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This work deals with thick braneworld models, in an environment where the Ricci scalar is changed to
accommodate the addition of two extra terms, one depending on the Ricci scalar itself, and the other,
which takes into account the trace of the energy-momentum tensor of the scalar field that sources
the braneworld scenario. We suppose that the scalar field engenders standard kinematics, and we show
explicitly that the gravity sector of this new braneworld scenario is linearly stable. We illustrate the

general results investigating two distinct models, focusing on how the brane profile is changed in the

modified theories.
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1. Introduction

This work deals with braneworld models in the presence of
scalar fields [1-3] in an AdSs geometry with a single extra di-
mension of infinite extent. Differently from the original Randall
and Sundrum (RS) proposal presented in [1], which leads to the
thin braneworld scenario, the coupling with scalar fields is also
of interest and leads to another, thick braneworld scenario [2-4].
The presence of a scalar field makes the warp function to behave
smoothly, leading to a thick braneworld scenario. This possibility
has opened a new area of study, and here we quote Ref. [5] for
some works on the subject.

In the current work, we go beyond General Relativity. Before
doing this, however, we should take care about issues concerning
the presence of degrees of freedom which may lead to instabilities
in these theories, and here we recommend the interesting reviews
on the subject [6]. To go beyond General Relativity, we add two
distinct contributions, one taking the metric tensor g,, to change
R = g,wRMY (the Ricci scalar, the trace of the Ricci tensor) to F(R),
and the other, modifying Einstein’s equation with the inclusion of
auxiliary fields, as suggested recently in Ref. [7]. To be more spe-
cific, we recall that the modification that changes R into F(R) in
the Einstein-Hilbert action is older and was reviewed in Ref. [8].
The modification introduced in the presence of auxiliary fields is
more recent [7] and was studied in Refs. [9,10] within the cosmo-
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logical context, to see how the auxiliary fields may contribute to
the cosmic evolution. Moreover, it has also been recently studied
within the thick braneworld context, in five dimensions with a sin-
gle extra dimension of infinite extent [11,12]. See also Refs. [13,14]
for other related studies on thick branes.

In order to widen the interest in the work, here we add
together both R and T = g, T*" (the trace of the energy-
momentum tensor) into F(R, T) to describe the generalized model,
inspired by the recent investigations [15,16]. We then study how
the two modifications act to change the standard braneworld sce-
nario, in an AdSs braneworld geometry with a single extra spatial
dimension of infinite extent. We implement the investigation in
Section 2, where we discuss the general theory, including linear
stability of the gravity sector. We then study two specific new
models in Section 3, working out the most important results of
the models. As one knows, scalar fields play a fundamental role in
cosmology as possible explanations for inflation, late time acceler-
ation, and dark matter, among other issues. Also, scalar fields are
fundamental sources in the thick braneworld scenario with a sin-
gle extra dimension of infinite extent. Thus, here we investigate
scenarios described by a single real scalar field to source the thick
brane configuration, leaving aside studies related to cosmology. We
then end the work in Section 4, where we include our comments
and conclusions.

2. The problem

We start investigating a model that describes generalized grav-
ity coupled to a scalar field in five-dimensional space-time, with a
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single extra dimension y of infinite extent. The model is controlled
by an action of the form

1
S=/d4xdy\/@(—ZF(R,T)+£s), (1)

where R and T represent the Ricci scalar and the trace of the
energy-momentum tensor, and L describes the source Lagrange
density, which we suppose is of the form

1 a
Ls=5VapV'¢ = V(P). (2)

It engenders standard kinematics, and we are using 47G® =1,
g = det(gq), a,b=0,1,...,4 and the signature of the metric
is (+ — — — —). We focus attention on the profile of the thick
braneworld scenario, so the addition of fermions and gauge fields
will not be considered in this work. We take the spacetime coordi-
nates and fields as dimensionless quantities, and we use Greek in-
dices for the embedded (3+ 1)-dimensional space, u,v =0,1,2, 3.

