
Quantum Computing Engineeringuantum
Transactions onIEEE

Received 24 September 2024; accepted 14 April 2025; date of publication 22 April 2025;
date of current version 27 May 2025.

Digital Object Identifier 10.1109/TQE.2025.3563805

Runtime–Coherence Tradeoffs for Hybrid
Satisfiability Solvers

VAHIDEH ESHAGHIAN1 , SÖREN WILKENING2,3, JOHAN ÅBERG1 ,
AND DAVID GROSS1
1Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
2Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hanover, Germany
3Volkswagen AG, 38440 Wolfsburg, Germany

Corresponding author: Vahideh Eshaghian (e-mail: eshaghian.vahideh@gmail.com).

This work was supported by the Bundesministerium für Bildung und Forschung under project QuBRA. The UzK team was also
supported by the Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) under
Grant EXC 2004/1 (390534769).

ABSTRACT Many search-based quantum algorithms that achieve a theoretical speedup are not practically
relevant since they require extraordinarily long coherence times, or lack the parallelizability of their classical
counterparts. This raises the question of how to divide computational tasks into a collection of parallelizable
subproblems, each of which can be solved by a quantum computer with limited coherence time. Here, we
approach this question via hybrid algorithms for the k-satisfiability problem (k-SAT). Our analysis is based
on Schöning’s algorithm, which solves instances of k-SAT by performing random walks in the space of
potential assignments. The search space of the walk allows for “natural” partitions, where we subject only
one part of the partition to a Grover search, while the rest is sampled classically, thus resulting in a hybrid
scheme. In this setting, we argue that there exists a simple tradeoff relation between the total runtime and
the coherence time, which no such partition-based hybrid scheme can surpass. For several concrete choices
of partitions, we explicitly determine the specific runtime coherence time relations and show saturation
of the ideal tradeoff. Finally, we present numerical simulations, which suggest additional flexibility in
implementing hybrid algorithms with the optimal tradeoff.

INDEX TERMS Coherence time, quantum algorithm, quantum search, runtime, satisfiability problem.

I. INTRODUCTION
Consider a quantum algorithm that takes exponential time to
run, but still offers a polynomial speedup over the best classi-
cal method. Examples include Grover searches to brute-force
a password or for finding the solution for a combinatorial
optimization problem for which no classical heuristics exist.
Fully quantum implementations might not be desirable for
two reasons: 1) quantum hardware that can sustain very long
computations might not be available and 2) quantum algo-
rithms, such asGrover’s search, might not be easily amenable
to parallelization. This leads to the question of how to best
break up such instances into a set of smaller parallelizable
subproblems that can individually be solved on quantum
hardware.
We consider the well-known satisfiability problem with

k being the number of literals in each clause, (k-SAT), and
focus particularly on 3-SAT since it provides an attractive test
bed to investigate such questions. k-SAT is the archetypical
combinatorial optimization problem and represents a class

of use cases with considerable practical relevance. More-
over, there is a classical randomized algorithm [1], [2] due
to Schöning, with a performance close to the best known
algorithms with provable performance, and which further-
more allows for a closed-form asymptotic runtime analysis.
It is indeed the case that the algorithm obtained by replacing
the classical search of the Schöning procedure by a Grover
search [3] yields a quantum Schöning algorithm with a
quadratic improvement vis-à-vis its classical counterpart [4].
(In the following, we will refer to quantum algorithms that
arise this way as Groverizations of their classical versions).
However, such “fully quantized” Schöning’s SAT solvers

cannot be performed in parallel, which arguably is a relevant
feature for algorithms that run in exponential time. Hybrid
schemes, based on “partial” Groverizations of Schöning’s
algorithm, where Grover search procedures are applied only
to certain subroutines, usually do allow for parallelizations.
The starting point of our analysis is the stochastic nature

of Schöning’s algorithm as a random walk. This point of

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 3101222

https://orcid.org/0009-0002-6021-1486
https://orcid.org/0000-0002-2573-476X
https://orcid.org/0000-0001-8888-3028
mailto:eshaghian.vahideh@gmail.com

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

FIGURE 1. Visualization of the behavior of algorithms by indicating their
position in a “runtime rate versus coherence time rate” chart. Classical
algorithms require no coherence and thus lie on the y-axis. In the
example given, the point on the upper left-hand side represents a
classical probabilistic search with runtime rate γC. A completely
Groverized version has coordinates (γC/2, γC/2) (bottom right), meaning
that it will spend its entire runtime coherently. Hybrid algorithms that
use Grover only for a subset of the search space must lie in the shaded
area above or on the dashed line segment connecting these two points.

view yields two classes of hybrid algorithms, where one
class Groverizes the random choice of the initial state of the
walk, whereas the other class Groverizes the randomness in
the walk itself. Within an established model of Schöning’s
algorithm, we optimize the resulting runtimes by balancing
the resources allocated to the subroutines.

A. RUNTIME–COHERENCE TIME TRADEOFFS
Before specializing to the Schöning process, let us briefly
outline the tradeoffs between runtime and coherence time
that can be expected for quantum search problems. Con-
sider an algorithm that solves instances of size n with run-
time T (n). For exponential-time algorithms, we work with a
somewhat coarser measure, the (asymptotic) runtime rate

γ = lim
n→∞

1

n
logT (n)

where we drop the base of the logarithm from here on; the
base is 2 unless explicitly stated otherwise. In other words,
T ∈ O∗(2γ n), whereO∗ denotes scaling behavior up to poly-
nomial factors. The aim is to trade it off against the coherence
time required to run the algorithm. IfC(n) is the longest time
over which coherence has to be maintained while running the
algorithm, then the coherence time rate is

χ = lim
n→∞

1

n
logC(n).

Now restrict attention to search algorithms with a classi-
cal runtime rate γC. A completely Groverized version runs
with rate γG = γC/2. All of its runtime will be spent co-
herently, specifically executing Grover iterations. Therefore,
χG = γC/2 as well. We can visualize these two points in a
“runtime rate versus coherence time rate” chart, a mode of
visualization that we will employ frequently (see Fig. 1).

To achieve a tradeoff between total runtime and coherence
time, we will consider algorithms that apply Grover’s proce-
dure only to a subset of the search space. It is easy to see that
any algorithm that results from such a procedure must have
coordinates (χ, γ) that lie on or above the line segment

L = {(χ, γC − χ) |χ ∈ [0, γC/2]}

that connects the purely classical point (0, γC) to the
completely Groverized one (γC/2, γC/2).

Indeed, take a partial Groverization that achieves parame-
ters (χ, γ). Then, one can replace the Grover part by a clas-
sical search. The resulting classical algorithm will have pa-
rameters (0, γ + χ), because the Grover search contributed
χ to the runtime rate, but its classical simulation will con-
tribute 2χ instead. However, if the initial parameters were
below the line, i.e., if γ < γC − χ , then the resulting classi-
cal algorithm runtime rate is γ + χ < γC, contradicting the
assumption that γC describes the classical complexity of the
search.

B. RELATED WORK
Dunjko et al. [5] have previously considered partial Grover-
izations of Schöning’s algorithm. They aimed to minimize a
different metric, i.e., total number of clean qubits, rather than
coherence time. In fact, they work in a highly constrained
regime, where the number of available clean qubits only
scales as cn, with 0 < c < 1 and n the number of variables of
the given 3-SAT formula. Surprisingly, they show that even
this meager allotment of qubits, in principle, yields a speedup
compared to the classical Schöning’s algorithm.1

Despite the superficial similarities, their and our papers
are quite different. We allow for qubit counts that are quasi-
linear in n, i.e., O(n log n), reasoning that for exponential-
time algorithms, coherence time and parallelizability might
be more limiting than the number of available qubits. As
it will turn out, the setting considered here can interpolate
between the classical and the fully Groverized performance,
whereas the runtime rates obtainable in [5] stay close to the
classical ones. While Dunjko et al. [5] use derandomization
techniques, our approach builds more directly on the original
Schöning’s algorithm. This makes our approach technically
less involved, and it also makes the lessons learned more
widely applicable, since the basic technique of using Grover
search over a subset of all variables directly generalizes to
anyNP problem, whereas derandomizations to a larger extent
rely on the particular structure of the problem at hand.

1According to [5, Supplemental Material Sect. B.4], the relative speedup
to the classical Schöning’s rate is f (c) = (1− log

√
3)β(c), where the Beta

function up to O(log nn) is implicitly given as Aβ(c) ln 1
β(c) + Bβ(c) = c. As

mentioned in [5] using a straightforward encoding of each trit into two
qubits, one can assume A = 10 and B = 50. To be consistent with our
encoding, we consider log2 3 qubits to encode a trit and then calculate the
maximum speedup in the rate, i.e., f (1) ≈ 0.0028.

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

Algorithm 1: Schöning’s Algorithm.
1: function Schoening(C1, . . . ,CL,N,m)
2: for i = 1. . .N do
3: x← uniformly random value from {0, 1}×n
4: for j = 1. . .m do
5: if x satisfies C1, . . . ,CL then
6: return x
7: else
8: k← index of first unsatisfied clause
9: l← index of one of the three variables

occurring inCk, chosen uniformly at
random

10: x← x, with the lth bit of x flipped
11: end if
12: end for
13: end for
14: return False
15: end function

II. SETTING THE STAGE
A. SCHÖNING’S ALGORITHM
Here, we provide a very brief introduction to the pertinent
aspects of Schöning’s 3-SAT solver. For a more thorough
review, we refer the reader to [1] and [2]. In the 3-SAT
problem, we are given a collection of clauses C1, . . . ,CL
on n binary variables, where each clause is of the form
Cj = l(j)0 ∨ l(j)1 ∨ l(j)2 , and where each of the literals l(j)0 , l(j)1 ,

and l(j)2 is one of the binary variables or its negation. The
3-SAT formula is the conjunction of all the given clauses,
C := ∧Lj=1Cj, and the computational task is to determine
whether there exists an assignment of the n binary variables
that satisfies C. According to Schöning [1], an algorithm
exists that, although with runtime that is exponential in n, can
perform better than an exhaustive search through all potential
assignments.
Schöning’s algorithm (see Algorithm 1) depends on two

parameters N and m to be determined later. It begins by
choosing an assignment x ∈ {0, 1}×n uniformly at random.
The algorithm then performs an m-step random walk over
the space of n-bit strings (the inner loop in Algorithm 1, from
line 5). In every step, it checks (according to a predetermined
order) all the clausesC1, . . . ,CL. If all are satisfied, then x is
a solution and the algorithm terminates. Otherwise, it finds
the first unsatisfied clause and chooses one of the three vari-
ables corresponding to the literals of that clause uniformly
at random. The value of x is then updated, by negating that
variable. This concludes the step. If no solution is found after
m steps, the walk is terminated. Up to N such walks are
attempted (the outer loop in Algorithm 1), each time using
a fresh uniformly random starting point x.

B. ANALYSIS OF THE RUNTIME OF SCHÖNING’S
ALGORITHM
The analysis of the runtime of Schöning’s algorithm is
sketched in [1] and [2], and a more in-depth analysis can be

found in [6]. Here, we follow a very similar line of reason-
ing, with our particular ansatz in mind. In the following, we
present an overview; see the Appendix for a more detailed
account.
Assume that there is at least one satisfying assignment

x�. We first aim to lower bound the probability that a given
random walk finds a solution. Let x0 be the (random) initial
configuration and xl be the one attained after the lth step of
the random walk. The probability that any solution is found
during any step of the walk is certainly at least as large
as the probability P(xm = x�) that the walk finds x� at the
mth step. To analyze P(xm = x�), we follow in the steps of
Schöning [1], [2] and focus on the evolution of the Hamming
distance dH (xl, x�) between the current configuration and the
selected satisfying assignment x�.

The fundamental insight is that if a clauseCk is violated at
the lth step, then at least one of the three variables that appear
inCk must differ between xl and the satisfying assignment x�.
Thus, the random flip decreases the Hamming distance to the
solution with probability at least 1/3

P
(
dH (xl+1, x�) = dH (xl, x

�)− 1
) ≥ 1

3
. (1)

This suggests to pass from a description of the process on bit
strings to its projection xl �→ dH (xl, x�) onto N. However,
this would generally yield a process that would be no easier
to analyze than the original one. One may, for example, note
that although the Schöning -process (xl)l isMarkovian on the
space of bit strings {0, 1}×n, one cannot generally expect its
projection (dH (xl, x�))l to be Markovian on N.

