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realización de este trabajo, por acompañarme en este caminar. Sin duda alguna habŕıa
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Resumen

Se presenta como primera parte la contribución al momento dipolar cromomagnéti-
co anómalo (MDCM µ̂qi) de los quarks en el Modelo Estándar (ME) a nivel de 1 lazo,
donde se toman en cuenta las contribuciones de los procesos electrodébiles y fuertes. Se
demuestra que la contribución no-Abeliana del triple vértice del gluon contiene una di-
vergencia infrarroja cuando se trabaja con el gluon en capa de masa q2 = 0. Regulari-
zamos dimensionalmente la problematica función escalar de Passarino-Veltman de dos
puntos, para revelar el polo infrarojo 1/εIR. Consecuentemente, el dipolo no debe ser
evaluado perturvativamente en q2 = 0 por lo que evaluamos el MDCM de los quarks
fuera de capa de masa, con un momento transferido del gluon en una escala de enerǵıa
correspondiente a la masa del bosón Z al igual que αs(mZ), en su valor espacialoide
q2 = −m2

Z y temporaloide q2 = m2
Z . Predecimos en nuestros cálculos un valor para el

MDCM del top de µ̂t(m
2
Z) = −0.0133 − 0.0267i y µ̂t(−m2

Z) = −0.0224 − 0.000925i,
cuya parte real de µ̂t(−m2

Z) coincide con el reciente reporte experimental reportado
por CMS de µ̂Expt = −0.024+0.013

−0.009(Est.)+0.016
−0.011(Sist.), mientras que nuestra predicción

para la parte imaginaria es debida a la parte electrodébil de µ̂t(−m2
Z), que se da me-

diante la interacción del bosón W. Estos valores y los respectivos a las contribuciones
del MDCM de los demás quarks (u,d,c,s y b) se evaluan en las masas corredoras en
la escala del bosón Z.

Por otro lado, más allá de estudiar las propiedades electromagnéticas de un fer-
mión existe también gran interés en conocer sus propiedades débiles estáticas, que
están asociadas con la interacción del bosón Z. Es por ello que en este trabajo se pre-
senta el cálculo anaĺıtico de los momentos dipolares electromagnéticos débiles para
cualquier fermión cargado del ME, en el contexto de modelos con sectores de co-
rrientes generalizados en donde se predice la existencia de un nuevo bosón de norma
neutro masivo de esṕın 1. En espećıfico, se calcula el impacto de corrientes neutras
que cambian sabor mediadas por un nuevo bosón conocido como Z’, sobre el momento
dipolar magnético y eléctrico débil. Los cálculos numéricos se enfocan en el leptón tau
y en el quark top. Se comparan nuestros resultados con las predicciones teóricas en
el ME y con las restricciones experimentales actuales. Para los diferentes bosones de
norma Z ′ considerados, encontramos que para el lepton τ la mejor predicción para la
parte real del momento dipolar magnético débil (MDMD), awτ es del orden de 10−9,
mientras que la parte imaginaria se encuentra cuatro ordenes de magnitud abajo. El
valor más grande para el momento dipolar eléctrico débil (MDED) dwτ corresponde
a 10−26 e cm para su parte real, y la parte imaginaria es tres ordenes de magnitud
menor. Por otro lado, para el quark top encontramos que la mejor predicción para su

iii



parte real de awt es del orden de 10−7, y su parte imaginaria es del orden de 10−11.
Encontramos también que dwt es del orden de 10−26 e cm para su parte real, y su parte
imaginaria alcanza valores del orden de 10−31 e cm.

Finalmente, se calcula el momento dipolar magnético anómalo débil del quark top
debido a las contribuciones cuánticas a nivel de un lazo, en el modelo de extensión
conocido como el modelo más simple con un bosón de Higgs ligero (simplest little
Higgs model, SLHM), en donde se predice la existencia de una nueva part́ıcula pseu-
doescalar masiva neutra η. Este modelo es interesante ya que ofrece una solución al
problema de la jerarqúıa y además predice una fenomenoloǵıa muy interesante en una
escala de enerǵıa de TeV, ya que la existencia de nuevas part́ıculas cuyas masas se
podŕıan encontrar en la región de los TeVs son predichas por extensiones del ME,
entre ellas el SLHM.

Encontramos en nuestros cálculos predicciones para la parte real del orden de
10−5, estando dos ordenes de magnitud por debajo del valor reportado para el ME.

Mediante estos estudios se pretende encontrar indicios que nos puedan arrojar
información importante para descubrir efectos de nueva f́ısica.

Palabras clave: Bosón Z’, cambio de sabor, quark top, divergencias, Simples little
Higgs model.
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Abstract

The contribution to the anomalous chromomagnetic dipole moment (CMDM µ̂qi)
of the quarks in the Standard Model (SM) is presented as the first part, at one
loop level, where the contributions of electroweak and strong processes are taken into
account . We demostrate that its non-Abelian triple gluon vertex diagram with the on-
shell gluon q2 = 0 is infrared divergent. We dimensional regulate the problematic two
point Passarino-Veltman scalar function that generates such divergence to expose its
1/εIR infrared pole. Consequently, the dipole should not be evaluated perturbatively
at q2 = 0. Therefore, we evaluate the CMDM of the quarks with the off-shell gluon at a
large momentum transfer, just as the αs (m2

Z) convention scale, at the spacelike value
q2 = −m2

Z and at the timelike one q2 = m2
Z . We predict in our calculations a value

for the CMDM of the top of µ̂t(m
2
Z) = −0.0133− 0.0267i and µ̂t(−m2

Z) = −0.0224−
0.000925i, whose real part of Re µ̂t(−m2

Z) matches with the current experimental
value reported by CMS of µ̂Expt = −0.024+0.013

−0.009(stat)+0.016
−0.011(syst), while our prediction

for the imaginary part Im µ̂t(−m2
Z) arises from an electroweak effect due to the W

gauge boson diagram. These values and the respective contribution of the CMDM of
the other quarks (u,d,c,s and b) are evaluated in the running masses on the scale of
the Z boson.

On the other hand, beyond the electromagnetic properties of a fermion, there
is also great interest in its static weak properties, which are associated with the
interaction of the boson Z. Thus in this work, the analytical calculation of weak
electromagnetic dipole moments for any charged fermion of the Standard Model in the
context of models with generalized currents sectors is presented , where the existence
of a new neutral massive gauge boson of spin 1 is predicted. Specifically, the impact
o flavor changing neutral currents mediated by this boson, known as Z ′, on the weak
electromagnetic dipole moments are calculated. The numerical evaluations are carried
out in the tau lepton and top quark. We compare our results with the theoretical
prediction in the SM and the current experimental bounds. For several Z ′ gauge
bosons considered, we found that, for the τ lepton, the best prediction for the real
part of the weak magnetic dipole moment (WMDM), awτ is of the order of 10−9, while
the imaginary part is four orders of magnitude below. The highest value for the weak
electric dipole moment (WEDM), dwτ , corresponds to 10−26 e cm, for its real part, and
the imaginary part is three orders of magnitude below. On the other hand, we found
for the top quark, that the best prediction for the real part of awt is of the order of
10−7, and its imaginary part is of the order of 10−11. We also found that dwt is of the
order of 10−26 e cm for its real part, and its imaginary part can be as high as 10−31
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e cm.
Finally, the weak anomalous magnetic moment of the top quark is calculated,

due to quantum contributions at one loop level, in the extended model known as the
simplest little Higgs model (SLHM), where the existence of a new neutral massive
pseudoscalar particle η is predicted. This model is interesting since it offers a solution
to the hierarchy problem and also predicts a very interesting phenomenology on a
TeV energy scale, being that the existence of new particles whose masses could be
found in the TeV region are predicted by extensions of the ME, including the SLHM.
We found in our calculations predictions of the order of 10−5, being two orders of
magnitude below to the value reported for the ME.

Through these studies it is pretended to find clues that can give us important
information to discover effects of new physics.
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Introducción

El ME de interacciones fundamentales es una teoŕıa bastante exitosa debido a que
sus predicciones teóricas han concordado con las mediciones experimentales a una
precisión sin precedentes, donde los resultados teóricos han sido escrutados median-
te los colisionadores de part́ıculas en las últimas décadas; sin embargo, a pesar del
descubrimiento del bosón de Higgs en el año 2012, que significó su máximo triunfo
teórico-experimental, el ME no ha sido capaz de explicar diversas cuestiones funda-
mentales que suceden en el universo. Por ejemplo, el fenómeno de violación de sabor,
el hecho de que el ME no incorpora la interacción gravitacional, el problema de la
jerarqúıa, etc.

El ME es quizá la parte efectiva de una teoŕıa más fundamental que podŕıa mani-
festar sus efectos a enerǵıas mucho mayores que las alcanzadas en los colisionadores
actuales. Es aśı que surge la motivación por entender qué fenómenos están presentes
más allá del ME y que no pueden ser explicados por este.

Una estrategia a propósito de esto consiste en buscar efectos de nueva f́ısica en
decaimientos y dispersiones de part́ıculas elementales, que según el ME, seŕıan efectos
muy suprimidos o prácticamente inobservables, es decir, ocurriŕıan con muy baja
probabilidad o incluso estaŕıan prohibidos.

Por otro lado, dentro de los éxitos del ME, se encuentran las mediciones teóricas
y experimentales que se realizan a los momentos magnéticos anómalos de part́ıculas
elementales cargadas, como lo han sido para el electrón y el muón [1–3], ya que
una de las propiedades electromagnéticas mejor estudiadas es el momento dipolar
magnético anómalo del electrón, en el cual su experimento concuerda en 9 cifras
significativas con la teoŕıa [1], dicho momento dipolar está relacionado directamente
con su razón giromagnética, ge. El cálculo al primer orden subdominante de ge y la
posterior medición de esta nueva predicción téorica [4] dio lugar al nacimiento de la
electrodinámica cuántica (EDC), pues el antiguo modelo de Dirac predećıa que para
una part́ıcula cargada sin estructura (puntual) ge =2. Sin embargo, la teoŕıa de EDC
introducida por Schwinger-Feynman-Tomonaga predijo que el electrón poséıa cierta
estructura y que por tanto, no era adecuado considerarlo como una part́ıcula puntual
en el sentido estricto de la palabra. La relación entre el esṕın de la part́ıcula que se
está tratando y su momento magnético está dada por la siguiente ecuación [5]

~µ = g
ce

2m
~s, (1)

1



Introducción

donde ce es la carga de la part́ıcula y m es su masa. El coeficiente g es también
conocido como factor de Landé, el cual está dado por

g = 2(F1(0) + F2(0)) = 2 + 2F2(0). (2)

En el contexto de la EDC, F1(0) = 2, sin embargo, como la part́ıcula cargada (electrón
o cualquier fermión cargado) puede emitir o reabsorber fotones virtuales, esto gene-
ra un incremento en g ligeramente arriba de 2. Convencionalmente, se cuantifica la
discrepancia entre g y 2 por medio de una cantidad adimensional conocida como
momento magnético anómalo, la cual está definida como α = g−2

2
.

A pesar de ello, aún no está determinado el momento magnético anómalo del
leptón tau y de los quarks, únicamente se tienen cotas experientales, lo que nos
permite abrir una ĺınea de investigación sobre las propiedades electromagnéticas y
cromomagnéticas de los leptones y quarks y su relación con efectos de nueva f́ısica.
De ah́ı entonces que la cantidad correspondiente para QCD (momento dipolar elec-
tromagnético en QED), el momento dipolar cromomagnético anómalo (CMDM) de
quarks, no se conoce con tanta precisión.

Se estudia en el caṕıtulo 1, el cálculo de los momentos dipolares cromomagnéticos
de los quarks en el ME, a nivel de un lazo, donde encontramos una divergencia de
tipo infraroja (IR) proveniente del la contribución del tri-vértice del gluon, cuando
se trabaja con el gluon en capa de masa q2 = 0, caracteŕıstica ya identificada en la
literatura [6, 7]. Los autores de [6] fueron los primeros en mostrar la presencia de tal
divergencia IR en la contribución del MDCM de quark top con el gluon en capa de
masa. Ellos usaron el método de Parametrización de Feynman, y reportaron que el
cálculo correspondiente realizado con el mismo método y reportado como finito en la
Ref [8] es incorrecto. Sin embargo, es considerado aún, por la comunidad de F́ısica
de Part́ıculas, como la correcta predicción de la contribución al MDCM del quark
top, en el ME [9–13]. También en la Ref. [7], basados en la técnica de integración por
partes, fué indicada la misma divergencia.

En este trabajo demostramos por regularización dimensional, la naturaleza de tal
divergencia, mostrando su polo infrarojo 1/εIR, el cual proviene de la función escalar
Passarino-Veltman de dos puntos B0(q2, 0, 0) cuando q2 = 0. Debido a esto, no es
posible establecer una analogia de QCD perturvativa con el correspondiente de QED,
donde se da el momento dipolar magnético anómalo definido con el fotón en capa de
masa q2 = 0. Trabajar entonces con esta definición de capa de masa es problemática,
ya que requiere el uso de la teoŕıa de perturbaciones a enerǵıa cero, donde no es válida
para interacciones fuertes. Un problema relacionado es que los valores medidos de las
constantes f́ısicas y las masas relacionadas con las interacciones fuertes se conocen
a altas enerǵıas, no en q2 = 0, tal es el caso de la constante de la constante de
acoplamiento perturvativa fuerte αs que es evaluada en m2

Z . Por lo que, usamos las
mismas técnicas, como lo hicieron en Ref. [6], para calcular el MDCM de los quarks
en una escala de enerǵıa más alta, correspondiente a la masa de bosón Z, es decir,
en un momento de transferecia del gluon con los valores espacialoide q2 = −m2

Z

y temporaloideq2 = m2
Z . Verif́ıcamos también por distintos métodos la divergencia

encontrada.

2



Introducción

Respecto al momento dipolar cromomagnético (MDCM) del quark top, podemos
decir que, recientemente la colaboración CMS ha reportado un valor experimental,
el cual ha sido medido en el LHC usando la colisión pp, con un centro de masa de
enerǵıa de 13 TeV y con una luminosidad integrada de 35.9 fb−1, dicho valor es [14]

µ̂Expt = −0.024+0.013
−0.009(stat)+0.016

−0.011(syst), (3)

y para el momento dipolar cromoeléctrico (MDCE) se reportó el ĺımite

|d̂Expt | < 0.03, (4)

al 95 % C.L.

Por otro lado, el estudio de la violación de sabor ha cobrado interés debido al
descubrimiento de oscilaciones de neutrinos [1, 15], donde un neutrino creado con un
sabor leptónico espećıfico (electrón, muon o tau) es posteriormente medido con un
sabor distinto. Lo que nos indica que la propiedad de conservación de sabor en el
ME está violada en la naturaleza, por lo que es justificable estudiar fenoménos que
violan sabor como posibles precursores de nuevas teoŕıas que nos permitan explicar
con mayores detalles la naturaleza de las part́ıculas elementales.

Una de las posibles manifestaciones de nueva f́ısica, las cuales se están intentan-
do medir experimentalmente a gran precisión, es el fenómeno de corrientes neutras
que cambian sabor (CNCS) en acoplamientos entre fermiones cargados de distinto
sabor. Como es sabido, este fenómeno está prohibido en el ME cuando se consideran
interacciones entre leptones o quarks, luego entonces, de manera natural se abre una
brecha para búsqueda de nueva f́ısica en CNCS tanto en el sector leptónico como en el
sector de quarks. Dado que este tipo de acoplamientos constituyen predicciones puras
a nivel de fluctuación cuántica, podŕıan dar lugar a manifestaciones de nueva f́ısica
a enerǵıas alcanzables por los experimentos actuales. En el sector de quarks del ME
las CNCS constituyen un fenómeno que está altamente suprimido; a nivel de un lazo
se pueden inducir transiciones electromagnéticas que involucran violación de sabor
leptónico en presencia de neutrinos masivos [1], etc.

Por lo que, en este proyecto de tesis se pretende estudiar como un segundo paso,
en el caṕıtulo 2, los efectos de violación de sabor en los fermiones, en el contexto de las
CNCS, en espećıfico, sus propiedades electromagnéticas débiles, a saber, su momento
dipolar magnético anómalo debil y su momento dipolar eléctrico débil. Se pretende
realizar un análisis exhaustivo de estos procesos que aún son preguntas abiertas y de
interés para su búsqueda, aśı como comparar predicciones téoricas a partir del ME y de
sus extensiones con datos experimentales obtenidos en los colisionadores de part́ıculas,
ya que la información derivada de estos análisis es esencial para encaminarnos hacia
una mejor comprensión de la estructura ı́ntima de la materia y de las fuerzas que las
gobiernan.

Para ello se analizará el diagrama de Feynman correspondiente al vértice Zfifi
mediado por el bosón Z ′. La existencia del bosón Z ′ es predicha en varias extensiones
del ME [16–20]. El más simple consiste en agregar un grupo de simetŕıa extra U ′(1)
al ME [21].

3



Introducción

Una vez conseguidos los resultados anaĺıticos, el análisis numérico se dirigirá al
leptón tau y al quark top. Una de las caracteŕısticas importantes del quark top es
ser la part́ıcula más pesada (mt = 172.76 GeV [3]) que predice el ME. Es tan pesada
que por śı misma podŕıa constituir un v́ınculo con nueva f́ısica presente más allá de
la escala de Fermi (v = 246 GeV). Un escenario donde los efectos de nueva f́ısica
se haŕıan evidentes es por medio de sus acoplamientos con los bosones de norma de
la teoŕıa, como por ejemplo, su acoplamiento a orden de un lazo con los bosones de
norma neutros del ME, a saber, el fotón, el bosón de norma débil Z y los gluones de
la interacción fuerte, g. Por lo tanto, en esta tesis daremos detalles de como es que
impactan las CNCS mediadas por el bosón Z ′ sobre las anomaĺıas electromagnéticas
débiles de fermiones cargados, haciendo énfasis en el momento dipolar magnético y
eléctrico débil del lepton tau y el momento dipolar eléctrico y magnético débil del
quark top.

Finalmente, el problema de la jerarqúıa afecta seriamente a la masa del bosón
de Higgs, y el estudio de la fenomenoloǵıa del bosón de Higgs es de gran interés,
ya que juega un rol muy importante en el mecanismo de rompimiento espontáneo
de la simetŕıa, puesto que el bosón de Higgs es el responsable de dotar de masa a
las demás part́ıculas elementales. Dicho problema se origina debido a que la masa
del bosón de Higgs recibe correcciones a nivel de uno o mas lazos debidas a los
bosones de norma y los fermiones, pero estas correcciones contienen divergencias
cuadráticas que ocasionaŕıan que la masa del bosón de Higgs fuera muy grande, del
orden de la escala de Planck [22]. Sin embargo, recientemente se ha encontrado un
bosón de Higgs con una masa de alrededor de 125 GeV, muy por debajo de la escala
de Planck. Una posible solución al problema de la jerarqúıa consiste en que haya
cancelaciones muy grandes entre diversos parámetros del modelo, lo que se conoce
como ajuste fino. Sin embargo esta solución se considera poco atractiva y desde los
años setentas se han postulado algunos modelos de extensión que ofrecen una solución
al problema de la jerarqúıa sin recurrir al ajuste fino. Entre estos nuevos modelos, se
encuentran los modelos supersimétricos y los modelos con un bosón de Higgs ligero.
En los modelos con un bosón de Higgs ligero se considera al bosón de Higgs como
un pseudo-bosón de Goldstone que surge del rompimiento de una simetŕıa global,
además de aumentar el grupo de norma de manera que los bosones de norma del
ME tienen un compañero pesado. También se debe incluir un compañero pesado para
el top quark. El complejo mecanismo de rompimiento de las simetŕıa global y local
logra que las contribuciones de los compañeros pesados cancelen exactamente las
divergencias cuadráticas producidas por los diagramas de un lazo que contienen las
part́ıculas del ME [23]. Por lo que respecta a las divergencias cuadráticas ocacionadas
por los fermiones más ligeros, éstas no son importantes ya que son proporcionales
a la masa del fermión y por ende no se requiere un compañero pesado para estos
fermiones.

Es por ello, que en el caṕıtulo 4, nos interesamos en estudiar las propiedades
magnéticas débiles del quark top, en este modelo del SLHM.

El contenido de la tesis está organizado de la siguiente manera: en el Caṕıtulo
1, se describe con detalle al Modelo Estándar de las interacciones fundamentales
y sus sectores. En el Caṕıtulo 2, se hacen los cálculos anaĺıticos y numéricos para

4



Introducción

obtener los factores de forma que nos darán la información de los momentos dipolares
cromomagnéticos de los quarks en el ME. En el Caṕıtulo 3, presentamos los cálculos
relacionados con el momento magnético y eléctrico débil de fermiones cargados, aśı
como el lagrangiano renormalizable más general que incluye CNCS mediados por el
bosón Z ′. En el Caṕıtulo 4, se presentan los resultados obtenidos para el momento
dipolar magnético débil para el quark top, en el modelo del SLHM. Finalmente, en
el Caṕıtulo 5, se presentan las conclusiones de este trabajo de tesis.
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Caṕıtulo 1

Modelo Estándar

La búsqueda del conocimiento de los constituyentes fundamentales de la materia y
de las interacciones que rigen su dinámica ha impulsado el desarrollo de la f́ısica
de altas enerǵıas, y con ello ha generado modelos que explican las observaciones
experimentales.

