs. (4.3).
First, we show how a given Hamiltonian translates into a curve in
the parameter space of the Lie algebra. We discuss the 7t pulse as an
example for which the effect on a system is well understood. Second,
we reverse engineer a Hamiltonian by describing the state conversion
in terms of the Lie algebra. Whereas the first example only illustrates
the formalism, the second is the primary interest for developing this
approach but really becomes of interest later on when additional
constraints to the Hamiltonian are considered.

4.4.1  Known Hamiltonians

For a given Hamiltonian, we need its representation in terms of the
basis elements of the Lie algebra. Since our chosen representation is
traceless and fulfills eq. (4.8), we can calculate the representation of
the Hamiltonian by projecting it onto the elements of the Lie-algebra
representation, i.e.,

wle(t)] = Tr (F(1)S)) (4.18)

and analogous for B(t) and T;. We must be cautious that the Hamil-
tonian in question lies in the linear span of our generating elements.
Otherwise, eq. (4.15) does not hold true. Substituting these time-
dependent vectorial Rabi frequencies as input into (4.15) gives a sys-
tem of differential equations describing a(¢) and B(t). This system can
be (numerically) solved assuming appropriate initial conditions.

For example, we consider the simplest state transfer known in
quantum optics or even quantum mechanics in general. Applying a 7
pulse in the form of the Hamiltonian

FRSS iy /1= 5 [9(T)) ((0)] + Hic. (4.19)

drives a quantum system initialized in state [(0)) at time t = 0 into
state [¢(T)) at time T. In eq. (4.19), we have chosen an appropriate
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orthogonal basis for the four-level quantum system containing both
the initial and the target state. Such a basis allows for the descrip-
tion of this Hamiltonian by the single Rabi frequency Q, = 7/(2T),
which is constant in time. The Hamiltonian induces Rabi oscillations
(cf. eq. (2.46) in section 2.3.2). Starting in the initial state, T is the first
time the system occupies the target state.

To demonstrate a simple time evolution, we consider the initial
state |¢(0)) = |00) = |0) and a mr-pulse cascade induced by the
Hamiltonian

37

2
HT cascade (1) /b = e t)[i—1)(i| +Hc., .
(/0 =57 L K g (Ol =1l + Hee, (420

00) < [11)

where [, (t) = 1if 1 € [a,b], and X[, (t) = O, otherwise. We solve
the resulting system of differential equations for the initial conditions
«(0) = B(0) = 0 numerically®. Figure 4.2 shows the time evolution of
the Lie-parameter vectors «(t) and B(t). Since the piecewise-defined
Hamiltonian from eq. (4.20) induces the dynamics, the solutions show
the same piecewise behavior in time. To visualize the time evolution
of the quantum state

lp(t)) = e*i“(t)'ge*iﬁ(t)'T\Om , (4.21)
fig. 4.3 shows the fidelities®

Flg)(t) = [(plp()17, (4.22)

where |¢) is either the initial state |00), one of the intermediate states
|01) and |10), or the target state |11). If not stated otherwise, the
fidelity is always considered towards the state |¢(¢)) of the system
under consideration. As to be expected from the cascade of 7t pulses,
the initial state |00) at time t = 0 is transformed via |01) at time
t =T/3 and |10) at t = 2T /3 into the state |11) at t = T.

4.4.2 Reverse Hamiltonian engineering

The first examples illustrated how to represent a given Hamiltonian
in our Lie-algebraic approach. To reverse-engineer a Hamiltonian
inducing a specific state conversion, we have to find Lie parameters
(a, B)(t) describing the target state in terms of the transformed initial
state. Anticipating the state conversion problem of section 4.7, we
choose as an example the initial state |01) and a GHZ state as target
state. Using the representation of the initial state in terms of the

We employed Wolfram Mathematica 12 for the numerical calculations in this chapter
(cf. declarations on 141)

Nielsen & Chuang introduce the fidelity as a distance measure of quantum information
as square root of our definition [19, ch. 9], which was also used in some of the au-
thor’s publications [63, 64]. However, the definition used throughout this dissertation
corresponds directly to occupation probabilities.
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Cartesian coordinates
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Timet/T
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Figure 4.2: Numerical solutions for the Cartesian coordinates ;(t) (a) and

Bi(t) (b) for the system of differential equations in eq. (4.15)
with the 7-cascade Hamiltonian in eq. (4.20) as input. The initial
conditions are «;(0) = B;(0) = 0 and T is the conversion time.

1.0

Fidelity J|g)
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Figure 4.3: Fidelites JF|y () = [{p|p(t))|*> of the quantum state |(t))

[cf. eq. (4.21)] over time for the quantum state conversion
induced by the 7m-cascade Hamiltonian in eq. (4.20). |¢) €
{]00),01), |10}, |11} } and T is the conversion time.
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pseudospin eigenbasis [cf. egs. (4.6)] and their transformation as given
in appendix A.1, we can describe the target state via

[9(T)) = 75 (00) —il11)) = & ST 2Y0n) 429
(cf. appendix A.3). Note that we refer here to a GHZ state in terms of
the computational basis, not in terms of the two pseudospins. The
same quantum state conversion will be considered in section 4.7. With
initial conditions «(0) = B(0) = 0, we can describe this quantum
state conversion via &(t) = 71/ Te; and B(t) = me,/2, where e; are
Cartesian unit vectors. The vectorial Rabi frequencies eq. (4.152) are
then simplified to w[y(t)] = (), where v = &, B, and according to

eq. (4.15),

0 0 21 1
~ 7| 0 0 1 -2i
H /h=—— . (4-24)
|01) <> GHZ AT 2 1 0 0
1 2 0 O

The four Rabi frequencies ()13 = =0y = —7i/2T and Oy = Q3 =
—7t/4T describe the Hamiltonian in terms of the computational basis.
We verify our reverse-engineered Hamiltonian by numerically solving
the differential equation (4.15) for the vectorial Rabi frequencies as we
already did for the first example. It reassures us that |((T)) is reached
at the conversion time t = T. Figure 4.4 shows the time evolutions for
the two vectors «(t) and B(t). They evince the linear ansatz in a3 and
B2, as both vectors «(t) and B(t) form straight lines connecting the
initial with the target state. Figure 4.5 shows fidelities regarding the
initial state |01) and the targeted GHZ state.

An arbitrary transformation that can be described in the chosen
so(4) representation can be formulated as a straight line in terms
of (&, B)(t). The situation bedevils if additional requirements on the
curves in the Lie-parameter space hinder such a simple description.
We will see such a case in section 4.7, where we revise the |01) to GHZ
state conversion under a set of Hamiltonian constraints.

4.5 NON-REPRESENTABLE TRANSFORMATIONS

When introducing the specific representation of so(4) to develop

the Lie-algebraic approach to quantum state conversion, we already

pointed out that not all possible unitary transformations onto the four-

level quantum system can be represented in the chosen subalgebra.
Since

fyrpulse G\ _ fyTpulse A\
Tr (R 1) 81) = Tr (AP, Ti) =0 (4.25)

for all i = 1,2,3, a 7w pulse connecting |00) <> |11) is an example of
such a non-representable transformation in our chosen representation.
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Figure 4.4: Numerical solutions for the Cartesian coordinates «;(t) (a) and

Bi(t) (b) for the system of differential equations in eq. (4.15) with
the reverse-engineered Hamiltonian in eq. (4.24) as input. The
initial conditions are «;(0) = B;(0) = 0 and T is the conversion
time.
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Figure 4.5: Target- and initial-state fidelites |, (£) = [(¢[9(t)) |? of the quan-

tum state |¢(t)) [cf. eq. (4.21)] over time for the quantum state
conversion induced by the reversed-engineered Hamiltonian in
eq. (4.24). |01) is the initial state and |i(T)) the targeted GHZ state
from eq. (4.23). T is the conversion time.
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However, it does not matter for the underlying specific quantum
state conversion problem, because a 7t pulse driving |00) <> i|11) is
representable. The global phase is of no significance in this simple
example, but it becomes crucial if the Hamiltonian consists, e.g., of
multiple simultaneous 7t pulses, such that the phase of each pulse acts
as a relative phase in the resulting quantum states. The constraints on
the phases limit which GHZ states are reachable with a Hamiltonian
similar to our example in the preceding section [cf. eq. (4.24)].

Another important class of non-representable transformations acts
on both pseudospins conditionally. Since Ula, B) [cf. eq. (4.7)] describe
only unitary transformations acting on both pseudospins indepen-
dently, we cannot represent operations acting onto one pseudospin
depending on the state of the other. We consider as an example the
Controlled NOT operation (CNOT) in terms of the pseudospins, which
is a simple example of a two-qubit gate [19, p. 21]. It interchanges
the states |1]) and e¥|11), leaving the other pseudospin basis-states
invariant. Hence, the 7t pulse

37T pulse _ T g

induces the CNOT-gate over the conversion time T. No phase ¢ ex-
ists for which this Hamiltonian is representable in terms of our Lie-
algebraic approach for the chosen representation.

In contrast, the CNOT-gate in terms of the computational basis
is representable. It transforms |10) into |11) and vice versa while
leaving |00) and |01) invariant. In fact, we already have used the
corresponding 7 pulse as the last step in the cascade Hamiltonian in
eq. (4.20).

We want to emphasize that representability obviously depends
on the chosen representation. Choosing different generators S; and
Ti would allow for describing other transformations. For example,
sometimes, it is enough to redefine some basis states to include a
phase to allow a state of a specific phase to be reachable.

This section shows that the restriction to the Lie algebra so(4) limits
the representable transformation. Likewise, we can apply restrictions
on the Hamiltonian of the four-level quantum system. We will see in
the following section that Hamiltonian constraints restrict the possible
curves (a, B) (). Depending on the form of the constraints, it does not
necessarily limits which target states are reachable from which initial
states, but it complicates the reverse engineering of an appropriate
Hamiltonian.

4.6 HAMILTONIAN CONSTRAINTS

As the second example in section 4.4, we discussed some examples
of quantum state conversion in the system of two independent pseu-
dospin degrees of freedom. The simple example of a reversed engi-
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Figure 4.6: Schematic drawing of the four-level ladder Hamiltonian. All
depicted levels are eigenlevels of the Hamiltonian, fulfilling
the eigenvalue relation H4S|i) = 0|i) for binary numbers i =
0,1,2,3 [cf. eq. (4.27)]. The Rabi frequencies Q); (i € 1,2,3) are
the off-diagonal elements of the Hamiltonian driving transitions
between adjacent levels.

neered Hamiltonian resulted in curves («, ) () represented by straight
lines. A somewhat diminished control over the quantum system de-
creases the degrees of freedom of the time-dependent Hamiltonian
and results in constraints on the time-dependent curves (t). We con-
centrate on Hamiltonians which only connect adjacent quantum levels.
We call such a Hamiltonian ladder Hamiltonian.

This section presents these specific constraints and their influence
on the Lie-algebraic approach developed before. Further, we find a
subset of curves («, B)(t) fulfilling the considered constraints, which
will be later used to reverse-engineer a ladder Hamiltonian for specific
quantum state conversions.

4.6.1  Four-level ladder Hamiltonian

The general Hamiltonian of the four-level quantum system contains
six independent Rabi frequencies: one for each pair of levels. They
are, in principle, arbitrary complex-valued functions of time. If now
all levels are only connected to their respective adjacent levels in the
order of the computational basis, half of the Rabi frequencies vanish.
The resulting ladder Hamiltonian is represented as

Fivledder ) /3 = (427)

in the computational basis. By enumerating the Rabi frequencies as
ladder spokes or steps 1,2, and 3, we simplified the notation of the Rabi
frequencies compared to the general four-level Hamiltonian in eq. (4.2).
Additionally, the Rabi frequencies (); are now real-valued functions to
ensure the representability by our chosen so(4)-representation.
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Comparing eq. (4.27) with the relationship between time-dependent
Hamiltonian and the chosen Lie algebra representation in eq. (4.15),
we find the following constraints

0 = wsla(t)], (4.28a)

0 = ws[B(1)], (4.25b)
and

0 = wala(t)] — wa[B(t)] - (4-28¢0)

These constraints are anholonomic boundary conditions for curves in
the Lie-parameter space and ascertain the absence of Rabi frequen-
cies connecting non-adjacent levels of the computational basis. They
prohibit implementing the |01) to GHZ state conversion scheme as a
7t pulse ﬁgguie‘GHD or via a straight line in the Lie parameters as
discussed in section 4.4.2. Both rely on a direct connection between the
states [01) and |11), thus, featuring non-vanishing values of w3 [a(t)]
and values of w;[B(t)] not compensated by values of wy[«(t)].
The relationships between Rabi frequencies connecting adjacent
levels and vectorial Rabi frequencies are
w1 |a(t)] + wi|B(t
0 () = ] +rlA), 1200
t)| — t
Qz(t) _ wl[“( )] . wl[ﬂ( )] ,

(4.29b)

QS(t) _ w2[“(t>] —iz_w2[ﬂ(t)] ]

(4.29¢)

Finding adequate solutions to a desired state conversion problem
is generally challenging. In the following, we constrain the possible
curves ¥(t) in the Lie-parameter space even further. Under these
tighter restrictions, the constrained equations have a simpler form,
which allows us to find an appropriate solution.

4.6.2  Simplified constraints

One nonintuitive way to find solutions is to restrict the possible curves
in the Lie-parameter space even further, such that the anholonomic
boundary conditions are automatically fulfilled. For example, many
of the examples of state conversions in section 4.4 can be considered
as stretching the Lie-parameter vectors, i.e. a(t) || &(t), hence a(t) x
&(t) = 0 (analogous for B(t) and its derivative). As a result, the
relations of the vectorial Rabi frequencies w[x(t)] and w(B(t)] are
significantly simplified, but such straight lines still have to fulfill the
anholonomic boundary conditions. Unfortunately, the |01) to GHZ
state conversion from section 4.4 does not fulfill the anholonomic
boundary conditions. As discussed before, it induces additional Rabi
frequencies not present in the ladder Hamiltonian H412dder n the



4.6 HAMILTONIAN CONSTRAINTS

following, we introduce another restriction to the Lie-parameter curves
that simplifies the anholonomic boundary conditions and allows us to
find a solution for the |01) to GHZ state conversion.

We restrict ourselves to curves in the Lie-parameter space with
constant absolute values 7t for the two parameter vectors, i.e., |a(t)| =
|B(t)| = m. This restriction is in no way necessary and seems at
first somewhat arbitrary, but it simplifies the anholonomic boundary
conditions in egs. (4.28) enough to construct a set of simple solutions
for a general state conversion problem. We will see in the end that
some fast conversion schemes are still possible.

With the absolute value of the two vectors fixed, it is utile to express
the remaining degrees of freedom in spherical coordinates, such that
the Lie parameters are described by

a1 (t) = rsinf,(t) cos ¢u(t), (4.30a)

ay(t) = mrsin b, (t) sin gy (f), (4.30b)
and

az(t) = meosB,(t), (4.300)

where 0 < 6, < mand 0 < ¢, < 27t and a set of analogous definitions
for the components of B(t) with 65(t) and ¢4(t), respectively.

Since sin(7r) = 0, cos(w) = —1, and (« - &) (f) = 0 for vectors of
constant absolute value |a(t)|, only the term including the cross prod-
uct in the expression for the vectorial Rabi frequency in eq. (4.15a) does
not vanish. Consequently, the anholonomic boundary conditions (4.28)
in terms of the just-introduced spherical coordinates simplify to

= ¢u(t) sin” O (1) , (4.31a)
0= ¢p(t) sin? 0s(t), (4.31b)

and
0 = 0a(t) cos du(t) — Op(t) cos dpa(t) . (4.310)

The first two are easy to fulfill by choosing constant azimuthal angles
¢o and ¢, ie., pu(t) = ¢pp(t) = 0. The constant azimuthal angles allow
us to integrate the third condition. Hence,

cos COS Py 6 ()
0s(t) = 05( dt’ 6 .
p(t) = 65(0 T cosgs o / (4-32)

Any integrable function 6,(t) and two fixed azimuthal angles ¢,
and ¢4 induce a time-dependent ladder Hamiltonian as in eq. (4.27),
whereby the Rabi frequencies [cf. egs. (4.29)] in terms of the spherical
coordinates are

O (t) = =6, (t) (sin gy + cos Py tan ) (4.33a)
Oy (t) = 26, (t) cos ¢y, (4.33b)
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and
O3(t) = =64 (t) (sin s — cos Py tan ) . (4-33¢)

To describe a specific state conversion with these Rabi frequencies, we
have to describe the initial- and the target state as superpositions of
the rotated basis vectors from appendix A.1. The vectors must fulfill
la(t)| = |B(t)| = 7 for all times, and the azimuthal angles must be
constant in time. Initial- and target state then must be connectable by
time dependent polar angles fulfilling eq. (4.32).

In the following section 4.7, we present a |01) to GHZ state-
conversion scheme fulfilling the simplified constraint in this section.
Thus, it is realizable in a system of four adjacently connected quantum
states. Further, we compare our solution to other published schemes
of the same restricted conversion problem, which not necessarily fulfill
the same simplified version of the constraints.

4.7 01 TO GHZ STATE CONVERSION

This section presents the possibility to implement the |01) to GHZ state
conversion in a constrained four-level quantum system as described
by the ladder Hamiltonian in eq. (4.27).

The problem can be formulated as follows. We search for a con-
tinuous curve v(t) = (&, B)(t) such that the Hamiltonian H4-adder (4
induces a time evolution over the time T connecting

[t =0)) = |o1) = ﬁ (148 + 1419) (4.34)
and
_ L
-2
= 5 (D) +ik4) — eI11) +e9141)) ,

where ¢ € [0,27). |(T)) describes the family of two-qubit GHZ states
with the relative phase ¢ as a free parameter. Again, we consider a GHZ
state in terms of the computational basis and not the pseudospins.

Whereas we use here the simplified curves of constant absolute
value |a(t)| = |B(t)|] = 7 as induced by Rabi frequencies of the
form of egs. (4.33) there are other solutions to the same problem.
For example, Kang et al. [118] employed a dynamical symmetry-based
approach similar to the one introduced in this work but with a different
Lie-algebra representation. An alternative approach based on Lewis-
Riesenfeld invariants [110] was employed by Zheng et al. [109]. We
compare our solution to these alternatives at the end of this section
(cf. section 4.7.4).

To find an appropriate curve in the Lie-parameter space connecting
the initial state |01) with the GHZ state, we have to express the latter via
an expansion of the transformed version of the former one. Since we

[p(t=T)) = —= (|00) + 1) )

(4.34b)



4.7 01 TO GHZ STATE CONVERSION

want to use the simplified constraints from section 4.6.2, the curve has
to fulfill the anholonomic boundary conditions from equations (4.31)
and |a(t)| = |B(t)| = 7 for all times f.

We split up the task into three steps: First, we describe appropriate
initial values in the Lie-parameter spaces. Second, we find possible
transformations of the initial state describing the target state. Third,
we search for a curve y(t) connecting both states and fulfilling all
imposed constraints.

4.7.1 Initial state

The first step is to describe the initial state. The easiest way to represent
the initial state in terms of the rotated pseudospin basis is to start
at the origin and represent it in terms of the unrotated pseudospin
eigenbasis. Hence,

«(0) = B(0) =0. (4.35)

We parameterized the initial states in all examples in section 4.4 in
such a way. Unfortunately, such initial conditions do not fulfill the
simplified constraints |a(t)| = |B(t)| = 7.

However, we can use the fact that |01) lies in the kernel of the
operator S3 + T5. Therefore, a time evolution generated by this operator
does not affect our initial state, and |01) especially fulfills

eFimSseFT301) = |01) . (4.36)

Thus, we can set as initial Lie-parameter vectors

x(0)=p0)=(0 0 +x) . @37)

These vectors are obviously of absolute value 7t as required.
The next step is to find all possible solutions («(T), B(T)) describing
the targeted GHZ state.