The general idea for the analysis is to replace (via a cou-
pling) the true projection (dH (xl, x�))l with another process
(dl)l on Z, which is Markovian and which moreover upper-
bounds the true Hamming distance

dH (xl, x
�) ≤ dl . (2)

More precisely, the Markov process (dl)l is defined by the
transition probabilities

P(dl+1 = dl + 1) = 2

3
, P(dl+1 = dl − 1) = 1

3
. (3)

The transition probabilities (3) can be interpreted as worst
case scenarios of each step in the Schöning process.
From the bound (2), it follows that P(xl = x�) ≥ P(dl ≤

0). In other words, the success probability of the Schön-
ing process is lower bounded by the probability that the
substitute process dl reaches 0.
Given the lower bound P(dm ≤ 0) on the probability of

success of each given walk, we expect at least one out of
N = 1/P(dm ≤ 0) walks to find x�. More precisely, if ε is
the tolerated probability for failure, then the number of rep-
etitions needed in order to find an existing solution satisfies

N ≥ log ε

log(1− P(dm ≤ 0))
. (4)

The required number N of repetitions will be exponential
in n. It is then common to take a coarser point of view and

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

only analyze the corresponding rate

γ := − lim
n→∞

1

n
logP(dm ≤ 0)

so that N = O∗(2γ n) (5)

where O∗ denotes scaling behavior up to polynomial factors
in order to achieve any constant probability of failure ε. With
the choice m = n (i.e., the termination time is equal to the
number of variables), it turns out [1], [2] that γ ≤ log 4

3 ≈
0.415.
It is surprisingly technically difficult to rigorously derive

the “global bound” P(xl = x�) ≥ P(dl ≤ 0) from the “local
bound” (1). However, the Markovian version (dl)l of the
Hamming distance random walk is commonly accepted as a
good (in fact, conservative) model of the Schöning process.
In the main body of this article, we will, therefore, phrase
our arguments in terms of that model. More technical details
on the relation between the two processes are given in the
Appendix.

C. PARTIAL GROVERIZATIONS: THE GENERAL IDEA
For random walks, we naturally tend to think of the ran-
domness as being generated whenever needed, like when we
assign the initial state, or make the random choices along
the path. However, we can alternatively picture the walk as
a deterministic process that is fed with an external random
string S, a list from which it picks the next entry whenever
a random choice is to be made. When the purpose of the
walk is to find (an efficiently recognizable) solution to some
computational problem, one can thus view the walk as a
(deterministic) map that designates each input string S as
being “successful” or “unsuccessful,” in the sense of the walk
reaching the satisfying solution x� or not. To this mapping,
we can in principle apply a Grover search procedure, since
the walk (as well as the solution-recognition procedure) can
be performed via reversible circuitry and can thus also be
implemented coherently.
As described in the previous section, Schöning’s algorithm

proceeds with an initialization, followed by a random walk
on the space of 2n assignments. The initialization requires
n bits of randomness, SI , since the initial state is selected
uniformly over all 2n strings. A walk of length m requires
a string SW of m log 3 bits to encode the needed randomness.
The log 3-factor is due to the fact that, at each step, the algo-
rithm randomly selects which one of the three literals (of the
first violated clause) should be flipped. An m-step Schöning
walk can thus be viewed as a map from S = (SI, SW) to a
binary variable that tells us whether a satisfying assignment
has been reached or not.
With a coherent circuit that implements this map, we can

thus replace the uniformly distributed random variable S,
with a uniform superposition over a corresponding number
of qubits, and proceed via standard Grover-iterations [3].
We would expect such a procedure to yield a satisfying

assignment at a runtime that scales as O∗(2nγG) iterations,
with γG = 1

2 log
4
3 ≈ 0.208 [4], i.e., the standard quadratic

speedup. Up to a few constant qubits, one needs n+ (log 3+
logL)m qubits to encode this map as a quantum circuit,
where L is the number of clauses in the 3-SAT formula (more
details are given in Section V). Since the number of clauses
grows linearly in n for the regime of interest by the SAT phase
transition conjecture [7], and for the Schöning walk m = n,
the space complexity of such encoding is O(n log n).
The view of random walks as maps on random input

strings opens up for the concept of partial Groverizations.
Nothing would, in principle, prevent us from regarding only
a part of the input string S as the input of the Grover pro-
cedure, while keeping the rest of the string classical. Need-
less to say, one would generally expect the result to be less
efficient than the “full” Groverization. However, the gain
would be that the partial Groverization breaks the tasks into
a collection of subproblems, each of which can be run in
parallel on a quantum device that requires shorter coherence
time.
Although it seems reasonable to expect that such a divi-

sion, in principle, is always possible, one may also expect
that it, in general, would be challenging to find a quantum
circuit that implements it in an economical manner. (We can
always resort to a full coherent circuit for S in its entirety,
putting the “classical part” in a diagonal state.) However,
there may be “natural” divisions of the process, which can
be exploited. For Schöning’s algorithm, it is close to hand
to consider the division S = (SI, SW), i.e., the division of the
required randomness into the initialization part and the walk
part. One can, thus, consider two particularly natural classes
of “partial” Groverizations of Schöning’s algorithm. For one
of these, the Groverized Initialization (GI), the choice of the
initial state is implemented coherently, while the walk is kept
“classical.” For the GroverizedWalk (GW), the choice of ini-
tial state is kept classical, while the walk itself is performed
coherently.
As described in Section II-B, the actual analysis is based

on the random walk (dl)l on Z, rather than the true Schöning
walk on strings in {0, 1}×n. The idea is nevertheless the same;
the required randomness is divided into the initialization and
the walk per se, resulting in GI and GW processes. As de-
scribed in Section II-B, the rate of the true Schöning process
can be bounded by the rate of the substitute process (dl)l .
It turns out that a similar argument can be made for GW
(see the Appendix), thus yielding a rigorous bound for the
rate also in this case. However, for the other processes, we
rather regard the (dl)l process as a model of the genuine
Schöning walk, without rigorous guarantees of analogous
bounds.

III. PARTIAL GROVERIZATIONS
The previous section introduced two types of partial Grover-
izations of Schöning’s algorithm, GI and GW, based on the

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

Algorithm 2: Schöning Walk and Oracle.
1: function Oracle(x0,w)
2: return True if SchoeningWalk(x0,w) satisfies

all clauses, else False
3: end function
4:
5: function SchoeningWalk(x,w)
6: for j = 1, . . . ,m do
7: if x violates one of C1, . . . ,CL then
8: k← index of first unsatisfied clause
9: l← index of the w jth variable occurring inCk
10: x← x, with the lth bit of x flipped
11: end if
12: end for
13: return x
14: end function

division S = (SI, SW), i.e., the initial and the walk random-
ness. In this section, we describe these schemes in detail and
further discuss their “fractional” cases.
In the GI scheme, there is an outer loop that classically

samples SW and is followed by a Grover search inner loop
over the space of all possible SI . Similarly, GW starts with
a classical outer loop that samples SI and is followed by a
Grover search inner loop over the space of all possible SW
(this space is well defined as the walk length is fixed). We
obtain Fractional Groverized Initialization (FGI) by adapting
GI to a regime where only a fraction z of the variables in
the initialization can be searched coherently, with 0 ≤ z ≤ 1.
Fractional Groverized Walk (FGW) is similarly an adaption
of GW to a regime where Grover search can be performed on
the randomness of walks of at most mq steps, with 0 ≤ mq.
In both these fractional schemes, two classical outer loops
contain a Grover search inner loop. The algorithms intro-
duced here depend on parameters (N1, N2, etc.), which will
be specified explicitly in Section IV.
All Grover searches will use an oracle derived from the

function shown in Algorithm 2: It tests whether a Schöning
walk with an initial configuration x ∈ {0, 1}n and walk ran-
domness w ∈ {1, 2, 3}m will lead to a satisfying assignment.
For notational convenience, we let the elements of w take
ternary in values, with the interpretation that wl determines
which of the three literals occurring in the first violated clause
(if any) in step l of the walk is flipped. For a qubit-based
implementation, it is not difficult to relabel the decision
variables using �m log 3� binary variables.
For the different variants of partial Groverizations dis-

cussed later, we will fix a subset of arguments to the oracle
and consider it as a function of the remaining ones. Fixed
arguments will be denoted as subscripts, e.g., Oraclew :
x �→ Oracle(x,w). With these conventions, we have the
following algorithms.
One may note that the Grover search in the GW only is

guaranteed to succeed (with high probability) for a specific

Algorithm 3: Groverized Initialization.
1: for i = 1, . . . ,N2 do
2: w← uniformly random value from {1, 2, 3}×m
3: x← Grover search for �√N1� iterations using

Oraclew()
4: if x satisfies all clauses then
5: return x
6: end if
7: end for

Algorithm 4: Groverized Walk.
1: for i = 1, . . . ,N1 do
2: x0← uniformly random value from {0, 1}×n
3: w← Grover search for �√N2� iterations using

Oraclex0 ()
4: x← SchoeningWalk(x0,w)
5: if x satisfies all clauses then
6: return x
7: end if
8: end for
9: return False

Algorithm 5: Fractional Groverized Initialization.
1: for i = 1. . .N2 do
2: w← uniformly random value from {1, 2, 3}×m
3: for j = 1. . .N (c)

1 do
4: xc← uniformly random value from

{0, 1}×�(1−z)n�
5: xq← Grover search for

⌊√
N (q)
1

⌋
iterations

using Oracle(xc,w)()
6: x = (xc, xq)
7: if x satisfies all clauses then
8: return x
9: end if
10: end for
11: end for
12: return False

collection of initial states. The number of rounds N1 of
the outer loop is selected in such a way that it with high
probability hits the set of advantageous initial states at
least once, thus allowing the Grover procedure to reach the
satisfying assignment. Similar remarks apply to the other
partial Groverizations.
Next, we discuss the “fractional searches.” In the first one,

the argument x of the oracle is broken up as x = (xc, xq),
with xq taking �z · n� bits and xc being �(1− z) · n� bits
long. Here, z ∈ [0, 1] is a free parameter whose value will
be determined later.
The second fractional algorithm breaks up the walk ran-

domness as w = (wc,wq), with wc ∈ {1, 2, 3}mc and wq ∈
{1, 2, 3}mq , respectively. Again, the values of mc and mq are
chosen later.

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

Algorithm 6: Fractional Groverized Walk.
1: for i = 1, . . . ,N1 do
2: x0← uniformly random value from {0, 1}×n
3: for j = 1, . . . ,N (c)

2 do
4: wc← uniformly random value from {1, 2, 3}×mc
5: wq← Grover search for

⌊√
N (q)
2

⌋
iterations

using Oracle(x0,wc)()
6: w = (wc,wq)
7: x← SchoeningWalk(x0,w)
8: if x satisfies all clauses then
9: return x
10: end if
11: end for
12: end for
13: return False

Algorithm 7: Evenly Fractionalized Grover.

1: for i = 1, . . . ,N (c) do
2: xc← uniformly random value from {0, 1}×�(1−z)n�
3: wc← uniformly random value from
{1, 2, 3}×�(1−z)m�

4: (xq,wq)← Grover search for
⌊√

N (q)
⌋
iterations

using Oracle(xc,wc)()
5: w = (wc,wq)
6: x0 = (xc, xq)
7: x← SchoeningWalk(x0,w)
8: if x satisfies all clauses then
9: return x
10: end if
11: end for
12: return False

In the final algorithm (Algorithm 7), a fraction of z ∈ [0, 1]
of both types of variables, the ones corresponding to the
initialization and the ones corresponding to the walk, will be
treated quantum mechanically.

IV. RUNTIME ANALYSIS
We will now lower bound the probability of success of the
various approaches. As a preparation, in Section IV-A, we
give a brief account of the analysis of the classical case,
before moving on to the Groverized versions in Section IV-B.

A. CLASSICAL SCHÖNING PROCESS
The main ideas of the classical analysis are close to their
presentation in [1] and [2]. We work in the Markovian model
(dl)l for the behavior of the Hamming distances, as laid out
in Section II-B. Frequently, it will be convenient to measure
quantities “in units of n or m.” For example, we will soon
choose a number κ ∈ [0, 1] and assume that the initial value
d0 is equal to κn. Of course, this only makes sense if κn is an
integer. In order to keep the notation clean, we will implicitly

assume that such expressions have been rounded to the next
integer.
Choose numbers κ, ν ∈ [0, 1]. A given walk (dl)l is cer-

tainly successful (in the sense that dm ≤ 0) if:

1) the initial value is d0 = κn;
2) the random walk decreases the Hamming distance in

exactly νm of its m steps;
3) the condition

κn ≤ (2ν − 1)m (6)

holds.

