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Abstract We present a new traversable wormhole expli-
cation of Einstein’s field equations supported by the pro-
file of Einasto Dark Matter densities (Einasto in Trudy Inst
Astrofiz Alma-Ata 51:87, 1965; PTarO 36:414, 1968; Astron
Nachr 291:97, 1969) and global monopole charges along
with semiclassical effects in the local universe as the galac-
tic halo. The Einasto DM density profile produces a suitable
shape function that meets all the requirements for present-
ing the wormhole geometries. The Null Energy Condition
(NEC) is violated by the obtained solution with different
redshift functions i.e. the Einasto profile representing DM
candidate within the wormholes gives the fuel to sustain
these wormhole structures in the galactic halo. Moreover,
the reported wormhole geometries are getting asymptotically
flat and non-flat depending only on the choices of redshift
function whereas all the wormhole structures are maintain-
ing their balance of equilibrium under the action of different
forces.

1 Introduction

Wormholes describe an incredible spacetime structure of
joining two separate parts of the same world or universes.
Einstein field equations perform like the pillar towards the
concept of wormholes and were first exploited by Flamm [1].
Later, a new twist was added by Einstein and Rosen [2] in
this regard.
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Einstein and Rosen endorsed the concept of spacetime
deformation through a geometrical approach as elementary
particles like electrons are governed by a geometrical struc-
ture now known as Einstein Rosen Bridge (ERB). The ERB
was indicated to be unstable [3–8] for the topological defects
mainly by global monopoles, which could be a part of galax-
ies with spiral arms having dark matter. Traversable worm-
holes have previously been extensively studied by Ellis [7,8]
and Bronnikov [9] and several others. Clement [10] obtained
a class of wormhole solutions in higher dimensional gravita-
tion theory coupled to a repulsive type scalar field. But inter-
est in wormhole solutions of GR inflated after the remark-
able work of Morris and Thorne [11]. Wormholes with thin
shells were developed by Visser [12]. Energy momentum
tensors of exotic matter explain the phenomenon i.e. the cos-
mos complies with certain energy rules, and in this context,
we can sense that the sustainability of wormholes plays a
major source of concern. The geometry of traversable worm-
hole in particular necessitates the presence of a material of
an exotic kind at the throat of the wormhole (to maintain
the spacetime area open). The empirical study for the repre-
sentation of wormhole throat has been inspected in terms
of the graphical system in the present article. Species of
exotic matter such as this do not obey the laws of physics,
such as the null energy condition (NEC) and the average
energy condition(ANEC) [12]. It is hypothesised that such
stuff exists within the setting of quantum field theory in terms
of vacuum polarization. This vacuum polarization effect of
quantum fields plays a noteworthy role in the background of
monopole geometry and, as a result, it can noticeably modify
the metric responsible for the spacetime near it. In a pioneer-
ing work, Hiscock [13,14] investigated the analysis of the
backreaction of Energy–momentum tensor of vacuum based
on a space-time metric perturbed by linear terms. The stress-
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energy tensor of every massless conformal collection within
the spacetime of a stationary particle, the free quantum fields
exist although spherically symmetric global monopole1 can
be obtained upto an unknown numerical constant. Correc-
tion of the metric system to the first order for exteriors of
such a monopole can be obtained by perturbatively solving
the semiclassical linearised Einstein equations. The projec-
tion values of vacuum stress energy tensors in quantum fields
can be visualised as equal quantity to the Einstein tensor in
the reference frame of gravitational quantum theory based on
semiclassical principles [15]. Hiscock [13] specifically stud-
ied the quantum effects caused by the monopole background
in the matter fields for the scalar field. The exact solution of
the space-time outside of a global monopole’s core exist in the
semi-classical approach. The findings demonstrate that grav-
itational vacuum polarisation effects may drastically change
the value of the monopole core mass on symmetry breaking
scales close to the Planck energy.

In the second part we discuss the steadiness of the worm-
hole solutions. Field approximation solution [15] in terms of
semiclassical gravitational effects of global monopole leads
to the exact solution. This solution has an intriguing property
that, under some circumstances, it corresponds to a worm-
hole in spacetime with a particular throat radius. Space-
time of a global monopole with semi-classical effects, which
exerts no gravitational force, creates a wormhole geome-
try in spacetime. This result is in agreement with Hiscock
monopole (weak field approximations). Based on the worm-
hole spacetime geometry, the linear perturbation approach
is one method for checking stability assessments through-
out the wormhole throat introduced by Visser and Poisson
[16]. Wormholes have been studied from a variety of per-
spectives, such as thin-shell wormholes [16], Traversable
Wormhole by Teo [17], wormholes with phantom energy
[18], a Lorentzian wormhole that is traversable and has a cos-
mological constant [19], wormholes in Eddington-inspired
Born–Infeld [20–22], wormholes in f(R, T) gravity [23],
wormholes from cosmic strings gravity etc. But Topological
defects2 are an interesting part of cosmic strings which can be
explained with a similar prediction for the existence by phase
transition mechanism of particle physics in the early uni-
verse [24]. The spherically symmetric phenomenon known
as the global monopole by the scalar field triplet that is self-
coupling Ïa is one specific example of a topological defect.
Numerous articles have explored the global monopole for the

