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Prof.dr N. Obers (Niels Bohr Institute, Copenhagen, DK)
Dr. M. Postma (Nikhef)
Prof.dr A. Achúcarro
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Overview

The gravitational two-body problem has been a subject of interest long before
the origin of General Relativity. In Newtonian mechanics, an isolated system of
two point particles interacting through gravity is readily solvable and the resulting
motion is periodic. The energy and angular momentum are represented by two
conserved integrals of motion. In General Relativity non-separable centre of mass
co-ordinates require taking account of the internal structures of the bodies, and
therefore it is extremely complicated. The problem has been investigated since the
beginning of General Relativity through the pioneering works of Einstein, Lorentz,
Droste and De Sitter. The equations of motion for comparable mass binaries have
been computed with the Post-Newtonian expansion. Even after 100 years of Gen-
eral Relativity the analysis is still incomplete. The Post-Newtonian description is
sensible only in the weak field regime i.e., in-spiralling stage. When the two com-
pact bodies are too close the gravity is so strong that the objects travel almost at
the speed of light: the strong-field dynamical regime.

The dynamics of binaries is nonlinear in General Relativity and therefore the
orbits are never periodic: as the system emits gravitational waves it continuously
loses energy and angular momentum. Then the radiation back-reaction drives the
objects closer and closer, eventually to merge. During the final stages of merger the
analytical methods are ineffective and therefore the Numerical Relativistic treat-
ment is used [1]. The reverse is also true; Numerical Relativistic methods are less
efficient when the two objects are far apart, or when one of the components is much
heavier than the other.

The latter type of system is known as the Extreme Mass Ratio System. Since
the orbiting object is much smaller than the stable central one, the system can
be analysed within the framework of black hole perturbation theory. If we neglect
the internal structure and back reaction of the smaller compact object, we can
treat it as a point particle moving on a world line, as described by Einstein [2]
for test masses. In this limit many quantities which describe the evolution of the
binaries can be solved quite precisely. Since all astrophysical objects spin, it is
essential to include the internal angular momentum of compact objects. Such a
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Overview

description of Extreme Mass Ratio binaries is important e.g. for low frequency
space-based gravitational-wave detectors such as the evolved Laser Interferometer
Space Antenna.

For more than eighty years, mathematical descriptions have aimed at keeping
track of the centre of mass with various spin supplementary conditions; with the
gravitating objects possessing quasi-rigid rotation along with orbital motion (ex-
tended bodies), this defines the framework of the Mathisson-Papapetrou model.
But in determining the overall motion of the body by following a detailed micro-
scopic description of a material body is often too complicated and the correct spin
supplementary condition is still in debate.

Therefore we have given a alternate complementary formalism to the subject.
We construct effective equations of motion for point-like objects, which is an ideal-
ization of a compact body, at the price of neglecting details of the internal structure
by assigning the point-like object an overall position, momentum and spin. This is
also known as the spinning-particle approximation, and is used for the semi-classical
description of elementary particles as well. A detailed account on the qualitative
connections and differences between the two formalisms have been given in section
4.4.

We have derived equations of motion for compact spinning bodies in curved
space-time in an effective world-line formalism. The equations are obtained both
from a hamiltonian formulation, without using any supplementary conditions and
also from local energy-momentum conservation. The price to pay is that the world-
line does not always coincide with that of a centre of mass but rather follows the
spin, with the result that there is a mass dipole describing the displacement between
the two in the presence of curvature. One of its strong points is that it does not
require an a priori choice of hamiltonian. Since the closed set of Poisson-Dirac
brackets is model independent, it can be applied to a large variety of models of
relativistic spin dynamics. Using a minimal choice of hamiltonian we obtain the
equations of motion by computing its bracket with this hamiltonian. The analysis
has been extended with gravitational and electric Stern-Gerlach interactions by
introducing the non-minimal hamiltonians. Also modified conservation laws emerge
reflecting the spin-orbit coupling.

We have applied our formalism to study the dynamics of spinning particles in
Schwarzschild space-time and established number of physical results. We obtain the
simplest orbit: circular, for the particle in the equatorial plane. Method of geodesic
deviation in General Relativity has been generalised to world lines of particles
carrying spin. The complete first-order solution for the non-circular planar orbits
are found starting from the circular orbit. The spin-influenced perturbations have
double periods, and therefore the periastron and apastron behave in a complicated
way (non-constant intervals) i.e., not only subject to an angular shift, but the point
of closest approach shows radial variations as well. The presence of spin alters
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the stability conditions and therefore the location of the Innermost Stable Circular
Orbit. We have shown for over a wide range of spin values −0.5M < σ < 0.5M ,
the Innermost Stable Circular Orbit is quite close to the orbit of minimal orbital
angular momentum and coincides only for spineless particles. We have furthermore
extended our analysis for a non-minimal hamiltonian to include Stern-Gerlach force
of gravitational origin and determined circular orbits in the case of Schwarzschild.
As a further generalisation we investigated non-planar eccentric orbits around a
massive stable black hole. We have obtained an analytical formula for the orbital
precession frequency.
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Chapter 1 introduces gravity in the Newtonian framework, stating its merits and
short comings. Then by describing Einstein’s general relativistic idea of gravitation,
I define gravitational waves and its properties. The indirect evidence of gravitational
waves has been explained with binary pulsar PSR B1913+16. The first direct
detection of gravitational waves: GW150914, conforms the existence of black holes
and binary black holes. With these motivations, I describe my system of research
– Extreme Mass Ratio Systems and its scope of experimental detection with the
evolved Laser Interferometer Space Antenna.





1

Introduction

1.1 Gravitation

Of the four fundamental forces of nature, gravity is the weakest. For instance, the
gravitational force between the proton and electron is 1040 times smaller than the
electric force that binds these particles together in atoms. However gravity is a
universal force. Newton’s law of gravitation was the first major physical theory
which attempts to describe gravity. According to Newton’s theory, two bodies,
irrespective of whether they are on the Earth or in the heavens, whether they are in
the state of motion or rest, always mutually attract each other with a force directly
proportional to the product of their mass and inversely proportional to the square
of their mutual distance

F = G
mM

d2
, (1.1.1)

where F is the force between the masses; G is the universal gravitational constant,
whose value is 6.674 × 10−11Nm2/kg2; m and M are two masses, and d is the
distance between the centers of the masses. This implies, the gravitational force
propagates in space at an infinitely great speed. This is the weak point of New-
ton’s theory, because it means that something is simultaneously having an effect
somewhere, where it is not present, and this is a physical impossibility. Despite
this weakness, it still provides an excellent basis for explaining and calculating the
planetary movements.

This absurd idea of "action at a distance" emerging in Newton’s theory was
not resolved, until Einstein in 1915. Einstein described space and time as different
aspects of reality in which matter and energy are ultimately the same. With this
he describes gravitation very accurately in this 4-dimensional universe (3 spatial
dimension + 1 time dimension) in which we are living in. The presence of large
amounts of mass or energy distorts space-time – in essence causing the fabric to
"warp" and we observe this as gravity.

Freely falling objects – whether a soccer ball, a satellite, or a beam of starlight
– simply follow the shortest space-time path (geodesic) in this curved space-time.
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1. Introduction

Therefore, the planets are moving in "straight lines" in the curvature produced by
the sun and it appears as if they are in circular or elliptical motion around the sun.
This is the central idea of general theory of relativity [3].

Thus the Newtonian idea of a gravitational force acting at a distance between
bodies was replaced by the idea of a body moving in response to the curvature of
space-time. Indeed Newton’s theory of gravity is not completely wrong. It is a
correct approximation to Einstein’s theory when space-time curvature is negligible
and the velocities of masses are much smaller than the velocity of light.

Newton’s theory forms an excellent basis for describing weak gravitational
regimes like in earth or solar system. In this regimes the general relativistic cor-
rections to the Newton’s theory are very small. But general relativity also predicts
new strong gravitational phenomena like bending of light, black holes, gravitational
waves and the big bang.

1.2 Gravitational Waves

Accelerated mass varies space-time and the change propagates as ripples in space-
time curvature with the speed of light known as gravitational waves. Gravitational
waves are analogous to the electromagnetic waves, the oscillations in the electric
and magnetic fields produced by the accelerated charges.

Mass in motion is the source of gravitational waves. In turn, gravitational waves
can be detected through the motion of masses produced as the ripple in space-time
curvature passes by. When a gravitational wave passes through a ring of particles it
changes their relative positions, depending on the wave’s polarisation [4]. Here we
have shown the particle’s motion produced by a wave with "+" polarisation (top
line) and ”× ” polarisation (bottom line).

Fig. 1.1 implies that a single wave cycle of a gravitational wave changes the ring
(R being the radius) into an ellipse with semi-major axis R + dR and semi-minor
axis R − dR, back through a ring into the same ellipse rotated by 90◦ and finally
back to a ring. The strength of a gravitational wave is determined by how rapidly
the quadrupole moment of its source is changing:

h ' G

c4
d2Q/dt2

D
(1.2.1)

where h is the strain, the strength of a gravitational wave, Q is the quadrupole
moment of the source and D is the distance from source to observer and c is the
speed of light.

In principle any accelerated mass produces gravitational waves, for example
a falling apple. But the quantity G

c4 = 8.26 × 10−45kg−1(m/s2)−1 is very tiny,
therefore we need very large masses undergoing extreme accelerations to produce
detectable gravitational waves. Thus we look for most energetic phenomena in the
universe like big bang, supernovae explosion or compact binary coalescence [5].
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1.3. PSR B1913+16: Indirect Evidence of Gravitational Waves

Figure 1.1. The effect of a gravitational wave on a ring of particles. The wave is traveling
in the z-direction (perpendicular to the page). The upper and lower parts are the effects
of a "+" and ” × ” polarised wave, respectively.

1.3 PSR B1913+16: Indirect Evidence of Gravitational Waves

Even after several years of general relativistic predictions of gravitational waves,
their existence was not universally believed. The very first convincing experimental
evidence was given by Russell Hulse and Joseph Taylor in 1974 [6] in connection
with the discovery of binary pulsar PSR B1913+16. The observed system must be
composed of neutron stars, at least one of which is a pulsar. We observe a pulse of
radio waves every time the bright spot sweeps around to face Earth [7]. The pulsar
has a rotational period of 59 ms and its frequency varied with a period of 7.75
hours; apparently it is a member of a binary system with high eccentricity [8, 9].

After several years of observation [10, 11], a variety of relativistic effects has
been recognized: orbital precession, advance of periastron, gravitational redshift,
and the time-dilation and so on. It is found that both the objects in the system
were neutron stars (incredibly dense objects the burned-out core often left behind
after a supernovae) with masses around 1.4 M� (solar mass). But the most excit-
ing prediction was that they found the orbital period was decreasing by about 75
millionths of a second per year. This could not be understood unless the dissipa-
tive reaction force associated with gravitational waves produced is included. Thus
the two neutron stars gradually fall closer to each other and their orbital speed
increases steadily because it emits energy as gravitational waves and this is in ex-
cellent agreement with the rate predicted by the general relativity as shown in the
Fig. 1.2.

The frequency of the gravitational waves from the Hulse-Taylor binary system
are too low for the existing ground based detectors to detect the signal. But the
rate of orbital decay as predicted by the general relativity is in perfect agreement
with the experimental observation is the very first strong evidence for the existence
of gravitational waves [12, 13]. This discovery of Hulse and Taylor has opened a
new window to study gravitation and they were awarded Nobel prize in 1993.
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1. Introduction

Figure 1.2. The orbital period of binaries PSR B1913+16 decreases because the system
loses energy as gravitational waves. Since the system is relativistic, the effect is very strong
here. The measure of this decrease in orbital period is due to the steady shift over time
of the time of the pulsar’s periastron (closest approach to its companion). The points are
the observed data points over several decades and the solid line is the general relativity
prediction.

1.4 GW150914: The Direct Detection of Gravitational Waves

According to general relativity, whenever a sufficient mass is compressed into a very
small volume such that the gravitational pull at the surface is too large, even light
cannot escape once it enters into the surface. Such objects are called black holes.
Black holes can be identified with minimum number of properties like mass, spin
and charge.

Coalescence of black hole binaries are the most promising sources of gravita-
tional radiation [14, 15]. According to general relativity the coalescence happens
in three phases: in-spiral, merger and ringdown (Fig. 1.3). During the evolution
there is loss in the energy and angular momentum of the system; as they are carried
away by the gravitational waves. Therefore the orbit shrinks at the rate predicted by
general relativity, and is already confirmed by the observation in the Hulse-Taylor
binary system.
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1.4. GW150914: The Direct Detection of Gravitational Waves

"The black holes of nature are the most perfect macroscopic objects there are
in the universe: the only elements in their construction are our concepts of space
and time. And since the general theory of relativity provides only a single unique
family of solutions for their descriptions, they are the simplest objects as well."

– S. Chandrasekhar, The Mathematical Theory of Black Holes [16]

Figure 1.3. The evolution of binaries occur in three stages: in-spiral, merger and ring-
down, as shown above. During the merger phase the system emits huge amount of grav-
itational waves. The orange coloured wave is the gravitational wave pattern observed in
LIGO - Hanford and similarly the blue coloured wave is the pattern obeserved in LIGO
- Livingston. These observations are named as GW150914 to indicate that the gravita-
tional waves passed the detectors on 2015 September 14 (EST). Credit: LIGO / NSF /
A. Simonnet (SSU)

11



1. Introduction

After the completion of field equations in 1915, Einstein predicted the existence
of gravitational waves in 1916. Historically searches for gravitational waves were
started with the development of "Weber bar" detectors [17] and then Interferometric
detectors since 1970 [18,19].

After five decades of work, advanced Laser Interferometer Gravitational-Wave
Observatory (advanced LIGO) is in operation now and made the first direct obser-
vation of gravitational waves [20,21]. The event is named as GW150914 to indicate
that the gravitational waves passed the detectors on 2015 September 14 (EST). The
wave appeared first at Livingston, LIGO detector and then at Hanford, detector, a
7 ms later. This time difference is consistent with the fact that gravitational wave
travels at the speed of light . The gravitational wave stretched and squeezed space-
time with the frequency sweeping from 40 Hz to 260 Hz over 0.2s in the pattern
of two black holes merging together (Fig. 1.4). The masses of two black holes are

Figure 1.4. Pictures from the paper [20] reporting the GW150914 discovery. The fre-
quency of gravitational wave oscillation plotted vertical, as a function of time plotted
horizontally. The colors show the strength of the waves. Green and yellow represents the
oscillations of gravitational wave; yellow represents the very strong oscillations during the
merger phase. Blue colour due to noise in the detector. At both Hanford and Livingston,
the green-yellow oscillations have precisely the form that we expect for gravitational waves
produced by binary black holes in-spiralling and colliding.

predicted to be 29 M� and 36 M�. They merged to form a single black hole with a
mass of 62 M�. Thus the remaining 3 M� energy is released as gravitational waves
during the inspiral and merger phases of these black holes. Then the remnant black
hole has spin at a rate of 100 rotations per second. Thus the discovery implies the
following conclusions:

(i). First direct detection of gravitational waves
(ii). First direct evidence of existence of black holes
(iii). First observation of binary black holes.

12



1.5. Laser Interferometer Space Antenna (eLISA) and sources

This discovery give rise to a new branch of astrophysics: gravitational wave astron-
omy [22, 23]. Through which we can explore the dark side of the universe in the
very broad spectrum which were inaccessible to us with electromagnetic astronomy.

Black holes and/or neutron stars, composed of stellar mass binaries are opti-
mistic sources for ground based network of detectors [24–27] like advanced-LIGO,
VIRGO, KAGRA, GEO 600 and LIGO-India. The observation of gravitational
waves from such binaries will bring various information: event rate, binary param-
eters and even possible deviations from general relativity [28–30].

1.5 Laser Interferometer Space Antenna (eLISA) and sources

The existing ground based detectors are sensitive around 100 Hz. The universe is
rich in strong sources of gravitational waves when we probe below these frequen-
cies. But the seismic noise makes the ground based detectors insensitive for lower
frequencies. Therefore we need observations from space. The space based detector
eLISA is sensitive for frequencies from 0.1 mHz to 100 mHz [31,32], and it is planned
to be launched by European Space Agency (ESA) in 2034. These frequencies cor-
responds to wide range of gravitational wave sources and its direct detection with
eLISA will answer the very fundamental questions; mapping the present universe
to all the way shortly after the Big bang. The mission has been named with the
science theme The Gravitational Universe [33] by the ESA.

The electromagnetic observations clearly show that stars, black holes, and
galaxies are ubiquitous components of the universe [34]. eLISA will study these
objects in the gravitational wave spectrum. Thus it measures the amplitude of the
strain in the space as a function of time. The following are the prospective sources
(not limited to) of gravitational waves:

Supermassive Binary Black Holes Almost all bright galaxies (including our
own Milky Way) host one or more massive central black holes. Their masses range
from 104 M� – 107 M� and these are called as supermassive black holes. When
galaxies coalesce (Fig. 1.5), these black holes will merge eventually [35], releasing
huge amount of gravitational radiation during the process. Thus detecting these
signals will not only test theories of gravity and black holes, but also reveal infor-
mation about the evolution and merger history of galaxies [36].

Ultra-Compact Binaries The components of binaries could be compact objects
like stellar mass black holes, neutron star or white dwarf. The Milky Way is full
of these sources [37], but only a small fraction is observable in the radio and X-ray
spectrum. Since the maximum loss of energy from these systems are always through
gravitational waves, and it lies in the frequency range of eLISA [38], it should be
possible to map all these objects soon.
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1. Introduction

Figure 1.5. Coalescence of two super-
massive black holes. The expected grav-
itational waveform has in-spiral, merger
and ringdown phase. Merging galaxy NGC
6240 [35] has two giant black holes as re-
ported by NASA’s Chandra X-ray observa-
tory. Credit: NASA / ESA / the Hubble
heritage / A. Evans.

Figure 1.6. The fossil gravitational waves
are the only way to probe the early Uni-
verse all the way immediately after the
Big Bang. The expected gravitational
waveform is stochastic background (ran-
dom noise). Credit: NASA / WMAP sci-
ence team.

Figure 1.7. An artist impression of
EMRS; a small black hole inspiralling
around a supermassive black hole. The
modelled waveform would have many har-
monics as shown. Credit: NASA.
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1.5. Laser Interferometer Space Antenna (eLISA) and sources

The Big Bang and The Early Universe Since the universe was transparent
to gravity moments after the Big Bang and long before light (remember the first
light still present, Cosmic Microwave Background was produced only about 300,000
years after the Big Bang), gravitational waves will allow us to observe further back
into the history of the universe than ever before. And since gravitational waves
are not absorbed or reflected by the matter in the rest of the universe, we will be
able to see them in the form in which they were created. Immediately after the
Big Bang, when the Universe was very young it underwent a period of very rapid
expansion, as a result space-time got distorted which in turn produced gravitational
waves between approximately 10−43 to 10−32 seconds after the Big Bang (Fig. 1.6).
These relic gravitational waves from the early evolution of the universe may carry
information about the origin and history of the universe.

Extreme Mass Ratio Systems The supermassive black holes in the galactic
centres may be accompanied by one or more stellar mass compact objects like black
hole, neutron star or white dwarf, of few solar masses are called Extreme Mass Ratio
Systems (EMRS) (Fig. 1.7). eLISA will track the complex relativistic orbits of the
stellar companion around a central black hole in the mass interval between 104 M�
< M < 5× 106 M� for upto 104 – 105 cycles [39,40]. The waveforms emitted from
these systems would inform us about the stellar mass compact object populations,
mass spectrum and their spin. It will also describe the properties of space-time
geometry around the central black hole [41, 42] and the formation of supermassive
black holes at the galactic centers [43].

Infrared astronomy has given the best empirical evidence for the existence of a
4 million solar mass black hole in our Milky Way. Observation has not only tracked
the 28 stars orbiting a supermassive black hole [44, 45]: Sagittarius A*, but also
predicted its mass and distance (27,000 light years away from the solar system).
The stellar orbits in the galactic centre show that the central mass concentration of
four million solar masses must be a black hole, beyond any reasonable doubt [46].

Though most of the black holes in nature are spinning, we start modelling
EMRS as a small spinning black hole or a neutron star orbiting around a static
spherically symmetric - supermassive black hole. This is the subject of this thesis.
The mass ratio between the smaller compact object and the central black hole is
typically ∼ 10−5. Because of this extreme mass ratio, the curvature produced by
the smaller object can be neglected. I introduce the necessary general relativistic
tools for modelling EMRS in chapter 2 & 3. After this I discuss EMRS: a test mass
orbiting a Schwarzschild black hole in chapter 3. Then I discuss the formalism for
a spinning compact object in Schwarzschild space-time in chapter 4, which we have
developed recently [47]. In chapter 5, I discuss the applications of our formalism and
important aspects of the dynamics of EMRS [48]. The theoretical model I present
in the rest of the thesis is esentially the preparation for eLISA observations. The
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1. Introduction

first direct observation of EMRS and therefore supermassive black holes, through
gravitational wave detection is expected immediately after the launch of eLISA
mission. The estimated detection rates based on the best available models are 50
events for a 2 year mission [49].
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Chapter 2 presents the Equivalence Principle and builds up the necessary differ-
ential geometry to describe General Relativity. The geodesic equations of motion
are developed starting from the action principle and also from the Hamiltonian
dynamics. I conclude by describing the field equation and its significance.