4.7.2 larget state

In the second step, we describe the target state as a general transfor-
mation of the initial state. Hence,
1 ia(T).5—ip(T)-T
[$(T)) = —ze M5 POT(|11) + |11) (4:38)
V2

where |¢(T)) is the GHZ state [cf. eq. (4.34b)]. Using the transformed
pseudospin basis-states from appendix A.1, it is possible to formulate
necessary conditions to transform the state |01) into a GHZ state. We
relegate a detailed discussion of the general conditions to appendix A.3
and just state the specialized version we will use. Under the restriction
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of constant absolute values |«(T)| = |B(T)| = 7, these conditions [cf.
egs. (A.6)] reduce to

772

7o |a3(T)B2(T) + ax(T)B3(T)| , (4-392)
0= a1(T)B1(T) + az(T)B2(T) — as3(T)B5(T), (4.39b)
0=a1(T)Bs(T) +as(T)B1(T), (4-39¢)

and 7_[2
—= = |aa(T)B1(T) — a1 (T)B2(T)] - (4.39d)

V2

Their general solutions can be given up to one free parameter. As
functions of a3(T), these solutions are

qas(T)
a(T) — | g2y/ 72 — 2a3(T) (4-40a)
a3(T)
and
— 010203/ T — 203(T)
B(T) — — 2q303(T) (4.40b)

V2
42934/ 7'[2 — 20(%(T)

with —71/v/2 < a3(T) < m/v/2 and q1,92,93 € {—1,+1}. The param-
eters g; describe sign relations between different coordinates.

We used a3(T) as free parameter since 6, (t) was left as an arbitrary
integrable function in eq. (4.32), and 6,(t) is completely determined
by a3(t). In terms of spherical coordinates, the limits on a3(T) impose
/4 < 6,(T) < 37m/4, and the general solutions fulfill

cos ¢y (T) — g1 cot0,(T) =0, (4.41a)

cos ¢g(T) + g1 cotbp(T) =0, (4-41b)
and

cos? 0, (T) + cos? 05(T) = % . (4-410)

The first two relate a1 (T) to a3(T) and B1(T) to B3(T), respectively.
The third relates w3(t) to B3(t). The parameters g; determine unique
solutions, but we do not explicitly state the corresponding spherical
coordinates of the solutions (4.40) here. They are straightforward to
deduce from the inversion of the definition of spherical coordinates in
egs. (4.30) under consideration of the sign relations defined by g1, g2,
and g3.

Figure 4.7 visualizes on a double sphere all possible transformations
which realize a GHZ state starting from |01) as initial state under the
constraints || = |f| = 7. Each sphere represents one of the vectors
«(T) and B(T), which together describe the GHZ state as represented

in eq. (4.38).
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Figure 4.7: Lie-parameter vectors « and B transforming the initial state
110) =1 (|41) + [41)) /V2 into a GHZ state [cf. eq. (4.34b)]. In each
row one color corresponds to one family of solutions {41, 92,43}
of egs. (4.40).
Upper row: {—,—,—} (blue), {—,+,—} (orange), {+,—, —}
(green), and {+, +, —} (red)
Lower row: {—,—,+} (blue), {—,+,+} (orange), {+, —, +}
(green), and {+,+,+} (red).
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1 1 1 1
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Figure 4.8: Graphs G [0,(T)] = 05(T) — m[04(T)]604(T) [cf. eq. (4.42)] for the
families of GHZ state solutions in eqs. (4.41) (/4 < 0, < 37/4).
Four sets {41, 42,43} share one graph.
@ {— = =} {—++} {+ -~} and {+ + +}
o) {- —+} {—+ - {+ - +}and {+ + -}

4.7.3 Curves in the Lie algebra

In the last step, we have to find time-dependent curves in the Lie-
parameter space connecting the initial state described in the first step
with a GHZ state described in the second step while additionally fulfill-
ing the simplified anholonomic boundary conditions from egs. (4.31).
These conditions state that the azimuthal angles ¢, and ¢4 are con-
stant in time and that the polar angles are related via the integral
in eq. (4.32).

Since we set the initial Lie-parameter vectors at the poles of a
sphere, e.g., 0,(0) = 65(0) = 0, we can select arbitrary constant ¢, and
¢p and concentrate on solving the integral equation (4.32) to match
the conditions (4.41c) describing the target state. Due to our initial
conditions, both polar angles 6,65 vanish at t = 0, and in terms of
the spherical coordinates, we get the linear relation

0516 (T)] = m[6, (T)]60.(T), 442)

where the incline
" o8 Pu [0, (T)]
[0.(T)] = cos 5[0 (T)]

is defined by the azimuthal angles. The equation is not as simple as
implied by the notation.

The graphs of eq. (4.42) (see fig. 4.8; four sets {41, 42,93} coincide per
graph) show exactly one real root for each of our families of GHZ-state
solutions [cf. eq. (4.40)].

Hence, for each combination {g1,42,43}, there is a single set of
spherical coordinates {6y, ¢, 05, 4)5} describing a GHZ state, and this
set of coordinates is reachable from our initial conditions by a curve in
the Lie-parameter space fulfilling the tighten constraints of section 4.6.
Table 4.1 presents these solutions, whereby the root of eq. (4.42), i.e.,
the result for 6,(T) was calculated numerically. Substituting these

(4-42a)
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Table 4.1: Approximate spherical coordinates of the Lie-parameter vectors
for each family of solutions defined by {g1, 42,93} [cf. egs. (4.41)]
and corresponding constant Rabi frequencies [cf. egs. (4.33)] for
0, = 1/T. T is the conversion time. The coordinates describe GHZ
states as in eq. (4.44) that are reachable by curves (&, B)(t) fulfilling
the anholonomic boundary conditions of egs. (4.31).

f g2 g3 | 6(T) 65(T) @u(T) p(T) T T 5T
- - —1192 0.91 5.09 0.67 1.22 1.42 2.35
- - + 1091 1.92 3.81 1.95 —-1.22 —-142 2.35
- 4+ =109 1.92 2.47 4.33 122 —-142 —-235
- + +]192 0.90 1.19 5.61 —1.22 142 —-235
+ - —1192 0.91 4.33 2.47 122 —142 2.35
+ - 4+ 1091 1.92 5.61 1.19 —-1.22 1.42 2.35
+ + =109 1.92 0.67 5.09 1.22 142 —-235
+ + | 1.92 0.91 1.95 3.81 —-122 —-142 -2.35

coordinates in eq. (4.33) delivers the Rabi frequencies inducing such

a state conversion, whereas the time derivative of 6,(t) is almost

arbitrary, because only its integral enters the constraint in eq. (4.32).
The easiest possibility is a linear time dependency for 0,(t), i.e.,

0u(t) = 02(0) + G“(TT)t (4-43)

resulting in constant Rabi frequencies over the conversion time. These
constant Rabi frequencies (cf. table 4.1) comprise the main result of this
section. When we apply the state conversion scheme in the following,
we will always use one of these sets of Rabi frequencies.

Since only the target value 0,(T) is of importance, other function
0. (t) reaching the same value at t = T induce the same state conver-
sion, but with different Rabi frequencies and different curves («, B)(t).
Hence, the dynamic during the conversion changes.

Evaluating the target state [cf. eq. (4.34b)] for each of our solutions
{71,92, 95} shows that two orthogonal GHZ states are reachable with
the presented scheme. These states are

p(T)) = % (00) + guil11)) . (4.44)

Which of these two is realized by the state conversion depends on the
parameter q.

To visualize the solutions, we present the Lie-parameter curves for
constant Rabi frequencies in fig. 4.10 and show target state fidelities
over the conversion time in fig. 4.9.

Despite the constraints imposed by the ladder Hamiltonian in
eq. (4.27) and the tightening of these constraints by restricting us
to curves of constant absolute value 7t, we have found sets of Rabi
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Figure 4.9: Initial state fidelity fidelity Fjo;y = [(01[¢(t)) |> (blue line) and
target state fidelity 7, (), = [{(¢(T)|y(t)) |? (orange line) for the
quantum state conversion with constant Rabi frequencies. The
solution parameters g; are not specified because the fidelities’
time evolution towards the corresponding |(T)) [cf. eq. (4.44)]
is the same for all solutions.

frequencies implementing the state conversion scheme from the initial
state |01) to a GHZ state. The resulting curves in the Lie-parameter
space end up being relatively simple as they describe circular move-
ments of constant azimuthal angle. In terms of Rabi frequencies, they
are as simple as they can be by allowing a conversion with constant
Rabi frequencies.

Having found these sets of Rabi frequencies, we can lift the con-
straints |a(t)| = |B(t)| = 7 and start with both vectors at the origin
at the initial time t = 0. The Rabi frequencies induce the considered
state conversion independent from its description in the Lie-parameter
space. We only used the constraints in the Lie-parameter space as a
tool to simplify the underlying equations to aid us in finding solutions.

In the following section, we will compare our developed conversion
scheme to a direct 7t pulse, as shown in section 4.4, and with another
conversion scheme abiding by the same constraints of the ladder
Hamiltonian.

In chapter 5, we will employ the conversion scheme presented here
for an abstract four-level quantum system in a quantum state conver-
sion for a Rydberg-atom trimer. Although it is an eight-dimensional
system, it can be reduced to four levels and the scheme becomes ap-
plicable. In this context, |01) will be interpreted as the W state of the
Rydberg trimer.

Before that discussion, we will assess the efficiency of our developed
scheme according to an appropriate figure of merit and compare it
with other schemes as mentioned above.

4.7.4 Comparison with other schemes

In the last section, we found different sets of Rabi frequencies for
the ladder Hamiltonian in eq. (4.27) inducing the |01) to GHZ state
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Figure 4.10: Curves from the Lie-parameter vectors «(t) and B(t) for t €
[0, T] for the |01) to GHZ state conversion. T is the conversion
time. All solution start at «(0) = B(0) = me;. The black cir-
cles indicate the targeted GHZ-state solutions as in fig. 4.7. In
each row one color corresponds to one solution {g1,42,43} of
eqs. (4.41).

Upper row: {—,—,—} (blue), {—, —, +} (orange), {—,+,—}
(green), and {—, +, +} (red)
Lower row: {+,—, —} (blue), {+,—, +} (orange), {+,+,—}
(green), and {+,+,+} (red).
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conversion. As already mentioned, there exist different proposals
for the same task. For example, Kang et al. [118] and Zheng et al.
[109] presented proposals in two distinct physical systems. While
the first investigated spin qubits, the second considered a system
of Rydberg atoms in the blockade regime. In both examples, the
respective physical systems were reduced to a four-level quantum
system governed by a ladder Hamiltonian, i.e., the same abstract
system we are considering. To assess the quality of our solution for
the specific quantum state conversion problem, we compare it to these
different proposals. In section 4.4, we presented other examples of
|01) to GHZ state conversions, but for unconstrained Hamiltonians. We
also include these examples in the comparison to assess how much the
restrictions to the ladder Hamiltonian affect the ability to transform
the state conversion efficiently. An unrestricted 7t pulse as in eq. (4.19)
connecting the initial- and target state will be taken as benchmark.

First, we shortly summarize the two different proposals from the
literature. We refer to the respective publications [109, 118] for a more
detailed discussion of these solutions. Second, we introduce a figure
of merit which allows the comparison of all solutions to the |01) to
GHZ state-conversion problem.

Kang et al. published their proposal in 2019 [118]. They realized
the W to GHZ state conversion in spin qubits by reducing the full
Hamiltonian first to the ladder Hamiltonian by appropriate coupling
conditions and then reverse-engineer a Hamiltonian based on Lie-
transforms [119]. In their reduced description, the W state corresponds
to the state |01) of our description in this chapter. Their approach is
similar to ours presented in the preceding sections. They represent the
Hamiltonian via elements of a Lie algebra and relate the unitary time
evolution to a curve in the corresponding parameter space. Due to the
constrained Hamiltonian, they get three equations describing the Rabi
frequencies in terms of the curve parameters and their time derivatives
and three equations constraining some of these time derivatives. As the
starting point for a Lie-algebra representation, they use the elements

Gi = |i+1)(i| + Hec. (4-45)

with i = 1,2,3. Each of these elements is associated with one of the
Rabi frequencies Q);(t) of the ladder Hamiltonian. Subsequently, they
complete the Lie algebra with additional three elements fulfilling the
respective commutator relations.

Zheng et al. published their proposal in 2020 [109]. They used a
permuted version of the same representation as Kang et al. [118] and
constructed solutions employing invariants of the dynamical alge-
bra [110, 111]. They also find three equations describing the Rabi
frequencies and three constraints.

In the end, both alternative approaches deliver essentially the same
time-depending Rabi frequencies );(t) (cf. [109, 118]). The striking
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Figure 4.11: Exemplary Rabi frequencies from Zheng et al. [109] inducing the
desired state conversion via the ladder Hamiltonian in eq. (4.27).
In comparison to the Rabi frequencies as presented within [109],
the signs are changed to match the relative phase of the target

state in eq. (4.47).

difference compared to our approach in both cases is the different
representation of the Lie algebra so(4). Their representations do not
imply independent pseudospin-1/2—degrees of freedom.

In the following, we compare an exemplary set of Rabi frequencies
from [109], shown in fig. 4.11, to one of our solutions of constant
Rabi frequencies from the preceding section. We choose the solution
described by the signs g1 = g3 = —1 and g, = +1 (cf. table 4.1), but
the only difference to other solutions would be the phase of the target
state and the signs of the Rabi frequencies. The corresponding set of
constant Rabi frequencies from eq. (4.33) is approximately

01 ~1.22/T, (4.46a)

O, ~—-142/T, (4.46b)
and

O3~ —235/T. (4-46¢)

Both sets of Rabi frequencies (); from egs. (4.46) and shown in
fig. 4.11 induce the state conversion

1
V2

via the corresponding ladder Hamiltonian H412dder (£) from eq. (4.27).
Additionally, we also compare these solutions for the ladder Hamilto-
nian with more unrestricted state conversion schemes from section 4.4.
The first example is a simple 7t pulse as in eq. (4.19), and the second
is the reverse-engineered Hamiltonian from eq. (4.24).

For the four different Hamiltonians, we numerically solve the system
of differential equations for the vectorial Rabi frequencies [cf. eq. (4.15)]
with initial conditions «(0) = «(0) = 0. Each of the different solutions
(a, B)(t) describes a time-dependent quantum state

[9(0)) = [01) — [(T)) = —= (|00) —i[11)) , (4-47)

(1)) = e 1o SeBOT 1) (4.48)
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Figure 4.12: Target-, initial-, and intermediate state fidelities F4(t) =

[{¢p|p(t))|*> over time for different state conversion schemes

(cf. table 4.2). [¢) € {|01), |10), |¢(T))} [cf. eq. (4.47)]. T is the
conversion time. (a) ladder Hamiltonian with Rabi frequencies

Q;(t) adopted from [109] (cf. 4.11) (b) 7T pulse [cf. eq. (4.19)] (c)
reversed engineered Hamiltonian (cf. section 4.4.2) (d) ladder
Hamiltonian with constant Rabi frequencies corresponding to

{91,92,93} = {+,—, +} (cf. table 4.1)

over the conversion time ¢ € [0, T]. Figure 4.12 shows initial- and
target-state fidelities over time t. The additionally displayed fidelity
Fiioy(t) = [(10]y(t))|* visualizes that the four schemes differ in the
amount of intermediate state occupation. With the exception of the
7t pulse, all quantum state conversions show a varying population
of the state |10), which is orthogonal to both the initial- and target
state. In this sense, the 7 pulse is the most direct state conversion.
Its conversion path does not include orthogonal states. But since
the ladder Hamiltonian does not allow a direct connection between
|01) and |11), it is not surprising that the state |10) appears as an
intermediate state for conversion schemes constrained by it.

To compare the different schemes quantitatively, we have to define
an appropriate figure of merit. T is a free parameter in all schemes,
and we can consistently achieve shorter conversion times with higher
Rabi frequencies and rescaling the time t. Therefore, T cannot serve
as figure of merit, but we can compare different conversion schemes
via their pulse area. To do so, we introduce the total squared pulse
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Table 4.2: References and relative TSPA of the four different quantum state
conversion Hamiltonians. All realize the quantum state transfer
defined in eq. (4.47) with the conversion time T, but differ in
their Hamiltonian description and the applied Rabi frequencies.
The TSPA are displayed relative to the TSPA; of the 7 pulse with
A(T) = m?/AT?.

Scheme Hamiltonian T?P%T see and cf.
7t pulse ﬁgguie‘ () 1 section 4.4.1; eq. (4.19)
time-dep. Fi#-ladder 21.03 [109, 118]; fig. 4.11

Rabi frequencies

constant

Rabi frequencies H4-ladder 3.67  section 4.7; eq. (4.46)

-~

rev.-engineered H|01 o GHZ 2.5  section 4.4.2; eq. (4.24)

area (TsPA) A(T), where T is the conversion time when the target state
is reached. The squared pulse area (SPA) is defined as

t 3 R
AN = [ X GRSl P (449)

i<j=0

The number of non-vanishing matrix elements depends on the con-
sidered scheme. For the ladder Hamiltonian, they correspond to the
three Rabi frequencies ();(t). The squared absolute value of the Rabi
frequency is strongly related to the energy consumption of the state
conversion for many physical systems. For example, if the Rabi fre-
quencies are induced by laser fields driving transitions between atomic
energy levels, |Q)(t)|? is proportional to the laser intensity, and the
laser intensity is related to the energy consumption of the laser. A
given conversion scheme is efficient if its TSPA is small. The 77 pulse
sets a lower limit with A(T) = 72/4T? and is, as the most efficient
one in our comparison, taken as benchmark. Table 4.2 summarizes the
four different conversion schemes. It also shows their corresponding
TSPA.

Although it has a higher TSPA than the unconstrained Hamiltonians,
our solution is over five times as efficient as the time-dependent one.

Accordingly, if we normalize all conversion schemes such that they
have the same energy consumption, the constant Rabi frequencies
of our scheme realize the state conversion in a significantly shorter
time than the time-dependent Rabi frequencies. Figure 4.13 shows
the target state fidelities for the compared conversion schemes, all
normalized to the TSPA of the 7t pulse.

In such a normalized scenario, our solution is faster than the solution
from [109, 118]. Its TSPA is more comparable with the unrestricted 7
pulse. Hence, we have found simple sets of Rabi frequencies for the
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Figure 4.13: Target state fidelities Fjy 1)y = [{(¢(T) (1)) ? (a) and squared
pulse area A(t) (b) for the adjusted conversion schemes table 4.2.
All Rabi frequencies were rescaled such that the TSPA=TSPA,,
where TSPA,; = 712/ (4T2). Ty is the conversion time correspond-
ing to the 7 pulse.

ladder-Hamiltonian, which are constant in time, and induce the |01) to
GHZ state conversion almost as efficiently as an unrestricted 7r pulse.

4.8 CONCLUSION AND SUMMARY
4.8.1  Conclusion

In this chapter, we discussed quantum state conversion in the two-
qubit system. We developed a simplified Lie-algebraic approach that
relies on the restriction to a subalgebra of the full dynamical symmetry
of the system. Although this leads to non-representable transforma-
tions, it significantly simplifies the description of specific quantum
state conversion schemes. Choosing a slightly different representation
of the so(4)-Lie algebra would allow to include different phases in the
transformations. We did not completely characterize the underlying
state space’s geometry and its connectivity offered by our approach,
but we gave some examples of non-representable transformations.
Such a complete characterization could be a question for ongoing re-
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search. Another possible research direction is generalizations to higher
dimensions. However, many properties of the Lie algebra so(4) do not
necessarily translate to dynamical symmetries of a system of more
than two qubits.