Indeed, the right-hand side of (6) is the difference between
the number of steps where the Hamming distance has been
decreased, νm, and the number of steps where the Hamming
distance has been increased, (1− ν)m.

For any fixed pair of values κ, ν subject to (6), we will now
compute the probability of this particular route to success.
Denote the first event by E1 and the second event by E2. They
occur with respective probabilities

P(E1) = 1

2n

(
n

κn

)

P(E2) =
(
m

νm

) (
1

3

)νm (
2

3

)(1−ν)m

. (7)

Since the two events are independent, the success probability
of the walk is lower bounded by

P(xm = x�|κ) ≥ P(dm ≤ 0|x)
≥ P(E1 ∧ E2) = P(E1)P(E2)

= 1

2n

(
n

κn

)(
m

νm

)(
1

3

)νm (
2

3

)(1−ν)m

. (8)

The various binomial coefficients can be conveniently related
to entropies. To this end, recall the definition of the binary
entropy function

H(p) = −p log p− (1− p) log(1− p)

for p ∈ [0, 1] and the relative entropy

D(p ‖ q) = −p log q− (1− p) log(1− q)− H(p)

for p, q ∈ [0, 1]. Then, using the well-known estimate
[8, Ch. 11.1]

1

n+ 1
2nH(κ) ≤

(
n

κn

)
≤ 2nH(κ)

equation (8) can, after some straightforward calculations, be
concisely rewritten as

P(dm ≤ 0|x) � 2−(1−H(κ))n2−D(ν‖
1
3)m (9)

where � denotes that an inequality holds asymptotically, up
to a polynomial factor. Equation (9) directly gives an upper
bound on the rate γ defined in (5). Since the rate expresses
the logarithm of the complexity “in units of n,” it makes sense

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

to also express the length of the walk in terms of μ := m/n.
Then

γ = − lim
n→∞

1

n
logP(dm ≤ 0|x)

≤ 1− H(κ)+ μD(ν ‖ 1/3) =: γ (μ, κ, ν). (10)

In particular, the infimum of γ (μ, κ, ν) subject to the con-
straints (6) and 0 ≤ μ, 0 ≤ ν, κ ≤ 1 is a valid bound for γ .
We will perform such optimizations explicitly for the par-
tially Groverized versions in Section IV-B. For the classical
procedure, we just state the final result

μ = 1, κ = 1

3
, ν = 2

3
, γC = log

4

3
� 0.4150. (11)

Remark: One might be tempted to search a tighter bound
by summing the contributions to the probability of success
that arise from all consistent values for μ, κ , and ν, instead
of just considering the extremal value. However, the rate of a
sum of exponentially processes is asymptotically determined
by the rate of the dominating summand alone, i.e., for all
collections of γi > 0, it holds that

lim
n→∞−

1

n
log

∑
i

2−γin = sup
i

γi

(assuming convergence). Therefore, considering only the
dominating term does not affect the overall asymptotic rate.

B. PARTIALLY GROVERIZED PROCESSES
In this section, we derive the main results of this article:
bounds on the asymptotic rates for partially Groverized
versions of Schöning’s scheme.

1) GROVERIZED INITIALIZATION, ALGORITHM 3
For the parameters N1 and N2, we choose constant multi-
ples of 1/P(E1) and 1/P(E2), respectively. The value of the
constant depends on the acceptable probability ε of failure,
as exhibited in (4). Since this constant does not affect the
rate, we will not specify it here. The probabilities depend
essentially on the parameters μ, κ , and ν, though. We will,
therefore, write N1(κ) and N2(μ, ν). Because the asymptotic
complexity of a Grover search is the square root of the
classical complexity, the rate function of GI is then given by

γGI(μ, κ, ν) = lim
n→∞

1

n
log

(√
N1(κ)N2(ν, μ)

)

= 1− H(κ)

2
+ μD(ν ‖ 1/3). (12)

Likewise, the required coherence time scales with the
number of Grover iterations, i.e., as O∗(2χn), for

χ (κ) := lim
n→∞

1

n
log

√
N1(κ) = 1− H(κ)

2
. (13)

The parameters are constrained by

0 ≤ κ ≤ 1, 0 ≤ μ, 0 ≤ ν ≤ 1,
κ

2ν − 1
≤ μ (14)

where the final condition is a rearranged version of the suc-
cess criterion (6).

We now determine theminimal rate γGI over the consistent
parameters. Because relative entropy is nonnegative, it is
always advantageous to reduce the value of μ until it is min-
imal subject to the constraints. This is achieved by changing
the final inequality in (14) to equality. Rearranging, we arrive
at

0 ≤ κ ≤ 1, 0 ≤ μ, ν = 1

2
+ κ

2μ
(15)

which allows us to eliminate ν = ν(κ, μ) from the prob-
lem. Varying γ with respect to μ gives rise to the criticality
condition

0
!= ∂μγGI(κ, μ) = ∂μ μD(1/2+ κ/(2μ) ‖ 1/3)

= 1

2
log

(
μ+ κ

μ

)
+ 1

2
log

(
μ− κ

μ

)
+ log 3− 3

2
. (16)

This can be solved explicitly, e.g., using a computer algebra
system [9], leading to

μ = 3κ ⇒ ν = 2

3
, μD(ν ‖ 1/3) = κ. (17)

Eliminating μ, we get

γGI(κ) = 1− H(κ)

2
+ κ

χGI(κ) = 1− H(κ)

2
. (18)

The pair of equations (18) contain all information about
the asymptotic behavior of the GI procedure. Each value
of κ gives a solution for the two undetermined constants
N1(κ),N2(μ = 3κ, ν = 2

3) inAlgorithm 3, in such away that
it will run with a small probability of returning a false neg-
ative. Varying κ , we thus obtain a family of algorithms that
find different compromises between the required coherence
time and the total runtime. The achievable pairs of values are
shown in Fig. 2.

Finally, we explicitly determine the minimal rate achiev-
able in the GI scheme. With the help of a computer algebra
system [9], one easily finds

0
!= ∂κγGI(κ) = 1

2
log

κ

1− κ
+ 1

⇔ log

(
1

κ
− 1

)
= 2 ⇒ κ = 1

5
(19)

which gives

μ = 3

5
, γGI = 3− log 5

2
≈ 0.339, χGI � 0.139. (20)

Remark: One can cast the final minimization into the form

γGI = inf
κ

γGI(κ) = inf
κ

(
1− H(κ)

2
+ κ

)

= − sup
κ

(
−κ − H(κ)− 1

2

)
.

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

FIGURE 2. Rates (χGI(κ), γGI(κ)) for the required coherence time and the
total runtime of the GI algorithm, as the parameter κ is varied. The
horizontal bar denotes the runtime rate achieved by the classical
Schöning process. In other words, points above this line are
uninteresting. The vertical bar denotes the coherence rate that allows
one to run a completely Groverized version of the Schöning process. This,
arguably, makes points to the right of this line uninteresting as well.
Points to the left of the minimum (at (γ, χ) � (0.339, 0.139)) can
represent advantageous choices if either the total coherence time of a
quantum computer is limited or a larger degree of parallelization is
desired. The dashed line is the lower bound on the runtime rate given
the coherence time, as introduced in Fig. 1. It is achieved for κ = 1

3 .

This expression shows that the optimization amounts to
computing a Legendre transform. Indeed, with f (κ) :=
1/2(H(κ)− 1), the right-hand side equals − f ∗(−1). For
physicist readers, it might be amusing to note that S(nκ) =
nH(nκ) formally equals the entropy of an n-spin paramagnet
as a function of the total magnetization. The Legendre trans-
form of the entropy is a Massieu thermodynamic potential,
equal to F/T (with F the free energy) expressed as a function
of the inverse temperature [10, Ch. 5.4]. We will, however,
not pursue this analogy here.

2) GROVERIZED WALK, ALGORITHM 4
The analysis proceeds in close analogy to the aforementioned
case. The asymptotic rate function of GW is

γGW(κ, μ, ν) = lim
n→∞

1

n
log(N1(κ)

√
N2(ν, μ))

= 1− H(κ)+ μ

2
D(ν ‖ 1/3) (21)

subject to the set of constraints (14). The parameters ν and μ

can be treated in exactly the same way as before, leading
again to (17). In particular, the coherence time rate takes the
simple formχ = κ/2, which allows us to eliminate κ in favor
of χ . We immediately obtain

γGW(χ) = 1− H(2χ)+ χ. (22)

Again, it is not difficult to solve for the lowest runtime [9]

μ = 3(
√
2− 1) κ =

√
2− 1

γGW ≈ 0.228 χGW � 0.2071. (23)

At the optimal point, the runtime scales with a rate that is
very close to the one of a full Groverization of Schöning’s
process, namely, γCG = γC/2 � 0.2075. The flip side is that
the required coherence times are basically identical

χCG − χGW � 0.0004.

FIGURE 3. Runtime rate versus coherence time rate curves for
Groverized Initialization (GI, blue) and Groverized Walk (GW, red). The
point marked “CG” at the bottom right of the diagram represents the
complete Groverization of the Schöning process. For long coherence
times, GW is preferable, whereas for shorter coherence times GI achieves
a lower total runtime.

The findings are summarized in Fig. 3.

3) FRACTIONAL GROVERIZED INITIALIZATION,
ALGORITHM 5
In the case of Algorithm 5, the initial Hamming distance is
the sum of two terms d0 = κc(1− z)n+ κqzn, which model
dH (xc, x�c) and dH (xq, x

�
q), respectively. Define the analogues

P(Ec1) =
1

2(1−z)n

(
(1− z)n

κc(1− z)n
)

P(Eq1) =
1

2zn

(
zn

κqzn

)

of P(E1) introduced in (7). Analogous to the discussion in
Section IV-B1, the parameters Nc1 and N

q
1 are defined as the

reciprocals of these probabilities, times a constant that in-
fluences the probability of a false negative, but will not be
discussed as it has no impact on the asymptotic rates. The
success criterion is now

(1− z)κc + zκq ≤ (2ν − 1)μ

and the other constraints are

0 ≤ κc, κq, ν, z ≤ 1, 0 ≤ μ.

The asymptotic rate function for the runtime of FGI reads

γFGI(κc, κq, ν, μ; z)

= lim
n→∞

1

n
log

(
Nc1 (κc; z)

√
Nq1 (κq; z)N2(ν, μ)

)

= (1− z) (1− H(κc))+ z

2

(
1− H(κq)

)+ μD(ν ‖ 1/3).
(24)

Arguing as in Section IV-B1, the inequality in the success
criterion may be replaced by an equality. Solving for ν gives

ν = 1

2
+ (1− z)κc + zκq

2μ
.

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

FIGURE 4. Runtime rate versus coherence time rate for the FGI
algorithm. This fractional scheme’s performance is the convex
combination of the classical point (0, γC), and GI at the tangent point to
the theoretical lower bound. One can note that the FGI partially
saturates the optimal performance relation.

We proceed as in the first two cases. Criticality of ∂μγFGI
with respect to μ occurs at

μ = 3((1− z)κc + zκq)

⇒ μD(ν ‖ 1/3) = (1− z)κc + zκq, ν = 2

3
.

Plugging in, we arrive at

γFGI(κc, κq; z) = (1− z) (1− H(κc)+ κc)

+ z
(
1− H(κq)

2
+ κq

)
. (25)

In other words, the runtime rate function is a convex com-
bination of the ones for the classical Schöning process and
for the GI scheme, with weights (1− z) and z, respectively.
Because the classical part does not affect the coherence time,
we may set κc to its optimal value κ∗c = 1/3 [cf. (11)]. Geo-
metrically, as we vary z ∈ [0, 1], (25) describes a line connec-
tion (χGI(κq), γGI(κq)) with the parameters of the classical
Schöning process (0, γC). By the convexity of the GI curve,
the fractional algorithm will have a better runtime rate to the
left of the value of κq at which the line becomes tangent to
the curve. In other words, the critical κq is defined by the
condition

∂γGI

∂χ
= γGI − γC

χ
.

By a computer calculation [9], this happens for κq = 1
3 (i.e.,

equal to κc), resulting in Fig. 4.

4) FRACTIONAL GROVERIZED WALK, ALGORITHM 6
In the FGWscheme, we assume that the classical andGrover-
ized walks decrease the Hamming distance in exactly νcmc
and νqmq steps, respectively, where we have used a subscript
to differentiate between the classical and Groverized random
walks. The probabilities of such walks occurring are given as

follows:

P(Ec2) =
(
mc

νcmc

) (
1

3

)νcmc (
2

3

)(1−νc)mc

P(Eq2) =
(
mq

νqmq

) (
1

3

)νqmq (
2

3

)(1−νq)mq

.

