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ABSTRACT Many search-based quantum algorithms that achieve a theoretical speedup are not practically
relevant since they require extraordinarily long coherence times, or lack the parallelizability of their classical
counterparts. This raises the question of how to divide computational tasks into a collection of parallelizable
subproblems, each of which can be solved by a quantum computer with limited coherence time. Here, we
approach this question via hybrid algorithms for the k-satisfiability problem (k-SAT). Our analysis is based
on Schoning’s algorithm, which solves instances of k-SAT by performing random walks in the space of
potential assignments. The search space of the walk allows for “natural” partitions, where we subject only
one part of the partition to a Grover search, while the rest is sampled classically, thus resulting in a hybrid
scheme. In this setting, we argue that there exists a simple tradeoff relation between the total runtime and
the coherence time, which no such partition-based hybrid scheme can surpass. For several concrete choices
of partitions, we explicitly determine the specific runtime coherence time relations and show saturation
of the ideal tradeoff. Finally, we present numerical simulations, which suggest additional flexibility in

implementing hybrid algorithms with the optimal tradeoff.

INDEX TERMS Coherence time, quantum algorithm, quantum search, runtime, satisfiability problem.

I. INTRODUCTION
Consider a quantum algorithm that takes exponential time to
run, but still offers a polynomial speedup over the best classi-
cal method. Examples include Grover searches to brute-force
a password or for finding the solution for a combinatorial
optimization problem for which no classical heuristics exist.
Fully quantum implementations might not be desirable for
two reasons: 1) quantum hardware that can sustain very long
computations might not be available and 2) quantum algo-
rithms, such as Grover’s search, might not be easily amenable
to parallelization. This leads to the question of how to best
break up such instances into a set of smaller parallelizable
subproblems that can individually be solved on quantum
hardware.

We consider the well-known satisfiability problem with
k being the number of literals in each clause, (k-SAT), and
focus particularly on 3-SAT since it provides an attractive test
bed to investigate such questions. k-SAT is the archetypical
combinatorial optimization problem and represents a class

of use cases with considerable practical relevance. More-
over, there is a classical randomized algorithm [1], [2] due
to Schoning, with a performance close to the best known
algorithms with provable performance, and which further-
more allows for a closed-form asymptotic runtime analysis.
It is indeed the case that the algorithm obtained by replacing
the classical search of the Schoning procedure by a Grover
search [3] yields a quantum Schoning algorithm with a
quadratic improvement vis-a-vis its classical counterpart [4].
(In the following, we will refer to quantum algorithms that
arise this way as Groverizations of their classical versions).
However, such “fully quantized” Schoning’s SAT solvers
cannot be performed in parallel, which arguably is a relevant
feature for algorithms that run in exponential time. Hybrid
schemes, based on “partial” Groverizations of Schoning’s
algorithm, where Grover search procedures are applied only
to certain subroutines, usually do allow for parallelizations.
The starting point of our analysis is the stochastic nature
of Schoning’s algorithm as a random walk. This point of
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FIGURE 1. Visualization of the behavior of algorithms by indicating their
position in a “runtime rate versus coherence time rate” chart. Classical
algorithms require no coherence and thus lie on the y-axis. In the
example given, the point on the upper left-hand side represents a
classical probabilistic search with runtime rate yc. A completely
Groverized version has coordinates (yc/2, yc/2) (bottom right), meaning
that it will spend its entire runtime coherently. Hybrid algorithms that
use Grover only for a subset of the search space must lie in the shaded
area above or on the dashed line segment connecting these two points.

view yields two classes of hybrid algorithms, where one
class Groverizes the random choice of the initial state of the
walk, whereas the other class Groverizes the randomness in
the walk itself. Within an established model of Schoning’s
algorithm, we optimize the resulting runtimes by balancing
the resources allocated to the subroutines.

A. RUNTIME-COHERENCE TIME TRADEOFFS

Before specializing to the Schoning process, let us briefly
outline the tradeoffs between runtime and coherence time
that can be expected for quantum search problems. Con-
sider an algorithm that solves instances of size n with run-
time 7 (n). For exponential-time algorithms, we work with a
somewhat coarser measure, the (asymptotic) runtime rate

1
y = lim —logT(n)
n—oon

where we drop the base of the logarithm from here on; the
base is 2 unless explicitly stated otherwise. In other words,
T € O*(2""), where O* denotes scaling behavior up to poly-
nomial factors. The aim is to trade it off against the coherence
time required to run the algorithm. If C(n) is the longest time
over which coherence has to be maintained while running the
algorithm, then the coherence time rate is

1
x = lim —logC(n).
n—oo n

Now restrict attention to search algorithms with a classi-
cal runtime rate yc. A completely Groverized version runs
with rate yg = yc/2. All of its runtime will be spent co-
herently, specifically executing Grover iterations. Therefore,
Xxg = yc/2 as well. We can visualize these two points in a
“runtime rate versus coherence time rate” chart, a mode of
visualization that we will employ frequently (see Fig. 1).

3101222

To achieve a tradeoff between total runtime and coherence
time, we will consider algorithms that apply Grover’s proce-
dure only to a subset of the search space. It is easy to see that
any algorithm that results from such a procedure must have
coordinates (x, y) that lie on or above the line segment

L={(x,yc—x)|x €l0,yc/21}

that connects the purely classical point (0, yc) to the
completely Groverized one (yc/2, yc/2).

Indeed, take a partial Groverization that achieves parame-
ters (x, ¥ ). Then, one can replace the Grover part by a clas-
sical search. The resulting classical algorithm will have pa-
rameters (0, y + x), because the Grover search contributed
x to the runtime rate, but its classical simulation will con-
tribute 2y instead. However, if the initial parameters were
below the line, i.e., if y < yc — x, then the resulting classi-
cal algorithm runtime rate is y 4+ x < yc, contradicting the
assumption that y¢ describes the classical complexity of the
search.

B. RELATED WORK

Dunjko et al. [5] have previously considered partial Grover-
izations of Schoning’s algorithm. They aimed to minimize a
different metric, i.e., total number of clean qubits, rather than
coherence time. In fact, they work in a highly constrained
regime, where the number of available clean qubits only
scales as cn, with 0 < ¢ < 1 and n the number of variables of
the given 3-SAT formula. Surprisingly, they show that even
this meager allotment of qubits, in principle, yields a speedup
compared to the classical Schoning’s algorithm. !

Despite the superficial similarities, their and our papers
are quite different. We allow for qubit counts that are quasi-
linear in n, i.e., O(nlogn), reasoning that for exponential-
time algorithms, coherence time and parallelizability might
be more limiting than the number of available qubits. As
it will turn out, the setting considered here can interpolate
between the classical and the fully Groverized performance,
whereas the runtime rates obtainable in [5] stay close to the
classical ones. While Dunjko et al. [5] use derandomization
techniques, our approach builds more directly on the original
Schoning’s algorithm. This makes our approach technically
less involved, and it also makes the lessons learned more
widely applicable, since the basic technique of using Grover
search over a subset of all variables directly generalizes to
any NP problem, whereas derandomizations to a larger extent
rely on the particular structure of the problem at hand.

! According to [5, Supplemental Material Sect. B.4], the relative speedup
to the classical Schoning’s rate is f(c) = (1 — log \/g)ﬂ(c), where the Beta
function up to O(lonﬂ) is implicitly given as AB(c) In % + BB(c) =c. As
mentioned in [5] using a straightforward encoding of each trit into two
qubits, one can assume A = 10 and B = 50. To be consistent with our
encoding, we consider log, 3 qubits to encode a trit and then calculate the
maximum speedup in the rate, i.e., f(1) ~ 0.0028.
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Algorithm 1: Schoning’s Algorithm.

1: function SCHOENING(Cy, ..., Cr, N, m)
2: fori=1...Ndo

3: x < uniformly random value from {0, 1}*"
4: for j=1...mdo
5: if x satisfies Cy, ..., Cy then
6: return x
7: else
8: k < index of first unsatisfied clause
9: | < index of one of the three variables
occurring in C, chosen uniformly at
random
10: x < x, with the /th bit of x flipped
11: end if
12: end for
13:  end for

14:  return False
15: end function

Il. SETTING THE STAGE

A. SCHONING'S ALGORITHM

Here, we provide a very brief introduction to the pertinent
aspects of Schoning’s 3-SAT solver. For a more thorough
review, we refer the reader to [1] and [2]. In the 3-SAT
problem, we are given a collection of clauses Cy,...,Cp
on n binary variables, where each clause is of the form
Cj= l(()J) v 151) v léj), and where each of the literals l(()]), 151),
and lé’ ) is one of the binary variables or its negation. The
3-SAT formula is the conjunction of all the given clauses,
C:= /\fz 1Cj, and the computational task is to determine
whether there exists an assignment of the n binary variables
that satisfies C. According to Schoning [1], an algorithm
exists that, although with runtime that is exponential in n, can
perform better than an exhaustive search through all potential
assignments.

Schoning’s algorithm (see Algorithm 1) depends on two
parameters N and m to be determined later. It begins by
choosing an assignment x € {0, 1}*” uniformly at random.
The algorithm then performs an m-step random walk over
the space of n-bit strings (the inner loop in Algorithm 1, from
line 5). In every step, it checks (according to a predetermined
order) all the clauses Cy, ..., Cy. If all are satisfied, then x is
a solution and the algorithm terminates. Otherwise, it finds
the first unsatisfied clause and chooses one of the three vari-
ables corresponding to the literals of that clause uniformly
at random. The value of x is then updated, by negating that
variable. This concludes the step. If no solution is found after
m steps, the walk is terminated. Up to N such walks are
attempted (the outer loop in Algorithm 1), each time using
a fresh uniformly random starting point x.

B. ANALYSIS OF THE RUNTIME OF SCHONING'S
ALGORITHM

The analysis of the runtime of Schoning’s algorithm is
sketched in [1] and [2], and a more in-depth analysis can be
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found in [6]. Here, we follow a very similar line of reason-
ing, with our particular ansatz in mind. In the following, we
present an overview; see the Appendix for a more detailed
account.

Assume that there is at least one satisfying assignment
x*. We first aim to lower bound the probability that a given
random walk finds a solution. Let x; be the (random) initial
configuration and x; be the one attained after the /th step of
the random walk. The probability that any solution is found
during any step of the walk is certainly at least as large
as the probability P(x,, = x*) that the walk finds x* at the
mth step. To analyze P(x, = x*), we follow in the steps of
Schoning [1], [2] and focus on the evolution of the Hamming
distance dy (x;, x*) between the current configuration and the
selected satisfying assignment x*.

