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A B S T R A C T

In computer simulations of Lattice Quantum Chromodynamics, the usage of unphysically large quark
masses and the subsequent extrapolation of results to the physical value of the quark masses are major
sources of systematic uncertainty. In this thesis, the feasibility and practicality of numerical simulations
of Quantum Chromodynamics with physically light up and down quarks using the Wilson twisted
mass quark discretisation are explored. Working in this regime is complicated firstly by the numerical
expense of these simulations and secondly by the presence of potentially large lattice artefacts. The
twisted mass discretisation is affected by an unphysical mass difference between the charged and
neutral pions, rendering simulations at the physical charged pion mass infeasible if this mass splitting
is too large.

With the aim of reducing it, the Sheikholeslami-Wohlert term is added to the twisted mass fermion
action and simulations with mass degenerate up and down quarks are then performed as a proof
of concept. It is demonstrated that these simulations are stable and that the parameters of the lattice
theory can be successfully tuned to correspond to the physical charged pion mass. Subsequently, the
parameter tuning for simulations with mass degenerate up and down quarks as well as strange and
charm quarks is explored and it is shown that it can be carried out in steps.

As benchmark observables, the masses and decay constants of pseudoscalar mesons with light,
strange and charm valence quarks are calculated and seen to largely reproduce their phenomenological
values, even though continuum and infinite volume extrapolations are not performed. Light, strange
and charm quark mass estimates are determined based on this data and also seen to coincide with
phenomenological and other lattice determinations. In this analysis, a particular emphasis is placed
on the systematic error due to the choice of fit range for pseudoscalar correlation functions and a
weighting method is introduced which may become very useful on very large lattices. The pion mass
splitting is studied as a function of the Sheikholeslami-Wohlert coefficient in simulations with four
flavours and it is found to be approximately halved twisted mass quarks without this term. However,
a dependence on the precise value of the coefficient cannot be identified within the large uncertainties
and within the range of values studied.

To optimise the Hybrid Monte Carlo algorithm, mass preconditioning is explored empirically
through simple fits to the magnitude of molecular dynamics forces generated by quark determinants
and determinant ratios with a wide range of parameter values. Based on the functional form of these
fits, mass preconditioning and integration schemes are proposed in which the relationships between all
parameters are tuned simultaneously and which may allow more efficient simulations with predictable
relative force magnitudes. As a complement to this work, a tentative study of the oscillation frequencies
of these forces is performed with the finding that mass preconditioning seems to suppress large
amplitude, high frequency oscillations in addition to reducing force magnitudes.

Crucial optimisations of the simulation software for twisted mass quarks are introduced. A multi-
threading strategy based on OpenMP is devised and kernels which overlap communication and
computation are developed and benchmarked on various architectures. Testing methodologies for the
simulation code are presented and it is shown how they complement each other based on specific
examples, providing a rather general set of integration tests.

iii





Z U S A M M E N FA S S U N G

In der Gitterquantenchromodynamik sind der Einsatz von unphysikalisch großen Quarkmassen und
die Extrapolation von Ergebnissen zu physikalischen Massen signifikante systematische Fehlerquel-
len. In dieser Arbeit wird die praktische Durchführbarkeit numerischer Simulationen der Quanten-
chromodynamik mit physikalisch leichten up und down Quarkmassen unter Verwendung der Wilson
twisted mass Diskretisierung untersucht. Simulationen im Regime physikalisch leichter Quarkmassen
sind jedoch einerseits numerisch sehr aufwendig, können andererseits aber auch durch das Auftre-
ten großer Diskretisierungsartefakte nicht praktikabel sein. Fermionen des Wilson twisted mass Typs
führen durch solche Gitterartefakte zu einer unphyskalischen Massendifferenz zwischen den gelade-
nen und dem neutralen Pion welche, wenn sie zu groß ist, eine Simulation bei physikalisch leichter
Quarkmasse verhindert.

Anhand von Simulationen mit massendegenerierten dynamischen up und down Quarks wird
dargestellt dass die Erweiterung der twisted mass Fermionwirkung durch den Sheikholeslami-
Wohlert Term es ermöglicht physikalisch leichte Quarkmassen zu erreichen. Es wird gezeigt, dass
die Simulationen stabil sind und dass die Parameter der diskretisierten Theorie so gewählt werden
können, dass das geladene Pion seine physikalische Masse annimmt. Ferner wird dargestellt, dass
auch die Parameter für eine Simulation mit dynamischen massendegenerierten up und down quarks
sowie nichtdegenerierten strange und charm Quarks schrittweise auf ihre physkalischen Werte gesetzt
werden können.

Um das Verhalten von Observablen bei physikalischer Quarkmasse zu untersuchen, werden Mas-
sen und Zerfallskonstanten von pseudoskalaren Mesonen mit up, down sowie strange und charm
Valenzquarks berechnet. Die Ergebnisse stimmen größtenteils überein mit den phänomenologischen
Werten, obwohl weder Kontinuumslimes noch die Extrapolation zu unendlichem Volumen durchge-
führt werden. Renormierte leichte, strange und charm Quarkmassen werden über Interpolationen in
hadronischen Observablen berechnet und stimmen ebenso größtenteils mit phänomenologischen Wer-
ten und anderen Ergebnissen aus der Gitter-QCD überein. In diesen Analysen wird ein besonderes
Augenmerk darauf gelegt den systematsischen Fehler zu bestimmen welcher durch die Mehrdeutig-
keit des optimalen Kurvenanpassungsintervalls der Korrelationsfunktionen entsteht. Zur Abschätzung
dieses Fehlers wird eine Wichtungsmethode eingeführt welche besonders auf sehr großen Gittern, wie
sie für Simulationen mit physikalischer Quarkmassen von Bedarf sind, nützlich sein wird.

In Simulationen mit vier dynamischen Quarks wird die Abhängigkeit der Pionmassendifferenz
vom Sheikholeslami-Wohlert Koeffizienten untersucht. Es wird gezeigt, dass die Massendifferenz im
Vergleich zu Simulationen ohne Sheikholeslami-Wohlert Term ungefähr halbiert wird, eine genaue
Abhängigkeit vom Koeffizienten kann aber innherhalb der Fehler und im untersuchten Intervall nicht
festegestellt werden.

Zur Optimierung des zur Simulation genutzten Hybrid-Monte-Carlo-Algoritmus wird die Parame-
terabhängigkeit der Massenprökonditionierung über sehr große Parameterintervalle empirisch unter-
sucht. Durch Kurvenanpassung werden diese Daten parametrisiert und es wird gezeigt, dass anhand
der Kurven Verhältnisse zwichen den Parametern aufgestellt werden können, welche es erlauben In-
tergrationsschemas zu optimieren. Komplementär dazu wird versuchsweise das Oszillationsverhalten
der Kräfte untersucht und es scheint, dass große Massenpräkonditionierugsparameter nicht nur die
Größe der Kräfte stark beinflussen, sondern auch hochfrequente Oszillationen unterdrücken.

Es werden Optimierungen der Simulationsprogramme für twisted mass quarks vorgestellt. Insbe-
sonere wird eine Strategie für Multithreading der Rechenkernel via OpenMP engeführt. Überlappende
Kommunikation und Berechnung unter Zuhilfenahme von Threads werden zur Effizienzsteigerung
genutzt und Benchmarkergebnisse auf verschiedenen Rechnerarchitekturen werden vorgestellt und in-
terpretiert. Strategien für allgemeine Integrationstests des Simulationscodes werden vorgestellt und es
wird gezeigt wie die verschiedenen gezeigten Techniken zueinander komplementär sind.
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I N T R O D U C T I O N

The physics of the early twentieth century led to the realisation that
attempting a complete description of nature would require the reconciliation
of the concepts of particles and classical fields. Building the connection
between special relativity, classical field theory and quantum mechanics led
to the development of causal quantum field theories (QFTs), which describe
fundamental interactions in terms of local operator-valued random variables.
When the Hilbert space acted on by these operators is constructed, particle-
like states with well-defined quantum numbers emerge in the spectra of
the resulting Hamiltonians. In this sense, quantum field theories appear to
provide the requisite properties.

At the centre of these developments stand quantised gauge theories, the
classical Lagrangian of which is invariant under local gauge transforma-
tions [1, 2] of some gauge group G. In the case of electromagnetism, this
gauge group is U(1), while more generally, G is some compact gauge group
or direct product of compact groups. When these Yang-Mills theories [3] are
combined with matter fields in a gauge-invariant manner, the latter trans-
form locally under representations of G while the gauge connection A pro-
vides interactions through the gauge covariant derivative. The action con-
tribution of the gauge fields and their self-interaction is in turn given by
an invariant quadratic form on the Lie algebra of G, expressed in terms of
the field strength tensor F. Matter fields are said to be charged if they trans-
form non-trivially or acquire a phase under gauge transformations of G or
its subgroups.

The Standard Model of particle physics (SM) is a gauge theory with
G = SU(3)× SU(2)×U(1) and describes the interaction of matter fields of
half-integer spin through force carriers of integer spin, the gauge fields. It
can be separated into two parts: the strongly interacting sector with colour
gauge group SU(3) on the one hand, and the electroweak sector with gauge
group SU(2)×U(1). The six quarks and six anti-quarks are charged under
colour SU(3) and electroweak SU(2)×U(1). Three leptons and three anti-
leptons are charged under SU(2)×U(1), while the respective neutrinos and
anti-neutrinos are electrically neutral. The matter fields can be arranged into
three families or generations of two quarks each and pairings of a charged
lepton and its respective neutrino.

The masses of the quarks and leptons increase with generation number,
but large mass differences also exist within the generations. Neutrinos are all
very light while the respective electron-like leptons have a range of masses.
The mass of the muon is about two hundred times larger than that of the
electron and the mass of the tau is about another twenty times larger still. A
discussion of quark masses is somewhat subtle, but the down and up quarks
can be thought of as very light, with their masses differing by less than their
average. The strange and charm quarks are about thirty and three hundred
times heavier respectively and thus also have a large mass difference. Finally,
the masses of the bottom and top quarks are around one thousand and forty
thousand times larger than the average down/up quark mass, respectively.

The electroweak sector is described by the Weinberg-Salam-Glashow
electroweak theory [4, 5, 6] of leptons (and quarks, in the SM) transforming
under representations of the gauge group SU(2) × U(1). The Higgs
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mechanism [7, 8, 9] provides a gauge-invariant process by which the gauge
fields in this sector, coupled to a complex scalar field doublet, result in
the weak interactions through three massive weak gauge bosons, W± and
Z. The remaining combination of gauge fields is massless, providing the
electromagnetic force mediator, the photon. An experimental confirmation
of the existence of the Higgs field has been provided by the ATLAS and
CMS experiments through the observation of a resonance consistent with
a scalar particle with a mass of 125.09(21)(11) GeV/c2, as given by the
combination of data in Ref. [10]. Because a more complete discussion of the
electroweak sector is beyond the scope of this exposition, interesting topics
such as neutrino oscillations which were the basis of the 2015 Nobel Prize in
physics, must be omitted.

The strongly interacting sector of quarks and gluons in the SM is
described by the unbroken local SU(3) colour gauge symmetry of Quantum
Chromodynamics [11, 12, 13]. At high energy, QCD is weakly coupled and
can be very successfully described perturbatively: the quarks are said to
be asymptotically free [14]. At low energy, however, the coupling is strong,
such that quarks and gluons cannot be observed as isolated free particles,
a property also referred to as confinement. Instead, colour-neutral hadronic
bound states of two and three quarks, mesons and baryons1, populate the
low energy spectrum of the theory. Despite its long history and importance,
the many remaining open questions concerning the low energy properties of
QCD are active areas of study.

In this regime, perturbation theory in terms of quark and gluon fields
is inapplicable and non-perturbative approaches are required. The most de-
veloped and successful amongst these is lattice Quantum Chromodynamics
(LQCD). This framework allows the theory to be explored non-perturbatively
by discretising it on a four-dimensional regular lattice while fully preserv-
ing local gauge invariance. Particularly, doing so on a hypercubic Eucidean
lattice allows the theory to be studied by numerical simulation. Its path in-
tegral can then be evaluated using Monte Carlo integration with importance
sampling and observables become averages over statistical ensembles.

Hadron masses and meson decay constants can then be calculated
directly from the asymptotic behaviour of appropriate correlation functions.
Matrix elements can similarly be studied non-perturbatively, providing
certain hadronic form factors or input for operator product expansions [16]
of effective Hamiltonians. Unstable particles [17] and scattering [18, 19]
are also accessible through the effects of the finite volume on the particle
spectrum of the theory. Another major long-term goal within LQCD is the
purely theoretical computation [20] of parton distribution functions which
strongly affect the uncertainties of experiments at hadron colliders like the
LHC [21]. Lattice QCD calculations can also contribute significantly to tests
of the SM and searches for physics beyond. Examples are given by the
hadronic contribution to the vacuum polarisation [22], various computations
in the flavour sector [23] or determinations of the neutron electric dipole
moment [24].

Lattice QCD offers an ab-initio approach in which all theoretical uncer-
tainties can – in principle – be quantified and systematically improved upon.
In general, these improvements come at significant computational cost, as
a result of which numerical algorithms on supercomputers and their op-
timisation are areas of intense study within the LQCD community. The

1 Experimental evidence for resonances of five bound quarks has recently been reported in
Ref. [15].
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simulations take place in finite volume at non-zero lattice spacing, both of
which constitute lattice artefacts with particular consequences. These can be
understood analytically through effective theories such as the Symanzik ex-
pansion [25, 26] and chiral perturbation theory (χPT) in finite volume. With
this guidance, lattice artefacts can be studied and eliminated through sim-
ulations in a number of volumes and with a number of lattice spacings, al-
though approaching both the infinite volume and continuum limits comes
with significant computational cost.

Simulations of lattice QCD can be carried out at various levels of
approximation with regards to how sea quarks contribute to the polarisation
of the vacuum (equivalently, how they enter the importance sampling of
of the LQCD path integral and thus affect observables). The crudest
approximation takes the sea quarks to be infinitely massive, or quenched. The
approximation is improved by including the effect of mass degenerate up
and down quarks and improved further by also including the effect of the
strange and even the charm quark. The most ambitious simulations lift the
degeneracy of the light quark doublet and finally also add electromagnetic
effects. These different approximations are often labelled as Nf = 0, Nf = 2,
Nf = 2+ 1, Nf = 2+ 1+ 1 and Nf = 1+ 1+ 1+ 1. Increasing the number of
active flavours can lead to the appearance of additional lattice artefacts which
need to be checked. The computational effort is increased by the additional
quark flavours and more significantly, when the masses of the light quarks
are reduced towards their physical values.

As a consequence, for a long time, unquenched simulations of LQCD
were carried out at a number of unphysically large values of the up and
down quark masses. The results of these computations were then extrapo-
lated towards the physical value, either using polynomial approaches or ex-
trapolation functions guided by χPT. While this works rather well for many
quantities, the extrapolation potentially introduces unquantified systematic
errors. This is especially true in the baryon sector, where for example the
axial charge of the nucleon shows some tension with experiment and it is
unclear whether this is due to unquantified systematic uncertainties [27].
Another problematic area is the study of mesons containing very light and
heavy quarks. The range of validity of the used effective theories is only
known up to order of magnitude inequalities and large differences in mass
scales can complicate judging this even further. Finally, even for quanti-
ties where effective theories provide very good guidance, the extrapolation
can increase overall uncertainties and make it difficult to provide the kind
of precision required by modern phenomenology for tests of the Standard
Model. Eliminating these systematic errors requires simulations with physi-
cally light up and down quarks.

Lattice QCD is not unique: different types of discretisations will behave
differently with respect to various criteria relevant for their practical usage.
It is the aim of this thesis to investigate the feasibility of simulations using
physically light quarks with a type of quark discretisation referred to as
twisted mass lattice QCD (tmLQCD) with Nf = 2 and Nf = 2 + 1 + 1

active quark flavours. Twisted mass lattice QCD has a number of special
properties which make it suitable for the computation of a very wide
range of phenomenologically interesting quantities. However, certain lattice
artefacts may make it especially difficult in tmLQCD to reach the regime
of physical light quark masses at tolerable computational cost and without
sacrificing the control over systematic errors offered by LQCD. A particular
lattice artefact which appears in tmLQCD is an unphysical mass difference
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between the neutral and the charged pion, subtly related to properties of
the zero temperature phase structure of the lattice theory. When this mass
difference is too large, simulations at the physical light quark mass are
not possible. In the present work, a particular extension of tmLQCD is
studied which is seen to significantly reduce this pion mass splitting. This
allows simulations with two physically light, mass degenerate quarks to be
performed and may continue to do so in simulations including strange and
charm quarks. For the latter, the tuning of the numerous parameters is
explored and proposals are made for how to proceed in practice.

Benchmark computations of a number of physical quantities are carried
out based on these two and four flavour simulations. Firstly, the pion
mass difference is calculated at different values of the parameters of the
theory to check for the appearance of unexpected lattice artefacts. The
results are also compared with those of previous simulations to quantify the
level of improvement achieved. Secondly, the masses and decay constants
of mesons containing light, strange and charm quarks are computed and
compared to their phenomenological values as well as the results of other
lattice calculations. Using ratios of meson masses as tuning conditions,
estimates of the light, strange and charm quark masses as well as their
ratios are computed. A particular emphasis is put on the study of systematic
errors due to the presence of correlations in the data and a somewhat novel
technique for their quantification is presented.