Aśı surǵıo precisamente el Modelo Estándar, de la busqueda de encontrar los cons-
tituyentes fundamentales que forman el universo y la manera en que interaccionan. El
Modelo Estándar de las part́ıculas elementales, fue desarrollado a lo largo de la segun-
da mitad del siglo XX, el cual se elaboró y corroboró con gran precisión, y constituye
hasta ahora la teoŕıa más exitosa para describir las componentes fundamentales de la
materia y sus interacciones, su formulación actual se terminó en la década de 1970,
después de la confirmación experimental de la existencia de los quarks. El ME asegura
que la materia en el universo está constituida por fermiones elementales que inter-
actúan a través de campos, de los cuales ellos mismos son las fuentes, y tales campos
de interacción tienen asociadas part́ıculas llamadas bosones de norma. El teorema de
Noether nos dice que para cada simetŕıa continua de la naturaleza hay una correspon-
diente ley de conservación. Las simetŕıas y el rompimiento de éstas juegan un papel
muy importante en el ME.

El ME es una teoŕıa consistente con la mecánica cuántica y la relatividad especial,
es decir, es una teoŕıa cuántica relativista, la cual describe a las part́ıculas como
excitaciones o cuantos de un campo (como el eléctrico o magnético) y que además
toma en cuenta que el número de estas part́ıculas puede cambiar en un proceso. ¿Cómo
sucede esto? La experimentación nos dice que en algunos procesos unas part́ıculas
pueden decaer (transformarse) en otras, pero también nuevas part́ıculas pueden ser
creadas. Matemáticamente, el ME está basado en el grupo de simetria gauge SUC(3)×
SUL(2)×UY (1) y logra describir con bastante precisión tres de las cuatro fuerzas que
hasta ahora se han descubierto en la naturaleza, que son, la fuerza fuerte, la débil y
la fuerza electromagnética (a enerǵıas del orden de 102 GeV) mediante el intercambio
de los correspondientes campos de spin 1 (bosones de gauge): 8 gluones sin masa para
las interacciones fuertes pertenecientes al grupo SUC(3) , 1 fotón (γ) sin masa para
las interacciones electromagnéticas, y 3 bosones masivos (W± y Z) para la interacción
débil, que juntos estos dos últimos forman el grupo electrodébil SUL(2)×UY (1) [24].

La gravedad no es descrita por el ME debido a que la interacción es muy débil, y
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como resultado de ello no tiene efectos medibles a la escala de la f́ısica de part́ıculas
ni manifestaciones que nos puedan guiar a una teoŕıa cuántica de campos.

Como se dijo anteriormente, la materia se compone de fermiones, que son part́ıculas
de esṕın 1

2
, en unidades de ~, que cumplen el principio de exclusión de Pauli y en

aislamiento podŕıan ser descritos por la ecuación de Dirac. En el ME existen 12 fer-
miones elementales. La ecuación de Dirac para fermiones masivos cargados predice la
existencia de una antipart́ıcula de la misma masa y con el mismo esṕın, pero carga
opuesta, y momento magnético opuesto relativo a la dirección del esṕın, aśı que cada
fermión tiene una antipart́ıcula correspondiente. Los fermiones se clasifican de acuer-
do a la forma en la que interactúan. Actualmente se conoce la existencia de 6 quarks,
por lo que se dice que poseen 6 grados de libertad llamados “sabores”. Un sabor de
quark puede cambiar a otro sabor a través de las interacciones débiles mediadas por
los bosones débiles cargados W±; además los quarks tienen otro grado de libertad
llamado color. Las interacciones entre quarks debidas a la carga de color, la cual no
es nada más que la interacción fuerte, es mediada por los gluones, pero los quarks
también interactúan a través de la fuerza electromagnética. Una de las dificultades
en la investigación experimental de los quarks es que los quarks individuales jamás
han sido observados. Los quarks siempre están confinados en sistemas compuestos
que se extienden sobre distancias de alrededor 1 fm. Los quarks se pueden agrupar
formando bariones, compuestos por tres quarks, y los mesones, formados por un par
de quarks (quark-antiquark). Los otros 6 fermiones elementales son los llamados lep-
tones, los cuales interactúan solamente a través de la interacción electromagnética (si
están cargados eléctricamente) y débil. La producción y decaimiento de los leptones
es descrita satisfactoriamente por el ME de las interacciones electrodébiles. En el ME
los fermiones se clasifican en tres generaciones o familias: cada generación contiene un
par de leptones y un par de quarks. Las tres familias de quarks y leptones tienen las
mismas propiedades (interacciones gauge), sólo difieren en las masas y en el número
cuántico de sabor de sus campos. Cada miembro de una generación tiene una masa
mayor que las part́ıculas correspondientes a las generaciones anteriores [25]. Algunas
propiedades de los quarks y leptones aparecen en las tablas 1.1 y 1.2 respectivemen-
te [3].

Quark Carga eléctrica (e) Masa(×c−2)

Up (u) +2/3 2.2+0.6
−0.4 MeV

Down (d) −1/3 4.7+0.5
−0.4 MeV

Charm (c) +2/3 1.28± 0.03 Gev
Strange (s) −1/3 96+8

−4 MeV
Top (t) +2/3 173.1± 0.6 GeV

Bottom (b) −1/3 4.18+0.04
−0.03 GeV

Tabla 1.1: Propiedades de los quarks.
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Los campos se agrupan en multipletes (representaciones irreducibles) bajo las trans-

Masa(×c−2) Vida media Momento magnético anómalo

Electrón 0.5110 MeV < 6.6× 10−28 yr 1159.6521× 10−6

Muón (µ−) 105.658 MeV 2.197×10−6 s 11659209× 10−10

Tau (τ−) 1777 MeV (291.0±0.5)×10−15 s -0.052< aτ <0.013

Tabla 1.2: Propiedades de los leptones.

formaciones del grupo. Los quarks son tripletes y los leptones son singletes bajo el
grupo SUC(3) de color. Bajo el grupo SUL(2) las componentes levógiras (left) se
transforman de forma distinta que las dextrógiras (right): los campos left son doble-
tes y los right son singletes de isospin débil T . El ı́ndice Y se refiere a la hipercarga. La
carga eléctrica, el isospin y la hipercarga de los campos están relacionados mediante
Q =T3 + Y [24].

El ME integra dos teoŕıas de norma: una para la interacción fuerte, denominada
cromodinámica cuántica, desarrollada por Murray Gell-Mann, y otra que unifica las
interacciones electromagnética y débil, la cual esté sustentada por el trabajo de S.
Weinber, A. Salam y S. Glashow. La cromodinámica cuántica está basada en una
simetŕıa de norma no abeliana. Los mediadores de esta interacción, llamados gluones
no tienen masa, aparecen confinados, y no se presentan en estado libre. El carácter
de la interacción fuerte está determinado por una simetŕıa especial entre las cargas
de color de los quarks. Por otra parte, el modelo electrodébil incorpora campos de
norma no abelianos, campos de Yang-Mills, que adquieren masa mediante el proceso
de la ruptura espontánea de la simetŕıa llevada a cabo por el bosón de Higgs. En el
ME la dinámica de los fermiones está descrita mediante un lagrangiano de Dirac ge-
neralizado adecuadamente para que sea invariante bajo el grupo de norma. La teoria
permite explicar la desintegración de quarks y leptones [26].

1.1. Teoŕıa electrodébil

La teoŕıa de Glashow–Weinberg–Salam (abreviada GWS), cuando fue propuesta, fue
revolucionaria porque unificaba la interacción débil y electromagnética. Sin embargo,
para ser una teoŕıa exitosa en f́ısica, la completez matemática no es suficiente, pues
tiene que describir fenómenos que realmente están sucediendo. Por su construcción,
fue hecha para reproducir la interacción de Fermi en los ĺımites de bajas enerǵıas. Por
lo tanto, cubre la menor cantidad de datos experimentales que han sido observados
hasta el momento de su propuesta. Su verificación tiene que hacerse bien mediante
la reproducción de los procesos de altas enerǵıas que aún no se han llevado a cabo
correctamente, o nuevos fenómenos que no fueron incluidos en la teoŕıa de Fermi. La
teoŕıa GWS requeŕıa la existencia de las corrientes neutras y predijo la masa de los
bosones de gauge, los cuales no se encontraron cuando fue propuesta.
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En esta teoŕıa electrodébil la dinámica de los fermiones es descrita mediante un
lagrangiano de Dirac invariante de norma bajo el grupo SU(2) × U(1). Una de las
caracteŕısticas primordiales de dicho modelo es que la interacción electrodébil actúa
sobre fermiones derechos e izquierdos de manera distinta, por lo que las corrientes
cargadas de Yang-Mills incluyen solo fermiones izquierdos. Además, no se incluye a
los neutrinos derechos dado que experimentalmente no se han observado. De esta for-
ma, los campos fermiónicos izquierdos se agrupan en dobletes y los campos derechos
en singletes del grupo SU(2)L, con simetŕıa de isosṕın, donde L (izquierdo) indica
la asimetŕıa existente entre fermiones de distinta helicidad. Los campos fermiónicos
entonces estarán dados de la siguiente forma

Leptones:(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
, eR, µR, τR,

Quarks:(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
, uR, dR, cR, sR, tR, bR.

En el modelo no se introducen términos con masa en el lagrangiano fermiónico a
menos que se rompa expĺıcitamente la simetŕıa de norma.

Por otro lado las fuerzas electromagnéticas y débil no pueden ser descritas por sepa-
rado ya que actúan sobre los mismos campos fermiónicos, por ello el grupo de norma
que describe la interacción eletrodébil es SU(2)L×U(1)Y , el cual es el mı́nimo grupo
de norma posible que permite describir lo observado en la naturaleza. La exigencia
de que la lagrangiana de los campos fermiónicos sea invariante bajo transformaciones
del grupo antes mencionado, introduce de forma natural cuatro campos bósonicos no
masivos, W k

µ (k = 1; 2; 3) y Bµ(x) asociados a los grupos SU(2)L y U(1)Y respectiva-
mente.

El lagrangiano de la teoŕıa electrodébil se divide en dos partes, una contiene sola-
mente los campos bosónicos y otra que contiene campos fermiónicos y bosónicos. La
parte bosónica se divide a su vez en los sectores de Higgs y de Yang-Mills. El sector
bosónico-fermiónico está comprendido por los sectores de corrientes y de Yukawa, por
lo que el Lagrangiano electrodébil se puede escribir como

LED = Lfer + Lboson, (1.1)

donde
Lfer = LC + LY , (1.2)

Lboson = LH + LYM , (1.3)

donde LC , LY , LH , LYM , representan los sectores de corrientes, Yukawa, Higgs y
Yang-Mills, respectivamente. En seguida se describen de manera breve cada uno de
los sectores.
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1.1.1. Sector de Higgs

La simetŕıa gauge está rota espontáneamente, lo que exige la introducción de un
campo escalar (el campo de Higgs) y permite que los bosones débiles y los fermiones
sean masivos, tal y como los observamos en la naturaleza.

El bosón de Higgs es una part́ıcula prevista en 1964 por Peter Higgs. En la interacción
electrodébil exist́ıa una contradicción muy seria referente a las part́ıculas W+,W− y
Z0. El corto alcance de sus interacciones exiǵıa masas relativamente elevadas. Sin
embargo, la simetŕıa de ésa teoŕıa requiere que las masas sean nulas. Esta paradoja se
supera si las masas de W+,W− y Z0, son proporcionadas por otras part́ıculas que son
los bosones de Higgs, mediante el llamado mecanismo de Higgs, el cual afirma que las
part́ıculas W y Z interactúan constantemente con campo de bosones de Higgs, lo que
le proporciona masa. El mecanismo está considerado como el origen de las masas de
todas las part́ıculas elementales. Tanto las part́ıculas W y Z, como el fotón son bo-
sones sin masa propia. Los primeros muestran una enorme masa porque interactúan
fuertemente con el campo de Higgs y el fotón no muestra ninguna masa porque no
interactúa en absoluto con el campo de Higgs. El bosón de Higgs tiene esṕın cero, no
posee carga eléctrica ni carga de color, por lo que no interacciona con el fotón ni con
los gluones. Sin embargo, interacciona con todas las part́ıculas del modelo que poseen
masa: los quarks, los leptones cargados y los bosones W+,W− y Z0.

La rotura espontánea de la simetŕıa (RES) aparece cuando el vaćıo del sistema (es-
tado de mı́nima enerǵıa) está degenerado. El vaćıo f́ısico es uno entre los posibles
estados de mı́nima enerǵıa conectados por las simetŕıas del lagrangiano. Cuando la
naturaleza lo elige se rompe la simetŕıa de los estados f́ısicos, aunque se preserva la
del lagrangiano.

El resultado del RES depende del tipo de simetŕıas. Si el lagrangiano es invariante
bajo un grupo continuo de simetŕıas G, pero el vaćıo es invariante sólo bajo un
subgrupo H ⊂ G, entonces aparecen tantos estados sin masa y spin 0 (bosones de
Goldstone) como generadores de G que no lo son de H, es decir, el número de simetŕıas
que se han roto (teorema de Goldstone). Si las simetŕıas del lagrangiano son locales
(gauge) estos bosones de Goldstone son comidos por los bosones de gauge asociados
a las simetŕıas rotas dotándolos de una masa (mecanismo de Higgs-Kibble) [24].

Veamos ahora cómo implementar este mecanismo para dar masa a los bosones de
gauge débiles del ME. En el ME la simetŕıa está rota del siguiente modo,

SU(2)L ⊗ U(1)Y →RES U(1)QED. (1.4)

Para lograr este esquema de RES hemos de introducir un doblete de campos escalares
complejos (cuatro campos reales: dos cargados y dos neutros),

Φ =

(
φ(+)

φ(0)

)
, (1.5)

y el lagrangiano invariante bajo SU(2)L × U(1)Y ,

LS = (DµΦ)†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2, (1.6)

11
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con λ > 0, µ2 < 0 y
DµΦ = [∂µ − igW̃µ + ig′yΦBµ]Φ, (1.7)

donde yΦ = QΦ − T3 = 1
2
.

El potencial escalar es similar al anterior y el mı́nimo degenerado corresponde a

|〈0|Φ(x)|0〉| ≡ |Φ0(x)| = 1√
2

(
0
v

)
, (1.8)

con v =
√
−µ2
λ

.

Solo los campos escalares neutros pueden adquirir un valor esperado en el vaćıo (vev)
pues la carga es una cantidad conservada. Nótese que el fotón sólo se acopla a los
campos escalares cargados, cuyo vev es nulo, lo que será crucial para que el fotón no
adquiera masa, como veremos. Al elegir uno entre todos los posibles estados funda-
mentales (1.8), todos ellos conectados por transformaciones SU(2)L ⊗ U(1)Y (cuatro
generadores), se rompe espontáneamente esta simetŕıa quedando como remanente
U(1)QED (un generador), lo que da lugar a la aparición de tres escalares sin masa.

Parametrizamos ahora el doblete escalar en término de excitaciones sobre el vaćıo
f́ısico,

Φ(x) = exp{iσi
2
θi(x)} 1√

2

(
0
v +H(x)

)
, (1.9)

donde sigue habiendo cuatro campos escalares reales, θi(x) y H(x). Los tres campos
θi(x), son los que seŕıan bosones de Goldstone pero haciendo uso de la invariancia
gauge del langrangiano podemos transformar Φ(x) en cada punto x por un campo en
el que éstos desaparecen, preservándose como único campo escalar f́ısico el bosón de
Higgs H(x). Aśı, en el llamado gauge unitario,

Φ(x)→G exp{−iσi
2
θi(x)}Φ(x) =

1√
2

[v +H(x)]

(
0
1

)
. (1.10)

Los tres grados de libertad que aparentemente se pierden se convierten en el estado
de polarización longitudinal de W± y Z pues, tras el RES, Wµ y Zµ se convierten en
campos masivos de spin 1. En efecto,

(DµΦ)†DµΦ→G 1

2
∂µH∂

µH + (v +H)2{g
2

4
W †
µW

µ +
g2

8Cos2θW
ZµZ

µ}, (1.11)

que contiene los términos de masa para los bosones débiles,

MZCosθW = MW =
1

2
vg, (1.12)

mientras que el fotón permanece sin masa. Todo ello preservándose la simetŕıa gauge
del lagrangiano. El precio que hemos de pagar es la introducción del campo de Higgs.

El LHC anunció en julio de 2012 el descubrimiento de una part́ıcula con propie-
dades consistentes con las esperadas para el bosón de Higgs del SM y una masa de
unos 125 GeV. Los datos de Tevatron son compatibles con este descubrimiento [24].
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1.1.2. Sector de Yukawa

El sector de yukawa, tiene como propósito dotar de masa a los fermiones por medio
de un rompimiento espontáneo de la simetŕıa electrodébil. Como los estados de he-
licidad se definen en diferentes representaciones del grupo, no es posible definir sus
masas en forma invariante de norma. Además, dicho sector contiene invariantes que se
construyen como producto de campos de norma que vinculan fermiones de diferente
helicidad acoplados al doblete de Higgs.

Como los neutrinos no tienen helicidad derecha, no tienen representación f́ısica en
el sector de Yukawa. La lagrangiana que describe la interacción de los bosones de
Higgs y los fermiones está definida como:

LY = −Y u
ij ψ̄Lφ

cψR − Y d
ij ψ̄LφψR + h.c., (1.13)

donde φc se transforma covariantemente bajo SUL(2), definido como:

φc = iτ2φ
∗ =

(
φ0∗

−φ−
)
, (1.14)

el isodoblete φc a veces denotado φ̃ tiene hipercarga Y = 1, τ2 es la segunda matriz
de Pauli, φ∗ el complejo conjugado del campo de Higgs.

Las matrices de Yukawa, Y u
ij , Y

d
ij , son parámetros libres que definen la intensidad

de los vértices y consecuentemente las reglas de Feynman de la lagrangiana, donde
i, j son los ı́ndices de la familia. Esta lagrangiana es una cantidad invariante bajo
el grupo de simetŕıa SU(2)L × U(1)Y , entonces la lagrangiana de Yukawa se puede
escribir como:

LY = −Y u
ij Q̄

i
Lφ

cuiR − Y d
ijQ̄

i
Lφd

i
R − Y u

ij l̄
i
Lφ

cliR − Y d
ij l̄

i
Lφl

i
R + Lh.c., (1.15)

denota la lagrangiana de Yukawa para los leptones y la lagrangiana de Yukawa para
los quarks, los campos de Higgs pueden ser tantos como el modelo del mecanismo de
Higgs lo permita.

1.1.3. Sector de Yang-Mills

La estructura de este sector está completamente determinada por el carácter no abe-
liano del grupo electrodébil.

La lagrangiana de Yang-Mills tiene la propiedad de ser invariante bajo una transfor-
mación de norma local, describe a los grupos de norma del modelo estándar, SU(3)
para el color, SU(2) para el isoesṕın y U(1) para la hipercarga, y está dada por

LYM = −1

4

8∑
A=1

Ga
µνG

µν
a −

1

4

3∑
a=1

W a
µνW

µν
a −

1

4
Ba
µνB

µν
a . (1.16)
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Los campos de fuerza de color están dados por

Ga
µν = ∂µG

a
ν − ∂νGa

µ − g3f
ijkGj

µG
k
ν (1.17)

Ga
µν son los tensores de norma antisimétricos construidos a partir de los ocho campos

Ga
µ(X) de los gluones, correspondientes a los ocho generadores de SU(3), f ijk las

constantes de estructura del grupo SU(3) y g3 la constante de acoplamiento de color.
Los campos de fuerza de isoesṕın,

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
ijkW j

µW
k
ν , (1.18)

i, j, k = 1, 2, 3.

ConW a
µν los tensores de norma antisimétricos construidos a partir de los campos de

norma W a
µ (X) correspondientes a los tres generadores de SU(2), εijk es la constante de

estructura del grupo SU(2) que coincide con el tensor de Levi-Civita y g2 la constante
de acoplamiento del grupo de isoesṕın. Finalmente, el campo de fuerza de hipercarga
es

Ba
µν = ∂µB

a
ν − ∂νBa

µ. (1.19)

Bνµ son los tensores de norma antisimétricos construidos a partir de los campos de
norma Bµ(X) asociados a U(1).

1.1.4. Sector de corrientes

En el sector cinético de quarks y leptones se representan las interacciones de los
campos de norma del grupo electrodébil con los fermiones.

A los acoplamientos de pares de fermiones con el bosón W± se le conoce como
corrientes cargadas, mientras que a los acoplamientos de pares de fermiones con los
bosones Z y γ se les denominan corrientes neutras. El lagrangiano asociado, con la
propiedad de invariancia de norma, se puede descomponer en dos partes, mediante

LC = LC
q + LC

l (1.20)

donde LC
q y LC

l y representan los sectores de quarks y leptones, respectivamente.

La presencia de corrientes cargadas con cambio de sabor a nivel árbol da lugar a
la aparición de corrientes neutras con cambio de sabor a nivel de un lazo.

Interacciones de corrientes cargadas

El lagrangiano LF dado por

LF = i
3∑
j=1

ψ̄j(x)/Dψj(x), (1.21)

14



Modelo Estándar

contiene interacciones entre fermiones y bosones de gauge,

LF ⊃ gψ̄1γ
µW̃µψ1 − g′Bµ

3∑
j=1

yjψ̄jγ
µψj. (1.22)

El término que contiene la matriz

W̃µ =
σi
2
W i
µ =

1

2

(
W 3
µ

√
2W †

µ√
2Wµ −W 3

µ

)
, (1.23)

da lugar a interacciones de corrientes cargadas con el campo vectorial cargado de las

W±, Wµ ≡ W 1
µ+iW 2

µ√
2

y su complejo conjugado W †
µ ≡

W 1
µ−iW 2

µ√
2

,

LCC =
g

2
√

2
W †
µf̄(x)γµ(1− γ5)f ′(x) + h.c. (1.24)

Interacciones de corrientes neutras

La ecuación (1.22) también contiene interacciones con los campos de gauge neutros
W 3
µ y Bµ. Nos gustaŕıa identificar estos bosones con el Z y el fotón. Sin embargo, como

el fotón tiene las mismas interacciones con ambas quiralidades fermiónicas, el bosón
de gauge singlete Bµ no puede ser el campo electromagnético Aµ. Para ello habŕıa que
imponer y1 = y2 = y3 = y g′yj = eQj, lo que no puede cumplirse simultáneamente.