We can use the source Lagrange density (2) to write the
energy-momentum tensor in the form

Tap = 5 G Veh V6 + ZabV + Va9 Voo, @)
which contributes to give the trace

T =—(3/2)VapV®® +5V. (4)
Moreover, the equation of motion for the scalar field has the form
VoV + %VG<FTV‘1¢) + §V¢FT +Vy=0, (5)

where V4 =dV /d¢, and Fg =dF/dR, Fr =dF/dT, etc. By vary-
ing the action of the gravitational field with respect to the metric
tensor we obtain the modified Einstein equation

1
FrRap — 5 gabF + (80 — VaVs ) Fr

3
=2Tqp + EFTVa¢Vb¢~ (6)
We study the case of a flat brane, with the line element

ds? = e*Andxtdx” — dy?, (7)

where A is the warp function, e24 is the warp factor and UPTRY

the 4-dimensional Minkowski metric, with signature (+, —, —, —).
We consider the case where both A and ¢ are static and only de-
pends on the extra dimension, that is, A= A(y) and ¢ = ¢(y). We
then get

(1+ %FT>¢” +|@+3FDA + ZF/T:Id)/ =(1+ %FT> Vo, (8)

where the prime denotes derivative with respect to the extra di-
mension. Also, the modified Einstein equation becomes

2 /2 3 _ " 1 I/ 1 "

§¢> (1+ZFT>—_A FR+§A FR—§FR, (9a)
¢/2 3 _ 12 " F 12U

V@) - 5o (14 SFr) =242+ AFr - L —24'Ff. (9D)

As it is standard check, here we also note that the set of Egs. (9)
leads us with the equation of motion (8).

An important characteristic of the brane is its tension, which is
given by

Tzfdyp(y), (10)

where p(y) = —e2A L is the energy density of the brane.

The next important step is to check if the modification pro-
posed above contribute to destabilize the geometric degrees of
freedom of the braneworld model. We investigate this issue study-
ing linear stability of the gravity sector in the usual way.

2.1 Stability

The investigation of linear stability of the braneworld model can
be done assuming that the metric is perturbed in the form

ds? :e“(y)[n,w +h,w(y,x)]dx“dx" —dy?. (11)
Furthermore, the scalar field is written in the form

d=0()+£(y,%). (12)

The first-order contributions in h and & that follow from the equa-
tions of motion lead us to

1 1 1
[Eh;/“ + 240, + S A - Se 0@y,

1
+5e (240%har + 000 hagu — D00 |Fr

_ 1

where h = h* ;. For simplicity, we have introduced the functions
P(x,y) and Q (x, y), which are defined as

P(x, y) = [h” L 5AN e 2 (8”a”h,w - m<4>h)]FRR
+ [5v¢s F3¢E + (¢ + 2V)h]FRT , (14)
and
Q. y)=3AP' X, y)+P'x.y) —e WP, y)
1 1
+ (A + 5h/)F;e F2VeE 4208 + [5FT
— Frr(4A’? + A”)] [5v¢,§ 308 + (¢ 2 + ZV)h]
1
- [(4/\’2 + A")Frg — 5FR] [h” F5AN
+e (949" — 09h) ] (15)
If we take F(R,T) — R, in the case of General Relativity we get
P(x,y)=0 and
1., 5
Qx,y) =2V4§ +2¢'8" + Sh" + S AN
1
+ e (8“8”h,w - u<4>h). (16)

We can simplify the investigation of stability considering the trans-
verse traceless components of metric fluctuations, that is, we take

"hy, =0; h=0. (17)

Thus, we can check that Eq. (13) reduces to the form
2 ’ —2A—-(4) F;i’ h
(- 02 -4y +e 0 —an) v

1 54 Frr
= e ZAF—R[WUD“) —4auau](5v¢g+3¢/s/). (18)
We see that the analysis of stability depends crucially on the
function F(R, T), as expected. The problem simplifies if we as-
sume that the function F(R, T) is separable in the form: F(R, T) =
G(R) + H(T). This choice allows to write the previous equation as



100 D. Bazeia et al. / Physics Letters B 743 (2015) 98-103

G/
(—85—4A’8y+e’2AD(4)—G—iay)hlw:o' (19)

We introduce the z-coordinate in order to make the metric con-
formally flat. We take dz = e~A®)dy and we write

B (x,2) = e~ PR A@RGL2R, , (z). (20)

In this case, the 4-dimensional components of h;,,, obey the Klein-
Gordon equation and the metric fluctuations of the brane solution
lead to the Schroedinger-like equation

d? _ _
(—E i u<z>) s = P2y (21)
where
9 3 3  d(nGgR)
U(Z):ZA§+5AZZ+5AZT
1,d(InGg)\2 1 d?Gg
— (=) — . 22
4( dz ) 2Gr dz? (22)

Fortunately, we can use this U(z) to write

t d?
S Sz—E—i—U(z), (23)
where
d 3 1d(InG
s=_4 3, 1ddnce) (24)

dz 2 2 dz

The operator —822 + U(z) is then non-negative, and so the gravity
sector is linearly stable. This is an interesting result, which shows
that despite the modification introduced with F(R, T), when we
write F(R, T) = G(R) + H(T), the gravity sector of the braneworld
is linearly stable. We note that the stability behavior of the gravity
sector only depends on the warp function, since R only depends
on A(z) in this case.

