
Loss of Landau Damping in Double Harmonic RF
Systems

Istituto Nazionale di Fisica Nucleare (INFN) and "Sapienza" Universita di
Roma
Dottorato di Ricerca in Fisica degli Acceleratori – XXXVI Ciclo

Leandro Intelisano
ID number 1322671

Advisors
Prof. Mauro Migliorati
Dr. Heiko Damerau

Co-Advisor
Dr. Ivan Karpov

Academic Year 2022/2023

C
ER

N
-T

H
ES

IS
-2

02
3-

39
6

31
/0

1/
20

24



Thesis defended on 31 January 2024
in front of a Board of Examiners composed by:

Prof. Maria Cristina Morone (chairman)
Dr. Elias Metral
Prof. Giandomenico Amendola

Loss of Landau Damping in Double Harmonic RF Systems
Sapienza University of Rome

© 2023 Leandro Intelisano. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: May 30, 2024

Author’s email: leandrointelisano@gmail.com

mailto:leandrointelisano@gmail.com


"The true scientific history of our heritage is richer than all fairy tales and, in its
reality, is more mysterious and bizarre than all myths."

- Leon Lederman
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Abstract

Landau damping is a natural stabilization mechanism to mitigate coherent beam
instabilities. In the absence of synchrotron radiation, it plays a crucial role in hadron
accelerators, representing an effective way to maintain the beam stable. A double
harmonic RF system is a common technique employed in several accelerators to in-
crease beam stability as well as to perform RF manipulations. This method also finds
application in the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) at
CERN, which both utilize higher harmonic RF systems to reach the beam parameters
for the High-Luminosity Large Hadron Collider (HL-LHC).

In the longitudinal plane, loss of Landau damping (LLD) occurs when a coherent
mode of oscillation moves out of the incoherent band of the bunch synchrotron
frequencies. This thesis expands the recent LLD studies to the important case
of double harmonic RF systems. It is shown that in the bunch shortening mode
(both RF systems in phase at the bunch position for a non-accelerating bucket),
inductive impedance above transition energy leads to a vanishing LLD threshold for
a binominal particle distribution, similar to the single harmonic RF case.

In this configuration, refined analytical estimates for the synchrotron frequency
distribution allowed the derivation of an analytical equation for the LLD threshold
by introducing an upper cutoff frequency.

The LLD threshold is extensively studied using the concept of van Kampen modes
and taking into account the effect of the voltage ratio and the relative phase between
the two RF systems for reactive impedance below and above transition energy.
The results are supported by self-consistent numerical calculations based on the
Oide-Yokoya method implemented in the code MELODY, as well as macroparticle
tacking simulation in BLonD.

This validity of the theoretical studies is demonstrated with extensive beam
measurements under different bucket-filling conditions in two synchrotrons, the PS
and the SPS. The measurements consist of observing single-bunch oscillations after a
rigid-dipole perturbation at the high-energy plateau to minimize space-charge contri-
butions. Beyond the analytical estimates, the observations are moreover compared
in detail to the results in the semi-analytical code MELODY and macroparticle
simulation in BLonD.
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Chapter 1

Introduction

Particle physics studies the fundamental constituents of matter and explains the
physical phenomena through their interactions. Presently, this understanding is
consolidated with the so-called standard model [1] of particle physics, which has
provided highly precise and robust predictions of experimental observations. Particle
accelerators play a key role in advancing the understanding of the fundamental
principles of nature. In particular, high-energy accelerators and colliders are the
only artificial possibility to achieve the required energy, producing new exotic matter
by means of particle collisions. Thanks to the advent of synchrotrons [2, 3], the
high alternating magnetic field gradient [4] allowed to accelerate beams of charged
particles to energies never achieved before.

Besides nuclear and particle physics, accelerators are now employed in a wide
spectrum of applications, spanning from industrial purposes to therapies for cancer
treatment. Nevertheless, the demand for high-intensity beams leads to particular
challenges, including beam instabilities and particle losses, representing a limitation
for present and future projects.

1.1 The CERN Accelerator Complex

The European Organization for Nuclear Research, known as CERN (Conseil Eu-
ropéen pour la Recherche Nucléaire), is a world-renowned institution at the forefront
of cutting-edge scientific research. Located on the Franco-Swiss border near Geneva
(Switzerland), CERN is home to the largest particle accelerator complex in the
world. Over the years, it has been instrumental in advancing our understanding in
many scientific areas, shedding new light on particle physics and the fundamental
constituents of matter, as well as the principal laws governing the universe.

The accelerator complex at CERN, illustrated in Fig. 1.1, is a sophisticated
accelerator chain that works together to accelerate particles to increasingly higher
energies. It consists of several different accelerators, each with its specific purpose
and function. The injector chain is able to accelerate protons and ions for collisions
in the last stage of the accelerator complex and fixed target experiments. As far
as the proton beam is concerned, they are generated from negative hydrogen ions.
They are accelerated in the Linear Accelerator 4 (LINAC 4) up to a kinetic energy
of 160 MeV. The ions are then stripped of their two electrons during injection from
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Figure 1.1. Sketch of the CERN accelerator complex. The colored arrows denote the type
of accelerated particles and their direction of motion, as illustrated in the legend [5].

LINAC 4 into the Proton Synchrotron Booster (PSB), consisting of four superimposed
synchrotron rings, each 157 m long. In the PSB, bunches are formed from the beam
using RF manipulation and further accelerated to energies of up to 2 GeV before
injecting them into the next accelerator. The Proton Synchrotron (PS) is the oldest
synchrotron at CERN and was initially commissioned in 1959. It increases the
particle energies up to 26 GeV, providing beams to several experiments and the
Super Proton Synchrotron (SPS). The SPS is the largest injector of the complex,
pushing the proton beams to reach kinetic energies of 450 GeV. It delivers different
types of beams to several experiments, including AWAKE (Advanced WAKefield
Experiment [6]), HiRadMat (High-Radiation to Materials [7]), and the North Area [8].
Thereafter, the protons are sent to the final stage of the chain, namely the 27 km long
Large Hadron Collider (LHC). Two counter-rotating beams are injected, reaching
the nominal energy of 6.8 TeV per beam before colliding in the four detectors:
LHCb, ALICE, ATLAS, and CMS. In particular, the latter two had a key role in
the discovery of a new boson compatible with the Higgs boson [9, 10].

All the synchrotrons have different limitations and constraints due to intensity
effects. Hence, if any accelerator in the chain experiences performance restriction,
the beam cannot fulfill the LHC (or related experiment) requirements. The primary
aim of the LHC Injectors Upgrade (LIU) project [11] is to discern these limitations
and implement remedies that allow delivering the requested beam for the High
Luminosity Large Hadron Collider (HL-LHC) project [12]. Currently, one of the
main bottlenecks is the SPS, primarily due to issues related to beam loading and
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longitudinal instabilities [13–16].
Below, a brief presentation of the two injectors studied in the present work (i.e.,

PS and SPS) is provided.

1.2 The Proton Synchrotron and LHC-type beam cycle
The PS represents the third stage in the accelerator complex for an LHC-type beam,
and it provides the necessary beam also to other projects and accelerators, including
the AD (Antiproton Decelerator) [17] and the experiments in the East Area (see
Fig. 1.1) [18].

Figure 1.2. Scheme illustrating the generation of the LHC-type beam with 25 ns and
intensity Np = 2.6 × 1011 p/b in the PS. The magnetic cycle before (light blue) and
after (dark blue) the long shutdown in 2019-2020 is reported on the left axis [19].

In the framework of the HL-LHC, before the long shutdown of 2019-2020 (LS2),
the RF systems of the PS had been majorly upgraded together with the feedback
system to fulfill the LIU project requirements. The nominal operational mode for
filling the LHC is sketched in Fig. 1.2 [19] for the nominal intensity for HL-LHC
Np = 2.6 × 1011 p/b (proton per bunch). The PS delivers a batch of 72 bunches
spaced by 25 ns and 4σ bunch length below 4 ns at extraction. Each batch cycle
starts with 6 bunches injected from the PSB with a kinetic energy of 2 GeV and
captured by the main RF system (3 MHz) on a harmonic number h = 7. After 1.2 s,
the bunches are triple split in the intermediate plateau at kinetic energy of 3.1 GeV.
The 18 bunches are then accelerated to 26 GeV on harmonic h = 21, crossing the
transition energy at the beginning of the ramp (γtr = 6.1). Two consecutive splits
occur at flat-top energy on h = 42 (20 MHz) and h = 84 (40 MHz). The 40 MHz,
then, in addition to damp quadrupolar coupled-bunch instabilities has to operate
throughout the flat-top as a Landau system to enhance the stability. Thereafter,
the batch composed of 72 bunches is extracted and sent to the SPS.

1.3 The Super Proton Synchrotron
The SPS, initially commissioned in 1976 for fixed-target experiments, is a versatile
synchrotron and the second-largest synchrotron at CERN with a circumference of
6.9 km. It was also used as a proton-antiproton collider (Spp̄S) and subsequently
as an injector for the Large Electron Positron collider (LEP). Nowadays, besides
protons, it also accelerates ions.
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The high intensity in the SPS leads to several instability mechanisms mostly
driven by collective effects. Each particle interacts with its surroundings, leaving
behind an electromagnetic field that persists in time, depending on the accelerator
component characteristics. This perturbation can be evanescent, affecting only
particles from the same bunch or standing longer and affecting the following bunches
also in the next turns. The spectral component of this electromagnetic field is
referred to as beam coupling impedance (or simply impedance).

In the framework of the LIU project, the SPS has been prepared as an injector
for the HL-LHC. The SPS upgrades, include an impedance reduction campaign to
reduce the impedance sources arising from the higher-order modes of the RF system.
Furthermore, to cope with instabilities and to deliver LHC nominal intensity of
1.15 × 1011 protons per bunch, the SPS is equipped with an additional RF system
working at four times the fundamental frequency (800 MHz) operating in phase (in
the stationary case) at the bunch position [14, 20]. Eventually, Tab. 1.1 summarizes
the current principal accelerator parameters of the SPS for the LHC proton beam,
while Tab. 1.2 reports the main fewest parameters of the LIU project.

Table 1.1. The machine parameters of the CERN SPS for the LHC-type beam.

Parameter Unit LHC beam type
Circumference, 2πR m 6911.55
Beam energy, E0 GeV 26 − 450
Lorentz factor, γ 27.7-479.6
Lorentz factor at transition, γt 17.95
Revolution frequency, f0 kHz 43.29
Main harmonic number, h 4620
Main RF frequency, frf MHz 200
Max. RF voltage at fundamental harmonic, V0 MV 7.5
Frequency of the 4th harmonic RF system MHz 800
Max. RF voltage of the 4th harmonic RF system kV 850

Table 1.2. The goals of the LIU project in view of HL-LHC.

Parameter Unit Target
Intensity at flattop, Np 2.3 × 1011

Number of bunches per batch 4 × 72
Bunch spacing ns 25
Longitudinal emittance, εl eVs < 0.6
Bunch length, τ4σ ns < 1.7

1.4 Motivation
In the absence of synchrotron radiation, Landau damping plays a crucial role in
hadron synchrotrons, representing the only passive mechanism to suppress coherent
instabilities. In the longitudinal plane, it is established by means of the spread of
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synchrotron frequencies of individual particles, which is caused by the non-linear
voltage of the RF system. In general, loss of Landau damping (LLD) occurs when the
frequency of the coherent bunch oscillation emerges from the incoherent synchrotron
frequency band.

Figure 1.3. Dipole oscillations seen on the bunch profile after the injection (left) and
evolution of particle losses (right) in the LHC [21].

The LLD in LHC has been seen since 2010 [22], occurring in different parts of
the cycle for bunches with small longitudinal emittances. In particular, undamped
or even growing phase oscillations were observed during the ramp. Furthermore,
measurements [21] showed that dipole oscillations (Fig. 1.3, left) due to the LLD
can lead to particle losses (Fig. 1.3, right). Undampeded coherent motion was also
observed at RHIC [23] (Fig. 1.4, left) and Tevatron [24] (Fig. 1.4, right) [24] for
proton bunches.

Figure 1.4. Mountain range of the line density. Undamped dipole oscillations in
RHIC (left) [23] and in Tevatron (right) [24].

Different techniques are applied to enlarge the synchrotron frequency spread, such
as increasing the longitudinal emittance. The most effective method is introducing
higher harmonic RF systems (these are often referred to as Landau RF systems).
Several accelerators, including the CERN injector synchrotrons, operate with double-
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harmonic RF systems (DRF) to enhance the instability threshold [20, 25, 26] and
manipulate the bunch shape.

An example is depicted in Fig. 1.5 where a single bunch with full bunch length
of τfull = 0.95 ns is generated considering 1° of initial offset from the center of the
RF bucket and tracked for 9 × 105 turns. The simulation is performed with the
macroparticle tracking code BLonD (Beam Longitudinal Dynamics simulation suite;
Chapter 4) [27–29] using 106 macroparticles, representing Np = 2.5 × 1010 protons
and accelerator parameters listed in Tab. 1.1. Considering only the conventional
single RF system (Fig. 1.5; left), the dipole oscillation remains even after 9 × 105

turns, suggesting that the Landau damping is lost. This is more visible from the
time projection, where the line density evolves similarly to Fig. 1.3. Adding a DRF
at a higher harmonic RF system at four times the fundamental RF frequency, with
both RF systems in phase (Fig. 1.5; right) increases the LLD threshold, ultimately
damping the coherent motion.

Figure 1.5. Simulated longitudinal phase space after 9 × 105 turns in the SPS (Tab. 1.1)
with 1° as initial phase offset with respect to the center of the bucket. The simulations
are performed with the macroparticle tracking code BLonD for a full bunch length
τfull = 0.95 ns on the intensity of Np = 2.5 × 1010 protons and 9 × 105 turns in a
single (left) and fourth harmonic RF systems (right). The bucket borders are highlighted
in red.

The LLD also plays a key role to the threshold of multi-bunch instabilities. It
has been shown that it can modify and lower the coupled bunch instability threshold,
NCBI

th below the LLD threshold in single bunch NLLD
th leading to a generalized

multi-bunch instability threshold that can be summarized as follows [30]:

N Instability
th ≈ NLLD

th NCBI
th

NLLD
th +NCBI

th
. (1.1)

Therefore, if the LLD threshold is comparable to NCBI
th , the resulting multi-bunch

instability will be lowered accordingly to Eq. (1.1).
In conclusion, Landau damping is essential in reaching and preserving beam sta-

bility in longitudinal and transverse planes. Consequently, gaining a comprehensive
understanding and making accurate predictions of the LLD threshold becomes indis-
pensable for single and multi-bunch instability for present (LHC-type beams in the
SPS and HL-HLC) and future projects as the Future Circular Collider (FCC) [31].
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1.5 Historical background

In 1946, Landau predicted a collisionless damping process of coherent oscillations in
an electronic plasma [32]. This phenomenon, referred to as Landau damping, has
also found extensive application across various disciplines, spanning hydrodynamics,
biophysics, as well as astrophysics. In particle accelerator physics Landau damping
was introduced for the first time in [33] and it is a natural mechanism providing
beam stability to a wide variety of working high-intensity accelerators.

Several approaches have been developed to assess the LLD threshold. In 1973,
Sacherer proposed a stability diagram derived from a general integral equation [34].
The coherent modes were calculated, assuming a linear RF field and neglecting the
incoherent frequency spread. The LLD occurs when the coherent mode crosses the
boundary of the stability diagram. Similarly to the Sacherer analytical criterion, the
LLD threshold was also obtained from the integral form of the Lebedev equation [35]
in [36] for a constant reactive impedance.

Hoffman and Pedersen proposed a new method [37] in 1979, to compute the
frequency of a rigid-dipole mode, including synchrotron frequency spread in a single
harmonic RF system and elliptic particle distribution. Landau damping is lost
when the coherent frequency is outside the band of incoherent frequencies. In
2005 and in 2007, Boine-Frankenheim, Shukla, and Chorniy [38, 39] extended the
Hofmann-Pedersen approach to the multi-harmonic RF system case. The Sacherer
stability criterion and the Hoffman and Pedersen can overestimate the actual LLD
threshold due to inherent approximations as seen in calculations [26] and confirmed
in measurements [40].

In 1983, Chin, Satoh, and Yokoya [41] contributed to a new description of Landau
damping, explaining it as the phase mixing of the van Kampen modes [42, 43]. LLD
occurs when any of these modes emerge from the boundaries of the incoherent
synchrotron frequencies band. In 2010, Burov [26] applied this concept together with
an eigenvalue approach developed by Oide and Yokoya [44] (Chapter 2) to study
the LLD threshold without neglecting potential well distortion and synchrotron
frequency spread.

Recent works exploited the Lebedev equation and emerged van Kampen mode
criterion to determine the LLD thresholds in a single RF system [45]. Contrary to
the previous studies, it has been observed that for a particle distribution belonging to
the binomial family, the presence of a pure inductive impedance results in a zero LLD
threshold unless an upper cutoff to the impedance is introduced. Moreover, both
analytical and numerical studies have shown that above transition (or capacitive
impedance below transition), the LLD threshold becomes inversely proportional to
the cutoff frequency fc when the cutoff is at high frequency such as fc ≫ 1/τfull
(τfull represents the full bunch length).

This thesis follows up the aforementioned work, extending the theory to the
common case of synchrotrons in double harmonic RF systems. The findings are
compared with macroparticle tracking simulations in BLonD, and numerical solutions
using the Oide-Yokoya method, as well as extensive beam-based measurements in
two synchrotrons, the PS and SPS at CERN.
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1.6 Structure of the thesis

The present thesis is structured as follows. After the introduction, Chapter 2 is
divided into two main sections. The first briefly reviews the fundamental equations
governing longitudinal motion and provides solutions for the single stationary particle
in single and DRF. The second part takes into account intensity effects, introducing
the perturbation formalism and the linearized Vlasov [46] equation. The solution of
the linearized Vlasov equation is found by means of two complementary approaches,
namely the Lebedev matrix equation [35] and the Oide-Yokoya method [44]. Even-
tually, the concept of emerged van Kampen modes [42] as a description of the LLD
is presented.

Expanding upon the findings in [45], Chapter 3 develops an analytical expression
for the LLD threshold for a constant inductive impedance above transition energy (or
capacitive below). The threshold is derived using the Lebedev equation for binomial
distributions in a DRF in bunch shortening mode (both RF systems in phase at
the bunch position for non-accelerating buckets). Furthermore, the additional force,
attributed to the beam-induced voltage, distorts the potential well, leading to the
collapse of the bucket. The limiting conditions for a binomial particle distribution
are calculated.

The semi-analytical and numerical approaches used in this thesis are presented
in Chapter 4, namely the Matrix Equations for LOngitudinal beam DYnamics
(MELODY) [47] and the macroparticle tracking code BLonD.

Chapter 5 is dedicated to studying the LLD, applying both codes for a constant
inductive impedance above and below transition energy. In particular, in the
bunch shortening mode above transition, the analytical LLD threshold is extensively
tested with the Oide-Yokoya method implemented in MELODY. Furthermore, we
demonstrate the monotonicity of the LLD threshold along the bunch length, which
differs from previous studies in [25]. A method to visualize coherent modes behavior
versus the intensity is presented in BLonD and compared with the van Kampen modes
computed in MELODY. Different bunch lengths are covered to analyze the impact on
the coherent modes due to the presence of local minima in the synchrotron frequency
distribution. Thereafter, the case of the DRF system operating in bunch lengthening
mode (both RF systems in counter-phase at the bunch position) is examined. The
limitations caused by the zero derivatives of the frequency distribution leading to
vanishing LLD threshold at any intensity, as well as the relative phase between
the RF systems, are illustrated. The study is repeated below transition energy,
revealing a distinctly different behavior for the LLD threshold in contrast to the
above transition case. In this regime, the additional focusing force, due to the
beam-induced voltage, narrows the potential well, ultimately collapsing the bucket.
This phenomenon can occur before reaching the LLD threshold, even for short
bunches. The limiting conditions are evaluated using the analytical equation and
benchmarked with MELODY.

Chapter 6, introduces a method for studying LLD through the beam response
to a longitudinal rigid-dipole perturbation. In particular, simulations of the bunch
offset evolution for a constant inductive impedance are presented and compared
to reconstructed bunch offset evolution from perturbations expanded as a series of
van Kampen modes. This method was therefore applied in two distinct accelerators
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operating under different conditions: the SPS (Chapter 7) and PS (Chapter 8).
The findings of this extensive campaign of beam measurements are presented and
compared to semianalytical calculations using the code MELODY and macroparticle
tracking simulations in BLonD.
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Chapter 2

Fundamentals of longitudinal
beam dynamics in synchrotrons

Longitudinal beam dynamics is the field of study in accelerator physics that focuses
on the behavior, manipulation, and control of charged particle beams along their lon-
gitudinal axis, corresponding to their motion in the direction of the beam. This field
includes various phenomena such as acceleration, deceleration, energy modulation,
phase stability, as well as beam interactions with RF cavities and the surrounding
environment [25,48–52].

The fundamental principles of longitudinal beam dynamics in synchrotrons are
introduced in this section. The concepts will then serve as a basis and find extensive
application in the subsequent chapters of this thesis.