Como ambos campos son neutros, podemos probar con una combinación arbitraria
de ellos (

W 3
µ

Bµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
Zµ
Aµ

)
. (1.25)

En términos de Zµ y Aµ el lagrangiano de corrientes neutras queda

LNC =
3∑
j=1

ψ̄jγ
µ(−Aµ[gT3 sin θW + g′yj cos θW ] + Zµ[gT3 cos θW − g′yj sin θW ])ψj,

(1.26)
donde T3 = σ3/2(0) es la tercera componente del isospin del doblete(singlete). Para
obtener la electrodinámica cuántica (QED) de la parte con Aµ hay que imponer las
condiciones

g sin θW = g′ cos θW = e,Y = Q− T3, (1.27)

donde Q es el operador de carga eléctrica,

Q1 =

(
Qf 0
0 Qf ′

)
, Q2 = Qf , Q3 = Qf ′ . (1.28)

La primera igualdad relaciona los acoplamientos g y g′ de SU(2) y U(1), respecti-
vamente, con el acoplamiento electromagnético e, lo que proporciona la unificación
de las interacciones electrodébiles. La segunda fija las hipercargas fermiónicas Y en
términos de las cargas eléctricas y los números cuánticos de isospin débil

y1 = Qf −
1

2
= Qf ′ +

1

2
, y2 = Qf , y3 = Qf ′ . (1.29)
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Cromodinámica cuántica

Sustituyendo las cargas de los quarks y los leptones, observamos que los neutrinos
right tienen carga e hipercarga nulas, es decir no se acoplan ni al fotón ni a la Z, y
tampoco se acoplan a los W±, pues sólo lo hacen los campos left. Por tanto los vR
son estériles y, si los neutrinos no tuvieran masa, no haŕıa falta introducirlos.

El lagrangiano de corrientes neutras queda finalmente

LNC = LQED + LZ
NC , (1.30)

donde
LQED = −eAµQf (′) f̄

(′)(x)γµf (′)(x), (1.31)

LZ
NC = eZµf̄

(′)(x)γµ(vf − afγ5)f (′)(x), (1.32)

con vf = (T fL3 − 2Qf sin2 θW )/(2 sin θW cos θW ) y af = T fL3 /(2 sin θW cos θW ).

1.2. Cromodinámica cuántica

La cromodinámica cuántica (QCD), consiste en la descripción de las interacciones
fuertes mediante una teoŕıa de gauge local. La simetŕıa en consideración está basada
en el grado de libertad de color que tienen los quarks y gluones y se encuentra realizada
de forma exacta. El grupo en cuestión es SU(3), por lo que se denota SU(3)C .

El grupo SU(3) es de dimensión N2− 1 = 8, donde las matrices de Gell-Mann tA

son los generadores de dicho grupo, a los cuales se les asocian los campos de norma
denominados gluones. Estos son de masa nula, dado que la simetŕıa esté realizada en
forma exacta.

La QCD, como se dijo anteriormente, es una teoŕıa de norma renormalizable
basada en el grupo SU(3) con un triplete de quarks up (u), down (d) y strange
(s) que fijan la densidad lagrangiana en QCD

L = −1

4

8∑
A=1

FAµνFA
µν +

nf∑
j=1

q̄j(iD −mj)qj, (1.33)

donde: qj son los campos de quarks (de distintos sabores nf ) con masas mj; D =
Dµγ

µ, donde γµ son las matrices de Dirac y Dµ es la derivada covariante

Dµ = ∂µ − ies
∑
A

tAgAµ , (1.34)

y es es el acoplamiento de norma; en analoǵıa con la Electrodinámica Cuántica QED

αs =
e2
s

4π
, (1.35)

(en unidades naturales ~ = c = 1); gAµ (A = 1,2,3,4. . . ,8), son los campos de gluón y
tA son los generadores de grupo SU(3) en la representación de triplete de quarks (tA

son matrices 3× 3 actuando en q).
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Modelo Estándar

El grupo es no abeliano debido a que no todos los generadores conmutan entre
śı [tA, tB] = iCABC donde CABC son las constantes reales llamadas las constantes
de estructura del gupo SU(3) (la normalización de CABC y de es se especif́ıca por
Tr[tA, tB] = 1/2δAB).
Por otra parte

FA
µν = ∂µg

A
ν − ∂νgAµ − esCABCgBµ gCν . (1.36)

El lagrangiano en la QCD, la ecuación (1.33) es el lagrangiano para quarks interac-
tuantes coloreados q, lo cual se sigue simplemente de pedir que el lagrangiano sea
invariante bajo transformaciones de fase de color locales para los campos de quarks.
Puesto que los tres campos de color de quarks pueden ser variados arbitrariamente,
no es sorprendente que ocho campos vectoriales de color sean necesarios para com-
pensar todos los posibles cambios de fase. Tal como sucede con el fotón la invariancia
de norma local requiere que los gluones no tengan masa.

El tensor de campo FA
µν posee una gran propiedad. Imponer la simetŕıa de norma

ha requerido que el término de la enerǵıa cinética en L no sea puramente cinético
sino que incluya una autointeracción inducida entre los bosones de norma. Esto se
observa claramente reescribiendo (1.33) de forma simbolica

L = q̄q + F 2 + esq̄qF + q”F 3 + e2
sF

4. (1.37)

Los primeros tres términos tienen sus análogos en QED. Ellos describen la propagación
libre de quarks y gluones y la interacción quark-gluón. Los dos términos restantes
muestran las presencia de vértices de tres y cuatro gluones en QCD y reflejan el
hecho de que los gluones en śı mismos no transportan carga de color. Estos no tienen
paralelo en QED y resalta el caracter no abeliano del grupo de norma. Teoŕıas con
invariancia de norma no abeliana son frecuentemente llamadas teorias de Yang Mills.

1.3. Electrodinámica cuántica

Un ejemplo ilustrativo de una teoŕıa de norma lo ofrece la electrodinamica cuántica,
que es la teoŕıa que incorpora la mecanica cuántica con la relatividad especial (QED
por sus siglas en ingles). El campo en este caso representa part́ıculas cargadas de
esṕın 1/2. La invariancia ante una transformacion de norma global implica la con-
servación de la carga eléctrica a través de una corriente conservada. La invariancia
ante una transformación de norma local implica la existencia de un campo vectorial
de interacción, el campo electro-magnético, cuyo cuanto es el fotón. La constante de
acoplamiento entre el campo del fotón y los otros campos es la carga electrica [27].

El lagrangiano de esta teoŕıa es invariante de norma ante el grupo U(1). La ley
de trasformación para los campos es

ψ′ = Urψ, (1.38)

donde Ur = eiqθ ∈ U(1). Haciendo variaciones infinitesimales de θ en el espacio-
tiempo obtenemos

ψ′ = Urψ ≈ (1 + iqθ)ψ. (1.39)
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Momento magnético anómalo

La densidad lagrangiana correspondiente al campo de Dirac para un fermión libre es

LD = iψ̄γµ∂µ −mψ̄ψ, (1.40)

la cual es invariante bajo (1.40), siempre y cuando intercambiemos la derivada ordi-
naria ∂µ por la derivada covariante Dµ, la cual debe satisfacer la relación siguiente

(Dµψ)′ = UDµψ, (1.41)

donde
(Dµ = ∂µ + iqAµ), (1.42)

siendo Aµ el campo electromagnético, que se debe transformar de la siguiente manera

Aµ → A′µ = Aµ − ∂µθ. (1.43)

Por otro lado el tensor de intensidad del campo electromagnético F µν tiene asociada
una densidad lagrangiana que define la dinámica de este campo

LN = −1

4
FµνF

µν , (1.44)

donde
Fµν = ∂µAν − ∂νAµ. (1.45)

Esta densidad lagrangiana es invariante ante transformaciones de norma. Usando
(1.41) y (1.45) se obtiene la densidad lagrangiana que describe completamente la
electrodinámica cuántica (QED)

LQED = −1

4
FµνF

µν + iψ̄γµ∂µψ −mψ̄ψ − JµAµ, (1.46)

donde Jµ = qψ̄γµψ es la densidad de corriente electromagnética [26].

1.4. Momento magnético anómalo

El momento magnético ~µ es la cantidad que determina la fuerza y la torsión que el
campo magnético ejerce sobre las corrientes eléctricas. Matemáticamente hablando,
el momento magnético está dado por |~µ| = JS, donde J = qf es la corriente de una
carga q, con frecuencia f y S es el área encerrada por la espira donde circula la carga
q. La orientación de ~µ es a lo largo de la normal a S. La razón giromagnética de una
part́ıcula masiva eléctricamente cargada es la constante de proporcionalidad entre su
momento angular y su momento magnético y se define como [26]

γ ≡ |~µ|
|~L|

=
q

2m
. (1.47)

Clásicamente, el Hamiltoniano de una part́ıcula de carga −q moviendose en un campo
magnético ~B = ~∇× ~A se expresa de la siguiente forma

H =
1

2m
(p2 + 2

q

c
~p · ~A+

q2

c2
A2), (1.48)
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Modelo Estándar

donde p = |~p| es el momento lineal de la part́ıcula. Si se desprecia | ~A|2 y se toma
~A = 1

2
( ~B × ~r) el Hamiltoniano toma la forma

H =
p2

2m
+ ~µ · ~B = H0 +HI , (1.49)

con ~µ = ( q
2mc

)~L y ~L = ~r × ~p. Podemos definir entonces a la enerǵıa de la interación
magnética como el producto punto del momento magnético y el campo magnético.

En el caso cuántico no relativista, el momento lineal es remplazado por su respectivo
operador, p̂→ −i~~∇, mientras que el momento angular orbital y el momento magnéti-
co son reemplazados por operadores tal que: ~B = Bk̂, Ĥ = µBBL̂Z , y L̂Zφ = mφ,
siendo µB el magnetón de Bohr. De esta forma la ecuación de eigenvalores para la
enerǵıa de interacción magnética es

ĤIΨ = µBBmΨ = EΨ,

E = µBBm. (1.50)

Este resultado se hace presente en las mediciones del efecto Zeeman, desdoblando los
niveles de enerǵıa atómicos de los sistemas inmersos en un campo magnético. La inter-
pretación correcta de este desdoblamiento surgió de la idea de tener un cuarto número
atómico relacionado con un momento angular intŕınseco con valor semi-entero. A este
momento angular intŕınseco se le llama esṕın Ŝ.

En una visión moderna, el momento magnético anómalo de una part́ıcula se entiende
como una contribución al momento magnético de esa part́ıcula debida a los efectos
cuánticos. Esta contribución está expresada a través de los diagramas de Feynman a
uno o varios lazos. El descubrimiento del esṕın del electrón ayudó a mejorar el enten-
dimiento de las propiedades magnéticas de part́ıculas elementales. Entre los primeros
intentos tenemos la derivación de la enerǵıa de interacción para una part́ıcula de Dirac
en un campo magnético externo. Ilustrando un poco ésto, partamos de la ecuación
expĺıcita de Dirac [26]

(i
∂

∂t
+ i~α · ~∇− e~α · ~A−mβ)

(
ϕ̃(x, t)
χ̃(x, t)

)
= 0, (1.51)

donde ~α y β son las matrices de Dirac. Si hacemos un poco de álgebra llegamos a

i
∂

∂t
ϕ− ~σ · ~∇χ− e~σ · ~Aχ+mϕ = 0, (1.52)

i
∂

∂t
χ− ~σ · ~∇ϕ− e~σ · ~Aϕ+mϕ = 0. (1.53)

Tomemos el ĺımite no relativista, suponiendo que i∂χ
∂t
→ 0, tras lo cual se combinan

las ecuaciones anteriores para obtener

i
∂ϕ

∂t
=
~σ · (−i~∇− e ~A)~σ · (−i~∇− e ~A)ϕ

2m
, (1.54)
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Momento magnético anómalo

la cual es la ecuacion de Schrödinger que incluye el esṕın de la part́ıcula y que puede
escribirse como

2mi
∂ϕ

∂t
= (−i~∇− e ~A)(−i~∇− e ~A)ϕ+ iεijk(−i~∇− eAi)(−i~∇− eAj)σkϕ. (1.55)

Ahora reemplacemos −~∇ → ~p y tomemos ~A · ~A→ 0 para campos débiles. El primer
término de (2.9) queda expresado como

p2ϕ− e ~B · ~Lϕ, (1.56)

donde se supuso la existencia de un campo externo ~∇× ~A = ~B. La ecuación (2.10) se
entiende como la interacción del momento angular orbital del electrón con un campo
magnético externo. Del segundo término de (2.9) se tiene

i2e ~B · ~Sϕ. (1.57)

Al sumar (2.10) con (2.11) y combinar con (2.9) se obtiene

i
∂

∂t
ϕ =

p2

2m
ϕ− e

2m
(~L+ 2~S) · ~Bϕ. (1.58)

Hay una diferencia en el acoplamiento de ~L y ~S con ~B , dada por el factor de Landé g =
2, que corresponde a la razón giromagnética de la part́ıcula. Si no hubiera correciones
radiativas, g seŕıa exactamente 2. Por lo tanto, el valor g = 2 es consecuencia de la
interación de una part́ıcula de Dirac con el campo electromagnético clásico [26].
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Caṕıtulo 2

Momentos dipolares
cromomagnéticos de los quarks en
el Modelo Estándar

El factor de forma µq, que nos da la información del momento dipolar cromo-
magnético anómalo (MDCM) de los quarks, recibe contribuciones de los procesos
electrodébiles (EW) y fuertes (QCD). Las contribuciones EW están determinadas
a partir de los diagramas de Feynman mostrados en las figuras 2.2 (a)-(d), y son
completamente similares a las correcciones para la contribución del momento dipolar
electromagnético en electrodinámica cuántica (QED), a nivel de un lazo. El diagrama
en la fig. 2.2 (e) es la contribución Abeliana, y el de la fig. 2.2 (f) es esencialmente
no-Abeliano y aparece debido a la auto interacción de gluon.

El Lagrangiano efectivo para obtener el momento dipolar cromoelectromagnético
(MDCEM) está dado por [28–30]

Leff = −1

2
q̄Aσ

µν
(
µq + idqγ

5
)
qBG

a
µνT

a
AB, (2.1)

donde T aAB es el generador de color de SU(3)C , A y B son los ı́ndices de color,
σµν ≡ i

2
[γµ, γν ] representa el momento angular de esṕın 1/2, µq es el factor de forma

cromomagnético, dq es el factor de forma cromoeléctrico (MDCE), y Ga
µν = ∂µg

a
ν −

∂νg
a
µ − gsfabcgbµgcν es el campo de fuerza del gluon.
En el ME el MDCM es inducido perturbativamente como una fluctuación cúantica

o corrección radiativa a nivel de un lazo [6–8], mientras que el MDCE surge al nivel
de tres lazos [31]. Podemos definir los momentos dipolares cromoelectromagnéticos
de manera adimensional de la siguiente forma [3,28–30]

µ̂q ≡
mq

gs
µq , d̂q ≡

mq

gs
dq , (2.2)

donde mq es la masa del quark y gs =
√

4παs, siendo αs la constante de acoplamiento
perturbativa fuerte en la escala de masa del boson Z, siendo αs(m

2
Z) = 0.1179 [3].

El vértice del MDCEM o regla de Feynman se muestra en la fig. (2.1) y está dado
mediante

Γµ = σµνqν
(
µq + idqγ

5
)
T aAB, (2.3)
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MDCM de los quarks a nivel de un lazo en el ME

qB(p)

gaµ(q)

qA(p
′)

= σµνqν(µq + idqγ
5)T a

AB

Figura 2.1: Momentos dipolares cromoelectromagnéticos.

donde qν es el momento transferido del gluon, p+ q = p′. Su amplitud invariante es

M = Mµεaµ(~q) , (2.4)

con la estructura de Lorentz
Mµ = ū(p′)Γµu(p). (2.5)

2.1. MDCM de los quarks a nivel de un lazo en el

ME

El MDCM de cualquier quark del ME, está formado por la suma de seis contribuciones

µ̂qi(q
2) = µ̂qi(γ) + µ̂qi(Z) + µ̂qi(W ) + µ̂qi(H) + µ̂qi(g) + µ̂qi(3g) , (2.6)

cada una de las cuales corresponden a (a) µ̂qi(γ) el fotón tipo Schwinger, (b) µ̂qi(Z)
a la interacción del bosón neutro Z, (c) µ̂qi(W ) al bosón cargado W , (d) µ̂qi(H) al
bosón escalar Higgs, (e) µ̂qi(g) al gluon tipo Schwinger, y (f) µ̂qi(3g) al trivértice de
gluones. Sus respectivos diagramas de Feynman se muestran en la fig. 2.2.

Analizamos a continuación cada uno de los diagramas presentando las formas
anaĺıticas para cada contribución. De manera part́ıcular y detallada se examina el
diagrama de la fig. 2.2 (f), correspondiente al trivértice de gluones, debido a que se
porta problematico al mostrar una divergencia de tipo infrarroja cuando se trabaja
con el gluon en capa de masa q2 = 0. Dicho diagrama se analiza por tres métodos
distintos para mostrar la divergencia y su naturaleza, los cuales fueron
i) parametrización de Feynman,
ii) regularización dimensional de la funcion escalar de Passarino-Veltman problemáti-
ca,
y iii) el artificio de masa ficticia para los gluones virtuales.
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gaµ(q)

qiB(p) qiA(p
′)

qi(k + p) qi(k + p′)

γ(k)

(a)

gaµ(q)

qiB(p) qiA(p
′)

qi(k + p) qi(k + p′)

Z(k)

(b)

gaµ(q)

qiB(p) qiA(p
′)

qj(k + p) qj(k + p′)

W (k)

(c)

gaµ(q)

qiB(p) qiA(p
′)

qi(k + p) qi(k + p′)

H(k)

(d)

gaµ(q)

qiB(p) qiA(p
′)

qi(k + p) qi(k + p′)

g(k)

(e)

gaµ(q)

qiB(p) qiA(p
′)

g(k − p) g(k − p′)

qi(k)

(f)

Figura 2.2: MDCM de los quarks a nivel de un lazo en el ME: la contribución elec-
trodébil es la suma de los diagramas (a)-(d), y la parte de QCD es la suma del
diagrama de la contribución (e) Abeliana y de la (f) no-Abeliana.

Debido a la divergencia encontrada, evaluamos todos nuestros resultados con el
gluon fuera de capa de masa, esto es, con su momento de transferencia espećıficamente
en dos escenarios: el espacialoide q2 = −m2

Z y el temporaloide q2 = +m2
Z , esto

tomando como referencia la constante de acoplamiento perturbativa fuerte αs(m
2
Z)

que está evaluada en la escala de enerǵıa de la masa del bosón Z.
Los cálculos correspondientes se hicieron usando el método de parametrización de

Feynman en algunos casos, y en algunos otros cuando los cálculos son más engorrosos
se utilizó el método de descomposición tensorial usando las funciones escalares de
Passarino-Veltman (PaVe), ayudandonos de las paqueterias FeynCal [32] y Package-
X [33] de Mathematica.

2.1.1. Contribución del fotón al MDCM de los quarks

El primer cálculo que se realizó fue el de la contribución del fotón γ al MDCM,
cuyo respectivo diagrama se muestra en la fig. 2.2 (a), de donde se obtuvo la amplitud
tensorial

Mµ
qi(γ) = e2Q2

qigsT
a
AB

∫
d4k

(2π)4

ū(p′)γα1(/k + /p′ +mqi)γ
µ(/k + /p+mqi)γ

α2u(p)

(k2 + iε)
[
(k + p′)2 −m2

qi + iε
] [

(k + p)2 −m2
qi + iε

](−gα1α2).

(2.7)

La integral tensorial anterior se resolvió usando el método de la parametrización de
Feynman [34], con sus respectivas condiciones cinemáticas y de transversalidad.

Se realizó primero la correspondiente contracción de ı́ndices en el numerador de
la Ec. (2.7), se aplicarón las ecuaciones de Dirac, se utilizó el corrimiento encontrado
en la parametrización de Feynman, se simplificaron los resultados y finalmente se
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implementó la identidad de Gordón, de donde obtuvimos la información del fotón γ
para el MDCM de los quarks, la cual está dada mediante

µ̂qi(γ) =
mqi

gs

e2Q2
qi
gs

16π2

∫ 1

0

dx

∫ 1−x

0

dy
−2mqi(x+ y − 1)(x+ y)

m2
qi(x+ y)2 − q2xy

. (2.8)

Si trabajamos en capa de masa q2 = 0, la Ec. (2.8) se convierte en

µ̂qi(γ) =
−e2Q2

qi

8π2

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y − 1)(x+ y)

(x+ y)2

=
e2Q2

qi

8π2

1

2

=
4παQ2

qi

16π2

=
αQ2

qi

4π
.

(2.9)

Donde hemos usado que e =
√

4πα, siendo α(mZ) = 1/129 la constante de estructura
fina [35]. De modo que hemos obtenido una constante para la contribución del fotón
al MDCM de los quarks, cuando se trabaja en capa de masa q2 = 0, dicha constante
para cada quark es

µ̂qi(γ) =
αQ2

qi

4π
=


α

9π
= 2.74× 10−4, ui = u, c, t

α

36π
= 6.85× 10−5, di = d, s, b

. (2.10)

Si trabajamos fuera de capa de masa, especificamente en el momento transferido
del gluon con el valor espacialoide q2 = −m2

Z y temporaloide q2 = m2
Z , usando la

Ec. (2.8), obtenemos para cada quark, los valores numéricos que se muestran en las
Tablas 2.2-2.7.