1 Monopoles are an example of stable topological defects along with
the fact symmetry breaking field has its random orientations at φa in
different directions in group space on large scales.
2 Topological defects on cosmological phenomena occur at such an
ultrahigh-energy situations that they are deemed impractical to be cre-
ated through experiments as these defects were created during the uni-
verse’s formation. Notwithstanding, it has theoretical implications in
significant energy expenditure.

spacetime metric along with the definition [25,26,28–31]. In
this article or paper we will observe the monopole effect as
a topological defect through the passage of Einasto Density
profile model [32–34], an anisotropic fluid minimally con-
nected to a triplet of scalar fields in the 1+3 gravity theory.

In the setting of an extensive dark matter halos, the
Einasto profile outperforms other solitary two-parameter
models such as the Navarro, Frenk, and White (NFW) [35].
One issue with this profile is that the surface mass density
is non-analytical for general Einasto index values. However,
the Einasto halo model has so far shown the best fit [36] for
the observed rotating curve and may therefore be regarded a
new standard model for wormhole, DM halos. The Einasto
model also fits the surface brightness of elliptical galaxies
quite well.

2 Einstein’s field equations

In this section, we shall propound the Einstein field equations
with global monopole charge and semiclassical effects. To
do so, we consider a (3 + 1) dimensional action without a
cosmological constant as

S =
∫ √−g

(
L + �

16π

)
d4x + Sm (1)

Here and in the following, we adopt the geometrical unit i.e.
G = c = 1, both dimensionless.

For a self-coupling scalar triplet φa the Lagrangian density
is given as [37]

L = −λ

4
(φ2 − η2)2 − 1

2

∑
a

gi j∂iφ
a∂ jφ

a (2)

Here, λ is the self-interaction term, η is the scale of a gauge-
symmetry breaking and a = 1, 2, 3. The field configuration
with monopole is given as

φa = η

r
f (r)xa (3)

where xa = (r sin θ cos φ, r sin θ sin φ, r cos θ) such that∑
a x

ax2 = r2.

Now, to proceed for finding the wormhole solutions we
consider the Morris–Thorne traversable wormhole space-
time [11] as

ds2 = e2φ(r)dt2−
(

1 − b(r)

r

)−1

dr2−r2(dθ2+sin2θdφ2).

(4)

Here, φ(r) and b(r) are called the redshift function and
shape function, respectively. To construct the traversable
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wormholes, the redshift function φ(r) and shape function
b(r) need to satisfy the following conditions: (i) φ(r) should
not contain any event horizon i.e. it is finite everywhere after
the wormhole throat r = rth , where b(rth) = rth and (ii)
b(r)/r < 1 and b′(r) < 1 (Flare-out condition) for r > rth .

Now, the Lagrangian density in terms of f (r) can be writ-
ten as

L = −η2 f 2

r2 − λη4

4
( f 2 − 1)2 −

(
1 − b(r)

r

)
η2( f ′)2

2

(5)

Further, for the field f (r), the Euler-Lagrange equation
gives
(

1 − b(r)

r

)
f ′′ +

[(
b(r) − rb′(r)

2r2

)
+ 2

r

(
1 − b(r)

r

)]
f ′

−
[

2

r2 + λη2( f 2 − 1)

]
f = 0 (6)

The energy–momentum tensor is obtained from Eq. (2) as

T̄i j = ∂iφ
a∂ jφ

a − 1

2
gi j g

μν∂μφa∂νφ
a − gi jλ

4
(φ2 −η2)2 (7)

The above Eq. (7) gives the following results

T̄ t
t = −η2

[
f 2

r2 +
(

1 − b

r

)
( f ′)2

2
+ λη2

4
( f 2 − 1)2

]
,

T̄ r
r = −η2

[
f 2

r2 −
(

1 − b

r

)
( f ′)2

2
+ λη2

4
( f 2 − 1)2

]
,

T̄ θ
θ = T̄ φ

φ = −η2
[(

1 − b

r

)
( f ′)2

2
+ λη2

4
( f 2 − 1)2

]
.