The fundamental insight is that if a clause Cy, is violated at
the /th step, then at least one of the three variables that appear
in C must differ between x; and the satisfying assignment x*.
Thus, the random flip decreases the Hamming distance to the
solution with probability at least 1/3

1
P (dy(xg1,x*) = dy (g, x*) = 1) > 3 ey

This suggests to pass from a description of the process on bit
strings to its projection x; — dg(x;, x*) onto N. However,
this would generally yield a process that would be no easier
to analyze than the original one. One may, for example, note
that although the Schoning -process (x;); is Markovian on the
space of bit strings {0, 1}*", one cannot generally expect its
projection (dg (x;, x*)); to be Markovian on N.

The general idea for the analysis is to replace (via a cou-
pling) the true projection (dy(x;, x*)); with another process
(d;); on Z, which is Markovian and which moreover upper-
bounds the true Hamming distance

dp (x;, x*) < dy. 2

More precisely, the Markov process (d;); is defined by the
transition probabilities

1

2
P =di+1)=3. P =d—-D=z. ()

The transition probabilities (3) can be interpreted as worst
case scenarios of each step in the Schoning process.

From the bound (2), it follows that P(x; = x*) > P(d; <
0). In other words, the success probability of the Schon-
ing process is lower bounded by the probability that the
substitute process d; reaches 0.

Given the lower bound P(d,, < 0) on the probability of
success of each given walk, we expect at least one out of
N =1/P(d,, <0) walks to find x*. More precisely, if € is
the tolerated probability for failure, then the number of rep-
etitions needed in order to find an existing solution satisfies

loge
N > .
~ log(1 — P(dy < 0))

The required number N of repetitions will be exponential
in n. It is then common to take a coarser point of view and

“
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only analyze the corresponding rate

1
y = — lim —logP(d, <0)
n—o0o n
sothat N = O0*(2"") 5)

where O* denotes scaling behavior up to polynomial factors
in order to achieve any constant probability of failure €. With
the choice m = n (i.e., the termination time is equal to the
number of variables), it turns out [1], [2] that y < log%1 ~
0.415.

It is surprisingly technically difficult to rigorously derive
the “global bound” P(x; = x*) > P(d; < 0) from the “local
bound” (1). However, the Markovian version (d;); of the
Hamming distance random walk is commonly accepted as a
good (in fact, conservative) model of the Schoning process.
In the main body of this article, we will, therefore, phrase
our arguments in terms of that model. More technical details
on the relation between the two processes are given in the
Appendix.

C. PARTIAL GROVERIZATIONS: THE GENERAL IDEA

For random walks, we naturally tend to think of the ran-
domness as being generated whenever needed, like when we
assign the initial state, or make the random choices along
the path. However, we can alternatively picture the walk as
a deterministic process that is fed with an external random
string S, a list from which it picks the next entry whenever
a random choice is to be made. When the purpose of the
walk is to find (an efficiently recognizable) solution to some
computational problem, one can thus view the walk as a
(deterministic) map that designates each input string S as
being “successful” or “unsuccessful,” in the sense of the walk
reaching the satisfying solution x* or not. To this mapping,
we can in principle apply a Grover search procedure, since
the walk (as well as the solution-recognition procedure) can
be performed via reversible circuitry and can thus also be
implemented coherently.

As described in the previous section, Schoning’s algorithm
proceeds with an initialization, followed by a random walk
on the space of 2" assignments. The initialization requires
n bits of randomness, Sy, since the initial state is selected
uniformly over all 2" strings. A walk of length m requires
a string Sy of mlog 3 bits to encode the needed randomness.
The log 3-factor is due to the fact that, at each step, the algo-
rithm randomly selects which one of the three literals (of the
first violated clause) should be flipped. An m-step Schoning
walk can thus be viewed as a map from S = (S, Sw) to a
binary variable that tells us whether a satisfying assignment
has been reached or not.

With a coherent circuit that implements this map, we can
thus replace the uniformly distributed random variable S,
with a uniform superposition over a corresponding number
of qubits, and proceed via standard Grover-iterations [3].
We would expect such a procedure to yield a satisfying
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assignment at a runtime that scales as O*(2"76) iterations,
with yg = %log%1 ~ 0.208 [4], i.e., the standard quadratic
speedup. Up to a few constant qubits, one needs n + (log 3 +
log L)ym qubits to encode this map as a quantum circuit,
where L is the number of clauses in the 3-SAT formula (more
details are given in Section V). Since the number of clauses
grows linearly in n for the regime of interest by the SAT phase
transition conjecture [7], and for the Schoning walk m = n,
the space complexity of such encoding is O(nlogn).

The view of random walks as maps on random input
strings opens up for the concept of partial Groverizations.
Nothing would, in principle, prevent us from regarding only
a part of the input string S as the input of the Grover pro-
cedure, while keeping the rest of the string classical. Need-
less to say, one would generally expect the result to be less
efficient than the “full” Groverization. However, the gain
would be that the partial Groverization breaks the tasks into
a collection of subproblems, each of which can be run in
parallel on a quantum device that requires shorter coherence
time.

Although it seems reasonable to expect that such a divi-
sion, in principle, is always possible, one may also expect
that it, in general, would be challenging to find a quantum
circuit that implements it in an economical manner. (We can
always resort to a full coherent circuit for § in its entirety,
putting the “classical part” in a diagonal state.) However,
there may be “natural” divisions of the process, which can
be exploited. For Schoning’s algorithm, it is close to hand
to consider the division S = (S;, Sy ), i.e., the division of the
required randomness into the initialization part and the walk
part. One can, thus, consider two particularly natural classes
of “partial” Groverizations of Schoning’s algorithm. For one
of these, the Groverized Initialization (GI), the choice of the
initial state is implemented coherently, while the walk is kept
“classical.” For the Groverized Walk (GW), the choice of ini-
tial state is kept classical, while the walk itself is performed
coherently.

As described in Section II-B, the actual analysis is based
on the random walk (d;); on Z, rather than the true Schoning
walk on strings in {0, 1}*". The idea is nevertheless the same;
the required randomness is divided into the initialization and
the walk per se, resulting in GI and GW processes. As de-
scribed in Section II-B, the rate of the true Schoning process
can be bounded by the rate of the substitute process (d;);.
It turns out that a similar argument can be made for GW
(see the Appendix), thus yielding a rigorous bound for the
rate also in this case. However, for the other processes, we
rather regard the (d;); process as a model of the genuine
Schoning walk, without rigorous guarantees of analogous
bounds.

I1l. PARTIAL GROVERIZATIONS
The previous section introduced two types of partial Grover-
izations of Schoning’s algorithm, GI and GW, based on the
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Algorithm 2: Schoning Walk and Oracle.

Algorithm 3: Groverized Initialization.

1: function ORACLE(xp, w)
2:  return TRUE if SCHOENINGWALK(x(, w) satisfies
all clauses, else FALSE
: end function

3

4.

5: function SCHOENINGWALK (x, w)
6: forj=1,...,mdo

7

8

if x violates one of Cy, ..., Cr then
k < index of first unsatisfied clause
9: | < index of the w;th variable occurring in Cy
10: X < x, with the /th bit of x flipped
11: end if
12:  end for

13:  return x
14: end function

division S = (87, Sw), i.e., the initial and the walk random-
ness. In this section, we describe these schemes in detail and
further discuss their “fractional” cases.

In the GI scheme, there is an outer loop that classically
samples Sy and is followed by a Grover search inner loop
over the space of all possible S;. Similarly, GW starts with
a classical outer loop that samples S; and is followed by a
Grover search inner loop over the space of all possible Sy
(this space is well defined as the walk length is fixed). We
obtain Fractional Groverized Initialization (FGI) by adapting
GI to a regime where only a fraction z of the variables in
the initialization can be searched coherently, with0 < z < 1.
Fractional Groverized Walk (FGW) is similarly an adaption
of GW to aregime where Grover search can be performed on
the randomness of walks of at most m,; steps, with 0 < m,,.
In both these fractional schemes, two classical outer loops
contain a Grover search inner loop. The algorithms intro-
duced here depend on parameters (N, N, etc.), which will
be specified explicitly in Section IV.

All Grover searches will use an oracle derived from the
function shown in Algorithm 2: It tests whether a Schoning
walk with an initial configuration x € {0, 1} and walk ran-
domness w € {1, 2, 3} will lead to a satisfying assignment.
For notational convenience, we let the elements of w take
ternary in values, with the interpretation that w; determines
which of the three literals occurring in the first violated clause
(if any) in step / of the walk is flipped. For a qubit-based
implementation, it is not difficult to relabel the decision
variables using [mlog 3] binary variables.

For the different variants of partial Groverizations dis-
cussed later, we will fix a subset of arguments to the oracle
and consider it as a function of the remaining ones. Fixed
arguments will be denoted as subscripts, €.g2., ORACLE, :
x > ORACLE(x, w). With these conventions, we have the
following algorithms.

One may note that the Grover search in the GW only is
guaranteed to succeed (with high probability) for a specific
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l:fori=1,...,N,do

2:  w < uniformly random value from {1, 2, 3}*™

3:  x < Grover search for |\/N] | iterations using
ORACLE,()

4. if x satisfies all clauses then

5: return x

6: endif

7: end for

Algorithm 4: Groverized Walk.

l:fori=1,...,N; do

2:  xp < uniformly random value from {0, 1}*"

3:  w < Grover search for | /N, | iterations using
ORACLEy, ()

4: x < SCHOENINGWALK(xg, w)

5. if x satisfies all clauses then

6 return x

7:  endif

8: end for

9: return False

Algorithm S: Fractional Groverized Initialization.

l:fori=1...N> do
2:  w < uniformly random value from {1, 2, 3}*™
3: forj=1...N do
4: X < uniformly random value from
{0, 1} x [(1=z)n]

5: x4 < Grover search for L,/Nl(q)J iterations
using ORACLEy, ()
6 X = (X, Xg)
7 if x satisfies all clauses then
8 return x
9: end if
10:  end for
11: end for

12: return False

collection of initial states. The number of rounds N; of
the outer loop is selected in such a way that it with high
probability hits the set of advantageous initial states at
least once, thus allowing the Grover procedure to reach the
satisfying assignment. Similar remarks apply to the other
partial Groverizations.

Next, we discuss the “fractional searches.” In the first one,
the argument x of the oracle is broken up as x = (xc, xy),
with x, taking |z-n] bits and x. being [(1 —z) - n] bits
long. Here, z € [0, 1] is a free parameter whose value will
be determined later.