As the presented approach to quantum state conversion is rather
abstract, it can be applied to many different real physical systems.
Spin systems [118] or reduced Rydberg systems [63, 109] are only
some examples. As two-qubit interactions are essential for a complete
set of computational gates in quantum computing [108], the presented
approach offers a form of investigating such interactions in terms of
quantum state conversion.

For the constrained problem, represented by the ladder Hamilto-
nian, we found appropriate solutions for the specific quantum state
conversion from |01) to a GHZ state. Our solutions offer a far more
efficient conversion scheme as presented before [109, 118], although it
still requires over three times the conversion time of an unrestricted 7
pulse of same TSPA.

We did not address the question if we have found the optimal solu-
tion given the constraints of the ladder Hamiltonian. Recently, Nauth
et & Stojanovié [120] addressed this issue by applying an quantum-
brachistochrone approach [121]. They found that an optimal solution
to the discussed conversion problem can be more efficient than our
solutions (in terms of the TSPA), but their discussed Rabi frequencies
feature complex time-dependencies. In contrast, although not as effi-
cient, our conversion scheme offers additional freedom in choosing the
time-dependency as our solution only has to fulfill an integral relation.
This last fact even allows for the most simple time dependency;, i.e.,
the constant Rabi frequencies we utilized in the presented examples.

The following chapter presents a model system of higher dimension
and its reduction to ladder Hamiltonians. For a special case, the state
conversion developed in this chapter is applicable and will be used to
transform W- into GHZ states.

4.8.2  Summary

This chapter contains a Lie-algebraic approach to quantum state con-
version in the two-qubit system employing a restricted dynamical
symmetry. It discusses several examples and non-representable trans-
formations. In addition, section 4.6 presents a constrained system in
which a ladder Hamiltonian induces the time evolution. This ladder
Hamiltonian only connects adjacent levels of the computational basis.
Under these constraints, we found solutions for the |01) to GHZ state
conversion by restricting the dynamics even further. Finally, a compar-
ison of the found scheme with other proposals discussing the same
quantum state conversion problem is presented.
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Some of the presented content is a more detailed version of a
similar discussion published by the author, Gernot Alber, and Viadimir
Stojanovi¢ in Physical Review A [63]. In what follows, we give a short
description of how content presented in this chapter relates to content
in the mentioned publication. The general description of the system
and the Lie-algebraic approach in sections 4.1 to 4.3 and appendix A.1
is related to sections L.-IV. in [63] but presented here in far more detail.
The examples for unrestricted quantum state conversion and the
discussion of non-representable transformations in sections 4.4 and 4.5
have not yet appeared in any former publication. Sections 4.6 and 4.7
and appendix A.3 are also enlarged versions of already published
content. They correspond to section V. in [63]. Although a discussion
comparing the found conversion scheme with the scheme by Zheng
et al. [109] has already been presented within [63], section 4.7.4 of
this dissertation additionally features a comparison with unrestricted
conversion schemes and considers the 7t pulse as a benchmark.
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This chapter discusses state preparation and interconversion in a multi-
qubit system featuring pairwise interaction. The qubits are supposed
to model neutral Rydberg atoms arranged by lattices of optical tweez-
ers, i.e., optical traps formed by focused light fields. We especially
emphasize the case of three qubits modeling a Rydberg trimer.

Such systems of neutral atoms are envisioned to be of high impor-
tance in QIP due to their sound scalability and controllability via laser
fields [47] and are an emerging platform for quantum simulation [122-
124] and computing [48, 125]. Rydberg atoms are atoms in a state of
high principal quantum number n [46]. Due to this high excitation,
they feature large atom radii and strong interparticle interaction [47].

Many experiments are conducted on this particular platform for QIP.
For example, it is nowadays possible to ensemble defect-free arrays of
more than one hundred single Rydberg atoms in such optical setups
[52, 126—-128]. Also, experiments based on optical tweezers continue
to achieve higher precision in the individual positioning of single
atoms [129, 130].

As this is a theoretical account, we do not describe any experimen-
tal setup in detail or consider a particular excitation scheme of real
Rydberg-atom species.

We are interested in reducing a simple model for an array of neutral
atoms to lower dimensions and finding an effective Hamiltonian that
allows for implementing state conversion schemes as, e.g., developed
in the preceding chapter.

We describe each Rydberg atom as a two-level quantum system
(TLS), its Hamiltonian, and some basic notation in section 5.1. Sec-
tion 5.2 introduces special sets of states important for the following
discussion. As a special concept it introduces twisting and twisted
states of the atomic ensemble. Section 5.3 discusses the interaction
of the atomic ensemble with laser fields via effective Hamiltonians
using the resolvent formalism (cf. chapter 3). Having these effective
descriptions at hand, we present a quantum state preparation scheme
for twisted W states in section 5.4 and several reduction schemes in
section 5.5. The latter reduce the descriptions of a three qubit system
to lower dimension and allow the dynamics to be described by ladder
Hamiltonians as discussed in section 4.6. To validate the presented
reduction schemes, we conducted numerical calculations implement-
ing the |01) to GHZ state conversion from section 4.7 of the preceding
chapter. These calculations are presented in section 5.6. In the context
of a Rydberg trimer the |01) corresponds to the W state. Therefore,
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we present an example of a W to GHZ state conversion using global
system interactions.

Much of this chapter’s content was already published as article in
Physical Review Research [64]. A more detailed description of how some
of the content already appeared in other publications can be found in
the summary (section 5.7.2).

5.1 SYSTEM AND SYSTEM HAMILTONIAN

We consider a system of several neutral Rydberg atoms positioned in
individual traps formed by tweezer arrays. For an extensive discussion
of how experiments in such arrays are setup and conducted, see,
e.g., [126]. We will not discuss the complete internal structure of the
Rydberg atoms and only describe them as two-level quantum systems.
The atomic ensemble formed by the neutral atoms interacts with
several laser fields driving the individual Rydberg transitions. We do
not consider the addressability of individual atoms but rather a global
interaction of the atomic ensemble as a whole.

First, we give the basic theoretical description of the considered sys-
tem in the form of the system Hamiltonian. Afterward, we introduce
generic basis states and some notation, which we will use throughout
the remaining chapter.

5.1.1 System Hamiltonian

The system under consideration consists of N identical neutral Ryd-
berg atoms (enumerated with 7). Each of these atoms is located at x;,
a specific position in space. We assume no time dependence of the
position vectors for all our following considerations and model the
internal atomic structure as a TLS. Therefore, each of the N identical
two-level systems consists of a ground state |g), with energy E; and
a Rydberg state |r), with energy E,.

We assume the atomic interaction is completely described via V(dp;)
that is the dipole-dipole (Van der Waals) interaction potential between
atoms enumerated p and g. It depends on the distance dp; = [x, —
x;| between two Rydberg atoms and scales roughly as 1/ d?,q [47].
Therefore, the energy spectrum of the atomic ensemble depends not
only on the number of excited atoms but also on all pairwise distances
dpg-

If all atom positions are equidistantly apart, the blockade potential
becomes a constant, hence V(dp;) — V. This is only possible for up
to N = 4 particles. N = 2 trivially fulfills the equidistance condition
since there is only one pair of atoms. For N = 3, the atoms have to
form an equilateral triangle. It will be the case for which we discuss
most of the following results in more detail, and Figure 5.1 shows
a sketch of the considered atomic ensemble and its energy scheme.
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Figure 5.1: (a) Schematic drawing of a Rydberg trimer modeled by three
qubits in an equilateral triangle.
(b) Energy scheme corresponding to a Rydberg trimer composed
of three atoms forming an equilateral triangle. V is the dipole-
dipole interaction potential.
Adopted from FIG. 1. [64], which is licensed under Attribution 4.0 Inter-
national (CC BY 4.0).

For N = 4, the atoms must form a regular tetrahedron. Although, for
N > 4, no geometrical object in three spacial dimensions exists that
features all vertices, hence atoms, equidistantly apart, we still assume
a constant blockade potential V for a general number of N atoms.
This assumption allows us to give general expressions and deal with
all cases of low N simultaneously. Afterward, we can specialize our
results to N = 3, 4. Furthermore, all our following derivations are not
strictly restricted to Rydberg-atom systems. In essence, we describe a
theoretical qubit model with pairwise constant qubit interaction. In
principle, it is possible to design other QIP systems described by the
same model Hamiltonian as discussed below. All our following results
would apply to such systems.

With all the mentioned assumptions, we can write down the Hamil-
tonian describing the atomic ensemble as

-~

HAIZ(g!gnn 1|+ Ep|r) +ZV! (rlp(r]. (5.1)
n=1 p<q

Here and in the following ZII,L , means a sum over all (%) subsets {p, 9}
of two distinct atoms. The first sum describes the internal energies
of the N two-level systems, whereas the second sum describes the
pairwise atomic interactions. The energy levels of the atomic ensemble
are

N

where a is the number of excited atoms and wa = (E, — Eg) /T is the
atomic resonance- or Rydberg frequency. Further, the energy gaps
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between adjacent levels with succeeding numbers of excited atoms are

AE, =E,—E, 1 =hwa+V(a—1). (5.3)

We assume the atomic ensemble interacts with several different
plane-wave laser fields (enumerated with j < J and starting with j = 0
for later convenience). All these light fields are completely determined
by their respective wave vector k;, frequency wj, and their field state.
Hence, each laser field is described by a distinct electromagnetic
field mode. The free-field Hamiltonian of this ensemble of considered
modes is

Hp = zhwjé}réj. (5.4)

We omit here the ground-state energies 7iw; /2 because, in the follow-
ing, we assume all fields to resemble classical fields of high mean
photon number, and the small amount of each ground-state energy
does not contribute significantly to the total energy of each mode
(cf. section 2.1).

We describe the interaction of atomic ensemble and electromagnetic
field in the dipole- and RWA. To shorten our notation in the following,
we introduce the coupling constants Adf which are essentially deter-
mined by the atomic dipole operators d; (cf. section 2.3), such that the
interaction Hamiltonian can be written as

N ]
ZZ(’gnn aelk x”‘f'HC)- (5.5)
n=1j=1

The exponential function in each addend describes phases k; - x, due
to the different positions of each atom relative to the wavefronts of the
respective field. By introducing the unitary transformation

N
0lk) = @ (&™) (r] + ) (31 ) (56)

n=1

we can rewrite the interaction Hamiltonian (5.5) into

N ] 1-
EPN» (O U'(kj)d;al + He.) . (57)

j=1

The transformations U(k) allow in the following calculations to reduce
all cases of particular site-dependent phases to the case of vanishing
phases, and we will use them repeatedly to simplify calculations.

The three introduced Hamiltonians form the full system Hamilto-
nian

H =H, + Hp + Hyp, - (5.8)
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In the given description of the system, we omit deleterious effects
such as spontaneous decay from the excited atomic state to the ground
state or dephasing. The first reduces the lifetime of atomic ensemble
states with higher excitation numbers, whereby the latter diminishes
the control and addressability of certain states by the laser fields.
To some extent, we will reintroduce and discuss these effects via an
open system approach in section 5.6 to investigate their impact on the
applications presented later in this chapter.

5.1.2 Notation and generic basis states

To discuss the considered system’s dynamics, we introduce a specific
notation that we use throughout this chapter.

First, we define the general basis states describing the atomic en-
semble. Since the atomic ensemble consists of N two-level systems, we
need 2N basis states. Instead of writing down all individual atoms, we
will use a set-based notation, where {ny,...,n,} is a lexicographically
ordered subset, i.e., n; < ny < ... < n,, of all atom labels {1,...,N}.
A set {ny,...,n,} displays a atoms which are exited, such that

a N—a
{n1,- - ma}) = @Ir)n @ @) 18) (5.9)
i=1 i=1
is the corresponding state.
{ny,....ny_ot ={1...,N}\{n,...,n.} (5.9a)

describes the complement set of all atoms in the ground state. We will
refer to these states as lexicographic states.

All lexicographic states with the same number of atoms in the
excited state form a subspace of the atomic-ensemble Hilbert space
Ha. We write an orthogonal projection onto such a subspace as

N

P,= Y [n,...ny({m,...,na}l, (5.10)

nm<..<ug

where the sum runs over all (ZI ) possible states with precisely a ex-
cited atoms. As in the definition of the atomic-ensemble Hamiltonian
in eq. (5.1) with the two indices p, g describing different atoms, we
use here the notation 17 < ... < n, with a variables to indicate lexi-
cographic order of all addends and the upper limit N for all of the a
summation variables to ensure that none possible combination is left
out. These states are a complete basis of the atomic-ensemble Hilbert
space, hence

N

Z 135, =1a. (5.11)
a=0
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As an exception, we notate the ground state and the state of highest
excitation number 2 = N more generic most of the time. Instead of us-
ing the empty set @ or the whole set {1,..., N}, we write |g...g) and
|r...r) indicating all atoms in the ground or excited state, respectively.

We introduce a slightly different set-based notation for the electro-
magnetic field. Most of the time, we use Fock states [m;) (cf. section 2.2)
for each mode to describe its quantum state. The number of consid-
ered modes differs from situation to situation but is always finite. A
generic basis state of the field is

[{mj}) = ®\mj>, (5.12)

where {m;} is a set of photon numbers, one for each mode. We use
this slightly different notation for the electromagnetic field because
the indices j will not always run from 0 or 1 to some finite value, but
the indices indicate a specific purpose for each field. Furthermore, the
notation of the field states is much shorter this way and is rarely used,
such that it should not stir confusion at any point.

Combining atomic ensemble and electromagnetic field, a generic
basis state of the full system of atoms and field is therefore

Hny,.. e b, Amy, oo mp}) = [{ng, ..., nq}) @ [{m;}) . (5.13)

With the lexicographic states as a generic basis, we will describe
other special sets of states in the following section. We will introduce
states that are especially useful regarding the global interaction of
the atomic ensemble with the different electromagnetic field modes.
Furthermore, we introduce the concept of twisting and twisted states.

5.2 SPECIAL STATES OF THE ATOMIC ENSEMBLE

This section discusses some special states of the atomic ensemble,
which are of interest for the application discussed later in this chapter.
Especially, we want to introduce the concept of twisted states. At last,
we specialize the discussed states for the case N = 3. In this context,
we discuss chiral states, which are at the center of the applications in
sections 5.4 and 5.5.

5.2.1 W, GHZ, and Dicke states

We start with two sets of states which are essential when discussing
multipartite quantum entanglement. These are W- and GHZ states
representing two distinct classes of multipartite entangled states, as
already mentioned in the introduction 1.1.

If we superpose all possible states of one excited atom, we recognize
the W state

N
Wx({p, ..., on})) = jﬁze@w{nw (5.14)
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of N atoms and phases {¢1,...,¢n}. We can always take one of
the phases as a reference resulting in N — 1 relative phases, e.g.,
¢, = ¢1 — ¢u. The W states span an N-dimensional subspace of the
atomic ensemble. If all relative phases are zero, we recall the ordinary
W state |Wy ). Furthermore, the atomic ensemble can form a N-party
GHZ state, i.e.,

1
V2

Since the GHZ states form a two-dimensional subspace, one relative
phase is sufficient to identify a specific state.

More than one atom can be in its excited state in the atomic ensem-
ble. Therefore, we introduce Dicke states [131, 132]" via

GHZ(¢)) = —= (Ig- - &) +e¥Ir...7) . (5.15)

DY) =1g...8) (5.16a)
and
. N —-1/2 N
’DZ(\])> = ( ) Y. Hm,...na}), (5.16b)
a n<..<ng

where a again is the number of excited atoms. Dicke states generalize
the ordinary W state since |Wy) = |DS)>.

Dicke states were first investigated by R.H. Dicke in the context of col-
lective effects in the radiation from a molecular or atomic cloud [134]
and are an essential class of entangled states. They show beneficial
characteristics in many areas, such as quantum metrology [135, 136]
or quantum mechanical game theory [137].

Since the interaction in our considered model is global, Dicke states
and collective excitations play a crucial role in our following discussion,
but to incorporate the site-dependent phases described by the unitary
transformations ﬁ(kj), we have to relax the symmetry of the Dicke
states. We can generalize Dicke states to arbitrary phases as we already
did with the W states before. Hence,

|D§\?) {10+  PN—=at1).N}))

R R (5.17)

<<ty

where {¢1._a,..., P(N-at1)..N} 1S a set of (™) phases, one for each
(lexicographic) basis state |{ay,...,1,}). Relative phases degrade the
permutation invariance of the Dicke states. In the following, we will
specialize this notation of generalized Dicke states by taking the un-
derlying structure of the atomic ensemble into account.

Sometimes, the states |D§\7)) are called symmetric Dicke states and are considered
a special subclass of more general Dicke states [133] as in eq. (5.17), which are not
necessarily permutation invariant.
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5.2.2 Twisted states

At the end of the last section, we introduced generalized Dicke states
defined by relative phases. These phases break the permutation invari-
ance of Dicke states and can be, in principle, arbitrary. However, due
to the structure of the considered interaction with the electromagnetic
field [cf. eq. (5.5)], the laser fields introduce unique site-dependent
phases described by the unitary transformations IAJ(kj) in eq. (5.6). It
is reasonable to define twisted Dicke states of the form

a Ty a N 12 N iky? . x
DY) =MD = (3) X e )
<<t
(5.18)

accounting for the field-induced phases. The term twisted means that
the relative phases distort the original symmetry of the state, but the
single-site phases k - x,, are well defined through the optical lattices
formed by the wave vector k of the considered field.

The term twisted is chosen in analogy to states of well-defined
phases in the Kuramoto model [138] of a sequence of interacting oscil-
lators in non-linear physics. States of this system with well-defined
phases are called twisted states [139—-141]. Another analogy refers to
Bloch states of electrons in crystal lattices, where k is the reciprocal
vector of the underlying atomic structure [142].

The overlap of two twisted Dicke states defined by two different
wave vectors k and k' but constant atomic positions x, is

1 N i(k' — @ x
(DY (k) DY (k) = oy ), el (519)

(11 ) n<...<mny

Both states are equal if all (Z;I ) contributions are in phase (up to a
global phase). There are several ways to achieve this. Either k = k'
mod 27t or both wave vectors are perpendicular to the position vectors
of all atoms, i.e., k-x, = 0.

Twisted Dicke states will play a crucial role in representing the
effective Hamiltonians in section 5.3. Their overlaps are of major
importance for the applications presentend in sections 5.5.1 and 5.5.2.
Since we mainly restrict these applications to three atoms, we discuss
the twisted states for N = 3 in more detail in the following section.

5.2.3 Chiral states

In our applications in sections 5.4, 5.5.1 and 5.5.2, we mainly concen-
trate on the case N = 3. Therefore, we introduce another basis for the
atomic ensemble with three atoms, which will be more appropriate as
the generic basis of lexicographic states [{n1,...,1,}) when dealing
with global interactions.



5.2 SPECIAL STATES OF THE ATOMIC ENSEMBLE

For N = 3, the Hilbert space is eight-dimensional, whereby the
energy levels E; and E; are threefold degenerate. Therefore, another
operator, commuting with the atomic Hamiltonian H A- 18 needed to
obtain a complete set of quantum numbers and to differentiate each
basis state. One possibility is the chirality operator [143]

L1 &
K== €jx01;62j03k , (5.20)
2V3, i !

where §;; is the j-th Pauli operator acting onto the i-th qubit. Its
eigenvalues are x = —1,0, +1. Due to their permutation invariance,

the Dicke states |D§”)> correspond to x = 0 and are called non-chiral.
To complete the basis, we define four chiral states |X,+), two for each
degenerate energy subspace with 2 = 1,2. The complete basis {|Xay) }
consists of four Dicke states, the non-chiral states

[xo0) = DY) = |ggs) . (5.21a)

[x10) = [D3") = (|rgg) + Igrs) + Ig87)) /V/3, (5.21b)

[x20) = DY) = (|rrg) + |rgr) +[grr)) /3, (5.210)
and

x30) = [DS) = |rr7) (5.21d)

and four chiral states

xi-) = DSV ({0,¢, —¢}))

= (Irgg) +eIgrg) +e¥|ggr) ) /3, (5.21€)
xix) = DSV ({0, ¢, ¢}))
= (Irgg) +e lgrg) +e¥Iger)) /3, (5.21f)
a-) = DY ({~9,0,¢}))
= (e7lrrg) + Irgr) +e*lgrr) ) / V3, (5.218)
and
x2+) = DS ({9,0, —¢}))
= (ei"’|rrg> + |rgr) + e_i¢|grr>> /3 (5.21h)
with ¢ = 27/3.