2.1 Single particle motion

A synchrotron is a specialized type of circular particle accelerator that utilizes
electromagnetic fields to accelerate and confine a charged particle beam on a closed
orbit. The acceleration of particles is achieved through the electric field, while
magnetic fields bend and focus the particle beam along its curved path. The bending
radius of the particle is determined by its momentum and the strength of the
magnetic bending field. As the particles gain energy during the acceleration process,
the magnetic field is precisely synchronized with the gain in momentum to keep the
bending radius constant.

2.1.1 Synchronism condition

The force experienced by a particle with charge q as it moves through an electro-
magnetic field with velocity, v, is given by the Lorentz force

F⃗ = q(E⃗ + v⃗ × B⃗) , (2.1)

where the electric field,E⃗ , and magnetic field, B⃗, are provided by the RF cavities
and the magnets placed along the ring, respectively.
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In order to fix the particle trajectory to the reference orbit1, dipole magnets are
placed along the circumference to bend the beam. These bending magnets define
a bending radius ρ and a vertical magnetic field with an amplitude B. In Fig. 2.1,

Y

Z

X

ρ

x̂

ŷ

ŝ

B⃗

RF system

Figure 2.1. Sketch of a synchrotron with a bending radius ρ. Two distinct coordinate
systems are employed to describe the particle motion. The first coordinate system
is the classical Cartesian coordinate system attached to the laboratory frame. The
second (x̂, ŷ, ŝ) is fixed to the moving particle. A magnetic induction field B⃗ is in the
ring circumference perpendicular to the direction ŝ. An RF system supplies a dynamic
electric fieldE⃗ , providing acceleration longitudinally.

a simplified illustration of the particle position is presented. Conventionally, the
position of a particle is described using a reference frame fixed to the particle itself,
employing the coordinate system (x̂, ŷ, ŝ), also called Frenet-Serret coordinate system
(Appendix A). The particle is maintained at a fixed orbit by the magnetic field B⃗
perpendicular to the direction ŝ. The acceleration then is periodically provided by
the RF system2 with the revolution period:

T0 = 1
f0

= C

βc
, (2.2)

where C is the accelerator circumference and β = v/c is the ratio of the particle
velocity, v, and the speed of light, c. In the stationary case, synchronism implies that

1Design orbit on which the center of the quadrupole magnets are aligned.
2For circular machines DC acceleration is impossible as∮

E⃗ · dŝ = 0
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the reference (or synchronous) particle must be synchronized with the RF cavity to
arrive at each turn at the same RF phase, i.e., ϕrf = ϕs0, where ϕs0 referred to us
synchronous phase. Moreover, for sinusoidal RF voltages, the RF system must be
periodic with the revolution period, i.e.,

frf = hf0 , (2.3)

where h is the RF harmonic number, and frf = ϕrf/(2πt) expresses the frequency of
the RF system, with t representing the time variable. This leads to an additional
relation linking the synchronous phase ϕs0 to the azimuthal position θ, i.e.:

ϕs0 = hθs0 . (2.4)

A substantial portion of the accelerator ring is generally dedicated to accommo-
dating the bending magnets. For instance, in the context of the SPS, dipole magnets
occupy approximately 78% of the entire ring. Consequently, the circumference is not
perfectly circular but consists of curved and several straight sections. The straight
sections offer the necessary space to several types of devices spanning from RF
systems to beam diagnostics, multi-pole magnets (quadrupole, sextupole, etc.), as
well as injection and extraction systems. Hence, the total circumference C is linked
to the bending radius ρ and the length of the remaining straight sections L; namely:

C = 2πR = 2πρ+ L , (2.5)

where R is the average radius of the whole accelerator.
The product of the magnetic field strength required to maintain particles with

the momentum p on the reference orbit and the bending radius ρ is referred to as
magnetic rigidity

Bρ = p/q . (2.6)

Hence, it is essential to increase the magnetic field strength during the acceleration
process by synchronizing it with the frequency of the RF system.

2.1.2 Energy gain per turn

In order to accelerate a charged particle, the RF system provides a longitudinal
time-varying electric fieldE of the following form:

E (t) =E 0 sin(ωrft+ ϕrf) , (2.7)

whereE 0 and ϕrf are, respectively, the designed amplitude and phase of the electric
field. Let us consider an RF cavity with an inner gap with length, g. The amplitude
E 0 is assumed to be constant inside the gap. Therefore, the energy gained by a
particle over a single passage inside a cavity is equal to:

(∆E)gain = q

∫ g/2

−g/2
E⃗ · dŝ = qE 0

∫ g/2

−g/2
sin
(
ωrf
v
s+ ϕrf

)
ds . (2.8)

Assuming a symmetric gap with respect to the longitudinal axis, as shown in
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ŝ

E⃗

v⃗

g

Figure 2.2. Electric field vectors in the cavity gap g. The direction of the particle is
illustrated in red with its velocity vector. The gap is assumed symmetric with respect
to the axis ŝ.

Fig. 2.2, the Eq. (2.8) for the synchronous particle can be solved as follows:

(∆E)gain = qE 0

∫ g/2

−g/2
cos

(
ωrf
v
s

)
sin (ϕrf) ds = 2qE 0v sin (ϕrf)

ωrf
sin
(
g
ωrf
2v

)
. (2.9)

The provided expression is obtained considering the sum trigonometric identity in
conjunction with the observation that the cosine function has even symmetry over
the interval [−g/2, g/2]. Rearranging Eq. (2.9), yields:

(∆E)gain = qV0T sinϕrf , (2.10)

where V0 =E 0g and T is the transit time factor3 equal to:

T =
sin
(
g ωrf

2v
)

g ωrf
2v

. (2.11)

In general, T < 1, and for a short gap that is traversed much faster than the RF
period, the transit time factor asymptotically approaches unity, T ≈ 1.

2.1.3 Non-synchronous particle and equation of motion

Let us consider a particle with deviations in terms of energy and phase with respect
to the synchronous particle, i.e.,

ϕ = φ− ϕs0,
∆E = E − E0,
∆θ = θ − θs0,
∆p = p− p0,

(2.12)

3The transit time factor arises from the fact that the field changes while the particle passes
through the cavity.
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where φ, E, θ, and p are the phase of the particle with respect to the RF wave, energy,
azimuthal orbital angle, and momentum for an off-momentum particle. Similarly,
ϕs0, Es0, θs0, and p0 represent the corresponding parameters for the synchronous
particle. Therefore, Eq. (2.4) for a non synchronous particle becomes:

ϕ = −h∆θ . (2.13)

The negative sign indicates that the particles that are behind the synchronous one,
i.e., ∆θ < 0 will arrive later in the RF cavity, meaning ϕ > 0.

Taking into account Eq. (2.13), the angular revolution frequency deviation of a
particle can be written as:

∆ω = d

dt
∆θ = − 1

h

dϕ

dt
= − 1

h

dφ

dt
. (2.14)

Given that ω0 = 2πβc/C, the relative change of the angular revolution frequency
with respect to the synchronous particle can be alternatively expressed as

∆ω
ω0

= C

R
∆β − βC

R2 ∆R = ∆β
β

− ∆C
C

. (2.15)

A particle with a small deviation ∆p from the reference momentum p0 results
in a different bending radius ∆ρ within the dipole magnets and consequently a
different orbit radius ∆R in the synchrotron, as described by Eqs. (2.5) and (2.6).
This phenomenon, known as dispersion, is a fundamental aspect of transverse beam
dynamics and is quantified by the dispersion function Dx(s) along the ring. The
relationship between ∆p and ∆R is obtained by integrating the dispersion function
over one complete turn in the synchrotron, leading to the definition of the momentum
compaction factor α according to

α = 1
C

∮
Dx(s)
ρ(s) ds = ∆R/R

∆p/p0
. (2.16)

Most high-energy synchrotrons have a positive momentum compaction factor4, α > 0.
From p = m0cβγ = p0 + ∆p where γ = 1/

√
1 − β2 is the so-called Lorentz factor

and m0 the rest mass of the particle, one obtains the relation

∆p
p0

= γ2 ∆β
β

. (2.17)

Combining Eqs. (2.15) and (2.17) yields to

∆ω
ω0

=
( 1
γ2 − α

) ∆p
p0

= −η∆p
p0

, (2.18)

where η is the slip factor
η = α− 1

γ2 . (2.19)

4Some specially designed synchrotrons have α < 0 where the orbit length is shorter for higher-
energy particles. An example is the superKEKB (for hadrons J-PARC MR) in Japan [53].
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At the critical point where the Lorentz factor γ = 1/
√
α ≜ γtr, particles with different

energy circulate with the same revolution frequency and η = 0. This energy is called
transition energy. Specifically, it sets the boundary of two distinct regimes, namely,
below and above transition energy (Sec. 2.1.4).

The first equation of motion, i.e., the time evolution of the particle phase, can
be derived by inserting Eq. (2.18) into Eq. (2.14), yielding:

dϕ

dt
= ϕ̇ = hηω0

∆p
p0

= hηω0
β2

∆E
E0

= h2ηω2
0

β2E0

(∆E
hω0

)
. (2.20)

We now derive the second equation of motion, which takes into account the
time evolution of the energy deviation ∆E. For the sake of simplicity, we neglect
at this stage all types of interaction between particles and the surroundings (it
will be taken into account later). The change in energy depends uniquely on the
RF system. Furthermore, we consider an arbitrary RF voltage function Vrf(ϕ) to
include multi-harmonic RF systems. The conditions that Vrf(ϕ) has to fulfill are the
periodicity and absence of DC components, i.e.:

Vrf(ϕ) = Vrf(ϕ+ 2π) and
∫ 2π

0
Vrf(ϕ)dϕ = 0 . (2.21)

The energy gain per revolution for a non-synchronous particle is:{
En − En−1 = qVrf(ϕ) ,
En,0 − En−1,0 = 0 . (2.22)

Therefore, we consider the difference in gained energy from the synchronous particle

(En − En−1) − (En,0 − En−1,0) = qVrf(ϕ) . (2.23)

Dividing by the revolution period T0 on the first term of Eq. (2.23), we obtain:

2π
ω0T0

(∆En − ∆En−1) ≈ 2π d
dt

(∆E
ω0

)
. (2.24)

The equality of the incremental ratio to the time derivative of the energy difference
is justified by the fact that in synchrotrons, the acceleration cycle typically spans
many revolutions, ranging from thousands to millions. Therefore, the particle gains
only a small amount of energy during each turn, making ∆E a smooth function
of time. From Eq. (2.22), we obtain the first equation of motion describing the
evolution of the energy deviation with time, i.e.,

d

dt

(∆E
hω0

)
= q

2πhVrf(ϕ) . (2.25)

Equations (2.25) and (2.20) can be combined to obtain a more compact expression
in the form of a second-order differential equation

d2ϕ

dt2
− hηω2

0q

2πβ2E0
Vrf(ϕ)− = d2ϕ

dt2
+ ω2

s0 Vrf(ϕ) = 0 . (2.26)
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2.1.4 Single harmonic RF system

We have established the main concepts of the longitudinal equation of motion for an
arbitrary RF voltage. The simple case of a single harmonic RF system is now being
considered, assuming a sinusoidal RF voltage.

Small amplitude approximation and phase-stability

In a single harmonic RF system, the electric field is described by Eq. (2.7). We,
therefore, simplify Eq. (2.26), as follows:

d2ϕ

dt2
− hηω2

0qV0
2πβ2E0

sin(ϕ+ ϕs0) = 0 . (2.27)

This equation can be linearized for small phase offset ϕ. Hence, the sine function
in Eq. (2.27) can be simplified to

sin(ϕ+ ϕs0) = cosϕs0 sinϕ+ cosϕ sinϕs0 ≈ ϕs0 cosϕs0 , (2.28)

and, substituting into Eq. (2.27), results in:

d2ϕ

dt2
+ ω2

s0ϕ = 0 . (2.29)

This expression describes the differential equation of a harmonic oscillator character-
ized by its angular frequency ωs0, also referred to as the small-amplitude synchrotron
frequency:

ωs0 =

√
−hω2

0η cosϕs0qV0
2πβ2E0

. (2.30)

To ensure the stability of the system, this synchrotron frequency must to be a real
value, i.e.:

η cosϕs0 < 0 . (2.31)

This is also highlighted in Fig. 2.3 where, according to the RF amplitude (red), we
have to comply with the phase condition of Eq. (2.31). Hence, two distinct regions
of oscillation can again be identified, whether η is positive or negative (above or
below transition energy), i.e.:{

0 ≤ ϕs0 < π/2 if γ < γtr (below transition),
π/2 < ϕs0 ≤ π if γ > γtr (above transition). (2.32)

Energy of the synchrotron oscillation and RF bucket

In beam stability studies, it is often convenient to introduce the energy of the
synchrotron oscillations

E = ϕ̇2

2ω2
s0

+ Urf(ϕ) , (2.33)

where the RF potential well Urf(ϕ) is defined as the phase integral of the voltage
Vrf(ϕ):

Urf(ϕ) = 1
V0 cosϕs0

∫ ϕ

0
Vrf
(
ϕ′) dϕ′ . (2.34)
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Acceleration Deceleration

η < 0 η > 0 η > 0 η < 0

ϕ

cosϕs0
Vrf

Figure 2.3. Stability condition on the synchronous phase ϕs0 and slip factor η. The
voltage generated by a single harmonic RF system is presented in red, while the cosine
component of Eq. (2.31) is depicted in blue.

For the case of a single harmonic RF system, the potential well in Eq. (2.34), becomes

Urf(ϕ) = − 1
cosϕs0

[cos (ϕ+ ϕs0) − cosϕs0] . (2.35)

A particle performs energy-phase oscillations within the potential well around the
synchronous phase ϕs0. Every stable particle trajectory in longitudinal phase-space
is associated with a maximum oscillation amplitude ϕmax and constant energy of
the synchrotron oscillation Emax.

The equation of the particle phase-space trajectory can be derived through
Eq. (2.33), as follows:

ϕ̇√
2ωs0

= ±
√

[Emax − Urf(ϕ)] . (2.36)

Examples of particle trajectories in the phase space are shown in Fig. 2.4, where the
initial condition of ϕ̇ = 0 was imposed (blue dots). Red stars indicate the particle
positions in the phase space after 200 revolutions. Due to the non-linearity of the
RF system, particles with different phase offsets oscillate around the synchronous
phase ϕs0 (red dot) with different angular velocities.

Figure 2.5 illustrates two different potential wells, according to Eq. (2.35). Closed
trajectories occur exclusively within the boundaries of the potential well. This means
the total energy cannot exceed a specific value; otherwise, the particle will drift
away. The maxima of the curve correspond to unstable equilibrium points of the
synchrotron motion. The stable phases ϕs0 correspond to the local minima of the
curves, while the unstable points are denoted as ϕu.
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Figure 2.4. Particle trajectories (clockwise) in the phase-space with ϕ̇ = 0 and ϕ ̸= ϕs0 as
initial condition (blue dots) in a stationary state above transition energy (η > 0). The
red dot represents the synchronous phase ϕs0 while the stars depict the position in the
phase-space after 200 turns.

At the unstable phase ϕu, an energy threshold can be defined E = Esep, beyond
which the particle oscillation is no longer bounded in the potential well. The limiting
trajectory in the phase-space traced by Esep is called separatrix and marks the
separation between distinct domains within which particles are captured (bucket)
and accelerated. The energy of the synchrotron oscillation corresponding to the
separatrix is expressed as:

Esep = U (ϕu) = − 1
cosϕs0

[cos (ϕu + ϕs0) − cosϕs0] . (2.37)

Combining Eq. (2.33) and Eq. (2.36) allows to calculate the separatrices in the
phase-space for a single RF system (Figure 2.6). In particular, Fig. 2.6a depicts the
separatrices below transition energy (η < 0) in steady state (blue) and acceleration
for different synchronous phases. While above transition energy, the synchronous
phase has to be shifted by π to preserve the stability condition of Eq. (2.31), as
shown Fig. 2.6b.

The phase space enclosed by the separatrix is referred to as a bucket. Its area is
given by

A =
∮

sep

∆E(ϕ)
hω0

dϕ =
√

−V0 cosϕs0qβ2E0
πηω2

0h
3

∮
sep

√
[Esep − Urf(ϕ)]dϕ , (2.38)

and equivalent to the longitudinal acceptance. In order to avoid particle losses, not
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Figure 2.5. RF potential for ϕs0 = π in blue and ϕs0 = 5/6π in red above transition
energy (η > 0). The dashed lines indicate the unstable phase location and the related
maximum energy.
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Figure 2.6. Separatrices below (left) and above (right) transition energy in a single RF
system. Equations (2.33) and (2.36) have been calculated for different synchrotron
phases (dots).

the entire stable area is occupied by a beam enclosed by a single particle trajectory
in the phase space. The occupied area is denoted as longitudinal single-particle
emittance. We define it as:

ε =
∮ ∆E(ϕ)

hω0
dϕ =

√
−V0 cosϕs0qβ2E0

πηω2
0h

3 εℓ . (2.39)
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The dimensionless longitudinal emittance, εℓ, in Eq. (2.39), is

εℓ = 2
∫ ϕmax(E)

ϕmin(E)

√
[Emax − Urf(ϕ)]dϕ , (2.40)

where ϕmin is the minimum phase of the particle with energy E .

Synchrotron frequency distribution

We have shown that particles confined in a potential well perform synchrotron
oscillations around the synchronous phase ϕs0. For small amplitude oscillation, the
synchrotron frequency is given by Eq. (2.30). However, the RF system amplitude,
in Eq. (2.7), is locally linear around ϕs0. For larger amplitude oscillations, particles
exhibit non-linear synchrotron oscillations due to the shape of the RF voltage.

The period of the particle oscillation around the synchronous phase, Ts(E), can
be derived from the energy of the synchronous oscillation and the potential, as
follows

Ts(E) =
√

2
ωs0

∫ ϕmax(E)

ϕmin(E)

dϕ′√
E − U (ϕ′)

, (2.41)

where ϕmin(E) is the minimum phase of the particle with energy of the synchrotron
oscillation E and, together with ϕmax(E), they have to satisfy the relation E = Urf(ϕ).
In the stationary case, the potential well is symmetric with respect to the synchronous
phase. Hence, replacing the potential of Eq. (2.35) in Eq. (2.41), we obtain:

Ts (ϕmax) = 2
ωs0

∫ ϕmax

0

dϕ√
sin2 (ϕmax/2) − sin2(ϕ/2)

. (2.42)

The integral in Eq. (2.42) can be reduced to the conventional form of the elliptic
integral of the first kind

K [sin (ϕmax/2)] =
∫ π/2

0

da√
1 − sin2 (ϕmax/2) sin2 a

, (2.43)

with
a(ϕ) = arcsin

[ sin (ϕ/2)
sin (ϕmax/2)

]
. (2.44)

Eventually, expanding in series the elliptical integral up to the second order, the
synchrotron frequency for a particle at maximum phase excursion ϕmax can be
approximated to

ωs(ϕmax) = ωs0
π

2K[sinϕmax/2] ≈ ωs0

(
1 − ϕ2

max
16

)
. (2.45)

Figure 2.7 compares the exact solution of Eq.(2.42) and its approximation. While
the synchrotron frequency is relatively constant at the central region of the bucket,
it decreases for larger amplitudes of synchrotron oscillations. Close to the separatrix,
the period diverges to infinity. The synchrotron frequency spread has an impact
on longitudinal beam stability. As shown in Appendix. C, it is essential for the
fundamental stabilization mechanism of Landau damping.
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Figure 2.7. Synchrotron frequency in a stationary bucket versus maximum phase excursion
ϕmax of the trajectory. The dashed line shows that the approximation according to
Eq. (2.45) is valid in a wide range of phase excursions.

2.1.5 Double harmonic RF system

Multi-harmonic RF systems provide the flexibility to control and manipulate longi-
tudinal beam parameters, such as bunch length and bunch spacing. These configu-
rations can be applied in diverse contexts, including mitigating space charge effects
or modulating the peak line density in proton and electron synchrotrons [54–56].
This thesis will focus on the double-harmonic RF (DRF) system, the most common
multiple RF station configuration, also used in the PSB, PS, and SPS at CERN.

In the case of a DRF, the particles experience a total voltage given by

Vrf(ϕ) = V0[sin(ϕ+ ϕs0) + rV sin (rhϕ+ rhϕs0 + Φ2)] , (2.46)

where rV and rh are the RF systems voltage and harmonic number ratios, respectively,
and Φ2 represents the relative phase between them. Two main configurations are
distinguished according to Φ2. In the SPS, they are defined such that the high
harmonic RF system does not contribute to the acceleration at ϕ = 0 for the entire
cycle. Hence, following the SPS definitions, bunch shortening mode (BSM) occurs
at Φ2 = ϕ− rhϕs0 while bunch lengthening mode (BLM) for Φ2 = −rhϕs0. In the
stationary case, BSM is when both RF systems are in phase at the bunch position;
on the contrary, when the RF systems are in counter-phase, the bunch stretches,
which reduces the peak longitudinal line density, leading to the BLM. Figure 2.8
illustrates the total voltage at the bunch center in a second-harmonic RF system
(rh = 2) according to Eq. (2.46).

In the following subsections, a more comprehensive view regarding the impact of
these configurations on the beam is provided.



2.1 Single particle motion 23

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

ϕ (rad)

A
m

pl
itu

de
(a

rb
.

un
its

) Main RF
2nd harmonic RF
Sum

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

ϕ (rad)

A
m

pl
itu

de
(a

rb
.

un
its

) Main RF
2nd harmonic RF
Sum

Figure 2.8. Sum of two RF systems (orange) with voltage and harmonic ratio respectively
equal to r

V
= 1/2 and rh = 2. Both RF systems are in phase at the bunch position

(BSM, left) with Φ2 = 0. The RF systems are in counter-phase with Φ2 = π (BLM,
right).