Due to the complicated form of Eq. (6), we consider
f (r) → 1 outside the wormhole to solve the Eq. (6)
and, therefore, the corresponding components of energy–
momentum read as

T̄ t
t = T̄ r

r � −η2

r2 , T̄ θ
θ = T̄ φ

φ � 0.

The Einstein field equations are written as

Gi j = Ri j − 1

2
gi j R = 8πTi j ,

where Ti j is the total energy–momentum tensor of the dark
matter fluid and global monopole with the quantum effects
due to monopole background in matter fields. The Einstein
field equations can be expressed as

Ti j = T (0)
i j + T̄i j + 〈T̄i j 〉

It is known that the Lagrangian is conformally invariant in
classical theory and as a result, we have the vanishing trace
of the energy stress tensor. However, in the case of quantized
theory, it achieves a trace through renormalization. This trace
irregularity is a geometrical scalar that contains derivatives
of the metric tensor.

The anomaly due to the trace of the vacuum stress energy
for a conformally coupled massless free field is specified as
[13]

Tμ
ν = 1

2880π2

[
aCi jklC

i jkl + b(Ri j R
i j

−1

3
R2) + c �R + dR2

]
(8)

Here a, b, c, and d are constants depending upon the con-
cerning conformal scalar field. The remaining symbols are
the standard notations in Riemannian geometry.

Now the vacuum expectation values of stress-energy ten-
sors of the quantum fields take part as contribute to the
energy–momentum tensor components in the Einstein field
equations. Hiscock[13] studied the quantum effects due to
monopole background in the matter fields. He has found the
vacuum expectation value of the stress-energy tensor of a
conformally coupled massless scalar field of the space-time
as

〈T i j〉 = h̄

r4 diag[B, (A + B), (A + B), (A + B)] (9)

where

A = 1

1440π2

[
nsc + 3nsp + 12nvd

× 12nvξ (2α2 + 1)/(3α2 − 1)
]
(1 − α2)(3α2 − 1)−4

(10)

Here, nsc, nsp, nvd nvξ represent the number of scalars, two-
component spinor, dimensionally regularized vector and con-
cerning zeta function regularized vector fields, respectively.
Similar to A, B is a dimensionless constant depending on η

and the number and spin of the concerning component fields
and h̄ ≈ 2.612 × 10−66 cm2.

In this study, we consider an anisotropic matter distribu-
tion. The components of the energy–momentum tensor for
anisotropic matter fluid are given as follows

T i
j

(0) = [−ρ(r),Pr (r),Pθ (r),Pφ(r)
]
.

The Einstein tensor components for the metric (4) are

Gt
t = −b′(r)

r2 ,

Gr
r = −b(r)

r3 + 2

[
1 − b(r)

r

]
�′

r
,

Gθ
θ =

(
1 − b(r)

r

)[
�′′ + (�′)2
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Fig. 1 (Left) The density function ρ(r) is plotted corresponding to ρ0 = 0.005 and r0 = 2 kpc and (Right) the shape function b(r) is plotted
corresponding to L = 2, ρ0 = 0.005, r0 = 2 kpc, rth = 1 kpc, B = 0.01 and h = 1

− b′r − b

2r(r − b)
�′ − b′r − b

2r2(r − b)
+ �′

r

]
,

Gφ
φ = Gθ

θ .

Therefore, the Einstein field equations with the Global
Monopole Charge and Semiclassical effects can be written
as

ρ(r) = 1

8π

[
b′(r)
r2 − 8πη2

r2 + 8πBh̄

r4

]
, (11)

Pr (r) = 1

8π

[(
1 − b(r)

r

) (
1

r2 + 2φ′(r)
r

)

− 1

r2 + 8πη2

r2 − 8π(A + B)h̄

r4

]
, (12)

Pt (r) = 1

8π

(
1 − b(r)

r

)
φ′′(r) +

(
1 − b(r)

r

)
φ′2(r)

+1

2

(
b(r)

r2 − b′(r)
r

)
φ′(r) + 1

r

(
1 − b(r)

r

)
φ′(r)

+ 1

2r

(
b(r)

r2 − b′(r)
r

)
+ 8π(A + B)h̄

r4 . (13)

where ′ stands for d
dr .

3 Wormhole formation

In this section, we are going to find the wormhole solution
of Einstein’s field equations supported by the Einasto DM
density profile in the galactic halo. The Einasto DM density
profile is given as [38–40]

ρ(r) = ρ0e
− 2

L

[(
r
r0

)L−1

]
(14)

where ρ0 and r0 are the core density and core radius of the
galactic halo, respectively and L is a positive constant.