Analogous to the discussion in Section IV-B1, the parameters
Nc2 and N

q
2 are defined as the reciprocals of the probabilities

P(Ec2) and P(E
q
2), times a constant that influences the proba-

bility of failure, but will not be discussed as it has no impact
on the asymptotic rates. We further parameterize the walk
lengths as mc = μcn and mq = μqn. The runtime rate is

γFGW(κ, νc, μc, νq, μq)

= lim
n→∞

1

n
log

(
N1(κ)N

c
2 (νc, μc)

√
Nq2 (νq, μq)

)

= 1− H(κ)+ μcD(νc ‖ 1/3)+ μq

2
D(νq ‖ 1/3) (26)

with parameters subject to the constraints

0 ≤ κ ≤ 1

0 ≤ μc, μq

0 ≤ νc, νq ≤ 1

κ ≤ (2νc − 1)μc + (2νq − 1)μq. (27)

The first steps of the analysis should now be familiar.
There is no loss of generality in assuming that the final
inequality is tight, which can be rearranged to give

νq = κ − (2νc − 1)μc

2μq
+ 1

2
.

The rate γFGW is stationary as a function of μq if

μq = 3(κ − (2νc − 1)μc)

⇒ νq = 2

3
,
μq

2
D(νq ‖ 1/3) = 1/2(κ − (2νc − 1)μc)

= χ (κ, νc, μc).

Eliminating κ in favor of the coherence rate χ gives

κ = 2χ + (2νc − 1)μc

and thus

μq = 6χ

γFGW(νc, μc;χ) = 1− H(2χ + (2νc − 1)μc)

+ μcD(νc ‖ 1/3)+ χ.

We now need to minimize γFGW for fixed χ as a function of
μc and νc, subject to

0 ≤ 2χ + (2νc − 1)μc ≤ 1

0 ≤ μc

0 ≤ νc ≤ 1.

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

FIGURE 5. Runtime rate versus coherence time rate for the FGW
algorithm. This fractional scheme’s performance connects the GW curve
to the classical Schöning point and is tangent to the curve. It achieves
the optimal performance relation partially for a larger regime than FGI,
and for low coherence times, it comes to lie on top of the FGI line.

We may assume that μc �= 0, for else we are just replicat-
ing the GW scheme. A computer calculation [9] gives

∂μc (γ ln 2)+ 2− 4νc
4μc

∂νc (γ ln 2)

= − arctan(1− 2νc)+ ln(3− 3νc)− 1

2
ln 2

which has zeros at νc = 1
3 and νc = 2

3 .
For νc = 1

3 , one finds

∂μc (γ ln 2) = 2

3
arctan(1− 4χ + 2/3μc)

which has one zero, atμc = 3
2 (4χ − 1). The constraintμc ≥

0 then implies χ ≥ 1
4 . However, this is larger than the co-

herence time rate γC/2 � 0.208 sufficient to implement a
completely Groverized version of Schöning’s process, so this
solution is not of interest.
We turn to the other solution, νc = 2

3 . For it

∂μc (γ ln 2) = 1/3(−2 arctanh(1− 4χ − (2μc)/3)+ ln 2)

which has one zero

μc = 1− 6χ

⇒ μq = 6χ, νc = νq = 2

3
, γFGW = γC − χ.

The runtime versus coherence rate curve for the FGW
scheme is given in Fig. 5.

5) EVENLY FRACTIONALIZED GROVER
The runtime rate is

γEFG = (1− z) (1− H(κc)+ μcD(νc ‖ 1/3))
+ z/2 (

1− H(κq)+ μqD(νq ‖ 1/3)
)

(28)

with the success criterion

(1− z)κc + zκq = (1− z)(2νc − 1)μc + z(2νq − 1)μq

FIGURE 6. Runtime–coherence time rate curves for the covered
algorithms. The linear interpolation between the classical and the
completely Groverized points are realizable using an increasing number
of methods—first only EFG, then also FGW, and finally also FGI—as the
coherence time decreases.

which is in particular true if the following two equations
hold:

κc = (2νc − 1)μc κq = (2νq − 1)μq.

However, this is just the convex interpolation between a
completely classical and a completely Groverized process.
In particular, by choosing the parameters as for the original
Schöning process

νc = νq = 2

3
κc = κq = 1

3
μc = μq = 1

we obtain a coherence time–runtime rate curve that linearly
connects the classical point (0, γC) to the completely Grover-
ized one (γC/2, γC/2) (see Fig. 6).

C. HEURISTIC DERANDOMIZATION OF THE GI SCHEMES
In this section, we provide evidence that the GI schemes can
reach further into the γ –χ chart than what the Markovian
model suggests. To seewhy this is plausible, note that the role
of randomness for the initial configuration x is very different
from the role of randomness for the walk decisions w. In the
first case, there is an “absolute measures of the quality of the
initial configuration,” namely, the Hamming distance to the
solution. The probability that the walk does find the solution
is quite obviously a function of that metric. Therefore, bar-
ing major algorithmic insights, it is unavoidable to consider
many different initial configurations before encountering one
that will likely lead to a solution.
In contrast, it is not implausible that “every walk works

for equally many initial configurations,” i.e., that there are no
choices for w that are “intrinsically better than others.” More
precisely, it seems reasonable to assume that for sufficiently
large n, and generic SAT formulas, it holds that with high
probability in w

−1
n

log Pr
x
[SchöningWalk(x,w) = x� | dH (x, x�) = h,w]

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

Algorithm 8 Heuristically Derandomized FGI.

1: w← uniformly random value from {1, 2, 3}×m
2: for j = 1. . .N (c)

1 do
3: xc← uniformly random value from {0, 1}×�(1−z)n�
4: xq← Grover search for

⌊√
N (q)
1

⌋
iterations using

Oracle(xc,w)()
5: x = (xc, xq)
6: if x satisfies all clauses then
7: return x
8: end if
9: end for
10: return False

� −1
n

log Pr
x,w′

[SchöningWalk(x,w′) = x� | dH (x, x�) = h].

(29)

The right-hand side can be easily calculated, as in [1], for
μ = 3

Pr
x,w

[SchöningWalk(x,w) = x� | dH (x, x�) = h] = 2−h.

Under assumption (29), one can restrict the outer loop over
w’s from Algorithm 3 to N2 = 1 iteration and compensate
by increasing the number of Grover iterations for x to N1 =
O∗(2γC/2n). In other words, the GI scheme with these param-
eters would lie on the optimal point (χ, γ) = (γC/2, γC/2).

Being even bolder, one could then speculate that the anal-
ysis of Section IV-B3 carries over and that, as one varies the
fraction of initialization bits that are subjected to a Grover
search, one could trace out the optimal (χ, γ) line. In other
words, it does not seem impossible that Algorithm 8, with
parameter choice

N (c)
1 = O∗(2γC(1−z)n) N (q)

1 = O∗(2γCzn/2)

achieves the optimal tradeoff.
To gather evidence in favor of assumption (29), we have

resorted to numerical methods. A first ansatz is to compute
the left-hand side of (29) exactly, which is possible for small
values of n by iterating over all 2n assignments to x. Results
are shown in Fig. 7 for a randomly chosen set of 3-SAT for-
mulas with n = 20 variables and L = 91 clauses. The num-
ber of satisfying assignments t0 of the formulas are varied.
Only the case t0 = 1 can be directly compared to the analytic
bounds. However, note that even for this case, the empiri-
cally observed rate of γGI � 0.12± 0.02 is much lower than
the value γC/2 � 0.208 that we would expect theoretically.
Presumably, n = 20 is still too small to show the asymptotic
behavior.
To test this assumption, we had to turn to numerical heuris-

tics, to at least probe the behavior for much larger values of
n, where an exact computation is no longer possible. The
results are shown in Fig. 8. We used a SAT instance with
n = 1414 variables that we believe to have a single satisfying
assignment x�, which is explicitly known. To generate the

FIGURE 7. Plot of the runtime rate for the heuristically derandomized GI
scheme. Error bars indicate variation as a function of the formulas and
the walk variables w. On the x-axis, we show the number of satisfying
assignments in the formula. Only the case of t0 = 1 should be directly
comparable to the analytic bounds. The empirically observed behavior is
much better than the analytic results, suggesting that n = 20 is too small
to capture the asymptotic behavior.

FIGURE 8. Estimated probability for a uniformly random initial
configuration x with Hamming distance h to be mapped to x� under a
Schöning walk, for a fixed randomly chosen set of walk decisions w (c.f.
Algorithm 8). The SAT instance has n = 1414 variables and is believed to
have a unique satisfying assignment [11]. For each data point, 104 initial
configurations x were sampled uniformly from the Hamming distance
sphere Mh(x�).

instance, a 128-bit plain text was encoded by a 128-bit key
using the XTEA block cipher truncated to three rounds. The
formula represents the conditions on an input key to map
the known plain text to the known ciphertext. The clauses
are designed such that they enforce the correct evaluation of
bitwise operations of the algorithm with respect to the given
input and output. XTEA was restricted to three rounds in
order to keep the size of the formula manageable. While we
have no formal proof, it is reasonable to assume that there
is a unique key that satisfies the formula. This is supported
by consistency checks in terms of running SAT solvers on a
version of this problems with even fewer rounds [11].

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

FIGURE 9. Quantum implementation of a single Schöning’s step for a general implementation of the partial Groverization of Schöning’s algorithm. The
ev j gates evaluate the jth clause on the corresponding variables and the controlled gates containing chi and 0 ∨ 1 ∨ 2 act on all the registers and check
if the jth clause is the first violated clause and if so, flip one of three variables in it based on the randomness provided by the if-statement, 0 ∨ 1 ∨ 2.
Here, 0 ∨ 1 ∨ 2 represents a triple controlled gate where the control qutrit is the subspaces of the computational basis (visualized in Fig. 10). The log L
auxiliary qubits are needed for uncomputation.

Let us denote the sphere of strings with Hamming distance
h from x� by Mh(x�). For a fixed walk randomness w, and
for h = 1, . . . 11, we have drawn x uniformly from Mh(x�).
In order to compare the numerical results to the theory pre-
diction, we have to use the value of the right-hand side of
assumption (29) for nonasymptotic values of n. Fig. 8 shows
the empirically estimated probabilities of Schöning’s walk
(with μ = 3) arriving at the solution, when starting from a
random initial configuration of givenHamming distance. The
findings show the expected behavior of averaging over w,
already for a fixed random value of w. In this sense, they
are compatible with assumption (29). We note, however, that
we were not able to probe the assumption for larger values
of h. Garnering a better understanding for the concentration
properties of the Schöning walk as a function of the walk
choices remains, therefore, an open question.

V. CIRCUITS
In this section, we discuss an implementation of the par-
tial Groverization schemes and present the main building
blocks of their quantum circuits. Given n variables and the
length of Schöning’s walk m, the quantum implementation
requires n+ m log 3 qubits to encode the initializations and
walk randomness. The oracles of the partial Groverization
schemes are some adaptation of one or more Schöning walks,
and regardless of the search space they act on, the label of
the violated clause at each step needs to be stored in their
workspaces. This is necessary since such oracles are typ-
ically realized using uncomputation; therefore, logL extra
auxiliary qubits are needed at each step, amounting tom log L
qubits in total for the workspace. As a result, encoding any
Groverization of Schöning’s algorithm asymptotically needs
n+ (log 3+ logL)m qubits.

Fig. 9 represents a single step of Schöning walk, schemat-
ically. The first register encodes the space of all possible ini-
tialization. The gates ev j, for j ∈ {1, . . . ,L}, act on the first
two registers. Each gate consists of a few controlled gates
where the control qubits correspond to the three variables
in the jth clause, and the target qubit is the second register.
The second register is an auxiliary qubit, initially set to |0〉,
and is negated as soon as the first violated clause is detected.
The third register consists of logL auxiliary qubits that are

used to count the number of clauses from where the first
violated clause has happened. The last register is a qutrit
providing the randomness of the corresponding walk step.
The controlled gates ch j, for j ∈ {1, . . . ,L} act on the first
three registers, and take care of variable flipping wherever
the first violated clause is detected. The 0 ∨ 1 ∨ 2 block rep-
resents a triple controlled gate where the control qutrit is the
subspaces corresponding to the computational basis states
|0〉, |1〉, |2〉. Fig. 10 depicts the controlled gates, including
ch j, in detail. The subfigure on the right shows the corre-
sponding controlled gate for GI, where the walk randomness
is fed classically to the last register.
All partial Groverization of the Schöning algorithm can

be implemented using slight modifications. For the GW al-
gorithm, the n-qubit variable register will not be initialized in
the uniform superposition of all possible assignments |+〉⊗n,
but rather in a state with classically randomly defined vari-
ables |x1 · · · xn〉. For the GI algorithm, the qutrit within every
Schöning’s step can be removed since we can, for every
Schöning’s step, generate a random number r ∈ {0, 1, 2} and
apply only the X gates based on the classically determined r
(see Fig. 10).