Potential well and equation of motion

Taking into account Eq. (2.46) the potential well Urf(ϕ), in a DRF, assumes the
following form:

Urf(ϕ) = − 1
cosϕs0

{cos (ϕ+ ϕs0) − cosϕs0+

+ rV

rh
[cos (rhϕ+ rhϕs0 + Φ2) − cos (rhϕs0 + Φ2)]

}
.

(2.47)

The equation of motion, in Eq. (2.26), is extended to:

d2ϕ

dt2
− hηω2

0qV0
2πβ2E0

{sin(ϕ+ ϕs0) + rV sin [rhϕ+ rhϕs0 + Φ2]} = 0 . (2.48)

Figure 2.9 shows the potential well evolution transitioning from the single RF to
DRF case. In particular, in BSM the potential well narrows, leading to a shorter
bunch. On the contrary, in BLM, the potential well results in a wider minimum and,
consequently, longer bunches.

According to the equation of motion of Eq. (2.48), Fig. (2.10) spans different
harmonic ratios rh, with rV = 1/rh, illustrating the different trajectories (red lines)
experienced by the particles in the phase-space. The separatrix of the bucket (black
line) changes accordingly by updating Eq. (2.37) with the modified potential well of
Eq. (2.47).

Similarly to Sec. 2.1.4, we can again study the particle behavior for small
amplitude oscillation by considering ϕ ≪ 1. Thus, in the stationary case, the term
in the curly brackets can be simplified as

ϕ cosϕs0 + ϕrV rh cos (rhϕs0 + Φ2) . (2.49)
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Figure 2.9. Potential well in DRF system normalized by the single RF case computed
at the unstable point ϕu. Both configurations, i.e., BSM (left) and BLM (right), are
compared with the single RF case (black dashed).

Taking into account Eq. (2.30) and using the above approximation, Eq. (2.48)
becomes:

d2ϕ

dt2
+ ϕ

ω2
s0

cosϕs0
[cosϕs0 + rV rh cos (rhϕs0 + Φ2)] = 0 . (2.50)

We recognize the equation characterizing a harmonic oscillator, wherein the angular
frequency is equal to:

ωs = ωs0

√
1 + rV rh

cos (rhϕs0 + Φ2)
cosϕs0

. (2.51)

Therefore, for small amplitude oscillations, the DRF synchrotron frequency is
proportional to the single RF case. Note that in BLM, the synchronous frequency
vanishes in the bunch center for the particular case of rV = 1/rh.

Synchrotron frequency distribution in DRF systems

The particle oscillation period in Eq. (2.41) can be extended for a DRF system case
by considering the Eq. (2.47). However, finding a closed solution to the integral can
be tedious or not feasible. Nonetheless, in Chapter 3, an approximated solution is
derived.

Figure 2.11 shows the exact synchrotron frequency distributions for different
values of RF harmonic rh in both configurations. The DRF system introduces
additional nonlinearities, leading to a larger synchronous frequency spread. Increasing
this, is generally a desired effect in hadron synchrotrons for suppressing longitudinal
instabilities [57].

2.1.6 Relative phase shift

Typically, RF systems can work in a non-ideal configuration due to imperfect
calibration, phase shifts due to the beam, etc. Therefore, if the RF cavities are not
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Figure 2.10. RF bucket (black) in BSM (left) and BLM (right), in the stationary state,
for different harmonic ratios normalized by their maximum bunch area Ab. The red
curves show the individual particle trajectories in the phase-space for constant energy
of the synchrotron oscillation, while the separatrix (black) marks the region of closed
trajectories.
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particle with r
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system case (black dashed line).

perfectly aligned in phase (or in counter phase), the synchronous phase of the DRF
system no longer coincides with the phase of the single RF, ϕs0. This causes a loss of
symmetry in the total potential and, consequently, in the line density of the bunch.
The phase shift of the synchrotron phase can be deduced from Eq. (2.48), where
deriving the equation of motion in ϕs0 leads to

sinϕs0 = sinϕs + rV sin (rhϕs + Φ2) . (2.52)

The transcendental equation (2.52) is numerically solved for ϕs and analyzed as a
function of the relative phase Φ2. The synchronous phase deviation for the example
of a fourth harmonic RF system, with respect to the relative phase for various RF
voltage ratios, is shown in Fig. 2.12 (left). The zero crossing points (red) designate
ideal BSM or BLM conditions. It becomes clear that the BSM is more robust to
the relative phase error, allowing a wider range of Φ2 for a small synchronous phase
deviation. On the contrary, in BLM, even slight variations in Φ2 lead to significant
changes in the synchronous phase. This represents a strong limitation for operating
in the BLM since achieving this accuracy can be challenging. Similar results can be
achieved for other harmonic number ratios, rh. A consequence of the synchronous
phase shift is the small amplitude synchrotron frequency deviation, ∆fs. From
Eq. (2.51), taking into account the new synchronous phase ϕs, satisfying Eq. (2.52),
we obtain

fs(0) = fs0

√
cosϕs + rV rh cos (rhϕs + Φ2)

cosϕs0
. (2.53)

This is also confirmed by Fig. 2.12 (right) which shows that the synchrotron frequency
in BSM is less sensitive with respect to the BLM. For the latter, small variations of
the relative phase lead to an important synchrotron frequency deviation.
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V
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been considered. The red dots indicate the respective working points of ideal BSM and
BLM.

2.1.7 Wakefields and beam-coupling impedance

Until now, the prevailing assumption has been that the trajectory of particles is
exclusively determined by the externally applied voltage from the RF system. This
assumption neglected any collective effects. However, the particles interact with the
surroundings (such as RF cavities, kickers, beam monitoring devices, etc.), thereby
giving rise to electromagnetic fields [50,58]. These fields reciprocally influence the
beam, inducing deviations in the particle motion. In most high-energy accelerators,
since the particles travel close to the speed of light, the electromagnetic waves are
generally left behind, leading to the connotation of wake fields.

Let us consider a charged particle q traveling close to the speed of light in a
structure with discontinuity, such as a cavity. An electromagnetic field is generated
in the wake of the particle as soon as it crosses the discontinuity, as illustrated in
Fig. 2.13. A witness particle (red dot), at a distance ∆z will experience a force due
to the electromagnetic field generated by the particle source (green).

The longitudinal wake function is defined as the induced voltage per unit charge
experienced by the trailing particle and is given by

W(∆z) = 1
q

∫
L
E z(z + ∆z, t)dz , (2.54)

whereE z is the longitudinal component of the wakefield and L the length of the
corresponding element. The dimensions of the wake function in the time domain are
(V/C). Often, it is more convenient to study Eq. (2.54) in the frequency domain.
Thus, applying the Fourier transform over one period of the RF frequncy ϕ/ωrf,
yields:

Z(ω) =
∫ ∞

−∞
W(ϕ)e−iωϕ/ωrf

dϕ

ωrf
, (2.55)
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Figure 2.13. Schematic of a wakefield generated by a particle influencing a trailing particle.
The source particle is represented in green, while the witness particle, at a distance ∆z
in red, both traveling close to the speed of light.

and with the corresponding inverse Fourier transform, one obtains:

W(ϕ) = 1
2π

∫ ∞

−∞
Z(ω)eiωϕ/ωrfdω . (2.56)

Due to the time integration, the dimension of Eq. (2.55) is as an impedance in Ohm.
The function is called longitudinal beam coupling impedance and relates the beam
current to the total induced voltage along the beam trajectory.

Based on how long the wake fields persist, they can be divided into two main
categories: short-range wakefield, which concerns mainly a single bunch, and long-
range wakefield, which couples bunches and is hence a multi-bunch or multi-turn
effect. The short-range primarily arises from local interactions such as space charge5

or inductive wall impedances [51]. In the ultra-relativistic case, space charge can be
neglected since the electric field generated by each particle is perpendicular to its
motion [58]. In most accelerators, the walls have inductive impedance at low and
medium frequencies, and the space charge acts like a capacitive impedance. Thus,
the space charge and inductive impedance effects on the bunch can be partly or
entirely compensated.

The next section presents the multi-particle case with special attention to the
binomial particle distribution, highlighting the basic concepts of beam instability
due to intensity effects and coherent motion.

2.2 Multi-particle motion and beam stability

In the context of the analysis of beam instabilities, moving to another set of conjugate
variables, namely E and ψ, is convenient. They correspond, respectively, to the

5The beam is composed of particles having identical charge, resulting in a repulsive force between
them.
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energy and phase of the synchrotron oscillations. Thus, one obtains:

E = ϕ̇2

2ω2
s0

+ Ut(ϕ) ,

ψ = sgn(η∆E) ωs(E)√
2ωs0

∫ ϕ

ϕmax

dϕ′√
E − Ut (ϕ′)

,

(2.57)

where the total potential Ut(ϕ), similarly to Eq. (2.34), is defined by the total voltage
Vt(ϕ), i.e.,

Ut(ϕ) = 1
V0 cosϕs0

∫ ϕ

∆ϕs

[
Vt(ϕ′) − V0 sinϕs0

]
dϕ′ . (2.58)

The total voltage includes the additional voltage contribution Vind(ϕ) due to intensity
effects, namely Vt(ϕ) = Vrf(ϕ) + Vind(ϕ). Furthermore, the synchronous phase shift,
∆ϕs, in Eq. (2.58) due to intensity effects has to satisfy the following relation:

V0 sinϕs0 = V0 sin (ϕs0 + ∆ϕs) + Vind(∆ϕs) . (2.59)

In the new coordinates, the stationary distribution function F is a function of
only the energy E with the line density

λ(ϕ) = 2ωs0
∫ Emax

Ut(ϕ)

F(E)√
2 [E − Ut(ϕ)]

dE , (2.60)

in which the normalization ∫ πh

−πh
λ(ϕ)dϕ = 1 , (2.61)

is imposed. Hereafter, binomial particle distributions are considered. They cover
most of the realistic longitudinal bunch distributions in proton synchrotrons (from
flat bunches, i.e., µ = −1/2, to Gaussian shape for µ → ∞).

F(E) = 1
2πωs0AN

(
1 − E

Emax

)µ
= g(E)

2πωs0AN
. (2.62)

Furthermore, the normalization factor AN in Eq. (2.62), is defined as

AN = ωs0

∫ Emax

0

g(E)
ωs(E)dE . (2.63)

Under these assumptions, the integral in Eq. (2.60) can be computed analytically,
leading to

λ(ϕ) =
√

EmaxΓ(µ+ 1)√
2πANΓ(µ+ 3/2)

[
1 − Ut(ϕ)

Emax

]µ+1/2
, (2.64)

where Γ is the gamma function. For finite µ, the corresponding full bunch length
can be derived as:

τfull = [ϕmax (Emax) − ϕmin (Emax)] /ωrf . (2.65)
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2.2.1 Induced voltage

As the beam intensity increases, the particles within the beam cannot be considered
as non-interacting single particles anymore, and collective effects become important.
We define a voltage acting on the witness charge at position ∆z, induced by all
the other charges, as in Fig. 2.13. This voltage depends on the longitudinal bunch
distribution, in Eq. (2.60), according to [51]:

Vind(ϕ) = −qNp

∞∑
k=0

∫ πh

−πh
λ(φ)W(ϕ− φ+ 2πhk)dφ , (2.66)

where k is the harmonic of the revolution frequency. Equation (2.66) contains the
contribution of the current turn (k = 0) and the past turns for k > 0. The offset
sum of 2πhk keeps track of the wakefield evolution over time.

For the causality principle, the negative sum limit can be extended to k = −∞.
Thus, using Eq. (2.56), one gets

Vind(ϕ) = −qNp

∫ πh

−πh
λ(φ)dφ

∫ ∞

−∞
Z(ω)eiω(ϕ−φ)/ωrf

∞∑
k=−∞

ei2πkω/ω0 dω

2π . (2.67)

The last term of Eq. (2.67) represents the Fourier expansion of periodic pulses,
namely

∞∑
k=−∞

ei2πkω/ω0 = ω0

∞∑
k=−∞

δ(ω − kω0) . (2.68)

Eventually, substituting, the induced voltage can be expressed as:

Vind(ϕ) = −qNphω0

∞∑
k=−∞

Zkλke
ikϕ/h =

∞∑
k=−∞

Vke
ikϕ/h , (2.69)

where Zk = Z(kω0) and the harmonic of the line density is equal to

λk = 1
2πh

∫ hπ

−πh
λ(ϕ)e−ikϕ/hdϕ . (2.70)

The harmonic expansion of a time-dependent induced voltage is also possible in
an analogous way (see Appendix B for the full derivation). It will become relevant
for treating perturbations in the beam stability study.

2.2.2 Vlasov equation for beam instability studies

The most common approach in studying beam stability is to analyze the evolution
of a distribution function F . In order to include collective effects in the analysis, the
perturbations F̃ ,λ̃ and Ṽind must be taken into account. Respectively, they represent
the perturbations of the equilibrium distribution function, line density, and induced
voltage.

The time evolution of the distribution function is described by Liouville’s theo-
rem [59]. It affirms that the phase-space distribution function is constant along the
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trajectories of the system and can be expressed by the Vlasov equation [46]. There-
fore, assuming the new coordinates system (E , ψ), the linearized Vlasov equation6

can be expressed as
∂F̃
∂t

+ dE
dt

dF
dE

+ dψ

dt

∂F̃
∂ψ

= 0 , (2.71)

where, by definition, dψ/dt = ωs(E).
In the presence of perturbations, the equation of motion Eq. (2.26) becomes

dϕ̇

dt
+ ω2

s0
V0 cosϕs0

[Vt(ϕ) − V0 sinϕs0] = − ω2
s0

V0 cosϕs0
Ṽind (ϕ, t) , (2.72)

where the voltage in the system has been replaced with the total voltage Vt(ϕ) =
Vrf(ϕ) + Vind(ϕ). Multiplying both sides for ϕ̇ and considering the first relation in
Eq. (2.57) yields

dE
dt

= −dϕ

dt

Ṽind(ϕ, t)
V0 cosϕs0

= −ωs(E)∂Ũind(ϕ, t)
∂ψ

. (2.73)

The perturbed potential well is defined as:

Ũind (ϕ) = 1
V0 cosϕs0

∫ ϕ

∆ϕs

Ṽind
(
ϕ′) dϕ′ , (2.74)

with the assumption that the synchronous phase shift ∆ϕs, due to intensity effects,
must fulfill the relation V0 sin(ϕs0) = Vrf(∆ϕs)+Vind(∆ϕs). Eventually, the linearized
Vlasov equation can then be written in the following compact way, i.e.:[

∂

∂t
+ ωs

∂

∂ψ

]
F̃ = ωs

∂Ũind
∂ψ

dF
dE

. (2.75)

Given a stationary distribution F(E) with wake function W(ϕ), the solutions of
Eq. (2.75) determine the stability of the system. Several approaches allow finding ac-
curate solutions of the Vlasov equation without neglecting the synchrotron frequency
spread [35,41,44,61].

In the further sections, we will focus on two complementary approaches, namely
the Lebedev equation [35] and the Oide-Yokoya method [44], to solve Eq. (2.75),
which will serve as a baseline for the analysis performed in this thesis.

2.2.3 Lebedev equation

Lebedev proposed the first self-consistent system of equations suitable for the
eigenvalue analysis of longitudinal beam stability [35]. Following [45,62], we derive
the Lebedev equation in his original matrix form.

Since the solution of Eq. (2.75) has to be periodic, it can be represented as a sum
of the harmonics e−imψ (with m ̸= 0). Hence, assuming Ω as the frequency of the
perturbation such us F̃(E , ψ, t) = F̃(E , ψ,Ω)eiΩt and Ũind(E , ψ, t) = Ũind(E , ψ,Ω)eiΩt,
we have:

6Since we are dealing with perturbations, the Vlasov equation can be simplified with a lineariza-
tion. However, in general, the Vlasov equation is not linear [60].
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F̃(E , ψ,Ω) =
∞∑

m=−∞
F̃m(E ,Ω)e−imψ ,

Ũind(E , ψ,Ω) =
∞∑

m=−∞
Ũind,m(E ,Ω)e−imψ ,

(2.76)

where the respective Fourier components are:

F̃m(E ,Ω) = 1
2π

∫ π

−π
F̃(E , ψ,Ω)eimψdψ ,

Ũind,m(E ,Ω) = 1
2π

∫ π

−π
Ũind(E , ψ,Ω)eimψdψ .

(2.77)

The solution of the Vlasov equation is found substituting the Fourier expansion of
Eq. (2.76) in Eq. (2.75). Respectively, each term is equal to

∂

∂t
F̃(E , ψ,Ω) = iΩ

∞∑
m=−∞

F̃m(E ,Ω)e−imψeiΩt ,

∂

∂ψ
F̃(E , ψ,Ω) = −im

∞∑
m=−∞

F̃m(E ,Ω)e−imψeiΩt ,

∂

∂ψ
Ũind(E , ψ,Ω) = −im

∞∑
m=−∞

Ũind,m(E ,Ω)e−imψeiΩt .

(2.78)

Therefore, using Eq. (2.78), the solution of the Vlasov equation (2.75) becomes:

F̃(E , ψ,Ω) = −ωs(E)dF
dE

∞∑
m=−∞

mŨind,m(E ,Ω)
Ω −mωs(E) e−imψ . (2.79)

The perturbed induced voltage is related to the perturbed line density and, similarly
to Eq. (2.69), is equal to (see Appendix B)

Ṽk(Ω) = −qNphω0Zk(Ω)λ̃(Ω) , (2.80)

where the impedance must be periodic in a ring suchs as Zk(Ω) = Z(kω0 + Ω).
We define, for convenience, the intensity parameter as

ζ ≜
qNph

2ω0
V0

, (2.81)

which is proportional to the number of particles, Np, and the harmonic number,
h, squared. Applying Eq. (2.74), we can link the induced potential well of the
perturbation to the perturbed harmonic of the induced voltage, as follows:

Ũind(E , ψ,Ω) = −iζ
∞∑

k=−∞
Zk(Ω)/kλ̃k(Ω)(eiϕk/h − ei∆ϕsk/h) . (2.82)

According to Eq. (2.77), the Fourier harmonics Ũind,m(E) is then:

Ũind,m(E ,Ω) = −iζ
∞∑

k=−∞
Zk(Ω)/kλ̃k(Ω)Imk(E) , (2.83)



2.2 Multi-particle motion and beam stability 33

where the function Imk, was initially introduced for the first time in [35], and is
equal to

Imk(E) = 1
2π

∫ π

−π
eiϕ(E,ψ)k/h+imψdψ = 1

π

∫ π

0
eiϕ(E,ψ)k/h cos (mψ)dψ . (2.84)

Note that ϕ(E , ψ) must be an even function with respect to the phase of the
synchrotron oscillation. In addition, since ϕ(E , ψ) is linked to the potential well
distortion, Eq. (2.84) takes into account also intensity effects and has the following
properties:

I−mk = Imk and Im−k = I∗
mk . (2.85)

where is I∗
mk is the complex conjugate of the function Imk. For a symmetric potential

well, we also have I∗
mk = (−1)mImk,

As far as the perturbation line density is concerned, for a perturbation frequency
Ω, one can write

λ̃(ϕ,Ω) =
∞∑

k=−∞
λ̃k(Ω)eiϕk/h . (2.86)

Assuming the transformation of variables dϕdϕ̇ = ω2
s0dψdE/ωs(E), the harmonic

λ̃k(Ω) are related to the perturbation of the distribution function according to

λ̃k(Ω) = 1
2πh

∫ πh

−πh
λ̃(ϕ)e−iϕk/hdϕ = ω2

s0
2πh

∫ π

−π
dψ

∫ Emax

0

F̃(E , ψ,Ω)
ωs(E) e−iϕ(E,ψ)k/hdE .

(2.87)
Eventually, substituting Eq. (2.79) into Eq. (2.87), leads to the Lebedev equation [35],
i.e.:

λ̃p(Ω) = − ζ

h

∞∑
k=−∞

Gp,k(Ω)Zk(Ω)/kλ̃k(Ω) . (2.88)

It represents an infinite set of equations for harmonics of the line density perturbation,
λ̃, at frequency Ω. Note that it depends on the intensity through the parameter ζ.
The beam transfer matrices, Gpk(Ω) [57] in Eq. (2.88), are defined as

Gpk(Ω) = −2iω2
s0

∞∑
m=1

∫ Emax

0

dF(E)
dE

I∗
mk(E)Imp(E)ωs(E)
Ω2/m2 − ω2

s(E) dE . (2.89)

Replacing the distribution function, F(E), with the binomial distribution in Eq. (2.62),
yields:

Gpk(Ω) = −i ωs0
πAN

∞∑
m=1

∫ Emax

0

dg(E)
dE

I∗
mk(E)Imp(E)ωs(E)
Ω2/m2 − ω2

s(E) dE . (2.90)

For the Lebedev equation, to admit a non-trivial solution, the determinant to
the associated matrix with the system of Eq. (2.88) must be zero. Hence

D(Ω, ζ) = det
∣∣∣∣δpk + ζ

h
Gpk(Ω)Zk(Ω)/k

∣∣∣∣ = 0 , (2.91)

where δpk represents the Kronecker’s delta. The solution of the above determinant
depends on the intensity, ζ, and specific frequencies Ω.