2

Gravity and General Relativity

2.1 The Equivalence Principle

The Equivalence Principle is a corner stone of Einstein’s theory of gravity, General
Relativity (GR) [50].

In its original form it refers to the equivalence between gravitational and iner-
tial mass, as demonstrated experimentally by various scientists from the late 16th
century onward. This was the starting point for Newton’s theory of gravity in which
the gravitational pull of the earth gives the same acceleration to an apple and to
the moon. In GR it holds as the acceleration of objects results from the geometry
of space-time, independent of mass or composition. In this context it is usually
referred to as the Weak Equivalence Principle.

The Equivalence Principle formulated by Einstein, the Einstein Equivalence
Principle is slightly stronger. It says that a reference system in free fall is a local
Lorentz frame, in which the laws of special relativity hold. In such a system non-
interacting objects fall at the same rate with no relative acceleration. It is a local
Lorentz frame as these statements only hold in the limit that distances are small
compared to the local scale of space-time curvature, otherwise there would be tidal
accelerations.

There also exists a third version of the Equivalence Principle, which states that
the equivalence of gravitational and inertial mass includes all possible contributions
to the mass including gravitational binding energy (self-energy). This is called the
Strong Equivalence Principle and is most difficult to test, as usually gravitational
binding energy is extremely weak. The only objects in which gravitational con-
tribution to mass is significant are compact bodies like neutron stars and black
holes.
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2. Gravity and General Relativity

2.2 Coordinates, metric and motion

In the absence of gravity, in a local Lorentz frame, free particles move with constant
velocities on straight trajectories. When different sections of these trajectories in
overlapping Lorentz frames are glued together, one gets trajectories which are still
in a generalized sense the "shortest path" between two space-time points: geodesics
[51].

An invariant measure of distance along a particle’s space-time trajectory, or
world line, is the proper time τ . It is the time measured during any short sections
of the worldline by a clock at rest w.r.t. the particle. Let (x) be a coordinates for
the patch of space-time where the trajectory is located, and consider two points on
the trajectory with coordinates (xµ) and (xµ+dxµ). Then the proper time interval
dτ is determined from a quadratic expression in the coordinate intervals dxµ:

− dτ2 = gµν(x)dxµdxν . (2.2.1)

The coefficients gµν(x) define the metric for the coordinate system xµ at the given
point. As it is an invariant, the same quantity measured in terms of a different
coordinate system (x′) is

− dτ2 = g′µν(x′)dx′µdx′ ν . (2.2.2)

Now the diffeomorphism xµ → x′µ(x) if it is smooth allows us to write the last
expression also as

g′µν(x′)
∂x′µ

∂xκ
∂x′ ν

∂xλ
dxκdxλ. (2.2.3)

Comparing with expression (2.2.1) gives

gκλ(x) = g′µν(x′)
∂x′µ

∂xκ
∂x′ ν

∂xλ
. (2.2.4)

This shows how the metric coefficients change between different coordinate systems.
The inverse metric is written gµν(x), such that at the same point in the same
coordinate system

gµλgλν = δµν .

It changes between coordinate systems by the inverse transformation

gµν(x) = g′κλ(x′)
∂xµ

∂x′κ
∂xν

∂x′λ
.

Now the total proper time along a curve xµ(τ) between two space-time points (a, b)

with time-like separation is ∫ b

a

dτ. (2.2.5)
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2.3. Hamiltonian dynamics

Notice that we can introduce an arbitrary parameter λ labeling the points on the
curve, as long as it is monotonic between (a, b). Therefore, the time interval

dτ =

(
−gµν

dxµ

dλ

dxν

dλ

)1/2

dλ, (2.2.6)

where dλ is the displacement on space-time. We are varying the paths

xµ(x)→ xµ(x) + δxµ(x) (2.2.7)

keeping the end-points fixed, and will denote the τ -derivatives by ẋ(τ) and ∂λ ≡
∂
∂xλ =,λ. By the standard variational procedure one then finds

δS =
1

2

∫
dλ

(
−gµν

dxµ

dλ

dxν

dλ

)−1/2 [
−δgµν

dxµ

dλ

dxν

dλ
− 2gµν

dδxµ

dλ

dxν

dλ

]

=
1

2

∫
dτ
[
−gµν ,λ ẋµẋνδxλ + 2gµν ẍ

νδxµ + 2gµν ,λ ẋ
λẋνδxµ

]
=

∫
dτ

[
gµν ẍ

ν +
1

2
(gµν ,λ +gµλ,ν −gνλ,µ ) ẋν ẋλ

]
δxµ

(2.2.8)

Here the factor of 2 in the first equality is a consequence of the symmetry of the
metric, the second equality follows from an integration by parts, the third from
relabelling the indices in one term and using the symmetry in the indices of ẋλẋν

in the other.
We set the variation of action to zero, δS = 0. Further re-naming µ → κ and

multiplying by gµκ, we obtain the equations for a timelike geodesic in an arbitrary
gravitational field:

d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0, (2.2.9)

where Γµνλ is the Christoffel connection or Levi-Civita symbol, which is symmetric
in the second and third indices:

Γµλν = Γµνλ =
1

2
gµκ (gκλ,ν + gκν,λ − gλν,κ) . (2.2.10)

2.3 Hamiltonian dynamics

The equation (2.2.9) for geodesic motion was derived from the geometric princi-
ple of extremizing the amount of proper time along the curve. However the same
equation of motion can also be obtained in a canonical phase-space approach with
an appropriate hamiltonian. This approach introduces next to the particle’s co-
ordinates xµ(τ) also the canonical momenta πµ(τ). The appropriate hamiltonian
is

H =
1

2m
gµν(x)πµπν . (2.3.1)
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2. Gravity and General Relativity

Hamilton’s equations then imply the following equations of motion:

ẋµ =
∂H

∂πµ
=

1

m
gµνπν ,

π̇µ = − ∂H
∂xµ

=
1

m
gκλ,µg

κρgλσπρπσ = mgκλ,µẋ
κẋλ.

(2.3.2)

These equations can be rewritten in the form

πµ = mgµν ẋ
ν , ẍµ + Γµλν ẋ

λẋν = 0. (2.3.3)

Thus equation (2.2.9) is reobtained. Although less geometric, this method is entirely
equivalent and is useful if more interactions than just with the curved background
geometry are to be included, like electric charge or spin. This will become clear in
the chapters to follow.

2.4 Differential geometry

The quantities that appeared in the previous sections can be introduced in a more
general way not only on curves (geodesics) but as fields of geometric objects on
the space-time manifold at large [52]. Vector fields Aµ(x) are sets of functions
transforming under a change of coordinates as

Aµ(x) = A′ν(x′)
∂x′ ν

∂xµ
,

and similarly for higher-rank tensors Aµν.... Taking the derivative of a vector or
tensor is somewhat delicate, as in general it produces an new object which is not
a tensor itself. However, one can define a covariant derivative using the Christoffel
connection introduced before. Indeed one can construct a proper rank-2 tensor from
a vector by taking

DλAµ = ∂λAµ − ΓνλµAν . (2.4.1)

Similarly a rank-2 tensor is lifted to a rank-3 tensor by taking

DλAµν = ∂λAµν − ΓκλµAκν − ΓκλνAµκ,

etc. To prove the statement one has to check the transformation properties of the
connection coefficients:

Γµλν(x) = Γ′κρσ(x′)
∂x′ ρ

∂xλ
∂x′σ

∂xν
∂xµ

∂x′κ
− ∂2x′κ

∂xλ∂xν
∂xµ

∂x′κ
.

For proofs we refer to the literature [3, 50].
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2.4. Differential geometry

Clearly in contrast to ordinary partial derivatives, covariant derivatives do not
commute. Indeed

[Dµ,Dν ]Vλ = Dµ (∂νVλ − ΓρνλVρ)− (µ↔ ν)

= ∂µ (∂νVλ − ΓρνλVρ)− Γσµν (∂σVλ − ΓρσλVρ)− Γσµλ (∂νVσ − ΓρνσVρ)

− (µ↔ ν)

= −∂µ (ΓρνλVρ)− Γσµλ (∂νVσ − ΓρνσVρ)− (µ↔ ν)

= −∂µΓρνλVρ + ΓσµλΓρνσVρ − (µ↔ ν)

= R ρ
µνλ Vρ

(2.4.2)
where

R ρ
µνλ = −∂µΓρνλ + ∂νΓρµλ − ΓσνλΓρµσ + ΓσµλΓρνσ. (2.4.3)

Here although each single term in R ρ
µνλ is not a tensor, under a diffeomorphsim, we

can prove the following transformation properties [3] for the resulting combination

R′ β
σαξ =

∂xµ

∂x′σ
∂xν

∂x′α
∂xλ

∂x′ ξ
∂x′ β

∂xρ
R ρ
µνλ , (2.4.4)

and therefore, it is a (1, 3)-tensor; called as the Riemann tensor. It includes second-
order derivatives of the metric: it does not vanish therefore in a locally inertial
frame. It vanishes if and only if a manifold is flat. It is therefore the curvature
tensor. In particular, if the Riemann tensor vanishes, we can always construct a
coordinate system in which the metric components are constant.

The Riemann tensor (2.4.3) satisfies a number of symmetry properties. It is
anti-symmetric in the first two or last two indices and symmetric in the first and
last pairs of indices:

Rµ νρσ = −Rµ νσρ, Rµνρσ = −Rνµρσ, Rµνρσ = Rρσµν , (2.4.5)

and sum of cyclic permutation are zero:

Rµ νρσ +Rµ ρσν +Rµ σνρ = 0, (2.4.6)

where the first index has been lowered using the metric: Rµνρσ = gµηR
η
νρσ. It

can be shown that these constraints reduce the number of independent components
of the Riemann tensor in n dimensions from n4 to n2

(
n2 − 1

)
/12, i.e. 20 in 4

dimensions, and only 1 in two dimensions.
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2. Gravity and General Relativity

Then the invariant parts of the Riemann tensor are defined as the Ricci tensor
(a symmetric tensor) Rµν and Ricci or curvature scalar R:

Rµν ≡ Rα µαν , R ≡ gµνRµν . (2.4.7)

In addition to these algebraic identities, the Riemann tensor obeys a differential
identity:

∇γRµ νρσ +∇σRµ νγρ +∇ρRµ νσγ = 0, (2.4.8)

also called as Bianchi identity. Further contracting the Bianchi identity gives

∇µRµν =
1

2
∇νR. (2.4.9)

This allows to define a "conserved" tensor, the Einstein tensor :

Gµν = Rµν −
1

2
gµνR, (2.4.10)

i.e., the Bianchi identity implies that the divergence of this tensor vanishes identi-
cally,

∇µGµν = 0. (2.4.11)

This is sometimes called the contracted Bianchi identity.

2.5 Einstein’s Field Equation

Einstein field equations [3, 53] describe the physical universe as a 4-dimensional
Lorentzian manifold. It is the relation between curvature and energy-momentum
content in the universe. This allows us to view the curvature tensor as a physical
property of the universe, as a function of mass, momentum and energy.

The curvature of the Lorentzian manifold of space-time is caused by energy-
momentum. Since geodesics on this manifold are motions of particles in free fall;
that is, only affected by the force of gravity, curvature and gravitation are linked.
The source of gravity is energy-momentum, and the source of curvature in this
manifold is gravity. The precise equation for this relation is formulated as

Rµν −
1

2
gµνR = −8πGTµν , (2.5.1)

where the left hand side is the Einstein tensor Gµν as we defined in (2.4.10), G
= 6.674× 10−11Nm2/kg2 is the Newton’s constant, Tµν is the Energy-momentum
tensor of all gravitating matter.

Now, number of observations can be made: As a consequence of Bianchi iden-
tity, the Einstein’s tensor is covariantly conserved as shown in (2.4.11). Then the

24



2.5. Einstein’s Field Equation

consistency of the Einstein’s field equation (2.5.1) implies that the Energy momen-
tum tensor Tµν must also be covariantly conserved,

∇µTµν = 0. (2.5.2)

Einstein’s field equations constitutes a set of non-linear coupled partial differential
equations whose general solution is not known. Usually one makes some assump-
tions, for instance spherical symmetry. Because the Ricci tensor is symmetric, the
Einstein’s field equations constitute a set of 10 algebraically independent second
order differential equations for gµν . Then the general covariant nature of Einstein
equations makes us to expect only 6 independent equations for the metric.

Observe that the Riemann curvature tensor (2.4.3) contains terms, which are of
the form a single derivative acting on the Christoffel connection, and terms which
are quadratic forms in the connection. The Christoffel connection (2.2.10) is in
turn expressed in terms of single derivatives acting on the metric tensor. This then
implies that the Einstein’s field equation (2.5.1) contains derivatives of the metric
tensor up to second order in space-time, and in that sense it resembles the Maxwell
equations.

The principal difference between the electrodynamics and the dynamics of grav-
itational field in GR are the nonlinear terms, contained in the quadratic forms in
the Christoffel connection, which makes the theory more complicated. These terms
are dynamically very relevant in strong gravitational fields. A second difference is
that, in GR the dynamical field is the metric tensor, which is a rank two symmetric
tensor field, while in the electrodynamics there are vector fields.

Finally, the coupling constant, 8πG/c4 ∼ 2 × 10−43s2 kg−1m−1 is dimension-
full, but extremely small on any other physical scale, such that only in the presence
of matter under extreme conditions (large energy densities), the matter effects on
space-time can be strong. Such extreme conditions are found in compact objects
like black holes and neutron stars.

Thus, GR models the effects of gravity as the curvature of Lorentzian manifold.
It of course also generalizes the special relativity by using an in general non-flat
metric tensor, and in fact is required to approximate to special relativity locally.
Special relativity is a special case of GR, where there is no gravitational force
acting on the particle. Further, when the motion is non-relativistic and in the weak
gravitational field, we can recover Newton’s theory of gravity: ∇2φ = 4πGρ (φ is
the gravitational potential and ρ is the matter density).
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Chapter3 explores the motion of test particles in curved space-time in the Hamil-
tonian formalism. I develop the particle’s dynamics with the Poisson brackets, the
minimal Hamiltonian and the conserved quantities. Then applying the formalism in
the Schwarzschild space-time, the circular orbits and the Innermost Stable Circular
Orbit are found. By describing the effective potential, the various kinds of orbits:
circular, eccentric, scattering and plunging orbits are explained. Further exploring
the geodesic deviation method, the fully relativistic first order perturbation theory
for eccentric orbits are obtained. From the frequency analysis and stability crite-
rion the method of finding the Innermost Stable Circular Orbit is generalized. The
chapter is concluded with the equations of motion obtained from the conservation
of the energy-momentum tensor.





3

Motion in Curved Space-time

3.1 Hamiltonian Formalism

The basic machinery of GR has been described in the previous chapter. Now
we want to investigate the dynamics of test particles in curved space-time with
in the Hamiltonian framework. Hamiltonian formalism constitutes three sets of
ingredients: equations of motion, phase-space and the conserved quantities.

The equations describe test particle dynamics are so-called geodesic equations.
We have derived geodesic equations of motion starting from the standard variational
procedure and also from the Hamiltonian dynamics. In the following sections it is
further shown that, it can be obtained from the principles of energy-momentum
conservation.

The phase-space formulation of motion in curved space-time is being con-
structed with the closed set of Jacobi identities expressed as covariant Poisson-Dirac
brackets. It consists of the position co-ordinate xµ and the covariant momentum
πµ, and therefore its anti-symmetric bracket is:

{xµ, πν} = δµν , (3.1.1)

all other possible brackets vanish. These brackets are independent of the specific
Hamiltonian. Therefore, in principle we can use varieties of covariant Hamiltonians
with the brackets to obtain the equation of motion. However, here we are interested
in studying the geodesic motion of the test particle in curved space-time i.e., the
particle’s interaction is strictly gravitational. Therefore as described in the previous
chapter the appropriate Hamiltonian is

H =
1

2m
gµν(x)πµπν . (3.1.2)

Then the proper-time evolution equations for phase-space co-ordinates are obviously
generated by requiring its brackets to vanish with the Hamiltonian. It is important
to note that this Hamiltonian describes the particle’s mass as a universal constant
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3. Motion in Curved Space-time

of motion for any space-time:

H = −m
2

⇒ gµνu
µuν = −1. (3.1.3)

It is called the Hamiltonian constraint in the literature.

3.2 Symmetries, Killing vectors, and Constants of motion

In addition to the universal constants of motion eq. (3.1.3), there exists conserved
quantities as a result of symmetries of space-time. Emmy Noether discovered that
physical quantities such as energy, momentum, angular momentum, etc. which
remain constant during the evolution of the system are related to symmetries of
the dynamics. Thus symmetries lead to conservation laws, and knowing a conserved
quantity of a dynamical system allows to reduce the dimension of the phase space
in which the system is defined.

From SR we know that suitable coordinate transformations on the Minkowski
metric leaves the metric invariant, giving rise to the Poincaré group of symmetries.
Similarly, the standard metrics on the two- or three-sphere have rotational sym-
metries because they are invariant under rotations of the sphere. We can describe
this in two ways: either as an active transformation, in which we rotate the sphere
and nothing changes, or as a passive transformation, in which we do not move the
sphere, and we just rotate the coordinate system. These descriptions are equivalent.

In the context of geometry we define symmetry as an invariance of the metric
under a coordinate transformation. The symmetries of a metric are called isome-
tries. Quantitatively, we start with a manifold M , with coordinates xµ. Let the
metric in these coordinates be gµν(x). Suppose we make an infinitesimal change of
coordinates

xµ → x′µ = xµ − ξµ(x) (3.2.1)

For detecting continuous symmetries we require the invariance of the line element
under infinitesimal transformations. We know that the metric tensor transforms as

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (3.2.2)

Using the invariance of the metric under an isometry we can also write

g′µν(x′) = gµν(x′) ' gµν(x)− ξλ∂λgµν(x). (3.2.3)

The infinitesimal coordinate transformation also implies

∂xα

∂x′µ
' δαµ + ∂αξ

µ,
∂xβ

∂x′ ν
' δβν + ∂αξ

ν . (3.2.4)
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3.2. Symmetries, Killing vectors, and Constants of motion

Combining these results the Lie derivative of the metric w.r.t. the displacement
vector ξµ must vanish:

Lξgµν ≡ ξλ∂λgµν + ∂µξ
λgλν + ∂νξ

λgµλ = 0. (3.2.5)

Using the metric postulate
∇λgµν = 0, (3.2.6)

this can be rewritten covariantly as

Lgµν = ∇µξν +∇νξµ = 0. (3.2.7)

Vector fields satisfying these equations are called the Killing vectors. Now we will
establish the conserved quantities associated with these Killing vectors.

3.2.1 Constants of motion

In classical mechanics, the angular momentum of a particle moving in a rotationally
symmetric gravitational field is conserved. In GR the concept of symmetries of a
gravitational field is replaced by symmetries of the metric, and we therefore expect
conserved quantities associated with the presence of Killing vectors.

Let us consider a massive particle moving along a geodesic of a spacetime which
admits a Killing vector ξα. The geodesic equations written in terms of the particle’s
four-velocity uα = dxα/dτ read

duα

dτ
+ Γαβνu

βuν = 0, (3.2.8)

by contracting the above equation with ξα, we find

ξα

[
duα

dτ
+ Γαβνu

βuν
]
≡ d (ξαu

α)

dτ
− uα dξα

dτ
+ Γαβνu

βuνξα = 0 (3.2.9)

Since
uα
dξα
dτ

= uβuν
∂ξβ
∂xν

(3.2.10)

therefore eq. (3.2.9) becomes,

d(ξαu
α)

dτ
− uβuν

[
∂ξβ
∂xν
− Γαβνξα

]
≡ d(ξαu

α)

dτ
− uβuνξβ;ν = 0. (3.2.11)

Since ξβ;ν is antisymmetric in β and ν, while uβuν is symmetric, the term uβuνξβ;ν

vanishes, and eq. (3.2.11) finally becomes

d(ξαu
α)

dτ
= 0 ⇒ ξαu

α = gαµξ
µuα = const. (3.2.12)
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3. Motion in Curved Space-time

Eq. (3.2.12) can re-written as ξµπµ = constant ≡ J (let’s say), where πµ = mgµνu
ν .

It is also straight forward to check the quantity J is a constant of the particle motion,
by demanding its brackets to vanish with the Hamiltonian:

{J,H} = 0 ⇒ J = ξµπµ (3.2.13)

Thus, for every Killing vector there exists an associated conserved quantity.

