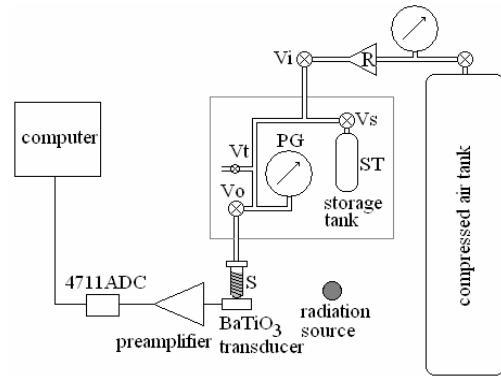


Gamma ray sensitivity of R-12 superheated emulsion detector at higher pressure using ^{241}Am and ^{137}Cs gamma sources

R. Sarkar¹, P. K. Mondal², and B. K. Chatterjee¹

¹Department of Physics, Bose Institute, 93/1, A P C Road, Kolkata-700009, INDIA

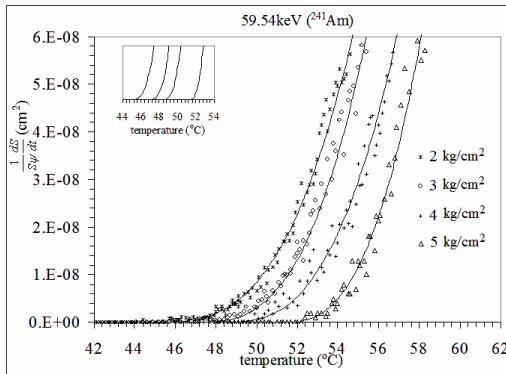

²Astroparticle Physics & Cosmology Division, Saha Institute of Nuclear Physics, Kolkata-700064, INDIA

* email: sarkar_rupa2003@yahoo.com

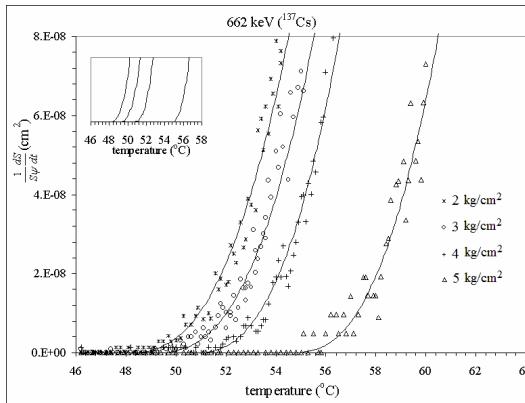
Introduction

Since its discovery in 1979 [1] the Superheated Emulsion Detector (SED) is being used for the detection of energetic radiations e.g. gamma rays, neutrons and other charged particles. In SED a large number of micron size superheated liquid droplets are dispersed in a viscoelastic gel matrix. When a SED is exposed to energetic radiations the droplets may evaporate explosively into bubbles if an energetic particle deposits sufficient amount of energy inside a droplet. In SED the detection of energetic radiation is based on the detection of the acoustic pulse produced during the vaporisation of a superheated liquid droplet.

The superheated liquid comprises of a large number of voids which are constantly being created, whence they grow to a maximum size and finally collapse back and vanish [2]. Whenever a void gets enough energy to overcome the barrier W [$W = 16\pi\gamma^3/3(P_V - P)^2$ where, γ is the liquid-vapour interfacial surface tension, P_V is the saturation vapour pressure and P is the ambient pressure], the bubble nucleation takes place [2]. The threshold energy (W) for nucleation can be controlled by controlling the temperature and/or pressure. The nucleation threshold energy increases with increase in pressure and the detector becomes sensitive to energetic radiations at higher temperature [3]. It was reported earlier that the R-12 SED is insensitive to gamma rays at room temperature and it becomes gamma ray sensitive at about 38.5°C (for ^{241}Am gamma source) at atmospheric pressure [4]. In the present work we have studied the threshold temperature (T_0) for the gamma ray induced nucleation in R-12 SED at higher pressure. In this work we have used ^{241}Am (0.5 Ci, 59.54 keV gamma rays) and ^{137}Cs (19.8 mCi, 662 keV gamma rays) gamma sources.


Fig. 1 Schematic representation of the experimental setup.

Experiments


The experiments were performed using a high pressure manifold, the schematic diagram of which is depicted in Fig. 1. The system is capable of providing a stable pressure over the duration of the experiment which usually lasts for a few hours [3]. In the present work R-12 SED was used to study the threshold temperature for 59.54 keV and 662 keV gamma rays at four different pressures (2, 3, 4 and 5 kg.cm^{-2}).

A glass vial containing superheated sample R-12 was placed on the top of a piezoelectric transducer and was wrapped with a heating coil. Initially the pressure over the superheated sample was raised to a desire value and then a gamma source was placed at a measured distance from the vial to maintain a constant flux during the experiment. The temperature of the sample was increased gradually from the room temperature. The acoustic pulses produced due to the droplet vaporizations were detected by a transducer which converts them into electrical signals. The signals were converted to TTL pulses, which were then counted by using a ADC

card (Advantech USB 4711) supported by LabVIEW 8.6 software in MCS mode. This provides the number of counts accumulated in a dwell-time of 30 seconds and records it as a function of time. The counts were then normalized by the gamma ray flux (ψ) and surviving number of droplets (S) in every successive channels. The observed data for ^{241}Am and ^{137}Cs are given in Fig. 2 and Fig. 3 respectively with their smoothed curves.

Fig. 2 Normalised counts with temperature at 2, 3, 4 and 5 kg.cm^{-2} for 59.54 keV gamma rays.

Fig. 3 Normalised counts with temperature at 2, 3, 4 and 5 kg.cm^{-2} for 662 keV gamma rays.

Observations

It is observed from Fig. 2 and Fig. 3 that at a constant pressure the normalized counts increase gradually with the detector temperature

after a certain temperature. The temperature at which the detector becomes sensitive to the external radiation is the threshold temperature (T_o) for nucleation. The observed data were then smoothed to get the threshold temperature for nucleation and are shown in Fig. 2 and Fig. 3 respectively. It is also observed from both the figures that T_o increases with increase in applied pressure as discussed earlier. For ^{241}Am and ^{137}Cs sources the obtained values of T_o are given in Table-1.

Table-1: Threshold temperature for ^{241}Am and ^{137}Cs gamma sources at different pressures.

Pressure (P) (kg.cm^2)	Threshold temperature (T_o) (°C)	
	^{241}Am	^{137}Cs
2	45.5	48.4
3	47.2	49.5
4	48.8	51.2
5	51.9	54.9

Conclusion

At higher pressures the spontaneous nucleation in SED is greatly reduced and provides a more stable detector. Higher pressure increases the gamma detection threshold temperature, as can be expected. Table-1 shows the gamma detection threshold for R-12 SED by ^{241}Am and ^{137}Cs . It shows that the higher energy gamma source has a higher detection threshold than the lower energy gamma source. More work is needed to understand the observed data.

Acknowledgments

R. Sarkar thanks the Council of Scientific and Industrial Research (CSIR), Government of India for the financial assistance.

References

- [1] R. E. Apfel, Nucl. Instrum. and Meth. **162**, 603 (1979).
- [2] R. Sarkar, B.K. Chatterjee, B. Roy and S.C. Roy, Radiat. Phys. Chem. **75**, 2186 (2006).
- [3] R. Sarkar, M. Datta and B.K. Chatterjee, Nucl. Instrum. and Meth. A **682**, 31 (2012).
- [4] B. Roy *et al.*, Radiat. Phys. Chem. **61**, 509 (2001).