Los mismos resultados se obtuvieron y se comprobaron, usando el método de regu-
larización diensional de las funciones escalares de Passarino-Veltman, con el software
FeynCalc [32] y Package-X [33]. El resultado anaĺıtico obtenido para cualquier quark
del ME, cuando se trabaja fuera de capa de masa q2 6= 0, está dado por

µ̂qi(γ) =
αQ2

qi
m2
qi

2π
√
q2
(
q2 − 4m2

qi

) ln

√
q2
(
q2 − 4m2

qi

)
+ 2m2

qi
− q2

2m2
qi

, (2.11)

donde mqi es la masa del quark. La carga eléctrica es Qui = 2/3 para los quarks de
tipo up y Qdi = −1/3 para los quarks tipo down.

24
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2.1.2. Contribución del bosón Z al MDCM de los quarks

El siguiente diagrama a analizar es el de la fig. 2.2 (b) que corresponde a la
contribución del bosón Z al MDCM , y su amplitud tensorial está dada por

Mµ
qi

(Z) =
g2gsT

a
AB

4c2
W

∫
d4k

(2π)4

ū(p′)γα1(gV qi − gAqiγ5)(/k + /p′ +mqi)γ
µ

(k2 −m2
Z + iε)

[
(k + p′)2 −m2

qi
+ iε

] [
(k + p)2 −m2

qi
+ iε

]
×(/k + /p+mqi)γ

α2(gV qi − gAqiγ5)u(p)

(
−gα1α2 +

kα1kα2

m2
Z

)
. (2.12)

La integral anterior se resolvió, a diferencia del primer diagrama, sólo con el método
de descoposición tensorial de las PaVe, debido a que los cálculos son más largos y
engorrosos si se resuelve mediante el método de parametrización de Feynman.

Se trabajó de la misma manera en capa de masa q2 = 0, y fuera de capa de masa
q2 = ±m2

Z . Los resultados anaĺıticos obtenidos para el MDCM inducidos por el bosón
neutro Z, se muestran en la siguiente ecuación

µ̂qi(Z) =
1

64π2c2
Wm

2
qi(q

2 − 4m2
qi)

2

{
4m4

qi

[
2q2(m2

Z(3g2
Aqi + g2

V qi)− 7g2
Aqim

2
qi + g2

Aqiq
2)

− 2m2
qim

2
Z(9g2

Aqi + 4g2
V qi) + 3m4

Z(g2
Aqi + g2

V qi) + 24g2
Aqim

4
qi]

× C0(m2
qi,m

2
qi, q

2,m2
qi,m

2
Z ,m

2
qi)− 2m2

qi(4m
2
qi − q2)(m2

Z(g2
Aqi + g2

V qi) + 2g2
Aqim

2
qi)

+
1

m2
Zq

2
2m4

qi

√
q2(q2 − 4m2

qi) ln


√
q2(q2 − 4m2

qi) + 2m2
qi − q2

2m2
qi


× [q2(m2

Z(9g2
Aqi + g2

V qi)− 2g2
Aqim

2
qi)− 4m2

qim
2
Z(6g2

Aqi + g2
V qi) + 6m4

Z(g2
Aqi + g2

V qi)

+ 8g2
Aqim

4
qi]− 2

√
m4
Z − 4m2

qim
2
Z ln


√
m4
Z − 4m2

qim
2
Z +m2

Z

2mqimZ

 [−4m4
qi(5g

2
Aqi + 2g2

V qi)

+ q2(2m2
qi(4g

2
Aqi + g2

V qi)−m2
Z(g2

Aqi + g2
V qi)) + 10m2

qim
2
Z(g2

Aqi + g2
V qi)] + ln(

m2
qi

m2
Z

)

× [4m4
qim

2
Z(7g2

Aqi + 4g2
V qi)− 10m2

qim
4
Z(g2

Aqi + g2
V qi) + q2(−2m2

qim
2
Z(5g2

Aqi + 2g2
V qi)

+m4
Z(g2

Aqi + g2
V qi)− 4g2

Aqim
4
qi) + 16g2

Aqim
6
qi] } ,

(2.13)

donde las cargas débiles son gV ui = (3 − 8s2
W )/6 y gAui = 1/2, para los quarks

tipo up, y gV di = −(3− 4s2
W )/6 y gAdi = −1/2 para los quarks tipo down.

Los resultados numéricos de esta contribución para cada quark, se muestran en
las Tablas 2.2 - 2.7.

2.1.3. Contribución del bosón W al MDCM de los quarks

Llevamos a cabo en esta sección, la contribución del bosón cargado W al MDCM
de los quarks en el ME. Su diagrama de Feynman se muestra en la fig. 2.2 (c), y su
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respectiva amplitud tensorial está dada por

Mµ
qi

=
g2gsT

a
AB

2

3∑
j=1

|Vqiqj |2

×
∫

d4k

(2π)4

ū(p′)γα1PL(/k + /p′ +mqj)γ
µ(/k + /p+mqj)γ

α2PLu(p)

(k2 −m2
W + iε)

[
(k + p′)2 −m2

qj
+ iε

] [
(k + p)2 −m2

qj
+ iε

]
×
(
−gα1α2 +

kα1kα2

m2
W

)
. (2.14)

Si un quark tipo up ui está saliendo, entonces W− y los quarks tipo down dj están
entrando con

∑3
j=1 VuidjV

∗
uidj

=
∑3

j=1 |Vuidj |2. Por otro lado, si un quark tipo down di

está saliendo, entonces W+ y uj están entrando con
∑3

j=1 V
∗
ujdi

Vujdi =
∑3

j=1 |Vujdi|2.

Tomando estas consideraciones, encontramos que fuera de capa de masa q2 6= 0,
la contribución del boson W al MDCM de los quarks, está dado por

µ̂qi(W ) =

3∑
j=1

µ̂qi(W, qj)

=

{
α
∑3

j=1 |VqiVqj |2

32πs2
Wm

2
qim

2
W

(
q2 − 4m2

qi

)2 {−4m4
qi

[
m6
qi −m4

qi(5m
2
qj + 12m2

W )

+m2
qi(7m

4
qj − 12m2

qjm
2
W + 17m4

W )− q2(m4
qi − 2m2

qi(m
2
qj + 4m2

W )

+m4
qj − 6m2

qjm
2
W + 8m4

W )− 3(m6
qj − 3m2

qjm
4
W + 2m6

W )− 2m2
W (q2)2 ]C0

− 2m2
qi(4m

2
qi − q2)(m4

qi + 3m2
qim

2
W −m4

qj −m2
qjm

2
W + 2m4

W )

− 1

q2

2m4
qi

√
q2(q2 − 4m2

qj ) log


√
q2(q2 − 4m2

qj ) + 2m2
qj − q2

2m2
qj


× [−q2(m2

qi − 3m2
qj + 10m2

W )− 2(m4
qi +m2

qi(6m
2
qj − 11m2

W )

− 3 (m4
qj +m2

qjm
2
W − 2m4

W ))]
]
− 2
√
m4
qi − 2m2

qi(m
2
qj +m2

W ) + (m2
qj −m2

W )2

×
[
q2(m4

qi +m2
qi(9m

2
W − 2m2

qj ) +m4
qj +m2

qjm
2
W − 2m4

W )

+ 2(m6
qi +m4

qi(4m
2
qj − 9m2

W )− 5m2
qi(m

4
qj +m2

qjm
2
W − 2m4

W )) ]

× log

−m2
qi +

√
m4
qi − 2m2

qi(m
2
qj +m2

W ) + (m2
qj −m2

W )2 +m2
qj +m2

W

2mqjmW


− log

(
m2
qj

m2
W

)[
q2(m6

qi − 3m4
qi(m

2
qj − 4m2

W ) +m2
qi(3m

4
qj − 8m2

qjm
2
W + 11m4

W )

−m6
qj + 3m2

qjm
4
W − 2m6

W ) + 2(m8
qi + 3m6

qi(m
2
qj − 4m2

W )

+m4
qi(−9m4

qj + 4m2
qjm

2
W − 7m4

W ) + 5m2
qi(m

6
qj − 3m2

qjm
4
W + 2m6

W ))
]}}

,

(2.15)

donde C0, es la función escalar PaVe C0(m2
fi
,m2

fi
, q2,m2

fj
,m2

W ,m
2
fj

).
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El µ̂ui(W ) de un quark tipo up ui = u, c, t, es dado por la suma de tres quarks
tipo down dj = d, s, b. Dicha suma la podemos escribir mediante

µ̂ui(W ) =
3∑
j=1

µ̂ui(W, qj) = µ̂ui(W,d) + µ̂ui(W, s) + µ̂ui(W, b). (2.16)

De manera análoga, el µ̂di(W ) de un quark tipo down di = d, s, b, es dado por la suma
de tres quarks tipo up uj = u, c, t.

µ̂di(W ) =
3∑
j=1

µ̂di(W, qj) = µ̂ui(W,u) + µ̂ui(W, c) + µ̂ui(W, t). (2.17)

Los resultados numéricos para cada quark, pertenecientes a la contribución del
bosón W al MDCM, en capa de masa q2 = 0 y fuera de capa de masa q2 = ±m2

Z ,
los podemos observar en los valores dados en las Tablas 2.2 - 2.7. La matriz CKM
utilizada en estos cálculos se muestra en el Apéndice A.

2.1.4. Contribución del bosón escalar higgs al MDCM de los
quarks

En este apartado se calcula la contribución del bosón escalar higgs al MDCM de
los quarks. Su diagrama se muestra en la fig. 2.2 (d) y su amplitud tensorial está dada
por

Mµ
qi(H) =

g2m2
qigsT

a
AB

4m2
W

∫
d4k

(2π)4

ū(p′)(/k + /p′ +mqi)γ
µ(/k + /p+mqi)u(p)(

k2 −m2
H + iε

) [
(k + p′)2 −m2

qi + iε
] [

(k + p)2 −m2
qi + iε

] .
(2.18)

La integral tensorial anterior se resolvió de manera análoga a la de la Sec. 2.1.1,
usando el método de la parametrización de Feynman [34], con sus respectivas condi-
ciones cinemáticas y de transversalidad, de donde se obtuvo la contribución del bosón
escalar higgs al MDCM de los quarks, dada mediante

µ̂qi(H) =
−g2m4

qiT
a
AB

64π2m2
W

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y − 2)(x+ y)

m2
qi(x+ y)2 − q2xy +mH(1− x− y)

=
−αm4

qiT
a
AB

16πs2
Wm

2
W

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y − 2)(x+ y)

m2
qi(x+ y)2 − q2xy +mH(1− x− y)

,

(2.19)

donde hemos usado en esta última igualdad g = e/sW , siendo sW ≡ sin θW (mZ) =√
0.23121, el ángulo de mezcla débil.

Los resultados obtenidos de la integral 2.19, se trabajaron como en los casos
anteriores, en capa de masa q2 = 0, y fuera de capa de masa q2 = ±m2

Z . Los valores
numéricos para cada quark se muestran en las Tablas 2.2 - 2.6.
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Los mismos resultados se comprobaron usando el método de descomposición ten-
sorial de la funciones escalares de Passarino-Veltman. La solución anaĺıtica encontrada
para cada quark, cuando se trabaja fuera de capa de masa q2 6= 0 es

µ̂qi(H) =
α

32πs2
Wm

2
W

(
q2 − 4m2

qi

)2 [12m4
qim

2
H(−4m2

qi +m2
H + q2)

× C0(m2
qi,m

2
qi, q

2,m2
qi,m

2
H ,m

2
qi) + 2m2

qim
2
H(q2 − 4m2

qi)

+
6m4

qi

√
q2(q2 − 4m2

qi)(−4m2
qi + 2m2

H + q2) ln(

√
q2(q2−4m2

qi)+2m2
qi−q2

2m2
qi

)

q2

+m2
H(24m4

qi + q2(m2
H − 6m2

qi)− 10m2
qim

2
H) ln(

m2
qi

m2
H

)

− 2
√
m4
H − 4m2

qim
2
H(−16m4

qi + q2(4m2
qi −m2

H) + 10m2
qim

2
H)

× ln(

√
m4
H − 4m2

qim
2
H +m2

H

2mqimH

)],

(2.20)

donde mH = 125.1 GeV es la masa del bosón de Higgs.

2.1.5. Contribución del gluon al MDCM de los quarks

El cálculo correspondiente a este apartado es el de la contribución del gluon al
MDCM de los quarks, su diagrama se muestra en la fig. 2.2 (e) y su amplitud tensorial
está dada por

Mµ
qi(g) =− g3

s

6
T aAB

∫
d4k

(2π)4

ū(p′)γα1(/k + /p′ +mqi)γ
µ(/k + /p+mqi)γ

α2u(p)

(k2 + iε)
[
(k + p′)2 −m2

qi + iε
] [

(k + p)2 −m2
qi + iε

](−gα1α2).

(2.21)

La integral anterior se resolvió de manera análoga a la de la Sec. 2.1.1 y 2.1.4,
usando el método de la parametrización de Feynman [34], con sus respectivas con-
diciones cinemáticas y de transversalidad, de donde se obtuvo la información de la
contribución del gluon al MDCM de los quarks, que resulto ser

µ̂qi(g) =
mqi

gs

g3
smqi

48π2

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y − 1)(x+ y)

m2
qi(x+ y)2 − q2xy

. (2.22)

Si trabajamos en capa de masa q2 = 0, la Ec. (2.22) se convierte en

µ̂qi(g) =
g2
s

48π2

∫ 1

0

dx

∫ 1−x

0

dy
(x+ y − 1)(x+ y)

(x+ y)2

=
−g2

s

48π2

1

2

=
−4παs
96π2

=
−αs
24π

.

(2.23)
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Donde hemos usado gs =
√

4παs, por lo que hemos obtenido una constante para la
contribución del gluon al MDCM de los quarks, cuando se trabaja en capa de masa.
De modo que para cualquier quark obtendremos el valor constante

µ̂qi(g) =
−αs
24π

= −1.56× 10−3 (2.24)

Trabajando fuera de capa de masa, con en el momento transferido del gluon en el valor
espacialoide q2 = −m2

Z y temporaloide q2 = m2
Z , usando la Ec. (2.22), obtenemos para

cada quark las contribuciones numéricas que se muestran en las Tablas 2.2 - 2.7.
Los mismos resultados se obtuvieron trabajando con el método de las funciones

escalares de Passarino-Veltman usando el software FeynCalc [32] y Package-X [33].
Con esto podemos mostrar, que el resultado anaĺıtico obtenido para cualquier quark
del ME, cuando se trabaja fuera de capa de masa q2 6= 0, es

µ̂qi(g) = − αsm
2
qi

12π
√
q2
(
q2 − 4m2

qi

) ln

√
q2
(
q2 − 4m2

qi

)
+ 2m2

qi
− q2

2m2
qi

, (2.25)

donde podemos observar, que el resultado obtenido, salvo por una constante, es com-
pletamente similar al de la contribución del fotón, mostrado en la Ec. (2.11).

Los valores numéricos obtenidos de esta contribución para cada quark, se muestran
de igual manera en las Tablas 2.2 - 2.7.

2.1.6. Contribución del trivértice del gluon al MDCM de los
quarks en el ME

En este apartado se realizaron los cálculos correspondientes a las contribuciones
del trivértice del gluon al MDCM, mostrado en la fig. 2.2 (f), y se obtuvo la siguiente
amplitud tensorial

Mµ
qi(3g) =

−3gs3

2
T aAB

∫
d4k

(2π)4
ū(p′)

γα1(/k +mqi)γ
α4gα1α2

(k2 −m2
qi)(k − p′)2(k − p)2

× [(k − 2p+ p′)α2gµα3 + (−2k + p+ p′)µgα3α2 + (k + p− 2p′)α3gα2µ]gα3α4u(p).

(2.26)

La integral anterior se resolvió usando el método de la parametrización de Feynman
[34], aśı como las condiciones cinemáticas y de transversalidad.

Se realizó primero la correspondiente contracción de ı́ndices en el numerador de
la Ec. (2.26), se aplicarón las ecuaciones de Dirac, se utilizó el corrimiento encontra-
do en la parametrización de Feynmann, se simplificaron los resultados y finalmente
se implementó la identidad de Gordón, de donde obtuvimos la información para el
MDCM de los quarks, dada mediante

µ̂qi(3g) =
mqi

gs

6gs3

32π2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z) mqi(x+ y − 1)(x+ y)

m2
qi(x+ y − 1)2 − q2xy

. (2.27)
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Después de realizar algunas simplificaciones de la ecuación anterior llegamos a

µ̂qi(3g) = m2
qi

3

4π
αs

∫ 1

0
dz

∫ 1−z

0
dx

z(z − 1)

mqi
2z2 + q2x(x+ z − 1)

. (2.28)

Dicho integrando es inestable, caracteŕıstica ya identificada en la literatura en las
Refs. [6, 7], ya que si resolvemos la integral primeramente para el caso del gluon en
capa de masa, es decir, en q2 = 0, la integral de la Ec. (2.28) se reduce a:

µ̂qi(3g) = m2
qi

3

4π
αs

∫ 1

0
dz

∫ 1−z

0
dx

(z − 1)2

m2
qiz

=
3αs
4π

∫ 1

0
dz

(1− z)(z − 1)

z

=
3αs
4π

[−z
2

2
+ 2z − log(z)]|10,

(2.29)

donde podemos observar que el resultado no converge en {0}, por lo que tenemos una
divergencia para cualquier quark cuando se toma q2 = 0, obteniendo concordancia
con los resultados mostrados en las Refs. [6, 7], donde señalan esta divergencia. Esta
definición es entonces problemática, ya que requiere el uso de la teoŕıa de perturba-
ciones a enerǵıa cero (momento de transferencia del gluon ), donde no es válida para
interacciones fuertes. Un problema relacionado es que los valores medidos de las cons-
tantes f́ısicas y las masas relacionadas con las interacciones fuertes se conocen a altas
enerǵıas, no en q2 = 0. Sin embargo, podemos usar las mismas técnicas para calcular
el factor de forma anómalo cromomagnético y, por lo tanto, el MDCM en una escala
de enerǵıa más alta [6]. Calculamos entonces el µ̂qi en una enerǵıa correspondiente a
la masa del bosón Z, es decir, en un momento de transcicion del gluon en q2 = −m2

Z

y q2 = +m2
Z . Los valores numéricos para el MDCM de los quarks, tomando estas con-

sideraciones, se calcularon de acuerdo a la Ec. (2.28) y se obtuvieron los siguientes
resultados

µ̂qi(3g) q2 = −m2
Z q2 = 0 q2 = +m2

Z

Up −1.05× 10−10 indeterminado 1.05× 10−10 −1.61× 10−11i
Down −4.52× 10−10 indeterminado 4.52× 10−10 −7.52× 10−11i

Strange −1.23× 10−7 indeterminado 1.23× 10−7 −2.98× 10−8i
Charm −1.04× 10−5 indeterminado 1.04× 10−5 −4.07× 10−6i
Bottom −1.40× 10−4 indeterminado 1.36× 10−4 −8.56× 10−5i

Top −2.12× 10−2 indeterminado −1.22× 10−2 −2.55× 10−2i

Tabla 2.1: Contribución del trivértice del gluon al MDCM de los quarks.

Podemos decir que en general los MDCM de los quarks, son cantidades complejas,
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y que dicha contribución tiene buen comportamiento para los casos en los que se
toma el momento de transición del gluon como q2 = +m2

Z y q2 = −m2
Z , es decir, el

resultado es finito, pero cuando q2 = 0 se obtiene una divergencia.

MDCM con parametrización de Feynman usando un propagador de gluon
masivo

Usaremos ahora en nuestro siguiente cálculo, el artificio de agregar masas pequeñas
(mg) a los gluones virtuales, esto para corroborar nuestros resultados y la divergencia
obtenida en la sección anterior. Trabajaremos para ello el diagrama del tri-vértice
del gluon mostrado en la fig. 2.2 (f), cuya amplitud tensorial quedá expresada de la
siguiente manera

Mµ
qi(3g) =

−3gs3

2
T aAB

∫
d4k

(2π)4
ū(p′)

γα1(/k +mqi)γ
α4gα1α2

(k2 −m2
qi)
[
(k − p′)2 −m2

g

] [
(k − p)2 −m2

g

]
× [(k − 2p+ p′)α2gµα3 + (−2k + p+ p′)µgα3α2 + (k + p− 2p′)α3gα2µ]gα3α4u(p).

(2.30)

La integral anterior la resolvemos de manera análoga a la tratada en la Ec. (2.26),
tomando para ello las condiciones cinemáticas y de transversalidad involucradas, asi
como las respectivas contracciones de ı́ndices de Lorentz y corrimiento encontrado.

Después de realizar las álgebras necesarias y usando el método de parametrización
de Feynman, encontramos que la contribución al MDCM del tri-vértice del gluon está
dado por

µ̂qi(3g) =
mqi

gs

6gs3

32π2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(1− x− y − z) mqi(x+ y − 1)(x+ y)

m2
qi(x+ y − 1)2 − q2xy +m2

g(x+ y)
.