3.3 Spherical symmetry

The Einstein Field Equations are a complicated set of non-linear equations with
10 unknown functions of space-time. These equations are most easily solved in
space-times with a maximal number of symmetries as these give rise to a maximal
number of constants of motion. This accessibility makes using spherically symmetric
spacetimes all the more attractive as a starting point. Birkhoff’s theorem classifies
all vacuum spherically symmetric spacetimes.

A spacetime is spherically symmetric if it admits an SO(3) group of isometries.
In particular every point will lie on some round sphere, on which the rotation group
acts transitively, which means that one can go from any point on the sphere to any
other point by means of a rotation. Further a space-time is said to be stationary or
static, if it exhibits the property of time-translation symmetry. Static spherically
symmetric metrics admit four Killing vectors, one of which is timelike, while the
remaining three are spacelike, representing the Lie algebra of the rotation group
SO(3).

The most general, static and spherically symmetric metric can be expressed in
spherical polar coordinates with the ansatz

ds2 = −f(r)dt2 + g(r)dr2 + r2
(
dθ2 + sin2θdϕ2

)
. (3.3.1)

The coefficients f(r) and g(r) are fixed by requiring the asymptotic limit i.e., for
r →∞, the metric should be Minkowskian: ds2 = −dt2+dr2+r2

(
dθ2 + sin2θdϕ2

)
.

Due to isotopy and time independence these coefficients cannot depend on (t, θ, ϕ)

and no linear terms in dθ and dϕ.
Note that this metric is diagonal. Therefore the metric and its inverse has the
following components only

gtt = −f(r) grr = g(r) gθθ = r2 gϕϕ = r2sin2θ

gtt = − 1

f(r)
grr =

1

g(r)
gθθ =

1

r2
gϕϕ =

1

r2sin2θ
.

(3.3.2)
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3.3. Spherical symmetry

The next steps are standard, we first compute the non-vanishing components of
affine connections Γµλν = Γµνλ = 1

2 g
µκ (gκλ,ν + gκν,λ − gλν,κ) :

Γttr = Γtrt = −1

2

f ′

f
Γrtt =

1

2

f ′

g
Γrrr =

1

2

g′

g

Γθrθ = Γθθr =
1

r
Γrθθ = − r

g
Γrϕϕ = − r

g
sin2θ

Γϕrϕ = Γϕϕr =
1

r
Γϕθϕ = Γϕϕθ = cot θ Γθϕϕ = −sin θ cos θ.

(3.3.3)

where ′ stands for ∂
∂r . Then the Riemann tensor contracted to get Ricci tensor

Rµν = ∂νΓρρµ − ∂ρΓρµν + ΓσρµΓρνσ − ΓσµνΓρρσ, (3.3.4)

and as a result

Rtt =
1

2

f ′′

g
+

1

4

f ′ 2

fg
− 1

4

f ′g′

g2
+

1

2r

f ′

g

Rrr =
1

2

f ′′

f
+

1

4

f ′ 2

f2
− 1

4

f ′g′

fg
+

1

2r

g′

g

Rθθ = −1 +
1

g
+

r

2g

(
f ′

f
− g′

g

)
Rϕϕ = sin2θ Rθθ

(3.3.5)

The non-diagonal components Rµν with µ 6= ν vanish. These geometric quantities
are more general. Therefore it can be used for any static spherically symmetric
space-time like Schwarzschild, Reissner-Nordstrøm etc.

3.3.1 The Schwarzschild solution

We now want to find an exact solution of Einstein’s equations in vacuum Rµν = 0

(for µ 6= ν), which is spherically symmetric and static. This will be the relativistic
generalization of the newtonian solution for a pointlike mass ϕ = −M/r and it will
describe the gravitational field in the exterior of a non-rotating body. The solution
will be obviously is in the form of eq. (3.3.1), where the coefficients f and g are
fixed in the following way:

The linear combination of time and radial equations of Ricci tensor implies

Rtt
f

+
Rrr
g

=
1

r

g′

g2
+

1

r

f ′

gf
= 0, (3.3.6)
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3. Motion in Curved Space-time

which reveals a simple relation between f and g:

g′

g
= −f

′

f
⇒ log(g) = −log(f) + constant, or g ∝ 1

f
. (3.3.7)

Now, we fix the proportionality constant between f and g as follows. Imagine we
are extremely far away from the star (for example), then the metric should reduce
to the Minkowski metric. So in the limit r →∞ we have g = f = 1. This fixes the
proportionality constant to be 1. Therefore g = 1/f .

Then we only need to compute one of them from one of the differential equations
(3.3.5). Let’s consider Rθθ component and replace g with 1/f . We have

Rθθ = 1− rf ′ − f = 0 ⇒ f(r) = 1 +
C

r
, (3.3.8)

where C is some constant we want to determine. We can fix the constant by
resorting to the weak-field limit which should reproduce the Newtonian gravitational
potential ϕ. In the weak-field limit we just have

f(r) = 1 + 2ϕ(r), where ϕ = −M
r
, (3.3.9)

so the constant C = −2M . Then the complete line element in Droste co-ordinates;
with M the mass, r the radius of the object,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2θdϕ2

)
. (3.3.10)

This is the famous Schwarzschild metric: a unique, static and spherically symmetric
vacuum solution, according to Birkhoff’s theorem; obtained by the astronomer Karl
Schwarzschild [54] in 1916, the very same year that Einstein published his field
equations. It was apparently discovered independently by Johannes Droste [55], a
student of Lorentz at Leiden University, around the same time.

The Schwarzschild metric (3.3.10) looks divergent at r = 2M , the Schwarzschild
radius. As can be seen by switching to other co-ordinates this is actually a co-
ordinate singularity, not a physical singularity of space-time. But the Schwarzschild
radius defines a characteristic gravitational scale for any celestial object, related to
the formation of a horizon. For the earth or even for the sun the radius is actually
very smaller than the radius of the object itself. To compute the radius we need to
insert G and c back to the expression and find

Rs =
2GM

c2
(3.3.11)

which is about 3 km for the sun. So, for most astronomical objects this number
is so small that we don’t need to consider it. However, objects smaller than their
Schwarzschild radius disappear behind the horizon and become black holes.
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3.3. Spherical symmetry

3.3.2 Geodesic equations of motion and effective potential

We now want to consider the motion of a freely falling particle in the Schwarzschild
space-time. The analysis can be simplified by using the constants of motion as im-
plied by the Noether’s theorem; because of the spherical symmetry of the Schwarz-
schild metric, there exists four constants associated with the Killing vectors (3.2.13):
J = ξµπµ. Then

E = ξ0π0, Ji = ξiπi (3.3.12)

where E is the particle’s energy; Ji = (J1, J2, J3) is the total angular momentum of
the system. Without loss of generality we can choose the coordinate system such
that θ = π/2 ⇒ uθ = 0, this way the trajectory lies on the plane perpendicular
to the orbital angular momentum. Here the total angular momentum is strictly
orbital, and the direction chosen to be z-axis. Then we write the equations of
motion (3.2.8) in the component form [56]:

dut

dτ
= − 2M

r (r − 2M)
urut,

(3.3.13)

dur

dτ
= −M (r − 2M)

r3
ut 2 +

M

r(r − 2M)
ur 2 + (r − 2M)uϕ 2,

(3.3.14)

duϕ

dτ
= −2

r
uruϕ. (3.3.15)

With z-axis being the choice of the angular momentum, the constants J1 and J2

turns out to be zero i.e., J1 = J2 = 0. Then we are left with the remaining two
constants from (3.3.12); ε = E/m energy per unit mass and ` = J3/m angular
momentum per unit mass,

ε =

(
1− 2M

r

)
ut, ` = r2sin2θ uϕ = r2uϕ. (3.3.16)

To establish the particle’s orbits, we investigate the equations (3.3.13), (3.3.14) and
(3.3.15). Eq. (3.3.13) can be re-written as

d

dτ

[
ln(ut) + ln

(
1− 2M

r

)]
= 0, (3.3.17)

which can be integrated as ln
[
ut
(
1− 2M

r

)]
= constant or

ut
(

1− 2M

r

)
= constant (3.3.18)
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3. Motion in Curved Space-time

Similarly eq. (3.3.15) is re-written as

1

r2

d

dτ

(
r2uϕ

)
= 0, ⇒ r2uϕ = constant. (3.3.19)

From the Killing constants (3.3.16), we interpret (3.3.18) and (3.3.19) as ε and `.
This implies geodesic equations (3.3.13) and (3.3.15) doesn’t give any new result.
Thus we are left with the radial geodesic equation (3.3.14) only. Upon using the
Killing constants (3.3.16) for ut and uϕ, it turns out be

dur

dτ
= − Mε2

r (r − 2M)
+

M

r(r − 2M)
ur 2 +

`2

r4
(r − 2M).

(3.3.20)

a relation for (ε, `). A second relation between these quantities are given by the
Hamiltonian constraint: gµνuµuν = −1, similarly by using the Killing constants
(3.3.16) we express(

1− 2M

r

)
ut 2 − ur 2

1− 2M
r

− r2 uϕ 2 = 1 ⇒ ur 2 +

(
1− 2M

r

)(
δ +

l2

r2

)
= ε2.

(3.3.21)
or

E =
1

2
ur 2 +

1

2

[(
1− 2M

r

)(
∆ +

l2

r2

)
− 1

]
(3.3.22)

where, E = (ε2 − 1)/2 is the total energy. Note, ∆ is 1 for massive particles and 0

for massless particles. If the particle is massless, the geodesic equation cannot be
parametrized with the proper time. In this case the particle worldline has to be
parametrized using an affine parameter λ such that the geodesic equation takes the
form (3.2.8), and the particle four-velocity is uα = dxα/dλ. The derivation of the
constants of motion associated to a spacetime symmetry, i.e. to a Killing vector, is
similar as for massive particles, recalling that by a suitable choice of the parameter
along the geodesic J = {E, Ji}. Then since for massless particles m2 = 0, the
Killing constants ε and ` are identified as energy and angular momentum.

Eq. (3.3.21) has the form of an energy equation with a "kinetic energy" term,
ṙ2 plus a function of r, "potential energy" equalling a constant. Thus the motion
in the radial coordinate is exactly equivalent to a particle moving in an effective
potential Veff (r) where

Veff (r) =
1

2

[(
1− 2M

r

)(
∆ +

l2

r2

)
− 1

]
. (3.3.23)

Then the simplest orbits one can start with is circular orbits i.e., r = R, for which
we can differentiate the potential and set it to zero: ∂rVeff (r) = 0, which results:

`2(R− 3M) = ∆MR2 (3.3.24)
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3.3. Spherical symmetry

Thus we conclude, the circular geodesics exists only for R > 3M , for massive
particles (∆ = 1) and R = 3M implies null geodesic which is interpreted as light
ring for massless particles (∆ = 0). Further evaluating the second derivative of the
potential yields

∂2Veff (r)

∂r2
= 2∆

M

R3

(R− 6M)

(R− 3M)
(3.3.25)

we observe the circular orbits for R ≥ 6M are stable and positive; R = 6M implies
the flex point. Then the circular orbits between the radius 3M ≤ R < 6M are
necessarily unstable.

We show the above results qualitatively in Fig. 3.1 [50]. Massive test particles obeys
four kinds of orbits in Schwarzschild space-time. The Schwarzschild potential has
one maximum and one minimum if `/M > 12. The following 4 points describes the
Fig. 3.1 from the top:

(i). The circular orbits exists at the radii, when the potential has minimum
or maximum. The orbit at maximum will be in unstable equilibrium, because a
small perturbation will through the particle to infinity or the particle will reach the
singularity at r = 0.

(ii). For E < 0, the particle bounds between two turning points. The cross
symbols are the turning points: the closest approach to the centre is the perihelion
and the farthest approach is the aphelion.

(iii). When E is positive and less than the maximum of the effective potential,
then the orbit is scattering. That is the particle comes from infinity and orbits the
centre and then moves out to infinity.

(iv). If E is greater than the maximum, then the particle comes from infinity
and plunges into the centre.

Now re-writing eq. (3.3.24) for R results,

R =
`2

2M

(
1 +

√
1− 12M2

`2

)
(3.3.26)

which relates the radius of the orbits to angular momentum per unit mass `. Thus
the minima of the potential lies at a special value of ` = 2

√
3M , called as the In-

nermost Stable Circular Orbit (ISCO). ISCO can also be predicted through a more
general method: stability criterion, obtained by evaluating the geodesic deviations
between the neighbouring geodesics. This is presented in the next section.
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3. Motion in Curved Space-time

Figure 3.1. The effective potential Veff (r) and its relation to the total energy E is shown
in the left, where the vertical axis is Veff (r) and the horizontal axis is r/M . Horizontal
lines indicate the vale of E. The shapes of the corresponding orbits are plotted in polar
coordinates r and ϕ, in the plane. The dark region (dot) in each plot is r < 2M .

Then returning to the radial geodesic equation (3.3.20); for circular orbits, it yields

ε2 =
`2

MR

(
1− 2M

R

)2

⇔ uϕ

ut
=

√
M

R3
(3.3.27)

which is a well known Kepler’s result. Thus the geodesic equation (3.2.8) can be
viewed as a generalisation of the Kepler’s law. Finally, using the above result
(3.3.27) along with the normalisation condition (3.3.21), we uniquely express, for
circular orbits the Killing constants (ε, `) in terms of the mass M and the radius R
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of the black hole

εcirc =

(
1− 2M

R

)√(
1− 3M

R

) , `circ =

√
MR(

1− 3M
R .
) . (3.3.28)

We conclude this section with re-writing (3.3.16); the angular frequency of the
circular orbits in terms of (M,R) by using (3.3.28)

uϕ ≡ ωcirc =
1

R2

√
MR(

1− 3M
R

) . (3.3.29)

3.3.3 Geodesic Deviation: Tidal forces

The equivalance principle is only valid locally, at each point. Two neighbouring
points which are each in free fall will fall differently. Hence if two such points are
physically connected, they will feel a force coming from difference in the way that
they free fall. These forces are known as tidal forces.

Thus we are interested in the rate of change of the displacement between the two
curves along the geodesic, i.e. the acceleration of the separation [57,58]. Therefore,
we consider two geodesic paths traced by the near by test particles, with coordinate
vectors, xλ(τ) and x′λ(τ). Then δxλ(τ) = x′λ(τ) − xλ(τ) is the difference of two
nearby geodesics. If vν = dxν/dτ is the tangent vector to a curve xν(τ), then
uλ = vνDνδxλ is the velocity of the displacement. Thus from the geodesics analysis
we have that

uλ = vνDνδxλ =
dδxλ

dτ
+ Γλµνv

νδxµ. (3.3.30)

This leads to the acceleration,

aλ = vνDν(uλ) =
d

dτ

(
dδxλ

dτ
+ Γλµνv

νδxµ
)

+ Γλµνu
νvµ

=
d2δxλ

dτ2
+ ∂ρΓ

λ
µνv

νvρδxµ − ΓµρσΓλµνδx
µvρvσ

+Γλµνv
ν dδx

µ

dτ
+ Γλµν

(
dδxν

dτ
+ Γνρσv

ρδxσ
)
vµ

(3.3.31)

where we have used the geodesic equation dvµ

dτ = −Γµρσv
ρvσ in the third term on

the second line. Then expanding the geodesic equations

d2xλ

dτ2
+ Γλµν(x)

dxµ

dτ

dxν

dτ
= 0,

d2x′λ

dτ2
+ Γλµν(x′)

dx′µ

dτ

dx′ν

dτ
= 0,

(3.3.32)
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3. Motion in Curved Space-time

to lowest order in x′ν(τ)− xν(τ) = δxν(τ) to find an equation for δxν(τ);

d2δxλ

dτ2
+ 2Γλνρv

ν dδx
ρ

dτ
+ ∂ρΓ

λ
νσδx

ρvνvσ = 0, (3.3.33)

inserting this equation into (3.3.31), we obtain

aλ = −∂ρΓλνσδxρvνvσ − ΓµρσΓλµνδx
µvρvσ + ∂ρΓ

λ
µνv

νvρδxµ + ΓλµνΓνρσv
ρvµδxσ

= −R λ
ρµν vµvνδxρ.

(3.3.34)
The Riemann curvature tensor R λ

ρµν in the above equation implies that we can
measure the curvature by examining the proper acceleration of the separation of
two nearby geodesics. With this definition we can re-write the equation of geodesic
deviation eq. (3.3.33) in the simple form,

D2
τδx

µ −R µ
λκ ν v

κvνδxλ = 0. (3.3.35)

The equation of geodesic deviation controls the congruence of nearby geodesics. In a
flat space-time, the curvature tensor vanishes, and hence D2

τδx
µ = d2

τδx
µ = 0. This

means that two initially parallel geodesics remain parallel at all times. In curved
space-times however, the Riemann tensor is non-vanishing, and as a consequence
a freely moving observer sees a relative acceleration of nearby freely moving test
particles, which manifests as tidal effect. This method can also be used to obtain
the eccentric bound orbits of a test mass in the Schwarzschild space-time.

3.3.4 Stability of bound orbits and ISCO

The horizon of a Schwarzschild black hole is located at R = 2M, and the ISCO is
found at a larger value of R. By analysing the effective potential we concluded it
is at R = 6M . Here we start from the above described geodesic deviation method
and analyse the ISCO in the Schwarzschild space-time, in a more generalised way.

The circular orbits found in the previous sections can be used as a special
reference orbits to solve the geodesic deviation equations (3.3.33) to obtain the
stability criterion for bound orbits. Note, it is easy to work with non-covariant
variations (3.3.33) rather than the covariant ones (3.3.35). The conservation of
angular momentum implies the motion of the particles in the equatorial plane:
θ = π/2 i.e., δθ = 0. Thus the allowed deviations from the circular orbits are
parametrized by δxµ = (δt, δr, δϕ) only. Then the deviation equations are written
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3.3. Spherical symmetry

in the compact form 

d2

dτ2 α d
dτ 0

β d
dτ

d2

dτ2 − κ −γ d
dτ

0 η d
dτ

d2

dτ2




δt

δr

δϕ

 = 0 (3.3.36)

where the coefficients are evaluated on the circular reference orbit and are given by

α =
2M

R(R− 2M)

√
R

R− 3M
β =

2M(R− 2M)

R3

√
R

R− 3M
,

γ =
2(R− 2M)

R

√
M

R− 3M
, η =

2

R2

√
M

R− 3M
,

κ =
3M

R3

R− 2M

R− 3M
.

(3.3.37)

Then solving the operator (3.3.36) for its eigen frequency ωd of the oscillations;
λ being its eigen values and are related through, λ± = ±iω,

ωd =
√
ηγ − αβ − κ =

√
M

R3

R− 6M

R− 3M
. (3.3.38)

The real eigenvalues corresponds to stable circular orbits and the imaginary ones
leads to unstable orbits [58]. Then it is straight forward to conclude from eq.
(3.3.38), the eigenvalues are real only for R ≥ 6M . Therefore, we predict R = 6M

is the ISCO. Thus the value of ISCO obtained from the stability criterion and
from minimising the effective potential are the same. Though the machinery to
arrive at ISCO through stability criterion is apparently tedious, this method has
advantage when we include additional degrees of freedom; spin and/or charge to
the test particles [48].

The generic solution for geodesic deviated bound orbits are periodic and the
detailed analysis are given in the references [57]. The frequency ωd of those orbits
can be interpreted as the relativistic generalization of an epicycle and it differs from
that of circular orbits frequency (3.3.29) ωcirc

ωd ≈ ωcirc
(

1− 3M

R

)
(3.3.39)

Therefore the point of closest approach – the periastron, shifts during each orbit
by a fixed amount δϕ,

δϕ = 2π

(
ωcirc
ωd
− 1

)
≈ 2π

(
3M

R

)
(3.3.40)
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In the geodesic deviation method, we develop an approximate analytical solu-
tion to the equations of motion and study the generic bound orbits close to circular
orbits. Then by analysing the frequency of such orbits, we predict the ISCO. The
difference in the frequency of bound orbits to that of circular orbits results in pe-
riastron shift. The periastron shift calculated through this approximation [57] and
the one which is obtained directly by integrating the conservation of the absolute
4-velocity (3.3.21) (a standard exercise [50] for the well-known precession of the
periastron in general relativity) are exactly the same.

3.4 Energy-momentum conservation: equations of motion

The equations of motion has been derived from the standard variational procedure
and from the Hamiltonian formalism. Here we present an independent proof of the
equations of motion from an appropriate energy-momentum tensor.