In quantum information, chiral states can be used to construct log-
ical qubits from physical qubits [144]. Such logical qubits are more
fault-tolerant and less affected by noise. This is called noiseless sub-
system encoding [145]. In section 5.4, we present a scheme to prepare
twisted W states in Rydberg systems, including chiral states in the
case of N = 3. In section 5.5.1 the orthogonality of the chiral states is
used to select specific transitions in the atomic ensemble by means of
selection rules.

71



72

N

REDUCED RYDBERG-TRIMER MODEL

5.3 EFFECTIVE ATOMIC-ENSEMBLE HAMILTONIANS

In this section, we derive effective Hamiltonians of the idealized neu-
tral Rydberg-atom system discussed in section 5.1. We consider differ-
ent sets of laser fields enumerated by j. All fields resemble classical
fields. Thus, they are in a single-mode coherent state [96] with a high
mean photon number M;*. All assumptions are equivalent to the case
of simple TLS Rabi oscillations in section 2.3.2. The difference is that
we now consider not a TLS and a single mode, but a multilevel atomic
ensemble and several modes. Further, we do not solve the model
analytically, but employ the resolvent formalism to first order as intro-
duced in chapter 3. Tracing over the field’s degrees of freedom delivers
effective Hamiltonians describing the atomic ensemble’s dynamic.

We write the effective Hamiltonian as a sum over all (degenerate)
energy levels E of the dominant part of FI, i.e. the Hamiltonian without
interaction between atomic ensemble and field. Hence, the sum runs
over the whole spectrum o(H,), where H, = H, + Hg, [cf. egs. (5.1)
and (5.4)]. It also can approximates the denominator of the resolvent,
such that the effective Hamiltonian is

~ -~ o~ 1 ~ -~
H ff — Z PE (H +H QEWQEH> PE . (5.22)
¢ Eco(Hy) E—-QrHy Q¢

Pp = 1— Qg is the orthogonal projector onto the eigenspace corre-
sponding to energy E. We distinguish two different cases: First, we
discuss the interaction with an off-resonant laser field with a frequency
far of resonance from any transition of the atomic-ensemble Hamilto-
nian. Second, we consider laser fields with a frequency in resonance
with a specific transition of the atomic-ensemble Hamiltonian.

Our derivations only consider single laser fields, but a combination
of several fields is always possible as long as the energy levels of
the atomic ensemble combined with different fields do not overlap.
If this condition is fulfilled, we can superpose the effective dynamic
induced by several fields. We use such a combination of fields in
the state conversion schemes, where different fields address different
atomic-ensemble transitions.

5.3.1 Off-resonant case

In this section, we derive an effective Hamiltonian that describes the
dynamics of the atomic ensemb]e in interaction with an off-resonant
coherent laser field. We assume the laser field to be described by a
plane wave with wave vector ko and frequency wy. Off-resonant means
the field’s energy quantum hwy is far from resonance with all of the

We changed here the notation of photon number from N (cf. section 2.2) to M to
avoid any confusion with the number of considered Rydberg atoms
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atomic ensemble’s energy transitions. First, we will derive a general
effective Hamiltonian for N Rydberg atoms and then specialize the
result to the cases N = 3, 4. These are the first non-trivial cases but are
also easily realized via simple geometric arrangements of the atoms.

5.3.1.1 Derivation

Since the field is far from resonance with all of the transitions in
the atomic ensemble, the number of excited atoms a and the photon
number m distinguish different energy levels of the full system. The
operators

m,

ﬁt/l "= ﬁa & |m0> <m0| (5'23)

are projectors onto the corresponding eigenspaces of energy
E}" = E, + mohwy . (5.24)

With these projectors, the system Hamiltonian as defined in section 5.1,
and the corresponding energies, we can evaluate equation (5.22) to
determine the effective Hamiltonian. First, we notice that the subspaces
are not affected by the interaction. Thus,

SM0 1y [Mo

Pu Hint Pa =0. (525)
Further, the sum over all projectors acting on the system Hamiltonian
describes the system without interaction, i.e.,

co N
Ho= ) ) P/HP". (5.26)

mo=0a=0

Therefore, we can write the effective Hamiltonian as

o N
~ ~ BN ~ 1M 1 AT M
Heff = HO + Z Z Pu Hint Qa NI Qu Hint Pa
mo=0a=0 Ea - Qa HO Qa

(5-27)

Considering the form of ﬁint from equation (5.5), we can evaluate

Py iy Q) = P Py Py + P Pl P, (5:28)
since the interaction Hamiltonian directly connects only states that
differ in the number of atomic excitations and photon number by one,
whereas the total number of excitations a + m stays the same. This is
a result of the RWA where terms violating the conversion of the total
number of excitations are neglected. As a result, we can replace all sz
in the sum of the effective Hamiltonian and expand the resolvent in
our standard basis. Thus, we identify the denominators as the energy
differences

Em — Erl = Ao+ (a -1V (5.29)

+hAg —aV
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with the detuning Ap = wp — wa.

The operators in each addend of the first order effective Hamiltonian
in eq. (5.27) do not introduce any level transitions in the atomic
ensemble. However, they cause energy shifts and mix the degenerate
energy levels, and we can factorize them into projectors for the two
subsystems as

Mg ~my +1 ~

=My
Pa Hint Pu:Fl Hint Pa

[dof?(mo + 1)P, [Hda (ko) +a| P,
[do[?moP, |Fida (ko) + (N —a)| P,

X ]mo>(m0| .

(5.30)
Here, we introduce the operator

Fdo (k) = U(k) Hdon U (k)
N ~
(k) Y 11— Suns) [Py (8] © 18)mams (1] T (K).

ny,ny=1

I
@}

(5:31)

It projects a state of the atomic ensemble onto an equal superposi-
tion of all other states reachable by one combination of excitation
and deexcitation of distinct atoms. These are all states with the same
hamming weight but a Hamming distance (Hd)’ of two. Additionally,
the I:I\dz,N(k)—operator includes the phase factors due to the different
positions of the atoms via the unitary transformation U(k) or rather
the wave vector k as its argument. In the following, when we leave out
the argument k and write simply I—/I\dz,N, we assume all site-dependent
phases to vanish, equivalent to setting k = 0. A more detailed deriva-
tion of eq. (5.30), including some tedious intermediate steps, can be
found in appendix B.1.

Using the results from the last two paragraphs, we can rewrite the
effective Hamiltonian from equation (5.27) into

Hdo (ko) + N —a
hAO —aV

N o)
A (ko) =Ho+ Y Y 1dol*P," | mo

a=0 m0=0

I—/I\dle(ko)—Fa NN
hhg— (@—1)V| 7

(5-32)

—(m+1)

where for each addend the two possible operators of equation (5.30)
with the corresponding energy difference (5.2) as denominator appear.
The resulting effective Hamiltonian describes the dynamic of the

The hamming weight is the number of digits 1 in a given bit string. The Hd is the
number of binary digits on which two given bit strings differ.
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whole system — atomic ensemble and electromagnetic field — up to the
leading order of the resolvent formalism.

A single-mode coherent state |ap) (cf. section 2.2) of relatively high
mean photon number My describes a classical laser field exceptionally
well. Tracing over the field’s degrees of freedom, we can define

FIRf (ko) = Tre | Fgh y (ko) (14 © Jao) (o) | — Flg
N

= a:of)a [Sa (I_/I\dZ,N(kO) + N — a) — 541 (I:I\dZ,N(kO) + a)}

(5-33)

as the lowest-order corrections to the atomic ensemble Hamiltonian.

The resulting effective Hamiltonian ﬁeff =H ATt I/—\I(I(ff(ko) describes
the dynamic of the atomic ensemble alone. The main coefficients of
the effective Hamiltonian completely incorporate the effect of the
off-resonant laser field. These main coefficients are the Stark shifts

sy = TP (

"= o —aV 5.34)
They describe shifts of the energetic levels of the atomic ensemble
and are determined — among atomic properties — by the single atom
Rabi frequency )y and the laser field’s detuning Ag from the atomic
resonance frequency.

In the following, we emphasize some special cases of the effective
Hamiltonian derived in this section. We aim especially to simplify
the cases N = 3 and N = 4 since the corresponding atomic ensemble
Hamiltonians (5.1) can be realized simply by suitable geometrical
positioning of the individual atoms.

5.3.1.2  Atom numbers N=3,4

The effective Hamiltonian of the last section describes the dynamic of
the whole atomic ensemble for all (Z;] ) different states of all possible
numbers of excitations, i.e., 0 < a < N. For some cases, we can
simplify the addends appearing in equation (5.33) by evaluating the
I—/IHQ,N—operator explicitly. Since only one state exists for 2 = 0 and
a = N excitations, the Hd, n-operator vanishes in the corresponding
subspaces. Hence,

Py Hdan Py = Py Hdan Py = 0. (5.35)

For the following, respectively preceding, number of excitations (i.e.,
a =1,N — 1), all states of the same Hamming weight are connected
via precisely one excitation and deexcitation at distinct atoms. This
fact allows us to write the I-/IHQ,N—operator in terms of projectors onto
the Dicke states |D§\})> and |D§\,N71)>, respectively, and we only have to
correct for the term connecting each state with itself. Therefore,

P, Hdon P = NID) (D] - P, (5.36)
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and
5 3. N-1 N-1), 5
Py_1 Hdon Py = NDU DG | - Py, (5.37)

respectively. The factor N stems from the N possibilities to excite
precisely one atom or leave precisely one unexcited. For other values
of a, we have to correct additional terms that do not appear in I:I\dle
but in the projector of the Dicke state. With the generalized operators
I-/Iasz connecting states of equal Hamming weight but with Ham-
ming distances of 2m (analogous to the definition in eq. (5.31)), we
can rewrite

PN N\ . (s
P,Hdon P, = <a>|D§\])>< |-D, - Z P Hdo NP, . (5.38)

In the case of N = 3, we only need the simple egs. (5.35) to (5.37) to
rewrite the effective Hamiltonian as

H3% (ko) = 3s0|g39) (g88| — 3sarrr) (rrr|
+ (=350 +351) DY (ko)) (DS (ko) | + 1P (5:39)
+ (=351 +355) DS (ko)) (DS (ko) | — 51P .

We can see here that the off-resonant laser field lifts degeneracies. The
energies of the Dicke states for 2 = 1 and a = 2 differ from the energies
of orthogonal state of the same a by (—3sp + 3s1) and (—3s1 + 3s2),
respectively. These lifts can be used to address special transitions via
a fine detuning of laser fields almost resonant to a certain transition
of the original atomic Hamiltonian. Zheng et al. [109] used the shifts
to reduce the Hamiltonian to an effective four-level Hamiltonian for
a state conversion from W- to GHZ state and vice versa. Motivated
by their work, we present such a reduction to an effective four-level
Hamiltonian generalizing it to twisted states of the atomic ensemble
in section 5.5.2.

In the case of N = 4, we need an additional term as in eq. (5.38)
for the excitation number a = 2. It will correct the terms involving
jump operators from states that differ precisely by two excitations
and deexcitations at distinct atom positions, and we can rewrite the
lowest-order corrections as

H§% (ko) = 4s0lgggg) (8888| — 4sslrrrr)(rrrr|
(—450-1-451)]D(1)( ko)) (D “)(ko)|+251131
+ (—6s1 + 652) D (ko)) (D (ko) (5-40)
+ (—s1 4 52)P, — U(ko)P, d44P2U(ko)
+ (—4sy + 453)[D) (ko)) (D) (ko) | — 255P; .

Zheng et al. [109] used the effective Hamiltonians in eqgs. (5.39)
and (5.40) with vanishing site-dependent phases for state conver-
sion from N = 3,4-qubit W to GHZ states. Here, we presented a
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generalized version of both cases, including site-dependent phases.
Additionally, we generalized the derivation to arbitrary atom numbers
N with our result in eq. (5.33).

In the following section, we discuss the case of a resonant laser field
interacting with the atomic ensemble. In contrast to the off-resonant
case, such a field is able to drive transitions in the atomic ensemble,
which is necessary for quantum state preparation and interconversion.

5.3.2 Resonant cases

In contrast to the preceding section, we now describe the interaction
of the atomic ensemble with laser fields that are in resonance with a
specific energy transition in the atomic-ensemble Hamiltonian H A-In
this case, some energy levels of the combined system including atomic
ensemble and field become energetically degenerate, despite having
distinct photon- and excitation numbers. Hence,

E;nj = Ea + hw]m] = Ea/ + hw]-/m]-/ = E:/Zj, (541)

for some atomic excitation numbers 4,4’ and mode numbers j, j’. Here,
we want to concentrate on adjacent atomic levels. Resonances bridging
several energy gaps can be treated equally, but, in the context of the
conversion schemes developed for a ladder Hamiltonian connecting
adjacent levels in chapter 4, are of lesser interest to us.

The particular level structure of the atomic-ensemble Hamiltonian
H, with increasing energy gap AE, [cf. eq. (5.3)] allows address-
ing each transition separately. This assumption holds as long as the
Rydberg-blockade potential V' is high enough.

In the following, we derive the effective Hamiltonian of leading
order for laser fields in resonance with adjacent energy levels with
excitation numbers a — 1 and a. The discussion of some special cases
follows this derivation. First, the well-known effect of enhanced Rabi
oscillations is described by setting a = 1. This case is the foundation
for the preparation scheme for chiral states in section 5.4. Second, we
introduce a ladder Hamiltonian, which connects all the levels of our
atomic ensemble succeedingly and, thus, is of the form as discussed
in section 4.6. This Hamiltonian is the foundation for the reduction
schemes presented in sections 5.5.1 and 5.5.2.

5.3.2.1 Derivation

If the energy quantum hw; of a laser field precisely fills one of the en-
ergy gaps A, [cf. eq. (5.3)], the atomic states with energy E, combined
with the field state |m,) and atomic states with energy E,_1 combined
with the field state |m, + 1) form a degenerate subspace. By equating

E and E;”_“Tl, we get

W, = h(w, —wa) = (a—1)V (5-42)
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for the detuning of the laser field in question. We call this resonance
condition detuning, although it is in resonance with the transition
a <+ a — 1. We always describe detuning relative to the single-atom
Rydberg transition. A, vanishes for a = 1 since, in this case, the
considered transition is precisely the Rydberg transition. Note, we
choose to parameterize the resonance via a2 and a — 1, such that the
enumeration of the fields starts with j = 4 = 1 since we already used
j = 0 for the off-resonant case in section 5.3.1. We call the fields with
j > 0 resonance or driving fields in the following.

We again apply the resolvent formalism to derive the effective
Hamiltonian for the atomic ensemble interacting with a resonant laser
field. Due to the additional degeneracy in the energy levels, we have
to join the projectors onto subspaces of the same energy. Hence, we
use the projectors

Mg, Mg+1 =g+l Mg,y +1

ﬁu,a—l _P +Pa 1 =1- Qaa 1 (543)

in the sum over all energy levels in eq. (5.22) instead of separate

»Ma =g +1 . . .
addends for each Pam and PT_;r . The joined subspaces are directly
affected by the interaction Hamiltonian since

g ma+1 ~  amgmg+1

_Paa 1 HOPau 1

n (P i, o +H.c.) .

g mg+1 ~

p H Pma,ma+1

aa—1 int* a,a—1

(5-44)

In contrast, the term containing H._, does not appear for single projec-

int
tors Pa in the off-resonant case [cf. eq. (5.25)]. The additional term
contains jump operators between atomic-ensemble levels with a and

a — 1 atomic excitations, resulting in

a1 Sieet G
P Hthm —davmu‘i”lU(ka)G:—l (ko) @ |mgq)(mg +1|. (5.45)

Here, we introduced the atomic-ensemble raising operator & . It
connects atomic-ensemble subspaces of succeeding excitation numbers
and is defined as

N N

or= Y Llwmislimonad) ] (5460

m<..<n;n=1
Equivalently,

N

6, = Z Z|g an(r|{m, .. na}) ({m, .. nat] (5.46b)

n<---<ngn=

is the atomic-ensemble lowering operator. They are related via (6;)+ =
6., and act onto Dicke states as

67IDW) = /(N —a)(a+1)[DGHy, (5.472)
6, IDY) = y/a(N —a+1)[DY ). (5-47b)



5.3 EFFECTIVE ATOMIC-ENSEMBLE HAMILTONIANS

We relegate a more detailed derivation of eq. (5.45) to appendix B.2.1.
It is again a straightforward but rather tedious calculation.

For all energy subspaces, both the joined ones with projectors
St Mg +1 . . H»Ma .
PZTu_ml and the off-resonant ones with projectors Pg , we still have

to calculate the term containing the resolvent. In the second case,
we can use the result already produced in the previous section 5.3.1
[cf. egs. (5.28) to (5.30)] since the field is off-resonant towards tran-
sitions different from the considered one. Likewise, we can reduce
the term containing the resolvent in the addend corresponding to the
energy of the resonant subspaces in eq. (5.22) to

g Mg +1 ~ ~amgmg+1

P

My ~my+1

Mg 2 ~ -1 P Ama+2
aa—1 HQu,a—l = Pu H'mt Pa—H +Pa—1 Hint Pu—Z . (548)

As in section 5.3.1, we used that H,, does not connect different energy
subspaces and ﬁint only adjacent ones. Except for different indices,
the last equation resembles eq. (5.28), and we can use the same line
of arguing as in the off-resonant case in section 5.3.1 [cf. egs. (5.28)
to (5.32)]. We just have to introduce index shifts a <+ a — 1 and m, <
m, + 1 in the second term of eq. (5.48). The corresponding energy
differences in the denominator are

Efe —Efyt = Bt — Epd? = -V (5.49)
since iA, = (a — 1)V. Thus, all terms of the effective Hamiltonian in
eq. (5.22) containing the resolvent either scale like |d,|*m,, |dq|*(mq +
1), or |d,|*(m, + 2) divided by the corresponding energy difference.
We can neglect these terms if we assume

V, Ay —ad' V> |dymy| (5.50)

for all ' # a,a — 1 up to a maximal relevant photon number max 1,.
This assumption leaves the result from eq. (5.45) and its hermitian con-
jugate as leading order corrections to ﬁo in the effective Hamiltonian.
Tracing over the field’s degrees of freedom and assuming a coherent
state |a,) of high mean photon number M, for the resonant mode
j = a result in an effective atomic-ensemble Hamiltonian of the form

Ho = Hy + Hy™ ! 551
with

N . ~t

19,0 a-l(ku) =hQ:U(k,)6, U (k,) + Hec.. (5.52)

The leading order corrections describe Rabi oscillations between
atomic states with excitation numbers a and a — 1. (), is the single
atom Rabi frequency. We relegate a more detailed discussion of the
neglected terms and more instructive intermediate steps to derive
eq. (5.52) to appendix B.2.2.
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It is noteworthy to mention that the frequency of the Rabi oscillation
is not |Q),| but depends on the transitions involved. The different di-
mensions of the adjacent subspaces of different numbers of atomic ex-
citations a play a decisive role in the structure of the atomic-ensemble
lowering and raising operators.