The behaviour of the density profile (14) is demonstrated
in Fig. 1 (left) for ρ0 = 0.005 and r0 = 1 kpc with L = 2, 3,

4 and 5, respectively. Figure 1 (left) ensures that the density
profile is positive and decreasing in nature, which makes the
sense of matter density. Here, we make an assumption that the
matter density of the wormhole is the profile density of the
Einasto. So, on using the density profile (14) in the Eq. (11)
and the condition b(rth) = rth , we obtain the following shape
function

b(r) = 8π

Lr

[
Bh̄L + Lr2η2 − ρ0r

4e2/Lg(r)
]

+ 1

Lrth

[
L

(
r2
th(1 − 8πη2) − 8πBh̄

)

+8πρ0r
4
the

2/Lg(rth)
]

(15)

where

g(r) = E

[
−3 + L

L
,

2

L

(
r

r0

)L
]

. (16)

E[m, x] being the exponential integral function defined as

E[m, x] =
∫ 1

0
e− x

z zm−2dz; x > 0. (17)

In order to maintain the wormhole structure, the shape
function (15) needs to satisfy the conditions mentioned in
Sect. 2. It is clear from Fig. 1 (right) that the shape func-
tion obtained here is positive and monotonically increasing
in nature after the wormhole throat rth = 1 kpc. Moreover,
Fig. 2 indicates that b(r)/r < 1 (the figure in the left) and
db(r)/dr < 1 after the wormhole throat rth = 1 kpc corre-
sponding to η = {0, 0.03, 0.06, 0.09} with L = 2, ρ0 = 0.005,
r0 = 2 kpc, B = 0.01, h̄ = 1. Therefore, shape function pre-
sented here is suitable to construct the wormhole structure in
the galactic halo by satisfying all the necessary conditions. It
is noted that, the values of all parameters are increasing for
increasing values of global monopole charge η.
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Fig. 2 (Left) The function b(r)/r and (Right) the function db(r)/dr are plotted corresponding to L = 2, ρ0 = 0.005, r0 = 2 kpc, rth =
1 kpc, B = 0.01 and h = 1

Fig. 3 (Left) NEC1 and (Right) NEC2 corresponding to C = 1.5 and α = 1 along with L = 2, ρ0 = 0.005, r0 = 2 kpc, rth = 1 kpc, B =
0.01 A = 0.0015 and h = 1, respectively

4 Null energy condition

In this section, we consider the matter content of the worm-
hole to check whether it violates the null energy condition
(NEC) as the violation of NEC is an essential condition to
sustain the wormhole structure. According to GTR, the NEC
reads as ρ(r) + Pr (r) ≥ 0, and hence the matter content of
wormhole violates NEC if ρ(r) + Pr (r) < 0 for r > rth .

In order to check the NEC, we need to compute the radial
pressure Pr (r) from Eq. (12) and to do so, here, we shall
consider different redshift functions φ(r).

4.1 NEC1: redshift function φ(r) = C

The function φ(r) = C , constant is suitable as a redshift
function due to its regular behavior with respect to the radial
coordinate r . It is noted that the function φ(r) = C is called
the tidal force whenever C = 0 and, here, we will pro-
ceed with positive values of C . This redshift function and
the shape function given in Eq. (15) simultaneously produce
the explicit expression of radial pressure from Eq. (12) as

Pr (r) = − 1

8r4

[
8Bh̄

(
2 − r

rth

)
+ rrth

(
1

π
− 8η2

)
+ 8Ah̄

]

+ρ0e
2
L

Lr3

[
r3g(r) − r3

thg(rth)
]

(18)

The left panel of Fig. 3 shows that ρ(r)+Pr (r) < 0 after
the wormhole throat rth = 1kpc corresponding to global
monopole charge η = {0, 0.03, 0.06, 0.09} with C = 1.5,
L = 2, ρ0 = 0.005, r0 = 2 kpc, B = 0.01, h̄ = 1. Therefore,
the matter content of wormhole i.e. the DM represented by the
Einasto density profile is good enough to hold the wormhole
structures in the galactic halo.