The Einstein’s tensor is covariantly conserved as a result of contraction of the
Bianchi identity,

Gµν = Rµν −
1

2
gµνR = −8πGTµν , ∇µGµν = ∇µRµν −

1

2
∇νR = 0, (3.4.1)

This implies, Einstein field equation is consistent only if the energy-mometum tensor
Tµν is also covariantly conserved. Thus,

∇µTµν = 0. (3.4.2)

the source term Tµν has the same property as Gµν . Then the energy-mometum
tensor Tµν for a test particle moving on a world-line Xµ(τ) is defined by the proper-
time integral1

Tµν0 =
m√
−g

∫
dτ uµuνδ4 (x− ξ(τ)) (3.4.4)

where ξ(τ) is the position coordinate of the particle in the phase-space. Then the
covariant divergence of Tµν0 vanishes for the particle moving on geodesics:

∇µTµν0 =
m√
−g

∫
dτ

Duν

Dτ
δ4 (x− ξ(τ)) = 0. (3.4.5)

Therefore,
Duν

Dτ
= 0, ⇒ ẍµ + Γµλν ẋ

λẋν = 0. (3.4.6)

1The square root is included because we define the delta-function as a scalar density of weight
1/2, such that for scalar functions f(x)∫

d4y δ4(x− y)f(y) = f(x). (3.4.3)
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Thus we have obtained the geodesic equations of motion in another alternate way.
This is an obvious result in GR. In the following chapters we prove the similar
computation is also possible for non-trivial cases, like including the spin-dependent
forces.
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Chapter 4 starts with summarizing the traditional method of describing spin in
the curved space-time – Mathisson-Papapetrou formalism. In the spinning par-
ticle approximation, I explain an alternative complementary formalism for spin
dynamics. I derive equations of motion for point-like objects in curved space-
time by using the Poisson-Dirac brackets and the minimal Hamiltonian. Then our
method is compared with the traditional one in a qualitative way. The conserved
quantities are developed in the Schwarzschild space-time. Since the closed set of
Poisson-Dirac brackets is model independent, the analysis has been extended with
gravitational and electric Stern-Gerlach interactions by introducing non-minimal
Hamiltonians. Also modified conservation laws emerge reflecting the spin-orbit
coupling. The equations of motions are also obtained from the conservation of the
energy-momentum tensor.





4

Spinning Bodies in Curved Space-time

4.1 Spinning particles

In general relativity (GR), given the metric gµν , the motion of test (single-pole)
particles is determined by the geodesic equations of motion. Thus the single-pole
particle doesn’t have any internal structure [2]. The dynamical equations can be
obtained from the covariant conservation of the energy-momentum tensor. A spin-
ning particle in GR is a pole-dipole particle. Therefore its motion is generalised
on a world line rather than geodesics. The evolution equations for spinning parti-
cles were derived (similar to test particles) by applying the conservation law for the
energy-momentum tensor of matter Tµν , together with the Einstein field equations;
and famously known as Mathisson-Papapetrou (MP) equations [59]:

Dpµ

dτ
= −1

2
Rµνκλu

νSκλ, (4.1.1)

DSµν

dτ
= pµuν − uµpν , (4.1.2)

where pµ is the total 4-momentum of the particle, uµ = dxµ/dτ is the time like
tangent vector (uµuµ = −1) to the world line along which the particle moves i.e.,
centre of mass line used to make the multipole reduction, τ is the proper time along
this world line, and Rµνκλ is the Riemann tensor.

The energy-momentum vector pµ and the intrinsic angular-momentum ten-
sor Sµν can be constructed by computing integrals of components of the energy-
momentum tensor and their first moments over the volume of the body, using
suitable boundary conditions [60]:

Sµν =

∫
x0=const

(
T ν0δxµ − Tµ0δxν

)√
−g d3x (4.1.3)

pµ = muµ − uν
DSµν

dτ
(4.1.4)

The quantity m ≡ −pσuσ is the particle’s mass in the rest frame and it reduces
to ordinary mass when the spin vanishes. The evolution equations (4.1.1) and
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4. Spinning Bodies in Curved Space-time

(4.1.2) are not a closed set of first order differential equations i.e., the system has
10 equations, but has 13 unknown quantities: u(3), p(4) and S(6). Therefore it
needs additional spin supplementary conditions (SSC) to fix a unique world line,
and such that, it makes it possible to keep track of aspects of the structure of the
body. A SSC fixes a centre of reference e.g. the centre of mass and different SSC
defines a different centre of mass world line. Thus the MP equations describe the
evolution of pµ and Sµν along the centre of mass world lines uµ.

In literature there are many supplementary conditions, but for our discussion
we choose to explore with Tulczyjew-Dixon (TD) condition;

Sµνpν = 0, (4.1.5)

which is claimed to be more physical [61, 62]. For an excellent review on various
supplementary conditions and their relation we refer to [63]. The MP equations
along with above conditions are called as Mathisson-Papapetrou-Dixon (MPD)
model [64]. Further analysis concludes that different supplementary conditions
lead to the same physical motion [63].

These highly non-linear (full) equations have been studied through numerical
analysis [65–67]. The analytical solutions are very difficult even in highly symmetric
space-times. The physical reason is that the particle has non-zero size i.e., a small
extended body, whose internal structure is described by its spin (4.1.3). But through
linearising the differential equations (4.1.1) and (4.1.2), an analytical description is
achieved.

The dynamical equations imply, spin-orbit coupling, i.e., spin couples to the
curvature of the background space-time. Therefore the spin force pushes the particle
away from the geodesic. Then the deviation from geodesic motion should be very
small compared with the curvature tensor of the space-time, which enforces a limit
on the particle’s spin [64]. Under these assumptions, the back reaction of the
particle and the gravitational radiation emitted by the particle in its motion are
neglected. This leads to consider the linear approximation of the spin; in this limit
pµ and uµ are parallel: pµ ≈ muµ. Neglecting the higher order terms, equations
(4.1.1) and (4.1.2) reduce to

D(muµ)

dτ
= −1

2
Rµνκλu

νSκλ +O(2), (4.1.6)

DSµν

dτ
= O(2). (4.1.7)

Which implies the mass of the particle remains constant along the motion: dm/dτ =

0 and the spin tensor is parallel transported along the path. Then the TD condition
reduces to the so-called Pirani condition:

Sµνuν = 0. (4.1.8)
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4.2. Spinning-particle approximation

Equations (4.1.6), (4.1.7) and (4.1.8) constitutes the Mathisson-Papapetrou-Pirani
(MPP) model. Note, the Pirani vector (say) Zµ = Sµνuν = 0, throughout the
evolution.

Finally we conclude this section with some additional references for generali-
sation of this method. A similar analysis has been extended for charged spinning
particle (pole-dipole approx.) in a given gravitational as well as electromagnetic
field, by Dixon and Souriau [68–71]. The dynamical equations of motion for an
extended body in a given gravitational field were deduced by Dixon in multipole
approximation to any order [61, 62, 72]. The MP model has been extended for
massless particles i.e., null multipole reduction world line by Mashhoon [73].

4.2 Spinning-particle approximation

In addition to the above well-known method, there is an other complementary
approach to the subject [74] . It constructs effective equations of motion for point-
like objects, which is an idealization of a compact body, at the price of neglecting
details of the internal structure by assigning the point-like object an overall position,
momentum and spin. This is also known as the spinning-particle approximation,
and is used for the semi-classical description of elementary particles as well. A large
variety of models for spinning particles is found in the literature [75–85].

We take the second point of view for the description of spinning test masses
in curved space-time, using an effective hamiltonian formalism similar to the one
introduced in ref. [86]. One of the advantages of this description is that it can be
applied to compact bodies with different types of spin dynamics, such as different
gravimagnetic ratios. In this way specific aspects of the structure can still be
accounted for.

4.3 Covariant Hamiltonian Formalism

Hamiltonian dynamical systems are specified by three sets of ingredients: the phase
space, identifying the dynamical degrees of freedom, the Poisson-Dirac brackets
defining a symplectic structure, and the hamiltonian generating the evolution of
the system with given initial conditions by specifying a curve in the phase space
passing through the initial point. The parametrization of phase-space is not unique,
as is familiar from the Hamilton-Jacobi theory of dynamical systems. Changes
in the parametrization can be compensated by redefining the brackets and the
hamiltonian. A convenient starting point for models with gauge-field interactions
is the use of covariant, i.e. kinetic, momenta rather than canonical momenta; see [87]
and references cited there for a general discussion, and [86] for the application to
spinning particles.
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4. Spinning Bodies in Curved Space-time

The spin degrees of freedom are described by an antisymmetric tensor Σµν ,
which can be decomposed into two space-like four-vectors by introducing a time-
like unit vector u: uµuµ = −1, and defining

Sµ =
1

2
√
−g

εµνκλ uνΣκλ, Zµ = Σµνuν . (4.3.1)

By construction both four-vectors S and Z are space-like:

Sµuµ = 0, Zµuµ = 0. (4.3.2)

In the following we take u to be the proper four-velocity of the particle. Then S

is the Pauli-Lubanski pseudo-vector, from which a magnetic dipole moment can be
constructed, whilst the components of Z, which will be referred to as the Pirani
vector, can be used to define an electric dipole moment [88, 89]. Observe that we
can invert the relations (4.3.1) to write

Σµν = − 1√
−g

εµνκλ uκSλ + uµZν − uνZµ. (4.3.3)

Therefore, if the Pirani vector vanishes: Z = 0 [90], the full spin tensor can be
reconstructed from S. However, in general this is not the case in our formalism. It
is also interesting to note that in addition one can define a third space-like vector

Wµ = − 1√
−g

εµνκλuνSκZλ = (Σµν − uµZν)Zν , (4.3.4)

orthogonal to the other ones:

W · u = W · S = W · Z = 0. (4.3.5)

Together (u, S, Z,W ) form a set of independent vectors, one time-like and three
space-like, which can be used to define a frame of basis vectors carried along the
particle world-line.

4.3.1 Covariant phase-space structure

The full set of phase-space co-ordinates of a spinning particle thus consists of the
position co-ordinate xµ, the covariant momentum πµ and the spin tensor Σµν , with
anti-symmetric Dirac-Poisson brackets

{xµ, πν} = δµν , {πµ, πν} =
1

2
ΣκλRκλµν ,

{Σµν , πλ} = Γ µ
λκ Σνκ − Γ ν

λκ Σµκ,{
Σµν ,Σκλ

}
= gµκΣνλ − gµλΣνκ − gνκΣµλ + gνλΣµκ.

(4.3.6)
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4.3. Covariant Hamiltonian Formalism

The brackets imply that π represents the generator of covariant translations, whilst
the spin degrees of freedom Σ generate internal rotations and Lorentz transforma-
tions. It is straightforward to check that these brackets are closed in the sense that
they satisfy the Jacobi identities for triple bracket expressions. Thus they define a
consistent symplectic structure on the phase space.

To get a well-defined dynamical system we need to complete the phase-space
structure with a hamiltonian generating the proper-time evolution of the system.
In principle a large variety of covariant expressions can be constructed; however if
we impose the additional condition that the particle interacts only gravitationally
and that in the limit of vanishing spin the motion reduces to geodesic motion, the
variety is reduced to hamiltonians

H = H0 +HΣ, H0 =
1

2m
gµνπµπν , (4.3.7)

where HΣ = 0 whenever Σµν = 0. In the following sections we focus first on
the dynamics generated by the minimal hamiltonian H0. However, we also con-
sider extensions with gravitational and electric Stern-Gerlach forces [80]. Thus the
choice of hamiltonians can be enlarged further by including spin-spin interaction
via space-time curvature and charges coupling the particle to vector fields like the
electromagnetic field [86,88].

Eqs. (4.3.6) and (4.3.7) specify a complete and consistent dynamical scheme
for spinning particles. Note that the choice of hamiltonian is fixed by further
physical requirements, and can differ for different compact objects. In that sense the
hamiltonian is an effective hamiltonian, suitable to describe the motion of various
types of objects in so far as the role of other internal degrees of freedom can be
restricted to their effects on overall position, linear momentum and spin.

4.3.2 Minimal equations of motion

The simplest model for a massive free spinning particle in the absence of Stern-
Gerlach forces and external fields is obtained by restricting the hamiltonian to the
minimal geodesic term H0. By itself this hamiltonian generates the following set of
proper-time evolution equations:

ẋµ = {xµ, H0} ⇒ πµ = mgµν ẋ
ν , (4.3.8)

stating that the covariant momentum π is a tangent vector to the world line, pro-
portional to the proper four-velocity u = ẋ. Next

π̇µ = {πµ, H0} ⇒ Dτπµ ≡ π̇µ − ẋλΓ ν
λµ πν =

1

2m
ΣκλR ν

κλµ πν , (4.3.9)

which specifies how the world line curves in terms of the evolution of its tangent
vector. Finally the rate of change of the spin tensor is

Σ̇µν = {Σµν , H0} ⇒ DτΣµν ≡ Σ̇µν + ẋλΓ µ
λκ Σκν + ẋλΓ ν

λκ Σµκ = 0. (4.3.10)
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4. Spinning Bodies in Curved Space-time

In these equations the overdot denotes an ordinary derivative w.r.t. proper time τ ,
whereas Dτ denotes the pull-back of the covariant derivative along the world line
xµ(τ). By substitution of eq. (4.3.8) into eq. (4.3.9) one finds that

D2
τx

µ = ẍµ + Γ µ
λν ẋ

λẋν =
1

2m
ΣκλR µ

κλ ν ẋ
ν , (4.3.11)

which reduces to the geodesic equation in the limit Σ = 0. The world line is
the solution of the combined equations (4.3.11) and (4.3.10) satisfying some initial
conditions. This world line is a curve in space-time along which the spin tensor is
covariantly constant (Fig. 4.1).

It has been remarked by many authors [86, 91–93], that the spin-dependent
force (4.3.9) exerted by the space-time curvature on the particle is similar to the
Lorentz force with spin replacing the electric charge and curvature replacing the
electromagnetic field strength. In this analogy the covariant conservation of spin
along the world line is the natural equivalent of the conservation of charge.

Even though the spin tensor is covariantly constant, this does not hold for
the Pauli-Lubanski and Pirani vectors S and Z individually. Indeed, due to the
gravitational Lorentz force

DτS
µ =

1

4m
√
−g

εµνκλΣκλΣαβRαβνρu
ρ,

DτZ
µ =

1

2m
ΣµνΣαβRαβνρu

ρ,

(4.3.12)

where Σµν is the linear expression in terms of Sµ and Zµ given in eq. (4.3.3).
We observe that the rate of change of both spin vectors is of order O[Σ2]. In
particular, as Z is not conserved in non-flat space-times the condition Z = 0 cannot
be imposed during the complete motion in general. Indeed, the evolution of the
system is completely determined by eqs. (4.3.8, 4.3.9, 4.3.10), and leaves no room
for additional constraints.

We close this section by remarking that the gravitational Lorentz force for unit
mass 1/2 ΣκλR µ

κλ νu
ν can be interpreted geometrically as the change in the unit

vector uµ generated by transporting it around a closed loop with area projection in
the xκ-xλ-plane equal to Σκλ.

4.4 Effective Hamiltonian and MPD formalism: a comparison

The dynamical equations in the MP formalism are not a closed set of first order
differential equations. The system has 10 equations, but has 13 unknown quantities:
u(3), p(4) and S(6). Thus one needs spin supplementary conditions to solve them.
SSC define world lines traced by differently defined centres of mass. The most
commonly used SSC is TD condition (4.1.5). The system is commonly known
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4.4. Effective Hamiltonian and MPD formalism: a comparison

as MPD formalism. The full MPD equations are very difficult to solve even in the
highly symmetric space-times. Therefore one linearizes MPD formalism which leads
to MPP model. Then the coupled equations (4.1.6), (4.1.7) and (4.1.8) constitutes
the closed system.

Figure 4.1. Compares the world lines [94] traced by effective hamiltonian formalism and
MPD model. The thick black line is the world line along which the spin tensor (Σκλ) is
covariantly constant, and uµ is the tangent vector to this world line. Dotted lines are the
world lines followed by some preferred centre of mass in the MPD model. Green double
arrows represents the dipole vector Zµ which quantifies the difference between centre of
mass world lines and the world line of spin tensor (thick, black line).

Where as in the hamiltonian dynamics, the system is described by a set of 2N
phase-space variables satisfying first-order differential equations in the evolution
parameter (proper time). Then by fixing initial conditions the evolution of the sys-
tem is completely and uniquely determined. For spinning particles the phase-space
is 14-dimensional: x(4), π(4), Σ(6). These are subject to 14 first-order differential
equations (4.3.8), (4.3.9) and (4.3.10). Thus the evolution of the system is com-
pletely determined by the initial conditions. Therefore we don’t need any SSC in
our formalism.

The linearized form of MPD formalism precisely coincides with the original
equations of motion (4.3.10) and (4.3.11) in our formalism, whose solution is the
spin tensor parallelly transported along the world line. Then if we consider the
linearized form of our equations of motion, neglecting quadratic or higher order
terms in the spin-tensor Σµν , the right-hand side of equations (4.3.12) vanishes,
and it is possible to require the Pirani condition Zµ = 0 at all times. Thus the
usual MPP dynamics can be recovered in linearized form from our equations.

In the MPD formalism the equations of motion are constructed in a such a way
that, if one fixes an initial condition a constraint on the dipole, such as the Pirani
constraint Zµ = 0; it holds true throughout the evolution. In other words, the
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4. Spinning Bodies in Curved Space-time

equation of motion for Zµ has been replaced by an algebraic constraint Zµ = 0.
This is because of the fact that the canonical momentum pµ in the MPD model is
different from the kinetic momentum πµ in our formalism. Thus the analysis of the
evolution equations are complicated in MPD model.

In contrast, in our formulation the momentum is always strictly kinetic: πµ =

muµ, but the dipole Zµ is dynamical and non-vanishing in general. Therefore the
mass-dipole constraint has been replaced by a proper equation of motion (4.3.12),
which determines how Zµ evolves even if it vanishes initially.

The two formulations are not necessarily contradicting each other. In the MP
case the solution of the dynamical equations is the world line on which the SSC is
always true and so it traces the centre of mass (dotted lines in Fig. 4.1). Since it
accounts for the internal structure of the particle, the spin dynamics is complicated.
In our case the spin-dynamics is simple and straightforward, but the center of mass
is not necessarily located on the world-line, as signalled by the non-zero mass dipole.
Therefore the solution of our equations of motion is the world line in which the spin
tensor is covariantly constant (thick, black line). Thus its a matter of choice.

One of the major advantage in our formalism is that the back reaction of the
particle motion on the space-time geometry can be calculated unambiguously. This
is accounted by the energy-momentum tensor which exhibits the effect of the mass
dipole.

4.5 Conservation laws

The Hamiltonian formalism we have developed is also convenient for deriving con-
stants of motion. There are two classes of constants in the theory. The universal
constants which exist for any space-time geometry and the constants of motion
emerging as a result of symmetries of the space-time. These constants commute
with the hamiltonian in the sense of the brackets.

4.5.1 Universal conserved quantities

For the spinning body in curved space-time, there exist universal constants of mo-
tion, irrespective of the specific geometry of the space-time manifold. By con-
struction the time-independent hamiltonian represented by (4.3.7) is a constant of
motion. In particular for the minimal geodesic hamiltonian H0 we have

H0 = −m
2
, (4.5.1)

defining the particles mass. The above equation is equivalent to normalizing proper
time such that uµuµ = −1. In addition there are two constants of motion for the
spin: the total spin I as a result of local Lorentz invariance

I =
1

2
gκµgλνΣκλΣµν = SµS

µ + ZµZ
µ, (4.5.2)
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4.5. Conservation laws

and the pseudo-scalar spin-dipole product:

D =
1

8

√
−g εµνκλΣµνΣκλ = S · Z. (4.5.3)

Note, I and D are quadratic expressions in spin. In the Hamiltonian formalism all
these three constants obey obviously

{H0, H0} = 0, {I,H0} = 0, {D,H0} = 0. (4.5.4)

4.5.2 Geometrical conserved quantities

Furthermore, there may exist conserved quantities J(x, π,Σ) resulting from sym-
metries of the background geometry, as implied by Noether’s theorem [61, 95, 96].
They are solutions of the generic equation

{J,H0} =
1

m
gµνπν

[
∂J

∂xµ
+ Γ κ

µλ πκ
∂J

∂πλ
+

1

2
ΣαβRαβλµ

∂J

∂πλ
+ Γ κ

µα Σλα
∂J

∂Σκλ

]
= 0.

(4.5.5)
The symmetries of the space-time manifest themselves as Killing vectors. Here due
to spin-orbit coupling, the conserved quantities implied by Noether’s theorem are
linear combinations of momentum [96] and spin components:

J = αµπµ +
1

2
βµν Σµν , (4.5.6)

with
∇µαν +∇ναµ = 0, ∇λβµν = R κ

µνλ ακ. (4.5.7)

These equations imply that α is a Killing vector on the space-time, and β is its
anti-symmetrized gradient:

βµν =
1

2
(∇µαν −∇ναµ) . (4.5.8)

Similarly constants of motion quadratic in momentum [97] are of the form:

J =
1

2
αµνπµπν +

1

2
β λ
µν Σµνπλ +

1

8
γµνκλΣµνΣκλ, (4.5.9)

where the coefficients have to satisfy the ordinary partial differential equations

∇λαµν +∇µανλ +∇ναλµ = 0,

∇µβκλν +∇νβκλµ = R ρ
κλµ ανρ +R ρ

κλν αµρ,

∇ργµνκλ = R σ
µνρ βκλσ +R σ

κλρ βµνσ.