3. Specific models

Up to here, we used the generalized F(R, T) gravity coupled to
a real scalar field to obtain the equations of motion and show that
the gravity sector of the thick braneworld scenario is linearly sta-
ble for F(R, T) = G(R) + H(T). The results motivate us to further
explore specific models, investigating how modifications depend-
ing on R and T change the standard scenario. We do this below,
studying two distinct models.

3.1. A simple model

The first example we consider is described by the F(R, T) func-
tion

F(R,T)=R—«aT", (25)

where o and n are real parameters. This is a simple choice, and
now the two components of Egs. (9) become

2 on

A =_Z42 /2n—1 , 26a
3050 (26a)
1 1 n

A2 = Ed’/z -3V~ O‘TqﬂT"” + 1“—2T". (26b)

where T =3¢'2 +5V.
We concentrate on the simplest case, with n = 1. Here the two
components of the Einstein equation becomes

15 ==
//;;/

1.0 7

. y
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Fig. 1. The solution (34), depicted for a=b=y =1 and o =0 (solid line), o =
0.1,0.2,0.3,0.4 (dashed lines).

4-3

Al = _Ta¢/2 , (27&1)

A/2:4—3a¢/2_4—5avl (27b)
24 12

To get to the first-order formalism, we introduce another function,
W = W (¢), which can be used to see the warp factor as a function
of the scalar field. We do this writing the first-order equation

A=-"w, (28)

where y is a real parameter to be determined. With this, we ob-
tain that

2y
4 —3u
Note that if y =1 — 3« /4 the solution is identical to the standard
case (o = 0). On the other hand, for a general y the solutions de-

pend on the parameter «. Using Eqs. (28) and (29) we can also
obtain the potential as

¢'=

W, (29)

20°W5 ayPw?
4—50)4—30) 3(4—5a)

Furthermore, the energy density can be written in the form

V(g) = (30)

4y2e2A) [ 4 — 4o
450 L@—3a)y

The energy of the thick brane becomes

1
Py = Wi@w) - sWiew]. 6D

_ay? 8-9a
T (4—5a) (4 —3a)2

Eq

f dye VW2 (g (y). (32)

—0o0

We note that the energy is controlled by «, and for 0 < o < 4/5
the energy of the brane is positive.

An interesting example which leads to analytical investigation
of its stability is given with the superpotential in the form

W (¢) = 2asin(bg), (33)

where a and b are real parameters. With this choice, we obtain the
solution (29) as

1 .
o) = , aresin [tanh(By)] ) (34)

where B = 4yab?/(4 —3a). In Fig. 1 we depict the behavior of the
solution (34). We note that the thickness of the solution is con-
trolled essentially by «o. Moreover, as expected, the solution goes
to the asymptotic value ¢ — ¢ = +7/2b when y — +o0.
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Fig. 2. The warp factor e?4, depicted for a=b =7y =1 and a = 0 (solid line), and
for « =0.1,0.2,0.3, 0.4 (dashed lines).

1 \\ ! \ // :‘\
171\ / /
AN AN

BN/ N/ S N/ A
NZ/ \\\/// Wil RN
N \\\//I N il \\\\/

oA \ T/ N N
./I RV / \\1/ N

Y \ \/ \/

=-3n/2 -n —n/2 0 /2 bg 3r/2

Fig. 3. The scalar field potential, depicted for a=b =y =1 and « =0 (solid line),
o =0.1,0.2,0.3,0.4 (dashed lines).

Using Eq. (28) we can also get the warp function as

2
A(y) = %ln[sech(By)]. (35)

If @ <4/3 we can get the thin-brane limit when y — o0, in the
form

2ya
A(y»ioo>w—%|y|. (36)

In Fig. 2 we depict the warp factor e?4 for some values of the
parameters. We note that the warp factor narrows as o increases.
Furthermore, the potential (30) can be written as
V)= 16(ay)®>  2ya(3B +8ya)
T 3(4-5a) 3(4 — 5a)
which is depicted in Fig. 3. Note that the potential has several
global minima at ¢ = ¢;, where

cos®(be) (37)

. 16 2
VE = . (38)
Finally, the energy density (31) can be written as
_ 16y 3B(1 — ) )
py) = 3@ —50) Sa)[ 1+ (1 + 7}/(1(4_30[)) sech (By)]
4ya
X [sech(By)] * (39)

Fig. 4 shows how the parameter o controls the energy density.
Eq. (39) can be integrated to give the energy of the brane in the
form

B /8—-9x\ /7L (s)
Eq :(’57( ) s
4b2\4 — 50/ T'(s+1/2)
where s=1+2ya/3B.