(2.31)

Al realizar algunas simplificaciones de la ecuación anterior, sustituyendo y = 1−x−z,
encontramos que podemos expresar (2.31) como

µ̂qi(3g) = m2
qi

3

4π
αs

∫ 1

0
dz

∫ 1−z

0
dx

z(z − 1)

mqi
2z2 + q2x(x+ z − 1) +m2

g(z − 1)
. (2.32)

Ahora, considerando que estamos trabajando en capa de masa, es decir en q2 = 0,
la ecuación anterior toma la forma

µ̂qi(3g) = m2
qi

3

4π
αs

∫ 1

0
dz

∫ 1−z

0
dx

z(z − 1)

mqi
2z2 +m2

g(z − 1)
. (2.33)

De modo que, cuando hacemos tender mg → 0, el MDCM queda expresado como

µ̂qi(3g) = m2
qi

3

4π
αs

∫ 1

0
dz

∫ 1−z

0
dx
z(z − 1)

mqi
2z2

, (2.34)

obteniendo la misma forma y solución que la Ec. (2.29), es decir, obtenemos que

µ̂qi(3g) =
3αs
4π

[−z
2

2
+ 2z − log(z)]|10, (2.35)
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donde observamos que el resultado diverge al querer evaluar el logaritmo en {0}, por
lo que tenemos que la divergencia aparece considerando al gluon en capa de masa, y
a los gluones virtuales con un propagador masivo, masa que tenderá a 0. Obtenemos
entonces con esta forma, concordancia con los resultados mostrados en la sección
anterior y con los reportados en la Ref. [6] donde lo hacen por este método y señalan
esta divergencia, realizando después sus cálculos fuera de capa de masa, considerando
q2 = m2

Z .

MDCM usando las funciones escalares PaVe para indicar la divergencia
infraroja

En este apartado resolvemos la integral tensorial de la Ec. (2.26), ahora median-
te el método de regularización dimensional de las funciones escalares de Passarino-
Veltman, ya que dicha función es la que nos causa problemas, al presentar una di-
vergencia cuando se trabaja con el gluón en capa de masa. Al resolver la integral
obtenemos que la contribución del trivértice del gluón al MDCM fuera de capa de
masa q2 6= 0, está dado por

µ̂qi(3g) =
3αs
4π

m4
qi

(q2 − 4m2
qi

)2

[
8− 2q2

m2
qi

+

(
8 +

q2

m2
qi

)
(B3g

01 −B3g
02)− 6q2C3g

0

]
, (2.36)

donde B3g
01 ≡ B0(m2

qi , 0,m
2
qi), B

3g
02 ≡ B0(q2, 0, 0) y C3g

0 ≡ C0(m2
qi ,m

2
qi , q

2, 0,m2
qi , 0) son

las funciones escalares PaVe. El término

B3g
01 −B3g

02 = −lnm
2
qi

−q2
(2.37)

es divergente cuando el gluón está en capa de masa q2 = 0, el problema surge espećıfi-
camente de B3g

02 . Considerando entonces q2 pequeño obtenemos

µ̂qi(3g) ' 3αs
8π

(
1− lnm

2
qi

−q2

)
, (2.38)

el cual diverge cuando el gluón está en capa de masa

ĺım
q2→0

µ̂qi(3g) = Divergente. (2.39)

Este logaritmo problemático mostrado en la Ec. (2.38), fue también señalado en
la Ec. (37) de la Ref. [7], pero no indicaron la topoloǵıa de la PaVe que induce esta,
mientras que en la Ec. (11) de la Ref. [6] la divergencia fue mostrada a través del
método de Parametrización de Feynman, considerando la prescripción +iε, pero sólo
gráficamente. Nosotros mostramos la naturaleza de dicha divergencia regularizando
dimensionalmente la función escalar de dos puntos B3g

0 ≡ B0(q2, 0, 0) que aparece en
(2.36) y (2.37), la cual nos mostrara sus polos 1/εUV y 1/εIR, utilizando para tal fin
la forma desarrollada en [36].

La integral que da lugar a esta PaVe es

32
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B0(q2, 0, 0) = −i16π2µ2ε

∫
dDk

(2π)D
1

(k − p)2(k − p′)2

= −i16π2µ2ε

∫
dDk

(2π)D
1

k2(k + q)2
. (2.40)

Usamos ahora la parametrización de Feynman para dos puntos, la cual está dada
mediante [34]

1

AB
=

∫ 1

0

dx
1

[xA+ (1− x)B]2
. (2.41)

Por lo que usando (2.41) en (2.40), tomando A = k2 y B = (k + q)2, y usando el
corrimiento k = l− q(1− x), encontramos que podemos expresar nuestra B0(q2, 0, 0)
como

B0(q2, 0, 0) = −i16π2µ2ε

∫
dDl

(2π)D

∫ 1

0

dx
1

[l2 −∆B0]2
, (2.42)

con ∆B0 = −q2x(1−x). Para resolver nuestra integral anterior en l, usamos la integral
D-dimensional de Minkoski [34], que está dada por∫

dDl

(2π)D
1

(l2 −∆)n
=

(−1)ni

(4π)D/2
Γ(n− D

2
)

Γ(n)

1

∆n−D/2 . (2.43)

Usando entonces (2.43) para resolver (2.42), con n = 2 y D = 4− 2ε obtenemos

B0(q2, 0, 0) = Γ(ε)(4π)ε
∫ 1

0

dx

(
µ2

∆B0

)ε
= Γ(ε)(4π)ε

∫ 1

0

dx

(
µ2

−q2x(1− x)

)ε
= Γ(ε)(4π)ε

∫ 1

0

dx
1

xε(1− x)ε

(
µ2

−q2

)ε
= Γ(ε)(4π)ε

∫ 1

0

dx x−ε(1− x)−ε
(
µ2

−q2

)ε
= Γ(ε)(4π)ε B(1− ε, 1− ε)

(
µ2

−q2

)ε
= Γ(ε)(4π)ε

(
µ2

−q2

)ε
, (2.44)

donde B(1− ε, 1− ε) es la función beta de Euler que esta definida mediante

B(x, y) =

∫ 1

0

dz zx−1zy−1 =
Γ(x)Γ(y)

Γ(x+ y)
. (2.45)
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Podemos observar en (2.44) que el término 1
(−q2)ε

es una indeterminación del tipo
1
00

cuando q2 → 0 y ε→ 0, la cual aparece en nuestra ecuación en forma de polos UV y
IR. Dicha indeterminación se dá desde un principio si se toma D = 4, proveniente de
la función Γ(n−D/2). En tal caso se debe hacer una regularización. La regularización
que haremos será de la forma que se sugiere en el Cap. 8 de [36], donde usamos la
integral ∫ ∞

−y

dx

x
xε = (−y)ε(−1

ε
), (2.46)

de modo que la parte
(

µ2

−q2

)ε
de la Ec.(2.44) la podemos escribir como(

µ2

−q2

)ε
= ε

∫ ∞
−q2

dr2 (µ2)ε

(r2)ε+1

= ε

∫ µ2

−q2
dr2 (µ2)ε

(r2)ε+1
+ ε

∫ ∞
µ2

dr2 (µ2)ε

(r2)ε+1
, (2.47)

si usamos ahora las integrales

Region UV :

∫ ∞
a

dx
aε

xε+1
=

1

ε
≡ 1

εUV

, Re ε > 0 , µ > 0 , (2.48)

Region IR :

∫ a

0

dx
aε

xε+1
= −1

ε
≡ − 1

εIR
, Re ε < 0 , µ > 0 , (2.49)

y considerando el ĺım q2 → 0, obtenemos el resultado de la Ec.(2.44), que queda de la
forma

B0(0, 0, 0) = ĺım
q2→0

B0(q2, 0, 0)

= (4π)ε Γ(ε) ε

∫ ∞
µ2

dr2 (µ2)ε

(r2)ε+1
+ (4π)ε Γ(ε) ε

∫ µ2

0

dr2 (µ2)ε

(r2)ε+1

= (4π)εUVΓ(εUV)− (4π)εIRΓ(εIR)

= ∆UV −∆IR

=
1

εUV

− 1

εIR
, (2.50)

donde hemos encontrado de forma expĺıcita los polos IR y UV de la divergencia que
ha surgido al calcular el MDCM.

De esta manera, la expresión B3g
01−B3g

02 , con B3g
01 = B0(m2

q, 0,m
2
q) = ∆UV +ln µ2

m2
q
+2,

y la nueva B3g
02 de la Ec. (2.50), toma la forma

B3g
01 −B3g

02 =B0(m2
qi
, 0,m2

qi
)−B0(0, 0, 0)

= ∆IR + ln
µ2

m2
qi

+ 2,
(2.51)
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el cual excibe la naturaleza Infrarroja de la divergencia, que contiene la contribución
del trivértice del gluón al MDCM de los quarks.

Finalmente, la Ec. (2.36) que nos da la contribución de µ̂qi debida al trivértice del
gluón, cuando se trabaja en capa de masa q2 = 0, queda de la siguiente manera

ĺım
q2→0

µ̂qi(3g) =
3αs
8π

(
∆IR + ln

µ2

m2
qi

+ 3

)
, (2.52)

donde ∆IR contiene el polo 1/εIR de naturaleza Infrarroja. Este comportamiento
puede ser observado numéricamente para el caso del quark top en la fig. 2.5 (g)
cuando el momento del gluón q2 = ±M → 0.

Para el caso del gluón fuera de capa de masa q2 = ±m2
Z , el valor espacialoide

q2 = −m2
Z sólo nos proporcina parte real, mientras que el valor temporaloide q2 = m2

Z

nos da parte real e imaginaria. Estos valores para cada quark estan listados en las
Tablas 2.2-2.7.

Respecto al quark top, el comportamiento de q2 = ±M2 es mostrado en la fig. 2.5
(g), y sus valores expĺıcitos están dados en la Tabla 2.7.

2.2. Resultados

Al usar los resultados anaĺıticos de cada contribución a µ̂qi provenientes de la
parametrización de Feynman y de las funciones escalares PaVe de la sección anterior,
obtenemos los valores numéricos que se muestran en las gráficas de las figs. 2.3 y
2.4, donde se observa el MDCM para cada quark del ME, como función del momento
transferido del gluon en su valor temporaloide q2 = M2 (fig. 2.3) y espacialoide
q2 = −M2 (fig. 2.4), en un intervalo de M = [10, 200] GeV. En ambas gráficas se
muestra la parte real y la imaginaria. Cabe señalar, que para los valores espacialoides,
el quark top es el único que nos da parte imaginaria, la cual surge del bosón W.

Como podemos apreciar el quark top nos proporciona los mayores valores, por lo
que graficamos a detalle cada una de sus contribuciones como función del momento
transferido del gluón, en las figs. 2.5 y 2.6, en un intervalo de M = [0, 200] GeV.
El valor M = mZ es mostrado con ĺınea azul en estas gráficas. Los valores de µ̂qi
para el gluón en capa de masa, son bien portados para todos los diagramas, excepto
para el del trivértice del gluon. La fig. 2.5 (a) muestra la contribución del fotón
tipo Schwinger, y sus valores son enteramente reales y positivos. En fig. 2.5 (b) se
presenta la contribución del bosón Z al MDCM el cual nos proporciona sólo valores
reales negativos. En la fig. 2.5 (c) y (d) se muestra la contribución del bosón W a µ̂t en
su parte real e imaginaria respectivamente. La parte real nos da valores positivos y la
imaginaria negativos. En fig. 2.5 (e) observamos la contribución del bosón de Higgs, la
cual nos aporta solo parte positiva y real. En la fig. 2.5 (f) la parte de la contribución
del gluon es mostrada y sus valores son reales y negativos. Finalmente, en la fig. 2.5
(g) y (h) podemos apreciar la contribución del trivértice del gluón al MDCM del
quark top en su parte real e imaginaria, donde ambos valores son negativos. En la fig.
2.6 (a) y (b) podemos apreciar los valores totales de las contribuciones al MDCM del
quark top, en su valor espacialoide y temporaloide respectivamente. En fig. 2.6 (c)
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y (d) hemos separado la contribución de la parte electrodébil y en fig. 2.6 (e) y (f)
la parte de la contribución de QCD. Por último en la fig. 2.6 (g) se muestra el valor
absoluto de µ̂t.

Finalmente, los valores numéricos de las contribuciones totales para el MDCM de
cada quark, se muestran en las Tablas 2.2-2.7, tanto en capa de masa q2 = 0 como
fuera de capa de masa q2 = ±m2

Z .
Comparando las partes reales de Re µ̂qi para los quarks ligeros, en q2 = −m2

Z

y q2 = m2
Z , observamos que todos tienen el mismo orden de magnitud pero son de

signos opuestos. En casi todos los casos para la evaluación en el caso temporaloide,
la parte Im µ̂qi es del mismo orden de magnitud que Re µ̂qi pero con signo opuesto.

Respecto a los ordenes de magnitud, las evaluaciones en los casos temporaloide y
espacialoide, nos dan los siguientes valores para cada quark
|µ̂u| ∼ 10−10, |µ̂d| ∼ 10−10, |µ̂s| ∼ 10−7, |µ̂c| ∼ 10−5, |µ̂b| ∼ 10−4 y |µ̂t| ∼ 10−2.
Los valores más grandes provienen de la contribución del trivértice del gluón

µ̂qi(3g), mientras que los valores más pequeños son proporcionados por el bosón de
Higgs µ̂qi(H).
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Figura 2.3: MDCM de los quarks en el ME como función del momento transferido del gluon
q2 = M2, variando M = [10, 200]GeV , mostrando (a) las partes reales y (b) las imaginarias.
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Figura 2.4: MDCM de los quarks en el ME como función del momento transferido del
gluon q2 = −M2, variando M = [10, 200]GeV , mostrando (a) las partes reales y (b) las
imaginarias.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figura 2.5: Contribución al MDCM del quark top como función del momento trasfe-
rido del gluon q2 = ±M2, variando M = [0, 200]GeV , la linea azul indica M = mz.
En (g) se muestra la contribución principal de la parte Re µ̂t(3g), y es comparada
con la medición experimental que es de µ̂Expt = −0.024+0.013

−0.009(Est.)+0.016
−0.011(Sist.)

37



Resultados

µ̂u q2 = −m2
Z q2 = 0 q2 = +m2

Z

γ 2.24× 10−12 2.74× 10−4 −2.24× 10−12 +3.13× 10−13i
Z −9.51× 10−14 −1.30× 10−13 −1.23× 10−13 −6.05× 10−14i
W −1.55× 10−13 −2. 15× 10−13 −2.03× 10−13 −1.03× 10−13i
H 2.91× 10−23 3.31× 10−22 1.89× 10−23 +3.92× 10−23i
g −1.28× 10−11 −1.56× 10−3 1.28× 10−11 −1.79× 10−12i
3g −1.05× 10−10 Div. IR 1.05× 10−10 −1.61× 10−11i

Total −1.15× 10−10 Div. IR 1.15× 10−10 − 1.77× 10−11i

Tabla 2.2: MDCM del quark up.

µ̂d q2 = −m2
Z q2 = 0 q2 = +m2

Z

γ 2.44× 10−12 6.85× 10−5 −2.44× 10−12 +3.66× 10−13i
Z −4.18× 10−13 −5.68× 10−13 −5.52× 10−13 −2.56× 10−13i
W −7.23× 10−13 −1.00× 10−12 −9.48× 10−13 −4.83× 10−13i
H 6.37× 10−22 6.72× 10−21 4.15× 10−22 +8.57× 10−22i
g −5.56× 10−11 −1.56× 10−3 5.56× 10−11 −8.36× 10−12i
3g −4.52× 10−10 Div. IR 4.52× 10−10 −7.52× 10−11i

Total −5.06× 10−10 Div. IR 5.04× 10−10 − 8.4× 10−11i

Tabla 2.3: MDCM del quark down.

µ̂s q2 = −m2
Z q2 = 0 q2 = +m2

Z

γ 6.90× 10−10 6.85× 10−5 −6.90× 10−10 +1.45× 10−10i
Z −1.66× 10−10 −2.25× 10−10 −2.19× 10−10 −1.01× 10−10i
W −2.95× 10−10 −4.10× 10−10 −3.87× 10−10 −1.97× 10−10i
H 1.00× 10−16 7.47× 10−16 6.53× 10−17 +1.34× 10−16i
g −1.57× 10−8 −1.56× 10−3 1.57× 10−8 −3.32× 10−9i
3g −1.23× 10−7 Div. IR 1.23× 10−7 −2.98× 10−8i

Total −1.38× 10−7 Div. IR 1.37× 10−7 − 3.33× 10−8i

Tabla 2.4: MDCM del quark strange.

µ̂c q2 = −m2
Z q2 = 0 q2 = +m2

Z

γ 2.53× 10−7 2.74× 10−4 −2.53× 10−7 +7.95× 10−8i
Z −2.41× 10−8 −3.30× 10−8 −3.18× 10−8 −1.53× 10−8i
W −4.03× 10−8 −5.61× 10−8 −5.28× 10−8 −2.69× 10−8i
H 1.87× 10−12 9.54× 10−12 1.22× 10−12 +2.52× 10−12i
g −1.44× 10−6 −1.56× 10−3 1.44× 10−6 −4.53× 10−7i
3g −1.04× 10−5 Div. IR 1.04× 10−5 −4.07× 10−6i

Total −1.16× 10−5 Div. IR 1.15× 10−5 − 4.49× 10−6i

Tabla 2.5: MDCM del quark charm.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figura 2.6: Contribución al MDCM del quark top como función del momento trasfe-
rido del gluon q2 = ±M2, variando M = [0, 200]GeV , la linea azul indica M = mz.
En (a) y (b) se muestra la contribución total, en (c) y (d) la contribución Electrodébil
(EW), en (e) y (f) la parte de QCD y en (g) se muestra el valor absoluto total y es
comparada con la medición experimental µ̂Expt = −0.024+0.013

−0.009(Est.)+0.016
−0.011(Sist.)
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µ̂b q2 = −m2
Z q2 = 0 q2 = +m2

Z

γ 9.40× 10−7 6.85× 10−5 −9.43× 10−7 +4.29× 10−7i
Z −4.89× 10−7 −6.62× 10−7 −6.45× 10−7 −2.99× 10−7i
W −8.36× 10−7 −8.59× 10−7 −8.84× 10−7 − 9.61× 10−10i
H 8.62× 10−10 2.98× 10−9 5.73× 10−10 +1.16× 10−9i
g −2.14× 10−5 −1.56× 10−3 2.15× 10−5 −9.78× 10−6i
3g −1.40× 10−4 Div. IR 1.36× 10−4 −8.56× 10−5i

Total −1.61× 10−4 Div. IR 1.55× 10−4 − 9.52× 10−5i

Tabla 2.6: MDCM del quark bottom.

µ̂t q2 = −m2
Z q2 = 0 q2 = +m2

Z

γ 2.62× 10−4 2.74× 10−4 2.88× 10−4

Z −1.82× 10−3 −1.88× 10−3 −1.95× 10−3

W 3.48× 10−5 − 9.52× 10−4i −9.03× 10−6 − 1.24× 10−3i 1.43× 10−4 − 1.20× 10−3i

H 1.86× 10−3 1.92× 10−3 1.99× 10−3

g −1.49× 10−3 −1.56× 10−3 −1.64× 10−3

3g −2.12× 10−2 Div. IR −1.22× 10−2 −2.55× 10−2i

Total −2.24× 10−2 − 9.52× 10−4i Div. IR −1.33× 10−2 − 2.67× 10−2i

Tabla 2.7: MDCM del quark top.
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Caṕıtulo 3

Momentos dipolares
electromagnéticos débiles de
fermiones pesados con violación de
sabor inducidos por Z ′

Más allá de estudiar las propiedades electromagnéticas de un fermión, las cuales
se estudiaron en la tesis de maestŕıa [37, 38], existe también gran interés en conocer
sus propiedades débiles estáticas que están asociadas con la interacción del bosón Z.
Es por ello que se presenta en este apartado, el cálculo anaĺıtico de los momentos
dipolares débiles para cualquier fermión cargado del ME, en el contexto de modelos
con sectores de corrientes generalizados en donde se predice la existencia de un nuevo
bosón de norma neutro masivo de esṕın 1. En espećıfico, se calcula el impacto de
corrientes neutras que cambian sabor (CNCS) mediadas por un nuevo bosón conocido
como Z ′, sobre el momento dipolar magnético débil y el momento dipolar eléctrico
débil.

Para realizar el cálculo de los momentos dipolares débiles de fermiones pesados en
el contexto de CNCS, se requiere una estructura general del acoplamiento leptónico
Zff . La estructura general del vértice de Lorentz que acopla un bosón de norma Z
con fermiones en capa de masa, en términos de factores de forma independientes, se
pueden expresar de la siguiente manera [39]

ieū(p′)Γµu(p) = ieū(p′)
{
iσµνqν

[
FZ
M(q2)− iFZ

E (q2)γ5
]
}u(p) ,

donde q = p − p′ es el momento transferido de Z, σµν ≡ i
2
[γµ, γν ] y FZ

M y FZ
E son

funciones de q2 a determinar llamadas factores de forma, que corresponden al factor
mágnetico débil y al factor eléctrico débil respectivamente. Dichos factores de forma
están relacionados con el momento dipolar mágnetico débil (MDMD awfi) y con el
momento dipolar eléctrico débil (MDED dwfi), mediante las relaciones [39]

awfi = −2mfiF
Z
M(m2

Z), dwfi = −eFZ
E (m2

Z). (3.1)

Las condiciones cinemáticas necesarias para el cálculo, las obtenemos de las condi-
ciones de capa de masa para las part́ıculas reales externas y de la conservación del
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El modelo de extensión

cuadrimomento, lo cual nos permite establecer que, qµεµ = 0 y q2 = m2
Z .