(4.5.10)

Thus α is a symmetric rank-two Killing tensor, and the coefficients (β, γ) satisfy a
hierarchy of inhomogeneous Killing-like equations determined by the αµν . In the
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4. Spinning Bodies in Curved Space-time

case of Grassmann-valued spin tensors Σµν = iψµψν the coefficient γ is completely
anti-symmetric and the equations are known to have a solution in terms of Killing-
Yano tensors [98].

The constants of motion (4.5.6) linear in momentum are special in that they
define a Lie algebra: if J and J ′ are two such constants of motion, then their bracket
is a constant of motion of the same type. This follows from the Jacobi identity

{{J, J ′} , H0} = {{J,H0} , J ′} − {{J ′, H0} , J} = 0. (4.5.11)

Thus, if {ei}ri=1 is a complete basis for Killing vectors:

αµ = αieµi , eνj∇νe
µ
i − e

ν
i∇νe

µ
j = f k

ij e
µ
k ,

the constants of motion define a representation of the same algebra:

Ji = eµi πµ +
1

2
∇µeiν Σµν ⇒ {Ji, Jj} = f k

ij Jk. (4.5.12)

Evidently such constants of motion are helpful in the analysis of spinning particle
dynamics [51,95,99].

4.6 Non-minimal hamiltonian: gravitational Stern-Gerlach force

So far we have studied the dynamics of compact spinning objects generated by
the minimal geodesic hamiltonian H0. In this section we consider the non-minimal
extension including the spin-spin interaction via space-time curvature:

H = H0 +HΣ, HΣ =
κ

4
RµνκλΣµνΣκλ. (4.6.1)

The Dirac-Poisson brackets (4.3.6) remain the same (obviously). It is straightfor-
ward to derive the equations of motion:

ẋµ = {xµ, H} ⇒ πµ = mgµν ẋ
ν ,

π̇µ = {πµ, H} ⇒ Dτπµ =
1

2m
ΣκλR ν

κλµ πν −
κ

4
ΣκλΣρσ∇µRκλρσ,

Σ̇µν = {Σµν , H} ⇒ DτΣµν = κΣκλ (R µ
κλ σΣνσ −R ν

κλ σΣµσ) .

(4.6.2)

Comparing again with the electro-magnetic force, the middle equation implies that
in addition to the gravitational Lorentz force there is a gravitational Stern-Gerlach
force, coupling spin to the gradient of the curvature. Therefore the coupling param-
eter κ has been termed the gravimagnetic ratio [81,100]. Like in the electromagnetic
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4.7. Non-minimal hamiltonian: electric Stern-Gerlach force

case [101] the Pauli-Lubanski and Pirani-vectors are affected by this Stern-Gerlach
force:

DτS
µ =

1

4m
√
−g

εµνκλΣκλΣαβ
(
Rαβνσu

σ − κ

2
Σρσ∇νRρσαβ

)
,

DτZ
µ = −κΣκλR µ

κλ νZ
ν +

(
κ+

1

2m

)
ΣµνΣκλRκλνσu

σ − κ

4m
ΣµνΣκλΣρσ∇νRκλρσ.

(4.6.3)
The second equation simplifies strongly for the special value

κ = − 1

2m
. (4.6.4)

In that case an initial condition Zµ = 0 is conserved up to terms of cubic order in
spin.

4.6.1 Extension of conservation laws to non-minimal dynamics

For the extended hamiltonian the conditions for the existence of constants of mo-
tion are modified. The total spin I defined in (4.5.2) is still conserved, but the
conserved hamiltonian now is of course H = H0 + HΣ. Finally we prove that the
constants of motion J of the form (4.5.6) are preserved under this modification of
the hamiltonian. To see this, observe that

{J,HΣ} = −κΣµνΣρσ
(

1

4
αλ∇λRµνρσ + βµλR

λ
νρσ

)
. (4.6.5)

For the Killing-vector solutions (4.5.7) the right-hand side takes the form

ΣµνΣρσ
(

1

4
αλ∇λRµνρσ + βµλR

λ
νρσ

)
=

1

2
ΣµνΣρσ (∇µ∇ρ∇σ +∇ρ∇µ∇σ)αν

=
1

2
ΣµνΣρσ (∇µ∇ρ +∇ρ∇µ)βσν = 0,

(4.6.6)
due to the anti-symmetry of the tensor βσν .

4.7 Non-minimal hamiltonian: electric Stern-Gerlach force

In this section we further extend our formalism with the non-minimal hamiltonian
generating electric Stern-Gerlach forces. The spinning particle with charge q, in the
presence of external fields subject to spin-dependent forces coupling to gradients in
the fields like the well-known Stern-Gerlach force [82,86,88,102] in electrodynamics.
Such forces can be modeled in our approach by additional spin-dependent terms in
the hamiltonian:

H = H0 +HSG, HSG =
κ

4
RµνκλΣµνΣκλ +

λ

2
FµνΣµν . (4.7.1)
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Here the electromagnetic coupling term λ
2 FµνΣµν requires modification of the

Poisson-Dirac brackets. Therefore

{πµ, πν} =
1

2
ΣκλRκλµν + qFµν . (4.7.2)

The remaining brackets are same as in (4.3.6). Then using this non-minimal hamil-
tonian in the brackets to construct equations of motion we get

πµ = mgµνu
ν ,

mgµνDτu
ν =

1

2
ΣκλRκλµνu

ν + qFµνu
ν − κ

4
ΣρσΣκλ∇µRρσκλ −

λ

2
Σκλ∇µFκλ,

(4.7.3)
and

DτΣµν =
(
κΣρσR µ

ρσ λ + λFµλ

)
Σνλ −

(
κΣρσR ν

ρσ λ + λF νλ
)

Σµλ. (4.7.4)

4.7.1 Extension of conservation laws to non-minimal dynamics

The universal constants of motion (4.5.1), (4.5.2) and (4.5.3), hold true for charged
spinning particles as well. But the constants of motion depending on the symmetries
of the geometry are altered because of the presence of charge. They are constructed
in terms of Killing vectors and tensors. In particular constants of motion J of the
form

J = γ + αµπµ +
1

2
βµνΣµν , (4.7.5)

exist if

∇µαν +∇ναµ = 0, ∇λβµν = Rµνλκα
κ, ∂µγ = qFµνα

ν . (4.7.6)

Thus αµ is a Killing vector and βµν its curl:

βµν =
1

2
(∇µαν −∇ναµ) , (4.7.7)

whilst a solution for γ can be found if the Lie-derivative of the vector potential with
respect to α vanishes:

αν∂νAµ + ∂µα
νAν = 0 ⇒ γ = qAµα

µ. (4.7.8)

This requirement in fact states that the electromagnetic and gravitational fields
must both exhibit the same symmetries for an associated constant of motion to
exist.

Remarkably, using eqs. (4.7.7, 4.7.8) and the Bianchi identities for Fµν and
Rµνκλ it is straightforward to generalize the theorem of ref. [47], that any constant
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of motion (4.7.5) remains a constant of motion in the presence of Stern-Gerlach
forces:

{J,HSG} = κΣµνΣρσ
(
−1

4
αλ∇λRρσµν +R λ

ρσµ βλν

)

+λΣµν
(
−1

2
αλ∇λFµν + F λ

µ βλν

)
= 0.

(4.7.9)

4.8 Equations of motion from energy-momentum conservation

In the previous sections the equations of motion for a relativistic spinning particle
were obtained starting from a closed set of brackets (4.3.6) and the choice of a
hamiltonian. The same equations can be derived by energy-momentum conservation
using an appropriate energy-momentum tensor [103, 104]. This tensor then also
defines the source term in the Einstein equations to compute the back reaction of
the particle on the space-time geometry; indeed, the Einstein equations require the
energy momentum to be divergence-free

Gµµ = Rµν −
1

2
gµνR = −8πGTµν ⇒ ∇µGµν = −8π∇µTµν = 0. (4.8.1)

This identity is to be guaranteed by the equations of motion. For a neutral particle
described by the minimal hamiltonian this follows by taking (3.4.3)

Tµν0 = m

∫
dτ uµuν

1√
−g

δ4 (x−X)+
1

2
∇λ
∫
dτ
(
uµΣνλ + uνΣµλ

) 1√
−g

δ4 (x−X) .

(4.8.2)
The covariant divergence of Tµν0 is

∇µTµν0 =

∫
dτ

(
m
Duν

Dτ
− 1

2
ΣκλR ν

κλ µu
µ

)
1√
−g

δ4 (x−X)

+
1

2
∇λ
∫
dτ
DΣνλ

Dτ

1√
−g

δ4 (x−X) = 0.

(4.8.3)

and vanishes upon applying the equations of motion (4.3.10, 4.3.11) with q = 0.
Similarly, for a particle subject to the gravitational Stern-Gerlach force with the
hamiltonian H0 +HSG the correct expressions is

Tµν = Tµν0 + κTµν1 , (4.8.4)

where

Tµν1 =
1

2
∇κ∇λ

∫
dτ
(
ΣµλΣκν + ΣνλΣκµ

) 1√
−g

δ4 (x−X)

+
1

4

∫
dτ Σρσ

(
R ν
ρσλ Σλµ +R µ

ρσλ Σλν
) 1√
−g

δ4 (x−X) .

(4.8.5)
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Again performing standard operations from tensor calculus including Ricci- and
Bianchi-identities leads to the result

∇µTµν1 =
1

4

∫
dτ ∇νRρσκλ ΣρσΣκλ

1√
−g

δ4 (x−X)

+
1

2
∇λ
∫
dτ Σρσ

(
R λ
ρσκ Σκν −R ν

ρσκ Σκλ
) 1√
−g

δ4 (x−X) .

(4.8.6)

Combining this with the expression (4.8.3) for ∇µTµν0 it follows that the divergence
of the full energy-momentum tensor vanishes

∇µ (Tµν0 + κTµν1 ) = 0, (4.8.7)

provided the non-minimal equations of motion (4.6.2) hold. Finally, one can also
take into account the electro-magnetic Lorentz- and Stern-Gerlach forces by addi-
tional contributions

T emµν = F λ
µ Fνλ −

1

4
gµνFκλF

κλ − λ

2
gµν

∫
dτFκλ Σκλ

1√
−g

δ4 (x−X) . (4.8.8)
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Chapter 5 I apply our formalism to study the dynamics of spinning particles in
Schwarzschild background, and establish a number of physical results. I obtain
the simplest orbit: circular, for the particle in the equatorial plane. The method
of geodesic deviation in General Relativity has been generalised to world lines
of particles carrying spin. The complete first-order solution for the non-circular
planar orbits is found starting from the circular orbit. The spin-influenced
perturbations have double periods, and therefore the periastron and apastron
behave in a complicated way (non-constant intervals) i.e., not only subject to an
angular shift, but the point of closest approach shows radial variations as well.
The presence of spin alters the stability conditions and therefore the location of
the ISCO. For over a wide range of spin values, −0.5M < σ < 0.5M , the ISCO is
quite close to the orbit of minimal orbital angular momentum and coincides only
for spineless particles.

Furthermore our analysis is extended for a non-minimal Hamiltonian to include
Stern- Gerlach forces both of electromagnetic and of gravitational origin and de-
termined circular orbits in the case of Schwarzschild. As a further generalisation I
investigate non-planar eccentric orbits around a massive stable black hole. I obtain
analytical relations between spin precessions and precession of the orbital plane.





5

Spherically Symmetric Space-time

5.1 Schwarzschild space-time

The equations of motion (4.3.10, 4.3.11) and the hamiltonian (4.3.7), constitute
a system of coupled linear differential equations for the position variables xµ, the
velocity components uµ, and the spin tensor Σµν . Equivalently, we can rewrite
these in terms of four second-order differential equations for the position and six
first-order differential equations of the spin tensor. These equations are most easily
solved in space-times with a maximal number of symmetries as these give rise to a
maximal number of constants of motion.

The Schwarzschild metric is the unique, static and spherically symmetric vac-
uum solution, as stated by Birkhoff’s theorem and its standard line element in
Droste co-ordinates:

dτ2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2dθ2 − r2 sin2 θ dϕ2. (5.1.1)

5.1.1 Conservation laws

The space-time manifold admits four Killing vectors, for time-translations and ro-
tations. As a result of the the time-translation symmetry there is a Killing vector
field corresponding to the particle energy

E = −πt −
M

r2
Σtr

= m

(
1− 2M

r

)
ut − M

r2
Σtr.

(5.1.2)

The spherical symmetry implies three Killing vector fields generating a conserved
angular momentum 3-vector:

J1 = − sinϕπθ − ctg θ cosϕπϕ

−r sinϕΣrθ − r sin θ cos θ cosϕΣrϕ + r2 sin2 θ cosϕΣθϕ,

(5.1.3)
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J2 = cosϕπθ − ctg θ sinϕπϕ

+r cosϕΣrθ − r sin θ cos θ sinϕΣrϕ + r2 sin2 θ sinϕΣθϕ,

J3 = πϕ + r sin2 θΣrϕ + r2 sin θ cos θΣθϕ.

(5.1.4)

It is straightforward to check that these satisfy the usual algebra of time-translations
and spatial rotations:

{E, Ji} = 0, {Ji, Jj} = εijkJk. (5.1.5)

The invariance under rotations allows us to choose the direction of total angular
momentum to be the z-direction, such that

J = (0, 0, J), J = sin2 θ
(
mr2uϕ + rΣrϕ + r2 ctg θΣθϕ

)
, (5.1.6)

and

1

r
πθ = mruθ = −Σrθ,

1

r sin2 θ
πϕ = mruϕ = −Σrϕ + r tan θΣθϕ. (5.1.7)

Therefore we can express four spin-tensor components in terms of co-ordinates and
velocities:

Σtr =
mr

M

(
(r − 2M)ut − rε

)
, Σrϕ =

m

r

(
η − r2uϕ

)
. (5.1.8)

Σrθ = −mruθ, Σθϕ =
mη

r2
ctg θ. (5.1.9)

where ε = E/m and η = J/m are the particle energy and angular momentum per
unit of mass. The other two spin-tensor components Σtθ and Σtϕ can be expressed
in terms of the constants I and D and the orbital parameters as follows:

r(r − 2M)
(
Σtθ 2 + sin2 θΣtϕ 2

)
= − I −

[
m2r2

M2
(r − 2M)

2

]
ut 2 +

[
m2r5

(r − 2M)

]
uθ 2

+

[
m2r5

(r − 2M)
sin2 θ

]
uϕ 2

+
m2r3ε

M2

(
2(r − 2M)ut − rε

)
+

m2η

(r − 2M)

((
r − 2M cos2 θ

)
η − 2r3 sin2 θ uϕ

)
,

(5.1.10)
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by the definition of I, and

(
η − r2 uϕ

)
Σtθ + r2uθ Σtϕ = − D

mr
csc2 θ +

mη

M

(
(r − 2M)ut − rε

)
ctg θ,

(5.1.11)
by the definition of D. It then remains to solve for the orbital motion. The relevant
equations are supplied by conservation of the hamiltonian, equivalent with the
constraint u2 = −1:(

1− 2M

r

)
ut 2 − ur 2

1− 2M
r

− r2uθ 2 − r2 sin2 θ uϕ 2 = 1; (5.1.12)

and in addition the equations of motion.

5.1.2 Equations of motion

In the absence of spin, orbital angular momentum is conserved in a spherically sym-
metric background. As a result point masses move in a fixed plane. In contrast the
conservation of total angular momentum, composed of orbital angular momentum
and spin, implies that a variable spin is accompanied by a variable orbital angular
momentum, and the generic orbit of a spinning point mass is non-planar. Planar
orbits of spinning bodies are possible, but only under special conditions of spin
alignment. Before we develop the specific orbits like planar, here we establish the
general equations of motion.
For the radial acceleration:

mDτu
r =

1

2
ΣκλR r

κλ νu
ν ⇒

u̇r = − (r − 3M)

r2
+

2(r − 2M)ε

r2
ut +

Mη

r2
uϕ

− (r − 2M)

r2
ut 2 − (r − 4M)

r(r − 2M)
ur 2 −M cos2 θ uϕ 2.

(5.1.13)

For the angular accelerations:

DτΣrϕ = 0 and mDτu
ϕ =

1

2
ΣκλR ϕ

κλ νu
ν ⇒

M

mr3
(r − 2M)ut Σtϕ = ru̇ϕ +

Mη

r2(r − 2M)
ur − 2Mη

r2
ctg θ uθ

+
(2r − 5M)

(r − 2M)
uruϕ + 2r ctg θ uθ uϕ;

(5.1.14)
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and

DτΣrθ = 0 ⇒

M

mr3
(r − 2M)ut Σtθ = ru̇θ +

2Mη

r2
sin θ cos θ uϕ

+
(2r − 5M)

(r − 2M)
uruθ − r sin θ cos θ uϕ 2;

(5.1.15)

mDτu
θ =

1

2
R θ

νκλ Σκλ uν ⇒

M

mr3
(r − 2M)ut Σtθ = ru̇θ +

2Mη

r2
ctg θ uϕ

+
(2r − 5M)

(r − 2M)
uruθ − r sin θ cos θ uϕ 2.

(5.1.16)

Then the time component:

DτΣtr = 0 ⇒

uθ Σtθ + sin2 θ uϕ Σtϕ =
mr

M
u̇t − 2mr

M(r − 2M)
urε+

2m(r −M)

M(r − 2M)
utur;

(5.1.17)

mDτu
t =

1

2
R t

νκλ Σκλ uν ⇒

uθ Σtθ + uϕ Σtϕ =
mr

M
u̇t − 2mr

M(r − 2M)
urε+

2m(r −M)

M(r − 2M)
utur.

(5.1.18)
And the remaining independent spin-dipole equations are:

DτΣtθ = 0 ⇒

Σ̇tθ = − (r −M)

r(r − 2M)
Σtθur +

mrε

M
uθ

+ sin θ cos θΣtϕuϕ − m

M

(r −M)(r − 3M)

(r − 2M)
utuθ.

(5.1.19)
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and

DτΣtϕ = 0 ⇒

Σ̇tϕ = − mMη

r2(r − 2M)
ut − (r −M)

r(r − 2M)
Σtϕur − ctg θΣtϕuθ

+
(mrε
M
− ctg θΣtθ

)
uϕ − m

M

(r −M)(r − 3M)

(r − 2M)
utuϕ.

(5.1.20)

Finally the equation for Σθϕ gives an identity.

5.2 Plane circular orbits

To find the simplest orbit: circular, we consider the motion to be in the equatorial
plane. As usual, the conservation of total angular momentum and the spherical
symmetry of the space-time geometry allow one to take the angular momentum J
as the direction of the z-axis, such that

J = (0, 0, J). (5.2.1)

For spinless particles, for which the angular momentum is strictly orbital, this
implies that the orbital motion is in a plane perpendicular to the angular momentum
3-vector; with our choice of the z-axis this is the equatorial plane θ = π/2.

In the presence of spin the result no longer holds in general, as the precession of
spin can be compensated by precession of the orbital angular momentum, resulting
in a non-planar orbit [105]. However, one can ask under which conditions planar
motion is still possible. As in that case the directions of orbital and spin angular
momentum are separately preserved, it means that necessary conditions for motion
in the equatorial plane are

J1 = J2 = 0, πθ = 0, (5.2.2)

and therefore also
Σrθ = Σθϕ = 0. (5.2.3)

Furthermore the absence of acceleration perpendicular to the equatorial plane ex-
pressed by Dτπθ = 0 implies that

Σtθ = 0. (5.2.4)

Thus planar motion requires alignment of the spin with the orbital angular momen-
tum; it is straighforward to show that the reverse statement also holds [48,64].
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In terms of the four-velocity components we are now left with relevant constants
of motion: eq. (5.1.8),

ε =

(
1− 2M

r

)
ut − M

mr2
Σtr, (5.2.5)

and
η = r2uϕ +

r

m
Σrϕ, (5.2.6)

in addition to the hamiltonian constraint(
1− 2M

r

)
ut 2 = 1 +

ur 2

1− 2M
r

+ r2uϕ 2, (5.2.7)

and eq. (5.1.10), the conservation of total spin I reduce to

r(r − 2M)Σtϕ 2 = − I −
[
m2r2

M2
(r − 2M)

2

]
ut 2 +

[
m2r5

(r − 2M)

]
uϕ 2

+
m2r3ε

M2

(
2(r − 2M)ut − rε

)
+

m2η

(r − 2M)

(
rη − 2r3 uϕ

)
,

(5.2.8)
and as a final remark, the planar orbits satisfy

D = S · Z = 0. (5.2.9)

These equations show, that once the orbital velocities are known, all the non-
vanishing spin components can be calculated from eqs. (5.2.5), (5.2.6) and (5.2.8).