(40)

2 \
I
1 17 \‘\

Fig. 4. The energy density, depicted fora=b =7y =1 and « =0 (solid line), and for
«=0.1,0.2,0.3,0.4 (dashed lines).
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Fig. 5. The stability potential, depicted for B = 2/3 (solid line), and for B =
1,4/3,5/3 (dashed lines).

The behavior of the stability of the gravitational sector can be
analyzed analytically for the particular case where B = 2ya/3. In
this case we can make the change

1
y= B arcsinh(Bz) . (41)
With this we get the stability potential in the form
3B? 2 -5B%7?
Ug)=————— (42)

It is depicted in Fig. 5, for several values of the parameters.

The above results show that the thick brane narrows as « in-
creases, but the brane profile is qualitatively similar to the case of
a standard brane.

3.2. Another model

Let us go on and investigate another model, this time with con-
tribution from the Ricci scalar too. We assume that

F(R,T)=R+ BR*> —aT, (43)

where o and B are real parameters. The case with o =0 has been
studied in [17], and now we add both the R? and T contributions,
to get analytical results. In Ref. [17] one noted that the term R2
contributes to generate an interesting effect, the splitting of the
brane, and here we want to see how it works. In this new model,
the brane equations become

8
q[)/Z:A”—l—?ﬂ(ZA/W—{-]GANZ—}—SA/AW—G—SA/ZA”),

(44a)

4 —3x
6
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Fig. 6. The energy density, depicted for k=1, « =1/2 and 8 =0 (solid line), 8 =
0.002, 0.006, 0.010,0.014, 0.018 (dashed lines).

4 — 3¢« 4 — 5«
¢/2_

24 12

:A/2+ ?(SA%+8A/AW+32A/2AU—4A”2).

1%

(44b)

We note that if 8 =0 we get to Eqs. (27). Also, for 8 # 0 the
equations involve the fourth derivative of the warp function, which
makes it difficult to search for solutions. However, as suggested in
[17] if we choose the warp function A(y) as

A(y)=In [sech(ky)] , (45)

where k is a positive parameter, this allows us to write the rela-
tions (44) as

6k? 168k*
12 2 2 2
= S s2(29 —495?), 46
=130 "1 3a ( ) (46a)
12k? 15k2
V)= —— s2
W == " 7 5a
8pk* 2 4
- 10 — 14552 + 1475%), 46b
4—5a< + ) ( )

where S = sech(ky). We use Eq. (46a) to see that 8 should be
limited to the interval

3 3
- <B= .
232k? 160k?
Moreover, we suppose that the parameter « is positive, smaller
than 4/5. For this model, we can write the energy density as

(47)

12k 12k*(6 —5a) 4
PYI=—7"=
— 50 (4 —30)(4 - 5a)
8Kt 52[10 _16(6—50) , , 988 —7a) 54] _
4 —5ua 4—-3u 4—-3u

(48)

A closer examination of the energy density (48) shows that it start
to split when

_ 3(8 —7a)

©16(125 — 116a)k?

The splitting depends on «, so the modification introduced with

the presence of T contributes to control this effect. In Fig. 6 we

depict the energy density for k=1, « =1/2 and B within the in-

terval (47). In this case the split starts approximately at g = 0.012.
The solutions of Eq. (46a) can be written as

B

(49)

6 3208k2 3928k?
=+ - EllipticE (¢s; —————
¢ \/4—3a 4-3a PNC (o 160,8k2—3)’

(50)

AN
7,
N
“/

0.5 /

0.0 \ /
/N
VRN
-0.5 )
'~
-1.0 \
\/
~1.5k

-3 -2 -1 0 1 2 3

Fig. 7. The stability potential, depicted for k =1 and B = 0 (solid line), g =
0.002, 0.006, 0.010, 0.014, 0.018 (dashed lines).