The second fractional algorithm breaks up the walk ran-
domness as w = (wc, wy), with w, € {1, 2, 3} and w, €
{1, 2, 3}, respectively. Again, the values of m. and m, are
chosen later.
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Algorithm 6: Fractional Groverized Walk.
l:fori=1,...,N; do
2:  xo < uniformly random value from {0, 1}*"
3 forj:l,...,Nz(C)do
4: w¢ < uniformly random value from {1, 2, 3}*"
5 wy < Grover search for L\/W J iterations

using ORACLE (y;, v,)()

6: w = (We, Wy)
7 X <— SCHOENINGWALK (x(, w)
8: if x satisfies all clauses then
9: return x

10: end if

11:  end for

12: end for

13: return False

Algorithm 7: Evenly Fractionalized Grover.

l:fori=1,...,N do
2:  x. < uniformly random value from {0, 1}*[(1=2)1
3:  w, < uniformly random value from
(1,2, 3}X[(l—z)m1
4: (x4, wg) < Grover search for | VN | iterations
using ORACLE ., ,.)()

500w = (we, wy)
6:  xo = (x¢, xg)
7:  x < SCHOENINGWALK(xq, w)
8: if x satisfies all clauses then
9: return x

10:  endif

11: end for

12: return False

In the final algorithm (Algorithm 7), a fraction of z € [0, 1]
of both types of variables, the ones corresponding to the
initialization and the ones corresponding to the walk, will be
treated quantum mechanically.

IV. RUNTIME ANALYSIS

We will now lower bound the probability of success of the
various approaches. As a preparation, in Section IV-A, we
give a brief account of the analysis of the classical case,
before moving on to the Groverized versions in Section [V-B.

A. CLASSICAL SCHONING PROCESS

The main ideas of the classical analysis are close to their
presentation in [1] and [2]. We work in the Markovian model
(d;); for the behavior of the Hamming distances, as laid out
in Section II-B. Frequently, it will be convenient to measure
quantities “in units of n or m.” For example, we will soon
choose a number « € [0, 1] and assume that the initial value
dy is equal to kn. Of course, this only makes sense if x7 is an
integer. In order to keep the notation clean, we will implicitly
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assume that such expressions have been rounded to the next
integer.

Choose numbers «, v € [0, 1]. A given walk (d;); is cer-
tainly successful (in the sense that d,, < 0) if:

1) the initial value is dy = kn;

2) the random walk decreases the Hamming distance in
exactly vm of its m steps;

3) the condition

kn < Qv —Dm (6)
holds.

Indeed, the right-hand side of (6) is the difference between
the number of steps where the Hamming distance has been
decreased, vm, and the number of steps where the Hamming
distance has been increased, (1 — v)m.

For any fixed pair of values k, v subject to (6), we will now
compute the probability of this particular route to success.
Denote the first event by £ and the second event by E,. They
occur with respective probabilities

1 /n

P — m 1 vm 2 (I—v)m ;
=06 G o

Since the two events are independent, the success probability
of the walk is lower bounded by

P(xy, = x*|k) = P(dy, < 0|x)
> P(E| A Ey) = P(E1)P(E>)

RN AYZAYAA N S g
=5 G) G) e

The various binomial coefficients can be conveniently related
to entropies. To this end, recall the definition of the binary
entropy function

H(p) = —plogp — (1 — p)log(1l — p)
for p € [0, 1] and the relative entropy
D(p || g) = —plogg — (1 — p)log(1 — q) — H(p)

for p,q €[0,1]. Then, using the well-known estimate
[8, Ch. 11.1]

1 QnH () n < pnH ()
n+1 ~ \«n) —

equation (8) can, after some straightforward calculations, be
concisely rewritten as

Pdy < Ofx) 2 271 -HEMm=D0I 5 ©)

where 2 denotes that an inequality holds asymptotically, up
to a polynomial factor. Equation (9) directly gives an upper
bound on the rate y defined in (5). Since the rate expresses
the logarithm of the complexity “in units of n,” it makes sense
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to also express the length of the walk in terms of u := m/n.
Then

1
y = — lim —logP(d, <0|x)
n—-oon

<1 —H@)+puDW || 1/3) =y (u,xc,v).  (10)

In particular, the infimum of y (u, «, v) subject to the con-
straints (6) and 0 < u, 0 < v, x <1 is a valid bound for y.
We will perform such optimizations explicitly for the par-
tially Groverized versions in Section IV-B. For the classical
procedure, we just state the final result
1 2
~ v=2=,
3 3

Remark: One might be tempted to search a tighter bound
by summing the contributions to the probability of success
that arise from all consistent values for i, k, and v, instead
of just considering the extremal value. However, the rate of a
sum of exponentially processes is asymptotically determined
by the rate of the dominating summand alone, i.e., for all
collections of y; > 0, it holds that

4
u=1, k= yczlog§:0.4150. (11)

1
1 __ —vin _ X
Jim . log Ei 27 = SL;p Yi

(assuming convergence). Therefore, considering only the
dominating term does not affect the overall asymptotic rate.

B. PARTIALLY GROVERIZED PROCESSES

In this section, we derive the main results of this article:
bounds on the asymptotic rates for partially Groverized
versions of Schoning’s scheme.

1) GROVERIZED INITIALIZATION, ALGORITHM 3

For the parameters Nj and N, we choose constant multi-
ples of 1/P(E;) and 1/P(E>), respectively. The value of the
constant depends on the acceptable probability € of failure,
as exhibited in (4). Since this constant does not affect the
rate, we will not specify it here. The probabilities depend
essentially on the parameters wu, «, and v, though. We will,
therefore, write N (« ) and N, (u, v). Because the asymptotic
complexity of a Grover search is the square root of the
classical complexity, the rate function of GI is then given by

. 1
Yol e, v) = lim —log (VNIGON2(v. )

1 —H(k)
= —— 4D 1/3). (12

Likewise, the required coherence time scales with the
number of Grover iterations, i.e., as O*(2X™), for

1 1 —H(x)
x(k):= lim —-log/Ni(k) = ———. (13)
n—oo n 2
The parameters are constrained by
0<k=<1 O0=pu, 0O0=<v=l, <un (14
2v—1
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where the final condition is a rearranged version of the suc-
cess criterion (6).

We now determine the minimal rate ygy over the consistent
parameters. Because relative entropy is nonnegative, it is
always advantageous to reduce the value of p until it is min-
imal subject to the constraints. This is achieved by changing
the final inequality in (14) to equality. Rearranging, we arrive
at

0< Ly X (15)
;o V=5t

<n >

which allows us to eliminate v = v(k, i) from the prob-

lem. Varying y with respect to p gives rise to the criticality

condition

!
0=0uyci(k, u) =08, uD(/2 +«/2up) || 1/3)
1 1 . 3
— Ztog (P 4 Zrog (BE) 41023 — 2. (16)
2 0 2 % 2

This can be solved explicitly, e.g., using a computer algebra
system [9], leading to

0<k <1,

2
nw=3k = v=§, uDW || 1/3) = «. (17

Eliminating u, we get

1-H

ey L1
1—-H

xar(k) = % (18)

The pair of equations (18) contain all information about
the asymptotic behavior of the GI procedure. Each value
of x gives a solution for the two undetermined constants
Ni(k), No(u = 3k, v = %) in Algorithm 3, in such a way that
it will run with a small probability of returning a false neg-
ative. Varying «, we thus obtain a family of algorithms that
find different compromises between the required coherence
time and the total runtime. The achievable pairs of values are
shown in Fig. 2.

Finally, we explicitly determine the minimal rate achiev-
able in the GI scheme. With the help of a computer algebra
system [9], one easily finds

+1

! 1 K
0= Beyailk) = 5 log ——

1 1
& 10g(——1>:2 = K== (19)
K 5

which gives

3 3 —log5
=z, YeGI1= —F—
5

Remark: One can cast the final minimization into the form

. .1 —=H@)
va1 = inf ygi(k) = inf { ———— +«
K K 2

B H(c) — 1
= —sgp(—/c— T)

~0.339, xgr=0.139. (20)
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FIGURE 2. Rates (xci(x), yci(«)) for the required coherence time and the
total runtime of the Gl algorithm, as the parameter « is varied. The
horizontal bar denotes the runtime rate achieved by the classical
Schoning process. In other words, points above this line are
uninteresting. The vertical bar denotes the coherence rate that allows
one to run a completely Groverized version of the Schoning process. This,
arguably, makes points to the right of this line uninteresting as well.
Points to the left of the minimum (at (y, x) ~ (0.339, 0.139)) can
represent advantageous choices if either the total coherence time of a
quantum computer is limited or a larger degree of parallelization is
desired. The dashed line is the lower bound on the runtime rate given
the coherence time, as introduced in Fig. 1. It is achieved for x = %

This expression shows that the optimization amounts to
computing a Legendre transform. Indeed, with f(k):=
1/2(H(x) — 1), the right-hand side equals —f*(—1). For
physicist readers, it might be amusing to note that S(nk) =
nH (nk ) formally equals the entropy of an n-spin paramagnet
as a function of the total magnetization. The Legendre trans-
form of the entropy is a Massieu thermodynamic potential,
equal to F//T (with F the free energy) expressed as a function
of the inverse temperature [10, Ch. 5.4]. We will, however,
not pursue this analogy here.

2) GROVERIZED WALK, ALGORITHM 4
The analysis proceeds in close analogy to the aforementioned
case. The asymptotic rate function of GW is

1
vow (K, (L, V) = nlggo p log(Ny(k)y/N2 (v, 1))

= 1—Hk)+ %D(v 11/3) @D

subject to the set of constraints (14). The parameters v and u
can be treated in exactly the same way as before, leading
again to (17). In particular, the coherence time rate takes the
simple form x = /2, which allows us to eliminate  in favor
of x. We immediately obtain

Yaw(x) =1—-HQ2x) + x. (22)

Again, it is not difficult to solve for the lowest runtime [9]
nw=3w2-1) kx=+v2-1
yow ~ 0.228  xgw =~ 0.2071. (23)

At the optimal point, the runtime scales with a rate that is
very close to the one of a full Groverization of Schoning’s
process, namely, ycg = yc/2 = 0.2075. The flip side is that
the required coherence times are basically identical

XCG — XGW = 0.0004.
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FIGURE 3. Runtime rate versus coherence time rate curves for
Groverized Initialization (Gl, blue) and Groverized Walk (GW, red). The
point marked “CG"” at the bottom right of the diagram represents the
complete Groverization of the Schoning process. For long coherence
times, GW is preferable, whereas for shorter coherence times Gl achieves
a lower total runtime.

The findings are summarized in Fig. 3.

3) FRACTIONAL GROVERIZED INITIALIZATION,

ALGORITHM 5

In the case of Algorithm 5, the initial Hamming distance is
the sum of two terms dy = k(1 — z)n + k4zn, which model
dp (xc, x) and dp (xy, x;), respectively. Define the analogues

1 (1—2)n a _ L zn
2(1=2)n (/cc(l - z)n) PED = 5 (qun>

of P(Ey) introduced in (7). Analogous to the discussion in
Section IV-B1, the parameters Nf and N? are defined as the
reciprocals of these probabilities, times a constant that in-
fluences the probability of a false negative, but will not be
discussed as it has no impact on the asymptotic rates. The
success criterion is now

P(ES) =

(I —2ke+26g < 2v — D
and the other constraints are
0=<kekgv,z=<1, 0=<pu.