4.2 NEC2: redshift function φ(r) = α
r

The function φ(r) = α/r [41], α being a non-zero constant,
is also suitable as a redshift function, since it is regular for
r > 0 i.e. it avoids the event horizon after the wormhole
throat. For this redshift function, Eq. (12) gives the radial
pressure as
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Pr (r) = 1

8πLr5rth

[
L(8πBh̄(r(r − 2α) + 2rth(α − r))

+rthr(−8Ah̄π + (rthr − 2rthα + 2rα)(8πη2 − 1)))

−8πρorthe
2/Lr(r − 2α)(r3

thg(rth) − r3g(r))
]
. (19)

The above radial pressure together with the matter density
profile (14) violates the NEC, clear from the right panel of
Fig. 3. Indeed, the DM content of the wormhole gives the
essential fuel to sustain the wormhole structure in the galactic
halo. Further, from the same right panel of Fig. 3, one can
see that whenever global monopole charge η increases the
level of violation of NEC decreases i.e. the increasing global
monopole charge η can reduce the probability of violation of
NEC.

4.3 NEC3: redshift function φ′(r) = v�2
/r

The tangential galactic rotational velocity v�(r) in the equa-
torial is obtained in terms of the redshift function φ form the
flat curve as [42,43]

v�(r) = √
rφ′(r) (20)

Here, we shall consider the tangential galactic rotational
velocity in the region of the DM as [44,45]

v�(r) = s(1 − e−μr ) + wre−βr (21)

where s, w, μ and β are positive constants.
Upon using the above tangential galactic rotational veloc-

ity in (20) one can find the following redshift function

φ(r) = s2 {ln(r) + 2E[1, βr ] − E[1, 2βr ]}
+C1 − w2e−2μr

2μ

[
r + 1

2μ

]

−2swe−μr
[

1

μ
− 1e−βr

(μ + β)

]
(22)

where C1 is an integration constant. The above redshift func-
tion given in Eq. (22) provides the following radial pressure

Pr (r) = 1

8πr4

[
8π(r2η2−h̄(A+B))+ 1

Lrt h
{L(8πBh̄(r−rth)

+rrth(8πη2(rth − r))) − 8πρorthre
2/L (r3

thg(rth)

−r3g(r))}− k(r)

Lμrth
{L(rth−r)(8πBh̄+rrth(1−8πη2))

+8πρore
2/L (r3

thg(rth) − r3g(r))}
]
, (23)

where,

k(r) = 2we−2r(μ+β){−2μsrer(μ+β)+μwe2μr (1+e2βr−2eβr )

−re2βr (w(μr − 1) − 4μs)}. (24)

The graphical demonstration of ρ(r)+ pr (r) is shown in the
right panel of Fig. 4, which confirms that it is negative after
the wormhole throat rth = 1 kpc i.e. the NEC is completely
violated. Consequently, the wormhole containing DM con-
tent is widely supporting to sustain the wormhole structure.

5 Amount of average null energy condition violating
matter

According to the Visser et al. [46], the total amount of aver-
age null energy condition (ANEC) violating matter can be
defined as

I =
∮

{ρ(r) + Pr (r)}dv = 2
∫ ∞

rth
4πr2[ρ(r) + Pr (r)]dr

(25)

where, dv = r2 sin θdrdθdφ. Here, our aim is to check
the dependence of the wormhole containing total amount of
ANEC violating matter on the global monopole charge η.
Now, the dependence of the total amount of ANEC on η is
actually the dependence of the integrand IF = r2[ρ(r) +
Pr (r)] on η near the wormhole’s throat. For each of our
proposed wormhole solutions, the value of integrand IF at
the wormhole throat is obtained as IF = −0.0408 + η2

corresponding to considered values of constant for each of
the cases. Interestingly, the result shows that the total amount
of ANEC violating matter depends on the global monopole
charge η and it can be minimized by minimizing values of η,
which is also clear from Fig. 4 (right).

6 Embedding surface and proper-radial distance of
wormhole

Here, we are going to discuss two important features of the
wormhole structure, namely the embedding surface and the
proper-radial distance of the wormhole.

6.1 Embedding surface

We consider the two dimensional hypersurface H : θ =
π/2, t = constant for the visualization of wormhole geome-
try. Now, the line element at the considered hypersurface H
is given by

ds2
H =

(
1 − b(r)

r

)−1

dr2 + r2dφ2 (26)

On account of the hypersurface H , the above metric can
be embedded into the following three dimensional Euclidean
space
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Fig. 4 (Left) NEC3 corresponding to D = 0.05, μ = β = 0.2, w = 0.1, s = 0.002, L = 2, ρ0 = 0.005, r0 = 2 kpc, rth = 1 kpc, B =
0.01 A = 0.0015 and h = 1. (Right) The total amount of ANEC violating matter at the wormhole throat is plotted with respect to the global
monopole charge η