When the simulated quarks are physically light, the numerical algorithms
used to sample the path integral for Monte Carlo integration suffer from a
number of slowdowns. A significant portion of this thesis is therefore ded-
icated to their study and how to potentially overcome these issues. In ad-
dition, even once the simulation algorithms have been tuned to allow phys-
ically light quarks, the computational challenge is still formidable. For this
reason, many optimisations were introduced into the tmLQCD simulation
software and these as well as the resulting performance characteristics are
reported on. Several general techniques for testing the correctness of LQCD
codes are also presented and their applicability is demonstrated with specific
examples.

The thesis is thus structured into four parts. Part 1 provides the relevant
theoretical and algorithmic basis for the study of tmLQCD and frames
the present results in the wider context of current simulations in LQCD.
Part 2 is dedicated to a report on the simulations that were performed
and how the parameters of these simulations were tuned, especially for the
Nf = 2+1+1 case. Part 3 is concerned with the physical quantities that were
computed on the basis of the simulations of Part 2. Finally, Part 4 collects
the computational developments, testing methodologies and performance
characteristics of the used simulation code as well as a number of novel
techniques relating to these.
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1T H E O R E T I C A L B A C K G R O U N D

This thesis is concerned with the study of non-perturbative properties of
Quantum Chromodynamics (QCD) using numerical simulations of Lattice
QCD (LQCD) with twisted mass Wilson quarks in the regime of physically
light quark masses. QCD will be introduced below, followed by a discussion
of LQCD in Section 1.2 with a particular consideration of the computational
challenge represented by numerical simulations of LQCD. The twisted mass
lattice discretisation (tmLQCD) will be discussed in Section 1.3. Because
the results presented here hinge on the size of certain lattice artefacts,
the concept of improvement (the removal of lattice artefacts) and how it
applies to tmLQCD will be covered. The Hybrid Monte Carlo algorithm
for simulations of tmLQCD and some of its optimisations will be presented
in Section 1.4. Finally, Section 2.2 closes the chapter with a discussion of
the phase structure of Wilson lattice QCD. Specifically, its relationship to
algorithmic difficulties of tmLQCD simulations in the regime of physically
light quark masses is discussed and the addition of the so-called clover term
to the twisted mass action is motivated.

quantum chromodynamics

The strongly interacting sector of quarks and gluons in the SM is described
by the unbroken local SU(3) colour gauge symmetry of Quantum Chromo-
dynamics (QCD) [11, 12, 13]. The gauge-invariant QCD Lagrange density,
with all indices explicitly exposed, is given by

LQCD(x) =

nf∑
f=1

4∑
α,β=1

3∑
i,j=1

3∑
µ=0

ψ̄
j
fα(x)

(
iγ
µ
αβD

ij
µ −mfδαβδ

ij
)
ψ
j
fβ(x)

−
1

4

3∑
µ,ν=0

32−1∑
a=1

Faµν(x)F
µνa(x) .

(1.1)

The sums are over quark flavours f, Dirac spinor indicies α,β, colour indices
i, j,a and four-vector indices µ,ν. The gauge covariant derivative is

Dijµ ≡ ∂µδij − igAaµtaij (1.2)

and the field strength tensor, defined in terms of the gluon vector field Aaµ,
is given by

Faµν ≡ ∂µAaν − ∂νA
a
µ + gfabcAbµA

c
ν , (1.3)

in both of which summation of repeated indices is now implicit. The
dimensionless parameter g is called the strong coupling constant and fabc

are called the structure constants of SU(3). The latter are real numbers and
define the Lie algebra via the commutation relations of the generators of the
Lie group, 3× 3 complex matrices taij for the fundamental representation of
SU(3), [

ta, tb
]
= ifabctc . (1.4)

The gauge covariant derivative acts on the quark fields ψ, which are
labelled with the flavour index f ∈ {d,u, s, c,b, t}. In pure QCD, quark
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masses mf distinguish the quark flavours and their spinor fields transform
under local gauge transformations in the fundamental representation of the
gauge group,

ψifα(x)→ Vij(x)ψjfα(x) . (1.5)

In the SM, the quark masses are furnished by the Higgs-Yukawa coupling.
The transformations Vij(x) can be parametrised via

Vij(x) = exp

i
32−1∑
a=1

αa(x)taij

 (1.6)

with αa(x) real. The gluon field, expressed as a matrix

A
µ
ij(x) ≡ −ig

32−1∑
a=1

Aµa(x)taij , (1.7)

transforms as

Aµ(x)→ V(x)Aµ(x)V
−1(x) +

i

g
[∂µV(x)]V

−1(x) . (1.8)

The fermionic part of Equation (1.1) can be written in a compact fashion by
the introduction of the Dirac operator for the quark flavour f

Mf = iγ
µDµ −mf , (1.9)

which can be extended to act on all quark flavours in the obvious block-
diagonal fashion.

QCD Path Integral

For the purpose of this thesis, QCD as introduced above is quantised via the
path integral formulation [28, 29]. The expectation value of an observable Ô

is given by the functional integral

〈Ô〉 = 1

Z

∫
DADψDψ̄O(ψ, ψ̄,A) exp

{
i

∫
d4xLQCD(x,ψ, ψ̄,A)

}
, (1.10)

where LQCD is given by Equation (1.1) and Z is referred to as the partition
function

Z =

∫
DADψDψ̄ exp

{
i

∫
d4xLQCD(x,ψ, ψ̄,A)

}
. (1.11)

In perturbative treatments, the theory further requires gauge fixing and,
generally, the subsequent introduction of ghost fields. Since this is not
necessary in the computation of gauge-invariant quantities in the lattice
discretisation of QCD, it will not be elaborated upon further here.

Renormalisation, Scale Dependence, Confinement and Asymptotic Freedom

Like for any quantum field theory, the classical Lagrangian of QCD given
above and the related tree-level amplitudes with bare parameters g and mf,
do not give a complete picture. The parameters of the theory can be fixed by
matching an appropriate number of observables

Oith = Oiexp , (1.12)
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1.1 quantum chromodynamics

computed in the theoretical framework and measured in experiment. In
perturbation theory, this matching would be to some truncated asymptotic
series in the bare parameters while non-perturbatively, the matching could
be between ratios of hadron masses, for example.

At the classical level, the theory appears to be valid as is at all energy
scales, but this is not the case. When the system is probed at different
distance scales, the parameters of the theory change, or equivalently, which
degrees of freedom are relevant in that regime. In QED, for example,
the electric charge and the electron mass can be matched to the theory
in the low energy limit where they can be measured extremely precisely.
But for the theory to be predictive at all distance scales, they acquire an
energy dependence. In addition, perturbatively, loop corrections give rise to
ultraviolet divergences which have to be removed through a regularisation
procedure.

In the sense of renormalisation, these divergences can be thought of as
being due to overcounting how high energy degrees of freedom contribute
to the description of the system at a particular distance scale. Their
removal implicitly or explicitly introduces an energy scale, the so-called
renormalisation scale µ, on which physical observables cannot depend. As a
consequence, regularisation and renormalisation become intimately related
through renormalisation conditions. In the simplest sense, the divergences
accounted for by the former are systematically absorbed into redefinitions of
the coupling constant, quark masses and fields in the latter.

Enforcing the requirement that physical results cannot depend on the
renormalisation scale leads to the Callan-Symanzik renormalisation group
(RG) equations [30, 31]. These describe how the parameters of the theory
absorb the energy dependence and hence how the theory changes with the
energy scale. For the coupling constant, this is given by the so-called β-
function

µ
∂g

∂µ
= β(g) = −β0g

3 −β1g
5 + . . . , (1.13)

where β0 and β1 depend on the number of active quark flavours. In QCD, at
least in the regime where perturbation theory is applicable, β(g) is negative
and the coupling constant decreases with increasing µ. For small g, keeping
only the leading term and integrating Equation (1.13), gives

αs(µ) =
g2(µ)

4π
=

1

4π ln(µ/ΛQCD)
, (1.14)

where ΛQCD is known as the QCD scale parameter. It is interesting to note
how even in pure Yang-Mills theory, a dimensionful scale Λ can emerge
without dimensionful parameters in the Lagrangian. In the full theory then,
all the quark masses can be expressed as ratios with respect to this scale.

At low energy, the coupling constant of QCD is large and this is probably
responsible for quark confinement, although the existence of the required
mass gap has not been rigorously demonstrated yet. At high energy, on
the other hand, the coupling constant becomes small and this asymptotic
freedom [14] ensures the validity of perturbation theory and makes QCD
consistent with the parton model of hadrons in this regime. Because
quarks and gluons confined in hadronic bound states are not suitable as
asymptotic states (even approximately), the strong coupling limit can only
be studied perturbatively through effective theories like chiral perturbation
theory (χPT) [32]. In order to study the low energy properties of QCD in
terms of the fundamental degrees of freedom, it is thus necessary to do so
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non-perturbatively. The most developed and successful approach for this
involves lattice discretisations of the continuum QCD action. As will be seen
further below, the masses of strongly bound objects, for example, can then
be computed directly from the path integral.

When the parameters or matrix elements in this lattice theory are to be
related to their continuum analogues, they need to be renormalised before
they can be matched to a continuum scheme such as MS. The computation
of the required renormalisation constants can be done in lattice perturbation
theory (LPT), in which the lattice theory is expanded in terms of A fields
around the continuum limit. Because the theory in terms of U fields is
gauge invariant at non-zero lattice spacing, many new interaction vertices
appear, the Feynman rules are complicated and systematic errors difficult
to quantify. In addition, since the coupling is not small, LPT may fail
to account for potentially large uncontrolled systematic uncertainties. It
is much better, and common practice now, to compute these factors non-
perturbatively. For some renormalisation constants, this may be achieved
through the application of lattice Ward identities [33]. More generally it
is done through further lattice simulations in regularisation independent
momentum [34] (RI-MOM) or Schrödinger functional [35] (SF) schemes.

The conventional reference scales at which quark masses, for example,
are expressed in the MS scheme generally differ from the hadronic scales
at which they were computed non-perturbatively in the lattice theory. As a
result, the parameters need to be evolved to the appropriate scale, which can
again in principle be done by matching lattice and continuum perturbation
theory, but the validity of either at the involved energy scales is not a
certainty. Hence, it is much better to perform the running non-perturbatively
too, for example through SF finite size scaling techniques [36, 35], so that the
matching can be performed safely at very high scales.

QCD in Euclidean Space-time

Following the seminal work of Wilson [37] in trying to understand quark
confinement directly in QCD, the theory can be studied non-perturbatively
by discretising it through the introduction of a regular four dimensional
lattice. Lattice QCD (LQCD) introduces a gauge-invariant ultraviolet cut-
off through the inverse of the lattice spacing a, and the continuum theory
can be defined as the quantum field theory obtained when this cut-off is
removed. As will be discussed further below, the discretisation makes the
number of degrees of freedom countable and the path integral potentially
amenable to evaluation by computer. However, the rapidly oscillating phase
factor exp(iS) means that all modes need to be taken into account in order to
provide the correct weighting. In addition, even if assumptions can be made
about some steepest descent contribution, the fine cancellations required
for its correct evaluation cannot be accounted for on a machine with finite-
precision arithmetic. This is an example of a sign problem which also occurs,
for example, in the numerical study of condensed matter systems with many
fermionic degrees of freedom [38]. In the case of LQCD it can be overcome
by working instead from the point of view of a Euclidean field theory.

Under the conditions outlined in the Osterwalder-Schrader theorem [39,
40], a Euclidean field theory can be analytically continued to a quantum
field theory in Minkowski space as a result of the analyticity of the
respective Green’s functions. To the present author’s knowledge, the
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1.2 lattice qcd

required positivity conditions have not been demonstrated for general gauge
theories, including QCD, but this will be tacitly ignored in the following.

Practically, the analytical continuation proceeds via the replacement
x0 → −ix4,ηµν → δµν and yields a path integral with a real weight factor.
Compared to the theory in Minkowski space, the time evolution operator
T = e−Hx

4
suppresses excited states and hence, correlation functions in this

theory can be expected to be especially sensitive to low energy properties.
The expectation value of an observable Ô is given by

〈Ô〉E =
1

Z

∫
DADψDψ̄O(ψ, ψ̄,A) e−S

E
QCD[A,ψ,ψ̄] , (1.15)

where the ψ stand for all quark flavours and the action is

SE
QCD[ψ̄,ψ,A] = ψ̄Mψ+

1

4

∫
d4x Faµν(x)F

a
µν(x) (1.16)

= ψ̄Mψ−
1

2g2
Tr F2[A] . (1.17)

The integrals over the fermionic degrees of freedom can be carried out
formally, resulting in the functional fermionic determinant detM[A] and
thus yielding an effective action

Seff[A] = log detM[A] −
1

2g2
Tr F2[A] . (1.18)

This reduces Equation (1.15) to a functional integral over A only.

lattice qcd

As will be seen below, Euclidean QCD is amenable to computer simulation
such that the path integral can be evaluated directly and non-perturbatively.
This section largely follows the standard development presented in Ref. [41],
to which the reader is referred for a more detailed exposition. First, the
Euclidean theory is discretised by restricting the support of the quark fields
to a regular four-dimensional lattice with lattice spacing a, which will serve
as an explicit non-perturbative ultraviolet regulator. On a lattice of finite
volume L4, momenta are thus restricted to

p =
2πk

La
, k = {k1,k2,k3,k4} , ±kµ ∈ {1, 2, · · · ,L/2} . (1.19)

The finite lattice is taken to be periodic in all directions and anti-periodic
boundary conditions are enforced for the quark fields in the direction
identified with time. The gauge field is introduced via line integrals of the
gauge potential Aµ(x)

Uµ(x) ≡ U(x, x+ aµ̂) = exp

{
−

∫x+aµ̂
x

dxµAµ(x)

}
(1.20)

' exp
{
−aAµ(x+

a

2
µ̂)
}

, (1.21)

where no index summation was implied in the first line. For convenience of
notation, µ̂ defines the unit four-vector pointing in direction µ. The Uµ(x)
act as parallel transporters and are also referred to as link variables. They are
elements of SU(3) and transform as

Uµ(x)→ V(x)Uµ(x)V
†(x+ aµ̂) , (1.22)
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where V(x) are defined as in Equation (1.5). They further satisfy the property

U†(x, x+ aµ̂) = U(x+ aµ̂, x) = U−µ(x+ aµ̂) . (1.23)

Expanding Equation (1.21) to O(a) gives

Uµ(x) = 1− aAµ(x) +O(a2) . (1.24)

A particular product of link variables in the plane spanned by µ̂ and ν̂, the
plaquette

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U
†
µ(x+ aν̂)U

†
ν(x) , (1.25)

can be used to discretise the field strength tensor. The gauge part of the
lattice action is then expressed as

SG[U] =
6

g2

∑
x

∑
µ<ν

{
1−

1

6
Tr
[
Uµν(x) +U

†
µν(x)

]}
, (1.26)

where the inverse squared gauge coupling is defined as β = 6/g2 to
reproduce the form of the Yang-Mills gauge action in the continuum limit. It
is straightforward to show that the trace of the plaquette is gauge invariant
and that

Tr
[
Uµν(x) +U

†
µν(x)

]
= 2Tr 1+

a4

2
Tr [Fµν(x)Fµν(x)] +O(a6) . (1.27)

The constant summand in Equation (1.26) is often dropped in practice
because it has no impact on the dynamics or the expectation values of
observables. It is intersting to remark that the positivity of physical
states and the existence of a positive self-adjoint transfer matrix1 for this
discretisation of Yang-Mills theory have been demonstrated [42]. Further,
the existence of a mass gap in the infinite volume limit of the lattice theory
has also been shown [43] at strong coupling.

More complicated gauge actions can be constructed with the aim of
reducing lattice artefacts. A particular choice which will be used in this
thesis is the so-called Iwasaki [44] gauge action

SIwasaki
G = β

∑
x

[∑
µ<ν

b0{1−
1

3
RTrUµν(x)}+

∑
µ6=ν

b1{1−
1

3
RTrRµν(x)}

]
,

(1.28)
where Rµν(x) are rectangular plaquettes of size 2a by a and the parameters
b0 and b1 take the values

b0 = 1− 8b1 , b1 = −0.331 . (1.29)

The reasons for this choice of gauge action will be discussed in more detail
in Section 2.2.