The asymptotic rate function for the runtime of FGI reads

YrGI(Ke, Kg, Vs 45 2)

. 1 .
= lim L iog <N1‘ (ke: 20Nl gz DN, u))

= -2 -H(x)) + % (1= H(ig)) + D || 1/3).
(24)

Arguing as in Section IV-B1, the inequality in the success
criterion may be replaced by an equality. Solving for v gives

1 n (1 = 2)ke + 264

2 21
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FIGURE 4. Runtime rate versus coherence time rate for the FGI
algorithm. This fractional scheme’s performance is the convex
combination of the classical point (0, y¢), and Gl at the tangent point to
the theoretical lower bound. One can note that the FGI partially
saturates the optimal performance relation.

We proceed as in the first two cases. Criticality of 9, yrgi
with respect to p occurs at

=301 — 2k + 2x4)

2
= uD1/3)=1 -2k +2kg, v =7

Plugging in, we arrive at

vrGi(Kke, kg3 2) = (1 —2) (1 — H(ke) + k¢)

1—-H
+z<# +Kq). 25)

In other words, the runtime rate function is a convex com-
bination of the ones for the classical Schoning process and
for the GI scheme, with weights (1 — z) and z, respectively.
Because the classical part does not affect the coherence time,
we may set k. to its optimal value « = 1/3 [cf. (11)]. Geo-
metrically, as we vary z € [0, 1], (25) describes a line connec-
tion (xai(ky), Yai(k,)) with the parameters of the classical
Schoning process (0, y¢). By the convexity of the GI curve,
the fractional algorithm will have a better runtime rate to the
left of the value of «, at which the line becomes tangent to
the curve. In other words, the critical «, is defined by the
condition

dyar _Yai—yc
ax X

By a computer calculation [9], this happens for x, = % (i.e.,
equal to k), resulting in Fig. 4.

4) FRACTIONAL GROVERIZED WALK, ALGORITHM 6

In the FGW scheme, we assume that the classical and Grover-
ized walks decrease the Hamming distance in exactly v m,
and v,my steps, respectively, where we have used a subscript
to differentiate between the classical and Groverized random
walks. The probabilities of such walks occurring are given as

VOLUME 6, 2025

follows:

. me 1 Vele 2 (I=ve)me
PE=Lm)\3) 5
cMc
m 1 Vghiy 2 (I=vg)mgy
rev=(m) ) G)

Analogous to the discussion in Section IV-B1, the parameters
N5 and Ng are defined as the reciprocals of the probabilities
P(E%) and P(Eg ), times a constant that influences the proba-
bility of failure, but will not be discussed as it has no impact
on the asymptotic rates. We further parameterize the walk
lengths as m. = u.n and my; = uyn. The runtime rate is

YEGW (KK, Ve, Mes Vg, ﬂq)

. 1
= nli)ngo Z log <Nl (K)NQC(Vw Mc)\/ Ng(‘)qv //Lq))

=1—-H(k)+ ucD(. || 1/3) + %D(Vq I1/3)  (26)
with parameters subject to the constraints
0<k=1
0 < e, g
0=<ve,v, =<1
K < Que — Dpte + vy — Dpeg. @7

The first steps of the analysis should now be familiar.
There is no loss of generality in assuming that the final
inequality is tight, which can be rearranged to give

K — (2ve — Dpee 1
V= ——— 4~
2uq 2
The rate yrgw is stationary as a function of 4 if
Mg = 30k — Qve — Dpe)

- % ELD(v, 111/3) = 1/2(k = @ve = Do)

= X(K7 UC9 MC)

= Vg

Eliminating « in favor of the coherence rate x gives
K =2x+ 2ve = Dpte
and thus
Mg = 06X
YrGw (Ve, tes x) =1 —HQ2x + (2ve — Dpee)
+ 1eD(ve |1 1/3) + x.

We now need to minimize yrgw for fixed x as a function of
e and v, subject to

0=<2x+Q@ve—Dpc=1
0 < ue

0<v.<1.
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FIGURE 5. Runtime rate versus coherence time rate for the FGW
algorithm. This fractional scheme’s performance connects the GW curve
to the classical Schoning point and is tangent to the curve. It achieves
the optimal performance relation partially for a larger regime than FGlI,
and for low coherence times, it comes to lie on top of the FGl line.

We may assume that . # 0, for else we are just replicat-
ing the GW scheme. A computer calculation [9] gives

2 —4v,
Oy (yIn2)+ ——9, (y1n2)
duc

1
= —arctan(l — 2v.) + In(3 — 3v,) — 3 In2

which has zeros at v, = % and v, = %

For v, = L one finds

3>
2
0y (yIn2) = 3 arctan(l —4x +2/3uc)

which has one zero, at u, = %(4)( — 1). The constraint p, >
0 then implies x > 4—1‘. However, this is larger than the co-
herence time rate yc/2 ~ 0.208 sufficient to implement a
completely Groverized version of Schoning’s process, so this
solution is not of interest.

We turn to the other solution, v, = % For it
0y (yIn2) = 1/3(—2arctanh(l —4x — (2u¢)/3) +1n2)
which has one zero

me=1—06x

= Ug=060)X, Ve=V,;=3

3
The runtime versus coherence rate curve for the FGW
scheme is given in Fig. 5.

YFGW = YC — X-

5) EVENLY FRACTIONALIZED GROVER
The runtime rate is

verG = (1 —2) (1 — H(ke) + peD(ve |1 1/3))
+z/2 (1 — H(kg) + ngD(vy || 1/3)) (28)
with the success criterion

(I =2k + 21 = (1 = 2)(2ve — Dppe +2Q2vg — Dy
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FIGURE 6. Runtime-coherence time rate curves for the covered
algorithms. The linear interpolation between the classical and the
completely Groverized points are realizable using an increasing number
of methods—first only EFG, then also FGW, and finally also FGI—as the
coherence time decreases.

which is in particular true if the following two equations
hold:

ke = Qve — Dpe kg = Q2vg— Dug.

However, this is just the convex interpolation between a
completely classical and a completely Groverized process.
In particular, by choosing the parameters as for the original
Schoning process

:U«c:quZI

we obtain a coherence time—runtime rate curve that linearly
connects the classical point (0, y¢) to the completely Grover-
ized one (yc/2, yc/2) (see Fig. 6).

C. HEURISTIC DERANDOMIZATION OF THE GI SCHEMES
In this section, we provide evidence that the GI schemes can
reach further into the y—x chart than what the Markovian
model suggests. To see why this is plausible, note that the role
of randomness for the initial configuration x is very different
from the role of randomness for the walk decisions w. In the
first case, there is an “absolute measures of the quality of the
initial configuration,” namely, the Hamming distance to the
solution. The probability that the walk does find the solution
is quite obviously a function of that metric. Therefore, bar-
ing major algorithmic insights, it is unavoidable to consider
many different initial configurations before encountering one
that will likely lead to a solution.

In contrast, it is not implausible that “every walk works
for equally many initial configurations,” i.e., that there are no
choices for w that are “intrinsically better than others.” More
precisely, it seems reasonable to assume that for sufficiently
large n, and generic SAT formulas, it holds that with high
probability in w

—1
— log Pr[SchéningWalk(x, w) = x* | dy (x, x*) = h, w]
n x
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Algorithm 8 Heuristically Derandomized FGI.

I: w < uniformly random value from {1, 2, 3}*™

2:for j=1.. .Nl(c) do

3:  x. < uniformly random value from {0, 1}*T(1=2)1

4: x4 < Grover search for L,/N@J iterations using
ORACLE(x,., ) ()

500 x = (xe, xg)

6: if x satisfies all clauses then
7 return x

8: endif

9: end for

10: return False

-1
~ — log Pr[SchoningWalk(x, w') = x* | dy (x, x*) = h].
n x,w’
(29)

The right-hand side can be easily calculated, as in [1], for
n=3
Pr[SchéningWalk(x, w) = x* | dy (x, x*) = h] = 27"
X, W

Under assumption (29), one can restrict the outer loop over
w’s from Algorithm 3 to N, = 1 iteration and compensate
by increasing the number of Grover iterations for x to N| =
O*(27¢/2"). In other words, the GI scheme with these param-
eters would lie on the optimal point (x, ) = (yc/2, yc/2).

Being even bolder, one could then speculate that the anal-
ysis of Section IV-B3 carries over and that, as one varies the
fraction of initialization bits that are subjected to a Grover
search, one could trace out the optimal (, ) line. In other
words, it does not seem impossible that Algorithm 8, with
parameter choice

(c) 0*(2;/(;(1 z)n) N(q) 0*(2yczn/2)

achieves the optimal tradeoff.

To gather evidence in favor of assumption (29), we have
resorted to numerical methods. A first ansatz is to compute
the left-hand side of (29) exactly, which is possible for small
values of n by iterating over all 2" assignments to x. Results
are shown in Fig. 7 for a randomly chosen set of 3-SAT for-
mulas with n = 20 variables and L = 91 clauses. The num-
ber of satisfying assignments 7y of the formulas are varied.
Only the case 7y = 1 can be directly compared to the analytic
bounds. However, note that even for this case, the empiri-
cally observed rate of ygr >~ 0.12 £ 0.02 is much lower than
the value y¢/2 >~ 0.208 that we would expect theoretically.
Presumably, n = 20 is still too small to show the asymptotic
behavior.

To test this assumption, we had to turn to numerical heuris-
tics, to at least probe the behavior for much larger values of
n, where an exact computation is no longer possible. The
results are shown in Fig. 8. We used a SAT instance with
n = 1414 variables that we believe to have a single satisfying
assignment x*, which is explicitly known. To generate the
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Groverized Initialization: n=20
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FIGURE 7. Plot of the runtime rate for the heuristically derandomized GI
scheme. Error bars indicate variation as a function of the formulas and
the walk variables w. On the x-axis, we show the number of satisfying
assignments in the formula. Only the case of ¢, = 1 should be directly
comparable to the analytic bounds. The empirically observed behavior is
much better than the analytic results, suggesting that n = 20 is too small
to capture the asymptotic behavior.

h
est

2 4 6 8 10
Hamming distance

FIGURE 8. Estimated probability for a uniformly random initial
configuration x with Hamming distance h to be mapped to x* under a
Schoning walk, for a fixed randomly chosen set of walk decisions v (c.f.
Algorithm 8). The SAT instance has n = 1414 variables and is believed to
have a unique satisfying assignment [11]. For each data point, 10* initial
configurations x were sampled uniformly from the Hamming distance
sphere M" (x*).

instance, a 128-bit plain text was encoded by a 128-bit key
using the XTEA block cipher truncated to three rounds. The
formula represents the conditions on an input key to map
the known plain text to the known ciphertext. The clauses
are designed such that they enforce the correct evaluation of
bitwise operations of the algorithm with respect to the given
input and output. XTEA was restricted to three rounds in
order to keep the size of the formula manageable. While we
have no formal proof, it is reasonable to assume that there
is a unique key that satisfies the formula. This is supported
by consistency checks in terms of running SAT solvers on a
version of this problems with even fewer rounds [11].
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FIGURE 9. Quantum implementation of a single Schoning's step for a general implementation of the partial Groverization of Schéning’s algorithm. The
ev; gates evaluate the jth clause on the corresponding variables and the controlled gates containing ch; and 0 v 1 v 2 act on all the registers and check
if the jth clause is the first violated clause and if so, flip one of three variables in it based on the randomness provided by the if-statement, 0 v 1 v 2.
Here, 0 v 1 v 2 represents a triple controlled gate where the control qutrit is the subspaces of the computational basis (visualized in Fig. 10). The logL

auxiliary qubits are needed for uncomputation.