3.1. El modelo de extensión

Dado que nos interesa conocer la intensidad del acoplamiento Z ′fifj para deter-
minar su impacto en los momentos dipolares electromagnéticos débiles (MDEMD),
es necesario establecer el lagrangiano que comprende CNCS mediado por el bosón
Z ′, por lo que utilizaremos el lagrangiano renormalizable más general que incluye
violación de sabor fermionica mediado por un nuevo bosón de norma masivo neutro
de sṕın 1. El modelo más simple que predice la existencia del bosón Z ′ es encontrado
en el grupo de norma extendido electrodébil SUL(2)×UY (1)×U ′(1), proveniente de
algún modelo de gran unificación o extendido y es expresado por [18,20,21,40,41]

LNC =
∑
ij

[
f̄i γ

α(ΩLfifj PL + ΩRfifj PR)fj + f̄j γ
α(Ω∗Lfjfi PL + Ω∗Rfjfi PR)fi

]
Z ′α,

(3.2)
donde la suma se realiza sobre fi (fj) que representan cualquier fermión del ME, PL =
1−γ5

2
y PR = 1+γ5

2
son los proyectores de quiralidad y Z ′α es el nuevo bosón de norma

neutro masivo predicho por diversas extensiones del ME. Los parámetros ΩLfifj , ΩRfifj

representan las intensidades de los acoplamientos Z ′fifj. Por simplicidad, se asumirá
que ΩLfifj = ΩLfjfi y ΩRfifj = ΩRfjfi . El lagrangiano en la Ec. (3.2), incluye ambos
acoplamientos, violación y conservación de sabor mediados por el bosón Z ′. En este
trabajo consideraremos los siguientes bosones Z ′: el Z ′S del modelo Z secuencial, el
Z ′LR del modelo simétrico left-right, el Z ′χ proveniente del rompimiento de SO(10)→
SU(5) × U(1), el Z ′ψ resultante en E6 → SO(10) × U(1), y el Z ′η que aparece en
muchos modelos inspirados en supercuerdas [41].

Los acoplamientos que conservan sabor, Qfi
L,R [40–42], cuyos valores se muestran

en la Tabla 3.1 para los diferentes modelos de extensión, están relacionados con las
constantes de acoplamiento Ω de la siguiente manera: ΩLfifi = −g2Q

fi
L y ΩRfifi =

−g2Q
fi
R , donde g2 es el acoplamiento de norma del bosón Z ′. Para varios modelos

extendidos los acoplamientos de norma del Z ′, son

g2 =

√
5

3
sin θWg1λg, (3.3)

donde g1 = g/ cos θW . λg depende del patrón de rompimiento de simetŕıa siendo del
orden de la unidad [43] y g es la constante de acoplamiento débil. En el modelo
secuencial Z, el acoplamiento de norma g2 = g1.

3.2. Contribución a los MDEMD mediados por Z ′

a nivel de un lazo

En esta sección presentamos los resultados anaĺıticos a nivel de un lazo, para
el MDMD y MDED para cualquier fermión cargado del ME, inducido por CNCS
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Momentos dipolares electromagnéticos débiles de fermiones pesados con violación
de sabor inducidos por Z ′

Z ′S Z ′LR Z ′χ Z ′ψ Z ′η

Qu
L 0.3456 -0.08493 −1

2
√

10
1√
24

−2
2
√

15

Qu
R -0.1544 0.5038 1

2
√

10
−1√

24
2

2
√

15

Qd
L -0.4228 -0.08493 −1

2
√

10
1√
24

−2
2
√

15

Qd
R 0.0772 -0.6736 1

2
√

10
−1√

24
2

2
√

15

Qe
L -0.2684 0.2548 3

2
√

10
1√
24

1
2
√

15

Qe
R 0.2316 -0.3339 −3

2
√

10
−1√

24
−1

2
√

15

Qν
L 0.5 0.2548 3

2
√

10
1√
24

1
2
√

15

Tabla 3.1: Acoplamientos diagonales de quiralidad de los modelos extendidos.

fj Qfj g
fj
V A g

fj
V Z

νe, νµ, ντ 0 1
2

1
2

e, µ, τ -1 −1
2
−1

2
+ 2 sin2 θw

u, c, t 2
3

1
2

1
2
− 4

3
sin2 θw

d, s, b −1
3
−1

2
−1

2
+2

3
sin2 θw

Tabla 3.2: Valores de los parámetros g
fj
V A y g

fj
V Z en el ME.

y mediados por el bosón de norma Z ′. Debido a nuestro interés en la búsqueda de
nueva f́ısica más allá del ME, sólo realizaremos estimaciones numéricas expĺıcitas de
los momentos dipolares débiles correspondientes a el lepton tau y al quark top. Para
nuestro propósito, es conveniente expresar el acoplamiento Z ′fifj de tal manera que

podamos identificar los parámetros vectorial g
fifj
V Z′ y axial g

fifj
AZ′ , de manera similar al

acoplamiento del ME Zff . Con este fin, utilizamos los proyectores quirales

ΩLfifjPL + ΩRfifjPR = g
fifj
V Z′ − gfifjAZ′γ

5. (3.4)

para obtener

g
fifj
V Z′ ≡ 1

2
(ΩLfifj + ΩRfifj), g

fifj
AZ′ ≡ 1

2
(ΩLfifj − ΩRfifj)γ

5. (3.5)

Los valores para g
fj
V Z y g

fj
AZ en el ME provenientes del vértice Zff , se muestran

en la Tabla 3.2, donde Qfj es la carga del fermión [44].
La contribución del acoplamiento Z ′fifj a los MDEMD a nivel de un lazo media-

dos por el bosón de norma Z ′, la cual es mostrada en fig. 3.1, puede ser obtenida de
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Contribución a los MDEMD mediados por Z ′ a nivel de un lazo

fi(p2)

Z ′(k)

Z(q)

fj(k + p1)fj(k + p2)

α
β

µ

fi(p1)

Figura 3.1: Contribución a los momentos dipolares electromagnéticos débiles inducidos por
un Z ′ con cambio de sabor, a nivel de un lazo.

la amplitud invariante dada en la Ec. (3.6), la cual es calculada en la norma unitaria.

M
µ
fi

= −i6 g

2cW

∫
d4k

(2π)4
ū(p2)[γα(g

fifj
V Z′ − gfifjAZ′γ

5)](/k + /p2 +mfj )γ
µ(g

fj
V Z − g

fj
AZγ

5)

× (/k + /p1 +mfj )[γ
β(g

fifj∗
V Z′ − gfifj∗AZ′ γ5)]

(k2 −m2
Z′)[(k + p2)2 −m2

fj
][(k + p1)2 −m2

fj
]
u(p1)

(
−gαβ +

kαkβ
m2
Z′

)
.

(3.6)

La integral tensorial resultante en Ec. (3.6), se resolvio aplicando el método de
descomposicón tensorial mediante las funciones escalares de Passarino-Veltman, y
dado que el manejo de términos que aparecen en este cálculo es muy intricado, se
utilizó la paqueteria de FeynCalc [32] y Package-X [33] para agilizar la manipulación
algebraica.

Al realizar los cálculos necesarios encontramos que el momento magnético anómalo
débil está dado por

awfi = g
fj
V Z

{
|gfifjV Z′ |2F a

V (mfi ,mfj ,mZ ,mZ′) + |gfi,fjAZ′ |2F a
A(mfi ,mfj ,mZ ,mZ′)

}
+ g

fj
AZ

{
g
fifj
AZ′g

fifj∗
V Z′ + g

fifj∗
AZ′ g

fifj
V Z′

}
F a
V A(mfi ,mfj ,mZ ,mZ′),

(3.7)

donde

|gfifjV Z′|2 =
1

4

[
(ReΩLfifj + ReΩRfifj)

2 + (ImΩLfifj + ImΩRfifj)
2
]
,

|gfifjAZ′ |2 =
1

4

[
(ReΩLfifj − ReΩRfifj)

2 + (ImΩLfifj − ImΩRfifj)
2
]
.

Para la contribución al momento dipolar eléctrico débil obtuvimos

dwfi = g
fj
V Z

{
g
fifj
V Z′g

fifj∗
AZ′ − gfifjAZ′g

fifj∗
V Z′

}
F d
V A(mfi ,mfj ,mZ ,mZ′), (3.8)
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Momentos dipolares electromagnéticos débiles de fermiones pesados con violación
de sabor inducidos por Z ′

donde

g
fifj
V Z′g

fifj∗
AZ′ − gfifjAZ′g

fifj∗
V Z′ = i

(
ReΩLfifj ImΩRfifj − ReΩRfifj ImΩLfifj

)
.

Los factores de forma F a
V , F a

A, F a
V A y F d

V A, son mostrados expĺıcitamente en el Apéndi-
ce B.

Verificamos que ambas contribuciones obtenidas, MDMD y MDED están libres
de divergencias ultravioletas. Adicionalmente, si tomamos al bosón de norma Z ′ = Z
con los acoplamientos correspondientes a los del ME, podemos corroborar que la Ec.
(3.7) reproduce los resultados del ME, calculados en Ref. [45], para la contribución
Zττ al ME y cuyo valor es de awZττ = 4.13× 10−8 + 1.91i× 10−8. Para convenientes
y futuras discusiones, dividimos las diferentes contribuciones de MDMD y MDED de
las Ecs. (3.7) y (3.8) respectivamente. Para el leptón tau vamos a tener que

awτ = awτe + awτµ + awττ .

dwτ = dwτe + dwτµ + dwττ .
(3.9)

Para el quark top tendremos

awt = awte + awtµ + awtt.

dwt = dwte + dwtµ + dwtt.
(3.10)

Con estas contribuciones, analizamos los momentos dipolares débiles, en dos es-
cenarios distintos, de acuerdo con sus propiedades de śımetria CP, dependiendo si dwfi
desaparece o no, y lo podemos identificar en los siguientes escenarios

i) Conservación de CP. Este caso da lugar a awfi , mientras que proh́ıbe dwfi y ocurre
cuando ΩLfifj = 0, ó ΩRfifj = 0, ó Re ΩLfifj = Re ΩRfifj , ó Im ΩLfifj = Im
ΩRfifj = 0, el cual ocurre para fi = τ(fj = e, µ, τ) ó fi = t(fj = u, c, t). En general,

el caso conservación de CP, surge cuando g
fifj
V Z′g

fifj∗
AZ′ − g

fifj
AZ′g

fifj∗
V Z′ = 0. Llevamos a

cabo diferentes combinaciones de los acoplamientos ΩL,R, para obtener este caso de
conservación de CP, y obtuvimos los mismos resultados en todos. El caso considerado
para nuestros cálculos fue el de ΩLfifj 6= 0 y ΩRfifj = 0.

ii) Violación de CP que da lugar a ambos awfi y dwfi y ocurre cuando Re ΩLfifj 6= 0,
Im ΩLfifj = 0, Re ΩRfifj = 0, Im ΩRifj 6= 0.

Tomando en cuenta estas consideraciones, obtuvimos los resultados númericos que
se muestran a continuación.
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Momentos electromagnéticos débiles del leptón tau

Figura 3.2: Momento dipolar magnético débil del tau con conservación de CP. (a) Contri-
bución del bosón Z ′ de los diferentes modelos a Re awτ e (b) Im awτ .(c),(d) La respectiva
parte real e imaginaria generada por las subpartes de la contribución principal debido a Z ′η.

3.3. Momentos electromagnéticos débiles del leptón

tau

Llevamos a cabo en este apartado, el análisis numérico de los momentos dipolares
electromagnéticos débiles del leptón tau, usando las Ecs. (3.7) y (3.8) para el MDMD
y MDED respectivamente y considerando los diferentes modelos de los bosones de
norma Z ′S, Z ′L,R, Z ′χ, Z ′ψ y Z ′η. Los elementos diagonales ΩL,R de las matrices utilizadas,
se pueden obtener en términos de las cargas quirales mostradas en la Tabla 3.1. Los
elementos fuera de la diagonal tales como ΩL,Rτe y ΩL,Rτµ fueron estimados en la
Ref. [21] y son usados en nuestros cálculos numéricos para el MDMD y el MDED. Los
otros valores utilizados fueron las masas de los fermiones aśı como los acomplamientos
mostrados en la Tabla 3.2, cuyos valores numéricos se tomaron del PDG [3].

3.3.1. MDMD del leptón tau

Caso conservación de CP

Comenzaremos analizando el caso de conservación de CP. En la fig. 3.2, se muestra
el awτ como función de la masa del bosón de norma Z ′ en el intervalomZ′ = [2.5, 7] TeV.
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Momentos dipolares electromagnéticos débiles de fermiones pesados con violación
de sabor inducidos por Z ′

La fig. 3.2 (a) muestra la parte real Re awτ , donde podemos apreciar las contribuciones
de los diferentes bosones de norma Z ′, cuyas intensidades van del orden de 10−11

a 10−9. Podemos observar, que a medida que la masa del bosón Z ′ crece, awτ va
creciendo ligeramente. El valor más alto es proporcionado por Z ′η y está un orden de
magnitud por debajo del reportado para la contriución Z el ME, cuyo valor es Re
awτ (mZ) = 4·13142 × 10−8 [45] y es mostrado en la fig. 3.2 (a) en ĺınea roja. Este
valor está muy por debajo del ĺımite experimental actual Re(awτ ) < 1·1×10−3, a 95 %
C.L. [3]. La predicción más baja es debida a Z ′χ y es del orden de 10−11. La parte
imaginaria Im awτ es mostrada en la fig. 3.2 (b), y la contribución de los diferentes
bosones de norma Z ′ oscilan entre los rangos de 10−13 y 10−14. Nuevamente, la señal
más alta es dada por Z ′η, y está cinco ordenes de magnitud por debajo del valor
reportado para la contribución Z el ME, que es de Im awτ (mZ) = 1·91324i× 10−8 [45],
y es mostrado en fig. 3.2 (b) en ĺınea roja. El ĺımite experimental actual para la parte
imaginaria de este valor está dado por Im(awτ ) < 2·7 × 10−3, a 95 % C.L. [3]. La
señal más baja es proporcionada por Z ′χ y es del orden de 10−14. Para la contribución
principal obtenida, que fue Z ′η, observamos sus subpartes en la fig. 3.2 (c) y (d).
La parte real la podemos apreciar con detalle en la fig. 3.2 (c), donde awτe y awτµ se
encuentran en los mismos ordenes de magnitud entre 10−10 y 10−11, mientras que awττ
está dos ordenes de magnitud por debajo. En la fig. 3.2 (d), podemos apreciar las
subpartes imaginarias de la contribución principal. Notamos que los valores de las
partes awτe y awτµ se encuentran en el orden de 10−13, y awττ está entre dos y cuatro
ordenes de magnitud por debajo.

A fin de contextualizar nuestros resultados, comparamos nuestras predicciones de
awτ con las reportadas por varios modelos de extensión. Las estimaciones hechas para
awτ proveniente del modelo Simplest Little Higgs model son del orden de 10−9 para la
parte real y 10−10 para la imaginaria [46]. En modelos con un sector escalar extendido,
el valor de awτ oscila en el rango de 10−10 y 10−9 para la parte real, mientras que la
parte imaginaria se encuentra uno o dos ordenes de magnitud por debajo [39]. La
predicción para el Minimal Supersymetric Standar Model (MSSM) es de 10−6 para
la parte Re awτ y de 10−7 para Im awτ [47,48]. Para modelos de Unparticle Physics, la
predicción de awτ es del orden de 10−9 para su parte real y su parte imaginaria [49].
Y finalmente en THDMs el valor de Re awτ es del orden de 10−10 [50].

Caso violación de CP

En la fig. 3.3, podemos apreciar el comportamiento de la parte real e imaginaria
del MDMD del tau, para el caso violación de CP, como función de la masa del bosón
Z ′ en el intervalo mZ′ = [2.5, 7] TeV. Para la parte real Re awτ mostrada en 3.3 (a),
los valores van de 10−10 a 10−9, y el bosón Z ′η nos da la mayor contribución. El valor
más pequeño de Re awτ es debido a Z ′χ. El comportamiento de la parte imaginaria Im
awτ lo podemos observar en 3.3 (b), donde nuevamente Z ′η nos da la mayor señal, y
es tres ordenes de magnitud más pequeña que la parte real. El valor más pequeño
corresponde a Z ′χ y es del orden de 10−14. En la fig. 3.3 (c) se muestra la subparte real
perteneciente a Z ′η, y corresponde a la suma total debida a awτe, a

w
τµ y awττ . Podemos

observar que las contribuciones principales corresponden a awτe y awτµ. Finalmente, en

47



Momentos electromagnéticos débiles del leptón tau

Figura 3.3: Momento dipolar magnético débil del tau con violación de CP. (a) Contribución
del bosón Z ′ de los diferentes modelos a Re awτ e (b) Im awτ .(c),(d) La respectiva parte real
e imaginaria generada por las subpartes de la contribución principal debido a Z ′η.

la fig. 3.3 (d) se muestra la parte imaginaria de la contribución principal debida a Z ′η,
donde de manera análoga awτe y awτµ nos dan la mayor contribución.

3.3.2. MDED del leptón tau

En este apartado, discutimos los resultados numéricos del MDED del leptón tau,
expresando los resultados obtenidos en unidades de e cm. En la fig. 3.4, se muestran
las contribuciones de los diferentes bosones de norma Z ′ a dwτ como función de la masa
del Z ′ en el intevalo mZ = [2.5, 7] TeV. En la fig. 3.4 (a) observamos la contribución
de la parte real Re −dwτ , donde los valores se encuentran en los rangos de 10−27 e
cm y 10−27 e cm. Nuevamente Z ′η nos dá la mayor señal y Z ′LR la menor. El ĺımite
experimental actual que se tiene para este valor es de Re(dwτ ) < 0·50× 10−17 e cm a
95 % C.L. [3]. El comportamiento de la parte imaginaria de −dwτ , lo podemos apreciar
en la fig. 3.4 (b), donde observamos que las contribuciones de los distintos bosones
Z ′, se encuentran todos en el mismo orden de magnitud de 10−29 e cm. Estos valores
son mucho más pequeños que el ĺımite experimental actual que se tiene para la parte
imaginaria del MDED del leptón tau, cuyo valor es de Im(dwτ ) < 1·1 × 10−17 e cm,
a 9 % C.L. [3]. Finalmente, en la fig. 3.4 (c) y (d), se muestran la parte real Re dwτ e
imaginaria Im dwτ de las subpartes de la contribución principal debida a Z ′η. En ambos
casos, la subparte awτµ nos dá la contribución mayor a la parte imaginaria del MDED
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Momentos dipolares electromagnéticos débiles de fermiones pesados con violación
de sabor inducidos por Z ′

Figura 3.4: Momento dipolar eléctrico débil del tau. (a) Contribución del bosón Z ′ de
los diferentes modelos a Re dwτ e (b) Im dwτ .(c),(d) La respectiva parte real e imaginaria
generada por las subpartes de la contribución principal debido a Z ′η.

del leptón tau.

De manera análoga a como lo hicimos con el caso magnético, comparamos nuestros
resultados con los obtenidos en otros modelos de extensión. En el contexto de multi-
Higgs models, los valores predichos fueron de Re (dwτ ) ∼ 3 × 10−22 e cm [51]. En
el caso de leptoquarks models el valor encontrado fué (dwτ ) ∼ 10−19 e cm [52]. Por
otro lado, modelos con un sector escalar extendido predijeron valores para dwτ de
10−24 e cm para la parte real, y 10−26 e cm para la parte imaginaria [39]. El Minimal
supersymmetric Standar Model encontró valores para dwτ del orden de 10−21 e cm [53].
Para el modelo de Unparticle Physics el valor predicho es de 10−24 e cm para la parte
real e imaginaria de dwτ [49]. En el three doublet Higgs models, el valor estimado para
Re dwτ es del orden de 10−22 e cm [45]. Estos resultados para el MDED del leptón tau,
son mucho más grandes que nuestras estimaciones obtenidas.

3.4. Momentos electromagnéticos débiles del quark

top

Debido a que el quark top es el fermión más pesado del ME, es interesante pro-
fundizar en su fenomenoloǵıa, puesto que su masa es del mismo orden de magnitud
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Momentos electromagnéticos débiles del quark top

Figura 3.5: Momento dipolar magnético débil del top con conservación de CP. (a) Contri-
bución del bosón Z ′ de los diferentes modelos a Re awt e (b) Im awt .(c),(d) La respectiva
parte real e imaginaria generada por las subpartes de la contribución principal debido a Z ′S .

que la escala de rompimiento espontáneo de simetŕıa electrodébil (∼ 246 GeV), por
lo que esta part́ıcula puede ser más sensible a efectos de nueva f́ısica que el resto de
fermiones livianos. Consecuentemente, examinar las propiedades del quark top ofre-
cerá mejores oportunidades para obtener información sobre posible f́ısica más allá del
ME. Por lo que en este apartado, realizamos el análisis numérico de los momentos
dipolares electromagnéticos débiles del quark top. Para ello utilizaremos las Ecs. (3.7)
y (3.8), para el MDMD y MDED respectivamente. Los parámetros de acoplamiento
fuera de la diagonal ΩL,Rte y ΩL,Rtµ utilizados en estos cálculos, fueron previamente
calculados en las Refs. [21, 38,54].

3.4.1. MDMD del quark top

Caso conservación de CP

En la fig. 3.5 se muestra el resultado numérico del MDMD del quark top como
función del bosón de norma Z ′ en el intervalo mZ′ = [2.5, 7] TeV. Se debe recordar
que dichas anomaĺıas contemplan exclusivamente la contribución de CNCS mediadas
por el bosón Z ′. El escenario mostrado en estas gráficas es con conservación de CP.
En la fig. 3.5 (a) la contribución de los diferentes bosones de norma Z ′ a la parte real
de Re awt es presentada, y observamos que los valores van de 10−8 a 10−7 a lo largo del
intevalo usado. La principal contribución proviene del modelo Z ′S, estando en el orden
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Figura 3.6: Momento dipolar magnético débil del top con violación de CP. (a) Contribución
del bosón Z ′ de los diferentes modelos a Re awt e (b) Im awt .(c),(d) La respectiva parte real
e imaginaria generada por las subpartes de la contribución principal debido a Z ′S .

de 10−7, y el modelo Z ′χ nos da la menor señal del orden de 10−8. La parte imaginaria
de Im awt es ilustrada en la fig. 3.5 (b), y podemos apreciar que todos los modelos
comparten el mismo valor, el cual va decreciendo a medida que aumenta la masa del
bosón Z ′, estando en los ordenes de 10−11 y 10−12. En la fig. 3.5 (c), la subparte real
de la contribución principal debida a Z ′S es mostrada, dándonos la subparte awtt la
mayor contribución y awtc la menor. Finalmente, en la fig. 3.5 (d) podemos apreciar las
subpartes imaginarias de la contribución principal debida a Z ′S, la cual es generada
por las subpartes no diagonales awtc del orden de 10−11 y awtu del orden de 10−13.