34 2. Fundamentals of longitudinal beam dynamics in synchrotrons

2.2.4 Oide-Yokoya equation

A complementary approach was proposed by K. Oide and K. Yokoya [41] and
employed already for beam stability studies as in [26, 45, 63] allows to derive the
bunch modes including the synchrotron frequency spread. In particular, following
the Oide-Yokoya method, the perturbed density function may be expanded in a
Fourier [64] series as

F̃(E , ψ, t) = F̃(E , ψ,Ω)eiΩt = eiΩt
∞∑
m=1

[Cm(E ,Ω) cosmψ + Sm(E ,Ω) sinmψ] .

(2.92)
Inserting the series in Eq. (2.92) into the linearized Vlasov equation (2.75), yields [65]

iΩCm(E ,Ω) +mωs(E)Sm(E ,Ω) = mωs(E)
π

dF
dE

∫ π

−π
Ũind(E , ψ,Ω) sin (mψ) = 0 ,

−mωs(E)Cm(E ,Ω) + iΩSm(E ,Ω) = −mωs(E)
π

dF
dE

∫ π

−π
Ũind(E , ψ,Ω) cos (mψ) =

= 2iζmωs(E)dF
dE

∞∑
k=−∞

Zk(Ω)/kλ̃k(Ω)I∗
mk(E) .

(2.93)
Furthermore, we can derive the harmonic of the perturbed line density using the
expanded distribution of Eq. (2.92) into Eq. (2.87), obtaining:

λ̃k(Ω) = ω2
s0
h

∞∑
m=1

∫ Emax

0

Cm(E ,Ω)Imk(E)
ωs(E) . (2.94)

Eventually, combining Eq. (2.93) with the above, one gets

[Ω2 −m2ω2
s(E)]Cm(E ,Ω) = 2iζω2

s0m
2ω2

s(E)dF(E)
dE

×
∞∑

m′=1

∫ Emax

0

∞∑
k=−∞

dE ′

ωs(E ′)
Zk(Ω)/k
hZ0

I∗
mk(E)Im′k(E ′)Cm′(E ′,Ω) .

(2.95)
The integral function in Eq. (2.95) can be addressed by reducing it in an eigenvalue

problem of linear algebra. In Chapter 4, we will solve this integral function with a
semi-analytical code using the Oide-Yokoya discretization [44].

2.3 Van Kampen modes

The first concept of Van Kampen modes was introduced in plasma physics, where
an eigensystem of the Vlasov equation was found in an infinite plasma showing
a spectrum composed of continuous and discrete parts [42, 43]. The continuous
spectrum is delineated by singular functions underscoring the relation with single
particle motion, while the discrete one may not necessarily exist.

In the context of beam dynamics, the concept of van Kampen modes can be
introduced to describe bunch oscillations in the longitudinal plane [41]. In particular,
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it has been shown that at low intensity (i.e., ζ ≈ 0), the complete set of van Kampen
modes is encompassed within the continuous spectrum (Ω = mωs(E)). In this
case, Landau damping results from the decoherence of these modes, which do not
represent the collective dynamic but rather the single-particle motions. Once Landau
damping is lost for higher intensity, the discrete van Kampen modes emerge from
the incoherent band lying outside ωs(E).

The concept of van Kampen modes is already well-consolidated in beam dynamics
spanning from analyzing power wake [44], capacitive [66] and inductive impedance [67]
to instabilities and LLD threshold studies [26,63].

In the next chapters, the thresholds for the LLD will be derived in a DRF system,
similarly to the single RF in Ref. [45], by applying the concept of van Kampen modes
to solve the Lebedev equation (2.88) in its original matrix form. These results are
then compared with the findings obtained using the Oide-Yokoya method [Eq. (4.7)]
and macroparticle simulations, as well as beam measurement.
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Chapter 3

Analytical criteria for
longitudinal loss of Landau
damping in double harmonic RF
systems

As introduced in the previous chapters, Landau damping plays a key role in the
framework of coherent beam instabilities. This chapter analyzes the LLD in the
DRF system for different combinations of ηImZ/k and relative phase Φ2. For each
scenario, the corresponding LLD threshold condition will be provided.

More recent research exploited the emerged van Kampen mode criterion to
determine the LLD thresholds in a single RF system [45]. Contrary to these previous
studies, it has been observed that for a particle distribution belonging to the binomial
family, the presence of a pure inductive impedance above the transition energy (or a
capacitive impedance below it) results in a vanishing LLD threshold unless an upper
cutoff to the impedance is introduced. Moreover, both analytical and numerical
studies have shown that the LLD threshold becomes inversely proportional to the
cutoff frequency fc when fc ≫ 1/τfull (τfull represents the full bunch length).

A similar study is conducted in the double-harmonic RF systems, above transition
energy, with both cavities in phase at the bunch position (BSM) [68]. In this
configuration, an analytical approximation of the synchrotron frequency distribution
is calculated as a function of the synchrotron oscillation energy. An analytical
expression for the LLD threshold is then derived using the Lebedev equation. The
results obtained with this equation will be compared in Chapter 5 with thresholds
obtained using the Oide-Yokoya method and subsequently tested with macroparticle
tracking simulations and measurements.

3.1 Main scenarios according to the beam energy regimes,
impedance, and RF configuration

In the longitudinal plane, LLD occurs when the coherent mode moves out of the
incoherent synchrotron frequency band. Let us consider, for example, a bunch in a
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single RF system with maximum phase deviation of the particle ϕmax, corresponding
to a full bunch length of τfull = 2ϕmax/ωrf . The corresponding synchrotron frequency,
without acceleration and collective effects, is illustrated in Fig. 3.1. The incoherent
band is defined by fmin and fmax, and the synchrotron frequency spread coincides
with the height of the grey zone (red arrows). Therefore, the Landau damping is
lost when a coherent mode lies outside the grey zone.

ϕmax

fmin

fmax

ϕ

f s

Synchrotron frequency spread

Figure 3.1. Example of synchrotron frequency distribution (blue) in single RF for a bunch
with maximum phase deviation of the particle ϕmax. The minimum and maximum
of the synchrotron frequency distribution are depicted in red dashed lines, while the
synchrotron frequency spread is depicted with arrows. No acceleration and collective
effects are considered in this illustration.

According to the combinations of ηImZ/k and relative phase between RF systems,
the modes can emerge below (fmin) or above (fmax) the incoherent band. For a
constant inductive impedance (ImZ/k > 0), two distinct regimes can be identified
based on whether ηImZ/k is positive or negative, resulting in a total of four cases
depending on the selected RF configuration. Table 3.1 summarizes the scenarios
where, for completeness, the capacitive impedance case has also been considered.
Figure 3.2 shows the van Kampen mode (red) coming out of the incoherent syn-
chrotron frequency band (grey) for ImZ/k > 0 (left) and ImZ/k > 0 (right) leading
to the LLD. The van Kampen mode, representing the undamped particle oscillation
mode, emerges from fmax (left) or fmin (right), as specified in Tab. 3.1.

For convenience, hereafter, we will refer to a purely inductive impedance. The
corresponding case for capacitive impedance is equivalently obtained by changing
the sign of η.
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Table 3.1. The LLD threshold definition according to the possible combinations of ηImZ/k.

Inductive impedance ImZ/k > 0
BSM BLM

Above transition η > 0 Ω = max [ωs(E)] Ω = max [ωs(E)]
Below transition η < 0 Ω = min [ωs(E)] Ω = min [ωs(E)]

Capacitive impedance ImZ/k < 0
BSM BLM

Above transition η > 0 Ω = min [ωs(E)] Ω = min [ωs(E)]
Below transition η < 0 Ω = max [ωs(E)] Ω = max [ωs(E)]
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Van Kampen mode
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/
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Van Kampen mode

Figure 3.2. Examples of incoherent synchrotron frequency band (grey) as a function of
the intensity for ηImZ/k > 0 (left) and ηImZ/k < 0 (right). The emerged van Kampen
mode (red) represents the undamped oscillation mode.

3.2 Analytical equation of the synchrotron frequency
distribution in BSM

The synchrotron frequency distribution can generally be derived from the synchrotron
oscillation period in Eq. (2.41). However, finding an exact closed solution is not
trivial, and numerical solutions are often calculated instead.

Below, we calculate in the DRF system an analytical estimate for the synchrotron
frequency distribution [69]. This will allow us to derive an equation of the LLD
threshold in BSM above transition energy without neglecting the synchrotron fre-
quency spread. In this configuration (i.e., ϕs = Φ2), the energy of the synchrotron
oscillation in Eq. (2.57), computed for the maximum particle phase deviation ϕmax,
is

E(ϕmax) = 2 sin2
(
ϕmax

2

)
+ 2rV

rh
sin2

(
rhϕmax

2

)
. (3.1)

In the small amplitude approximation ϕmax ≪ 1, it simplifies as

E(ϕmax) = (1 + rV rh)ϕ
2
max
2 . (3.2)
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In BSM, the integral equation of the synchrotron oscillation period in Eq. (2.41)
assumes the form:

Ts = 2
ωs0

∫ ϕmax

0

dϕ√
sin2

(
ϕmax

2

)
− sin2

(
ϕ
2

)
+ r

V
rh

[
sin2

(
rh

ϕmax
2

)
− sin2

(
rh

ϕ
2

)] .
(3.3)

Since we are interested in small bunches, we expand in series Eq. (3.3) up to the
fourth order. This leads to:

Ts = 8
ωs0

√
3

1 + rV rh

∫ ϕmax

0

dϕ

aϕmax
√

(1 − ϕ2/ϕ2
max) (1 − ϕ2/a2)

, (3.4)

where the parameter a comprises the RF parameters and is equal to:

a2 = 12(1 + rV rh)
1 + rV r

3
h

− ϕ2
max . (3.5)

Furthermore, considering x2 = ϕ2/ϕ2
max and A2 = ϕ2

max/a
2 and substituting into

Eq. (3.4), the integral equation can be reduced to the conventional elliptic integral
of the first kind

K(ϕmax/a) = 1
a

∫ 1

0

dx√
(1 − x2)(1 −A2x2)

. (3.6)

Given that ωs = 2π/Ts, the synchrotron frequency distribution is equal to:

ωs(ϕ)
ωs0

= π

4

√
1 + rV r

3
h

3
a

K(ϕmax/a) . (3.7)

Eventually, for ϕmax/a ≪ 1 we can approximate further and obtain the following
closed form

ωs(ϕ)
ωs0

≈
√

1 + rV rh

(
1 − 1 + rV r

3
h

1 + rV rh

ϕ2
max
16

)
. (3.8)

Figure 3.3 displays the comparison between the synchrotron frequency distribu-
tion found by solving numerically Eq. (2.41) (solid lines) and the Eq. (3.8) (dashed
lines). As expected, for short bunches, the equation matches very well with the
exact solution, and it diverges when the condition ϕmax/a ≪ 1 is no longer valid.

For convenience, let us rewrite the equation as a function of synchrotron oscillation
energy, E . This form will be applied in the next section. Hence, combining Eqs. (3.2)
and (3.8), we obtain:

ωs(E)
ωs0

≈
√

1 + rhrV

(
1 − 1 + rV r

3
h

(1 + rV rh)2
E
8

)
. (3.9)

3.3 The LLD threshold equation for a pure inductive
impedance

We derive an analytical expression of the LLD threshold in BSM by solving the
Lebedev equation (2.88) for ImZ/k = const above transition energy (or capacitive
below). A similar procedure is adopted as for the single RF system case in [45].
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Figure 3.3. Comparison between Eq. (3.8) and synchrotron frequency distributions by
solving numerically (solid lines) the Eq. (2.41). No acceleration and collective effects
have been considered.

Let us consider the fundamental azimuthal mode m = 1 (dipole mode). At low
intensities, the synchrotron frequency distribution in BSM is a monotonic function of
the energy of synchrotron oscillations, E . Assuming that this still holds at the LLD
threshold for a dipole mode, we can determine at what intensity ζth the coherent
mode frequency Ω equals the maximum incoherent frequency. This means solving
Eq. (2.91) to derive when Ω = max [ωs(E)] = ωs(0). The determinant of a square
matrix can be expanded in series using the following square matrix properties, i.e.:

det(I + ϵX) = 1 + tr(X)ϵ+O
(
ϵ2
)
, (3.10)

where I is the identity matrix and tr(X) is the trace of an arbitrary matrix X; while
O
(
ϵ2
)

refers to the upper bound of the expansion according to the big O notation.
The truncation at the first order is justified when the parameter ϵ is sufficiently
small (ϵ ≪ 1). Hence, assuming Eq. (3.10), the Eq.(2.91) leads to the general LLD
threshold equation:

ζth = −h

 ∞∑
k=−∞

Gkk(Ω)Zk(Ω)/k

−1

, (3.11)

where ϵ is proportional to the intensity parameter, ζ.
For low energy oscillation, ϕ(E , ψ) ≈

√
2E/(1 + rV rh) cosψ. In this approxima-
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tion, the function Imk in Eq. (2.84) becomes:

Imk ≈
∫ π

−π
eik/h

√
2E/(1+r

V
rh) cosψ−imψdψ . (3.12)

This allows us to simplify the Imk into a Bessel function of the first kind1

Imk ≈ imJm

(
k

h

√
2E

1 + rV rh

)
. (3.14)

Based on Eq. (3.9), the LLD occurs when Ω = ωs0
√

1 + rV rh. We can calculate
the matrice Gkk in Eq. (2.90), keeping only the first element of the sum over the
azimuthal modes (m = 1) and including the approximate Imk from Eq. (3.14). This
yields

Gkk = − 8i(1 + rV r
3
h)

πANϕ2
max

∫ 1

0

dg(x)
dx

J2
1

(
kx

h
ϕmax

)
× (1 + rV rh)/(1 + rV r

3
h) − ϕ2

maxx
2/16

x2(1 + rV rh)/(1 + rV r
3
h) − ϕ2

maxx
4/32

dx .

(3.15)

Note that a change of variable has been performed by imposing x =
√

E/Emax;
moreover, the maximum phase amplitude is defined as ϕmax =

√
2Emax/(1 + rV rh).

Combining Eqs. (2.63) and (2.62), we can determine the normalization factor for a
binomial distribution by neglecting the synchrotron frequency spread, i.e.:

AN =
√1 + rV rh ϕ

2
max

2(µ+ 1) . (3.16)

Thus, substituting, the Eq. (3.15) becomes:

Gkk ≈ i
16µ(µ+ 1)(1 + rV r

3
h)

πϕ4
max(1 + rV rh)1/2

[
1 − 1F2

(1
2; 2, µ; −y2

)]
, (3.17)

where pFq (a1, . . . , ap; b1, . . . , bq; z) is the generalized hypergeometric function and
y = kϕmax/h. Note that, in Eq. (3.17), for particular values of µ, the expression
in the square brackets may be expanded as a combination of Bessel functions of
the first kind (e.g., µ = 1 yields Gkk ∝ [1 − J2

0 (y) − J2
1 (y)]). Furthermore, since

Gkk ∝ ϕ4
max, the small parameter ϵ, in Eq. (3.10), is defined as

ϵ = ζ

ϕ4
max

ImZ/k . (3.18)

Equation (3.11) is evaluated analytically by approximating the sum as an integral.
Thus, for a pure inductive impedance, ImZ/k, we obtain:

1
h

∞∑
k=−∞

Gkk(Ω)Zk(Ω)/k ≈ i

h
ImZ/k

∫ ∞

−∞
Gkk(Ω)dk → ∞ , (3.19)

1The general Bessel function in its integral form is:

Jn(x) = 1
2π

∫ π

−π

ei(nτ−x sin τ)dτ. (3.13)
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which diverges for µ > 0. For finite threshold, a truncation of the sum at an arbitrary
kmax must be taken into account, yielding to the final expression

ζth ≈ 1 + rV r
3
h

(1 + rV rh)1/2
πϕ5

max
32µ(µ+ 1)χ (kmaxϕmax/h, µ) ImZ/k , (3.20)

where the function χ (y, µ), is related to the generalized hypergeometric function [70],
according to

χ(y, µ) = y

[
1 − 2F3

(1
2 ,

1
2; 3

2 , 2, µ; −y2
)]

. (3.21)

Equation (3.20) shows the significant impact of the order rh of the harmonic RF
system on the LLD threshold, as well as its dependency on the voltage ratio, rV .
Note that when the voltage ratio is equal to rV = 0, the equation, as expected,
reduces to the simplest case of single RF [45]. Furthermore, in the limit case of
y → ∞, the generalized hypergeometric function converges to zero which simplifies
Eq. (3.20) to the following form:

ζth ≈ 1 + rV r
3
h

(1 + rV rh)1/2
πϕ4

maxh

32µ(µ+ 1)kmaxImZ/k . (3.22)

Equation (3.22) highlights the dependency of the threshold on the fourth power of
the bunch length. Furthermore, it is inversely proportional to the cutoff frequency.

In Chapter 5, the closed analytical threshold will be compared with results of
semi-analytical calculation with the code MELODY and macroparticle tracking
simulations in BLonD.

3.4 Upper limit intensity due to potential well distortion:
analytical equation

The induced voltage acts as an additional focusing force when ηImZ < 0 or a
defocusing force when ηImZ > 0, resulting in the narrowing or enlarging of the
bucket. For a binomial distribution (2.62), we derive the maximum intensity ζcc
before the collapse of the buckets occurs.

The steady-state potential in Eq. (4.3) can be written in an implicit form, as [37]

Ut(ϕ) = Urf(ϕ) + ζImZ/k [λ(ϕ) − λ0] , (3.23)

where λ(ϕ) and λ0 are the binomial line density and its normalization factor
from Eq. (2.64). Note that the total potential, computed at the maximum particle
phase deviation, coincides with the maximum synchrotron oscillation energy in the
bunch, namely Ut(ϕmax) = Emax. Therefore, assuming a binomial distribution with
µ = 0.5, since λ(ϕmax) = λ0, we can simplify

Urf(ϕmax) = Emax + ζImZ/kλ0 . (3.24)

Substituting Eq. (3.24) into Eq. (3.23), the total potential can then be expressed as

Ut(ϕ) = Urf(ϕ) Emax
Urf(ϕmax) . (3.25)
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The total potential well is directly proportional to the RF potential. To solve
Eq. (3.24), we need to find the normalization factor of the binomial line density,
λ(ϕ). Thus, inserting Eq. (3.25) into Eq. (2.64), we can integrate over the maximum
phase to obtain λ0 as

λ0 =
1∫ ϕmax

−ϕmax

[
1 −

Urf(ϕ)
Urf(ϕmax)

]
dϕ

. (3.26)

Eventually, combining Eqs. (3.26) and (3.24), yields

ζcc = 1
ImZ/k [Urf(ϕmax) − Emax]

∫ ϕmax

−ϕmax

[
1 − Urf(ϕ)

Urf(ϕmax)

]
dϕ . (3.27)

Equation (3.27) represents the critical intensity parameter for which the additional
contribution of the induced voltage on the total voltage leads the bucket to collapse.
Note that Eq. (3.27) holds for an RF potential generated by an arbitrary RF voltage,
regardless of whether it is below or above the transition energy.

In Chapter 5, Eq. (3.27) will be benchmarked with the semi-analytical code
MELODY. Furthermore, we will show that for inductive impedance below transition
energy (or capacitive above), this critical condition often occurs before the LLD
threshold.

3.5 Conclusion
An intuitive explanation for the LLD threshold has been given for the simple case of
a single RF system. Subsequently, extending to the double harmonic RF case, all the
possible combinations of ηImZ/k have been presented, giving for each scenario the
respective LLD threshold definition. A refined analytical estimate for the synchrotron
frequency distribution in the DRF has been derived. This allowed deriving the LLD
threshold from the Lebedev equation for the common case of BSM for a constant
inductive impedance above transition energy or, equivalently, capacitive impedance
below.

Similarly to the single RF system case, the proposed threshold equation depends
on the fourth power of the bunch length. In addition, it is inversely proportional to
the cutoff frequency of the impedance. In the limit case of voltage ratio rV = 0, the
equation converges to the single RF case [45], as expected.

The additional focusing force due to beam-induced voltage distorts the potential
well, ultimately collapsing the bucket. The limit intensity for a binomial particle
distribution, with binomial parameter µ = 0.5, was calculated analytically.
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Chapter 4

Semi-analytical and numerical
approaches for beam stability
studies

This chapter presents the primary computational tools utilized within the context
of this study. Specifically, it describes the underlying concepts of the MELODY
and BLonD codes and the fundamental principles on which these simulation tools
are founded. In particular, the two complementary semi-analytical approaches
implemented in MELODY, the Lebedev equation and the Oide-Yokoya method,
are shown and benchmarked. Thereafter, the macroparticles tracking simulation
code BLonD is presented, illustrating the main differences compared to conventional
Vlasov solvers and highlighting the main features employed for the beam stability
study in the thesis. Finally, both codes are tested and compared.

4.1 Matrix Equations for LOngitudinal beam DYnamics

Matrix Equations for LOngitudinal beam DYnamics (MELODY) [47] is a semi-
analytical framework for evaluating longitudinal beam stability by solving the
linearized Vlasov equation (see Sec. 2.2.2). It has been developed since 2020 at
CERN, and it has already successfully guided the findings of several scientific
contributions in the field of longitudinal beam stability [45,68,71–73].