In the following, we want to discuss some special cases and some
peculiarities appearing due to the site-dependent phase shifts encoded
into the unitary transformation U. Further, we discuss how to use the
single field result to build effective Hamiltonians that describe the
interaction of the atomic ensemble with several laser fields.

5.3.2.2 Collective Rabi oscillations

A laser field resonant to the Rydberg transition drives Rabi oscillations
between the ground and the Rydberg state (cf. section 2.3). Due to
the blockade potential V in the atomic-ensemble Hamiltonian, none
of the atoms can oscillate independently since the blockade potential
suppresses the simultaneous excitation of two or more atoms. Since
A1 = 0, the laser field is far detuned from the other transitions a =
0,1 <+ a = 2 or even higher a. However, the whole ensemble oscillates
coherently. This effect is called collective Rabi oscillations [146]. We
immediately recognize this effect in our result for a resonant field
interacting with the atomic ensemble. With a = 1 in eq. (5.52), the
effective Hamiltonian for the atomic ensemble is

Hee = Hy + (hﬂi‘\/ﬁlg- ..8) <D§\})(k1)| + H-C-) . (5-53)

The ground state is not affected by the unitary transformation since
U(ko) only shifts the phases of excited atoms. This Hamiltonian de-
scribes Rabi oscillations with the enhanced Rabi frequency v/ N
between the ground and the twisted Dicke state. The effect has been
experimentally observed in large cold-atom clouds [147, 148] and also
for two [149] and three individual atoms [126, 150].

There are other ways than the Rydberg blockade to inhibit the pop-
ulation of a second atom of the ensemble. The same enhanced Rabi
frequency appears in the population of the field state in an N-atom
Jaynes-Cummings (JC) (sometimes called Tavis-Cummings) model
with a single excited atom and no field excitation as initial condi-
tions [151]. Note, in the last case, the regime of the electromagnetic
field is a an entirely different one than for our considerations since it
involves vacuum Rabi oscillations [152]. Furthermore, the atomic exci-
tation gets trapped and hardly vanishes for a high number of atoms
N [153]. In this case, the conservation of the total number of excitations
prevents more than one atom from being excited simultaneously.

The site-dependent phases determine the superposition of atomic-
ensemble basis states that make up the quantum state in eq. (5.53)
participating in the Rabi oscillation. Especially in the N = 3—case,
they determine the chirality of the state. Therefore, to control the
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site-dependent phases lies at the heart of the preparation scheme for
chiral states in section 5.4.

5.3.2.3 Rydberg ladder

In the previous section, we only considered a single resonant field. It is
straightforward to describe the interaction with several fields by intro-
ducing several modes and combining their respective transition correc-
tions in the effective Hamiltonian. It leads to a possible experimental
setup where N laser fields with detunings A, = (a — 1)V interact with
the atomic ensemble. If all laser fields fulfill the Rydberg-blockade
regime, hence 11|Q),| < V for all a4, we can ignore all non-linear terms
in any (), as we already have done to derive the effective Hamil-
tonian for a single resonant field in eq. (5.52). Hence, the effective
Hamiltonian is

Hege = Hy + H (5:54)
with leading corrections

N

Hladder — ) (hﬂ;‘ U(k,)6, IAJJr(ka) + H.C.) (5.542)
a=1

connecting adjacent atomic-ensemble energy levels. All subspaces are

connected succeedingly via the resonant fields j = 1,..., N, which

bridge the respective energy gap AE, in the atomic-ensemble Hamilto-

nian step by step froma =0toa = N.

We can rewrite eq. (5.54a) as

N
Hlﬁdder _ Z hQY [\/M|D§§‘”(ka)><13%)(ku)!
a=1

~ (S a ) ot (5.55)
+ 0k, (B~ D) O) U (k)|
+ H.c.,

using the twisted Dicke states ]Dg\?)(ka» and the known action of
the atomic-ensemble lowering and raising operators onto these states
[cf. egs. (5.472a) and (5.47b)]

Even though we call this Hamiltonian a ladder, it does not precisely
generalize H#ladder 1y gection 4.6 and eq. (4.27) which describes a four-
level quantum system adjacently connected via three Rabi frequencies.
Iflll'{}dder resemble a slightly different structure. Here, we do not deal
with an N + 1 level system connected via N resonant laser fields but
instead with a 2V-level system due to the (I;I )-fold degeneracy of each
atomic-ensemble energy E,. As with the single field in the previous
section, the unitary transformations U(k,) describe site-dependent
phases on each atom in the multi-level scenario, but now, we have up
to N different unitary transformations U, since ky # k, in general. If
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the overlaps (Dg\’;)(ka” D%)(ka+1)> for succeeding wave vectors are
smaller than unity, the ladder spokes in the effective Hamiltonian in
eq. (5.54a) do not match. If succeedingly numbered fields fulfill the
phase-matching condition (D%) (ko)| Dg\?)(ka+1)> = 1, the effective
Hamiltonian describes Rabi oscillations between the twisted Dicke
states ]Dg\?_l)(ka» and |D§f,l)(ka)>. Since the time evolution induced
by a Hamiltonian is unitary, the time evolution of these twisted Dicke
states decouples from orthogonal states of the same excitation number,
respectively. If all N — 1 phase-matching conditions are fulfilled, we
can identify the ground state |g...g) and the N twisted Dicke states
\D%) (kq)), one for each a = 0,..., N, forming an N + 1-level system
connected via N Rabi frequencies. The time evolution of the remaining
2N — (N + 1) orthogonal states decouples from this subsystem, such
that

Pp({ka}) HY Pp({ka})

-y 03 /a(N —a -+ DIDE (k) (O (k) + He.,
a=1

where

p({ke}) = 2|D DY (k,)|, (5.56a)

projects onto the subspace spanned by all considered twisted Dicke
states.

This Hamiltonian induces a restricted time evolution only on the
spanned subspace. It resembles the structure of N + 1 levels suc-
ceedingly connected by N Rabi frequencies. Hence, if all matching
conditions are fulfilled the projection of the Hladder in the subspace P,
really generalizes H+1adder to N+ 1 levels.

An obvious solution for the phase matching is k; - x, = 0 mod 27
for all combinations of 2 and 7, such that G(ka) = 1. In this case, the
ladder Hamiltonian connects all ordinary Dicke states without any
twisting.

For N = 3, the ladder Hamiltonian in eq. (5.56) resembles the same
structure as the Hamiltonian discussed in chapter 4. Aligning all laser
fields perpendicular to the plane spanned by the three atoms achieves
the phase-matching conditions k; - x, = 0. In this case, we can write
the leading corrections as

Py, HEer ({k,})Pp = V305 |gg¢) (D] + 203D (DY

(5.57)
+ 303Dy (DY) + Hee. .
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If precise positioning of the atoms and alignment of the laser fields in
three dimensions is possible, the phase-matching condition can hold
even for N = 4. In this case, we get

Py, Hder ({k,})Pp = 207 |gggg) (DL | + v60;(D{") (DY |
+v603 DY) (D] + 20Dy (D] (5:58)
+H.c..

Zheng et al. [109] also derived these two effective Hamiltonians by in-
troducing an additional strong off-resonant laser field (cf. section 5.3.1)
and fine detunings to the N resonant laser fields. Furthermore, they
implicitly assumed the phase-matching condition to be fulfilled. Here,
we showed that the strong off-resonant field is not necessary to derive
the ladder Hamiltonian, and we emphasized the importance of the
phase-matching condition.

In section 5.5.1, we use the result for N = 3 to reduce the corre-
sponding eight-dimensional system to an effective four-level ladder
Hamiltonian for different sets of states. Selection rules determine
which states form this set, and the selection rules depend on the
chosen phase-matching conditions. Effective Hamiltonians formed by
these selection rules can be seen as an extension of the preparation
scheme for chiral states in section 5.4, since it allows to convert each
of the chiral states into a GHZ state.

In section 5.5.2, we use an additional strong off-resonant laser field
to lift the degeneracies in the system Hamiltonian to some extent.
Particular transitions can then be addressed using fine detunings of
the resonant laser fields.

In both cases, we realize a four-level ladder Hamiltonian, thus, we
can use our quantum state conversion scheme from section 4.7.

5.4 PREPARATION OF CHIRAL W STATES

In this and the following section, we want to discuss applications of
the effective Hamiltonians derived in sections 5.3.1 and 5.3.2. We start
with a preparation scheme for twisted W states for the N = 3—case.
The scheme includes the preparation of chiral states as discussed in
section 5.2.3.

Section 5.3.2.2 shows that a single resonant plane-wave laser field
with vanishing detuning A; = 0 and wave vector k; drives col-
lective Rabi oscillations between the ground state |g...g) and the
twisted W state |D§\}) (k1)) [cf. eq. (5.53)]. Therefore, a simple 7t pulse
[cf. eq. (4.19)] of the laser field prepares the twisted W state from the
initially occupied ground state.

To choose which twisted state is prepared by the 7 pulse, we have
to control the site-dependent phases k; - x,, describing the twisting. In
the N = 3—case, this control can be understood purely via geometrical
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Figure 5.2: Schematic drawing of the orientation of the laser field and the
atomic plane for the N = 3 case. The atoms form an equilateral
triangle with interatomic distance d. The orientation of a plane
laser field with wave vector k is defined through the angles ¢
and ¢y.

Adopted from FIG. 2. [64], which is licensed under Attribution 4.0 Inter-
national (CC BY 4.0).

arguments, thus, specific positioning of the atoms and alignment
of the laser field towards the atomic ensemble. We can realize the
atomic Hamiltonian in eq. (5.1) by positioning all atoms pairwise
equidistantly to ensure a constant interaction potential V. Hence,
they form an equilateral triangle of some interatomic distance d. We
describe the three individual relative atom positions via the radial
coordinate r = dv/3 and three equally distributed azimuthal angles
1, 92 = ¢1+2m/3, and @3 = @1 +4/3. Relative to the plane
spanned by the three atoms, we can describe the laser field’s direction
of propagation via the angles & and ¢, whereby ¢, describes the
angle between the direction of propagation k/|k| and the normal
of the atomic plane. ¢ is the corresponding azimuthal angle of the
laser field. Figure 5.2 shows a schematic drawing of the geometrical
arrangement of atomic ensemble and laser field.

Considering all this and the RWA, we can write the site-dependent
phases as

o -y = 2 sin(6,) cos(gx — ). (5:59

In the equilateral triangle, we have Y\, cos(¢ — ¢,) = 0 for any
angle ¢. Therefore, we can only prepare symmetrically twisted W
states, where all site-dependent phases add up to zero, i.e., ZnNzl ki -
x,; = 0.

A basic example of such a geometrical arrangement is an interatomic
distance of twice the wavelength of the laser field, i.e., d = 47tc/wa,,


https://creativecommons.org/licenses/by/4.0/
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and laser alignment such that ¢, — ¢ = 71/2. This geometrical ar-
rangement leads to cos(¢x — ¢n) = —/3/2,0,+/3/2 and relative site-
dependent phases

ki-(x13—x)=7FP, (5.60)

where ® can vary over the whole range 0 < ® < 277 by tilting the laser
tield with respect to the atomic plane, such that 0 < ¢, < 71/2. Note,
that other multiples of the wavelength are possible choices for d, as
well, but they result in in different laser field alignments as described
in the following to set specific phases.

In this exemplary arrangement, a 7 pulse of the resonant laser field
drives the ground state into the symmetrically twisted state

W=0,0,0})) = = (e Irss) + lsrs) +e®lgsr) , (560

where the tilt of the laser field determines the phase ® = 27 sin(9).
In particular, this allows preparing the chiral states |x;+) and |x1-)
with laser orientations described by 9 = arcsin(1/3) and arcsin(2/3),
respectively. With the ordinary W state, which corresponds to an
orthogonal orientation of the laser field (& = 0), we are able to
prepare a complete set of the atomic-ensemble states with a single
excitation.

Figure 5.3 shows the fidelity of the basis states |x10), |X1+), and |x1-)
towards the prepared state |[W(—®,0, ®)), which depends on the angle
O = arcsin(®/27). In principle, since the three aforementioned states
form an orthonormal basis of the subspace of a single excitation, an
arbitrary twisted W state can be prepared if three laser fields drive the
system and each field matches the phases for one of the basis states.

As already mentioned in section 5.2.3, chiral states can be of sig-
nificant importance in QIP since they allow the implementation of
noiseless-subsystem qubit encoding [144, 145]. There exist already
preparation schemes for different QIP-platforms, e.g., trapped ion sys-
tems [154]. Here, we presented a simple preparation scheme in neutral
atom systems, which is purely described by the geometry or arrange-
ment of the atomic ensemble and the driving field. The crucial aspect
for an experimental realization in Rydberg systems is the possibility
to position the atoms with a precision lower than the wavelength
of the laser field. Such precision requires the cooling of the atoms
to their motional ground states. Although it is experimentally very
demanding, there are experiments localizing Rydberg atoms already
on a subwavelength scale, e.g., alkaline-earth atoms [129, 155, 156] or
recently also alkali atoms [130]. Taking this recent advances in mo-
tional ground state cooling into account, a precision as required here
seems in reach in the not to distant future. This exclusive preparation
of a state of specific relative phases £® by the field depicts a selection
rule. The ground state, which has chirality 0, is only connected to the
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1.0

Fidelity F|y. )
=)
3

— [Xax) = [X10)

Xax) = [X1+)
004 ¥ L : Xax? = x1-)
0 /4 /2

Polar angle ¥), = arcsin(®/2m)

Figure 5.3: Chiral basis state fidelities F,, \ = [(x1x|W(P)) > of the
twisted W state |W(®)) prepared via a 7t pulse of the collec-
tive Rabi Hamiltonian in eq. (5.53) for different polar angles
¥ = arcsin(®/27) of the laser field. Its azimuthal angle fulfills
@r — @2 = 17w/2, where ¢, is the azimuthal angle of atom n = 2.
All atoms form an equilateral triangle (cf. fig. 5.2). The vertical
dotted lines indicate the configurations achieving the preparation
of the atomic eigenstates |x1,) of the chirality operator.

twisted W state corresponding to the twisting or chirality introduced
by the laser field. This kind of selection rule applies to states of all
possible excitation numbers a will play a crucial role in the first of
the following schemes to reduce the atomic-ensemble Hamiltonian for
N = 3 to an effective four-level-system.

5.5 EFFECTIVE FOUR-LEVEL SYSTEMS

This section presents different possibilities to reduce the effective
Hamiltonian of the Rydberg-atom trimer, i.e., the special case of N = 3
atoms of the atomic ensemble described before, to a four-level ladder
Hamiltonian. These reductions then allow to apply the conversion
schemes for the constrained dynamics of the four-level quantum sys-
tem developed in sections 4.6 and 4.7.

The starting point is the Rydberg-ladder Hamiltonian in eq. (5.54a).
Rabi frequencies induced by several laser fields connect adjacent
levels of the atomic ensemble, but the Hamiltonian only describes
a decoupled dynamic for N + 1 distinct quantum states if specific
phase-matching conditions are fulfilled.

In the following, we describe two possibilities to reduce the ladder
Hamiltonian for a Rydberg-atom trimer with N = 3 to an effective
system of four quantum states. In the first presented reduction, we use
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the same kind of selection rules as we already did to prepare chiral
states in the preceding section. Suitable alignments of the laser fields
involved allow for the fulfillment of the matching conditions. Second,
we discuss a reduction employing an additional far off-resonant laser
field, which partially lifts the degeneracies of the atomic-ensemble
energy levels, such that fine detunings of the ladder fields can single
out specific transitions decoupled from unwanted transitions by a
hierarchy of timescales. This second approach is motivated by the
derivation of the effective Hamiltonian by Zheng et al.[109], but since
we included site-dependent phases, we generalize it to almost arbitrary
twisted states.

Since we concentrate here on the special case of Rydberg trimers, the
resulting effective Hamiltonians describe four-level quantum systems,
and we can use the |01) to GHZ state conversion scheme developed in
chapter 4, where |01) represents the (twisted) W state in the Rydberg-
trimer system.

In both cases, we present numerical simulations for the time evolu-
tion of the considered quantum system in the subsequent section 5.6
to validate the reduction schemes. These numerical investigations
also include discussions of deleterious effects, such as dephasing and
spontaneous decay via an open system approach or possible uncertain
atom positions.

5.5.1 Employing selection rules

The ladder Hamiltonian in eq. (5.56) already reduces the full ladder
Hamiltonian to an N + 1-level system. The ordinary Dicke states span
the decoupled subspace. Here, we want to explore the possibility of
different phase-matching conditions to achieve a decoupled dynamic
for different sets of states in the special case of Rydberg trimers, thus
N =3.

In contrast to the preceding section where a single laser field was
considered, we assume three laser fields (enumerated j = 1,2,3) to
interact with the atomic ensemble. Each of them is in resonance with
one of the energetic transitions in the atomic Hamiltonian H, .

Section 5.4 shows that collective Rabi oscillations connect the ground
state with the twisted Dicke state ]Dgl) (k1)). Orthogonal states of a = 1
excitations are decoupled from the dynamics of the ground state. If
we want to include the ground state into the effective dynamics, we
must include this particular twisted Dicke state, as well. In this sense,
the twisting introduced by the first ladder field (j = 1) sets a reference
frame such that we can rewrite the ladder Hamiltonian eq. (5.54a) as

U (k) H2er Gk ) = Y 10 Uk, — ky)6, U (ko — Ky )
a=1 (5-62)

+H.c..
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In the following, we set our phase reference to simplify the notation
such that kq - x, = 0 for all n. Equivalently, we could redefine the
atomic basis states to include the phases induced by the first field.
Hence,

{n1,...,ma}) = Olky){n1,...,na}) (5.63a)
and

ki — ks —kq. (5.63b)

When discussing the ladder Hamiltonian in section 5.3.2.3, we al-
ready selected the Dicke states to rewrite it slightly [cf. eq. (5.55)]. We
can rewrite it again using the eigenstates of the chirality operator |xay)
as basis for the atomic ensemble. The Hamiltonian represented in this
basis is

R N t
Hl3adder /h = Qiﬂ\/§|ggg> <X10| + Qg\/gU(k3)|X20><TTT’| U (kS)
+0; U(ky) <2!X1o> (x20] = [x1+) (X2+|

(5.64)
) xa-|) U (ko)

+H.c..

To reduce this Hamiltonian to an effective four-level system, we have to
single out four states via some matching conditions. When introducing
the Rydberg ladder, we already introduced matching conditions of
vanishing side-dependent phases of the form*

U(k2)[x10) = Ix10) (5.65a)
and

U(k2)[x20) = Ul(ks) [xa0) - (5.65b)
Alternative matching conditions are

U(ka)lxa+) = [xw0) (5.65¢)
and

U(ka) [x2+) = U(ks)[x20) - (5.65d)

In the £ case, the ladder Hamiltonian would decouple the dynamic
of a subspace spanned by the four states {|gg%), |X10), [x2—), |[rr7)}
in the upper-sign case or {|2g9), [x10), [x2+), |rrr) } in the lower sign
case, respectively”. Projecting onto the decoupled subspace delivers an
effective Hamiltonian of the same structure as the ladder Hamiltonian
for the Dicke states in eq. (5.57) but involves a different state of a = 2
excited atoms and slightly adjusted Rabi frequencies as

P, HYder ({k, })P. /h = V30 [888) (x10| + O |x10) (X2t |

(5.66)
+ V30 X0 ) (rrr| + Hec..

4 Now, with U(k;) — 1 taken as reference
5 Note, in these cases U(ky)|x2+) = |X2+), respectively.
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A
3E, +3V —+ |rrr)
Y
2E,+V T xe-) [X20) ==l
Er e ’X1_>_ ‘X10>
SN NIk
3Eg =0 — 888)

Figure 5.4: Energie scheme of the atomic ensemble with N = 3 in the chiral
basis |xas) [cf. Egs. (5.21)]. The arrows indicate driven transitions
to establish an effective 415 depending on the matching conditions

in eq. (5.65).