El valor predicho para la contribución del bosón Z al MDMD del quark top
en el ME, en un momento trasferido de

√
q2 = 500 GeV es awt (ME) = −2·46 ×

10−4 − 1·45i× 10−3 [45]. Por otro lado, nuestros cálculos mostrados en las figs. 3.5,
3.6 y 3.7, fueron realizados en capa de masa q2 = m2

Z . Sin embargo, a fin de comparar
nuestras predicciones con los valores encontrados en la Ref. [45], realizamos también
nuestros cálculos en el momento trasferido de

√
q2 = 500 GeV, encontrando valores

para la parte real de tres ordenes de magnitud por debajo de la contribución del bosón
Z al ME, mientras que la parte imaginaria es dos o tres ordenes de magnitud más
pequeña.
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Figura 3.7: Momento dipolar eléctrico débil del quark top. (a) Contribución del bosón Z ′

de los diferentes modelos a Re dwt e (b) Im dwt .(c),(d) La respectiva parte real e imaginaria
generada por las subpartes de la contribución principal debido a Z ′S .

Caso violación de CP

Los diferentes valores de −awt como función de la masa del bosón Z ′ en el intervalo
mZ′ = [2.5, 7] TeV, es mostrada en la fig. 3.6. En 3.6 (a) podemos apreciar que las
contribuciones de los diferentes bosones de norma Z ′ a -Re awt son los mismos que
en caso conservación de CP, donde Z ′S nos dá la señal mayor del orden de 10−7 y Z ′χ
la menor del orden de 10−8. Similarmente para la parte imaginaria -Im awt mostrada
en la fig. 3.6 (b), podemos observar que todas las contribuciones tienen los mismos
valores y van de 10−12 a 10−11. En la fig. 3.6 (c) se muestran las subpartes reales
de la contribución principal debida a Z ′S, donde awtt nos dá la mayor contribución y
awtu la menor. En la fig. 3.6 (d) se muestra la contribución imaginaria a la subparte
principal, las cuales son generadas por las partes no diagonales awtc y awtu. En ambos
casos, el comportamiento de las intensidades de las subpartes princiales es similar al
caso violación de CP.

3.4.2. MDED del quark top

En este apartado, se hace el análisis para el MDED del quark top, donde nueva-
mente, los resultados son presentados en unidades de e cm. Las contribuciones a dwt
se muestran en la fig. 3.7, como función de los diferentes bosones de norma Z ′, en
el intervalo mZ′ = [2.5, 7] TeV. En 3.7 (a) se observa el comportamiento de la parte
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real Re dwt , y sus valores van de 10−27 e cm a 10−26 e cm a lo largo del intervalo
mencionado. La mayor contribución la dá Z ′S, mientras que la menor es ofrecida por
Z ′χ. El comportamiento de -Im dwt se observa en la fig. 3.7 (b), y va de 10−31 e cm a
10−30 e cm. En la fig. 3.7 (c) la subparte real de la contribución principal debida a Z ′S
es presentada, mostrando a −dwtt la contribución mayor y dwtu la menor. Finalmente
en 3.7 (d) se muestra el comportamiento de la subparte imaginaria de la contribu-
ción principal, donde notamos que las contribuciones son generadas por la parte no
diagonal dwtu y dwtc.
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Caṕıtulo 4

Momento dipolar magnético débil
del quark top en el modelo SLHM

4.1. El modelo más simple con un bosón de Higgs

ligero (SLHM)

El modelo SLHM se basa en la simetŕıa global [SU(3)×U(1)X ]2 con un subgrupo
diagonal normado [SU(3)×U(1)X ]. La simetŕıa global se rompe espontáneamente al
grupo de norma [SU(2)L×U(1)Y ] a través de los valores de expectación de vaćıo f1 y
f2 de los campos Φ1 y Φ2. De los 10 grados de libertad en Φ1 y Φ2, cinco son absorbidos
por el rompimiento de la simetŕıa SU(3). Los 5 grados de libertad restantes en Φ1,2

están parametrizados como [55–57]

Φ1 = eitβΘΦ
(0)
1 , Φ2 = e−iΘ/tβΦ

(0)
2 , (4.1)

donde

Θ = 1
f




0 0
h

0 0
h† 0

+ η√
2

1 0 0
0 1 0
0 0 1


 .

Aqúı tβ = tan β = f2/f1 y f =
√
f 2

1 + f 2
2 . Bajo el grupo de norma SU(2)L del ME,

η es un escalar real, mientras que h se transforma como un doblete y es identificado
como el doblete de Higgs del ME. Cabe mencionarse que después del rompimiento de
la simetŕıa global se generan diez bosones de Nambu-Goldstone, de las cuales cinco
son absorbidos y los cinco restantes adquieren masa por el mecanismo de Higgs. Los
cinco nuevos bosones de norma y un quark top pesado aparecen con una gran masa
de orden de TeV. Los bosones de norma pesado incluyen un bosón Z ′ y un doblete
complejo (Y 0, X−) de SU(2) con masas de

MZ′ =

√
2

3− t2w
gf, MX± = MY =

gf√
2
. (4.2)
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La masa del nuevo quark top pesado es

MT =
√

2
t2β + x2

λ

(1 + t2β)xλ

mt

v
f, (4.3)

donde xλ = λ1/λ2.
El término cinético [55–57] para Φ1,2 se puede expresar de la siguiente manera

LΦ =
∑
i=1,2

∣∣∣∣(∂µ + igAaµT
a − igx

3
Bx
µ)Φi

∣∣∣∣2 , (4.4)

donde T a son los generadores del grupo SU(3), Aaµ y Bµ representan los campos
de norma asociados a los grupos SU(3) y U(1), respectivamente. La constante de
acoplamiento gx está definida como gx = gtW√

1−t2W /3
, siendo tW la tangente del ángulo

de mezcla débil. Por otra parte, nuevos acoplamientos del bosón de Higgs pueden
derivarse de la Ec. (4.4), tales como ηHZ y ηHZ ′ [57]

LZHη,Z′Hη =
√

2(tβ −
1

tβ
)
mZ

f
(H∂µη − η∂µH)[Zµ − fZ′Z ′µ], (4.5)

con fZ′ = cW (1− t2W )/
√

3− t2W . Posteriormente, al realizar operaciones algebráicas
sencillas se pueden obtener las reglas de Feynman asociadas a los vertices ZHη y
Z ′Hη

HZη :
√

2(tβ −
1

tβ
)
mZ

f
(p1 − p2)µ y HZη : −

√
2(tβ −

1

tβ
)
mZ

f
(p1 − p2)µfZ′ ,

(4.6)

siendo p1 el cuadrimomento de la part́ıcula η y p2 el cuadrimomento del bosón de
Higgs.

4.1.1. Sector de quarks

El sector de quarks para SLHM está formado por dos partes: la inclusión universal
y la inclusión libre de anomaĺıas (ver Ref. [58, 59]). La primera parte da lugar a dos
quarks de carga 2/3, U y C, mientras que en la segunda parte surgen dos quarks de
carga −1/3, D y S. Las representaciones de norma y las hipercargas para el sector de
quarks en las diferentes inclusiones se resumen en la Tabla 4.1 [58, 60]. Por lo tanto,
la estructura de los campos de quarks depende de la inclusión que seleccionemos

� La inclusión universal. Cada familia de quarks consiste de un triplete (3) iz-
quierdo de SU(3) y tres singletes (1) derechos:

QT
m = (uL, dL, iUL)m, uRm, dRm, URm, (4.7)

con m = 1, 2, 3.
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� La inclusión libre de anomaĺıas. Aqúı, las dos primeras familias contienen tri-
pletes conjugados (3̄) izquierdos de SU(3) y tres singletes derechos

QT
1 = (dL,−uL, iDL), dR, uR, DR, (4.8)

QT
2 = (sL,−cL, iSL), sR, cR, SR, (4.9)

QT
3 = (tL, bL, iTL), tR, bR, TR, (4.10)

Inclusión universal

Fermión Q1,2 Q3 uRm,UR,m dR,m
Carga Qx 1/3 1/3 2/3 −1/3

Rep. SU(3) 3 3 1 1

Inclusión libre de anomaĺıas

Fermión Q1,2 Q3 uR,m,TR,m dR,m,DR,m,SR,m
Carga Qx 0 1/3 2/3 −1/3

Rep. SU(3) 3̄ 3 1 1

Tabla 4.1: La carga Qx y las representaciones de grupo SU(3) de los quarks para la
inclusión universal y para la inclusión libre de anomaĺıas.

4.1.2. Sector de Yukawa para quarks

Las interacciones de quarks tipo Yukawa para la tercera generación y para las dos
primeras generaciones están dadas por [57,58,60]

L3 = iλt1t̄
1
R3Φ†1Q3 + iλt2t̄

2
R3Φ†2Q3 +

λmd
Λ
d̄RmεijkΦ

i
1Φj

2Q
k
3 +H.c., (4.11)

L1,2 = iλdn1 d̄
1
RnQ

T
nΦ1 + iλdn2 d̄

2
RnQ

T
nΦ2 +

λmnu
Λ

ūRmεijkΦ
∗i
1 Φ∗j2 Q

k
n +H.c., (4.12)

donde n = 1, 2; i, j, k = 1, 2, 3; dRm corre sobre (dR, sR, bR, DR, SR);uRm corre sobre
(uR, cR, tR, TR). Los eigenestados de masa (fR, FR) son combinaciones lineales de
(f 1
R, f

2
R), con f = t, s, c y F = T, S, C,(

tR
TR

)
=

(
− cos θT sin θT
sin θT cos θT

)(
t1R3

T 2
R3

)
,

(
dR
DR

)
=

(
− cos θD sin θD
sin θD cos θD

)(
d1
R1

d2
R1

)
,
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(
sR
SR

)
=

(
− cos θS sin θS
sin θS cos θS

)(
d1
R2

d2
R2

)
. (4.13)

Los ángulos de mezcla están definidos como

sin θF =
λf1cβ√

(λf1cβ)2 + (λf2sβ)2

, cos θF =
λf2sβ√

(λf1cβ)2 + (λf2sβ)2

, (4.14)

siendo cβ = cos β y sβ = sin β. Finalmente, enfocándonos en la nueva part́ıcula η,
podemos escribir los acoplamientos de Yukawa como [57]

L
η
Y = −i

∑
f

mf

v
yηfηf̄γ5f +

mt

v
(iηT̄PRt+H.c.), (4.15)

donde el ı́ndice f incluye todos los fermiones del ME y fermiones pesados, mf es la
masa del fermión, v es el VEV de Higgs y T es el compañero pesado del quark top.
El parámetro yηf está definido por

yηl = yηd,s = yηb = −yηu,c = −yηt =

√
2v

f
cot 2β y yηQ = −v

f
[cot 2β + cot 2θQ] csc 2β,

(4.16)

para Q = D,S, T , con l = e, µ, τ .

4.1.3. Sector de quarks y bosones de norma

Las interacciones de quarks y los bosones de norma se pueden escribir como [60]

LF = Q̄mi/D
L
mQm + ūRmi/D

u
muRm + d̄Rmi/D

d
mdRm + T̄Ri/D

uTR + D̄Ri/D
dDR + S̄Ri/D

dSR,
(4.17)

donde

DL
(1,2)µ = ∂µ + igAaµT

∗
a , (4.18)

DL
3µ = ∂µ − igAaµTa + igx(

1

3
)Bx

µ, (4.19)

Du
µ = ∂µ + igx(−

1

3
)Bx

µ, (4.20)

Dd
µ = ∂µ + igx(

2

3
)Bx

µ. (4.21)
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4.1.4. El Simplest Little Higgs Model con término µ

El pseudoescalar η permanece sin masa en el modelo original. Por lo tanto, una
de las soluciones más simples para el problema sin masa, aśı como el problema de m2

0

genéricamente grande, es introducir un nuevo término −µ2(Φ†1Φ2+h.c) en el potencial
escalar [55,57]. De este modo, podemos expresar dicho término de la siguiente manera

−µ2(Φ†1Φ2 + h.c) = −2µ2f 2sβcβ cos(
η√

2sβcβf
) cos(

√
h†h

sβcβf
). (4.22)

Aśı, el potencial escalar se convierte en

V = −m2h†h+ λ(h†h)2 − 1

2
m2
ηη

2 + λ′h†hη2 + ..., (4.23)

donde

m2 = m2
0 −

µ2

sβcβ
, λ = λ0 −

µ2

12s3
βc

3
βf

2
, λ′ =

−µ2

4s3
βc

3
βf

2
. (4.24)

Aqúı

m2
0 =

3

8π

[
λ2
tM

2
T ln(

Λ2

M2
T

)− g2

4
M2

X ln(
Λ2

M2
X

)− g2

8
(1 + t2W )m2

Z′ ln(
Λ2

m2
Z′

)

]
, (4.25)

λ0 =
1

3s2
βc

2
β

m2
0

f 2
+

3

16π2

[
λ4
t ln(

M2
T

m2
t

)− g4

8
ln(

M2
X

M2
W

)− g4

16
(1 + t2W ) ln(

m2
Z′

m2
Z

)

]
, (4.26)

siendo m0 y λ0 las contribuciones a nivel de un lazo en la masa de Higgs [55,57], con
λt =

√
2mt/v y Λ ' 4πf . Además, el valor de expectación de vaćıo v, la masa del

Higgs y la masa de η están dados como

v2 =
m2

λ
,m2

h = 2m2,m2
η =

µ2

sβcβ
cos(

v√
2fsβcβ

), (4.27)

De las Ecs. (4.24) y (4.27), podemos reescribir m2
η mediante

m2
η = (m2

0 −
m2
h

2
) cos(

v√
2fsβcβ

), (4.28)

donde sβcβ =
tβ

1+t2β
.
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4.2. Resultados

Momentos dipolares magnéticos débiles del quark top en el
modelo SLHM

Z(q)

t(k + p) t(k + p′)

t(p) t(p′)η(k)

(a)

Z(q)

T (k + p) T (k + p′)

t(p) t(p′)η(k)

(b)

Z(q)

T (k + p) T (k + p′)

t(p) t(p′)H(k)

(c)

Z(q)

t(k + p) t(k + p′)

t(p) t(p′)Z ′(k)

(d)

Z(q)

t(k + p) t(k + p′)

t(p) t(p′)Y 0(k)

(e)

Z(q)

b(k + p) b(k + p′)

t(p) t(p′)X(k)

(f)

Figura 4.1: Contribución al MDMD del quark top a nivel de un lazo en el SLHM,
mediado por el pseudoescalar pesado η, (a) con mt, (b) con la masa del top pesado
mT , (c) mediado por el bosón de Higgs, y por los bosones de norma pesados (d) Z ′,
(e) Y 0 y (f) X.

El objetivo de este caṕıtulo es calcular el momento dipolar magnético anómalo débil
(MDMD) del quark top, en el modelo SLHM a nivel de un lazo, ya que la importancia
de este modelo es ofrecer una posible solución al problema de la jeraqúıa.

Las contribuciones de este modelo al MDMD del quark top, provienen de los lazos
que contienen a los bosones de norma pesados (Z ′, Y 0 y X), aśı como al pseudoescalar
pesado η y al bosón de Higgs.

Nos enfocamos en el quark top, ya que, estudiar sus propiedades, es uno de los
objetivos principales del LHC, además, debido a que esta es la part́ıcula más pesada
que predice el Modelo Estándar (ME) mt = 173 GeV, es interesante profundizar en
su fenomenoloǵıa, puesto que su masa es del mismo orden de magnitud que la escala
de rompimiento espontáneo de simetŕıa electrodébil ( v = 246 GeV), por lo que es
más sensible a efectos de nueva f́ısica que el resto de los fermiones livianos.

El Lagrangiano efectivo para los momentos dipolares electromagnéticos débiles
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ηt̄t mt
v
ytηγ

5, ytη = −
√

2v
f

cot 2β

Ztt −i g
2 cos θw

γµ(gV t − gAtγ5)

ZµT̄ T −i2g sin θ2w
3 cos θw

γµ

ηT̄T mt
v
PR

HT̄T −igHtT , gHtT =
tβ

1+t2β
(xλ − 1

xλ
)mt
v

Z ′t̄t i g
2 cos θw

γµ(gV Z′ − gAZ′γ5)

Y 0t̄t g√
2
δtγ

µPL
X−b̄t g√

2
δtγ

µPL

Tabla 4.2: Reglas de Feynman para los acoplamientos del quark top en el SLHM.

del quark top, esta dado mediante [61]

Leff =
1

2
ψ̄σµν(F zM − iF zEγ5)ψZµν , (4.29)

donde Zµν es el campo de fuerza del bosón Z, F z
M y F z

E son funciones a determinar,
y son llamados factores de forma, que corresponden al factor mágnetico débil y al
factor eléctrico débil respectivamente. El MDMD (F z

M ) y MDED (F z
E ) se pueden

definir sin dimensiones como [39]

azt = −2mtF
z
M y dzt = −eF z

E. (4.30)

Las reglas de Feynman utilizadas para llevar a cabo nuestos cálculos, están dadas
en la Tabla 4.2.

Cabe señalar, que primero realizamos los cálculos correspondientes a la contribu-
ción del momento dipolar cromomagnético del quark top, en este modelo del SLHM,
y obtuvimos los mismos resultados que los mostrados en la Ref. [62].

La contribución total al momento magnético anómalo débil del quark top en el
SLHM, se genera a partir de los diagramas de Feynman mostrados en la fig. 4.1.

Los cálculos se desarrollaron mediante la técnica de parametrización de Feynman
para los tres primeros diagramas fig. 4.1(a)-(c), y los resultados fueron expresados
en términos de integrales paramétricas que pueden ser evaluadas numéricamente. Los
otros tres diagramas fig. 4.1 (d)-(f) que corresponde a los bosones de norma pesados,
fueron resueltos mediante el método de regularización dimensional de las funciones
escalares de Passarino-Veltman.

Comenzaremos con los cálculos correspondientes al diagrama mediado por el pseu-
doescalar η, mostrado en la fig. 4.1(a). Al hacer uso de las reglas mostradas en Tabla
4.2, construimos la amplitud tensorial, la cual nos queda de la siguiente manera

Mz
ηt =

∫
d4k

(2π)4
ū(p′)

mt

v
ytηγ

5 (/k + /p′ +mt)

(k + p′)2 −m2
t

−ig
2cw

γµ(gaV − gaAγ5)
(/k + /p+mt)

(k + p)2 −m2
t

mt

v
ytηγ

5 u(p)

k2 −m2
η

=
−ig
2cw

m2
t

v2
(ytη)

2

∫
d4k

(2π)4
ū(p′)

γ5(/k + /p′ +mt)γ
µ(gaV − gaAγ5)(/k + /p+mt)γ

5

[(k + p′)2 −m2
t ][(k + p)2 −m2

t ][k
2 −m2

η]
u(p).

(4.31)
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Para resolver la integral anterior, usamos el método de parametrización de Feyn-
man [34], aśı como las respectivas condiciones cinemáticas y de transversalidad. Se
realizó primero la correspondiente contracción de ı́ndices en el numerador de la Ec.
(4.31), se aplicarón las ecuaciones de Dirac, se utilizó el corrimiento encontrado en
la parametrización de Feynman, se simplificaron los resultados y finalmente se imple-
mentó la identidad de Gordón, obteniendo

Mz
ηt =

−gm3
t

2cwv2

(ytη)
2gaV

16π2

∫ 1

0
dz

∫ 1−z

0
dy

(1− z)2

m2
t (1− z)2 −m2

zy(1− y − z) +m2
ηz
. (4.32)

Al sustituir el valor de ytη = −
√

2v
f

cot 2β, hacer algunas simplificaciones y dejar nuestra

expresión de manera adimensional usando la Ec. (4.30), obtenemos como resultado
la contribución del pseudoescalar η al MDMD del quark top, y está dado por

azηt =
m4
t

32π2

gaV g

cwf2

(1− t2β)2

t2β

∫ 1

0
dz

∫ 1−z

0
dy

(1− z)2

m2
t (1− z)2 −m2

zy(1− y − z) +m2
ηz
. (4.33)

La parte faltante del pseudoescalar η al MDMD, pero ahora utilizando el top
pesado, se muestra en el diagrama de la fig. 4.1(b), y su amplitud correspondiente es
dada por la ecuación

Mz
ηT =

∫
d4k

(2π)4
ū(p′)

mt

v
PL

(/k + /p′ +mT )

(k + p′)2 −m2
T

−i2gsw2

3cw
γµ

(/k + /p+mT )

(k + p)2 −m2
T

mt

v
PR

1

k2 −m2
η

u(p)

=
m2
t

v2

−i2gsw2

3cw

∫
d4k

(2π)4
ū(p′)

PL(/k + /p′ +mT )γµ(/k + /p+mT )PR
[(k + p′)2 −m2

T ][(k + p)2 −m2
T ][k2 −m2

η]
u(p).

(4.34)

Donde PL = 1+γ5

2
y PR = 1−γ5

2
, son los proyectores de quiralidad, mη es la masa del

pseudoescalar η y mT la masa del nuevo quark top pesado.
Resolvemos la Ec. (4.34) de manera análoga que la anterior, usando el método

de parametrización de Feynman, de modo que después de realizar varios cálculos, el
resultado final nos queda como

azηT =
m4
t

v2

sw2g

6π2cw

∫ 1

0
dz

∫ 1−z

0
dy

z(1− z)
−m2

t (1− z)2 +m2
zy(1− y − z) + (m2

t −m2
T )(1− z)−m2

ηz
.