The simplest type of planar orbit is the circular orbit r = R = constant, ur = 0.
In this case the symmetry of the orbit implies that (ut, uϕ) are constant in time, and
that Σtϕ = 0. This can be shown as follows. First, absence of radial acceleration
Dτu

r = 0 gives, upon using the conservation laws for E and J :(
1− 2M

R

)(
2− 3M

R

)
ut 2 −

(
1− 3M

R

)
R2uϕ 2 = 2ε

(
1− 2M

R

)
ut +

ηM

R
uϕ,

(5.2.10)
whilst the hamiltonian constraint (5.2.7) simplifies to(

1− 2M

R

)
ut 2 = 1 +R2uϕ 2. (5.2.11)

These two equations can be solved for ut and uϕ in terms of (R, ε, η), implying
that they are constant. An immediate consequence is, that Σtr, Σrϕ and Σtϕ are
constant as well, and actually Σtϕ vanishes. This follows directly from the absence
of four-acceleration:

dut

dτ
=

M

mR
uϕΣtϕ = 0,

duϕ

dτ
=

M

mR3

(
1− 2M

R

)
utΣtϕ = 0. (5.2.12)
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Then also the rate of change of Σtϕ must vanish:

− M

mR

(
1− 2M

R

)
dΣtϕ

dτ

=

(
1− M

R

)(
1− 3M

R

)
utuϕ +

ηM2

R4
ut − ε

(
1− 2M

R

)
uϕ = 0.

(5.2.13)
Now from eqs. (5.2.10) and (5.2.11) it follows that

2ε

(
1− 2M

R

)
ut =

1

m

(
2− 3M

R

)
+

1

m
R2uϕ 2 − ηM

R
uϕ. (5.2.14)

These equations then allow the elimination of E and ut, with the result that

ηM

R2

(
2M

R
+R2uϕ 2

)
= Ruϕ

[
M

R
−
(

1− 6M

R
+

6M2

R2

)
R2uϕ 2

]
. (5.2.15)

As for the total spin, for circular orbits the expression (5.2.8) can be written as

I = −m
2R4

M2

[(
1− 2M

R

)
ut − ε

]2

+
m2(

1− 2M
R

)2 [η −R2uϕ
]2
. (5.2.16)

Thus for circular orbits uϕ and ut are constants which can be expressed in terms
of R and η, in turn fixing ε and I as well.

5.3 World-line deviations

In General Relativity the standard procedure for comparing geodesics is the method
of geodesic deviations. It is based on a covariant definition of differences between
geometric quantities associated with geodesics, like the unit tangent vectors defining
the proper four-velocities of test particles. The procedure can be generalized to
world-lines of particles carrying spin as follows.

Consider two solutions (xµ(τ), uµ(τ),Σµν(τ)) and (x̄µ(τ), ūµ(τ), Σ̄µν(τ)) of the
equations of motion (4.3.9) and (4.3.10). The direct differences between dynamical
quantities on each world-line at equal proper time τ are denoted by δ:

δX(τ) = X̄(τ)−X(τ), (5.3.1)

for any X = (xµ, uµ,Σµν). As the co-ordinates xµ are space-time scalars, the
velocities uµ space-time vectors and the spin-dipoles Σµν space-time tensors, we
can define their covariant differences by parallel displacement:

∆xµ(τ) = δxµ(τ), ∆uµ = δuµ(τ) + δxλΓ µ
λν u

ν ,

∆Σµν = δΣµν + δxλΓ µ
λκ Σκν + δxλΓ ν

λκ Σµκ.

(5.3.2)
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The equations of motion now imply equations for the proper-time dependence of
these covariant variations; to linear order:

∆uµ = Dτ∆xµ,

D2
τ∆xµ −R µ

λκ νu
κuν∆xλ =

1

2m
ΣρσR µ

ρσ ν Dτ∆xν +
1

2m
Σρσ∇λR µ

ρσ νu
ν∆xλ

+
1

2m
∆ΣρσR µ

ρσ νu
ν ,

Dτ∆Σµν + (R µ
λκσ Σσν −R ν

λκσ Σσµ)uκ∆xλ = 0.
(5.3.3)

The formalism, eventually with higher-order extensions [57,58,106], can be applied
to a perturbative construction of world-lines starting from a known solution of
the equations of motion. The circular orbits found in the previous section define
such a starting point to construct eccentric planar or non-planar bound orbits in
Schwarzschild background. However, computationally it is simpler to work with
the non-covariant variations (5.3.1) rather than the covariant ones (5.3.2).

5.4 World-line deviations near circular motion

The procedure for computing the world-line equations up to first order in deviations
in covariant form is explained in the previous section. It is convenient to rewrite
these equation in non-covariant notation to get expressions for (δxµ, δΣµν) in a
given co-ordinate system. For the co-ordinate deviations the first equation (5.3.3)
becomes

d2δxµ

dτ2
+ 2uλΓ µ

λν

dδxν

dτ
+ uκuλ∂νΓ µ

κλ δx
ν

=
1

2m

[
ΣρσR µ

ρσ ν

dδxν

dτ
+ Σρσ∂νR

µ
ρσ κ u

κδxν + δΣρσR µ
ρσ νu

ν

]
,

(5.4.1)

whilst writing out the equation for the spin variation we get

dδΣµν

dτ
+ uλΓ µ

λκ δΣ
κν + uλΓ ν

λκ δΣ
µκ

= (Γ µ
λκ Σνκ − Γ ν

λκ Σµκ)
dδxλ

dτ
+
(
∂λΓ µ

ρκ Σνκ − ∂λΓ ν
ρκ Σµκ

)
uρδxλ.

(5.4.2)

In spite of their non-covariant appearance, these equations are completely equivalent
with the covariant equations shown in the previous section.

In addition to the above deviation equations for orbits (5.4.1) and spin-dipole
components (5.4.2), from the conservation laws (5.1.8) and (5.1.9) we obtain the
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following variations of the spin-dipole components δΣµν in terms of the orbital
parameters :

δΣrθ = − (mr) δuθ −
(
muθ

)
δr;

δΣθϕ = −
(mη
r3

ctg θ
)
δr −

(mη
r2

csc2 θ
)
δθ +

(m
r2

ctg θ
)
δη;

δΣtr =
(mr
M

(r − 2M)
)
δut +

[
2m

M

(
(r −M)ut − rε

)]
δr −

(
mr2

M

)
δε;

δΣrϕ = −(mr) δuϕ −
(m
r2

(η + r2uϕ)
)
δr +

(m
r

)
δη.

(5.4.3)

Then the variation of the pseudo-scalar spin-dipole product D in eq. (5.1.11) gives
a new relation for the spin-dipole component δΣtθ:(
η − r2uϕ

)
δΣtθ =

[mη
M

(r − 2M) ctg θ
]
δut −

(
r2Σtϕ

)
δuθ +

(
r2Σtθ

)
δuϕ

+

[
2ruϕΣtθ − 2ruθΣtϕ +

mη

M
(ut − ε) ctg θ +

D

mr2
csc2 θ

]
δr

+

[(
2D

mr
ctg θ − mη

M

(
(r − 2M)ut − rε

))
csc2 θ

]
δθ

−
(
r2uθ

)
δΣtϕ −

(
1

mr
csc2 θ

)
δD −

(mη
M

r ctg θ
)
δε

+
[
−Σtθ +

m

M

(
(r − 2M)ut − rε

)
ctg θ

]
δη.

(5.4.4)
Now we develop the deviation equations (5.4.1, 5.4.2) for the most general case
i.e., the non-planar motion, of a spinning particle in Schwarzschild space-time and
it is given in appendix A. Then the circular orbits (found in section 5.2) can be
used as a starting point for the construction of eccentric orbits, which imply all
the coefficients in the deviation expressions (appendix A) for δxµ and δΣµν are
evaluated at the circular reference orbit, with the necessary conditions:

θ =
π

2
⇒ uθ = 0, Σtθ = Σrθ = Σθϕ = 0, (5.4.5)

and
r = R, ur = 0, Σtϕ = 0. (5.4.6)

Note that the deviating orbit does not (necessarily) have the same energy and
angular momentum as the circular one, so ε and η are the energy and angular

71



5. Spherically Symmetric Space-time

momentum for the circular orbit, and ε+δε and η+δη those for the deviated orbit.
Of course the variations δε and δη are constants, which are input for calculating
the new orbit.

By using the circular reference orbit conditions (5.4.5), (5.4.6) and conservation
laws (5.1.8), (5.1.9) and its variations (5.4.3), and also the variation of the pseudo-
scalar spin-dipole product D (5.4.4), the deviation equations simplify considerably.
The orbital deviation equations are then

dδut

dτ
= −

[
2

R(R− 2M)

(
(R−M)ut −Rε

)]
δur +

[
Muϕ

mR

]
δΣtϕ,

(5.4.7)

dδur

dτ
=

(
2(R− 2M)

R2
ε

)
δut −

(
2Ruϕ − Mη

R2

)
δuϕ

−

[
− 2(R− 3M)

R3
+ uϕ 2 +

2(R− 4M)

R3
εut +

2Mη

R3
uϕ

]
δr

+

[
M

R2
uϕ
]
δη +

[
2

R2
(R− 2M)ut

]
δε,

(5.4.8)

dδuθ

dτ
= −

[
− 2Mη

R3
uϕ +

[
1 +

(R− 2M)

R(η −R2uϕ)
η

]
uϕ 2 +

η(R− 2M) (1− εut)
R3(η −R2uϕ)

]
δθ,

−
[
M(R− 2M)ut

m2R5(η −R2uϕ)

]
δD.

(5.4.9)
dδuϕ

dτ
= −

[
1

R(R− 2M)

(
(2R− 5M)uϕ +

Mη

R2

)]
δur +

[
M

mR4
(R− 2M)ut

]
δΣtϕ,

(5.4.10)
Similarly the spin-dipole equations reduce to

dδΣtϕ

dτ
= −

[
(R−M)(R− 3M)

M(R− 2M)
muϕ +

Mmη

R2(R− 2M)

]
δut +

[
mR

M
uϕ
]
δε

−

[
(R−M)(R− 3M)

M(R− 2M)
mut − Rmε

M

]
δuϕ −

[
mM

R2(R− 2M)
ut
]
δη

−

[
R2 − 4MR+ 5M2

M(R− 2M)2
mutuϕ − M(3R− 4M)

R3(R− 2M)2
ηmut − ε

M
muϕ

]
δr

(5.4.11)
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dδΣtθ

dτ
=

[
mMut

(R− 2M)
− m

M

(
(R− 2M)ut −Rε

)]
δuθ, (5.4.12)

The spin deviation equations in the appendix A for variations of (δΣtr, δΣrϕ, δΣrθ,
δΣθϕ) do not provide any new information as they become identities under the
above mentioned conditions, and along with the orbital deviations equations (5.4.7),
(5.4.9) and (5.4.10) for δut, δuθ and δuϕ.

Further, by evaluating the variation of the pseudo-scalar spin-dipole product D
from eq. (5.4.4) at the circular reference orbit, we obtain the relation for δΣtθ,

(
η −R2uϕ

)
δΣtθ = −

[mη
M

(
(R− 2M)ut −Rε

)]
δθ −

(
1

mR

)
δD, (5.4.13)

then by using (5.4.13) in the deviation equation (5.4.12) for δΣtθ, and using (5.1.20)
we end up with a constraint,

MutΣrϕ + (R− 2M)uϕΣtr = 0. (5.4.14)

Eq. (5.4.14) is completely identical with eq. (5.1.20), the spin equation of motion for
Σtϕ evaluated at the circular reference orbit, and (ε, η) are expressed equivalently
in terms of the spin components (Σtr,Σrϕ) by using conservation laws (5.1.8).
Therefore the spin deviation equation (5.4.12) for δΣtθ does not provide any new
result. Then the system (appendix A) of 10 differential equations reduce to 5
equations (5.4.7 - 5.4.11).

5.5 Motion of the particle

The solutions of the equations (5.4.7 – 5.4.11) constitute the description of the mo-
tions of a spinning particle in Schwarzschild space-time, and are obtained in two
parts:

(i). As the variation equations for (δt, δr, δϕ, δΣtϕ) are independent of the pre-
cessional orbital motion θ(τ), equations (5.4.7), (5.4.8), (5.4.10) and (5.4.11) form
a coupled system and its solution describes the particle’s motion in a non-circular
planar orbit, which also includes the spin-dipole components (δΣtr, δΣrϕ) computed
then by using conservations laws (5.4.3).

(ii). Further, by solving the orbital deviation equation (5.4.9) for δθ, the
precessional orbital motion due to spin-orbit coupling is obtained and therefore
(δΣrθ, δΣθϕ) and (δΣtθ) by using conservation laws (5.4.3) and the variation (5.4.13)

of pseudo-scalar spin-dipole product D.
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5.5.1 Planar orbits: double periodic, precession of periastron

In a condensed notation the relevant linearised deviation equations for planar non-
circular orbits takes the form

d2

dτ2 0 α d
dτ β

0 d2

dτ2 γ d
dτ ζ

κ d
dτ λ d

dτ
d2

dτ2 + µ 0

ν d
dτ σ d

dτ χ d
dτ





δt

δϕ

δr

δΣtϕ


=



0

0

aδη + bδε

cδη + dδε


(5.5.1)

where the coefficients are defined on the circular reference orbit and are given by

a =
Muϕ

R2
, b =

2(R− 2M)

R2
ut,

c = − Mmut

R2(R− 2M)
, d =

Rm

M
uϕ,

(5.5.2)

and furthermore

α =
2

R(R− 2M)

[
(R−M)ut −Rε

]
, β = −Muϕ

mR
,

γ =
1

R(R− 2M)

[
(2R− 5M)uϕ +

Mη

R2

]
, ζ = −M(R− 2M)

mR4
ut,

κ = −2(R− 2M)

R2
ε, λ = 2Ruϕ − Mη

R2
,

(5.5.3)

and

µ = −2(R− 3M)

R3
+ uϕ 2 +

2Mη

R3
uϕ +

2(R− 4M)

R3
εut,

ν =
(R−M)(R− 3M)

M(R− 2M)
muϕ +

Mmη

R2(R− 2M)
,

σ =
(R−M)(R− 3M)

M(R− 2M)
mut − Rmε

M
,

χ =
R2 − 4MR+ 5M2

M(R− 2M)2
mutuϕ − M(3R− 4M)

R3(R− 2M)2
ηmut − ε

M
muϕ.

(5.5.4)
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The general solution of the inhomogenous linear equations (5.5.1) can be decom-
posed in a specific solution plus a solution of the homogeneous equation; but it is
easy to find a special specific solution: a constant shift δr such that the new circular
orbit has the same energy ε′ = ε + δε and total angular momentum η′ = η + δη

as the non-circular planar orbit we wish to construct. Hence by taking this special
circular orbit as the reference orbit we fix δε = δη = 0, and we only have to solve
the homogeneous equation (5.5.1).

Now the characteristic equation for the periodic eigenfunctions of the operator
(5.5.1) reads

ω3
(
ω4 −Aω2 +B

)
= 0, (5.5.5)

where

A = µ− ακ− βν − γλ− ζσ,

B = β (κχ− µν + γ(λν − κσ)) + ζ (λχ− µσ − α(λν − κσ)) .

(5.5.6)

Therefore there are three 0-modes, and two pairs of non-trivial periodic solutions
with angular frequencies

ω2
± =

1

2

(
A±

√
A2 − 4B

)
. (5.5.7)

These periodic solutions can be brought to the simple form

δt = nt+ sinω+(τ − τ+) + nt− sinω−(τ − τ−),

δϕ = nϕ+ sinω+(τ − τ+) + nϕ− sinω−(τ − τ−),

δr = nr+ cosω+(τ − τ+) + nr− cosω−(τ − τ−),

δΣtϕ = nσ+ sinω+(τ − τ+) + nσ− sinω−(τ − τ−),

(5.5.8)

where τ± are constants of integration determining the relative phases of the oscil-
lations, and up to some common normalization constants C± the amplitudes are

nt± = C±
[
λ (βγ − αζ) + β

(
ω2
± − µ

)]
,

nϕ± = C±
[
−κ (βγ − αζ) + ζ

(
ω2
± − µ

)]
,

nr± = C± ω± (βκ+ ζλ) ,

nσ± = C± ω
2
±
(
ω2
± − µ+ ακ+ γλ

)
.

(5.5.9)

The null solutions of eq. (5.5.5) suggest that in addition to the periodic solutions
(5.5.8) there might also be secular solutions for the orbital degrees of freedom.
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5. Spherically Symmetric Space-time

Figure 5.1. Radial deviation from circular orbit with R = 10M and ` = 4M as a function
of proper time in Schwarzschild space-time for deviation parameters as in eq. (5.5.11).

However, as we have chosen the energy and total angular momentum of the orbit
to be the same as that of the circular reference orbit no such freedom is left in this
case. Therefore the complete first-order solution for the non-circular planar orbits
is

t(τ) = utτ + nt+ sinω+(τ − τ+) + nt− sinω−(τ − τ−),

ϕ(τ) = uϕτ + nϕ+ sinω+(τ − τ+) + nϕ− sinω−(τ − τ−),

r(τ) = R+ nr+ cosω+(τ − τ+) + nr− cosω−(τ − τ−),

Σtϕ(τ) = nσ+ sinω+(τ − τ+) + nσ− sinω−(τ − τ−).

(5.5.10)

The perturbations, in particular those in the radial direction, have double periods
the periastron and apastron will behave in a complicated way, as the body reaches
different minimal or maximal radial distances at non-constant intervals. However,
in the limit B � A2 the dominant frequency will be ω+ '

√
A, and the variations

in the periastron and apastron will be relatively slow. An example for the case
of Schwarzschild geometry is given in Fig. 5.1, where we have plotted the radial
variation as a function of proper time for a circular reference orbit R = 10M with
orbital angular momentum ` = 4M and for deviation parameters

nr+ = 0.1R, nr− = 0.05R, τ+ − τ− = 100M. (5.5.11)

As we have obtained the non-circular orbits (5.5.8) under the conditions that the
specific energy and total angular momentum are the same as those of the circular
reference orbits, the conservation laws (5.1.8) for the spin-dipole components link
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5.5. Motion of the particle

the variations δΣµν of these quantities to those of the orbital parameters (5.1.9),

R

m
δΣrϕ = −R2δuϕ −

(
η +R2uϕ

) δr
R
,

M

mR2
δΣtr =

(
1− 2M

R

)
δut + 2

[(
1− M

R

)
ut − ε

]
δr

R
.

(5.5.12)

As a result
δΣrϕ = Nrϕ

+ cosω+(τ − τ+) +Nrϕ
− cosω−(τ − τ−),

δΣtr = N tr
+ cosω+(τ − τ+) +N tr

− cosω−(τ − τ−),

(5.5.13)

where

Nrϕ
± = −m

R

[
R2ω±n

ϕ
± +

(
η +R2uϕ

) nr±
R

]
,

N tr
± =

mR2

M

[(
1− 2M

R

)
ω±n

t
± + 2

((
1− M

R

)
ut − ε

)
nr±
R

]
.

(5.5.14)

Thus we obtain a large class of non-circular planar orbits (to first order in the
deviations), parametrised by the constants C± and the radial co-ordinate R of the
circular orbit with the same specific energy and total angular momentum.

5.5.2 Planar orbits: stability of circular orbits and the ISCO

In black-hole space-times there is an innermost stable circular orbit (ISCO) at a
specific distance from the horizon. For simple point masses in Schwarzschild space-
time this orbit is located at R = 6M . Here the effective potential has a flex point
where the orbital angular momentum reaches a minimum of `2 = 12M2. Circular
orbits at values R < 6M are possible in principle but not in practice, as they
correspond to maxima of the effective potential rather than minima; thus they are
unstable under small perturbations.