Let us denote the sphere of strings with Hamming distance
h from x* by M"(x*). For a fixed walk randomness w, and
for h =1,...11, we have drawn x uniformly from MM ().
In order to compare the numerical results to the theory pre-
diction, we have to use the value of the right-hand side of
assumption (29) for nonasymptotic values of n. Fig. 8 shows
the empirically estimated probabilities of Schoning’s walk
(with p = 3) arriving at the solution, when starting from a
random initial configuration of given Hamming distance. The
findings show the expected behavior of averaging over w,
already for a fixed random value of w. In this sense, they
are compatible with assumption (29). We note, however, that
we were not able to probe the assumption for larger values
of h. Garnering a better understanding for the concentration
properties of the Schoning walk as a function of the walk
choices remains, therefore, an open question.

V. CIRCUITS

In this section, we discuss an implementation of the par-
tial Groverization schemes and present the main building
blocks of their quantum circuits. Given n variables and the
length of Schoning’s walk m, the quantum implementation
requires n + mlog 3 qubits to encode the initializations and
walk randomness. The oracles of the partial Groverization
schemes are some adaptation of one or more Schoning walks,
and regardless of the search space they act on, the label of
the violated clause at each step needs to be stored in their
workspaces. This is necessary since such oracles are typ-
ically realized using uncomputation; therefore, log L extra
auxiliary qubits are needed at each step, amounting to m log L
qubits in total for the workspace. As a result, encoding any
Groverization of Schoning’s algorithm asymptotically needs
n + (log 3 + log L)m qubits.

Fig. 9 represents a single step of Schoning walk, schemat-
ically. The first register encodes the space of all possible ini-
tialization. The gates ev;, for j € {1, ..., L}, act on the first
two registers. Each gate consists of a few controlled gates
where the control qubits correspond to the three variables
in the jth clause, and the target qubit is the second register.
The second register is an auxiliary qubit, initially set to |0),
and is negated as soon as the first violated clause is detected.
The third register consists of log L auxiliary qubits that are
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used to count the number of clauses from where the first
violated clause has happened. The last register is a qutrit
providing the randomness of the corresponding walk step.
The controlled gates ch;, for j € {1,..., L} act on the first
three registers, and take care of variable flipping wherever
the first violated clause is detected. The 0 v 1 Vv 2 block rep-
resents a triple controlled gate where the control qutrit is the
subspaces corresponding to the computational basis states
|0), [1), ]2). Fig. 10 depicts the controlled gates, including
ch;, in detail. The subfigure on the right shows the corre-
sponding controlled gate for GI, where the walk randomness
is fed classically to the last register.

All partial Groverization of the Schoning algorithm can
be implemented using slight modifications. For the GW al-
gorithm, the n-qubit variable register will not be initialized in
the uniform superposition of all possible assignments |+)®",
but rather in a state with classically randomly defined vari-
ables |x| - - - x,). For the GI algorithm, the qutrit within every
Schoning’s step can be removed since we can, for every
Schoning’s step, generate a random number r € {0, 1, 2} and
apply only the X gates based on the classically determined r
(see Fig. 10).

VI. SUMMARY AND OUTLOOK

This work considers hybrid schemes for search-based quan-
tum algorithms, with the aim to allow for parallelizability,
and to reduce the need for long coherence times. The basic
gist is to partition the randomness of an underlying classical
probabilistic algorithm into a part that is subject to Grover
search, while the rest is sampled classically. Such “partial
Groverizations” allow for the parallelization of the classical
sampling, as well as enable adaption to available coherence
times. We consider exponential-time algorithms, which is
why our analysis focuses on the asymptotic runtime rates
and coherence time rates. We argue that these two types of
rates are bounded by a general tradeoff relation that no hy-
brid scheme can beat. For our concrete analysis, we consider
hybrid schemes based on Schoning’s algorithm, where the
latter solves 3-SAT (or more generally k-SAT) problems by
random walks in the space of assignments. The walk pro-
cedure allows for several partial Groverization schemes. We
determine the corresponding runtimes and coherence times
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FIGURE 10. Implementation of the variable flips of Schéning’s walk within amplitude amplification. Here, x;,, X;,, and x;; are the variables of the jth
clause. The 0 v 1 v 2 block represents a triple controlled gate where the control qutrit is the subspaces of the basis |0), |1), |2). For the Gl algorithm, the
walk randomness can be provided by fixing a random number r € {0, 1, 2} for every walk step.

of these schemes and demonstrate saturation of the general
tradeoff relation. Many of these partial Groverizations intu-
itively lend themselves for efficient circuit implementations,
and we provide the main building blocks of these. On a
more speculative note, we present numerical evidence that
the GI scheme can be partially derandomized, in the sense
that a single “typical” instance of the classical randomness
of the walk appears to mimic the effects of the repeated
sampling. This would open for an additional flexibility in the
implementation of these hybrid schemes, still maintaining
the optional tradeoff.

In this investigation, we have focused on partial Grover-
izations of Schoning’s algorithm. However, this approach
should, in principle, be applicable to any classical probabilis-
tic search scheme, since it essentially only rests on partitions
of the underlying randomness. The main concern would be
to find “natural” partitions that are algorithmically accessi-
ble, in the sense that the partial Groverization can be imple-
mented efficiently. Explicit runtime and coherence time rates
would also require a classical scheme, as well as partitions,
that are sufficiently tractable for analysis, unless one would
resort to numerical estimates.

The partial derandomization of the GI scheme that is sug-
gested by our numerical explorations would deserve further
investigations. In particular, the question is to what extent,
and in what sense, the hypothetical relation (29) would be
true. Moreover, one may ask if something similar also would
apply to FGI. For numerical investigations, it would be rel-
evant to extend to larger Hamming distances, further classes
of 3-SAT instances, as well as problem sizes. This would
likely involve challenges to design reliable numerical esti-
mates, since exact calculations by the very nature of the prob-
lem quickly become intractable. For purely analytical ap-
proaches, some notion of concentration of measure of walks
would be interesting.

In the spirit of [1] and [2], we have in this investigation
employed “the walk on Z” as a model of the true Schoning
procedure. In the Appendix (see also [6]), we additionally
provide bounds for the true rates of Schoning procedure and
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the GW procedure, in terms of the mirroring processes on Z.
It would be relevant to obtain similar bounds also for the GI
process, as well as for the various fractional schemes.

APPENDIX

FROM THE TRUE SCHONING PROCESS TO THE MARKOV
PROCESS ON Z

A. PURPOSE OF THIS APPENDIX

For the calculation of rates, we replace the genuine searches
of solutions for 3-SAT problems (the “true Schoning pro-
cess”) with a Markovian random walk on the “Hamming
distance” (although we strictly speaking consider a walk on
7). This is analogous to Schoning’s analysis of the perfor-
mance of Schoning’s algorithm [1], [2], where it is argued
that this substitute process yields an upper bound on the rates
of the runtime of the algorithm. The purpose of this appendix
is to give a more detailed argument for why the success
probability of Schoning’s algorithm is lower bounded by the
success probability of the substitute walk on Z. The reader
may also wish to consult [6] for a previous analysis along
these lines. Apart from bounding the success probability for
the true Schoning process, we also provide the analogous
bound for the GW process.

B. SCHONING PROCESS

As described in the main text, the 3-SAT problem consists
of a collection of clauses Cj, ..., Cy on n binary variables,
where each clause is of the form C; = l(()" )y lil ) v l;’ ), and

where each of the literals l(()J )1 Y ) and lé’ ) is one of the binary
variables, or its negation. The 3-SAT formula is the conjunc-
tion of all the given clauses, C := /\§f=1C ', and the task is to
determine whether there exists an assignment x € {0, 1}*”
of the n binary variables, which satisfies C. In the following
analysis we assume either that C has a unique satisfying
assignment x* € {0, 1}*" or, alternatively, that x* is selected
among a set of solutions.

Schoning’s procedure can be regarded as a stochastic pro-
cess (x;)L, with x; € {0, 1}*". The process is initialized by
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a random assignment xq of the bit string, drawn uniformly
over all of {0, 1}*”. On this state, it checks all the clauses
Ci, ..., Cr (according to a predetermined order). If all are
satisfied, then the initial string satisfies C and the algorithm
terminates. Otherwise, it finds the first unsatisfied clause and
randomly negates one of the three variables corresponding to
the literals of that clause. The algorithm continues according
to this random walk until it either finds a satisfying assign-
ment, or it reaches a predetermined termination time K. For
our purposes, it is convenient to think of the state x; of the
process as a function of a collection of random variables.
The initialization is represented by the random variable A,
which takes values in {0, 1}*”. The randomness in the walk
is captured by the variables B = (By, ..., B,) as random
variables where each B; takes values in {0, 1, 2} (and thus B
takes values in {0, 1, 2}*™). Hence, B; represents one of the
three possible choices of which literal to flip at step [. We
assume that A, By, ..., By, are independent and uniformly
distributed, i.e., for b = (by, ..., by), we have

P(A=a,B=b)=PA=a)PB=D)
=PA =a)P(B; =Db1)--- P(By = b),

1
PA=a)= 3 Vac (0.1

P(Bi=b)=~ Vb eO,1,2. (30)

W —

Hence, we can write the
(x1); = (x;(A, B));, where

Schoning  process  as

xo(a,b) :=a 31

i.e., a the initial state. At the /th step, Schoning’s process is
based on the state x;_; of the previous step. On this state,
all the clauses Cy, ..., Cr, (according to a predetermined or-
der) are checked. If all are satisfied, then x;_; = x* and the
process remains in that state, i.e., x; = x*. (In other words,
x* is an absorbing state for the Schoning process.) Other-
wise, it finds the first unsatisfied clause, which we refer to
as Cj,. The selected clause, Cj,, contains the three literals
(l(gj), lgj), and léj)). The process constructs x; by negating
the variable corresponding to literal ll()] ). In other words, it
is the /th component of b that determines which of these
three choices are selected. One may note that the process, by
construction, satisfies

xl(a, b) = xl(a, bl, ey bl). (32)

Hence, the value of x;(a, b) only depends on the values of
by, ..., b, not any of the “later” variables b;;1, byy1, .. ..
One may also note that A, By, B, ..., Bg encompass all the
randomness in the process. In other words, the state x; is
uniquely determined by a, by, ..., b;.