Naïve Lattice Fermions

Covariant lattice forward and backward derivatives acting on the lattice
quark fields can now be defined as first order finite difference operators
with appropriate parallel transporters

∇f
µψ(x) = a

−1
[
Uµ(x)ψ(x+ aµ̂) −ψ(x)

]
(1.30)

∇b
µψ(x) = a

−1
[
ψ(x) −U†µ(x− aµ̂)ψ(x− aµ̂)

]
. (1.31)

1 it has not been shown for the improved theory
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The locally gauge invariant, so-called naïve fermion action is then given by

SF[ψ, ψ̄,U] = a4
∑
x

ψ̄(x)

[
1

2
γµ(∇fµ +∇bµ) +m

]
ψ(x) . (1.32)

Wilson Quarks

Unfortunately, in this form the theory exhibits the problem of fermionic
species doubling as the lattice quark propagator has one pole at every
corner of the Brouillin zone, leading to the propagation of 16 quarks in the
continuum limit for each quark flavour. One way to cure this is to introduce
the Wilson term, −ar∇f

µ∇b
µ, into the lattice action. Although this operator

is naïvely irrelevant under renormalisation (it vanishes in the continuum
limit), it furnishes the additional species with a divergent mass 2r/a, thus
decoupling them in the continuum limit. Setting r = 1 defines the Wilson
Dirac operator as it is usually used in calculations with Wilson quarks

DW(U) =
1

2

[
γµ(∇f

µ +∇b
µ) − a∇f

µ∇b
µ

]
. (1.33)

It satisfies the property of γ5-Hermiticity

D
†
W = γ5DWγ5 . (1.34)

The action thus constructed is

SW[U, ψ̄,ψ] =
∑
x

{
a4ψ̄(x) [DW[U] +mW]ψ(x) + SG[U(x)]

}
. (1.35)

A graphical representation of the plaquette, the lattice spinor fields and
parallel transporters is shown in Figure 1.2. In practice, the fermionic part

Figure 1.2: Graphical repre-
sentation of the Wilson lat-
tice action of Equations (1.26)
and (1.35). Lattice spinors are
shown in blue, link variables in
black and a plaquette in dark
red.

of the action employed in computer simulations is expressed in terms of
the hopping parameter κ by expanding the lattice forward and backward
derivatives, giving

S
hop
F =

∑
x

{
ψ̄(x)ψ(x) − κψ̄(x)

4∑
µ=1

[
Uµ(x)(1+ γµ)ψ(x+ aµ̂)

+U†µ(x− aµ̂)(1− γµ)ψ(x− aµ̂)
]}

. (1.36)

The lattice spacing is absorbed completely into the field normalisations

κ =
1

2amW + 8
,

√
2κ

a3/2
ψ ,

√
2κ

a3/2
ψ̄ , (1.37)

and it should be noted that a is not an input parameter. It can only be found
à posteriori from a so-called scale setting procedure.

At non-zero lattice spacing, the Wilson term acts like a mass term
(albeit not a divergent one) also for the remaining quark and breaks chiral
symmetry even in the limit of mW → 0. This produces a leading lattice
artefact of O(a) and leads to additive renormalisation mcrit of the quark
mass on top of multiplicative renormalisation. The bare quark mass is thus
given by

mq = mW −mcrit . (1.38)

9
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As will be discussed further below, computations using standard Wilson
fermions generally require the implementation of involved improvement pro-
grammes in which special counterterms are added to the lattice action and
composite operators to cancel various discretisation effects. The coefficients
of these counterterms need to be computed by defining appropriate improve-
ment conditions either in perturbation theory or, preferably, non-perturbatively.

It should be noted at this point that the discretisation of the action
is not unique and different possibilities differentiate themselves through
their symmetries (or the breaking thereof). These affect, for example, how
the lattice theory behaves in the approach to the continuum limit or how
demanding it is to simulate on a computer. In the following, however, only
quark discretisations of the Wilson type will be discussed.

Lattice Path Integral

The lattice discretisation gives definite meaning to the notion of path
integrals through∫

DA→
∫ ∏
x,µ

dUµ(x) ,
∫
Dψ̄(x)Dψ(x)→

∫ ∏
x

dψ̄(x)dψ(x) . (1.39)

Functional integration turns into regular integration over a countable
number of variables, a finite number in the case of finite volume. Unlike
the integration measure over the A fields used in the continuum, the Haar
measure [45] dUµ(x) is fully gauge-invariant. The finite-dimensional path
integral for an observable Ô is then given by

〈Ô〉 = 1

Z

∫ ∏
x

[
dψ̄(x)dψ(x)

∏
µ

dUµ(x)

]
O(U, ψ̄,ψ) e−SW[U,ψ̄,ψ] . (1.40)

In order to evaluate the path integral numerically, one proceeds as follows.
As in the continuum, the fermionic integrals can be carried out formally,
yielding

〈Ô〉 = 1

Z

∫ ∏
x

∏
µ

dUµ(x)O(U,D−1[U]) det (D[U]) e−SG[U] , (1.41)

whereD−1[U] represents the quark propagators resulting from Wick contrac-
tions of the quark fields in the observable, if any. Again as in the continuum,
the determinant contribution can be re-expressed as an integral over complex
scalar fields ξ with fermionic statistics, such that

〈Ô〉 = 1

Z

∫ ∏
x

[
dξ†(x)dξ(x)

∏
µ

dUµ(x)

]
O(U,D−1[U])

· exp
{
−SG[U] − ξ

† (D[U])−1 ξ
}

,

but it should be noted that the distribution of the fields ξ is not straightfor-
ward to sample. Still, the quark determinant does not need to be evaluated
directly anymore and the Grassmann variables and their combinatorics have
been eliminated. However, D is a sparse matrix so large that it has to be
computed on the fly, because it cannot be stored in memory for all but the
smallest systems. As a result of this size, the computation of its inverse,
which now appears in the action (and in the operator), is one of the most

10



1.2 lattice qcd

demanding parts of a computation in LQCD. This can be achieved for a
fixed right hand side by solving Dx = b through the usage of various itera-
tive subspace solvers. More approximately, the entire D−1 can be estimated
stochastically by doing such inversions for a collection of vectors of random
numbers.

For an action with two mass degenerate quarks, using the γ5-hermiticity
of D, the determinant factor

(detD)2 = det
(
D2
)
= det(γ5D†γ5D) = det(Q†Q) ,

can be expressed directly in terms of just one ξ field

det(Q†Q) =

∫ ∏
x

dξ†(x)dξ(x) exp
{
−ξ†

1

Q†Q
ξ

}
,

where Q = γ5D is hermitian. An approximation to the ξ fields can now
be given in terms of pseudofermion fields φ, which can be generated from
complex random numbers R sampled from a Gaussian distribution, such
that

〈R†R〉 ∼ 1 , ξ ∼ φ = QR ,

and the φ have approximately the correct statistical distribution. Using K of
these fields, this finally yields

〈Ô〉 = 1

Z

∫ ∏
x

∏
µ

dUµ(x)O(U,D−1[U])

· exp

{
−SG[U] −

1

K

K∑
k=1

[
φ
†
k

1

Q†Q
φk

]}
+O(1/

√
K) , (1.42)

such that that the fermionic contribution is now evaluated statistically as
long as the inverse of Q†Q can be computed. As will be discussed in Sec-
tion 1.4, the average over pseudofermion fields is usually performed im-
plicitly and not directly as indicated above. For actions with mass non-
degenerate quarks or single quark flavours, the pseudofermion represen-
tation can also be used, but the construction has to rely on polynomial or
rational approximations for the operator, the technical details of which are
beyond the scope of the current exposition.

Although the integral can be carried out now in principle, a quick
calculation shows that for a usual system, the number of degrees of
freedom is still staggering and a direct evaluation is out of reach of current
computational capacity. However, its form makes it amenable to a statistical
interpretation over ensembles of field configurations {U} which contribute
with a Boltzmann weight Z−1 exp(−Seff[U]). Appropriate methods for the
generation of these ensembles with their correct probability distribution

P(U) ∝ detD[U] exp (−SG[U])

will be presented in Section 1.4. Even with these algorithms, the computa-
tional challenge of LQCD is formidable because multiple scales have to be
respected simultaneously. In addition, the cost of computing D−1 depends
inversely on the quark mass, one of the main reasons why simulations at the
physical average light quark mass have only recently become possible. On
current supercomputer architectures, the absolute maximum number of lat-
tice sites that can realistically be simulated is around V/a4 = (L/a)3 · (T/a) =

11
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1003 · 200 = 2 · 108. For simulations with physically light quarks, finite size
effects are considered well under control when Mπ · L & 4. In order to
control discretisation errors, the lattice spacing should be taken as small as
possible, especially when heavy quark flavours are to be included in the
simulation.

However, when the lattice spacing is below around 0.04 fm, the system is
close to criticality which manifests itself through long autocorrelation times.
In the worst case, the algorithms even get stuck in topological sectors [46],
putting the importance sampling of the path integral into question 2. This
property is called critical slowing down and one of its consequences is that
longer simulations are required at small values of the lattice spacing. Fine
lattice spacings also mean that the number of lattice points needs to be
increased to compensate for the reduced size in physical units, making
simulations more expensive. Finally, since all dimensionful quantities enter
with an appropriate power of the lattice spacing, fine lattices also mean more
expensive inversions.

As a result, the challenge of LQCD simulations is to approximately satisfy
the following inequalities (with mc the charm quark mass):

100a & L &
4 hc

Mπ
>

 hc

mc
> a > 0.04 fm , (1.43)

with multiple simulations at different L and a, such that the continuum and
infinite volume limits can be taken. For a ∼ 0.1 fm and Mπ ∼ 130 MeV,
this means that L/a ∼ 60. Hence, if the lattice spacing is to be halved to
get a good estimate of discretisation effects, the maximum number of lattice
points noted above will be exceeded.

The technical difficulties discussed above mean that the algorithms
used for the computation of observables and the generation of gauge
configurations are the subject of intense study. On the one hand, improved
schemes for the computation of the matrix inverses and the sampling of the
gauge ensembles are sought to reduce the overall computational effort. On
the other hand, existing techniques and routines are meticulously optimised
for particular supercomputer architectures and it is often the case that LQCD
codes are at the cutting edge of exploiting these machines. Optimisations of
this latter kind are presented in Chapters 8 and 10.

Continuum Limit

To end this section, it is insightful to look at the continuum limit of the
lattice theory in terms of the bare coupling g. For simplicity this will be
done considering only massless quarks, closely following the exposition
in Ref.[41]. Physical quantities P(a,g) must become independent of the
lattice spacing a as the continuum limit is taken. They thus satisfy the
renormalisation group equation

[
−a

∂

∂a
+βLAT(g)

∂

∂g

]
P(a,g) = 0+O(a) , (1.44)

2 Simulations of LQCD with open boundary conditions in the time direction make it possible to
solve this issue, at the cost of introducing a number of technical complications. [47]
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1.3 twisted mass lattice qcd

where lattice artefacts have explicitly been allowed for via the term on the
right hand side. βLAT is the lattice β-function, integration of which defines
ΛLAT and gives the dependence of the lattice spacing on the bare coupling

a =
1

ΛLAT
(β0g

2)−β1/(2β
2
0) exp

{
−

1

2β0g2

} [
1+O(g2)

]
. (1.45)

The coefficients β0 and β1 are universal, but ΛLAT as well as higher order
terms depend on the details of the lattice discretisation. It should be
noted that this perturbative result is only a guide and the lattice spacing of
given simulation is determined non-perturbatively through a scale-setting
procedure. As an example, ratios of hadron masses can be computed in
LQCD and the bare quark masses adjusted such that the ratios take their
phenomenological values, fixing the bare quark masses. At this point
in parameter space, one of the hadron masses can be compared to its
experimental value to extract an estimate of the lattice spacing

aMlat = a
(
Mexp + δM

)
aest. ∼

aMlat
Mexp

(1.46)

where δM is symbolic and represents all possible lattice artefacts. There
are many methods for setting the scale and the running of a(g2) can also
be computed non-perturbatively, but in any case the continuum limit is
approached as g→ 0 or equivalently β = 6/g2 →∞.

twisted mass lattice qcd

Twisted mass lattice QCD (tmQCD) is an equivalent formulation of QCD
which involves the addition of a mass term which is twisted in flavour
space. In the continuum, the twisted formulation has the same properties
as the standard formulation. However, the corresponding lattice theory
exhibits a number of properties which make it interesting for practical non-
perturbative calculations.

In this section, the continuum and lattice actions will be discussed,
including an action for mass non-degenerate quark flavours. Automatic
O(a)-improvement will be demonstrated and the addition of a so-called
clover term will be discussed briefly. The tmLQCD action in its familiar
form was first used for lattice simulations with Wilson fermions to study the
phase structure of the Wilson lattice theory in Ref. [48], where the twisted
mass term was used to provide for explicit breaking of parity and flavour
symmetries. In its modern form, the discretisation was first explored in
the quenched approximation as a tool to avoid unphysical zero modes at
small quark masses [49]. Quenched and dynamical twisted mass lattice QCD
(tmLQCD) were then further studied in Refs. [50, 51, 52] until in Refs. [53, 54]
its crucial properties were elaborated. Reviews can be found in Refs. [55, 56].

Continuum Twisted Mass QCD

The continuum QCD action for two degenerate quark flavours of mass m
with fermionic Lagrangian density

LNf=2(x) = ψ̄(x) [γµDµ +m]ψ(x) , (1.47)

is invariant under the global chiral rotation with twist angle ω

ψ(x)→ χ(x) = e−i
ω/2γ5τ

3
ψ(x) , ψ̄(x)→ χ̄(x) = ψ̄(x)e−i

ω/2γ5τ
3

, (1.48)
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if the mass parameter is simultaneously transformed

m→ m exp(iωγ5τ3) . (1.49)

To show this, it suffices to use the properties of the third Pauli matrix τ3

acting in flavour space and γ5 acting in Dirac space. Instead, if the action is
expressed in terms of the χ(x) fields defined above, the twisted mass QCD
(tmQCD) Lagrangian density for two mass degenerate flavours is obtained

LF,tm(x) = χ̄(x)
[
/D+mq + iµγ5τ

3
]
χ(x) , (1.50)

where the identifications

mq = m cos(ω) , µ = m sin(ω) , m =
√
m2q + µ2 , (1.51)

have been made. This form is completely equivalent to the standard one,
except that certain discrete symmetries look more complicated. The mass
parameter µ is referred to as the twisted mass, mq as the standard mass and
m as the polar mass. Expressions in terms of the χ(x) fields are also referred
to as being written in the twisted basis. The relationship between the rotation
angle and the mass terms can also be inverted, defining

ω = arctan(µ/mq) . (1.52)

In addition to the trivial caseω = 0, a special valueω = π/2 can be identified
for which the quark mass is given entirely by the twisted mass. As will be
seen further below, this particular value is referred to as maximal twist and is
related to the property of automatic O(a)-improvement in the lattice theory.

Quark Currents

As given in Ref. [49], the usual isospin currents and densities can be defined
in the twisted basis

Aaµ = χ̄γµγ5
τa

2
χ , (1.53)

Vaµ = χ̄γµγ5
τa

2
χ , (1.54)

Pa = χ̄γ5
τa

2
χ . (1.55)

The PCAC and PCVC relations take the form

∂µA
a
µ = 2mPa , a = 1, 2 , (1.56)

∂µA
3
µ = 2mP3 + iµχ̄χ , (1.57)

∂µV
a
µ = −2µεabP

b , a,b = 1, 2 , (1.58)

∂µV
3
µ = 0 . (1.59)

The currents in the usual basis3 can be obtained by undoing the chiral
rotation via

ψ(x) = ei
ω/2γ5τ

3
χ(x) , ψ̄(x) = χ̄(x)ei

ω/2γ5τ
3

, (1.60)

3 often called physical basis
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1.3 twisted mass lattice qcd

with the twist angle as defined in Equation (1.52). This gives then

Ã1,2
µ = cos(ω)A1,2

µ + sin(ω)ε12,21V
2,1
µ , (1.61)

Ã3µ = A3µ , (1.62)

Ṽ1,2
µ = cos(ω)V1,2

µ + sin(ω)ε12,21A
2,1
µ , (1.63)

Ṽ3µ = V3µ , (1.64)

P̃1,2 = P1,2 , (1.65)

P̃3 = cos(ω)P3 +
i

2
sin(ω)χ̄χ , (1.66)

for which the PCAC and PCVC relations take their usual form.

Lattice Twisted Mass QCD

Applying the chiral transformation to the fermionic part of the Wilson lattice
action in Equation (1.35), results in a change of the Wilson Dirac operator

DW → D ′W =
1

2
γµ

(
∇f
µ +∇b

µ

)
− are−iωγ5τ

3
∇f
µ∇b

µ . (1.67)

The form D ′W is interesting in that the Wilson term is now twisted in
flavour space and the invariance under Equations (1.48) and (1.49) is only
recovered in the continuum limit. The properties of twisted mass lattice
QCD (tmLQCD) can be thought of as originating from this twisting of the
Wilson term. Alternatively, as in the continuum, the lattice action can instead
be written in the twisted basis, giving

Stm = a4
∑
x

χ̄(x)
[
DW[U] +mW + iµγ5τ

3
]
χ(x)

= a4
∑
x

χ̄(x)Dtm[U]χ(x)
(1.68)

without changing DW.
In the lattice theory, the twist angle is not uniquely defined anymore.

One possible definition, ωA, is given in terms of the PCAC quark mass,
computed from a matrix element of the PCAC relation

ZA∂µA
1,2
µ = 2mPCACP

1,2 , ωA = arctan
(

µ

ZAmPCAC

)
. (1.69)

The renormalised masses are given by

mR = Z−1
S (mW −mcrit) and µR = Z−1

P µ , (1.70)

defining the renormalised twist angle

ωR = arctan
(
µR

mR

)
. (1.71)

Other definitions of the twist angle are possible and will have different lattice
artefacts, as discussed further below. It should also be noted that lattice
artefacts can make a reliable determination of the twist angle difficult close
to the chiral limit, which will be discussed in Section 2.2.

The case ofω = π/2 has a special significance for the lattice theory. Firstly,
the theory is invariant under flavour exchange and a simultaneous change
of the sign of µ. This precludes additive renormalisation of the twisted
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quark mass and so, when mW → mcrit, the Lagrangian quark mass µ is
related to the physical quark mass by multiplicative renormalisation only
(up to O(a2)). Secondly, the counterterms required to provide on-shell O(a)-
improvement (see Ref. [51]) for general values of ω become such that they
affect physical results at most at O(a2). These terms are thus irrelevant at
O(a) in the sense of improvement (see Ref. [53]). This property is called
automatic O(a)-improvement.