VI. SUMMARY AND OUTLOOK
This work considers hybrid schemes for search-based quan-
tum algorithms, with the aim to allow for parallelizability,
and to reduce the need for long coherence times. The basic
gist is to partition the randomness of an underlying classical
probabilistic algorithm into a part that is subject to Grover
search, while the rest is sampled classically. Such “partial
Groverizations” allow for the parallelization of the classical
sampling, as well as enable adaption to available coherence
times. We consider exponential-time algorithms, which is
why our analysis focuses on the asymptotic runtime rates
and coherence time rates. We argue that these two types of
rates are bounded by a general tradeoff relation that no hy-
brid scheme can beat. For our concrete analysis, we consider
hybrid schemes based on Schöning’s algorithm, where the
latter solves 3-SAT (or more generally k-SAT) problems by
random walks in the space of assignments. The walk pro-
cedure allows for several partial Groverization schemes. We
determine the corresponding runtimes and coherence times

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

FIGURE 10. Implementation of the variable flips of Schöning’s walk within amplitude amplification. Here, xi1
, xi2

, and xi3 are the variables of the jth
clause. The 0 ∨ 1 ∨ 2 block represents a triple controlled gate where the control qutrit is the subspaces of the basis |0〉, |1〉, |2〉. For the GI algorithm, the
walk randomness can be provided by fixing a random number r ∈ {0, 1, 2} for every walk step.

of these schemes and demonstrate saturation of the general
tradeoff relation. Many of these partial Groverizations intu-
itively lend themselves for efficient circuit implementations,
and we provide the main building blocks of these. On a
more speculative note, we present numerical evidence that
the GI scheme can be partially derandomized, in the sense
that a single “typical” instance of the classical randomness
of the walk appears to mimic the effects of the repeated
sampling. This would open for an additional flexibility in the
implementation of these hybrid schemes, still maintaining
the optional tradeoff.
In this investigation, we have focused on partial Grover-

izations of Schöning’s algorithm. However, this approach
should, in principle, be applicable to any classical probabilis-
tic search scheme, since it essentially only rests on partitions
of the underlying randomness. The main concern would be
to find “natural” partitions that are algorithmically accessi-
ble, in the sense that the partial Groverization can be imple-
mented efficiently. Explicit runtime and coherence time rates
would also require a classical scheme, as well as partitions,
that are sufficiently tractable for analysis, unless one would
resort to numerical estimates.
The partial derandomization of the GI scheme that is sug-

gested by our numerical explorations would deserve further
investigations. In particular, the question is to what extent,
and in what sense, the hypothetical relation (29) would be
true. Moreover, one may ask if something similar also would
apply to FGI. For numerical investigations, it would be rel-
evant to extend to larger Hamming distances, further classes
of 3-SAT instances, as well as problem sizes. This would
likely involve challenges to design reliable numerical esti-
mates, since exact calculations by the very nature of the prob-
lem quickly become intractable. For purely analytical ap-
proaches, some notion of concentration of measure of walks
would be interesting.
In the spirit of [1] and [2], we have in this investigation

employed “the walk on Z” as a model of the true Schöning
procedure. In the Appendix (see also [6]), we additionally
provide bounds for the true rates of Schöning procedure and

the GW procedure, in terms of the mirroring processes on Z.
It would be relevant to obtain similar bounds also for the GI
process, as well as for the various fractional schemes.

APPENDIX
FROM THE TRUE SCHÖNING PROCESS TO THE MARKOV
PROCESS ON Z

A. PURPOSE OF THIS APPENDIX
For the calculation of rates, we replace the genuine searches
of solutions for 3-SAT problems (the “true Schöning pro-
cess”) with a Markovian random walk on the “Hamming
distance” (although we strictly speaking consider a walk on
Z). This is analogous to Schöning’s analysis of the perfor-
mance of Schöning’s algorithm [1], [2], where it is argued
that this substitute process yields an upper bound on the rates
of the runtime of the algorithm. The purpose of this appendix
is to give a more detailed argument for why the success
probability of Schöning’s algorithm is lower bounded by the
success probability of the substitute walk on Z. The reader
may also wish to consult [6] for a previous analysis along
these lines. Apart from bounding the success probability for
the true Schöning process, we also provide the analogous
bound for the GW process.

B. SCHÖNING PROCESS
As described in the main text, the 3-SAT problem consists
of a collection of clauses C1, . . . ,CL on n binary variables,
where each clause is of the form Cj = l(j)0 ∨ l(j)1 ∨ l(j)2 , and

where each of the literals l(j)0 , l(j)1 , and l(j)2 is one of the binary
variables, or its negation. The 3-SAT formula is the conjunc-
tion of all the given clauses, C := ∧Lj=1Cj, and the task is to
determine whether there exists an assignment x ∈ {0, 1}×n
of the n binary variables, which satisfies C. In the following
analysis we assume either that C has a unique satisfying
assignment x� ∈ {0, 1}×n or, alternatively, that x� is selected
among a set of solutions.
Schöning’s procedure can be regarded as a stochastic pro-

cess (xl)ml=0 with xl ∈ {0, 1}×n. The process is initialized by

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

a random assignment x0 of the bit string, drawn uniformly
over all of {0, 1}×n. On this state, it checks all the clauses
C1, . . . ,CL (according to a predetermined order). If all are
satisfied, then the initial string satisfies C and the algorithm
terminates. Otherwise, it finds the first unsatisfied clause and
randomly negates one of the three variables corresponding to
the literals of that clause. The algorithm continues according
to this random walk until it either finds a satisfying assign-
ment, or it reaches a predetermined termination time K. For
our purposes, it is convenient to think of the state xl of the
process as a function of a collection of random variables.
The initialization is represented by the random variable A,
which takes values in {0, 1}×n. The randomness in the walk
is captured by the variables B = (B1, . . . ,Bm) as random
variables where each Bl takes values in {0, 1, 2} (and thus B
takes values in {0, 1, 2}×m). Hence, Bl represents one of the
three possible choices of which literal to flip at step l. We
assume that A,B1, . . . ,Bm are independent and uniformly
distributed, i.e., for b = (b1, . . . , bm), we have

P(A = a,B = b) = P(A = a)P(B = b)

= P(A = a)P(B1 = b1) · · ·P(Bm = bm),

P(A = a) = 1

2n
∀a ∈ {0, 1}×n

P(Bl = bl) = 1

3
∀bl ∈ 0, 1, 2. (30)

Hence, we can write the Schöning process as
(xl)l = (xl (A,B))l , where

x0(a, b) := a (31)

i.e., a the initial state. At the lth step, Schöning’s process is
based on the state xl−1 of the previous step. On this state,
all the clauses C1, . . . ,CL (according to a predetermined or-
der) are checked. If all are satisfied, then xl−1 = x� and the
process remains in that state, i.e., xl = x�. (In other words,
x� is an absorbing state for the Schöning process.) Other-
wise, it finds the first unsatisfied clause, which we refer to
as Cjl . The selected clause, Cjl , contains the three literals

(l(j)0 , l(j)1 , and l(j)2). The process constructs xl by negating

the variable corresponding to literal l(j)bl
. In other words, it

is the lth component of b that determines which of these
three choices are selected. One may note that the process, by
construction, satisfies

xl (a, b) = xl (a, b1, . . . , bl). (32)

Hence, the value of xl (a, b) only depends on the values of
b1, . . . , bl , not any of the “later” variables bl+1, bl+1,
One may also note that A,B1,B2, . . . ,BK encompass all the
randomness in the process. In other words, the state xl is
uniquely determined by a, b1, . . . , bl .

C. PROOF IDEA
As described previously, the true Schöning process (xl)l is
a walk on bit strings. However, for the analysis of the op-
timal rates, we follow the steps of Schöning [1], [2] and
instead focus on the Hamming distance to the (selected)
solution x�. In principle, nothing prevents us from project-
ing the state xl of the Schöning process to the Hamming
distance dH (xl, x�) (i.e., projecting onto N). However, this
would generally yield a process that would be no easier to
analyze than the original Schöning process. One may, for
example, note that although the Schöning process (xl)l is
Markovian on the space of bit strings, one cannot generally
expect its projection (dH (xl, x�))l to beMarkovian onN. The
general idea for the analysis is to replace (via a coupling) the
true projection (dH (xl, x�))l with another process (d̃l)l on
N, which is Markovian and which moreover upper-bounds
the true Hamming distance, dH (xl, x�) ≤ d̃l . One may note
that the Schöning process is “successful” if it finds the so-
lution x�. Hence, we can express the success probability at
step l as P(xl = x�) = P(dH (xl, x�) = 0). From the bound
dH (xl, x�) ≤ d̃l , it follows that P(xl = x�) ≥ P(d̃l = 0). In
other words, the success probability of the Schöning process
is lower bounded by the probability that the substitute pro-
cess d̃l reaches 0. The fact that (d̃l)l is Markovian makes the
analysis more tractable. However, the value 0 corresponds to
an absorbing boundary. (If we find the solution at an earlier
stage, we should terminate the process rather than walking
on). To further ease the analysis, we remove this boundary
and instead introduce yet another walk (dl)l on Z, which
we regard as “successful” whenever dl ≤ 0. For this pro-
cess, we moreover establish the bound P(d̃l = 0) ≥ P(dl ≤
0) and thus P(xl = x�) ≥ P(dl ≤ 0). By the trivial bound
P(dl ≤ 0) ≥ P(dl = 0), we thus ultimately get the bound
P(xl = x�) ≥ P(dl = 0). For the calculation of the optimal
rates, our starting point is an expression forP(dl = 0). By the
inequality P(xl = x�) ≥ P(dl = 0), it follows that the calcu-
lated rates are upper bounds to the true rates of the Schöning
process.

D. CONSTRUCTING A WALK (d̃l)l ON N SUCH THAT
dH (xl , x�) ≤ d̃l

Related to the Schöning process (xl)l , we here wish to con-
struct another process (d̃l)l , where d̃l takes values in N for
all l ∈ N and is such that

dH
(
xl (a, b1, . . . , bl), x

�
) ≤ d̃l (a, b1, . . . , bl) ∀a ∈ {0, 1}

∀b ∈ {0, 1, 2}×m, l = 0, 1, 2, . . . ,m. (33)

In other words, we want to make sure that d̃l always is an
upper bound to the Hamming distance between xl and x�.
This requires a considerable coordination between the two
processes. In particular, whenever xl moves in the “wrong”
direction (i.e., increases the Hamming distance to x�), then
d̃l also has to increase. To this end, we consider the list of
clauses C1, . . . ,CL. For each clause Cj, it is the case that
Cj(x�) = 1. Hence, for each j, at least one of the literals

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

l(j)0 , l(j)1 , and l(j)2 is satisfied by x�. Among these satisfied
clauses, we select one of these satisfied literals, and let r j ∈
{0, 1, 2} be its index. In other words, we are guaranteed that

l
(r j)
j (x�) = 1.
As already described earlier, the Schöning process

(xl (a, b))l is uniquely determined by (a, b1, . . . , bl) and
does, in turn, uniquely determine the unsatisfied clauses
Cjl , as long as xl (a, b1, . . . , bl) �= x�. Consequently, it also
uniquely determines a sequence of “selected” literals r jl ,
whenever xl (a, b1, . . . , bl) �= x�. For each l ∈ 1, 2, . . ., we
define a mapping (a, b1, . . . bl−1) �→ fl (a, b1, . . . , bl−1) ∈
{0, 1, 2} by

f1(a) :=
{

0, if x0 ≡ a = x�

r j1, if x0 ≡ a �= x�

fl (a, b1, . . . , bl−1)

:=
{
0, if xl−1(a, b1, . . . , bl−1) = x�,
r jl , if xl−1(a, b1, . . . , bl−1) �= x�.

l = 2, 3,

(34)

The purpose of fl (a, b1, . . . , bl−1) is to determine the value
of bl that should correspond to a “successful” move for the
(d̃l)l process. More precisely, we define (d̃l (a, b))l by (35),
shown at the bottom of this page. In words, the first condition
in the bracket means that 0 is an absorbing state, i.e., if
d̃l (a, b) = 0 for some l, then d̃l′ (a, b) = 0 for all l′ ≥ l. The
other two cases make sure that d̃l moves in “coordination”
with the Schöning process (xl (a, b))l , in such a manner that it
is guaranteed that dH (xl (a, b1, . . . , bl), x�) does not increase
above d̃l (a, b1, . . . , bl).
Lemma 1: The Schöning process (xl)l∈N and the process

(d̃l)l∈N, as defined by (34) and (35) satisfy

dH
(
xl (a, b1, . . . , bl), x

�
) ≤ d̃l (a, b1, . . . , bl)

∀a ∈ {0, 1}×n ∀b ∈ {0, 1, 2}×l, l = 0, 1, 2,
(36)

One may note that (36) holds for every single element
in the event space, and Lemma 1 does thus not depend on
the actual probability distribution of A,B1, . . . ,Bl . However,
there are other steps in our proofs that do depend crucially on
these variables being independent and uniformly distributed.
Proof: We first note that

x0(a, b) = a, d̃0 = dH (a, x
�) (37)

and thus (36) is satisfied for l = 0 for all a, b.