3101222

C. PROOF IDEA

As described previously, the true Schoning process (x;); is
a walk on bit strings. However, for the analysis of the op-
timal rates, we follow the steps of Schoning [1], [2] and
instead focus on the Hamming distance to the (selected)
solution x*. In principle, nothing prevents us from project-
ing the state x; of the Schoning process to the Hamming
distance dy(x;, x*) (i.e., projecting onto N). However, this
would generally yield a process that would be no easier to
analyze than the original Schoning process. One may, for
example, note that although the Schoning process (x;); is
Markovian on the space of bit strings, one cannot generally
expect its projection (dg (x;, x*)); to be Markovian on N. The
general idea for the analysis is to replace (via a coupling) the
true projection (dy(x;, x*)); with another process (d;); on
N, which is Markovian and which moreover upper-bounds
the true Hamming distance, dy (x;, x*) < d;. One may note
that the Schoning process is “successful” if it finds the so-
lution x*. Hence, we can express the success probability at
step [ as P(x; = x*) = P(dy(x;, x*) = 0). From the bound
dy(x;, x*) < dj, it follows that P(x; = x*) > P(d; = 0). In
other words, the success probability of the Schoning process
is lower bounded by the probability that the substitute pro-
cess dj reaches 0. The fact that (d}); is Markovian makes the
analysis more tractable. However, the value O corresponds to
an absorbing boundary. (If we find the solution at an earlier
stage, we should terminate the process rather than walking
on). To further ease the analysis, we remove this boundary
and instead introduce yet another walk (d;); on Z, which
we regard as “successful” whenever d; < 0. For this pro-
cess, we moreover establish the bound P(J; =0)> P <
0) and thus P(x; = x*) > P(d; < 0). By the trivial bound
P(d; <0) > P(d; =0), we thus ultimately get the bound
P(x; = x*) > P(d; = 0). For the calculation of the optimal
rates, our starting point is an expression for P(d; = 0). By the
inequality P(x; = x*) > P(d; = 0), it follows that the calcu-
lated rates are upper bounds to the true rates of the Schoning
process.

D. CONSTRUCTING A WALK (&,), ON N SUCH THAT
dy(x;, x*) < d;

Related to the Schoning process (x;);, we here wish to con-
struct another process (d));, where d; takes values in N for
all [ € N and is such that

dH ('xl(a7 bl? AR ] bl)?x*) S d‘}(a7 bl? ..
Vb € {0, 1,21,

b)) Yaelo, 1}
1=0,1,2,...,m. (33)

In other words, we want to make sure that d; always is an
upper bound to the Hamming distance between x; and x*.
This requires a considerable coordination between the two
processes. In particular, whenever x; moves in the “wrong”
direction (i.e., increases the Hamming distance to x*), then
d; also has to increase. To this end, we consider the list of
clauses Cy, ..., Cp. For each clause Cj, it is the case that
C;(x*) = 1. Hence, for each j, at least one of the literals
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l(()J), lgj), and lg) is satisfied by x*. Among these satisfied
clauses, we select one of these satisfied literals, and let r; €
{0, 1, 2} be its index. In other words, we are guaranteed that
(e =1.

As already described earlier, the Schoning process
(x;(a, b)); is uniquely determined by (a, by, ..., b;) and
does, in turn, uniquely determine the unsatisfied clauses
Cj,, as long as x;(a, by, ..., b;) # x*. Consequently, it also
uniquely determines a sequence of “selected” literals 7,
whenever x;(a, by, ...,b;) #x*. Foreach [ € 1,2, ..., we

define a mapping (a, by,...bj_1)— fi(a,by,...,bi_1) €
{0, 1, 2} by
- 0, ifxo=a=x"
Si@:= { rj, if xo =a#x*
ﬁ(a’bl""’bl—l)
= O’ ifxl—l(a,bl,...,bl_l):x*, 1=23
o le, ifxl*](ayb],...,blfl);é_x*. =4y Iy e
(34)

The purpose of fi(a, by, ..., b;—1) is to determine the value
of b; that should correspond to a “successful” move for the
(d)); process. More precisely, we define (d;(a, b)); by (35),
shown at the bottom of this page. In words, the first condition
in the bracket means that O is an absorbing state, i.e., if
dj(a, b) = 0 for some [, then dy(a, b) = 0 for all I’ > [. The
other two cases make sure that d; moves in “coordination”
with the Schoning process (x;(a, b));, in such a manner that it
is guaranteed that dg (x;(a, by, ..., b;), x*) does not increase
above dj(a, by, ..., b)).

Lemma 1: The Schoning process (x7);en and the process

(d))jen, as defined by (34) and (35) satisfy
du (xi(a, by, ..., b)), x*) <di(a,by,... by

[=0,1,2,....
(36)

Va e {0, 1" Vbe{0,1,2)<,

One may note that (36) holds for every single element
in the event space, and Lemma 1 does thus not depend on
the actual probability distribution of A, By, ..., B;. However,
there are other steps in our proofs that do depend crucially on
these variables being independent and uniformly distributed.

Proof: We first note that
xo(a,b) =a, do=dy(a,x") 37)

and thus (36) is satisfied for / = O for all a, b.

Now, assume that (36) holds for some / — 1, a, b. We have
the following cases.

1) Case x;_i(a, b) = x*: Since we assume that x* is ab-
sorbing, it follows that x;(a, b) = x* and consequently
dy(x;(a, by, ..., b)), x*)=0. Concerning d;_;, we
can distinguish yet two subcases.

a) Case dj_i(a,by,...,bi_1)=0: By construc-
tion [first case in (35)], di(a, by, ..., b)) =0,
and (36) is thus satisfied for /, a, b.

b) Case dj_i(a,by,...,b_1)#0: Then, d_;
(a,by,...,bj—1) > 1. Since the process d
can change at most one step, it follows that
d~1,1(a, bi,...,bj_1) >0, and thus, (36) is
satisfied for [, a, b.

2) Case x;—1(a, b) # x*: Since we assume that (36) holds
for [ — 1, a, b, it follows that dj_;(a, by, ..., bj_1) >
1. Moreover, since x;_i(a,b)#x*, we have
fita, by, ..., b)) =rj. Again, we can distinguish
two subcases.

a) Case fi(a,by,...,b;—1) = b;: In this case, the
d-process decreases one step. However, by con-
struction, 7, is one of the “successful” flips for
the Schoning process; hence, the x-process also
decreases one step. By assumption, the inequal-
ity (36) is satisfied for [ — 1, a, b, and since both
the x-process and the d-process decrease one
step, (36) remains satisfied for /, a, b.

b) Case fi(a,bi,...,b;_1) # b;: In this case, the
d-process increases one step. The x-process may
increase or decrease, but with at most one step,
so (36) remains satisfied for [, a, and b.

By induction, we can conclude that (36) is satisfied for all
l,a,b. [ |

E. (;l,), IS A MARKOV CHAIN

In the following, we wish to show that (dy); is a Markov
chain. Recall that both the genuine Schoning process (x;);, as
well as the walk (d});, are determined by a sequence of “walk
variables” (B;); (and initial-state variable A). The Schoning
walk itself is Markovian, but it is a priori not obvious that the
process (d;); is also Markovian, particularly since the /th step
of the latter is determined by a complicated function of all the
walk variables up to the /th step, as described by (35). How-
ever, in spite appearances, it turns out that (35) defines a map-
ping from the original set of random variables (B;); to a new
set of variables (B;);, in such a manner that the change from

do(a, b) == dy (xo(a, b), x*) = du(a, x*)

0 if
di(a, by, ..., b) = 61:1—1(617 by,....b_1)+1 ifd:l—l(aa b1,
di—1(a,by,....bj—1) —1ifdj_i(a, by,
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di—i(a,by,....,bi_1)=0
o) #0, by # fila, by, b)) 1=1,2,00
cosbi)#0, b= fi(a, by, ..., b—1)
(35)
3101222
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dyy_1 to d,y, is determined by B,,, and only by B,,. Moreover,
it turns out that (B;); is an independent identically distributed
(i.i.d.) sequence. Since all B; are independent, it follows that
(d;); must be a Markov chain. In order to show that the new
sequence of variables (B;); is i.i.d., what we actually do is
to show that (35) induces a bijection on {0, 1}*" x {0, 1, 2.
Since (A, (B;);) is uniformly distributed [see (30)], it follows
by the bijection that (A, (B;);) is also uniformly distributed
and, thus, in particular that (B)); is i.i.d.

F. BUECTION
The following lemma introduces functions f;. Later, in the
proof of Proposition 6, we will let these mappings be the
functions fi(a, by, ..., b;_1) in (34). Since the latter are al-
gorithmically defined, via the Schoning process (x;);, it is
challenging to get a hold on the properties of these map-
pings. It is thus worth noting that (apart from domains and
ranges) Lemma 3 (and Lemma 5) makes no assumptions on
the properties of the mappings f;. Hence, our lack of control
over the mappings f(a, by, ..., b;—1) will not be an issue in
the subsequent proofs.

As preparation, we make the following observations.

Lemma 2: Ift, ¢, r € {0, 1, 2}, then

(t—rmod3 =@ —r)mod3 < t=t. (38)
Moreover, if t, r € {0, 1, 2}, then
((t +rymod3 — r)ymod3 =1. 39)

Lemma 3: Let f1:{0,1}*" — {0, 1,2} and f; : {0, 1}*"
x {0, 1,2}*6=D - 10,1,2} for s=2,...,1 be given.
Define the mapping {0, 1}*" x {0, 1,2}*! 5 (b1, ..., b)) —
Qa,by,...,b)=(,by,...,b) e{0, 11" x {0, 1, 2}
by

ad.=a

S

1= (b1 — fi(a)) mod3
by := (by — f>(a, by)) mod 3
by := (b3 — f3(a, by, by))mod 3

Bl = (b[ —fl(a, bl, ...,b1_1))m0d3. (40)

Then, Q is a bijection on {0, 1}*" x {0, 1, 2}*.
Proof: To show that Q is a bijection, we first show that it
is injective and then that it is surjective.

Let (a,by,...,bp), (@, b, ...,b)e{0, 1}*"x{0, 1,21
be such that
Qa,by,....b) =0 by,...,b). 401
By the first line of (40), it follows that
a=d=d. (42)

By the second line of (40), it follows that
(b1 — fi(a))mod3 = (b’l - fi (a’)) mod 3 (43)
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which combined with (42) yields
(b1 — fi(a))mod3 = (b’l — fl(a)) mod 3. (44)
Since fi(a), by, b € {0, 1, 2}, it follows by (38) that
by =b). (45)

As an induction hypothesis, assume that for some s > 2, it is
the case that

a=d bj:b’j, j=1,...,5—1. (46)
The sth line of (41) implies that
(bs — fs(a, by, ...,bs—1))mod3
= (b, — fo(d, b), ..., b_)) mod3. (47)

By the induction hypothesis, this implies that

(bs — fs(a, by, ...,bg_1))mod3
= (b’S — fs(a, by, ..., bs_l)) mod 3. (48)
Since by, b, fs(a, by, ..., bs—1) € {0, 1,2}, it follows by
(38) that
by = b, (49)

Since the induction hypothesis is true for s = 2, we can con-
clude that it is true for all s = 2, ..., [. We can thus conclude
that Q is injective.