It should be noted that while the continuum action of twisted mass QCD
is completely equivalent to its usual form, the lattice theory is not. The
twisted mass term explicitly breaks parity and flavour SU(2) symmetries
present in the standard two flavour Wilson lattice theory. These are lattice
artefacts of O(a2) and the symmetries are restored in the continuum limit.
In general, the effects are found to be very small with the exception of an
unphysical mass difference between the neutral and charged pions which
can be quite sizeable. This point will be discussed in more detail in
Section 2.2.

Automatic O(a)-improvement and the Sheikholeslami-Wohlert Term

Standard Wilson fermions and twisted mass fermions for general values
of the twist angle ω exhibit discretisation artefacts at O(a), such that
taking the continuum limit reliably may require very fine lattice spacings.
Discretisation errors can be described in a systematic way using the
Symanzik effective theory [25, 26]. Under the assumption that the lattice
spacing is sufficiently fine that lattice artefacts appear only as asymptotically
small corrections [55], the lattice expectation value of a multi-local operator
Ô without contact terms can be expressed as a path integral in the effective
continuum theory

〈Ô〉lat =
1

Z

∫
Dψ̄DψDAOeff e

−Seff (1.72)

Seff = S0 + aS1 + a
2S2 + · · · (1.73)

Oeff = Oc + aO1 + a
2O2 + · · · (1.74)

Here, S0 is the action of the target continuum theory (tmQCD in this case)
and the higher order terms are linear combinations of operators of mass
dimension five and higher. The dependence on the lattice spacing is now
explicit and the notation Oc indicates that this operator is constructed out of
continuum fields. The higher order terms in Oeff depend on the operator in
question.

Expanding exp(−Seff) and Oeff simultaneously to O(a), gives

〈Ô〉lat = 〈Ôc〉S0 − a〈S1Ôc〉S0 + a〈Ô1〉S0 +O(a2) , (1.75)

where the expectation values are calculated with respect to the target
continuum action S0. In the standard Wilson lattice theory, S1 can be shown
to reduce to the Pauli term

Ssw
1 =

∫
d4x icψ̄(x)σµνFµν(x)ψ(x) , (1.76)

where σµν = i/2[γµ,γν]. O(a) discretisation artefacts in on-shell observ-
ables [57] can be removed by the introduction of a counterterm of the same
form, the so-called Sheikholeslami-Wohlert (clover) term [58] into the lattice
action. To do this, the coefficient function csw(g2) has to be tuned according
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to an appropriate improvement scheme. For more general matrix elements,
further operator-specific counterterms of the form Ô1 need to be introduced
and their coefficients tuned.

The property of automatic O(a)-improvement of twisted mass Wilson
fermions was first shown in Ref. [53]. A very simple alternative proof is
given in in Refs. [59, 55] which does not rely on any properties of the critical
massmcrit which may be affected by lattice artefacts. When the Wilson quark
mass is tuned to its critical value and mq → 0, the continuum action S0
becomes invariant under the transformation

T1 : χ→ iγ5τ
1χ , χ̄→ χ̄iγ5τ

1 , (1.77)

while S1 changes sign under T1. Observables Ô too can be odd or even under
this transformation. For odd observables, the O(1) contribution 〈Ôc〉S0 must
vanish because because it is T1-odd while S0 is not. The behaviour of the
O(a) contributions is, on the other hand

a〈ÔcS1〉S0 → a〈ÔcS1〉S0 , a〈Ô1〉S0 → a〈Ô1〉S0 , (1.78)

and so
〈Ôodd〉lat = −a〈ÔcS1〉S0 + a〈Ô1〉S0 +O(a2) . (1.79)

Hence, 〈Ôodd〉lat vanishes like a in the continuum limit and is thus not O(a)-
improved. For physical observables which are even under T1, on the other
hand, the O(a) contributions must vanish by symmetry since they are T1-
odd overall while the O(1) contribution is even by definition. As a result, the
lattice artefact terms in the Symanzik expansion for these observables start
at O(a2)

〈Ôeven〉lat = 〈Ôc〉S0 +O(a2) , (1.80)

and these physical observables are automatically O(a)-improved if the
Wilson quark mass has been tuned to its critical value. In fact, it can be
shown that all odd powers of a are absent in the Symanzik expansion of
T1-even observables at maximal twist.

In practice this means that when twisted mass quarks at maximal twist
are used, there is no need for the involved improvement programmes re-
quired for standard Wilson quarks. This is especially true when observables
with many quark fields are considered for which the pattern of counterterms
can quickly become very difficult to handle. As a final remark it can be noted
that the proof of automatic O(a)-improvement has recently been extended to
observables with contact terms in Refs. [60, 61].

Tuning Conditions

In the lattice theory, mcrit (and hence the twist angle) is not defined uniquely:
different observables which vanish asmW → mcrit will be subject to different
lattice artefacts. Assuming that the behaviour of the theory as mq → 0 is
smooth4, the vanishing of the pion mass at µ = 0,mq → 0 can in principle be
used as a tuning condition for imposing maximal twist. However, it has been
shown in Refs. [62, 63] that this results in substantial O(a2) discretisation
artefacts as small quark masses are approached along the line µ → 0. One
way of understanding this is via the O(a) contribution Sµ1 , which arises in
addition to Ssw

1 at non-zero twisted quark mass

S
µ
1 =

∫
d4xbµµ2χ̄(x)χ(x) . (1.81)

4 deviations will be dicussed in Section 2.2
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This can be interpreted as a µ-dependent O(a2Λ3) shift inmcrit, to which the
twist angle becomes more and more sensitive as µ is decreased (even though
the shift itself of course also becomes smaller). Consequently,

mcrit(M
±
π = 0,µ = 0) 6= mcrit(µ) , (1.82)

and if the small quark mass limit is approached without taking the shift into
account, large O(a2) lattice artefacts appear. In the literature it is therefore
said that the vanishing of the pion mass at µ = 0,mq = 0 is not an optimal
tuning condition.

On the other hand, when the small quark mass limit is taken with the
shift taken into account, no such increase of lattice artefacts is seen as µ is
decreased. This can be achieved through a tuning condition which aims at
the restoration of T1 symmetry, provided by the vanishing of some T1-odd
lattice observable up to lattice artefacts. Conventionally this is a PCAC quark
mass, extracted from the ratio of matrix elements

mPCAC =

∑
x〈∂4Aa4 (x, t)Pa(0)〉

2
∑

x〈Pa(x, t)Pa(0)〉
a ∈ {1, 2} , (1.83)

where no renormalisation is necessary for this purpose. It should be noted
that this holds for any t, but lattice artefacts reduce the range of t for which
mPCAC can be extracted cleanly. It is also possible to define the twist angle
in terms of the quark currents of Section 1.3.1 in the physical basis and their
relationships.

Different choices of T1-odd observable will yield determinations of mcrit
which differ by O(a) lattice artefacts. This is not a problem in practice as
having mq = O(aΛ2) only leads to lattice artefacts at most5 of O(a2). As a
further practical consideration, the condition mR 6 0.1µR is checked (up to
O(a)) as a criterion to ensure that the theory is O(a)-improved. Hence, it is
clear that for very small twisted quark masses, this requires high statistical
precision.

The Sheikholeslami-Wohlert Term

To end this section, automatic O(a)-improvement in the presence of the SW
term in the lattice action must be discussed. Neither it nor the Wilson term
are invariant under T1, but in the sense of the Symanzik effective action, they
do not affect the symmetries of the target continuum theory given by S0. As
a result, automatic O(a)-improvement by the argument above (or the original
argument of Ref. [53]) is not affected, whatever the value of the parameter
csw. The clover term can thus be safely added to the twisted mass action in
the form

χ̄(x)C(x)χ(x) = csw
i

4
χ̄(x)σµνFµν(x)χ(x) (1.84)

where Fµν can in principle be any discretisation of the field strength tensor.
Conventionally, the symmetric form [64]

Fµν(x) =
1

8

[
Uµ(x)Uν(x+ µ̂)U

†
µ(x+ aν̂)U

†
ν(x)

+Uν(x)U
†
µ(x+ ν̂− aµ̂)U

†
ν(x− aµ̂)Uµ(x− aµ̂)

+U†µ(x− aµ̂)U
†
ν(x− aν̂− aµ̂)Uµ(x− aν̂− aµ̂)Uν(x− aν̂)

+U†ν(x− aν̂)Uµ(x− aν̂)Uν(x− aν̂+ aµ̂)U
†
µ(x)

− h.c.
]

,

(1.85)

5 this can be shown either by thinking of Slat
0 as having a standard mass term which vanishes like

a or by adding a contribution of O(a2) to the Symanzik expansion
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is used. With csw tuned as for standard Wilson fermions, it is reasonable
to expect reduced discretisation errors because the dominant contribution to
single insertions of S1 should be absent from the Symanzik expansion of odd
observables. On the other hand, it might be possible to tune csw to change
lattice artefacts at higher orders where multiple insertions of S1 occur, or to
account for Equation (1.81).

Mass Non-Degenerate Doublet

The twisted mass lattice discretisation can also be used for the simulation of
mass non-degenerate quarks, such as strange and charm. A possible choice
for the lattice action is given by

S1+1F,tm = a4
∑
x

χ̄h(x)
[
DW +mW + iµσγ5τ

3 − µδτ
1
]
χh(x) (1.86)

which is guaranteed to yield a real and positive quark determinant given√
m2q + µ2σ > µδ. Different choices are possible, as long as the mass splitting

µδ and the twisted mass µσ are orthogonal to each other in flavour space.
With mW tuned to mcrit, the bare strange and charm quark masses are then
given by

µs = µσ −
ZP
ZS
µδ , µc = µσ +

ZP
ZS
µδ , (1.87)

where ZP and ZS are the pseudoscalar and scalar current renormalisation
factors and usually ZP/ZS < 1. This leads to the problematic situation
of requiring µδ > µσ to give physical strange and charm quark masses.
Positivity is now not guaranteed anymore and sign changes of the heavy
quark determinant over the course of a simulation could potentially render
the importance sampling of the path integral meaningless. However,
eigenvalue measurements during Nf = 2 + 1 + 1 simulations [65] have
consistently shown that µs ∼ 100 MeV provides a sufficient spectral gap
to prevent this from happening, much like in Nf = 2+ 1 simulations with
standard Wilson quarks. It will be shown in Chapter 4 that this remains true
with the clover term in the action.

Proofs of automatic O(a)-improvement for the non-degenerate doublet
are given in Refs. [66, 56] and similar symmetry restoration arguments apply.
From Equation (1.81), it should be clear that the value of κ corresponding to
maximal twist will in general be different in the light and strange/charm
sectors of the theory. However, it can be shown that m`PCAC −mhPCAC ∼ O(a)

(see the Appendix of Ref. [65]), such that setting κh = κ` will only affect
O(a2) lattice artefacts. In addition, since µc > µs > µ`, the condition of
maximal twist in the strange and charm sector is easily satisfied by mcrit
tuned in the light sector. As a result, the value of κ is only tuned in the light
sector of the theory.

Osterwalder-Seiler Quarks

The twisted mass action for non-degenerate quarks of Equation (1.86) is
not diagonal in flavour space. This leads to flavour mixings even in the
comparatively simple pseudoscalar meson sector with strange and charm
quarks [65, 67]. The kaon mass can be extracted as the ground state of the
generalised eigenvalue problem of the two-flavour PP correlation function in
mixed parity-flavour sector. The D meson, however, is a highly excited state.
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In Ref. [67] it is argued that effective masses for states with definite parity
and flavour content can be extracted using operators which project to states
with the correct quantum numbers in the continuum limit. In the meson
sector, the flavour separation is manageable, but for observables involving
more quark fields the complexity quickly increases.

It has been shown in Ref. [54] that Osterwalder-Seiler (OS) quarks [43] can
be employed as valence fermions in a mixed action setup with twisted mass
quarks in the sea, fully preserving the property of O(a)-improvement if the
same Wilson quark mass is used in the valence and sea actions. These can
then be used to compute observables involving strange and charm quarks
without flavour mixings. The OS quark action is similar to the twisted mass
action for a degenerate doublet, except that it is defined only for a single
flavour (its quark determinant is therefore complex and cannot be used in the
molecular dynamics Hamiltonian). In the valence sector then, a contribution

LOS
F,val(x) = χ̄

OS(x)

{
DW [U] +mcrit + iγ5

[
µc 0

0 −µs

]}
χOS(x) , (1.88)

is added to the action, where mcrit takes the same value as in the light sea
sector. Formally, a ghost contribution with the same masses is required to
cancel the quark determinant. In practice, OS quarks are implemented by
adding two additional twisted mass valence quark doublets with degenerate
masses µc and µs to the valence action with further (formal) cancellations
from ghost fields.

Twisted Mass Clover Action for Light, Strange and Charm Quarks

The complete twisted mass clover action for Nf = 2+ 1+ 1 simulations at
maximal twist is thus

S
Nf=2+1+1
tm =β

∑
x

[∑
µ<ν

b0{1−
1

3
RTrUµν(x)}+

∑
µ6=ν

b1{1−
1

3
RTrRµν(x)}

]
+
∑
x

χ̄`(x)
[
DW[U] +mcrit + iµγ5τ

3 +C[U(x)]
]
χ`(x)

+
∑
x

χ̄h(x)
[
DW[U] +mcrit + iµσγ5τ

3 − µδτ
1 +C[U(x)]

]
χh(x) ,

(1.89)

where C[U(x)] is the clover term as defined in Equation (1.84). In principle,
csw and mcrit may be chosen different between the light and heavy sectors,
but they are conventionally chosen to be the same. As discussed before,
the twisted mass µσ in the heavy sector can also be chosen to be flavour
off-diagonal while the mass splitting µδ is taken diagonal.
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1.4 lattice qcd simulations

lattice qcd simulations

The evaluation of observables in LQCD follows from Equation (1.42). Using
a Markov chain Monte Carlo algorithm, collections of field configurations for
the link variables can be generated with the correct probability distribution.
Observables can then be evaluated as simple statistical averages on these
ensembles, such that

〈Ô〉 = 1

N

N∑
i=1

O[Ui] +O(1/
√
N) , (1.90)

with a statistical error which decreases with the inverse square root of the
number of configurations in the ensemble. When LQCD simulations were
first attempted, it was clear that evaluating the contribution of the quark
determinant was computationally intractable at the time. As a result, the
quark contribution to the path integral weight was set to unity (which is
equivalent to making the sea quarks infinitely massive) and calculations
were performed in the so-called quenched approximation. The gauge field
configurations with the correct probability distribution could be generated
with simple local algorithms of the Metropolis type [68, 69].

When this approximation is lifted in so-called dynamical simulations, local
algorithms which update one or a few link variables at a time become
impractical because of the computational cost of inversions of the Dirac
operator which are required to evaluate the action contribution of the
quark determinant6. In current simulations using dynamical quarks, global
updating algorithms are used instead, with most of them variants of the
Hybrid Monte Carlo algorithm.

Hybrid Monte Carlo Algorithm

In the Hybrid Monte Carlo (HMC) algorithm [71, 72, 73], Markov chains of
field configurations are produced by augmenting the action to be simulated
with momenta conjugate to the link variables. The algorithm consists
of the molecular dynamics (MD) step and a Metropolis accept-reject step.
In the MD evolution, the equations of motion of this augmented system
are integrated along a fictitious molecular dynamics time for a number
of integration steps, called a trajectory. The Markov chain produced over
the course of many such trajectories provides the ensemble of gauge
configurations {U} for the evaluation of observables. A discussion of the
symplectic integrators used for updating the conjugate variables is given
below in Section 1.4.2.

At the beginning of each trajectory, the momenta are sampled from a
Gaussian distribution. Similarly, one pseudofermion field is generated for
each non-local fermionic contribution as discussed in Section 1.2.3 and kept
constant over the course of the integration. At the end of the trajectory, the
total energy of the system, H1, is compared to its energy at the beginning
of the trajectory, H0. The new field configuration is then accepted with a
probability

Pacc = max{1, e−δH} (1.91)

6 Note that the fermionic contribution can also be represented as completely local bosonic field
theory with n degrees of freedom which reproduces the quark determinant in the limit n→∞.
A good approximation can be obtained with n not too large for local bosonic algorithms to be
practical. [70]
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where δH = H1 −H0. If a configuration is rejected, the initial configuration
is added to the ensemble and the next trajectory is started from there.
This ensures that finite step size errors in the integration do not bias the
distribution of field configurations. The size of the energy violation depends
on the volume and, in a complicated fashion, on the details of the integrator,
its step-size and the action being simulated. In any case, the acceptance
rate should be kept high because otherwise the ensemble will contain many
copies of the same field configuration, increasing autocorrelations. Generally,
there is a point where acceptance rate and computational expense balance
out and it is desirable to perform simulations at this point.

The HMC algorithm respects the property of detailed balance which
relates the transition probabilities between two field configurations

e−Seff[U]P(U→ U ′) = e−Seff[U
′]P(U ′ → U) (1.92)

and ensures that the algorithm samples the target probability distribution
correctly. The inclusion of the conjugate momenta is inconsequential because
they are random variables with a vanishing mean and their contribution
to the Hamiltonian thus only generates a constant multiplicative factor
which cancels in Equation (1.92). The pseudofermion fields are generated
at the beginning of each trajectory (K = 1 in Equation (1.42)) and act like
external fields over the course of it. It follows that the ensemble of gauge
configurations thus effectively contains two stochastic estimates, with the
average over pseudofermion fields implicit.