P, describes the orthogonal projection on either the set containing
the positive or negative chiral state with a = 2. Note, that all schemes
include |x10) since we have chosen the first field as a reference and
redefined the atomic basis states to include the phases introduced by
this field.

For the different effective Hamiltonians to resemble the ladder
Hamiltonian H4adder from section 4.6, we have to adjust the Rabi fre-
quencies slightly to compensate for the different factors accompanying
the Rabi frequencies (); in eq. (5.64). Hence, we define effective Rabi
frequencies ); accounting for the factors associated with a transition
operator in the reduced effective Hamiltonian. In contrast to the match-
ing conditions with vanishing side-dependent phases in eq. (5.56), the
second resulting Rabi frequencies (), = )5 are diminished by a factor
of two in the + cases. Figure 5.4 shows an illustration of the connectiv-
ities implemented in different ladder Hamiltonians and summarizes
the three discussed effective systems and the corresponding effective
Rabi frequencies.
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In section 5.6, we numerical investigate the reduction to the effec-
tive four-level system via a numerical calculation for the complete
Rydberg trimer system. These investigation visualize the different
intermediate states for different matching-conditions and show how
robust the schemes is against deleterious effects such as dephasing
and spontaneous decay.

Dephasing plays an especially crucial role, since the reduction to
an effective four-level quantum system is based on setting appropri-
ate matching conditions realized by control over the site-dependent
phases. As for the scheme for the preparation of chiral W states,
this requires a high precision over the positioning of the atoms on
a subwavelength scale. Although this seems not to far from current
experimental possibilities, subwavelength scale positioning [129, 130,
155, 156] is still technologically very demanding. Furthermore, to
fulfill the matching conditions, the laser fields have to be precisely
aligned. In the subsequent section, we present an alternative scheme
to reduce the Rydberg-trimer Hamiltonian to an effective four-level
quantum system, which allows to loosen the amount of precision in
laser alighment somehow in a trade off with higher laser power of the
driving fields.

5.5.2  Employing lifted degeneracies

Phase matching, as employed in the last section, reduces the effective
Hamiltonian of the atomic ensemble to a matching Rydberg ladder
and allows to employ state conversion schemes designed for succeed-
ingly connected N + 1-level systems. Another possibility is to lift the
degeneracies to reduce the transitions in resonance with the driving
laser fields. An off-resonant laser field can achieve this reduction by
inducing energy shifts in the atomic ensemble. Adjusting the detuning
of the driving fields can then address specific states by differentiating
wanted and unwanted transitions by time scale hierarchies.

Zheng et al. [109] used this procedure to reduce the effective Hamil-
tonians of N = 3 and N = 4 Rydberg atoms to a matching ladder
Hamiltonians of N + 1 levels but did not consider site-dependent
phases. They implicitly assumed all laser fields to fulfill the same
phase-matching conditions as the strong off-resonant laser field. In-
spired by their derivation of the effective Hamiltonian, we give a
generalized version including site-dependent phases, hence including
twisted states.

The same procedure is possible for more atoms, but we explicitly
calculate it in the Rydberg trimer case, i.e., N = 3. We combine the
Rydberg ladder of three laser fields (j = 1, 2,3, cf. section 5.3.2.3) with
stronger off-resonant laser field (j = 0, cf. section 5.3.1) to achieve the
first leading order corrections in the effective Hamiltonian

H = H' (ko) + HY“" ({ka}) - (5.67)
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Stronger means that the Rabi frequency of the off-resonant laser field
or dressing drive is much higher than the Rabi frequencies induced by
the driving fields, hence ()9 > (),. A consequence is that dynamics in-
duced by the dressing drive happen on a much shorter time scale than
dynamics induced by the driving fields. Furthermore, possible transi-
tions between atomic-ensemble states happening on this short time
scale are only of very limited amplitude due to the strong detuning of
the dressing field (cf. section 2.3.2).

For three atoms the ladder Hamiltonian in eq. (5.54a) can be written
down as

I’_\I}O)adder({ka})/h _ Qi‘ﬁ\ggg) (U(kl)’
+Q§(3!D (k2)) (D (k2)|

3
=@ (ke) 1 € gg) 1) gl 7]

+ Q§\/§|D§2)(k3)> rrr|®* (ks) + H.c.
(5.68)

where ®(k) = ek Lit1%n, Here, we have explicitly displayed the phases
caused by the different laser fields. The overlaps of twisted Dicke
states defined by succeeding fields describe the phase matching of the
driving fields (j = 1,2, 3) as in the conversion scheme in the preceding
section. Hence,

1
(D" (k1)| DS (k2)) = 3Ep,m, (5.692)

and

D (k3 — ky)

(DY (k2)| DY (ks)) = ==

Zhes—ks 1 (5.69b)
where & = Y3 _, e** and in general 0 < |Z; = Y5 _, | < 3.

Instead of adjusting the laser fields in alignment and phase such
that the overlaps reach unity, as it was done in the preceding section,
the strong off-resonant field sets energy shifts that lift degeneracies,
and then specific transitions can be addressed via a fine detuning
of the ladder fields. To show this, we first transform the effective
Hamiltonian into an interaction picture regarding the dressing field.

This transformation does not affect the atomic ensemble Hamilto-
nian since [ﬁ A ﬁgff] = 0, but the ladder Hamiltonian transforms as

eiﬁgff(ko)t/h I’:Iladder({k e 7iﬁ§ff(ko)t/h/h

= U(ko et HS8 /1 2 (Q Uk, — ko)o; U (ko — ko) (5.70)

a=1

+ H.C.) e iHS /n GJr(ko) )
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Since the ladder Hamiltonian does not commute with ﬁgff, the left-
hand side is not as easy to calculate and represents many different
terms oscillating with different frequencies. The energies of atomic
levels and the driving laser fields determine these frequencies. Intro-
ducing small fine detunings J;, such that the total detunings of the
driving fields are A;Otal = Aj + Jj, allows matching the driving fields
to specific transitions shifted by the dressing field enumerated with
j. Note, as long as |;| < |Aj|, the fine detunings never contribute
significantly to any considered term in the derivation of the effective
Hamiltonian in section 5.3.2, but it results in a complex phase of the
Rabi frequencies as

Q; — Qe (5.71)

in an interaction picture with respect to the total system Hamiltonian
ﬁo =H AT ﬁF. The phases in eq. (5.71) arise due to the slight change
in the time dependencies of the field operators &; and é;-r in the men-
tioned interaction picture, whereby (); corresponds to the combination
of atomic raising operator with 4; and ()7 to its hermitian conjugate.
Each driving field can then be brought into resonance with one of
the terms in eq. (5.70), such that its oscillatory behavior vanishes,
while other terms still oscillate with residual frequencies wg. If all
residual frequencies are large compared to the inverse time scale of
interest T, we can neglect the corresponding terms in the effective
Hamiltonian as fast oscillating.

The applied conversion time to complete the considered state con-
version is the time scale of interest, which roughly scales with the
inverse Rabi frequencies of the driving fields. This scaling can be seen
as another kind of RWA with the condition min{wg} > T~

The fine detunings

b = (—6sg+4s1)/h, (5.72a)

Jy = (3s9 — 8s1 + 3s2) /h (5.72b)
and

03 = (451 — 6s2)/h (5.72¢)

result in the twisted ladder Hamiltonian

P DI
igised adder /1y — /50, =K | g00) (DL (k)|

Yo

+20, =52 D (ko)) (DY (ko)| (5.72)
Yo

\/503% \Déz) (ko)) (rrr| +H.c..

This effective Hamiltonian realizes a Rydberg ladder for the twisted

Dicke states ]Déa) (ko)) connected via driven transitions with effective
Rabi frequencies

_ Y
0O, = ﬁﬂl%, (5.72d)



5.5 EFFECTIVE FOUR-LEVEL SYSTEMS

~ DI

0, = 202% ) (5.72€)
and

~ e

O3 = \/503% . (5.72f)

We relegate a more detailed derivation of the twisted ladder Hamil-
tonian starting from eq. (5.70), a discussion of the chosen fine de-
tunings, and a list of the corresponding residual frequencies to ap-
pendix C, since it features some lengthy and tedious calculations.
Different fine detunings é, would allow to single out other transi-
tions, e.g., orthogonal states to |D§”) (ko)), but not necessarily result
in a four-level ladder Hamiltonian because the chiral states are still
energetically degenerate with respect to HS (ko).

Since Y is, in general, a complex number, the effective Rabi frequen-
cies are also complex-valued. Complex phases can always be adsorbed
into the states involved in the Hamiltonian as global phases, assur-
ing real-valued Rabi frequencies as required for the state conversion
scheme from section 4.7. The relative twisting, induced by laser fields

towards the states \Dé”)(ko» and the single-atom Rabi frequencies,
determines the absolute value of the effective Rabi frequencies. If
|Zk,—k,| <3, a constant effective Rabi frequency Q) can be achieved
by adjusting the single atom Rabi frequency (),. Such an adjustment
is possible as long as the Rabi frequencies and the underlying field
interaction still fulfill the conditions for the RWA. Hence, compensa-
tion is impossible if a driving field addresses orthogonal states, since
then Xy _x, = 0. Figure 5.5 shows the level scheme for twisted states
induce by the strong dressing field and indicates the induced effective
four-level quantum system.

The advantage in comparison with the reduction scheme based on
matching-conditions is the possibility to compensate site-dependent
phases. The dressing field always induces a four-level quantum system.
The Rabi frequencies only have to be adjusted for the differences
induced by ladder fields and dressing fields. The precise position
of the atoms is not of importance, as long as we can assume frozen
dynamics, i.e. the interaction time of laser fields and fields is short
in comparison to the frequency of the atomic motions in the tweezer
array.

If one wants to control which twisted states compile the effective
four-level quantum system, the same precision requirements as in the
preceding section have to be fulfilled.

In section 5.6, we validate the reduction to the effective four-level
system via numerical calculations for the complete Rydberg-trimer sys-
tem. These investigation visualize the different adjustment of Rabi fre-
quencies due to different relative alignments of the dressing field and
the driving fields, which have to be taken into account if a quantum
state conversion protocol is to implemented in the effective four-level
system.
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Figure 5.5: Sketch of the energy-level scheme corresponding to Rydberg-
atom trimer driven by a strong and far-detuned dressing field
and resulting in energy shifts. The arrows indicate the transitions
driven by weaker laser fields with detunings A; 4 J; [cf. egs.(5.72)]
forming an effective 4LS. Energy shifts are not drawn to scale.

56 NUMERICAL VALIDATION OF REDUCTION SCHEMES

The preceding section presents two possibilities to reduce the eight-
dimensional Rydberg-trimer Hamiltonian to an effective four-level
quantum system. To validate these reduction schemes and to assess
possible sources of error, we conduct numerical calculations of the
time evolution of the eight-dimensional Rydberg-trimer system to
show that it behaves like a 4L.S under the proposed conditions.

We implemented the Rydberg trimer system with the help of the
Python® package QuTiP°. We only concentrated on effective Hamilto-
nians describing the finite atomic ensemble and did not consider the
infinite-dimensional Hilbert space of the electromagnetic field. The
field and its different modes are incorporated into the dynamics via
an effective treatment and resulting single-atom Rabi frequencies.

Additionally to the unitary Hamiltonian time evolution of the sys-
tem, the QuTiP package allows for easy implementation of open
system dynamics.” Since we necessarily have to consider mixed quan-
tum states in the context of open quantum systems, we switch the
only time throughout this thesis to a description in terms of mixed

6 Compare declarations on p. 141

7 For a detailed description, see, e.g., the textbooks by Gardiner and Zoller [157] or Breuer
and Petruccione [158]. See Weimer et al. [159] for a review of numerical methods to
solve such open system problems.
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states and the density matrix p(t). However, all presented simulations
started with a pure state as initial state described by the density ma-
trix p(0) = |¢(0))(¥(0)|. We numerically solved the Lindblad master
equation [160]°

PO _ Ly, 50+ 2 (50T + Ba), T
i 12 GOl o (L, PO + L), L11) , (5.73)
where
I/_\II = eiﬁo t/n I:\Ieff eiiﬁo t/n (574)

is the respectively considered effective Hamiltonian Heff in an interac-
tion picture regarding an appropriately chosen atomic Hamiltonian
H,.

0

R 3
Li =VT Y [g)un(r] (5.752)
n=1
and
R 3
Ly =y ; (18)nn (gl = |r)un(r]) (5.75b)

are Lindblad operators describing spontaneous decay and dephasing,
respectively. I' and <y are the corresponding decay- and dephasing
rates. For a short but instructive introduction to the Lindblad equation
as the most general generator of Markovian dynamics, we refer to the
tutorial by Manzano [163].

ﬁl will differ depending on which of the reduction schemes we are
considering. If no Lindblad operators are specified, i.e., I' = ¢ = 0, the
dynamics reduce to the unitary time evolution.

Open system dynamics take interaction with the environment into
account, but, in addition, experimental setups are never perfect. If
an experimental realization of the proposed conversion schemes for
Rydberg trimers in tweezer arrays is considered, variations in the
position of the atoms will affect the phases k - x,, and the interatomic
potential V. Since the latter depends on the interatomic distance, it
cannot be assumed as constant anymore since the arrangement of the
Rydberg trimer differs from the ideal equilateral triangle. Variations of
the atomic positions are exemplarily investigated for the case without
additional strong dressing field.

The following sections show numerical results for the two reduc-
tion schemes developed in section 5.5. They illustrate features of
the resulting effective four-level systems via closed system dynamics
T=v=0).

We begin with the reduction scheme from section 5.5.1. For this sim-
pler case exploiting selection rules, deleterious effects are incorporated

8 employing the mesolve routine in QuTiP [161, 162].
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by the described Lindblad operators in egs. (5.75) with non-vanishing
open system parameters I' and y. Additionally, we conducted a simula-
tion investigating the influence of uncertainties in the atomic positions
on the target state fidelity for the W to GHZ state conversion.

Afterward, we shortly discuss features of the second reduction
scheme from section 5.5.1.

5.6.1 Reduction via selection rules

Section 5.5.1 shows the possibility of reducing the eight-level quantum
system of the Rydberg trimer to different effective four-level quan-
tum systems featuring a ladder Hamiltonian by setting appropriate
matching conditions of the involved laser fields with corresponding
Rabi frequencies ();. Each of the fields introduces transitions from
states of 4 = i — 1 to a state of 4’ = i atomic excitations. Since we take
the twisting defined by the first ladder field (); as phase reference,
we set \Dgl)(k1)> — |x10), i, U(k1) = 1. We simulated the eight-
dimensional Rydberg-trimer system with the interaction Hamiltonian

3

Hi(t) =Y (thei(kf'x"*A/’t) 17 (g +H.c.) + Y Vpglrr) pe(rr]
jm=1 r<q

(5-76)

where A; = (j — 1)V are the detunings of the laser fields towards the
Rydberg transition and V), is the Rydberg-blockade potential between
the atoms p and g. The ideal case is V); = V for all combinations of p
and g.

This interaction Hamiltonian is in regard to the non-interacting part
H At ﬁF of eq. (5.8) assuming the field to be in a state of high mean
photon number. It considers the time dependency induced by the
energy differences of the atomic ground state |¢) and the Rydberg
state |r) of each of the three atoms as part of the atomic states, such
that we do not have to take care of the fast oscillating evolution of
relative phases due to the non-interacting part of the two-level systems
in our numerical calculations.

Assuming the positions of the atoms to form an equilateral triangle
as discussed in section 5.4, we can set the phases k; - x, by setting
the polar angles ¢x of each laser field as in eq. (5.59) to match the
three different sets of selection rules or matching conditions from
egs. (5.65). Taking the different corrections from egs. (5.64) and (5.66)
for effective Rabi frequencies into account, we can use solutions from
the four-level quantum system in chapter 4 to implement a |x10) to
GHZ state conversion in the entire eight-dimensional quantum system.
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Fid. Fig)

Fid. Fig)

Fid. Fig

Time t/T+

Figure 5.6: Target- and initial-state fidelities 7 (t) = [{¢[9(t)) ? for the
W to GHZ state conversion under varying matching conditions
[cf. eq. (5.65)]: (a) no phase differences (0 case, intermediate state
IX20)), (b) + case (intermediate state |x,—)), and (c) — case (in-
termediate state |x2)). All conversion schemes have equal TSPA
[cf. eq. (4.49)]. Shaded areas indicate open system dynamics with
up toI' =y = 0.1/T, (dotted lines), where T, is the conversion
time for the conversion scheme with matching conditions as in

the + case. |¢) € {|x10),|IGHZ)} [cf. eq. (5.77)].

The initial W state |x19) corresponds to the |01) state from section 4.7,
and
GHZ) = — (Isgg) +rrr)) (577)
V2

is the targeted Rydberg-trimer GHZ state. The phase ¢ depends on
which specific combination of Rabi frequencies is applied (cf. eq. (4.44)
and table 4.1). All Rabi frequencies are rescaled such that the TSPA is
equal for each of the three cases of matching conditions.

We solved the time-evolution according to eq. (5.73) withI' = ¢ =
0 and the Hamiltonian in eq. (5.76) for VIy/h = 3000 where T+
is the conversion time for the matching conditions in egs. (5.65¢)
and (5.65d). Figure 5.6 shows target state and initial state fidelitites
over the conversion time for the three different sets of matching
conditions. We see that all three cases achieve the state conversion but
that the conversion time Ty for the case of vanishing site-dependent
phases is smaller than the conversion time T+ belonging to the other
two matching conditions. It is not a surprising result since we know
from the discussion of the effective four-level system in eq. (5.66)
including the chiral states |x»>+) that the effective Rabi frequency
(le is only half the effective Rabi frequency in the case of vanishing
site-dependent phases.
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Figure 5.7: Intermediate-state fidelities F|,, , = |(X2x|9(t))[* with x €

{0, +, —} for the W to GHZ state conversion under varying match-
ing conditions [cf. eq. (5.65)]: (a) no phase differences (0 case,
intermediate state |x20)), (b) + case (intermediate state |x2_)),
and (c) — case (intermediate state |x24)). All conversion schemes
have equal TSPA [cf. eq. (4.49)]. Shaded areas indicate open system
dynamics with up to I' = v = 0.1/T+ (not explicitly shown),
where T is the conversion time for the conversion scheme with
matching conditions as in the + case.

Figure 5.7 shows fidelities towards the different intermediate states
[X2)-

All three cases just populate one specific state of a = 2 excitations
during the conversion time, while orthogonal states of @ = 2 are never
occupied. Hence, the eight-dimensional system acts as an effective
four-level system composed of |ggg), |rr7), |x10) and |x2y) for x =0, +
or —. Which state of 2 = 2 excitations is part of the effective system
depends on the matching conditions.

To investigate deleterious effects, we additionally solved the time-
evolution with non-vanishing rates I', describing spontaneous decay
of individual atoms, and 7y, describing dephasing of individual atoms.

The dotted lines in fig. 5.6 show results of target state- and interme-
diate state fidelities under rather high decay ratesI' = v = 0.1/T,
where T, is the conversion time for the scheme via |x2+). Of course,
the target state fidelities are reduced compared to the closed sys-
tem dynamics as spontaneous decay introduces quantum jumps from
|y — |g)n at individual atoms. Consequently, neither the state |rrr)
nor the GHZ state is stable. Since these deleterious effects depend
on decay rates and the introduced error accumulates over time, the
faster conversion scheme via |x2) is less affected. Hence, the faster
conversion scheme is, in general, to be preferred.
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Figure 5.7 visualizes another aspect of the open system dynamics.
Other states not part of the effective four-level system selected by
the respective matching conditions show non-zero fidelities over the
conversion time; thus, their occupation does not vanish anymore.
Since dephasing and spontaneous decay are local errors considered at
each atom individually, they connect the decoupled effective four-level
system with the remaining part. For high rates I" and -y, the description
via an effective four-level system breaks down.