Next, we wish to show that Q is surjective onto {0, 1}*" x

{0, 1,2)*. Let (@,b),...,DB) € {0, 1} x {0, 1,2}
Define
a:=d

by == (b} + fi(@)) mod3 = (B} + fi(@)) mod3 (50)

and the sequence (bj)é.=2 recursively by

b= (B’j+fj(a, bj_l,...,bl)) mod3, j=2,....1
(51
for ' and b}, as defined in (50). In the following,
we wish to show that Q(a, by, ..., b)) = (@, B/l, . ,EQ).
For notational convenience, we introduce the compo-

nents Qo(a,by,...,by):=a and Qj(a,by,...,b;):=b;,
j=2,...,1
By the first line of (40), we have
Qo(a,by,....b))=a=4d. (52)
By the second line of (40), we have
O1(a, by, ..., by) = (b — fi(a))mod3

= ((8) + fi(@)) mod3 — fi(a)) mod 3

= ((b} + f1(@)) mod3 — fi(a’)) mod3
[By 39)]

=1D. (53)
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For all j > 2, we moreover have

Qja,by,...,by)
= (bj — fila, by, ..., b‘,-_l)) mod 3
[by (51)]
= ((Z)lj +fj(a, bjfl, ey b])) — fj(a, b[, ceey bj,|)> mod 3
[by (39)]
T/
=0 (54)
Hence, we can conclude that Q(a, by, ..., b)) = (@, 13’1,
..., b)). Hence, Q is surjective and thus bijective. |

G. TRANSFORMATIONS THAT PRESERVE UNIFORMITY
We make the following basic observation.

Lemma 4: Let S be some finite set. Let 0 : S — S be
invertible. Let R be some random variable on S. If R is uni-
formly distributed over S, Q(R) is also uniformly distributed
over S.

Proof:
1
— o) — _ ! _
PER=9=P(R=0"0)=5. 3
[}
Lemma 5: Let f;:{0,1}*" = {0,1,2} and fy:
{0, 1} x {0, 1,2}*6=D . {0,1,2} for s=2,...,1

be given. Assume that By, ..., B; are random variables that
take values in {0, 1,2}, A be a random variable that takes
values in {0, 1}*”, and that these are distributed as

1
PA=a,B =by,...,B=b) = T Va € {0, 11"
Y(by,...,b) € {0,1,2*L.
(56)
Define B, ...,l§1 by

By := (B — fi(A))mod 3
By := (By — f>(A, B;))mod 3
B3 := (B3 — f3(A, By, By))mod 3

B := (B, — fi(A, By, ...,B;_1))mod3. (57)

Then
PA=aB =b B =b)= ! 7 0, 1}*"
—av l_ l""’ l_ l _2n3l ae{ E) }
V(by,...,b) € {0,1,2}*. (58)

Consequently, A, By, ..., l§1 are independent and uniformly
distributed.
Proof: By (56), we know that (A, By, ..., B;)is uniformly

distributed on {0, 1}*" x {0, 1, 2}*!. With the additional
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definition A := A, we note that (57) can be rewritten as
.. B):=0(A,B,....B) (59)

where 0 : {0, 1} x {0, 1, 2}/ — {0, 1} x {0, 1,2}*! is
as defined in Lemma 3. By Lemma 3, we moreover know that
Q is a bijection on {0, 1}*" x {0, 1, 2}*! and thus invertible.
Hence, by Lemma 58, we know that (4, By, ..., B)) is also
uniformly distributed over {0, 1}*" x {0, 1, 2}*/. Since A =
A, we can conclude that (58) holds.

By (58), it follows that

(A, B, ..

PA=a,B =by, ... B=b)=PA=a)PB, =b)
- P(B; = by)

1 - 1 S
PA=a)= 2 PB=b)=3.....PB =b) =3
(60)

and thus A and By, ..., B; are independent and uniformly
distributed. [ |

H. PROCESS (d;), IS A MARKOV CHAIN

Proposition 6: Let (dp); be the process as defined by (34) and
(35), with respect to the variables A, By, By, . . . distributed as
in (30). For each m, there exist variables By, ..., B, that are
i.i.d. and uniformly distributed on {0, 1, 2} and are indepen-
dent of A, such that

dy == dp(A, x*),
0, ifd_;1=0
dj:={d_1+1,ifd_#0, B #0 [=1,2,...,m.
iy —1,ifdi_1 #0, B =0
(61)

Hence, (d;); is a Markov chain described by the transition
probabilities

P(di41 = jld; = k) = 8,080
1 2 ,
+ (1 =680 <§5j,k—1 + 55.;',k+1) Vi ke N VI (62)

with initial distribution
P(dy = j) =P (du(A,x*) = j). (63)

Moreover, for the distribution of A as in (30), we have

(64)

1 (n .
- (" 0< j<n
P d = j) = n (J)’ - -
(do=J) { 0, otherwise.

In (62), the term §;00k,0 signifies d = 0 being an ab-
sorbing state. In the second term, the effect of the factor
(1 — 8k,0) is that if the chain is not in the absorbing state, then
the transition probabilities are given by %8 k=1 T+ %8 k-
Hence, with probability 1/3, it takes a step “down,” and with
probability 2/3, it takes a step “up.”

Proof: Fort,r € {0, 1,2}, it is the case that
t=r < (t—r)ymod3=0. (65)
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By this observation, it follows that (35) can be rewritten
as (66) shown at the bottom of this page. Next, we rewrite
(66) as (67), shown at the bottom of this page, such that we
suppress the explicit dependence on the elementary events
(a, b). If we define By, ..., B; by

By := fi(A)
B, := (B, — f>(A, B;))mod 3
B3 := (B3 — f3(A, By, By))mod 3

B, := (B, — fi(A,By,...,B;_1))mod3 (68)

then we can rewrite (67) as

do := dy (A, x*)
0, ifd_1 =0
d:=1{d_1+1,ifd_1#0, B #0 [=12,....
d’}—l - 13 ifd}—l #Ov BZZO

(69)

By Lemma 5, we know that A, By, ..., El are independent
and uniformly distributed. Since the Ith step is determined
solely by B;, and these are independent of each other, and of
A, it follows that (d}); is a Markov chain. By inspecting (69),
we first see that

P(d; = jldi-1 = 0) =80 (70)
while for dj_; = k # 0, we have
P(d; = jldi—y = k) = 8jk41P(B; # 0) + 8,1 P(B; = 0)
2 1
= §Sj,k+1 + §5j,k71 (71)

where the last step follows since each B; is uniformly dis-
tributed over {0, 1, 2}. By combining the cases (70) and (71),
we obtain (62). By (69), it moreover follows that P(dy =
J) = P(dy(A, x*) = j). Since A is uniformly distributed over

{0, 1}*", it means that dy (A, x*) is binomially distributed.

Thus, for 0 < j < n, we have P(dy = j) = 2%(7) [ ]

I. RELATING PROBABILITIES OF (x;); AND (d;),

The reason why we introduce the walk (d}); is in order to
bound the relevant success probabilities of the more compli-
cated true Schoning walk (x;);. The following lemma con-
siders two such inequalities, which we will use when we
determine the bounds for the GW.

Lemma 7: Let (x7);ey be the Schoning process for bit
strings of length n, with x* being the selected satisfying as-
signment. Let (d;); be the process as defined by (34) and (35).
Then

P(xy = x*) > P(dy, = 0) (72)
P (xpn = x*|dp (x0, x*) = j) = P(dy, = Oldy = j). (73)

Proof: 'We begin by proving inequality (72). For the sake
of notational simplicity, we let @ denote the elements of the
event space [where we could regard w as (a, b) or (a, D). By
Lemma 1, we know that

du (xm(@), x*) < dp(@) (74)
which implies that
dp(@)=0 = dy(tu(w),x")=0 (75)
and thus
{: dy(®) =0} C {w: dy (tn(w), x*) = 0}
= {0 xp(w) = x*} (76)
and thus
P(dy = 0) = P ({o : () = 0})
< P({o: xp(0) = x"})
= P(xp = x*) (77)

which proves (72).

do(a, b) := dy(a, x*)

Ci[(a,bl,...,b[)
0, if di—1(a,by,....bi_1)=0
=N di—i(a, by, ..., b))+ 1, it dii(a, by, ... b)) #0, (b — fi(a, by, ..., b—1))mod3 #0 1 =1,2,
di—1(a,by,....,bi—1)—1, ifdi_1(a,by,...,bi_1) #0, (b — fi(a, b1, ...,b—1))mod3 = 0.
(66)
do := dp(A, x*)
0, itd =0
d:=1{d_1+1,ifd_#0, B;—fi(A,By,...,Bj_1)mod3#0 [=1,2,... (67)

di—— 1, ifdj_; #0,
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We next turn to the proof of (73). By definition
of the walk (d));, we have dy(w) = dy(xo(w), x*) and
thus

{0 dy(@) = j} = {0 : du (xvo(@), x*) = j} (78)
and consequently
P(dy = j) = P (dp (xo, x*) = j). (79)
By combining (76) and (78), we obtain
{w: dy(@) =0} N {w: dy() = j} C {o : xu()
=x"}N{o: dy (xv(@), ) = j} (80)
and consequently
P(dy =0,do = )
=P ({0 dy(@) =0} N {0 : dy() = j})

< P({o: xa(@) = X"} N {w = dy (xo(@), x7) = j})

=P (x, =x*, dp(xo. x*) = j). (81)

By combining this with (79), we can conclude
that

P(dy, = 0ldy = j) < P (x,y = x"ld (%0, x") = j)  (82)

which proves (73). |

J. FROM WALKS ON N TO WALKS ON Z

So far, we have replaced the projection of the Schoning
process (x7); to the Hamming distance dp(x;,, x*) with the
substitute Markov chain (d;);. Similar to x* being an absorb-
ing state of (x;), the process (d)); has 0 as the absorbing
state. As a model of the true Schoning process, this absorbing
state certainly makes sense, since it corresponds to a setting
where we, at each step, monitor whether a solution has been
reached, and the process is terminated once this happens. For
the sake of obtaining tractable expressions for the relevant
probabilities, we here take one step further and instead con-
sider a walk on Z. Analogously to how Lemma 7 bounds
the relevant probabilities of the true Schoning process, with
the corresponding quantities in (d;);, Lemma 8 bounds the
relevant probabilities of (dp); in terms of corresponding
quantities for a Markov chain (d;); extended to the whole
of Z.