Now, assume that (36) holds for some l − 1, a, b. We have
the following cases.

1) Case xl−1(a, b) = x�: Since we assume that x� is ab-
sorbing, it follows that xl (a, b) = x� and consequently
dH (xl (a, b1, . . . , bl), x�) = 0. Concerning d̃l−1, we
can distinguish yet two subcases.

a) Case d̃l−1(a, b1, . . . , bl−1) = 0: By construc-
tion [first case in (35)], d̃l (a, b1, . . . , bl) = 0,
and (36) is thus satisfied for l, a, b.

b) Case d̃l−1(a, b1, . . . , bl−1) �= 0: Then, d̃l−1
(a, b1, . . . , bl−1) ≥ 1. Since the process d
can change at most one step, it follows that
d̃l−1(a, b1, . . . , bl−1) ≥ 0, and thus, (36) is
satisfied for l, a, b.

2) Case xl−1(a, b) �= x�: Since we assume that (36) holds
for l − 1, a, b, it follows that d̃l−1(a, b1, . . . , bl−1) ≥
1. Moreover, since xl−1(a, b) �= x�, we have
fl (a, b1, . . . , bl−1) = r jl . Again, we can distinguish
two subcases.

a) Case fl (a, b1, . . . , bl−1) = bl: In this case, the
d-process decreases one step. However, by con-
struction, r jl is one of the “successful” flips for
the Schöning process; hence, the x-process also
decreases one step. By assumption, the inequal-
ity (36) is satisfied for l − 1, a, b, and since both
the x-process and the d-process decrease one
step, (36) remains satisfied for l, a, b.

b) Case fl (a, b1, . . . , bl−1) �= bl: In this case, the
d-process increases one step. The x-process may
increase or decrease, but with at most one step,
so (36) remains satisfied for l, a, and b.

By induction, we can conclude that (36) is satisfied for all
l, a, b. �

E. (d̃l)l IS A MARKOV CHAIN
In the following, we wish to show that (d̃l)l is a Markov
chain. Recall that both the genuine Schöning process (xl)l , as
well as the walk (d̃l)l , are determined by a sequence of “walk
variables” (Bl)l (and initial-state variable A). The Schöning
walk itself is Markovian, but it is a priori not obvious that the
process (d̃l)l is alsoMarkovian, particularly since the lth step
of the latter is determined by a complicated function of all the
walk variables up to the lth step, as described by (35). How-
ever, in spite appearances, it turns out that (35) defines amap-
ping from the original set of random variables (Bl)l to a new
set of variables (B̃l)l , in such a manner that the change from

d̃0(a, b) := dH
(
x0(a, b), x

�
) = dH (a, x

�)

d̃l (a, b1, . . . , bl) :=
⎧⎨
⎩

0 if d̃l−1(a, b1, . . . , bl−1) = 0
d̃l−1(a, b1, . . . , bl−1)+ 1 if d̃l−1(a, b1, . . . , bl−1) �= 0, bl �= fl (a, b1, . . . , bl−1)
d̃l−1(a, b1, . . . , bl−1)− 1 if d̃l−1(a, b1, . . . , bl−1) �= 0, bl = fl (a, b1, . . . , bl−1)

l = 1, 2, . . .

(35)

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

d̃m−1 to d̃m is determined by B̃m, and only by B̃m. Moreover,
it turns out that (B̃l)l is an independent identically distributed
(i.i.d.) sequence. Since all B̃l are independent, it follows that
(d̃l)l must be a Markov chain. In order to show that the new
sequence of variables (B̃l)l is i.i.d., what we actually do is
to show that (35) induces a bijection on {0, 1}×n × {0, 1, 2}l .
Since (A, (Bl)l) is uniformly distributed [see (30)], it follows
by the bijection that (A, (B̃l)l) is also uniformly distributed
and, thus, in particular that (B̃l)l is i.i.d.

F. BIJECTION
The following lemma introduces functions fs. Later, in the
proof of Proposition 6, we will let these mappings be the
functions fl (a, b1, . . . , bl−1) in (34). Since the latter are al-
gorithmically defined, via the Schöning process (xl)l , it is
challenging to get a hold on the properties of these map-
pings. It is thus worth noting that (apart from domains and
ranges) Lemma 3 (and Lemma 5) makes no assumptions on
the properties of the mappings fs. Hence, our lack of control
over the mappings fl (a, b1, . . . , bl−1) will not be an issue in
the subsequent proofs.
As preparation, we make the following observations.
Lemma 2: If t, t ′, r ∈ {0, 1, 2}, then

(t − r)mod 3 = (t ′ − r)mod 3 ⇔ t = t ′. (38)

Moreover, if t, r ∈ {0, 1, 2}, then
((t + r)mod 3− r) mod 3 = t. (39)

Lemma 3: Let f1 : {0, 1}×n→ {0, 1, 2} and fs : {0, 1}×n
× {0, 1, 2}×(s−1) → {0, 1, 2} for s = 2, . . . , l be given.
Define the mapping {0, 1}×n × {0, 1, 2}×l � (b1, . . . , bl) �→
Q(a, b1, . . . , bl) = (ã, b̃1, . . . , b̃l) ∈ {0, 1}×n × {0, 1, 2}×l
by

ã := a

b̃1 := (b1 − f1(a))mod 3

b̃2 := (b2 − f2(a, b1))mod 3

b̃3 := (b3 − f3(a, b1, b2))mod 3

...

b̃l := (bl − fl (a, b1, . . . , bl−1))mod 3. (40)

Then, Q is a bijection on {0, 1}×n × {0, 1, 2}×l .
Proof: To show that Q is a bijection, we first show that it

is injective and then that it is surjective.
Let (a, b1, . . . , bl), (a′, b′1, . . . , b

′
l)∈{0, 1}×n×{0, 1, 2}×l

be such that

Q(a, b1, . . . , bl) = Q(a′, b′1, . . . , b
′
l). (41)

By the first line of (40), it follows that

a = ã = a′. (42)

By the second line of (40), it follows that

(b1 − f1(a))mod 3 = (
b′1 − f1(a

′)
)
mod 3 (43)

which combined with (42) yields

(b1 − f1(a))mod 3 = (
b′1 − f1(a)

)
mod 3. (44)

Since f1(a), b1, b′1 ∈ {0, 1, 2}, it follows by (38) that

b1 = b′1. (45)

As an induction hypothesis, assume that for some s ≥ 2, it is
the case that

a = a′ b j = b′j, j = 1, . . . , s− 1. (46)

The sth line of (41) implies that

(bs − fs(a, b1, . . . , bs−1))mod 3

= (
b′s − fs(a

′, b′1, . . . , b
′
s−1)

)
mod 3. (47)

By the induction hypothesis, this implies that

(bs − fs(a, b1, . . . , bs−1))mod 3

= (
b′s − fs(a, b1, . . . , bs−1)

)
mod 3. (48)

Since bs, b′s, fs(a, b1, . . . , bs−1) ∈ {0, 1, 2}, it follows by
(38) that

bs = b′s. (49)

Since the induction hypothesis is true for s = 2, we can con-
clude that it is true for all s = 2, . . . , l. We can thus conclude
that Q is injective.
Next, we wish to show thatQ is surjective onto {0, 1}×n ×
{0, 1, 2}×l . Let (ã′, b̃′1, . . . , b̃

′
l) ∈ {0, 1}×n × {0, 1, 2}×l .

Define

a := ã′

b1 :=
(
b̃′1 + f1(ã

′)
)
mod 3 = (

b̃′1 + f1(ã
′)
)
mod 3 (50)

and the sequence (b j)lj=2 recursively by

b j :=
(
b̃′j + f j(a, b j−1, . . . , b1)

)
mod 3, j = 2, . . . , l

(51)
for a′ and b′1, as defined in (50). In the following,
we wish to show that Q(a, b1, . . . , bl) = (ã′, b̃′1, . . . , b̃

′
l).

For notational convenience, we introduce the compo-
nents Q0(a, b1, . . . , bl) := ã and Qj(a, b1, . . . , bl) := b̃ j,
j = 2, . . . , l.
By the first line of (40), we have

Q0(a, b1, . . . , bl) = a = ã′. (52)

By the second line of (40), we have

Q1(a, b1, . . . , bl) = (b1 − f1(a))mod 3

= ((
b̃′1 + f1(ã

′)
)
mod 3− f1(a)

)
mod 3

= ((
b̃′1 + f1(ã

′)
)
mod 3− f1(ã

′)
)
mod 3

[By (39)]

= b̃′1. (53)

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

For all j ≥ 2, we moreover have

Qj(a, b1, . . . , bl)

= (
b j − f j(a, b1, . . . , b j−1)

)
mod 3

[by (51)]

=
((
b̃′j + f j(a, b j−1, . . . , b1)

)
− f j(a, b1, . . . , b j−1)

)
mod 3

[by (39)]

= b̃′j. (54)

Hence, we can conclude that Q(a, b1, . . . , bl) = (ã′, b̃′1,
. . . , b̃′l). Hence, Q is surjective and thus bijective. �

G. TRANSFORMATIONS THAT PRESERVE UNIFORMITY
We make the following basic observation.
Lemma 4: Let S be some finite set. Let Q : S → S be

invertible. Let R be some random variable on S . If R is uni-
formly distributed over S , Q(R) is also uniformly distributed
over S .
Proof:

P (Q(R) = s) = P
(
R = Q−1(s)

)
= 1

|S| . (55)

�
Lemma 5: Let f1 : {0, 1}×n→ {0, 1, 2} and fs :
{0, 1}×n × {0, 1, 2}×(s−1) → {0, 1, 2} for s = 2, . . . , l
be given. Assume that B1, . . . ,Bl are random variables that
take values in {0, 1, 2}, A be a random variable that takes
values in {0, 1}×n, and that these are distributed as

P(A = a,B1 = b1, . . . ,Bl = bl) = 1

2n3l
∀a ∈ {0, 1}×n

∀(b1, . . . , bl) ∈ {0, 1, 2}×l .
(56)

Define B̃1, . . . , B̃l by

B̃1 := (B1 − f1(A))mod 3

B̃2 := (B2 − f2(A,B1))mod 3

B̃3 := (B3 − f3(A,B1,B2))mod 3

...

B̃l := (Bl − fl (A,B1, . . . ,Bl−1))mod 3. (57)

Then

P(A = a, B̃1 = b̃1, . . . , B̃l = b̃l) = 1

2n3l
∀a ∈ {0, 1}×n

∀(b̃1, . . . , b̃l) ∈ {0, 1, 2}×l . (58)

Consequently, A, B̃1, . . . , B̃l are independent and uniformly
distributed.
Proof: By (56), we know that (A,B1, . . . ,Bl) is uniformly

distributed on {0, 1}×n × {0, 1, 2}×l . With the additional

definition Ã := A, we note that (57) can be rewritten as

(Ã, B̃1, . . . , B̃l) := Q(A,B1, . . . ,Bl) (59)

where Q : {0, 1}×n × {0, 1, 2}×l → {0, 1}×n × {0, 1, 2}×l is
as defined in Lemma 3. By Lemma 3, wemoreover know that
Q is a bijection on {0, 1}×n × {0, 1, 2}×l and thus invertible.
Hence, by Lemma 58, we know that (Ã, B̃1, . . . , B̃l) is also
uniformly distributed over {0, 1}×n × {0, 1, 2}×l . Since Ã =
A, we can conclude that (58) holds.