Experimental uncertainties are another possible source of errors.
The precision demanded by the proposed scheme is very high since
the atoms have to be positioned at length scales compared with the
Rydberg transition wavelength to control the local phases at individual
atoms. It is of no interest for the faster conversion scheme via |x20).
Since, in this case, all laser fields are aligned, all induced phases
kj-x;, = ki-x,. As mentioned before, the phases induced by the
first laser field connecting the ground state to the twisted W state
U(k1)|x10) can be taken as phase reference. Hence, random positions
do not affect the conversion scheme via |x20).

Unfortunately, the site-dependent phases are not the only parameter
depending on the positions of the atoms. The interaction potential V'
scales for real pairs of Rydberg systems strongly with the interatomic
distance as V(d) ~ Cq/d®, where Cg is the van der Waals interaction
coefficient [47]. Hence, if we investigate erroneous positions, we have
erroneous interatomic distances, and the ensemble of three atoms
differs from the assumed equilateral triangle.

To account for such experimental positioning errors, we calculated
the time evolution of the eight-dimensional system according to
eq. (5.76) with random errors on the atomic positions resulting in
individual and varying interatomic potentials V).

For each position, we drew random errors such that the atomic
positions changed x, — x, + &,. The nine individual errors — one
for each atomic coordinate — were independently drawn from a nor-
mal distribution of mean zero and standard deviation ¢. From these
random positions, the interatomic distances dp; and the resulting in-
teratomic potential were calculated as V(d,y) = Vd®/ d?,q. V and d are
the ideally aspired values without any positioning errors. We sampled
the time evolution for different values of the standard deviation ¢
and a sample size S. Since the interatomic potential depends on the
interatomic distances d; rather than independent atomic coordinates,
we compiled all 3S distances d; per sample and calculated a standard
deviation according to

= (dpq — dT,q)z . (5.78)

dp, is the mean value of all 3S interatomic distances d,. Results
displayed over this value rather than the standard deviation ¢ for
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each coordinate better suit the intuition of how strong the interatomic
potential is affected.

For the simulation, we tried to adopt reasonable parameters cor-
responding roughly to the n = 50 Rydberg state of Rubidium, inter-
atomic distance of an ideal interatomic distance of 4ym and a for a
conversion time of the scheme of Ty = 1us. Rubidium atoms are often
used in real experiments with tweezer arrays and such experimental
parameters are not out of reach [47].

Figure 5.8 shows result for such a simulation for standard deviations
o € [0,0.1A¢] and a sample size of S = 1000 where A is the wavelength
of the Rydberg transition. The other parameter values for the presented
calculations are VT /h ~ 30.86, where Tj is the conversion time, and
d = 40A,.

Figure 5.8 shows obtained mean target state fidelities ?‘GHZ> (To)
and corresponding standard deviations

[

0F = \/(]:\GHZ> - 7|c;Hz>)2 (5.79)

of all S calculated fidelities per sample at the end of the quantum state
conversion.

We infer that the fidelity stays relatively high for low variations in
the interatomic distance. It speaks for the experimentally feasibility if
such accurate precision in positioning of the atoms can be achieved.

In conclusion, we numerically validated the reduction scheme em-
ploying selection rules and phase-matching conditions. We investi-
gated some sources of error and concluded that the conversion scheme
stays relatively robust even under small interatomic distance varia-
tions. However, Rydberg transitions mainly lie in the ultraviolet part of
the electromagnetic spectrum; thus, their wavelengths are the smallest
in the optical regime. Despite recent advances in Rydberg experiments
in tweezer arrays [129, 130], it is still very demanding to achieve such
high precision in atom localization as assumed in our simulations.
However, it may be experimentally feasible with further improvements
in the future.

5.6.2  Reduction via lifted degeneracies

Section 5.5.2 presents the possibility of reducing the eight-level quan-
tum system of the Rydberg trimer to an effective four-level system by
lifting degeneracies by applying an additional off-resonant laser field.
This dressing field with Rabi frequency () shifts the energy levels
depending on their chirality towards its phase reference. Then, the
weaker ladder fields can address specific non-degenerate transitions
between the four twisted states ]Dga) (ko)) by taking the small energy
shifts via fine detunings into account. The effective Rabi frequencies in
the four-level system depend on the relative alignments of the ladder
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Figure 5.8: Mean values of the target-state fidelity Figuz)(To) =

[(GHZ|¢(Ty))|? [cf. eq. (5.77)] at the conversion time Ty. The
W to GHZ state conversion via |x20) (0-case) was calculated with
random positioning errors €, drawn component-wise from a
standard normal distribution with standard deviations ¢ /A0 €
[0,0.1] and a sample size S = 1000. 07 is the standard deviation
for all 3S calculated values of d; per sample. VTy/h ~ 30.86 and
d = 40A¢. A is the resonance wavelength, and T is the consid-
ered conversion time. The shaded areas indicates the standard
deviation or of the target-state fidelity, and the error bars the
standard error o/ VS.

fields towards the strong dressing field. In the presented simulations,
we take the twisting induced by the strong field as phase reference by
setting ko - x, = 0, i.e., IAJ(kO) =1

We simulated the eight-dimensional Rydberg trimer system with
the interaction Hamiltonian

3

3 .
Hy = 0% (ko) + ) Y 10y (5) %= r) (g - (5.80)
j=1n=1

In contrast to the interaction Hamiltonian in eq. (5.76) of the preceding
section, we include the interaction part due to V in ﬁo to calculate the
interaction picture. As before, we disregarded the fast dynamics due
to H A- Additionally, we neglected fast Rabi oscillations induced by
the dressing field. Instead, we only consider it via off-resonant leading
corrections ﬁgff(ko). Hence, we neglected fast oscillatory behavior on
the time scale of the generalized Rabi frequency induced by strong
dressing drive to concentrate on the slower dynamics induced by the
driving fields enumerated j = 1,2, 3 instead.

We numerically solved the time-evolution according to eq. (5.73)
with I' = o = 0 and the interaction Hamiltonian in eq. (5.80) using the
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Time t/T0.75

Figure 5.9: Expectation values (P;) = ({(t)|P,|¢(t)) for the occupation of
atomic subspace with a excitations over time for a series of con-

_ul —
version schemes |ggg) —— |D3(ko)) <", |GHZ). Each

panel shows a different amount of relative twisting |Zk0_k].] =

3,2,1 (a-c). Tp 05,075 is the respective conversion time under the
assumption of equal TSPA [cf. eq. (4.49)].

Adopted from FIG. 9. [64], which is licensed under Attribution 4.0 Inter-
national (CC BY 4.0).

Python package QuTiP [161, 162]. We applied effective Rabi frequen-
cies realizing the W to GHZ state conversion established in section 4.7.
Before the mentioned state conversion occurred, a 77 pulse transferred

the system from the ground state into the |D§1) (ko)). The effective Rabi
frequencies were adopted to different relative alignments of the laser
fields described by the parameters Y, i.e., the relative twisting
between the strong dressing field and the ladder fields [cf. egs. (5.692)
and (5.72)].

Additionally, the Rabi frequencies were normalized to have the same
TSPA [cf. eq. (4.49)] resulting in different conversion times. Higher rela-
tive twisting, i.e., lower 2 (k- k)7 leads to lower effective Rabi frequen-

cies ﬁj and longer conversion times. Further simulation parameters
are ()9/Ap = —0.03 and 11A¢/V = —0.7. These parameters ensure that
the assumptions to derive the twisted ladder Hamiltonian in eq. (5.72)
are satisfied.

Figure 5.9 shows the populations of the effective four-level system
during the conversion time for three different values of Xy K = 3,2,1
(the same for all j). The fastest conversion time appears if all laser
fields are aligned, i.e. Xk, _; = 3 for all j. The 7 pulse transfers the
population from the initially occupied ground state into the W state,
and the subspace a = 1 reaches full occupation. The following state
conversion prepared a GHZ state, as can be seen by the populations
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5.7 CONCLUSION AND SUMMARY

of ground and fully excited states being one-half while all other
populations vanish.

Because even more assumptions are involved in achieving the reduc-
tion by employing lifted degeneracies, we do not further investigate
this reduction scheme or address deleterious effects for now. For open
system dynamics, the effects will be comparable to the last section:
diminish target state fidelity and reconnect the decoupled subspace.
On the one hand, an investigation of varying V is more demanding
than in the previous case since the degeneracy of atomic states of equal
excitation number was assumed throughout the whole derivation of
the twisted ladder Hamiltonian. On the other hand, the shift parame-
ters s, depend on the atomic interaction and the detuning Aj. Small
changes in V due to distance variation should not lead to devastating
effects when the latter Ay dominates the energy shifts.

5.7 CONCLUSION AND SUMMARY
5.7.1  Conclusion

As already mentioned, systems of neutral Rydberg atoms are envi-
sioned to be of high importance in QIP. Here, we discussed a simple
interacting N-qubit system to model such Rydberg systems. Zheng
et al. discussed a reduction of the same system for N = 3,4 and re-
duced it to an effective 4LS [109]. We generalized their discussion by
deriving effective Hamiltonians for arbitrary atom number N and
site-dependent phases into the description resulting in the adaption
of twisting and twisted states.

Furthermore, we showed that a strong dressing field is not strictly
necessary, but also phase matching conditions can be exploited to
reduce the system to an effective ladder Hamiltonians of lower dimen-
sion.

We utilized the derived effective Hamiltonians to describe several
applications. We showed a straightforward preparation scheme for
twisted W states representing chiral states in the particular case of
three atoms. These chiral states allow for implementing noiseless-
subsystem encoding [144, 145]. To the best of our knowledge and
although implemented in other types of QIP systems [154], there exists
so far no implementation in neutral atoms.

In the Hamiltonians for N = 3, it is possible to implement the state
conversion scheme from chapter 4. In the context of the Rydberg
trimer, it transforms the W state into the GHZ state. We investigated
the feasibility of our proposed scheme based on matching conditions
numerically, showing that it is relatively robust against minor de-
viations if a high precision in atom positioning can be achieved in
general.
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An investigation of the second lifted degeneracy-based scheme
to the same detail is a possible future research direction. Especially
if there is any advantage in comparison to the matching condition-
based scheme in terms of efficiency or robustness is an interesting
open question. Also, comparisons to other preparation and conversion
schemes in neutral Rydberg atoms describing different models for the
system, e.g., via chirped laser pulses [164], can be conducted.

From an experimental viewpoint, the strongest assumption is the
high accuracy necessary for the discussed preparation and conver-
sion schemes. Despite recent advances in subwavelength positioning
of Rydberg atoms in tweezer arrays [129, 130], achieving such high
precision is still experimentally challenging. With improving techni-
cal capabilities, we hope our proposed quantum state preparation
and conversion schemes may be experimentally feasible in upcoming
setups for neutral Rydberg atoms, and we keenly hope for the imple-
mentation of one of our proposed schemes in an actual experimental
setup.

5.7.2  Summary

This chapter contains the discussion of a system of N pairwise in-
teracting qubits and their interaction with several modes of the elec-
tromagnetic field. The system is supposed to model an ensemble of
neutral Rydberg atoms interacting via their pairwise dipole-dipole
interaction and controlled by external laser fields.

The general system properties with special emphasis on systems of
equidistant atoms are discussed in section 5.1. Section 5.2 introduces
special states of the atomic ensemble and different appropriate bases
which are used in the following chapters. It introduces Dicke states
as generalization of W states to higher excitation numbers and the
concept of twisting and twisted states. In section 5.3, we deduced
effective Hamiltonians employing the resolvent formalism and assum-
ing the considered electromagnetic fields to resemble classical laser
fields, either far off-resonant to all energy transitions of the atomic
ensemble or resonant to a specific one. An immediate application
of one of the latter cases, is an preparation scheme for chiral states
presented in section 5.4. Section 5.5 presents two possibilities to re-
duce a Rydberg-atom trimer, modeled by a three qubit system, to an
effective four-level quantum system controllable by various laser fields.
The effective descriptions result in ladder Hamiltonians as discussed
in section 4.6. Section 5.6 presents numerical implementation of the
considered trimer model and shows that the reduction schemes from
the preceding section result in effective 4LS dynamics. As an example,
the state conversion scheme from section 4.7 is implemented, which
realizes a W to GHZ state conversion in the context of the Rydberg
trimer model.



5.7 CONCLUSION AND SUMMARY

Much of the presented content is a more detailed version of a
similar discussion published by the author, Gernot Alber, and Viadimir
Stojanovi¢ in Physical Review Research [64]. In what follows, we give a
short description of how content presented in this chapter relates to
content in the mentioned publication.

The general description of the system and the discussion of the
relevant states of the atomic ensemble in sections 5.1 and 5.2 is related
to sections II. and IIL. in [64]. Section 5.3 and appendix B describe
the derivation of the effective Hamiltonian more extensively than the
corresponding section IV. in [64]. The preparation scheme for chiral
states in section 5.4 corresponds to section V. in [64]. The reduction
schemes from section 5.5 and the numerical validations in section 5.6
were presented in a condensed version in section VI. of [64]. The nu-
merical calculations presented here in section 5.6 are calculated anew
and are showing different data, although mostly the same simulation
parameters were used. Figures 5.1, 5.2 and 5.9 are reprinted from [64]
with only slight changes, e.g., in notation.
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CONCLUSION

Controlling quantum systems from whole ensembles down to single
qubits is essential to implementations of QIP. Even when single-qubit
operations are well under control, two-qubit operations often remain
challenging. As quantum technologies rapidly evolve, new possibilities
to apply theoretical proposals on new or updated QIP platforms will
appear in the future.

Quantum state conversion protocols offer a tool case applicable
to a wide range of different systems. They can be used to prepare
well-defined quantum states. With the Lie-algebraic approach devel-
oped in chapter 4 of this dissertation, we give a general description
of conversion schemes for two qubits. Although we simplified the
discussion by restricting the conversions to a subspace of all possi-
ble unitary two-qubit operations, a wide variety of transformations
is representable and, therefore, can be described, investigated, and
optimized in this approach.

An open question is how to generalize it to systems of more than
two qubits. All general mathematical aspects remain similar, but the
complexity increases swiftly with additional qubits due to the higher
dimension of the Hilbert space and possible representations of the
corresponding dynamical symmetry. As we already simplified the
description from fifteen to six generators in the presented case of
two-qubit state conversion, considering more qubits is challenging
due to the exponential growth of the Hilbert-space dimension.

However, in the two-qubit case, we presented a specific state conver-
sion scheme under a constrained Hamiltonian, which can be applied
in any four-level quantum system of adjacently connected energy
levels. Although it is not the optimal solution, it offers greater flexi-
bility than other conversion schemes due to relative freedom in the
form of the applied Rabi frequencies. In addition, it is not vastly out-
performed by the optimal solution for the constrained Hamiltonian
with specific time-dependent Rabi frequencies or even by unrestricted
solutions such as a 7t pulse directly inducing the desired state conver-
sion. Furthermore, our proposal significantly outperforms previously
published schemes addressing the same problem.

In the context of three interacting Rydberg atoms forming a Rydberg
trimer, our proposed conversion scheme implements a W to GHZ state
conversion. We presented two possible reduction methods to describe
the eight-dimensional quantum system as an effective 4LS of adjacently
connected energy levels. The two reduction schemes differ in com-
plexity and the set of states participating in the effective four-level
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dynamics. Both emphasize the role of phase differences induced by
different laser fields in the system. These phase differences correspond
to the position of atoms relative to each other and the fields. They
led to the concept of twisting and twisted states proposed as viable
tools to implement QIP tasks. In addition to the mentioned (twisted)
W to GHZ state conversion schemes, we presented a straightforward
proposal for the quantum state preparation of such twisted W states,
including the preparation of chiral states in the three-qubit case.

All applications presented in chapter 5 for the Rydberg-trimer model
rely heavily on model assumptions that the system must fulfill. Al-
though we roughly estimated possible errors via numerical validations
of our reduction schemes and the implemented conversion protocols,
the level of accuracy necessary to implement our proposals is still chal-
lenging. A more specific investigation of the experimental feasibility
of all our proposed schemes is keenly desired and opens up a future
research direction, ideally, closely connected to an actual experimental
realization. Recent and ongoing advances in experimental techniques
for neutral Rydberg atom systems spark the hope that our theoretical
considerations may be applicable in the not-to-distant future.

Furthermore, as inferable from mapping the abstract quantum con-
version scheme of chapter 4 to the more specific model of interacting
Rydberg atoms in chapter 5, there might be different systems on which
solutions made in the process of the presented research can find an
application, as theoretical models often show high flexibility on which
concrete systems they are implemented.
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DETAILS REGARDING TWO-QUBIT QUANTUM STATE
CONVERSION

This appendix gives some more details of the calculations in chapter 4
regarding the two-spin quantum state conversion and the presented Lie-
algebraic approach. We omit most of the definitions here, but always reference
the according equations and other references in the main text.

A.1 TRANSFORMATIONS OF PSEUDOSPIN STATES

The action of the unitary transformation IAJ(oc, B) in eq. (4.7) onto the pseu-
dospin eigenbasis of egs. (4.6) in the computational basis [cf. eqs. (4.1)] is

U, B)|11) —

5l
N
g .
+
+
S
=
+
+

U(a, B)I1]) —

Sl
N

|

<

+

+
~—~ o~
R
~— — —

U(a, B)I11) —

Sl
| .
<

+ %

+

R

=

T

and

(

Sa 1| M

I R
(

The functions M4 and M, _ are defined in eqgs. (4.10c) and (4.10d).

A.2 ITERATED COMMUTATORS

To evaluate the iterated commutator in eq. (4.12), we distinguish odd and
even values of n and discuss the resulting power series independently. All
the following considerations for « - S hold analogous for § - T. Starting with
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n = 1, we calculate using Einstein summation convention (i.e., implying a
summation over indices appearing twice)
(- S, -S| = a;7j[S;, 5] = aiyjieipSe =il x ) - S, (A.2)

where we have used the su(2)-commutation relations from egs. (4.5) and vy
is some three-dimensional vector. The following results can be shown via
induction. The odd terms are

. =N /r X 2n+1 .
[@-S, - Slon1 = 1(\/%(“ xq)-S, (A.3a)
such that
Z [-S,9-Slons1 _ isinh(y/& - ) (@x7)-8. (A3b)

2n+1) NI

The even terms are

o~ . . zn o~
w8y Sl =~ T (o (wy)) 8, (A42)
such that
P o o 1MV (i) 5

We explicitly wrote here /& - « instead of |«|? to be able to discuss a vector of
the form ia. If now & — ix, we have /a - &« — i|a|. With sinh(ix) = isin(x)
and cosh(ix) = cos(x) [165], we get the terms used repeatedly in the context
of eq. (4.12).