where ¢ = arcsin [tanh(ky)] and EllipticE is the elliptic integral

of the second kind. For f = —3/232k? and 8 =0 we obtain the
solution as, respectively,

[ 294
oY) = mtanh(k}’), (51a)
=,/ 6 i h(k 51b
d(y) = 130 arcsin [tan (<y)] . (51b)

We now study linear stability of the gravity sector. For this we
make the following change of variables

1
y= X arcsinh(kz) . (52)

It allows to get the stability potential as

U = 3k% 2 —5k%z2  568k*(1 — 3k%Z2)
T4 14+k2222 T A+k2Z2)2f(2)
3136k322 2

(14k222)2f(2)2° (53)
where, f(z) =1 + k?z% — 88k?(2 — 5k?z%). This potential is de-
picted in Fig. 7. The appearance of a lump in the well confirms
the splitting of the brane as g increases. We note that the stabil-
ity potential does not depend on «, although o contributes to split
the brane, as shown above in (49), for instance.

The results show that the presence of R? controls the split-
ting of the brane, as also noted in Ref. [17]; here, however, the
T term also contributes, adding quantitative modification to the
braneworld profile.

We can also consider adding a quadratic term in T with a
quadratic term in the scalar curvature. In this case, we have

F=R+BR?>—aT?. (54)
Egs. (9) become

2
_§¢/2 +a¢/2T

8
— A// + §I8(2A//// + 16A//2 + SA/A/// + 5A/2A//) , (55&)
1 3a o

v L2 o /2T _ _TZ

(@) 2¢ + > ¢ 7

— _3A'2_48 (5A/4 +8AA” +32A2A" — 4A“2). (55b)

To solve the model we assume that the warp function is yet given
by (45), and we take k = 1. This problem is much harder then
the previous one, but we then rewrite the above equations in the
simpler form
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Fig. 8. The energy density, depicted for the solution (58).

3a 3
12 121 _ 2 c2 2 _ 4
97— S ¢/*T =25 +4ﬁ<295 495 ) (56a)
1 3 o
v P T — 2712
(@) 2(17 + > ¢ 2
— 34352 —4,3(5 —5852+4954). (56b)

These equations have analytical solutions for appropriate
choices of the parameters & and 8. We have examined some spe-
cific cases, and they are all similar. Thus, we take, for instance,
o =0.02304 and B = 0.00433; the solutions are

¢ (y) = £ parcsin[tanh(y)], (57a)
V(¢) = —2.31489 + 3.00269 cos? (%) (57b)
where p =1.19576. The energy density becomes

p(y) = —2.314895% 4+ 3.71762 §* . (58)

It is depicted in Fig. 8, showing standard profile. The absence of
splitting is due to the fact that the analytical solution is obtained
for a very small value of S.

4. Comments and conclusions

In this work we studied some thick braneworld scenarios in
an AdSs; warped geometry with a single extra dimension of in-
finite extent, with the gravity sector extended to accommodate
the F(R, T) modification, coupled to a single real scalar field with
standard kinematics. We used the equations of motion to show ex-
plicitly that the gravity sector is linearly stable when we consider
F(R,T) =G(R) + H(T).

We investigated two distinct models, the first one with
F(R,T)=R —«T, and the other with F(R, T) =R + BR*> —«aT. In
the first case, the contributions that appear from the extra term
T induces quantitative modifications in the thick brane profile,
without changing its qualitative behavior. In the second case, the
presence of R? works to split the brane. This effect was iden-
tified before in [17], and the modification introduced with oT
also contributes to the splitting, but it adds no new effect in the
braneworld profile. We then conclude that the modification of the
form R — F(R,T) = G(R) + H(T) does not destabilize the gravity
sector of the thick braneworld with an AdSs warped geometry with
a single extra dimension of infinite extent. Moreover, the presence
of the term H(T) = —«aT contributes to change the braneworld
profile quantitatively, although it adds no new qualitative effect to
the brane. If we add the term H(T) = —aT?, it seems that the ef-
fect is similar, but here, however, one needs to explore a larger

range of parameters. This task requires numerical investigation, an
issue that is out of the scope of the work.

The present study drives our attention to some issues of current
interest, one concerning the investigation of how the quantitative
modifications that we have identified in this work act to localize
fermion and gauge fields within the thick brane [18,19]. Another,
very natural continuation is related to the hybrid brane recently
proposed, in which one changes the potential of the source field
to make the scalar field solution compact [20], to see how it adds
in this new scenario. This last issue is now under consideration,
and we hope to report on it in the near future.
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