As an important side remark it should be noted that the molecular
dynamics Hamiltonian HMD and the target Hamiltonian H do not need
to be exactly the same. If the former is an approximation of the latter, a
non-zero acceptance probability can be obtained with the acceptance step
ensuring that this does not introduce bias. In order to make the algorithm
more efficient, it is common to make a number of approximations in the
computation of HMD. Because they are relevant to certain parts of this thesis,
the details of the MD evolution will be discussed below.

Molecular Dynamics Integration

The MD Hamiltonian is given by.

HMD =
1

2
Tr [Pµ(x)Pµ(x)] + SG[U] +

∑
i

Si[U] . (1.93)

where the monomials Si[U] are the various, usually fermionic, contributions
to the effective action. Hamilton’s equations of motion take the usual form

U̇ =
dH
dP

= P Ṗ = −
dH
dU

= −
dSeff
dU

, (1.94)

where the time derivatives are taken with respect to the fictitious MD time.
For definiteness, the gauge field Uµ(x) is a member of the group SU(3) in
the fundamental matrix representation while the conjugate momenta Pµ(x)
are in the Lie algebra su(3) and thus traceless anti-Hermitian matrices (in
this convention). They can be can be expressed in terms of the Gell-Mann
matrices λa (a = 1, 2, . . . , 8) as

Pµ(x, τ) =
8∑
a=1

iλaP
a
µ(x, τ) , (1.95)
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where the components Paµ(x) are real and the factor i is also conventional.
At the beginning of each trajectory, they are sampled from a Gaussian
distribution.

The derivative of a scalar function f with respect to group elements, can
be defined via the exponential map (see e.g. Ref. [41])

δf[U]

δUµ(x)
=

8∑
a=1

∂

∂σa
f
[
eiσaλaUµ(x)

]
σa=0

, (1.96)

which is in the tangent space and thus in the algebra. Applying this to
HMD, the resulting derivative is called the force. It is easy to see that
the computation of the derivative of fermionic contributions will produce
factors containing gauge fields as well as products and inverses of the
Dirac operator sandwiched between the pseudofermion fields. As a result,
these contributions are the most computationally demanding part in the
generation of gauge field configurations.

In the simplest leapfrog (LF) symplectic integration scheme with time-step
δτ, the phase space variables are alternately updated via

δPaµ(x, τ) =
{
∂

∂α
HMD

[
eiαλaUµ(x, τ)

]}
α=0

(1.97)

Paµ(x, τ+ 1/2δτ) = Paµ(x, τ− 1/2δτ) − δτ · δPaµ(x, τ) (1.98)

Uµ(x, τ+ δτ) = exp [δτ · Pµ(x, τ+ 1/2δτ)]Uµ(x, τ) , (1.99)

with half-steps at the beginning and end of the trajectory. One step of the
leapfrog algorithm can thus also be expressed as

TLF = TP[δτ/2]TU[δτ]TP[δτ/2]

TP[δτ] : P → P ′ = P− iδτ · δP
TU[δτ] : U→ U ′ = exp [iδτP]U ,

(1.100)

such that a trajectory of N steps is given by (TLF)
N and in practice TP[δτ/2]2

are of course combined into TP[δτ]. The exponential map ensures that the
Uµ(x) remain in SU(3) up to round-off errors and these small deviations are
corrected by group projections at regular intervals.

In simulations with light quarks, nested higher order integrators are used
which reduce the finite step size errors and lead to higher acceptance rates at
the same computational cost. A complete description of various symplectic
integrators can be found in Ref. [74] and in this thesis the most commonly
used one is the second order minimal norm (2MN) integrator. In terms of the
update operators of Equation (1.100), it is given by

T2MN[δτ] = TP[λδτ]TU[δτ/2]TP[(1− 2λ)δτ]TU[δτ/2]TP[λδτ] , (1.101)

where λ is a tunable parameter.

Multiple Time Scales and Mass Preconditioning

The integration of the equations of motion can be rendered more efficient
by splitting it over multiple time scales, such that different contributions are
integrated at different frequencies or, equivalently, with different step sizes.
This was first proposed for QCD in [75] and can be generalised for arbitrary
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numbers of time scales and any type of integrator. The different monomials
Sj of the effective action are associated with different time scales ti and
integrated in a nested fashion. Multiple monomials can be integrated on the
same time scale.

In the simplest scenario with two time scales t0 and t1, one fermionic
contribution S1 could be on time scale t1 and the gauge contribution SG
on time scale t0. The trajectory is split into N1 steps δτ1, each step δτ1 is
further split into N0 steps of length δτ0 = δτ1/N0. For the LF integrator,
one proceeds in a nested fashion:

T :
(
T1[δτ1/2](T0[δτ0])

N0T1[δτ1/2]
)N1

T1[δτ] : TP1 [δτ]

T0[δτ] : TP0 [δτ/2]TU[δτ]TP0 [δτ/2]

(1.102)

such that T1 only involves the derivative of S1 and T0 contains the updates
of the gauge field. Higher order integrators, such as the 2MN above,
can be similarly generalised to multiple time scales by replacing the TU
in Equation (1.101) with (Ti−1)

Ni−1 in a recursive fashion, such that only
T0 contains the gauge update. With this prescription, the generalisation
to n time scales is straightforward. The efficiency gains of multiple time
scales are greatest when the most demanding TPi can be computed least
frequently. One way of optimising this computational cost is through mass
preconditioning.

Mass preconditioning was initially introduced to speed up simulations
with standard Wilson fermions [76, 77] by reducing the cost of computing
the fermionic force. At the time, the quark determinant was split into a
determinant and a determinant ratio (see below), such that the sum of the
condition numbers of the respective operators in the pseudofermion action
was lower than the condition number of the original operator, thus lowering
the simulation cost. Later, the fact that the resulting terms have different
force contributions was exploited by integrating them on different time
scales. This was first done for two time scales in in Ref. [78] and generalised
in Ref. [79].

The fermionic contribution to the path integral of a doublet of mass
degenerate quarks is given by∫

Dφ†Dφ exp{−φ†(Q†Q)−1φ} , (1.103)

in terms of pseudofermions and the Hermitian operator Q = γ5M. The
operator Q can be shifted by a constant through the addition of a twisted
mass

W± = Q± iργ5 , (1.104)

such that
W+W− = Q2 + ρ2 . (1.105)

It should be noted that Q can itself be a twisted mass operator with target
mass µ.

Using this shifted operator, a fermionic contribution to the path integral,
equivalent to Equation (1.103), is given by∫

Dφ
†
1Dφ1Dφ

†
2Dφ2 exp{−φ†1(W+W−)

−1φ1 −φ
†
2W−

1

Q2
W+φ2} , (1.106)

24
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where the second factor is often referred to as a determinant ratio. This can
be further extended with more preconditioning masses ρi.

Clearly, when W+W− and Q2 are similar, W−Q
−2W+ ∼ 1. This is

therefore almost independent of the gauge field and the force of such a
term in the action will have a small magnitude. As a result, the terms
from determinants and the different determinant ratios can be integrated
on different time scales. This distribution has been shown to increase
acceptance rates compared to integration schemes with a single time scale
and no mass preconditioning. In addition, it leads to significant efficiency
gains because terms with large ρi are much cheaper to compute, contribute
strongly to the derivative and are hence integrated on fine time scales.
Terms with small ρi on the other hand contribute little to the derivative,
are expensive to compute and can thus be integrated on coarser time scales.

To optimise this, preconditioning masses are arranged monotonically,
guided by experience and force measurements during simulations to match
the hierarchy of integration time scales. While Ref. [79] explains that the
force of a single determinant ratio is inversely proportional to the square
of preconditioning mass ρ, no clear functional dependence is discussed.
Refs. [80, 81] suggest that the preconditioning masses should be chosen
such that they are equally spaced on some logarithmic scale to provide an
appropriate hierarchy of forces, but no clear guidance is given.

The Hybrid Monte Carlo algorithm with mass preconditioning and mul-
tiple time scales has been instrumental in enabling lattice QCD simulations
with light dynamical quarks. It is probable that this will continue to be the
case for simulations at the physical pion mass, but refinements in the tuning
of the various parameters are likely necessary. An attempt at a purely empir-
ical description of the parameter dependence of the force contributions and
their optimisation will be given and tested in Chapter 5, in the hope that the
simple fit functions can be useful in practice.
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Unphysically large light quark masses are one of the chief approximations of
current simulations in lattice QCD. The discretisation of the QCD Lagrangian
is not unique and various collaborations are currently working to simulate
at or close to the physical pion mass. These efforts are not mutually
exclusive: the usage of multiple discretisations provides an important test of
the universality of the continuum limit of lattice QCD. In order to place the
results of this thesis in a wider context, the “landscape” of various simulation
efforts will be summarized below.

a multitude of quark discretisations

The MILC collaboration is using highly improved staggared quarks [82]
(HISQ) with a tuned smearing setup [83] using mass-degenerate light quarks
as well as physical strange and charm quarks in the sea. Simulations using
Wilson quarks with non-perturbatively computed improvement coefficients
are performed widely. The PACS-CS collaboration pursued Nf = 2 + 1

simulations with the Iwasaki gauge action [44] while the CLS effort is
currently performing [84] Nf = 2+ 1 simulations using the Lüscher-Weisz
gauge action.

A second class of simulations with Wilson fermions are those employing
some level of gauge field smearing in the discretisation of the covariant
derivative in the Dirac operator. The QCDSF collaboration has performed
a simulation programme [85] with non-perturbatively improved Wilson
quarks with mild stout smearing in the covariant derivative. A similar
approach with more aggressive smearing was used by the Hadron Spectrum
collaboration on anisotropic lattices with tree-level tadpole improved values
of the Sheikholeslami-Wohlert term. The BMW collaboration has performed
Nf = 2+ 1 simulations with tree-level improved Wilson quarks, employing
significant so-called HEX smearing [86, 87]. This programme was extended
in two directions [88]. Firstly, Nf = 1 + 1 + 1 + 1 simulations with an
added fourth quark were performed in which the up and down quarks
were tuned to their physical masses (rather than being mass-degenerate)
and the strange and charm quarks take on their physical mass values.
Secondly, together with a simultaneous retuning of the bare quark masses,
the unquenched electromagnetic interaction was added, providing the first
ab initio calculation of the proton-neutron mass difference.

Lattice actions with a discrete realisation of chiral symmetry [89], so-
called Ginsparg-Wilson fermions, are attractive because they offer the po-
tential to study very small (even vanishing) quark masses and are bound
to have very good scaling properties towards the continuum limit without
the need for the expensive computation of improvement coefficients. Simu-
lations using overlap [90] quarks were studied [91] by the χLF collaboration,
and larger scale simulations were were out [92] by the JLQCD and TWQCD
collaborations.

A different realisation of Ginsparg-Wilson relation is given by domain
wall (DW) fermions [93]. These link a massive theory in 2n+ 1 dimensions
with a (potentially) massless theory in 2n dimensions in which all doubler
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modes have large gauge invariant masses introduced by the usual Wilson
term in the (2n+ 1)th dimension. At finite size of this extra dimension, a
residual mass amres persists which contributes to the total quark mass. As
the extent of this extra dimension is increased, the Ginsparg-Wilson relation
can be satisfied to essentially arbitrary precision. A large scale simulation
programme using different implementations of DW fermions in five dimen-
sions is being pursued by the RBC and UKQCD collaborations [94]. Similarly,
the JLQCD and TWQCD collaborations are conducting [95] simulations with
DW fermions.

Wilson twisted mass quarks provide a theoretically clean formulation
of lattice QCD with symmetry based O(a)-improvement. The simulation
programmes of the ETMC for Nf = 2 [96] and Nf = 2+ 1+ 1 [97] span light
and heavy flavour physics, studies of the phase structure of lattice QCD with
Wilson fermions, topological properties, quantities related to the hadronic
vacuum polarisation and studies of the baryon spectrum and baryonic form
factors. The configurations generated by the ETMC are publicly available
via the International Lattice Data Grid (ILDG) [98]. The simulation software
is also freely available [79] and the development process is open to public
scrutiny1.

This wide applicability results chiefly from the property of automatic
O(a)-improvement at maximal twist as well as the relation [54] between
twisted mass quarks and Osterwalder-Seiler (OS) quarks [43], which pre-
serves O(a)-improvement in a special mixed action setup. The first property
is especially important for computations in the baryon sector where oper-
ator improvement can quickly make calculations intractable. The second
property enables the non-perturbative computation of four quark operators,
as they appear in the effective weak Hamiltonian, with simplified mixing
under renormalisation. The usage of OS valence quarks also provides for a
rather straightforward computation of strange and charmed meson masses
and decay constants in the Nf = 2+ 1+ 1 setup, avoiding the flavour and
parity mixings of the non-degenerate strange/charm sea quark action.

The Nf = 2 + 1 + 1 simulations encompass around 25 ensembles with
charged pion masses ranging down to about 220 MeV and three lattice
spacings. The strange and charm quark masses are tuned such that
2M2K −M2

π± and the D meson mass take on approximately physical values.
Any deviations can be accounted for by ensembles with slightly differently
tuned strange and charm quark masses. The analysis of finite volume effects
is enabled by a number of different volumes at constant light quark mass.

Simulations at the physical pion mass would eliminate the chiral extrap-
olation which currently dominates some systematic errors, as in the baryon
sector for example [99]. In other situations, where effective theories provide
better guidance, these same ensembles can give excellent control over the
chiral extrapolation. This can can then be used to determine the low en-
ergy constants of the effective theory and even reduce the final uncertainties
on the given physics results, relevant for instance in the determination of
heavy-light meson decay constants.

As discussed in Section 1.3, the twisted mass action explicitly violates
parity and flavour symmetry. The only severe manifestation of this lattice
artefact observed so far is an unphysical mass difference between the
charged and neutral pions at non-zero lattice spacing. This cut-off effect
is the main drawback of the twisted mass discretisation as it can render
simulations unstable, puts an effective lower limit on the light quark masses

1 https://github.com/etmc
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2.2 isospin symmetry breaking

that can be simulated at a given lattice spacing and entails exponentially
enhanced finite volume effects.

isospin symmetry breaking

In practice, two measures of this mass splitting are considered. The first is
the mass of an unphysical neutral pion computed from correlation functions
not taking into account quark-line disconnected contributions. This state,
which is heavier than the corresponding charged pion, can in some sense
be thought of as a neutral pseudoscalar meson made up of purely valence
Osterwalder-Seiler quarks with the same bare quark mass as the light quarks
in the sea. The second is the full neutral pion, for which disconnected
contributions have to be taken into account and which is lighter than the
charged pions. In addition to affecting physics results through increased
finite volume effects, the lightness of the neutral pion is related to the zero
temperature phase structure of the lattice theory and can render simulations
unstable as the light quark mass is lowered to its physical value.

The stability of simulations with the new twisted mass clover action
will be discussed in Chapters 3 and 4. Measurements of the pion mass
splitting in Nf = 2 simulations and how it is affected by the value of csw
in Nf = 2+ 1+ 1 simulations will be presented in Chapter 6. To provide
a framework for these discussions, the connection between the pion mass
splitting and the zero temperature phase structure of the Wilson and Wilson
twisted mass lattice theories (in terms of their bare parameters) and the
stability of simulations is discussed below. The instabilities observed in
simulations with twisted mass quarks have their counterpart in simulations
with standard Wilson quarks and as a result, a discussion of the situation for
standard Wilson fermions is insightful.

The discussion will be based on results from Wilson chiral perturbation
theory (WχPT) [100, 101], an effective theory which adds to the chiral
effective Lagrangian further spurionic terms proportional to powers of the
lattice spacing, as they appear in the Symanzik effective action [25, 26] for
Wilson fermions [58]. Like its continuum analogue, WχPT relies on the
expansion of the effective Lagrangian around a saddle point in powers
of momenta with spurionic quark mass terms breaking chiral symmetry
explicitly.

In order order to account for discretisation artefacts of the lattice theory,
a simultaneous expansion in powers of the lattice spacing is also done. This
requires the definition of a suitable power counting scheme to fix the relative
sizes of momenta, quark masses and lattice artefact terms. The choice of
power counting scheme is equivalent to deciding whether the quark masses
or lattice artefacts are the dominant source of explicit chiral symmetry
breaking. The first of the two schemes used in practice is referred to as
generically small masses (GSM), for which the (degenerate) light quark masses
are considered to be of the order mq ∼ aΛ2QCD. The second is called large
cut-off effects (LCE), for which mq ∼ a2Λ3QCD and lattice artefacts are on the
same order as the quark masses.

An effective potential is constructed and minimized, parametrized by two
combinations of low energy constants c1 and c2, the sign and magnitude
of which affect the conclusions regarding the phase structure. The two
coefficients in general depend on the details of the gauge and fermion actions
of the lattice theory, but c1 can be taken to be proportional to the bare quark
mass. One of the consequences of this phase structure is that the squared
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pion masses may depend differently on the quark masses than in continuum
χPT, if lattice artefacts are sizeable compared to the quark masses.

The Phase Structure of Wilson Fermions

The importance of the power counting scheme becomes clear when the
effective chiral Lagrangian is used to understand the phase structure of
the Wilson lattice theory at zero temperature. This was done in Ref. [100],
explaining the existence of so-called Aoki phases [102, 103, 48, 104]. These
are regions in the β/mq plane in which lattice artefacts dominate and
break flavour and parity symmetries, making simulations unstable and the
continuum limit unreliable.