The presence of spin alters the stability conditions and therefore the location
of the ISCO. The stability conditions for circular orbits can be derived directly
from the analysis in the previous section. Indeed, circular orbits are stable as
long as the planar deviations display oscillatory behaviour. In contrast, whenever
the frequency ω of these deviations develops an imaginary part the radial motion
displays exponential behaviour and the orbit becomes unstable [107]. Now the
frequencies of the deviations are solutions of the eigenvalue equation (5.5.7). Thus
we must ask what is the parameter domain in which the eigenvalues are real, and
especially where the boundary between stability and instability is located. The first
condition is obviously for ω2

± to be real; this requires

A2 − 4B ≥ 0. (5.5.15)
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5. Spherically Symmetric Space-time

In addition, for the frequencies ω± themselves to be real as well we must demand
that ω2

± ≥ 0, which happens if

A ≥ 0, B ≥ 0. (5.5.16)

Fig. 5.2 shows the solutions of these inequalities for the case of Schwarzschild space-
time in terms of the allowed values of the dimensionless radial co-ordinate R/M
and of the orbital angular momentum per unit of mass

` = R2uϕ. (5.5.17)

The shaded area corresponds to stable circular orbits. As we have established in
sect. 5.2 that any circular orbit is determined for a given background geometry by
the parameters R and J —which fix uϕ, ut and E— the allowed orbits for fixed R/M
and various `/M in Fig. 5.2 differ in the values of η = J/m. Equivalently they differ
in the value of the spin per unit of mass parametrized by the dimensionless variable

σ

M
=
RΣrϕ

mM
. (5.5.18)

We have also indicated in Fig. 5.2 several curves of constant spin. The curves g,
f, h represent iso-spin lines for spin σ = 0, for retrograde spin σ = −0.5M and
for prograde spin σ = 0.5M , respectively. In each case the ISCO is defined by the
value of R/M where the curve crosses the line B = 0. For vanishing spin this is at
the well-known value R = 6M , for prograde spin it is at a lower value of R and for
retrograde spin at a higher value of R. There actually is a smallest ISCO R ' 4.3M

for σ ' 0.55M , where the curve B = 0 reaches a minimum value of orbital angular
momentum.

For higher spin values the ISCO is reached at the point where the iso-spin
curves cross the line A2 − 4B = 0; an example is the curve labeled p corresponding
to σ = 0.7M . In general such high values of σ/M are possible only if the masses
m and M of the test particle and the black hole creating the background become
comparable. Of course the back reaction of the test mass can then no longer be
ignored and our estimates of the ISCO become unreliable.

By calculating the values of the spin parameter σ/M on the lines separating
regions of stable and unstable orbits we have extracted the values of R for the ISCO
as a function of σ/M in Schwarzschild space-time. The result is represented by the
continuous curve labeled Risco in Fig. 5.3. The two branches correspond to lower-
spin ISCOs on the curve B = 0 and higher-spin ISCOs on the curve A2 − 4B = 0,
respectively. These results agree qualitatively with other studies in the literature
based on the conventional Mathisson-Papapetrou-Dixon approach [107,108].

The iso-spin curves in Fig. 5.2 for lower-spin values, corresponding to the left-
hand branch in Fig. 5.3, also suggest that the circular orbits become unstable when
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5.5. Motion of the particle

Figure 5.2. Allowed domains of radius R/M and orbital angular momentum `/M for
plane circular orbits in Schwarzschild space-time. Included are four curves labeled f, g, h,
p defining orbits of fixed spin per unit of mass σ for retrograde, vanishing and prograde
spin σ/M = (−0.5, 0, 0.5, 0.7).

Figure 5.3. Radius of the ISCO: Risco/M , as a function of spin σ/M for Schwarzschild
space-time (continuous curve) compared with the radius of minimal orbital angular mo-
mentum Rmin/M at fixed spin (dashed curve).

the orbital angular momentum reaches its minimum as a function of radial distance
for contant σ. This issue can be analysed more precisely by returning to eq. (5.2.15)
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and rewriting it in the form

σR

M2

(
2R

M
+

`2

M2

)
=

`

M

(
R

M
− 2

)[
R2

M2
− `2

M2

(
R

M
− 3

)]
. (5.5.19)

From this equation one can derive the minimum of `/M as a function of R/M
for fixed spin σ. The result is plotted as the dashed curve labeled Rmin in Fig.
5.3. Over the range of predominant physical interest −0.5 < σ/M < 0.5 the curve
nearly coincides with that for Risco. However there are small differences for larger
absolute spin values, reminiscent of those found in higher-order Post-newtonian
corrections for compact binaries [107]. Note that the parts of the dashed curve for
large retrograde spin actually enter the region of instability, hence do not correspond
to stable circular orbits.

5.5.3 Non-planar orbits: Geodetic precession

A spinning particle orbiting around a massive Schwarzschild black hole will follow
a precessional orbital motion θ(τ), due to spin-orbit coupling and it is obtained
by solving the simple harmonic oscillator equation (5.4.9) for δθ, with the shift
proportional to δD

θ(τ) =
π

2
+ δθ(τ),

=
π

2
+

1

Ω2
p

[
x0 cos Ωpτ +

v0

Ωp
sin Ωpτ

]
−
(

M

m2R5 Ω2
p

(R− 2M)ut

(η −R2uϕ)

)
δD.

(5.5.20)
where, x0 and v0 are the initial position and velocity of the particle, and Ωp is the
frequency of the precessing orbital plane and it is extracted straight forwardly from
eq. (5.4.9),

Ωp =

√
−2Mη

R3
uϕ +

[
1 +

(R− 2M)

R(η −R2uϕ)
η

]
uϕ 2 +

η(R− 2M) (1− εut)
R3(η −R2uϕ)

. (5.5.21)

Here Ωp is expressed in terms of constants (M,R). Then the relations between the
precession of the orbital plane and the components of spin precessions are obtained
as follows: the conservation laws (5.1.8) for the spin-dipole components (Σrθ,Σθϕ)

link the variations of these quantities to Ωp (5.4.3):

Σrθ(τ) = δΣrθ(τ) = −mRδuθ,

=
mR

Ωp

[
x0 sin Ωpτ −

v0

Ωp
cos Ωpτ

]
.

(5.5.22)
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5.6. Circular motion: non-minimal gravitational Stern-Gerlach force

Σθϕ(τ) = δΣθϕ(τ) = −mη
r2

δθ,

= − mη

R2 Ω2
p

[
x0 cos Ωpτ +

v0

Ωp
sin Ωpτ

]

+

(
Mη

mR7 Ω2
p

(R− 2M)ut

(η −R2uϕ)

)
δD.

(5.5.23)

Finally, the variation of the pseudo-scalar spin-dipole product D, links the spin
variation δΣtθ to Ωp (5.4.13):

Σtθ(τ) = δΣtθ(τ)

= −
(

mη

M (η −R2uϕ)

(
(R− 2M)ut −Rε

))
δθ

−
(

1

mR (η −R2uϕ)

)
δD,

= − mη

MΩ2
p

((R− 2M)ut −Rε)
(η −R2uϕ)

[
x0 cos Ωpτ +

v0

Ωp
sin Ωpτ

]

− 1

mR (η −R2uϕ)

(
1− η

mR4 Ω2
p

(R− 2M)
(
1− εut +R2uϕ 2

)
(η −R2uϕ)

)
δD.

Thus eq. (5.5.22), (5.5.23), and (5.5.24) links the precession of the spin and preces-
sion of the orbital plane. Therefore for the given radius we can calculate the spin
precessions from these relations.

5.6 Circular motion: non-minimal gravitational Stern-Gerlach force

So far we have established the orbital dynamics of spinning particles generated by
the minimal hamiltonian H0. Here we extend our analysis for the particles subject
to gravitational Stern-Gerlach force. Such forces can be modelled in our approach
by additional spin-dependent terms in the hamiltonian:

H = H0 +HΣ, HΣ =
κ

4
RµνκλΣµνΣκλ. (5.6.1)

The existence of the constants of motion enable us to perform a similar analysis
of orbits as in the case of the minimal hamiltonian. As an example we solve for
plane circular orbits in a Schwarzschild background similar to those discussed in
section 5.2 for the minimal case. Again we take the plane of the orbit to be the
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equatorial plane θ = π/2 with uθ = ur = 0 and Σθν = 0 for all values of ν. Then
the conservation laws reduce to the same form as in eqs. (5.1.8):

E = m

(
1− 2M

R

)
ut − M

R2
Σtr, J = mR2uϕ +RΣrϕ.

The hamiltonian constraint now reads

H = H0 +HΣ = −m
2
, (5.6.2)

which becomes

−
(

1− 2M

R

)
ut 2+R2uϕ 2+1 = −2κM

m

[
2

R3
Σtr 2 +

Σrϕ 2

R− 2M
− 1

R

(
1− 2M

R

)
Σtϕ 2

]
.

(5.6.3)
Next the total spin is

I = −Σtr 2 −R2

(
1− 2M

R

)
Σtϕ 2 +

R2Σrϕ 2

1− 2M
R

, (5.6.4)

a constant. These constraints plus the vanishing of the radial acceleration: u̇r = 0

imply that the angular velocity and the time-dilation factor are constant, causing
in fact Σtϕ to vanish:

u̇t = u̇ϕ = Σtϕ = 0. (5.6.5)

Then one finds a quartic equation for the angular velocity in terms of the radius R
and the angular momentum J = mη, which generalizes eq. (5.2.15):(

1− 2M

R

)2

Ruϕ
[

2M2η

R3
−Muϕ +Mηuϕ 2 +

(
R2 − 6MR+ 6M2

)
Ruϕ 3

]
= κmA+ κ2m2B + κ3m3C,

(5.6.6)
The explicit expressions for the quantities A, B and C, which are quartic polynomi-
als in the angular velocity uϕ for given values of radius R and angular momentum
per unit of mass η, are:

A =
M(η −R2uϕ)

R2

{
6M2η

R3

(
1− 2M

R

)(
2− m

M

)

− 4Muϕ
[
3

(
1− 2M

R

)(
1− M

R
− m

2R

)
+
Mη2

R3

(
1− 3M

R

)]

+ ηRuϕ 2

[
2M

R

(
7− 16M

R

)
− 3m

M

(
1− 2M

R

)(
1− 4M

R
+

6M2

R2

)]

+12R3uϕ 3

[
1− 49M

6R
+

19M2

R2
− 13M3

R3
+

m

4M

(
1− 6M

R
+

14M2

R2
− 12M3

R3

)]}
,
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B =
12M(η −R2uϕ)2

R3

{
3M2

R2

(
1− 2M

R

)
+

2M3η2

R5

−Mη

R
uϕ

[
M

R

(
5− 6M

R

)
− 3m

M

(
1− 2M

R

)2
]

−MRuϕ 2

[
3− 20M

R
+

26M2

R2
+

3m

M

(
1− 2M

R

)2
]}

,

C =
72M3(η −R2uϕ)4

R7

[
M

R
− 3m

2M

(
1− 2M

R

)]
.

(5.6.7)

After solving this equation for uϕ also the energy E = mε and the values of ut, Σtr

and Σrϕ can be determined.
Thus we have obtained the equation for circular orbits for spinning test particles

in the presence of gravitational Stern-Gerlach interactions.
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Chapter 6 concludes my theoretical research in connection with the possible ex-
periments. It provides the list of possible problems and directions, as an extension
for the future exploration.





6

Conclusion

With our new formalism much physics remains to be explored. The following ap-
plications and generalizations are to be made:

• First of all it would be interesting to consider the effect of spin on the emis-
sion of gravitational waves from the above established orbits like circular
and bound planar-orbits. We have also found these orbits in the Reissner-
Nordstrom geometery [48]. Computing gravitational waves for particle in
these orbits should be straightforward.

• There exist other types of orbits in spherically symmetric backgrounds. When
the spinning particle comes from infinity - orbits the centre and moves to
infinity it performs scattering orbits. When it comes from infinity and plunges
directly into the centre this is known as plunging orbits. These orbits and
the gravitational waves from the particle obeying these orbits are yet to be
computed.

• As we have established the circular orbits for a non-minimal hamiltonian in-
cluding gravitational Stern-Gerlach force, one can obtain the ISCO for a spe-
cific gravimagnetic ratio κ (depends on the object) and other possible orbits
like bound non-circular, scattering and plunging orbits and their gravitational
waves.

• The supermassive black holes in the galactic centres are of Kerr nature and
there are many stars/compact objects orbiting them. Therefore extending
our formalism to the Kerr metric is very essential (though it is very difficult)
to understand the practical dynamics of such systems. The first step would
be calculating the circular orbits in the equatorial plane.

• The gravitational self-force can be incorporated within our formalism. The
approach goes beyond the test particle approximation by including the self-
field effects which modify the leading-order geodetic motion of a small mass
moving in the vicinity of the background geometry.
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6. Conclusion

• Finally our approach is based on the point particle approximation. Refining
our methods to finite size bodies by including higher order mass multipoles
would be helpful in understanding the comparable mass systems studied with
ground based detectors.

All the above items are important and left for future investigation. It is de-
sirable to develop a complete theoretical framework along these lines for Extreme
Mass Ratio Binaries to be compared with the observations, such as those planned
by the eLISA mission scheduled for 2034. Its advantage is that in contrast to the
PN methods our scheme is fully relativistic; in fact it can work even in the plunge
regime beyond the ISCO, as shown for example by the work in ref. [109].
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A

Deviation Equations in Schwarzschild space-time

The deviation equations for the most general case i.e., the non-planar motion, of
spinning particles in Schwarzschild space-time is given here.

A.1 The Orbital deviations:

dδut

dτ
= − 2M

r(r − 2M)
δ
(
utur

)
− 2M

mr2(r − 2M)
δ
(
urΣtr

)
+

M

mr
δ
(
uθΣtθ + uϕΣtϕ

)
+

[
4M(r −M)

r2(r − 2M)2
utur +

2M(3r − 4M)

mr3(r − 2M)2
urΣtr

− M

mr2

(
uθΣtθ + uϕΣtϕ

) ]
δr,

dδur

dτ
= − M(r − 2M)

r3
δ
(
ut 2
)
− 2M(r − 2M)

mr4
δ
(
utΣtr

)
+

2Mur

r(r − 2M)
δur

+ (r − 2M) δ(uθ 2) +
M

mr

[
δ
(
uθΣrθ

)
+ δ (uϕΣrϕ)

]
+ (r − 2M) sin2 θ δ(uϕ 2) +

(
(r − 2M)uϕ 2 sin 2θ

)
δθ

+

[
2M

r4
(r − 3M)ut 2 − 2M(r −M)ur 2

r2(r − 2M)2
+ uθ 2 + sin2 θ uϕ 2

+
2M

mr5
(3r − 8M)utΣtr − M

mr2

(
uθΣrθ + uϕΣrϕ

) ]
δr,
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dδuθ

dτ
=

M(r − 2M)

mr4
δ(utΣtθ) +

M

mr2(r − 2M)
δ(urΣrθ)− 2M

mr
δ(uϕΣθϕ)

− 2

r
δ(uruθ) + sin θ cos θ δ(uϕ 2) +

(
cos 2θ uϕ 2

)
δθ

+

[
2

r2
uruθ − M

mr5
(3r − 8M)utΣtθ +

M(3r − 4M)

mr3(r − 2M)2
urΣrθ

+
2M

mr2
uϕΣθϕ

]
δr.

dδuϕ

dτ
=

M(r − 2M)

mr4
δ(utΣtϕ)− M

mr2(r − 2M)
δ(urΣrϕ) +

2M

mr
δ(uθΣθϕ)

− 2

r
δ(uruϕ)− (2 cot θ uϕ) δuθ −

(
2 cot θ uθ

)
δuϕ +

(
2 csc2 θ uθuϕ

)
δθ

+

[
2

r2
uruϕ − M

mr5
(3r − 8M)utΣtϕ +

M(3r − 4M)

mr3(r − 2M)2
urΣrϕ

− 2M

mr2
uθΣθϕ

]
δr,

A.2 The spin-dipole deviations:

dδΣtϕ

dτ
= − M

r(r − 2M)
δ(utΣrϕ)− (r −M)

r(r − 2M)
δ(urΣtϕ)

− ctgϕ δ(uθΣtϕ)− 1

r
δ(uϕΣtr) + ctg θ δ(uϕΣtθ)

−
[

1

r2
uϕ Σtr +

2M(r −M)

r2(r − 2M)2
utΣrϕ +

1

r2

(
1 +

2M(r −M)

(r − 2M)2

)
urΣtϕ

]
δr,

dδΣtr

dτ
= (r − 2M) δ(uθΣtθ) + (r − 2M) sin2 θ δ(uϕΣtϕ)

+
(
uθΣtθ + sin2 θ uϕΣtϕ

)
δr +

(
(r − 2M) sin 2θ uϕΣtϕ

)
δθ,

90



A.2. The spin-dipole deviations:

dδΣtθ

dτ
= − M

r(r − 2M)
δ(utΣrθ)− (r −M)

r(r − 2M)
δ(urΣtθ)− 1

r
δ(uθΣtr)

+ sin θ cos θ δ(uϕΣtϕ) +
(
cos 2θ uϕΣtϕ

)
δθ

+

[
2M(r −M)

r2(r − 2M)2
utΣrθ +

1

r2

(
1 +

2M(r −M)

(r − 2M)2

)
urΣtθ +

1

r2
uθ Σtr

]
δr,

dδΣrϕ

dτ
= − M(r − 2M)

r3
δ(utΣtϕ)− (r − 3M)

r(r − 2M)
δ(urΣrϕ)− ctg θ δ(uθΣrϕ)

+ (r − 2M) δ(uθΣθϕ)− cot θ δ(uϕΣrθ)

+

[
2M

r4
(r − 3M)ut Σtϕ − 1

r2

(
1− 2M(r −M)

(r − 2M)2

)
urΣrϕ + uθ Σθϕ

]
δr

+
(
csc2 θ uθ Σrϕ + csc2 θ uϕ Σrθ

)
δθ,

dδΣrθ

dτ
= − M(r − 2M)

r3
δ(utΣtθ)− (r − 3M)

r(r − 2M)
δ(urΣrθ)

+ sin θ cos θ δ(uϕΣrϕ)− (r − 2M) sin2 θ δ(uϕΣθϕ)

+
(
cos 2θ uϕ Σrϕ − (r − 2M) sin 2θ uϕ Σθϕ

)
δθ

+

[
2M

r4
(r − 3M)ut Σtθ +

1

r2

(
1− 2M(r −M)

(r − 2M)2

)
urΣrθ

− sin2 θ uϕ Σθϕ

]
δr,

dδΣθϕ

dτ
= − 2

r
δ(urΣθϕ)− 1

r
δ(uθΣrϕ) +

1

r
δ(uϕΣrθ) + cot θ δ(uθΣθϕ)

+
1

r2

(
−uϕ Σrθ + uθ Σrϕ + 2ur Σθϕ

)
δr +

(
csc2 θ uθ Σθϕ

)
δθ.

Of course, any special case like planar orbits can be deduced from these equations,
by using the respective conditions.
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Summary

Mankind always had a clue that nature can be understood and described with a
limited number of concepts. Modern science explains nature in a more quantitative
way: Biology taught us that the cell is the fundamental unit of life; in Chemistry
molecules or atoms are the basic building blocks of materials; for Physicists, space
and time are the only fundamental entities and everything else in the Universe must
be understood from it.

Space, Time and Gravity

For centuries, space and time are considered as two separate things. Space was
where events took place and time was a measure of change. Eventually, Einstein
with his general theory of relativity revolutionised the way we think about the
Universe. His elegant equations state that space and time are intimately connected
and melt into one another to form space-time. Thus, the presence of large amounts
of mass or energy distorts space-time – in essence causing the space-time fabric to
"warp" and we observe this as gravity. For instance, the planets are moving in
straight lines in the curvature produced by the sun and it appears as if they are
in circular or elliptical motion around the sun. This is the central idea of General
Relativity.

General Relativity is the most successful theory of gravity, describing accurately
all the gravitational phenomena we know. In addition, it predicts new strong grav-
itational phenomena like black holes, neutron stars, compact binaries – composed
of black holes and/or neutron stars, gravitational waves, and the Big Bang.

Extreme Mass Ratio System

In this thesis, I have presented the scientific work done along with my collaborators
on the theoretical modelling and understanding of compact binaries. Specifically,
when one of the objects in the binary system is very very small compared to the
other, i.e., an Extreme Mass Ratio System. Extreme Mass Ratio Systems consist of
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a huge central black hole of mass million times heavier than the sun and a smaller
companion with a mass of a few times that of the sun . The smaller companion
can be a white dwarf, black hole or a neutron star and the central object is called
a supermassive black hole.

Usually these kinds of systems are found in the centre of the galaxies. Almost
all the bright galaxies accommodate one or more supermassive black holes in their
centres. For example, our own galaxy Milky Way has a supermassive black hole
four million times heavier than the sun, named as Sagittarius A* and there are 28
stars orbiting it closely. Therefore by following the companions of the supermassive
black holes and modelling Extreme Mass Ratio Systems will eventually help us to
understand the geometry of the supermassive black hole and hence the galactic
dynamics.

Black holes are objects in which a huge amount of mass is compressed into a
very small volume. As a result, the space-time around them is extremely curved,
such that even light can’t escape once it enters into the event horizon (the point of
no return) and even the tick rate of the clock reduces due to the gravitational pull.
Black holes are described with three properties: mass, spin (rotation), and charge.