By (58), it follows that

P(A = a, B̃1 = b̃1, . . . , B̃l = b̃l) = P(A = a)P(B̃1 = b̃1)

· · ·P(B̃l = b̃l)

P(A = a) = 1

2n
P(B̃1 = b̃1) = 1

3
, . . . ,P(B̃l = b̃l) = 1

3
(60)

and thus A and B̃1, . . . , B̃l are independent and uniformly
distributed. �

H. PROCESS (d̃l)l IS A MARKOV CHAIN
Proposition 6: Let (d̃l)l be the process as defined by (34) and
(35), with respect to the variables A, B1,B2, . . . distributed as
in (30). For each m, there exist variables B̃1, . . . , B̃m that are
i.i.d. and uniformly distributed on {0, 1, 2} and are indepen-
dent of A, such that

d̃0 := dH (A, x�),

d̃l :=
⎧⎨
⎩
0, if d̃l−1 = 0
d̃l−1 + 1, if d̃l−1 �= 0, B̃l �= 0
d̃l−1 − 1, if d̃l−1 �= 0, B̃l = 0

l = 1, 2, . . . ,m.

(61)

Hence, (d̃l)l is a Markov chain described by the transition
probabilities

P(d̃l+1 = j|d̃l = k) = δ j,0δk,0

+ (1− δk,0)

(
1

3
δ j,k−1 + 2

3
δ j,k+1

)
∀ j, k ∈ N ∀l (62)

with initial distribution

P(d̃0 = j) = P
(
dH (A, x�) = j

)
. (63)

Moreover, for the distribution of A as in (30), we have

P(d̃0 = j) =
{ 1
2n

(n
j

)
, 0 ≤ j ≤ n

0, otherwise.
(64)

In (62), the term δ j,0δk,0 signifies d = 0 being an ab-
sorbing state. In the second term, the effect of the factor
(1− δk,0) is that if the chain is not in the absorbing state, then
the transition probabilities are given by 1

3δ j,k−1 + 2
3δ j,k+1.

Hence, with probability 1/3, it takes a step “down,” and with
probability 2/3, it takes a step “up.”
Proof: For t, r ∈ {0, 1, 2}, it is the case that

t = r ⇔ (t − r)mod 3 = 0. (65)

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

By this observation, it follows that (35) can be rewritten
as (66) shown at the bottom of this page. Next, we rewrite
(66) as (67), shown at the bottom of this page, such that we
suppress the explicit dependence on the elementary events
(a, b). If we define B̃1, . . . , B̃l by

B̃1 := f1(A)

B̃2 := (B2 − f2(A,B1))mod 3

B̃3 := (B3 − f3(A,B1,B2))mod 3

...

B̃l := (Bl − fl (A,B1, . . . ,Bl−1))mod 3 (68)

then we can rewrite (67) as

d̃0 := dH (A, x�)

d̃l :=
⎧⎨
⎩
0, if d̃l−1 = 0
d̃l−1 + 1, if d̃l−1 �= 0, B̃l �= 0
d̃l−1 − 1, if d̃l−1 �= 0, B̃l = 0

l = 1, 2,

(69)

By Lemma 5, we know that A, B̃1, . . . , B̃l are independent
and uniformly distributed. Since the lth step is determined
solely by B̃l , and these are independent of each other, and of
A, it follows that (d̃l)l is a Markov chain. By inspecting (69),
we first see that

P(d̃l = j|d̃l−1 = 0) = δ j,0 (70)

while for d̃l−1 = k �= 0, we have

P(d̃l = j|d̃l−1 = k) = δ j,k+1P(B̃l �= 0)+ δ j,k−1P(B̃l = 0)

= 2

3
δ j,k+1 + 1

3
δ j,k−1 (71)

where the last step follows since each B̃l is uniformly dis-
tributed over {0, 1, 2}. By combining the cases (70) and (71),
we obtain (62). By (69), it moreover follows that P(d̃0 =
j) = P(dH (A, x�) = j). Since A is uniformly distributed over

{0, 1}×n, it means that dH (A, x�) is binomially distributed.
Thus, for 0 ≤ j ≤ n, we have P(d̃0 = j) = 1

2n
(n
j

)
. �

I. RELATING PROBABILITIES OF (xl)l AND (d̃l)l

The reason why we introduce the walk (d̃l)l is in order to
bound the relevant success probabilities of the more compli-
cated true Schöning walk (xl)l . The following lemma con-
siders two such inequalities, which we will use when we
determine the bounds for the GW.
Lemma 7: Let (xl)l∈N be the Schöning process for bit

strings of length n, with x� being the selected satisfying as-
signment. Let (d̃l)l be the process as defined by (34) and (35).
Then

P(xm = x�) ≥ P(d̃m = 0) (72)

P
(
xm = x�|dH (x0, x�) = j

) ≥ P(d̃m = 0|d̃0 = j). (73)

Proof: We begin by proving inequality (72). For the sake
of notational simplicity, we let ω denote the elements of the
event space [where we could regard ω as (a, b) or (a, b̃)]. By
Lemma 1, we know that

dH
(
xm(ω), x�

) ≤ d̃m(ω) (74)

which implies that

d̃m(ω) = 0 ⇒ dH
(
xm(ω), x�

) = 0 (75)

and thus

{ω : d̃m(ω) = 0} ⊂ {ω : dH
(
xm(ω), x�

) = 0}
= {ω : xm(ω) = x�} (76)

and thus

P(d̃m = 0) = P
({ω : d̃m(ω) = 0})

≤ P ({ω : xm(ω) = x�})
= P(xm = x�) (77)

which proves (72).

d̃0(a, b) := dH (a, x
�)

d̃l (a, b1, . . . , bl)

:=
⎧⎨
⎩
0, if d̃l−1(a, b1, . . . , bl−1) = 0
d̃l−1(a, b1, . . . , bl−1)+ 1, if d̃l−1(a, b1, . . . , bl−1) �= 0, (bl − fl (a, b1, . . . , bl−1))mod 3 �= 0
d̃l−1(a, b1, . . . , bl−1)− 1, if d̃l−1(a, b1, . . . , bl−1) �= 0, (bl − fl (a, b1, . . . , bl−1))mod 3 = 0.

l = 1, 2, . . .

(66)

d̃0 := dH (A, x�)

d̃l :=
⎧⎨
⎩
0, if d̃l−1 = 0
d̃l−1 + 1, if d̃l−1 �= 0, (Bl − fl (A,B1, . . . ,Bl−1))mod 3 �= 0
d̃l−1 − 1, if d̃l−1 �= 0, (Bl − fl (A,B1, . . . ,Bl−1))mod 3 = 0

l = 1, 2, . . . (67)

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

We next turn to the proof of (73). By definition
of the walk (d̃l)l , we have d̃0(ω) = dH (x0(ω), x�) and
thus

{ω : d̃0(ω) = j} = {ω : dH
(
x0(ω), x�

) = j} (78)

and consequently

P(d̃0 = j) = P
(
dH (x0, x

�) = j
)
. (79)

By combining (76) and (78), we obtain

{ω : d̃m(ω) = 0} ∩ {ω : d̃0(ω) = j} ⊂ {ω : xm(ω)

= x�} ∩ {ω : dH
(
x0(ω), x�

) = j} (80)

and consequently

P(d̃m = 0, d̃0 = j)

= P
({ω : d̃m(ω) = 0} ∩ {ω : d̃0(ω) = j})

≤ P ({ω : xm(ω) = x�} ∩ {ω : dH
(
x0(ω), x�

) = j})
= P

(
xm = x�, dH (x0, x

�) = j
)
. (81)

By combining this with (79), we can conclude
that

P(d̃m = 0|d̃0 = j) ≤ P (
xm = x�|dH (x0, x�) = j

)
(82)

which proves (73). �

J. FROM WALKS ON N TO WALKS ON Z

So far, we have replaced the projection of the Schöning
process (xl)l to the Hamming distance dH (xm, x�) with the
substitute Markov chain (d̃l)l . Similar to x� being an absorb-
ing state of (xl), the process (d̃l)l has 0 as the absorbing
state. As amodel of the true Schöning process, this absorbing
state certainly makes sense, since it corresponds to a setting
where we, at each step, monitor whether a solution has been
reached, and the process is terminated once this happens. For
the sake of obtaining tractable expressions for the relevant
probabilities, we here take one step further and instead con-
sider a walk on Z. Analogously to how Lemma 7 bounds
the relevant probabilities of the true Schöning process, with
the corresponding quantities in (d̃l)l , Lemma 8 bounds the
relevant probabilities of (d̃l)l in terms of corresponding
quantities for a Markov chain (dl)l extended to the whole
of Z.

As a bit of a side remark, one may note that the results in
(8) do not necessarily refer to the particular Markov chain
defined by (34) and (35), but could be any Markov chain on
N with fixed transition probabilities and absorbing boundary
condition at 0.
Lemma 8: Let (d̃l)l∈N be a Markov chain on N, with

transition probabilities

P(d̃l+1 = j|d̃l = k) = δ j,0δk,0

+(1−δk,0)
(
(1−q)δ j,k−1 + qδ j,k+1

) ∀ j, k ∈ N ∀l ∈ N

(83)

for some 0 ≤ q ≤ 1. Let (dl)l∈N be a Markov chain on Z,
with transition probabilities

P(dl+1 = j|dl = k) = (1− q)δ j,k−1 + qδ j,k+1 ∀ j, k ∈ Z

∀l ∈ N. (84)

Then

P(dm ≤ 0|d0= j) ≤ P(d̃m=0|d̃0= j) ∀m∈N ∀ j ∈N.

(85)
Consequently, if the initial state d0 is such that

P(d0 = j) =
{
P(d̃0 = j), j ≥ 0
0, j < 0

(86)

then

P(dm = 0) ≤ P(dm ≤ 0) ≤ P(d̃m = 0) ∀m ∈ N. (87)

Proof: For notational convenience, we define

Mj,k := P(d̃l+1 = j|d̃l = k) (88)

and

M̃ j,k := P(dl+1 = j|dl = k). (89)

By comparing with (83) and (84), one can see that

Mj,k = M̃ j,k ∀ j > 0 ∀k > 0. (90)

We note that 0 is an absorbing state for (d̃l)l . Hence

d̃s−1 = 0 ⇒ d̃s = 0 (91)

which implies that

d̃s > 0 ⇒ d̃s−1 > 0 (92)

which, in turn, implies that

P(d̃s = ks|d̃s−1 = 0) = 0, if ks > 0. (93)

We begin by proving (85). For this purpose, assume that
j > 0.

P(d̃l > 0|d̃0 = j)

=
∑
kl>0

P(d̃l = kl |d̃0 = j)

[By Markovianity]

=
∑
kl>0

∑
kl−1,...,k1

P(d̃l = kl |d̃l−1 = kl−1)

P(d̃l−1 = kl−1|d̃l−2 = kl−2) · · ·P(d̃2 = k2|d̃1 = k1)

P(d̃1 = k1|d̃0 = j)

=
∑
kl>0

∑
kl−1:kl−1>0

∑
kl−2,...,k1

P(d̃l = kl |d̃l−1 = kl−1)

P(d̃l−1 = kl−1|d̃l−2 = kl−2) · · ·P(d̃1 = k1|d̃0 = j)

+
∑
kl>0

∑
kl−2,...,k1

P(d̃l = kl |d̃l−1 = 0)

P(d̃l−1 = 0|d̃l−2 = kl−2) · · ·P(d̃1 = k1|d̃0 = j)

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

[Since kl > 0, it follows by (93) that

P(d̃l = kl |d̃l−1 = 0) = 0.]