The code incorporates two approaches to solve the linearized Vlasov equa-
tion (2.75), namely the Lebedev equation (Sec 2.2.3) and the Oide-Yokoya method
(Sec. 2.2.4). In both cases, the first problem to address is to find a stationary
solution for the total potential Ut(ϕ) = Urf(ϕ) +Uind(ϕ). Similarly to Eq. (2.58), the
beam-induced potential can be expressed as

Uind (ϕ) = 1
V0 cosϕs0

∫ ϕ

∆ϕs

Vind
(
ϕ′) dϕ′ . (4.1)

Equation (4.1) can be written more explicitly as a function of the harmonics of the
line density λk. Therefore, by taking into account Eq. (2.69), the induced potential
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is
Uind (ϕ) = iqNph

2ω0
V0 cosϕs0

∞∑
k=−∞

Zk
k
λk
(
ei

k
h
ϕ − ei

k
h

∆ϕs

)
. (4.2)

To determine a steady-state solution, addressing the distortion of the potential
well is necessary. As seen in Eq. (4.2), the induced potential depends on the
harmonic components of the line density. Given a step n, the solution for the
stationary potential is obtained using an iterative procedure [26]. We compute the
total potential in the initial case of Ut,0 (step n = 0) and the line density λ0 through
Eq. (2.64) excluding intensity effects with Np = 0 and ∆ϕs = 0. Thus, Ut,0 is equal
to the RF potential (Ut,0 = Urf). The corresponding line density, λ0, is then used to
compute the induced potential and included in the next interaction when computing
Ut,1. The procedure is repeated until it converges to a stationary solution. Therefore,
the iterative algorithm for the stationary potential can be summarized as follows:

Ut,n = (1 − ϵ)Ut,n−1 + ϵUt (λn−1) ;
Ut,n = Ut,n − min (Ut,n) ;
λn = λ (Ut,n) ;n = 1, 2, . . . .

(4.3)

If it exists, the Eq. (4.3) converges to a stationary solution for an arbitrary ϵ such
that 0 < ϵ < 1.

4.1.1 Direct solution of the Lebedev equation

The derivation of the Lebedev equation has been shown in Chapter 2. Once the total
potential has been obtained, we compute the energy of the synchrotron oscillation,
E , from the first equation of motion Eq. (2.57). Subsequently, the beam transfer
matrices Gpk(Ω) of Eq. (2.90) can be computed.

The method of calculation utilizing the Lebedev equation (2.91) is based on
finding the determinant D(Ω, ζ) of the associated matrix with Eq. (2.88). For the
linear algebra, a non-trivial solution exists only if the determinant D(Ω, ζ) = 0. In
the MELODY code, a bisection method is implemented, which requires setting an
interval [ζdown, ζup] where the threshold is expected. A midpoint of the intervals
ζ ′ = (ζup − ζdown) /2 is used to calculate D(Ω, ζ ′). The new interval is then narrowed
depending on whether the determinant is positive or negative (e.g., D(Ω, ζ ′) > 0;
ζup = ζ ′). The iteration continues until the error function, ebis, defined as

ebis = ζup − ζdown
ζup + ζdown

, (4.4)

is lower than an arbitrary threshold error, eth. This iterative process is illustrated in
Fig. 4.1, where the numbers indicate the iteration step. The example considers the
BSM with harmonic ratio rh = 2 and voltage ratio rV = 0.5 with RF and accelerator
parameters outlined in Tab. 4.1 (Sec. 4.1).

4.1.2 Oide-Yokoya discretization

In order to solve Eq. (2.95), MELODY performs a discretization on the functions
Cm(E , ω), introduced in the Fourier expansion in Eq. (2.94). In the original work [44],
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Figure 4.1. Example of the LLD threshold (black dashed line) evaluation in MELODY
through the direct computation of the determinant in Eq. (2.91). The calculation is
performed in BSM for a double-harmonic RF system (rh = 2) with r

V
= 0.5, η > 0,

ImZ/k = −0.07 Ω, fc/frf = 20, µ = 1.5, ϕmax = 1.37 rad and eth = 2 × 10−2 using the
accelerator parameters in Tab. 4.1.

these functions were discretized by multiplying them with step-like functions sn(E),
where En is the n-th sample of the energy grid, i.e.

Cm(E , ω) =
NE∑
n=0

sn(E)Cm(En, ω) , (4.5)

where

sn(E) =
{

1/∆En, En − ∆En/2 < E ≤ En + ∆En/2
0, elsewhere

, (4.6)

and ∆En is the thickness of the corresponding step. However, the MELODY code
implements a refined non-uniform mesh, with a total number of points NE , to have
a high-resolution matrix in energy and frequency when close to the center or edge of
the potential well.

Eventually, Eq. (2.95) can be expressed as an eigenvalue problem of a linear
algebra of the kind

Ω2Cm (En,Ω) =
NE∑
n′=1

mmax∑
m′=1

Mnmn′m′Cm′ (En′ ,Ω) , (4.7)
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where the matrix is equal to

Mnmn′m′ = m2ω2
s (En) δnn′δmm′ − 2ζm2ω2

s (En)ωs0∆En′

πANωs (En′)
dg

dE
(En)

× Im


kmax∑
k=1

Zk/k

h
Imk (En) I∗

m′k (En′)

 .

(4.8)

The function δnn′ is the Kronecker delta while mmax and kmax are, respectively,
the maximum values of the azimuthal mode and the revolution harmonic number.
In general, the exact solution requires an infinite number of azimuthal modes and
revolution frequency harmonics; however, a truncation must be considered for
numerical reasons.

Following the Oide-Yokoya method, the eigenvalues of the matrix in Eq. (4.8)
are calculated as a function of the intensity parameter ζ. In particular, the method
is based on computing the difference between the maximum eigenfrequency and the
maximum incoherent frequency to find the threshold. Thus, as Fig. 4.2 shows, the
LLD threshold (black dashed line) corresponds to the point where the difference
between the two functions vanishes.
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Figure 4.2. Example of the LLD threshold (black, dashed) evaluated with the MELODY
with the Oide-Yokoya method. The eigenvalues in Eq. (4.7) are found for LHC parameters
with η > 0, ImZ/k = 0.07 Ω, fc/frf = 10, V0 = 6 MV, µ = 2, and τfull = 1.3 ns.
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4.2 The Beam Longitudinal Dynamics simulation suite

Since 2014, the Beam Longitudinal Dynamics simulation suite (BLonD) [27–29]
has been developed at CERN, an open-source particle tracking code designed to
simulate longitudinal motion in synchrotrons. The code is written in two high-level
and general-purpose programming languages, Python and C++. It makes use of
well-established and efficient scientific libraries such as Numpy [74], Scipy [75], and
CuPy [76].

The code employs the widely used concept of macroparticles having the same
charge-to-mass ratio as the actual particles. In reality, the intensity of bunches
typically spans from 108 to 1013 particles per bunch, whereas simulations commonly
employ only of the order of 104 to 107 macroparticles per bunch. The lower number
of macroparticles with respect to a real bunch is a compromise that allows to mitigate
computational resources in simulations.

A distinctive aspect of the BLonD code is its capability to simulate the evolution
of both the coordinates of beam particles and the RF system parameters, including
its frequency and voltage vector. This is achieved by monitoring them with respect
to an external time reference, equivalent to beam measurements in real synchrotrons.
The particle coordinate systems in BLonD are the canonically conjugate variables
∆t and ∆E, namely relative displacement in time with respect to the reference time
and the designed total energy. This offers the advantage of including beam-based
feedback systems and collective effects. Furthermore, the code offers additional
functionality, including its capacity to generate a matched bunch with the RF and
collective effects from a given line density function or distribution.

The BLonD code functionality has been benchmarked [77] through widespread
applications across all the CERN [78] and other synchrotrons of other accelerator
facilities [79–82] synchrotrons. Below, an overview of the bunch generation and beam
tracking algorithm is provided. For a complete description of the functionalities of
the BLonD code suite code, refer to [27].

4.2.1 Bunch generation

The routine used in BLonD for matching bunches in the RF bucket from distribution
functions is very similar to the iterative algorithm Eq. (4.3) implemented in MELODY.
The main difference lies in the fact that BLonD deals with macroparticles binned
in the longitudinal phase space by a discrete distribution function. Under certain
circumstances, this binning causes numerical noise that can be observed at high
frequency and leads to unphysical results, such as artificial emittance blow-up
or erroneous beam instability of intensity well below the physical threshold [83].
Therefore, choosing an appropriate number of macroparticles in conjunction with
a correct sampling frequency for a given distribution is crucial to minimize the
numerical noise. Therefore, a benchmark with a significantly large number of
macroparticles is needed to validate the choice.

The bunch generation routine requires the type of target distribution and emit-
tance (or bunch length) as input parameters. The potential well is then preprocessed
to check for the minimum, maximum, and center of the frame around the separatrix.
For the sake of consistency with MELODY, instead of the emittance, we force as
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input the maximum oscillation energy, Emax, as the size of the bunch, in order to
generate from both codes the same longitudinal line density (see Sec. 4.3).

Figure 4.3 illustrates the flowchart of the bunch generation function performed
in BLonD. After computing the Hamiltonian, the matching procedure consists of
iteratively placing the bunch in the center of the distorted potential well until
convergence is reached. After finding a stationary solution, random sampling
generates the particle distribution according to the density function F .

Machine, rf parameters
and Emax

Hamiltonian H

Distribution function
F (H)

Bunch
matched?

Bunch line
density λ

Impedance
Z

Potential well
distortion Uind

Random seed

Bunch

yes

no

Figure 4.3. Flowcharts of the routines implemented in BLonD to generate bunches matched
to the RF bucket with intensity effects. The blue boxes represent the user input; the
sharp rectangular boxes are the states after parameters were processed with the respective
functions, and the diamond box is the decision point between the loop and the output.
The output is highlighted in green.
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4.2.2 Tracking algorithm

BLonD describes the evolution of the particles and RF parameters with respect to a
reference time, td,(n), defined as

td,(n) =
n∑
i=1

Trev,(i) , n = 0, 1, 2... , (4.9)

where the revolution period can change turn-by-turn in acceleration. The time
coordinate of the particle is then ∆t(n) = t(n) − td,(n−1). The relative energy
gain with respect to the designed energy ∆E(n) = E(n) − Ed,(n) is basically an
implementation of Eq. (2.23).

Firstly, a given particle’s energy ∆E is updated from turn n to n+ 1, based on
the particle’s arrival time and the RF voltage kicks received. Subsequently, the time
coordinate of the particle is updated with the new energy of the particle. Thus, the
discrete equations of motion, used for tracking simulation, become

∆E(n+1) = ∆E(n) +
nrf∑
i=1

qVi,(n) sin(ωrf,i,(n)∆t(n) + ϕrf,i,(n)) + Eother,(n) ,

∆t(n+1) = ∆t(n) + Trev,(n+1)

(1 + α(n+1)
∆p(n+1)
p(n+1)

) 1 + ∆E(n+1)
E(n+1)

1 + ∆p(n+1)
p(n+1)

− 1

 , (4.10)

where Vi is the voltage amplitude, ωrf,i the angular RF frequency, and ϕrf,i the phase
of the RF system i. The term Eother,(n) represents additional contributions such
as induced voltage, etc. Note that Eq. (4.10) represents a simplified equation of
motion where the first-order of the momentum compaction factor is used. For a
more detailed form of the equations, refer to [27].

4.3 Comparison of BLonD and MELODY
From the beam stability point of view, BLonD is a pure time-domain code that
needs to be stopped after tracking a certain number of turns. This means that slow
instabilities might be missed, which is most critical for synchrotrons with very long
beam presence like the LHC. Moreover, such simulations do not always provide a
direct understanding of the physics behind the tracking. Nonetheless, macroparticle
simulations are very flexible and can assess stability in very complex scenarios,
typically out of reach for a Vlasov solver.

On the other hand, in MELODY, the phase space distribution is modeled as a
continuous function rather than a bunch of discrete particles. The Vlasov equation
is then addressed utilizing the two available methods, providing a remarkable
understanding of unstable modes and their mitigation parameters. Typically, it
is much less computationally intensive than BLonD since it is based on analytical
equations.

The two methods are, therefore, complementary approaches describing the same
beam dynamics. For a consistent analysis, it is of primary importance that the
studies performed on both codes come from an identical initial bunch distribution.
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The LHC [84] accelerator and RF parameters, outlined in Tab. 4.1, have been
considered as a reference case for the benchmark. As an example, a single proton
bunch with a intensity of Np = 2.9 × 1010 has been generated and matched in the
RF bucket, taking into account collective effects.

Table 4.1. Main RF parameters of the LHC [84].

Parameter Unit Value
Circumference, 2πR m 26658.86
Main harmonic number, h 35640
Main RF frequency, frf MHz 400.79
Beam energy, E0 TeV 0.45
Main RF voltage V0 MV 6
Effective impedance, ImZ/k Ω 0.07

Figure 4.4 illustrates the comparison of the line density λ(ϕ) computed in
BLonD (blue) and in MELODY (orange, dashed) for three different configurations,
i.e., single RF, BSM, and BLM. The BSM and BLM are depicted on top considering a
fourth harmonic RF system (rh = 4) with a voltage ratio rV = 0.25. For completeness,
the single RF system case is also provided (bottom). BLonD shows some noise on
the line density peak due to the macroparticle binning in the discretized line density.
An excellent agreement between the codes is reached.

We confirmed the consistency of the two tools generating an identical bunch. In
the upcoming chapters, we will compare MELODY and BLonD for more complex
cases of beam stability.
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Figure 4.4. Comparison between the line density of a bunch generated using the BLonD
(blue) and MELODY code (orange). Collective effects have been included considering
number of particles Np = 2.9 × 1010 with ϕmax = 0.8 rad and fc/frf = 10. The cases of
BSM (top left) and BLM (top right) are considered with both µ = 1.5, r

V
= 0.25 and

rH = 4. The single RF case is shown at the bottom.
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Chapter 5

Analytical and numerical results
for purely inductive impedances

The analytical equation (3.20) of the longitudinal LLD threshold in BSM, derived in
Chapter 3, is benchmarked and compared with the semi-analytical code MELODY
for constant inductive impedance above transition energy. Furthermore, a method
based on bunch centroid evolution in macroparticle tracking simulations in BLonD is
provided. In the frequency domain, this technique allows the observation of coherent
modes emerging from the incoherent band above the LLD threshold. The findings
are then compared with results from MELODY, computing the van Kampen modes
through the Oide-Yokoya method (Chapter 4) in DRF.

The BLM is further analyzed numerically, showing its limitations caused by the
presence of zero derivatives of the synchrotron frequency distribution dfs/dϕ = 0
in the bunch, which leads to a LLD at any intensity. In addition, the impact of a
relative phase error of the two RF systems on the LLD threshold is investigated,
highlighting the main critical issues in BLM and BSM.

Below transition energy (more generally ηImZ/k < 0), the additional focusing
force due to beam-induced voltage distorts the potential well, ultimately collapsing
the bucket when increasing the intensity. This can occur before the LLD damping
threshold for a relatively short bunch length. Therefore, the limiting conditions for
a binomial particle distribution calculated in Chapter 3 are used and benchmarked
with MELODY. In BSM, the LLD threshold behaves very differently compared to
the above-transition-energy case, showing a non-monotonic behavior with a zero
threshold where the derivative of the synchrotron frequency distribution is positive.
The study is conducted with the semi-analytical code MELODY.

5.1 Above transition energy

5.1.1 LLD threshold in BSM: Analytical estimates and numerical
solutions

To validate the analytical equation of the LLD threhsold (Chapter 3), Eq. (3.20) is
compared with semianalytical results obtained using MELODY. In order to facilitate
a direct and comprehensive comparison with the analysis conducted for the single
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Figure 5.1. The LLD threshold, for the second (top; rh = 2), third (center; rh = 3) and
the fourth (bottom; rh = 4) harmonic RF system case, as a function of the full bunch
length τfull and considering only the first azimuthal mode m = 1. The thresholds are
calculated in MELODY and compared with the analytical equation (dashed lines) for
different impedance cutoff frequencies. The computation is performed based on inductive
impedance, ImZ/k = 0.07 Ω, voltage ratio, r

V
= 1/rh, and binomial coefficient, µ = 1.5.

RF [45], the accelerator parameters given in Tab. 4.1 have again been assumed as a
reference case.
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Figure 5.1 summaries the comparison between the threshold in Eq. (3.20) (dashed)
and MELODY (stars) as a function of the full bunch length for different cutoff
frequencies. It has been repeated for three different DRF configurations with a
the second (rh = 2; top), third (rh = 3; center), and fourth (rh = 4; bottom)
harmonic RF system. The analytical equation agrees very well with the MELODY
results, in particular for short bunches, and increases monotonically along the bunch
length. The threshold scales inversely with the cutoff frequency, as predicted by
Eq. (3.22). Some discrepancies arise for larger bunch lengths due to the short-bunch
approximation taken into account during the derivation of the equation. Moreover,
for rh = 4 the threshold equation can diverge earlier from the semi-analytical
calculation as for the impedance cutoff frequency fc/frf = 10 (blue, dashed).

Computing the threshold along the full bucket (ϕmax = π), Fig. 5.2 shows that
the LLD threshold preserves its monotonic behavior. This result does not agree
with observations in [25], where the LLD threshold decreases once crossing the zero
derivatives of the frequency distribution (Fig. 2.11). The discrepancy arises from
the fact that in [25], a different definition of LLD threshold has been applied based
on the decoherence of the particles after a longitudinal phase kick.
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Figure 5.2. LLD threshold as a function of the bunch length. The thresholds are computed
with MELODY for the voltage ratio r = 0.25 (blue) and r = 0.125 (red) by considering
ImZ/k = 0.07 Ω with a cutoff frequency fc/frf = 10 and binomial coefficient, µ=2.

It should be pointed out that the computation of the LLD threshold cannot be
performed above a certain intensity (see Fig. 5.2). This limitation is due to the
defocusing force caused by the induced voltage of the inductive impedance. The
additional force deforms the total potential, limiting the bunch intensity by the
bucket acceptance. It aligns well with BLonD simulations for which generating
matched bunches with the RF bucket beyond these intensity limits was also not
possible.
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An alternative technique to study the loss of Landau damping is through the
longitudinal beam spectrum in the frequency domain. In particle tracking simulations,
we exploit the bunch centroid evolution to analyze at which intensity the LLD occurs.
As the azimuthal modes correspond to specific frequencies arising from the incoherent
band of synchrotron frequencies, we study the spectrum of the bunch phase offset
evolution as an observable for the dipole mode.

To perform the simulation in BLonD, a bunch with 106 macroparticles was
generated, matched with intensity effects, and then tracked for 106 turns with a
double harmonic RF system with harmonic ratio of rh = 4 in BSM and a voltage
ratio, rV = 0.25. The large number of turns ensures a good frequency resolution of
the spectrum and covers a sufficient number of synchrotron oscillations. Thereafter,
a fast Fourier transform (FFT) [85] of the bunch center of mass has been performed.

Figure 5.3 shows two example of normalized spectra for intensities of Np =
1.26 × 1011 (left), and Np = 2.98 × 1011 (right) based on the accelerator parameters
in Tab. 4.1. Very good agreements between the beam spectra bandwidth and the
boundaries of the incoherent band calculated in MELODY (red dashed lines) are
achieved. Below the LLD threshold (Fig. 5.3; left), no coherent modes are observed
outside the incoherent band. However, above the threshold (Fig. 5.3; right), for a
sufficiently large resolution, a well-defined peak caused by a specific mode is visible
beyond the maximum of the incoherent band. The black dashed line indicates the
frequency of the van Kampen mode computed by means of the Oide-Yokoya method,
establishing once again the excellent agreement between MELODY and BLonD.

0.9 1 1.1 1.2 1.3 1.4

0

0.5

1

1.5

×10−14

ωs/ωs0

S
p
ec
tr
u
m

A
m
p
li
tu
d
e
(a
rb
.
u
n
it
s)

0.9 1 1.1 1.2 1.3 1.4

0

0.5

1

1.5

×10−14

ωs/ωs0

S
p
ec
tr
u
m

A
m
p
li
tu
d
e
(a
rb
.
u
n
it
s)

Figure 5.3. Normalized spectra of the bunch center of mass evolution computed in
BLonD in BSM for intensities Np = 1.2 × 1011 (left) and Np = 3.0 × 1011 (right). The
tracking was performed with 106 macroparticles with 106 turns, for rh = 4, r

V
= 0.25,

ImZ/k = 0.07 Ω, ϕmax = 1 rad, fc/frf = 10 and accelerator parameters from Tab. 4.1.
The red dashed lines indicate the minimum and maximum of the incoherent frequency
band together with the van Kampen mode (black, dashed) computed in MELODY.

The study has been extended by an intensity scan to observe the coherent
mode behavior. Again a bunch with 106 macroparticles is generated in BLonD,
matched with intensity effects, and then tracked for 106 turns. The tracking process
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is moreover run for different bunch lengths, thereby covering several parts of the
synchrotron frequency distribution (Fig. 2.11, green). In order to better show the
coherent frequencies in the spectrum, a Hanning filter is applied to the signal. This
type of filter is commonly applied in statistics for smoothing [86].