Technically black holes are solutions of Einstein’s field equation - the master
equation in the general theory of relativity. The black hole which has only mass and
is spherically symmetric is known as Schwarzschild black hole. A massive compact
object can also possess angular momentum, that is, rotation about its own axis.
Then it is described with the Kerr metric and called a Kerr black hole. If these two
kinds of black holes have charge as an additional property, then they are known
as Reissner-Nordstrøm black holes and Kerr-Newman black holes. These are the
four known, exact, black hole solutions to the Einstein’s field equations in General
Relativity.

Dynamics of an Extreme Mass Ratio System

The analytical description of systems like Sagittarius A* is extremely complicated,
as the central object is also spinning about its own axis, and many companions
orbiting it. Therefore researchers have attempted to understand them in steps:
describing the dynamics of a single companion around the supermassive black hole
known as Extreme Mass Ratio System. Traditionally the description of spin in Ex-
treme Mass Ratio Systems has been based on the Mathisson-Papapetrou formalism.

Mathisson and Papapetrou described the dynamics of spinning compact objects
in curved space-time. But the complication in the formalism is that one has to keep
track of the internal structure of the orbiting companion. Further, a fully relativistic
calculation has never been done. Usually one does something called Post-Newtonian
scheme in which it is assumed that the gravitational field far away from the central
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black hole is weak, hence Newton’s Law of gravitation is used and the effects of
space-time curvature are then added subsequently.

Therefore, my collaborators and I proposed an alternate complementary de-
scription for the subject. Since the mass ratio is extreme we have neglected the
internal structure of the smaller companion and treated it as a point object. Thus
we have generalised the Einstein’s description of spinless bodies. Also near black
holes the gravitational field curvature, is strong. So, we have developed completely
relativistic orbits for spinning bodies by generalising the well known geodesic devi-
ation method in General Relativity.

We then applied our new formalism to a stellar mass spinning compact object
in the curvature of a non-rotating supermassive black hole (Schwarzschild). We
analytically established three kinds of possible orbits in the relativistic limit:

Circular orbits and Innermost Stable Circular Orbits

When a stellar object is captured by the gravity of the supermassive black hole,
then the body may undergo circular orbits in a fixed plane; as shown in the Fig.
6.1. This has been demonstrated with an analytic equation in our theory and the
radius of the circular orbits depends on the parameters of the system: the masses
of the objects and the spin of the smaller object.

The spin and orbital motion of the body are quantified by the vector quantities
called spin angular momentum and orbital angular momentum. The sum of these
two are denoted by J, the total angular momentum (shown with arrows). For a
stellar object in the planar orbit, the direction of these quantities must remain fixed
as implied by our theorem.

S
bh

J

S

Figure 6.1. A stellar mass spinning black hole or a neutron star is orbiting a supermassive
black hole in circular orbits.

The smallest circular orbit in which the stellar companion is stably orbiting the
massive object is called Innermost Stable Circular Orbit (ISCO). For a stellar com-
panion which is not spinning, the ISCO is found at three times the Schwarzschild
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radius (the radius of the event horizon surrounding a non-rotating black hole) and
it is a standard result in General Relativity. Because our orbiting object is spin-
ning, the spin influences the ISCO. We found that, when the magnitude of the spin
increases, the radius of the ISCO increases or decreases, depending on the orienta-
tion. Therefore, for a spinning object the ISCO can be found at more or less than
three times the Schwarzschild radius.

Plane non-circular orbits and periastron shift

The orbiting body does not moves on well defined orbits like circular ones. In case
the orbit is a little bit perturbed, it is still possible to have orbits in the plane. But,
because of the non-constant spin the body possesses two periods. Hence the point of
closest approach (periastron) and the point of farthest approach (apastron) behave
in a complicated way, as the body reaches different minimum and maximum at non-
constant intervals (Fig. 6.2). In addition, after each orbit the body ends ahead of
the starting point. This shift in the angle of the orbit due to the warped space-time
is known as periastron shift.

J

S
bh

S

Periastron shift

Figure 6.2. The perturbed orbit possesses a periastron shift in the plane. The spinning
body reaches different periastra or apastra at non-constant intervals.

This is a well known effect in General Relativity as described by Einstein for
the perihelion shift of Mercury. But the irregular behaviour of the body with two
periods is something very new which emerged out of our theory !

Geodetic precession/de Sitter precession

For a perturbed precessing spinning object the spin precession must be compensated
by the orbital angular momentum. Hence the total angular momentum J remains
constant. Then the body goes in a periodic motion above and below the plane
orbiting the massive object. In other words, the whole orbit precesses about its
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plane. Therefore the orbital angular momentum L sweeps out a cone. This effect
is called Geodetic precession or de Sitter precession named after Willem de Sitter.

J

S
bh

S

Geodetic precession
L

Figure 6.3. The spin precession must be compensated by the precession of the orbital
angular momentum L. Therefore L sweeps out a cone.

The geodetic effect was first predicted by de Sitter in 1916, and he has provided
relativistic corrections to the motion of the Earth-Moon system. Later on this effect
has been found in many other systems. Here we have discovered this effect in our
Extreme Mass Ratio Binaries.

Conclusion

We have described the dynamics of spinning compact objects in a completely new
frame work and established three kinds of orbits and its properties. But the orbiting
body can behave in more complicated ways, which is left for further investigation.
For instance, when the body is orbiting at relativistic speeds it emits gravitational
radiation: waves representing ripples in the fabric of space-time.

The European space agency is already working to set up a gravitational labo-
ratory – eLISA, that will orbit the sun along with earth whilst detecting the ripples
in space-time and send us the information. A study of this information can unveil
the geometry around the central black hole and the stellar object populations, mass
spectrum and spin. Almost all bright galaxies hosts one or more massive central
black holes. When galaxies coalesce these supermassive black holes will merge even-
tually, releasing huge amount of gravitational radiation during the process. Thus
detecting these signals will not only test theories of gravity and black holes, but
also reveal information about the evolution and merger history of galaxies.

Interestingly, Einstein who discovered the gravitational waves in his theory of
relativity, didn’t think that its detection will ever be possible. But we can now be
proud enough to live in an era, where his doubt has been proved wrong with the
latest discovery of gravitational waves at LIGO observatories – the event named
GW150914.
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Samenvatting

De mensheid heeft altijd vermoed dat de natuur begrepen en beschreven kan worden
met een beperkt aantal concepten. De moderne natuurwetenschap beschrijft de
natuur voornamelijk op een kwantitatieve manier: de biologie leert ons dat de cel
de fundamentele eenheid van het leven is, in de scheikunde vormen moleculen en
atomen de bouwstenen van materialen; voor natuurkundigen zijn ruimte en tijd de
enige fundamentele entiteiten, waar al het andere in het universum vanuit begrepen
moet worden.

Ruimte, tijd en zwaartekracht

Eeuwenlang werden ruimte en tijd beschouwd als twee verschillende dingen. De
ruimte was waar gebeurtenissen in plaatsvinden en de tijd is een maat voor ver-
andering. Uiteindelijk heeft Einstein met zijn Algemene Relativiteitstheorie de
manier waarop we over ons universum denken revolutionair veranderd. Zijn elegante
vergelijkingen stellen dat ruimte en tijd nauw met elkaar verbonden zijn en met
elkaar versmelten tot de ruimtetijd. De aanwezigheid van grote hoeveelheden massa
of energie verstoort de ruimtetijd - het weefsel van de ruimtetijd wordt verbogen
- en dit nemen we waar als zwaartekracht. De planeten bewegen bijvoorbeeld in
rechte lijnen in de kromming veroorzaakt door de zon en het lijkt alsof ze zich in
circulaire of elliptische banen om de zon bevinden. Dat is het centrale idee van de
Algemene Relativiteit.

Algemene Relativiteit is de meest succesvolle theorie van de zwaartekracht,
ze geeft een nauwkeurige beschrijving van alle zwaartekrachtsverschijnselen die we
kennen. Bovendien voorspelt ze nieuwe sterke zwaartekrachtsverschijnselen, zoals
zwarte gaten, neutronensterren, compacte dubbelsystemen (bestaande uit zwarte
gaten en/of neutronensterren), zwaartekrachtsgolven en de Big Bang.
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Systemen met een extreme massaverhouding

In dit proefschrift beschrijf ik het onderzoek dat ik heb gedaan met mijn collega’s om
dubbelsystemen van compacte objecten theoretisch te modelleren en te begrijpen.
We bestuderen het specifieke geval waarin één van de objecten in het dubbelsysteem
veel kleiner is dan het andere, ofwel een systeem met een extreme massaverhouding.
Systemen met een extreme massaverhouding bestaan uit een enorm zwart gat met
een massa van een miljoen zonsmassa’s in het midden en een kleiner object van een
aantal zonsmassa’s. Het kleinere object kan een witte dwerg, een zwart gat of een
neutronenster zijn en het centrale object is een zogenaamd superzwaar zwart gat.

Dit soort systemen komt normaal gesproken voor in het centrum van sterren-
stelsels. Bijna alle heldere sterrenstelsels hebben één of meerdere superzware zwarte
gaten in hun centrum. Ons eigen sterrenstelsel, de Melkweg, heeft bijvoorbeeld
een superzwaar zwart gat dat vier miljoen maal zo zwaar is als de zon, genaamd
Sagittarius A*, waar 28 sterren dicht omheen draaien. Het bestuderen van de
kleinere objecten die om zwarte gaten heen bewegen en het maken van modellen
van systemen met een extreme massaverhouding zal ons uiteindelijk helpen om de
geometrie van het zwarte gat te begrijpen en daarmee de galactische dynamica.

Zwarte gaten zijn objecten waarin een enorme hoeveelheid massa samenge-
drukt is in een zeer klein volume. Hierdoor is de omringende ruimtetijd zeer sterk
gekromd, waardoor zelfs licht niet kan ontsnappen wanneer het de waarnemings-
horizon voorbij gaat. Zelfs het tikken van een klok wordt vertraagd door de
zwaartekracht. Zwarte gaten worden beschreven door drie eigenschappen: massa,
spin (draaiing) en lading.

Technisch gesproken zijn zwarte gaten oplossingen van de Einsteinvergelijk-
ing, de belangrijkste vergelijking in de Algemene Relativiteitstheorie. Een bolsym-
metrisch zwart gat dat alleen massa heeft, staat bekend als een Schwarzschild zwart
gat. Een massief compact object kan ook impulsmoment hebben, ofwel rotatie om
zijn eigen as. In dat geval wordt het zwarte gat beschreven door de Kerr metriek en
wordt het een Kerr zwart gat genoemd. Als deze soorten zwarte gaten bovendien
lading hebben, staan ze bekend als Reissner-Nordstrøm en Kerr-Newman zwarte
gaten. Dit zijn de vier bekende exacte oplossingen van Einsteins veldvergelijkingen
in de Algemene Relativiteit.

Dynamica van systemen met een extreme massaverhouding

Een analytische beschrijving van systemen zoals Sagittarius A* is zeer ingewikkeld,
aangezien het centrale object ook om zijn eigen as spint en omdat er veel objecten
omheen bewegen. Daarom proberen onderzoekers deze systemen stap voor stap te
begrijpen: door de dynamica van een enkel object dat beweegt rond een superzwaar
zwart gat te beschrijven als een systeem met een extreme massaverhouding. Van
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oudsher wordt spin in systemen met een extreme massaverhouding beschreven door
middel van het Mattisson-Papapetrou-formalisme.

Mathisson en Papapetrou beschreven de dynamica van spinnende compacte
objecten in gekromde ruimtetijd. Een complicatie van hun formalisme is, dat het
noodzakelijk is om de interne structuur van het kleinere object bij te houden.
Bovendien is een volledig relativistische berekening nog nooit uitgevoerd. Door-
gaans gebruikt men een post-Newtoniaanse benadering, waarin wordt aangenomen
dat het zwaartekrachtsveld ver weg van het centrale zwarte gat zwak is, zodat de
zwaartekrachtswet van Newton gebruikt kan worden. Vervolgens worden de effecten
van kromming in de ruimtetijd toegevoegd.

Mijn collega’s en ik stellen daarom een alternatieve, complementaire beschrij-
ving voor. Omdat de verhouding tussen de massa’s extreem is, verwaarlozen we
de interne structuur van het kleinere object en beschouwen we het als een punt-
deeltje. We generaliseren hiermee Einsteins beschrijving van lichamen zonder spin.
Bovendien is het gravitatieveld rondom een zwart gat sterk, en dus is de ruimtetijd
sterk gekromd. Daarom ontwikkelen we geheel relativistische banen voor spinnende
objecten door de bekende methode van geodetische afwijking te generaliseren.

We hebben ons nieuwe formalisme toegepast op een systeem van een compact
object met spin met een stellaire massa en een superzwaar zwart gat zonder spin
(Schwarzschild). In de relativistische limiet vonden we drie soorten banen:

Circulaire banen en binnenste stabiele circulaire banen

Wanneer een stellair object gegrepen wordt door de zwaartekracht van een su-
perzwaar zwart gat, kan het object circulaire banen gaan beschrijven in een con-
stant vlak, zoals gëıllustreerd in Fig. 6.4. Dit gedrag wordt gedemonstreerd met
een analytische vergelijking in onze theorie. De straal van de circulaire baan wordt
bepaald door de parameters van het systeem, zoals de massa’s van de objecten en
de spin van het kleinere object.

De spin en het baanimpulsmoment van het lichaam worden beschreven door
de spin-impulsmoment- en baanimpulsmomentvector. De som van deze vectoren
wordt genoteerd als J, het totale impulsmoment (aangeduid met pijlen). Volgens
ons theorema blijft de richting van deze grootheden behouden, voor een stellair
object in een vlakke baan.

De kleinste circulaire baan waarin het stellaire object stabiel rondom het zware
object beweegt wordt de binnenste stabiele circulaire baan genoemd. Voor een
object zonder spin bevindt de binnenste stabiele circulaire baan zich op een afstand
van drie maal de Schwarzschildstraal (de straal waarop de waarnemingshorizon
zich bevindt) van het centrum van het zwarte gat; dit is een standaard resultaat
in de Algemene Relativiteit. De spin van het object dat om het zwarte gat draait
bëınvloedt de binnenste stabiele circulaire baan. We vinden dat, wanneer de grootte
van de spin toeneemt, de straal van de binnenste stabiele circulaire baan toeneemt
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Figure 6.4. Een spinnend zwart gat of neutronenster met stellaire massa beweegt in een
circulaire baan rondom een superzwaar zwart gat.

of afneemt, afhankelijk van de oriëntatie. De binnenste stabiele circulaire baan
bevindt zich dus op meer of minder dan drie maal de Schwarzschildstraal.

Niet-circulaire banen in het platte vlak en periastronverschuiving

Het draaiende object beweegt zich niet op goed gedefinieerde banen zoals de circu-
laire banen. Wanneer de baan een klein beetje verstoord wordt, is het nog steeds
mogelijk om een baan in een plat vlak te beschrijven. Maar doordat de spin niet
constant is, heeft het object twee periodes. Hierdoor gedragen het punt met de
kleinste afstand (periastron) en het punt met de grootste afstand (apastron) zich
op een ingewikkelde manier, doordat het object steeds een ander maximum en mini-
mum bereikt in variërende intervallen (zie Fig. 6.5).

J

S
bh

S

Periastron shift

Figure 6.5. De verstoorde baan vertoont periastronverschuiving in het platte vlak. Het
spinnende object bereikt verschillende periastra en apastra na variërende intervallen.

Bovendien eindigt het object na elke baan vóór het beginpunt. Deze verschui-
ving in de hoek van de baan door gekromde ruimtetijd staat bekend als periastron-
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verschuiving. Dit is een bekend effect in de Algemene Relativiteit, zoals de door
Einstein beschreven perihelionverschuiving van Mercurius. Maar het onregelmatige
gedrag van het object met twee periodes is iets nieuws dat in onze theorie naar
voren komt!

Geodetische precessie/de Sitter precessie

Voor een verstoord spinnend object met precessie moet de precessie van de spin
gecompenseerd worden door het baanimpulsmoment. Het totale impulsmoment J
blijft dus constant. Het object raakt dan in een periodieke beweging boven en onder
het vlak om het massieve object. In andere woorden, de gehele baan precesseert om
het vlak. Hier- door beweegt het baanimpulsmoment L langs een kegel. Dit effect
wordt Geodetische precessie of de Sitterprecessie genoemd, naar Willem de Sitter.

J

S
bh

S

Geodetic precession
L

Figure 6.6. De spinprecessie wordt gecompenseerd door de precessie van het baanim-
pulsmoment L. Het baanimpulsmoment L beweegt langs een kegel.

Het geodetische effect werd als eerste voorspeld door de Sitter in 1916. Hij
vond relativistische correcties voor de beweging in het systeem van de Aarde en de
Maan. Dit effect is later ook gevonden in veel andere systemen. Wij hebben dit
effect gevonden in onze dubbelsystemen met een extreme massaverhouding.

Conclusie

We hebben de dynamica van spinnende compacte objecten beschreven in een geheel
nieuw formalisme en we hebben drie soorten banen en hun eigenschappen vast-
gesteld. Het draaiende lichaam kan zich op nog ingewikkeldere manieren gedragen,
dit blijft over voor toekomstig onderzoek. Een object dat beweegt met relativistische
snelheid zendt bijvoorbeeld zwaartekrachtsgolven uit: rimpelingen in de ruimtetijd.

De Europese Ruimtevaartorganisatie (ESA) werkt aan een zwaartekrachtsde-
tector, eLISA, die samen met de aarde rond de zon zal draaien en ondertussen
rimpelingen in de ruimtetijd zal meten. Het bestuderen van de informatie van
eLISA kan de geometrie van het centrale zwarte gat en de massa’s en spins van de
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daaromheen bewegende sterren onthullen. Bijna alle heldere sterrenstelsels bevat-
ten één of meer centrale zware zwarte gaten. Wanneer sterrenstelsels samensmelten,
gaan deze superzware zwarte gaten uiteindelijk ook samen; tijdens dit proces komt
een enorme hoeveelheid zwaartekrachtsstraling vrij. Het detecteren van deze sig-
nalen zal dus niet alleen de theorieën over zwaartekracht en zwarte gaten testen,
maar ook informatie verschaffen over de evolutie en de geschiedenis van het versmelten
van sterrenstelsels.

Het is interessant dat Einstein, die de zwaartekrachtsgolven ontdekte in zijn
relativiteitstheorie, dacht dat het nooit mogelijk zou zijn om deze ooit te de-
tecteren. Door de recente ontdekking van zwaartekrachtsgolven door LIGO, de
meting GW150914, kunnen we met trots zeggen dat we in een tijd leven waarin
deze twijfel onjuist is gebleken.
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Stellingen

Behorend bij het proefschrift
Spin Dynamics in General Relativity

1. Comparing with the conventional analysis of spinning particle dynamics it
is seen that the constraint on the mass dipole (Pirani condition) has been
replaced by a proper equation of motion. As a result in our formalism of
classical relativistic mechanics the mass-dipole Z cannot vanish permanently,
except in the flat field-free Minkowski space-time. However, it is easily es-
tablished that the two approaches can be made to agree to linear order in
the spin tensor.

Chapter 4

2. The planar motion of a spinning particle in curved space-time requires align-
ment of the spin with the orbital angular momentum and vice versa.

Chapter 4

3. The radial deviation from circular orbit in Schwarzschild space-time have
double periods. Hence the periastron and apastron will behave in a compli-
cated way, as the body reaches different minimal or maximal radial distances
at non-constant intervals.

Chapter 5

4. The presence of spin alters the stability condition and therefore the location
of the ISCO. When the magnitude of the spin increases, the radius of the
ISCO increases or decreases, depending on the orientation. Therefore, for a
spinning particle the ISCO can be found at more or less than three times
the Schwarzschild radius. Over the range of predominant physical interest,
−0.5 < σ/M < 0.5, the ISCO curve coincides with the curve derived by
minimising the orbital angular momentum.

Chapter 5

5. The description of Extreme Mass Ratio mergers using the plunge starting
from a circular orbit can be improved beyond the treatment by G. d’Ambrosi
and co-workers by including non-circular starting orbits and spin.

G. d’Ambrosi et al., Class. Quant. Grav. 32 (2015)

6. The analysis of the gravitational wave events detected by the LIGO and
VIRGO collaborations can be improved by allowing arbitrary orientations of
the spins of the initial black holes.

B. P. Abbott et al., PRL 116, 061102 (2016)
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7. The radiation dynamics of stellar objects orbiting around supermassive black
holes must be studied in the bumpy black hole space-times proposed by S.
Vigeland and S. Hughes, to explore possible deviations from General Rela-
tivity.

S. Vigeland et al., PRD 81, 024030 (2010)

8. The shape of a flame is affected by gravity as theoretically modelled by S.S.
Krishnan and his collaborators. This model can be tested in an environment
of microgravity in free fall experiments with airplanes flying parabolic paths.

S.S. Krishnan et al., Combustion Theory and Modelling,
Vol. 12, No. 4, (2008)

9. Do it yourself!

Satish Kumar, Saravanan,
Leiden, 07-07-2016
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