As a bit of a side remark, one may note that the results in
(8) do not necessarily refer to the particular Markov chain
defined by (34) and (35), but could be any Markov chain on
N with fixed transition probabilities and absorbing boundary
condition at 0.

Lemma 8: Let (d));ey be a Markov chain on N, with
transition probabilities

P(diy1 = jld = k) = 8;08k0
+(1=81.0) (1=q)841 + G8jxs1) Vj k€N VI eN
(83)
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for some 0 < g < 1. Let (d;);en be a Markov chain on Z,
with transition probabilities

P(di = jldi=k) =1 —q)jr1+qdjxp1 VjkeZ
VieN. (84)
Then

P(dy < Oldo=j) < P(dy=0|dy=j) VmeN V;jeN.
(85)
Consequently, if the initial state dy is such that

P(dy = )),

. >0
P(dOZJ)Z{O =

<0 (86)
then
P, =0)<P(d, <0)<Pd,=0) YmeN. (87)
Proof: For notational convenience, we define
Mjy = P(dip1 = jld = k) (88)
and
My = P(dyyy = jld = k). (89)
By comparing with (83) and (84), one can see that

Vji>0 Vk=>O0. 90)

M= M;j
We note that 0 is an absorbing state for (d;);. Hence
di1=0 = d;=0 oD
which implies that
d>0 = d_;>0 (92)
which, in turn, implies that
P(d; = kid;—1 =0)=0, if k; >0. 93)

We begin by proving (85). For this purpose, assume that
j>0.

P(d; > 0ldy = j)
= Y P(d =kildy = j)
k;>0
[By Markovianity]
=Y > P =kld-1=k-1)
kl>0kl,1,...,k1
P(dj_1 = ki—1ldj—2 = ki—2) - -+ P(d> = ko|d) = k1)
P(dy = ki|dy = j)
=Y > > Pd=hkld-=k_)
k[>0k/_1:k[_]>0k1_2 ,,,,, kl
P(dj—1 = ki—1|dj—2 = ki—2) - P(dy = ki|dy = j)
+>° Y P =kl =0)
kl>0 k[_z,.“,kl

P(dj—1 = 0ldj— = ki—2) - -- P(d) = ky|dp = J)
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[Since k; > 0, it follows by (93) that
P(d) = ki|dj—; = 0) =0.]

ki >0k;_1:kj—1>0k;_p,.
P(d; = ki|di—y = ki—1)
P(di_y = ki—1ldj—2 = ki—2) - P(d) = ki|dy = J)

[By iteration]

=2 2.

P(d) = kldj—1 = ki—1)

k/>0k1_|,..‘,k1 Ik1_1>0,...,k1>0
Py = ki—1|dj—> = ki—2) - P(dy = ky|dy = j)
[By (88)]

- Z Z My kg - Miy
k1>0k1_|,4.4,k1:k[_1>0 ..... k1>0
[Since k; > 0, k1 >0,...,k; >0,j >0,
it follows by (90) that]

= Z Mkl-,kl—l o 'Mli
k[>0k1_|,..‘,k1 Ik/_]>0 ,,,,, k1>0
[My, x,_, > O]
Z Z Mkl ki—1 "'Mkl»j
ki>0k;_1,....k1
[By (89)]

= Z Z P(d; = kildj—1 = ki—1)
k1>0k1,| ..... k]

P(di—1 = ki_1ldi—2 = kj—2)--- P(dy = kildy = j)

[By Markovianity]
= Y P(d = kildo = j)
k1>0
= P(d] > O|d() = ]) (94)
Consequently
P(d; =0|dy = j) =1 — P(d; > Oldp = j)
>1—P(d; > 0ldp = )
=P(d; <0ldy=j), j>0. 95)
In the case cfo =0, we know that this is an absorbing
state, and thus, P(d; = 0|dy = 0) = 1. Consequently, P(d; <
Oldg =0) < P(d; = 0|d~0 = 0) = 1. This thus proves the

inequality in (85).
With the initial distribution (86), we find

P(d; <0)= Y P(d; < 0ldy = j)P(do = j)

JEL
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= > P(d; < 0ldo = j)P(dy = j)

j=0
< Y P(d; = 0ldy = j)P(dy = ))
Jj=0
= P(d; =0). (96)

K. BOUNDS FOR SCHONING WALKS AND GWS

Here, we combine the previous observations in order to ob-
tain the following lower bounds on the success probability of
the Schoning process. We also obtain the inequalities needed
for determining the desired bound on the success probability
of the GW.

Proposition 9: Let (x1);cn be the Schoning process for bit
strings of length n, with x* being the selected satisfying as-
signment. Let (d)); be the process as defined by (34) and (35).
Let (d;); be the Markov chain as defined by the transition
probabilities (84) for ¢ = 2/3 in Lemma 8, for the initial state

P(dy = j)

_[Po=p=Ppto.x)=j)=5(}). n=j=0
0, otherwise.
7
Then
P(xy = x*) > P(dy = 0)
> P(du <0)
1 1\ /2\""!
- 2 006G e
Julj+m—21<0 J
0<j=n
0<i<m
and

P (v = x*[dp (xo|x*) = j)
> P(dy = 0ldy = )
> P(dy < Oldy = j)

L OOET -

I: j+m—21<0,
0<i<m

Proof: Equation (72) in Lemma 7 yields the first inequal-
ity in (98).

By Proposition 6, we know that (dy); is a Markov chain
with transition probabilities as in (62) and initial distribu-
tion (64). By these observations, it follows that the second
inequality in (98) is a direct application of (87) in Lemma
8. By Lemma 8, we also know that the Markov chain (d;),
defined by the transition probabilities

VjkeZ VleN
(100)

. 1 2
P(dl+1=J|dl=k)=§5j,k—1 + 35,f,k+1
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and initial distribution

P(dy = j).

Pldo=j)= {0 r=0

_[#(). 0<j=n
j<0 o,

otherwise.
(101)

EGICION

I j+m—21<0, 0<I<m

From (100), it follows that

P(dn = 0ldy = j) =

(102)
and thus
P(dy <0) = ZP(dm < 0ldo = j)P(do = J)
j
[By (101)]
- 2 S00O6E 6T
Jil:j+m—21<0, "\ 3 3
0=j=n,
0<l<m
(103)

Next, we turn to the inequalities in (99). Inequality (73) in
Lemma 7 yields the first inequality in (99). The second in-
equality in (99) is a direct application of (85) in Lemma (8).
By (102), we already know the last equality in (99). |

L. RELATION TO THE LEADING-ORDER ANALYSIS OF
THE SCHONING AND GW PROCESSES

Here, we connect to the analysis of the asymptotic scaling in
the main text by obtaining the starting points, so to speak, of
the leading-order analysis of the Schoning process and the
GW process.

1. SCHONING PROCESS
For the Schoning process, the average number of repetitions
needed to find a solution is given by

1

POy =) (104)

NSch('ming =
By sequences of lower bounds on the ideal success proba-
bility P(x,, = x*), we thus obtain upper bounds on Nschsning-
The step from the true Schoning process to the walk on Z
corresponds to one such inequality, i.e.,

P(xy, = )C*) > P(d, <0) (105)

in (98) in Proposition (9). The leading-order analysis in the
main text is based on further such inequalities, with the ratio-
nale that the “loss” of probability weight becomes irrelevant
for the rates y = lim,_, % log Nschsning if the inequalities
are chosen to correspond to the leading-order contributions.
As afirst step along these lines, we restrict to an event where
we not only reach the desired solution, but also start the
system xg at the Hamming distance dy (xg, x*) = j. Trivially
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P(dn = 0) = P(dy < 0,dy = j) = P(do = J)

P(dn = 0ldo = J) (106)

where can identify P(dy = j) with P(E}) in the main text,
ie.,

(107)

: 1 (n .
P(d0=J)=P(E1)=§<Kn), J=Kn.

Next, we wish to connect the remaining factor in (1006), i.e.,
P(d,, <0ldy = j), to the probability P(E,), which, recall-
ing from the main text, corresponds to the event E, where
precisely vm steps decrease the Hamming distance, while
precisely (1 — v)m steps increase the Hamming distance.
(For the walk on Z, this extends to vm steps in the negative
direction, and (1 — v)m steps in the positive direction.) We
conclude that the total decrease is

do — dp = 2v — Dym. (108)

Let us also recall that the combination of E; and E, is
successful, i.e., leads to d,, < 0, if

Qv — 1)m > kn. (109)

It is useful to note that (d;); is not only Markovian, but also
translation symmetric, which means that the change dy — d,,,
is independent of the initial state dy), i.e., the joint distribution
of these factorize. (As a side remark, this independence also
means that P(E| N E,) = P(E;)P(E,).) Hence

P(dm < 0ldy = kn)

= P(dy — d,, > kn|dy = kn)

[Since dy — d,, is independent of dj]

= P(dy — d = Kkn). (110)
By comparison of (110) with (108), it follows that
P(d,, <0ldy = «kn) = P(dy — d,, > kn)

> P(Ey), if (v —1)m > kn. (111)

Alternatively, we can reach the same conclusion by compar-
ing (7) with (102) to see that

m 1 vm 2 (I—v)m
P(Ep) = ( ) (—) <—> < P(d, <0|dy = kn),
vm 3 3

if Qv—1)m=> «kn. (112)
By (104)—(107) and (111), we can conclude that
1
Nschoning < ————, if Quv—1m>«kn. (113
Schéning = P(E)P(Ey) it (2v ym > kn.  ( )

2. GW PROCESS

For the GW process, let us recall that it consists of a classical
outer loop that at each round assigns a definite (classical)
initial state, whereas the walk process is Groverized. We
assume that the number of iterations of the Grover procedure
is tuned to the density of successful walks for a specific
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initial Hamming distance j = «n, i.e., to the success proba-
bility P(x,, = x* |dH(x0|x*) = kn). In the analysis, we lower
bound the success probability by assuming that the process
fails whenever dg (xo, x*) # «n (which may be pessimistic).
The probability to obtain the initial state xy with the Ham-
ming distance xn is P(dy(xg, x*) = kn), and thus, in aver-
age, we need to repeat the outer loop 1/P(dy(xp, x*) = kn)
times to be guaranteed to reach the initial Hamming distance
kn at least once. In the successful case, the Grover pro-

cedure requires 1/ \/ P(x,, = x*‘dH(x0|x*) = kn) iterations.
Consequently, an upper bound on the total number of steps
is

1

Ngw =<
P (dy(xg, x*) = kn) \/P (xm = x*|dH(x0|x*) = Kn)

[By Proposition 9]
1
<
~ P(dy = kn)/P(d,, < 0]dy = kn)
[By (107) and (111)]

if Qv —1)m > «kn. (114)

1
=< IR ——
~ P(E)VP(E2)
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