Figure 5.4 summarizes the normalized mode frequencies versus bunch in BLonD
(color coding) and the emerging Van Kampen modes computed in MELODY (red)
using the Oide-Yokoya method. For each intensity, the vertical slice of the plot
represents the normalized spectra of the bunch offset as introduced in Fig. 5.3. At the
LLD threshold (red, dashed), the van Kampen mode, which represents an undamped
mode, coincides with the maximum frequency of the incoherent synchrotron frequency
band (black). With this technique in tracking simulation alone, it is difficult to
discriminate properly the coherent mode from the continuous spectrum when the
intensity is close to the LLD threshold. An excellent agreement is shown between
BLonD and MELODY, even in the case of a higher-order mode than the dipole
mode seen as the second emerged mode at ϕmax = 1.0 rad in Fig. 5.4 (left).
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Figure 5.4. Absolute value of the normalized mode frequency found from macro-particle
simulations using BLonD (blue color scale) and from MELODY (red dotted line) as a
function of bunch intensity for a constant impedance ImZ/k = 0.07 Ω and fc/frf = 10.
The minimum and maximum incoherent frequencies are obtained with MELODY and
are shown as solid black lines. The dashed red lines indicate the LLD intensity thresholds
obtained from calculations performed for three different bunch lengths, ϕmax = 1.0 rad
(left), ϕmax = 1.5 rad (centre) and ϕmax = 2.0 rad (right) by assuming rh = 4, r

V
= 0.25,

µ = 1.5 and number of azimuthal modes, m = 15.

5.1.2 Semi-analytical studies in BLM

We consider now the case of DRF when both RF systems are perfectly in counter
phase at the bunch position (BLM). Note that the case of a relative phase error
between the RF systems will be studied in the next section. In the context of BLM, it
becomes nontrivial to determine an analytical closed solution for the LLD threshold
since the maximum incoherent frequency, in most cases, varies depending on the
bunch length. Nonetheless, we can still derive the threshold by solving the generally
valid Eq. (4.7) semi-analytically with MELODY.
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Figure 5.5. LLD thresholds, computed with the MELODY code, in BLM for three
cases of double harmonic RF systems; the second harmonic (left; rh = 2), the third
harmonic (center; rh = 3), and the fourth harmonic (right; rh = 4) of the principal
RF system. The thresholds are plotted as a function of the full bunch length. The
thresholds are calculated using different impedance cutoff frequencies and parameters
set as ImZ/k = 0.07 Ω, and µ = 1.5.
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Figure 5.5 illustrates the LLD threshold in BLM as a function of the full bunch
length for harmonic number ratios of rh = 2 (top), rh = 3 (center) and rh =
4 (bottom) respectively. Contrary to the BSM, a non-monotonic threshold is
observed. Previous studies [26] highlighted the impact of the zero derivatives of the
synchrotron frequency distribution, observing that once the bunch length exceeds
the critical point where dωs/dϕ vanishes, Landau damping is lost even at zero
intensity. In the given configuration, the presence of the discrete mode is highly
influenced by the tails of the distribution. When the bunch length exceeds the point
where dωs/dϕ = 0, a van Kampen mode is already located at the maximum of the
frequency distribution at zero intensity (Fig. 5.6). Therefore, the tiniest collective
effect pushes the mode outside the incoherent frequency band, causing the LLD. As
a result, any type of perturbation of the distribution function is insufficient to restore
Landau damping. In BLM, contrary to the BMS, the positioning of the maximum
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Figure 5.6. Van Kampen modes (red) and synchrotron frequency distribution (blue) in
BLM for harmonic ratio, rh = 4, voltage ratio, r

V
= 0.2, and binomial factor, µ = 1.5,

at zero intensity. The incoherent band is illustrated in grey.

synchrotron frequency on the edge of the synchrotron frequency distribution results
in the independence of the LLD threshold from the impedance cutoff frequency, fc.
This observation is consistent with the findings of [45] where, for single RF with
ηImZ/k < 0, no dependency on the cutoff frequency, fc was observed. In addition,
the van Kampen mode spectra confirm their sensitivity to fc only in the proximity
of the bunch center.

Although the ideal BLM provides a larger synchrotron frequency spread (as illus-
trated in Fig. 2.11), leading to higher LLD thresholds compared to BSM (Fig. 5.1),
it is limited by the presence of zero derivatives in the synchrotron frequency distri-
bution. This represents a constraint on the bunch length that progressively becomes
more restrictive as we increase the order, rh, of the harmonic RF system.
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5.1.3 The LLD threshold in the presence of relative phase shift
between the RF systems

In Sec. 2.1.6, it is shown that an additional limitation might come from an unavoidable
relative phase shift between the RF systems. Since the LLD threshold strictly
depends on the maximum incoherent frequency, the relative phase shift can represent
a limitation. To analyze its impact, we computed the LLD threshold along two
degrees of freedom in MELODY: relative phase between both RF systems and
maximum synchrotron oscillation energy Emax considering only the first azimuthal
mode m = 1. Different voltage ratios, namely rV = 0.1 (Fig. 5.7, left), and rV = 0.2
(Fig. 5.7, right) have been considered for the case of a harmonic number ratio of
rh = 4. As expected, the threshold is symmetric along Φ2, showing very interesting
hybrid configurations with higher LLD thresholds than the conventional BSM and
BLM. Similarly to Fig. 5.5, for high synchrotron energy oscillation (e.g. Emax > 0.6),
moving from Φ2 = π (white) towards Φ2 = 0 and Φ2 = 2π, the threshold drops down
to zero intensity due to the zero derivative of the synchrotron frequency distribution,
dfs/dϕ = 0.
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Figure 5.7. Threshold of LLD (color coding) computed in MELODY as a function of
the maximum synchrotron oscillation energy and relative phase, Φ2. Based on the
parameters in Tab. 4.1, two voltage ratios are considered as representative examples, i.e.,
r

V
= 0.1 (left) and r

V
= 0.2 (right) with a harmonic number ratio rh = 4. The ideal

BSM case is highlighted in white.

To better visualize the effect of the relative phase on the LLD threshold, two-
dimensional slices of Fig. 5.7 have been considered. As long as the bunch length
is small enough the ideal BLM has a higher LLD threshold (Fig. 5.8; blue circles).
However, higher LLD thresholds are predicted for Φ2 ≈ 2 rad and Φ2 ≈ 4.4 rad.
In particular, we observe threshold increase of a factor ∼ 3 (Emax = 1) and ∼ 4
(Emax = 0.4) with respect to the BSM and a factor 1.3 to BLM. This interesting
result agrees with the past studies [25], as well as measurements [87]. Nonetheless,
the margin of error in the relative phase is very narrow. Therefore, it is extremely
challenging to work precisely in these configurations.
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Figure 5.8. The LLD threshold computed in MELODY as a function of the relative
phase for harmonic number ratios rh = 4 for selected cases from Fig. 5.7, namely
Emax = 0.4 (circles) and Emax = 1.0 (triangles). The BLM working point is highlighted
in blue, while the BSM one is shown in red.

5.2 Constant inductive impedance below transition en-
ergy

Until now, we have focused on the case of ηImZ/k > 0, which covers the configuration
of most accelerators at CERN, including PS, SPS, and LHC. We will now study
the less common case of inductive impedance below transition energy (or capacitive
above), which represents, for instance, the case of the PSB at flattop. In this regime,
we show that the critical intensity that induces the bucket to collapse often occurs
before the LLD threshold.

5.2.1 Upper limit intensity due to the induced focusing force

For a purely inductive impedance below transition energy (or capacitive above), the
induced voltage acts as an additional focusing force, shrinking the bucket. For a
binomial distribution (2.62), we derived in Chapter 3 the maximum intensity ζcc
before the collapse of the buckets occurs. Results obtained by the iterative procedure
according to Eq. (4.3) confirm the analytic predictions given by Eq. (3.27) for both
BSM (Fig. 5.9, top) and BLM (Fig. 5.9, bottom) with harmonic number ratio of
rh = 4 and voltage ratio of rV = 0.25. In particular, the results from Eq. (3.27)
(black) perfectly match the upper-intensity limit computed with MELODY (iterative
algorithm, dots). In the case of µ ̸= 0.5, only empirically fit functions can be
proposed to complement the iterative algorithm for the moment, and it will be
subject for further study.
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Figure 5.9. Comparison of the critical curve according to Eq. (3.27) (black) and
MELODY (dots) in the BSM (top) and BLM (bottom) configurations, for harmonic
and voltage ratios rh = 4 and r

V
= 0.25. For distribution functions with µ = 1.5 and

µ = 2.0, fitted functions (dashed lines) are proposed.

5.2.2 The LLD damping threshold: semi-analytical approach

For ηImZ/k < 0, which refers to inductive impedance below transition energy,
coherent modes emerge below the minimum incoherent synchrotron frequency band.
Hence, the LLD threshold is reached when Ω ≡ min [fs(ϕ)]. In configurations where
this minimum falls on the tail of the frequency distribution, such as BSM (or BLM in
specific cases), we expect that the LLD becomes independent of the cutoff frequency,
as seen in single RF case [45].

Figure 5.10 summarizes the LLD threshold, computed with MELODY, as a
function of the particle maximum phase deviation in BSM. For a harmonic number
ratio of rh = 2 Fig. 5.10 (top) confirms that the LLD threshold is indeed independent
of the cutoff frequency for µ = 1.5 (diamonds) and in agreement with the single RF
system case [45]. Furthermore, the threshold disappears beyond the critical curve
for larger bunch lengths as the bunch collapses. Also for particle distributions with
µ = 0.5, this dependence persists.

In the fourth harmonic configuration (Fig. 5.10; bottom), the LLD is no longer
a monotonic function [68] caused by the presence of a positive derivative in the
synchrotron frequency distribution within the bunch. In this grey zone where
dfs/dϕ > 0, the minimum of the synchrotron frequency distribution is no longer in
the tail of the bunch. Similar to the BLM case above transition energy (Fig. 5.5),
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Figure 5.10. The LLD threshold, computed using MELODY, as a function of the maximum
phase deviation of the particle in BSM. The second harmonic case (top) is illustrated
for different cutoff frequencies, fc. The fourth harmonic case is shown at the bottom for
µ = 0.5 and µ = 1.5. A forbidden zone with zero intensity LLD threshold is highlighted
in grey where dfs/dϕ > 0.

at zero intensity, there are van Kampen modes already located at Ω = min[fs(ϕ)].
Therefore, the LLD occurs for any intensity, and coherent instabilities can easily
be triggered. Beyond the grey zone, the derivative of the synchrotron frequency
distribution versus phase is negative, dfs/dϕ < 0, and the minimum of the frequency
distribution is again in the tail of the bunch. Similarly to the rh = 2 case, a
dependence on the cutoff frequency is not observed for a binomial particle distribution
with µ = 1.5 (diamonds), while being present for µ = 0.5. Moreover, the LLD
threshold exceeds the critical curve around ϕmax = 0.8 rad.

When the RF systems are in counter phase at the bunch position (BLM), the
LLD threshold is monotonic [26,38,72]. This is also confirmed by Fig. 5.11, where
the LLD threshold calculated with MELODY monotonically increases with the
maximum phase deviation of the particle. Note that in Fig. 5.11 (bottom), there
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are phases where a jump of the LLD threshold derivative, dζ/dϕ, occurs. This is
linked to the fact that upon a certain bunch length, the minimum of the synchrotron
frequency distribution moves from the center to the tail of the bunch and, hence,
is no longer being dependent on the cutoff frequency, as already seen for the BSM.
Beyond, the LLD thresholds converge to the single RF case (brown).
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Figure 5.11. LLD threshold in BLM computed semi-analytically with the MELODY code.
The case of rh = 2 is illustrated for different distributions and cutoff frequencies (top).
The fourth harmonic RF system, rh = 4, is considered (bottom) and compared with the
single RF case (solid). The black dashed line represents the critical curve for µ = 1.5.

5.3 Conclusion
The chapter presented the results of the LLD threshold for all the relevant configu-
rations of BSM and BLM when inductive impedances are involved.

In the first part, we focused on the above-transition regime (equivalent to
capacitive impedance below transition), where the proposed analytical LLD threshold
equation has been successfully benchmarked with the code MELODY. Further
confirmation has been achieved by comparing MELODY with a macroparticle
tracking simulation code in BLonD. The results of both complementary approaches
agree extremely well. In particular, it has been proven that the threshold is a
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monotonic function of the bunch length and that it is inversely proportional to the
cutoff frequency, fc, similarly to the single RF case [45]. Interestingly, this differs
from the results of previous studies [25], where a different definition of LLD threshold,
based on kick, has been applied. On the contrary, the BLM suffers from the presence
of regions where dfs/dϕ > 0, leading to the LLD at any intensity. Furthermore,
unavoidable imperfections of the relative phase represent an additional limitation,
showing weak robustness with respect to relative phase shift, which can drastically
reduce the threshold and make the BLM practically irrelevant.

The second part focused on the case of an inductive impedance below the
transition energy (or capacitive above). The analytical upper-intensity limit (critical
curve) for a binomial particle distribution was benchmarked with the semi-analytical
code MELODY, reaching a very good agreement. In BSM, we observed that the
LLD threshold is no longer dependent on the cutoff frequency for binomial particle
distributions with binomial coefficient µ > 1. This agrees with the prediction showing
a non-monotonic behavior. As expected, the regions where dfs/dϕ > 0 led to zero
thresholds. The vanishing dependency on the cutoff frequency was also observed
in BLM. In addition, the monotonic behavior with respect to the bunch length is
limited only by the crossing with the critical curve.

In this chapter, we provided an extensive analysis of the LLD threshold in DRF
systems and its numerical evaluation, covering the most important scenario, including
ηImZ/k > 0 (PS, SPS, and LHC) and ηImZ/k < 0 (PSB at flattop). The study
can be explored individually for each accelerator using their respective impedance
model, introducing the concept of effective impedance [88].
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Chapter 6

Beam response from a rigid
dipole kick

6.1 Introduction

The occurrence of a rigid-bunch dipole perturbation in the beam, usually referred to
as a longitudinal phase kick, can be attributed to various sources, including injection
phase discrepancies and energy errors, as well as fluctuations in the phase of the RF
system. Investigating the beam response to a longitudinal kick is a well-established
method for studying LLD through experimental measurements and simulations. It
moreover allows probing effective impedance sources in an accelerator [51,58,89].

This section studies the impact of a dipole excitation on a single bunch for
a constant inductive impedance. Furthermore, an expansion of the rigid-dipole
perturbation as a superposition of van Kampen modes is used to obtain its time
evolution analytically [45]. This technique is then applied to conduct beam-based
measurements in the SPS and PS to estimate the LLD threshold at very different
conditions in terms of bucket filling factor. The findings are compared with calcula-
tions using the MELODY code as well as macroparticle tracking simulations with
BLonD.

6.2 Evolution of the bunch offset for constant inductive
impedance

The bunch offset evolution after a longitudinal phase kick is simulated and tracked
in time. To emulate a rigid-dipole kick, an instant shift of the bunch position by 1°
is opted to avoid modification on the initial distribution. The shift was introduced
at the beginning of the BLonD simulation after generating the bunch and matching
it to the RF system with intensity effects (Chapter 4), assuming the accelerator
parameters in Tab. 4.1. Subsequently, the evolution of the bunch is tracked for
5 × 104 turns. The simulation is performed in BSM configuration with rV = 0.25,
rh = 4 and 2 × 106 macroparticles.

Figure 6.1 illustrates the bunch centroid evolution following an initial 1° phase
kick for three different bunch lengths, expressed as maximum phase deviations, i.e.,
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Figure 6.1. Example of the bunch offset evolution in BSM, for different intensities,
following an initial dipole kick of one degree. The BLonD simulation uses ImZ/k = 0.07
Ω, fc = 4 GHz, rh = 4 and r

V
= 0.25. Three different bunch lengths, respectively for

ϕmax = 1.0 rad (top), ϕmax = 1.5 rad (centre) and ϕmax = 2.0 rad (bottom) have been
considered. The LLD thresholds predicted by MELODY are displayed in the insets.
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ϕmax = 1 rad (top), ϕmax = 1.5 rad (center) and ϕmax = 2.0 rad (bottom). For
ϕmax = 1 rad (short bunch), the initial rapid decoherence of bunch oscillations due
to the phase kick is followed by subsequent decoherence (or phase mixing), damping
the amplitude oscillation of the bunch centroid when the intensity is below the
LLD threshold. As explained in Chapter 2, the decoherence has the side effect of
leading to emittance growth. Above the threshold, the amplitude of the bunch offset
oscillation persists. However, when the bunch length is relatively large (ϕmax = 2.0 in
Fig. 6.1, bottom), the simulations reveal a counter-intuitive behavior. In particular,
we observe that the damping time can be very long at low intensity (blue). The
initial damping becomes faster at higher intensities, but the residual oscillation
amplitude remains small (green).
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Figure 6.2. Bunch position spectrum in BLonD (blue) and Van Kampen modes in
MELODY (red dots). The computations are based on Tab. 4.1 in BSM with rh = 4,
r

V
= 0.25, Np = 4 × 1012, ϕmax = 2 rad, µ = 1.5, and fc/frf = 10. The frequency of the

dipole mode is highlighted in black.

This behavior can be explained in the frequency domain by analyzing the
spectrum of the dipolar synchrotron frequency distribution derived from the spectrum
of the bunch centroid. Taking into account the parameters in Tab. 4.1, the intensity
Np = 4 × 1012 and maximum phase deviation ϕmax = 2.0 rad is beyond the flat zone
(where df/dϕ > 0) of the synchrotron frequency distribution (Fig. 2.11) and also well
above the LLD threshold. Similarly to Fig. 5.3, 2 × 106 macroparticles for 106 turns
were tracked for a sufficiently high resolution in the frequency domain. The spectrum
of the bunch centroid motion, plotted in Fig. 6.2, confirms that LLD is lost since
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a coherent mode lies outside the incoherent frequency band (blue). This is also in
agreement with the prediction of MELODY (black). Solving Eq. (4.7) with the same
parameter as assumed for the simulation shows that the van Kampen modes (red
dots) behave similarly to the bunch centroid spectrum. The amplitude of the van
Kampen modes indicates the strength of the response to a phase kick. Furthermore,
note a cluster of modes displaying relatively high amplitudes, around ωs/ωs0 = 0.8
(flat zone of the synchrotron frequency distribution; Fig. 2.11), with respect to the
coherent mode. This implies that when a perturbation is present, these van Kampen
modes inside the incoherent spectrum absorb a significant portion of the energy. As
a result, this contributes to reducing the residual amplitude oscillation, as seen in
Fig. 6.1.

6.3 Rigid-dipole kick as a superposition of van Kampen
modes

Van Kampen demonstrated that an arbitrary perturbation of the distribution in
a plasma can be described as a superposition of waves [42]. Equation (2.95) is
equivalent to the expression describing collective modes in plasma physics [9, 42]. In
the present section, the expansion of a rigid-dipole perturbation on the basis of van
Kampen modes to analytically derive its time evolution is applied. It is worth noting
that the same method has also found applications in characterizing the transverse
oscillations of colliding bunches [90]. This versatile approach can also be adapted
for the analysis of higher-order perturbations such as quadrupolar oscillations and
beyond.

Once the eigenvectors and eigenvalues of Eq. (4.8) have been founded, we can
express the bunch offset evolution as follows (the detailed derivation in [41,45]):

∆ϕb(t) = κ
mmax∑
m=1

NE∑
n=1

αmn

∫ ϕmax(Emax)

−ϕmin(Emax)
ϕλ̃ (ϕ,Ωmn) cos (Ωmnt) dϕ , (6.1)

where αmn is a coefficient expansion defined as

αmn =
mmax∑
m′=1

NE∑
n′=1

K−1
nmn′m′C

rd
m′ (En′) , (6.2)

and the normalization factor κ is proportional to the initial phase offset ∆ϕ . The
matrix K−1 in Eq. (6.2), is the inverse matrix constructed with the eigenvectors
Cm(En,Ωm′n′) computed in Eq. (4.8). Furthermore, assuming only the dipole
mode (m = 1), the following approximation holds: Crd

m (E) ≈
√

EF ′(E) [45].
In Fig. 6.3, we compare the results of Eq. (6.1) (red) and the bunch offset

evolution simulated in BLonD (blue) for 106 macroparticle and kick strength of one
degree. Results obtained from Eq. (6.1) match very well those obtained with the
tracking code. This approach was also adopted in [45], reaching the same level of
agreement for different configurations.

In the following Chapters, we will use this approach to benchmark beam-based
measurements in the SPS and PS to estimate the LLD threshold at very different
conditions in terms of bucket filling factor. The measurements are again compared
with calculations using the MELODY code and macroparticle tracking in BLonD.
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Figure 6.3. Comparison between the bunch offset evolution simulated in BLonD and
calculated with Eq. (6.1), for a single RF system considering ϕmax = 1 rad, µ = 1.5,
intensity Np = 2 × 106 and accelerator parameters illustrated in Tab. 4.1.

6.4 Conclusion
A crucial aspect of understanding LLD involves evaluating how the beam responds to
the rigid-dipole perturbation (longitudinal kick), potentially resulting in undamped
bunch oscillations. In order to reconstruct the evolution of the bunch offset, the
perturbation was expanded using van Kampen modes as a basis and, subsequently,
traced in the time domain. Our findings demonstrate that this method agrees very
well with the macroparticle tracking code BLonD.