Table 1 Numerical values of
the embedding surface z(r)
corresponding to the global
monopole charge η = {0, 0.03,
0.06, 0.09} with
ρ0 = 0.005, kpc, r0 =
2 kpc L = 2, B = 0.01, h̄ =
1, r+

th = 1.1 kpc

r (kpc) z(r) for η = 0 z(r) for η = 0.03 z(r) for η = 0.06 z(r) for η = 0.09

1.5 0.813926 0.820119 0.839339 0.873719

2 1.46741 1.48036 1.52049 1.59218

3 2.47984 2.50649 2.58892 2.73559

4 3.29975 3.34022 3.46506 3.68599

5 3.99019 4.04460 4.21181 4.42264

6 4.59034 4.65902 4.8693 5.23656

7 5.12684 5.21031 5.46481 5.90628

8 5.61629 5.71509 6.01517 6.53219

ds2
H =

[
1 +

(
dz(r)

dr

)2
]
dr2 + r2dφ2 (27)

Comparing Eqs. (26) and (27) we get a differential equa-
tion of the embedding surface z(r) as

dz(r)

dr
= ±

(
r

b(r)
− 1

)− 1
2

(28)

Eventually, the above Eq. (28) gives the expression of embed-
ding surface z(r) in the following integral form

z(r) = ±
∫ r

r+
th

(
r

b(r)
− 1

)− 1
2

(29)

where r+
th is the nearest distance after the wormhole throat.

Now, we solve the above integration numerically due to the
complicated form of our introduced shape function (15). It
is noted that the numerical technique is applied for r+

th =
1.1 kpc and the obtained results are given Table 1. Further,
the graphical demonstration of z(r) is depicted in the left
panel of Fig. 5 which corresponds to η = {0, 0.09} with L =
2, ρ0 = 0.005, r0 = 2 kpc, rth = 1 kpc, B = 0.01 and
h̄ = 1. Also, Fig. 8 shows the full visualization diagram of
the wormhole corresponding to only η = 0.09.

6.2 Proper-radial distance

The proper radial distance of wormhole is defined as

L(r) = ±
∫ r

r+
th

(
1 − b(r)

r

)− 1
2

(30)

Here, we calculate the value of L(r) using the numerical
technique with the lower limit r+

th = 1.1 kpc and the obtained
results are provided in Table 2. Moreover, the diagram of the
proper radial distance L(r) for our solution is shown in Fig. 8
(right).

7 Asymptotic flatness

The asymptotic flatness of the wormhole structures is ensure
by (i) b(r)/r → 0 as r → ∞ and (ii) e2φ(r) → 1
as r → ∞. Corresponding to the choice of L = 2,
ρ0 = 0.005, r0 = 2 kpc, rth = 1 kpc, B = 0.01 and
h = 1, we obtain b(r)/r = 1

r [1.9 + 0.25/r − 25.13(1 −
r)η2 − 0.17r3E

[−1/2, r2/4
]

and it tends to zero as r tends
to infinity for any values of η, which is also clear from
the left panel of the Fig. 2. Now, e2φ(r) → 1 whenever
r → ∞ only for the second choice of redshift function.
Consequently, this redshift function generates the asymptot-
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Fig. 5 The embedding surface z(r) (Left) and proper-radial distance L(r) (Right) are plotted corresponding to L = 2, ρ0 = 0.005, r0 =
2 kpc, rth = 1 kpc, B = 0.01 and h̄ = 1

Table 2 Numerical values of
the proper-radial distance L(r)
corresponding to the global
monopole charge η = {0, 0.03,
0.06, 0.09} with
ρ0 = 0.005, kpc, r0 =
2 kpc L = 2, B = 0.01, h̄ =
1, r+

th = 1.1 kpc

r (kpc) L(r) for η = 0 L(r) for η = 0.03 L(r) for η = 0.06 L(r) for η = 0.09

1.5 0.909868 0.915399 0.93262 0.963616

2 1.73327 1.74416 1.77812 1.83942

3 3.15721 3.17786 3.24235 3.35917

4 4.45082 4.48027 4.57228 4.73913

5 5.66629 5.70371 5.82059 6.03248

6 6.8327 6.87752 7.0175 7.27112

7 7.96761 8.01949 8.18146 8.47473

8 9.08102 9.13972 9.32294 9.6545

ically flat wormhole. For the first and third choices of redshift
functions φ(r), e2φ(r) does not tend to unity as r → ∞ and
hence these represent non-asymptotically flat wormholes. As
a result, the wormhole structures matched with the exter-
nal Schwarzschild solution. It is noted that in the case of
φ(r) = C , when C = 0 it gives the asymptotically flat
wormhole but in this context, we have chosen non-zero C .
The exterior Schwarzschild solution is given as