When c2 is positive, the Aoki phase exists in a region −2c2 < c1 < 2c2,
where mq ∼ c1 is small. Here, the “charged” pions π1,2 are the massless
Goldstone bosons of the broken flavour symmetry and the “neutral” pion
π3 is massive and its mass depends on c1 and c2. At the phase boundary,
all three pions are massless and outside of the Aoki phase, all squared pion
masses are degenerate and depend linearly on the quark mass at this order
of WχPT.

When c2 is negative, a different, so-called first-order scenario takes
place. All three squared pion masses depend linearly on the quark mass
everywhere (at this order of WχPT), but there exists a minimum pion mass
which depends on the magnitude of c2a2. An interesting consequence of this
last point is that any estimate of mcrit based on the extrapolated vanishing of
the squared pion mass will likely be wrong by some offset when c2 is large.
This can be taken into account by approaching mcrit from both directions.

Ref. [100] claims that the introduction of the clover term and the
subsequent improvement of the action at O(a) should not alter the sign of c2,
although this seems to be contradicted by inconsistencies in the literature, as
will be discussed in Section 2.2.3 below. It is important, however, to note the
limitations inherent in the description above. Firstly, the size of higher order
terms is unknown and these could modify even the qualitative behaviour
of the pion masses, mimicking a certain sign and value of c2. Secondly, a
comparison of the results from WχPT to simulation data is limited by the
knowledge of the large number of low energy constants which enter the
expressions for the pion masses, although some bounds are known. Still, the
qualitative agreement of the picture given by WχPT and simulation data is
very compelling.

Wilson Twisted Mass Fermions

Wilson twisted mass chiral perturbation theory [105, 106, 107] (WtmχPT)
is an extension of the above description, taking into account the chiral
transformation at non-zero lattice spacing which leads to the twisted
mass formulation of lattice QCD, as discussed in Section 1.3. The phase
structure at non-zero twisted mass was studied in this framework in
Refs. [108, 109, 110] and the connection between the pion mass splitting
and the existence of the Aoki and first order scenarios was elucidated. The
situation is more complicated because in addition to the (subtracted) Wilson
quark mass mq, the twisted quark mass µ provides a further source of chiral
symmetry breaking. In particular, Refs. [110, 62] provide a comprehensive
understanding at the given order. When c2 > 0, at non-zero twisted
quark mass, the Aoki phase transition is washed out into a crossover
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and the neutral pion is heavier than the charged pions. For the special
case of maximal twist, the difference between the squared pion masses,
(M2π1,2

−M2π0), is proportional to c2a2. For general values of the twist angle,
the pion masses depend in a complicated fashion on the two quark masses.

Figure 2.2: M2
π±

(top) and
mPCAC (bottom) as a function
of the Wilson quark mass m in
the LCE regime. The thickness
of the line is inversely propor-
tional to the twisted quark mass
µ with the thickest line corre-
sponding to µ = 0. This graphic
is a recreation of Figures 2 and
3 from Ref. [62].

The case of negative c2 is the one so far observed in simulations with
twisted mass quarks and is in line with the arguments of Ref. [62]. In the
µ/mq plane, there now exists a line of first order phase transition, curved
slightly away from the twisted mass axis and delimited by some negative
and positive critical twisted quark masses ±µc. Along this line, all three
pion masses are non-zero but at its endpoints, the neutral pion mass vanishes
while the charged pion mass assumes a minimal value proportional to c2a2.
Away from the phase transition line, all three pions are massive with the
squared neutral pion mass is lower than that of the charged pions by a
quantity proportional to c2a2. Simulations with twisted mass quarks are
generally performed at maximal twist, which to this order, is exactly on the
twisted mass axis. If |µc| is large compared to the physical light quark mass,
it is therefore not possible to simulate at maximal twist in the parameter
region corresponding to the physical pion mass, unless the lattice spacing
is reduced. An asymmetry and discontinuity in the proportionality of the
squared pion mass to the Wilson quark mass can be observed, both of which
are softened by the twisted quark mass. This is shown in the upper panel of
Figure 2.2 which has been reproduced from Ref. [62].

In this figure, moving along the horizontal axis is equivalent to moving
along the untwisted quark mass axis mq in the µ/mq plane, while the
thickness of the lines indicates the dependence for different values of µ.
The standard mass m shown here is the subtracted Wilson quark mass
m = mW −mcrit with mcrit not including the µ-dependent shift discussed
in Section 1.3.3.

Similarly, the PCAC quark mass shows a discontinuity when the Wilson
quark mass passes from negative to positive values as depicted in the lower
panel of Figure 2.2. As µ is increased, the discontinuities are softened and
importantly, the point where mPCAC vanishes and the theory is at maximal
twist is displaced to the right. For small twisted quark masses and sizeable
c2a

2, it is therefore very difficult to tune to maximal twist on account of the
rapid evolution around mPCAC = 0. This is another reason why reducing
the magnitude of c2 is thus essential for simulations with physically light
quarks at reasonable lattice spacings.

From Ref. [111], in terms of the renormalised Wilson quark mass, the
PCAC quark mass to lowest order is

mPCAC = m−
c2a

2

B
cos(φ) , (2.1)

where φ is the angle which parametrizes the chiral rotation of the ground
state of the effective potential due to the twisted quark mass and is related
to the usual twist angle. The most commonly used definition of maximal
twist relies on tuning m such that mPCAC ∼ 0, but of course cos(φ) depends
on both m and µ. Following the argumentation of Ref. [112], when higher
order terms are introduced as in Ref. [62], mPCAC = 0 implies cos(φ) = O(a),
the shift in the lower panel of Figure 2.2. At leading order, equating φ and
the twist angle, the slope of mPCAC is modified to

mPCAC ∼

(
1−

c2a
2

Bµ

)
m+ . . . (2.2)
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approaching the physical point

such that a negative c2 would imply a steeper slope and suggesting that the
relation between the PCAC quark mass and the Wilson quark mass might be
usable as a signal for the magnitude of c2 when all renormalisation constants
are taken into account.

Dependence of c2 on the Details of the Lattice Discretisation

The lattice discretisation, both in the gauge and fermion sectors, as well as
the number of dynamical quarks have a strong influence on discretisation
artefacts. There is evidence that in particular the choice of gauge action has
a significant effect on the phase structure of the lattice theory. In addition,
there is limited evidence that the fermion discretisation also affects the
magnitude of c2.

Numerical results from Ref. [113] suggests that the Wilson plaquette
gauge action combined withNf = 2Wilson quarks with a non-perturbatively
tuned clover term exhibit c2 > 0. This is in contrast to Refs. [114, 115],
in which evidence for unimproved Nf = 2 Wilson quarks and plaquette
gauge action points to c2 < 0 and the strength of the phase transition is
suppressed by the addition of a twisted quark mass. With the same action in
the strong coupling regime (β < 4.6), Ref. [116] corroborates the indications
from Refs. [102, 103, 104] for the existence of the Aoki phase in the limit
µ = 0 and hence c2 > 0. It should be noted, however, that at the coarse
lattice spacings considered in this last work, higher order contributions may
not be negligible. A hypothetical phase diagram in the space of mq, µ and β
is given for example in Ref. [117]2, where the Aoki phase exists below some
value of β and the first order scenario is realised for larger values of β.

The pion mass splitting with twisted mass fermions was studied in Ref. [118]
in the quenched approximation. The addition of the clover term with a non-
perturbatively tuned value of csw is seen to significantly reduce the splitting
between the squared charged pion mass and that of the neutral pion com-
puted from connected correlation functions. Further, an unpublished study
by the ETMC suggests that in the quenched approximation, this mass split-
ting is increased if instead the tree-level value csw = 1.0 is used.

For Nf = 3 (Nf = 2 + 1), Ref. [119] provides strong evidence that
perturbatively O(a)-improved Wilson fermions exhibit strong signs of a first
order phase transition and hence c2 < 0 at values of β relevant for practical
simulations. For this situation, the usage of improved gauge actions seems
to significantly reduce the effects of the phase transition and the simulation
programme of the PACS-CS collaboration therefore relied on the Iwasaki
gauge action [44]. The same was observed in Ref. [120] with unimproved
Wilson quarks and three different improved gauge actions. Mild stout
smearing applied to Nf = 2 simulations with unimproved Wilson twisted
mass quarks and tree-level Symanzik improved gauge action [121, 122] is
shown in Ref. [123] to reduce the strength of the phase transition. However,
it is unclear whether the influence of the stout smearing on the effective
lattice spacing has been properly considered, although Ref. [124] also gives
a measurement of the neutral pion mass which indicates a reduction of c2.
Nf = 2 + 1 + 1 simulations with unimproved Wilson twisted mass

fermions and the tree-level Symanzik improved gauge action in Ref. [65]
show quite strong signals of c2 < 0. Even with the Iwasaki gauge action,
measurements on ETMC Nf = 2+ 1+ 1 ensembles consistently give [124]
neutral pion masses lower than the charged ones. In addition, a direct

2 Figure 4.8, page 97
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2.2 isospin symmetry breaking

computation of c2 using methods proposed in Refs. [125, 126] provides a
clear signal for c2 < 0 [124]. Further, in the renormalisation programme
of the ETMC, runs with Nf = 4 mass-degenerate unimproved Wilson
twisted mass fermions were so strongly affected by the phase transition
that simulations at maximal twist were not possible. As a result, O(a)-
improvement had to be carried out by averaging the requisite correlation
functions from simulations with positive and negative Wilson quark masses.

Effects on Simulations and Physical Results

From the point of view of the simulations using Hybrid Monte Carlo
techniques, the pion mass splitting can become problematic as the physical
average up/down quark mass is approached if the first order scenario is
realised in the relevant parameter region. Close to the endpoints of the
phase transition line (approached from either µ = 0 or |µ| > |µc|), the
neutral pion becomes very light. The existence of a very light excitation
in the spectrum of the lattice theory implies a large correlation length which
may result in strong fluctuations and significantly increased autocorrelation
times. In addition, closeness to a first order phase transition induces the
approximate coexistence of the two phases at either side of the transition
for a given set of parameters. This was demonstrated numerically for three
flavours of perturbatively O(a)-improved Wilson quarks with the plaquette
gauge action in Ref. [119] and was also explored using two flavours of
unimproved Wilson twisted mass quarks with the plaquette gauge action in
Refs. [114, 115]. Tunnelling between these two phases is strongly suppressed
and it is likely that configuration space is wrongly sampled.

In twisted mass lattice QCD, the analysis of observables for the extraction
of the low energy properties of QCD is affected by the potential lightness of
the neutral pion in two ways. Firstly, it has been shown [127] in WtmχPT
that finite size artefacts (FSE) coming from π0 are exponentially enhanced
compared to those coming from π±. This may easily double the FSE on
observables such as the charged pion mass or charged pion decay constant
if the pion mass splitting is large (compared to a situation with degenerate
pion masses). In the LCE regime, it has been shown in Ref. [112] that chiral
fits better describe the data when logarithms involving the neutral pion mass
are included in the fit procedure. Modern chiral extrapolations of twisted
mass data, such as in Ref. [128], include c2 with priors in the fit procedure to
account for the effect. In addition to enhanced finite volume effects and fits
with more parameters, the extraction of physics results from twisted mass
data with large pion mass splittings can be disturbed by lattice artefacts
more directly. If the approach towards physical average up/down quark
mass is affected by large O(a2) lattice artefacts, it is unclear whether the
continuum limit can be reliably taken. If a combined continuum and chiral
extrapolation is to be used, for the smallest quark masses lattice artefacts may
be a significant source of chiral symmetry breaking while being negligible
for higher quark masses.

In WχPT, this can be thought of as passing from a regime where the
GSM power counting is appropriate into one where the LCE power counting
must be used. In principle, this transition could be incorporated into the
fit procedure, but it would probably be quite complicated to reliably match
the expressions from the two regimes. In order to use WχPT for chiral
extrapolations, it is therefore in practice recommended that one regime or
the other be enforced. At a lattice spacing of approximately 0.1 fm, this
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approaching the physical point

means that the GSM regime is valid for mq & 45 MeV. The LCE regime on
the other hand should be valid for mq & 7 MeV. Since both of these quark
masses are above the physical average up/down quark mass, it is reasonable
to assume that lattice artefacts will play a major role in simulations at the
physical pion mass and that the combination of data from the two regimes
should be done with care. It should be noted that taking the continuum
limit at fixed quark mass, i.e. potentially passing from the LCE regime to the
GSM regime because the lattice spacing is reduced, is not an issue as long as
one is working at maximal twist throughout to the accuracy required [129].
Given stable simulations without signs of complicated phase structure at
the physical pion mass, the continuum extrapolation should therefore be
straightforward and automatic O(a)-improvement should hold as expected.

The Pion Mass Splitting in Current Two and Four Flavour Simulations

Ref. [124] provides the most complete list3 of pion mass measurements with
Wilson twisted mass fermions for Nf = 2 [96] with tree-level Symanzik
improved gauge action and Nf = 2+ 1+ 1 with Iwasaki gauge action [97].
For Nf = 2 at β = 3.9 (a ∼ 0.08 fm), the pion mass splitting for the
lightest simulated charged pion mass is around 60 MeV. At the finer lattice
spacing of a ∼ 0.063 fm at β = 4.05, this is reduced to about 35 MeV. For
Nf = 2+ 1+ 1, with lattice spacings taken from Ref. [128], the pion mass
splitting at β = 1.90 (a ∼ 0.089 fm) at the lightest simulated quark mass
for this lattice spacing is around 140 MeV and remains roughly constant as
the light quark mass is increased. At the finest lattice spacing a ∼ 0.062 fm
at β = 2.10, a value of 40 MeV is obtained and this too remains roughly
constant as the light quark mass is increased. One should take into account
that the measurements of the pion mass splitting given above have statistical
uncertainties between 10 to 30% and are subject to unquantified systematic
errors.

Ref. [62] suggests a mild dependence of the difference of the squared
pion masses on the (twisted) light quark mass and a linear extrapolation
to the physical point. However, Ref. [124] finds that constant and linear
extrapolations can barely be differentiated with the available data. On the
other hand, the effect of the strange and charm quark masses on the pion
mass splitting is substantial. For the coarser lattice spacing at a rather heavy
light quark mass, a reduction in the strange quark mass of ∼ 20% (while
the charm quark mass is kept roughly constant) results in a reduction of the
pion mass splitting of around 30%. For the finest lattice spacing, a reduction
of the strange quark mass of around 12% with a simultaneous reduction of
the charm quark mass by about 30% almost doubles the pion mass splitting.
In the first case, only the parameter µδ was changed slightly while in the
second case both the average bare quark mass µσ of the non-degenerate
doublet as well ass µδ were changed significantly. In both cases the changes
in the pion mass splitting are such that the indicated error bars just, or not
quite, touch.

Although based on a very limited amount of data, this last point should
be carefully considered in the tuning of strange and charm quark masses
in production simulations. It seems to confirm the naïve expectation that
the strange and charm sector has a strong effect on discretisation artefacts
(and hence the pion mass splitting), even though common light quark low
energy observables are largely unaffected by the presence of strange and

3 Tables 3 and 1 in the reference, for Nf = 2 and Nf = 2+ 1+ 1 respectively
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2.2 isospin symmetry breaking

charm quarks in the sea [97]. Clearly, Nf = 2 + 1 + 1 simulations at the
physical pion mass and a mass splitting of 140 MeV are not feasible. This
would mean, therefore, that a reduction by at least a factor of 2 in the
lattice spacing is required to control the pion mass splitting. The possibly
resulting issues with topology freezing and the (currently) infeasibly large
lattice volumes make proceeding with the unimproved Wilson twisted mass
action impossible. This is the reason for exploring the twisted mass clover
action to reduce the pion mass splitting and enable simulations at the
physical pion mass at reasonable lattice spacings and manageable lattice
volumes. The beneficial qualities of twisted mass quarks would then enable
the computation of a wide range of physical quantities and a further test of
universality.

Summary and Conclusions

The available theoretical arguments suggest that with Wilson quarks, simu-
lations at or close to the physical pion mass should be possible as long as
the magnitude of c2 is not too large. The Iwasaki gauge action has proven to
be effective in reducing the strength of the first order phase transition and it
will therefore also be used in this thesis. It is hoped that the inclusion of the
clover term with Wilson twisted mass quarks will further reduce the pion
mass splitting in dynamical simulations with Nf = 2 and Nf = 2 + 1 + 1

twisted mass quarks and thus allow pion masses at or close to the physical
pion mass to be reached.

35





Part II

PA R A M E T E R T U N I N G A N D E N S E M B L E
G E N E R AT I O N

The European Twisted Mass Collaboration has carried out two
very successful research programmes with Nf = 2 and Nf =

2 + 1 + 1 Wilson twisted mass fermions. As discussed in
Section 2.2, the actions so far employed did not allow simulations
at the physical average light quark mass. In the following, the
first simulations using Wilson twisted mass clover fermions at
a physically light charged pion mass will be presented. In
Chapter 3, Nf = 2 simulations will be discussed which serve as
a proof of concept for a more involved Nf = 2+ 1+ 1 simulation
programme discussed in Chapter 4. The latter discussion will
focus on the involved parameter tuning for these four flavour
simulations.