Simulations that required a large number of macroparticles, 2×106, and sufficient
slicing in the induced voltage calculations to cope with the numerical noise show
that bunches below the LLD threshold are quickly damped as predicted. Exceptions
for long bunches have been observed, for which, counter-intuitively, bunches with a
higher intensity above the LLD threshold are damped more than those below the
threshold. This behavior is understood by expanding the perturbations on the basis
of van Kampen modes, indicating the strength of response to a rigid-dipole kick
is larger inside the incoherent band. Thus, modes belonging inside the incoherent
mode can decohere and reduce the oscillation amplitude of the bunch centroid.
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Chapter 7

Beam measurements in the
Super Proton Synchrotron at
200 GeV

With a circumference of 6.9 km, the SPS is the largest injector synchrotron at
CERN, which operates with four traveling wave 200 MHz cavities structures as the
primary RF system and two traveling wave cavities at 800 MHz, four times the
fundamental RF frequency. The high harmonic RF system plays a crucial role as a
Landau RF system in the SPS to counteract longitudinal instabilities and stabilize
the high-intensity proton beam for the LHC.

Before the LS2, for the original nominal LHC beam intensity of 1.15 × 1011 p/b,
the beam in the SPS was affected by longitudinal instabilities occurring during the
acceleration ramp, already with a single bunch and small longitudinal emittance [15].
Extensive studies have confirmed that both RF systems must operate in the BSM
throughout the entire cycle to ensure a high-quality beam for extraction to the
LHC [20,25]. Furthermore, in view of the HL-LHC, SPS has to reach the intensity
target of Np = 2.3 × 1011 p/b at extraction. In this intensity range, the LLD can
pose an important performance limitation.

This chapter presents measurements for a single bunch at 200 GeV in a single
harmonic RF system. Through exciting the bunch with a longitudinal dipole kick
and after the initial decoherence, we observe at what intensity the bunch offset
oscillations in the rigid bucket are undamped due to the LLD. We will moreover
analyze the configuration with the fourth-harmonic RF system employed (800 MHz)
in BSM to prove the benefit of a higher-harmonic RF system in terms of beam
stability. Based on the latest SPS impedance model, the findings are compared to
calculations using the semi-analytical code MELODY and macroparticle tracking
with BLonD.

7.1 Longitudinal coupling impedance model

In the framework of the LHC Injectors Upgrade (LIU) project [91], the SPS has
undergone massive improvements, including impedance reduction [92,93], new beam
and cavity control as well as feedback systems [94, 95]. Refined electromagnetic sim-
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ulations and measurements provided an updated longitudinal impedance model [96].
A realistic simulation model of the beam-based low-level RF (LLRF) loops was de-
veloped and implemented in BLonD, allowing the study of the longitudinal stability
for high-intensity LHC-type beams in the SPS with high accuracy [78].

The present SPS impedance model used for the calculations and beam dynamics
simulations is illustrated in Fig. 7.1 with its real (top) and imaginary (bottom) parts.
The bunch length in the SPS ranges typically from 1.5 ns to 3 ns. Consequently,
the frequency range of the stable bunch spectrum is within 1 GHz. Nonetheless,
the frequency range of up to 5 GHz was considered to take into account the effects
of high-frequency impedance. The impedance is composed of narrow and broad
resonances. The most relevant contributions come from the 200 MHz and 800 MHz
traveling wave structures [98, 99], the injection/extraction kickers [100, 101], and the
vacuum flanges [102].

7.2 Experiment setup and main parameters of the SPS

Table 7.1 summarizes the principal accelerator parameters used for the measurements.

Table 7.1. Accelerator parameters of the SPS at flat-top.

Parameter Unit Value
Circumference, 2πR m 6911.55
Beam energy, E GeV 200
Main harmonic number, h 4620
Main RF frequency, frf MHz 200.39
RF voltage at main harmonic, Vrf MV 4.5
Frequency of the 4th harmonic RF system MHz 800
RF voltage of the 4th harmonic RF system kV 450

LHC-type beams, including single bunches, are accelerated in the SPS from
26 GeV to 450 GeV. At flat bottom, the longitudinal space charge impedance is
(ImZ/k)sc ≈ −1 Ω scaling as (ImZ/k)sc ∝ 1/γ2. Thus, its amplitude decreases
during acceleration, reaching the minimum at flattop. In particular, it has been
shown that above an energy of 80 GeV, the space charge becomes negligible [14].

Therefore, to minimize the space charge contributions of the impedance and to
allow a wider acquisition window due to the longer plateau, after injecting a single
bunch from the PS at a total energy of 26 GeV, the beam is accelerated to an energy
of 200 GeV (Fig. 7.2) A few milliseconds after arrival at flat-top energy, the bunch
is excited by a dipole kick (green line), allowing it to oscillate in a rigid bucket. The
beam phase loop [103] was disabled right before the kick as it would correct the RF
phase after the dipole excitation, damping rapidly the phase offset oscillation. The
grey zone in Fig. 7.2 highlights the time windows in which the main acquisitions
have been performed.
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Figure 7.1. Real (top) and imaginary (bottom) part of the SPS impedance model after
the impedance reduction campaign during the 2019 − 2021 long shutdown (LS2) [97].
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Figure 7.2. Momentum ramp (blue) and voltage program of the main RF system (red) in
the SPS cycle used for the beam measurements. The dashed lines indicate the injection
(black) and the phase kick (green). The acquisition time window is highlighted in grey.

7.3 Beam-based measurement in single RF

As a reference case, the main RF system (200 MHz) is considered, neglecting
for the moment the voltage contribution due to the 800 MHz RF system. The
evolution of the bunch offset is obtained by measuring the relative phase difference
between the beam pickup signal and the sum of the cavity voltages (i.e., phase-
loop error [95]). Figure 7.3 illustrates that after the phase excitation, beams with
low intensity (blue line), the bunch phase oscillations rapidly lose their coherence,
followed by subsequent slower decoherence. This means we are below the LLD
threshold. Above the threshold, the phase oscillations persist (orange line), with
their amplitudes dependent on the intensity of the bunch. This dependence of the
residual oscillation with the intensity is attributed to crossing the LLD threshold.
Below this intensity threshold, damping is dominant.

The measurements cover many bunch intensities ranging from 3.0 × 1010 to
7.0 × 1010, in increments of ∼ 0.5 × 1010. Figure 7.4a shows the measured time
evolution of the bunch phase oscillation amplitudes (color coding), following a dipole
excitation (at 0 s), and kick amplitude of 5°, for different intensities. A Hilbert
transform [104] has been performed for each acquisition to obtain the amplitude of
the phase oscillations (Fig. 7.3). Note that below Np = 5 × 1010 (white region), the
amplitude is rapidly damped, indicating that the intensity is below the threshold of
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Figure 7.3. Bunch phase offset evolution with different intensities obtained measuring the
phase-loop error in single RF. The envelopes of the traces (red) have been computed
using a Hilbert transform [104].

LLD.
To simulate the bunch offset oscillation in the SPS under the same measured

beam conditions, we developed a fitting algorithm. The code generates a matched
bunch with the RF system, including collective effect, from a binomial distribution
according to Eq. (2.62) using as a first guess an arbitrary full bunch length, τfull and
µ. The line density λfit, is then compared with the measured bunch profile,λSPS, by
computing the following loss function:

L = 1
n

n∑
i=0

(
λSPS
i − λfit

i

)2
, (7.1)

where n is the array total length of the line densities. The procedure is iteratively
repeated in order to identify the binomial parameters, τfull and µ, that minimize the
loss function in Eq. (7.1). We opted for Powell’s method [105] as an algorithm to
find loss function minima in two dimensions. From our observation, it provides a
reasonable compromise between time consumption and precision. Figure 7.5 demon-
strates the good performance of the algorithm, displaying a very good agreement
between the measured line density and the fit (intensity effects included).

The fitted profile is subsequently provided as input to BLonD, simulating the
evolution of 106 macroparticles after a phase kick of 5°. The fitting and simulations
were repeated to cover the same intensity range as in measurement. A Hilbert
transform has been performed to obtain the bunch offset amplitude oscillation, as
illustrated in Fig. 7.4b.

In the MELODY code, we use the identical fitted lined density as used in BLonD.
Using the Oide-Yokoya method, we found the eigenvalues and eigenvectors of the
matrices (4.8). This allows us to reconstruct the bunch offset evolution using Eq. (6.1)
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(a) Measurement.
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(b) BLonD.
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(c) MELODY.

Figure 7.4. Time evolution of the normalized bunch phase oscillation amplitude (color
coding) after a dipole excitation in the single RF. The measurement results (top) are
compared with the outcome of BLonD (middle) and MELODY (bottom) analysis for
different intensities. The MELODY prediction of the LLD threshold at Nth ≈ 6.1 × 1010

is shown in a red dashed line.
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Figure 7.5. Comparison between measured line density in the SPS and the binomial
fit (2.64) (orange) in single RF for an intensity of Np = 4 × 1010 .

and displayed in Fig. 7.4c. Both numerical methods assume accelerator parameters
according to Table 7.1, including the SPS impedance model illustrated in Fig. 7.1.
The two approaches exhibit similar behavior and agree well with the LLD threshold
predicted by MELODY (red dashed line). However, the residual oscillation amplitude
depicted by measurement in Fig.7.4a results in being larger than from the simulations.
The resulting LLD threshold predictions of NSRF

th = 6.13 × 1010, computed in
MELODY using the Oide-Yokoya method, overestimates the measurements. Overall,
it agrees well.

The SPS impedance model was developed for many years based on measure-
ments and simulations of accelerator components [106, 107]. Nevertheless, obtaining
accurate impedance behavior at high frequencies presents significant challenges. As
illustrated by Eq. (3.20), the LLD threshold highly depends on the cutoff frequency
fc. Consequently, inaccuracies in the impedance model or in its cutoff frequency
have a significant impact on the computed LLD threshold.

7.4 Measurements in bunch shortening mode

Let us include the voltage contribution coming from the 800 MHz in BSM (200 MHz
and 800 MHz in phase). This represents the operational configuration used for
LHC-type and fixed target beams. Therefore, it represents a more relevant case of
study with respect to the single RF.

We evaluate the relative change of the LLD threshold when transitioning from a
single to a double-harmonic RF system, considering the voltage ratio of rV = 0.1.
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Figure 7.6. Measured time evolution of the bunch phase oscillation, normalized by the
kick strength, in BSM (rh = 4) for different intensities with voltage ratio r = 0.1.

This ensures the monotonicity of the synchrotron frequency distribution, avoiding
issues coming from the inflection points dfs(ϕ)/dϕ = 0 (see Chapter 5). We conduct
similar measurements as illustrated in the preceding section.

The result is presented in Fig. 7.6, where the time evolution of the normalized
bunch phase oscillation amplitude, relative to the kick strength, is measured. A
strong enhancement can be observed when employing the 800 MHz RF system. The
bunch offset oscillations are damped at a much higher intensity than the single
RF case shown in Fig. 7.4a. In particular, employing BSM leads to an increase of
approximately ∼ 6 in terms of the LLD threshold. However, it must be pointed out
that direct comparison is not straightforward since emittance and bunch distribution
at significantly higher intensities differ. This is confirmed by the measured bunch
profile in Fig 7.7 which is plotted together with its corresponding binomial fit (2.64)
in orange. In particular, moving from the single RF scenario (left) to the BSM case
(right), it is visible a reduction in bunch length and a noticeable change in bunch
shape (lower µ). Furthermore, in BSM, we observe a discrepancy on the tail of the
line density, suggesting the distribution is not entirely binomial.

We computed the LLD in MELODY based on the fitting performed on the
measured line density. The predicted threshold in BSM is, similarly to the single RF
case, overestimated, and it corresponds to NBSM

th ≈ 77 × 1010. Compared to single
RF, it is a gain factor of ∼ 12.
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Figure 7.7. Comparison between measured line density in single RF (left) and BSM (right).
The binomial fit (2.64) of the profile is depicted in orange.

7.5 Conclusion
The kick-response technique was applied during an extensive campaign of beam
measurement in the SPS for the LLD threshold study. The findings demonstrate
that the theoretical approach outlined in the previous chapter remains applicable for
beam-based measurements. We study as a reference the single RF case neglecting the
voltage contribution due to the 800 MHz RF system. In particular, we accelerated a
single bunch up to 200 GeV, minimizing space charge contribution in the impedance.
We injected a dipole excitation and let the bunch free to oscillate, deactivating the
phase-loop. Following the initial decoherence, the amplitude oscillation of the phase
offset was extracted by means of a Hilbert transform and then compared across a
broad spectrum of intensities. We observed that the oscillations are not damped
beyond a certain intensity, meaning the LLD occurred.

A refined algorithm, based on Powell’s method, allowed to find a binomial fit
for the measured line density with intensity effect included. The fitted line density,
together with the SPS impedance model, was used as an input for the semi-analytical
code MELODY and macroparticle simulation BLonD. Both methods exhibit excellent
agreement. However, discrepancies between the measurements and simulations may
indicate imperfections in the SPS beam coupling impedance model. Overall, the
predictions are extremely close.

We extended the study to the most relevant case by including in the measurement
the voltage contribution coming from the 800 MHz RF system in BSM. We performed
a complete intensity scan in measurement, proving the threshold increases for double-
harmonic RF configurations with a gain factor of 6. We performed the binomial
fitting, showing that direct comparison with the single RF was not possible due to
the different distributions and longitudinal emittance. The semi-analytical prediction
overestimates the measurement similarly to the single RF case. Overall, the fourth
harmonic RF system showed an enormous improvement with respect to the single
RF case damping coherent oscillation at much higher intensities.
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Chapter 8

Measurements of loss of Landau
damping in the CERN Proton
Synchrotron

The Proton Synchrotron (PS) is the second largest injector synchrotron at CERN
with a circumference of 628 metres, accelerating proton beams up to energy of
26 GeV. It is equipped with several RF systems, operating at frequencies 2.8 MHz-
10 MHz, 20 MHz, 40 MHz, 80 MHz, and 200 MHz, dedicated to both accelerating
and performing the necessary RF manipulations required for the production of
LHC-type beam.

The large number of RF systems makes the PS an ideal accelerator for LLD
studies at different beam and RF configurations. Following the same technique
performed in the SPS (Chapter 7), beam-based measurements are presented with
accelerator parameters specified in Table 8.1. Special attention to the DRF case is
paid by studying the cases of harmonic number ratio rh = 2 and rh = 4, in BLM
and BSM. The low frequency of the RF systems allows the reproducibility and good
control of both RF and beam parameters. We examine the scaling factor in the LLD
threshold expression Eq. (3.22), which we provide below for convenience:

Nth ∝ 1 + rV r
3
h

(1 + rV rh)1/2 τ
4
full . (8.1)

In what follows, we will illustrate how Eq. (8.1) can be employed to evaluate the
relative change of the LLD threshold moving from a single RF to a DRF system for
the case of the BSM.

Following the injection of a single bunch from the PS Booster at a kinetic energy
of 2 GeV, the beam was accelerated to the maximum energy of 26 GeV. The flat-top
energy was chosen to minimize any contribution of space charge. Few milliseconds
after reaching the flat-top energy, the second RF system (20 MHz or 40 MHz) was
activated (Fig. 8.1). The bunch was then excited by a dipole kick (phase jump)
with all beam control loops disabled. Thereafter, the bunch oscillates in a rigid
bucket. The evolution of the bunch profile with respect to a beam synchronous
trigger is obtained. A bunch of trigger pulses is generated each of them separated by
an integer number of turns, starting just before the excitation. The bunch position
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Table 8.1. Main PS parameters for LHC-type beams [11] at flat-top.

Parameter Unit Value
Circumference, 2πR m 628.32
Beam energy, E0 GeV 26
Fundamental harmonic number, h 21
Fundamental RF frequency, frf MHz 10
RF voltage at fundamental harmonic, V0 kV 200
RF voltage at 2nd harmonic (20 MHz) kV (up to) 40
RF voltage at 4th harmonic (40 MHz) kV (up to) 200
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Figure 8.1. PS momentum ramp (blue) and voltage program of the fundamental RF
system (red). The voltage of the cavities operating on the harmonic numbers of h = 7
and h = 21 are highlighted in dashed and solid lines, respectively. The acquisition time
window is indicated in orange.

evolution can be extracted by computing the centroid of the acquired profiles with
respect to the trigger, as illustrated in Fig. 8.2.

Again, we observed that when the beam intensity remains below the LLD
threshold, the bunch offset oscillation slowly damps due to decoherence. However,
residual phase oscillations persist above this threshold, and their amplitudes are
directly proportional to the bunch intensity.
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8.1 Second harmonic RF system
The PS is equipped with two 20 MHz cavities, out of which only one is actively used
during operation (the second being a spare) when required. Each cavity comprises
two RF gaps, allowing for a maximum total of 20 kV [108]. To reach a sufficient
voltage ratio of rV = 0.2, both cavities were pulsed simultaneously.

Employing the 20 MHz as a second harmonic RF system in BSM (rh = 2), the
measurements started acquiring different bunch intensities spanning from 0.27 × 1012

to 1.0 × 1012 in intensity steps of ∼ 0.1 × 1012. Binomial fits based on Eq. (2.64)
have been performed to the measured line densities in order to determine the exact
full bunch length, τfull before the phase kick. Furthermore, the line density centroid
was calculated for each frame to obtain the bunch phase offset evolution until beam
extraction.

According to Eq. (8.1), the threshold varies significantly with the bunch length,
and special care was therefore taken to keep it independent of intensity. Indeed,
excellent reproducibility of the bunch length versus intensity for both single RF
and BSM with different voltage ratios has been reached, as illustrated in Fig. 8.3.
It summarizes the mean values of the full bunch lengths and their 95% confidence
intervals for each bunch intensity.

Similarly to Sec. 7.3, Figs. 8.4-8.7 show the time evolution of the bunch phase
oscillation amplitude (color coding) after a dipole excitation scanning different
intensities. In single harmonic RF (Fig. 8.4), we observed that for low intensity, after
the dipole excitation (at time zero), the normalized amplitude oscillation gradually
decreases until it is fully damped (white regions). Increasing the intensity, the
oscillation amplitude persists, indicating that LLD occurred. Furthermore, note
that as the intensity increases, the frequency of the crest oscillations (dark shades)
amplifies.

Let us consider the voltage contribution of the 20 MHz RF system in BSM.
Figures 8.5-8.7 show the normalized bunch offset oscillation for voltage ratios rV =
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Figure 8.3. Mean values of the full bunch lengths of multiple measurements and their
95% confidence intervals for LHC-type single bunches in the PS. The experimental
configuration includes single RF and BSM cases, scanning different intensities. The
colors highlight the different voltage ratios.

0.05, rV = 0.1 and rV = 0.2 respectively, covering the same intensity range as
in single RF. We observe that the oscillation amplitudes are damped at higher
intensities with respect to the single RF. This enhancement scales proportionally
with the voltage ratio, rV . Moreover, also the damping time decreases accordingly.
Overall, we observe an improvement of almost a factor ∼ 2 transitioning from single
RF (Fig. 8.4) to BSM with harmonic number ratio of rh = 2 and voltage ratio of
rV = 0.2 (Fig. 8.7).

8.1.1 LLD threshold equation benchmarking in second harmonic
RF configuration

Assuming that the LLD threshold in SRF is Nth ≈ 0.36 × 1012 (black dashed line
in Fig. 8.4) we can employ the Eq. (8.1) to predict the threshold of the other
configurations, including the variation of the bunch length, namely: NBSM

th,r=0.05 =
(0.48±0.06)×1012 (Fig. 8.5); NBSM

th,r=0.10 = (0.53±0.05)×1012 (Fig. 8.6); NBSM
th,r=0.20 =

(0.63 ± 0.08) × 1012 (Fig. 8.7). The results, summarized in Tab. 8.2, agree very
well with the measurements, demonstrating the consistency of the scaling factor of
Eq. (8.1), derived in Chapter 3.

Moving to BLM, changing the relative phase to ±π rad, we have seen that the
Landau damping is significantly affected by the lower synchrotron frequency spread
modified by collective effects. As shown in Fig. 8.8 for the rh = 2 case (blue),
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Figure 8.4. Time evolution of the normalized bunch phase oscillation amplitude (color
coding) for different intensities after a dipole excitation in single harmonic RF.
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Figure 8.5. Time evolution of the normalized bunch phase oscillation amplitude (color
coding) for different intensities after a dipole excitation in BSM with rh = 2 and
r

V
= 0.05.
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Figure 8.6. Time evolution of the normalized bunch phase oscillation amplitude (color
coding) for different intensities after a dipole excitation in BSM with rh = 2 and r

V
= 0.1.
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Figure 8.7. Time evolution of the normalized bunch phase oscillation amplitude (color
coding) for different intensities after a dipole excitation in BSM with rh = 2 and r

V
= 0.2.
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Table 8.2. The LLD threshold in BSM computed using Eq. (8.1) for different voltage ratios.
The threshold of NSRF

th ≈ 0.36 × 1012 was assumed in single RF.

Voltage ratio rV Threshold Nth × 1012

0.05 0.48 ± 0.06
0.1 0.53 ± 0.05
0.2 0.63 ± 0.08

the synchrotron frequency spread with intensity effects is lower than for the single
harmonic RF (black) case reducing LLD threshold. This phenomenon was observed
experimentally as the bunch position oscillation was persistently undamped also for
the lowest possible bunch intensity of Np = 0.27 × 1012 (Fig. 8.9 right). Nonetheless,
for rh = 2 and rV = 0.05, the synchrotron frequency distribution (Fig. 8.8, blue,
dash-dotted) is similar to the single harmonic RF case without any significant
enhancement in synchrotron frequency spread. This observation is consistent with
the result presented in Fig. 8.10 in which the application of a double-harmonic RF
system is not beneficial for the LLD threshold with respect to Fig. 8.4.
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Figure 8.8. Synchrotron frequency distribution normalized to the small-amplitude syn-
chrotron frequency, fs0 as a function of the maximum phase deviation of the particle.
The blue lines denote the BLM for rh = 2 and the red lines for rh = 4, when the intensity
is Np = 0.25 × 1012.