A.3 PARAMETERS DESCRIBING A GHZ-STATES

In this appendix, we describe in more detail how to derive the simplified
conditions in egs. (4.39) to realize a GHZ states from the initial state |01), as
it is the task in section 4.7. We have to describe the target state [cf. eq. (4.34b)]
in terms of the rotated version of the initial state [cf. eq. (4.34a)]. Hence,

(e =) = —= (00) + &/11)) (A53)
= 5 (i i84) = 14) + )

= e in(1)Seip(T (41 +141) - (A.5b)
\[

Using the equations (A.1) for the rotated pseudospin eigenvectors we obtain
the following set of equations. Each equation stands for the absolute value of
the projection of a GHZ state onto the computational basis, i.e. [(i|¢(T))]|.
We use the absolute value, since we do not want to predetermine the relative
phase ¢. It follows that a curve («, B)(t) with initial state | (t = 0)) = |01)
to realize a GHZ state at time t = T has necessarily to fulfill

% = [fm [M— (&(T)) M, (B(T)) = M+ ((T)) M5_(B(T))]| ,
(A.6a)



A3 PARAMETERS DESCRIBING A GHZ-STATES

0= Re [M (a(T))M? | (B(T)) — My—(a(T))M?_(B(T))],
(A.6b)
0= Re[My ((TIME(B(T) + Mo (eI (BT

and

é = | 1m [M 4 (a(T))M?, (B(T)) + My (a(T)) M, (B(T))]

7

(A.6d)

where Re and Im stand for the real and imaginary part of the functions
M, and M, _ as defined in egs. (4.10c) and (4.10d). These conditions are
relatively complex functions of the vectors & and B. Setting |a| = [B| = 7
for all t simplifies them significantly. The result is given in eqgs. (4.39). This
simplification results in equations linear in the vector coordinates.
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DETAILED DERIVATIONS OF EFFECTIVE RYDBERG
HAMILTONIANS

In this appendix, we give some intermediate steps for the derivations of
the effective Hamiltonians in section 5.3 in more detail. We start with the
off-resonant case of section 5.3.1. Afterward, reusing some results for the
off-resonant case, we give more details on the derivation of the effective
Hamiltonian resulting from a resonant laser field.

B.1 OFF-RESONANT CASE

To derive eq. (5.30), we have to evaluate the following combination of opera-
tors
/\mOil g

MY ~m,

P, ’ Hipnt Pa¢1 Hi P, ‘ (B.1)
making up the addends in the sum of eq. (5.27). To simplify the derivation,
we compensate the site-dependent phases in H; , with additional unitary
transformations. This simplification is possible since U(ko) commutes with

the projection operators f;no, ie.,
[f’amo,ﬁ(ko) ® 111:} =0. (B.2)
=M =~mp<0

With the convention 13:;00 =P,on =D,
with compensated phases as

= 0, we can write the addends

Pmil f:I

~1 ~ ~ ~ ~
Ci® (ko) = U (ko) Py ° Hipy P15 Hip P Ulko) - (B.3)

We evaluate this operator in multiple steps to be
Ca" (ko)
~t PRTTPN
=T (ko)P," Higy (B.3a)

N
X Z |{n1,...,naﬂ})({nl,...,nﬂlﬂ®\m0:|:1>(m0:i:1|

H1<...<ﬂ”;]
N * At HMo
x Y dilg)uw (rlag +He. | P,
n'=1
= G (kO)Pu Hint (B'3b)
{n'} *
x Y Y l(l — X{nl,--.,naﬂ})do m=+1

n'=1n1<..<ngx1

x [{ny, ..., g Py {na, ... g1 F U {n'}
® [mo £ 1) (mo £ 1 — 1

+ i dovm£1+1

{nll---/naqil}

X ‘{1’11,...,Tl,l:':]}><{n1,...,7’lu:|:]} \ {1’1/}|

® |mo + 1) (mg £1+1||P,° .
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B.1 OFF-RESONANT CASE

After the first equality sign, we just have written down 132;01:1 [cf. eq. (5.23)]
and ﬁint [cf. eq. (5.7)] explicitly. By doing so, we dropped the sum over all
modes j since here we only deal with a single-mode enumerated j = 0. After
the second equality sign, we used the well-known actions of 4 and 4} onto
Fock states and the relations for the atomic rising and lowering operator

<{nlr' . 'fna3F1}|g>n/n’ <1"

) (B.4a)
= (1= Ay e} U (')
and
({m,... gz 18w (8]

- X}Zi'"”ﬂl}“nl’ Mg )\ {n'},

respectively. x is the characteristic function with x4 = 1if A C B and
0 otherwise, and it encodes the effect of the atomic rising and lowering
operators onto states that already have the n’-th atoms excited or not. In the
last line of eq. (B.3a), the action of ﬁint (with summation index #) from the

left produces four terms —one for each combination of {ny,...,1n,}, n’ and n.

. . . Mo .
Now, we can partially evaluate the projection P, . It projects onto subspace
containing 1y photons and exactly a atomic excitations. Therefore, only one
term per sign + does not vanish, and we get

|do|2(m+1) LA, N,

x(=xp) L DHm a1} U{n})
x(U=xin) L e YU

. @ m) (m|
o)=Y (B.5)
}’11<...<7’l,1;1
|d0|2m 2111\]:1 Zrl:{:l
{n}

Xx{n],...,n,,ﬂ} | {nll SRR na+1} \ {1’1})
XX}Zi..,naH} ({n1,- . maga b\ {1’[’}|
®|m)(m|,

where we have distinguished upper and lower sign cases. Each of the (I;] )
diagonal elements |{n1,...,1,})({n1,...,ns}| in the upper sign case appears
a times since there are a different possible values for which n = n’ = n, #
ni,...,M,-1, while in the lower-sign case, each of these diagonal elements
appears N — a times since there are N — a possible values for n = n’ =
ng41 such that {ny,...,n,41} \ {n} = {ny,...,n,}. All off-diagonal elements
with n # n’ appear just once in both cases. The off-diagonal elements are
all possible jump-operators between states with Hamming weight a but a
Hamming distance of two. Thus, together they form the operator IfI?iz,N as
defined in eq. (5.31). Reintroducing the site-dependent phases, we get

~rmg PPN ~ ~
By Hing Py i Py = O(ko) G (ko) U (ko)
do?(mo +1)P, [Fida(ko) + a] P, (B.6)

= PSS N ® [mo) (mol -
[do[moP, [Fido (ko) + (N —a)| P,

115



116

DETAILED DERIVATIONS OF EFFECTIVE RYDBERG HAMILTONIANS

IAn contrast with the off-diagonal elements, diagonal ones commute with
U(ko), and thus, they are not affected by the unitary transformation. Equa-
tion (B.6) is the result shown in eq. (5.30).

B.2 RESONANT CASE
B.2.1 Linear terms

To derive eq. (5.45), we calculate the action of ﬁint onto the projectors ﬁ;ﬂa
As in appendix B.1, we compensate site-dependent phases via the unitary
transformation U(k,). We calculate the right-hand side of

b g a1
Crraetl = U (ko) Py " Hig P’y U(ka) (B.7)
to be
N
2 H{ny,...,na ) {ny, ..., na}| @ |my) (my|
n<..<ny
N
x Y dolr)un(glao + H.c.
n=1
N / i / !
x Z H{nh,-omg g ) {ny, - mp g} @ [mg + 1) (ma + 1]
nj<--<nl_y

—=d./m+1 i Z Z {n1,...ma} {n}
¢ X{ni,.‘.,n;_l}u{n} X )

M <...<Mapj<..<nl 111

x |{"1f-~/nu}><{"1/ c Mg g H @ [m) (m 4 1] (B.7a)
—amFT Y ZI (g1 oy 1) (I )
'rll< <Yla 1
® |m)(m+1]. (B.7b)

For the second equality, we just have written down the operators explicitly.
For the third equality, we have evaluated the action of Hlnt to the right, where
the written term excites the n-th atom if and only if it is not already excited
(encoded via 1 — x) while lowering the photon number of the field. The
Hermitian conjugate term has the contrary effect but vanishes due to the
orthogonality of the field states, i.e., (m,|m, +2) = 0. The first characteristic
function results from the orthogonality of the atomic-ensemble states, and it
allows executing the first summation, identifying n, = n, and to rewriting

(1=l ) Horaeeesmad) = Il i)y B9)

With the definition of the atomic-ensemble raising operator in eq. (5.46a), we
get

HMa 1y =g +1 g
P Hy Poy ' = T(ka) O 1T (ky) (B.9)

aa—1

which we evaluate as
pMa 1y a+1 ~t
Py Hin Py = dav/m+1-U(ka)o, U (ko) @ [ma) (ma + 1. (B.ga)

This is the result stated in eq. (5.45). Additional but neglected terms are
discussed in what follows.



B.2 RESONANT CASE

B.2.2 Neglected terms

In this appendix, we determine all further terms of eq. (5.22) neglected in
the result of the effective Hamiltonian for a resonant field in eq. (5.52). If we
assume the atomic ensemble to interact with a single laser field in resonance
to the transition a <+ a — 1 (cf. section 5.3.2), we can separate the general
term for an effective Hamiltonian in eq. (5.22) into two parts, whereby only
the second contains the resolvent and the first one is

pratt ) . (B.10)

Z ?E H fE = I/:IO + E (ﬁ;”a Hint Pa,1 + H.C.
EE(T(H0> ma=0

This first part contains all terms which contribute to the result in eq. (5.52).

Their form and derivation are already explained in detail in the main text
of section 5.3.2 and appendix B.2.1, respectively.

The terms containing the resolvent are the ones neglected in eq. (5.52).

Regarding the considered transition, all projectors 13::/[“ with @’ #a,a —1 are
off-resonant. Therefore, eq. (5.32) in section 5.3.1, leaving out H; and the
addends for a and a — 1, already describes the corresponding terms. For the

. Mg, Mg +1 ..
resonant projectors P, ;1 ~, we evaluate the terms containing the resolvent
to be
Sttama+1 25 Aimgma+1 1 g ma+1 5 g +1
Pa,afl HQu,ufl a g Mgt ~ ~migmig+1 Qa,afl HPu,ufl
Ea - Qa,/z—l HO Qu,a—l
ﬁmufl
_ SMa £y a+1 NN
- Pu Hint Em _ Email Hint Pu (B'Il)
a a+1
1 prt? 1
SMa+1 5 a—2 Y SMa+
+ Pafl H;, Pufl ’

int m,+1 ma+2 ~int
Ea 1 _Ea—2

where we used that Ho does not connect different energy subspaces and ﬁmt
only adjacent ones [cf. eq. (5.48)]. Using AE; [cf. eq. (5.2)] and the detuning
Ag [cf. eq. (5.42)], we find the appearing energy differences to be the same
since

EMa — El' = —AE 4 +hw, = =V (B.12a)
and
E:T—al+1 - EZi“fz =AE; 1 —hw, ==V, (B.12b)

respectively. If we introduce the index shifts 4 —1 — a and m, +1 —
m, in the second term, we can again use the result for the off-resonant
fields in eq. (5.30) for the involved operators. With ﬁo and the results from
appendix B.2.1, we can explicitly write down the effective Hamiltonian for a
resonant field as

BN

IfI\dz,N +(N — ﬂ)) P,
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da|? 2) [~ I

_ 1da*(ma +2) (Hdz,N 4 — 1) Plel (B.13)
N

+ Y |l

a,a—1+#£a"=0
IfIHZN +(N—a’) I—/IazN+ﬂ/ ~im,
' - 1) —2NTL ) B
% (m”’ Wi, —a'V (ma+ 1) s —(w—1v ) Fa

Finally, assuming |d,|*m, < |V|,|A; —a'|V,|A; — (a' — 1)V, we can neglect
all but the first line of the right-hand side, which leads us to the result in
section 5.3.2.



DETAILED DERIVATION OF THE TWISTED LADDER
HAMILTONIAN

This appendix presents a detailed derivation of the twisted ladder Hamilto-
nian in eq. (5.72).

We start from eq. (5.70) and calculate the transformation of each a-term
separately using the well-known operator identity"

AdeA_ v L [RB
eABe :EOE[A,BL, (C.1)

where [A, E} is the m-th iteration of the multiple commutator, such that for
m

[A,Blo=A, (C.1a)

[A,Blur1 = [A, [A,B]] . (C.1b)

In the following, we will shorten the notation for the unitary transforma-
tion U, omitting its argument most of the time since the index a determines
it completely. Further, we take the site-dependent phases induced by the
strong dressing field (j = 0) as a reference, such that the arguments of all
unitary transform as U(k,) — U(k, — ko). Especially, U(kq) — 1.

We begin with the a = 1-term and calculate the commutator

PP ot
A, Ue; U } = (350 — 1) U6y U' +(50 — 51)Zieg s, 07 - (C.2)

We see that the argument partially reproduces itself and that an additional
term with vanishing site-dependent phases appears. Hence, the next iterated
commutators will feature the same two operators but with coefficients pil-
ing up step by step. The iterative behavior can be formulated by a matrix
exponential, such that

~t

COjoff s~ fyoff PP
/MG o O e AR = A5%, 067 O

—-
-~
=t

~ | =

3

agk
3

3
g

m
(C3)
vl Ale; = vl et/

—~
-
~~
=t

~—

3

I
3
ire
=]

with appropriate vectors

~ o~
e = <1> , o= <U n v ) , (C.3a)
0 (o

and a triangular matrix

A1=<( 30 51 0 ) (C3b)

S0 — Sl)z‘kg—kl 650 - 451

1 For a proof of the following general relation, see, e.g., [114, Proposition 3.35].
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The eigenvalue spectrum o(A;) = {3s9 — 51,659 — 4s1} describes the addi-
tional energy gaps in the transitions a = 0 <> a = 1 due to the energy shifts
induced by ﬁgff [cf. eq. (5.57)].

The transition a = 2 <+ a = 3 has the same dimensionality and degeneracy.
Hence, evaluating the commutator

oot O a— 1yt 5
{Hoff,U% U ] = (—s1+35) U065 U +(—s1+52)Tk,—k,05 , (C4)

we find an analogous expression featuring the vectors

ot
e3 = ! , 03 = ves U , (C.5a)
0 o5

and a matrix exponential of

s1+3s 0
Ay = ( 1 2 ) (C.5b)
(—s1+ SZ)Zkgfkg, —4s1 + 657

with eigenvalue spectrum 0 (A3z) = {—s1 + 3sp, —4s1 + 652 }.

For a = 2, we find a similar equation, but since more states are involved in
the transition a = 1 <+ a = 2, the calculation is more complicated. To derive
the matrix A,, we start with a more general commutator which features

unitary transformations U = U(K') and U = U(k) with different wave
vectors, such that

[F8%,0"6; U'] = [A8",3ID5" (k))(DS” ()|

3
k) Y ek g ) (g1 o

n=1

=25 0'6;0"

+3% (=50 +51)[D§) (DY (k)|
+3%4(s1 — 52)@(— k)| DS (K')) (D
+30(K')(So — 51)|DS ) (D (K + k)|
+3®(—k)(—s1 + 52D} (K + k)) (D],

(C.6)

where ®(k) = SOVEET) Again, the commutator partially reproduces the
operator itself but there are more additional terms. Since each term at least
features either an untwisted bra or ket, the iteration would result in a term
with |D§l)> <D§2) |. Therefore, we find a relationship similar to eq. (C.3) with
vectors

ey — 7 (C7a)

© o o o o -
g
@»
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and the triangular matrix

25 0 0
3%k (—s0+s1) —3s0 + 551 0
A, = 3D(—k)Zk(s1 —s2) 0 551 — 3s
B 3P(k)(so —s1) 0 0
3P(—k)(—s1+s2) 0 0
0 O(—k)Zx(s1 —52) Zg(—s0+51)
(C.7b)
0 0 0
0 0 0
0 0 0
—3s0 4 5% 0 0
0 551 — 3sp 0

D(—2k) Lok (s1 —52) Lok(—so+s1) —3sp+851—3s2

A,’s eigenvalue spectrum is 0(A,) = {2s1, —3sg + 551,551 — 352, —3s0 + 851 —
3s2}. The higher dimension of the matrix form represents the higher degen-
eracy of the considered transitiona =1 <> a = 2.

Reintroducing the site-dependent phases of the strong dressing field, we
can merge the results of all three cases as

Ullo)e™ 8" /7 0 (ko) Hg = ({k, }) Uko)e ™"/ T (ko)

) [i Vo, (eitAa/heu) 4t Hel|T (ko) ©9
a=1
_ 3 <|ggg> <D§”<k1>> 50
189) (DS (ko)|

eif(350—51)/h
(elt(6s0—4s1)/1 _ it(@so—s1)/Myz ) /3 e

VA0S <|D< (ks >><rrr|<1><—ko>>
D5 (ko)) (rrr| (ko)

e (—s1+3s2) /1
) _ ) + H.c.
(elt(f4sl+6sz)/h _ elt(—sl+3sz)/h) Tkyks/3

3ID" (k2)) (D <2>< k)|
|D31 (ko)) (DS <>|
|D (k2)) (DY (ko)
\D < )>D2)(2k2—k0)|
D! < k>>< DY (ko)|
D! < 0)) (DY (ko)|

+0;
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eit251/h
(eit(—3so+551)/h _ eitZSl/h> Zszko
(eit(551—3sz)/h _ eitZsl/h) ey (Ko — K2))
(7eit(—3so+551)/h + eitZSl/h) ®(ky — ko)
(eitZSl/h _ eit(551—3sz)/h) q)(ko _ kz)
11(kz2 — ko)
. 3 .

— 031D (—ky) Y K2 | gg) 1) un (g] (7| + Hec,

n=1

+ H.c.

2% : : . .
l’](k) _ Tfk (e1t2sl/7’1 B elt(*350+551)/h o elt(55173sz)/h + elt(7350+8517352)/h) )
(C.8b)

From the last equation, we can identify one relevant term per field (j =
a = 1,2,3) and compensate for the exponential time dependence via fine
detunings. Such fine detunings result in phase shifts of the respective Rabi
frequencies (cf. eq. (5.71)). Choosing

hoy = —6sg+4s1, hdy =3sg—8s1+3sy, "3 =4s1—6sy, (C.9)

and neglecting terms oscillating with non-vanishing residual frequencies
results in the twisted ladder Hamiltonian in eq. (5.72). The remaining terms

only include jump operators between twisted states |Dg“) (ko)). The neglected
terms oscillate with residual frequencies defined via

—3s0 + 81 — hd1 = 3sg — 3s1, (a=1) (C.10a)
—281 — hdy = —3s9 + 651 — 3s2, (a=2) (C.10b)
3sg — 5s1 — hidy = 331 — 337, (a=2) (C.100)
—581 4+ 385 — hidy = —3s9 + 337, (a=2) (C.10d)
and
s1 — 35y — hd3 = —3s1 + 3s1, (a =3) (C.10€)

where each equation corresponds to one residual energy fiwgr, which we
compile in the set {wg}.
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NOTATION

Sets

@ the empty set {}

{a;} set of elements ay, 4y, ..., a,

U, N, \ union; intersection; complement
special sets/spaces

IN; Ng set of natural numbers without zero; including zero

Z set of integers

R set of real numbers

C set of complex numbers

H Hilbert space (We use Dirac’s Bra-Ket-notation [20])

Vectors, matrices and operators

a vector a of components ai, a, ...,
M matrix M of matrix elements M;;
O operator O acting on the corresponding Hilbert space
v Nabla operator for derivatives in R3
Operations
standard scalar product in R"/C"
X cross product of vectors in R?
® tensor product or dyadic product
b sum over elements x; from i = a to i = b (equivalent no-
Yiza¥i tation for products [] f’: ,%i and tensor products ®f’:u X;)
s e complex conjugate of the complex number c; the prior
term
c|; |l absolute value (modulus) of the (complex) number c; the
vector a
1 identity operator/matrix of the corresponding space
M! transposition of a matrix M

A'; H.cc. Hermitian conjugate of the operator A; the prior term
X mean value ) ; x;/N for N values x;

binomial coefficient binomial coefficient N!/ (a!(N — a)!);
a! describes a factorial

Physical constants

c speed of light in vacuum
€0 vacuum permittivity
h Reduced Planck’s constant /1/(27)
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LIST OF ACRONYMS

CNOT Controlled NOT operation

EPR
4LS
GHZ
Hd
JC
LOCC
RWA
QIP
SPA
TLS
TSPA
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Einstein-Podolsky-Rosen

four-level quantum system
Greenberger-Horne-Zeilinger

Hamming distance

Jaynes-Cummings

local operations and classical communication
rotating wave approximation

quantum information processing

squared pulse area

two-level quantum system

total squared pulse area
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