From the point of view of the simulation algorithms and their op-
timisation, working at physically light quark masses is especially
challenging because severe fluctuations are seen in the molecular
dynamics forces. These decrease acceptance rates and increase
simulation cost beyond what is expected due to more costly in-
versions. Mass preconditioning as a strategy for dealing with
these fluctuations will be discussed in Chapter 5. Specifically,
the behaviour of the forces as a function of the mass precondi-
tioning parameters is studied and empirical fits are used to sug-
gest optimisation schemes which relate all the paramters to each
other, allowing the forces to be changed in seemingly predictable
ways. It is hoped that the proposed schemes will be useful in
Nf = 2+ 1+ 1 simulations at the physical pion mass, as these are
even more challenging because of the many scales involved.





3T W O F L AV O U R S I M U L AT I O N S

The push towards the physical charged pion mass using twisted mass clover
quarks was begun with Nf = 2 simulations as a proof of concept. They
provide a demonstration of the stability of the new action in molecular
dynamics, all the way down to the physical pion mass at a lattice spacing of
around 0.092 fm. Being mass degenerate, the Nf = 2 action has only four
bare parameters that need to be tuned. In this chapter, these simulations
will be presented and their salient features identified and compared to old
Nf = 2 simulations without the clover term, where possible. Parts of this
chapter were already presented in Refs. [P1, P5, P6].

The combination of Iwasaki gauge action and variously improved Wilson
quarks, naturally without the twisted mass term, was studied by the CP-
PACS [130] and PACS-CS/JLQCD [131] collaborations in two and three
flavour simulations respectively. The bare inverse gauge coupling β = 2.1
was thus chosen from data tabulated in Ref. [132], while the Sheikholeslami-
Wohlert [58] (SW) coefficient csw = 1.57551 was determined through Padé
fits to the data presented there. The ensembles simulated based on this
choice with Nf = 2 Wilson twisted mass clover quarks are listed in Table 3.1.
Some basic measurements in lattice units are also provided. Because they
will be used throughout this thesis, it is worthwhile to describe the meaning
of the ensemble identifiers

ID(csw,β,Nf,µ`,L) ≡ [c](A . . . Z)(Nf)[a . . . z].(aµ` · 104).(L/a) , (3.1)

where the presence of a clover term is indicated by a c at the beginning of the
identifier and different values of β are associated with upper-case letters of
the alphabet. An optional lower-case letter following the number of flavours
is used to differentiate between replica or between ensembles with the same
physical parameters, but different algorithmic settings. In this notation it is
implicitly assumed that ensembles with a clover term will use a value of csw
that has been tuned according to some prescription. Ensembles without an
identifier were used only for tuning purposes and are usually quite short,
they are given here for reference only.

Tuning to maximal twist and the extrapolation towards the physical
light quark mass will be described in Section 3.1. Noteworthy features of
the simulations are discussed in Section 3.2 and the choice of algorithmic
parameters for the HMC is presented in Section 3.3.

parameter tuning

In simulations using twisted mass quarks, the first parameter to be tuned is
the hopping coefficient κ. For the purpose of automatic O(a)-improvement,
an estimate of the critical value of the hopping parameter can be determined
from Ref. [132] with a relatively large error and without the requisite shift
due to the twisted quark mass. This value was refined through a number
of short simulations at aµ` = 0.006, 0.003, corresponding to charged pion
masses of around 340 and 250 MeV respectively. This resulted in a new
estimate κc ∼ 0.1373, at which the PCAC quark mass was demonstrably
sufficiently small for these light quark masses. This should be compared to
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ID L/a T/a κ aµ` amPCAC aMπ± afπ

cA2.60.24 24 48 0.1373 0.006 −0.00022(3) 0.1599(3) 0.0699(2)
cA2.60.32 32 64 0.1373 0.006 −0.00020(2) 0.1582(2) 0.0706(1)
cA2.30.24 24 48 0.1373 0.003 −0.00023(7) 0.113(2) 0.063(1)
cA2.09.48 48 96 0.13729 0.0009 0.00008(1) 0.06236(7) 0.06032(9)
cA2.09.64† 64 128 0.1372938 0.0009 0.00004(2) 0.0620(2) 0.0610(4)

– 24 48 0.13728 0.0009 −0.00013(30) 0.062(9) NA
– 48 96 0.13728 0.0009 0.00045(10) 0.0646(6) 0.0566(8)
– 48 96 0.137295 0.0009 −0.00010(10) 0.063(2) 0.060(2)
– 64 128 0.13729 0.0009 0.00013(2) 0.0626(7) 0.0604(4)

Table 3.1: Nf = 2 twisted mass clover ensembles and measurements of a number of basic observables. The
identifiers are explained in the body of the text around Equation (3.1). †: At the time of writing, this ensemble was
very short and will not be discussed further, is is given here for reference and in order to discuss possible finite
size issues with amPCAC.

simulations with twisted mass quarks without the clover term in which, at
comparative light quark masses, the fifth and sixth digits of κc had to be
tuned.

Approaching the physical pion mass was carried out through only two
L/a = 24 simulations with aµ` = 0.006, 0.003 at maximal twist. An
extrapolation in Mπ±/fπ to its physical value, corrected for finite size effects
as per Ref. [133], was used to estimate the bare physical average light quark
mass aµ` = 0.0009. Uncorrected measurements of Mπ±/fπ on the different
ensembles are given in Table 7.1 on page 101.

When the volume was increased and the quark mass reduced to aµ` =

0.0009, the estimate of κc had to be refined further through a linear
interpolation in 1/2κ, as shown in Figure 3.1 (at that time with fewer points
and significantly larger statistical errors, of course). As was discussed in
Ref. [134] and shown in subsequent simulation results, it is sufficient to
tune the renormalised PCAC quark mass to be no larger than 10% of the
renormalised twisted quark mass to ensure O(a) improvement in practice.
It should be noted that for ensemble cA2.09.48, the value of κ = 0.13729
is only just acceptable, giving amPCAC ∼ 0.00008(1) after several thousand
trajectories.

As the volume was increased further for cA2.09.64, the measured amPCAC ∼

0.00013(2) was clearly too large, necessitating further adjustment. This ap-
parent volume dependence is somewhat surprising given the properties of
the PCAC relation and the lattice Ward-Takahashi identities derived from it
and should be carefully monitored in future simulations. One should note
that at the time of writing, however, ensemble cA2.09.64 was very short and
the statistical error on amPCAC is likely underestimated. The ensemble will
not be used further in the following but is provided for reference.

These observed irregularities might suggest that tuning to maximal twist
needs to be performed very carefully at the physical light quark mass. From
the practical point of view of the tuning procedure itself, however, it seems
that the clover term improves the situation substantially. In past simulations
without a clover term and at much higher light quark masses, it was seen
that the linear behaviour shown in Figure 3.1 breaks down around κc. This
made interpolations much more difficult than observed here and required
many simulation points around the critical region. As a result, although it
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Figure 3.1: amPCAC as a function
of 1/2κ for the tuning of ensembles
cA2.09.48 with κ = (2amW + 8)−1.

may be true that the tuning procedure at the physical pion mass is quite
delicate and finite size effects might play a role, the tuning is practically
much more straightforward, at least for the Nf = 2 case considered here.

Following the reasoning presented in Section 2.2.2, this absence of non-
linearities and the slope of around 1 in Figure 3.1 may suggest that c2
might be very close to 0, ignoring the value of ZA for the moment. The
indication that c2 might be very small is further reinforced by the fact that
the points with aμ� = 0.006, 0.003 fall on top of each other and on top of
the best fit curve, suggesting that the μ�-dependent correction is almost
or completely absent. Since the lattice spacing of a ∼ 0.092 fm is likely
to be the coarsest one used in the Nf = 2 simulation programme, the
tuning procedure can only become easier as the lattice spacing is decreased.
However, without simulations at different lattice spacings, it could well
be that the observed behaviour is the result of some cancellations due to
lattice artefacts of higher order. These features and how they relate to
the pion mass splitting are discussed in some more detail in Chapter 6.
Measurements of benchmark observables in the pseudoscalar meson sector
on these ensembles and indirect observations on the size of lattice artefacts
are presented in Chapter 7. In the next section, noteworthy features in the
molecular dynamics histories of ensemble cA2.09.48 will be discussed.

molecular dynamics histories

As discussed in Section 2.2.4, in past simulations, lattice artefacts rendered
simulations without a clover term meta-stable as the pion mass was lowered
towards its physical value. As can be seen in Figure 3.2, the twisted mass
clover action results in very stable molecular dynamics histories at the
physical average up/down quark mass without any signs of meta-stability
in the plaquette or the PCAC quark mass, despite the relatively coarse
lattice spacing of around 0.092 fm. As expected at this lattice spacing, the
topological charge in the field-theoretic definition, computed from gauge
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Figure 3.2: Molecular dynamics histories of various quantities on ensemble cA2.09.48.
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3.2 molecular dynamics histories

observable cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

Pacc 0.726(6) 0.910(7) 0.771(5) 0.874(4)
〈P〉 0.603526(4) 0.603562(9) 0.603535(5) 0.603533(2)

〈mPCAC〉 0.00008(1) −0.00037(7) −0.00026(3) −0.00021(1)
〈δH〉 0.37(3) 0.047(12) 0.177(8) 0.044(3)

〈exp(−δH)〉 1.00(1) 1.01(1) 1.003(7) 1.003(3)
〈Q(3t0)〉 0.1(4) – – –
〈N(CG)

iter 〉 33235(3) 10720(67) 5288(2) 5674(1)

τint{P} 15(5) 3.2(8) 3.8(7) 2.9(5)
τint{mPCAC} 15(5) 1.6(4) 1.4(2) 1.2(1)

τint{δH} 0.50(4) 0.50(2) 0.53(3) 0.50(1)
τint{exp(−δH)} 0.49(2) 0.48(2) 0.49(1) 0.50(1)
τint{Q(3t0)} 9(3) – – –
τint{E(t0)} 14(4) – – –
τint{N

(CG)
iter } 0.83(9) 17(9) 1.8(2) 4.2(8)

Table 3.2: Expectation values and
autocorrelation times of various
observables for ensembles used
in this study. N(CG)

iter refers to the
number of CG iterations in the
heat-bath and acceptance steps
of the mass preconditioning
determinant ratio which has
the target light quark mass in
the numerator. Pacc refers to the
acceptance rate which should be
used to scale the autocorrelation
times which are given in units of
trajectories.

fields smoothed by the Wilson flow [135] at flow time 3t0, shows a low
autocorrelation time of

τ∗int{Q(3t0)} = P
−1
acc τint{Q(3t0)} ∼ 12(4) (3.2)

trajectories. The plaquette expectation value, the PCAC quark mass and
the energy density (at flow time t0) are sampled equally well and show
autocorrelation times well below one hundredth of the total simulation time.
A complete listing of various algorithmic observables from the different
ensembles is provided in Table 3.2 together with their autocorrelation times.
The algorithmic parameters that were used in the HMC are discussed in
Section 3.3. For ensemble cA2.30.24, it is notable that there are significant
fluctuations in the number of CG iterations in the heatbath and acceptance
steps for the mass preconditioning determinant ratio with the target quark
mass in the numerator. These can be interpreted as an indication of an
insufficient volume for the simulated pion mass.

The number of CG iterations in the simulation at the physical pion mass
is very significant with ∼ 3 · 104 iterations in the heatbath and acceptance
step of the determinant ratio with the target mass in the numerator. In the
molecular dynamics, about 3 · 105 CG iterations are required in total for the
computation of derivatives of this determinant ratio, although better mass
preconditioning schemes can reduce this by a factor of two or more. While
these numbers are substantial, the CG algorithm is very efficient for the
twisted mass operator at maximal twist and it is unlikely that much would
be gained through eigenvalue deflation. However, when lattices of spatial
extent L = 64 or larger are considered, the practicality of simulating them
certainly hinges on the availability of better linear solvers, an as yet unsolved
problem for twisted mass quarks at maximal twist.

A feature of the simulation which deserves a special mention is the
behaviour of the energy violation, denoted by δH. It seems that compared
to twisted mass simulations without the clover term, large deviations from
0 occur quite frequently. However, they do not seem to affect the stability
of the algorithm. There do not appear to be any measurable effects of these
spikes in any of the observables that have been analysed on the simulated
ensembles, but of course the acceptance probability Pacc is affected by their
presence. Finally, these kinds of deviations are in line with what has been
observed by other collaborations [86, 136]. The frequency of their occurence
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Figure 3.3: Detail of MD his-
tories of the energy violation

δH for runs cA2.09.48(left) and
cA2z.09.48(right), indicating a
reduction of large deviations

from 0 as the number of in-
tegration steps is increased.
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ensemble Nt aρHB
t log10

(
r2a
r2f

)
cA2.60.24 {1, 2, 2, 7} {−, 0.060, 0.0110

0.0600, 0.0000
0.0110} {−, −22

−14, −22
−14, −22

−14}

cA2.60.32 {1, 1, 1, 1, 14} {−, 0.800, 0.0800
0.8000, 0.0080

0.0800, 0.0000
0.0080} {−, −22

−14, −22
−14, −22

−14, −22
−14}

cA2.30.24 {1, 2, 2, 10} {−, 0.040, 0.0080
0.0400, 0.0000

0.0080} {−, −22
−14, −22

−14, −22
−14}

cA2.09.48 {1, 1, 2, 13} {−, 0.030, 0.0050
0.0300,

[
0.0013
0.0050, 0.0000

0.0013
]
} {−, −22

−14, −22
−14,

[
−22
−14, −22

−14

]
}

cA2x.09.48 {1, 1, 2, 17} {−, 0.030, 0.0050
0.0300,

[
0.0013
0.0050, 0.0000

0.0013
]
} {−, −22

−14, −22
−14,

[
−22
−14, −22

−14

]
}

cA2y.09.48 {1, 1, 1, 1, 13} {−, 0.250, 0.0250
0.2500, 0.0025

0.0250, 0.0000
0.0025} {−, −22

−14, −22
−14, −22

−14, −22
−14}

cA2z.09.48 {1, 1, 1, 1, 17} {−, 0.250, 0.0250
0.2500, 0.0025

0.0250, 0.0000
0.0025} {−, −22

−14, −22
−14, −22

−14, −22
−14}

Table 3.3: Simulation parameters for the ensembles used in this work and three additional test ensembles.
Nt: number of integration steps of second order minimal norm integrator on the various time-scales. aρHB

t :
Hasenbusch mass pre-conditioning parameters as in Ref. [77] but with multiple determinant ratios. r2a(r2f ): squared
relative residual stopping criterion in the acceptance step (force calculation) in the conjugate gradients solver.
Square brackets indicate that more than one monomial is placed on the same timescale.

depends on the target light quark mass and they seem to be strongly
suppressed in the simulation of the ensembles with aμl = 0.006. Similarly,
away from maximal twist when the quark mass has a sizeable contribution
from the standard mass term, large spikes in δH are much less frequent.

algorithmic parameters

The simulation parameters for the Nf = 2 ensembles used in the present
work are listed in Table 3.3. The mass preconditioning parameters aρHB

t are
given and these can be related to those defined Ref. [77]. The number of
steps of the 2MN integrator on the various time scales is tabulated, with the
rightmost number referring to the outermost time scale with the smallest
number of total effective steps.

In order to determine the origin of the sizeable δH fluctuations observed
in the molecular dynamics history of cA2.09.48, short simulations cA2x.09.48,
cA2y.09.48 and cA2z.09.48 with more integration steps and more time scales
were performed. As shown in Figure 3.3 it was found that this significantly
reduces the magnitude of large energy violations at the price of increased
simulation cost, although it should be kept in mind that the test was quite
short. At the same time, the increase of the acceptance rate means that the
effective increase in the simulation cost of ensemble cA2z.09.48 compared
to cA2.09.48 is only about a factor of 1.2. It should be noted that none of
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3.4 summary and conclusions

the observables that were determined on ensemble cA2z.09.48 showed any
deviation within errors compared to those on ensemble cA2.09.48.

The results of these checks influenced the ideas of Chapter 5 in the
investigation of mass preconditioning and integration schemes with many
time scales which may prove beneficial for simulations at the physical pion
mass. The molecular dynamics (MD) forces of the different fermionic terms
in the Hamiltonians for the simulation of ensembles cA2.30.24 and cA2.09.48
are investigated in Sections 5.3.2 and 5.3.3 on pages 76 and 79.

summary and conclusions

The suitability of the twisted mass clover action for simulations at the
physical light quark mass was demonstrated with Nf = 2 simulations at
a relatively coarse lattice spacing of a ∼ 0.092 fm. It was seen that the tuning
procedure is relatively straightforward and that the clover term seems to
suppress certain lattice artefacts in the relation of the PCAC quark mass to
the subtracted Wilson quark mass. At the same time however, a surprising
volume dependence is seen in the value of the PCAC quark mass which
should be kept in mind in future simulations.
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4
F O U R F L AV O U R S I M U L AT I O N S

The success of the twisted mass clover action in enabling Nf = 2 simulations
at the physical pion mass provides an important feasibility test for the
eventual goal of performing Nf = 2+ 1 + 1 simulations at physical quark
masses. This is complicated by the fact that the pion mass splitting was
observed in the past to increase with the number of dynamical flavours.
This was so severe, in fact, that Nf = 4 simulations for the ETMC RI-MOM
renormalisation programme could not be carried out at maximal twist and
O(a)-improvement had to be implemented out by an averaging procedure.
While maximal twist could be reached in Nf = 2 + 1 + 1 simulations, the
pion mass splitting was seen to be large, making simulations at the physical
pion mass impossible at reasonable lattice spacings. It is a major goal of
this thesis to investigate whether the clover term sufficiently reduces the
pion mass splitting also in Nf = 2+ 1+ 1 simulations to allow the physical
regime to be reached.