=
∑
kl>0

∑
kl−1:kl−1>0

∑
kl−2,...,k1

P(d̃l = kl |d̃l−1 = kl−1)

P(d̃l−1 = kl−1|d̃l−2 = kl−2) · · ·P(d̃1 = k1|d̃0 = j)

[By iteration]

=
∑
kl>0

∑
kl−1,...,k1:kl−1>0,...,k1>0

P(d̃l = kl |d̃l−1 = kl−1)

P(d̃l−1 = kl−1|d̃l−2 = kl−2) · · ·P(d̃1 = k1|d̃0 = j)

[By (88)]

=
∑
kl>0

∑
kl−1,...,k1:kl−1>0,...,k1>0

Mkl ,kl−1 · · ·Mk1, j

[Since kl > 0, kl−1 > 0, . . . , k1 > 0, j > 0,

it follows by (90) that]

=
∑
kl>0

∑
kl−1,...,k1:kl−1>0,...,k1>0

M̃kl ,kl−1 · · · M̃k1, j

[M̃kl ,kl−1 ≥ 0]

≤
∑
kl>0

∑
kl−1,...,k1

M̃kl ,kl−1 · · · M̃k1, j

[By (89)]

=
∑
kl>0

∑
kl−1,...,k1

P(dl = kl |dl−1 = kl−1)

P(dl−1 = kl−1|dl−2 = kl−2) · · ·P(d1 = k1|d0 = j)

[By Markovianity]

=
∑
kl>0

P(dl = kl |d0 = j)

= P(dl > 0|d0 = j). (94)

Consequently

P(d̃l = 0|d̃0 = j) = 1− P(d̃l > 0|d̃0 = j)

≥ 1− P(dl > 0|d0 = j)

= P(dl ≤ 0|d0 = j), j > 0. (95)

In the case d̃0 = 0, we know that this is an absorbing
state, and thus, P(d̃l = 0|d̃0 = 0) = 1. Consequently, P(dl ≤
0|d0 = 0) ≤ P(d̃l = 0|d̃0 = 0) = 1. This thus proves the
inequality in (85).
With the initial distribution (86), we find

P(dl ≤ 0) =
∑
j∈Z

P(dl ≤ 0|d0 = j)P(d0 = j)

=
∑
j≥0

P(dl ≤ 0|d0 = j)P(d̃0 = j)

≤
∑
j≥0

P(d̃l = 0|d̃0 = j)P(d̃0 = j)

= P(d̃l = 0). (96)

�

K. BOUNDS FOR SCHÖNING WALKS AND GWS
Here, we combine the previous observations in order to ob-
tain the following lower bounds on the success probability of
the Schöning process. We also obtain the inequalities needed
for determining the desired bound on the success probability
of the GW.
Proposition 9: Let (xl)l∈N be the Schöning process for bit

strings of length n, with x� being the selected satisfying as-
signment. Let (d̃l)l be the process as defined by (34) and (35).
Let (dl)l be the Markov chain as defined by the transition
probabilities (84) for q = 2/3 in Lemma 8, for the initial state

P(d0 = j)

=
{
P(d̃0 = j) = P (dH (x0, x�) = j) = 1

2n
(n
j

)
, n ≥ j ≥ 0

0, otherwise.
(97)

Then

P(xm = x�) ≥ P(d̃m = 0)

≥ P(dm ≤ 0)

=
∑

j,l: j+m−2l≤0,
0≤ j≤n,
0≤l≤m

1

2n

(
n

j

)(
m

l

)(
1

3

)l (2

3

)m−l
(98)

and

P
(
xm = x�

∣∣dH (x0|x�) = j
)

≥ P(d̃m = 0|d̃0 = j)

≥ P(dm ≤ 0|d0 = j)

=
∑

l: j+m−2l≤0,
0≤l≤m

(
m

l

)(
1

3

)l (2

3

)m−l
. (99)

Proof: Equation (72) in Lemma 7 yields the first inequal-
ity in (98).
By Proposition 6, we know that (d̃l)l is a Markov chain

with transition probabilities as in (62) and initial distribu-
tion (64). By these observations, it follows that the second
inequality in (98) is a direct application of (87) in Lemma
8. By Lemma 8, we also know that the Markov chain (dl)l
defined by the transition probabilities

P(dl+1= j|dl=k)=13δ j,k−1 + 2

3
δ j,k+1 ∀ j, k ∈Z ∀l ∈N

(100)

3101222 VOLUME 6, 2025

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS Engineeringuantum
Transactions onIEEE

and initial distribution

P(d0= j)=
{
P(d̃0 = j), j ≥ 0
0, j < 0

=
{ 1

2n
(n
j

)
, 0 ≤ j ≤ n

0, otherwise.
(101)

From (100), it follows that

P(dm ≤ 0|d0 = j) =
∑

l: j+m−2l≤0, 0≤l≤m

(
m

l

) (
1

3

)l (2

3

)m−l

(102)

and thus

P(dm ≤ 0) =
∑
j

P(dm ≤ 0|d0 = j)P(d0 = j)

[By (101)]

=
∑

j,l: j+m−2l≤0,
0≤ j≤n,
0≤l≤m

1

2n

(
n

j

)(
m

l

)(
1

3

)l (2

3

)m−l
.

(103)

Next, we turn to the inequalities in (99). Inequality (73) in
Lemma 7 yields the first inequality in (99). The second in-
equality in (99) is a direct application of (85) in Lemma (8).
By (102), we already know the last equality in (99). �

L. RELATION TO THE LEADING-ORDER ANALYSIS OF
THE SCHÖNING AND GW PROCESSES
Here, we connect to the analysis of the asymptotic scaling in
the main text by obtaining the starting points, so to speak, of
the leading-order analysis of the Schöning process and the
GW process.

1. SCHÖNING PROCESS
For the Schöning process, the average number of repetitions
needed to find a solution is given by

NSchöning = 1

P(xm = x�)
. (104)

By sequences of lower bounds on the ideal success proba-
bility P(xm = x�), we thus obtain upper bounds on NSchöning.
The step from the true Schöning process to the walk on Z
corresponds to one such inequality, i.e.,

P(xm = x�) ≥ P(dm ≤ 0) (105)

in (98) in Proposition (9). The leading-order analysis in the
main text is based on further such inequalities, with the ratio-
nale that the “loss” of probability weight becomes irrelevant
for the rates γ = limn→∞ 1

n logNSchöning, if the inequalities
are chosen to correspond to the leading-order contributions.
As a first step along these lines, we restrict to an event where
we not only reach the desired solution, but also start the
system x0 at the Hamming distance dH (x0, x�) = j. Trivially

P(dm ≤ 0) ≥ P(dm ≤ 0, d0 = j) = P(d0 = j)

P(dm ≤ 0|d0 = j) (106)

where can identify P(d0 = j) with P(E1) in the main text,
i.e.,

P(d0 = j) = P(E1) = 1

2n

(
n

κn

)
, j = κn. (107)

Next, we wish to connect the remaining factor in (106), i.e.,
P(dm ≤ 0|d0 = j), to the probability P(E2), which, recall-
ing from the main text, corresponds to the event E2, where
precisely νm steps decrease the Hamming distance, while
precisely (1− ν)m steps increase the Hamming distance.
(For the walk on Z, this extends to νm steps in the negative
direction, and (1− ν)m steps in the positive direction.) We
conclude that the total decrease is

d0 − dm = (2ν − 1)m. (108)

Let us also recall that the combination of E1 and E2 is
successful, i.e., leads to dm ≤ 0, if

(2ν − 1)m ≥ κn. (109)

It is useful to note that (dl)l is not only Markovian, but also
translation symmetric, which means that the change d0 − dm
is independent of the initial state d0, i.e., the joint distribution
of these factorize. (As a side remark, this independence also
means that P(E1 ∩ E2) = P(E1)P(E2).) Hence

P(dm ≤ 0|d0 = κn)

= P(d0 − dm ≥ κn|d0 = κn)

[Since d0 − dm is independent of d0]

= P(d0 − dm ≥ κn). (110)

By comparison of (110) with (108), it follows that

P(dm ≤ 0|d0 = κn) = P(d0 − dm ≥ κn)

≥ P(E2), if (2ν − 1)m ≥ κn. (111)

Alternatively, we can reach the same conclusion by compar-
ing (7) with (102) to see that

P(E2) =
(
m

νm

) (
1

3

)νm (
2

3

)(1−ν)m

≤ P(dm ≤ 0|d0 = κn),

if (2ν − 1)m ≥ κn. (112)

By (104)–(107) and (111), we can conclude that

NSchöning ≤ 1

P(E1)P(E2)
, if (2ν − 1)m ≥ κn. (113)

2. GW PROCESS
For the GW process, let us recall that it consists of a classical
outer loop that at each round assigns a definite (classical)
initial state, whereas the walk process is Groverized. We
assume that the number of iterations of the Grover procedure
is tuned to the density of successful walks for a specific

VOLUME 6, 2025 3101222

Engineeringuantum
Transactions onIEEE

Eshaghian et al.: RUNTIME–COHERENCE TRADEOFFS FOR HYBRID SATISFIABILITY SOLVERS

initial Hamming distance j = κn, i.e., to the success proba-
bility P(xm = x�

∣∣dH (x0|x�) = κn). In the analysis, we lower
bound the success probability by assuming that the process
fails whenever dH (x0, x�) �= κn (which may be pessimistic).
The probability to obtain the initial state x0 with the Ham-
ming distance κn is P(dH (x0, x�) = κn), and thus, in aver-
age, we need to repeat the outer loop 1/P(dH (x0, x�) = κn)
times to be guaranteed to reach the initial Hamming distance
κn at least once. In the successful case, the Grover pro-

cedure requires 1/
√
P(xm = x�

∣∣dH (x0|x�) = κn) iterations.
Consequently, an upper bound on the total number of steps
is

NGW ≤ 1

P (dH (x0, x�) = κn)
√
P

(
xm = x�

∣∣dH (x0|x�) = κn
)

[By Proposition 9]

≤ 1

P(d0 = κn)
√
P(dm ≤ 0|d0 = κn)

[By (107) and (111)]

≤ 1

P(E1)
√
P(E2)

, if (2ν − 1)m ≥ κn. (114)

ACKNOWLEDGMENT
The authors thank Phillip Keldenich for providing the SAT
instance that was used for numerical simulations resulted in
Fig. 8.

REFERENCES
[1] T. Schöning, “A probabilistic algorithm for k-SAT and constraint satis-

faction problems,” in Proc. 40th Annu. Symp. Found. Comput. Sci., 1999,
pp. 410–414, doi: 10.1109/SFFCS.1999.814612.

[2] U. Schöning and J. Torán, The Satisfiability Problem: Algorithms
and Analyses. Berlin, Germany: Lehmanns, 2013. [Online]. Availaible:
https://www.lehmanns.de/shop/mathematik-informatik/27340853-978386
5415271-the-satisfiability-problem

[3] L. K. Grover, “A fast quantummechanical algorithm for database search,”
in Proc. 28th ACM Annu. Symp. Theory Comput., 1996, pp. 212–219,
doi: 10.48550/arXiv.quant-ph/9605043.

[4] A. Ambainis, “Quantum search algorithms,” ACM SIGACT News, vol. 35,
no. 2, pp. 22–35, 2004, doi: 10.1145/992287.992296.

[5] V. Dunjko, Y. Ge, and J. I. Cirac, “Computational speedups using small
quantum devices,” Phys. Rev. Lett., vol. 121, 2018, Art. no. 250501,
doi: 10.1103/PhysRevLett.121.250501.

[6] R. A. Moser, “Exact algorithms for constraint satisfaction problems,” doc-
toral dissertation, Dept. Comput. Sci., ETH Zürich, Zürich, Switzerland,
2012, doi: 10.3929/ethz-a-009755667.

[7] P. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the really hard
problems are,” in Proc. 12th Int. joint Conf. Artif. Intell., 1991, vol. 1,
pp. 331–337, doi: 10.5555/1631171.1631221.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA:Wiley-Interscience, 2006, doi: 10.1002/047174882X.

[9] V. Eshaghian, S. Wilkening, J. Åberg, and D. Gross, “Data for ex-
plicit run-times for hybrid SAT-solvers,” 2024. [Online]. Available:
https://github.com/SoerenWilkening/QuantumSchoening

[10] H. Callen, Thermodynamics and an Introduction to Thermostatis-
tics. New York, NY, USA: Wiley, 1985. [Online]. Availaible:
https://www.wiley.com/en-us/Thermodynamics+and+an+Introduction+to
+Thermostatistics%2C+2nd+Edition-p-9780471862567

[11] D. P. Keldenich, personal communication, Mar. 2024.

3101222 VOLUME 6, 2025

https://dx.doi.org/10.1109/SFFCS.1999.814612
https://www.lehmanns.de/shop/mathematik-informatik/27340853-9783865415271-the-satisfiability-problem
https://www.lehmanns.de/shop/mathematik-informatik/27340853-9783865415271-the-satisfiability-problem
https://dx.doi.org/10.48550/arXiv.quant-ph/9605043
https://dx.doi.org/10.1145/992287.992296
https://dx.doi.org/10.1103/PhysRevLett.121.250501
https://dx.doi.org/10.3929/ethz-a-009755667
https://dx.doi.org/10.5555/1631171.1631221
https://dx.doi.org/10.1002/047174882X
https://github.com/SoerenWilkening/QuantumSchoening
https://www.wiley.com/en-us/Thermodynamics+and+an+Introduction+to+Thermostatistics%2C+2nd+Edition-p-9780471862567
https://www.wiley.com/en-us/Thermodynamics+and+an+Introduction+to+Thermostatistics%2C+2nd+Edition-p-9780471862567

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