8.2 Results with 10 MHz and 40 MHz cavity systems

Thanks to the extraordinary flexibility of the PS RF systems, the same experimental
study has been repeated, substituting the 20 MHz with the 40 MHz cavities (rh = 4).
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Figure 8.9. Measured phase difference between bunch and RF phase (purple) in BLM (rh =
2) with voltage ratio r

V
= 0.05 (left), and r

V
= 0.1 (right) for intensity Np = 0.27 × 1012.

The scales are 100 mV/div on the vertical axis and 20 ms/div on the horizontal axis.
The RF voltage amplitude of the two 20 MHz cavities is illustrated with 500 mV/div
(blue) and 1 V/div respectively.
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Figure 8.10. Time evolution of the normalized bunch offset amplitude (colour coding) in
BLM for rh = 2, r

V
= 0.05 and τfull = 35 ns.

There are two cavities in total working as Landau cavities. Each consists of one RF
gap providing a maximum voltage of 300 kV.

For a direct comparison, the same bunch length as with rh = 2 has been
maintained, covering even different voltage ratios. No LLD has been observed in
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the comparable range of intensities. This behavior is expected since already for a
voltage ratio of rV = 0.05, using Eq. (8.1), the LLD threshold increase by a factor
of almost four is predicted. The threshold would, therefore, be well beyond the
accessible intensity range for the given bunch length in the PS.

In the BLM configuration, we are again limited by the region with zero derivatives
of the synchrotron frequency distribution dfs/dϕ. As shown in Fig. 8.8 for rh = 4
(red), this inflection point (dfs/dϕ = 0) of the synchrotron frequency distribution is
well below the current bunch length (τfull = 25 ns), leading to the vanishing LLD
threshold.

A complementary measurement is the phase difference of the RF voltage and
the spectral component of the beam at the RF frequency. Figure 8.11 illustrates
that for intensity Np = 0.17 × 1010 (the lowest reachable with the current settings),
the measured phase-loop error shows damping for both single RF and BSM, except
for BLM.

Figure 8.11. Measured phase difference between the bunch and the RF phase in single RF
(left), BSM (center) and BLM (right) respectively for intensity Np = 1.7 × 1011. For the
DRF cases, voltage ratio r = 0.1 and harmonic ratio rh = 4 have been considered. The
scales are 100 mV/div on the vertical axis and 20 ms/div on the horizontal axis.

8.3 Conclusion
We applied again the straightforward beam-based measurement technique to study
LLD experimentally but in very different conditions with respect to the SPS. In
the PS, the remarkable reproducibility of the bunch length for both single RF and
BSM across the analyzed voltage ratios allowed us to benchmark the analytical
equation of the LLD threshold, proposed in Chapter 3. In particular, we evaluated
the relative change in the threshold, which was computed based on the values of
the voltage ratio and taking into account the variation of the bunch length. Finally,
we also estimated the corresponding statistical errors for the analytical estimations.
The findings show a very good agreement with the analytical predictions. Moreover,
improved longitudinal stability for different double-harmonic RF configurations has
been proven in BSM (rh = 2).

For the higher harmonic RF system at the fourth harmonic of the principal one
(rh = 4), the intensity reach did not allow observing any LLD. On the contrary, in
the BLM case, the oscillations of the bunch offset were, as expected, undamped, as
the bunch length exceeded the critical phase of the synchrotron frequency inflection
point.
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Chapter 9

Summary and conclusions

The loss of Landau damping (LLD) in synchrotrons is a critical condition that can
lead to beam quality degradation and particle loss. It occurs when a coherent mode
emerges from the incoherent band of the particle oscillation frequencies. In the
longitudinal plane, the LLD threshold can be raised, in principle, by reducing the
longitudinal impedance of the individual components in the accelerator. However,
increasing the synchrotron frequency spread by means of a double-harmonic RF
system is often much more efficient. The present work expands the recent longitudinal
LLD threshold studies in a single-harmonic RF case to the double-harmonic RF
configuration.

Refined analytical estimates for the synchrotron frequency distribution allowed
to derive an analytical expression for the LLD threshold from the Lebedev equation
in the bunch shortening mode, where both RF systems are in phase at the bunch
position for a non-accelerating bucket. An inductive impedance above transition
energy (or capacitive impedance below transition energy) and particle distributions
belonging to the binomial family have been considered. This scenario is relevant for
most high (low) energy synchrotrons. In agreement with the single-harmonic RF
case, the threshold is inversely proportional to the impedance cutoff frequency, fc
when fc ≫ 1/τfull, with τfull as full bunch length. In line with past studies, the higher
harmonic RF system significantly increases the LLD threshold. We demonstrated
that it scales with the factor (1 + rV r

3
h)/√1 + rV rh, where rV and rh are the voltage

ratio and the harmonic number ratio respectively. The analytical equation for the
LLD threshold has been benchmarked with a semianalytical approach using the
code MELODY, showing a very good agreement for short bunch lengths. Further
validation has been performed by comparing MELODY with the macroparticle
tracking simulation code BLonD. Both codes, based on different approaches to
study the longitudinal beam dynamics, agree extremely well. Non-monotonic LLD
threshold dependency versus the bunch length observed in the past analysis was
explained by the difference in the threshold definition based on kick response. We
showed that an extremely slow decoherence after a kick can be observed in bunch
shortening mode for intensities below the real LLD threshold, which remains a
monotonic function of the bunch length.

The second relevant configuration examined for an inductive impedance above
transition energy is the bunch lengthening mode operating with both RF systems
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in counter-phase at the bunch position. Although it promises a higher synchrotron
frequency spread, at first sight, it has strong limitations. In particular, if the
maximum of the synchrotron frequency distribution does not correspond to the
maximum particle oscillation amplitude, the LLD is lost at zero intensity. This is in
agreement with previous studies and measurements. Since the bunch lengthening
mode is highly sensitive to the relative phase Φ2 between the two RF systems, an
extensive parameter scan was performed to evaluate the LLD threshold in hybrid
configurations. For example, for a cutoff frequency of an order of magnitude above
the RF frequency, fc = 10frf , a gain of a factor three with respect to the bunch
shortening mode was observed for Φ2 ≈ 2 ± π. Nonetheless, the margin of error in
the relative phase is very tight, which would make it most challenging to operate in
this regime.

Below transition energy, ηImZ/k < 0, the LLD occurs when the frequency of the
coherent mode is at the lower limit of the incoherent synchrotron frequency band,
Ω = min[fs(ϕ)]. Typically, the LLD threshold is higher than the above transition
energy case. The additional focusing force due to beam-induced voltage distorts
the potential well, ultimately collapsing the bucket. The limiting conditions for a
binomial particle distribution were calculated, agreeing very well with the iterative
bunch generation algorithm implemented in MELODY. In this energy regime, the
bunch shortening mode has the minimum of the synchrotron frequency distribution
at the tail of the bunch. However, when the synchrotron frequency distribution
is non-monotonic (e.g., rh = 4) its derivative becomes positive dfs/dϕ > 0, and
a minimum occurs where dfs/dϕ = 0. In these conditions, a van Kampen mode
with frequency at Ω = min[fs(ϕ)] is present already at zero intensity, leading to a
vanishing LLD threshold. In addition, for a binomial distribution with a tail form
factor of µ > 1, the threshold is independent of the impedance cutoff frequency. This
is consistent with the single-harmonic RF case. On the contrary, the LLD threshold,
in the bunch lengthening mode below transition energy, results in being monotonic
as a function of the emittance. In particular, a jump in the derivative of the LLD
threshold versus the phase, dNth/dϕ, was observed, which is linked to the change of
the minimum synchrotron frequency, min[fs(ϕ)] from the center to the tail of the
bunch. Beyond that, the LLD threshold converges to the single-harmonic RF case,
no longer providing the benefits of using the bunch lengthening mode.

The work applied a straightforward beam-based measurement technique to study
the LLD threshold experimentally. A single bunch is excited by a longitudinal phase
kick to observe the decoherence and possibly undamped bunch offset oscillation in a
rigid bucket due to the LLD. An extensive measurement campaign was performed
in two different injector synchrotrons. In the SPS, we first focused on the single-
harmonic RF system, taking into account only the voltage contribution coming from
the 200 MHz RF system as a reference study. Subsequently, we moved to the relevant
case of a double-harmonic RF system, analyzing the voltage contribution of the
800 MHz RF system in bunch shortening mode. The significant threshold increase
for double-harmonic RF configurations has been demonstrated. Results were then
benchmarked with MELODY and macroparticle tracking simulations with BLonD.
Even though both numerical methods exhibit excellent agreement, the measured
LLD threshold is about 30% lower than expected. This suggests further refinement
in the broad-band part of the current SPS beam coupling impedance model and
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evaluation of possible noise excitation from the RF system.
We also performed measurements in the PS, equipped with RF systems at

10 MHz, 20 MHz, and 40 MHz. Thus, frequency ratios of two and four were studied
under very different conditions in terms of bucket filling factor compared to the SPS.
The measurements were mainly devoted to benchmarking the scaling factor of the
derived analytical equation for the LLD threshold. The findings have shown a very
good agreement with the analytical predictions, and a longitudinal stability gain for
different double-harmonic RF configurations has been proven in bunch shortening
mode for a harmonic number ratio of rh = 2. For a fourth harmonic RF system, the
expected LLD threshold is so high that the intensity reach did not allow observation
of LLD. As expected from theory, in bunch lengthening mode (rh = 4), the bunches
were long enough to be not damped at all.

Further studies could focus on deriving analytical equations for other configu-
rations considering different impedance types, beam energy regimes, as well as the
relative phase between the two RF systems. Additionally, the corresponding expres-
sions of effective impedance could be introduced to evaluate the LLD threshold for
arbitrary impedance models. Eventually, this work could be a basis for multi-bunch
stability evaluation in double-harmonic RF systems.
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Appendix A

Frenet Serret coordinate system

Let us consider a reference system (X,Y, Z) and let’s write it in terms of a new refer-
ence system (x, s, y) fixed with the reference particle as is shown in the Figure A.1:

X = (ρ+ x) cos θ = (ρ+ x) cos ( sρ)
Y = (ρ+ x) sin ( sρ)
Z = y

(A.1)

Y

Z

X

−→r
ρ

x

y

sθ

êx

êy

ês

Figure A.1. Frenet Serret coordinate system.

We defined the position vector r⃗ = ρêx+xêx+yêy in terms of the new coordinates.
We assume that ρ is the accelerator curvature radius, which in general can vary
along s, but we assume that inside the magnets it is constant. In other words, we
have

dρ

ds
= 0.
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If we consider now the infinitesimal displacement of the position vector dr⃗, referring
to Figure A.2, we have:

dr⃗ = ρdêx + dxêx + xdêx + dyêy,

moreover, we have:
dêx = dθês = ds

ρ
ês.

Substituting the previous one in dr⃗, we obtain:

dr⃗ = dxêx + (1 + x

ρ
)dsês + dyêy

êx

êy

ês

êx + dêx

ês + dês

dêx

dês

Figure A.2. Infinitesimal displacement in the new coordinates.

We can now compute the speed:

v⃗ = dr⃗

dt
= ẋêx + (1 + x

ρ
)ṡês + ẏêy.

In conclusion, the use of the metric coefficients h1 = 1, h2 = 1 + x
ρ , h3 = 1 allows us

to use all the operators in this new coordinates as ∇⃗f , ∇⃗ · A⃗ and ∇⃗ × A⃗.

∇⃗f = 1
h1

∂f

∂x
êx + 1

h2

∂f

∂s
ês + 1

h3

∂f

∂y
êy = ∂f

∂x
êx + 1

1 + x
ρ

∂f

∂s
ês + ∂f

∂y
êy (A.2)

∇⃗ · A⃗ = 1
h1h2h3

[
∂(h2h3Ax)

∂x + ∂(h1h3As)
∂s + ∂(h1h2Ay)

∂y

]
=

= 1
1+ x

ρ

[
∂
[(

1+ x
ρ

)
Ax

]
∂x + ∂As

∂s +
(
1 + x

ρ

)
∂Ay

∂y

] (A.3)

∇⃗ × A⃗ = 1
h2h3

[
∂ (h3Ay)

∂s
− ∂ (h2As)

∂y

]
êx + 1

h1h3

[
∂ (h1Ax)

∂y
− ∂ (h3Ay)

∂x

]
ês+

+ 1
h1h2

[
∂ (h2As)
∂x

− ∂ (h1Ax)
∂s

]
êy =

= 1
1 + x

ρ

[
∂Ay
∂s

−
(

1 + x

ρ

)
∂As
∂y

]
êx +

[
∂Ax
∂y

− ∂Ay
∂x

]
ês + 1

1 + x
ρ

∂
[(

1 + x
ρ

)
As
]

∂x
− ∂Ax

∂s

 êy
(A.4)
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Appendix B

Time-dependent harmonic of the
induced voltage

For convenience, we report again the definition of the coupling impedance and its
wake function (see Chapter 2):

Z(ω) =
∫ ∞

−∞
W(ϕ)e−iωϕ/ωrf

dϕ

ωrf
, (B.1)

W(ϕ) = 1
2π

∫ ∞

−∞
Z(ω)eiωϕ/ωrfdω . (B.2)

Let us consider a perturbation of the line density as

λ̃(ϕ,Ω, t) = λ̃(ϕ,Ω)eiΩt , (B.3)

where t = Θ/ω0 corresponds to the azimuth coordinate of the accelerator. In order
to evaluate the induced voltage and the phase, ϕ, at t(k = 0), we consider the
line density k-turns before, namely λ̃(ϕ,Ω)eiΩ(t−kT0). The wake function delays
accordingly to the same amount W (ϕ− φ+ 2πhk). We sum the contributions along
k > 0 to take into account the field contributions from the past turns. We express
the induced voltage as the convolution of the line density with the wake function [51],
i.e.,

Ṽind (ϕ, t) = −qNp

∞∑
k=0

∫ πh

−πh
λ̃(φ,Ω)eiΩ(t−kT0)W(ϕ− φ+ 2πhk)dφ , (B.4)

where the offset sum of 2πhk keeps track of the wakefield evolution over time.
For the causality principle, we can extend the sum for k < 0. Inserting Eq. (B.2)

in Eq. (B.4).

Ṽind (ϕ, t) = −qNpe
iΩt
∫ ∞

−∞
λ̃(φ,Ω)dφ

∫ ∞

−∞
Z(ω)eiω(ϕ−φ)/ωrf

∞∑
k=−∞

ei2πk(ω−Ω)/ω0 dω

2π .

(B.5)
The last term of Eq. (B.5) represents the Fourier expansion of periodic pulses

∞∑
k=−∞

ei2πk(ω−Ω)/ω0 = ω0

∞∑
k=−∞

δ [ω − (kω0 + Ω)] . (B.6)
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Therefore, substituting Eq. (B.6) in Eq. (B.5), the induced voltage can be expressed
as:

Ṽind (ϕ, t) = −qNphω0e
iΩt

∞∑
k=−∞

Zk(Ω)λ̃k(Ω)eikϕ/heiΩϕ/ωrf ⇒

⇒ Ṽind (ϕ, t) = eiΩt
∞∑

k=−∞
Ṽk(Ω)eikϕ/heiΩϕ/ωrf ,

(B.7)

where Zk = Z(kω0 + Ω) and the harmonic of the line density is equal to

λ̃k(Ω) = 1
2πh

∫ πh

−πh
λ̃(ϕ,Ω)e−ikϕ/he−iΩϕ/ωrfdϕ . (B.8)
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Appendix C

Mechanism of Landau damping

There are a large number of collective instabilities acting on high-intensity accelera-
tors [51]. Landau damping [32] is a natural stabilization mechanism that prevents
collective instabilities from arising when particles have sufficient synchrotron fre-
quency spread.

Section 2.1.4 has shown that a particle can be approximated to a harmonic
oscillator. If we consider an external perturbation with frequency Ω, the equation of
motion governing the dynamics is:

ẍ+ ω2x = A cos (Ωt) , (C.1)

and, imposing the initial condition ẋ(0) = 0 and x(0) = 0, its solution can be written
as:

x(t) = − A
Ω2 − ω2 [cos (Ωt) − cos (ωt)] . (C.2)

In order to deal with many particles, let us consider a set of N oscillators having
different resonant frequencies with distribution ρ(ω) and a spread δω. A physical
representation of this system can be a set of pendulums with different rope lengths,
as illustrated in Fig. C.1.
The displacement of the center of mass is then:

⟨x(t)⟩ = −A
∫ ∞

−∞
ρ(ω)cos (Ωt) − cos (ωt)

Ω2 − ω2 dω . (C.3)

Following [49,51,109–111], let us consider for simplicity a narrow beam spectrum
around a frequency ωx and driving frequency close to the oscillator frequency
spectrum, i.e., Ω ≈ ωx such that Ω + ω ≈ 2ωx. Therefore, Eq. (C.3) becomes:

⟨x(t)⟩ = − A
2ωx

∫ ∞

−∞
ρ(ω)cos (Ωt) − cos (ωt)

Ω − ω
dω . (C.4)

Moreover, for convenience, to avoid singularities in Ω − ω = 0, we introduce the
variable u = ω − Ω. This leads to:

⟨x(t)⟩ = A

2ωx

∫ ∞

−∞

ρ(u+ Ω)
u

[cos (Ωt) − cos (Ωt+ ut)]du =

= A

2ωx

[
cos (Ωt)

∫ ∞

−∞
ρ(u+ Ω)1 − cos (ut)

u
du+

+ sin (Ωt)
∫ ∞

−∞
ρ(u+ Ω)sin (ut)

u
du

]
.

(C.5)
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Ω

Figure C.1. Pendulum system representing a set of harmonic oscillators with slightly
different angular velocity (different length of the ropes) perturbed by an external force
with frequency Ω.

Since we are interested in long-term behavior, we can compute the limit to infinity.
Thus, taking each term separately yields:

lim
t→∞

sin ut
u

= πδ(u),

lim
t→∞

1 − cosut
u

= P.V.
(1
u

)
,

(C.6)

where δ(u) is the Dirac delta function. Eventually, by substituting into Eq. (C.6),
we reach the final form of the center of mass displacement in the permanent regime,
i.e.:

⟨x(t)⟩ = A

2ωx

[
cos (Ωt) P.V.

∫ ∞

−∞

ρ(ω)
ω − Ωdω + πρ(Ω) sin (Ωt)

]
. (C.7)

The system’s center of mass oscillation amplitude does not increase with time but
remains limited for t → ∞. This is Landau damping which, in accelerator physics,
is not a dissipative damping process but rather an absence of instability.

It is worth pointing out that if we consider different initial conditions (i.e.,
ẋ(0) ̸= 0; x(0) ̸= 0) Eq. (C.6) has additional terms, namely:

ẋ(0)
∫
ρ(ω)sin (ωt)

ω
dω + x(0)

∫
ρ(ω) cos (ωt)dω . (C.8)

If we watch at the dynamic of the particles with these new initial conditions, we
can see in Fig. C.2 that although the individual particle continues their oscillations,
the center of mass is damped to zero. Nonetheless, this must be distinguished from
Landau damping and represent rather a decoherence phenomenon (also known as
phase-mixing or filamentation). Contrary to Landau damping, it’s a dissipative
process that leads to emittance growth.

The energy of an harmonic oscillator is proportional to the square of the oscillation
amplitude. Hence, the total oscillation energy of the system is:

E = NA2

ω2
x

∫
ρ(u+ Ω)sin2 (ut/2)

u2 du . (C.9)



105

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

t

x
(t
),
⟨x
(t
)⟩

xi(t) ⟨x(t)⟩

(a) ẋ(0) ̸= 0; x(0) = 0.
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Figure C.2. Motion of particles with frequency spread (in blue), and center of mass
response in red. Two different initial conditions have been imposed.

As t increases, the region where sin2 (ut/2)/u2 assumes significant values narrows
around u = 0 and tends to a Dirac, as:

lim
t→∞

sin2 (ut/2)
u2 = πt

2 δ(u) , (C.10)

and substituting gives:

E = πNA2

2ω2
x

ρ(Ω)t . (C.11)

Equation (C.11) increases linearly with t, suggesting that the system absorbs energy
from the driving force indefinitely while the center of mass response remains within
the bounds. As we said, this energy is not dissipative and regards only a narrow
portion of the particles oscillating close to the driving frequency. In particular,
particles with |ω = Ω| < 1/t are in resonance with the driving force. However, since
their number decreases with time as 1/t, while their amplitude increases as t, the
net contribution to the center of mass displacement remains constant.

The asymptotic behavior in Eq. (C.7) holds for t ≫ δω. Note that the resistive
term is proportional to the particle distribution ρ(Ω). Landau damping is lost when
the driving frequency is outside the spectrum and a beating phenomenon takes over.
In addition, due to the granularity of the beam consisting of a finite number of
particles, Landau damping also ceases when t is larger than 1/∆ωi,j , where ∆ωi,j is
the frequency spacing between two nearest particles. Thus, the condition for Landau
damping is:

1
∆ωi,j

≫ t ≫ 1
δω

. (C.12)
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