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2θdφ2), (31)

where M denotes the wormhole mass.
Comparing the wormhole metric (4) with the external

Schwarzschild solution (31) at some r = R > rs (rs is
the Schwarzschild radius) we get b(R) = 2M and φ(R) =
1
2 ln(1−2M/R). Therefore, for first and third choices of red-
shift functions, we obtain the following values of constants

C = 1

2
ln(1 − 2M/R) (32)

C1 = 1

2
ln(1 − 2M/R) + w2e−2μR

2μ

[
R + 1

2μ

]

+2swe−μR
[

1

μ
− 1e−βR

(μ + β)

]

−s2 [ln(r) + 2E[1, βR] − E[1, 2βR]] (33)

Indeed, for these choices of C and C1 with b(R) = 2M
the respective non-asymptotically flat wormhole solutions
matched with the external Schwarzschild solution at some
r = R > rs . Further, these wormholes representing metric
reads as

ds2 = −e2�(r)dt2 +
(

1 − b(r)

r

)−1

dr2

+r2(dθ2 + sin2θ dφ2), for r < R (34)

and

ds2 = −
(

1 − b(R)

r

)
dt2 +

(
1 − b(R)

r

)−1

dr2

+r2(dθ2 + sin2θ dφ2), for r ≥ R. (35)

8 Equilibrium analysis

Any astrophysical object stays in an equilibrium position
under the action of different forces by satisfying the gener-
alized Tolman–Oppenheimer–Volkoff (TOV) equation. The

123



Eur. Phys. J. C           (2023) 83:395 Page 9 of 11   395 

Fig. 6 (Left) The different forces are plotted corresponding to the redshift function of NEC1 and (Right) the different forces are plotted corre-
sponding to the redshift function of NEC2

generalized TOV equation in wormhole spacetime can be
written as

−1

r
[Mg(r){ρ(r) + Pr (r)}]φ(r)(1 − b(r)/r) − dPr (r)

dr

+2

r
(Pt (r) − Pr (r)) = 0, (36)

where Mg(r) represents the effective gravitational mass that
spread from the wormhole throat to some radius r . Also, on
using the Tolman-Whittaker formula and the Einstein field
equations, Mg(r) is derived as

Mg(r) = rφ′(r)[φ(r)(1 − b(r)/r)]−1 . (37)

where prime denotes differentiation with respect to r . Insert-
ing this value of Mg(r) in Eq. (36), the TOV equation reads
as

−φ′(r){ρ(r) + Pr (r)} − dPr (r)

dr
+ 2

r
{Pt (r) − Pr (r)} = 0.

(38)

i.e. Fg(r) + Fh(r) + Fa(r) = 0, (39)

Here, Fg(r) = −φ′(r){ρ(r)+Pr (r)}, Fh(r) = − dPr (r)
dr and

Fa(r) = 2
r [Pt (r) − Pr (r)], are called gravitational, hydro-

static and anisotropic forces, respectively. Now, to analyze
the equilibrium condition, the graphical demonstrations of
three different forces for respective wormholes are depicted
in Figs. 6 and 7. In the case of redshift function φ(r) = C ,
Fg(r) is zero and hence the wormhole solution achieves the
equilibrium position under the action Fh(r) and Fa(r) (see
Fig. 6 (left)). However, corresponding to the redshift func-
tions φ(r) = α/r and obtained from the flat rotational curve
the wormhole solutions stay in equilibrium position under the
simultaneous action of Fg(r), Fh(r) and Fa(r), clear from
Figs. 6 (right) and 7. Also, Fig. 7 shows that Fg(r) is very
small in these cases, so, here, the anisotropic force plays an
important to achieve the equilibrium position.

Fig. 7 The different forces are plotted corresponding to redshift func-
tion of NEC3

Fig. 8 The embedding diagram of wormhole corresponding to η =
0.09

9 Discussions and conclusion

It is true that the study of wormhole geometry created an
enthusiastic stir among theoretical researchers over the last
few years. As a result, the wormholes are found in the galac-
tic halo region supported by the NFW, URF, and Isother-
mal DM density profiles. In this article, for the first time,
we have introduced the wormhole structures in the galactic
halo supported by the Einasto DM density profile and global
monopole charge with semiclassical effects.
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The Einasto DM density profile creates a suitable redshift
function to represent wormhole-like geometry: The obtained
redshift function is positive and increasing in behavior, clear
from Fig. 1 (right) and it is less than the radial coordinate r
after the wormhole throat (see the Fig. 2 (left)) corresponding
to global monopole charge η = {0, 0.03, 0.06, 0.09} along
with L = 2, ρ0 = 0.005, r0 = 2 kpc, rth = 1 kpc, h̄ = 1
and the semiclassical effect B = 0.01, and also, the reported
shape function satisfies the flare-out condition (see the Fig. 2
(right)). It is noted that for fixed values of semiclassical effect
B = 0.01, the shape function and its essential conditions are
increasing for increasing value of η.