(4.35)

Para obtener la contribución total del MDMD del quark top (azη) mediado por el
pseudoescalar η, sumamos las Ecs. (4.33) y (4.35), cuyo valor total lo denotaremos
por

azη = azηt + azηT .

El MDMD para todos los casos que se analizan a continuación, se estudian en
función de la nueva escala de enerǵıa f . Por lo que se propone un escenario de enerǵıas
comprendidos entre 4 TeV y 10 TeV para el estudio fenomenológico. Espećıficamente,
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el rango de esta nueva escala de enerǵıa es acorde con el ĺımite inferior establecido
por varios observables [63, 64].

Al realizar las evaluaciones numéricas de la contribución al valor total de azη, con
la ayuda de Mathematica y usando las Ecs. (4.2),(4.3),(4.25), y (4.28), obtenemos
los resultados mostrados en la gráfica de la fig. 4.2, donde se puede apreciar el com-
portamiento de −azη en función de la nueva escala de enerǵıa f , variando esta última
de 4 a 10 TeV, y fijando el valor de tβ, haciendolo para los casos tβ = 2, 3 y 4. Po-
demos observar en las gráficas un comportamiento un poco decreciente a medida que
aumenta el valor de f , oscilando en los ordenes de 10−7 a 10−8 para todos los distintos
valores de tβ, siendo tβ = 4 el que nos da ligeramente la mayor señal.

Figura 4.2: Contribución de azη, en función de la nueva escala de enerǵıa f , con tβ =
2, 3, 4.

Continuando con nuestros cálculos, tenemos ahora, la contribución al MDMD del
quark top en el SLHM, mediado por el escalar Higgs, el cual se representa en el
diagrama de Feynman mostrado en la fig. 4.1(c), y la amplitud correspondiente está
dada a través de la ecuación

Mz
HT =

∫
d4k

(2π)4
ū(p′)− igHTt

(/k + /p′ +mT )

(k + p′)2 −m2
T

−i2gsw2

3cw
γµ

(/k + /p+mT )

(k + p)2 −m2
T

− igHTt
u(p)

k2 −m2
H

= i(gHTt )2 gsw
2

3cw

∫
d4k

(2π)4
ū(p′)

(/k + /p′ +mT )γµ(/k + /p+mT )

[(k + p′)2 −m2
T ][(k + p)2 −m2

T ][k2 −m2
H ]
u(p).

(4.36)

Procediendo de manera análoga, resolvemos la Ec. (4.36), por medio del método
de parametrización de Feynman. Los resultados obtenidos una vez que hemos hecho
todos los cálculos necesarios son los siguientes

azH =
−m3

t sw
2g

12π2cw

t2β(x2
λ − 1)2

(1 + t2β)2v2x2
λ

×
∫ 1

0
dz

∫ 1−z

0
dy

(1− z)[mtz +mT ]

m2
t (1− z)2 −m2

zy(1− y − z)− (m2
t −m2

T )(1− z) +m2
Hz

.

(4.37)
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Al realizar las evaluaciones numéricas, obtenemos los datos mostrados en la fig. 4.3,
donde podemos apreciar el comportamiento de la contribución a −azH , ahora mediado
por el bosón de Higgs, en función de la nueva escala de enerǵıa f , variando esta última
nuevamente de 4 a 10 TeV, y fijando el valor de tβ, haciendolo para los casos tβ = 2, 3
y 4. Podemos observar en las gráficas un comportamiento un poco decreciente a me-
dida que aumenta el valor de f , estando en el orden de 10−5 a 10−6 para todos los
distintos valores de tβ, dándonos tβ = 4 la mayor contribución.

Figura 4.3: Contribución de azH , en función de la nueva escala de enerǵıa f , con
tβ = 2, 3, 4.

Los cálculos siguientes corresponden a las contribuciones al MDMD del quark top,
mediadas por los bosones de norma pesados. En estos, hemos utilizado un método
diferente, debido a que los cálculos involucrados son más extensos y engorrosos, por
lo que, hemos usado aqúı, el método de descomposición tensorial mediante las fun-
ciones escalares de Passarino-Veltman (PaVe), utilizando para ello las paqueterias
FeynCalc [32] y PackageX [33]. Señalamos también que dichas contribuciones de los
bosones de norma pesados se hicieron en la norma unitaria.

Comenzaremos con la contribución del bosón Z ′ que se muestra en el diagrama
de la fig. 4.1(d), cuya amplitud podemos escribir mediante

Mt
Z′ =

−g3

8cw3

∫
d4k

(2π)4
ū(p′)γα(gV Z′ − gAZ′γ5)(/k + /p′ +mt)γ

µ(gV t − gAtγ5)(/k + /p+mt)γ
β

×
(gV Z′ − gAZ′γ5)(−gαβ +

kαkβ
m2
Z′

)u(p)

[(k + p′)2 −m2
t ][(k + p)2 −m2

t ][k
2 −m2

Z′ ]
.

(4.38)

Al realizar los cálculos necesarios encontramos la forma anaĺıtica para el MDMD del
quark top, mediado por el bosón Z ′, la cual se encuentra expresada en la Ec. (4.39).
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azZ′ =
g3
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√
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,

(4.39)

donde C0 = C0(m2
t ,m

2
t ,m

2
Z ,m

2
t ,m

2
Z′ ,m2

t ) es la función escalar PaVe, gV Z′ =
1
2

+ 1
3
sw2

√
3−4sw2 ,

gAZ′ =
1
2
−sw2

3−4sw2 , sw = sin θW , y para el quark top tenemos que gV t = 0.19 y gAt = 0.5.
Podemos observar también en la Ec. (4.39), que nuestra contribución se encuentra
libre de divergencias ultravioletas.

La masa del bosón Z ′, aśı como de los bosones Y 0 y X, dependen de la nueva
escala de enerǵıa f , de la forma que se muestra en la Ec. (4.2).

Tomando en cuenta estas consideraciones y la Ec. (4.39), obtuvimos los resultados
númericos que se muestran en la gráfica de la fig. 4.4, donde se aprecia el comporta-
miento de −azZ′ en función de la nueva escala de enerǵıa f , variando esta última de 4
a 10 TeV. Cabe señalar que en este caso nuestro valor para el MDMD sólo depende
de f , y no de tβ como en todos los casos anteriores. Se observa que la contribución
a azZ′ tiene un buen comportamiento, y es decreciente conforme crece el valor de f ,
estando esta contribución en el rango de 10−6 y 10−7.

Respecto a la contribución al MDMD del quark top mediada por el bosón Y 0,
y mostrada en el diagrama de la fig. 4.1(e), podemos escribir su amplitud tensorial
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Figura 4.4: Contribución del bosón de norma Z ′ al MDMD del quark top, en función
de la nueva escala de enerǵıa f .

como

Mt
Y 0 =

−ig3

16cw
(δt)

2

∫
d4k

(2π)4
ū(p′)γα(1 + γ5)(/k + /p′ +mt)γ

µ(gV t − gAtγ5)(/k + /p+mt)γ
β

×
(1 + γ5)(−gαβ +

kαkβ
m2
Y 0

)u(p)

[(k + p′)2 −m2
t ][(k + p)2 −m2

t ][k
2 −m2

Y 0 ]
.

(4.40)

La expresión anaĺıtica que obtuvimos al resolver la integral tensorial (4.40), y que
nos da la contribución del bosón Y 0 al MDMD del quark top, se muestra en la Ec.
(4.41).

66
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azY 0 =
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(4.41)

donde C0 = C0(m2
t ,m

2
t ,m

2
Z ,m

2
t ,m

2
Y 0 ,m2

t ) es la función escalar PaVe, mY 0 representa

la masa del bosón neutro Y 0, δt =
tβ

1+t2β
(xλ − 1

xλ
) mt
mT

y mT es la masa del top pesado

y su forma se indica en la Ec. (4.3). Observamos que el resultado de la Ec. (4.41) es
finito, al encontrarse libre de divergencias ultravioletas.

Figura 4.5: Contribución de azY 0 , en función de la nueva escala de enerǵıa f , con
tβ = 2, 3, 4.

Los resultados numéricos de esta contribución los podemos observar en la fig.
4.5, donde se grafica la aportación del bosón neutro Y 0 al MDMD del quark top, en
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función de la nueva escala de enerǵıa f , variando de 4 a 10 TeV, y tomando en cuenta
los tres escenarios antes usados, tβ = 2, 3, 4. Observamos nuevamente que la mayor
contribución nos la da tβ = 4, y que los valores se encuentra en el orden de 10−8 y
10−9.

Finalmente, la contribución del bosón de norma pesado X al MDMD del quark
top, es mostrado en la fig. 4.1(f), y su amplitud está dada por

Mt
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2
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El resultado anaĺıtico que encontramos para la integral anterior, se expresa mediante
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donde C0 = C0(m2
t ,m

2
t ,m

2
Z ,m

2
b ,m

2
X ,m

2
b) es la función escalar PaVe y mX es la masa

del nuevo bosón cargado X.
Cabe mencionar que de manera análoga a los anteriores, el resultado anaĺıtico

obtenido está libre de divergencias.
Los valores numéricos para −azX los podemos apreciar en la gráfica de la fig. 4.6,

en su parte real e imaginaria, donde se observa el MDMD en función de la escala de
enerǵıa f , variando como en los casos anteriores de 4 a 10 TeV, apreciando en los
dos casos, un comportamiento decreciente a medida que f crece. En fig. 4.6 (a) se
muestra la parte real, y se encuentra oscilando entre los rangos de 10−8 a 10−11, en
fig. 4.6 (b), se muestra la parte imaginaria y sus valores están entre 10−11 y 10−14.
Cabe señalar que esta contribución del bosón X, fue la única que nos arrojó parte
imaginaria a diferencia de todas las demás contribuciones que sólo nos dieron parte
real.

(a) (b)

Figura 4.6: Contribución de azX , en función de la nueva escala de enerǵıa f , con
tβ = 2, 3, 4. En (a) se muestra su parte real y en (b) la imaginaria.

−azt
f [TeV ] tβ = 2 tβ = 3 tβ = 4

4 7.01× 10−6 1.46× 10−5 2.19× 10−5

6 5.48× 10−7 9.34× 10−6 1.41× 10−5

8 3.10× 10−6 6.84× 10−6 1.04× 10−5

10 2.41× 10−6 5.39× 10−6 8.25× 10−6

Tabla 4.3: Estimaciones para azt , en los diferentes escenarios de tβ = 2, 3, 4 y para
f = 4, 6, 8, 10.

Finalmente, podemos decir que la contribución total de nueva f́ısica, relacionada
con el MDMD del quark top en el modelo SLHM, está conformado por las siguientes
partes

azt = azη + azH + azZ′ + azY 0 + azX . (4.44)
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De modo que podemos resumir las aportaciones totales de azt para los distintos tβ y
f , en la Tabla 4.3. Donde podemos observar, que la mejor contribución la obtenemos
cuando tβ = 4 y para rangos de enerǵıa de 4 a 8 TeV, obteniendo valores del orden
de 10−5.

Respecto a las contribuciones en el Modelo Estándar, tenemos que el valor re-
portado en la literatura para el momento dipolar magnético débil del quark top
es de azt (ME) = −5.6 × 10−3 + 5.35i × 10−3, usando un momento transferido de√
q2 = 500GeV [45], por lo que nos encontramos con nuestras predicciones, dos or-

denes de magnitud por debajo de este valor para la parte real. Podemos también
comparar estas predicciones, con las obtenidas en el caṕıtulo anterior, donde se es-
timó la contribución del MDMD del quark top, en el contexto de CNCS mediadas por
el bosón Z ′, donde obtuvimos valores del orden de 10−7 para su parte real y de 10−11

para la parte imaginaria. Respecto a las restricciones experimentales para el MDMD
del quark top no podemos decir nada aún debido a que todavia no se tienen cotas
experimentales.
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Caṕıtulo 5

Conclusiones

Se calculó anaĺıtica y numéricamente el MDCM de los quarks en el ME por dos
métodos distintos, el método de parametrización de Feynman y el método de Regulari-
zación Dimensional (RD) de las funciones escalares de Passarino- Veltman, y se mostró
matemáticamente por RD que el diagrama correspondiente al trivértice del gluon
contiene una divergencia infrarroja cuando se trabaja con el gluon en capa de masa
q2 = 0. Debido a esto, el MDCM debe ser evaluado fuera de capa de masa espećıfica-
mente evaluamos nuestros resultados numéricos en el momento de transferencia del
gluon espacialoide q2 = −m2

Z y temporaloide q2 = +m2
Z . Esta elección es basada en

la constante de acoplamiento fuerte αs, la cual está evaluada en el valor convencional
espacialoide αs(−q2 = m2

Z) = 0.1179 [3, 65–68]. La predicción más importante de
nuestro trabajo es la evaluación del MDCM del quark top en el valor espacialoide
µ̂t(−m2

Z) = −0.0224− 0.000925i, cuya parte real coincide con el reciente reporte ex-
perimental reportado por CMS µ̂Expt = −0.024+0.013

−0.009(Est.)+0.016
−0.011(Sist.) [14], mientras

que nuestra predicción para la parte imaginaria es debida a la parte electrodébil que
se da mediante la interacción del bosón W. De nuestros resultados obtenidos para el
MDCM del quark top, podemos apreciar que ambos parámetros perturvativos αs y µ̂t
tienen comportamientos similares: están indeterminados cuando q2 → 0 y describen
interacciones fuertes bien portadas en la escala convencional espacialoide q2 = −m2

Z .
Por otro lado, el quark top es la part́ıcula más pesada que predice el ME, y es más
sensible a efectos de nueva f́ısica, lo que nos ofrecerá oportunidades de información
sobre f́ısica más allá del ME.

Se encontraron también expresiones anaĺıticas, para los momentos dipolares elec-
tromagnéticos débiles para cualquier fermión cargado del ME, a nivel de un lazo,
en el contexto de corrientes neutras que cambian sabor mediadas por un bosón de
norma neutro masivo de esṕın 1. Se utilizó para ello, el Lagrangiano general más
renormalizable que incluye violación de sabor mediado por un bosón de norma de-
notado como Z ′. Los cálculos numéricos los realizamos para el quark top y para el
leptón tau, debido a que nos proporionan las mayores señales, y a nuestro interés
de buscar f́ısica más allá del ME. Consideramos para ellos dos casos de acuerdo a la
simetŕıa CP, conservación de CP y violación de CP. Para los distintos modelos Z ′

utilizados, encontramos que la mejor predicción para el MDMD del leptón tau nos la
proporciona Z ′η, prediciendo valores para Re awτ del orden de 10−9, encontrándonos
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un orden de magnitud por debajo de la contribución del bosón Z al ME, cuyo valor
es del orden de 10−8. Para la parte imaginaria de Im awτ encontrámos valores del
orden de 10−13, la cual es cinco órdenes de magnitud menor que la reportada para
la contribución del bosón Z en el ME. Para el MDED del lepton tau, el valor más
grande predicho fue debido nuevamente al bosón Z ′η y fue del orden de 10−26 e cm,
mientras que la parte imaginaria de Im dwτ es tres ordenes de magnitud más chica.
Debemos mencionar que nuestras predicciones encontradas para el MDMD del leptón
tau, es de la misma intensidad que las predichas en otros modelos de extensión, como
el Unparticle Physics, el SLHM y models with an extended scalar sector. Respecto al
quark top, podemos decir que la mejor predicción al MDMD la proporcionó el bosón
Z ′S, dándonos valores para la parte real de Re awt del orden de 10−7, y 10−11 para
la parte imaginaria de Im awt . Por otro lado, la contribución del MDED del quark
top para la parte real Re dwt se encontró del orden de 10−26 e cm, y para la parte
imaginaria Im dwt del orden 10−31 e cm.

Es interesante notar que los valores numéricos para el MDMD y MDED, para el
leptón tau y el quark top no están demasiado suprimidos con respecto a los valores
conocidos en el ME, cuando se toman en cuenta CNCS. Esto puede sugerir que,
en el futuro, cuando los ĺımites experimentales lo permitan, las mediciones con más
precisión podŕıan evidenciar efectos debido a la prescencia de CNCS mediados por
el bosón Z ′ a los momentos dipoláres débiles. Por lo que nuestras predicciones no
pueden ser descartadas.

Finalmente, encontramos expresiones anaĺıticas y numéricas para el MDMD del
quark top, en el modelo del SLHM, en donde se predice la existencia de una nueva
part́ıcula pseudoescalar masiva neutra η. La mejor prediccion la encontramos en un
rango de enerǵıa de 4 a 8 Tev, con tβ = 4, y es del orden de 10−5, estando dos ordenes
de magnitud por debajo de la predición reportada para el ME, que es del orden de
10−3 para la parte real. La contribución para la parte imaginaria la obtuvimos del
bosón X, y fue del orden de 10−11. Debido a que nuestras predicciones en este modelo
se encuentran muy cerca de las reportadas por el ME, estas podŕıan significar indicios
que nos puedan arrojar información importante para descubrir efectos de nueva f́ısica.
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Apéndice A

Valores utilizados

En el Caṕıtulo 2, utilizamos la carga del electrón e =
√

4πα y la constante de
acoplamiento fuerte del grupo QCD gs =

√
4παs. Nuestros valores usados de [3] son:

la constante de acoplamiento fuerte αs(mZ) = 0.1179, el ángulo de mezcla débil sw ≡
sinθW (mZ) =

√
0.23121, the boson masses mW = 80.379 GeV, mZ = 91.1876 GeV,

mH = 125.1 GeV y mt = 172.76 GeV. La constante de estructura fina α(mZ) = 1/129
es tomada de [35].

Respecto a la masa de los quarks ligeros los valores proporcionados en el PDG
2020 en el esquema de escala de bajas enerǵıas es

mu(2GeV ) = 0.00216 GeV,

md(2GeV ) = 0.00467 GeV,

ms(2GeV ) = 0.093 GeV,

mc(mc) = 1.27 GeV,

mb(mb) = 4.18 GeV.

(A.1)

Sin embargo, a fin de evaluar en una forma consistente los momentos dipolares
cromomagnéticos en la escala del bosón de norma Z, se obtuvieron las masas corre-
doras de estos quarks ligeros en esta escala a través de RunDec [69,70] en [71], y los
valores son los siguientes

mu(mZ) = 0.00123 GeV,

md(mZ) = 0.00266 GeV,

ms(mZ) = 0.05298 GeV,

mc(mZ) = 0.6194 GeV,

mb(mZ) = 2.874 GeV.

(A.2)

La matriz de Cabibbo-Kobayashi-Maskawa (CKM) es [3]

VCKM =

 |Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

 0.9737 0.2245 0.00382
0.221 0.987 0.041
0.008 0.0388 1.013

 . (A.3)
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Las cargas eléctricas de los quarks son Qui = 2/3, Qdi = −1/3, y las cargas débiles
gV ui = (3− 8s2

W )/6, gAui = 1/2, gV di = −(3− 4s2
W )/6 y gAdi = −1/2.
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Apéndice B

Factores de forma de los MDEMD

F a
V =

g

16π2cW em2
Z′(m2

Z − 4m2
fi

)2

[
m4

fi

(
−4m2

fj (2B01 − 3B02 +B03 + C01m
2
Z − 6C01m

2
Z′ + 1)

+2m2
Z′

(
9B01 − 11B02 + 2B03 − 8C01m

2
Z − 4

)
+m2

Z(−B01 +B02 + 1)− 14C01m
4
fj − 34C01m

4
Z′

)
−2m3

fimfj

(
m2

Z′(6B01 − 10B02 + 4B03 + 8C01m
2
fj − 9C01m

2
Z) + 2m2

fj (3B01 −B02 − 2B03

+C01(mfj −mZ)(mfj +mZ))− 10C01m
4
Z′ +m2

Z

)
+m2

fi

(
2m4

Z′(−10B01 + 6B02 + 4B03 − 9C01m
2
fj + 8C01m

2
Z)

+m2
fjm

2
Z(2B01 − 3B02 +B03 + 2C01m

2
fj + 1)

+m2
Z′

(
−m2

Z(9B01 − 10B02 +B03 + 12C01m
2
fj − 2) +2m2

fj (5B01 − 3B02 − 2B03) + 4C01m
4
Z

)
+2m4

fj (5B01 − 3B02 − 2B03 + 3C01m
2
fj ) + 12C01m

6
Z′

)
+ 2mfimfjm

2
Z

(
m2

Z′(3B01 − 4B02 +B03 + 5C01m
2
fj − 2C01m

2
Z)

−m2
fj (−B02 +B03 + C01m

2
fj )− 4C01m

4
Z′

)
+ 2m6

fi(−B01 +B02 + C01(5m2
fj +m2

Z + 12m2
Z′)− 2)

+ 2m5
fimfj (6B01 − 6B02 + 4C01m

2
fj − C01m

2
Z − 16C01m

2
Z′ + 4)

−m2
Z(B01 −B03)(m4

fj +m2
fjm

2
Z′ − 2m4

Z′)− 2C01m
8
fi − 4C01m

7
fimfj

]
.

(B.1)
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F a
A =

g

16π2cW em2
Z′(m2

Z − 4m2
fi

)2
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m4

fi

(
−4m2

fj

(
2B01 − 3B02 +B03 + C01m
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2
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9B01 − 11B02 + 2B03 − 8C01m
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)
+m2
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4
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donde

B01 = B0(m2
fi
,m2

Z′ ,m2
fj
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B02 = B0(m2
Z ,m

2
fj
,m2

fj
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B03 = B0(0,m2
Z′ ,m2

fj
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C01 = C0(m2
fi
,m2

fi
,m2

Z ,m
2
fj
,m2

Z′ ,m2
fj
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son las funciones escalares de Passarino-Veltman B0 y C0.
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