The anisotropic DM content within the wormholes gives
the appropriate environment to sustain the wormhole struc-
tures by violating the NEC: The NEC has checked for three
redshift functions φ = C, α/r and obtained from the flat
rotational curve. For each of the three redshift functions, the
NEC is violated, which is clear from Figs. 3 and 4 (right). In
the violation of NEC, the global monopole charge η plays an
important role with the fixed values of semiclassical effects
A = 0.0015 and B = 0.01, the chance of violation of NEC
decreases for increasing values of η (see the Figs. 3 and 4
(right)). Moreover, the total amount of ANEC violating mat-
ter in the wormhole can be minimized by minimizing the
value of η (see Fig. 4 (right)).

Two important features of wormhole namely, embedding
surface z(r) and proper radial distance L(r) are analyzed
for our reported solutions. We have estimated the numeri-
cal values of z(r) and L(r) using the numerical technique
corresponding to η = {0, 0.03, 0.06, 0.09} with L = 2,
ρ0 = 0.005, r0 = 2 kpc, r+

th = 1.1 kpc, h̄ = 1 and the semi-
classical effect B = 0.01, given in Tables 1 and 2, respec-
tively. The graphical behaviors of z(r) and l(r) are shown in
Fig. 5 only for η = 0 and 0.09, and also, the full visualiza-
tion 4D diagram of wormhole only for η = 0.09 is shown in
Fig. 8.

The asymptotic flatness of our wormhole solutions is dis-
cussed: Only for the redshift function φ(r) = α/r the solu-
tions represent asymptotically flat wormhole spacetime and
this result is not dependent on the global monopole charge
η. Further, the wormhole geometries corresponding to the
first and third choices of redshift functions are not asymptot-
ically flat as both these cases e2φ(r) do not tend to 1 whenever
r → ∞. Consequently, these asymptotically non-flat worm-
hole geometries are matched with the external Schwarzschild
solutions at some r = R > the Schwarzschild radius.

We have also analyzed the equilibrium for the reported
wormhole solutions: The gravitational force Fg(r) becomes
zero for the redshift function φ(r) = C . Therefore, the
wormhole solutions, in this case, are in the equilibrium posi-
tion under the action Fh(r) and Fa(r) (see Fig. 6 (left)). How-
ever, for the redshift functions φ(r) = α/r and obtained from
flat rotational curve the wormhole solutions stay in equilib-

rium position under the simultaneous action of Fg(r), Fh(r)
and Fa(r), which is clear from Figs. 6 (right) and 7. It is noted
that the forces are dependent on the global monopole charge
η for fixed values of semiclassical effects A = 0.01 and
B = 0.015, clear from Figs. 6 and 7. The anisotropic force
increases, the hydrostatic force decreases, and the gravita-
tional force becomes zero in the first case and decreases for
the second two cases for increasing values of η.

To make it a more compatible proposal of wormhole solu-
tions in the galactic halo, we are going to compare our model
with the results in Refs. [26,27]. In the study of Sarkar et
al. [26], the wormhole structures are found in the bulge of
the Milky Way galaxy situated on the MacMillan DM den-
sity profile with global monopole charge η. They have found
that the global monopole charge η has a crucial effect on the
violation of NEC and on the asymptotic flatness of the worm-
hole structures. Also, they have shown that the total amount
of averaged NEC violating matter depends on η. Das et al.
[27] studied the wormhole geometries in the halo and bulge
of the Milky Way Galaxy by considering pseudo-isothermal,
NFW and Universal Rotational Curve (URC) DM density
profiles along with global monopole charge. In their study,
they investigated the effect of global monopole charge in the
presented solutions. In this article, we present the wormhole-
like geometries in the local universe as the galactic halo
supported by the Einasto DM density profile and global
monopole charge with semiclassical effects. Here, we can
see that for fixed values of semiclassical effects A = 0.01,
B = 0.015, there are crucial effects of global monopole
charge as mentioned above in the presented solutions.

Finally, all the successful results of our proposed solu-
tions ensure that the wormhole geometries supported by the
Einasto DM density profile and global monopole charge with
semiclassical effects exist in the galactic halo. Therefore, the
scientific community may get inspiration from this study to
do fruitful further research work in the future.
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