In contrast to previous four flavour simulations, the non-degenerate strange
and charm quark doublet is simulated using a rational approximation rather
than the polynomial approximation that was used in the past. The so-called
RHMC algorithm was introduced in Refs. [137, 138] and the implementation
used here closely follows that of Ref. [80]. The combination of the non-
degenerate twisted mass operator, the clover term and even-odd precondi-
tioning is described in Appendix A.2. Using the RHMC over the PHMC
algorithm is beneficial because the partial fraction representation allows dif-
ferent terms of the approximation to be integrated on different time-scales,
increasing efficiency. Further, being an optimal approximation, the accuracy
is much higher for much lower orders of the employed polynomials. There-
fore, the round-off errors which affected PHMC simulations and required
very high polynomial orders and coefficients computed using arbitrary pre-
cision arithmetic in the accept-reject step are not an issue when using the
RHMC.

One of the difficulties of Nf = 2 + 1 + 1 simulations with twisted
mass clover quarks lies in the number of parameters that need to be
tuned. In particular, whether all parameters can be tuned simultaneously
while retaining control over the physical situation that these parameters
correspond to is not guaranteed. In order to illustrate the reasoning behind
the approach that was adopted, the tuning strategy will be laid out as
it progressed in time. The tuning of β and csw will be discussed first,
followed by two strategies for the tuning of strange and charm quark masses.
Effective parametrisations, based on empirical fits, of the lattice spacing and
the critical hopping parameter for the Nf = 2+ 1+ 1 twisted mass clover
action will be given in terms of β and csw. Finally, a functional form for the
tadpole-improved value of csw as a function of β will be introduced which
was derived from these fits. To conclude the chapter, the first four flavour
production simulations with these tuned parameters will be presented.

47



four flavour simulations

parameter tuning

Unlike in the Nf = 2 case, simulations with Nf = 4 or Nf = 2 + 1 + 1

Wilson clover quarks and Iwasaki gauge action have not yet been performed.
Therefore, a non-perturbatively tuned value of csw is not available from the
literature, nor are the values of the critical hopping parameter κc or the
lattice spacing as a function of β . Because simulations with twisted mass
quarks at maximal twist do not rely on the clover term for O(a)-improvement
of on-shell observables, a tadpole-improved estimate of csw is likely to be
sufficient to stabilise simulations. This is supported by the fact that for the
Nf = 2 case, the non-perturbatively tuned and the tadpole-improved values
differed by less than 5% at a lattice spacing of a ∼ 0.092 fm. Estimates of
suitable values of β and csw for first Nf = 2+ 1+ 1 simulations were arrived
at through exploratory runs, discussed below.

Exploratory Simulations

When the twisted mass clover project was started, the strategy for the
tuning of csw in Nf = 2 + 1 + 1 simulations was outlined in Ref. [P1]. It
involves reaching the tadpole-improved [139, 140] perturbative estimate for
the Iwasaki gauge action via a number of tuning runs and the repeated
application of Equation (4.1) below.

csw ∼ 1+ 0.113(3)
6

β〈P〉
(4.1)

Tuning β, csw and the strange and charm quark masses in terms of the
bare parameters µδ and µσ simultaneously, is likely to be excessively
complicated. In addition, the stability of simulations should be checked
before a comprehensive tuning programme is embarked upon. As discussed
above, mass degenerate Nf = 4 simulations without the clover term showed
very strong signs of meta-stabilities, to the point that simulations at maximal
twist were not possible. It can therefore be argued that if these simulations
can be successfully tuned to maximal twist with the clover term while
remaining stable with small quark masses, so willNf = 2+ 1+ 1 simulations.

In order to be closer to the Nf = 2+ 1+ 1 situation while still benefitting
from the stability argument, the first exploratory four flavour simulations
with the twisted mass clover action were chosen to be Nf = 2+ 2. These
involved two light quarks corresponding to a pion mass of around 250 MeV
and two heavier mass degenerate quarks, approximately in the region of the
strange quark mass. The reasoning behind this choice was that if stability
could be demonstrated, the estimates of κc, β and csw could likely be directly
transferred to Nf = 2+ 1+ 1 simulations. Estimating the Nf-dependence, a
value of β = 1.85 was chosen based on the lattice spacing from Nf = 2

simulations. Several simulations were performed, iteratively tuning the
value of csw and κ. These exploratory runs showed that the action was
indeed stable, but it was realised that the lattice spacing was much finer
than the targeted 0.1 fm.

Further Nf = 2+ 2 simulations were carried out with β = 1.7 and a value
of csw = 1.85 was arrived at, together with a successful tuning to maximal
twist at a charge pion mass of around 250 MeV. The parameter pair

β = 1.7 , csw = 1.85

would thus be used to proceed with tuning the strange and charm quark
masses for true Nf = 2+ 1+ 1 simulations.

48



4.1 parameter tuning

Tuning Strange and Charm Quark Masses

Tuning the strange and charm quark masses is another major challenge. As
described in Section 1.3.4, unlike for other quark discretisations, the mass
non-degenerate twisted mass doublet requires the simultaneous tuning of
the bare mass parameters µσ and µδ. The effective bare strange and charm
quark masses are then

µs = µσ −
ZP
ZS
µδ , µc = µσ +

ZP
ZS
µδ , (4.2)

where the ratio of renormalisation constants ZP/ZS < 1.0 [67]. Clearly,
tuning the strange and charm quark masses would be easiest at the physical
light quark mass, but the computational expense of such an approach is
currently excessive. The aim of the tuning strategy described in the following
is thus to allow the tuning of the strange and charm sea quark masses (at any
lattice spacing) with simulations at charged pion masses of around 250 MeV
or even higher.

In the old Nf = 2+ 1+ 1 simulations of Ref. [97], the strange and charm
quark masses were tuned to approximately reproduce the physical value
of 2M2K −M2

π± and D meson mass. This tuning strategy is somewhat
complicated because of heavy flavour and parity mixing with the non-
degenerate (ND) twisted mass quark action at finite lattice spacing [67]. The
resulting strange-charm, scalar-pseudoscalar mixed flavour-parity sector is
denoted by (s/c,−/+). The kaon mass can be extracted easily as the lowest
state of the generalized eigenvalue problem in this sector, but the D meson
is a highly excited state, requiring a large correlator basis and even then the
uncertainty is quite large. Despite the careful tuning of Ref. [97], some of
the Nf = 2+ 1+ 1 ensembles without the clover term had sea strange quark
masses too large by about 20% and this had to be accounted for in later
analyses, adding further systematic errors.

Because the values of µσ and µδ are difficult to guess à priori, the tuning
of the strange and charm quark masses for the present new set of simulations
was begun on the Nf = 2+ 2 gauge configurations described above, with
parameters and sea quark masses

β = 1.7 , csw = 1.85 , κ = 0.13872 , (4.3)

aµ` = 0.003 , aµs = 0.025 , T/2a = L/a = 24 .

These were used to compute quark propagators with Osterwalder-Seiler (OS)
valence quarks with masses in the strange (aµ ∼ 0.025) and charm (aµ ∼ 0.27)
regions. From there, various pseudoscalar quantities involving light, strange
and charm quarks were computed. The techniques for their computation
are discussed in Chapter 7 and will not be outlined here. An estimate of
the lattice spacing a ∼ 0.095 fm, was determined from gluonic scales using
literature inputs for Nf = 2+ 1.

The strategy now consisted of finding appropriate ratios of pseudoscalar
quantities involving strange and charm quarks which do not depend
strongly on the light quark mass. The phenomenological values of these
could then be used to interpolate in the OS strange and charm quark masses
in order to tune them. Then, the masses so determined immediately give a
valence estimate of the average twisted quark mass µσ of the non-degenerate
(ND) doublet

µσ =
µc + µs
2

, (4.4)
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without any knowledge of ZP/ZS. Assuming a value of ZP/ZS around
0.75, ND quark propagators can now be computed at various values of µδ,
constrained by the requirement µc/µs ∼ 12. Since the kaon mass can be
computed easily as the lowest energy state in the ND mixed flavour-parity
sector, this can be used as a matching condition between the Osterwalder-
Seiler and non-degenerate valence actions. Interpolating in µδ to match
MOS
K =MND

K fixes the parameters of the ND action in the valence sector.
These parameter values can then be used in an Nf = 2+ 1+ 1 simulation

with approximately physical strange and charm sea quark masses. On
these new configurations, Osterwalder-Seiler and ND quark propagators are
computed again and the tuning conditions are checked. If any deviations are
found, the ND mass parameters are adjusted accordingly, leading to good
estimates of the physical strange and charm quark masses after one or two
iterations.

As an aside it should be noted that at this point, it may be necessary
to adjust csw to satisfy Equation (4.1), because moving from Nf = 2+ 2 to
Nf = 2 + 1 + 1 will affect the effective coupling. This will in turn affect
the lattice spacing and complicate the tuning strategy. However, as will be
shown in Section 4.2 below, this can be completely avoided once a sufficient
number of Nf = 2+ 1+ 1 ensembles have been generated. For the purpose
of the initial sea quark mass tuning, the parameters β = 1.7, csw = 1.85 were
retained and two tuning conditions for the strange and charm quark masses
were considered.

Tuning Condition 1

The first set of tuning conditions unfortunately did not lead to a satisfactory
quark mass tuning, but it will be described here for reference and complete-
ness. It involves the approximate charm to strange quark mass ratio, the
mass Msc of the Ds meson and the mass Mss ′ of a fictitious pseudoscalar
meson with two “strange” constituent quarks. Interpolating in the OS quark
masses to simultaneously satisfy the conditions

A1 :
µc

µs
∼ 12 , B1 :

(
Mss ′

Msc

)2
∼ 0.121(3) , (4.5)

was expected to give a good estimate of the physical values of the strange
and charm quark masses. It was hoped that lattice artefacts would cancel
appreciably in the ratio B1, which turned out not to be the case. This is
presented in Figure 4.1, which shows a fit inspired by lowest order SU(3)

χPT and heavy quark effective theory, of the form(
Mss ′

Msc

)2
∼

(
αµs

µ2c +β

)
+ γ , (4.6)

describing the data rather well (χ2/df ∼ 1).
Also indicated are the continuum limit estimate of the ratio (Mss ′/Msc)

2,
as well as the fit result along the line µc = 11.85(16) ·µs, given by the charm
to strange quark mass ratio of Ref. [141]. Along this latter line it is seen
that within the region of interest, the ratio (Mss ′/Msc)

2 is rather insensitive
to the strange quark mass and thus not very suitable for this purpose. The
intersection point of these two lines gives the quark mass estimates

aµs ∼ 0.031 , aµc ∼ 0.367 ,
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Figure 4.1: Fit of Equation (4.6)
to lattice data for the purpose of
tuning strange and charm quark
masses by matching the strange
to charm quark mass ratio of
Ref. [141] and the continuum
limit value of (Mss′/Msc)

2

simultaneously.

both of which are far too large, with the strange quark mass likely
corresponding to around 140 MeV or so. The second intersection point on
the far left should be considered as an artefact of the model, as the fit is
unlikely to reproduce the actual ratio there and the resulting quark masses
are far too small. It was thus concluded that these tuning conditions do not
offer the requisite sensitivity and may be subject to unwanted lattice artefacts
in the ratio of pseudoscalar meson masses.

Tuning Condition 2

The second tuning condition is similar but uses the ratio of the Ds meson
mass and decay constant

A2 :
μc

μs
∼ 12 B2 :

MDs

fDs

∼ 7.9(2) , (4.7)

where it is hoped that discretisation errors in B2 cancel to a larger degree
than in B1 above. This ratio is similarly insensitive to the light quark mass
and both quantities can be extracted with small statistical errors in the
twisted mass discretisation at maximal twist. Using these conditions, the
mass estimates

aμs ∼ 0.021 , aμc ∼ 0.25

were obtained, which give aμσ = 0.1355. Matching the OS and ND kaon
masses subsequently gave aμδ = 0.145, providing a first set of parameter
values for Nf = 2+ 1+ 1 simulations

β = 1.7 , csw = 1.85 , aμσ = 0.1355 , aμδ = 0.145 . (4.8)

First Four Flavour Simulation Parameters

With the strange and charm sea quark masses fixed to approximately
physical values, simulations could now proceed in principle. As indicated
above, however, the value of csw had to be adjusted to satisfy Equation (4.1).
This affected the lattice spacing sufficiently strongly to also require an
adjustment of β and subsequently μσ and μδ required retuning. This was
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Figure 4.2: Overview of ensembles
used for the determination

of the functional dependence
of the lattice spacing, critical

hopping parameter and plaquette
expectation value on β and csw

as well as the tadpole-improved
value of csw as a function of β.
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done in the valence sector using Nf = 2+ 1+ 1 gauge configurations with
parameter values

β = 1.726 , csw = 1.74 , aμσ = 0.1355 , aμδ = 0.145 , (4.9)

and yielded updated values for

aμσ = 0.1408 , aμδ = 0.1521 . (4.10)

Simulations based on this parameter set will be further described in
Section 4.3. The values of β and csw were derived from empirical fits to
a large number of Nf = 2+ 1+ 1 simulations which had become available at
this point. They were based on estimates of the lattice spacing computed in
the context of the study presented in Section 6.2. These fits will be described
below, before moving on to the first Nf = 2 + 1 + 1 twisted mass clover
production simulations.

empirical fits of bare lattice parameters

In Chapter 6 the effect of the value of csw on the pion mass splitting is
explored in Nf = 2+ 1+ 1 simulations with approximately constant physics.
To proceed at constant lattice spacing and at maximal twist, β, csw and κ

had to be tuned accordingly. For this purpose, 77 short simulations on
T/2a = L/a = 24 lattices were carried out with various combinations of
β ∈ [1.625, 1.834] and csw ∈ [1.25, 2.25]. In order to keep the computational
and tuning demands low, the bare parameters aμ�, aμσ and aμδ were
kept constant even though this of course resulted in simulations with vastly
different dynamical quark content. It turns out that for the present purpose,
the resulting systematic error appears to be surprisingly small. Most of the
simulations were carried out with aμ� = 0.0075, corresponding to around
400 MeV pions at a ∼ 0.095 fm. The four ensembles that were to be used for
the measurement of the pion mass splitting were simulated with aμ� = 0.003,
or equivalently a charged pion mass of around 250 MeV.

Tuned to maximal twist, 14 of these simulations were used to measure
w0/a [142] in the Wilson flow framework with the clover definition of the
energy density1. The uncertainty on w0/a was computed taking into account
autocorrelations using the Gamma method [144]. This set of simulations
is listed in Table 4.1 and a summary is shown in Figure 4.2, where the
size of the symbol indicates the number of thermalised trajectories of unit

1 A measurement routine for t0/a
2 and w0/a was added to the tmLQCD software suite [C1,

143] for this purpose while an analysis routine was added to [C2].
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4.2 empirical fits of bare lattice parameters

csw β aµ` Nt amPCAC a [fm] w0/a

1.25 1.834 0.0030 410 0.00020(40) 0.0987(14) 1.773(12)
1.45 1.791 0.0030 1500 0.00029(16) 0.0986(14) 1.777(10)
1.65 1.745 0.0030 1421 0.00027(13) 0.0993(15) 1.768(14)
1.74 1.726 0.0030 600 −0.00049(27) 0.0963(14) 1.823(13)
1.85 1.675 0.0075 500 0.00010(30) 0.1118(17) 1.569(12)
1.85 1.700 0.0030 2000 −0.00043(08) 0.0969(12) 1.810(08)
1.85 1.725 0.0075 360 0.00030(20) 0.0914(15) 1.920(17)
2.05 1.650 0.0075 650 −0.00043(28) 0.1010(15) 1.737(13)
2.05 1.658 0.0030 1400 −0.00039(14) 0.0944(13) 1.860(11)
2.05 1.675 0.0075 485 −0.00064(22) 0.0900(11) 1.951(07)
2.05 1.700 0.0030 950 −0.00043(15) 0.0771(10) 2.278(13)
2.25 1.625 0.0075 400 0.00048(26) 0.0923(11) 1.902(07)
2.25 1.650 0.0075 500 −0.00010(20) 0.0798(17) 2.200(30)
2.25 1.700 0.0030 470 −0.00040(10) 0.0586(20) 2.995(34)

Table 4.1: Nf = 2+ 1+ 1 ensembles
used for the estimate of the lattice
spacing a and critical hopping
parameter κc as a function of
csw and β. Nt is the number of
thermalised trajectories.

length. The Nf = 2+ 1 value of w0 from Ref. [142] was used to obtain an
estimate of the lattice spacing, ignoring the Nf and pion mass dependence.
In addition, the expectation value of the plaquette as a function of csw and β
was recorded. The remaining simulations at different values of κ were used
together with these 14 to interpolate amPCAC to 0 for each combination of csw
and β, resulting in rather good estimates of the critical hopping parameter
at these points.

In the literature,Nf = 2+ 1+ 1 simulations with the Iwasaki gauge action
and clover-improved Wilson fermions have not yet been performed. As a
result, the dependence of the lattice spacing and κc on β and csw is presently
unknown. In order to establish a programme for Nf = 2+ 1+ 1 simulations
using the twisted mass clover action, these dependences should first be
investigated. It will be shown that knowledge of 〈P〉 as a function of β and
csw can be used to determine csw as a function of β directly to an apparently
sufficient precision, without requiring further tuning. Of course, this is only
a perturbative result which, in particular, only captures the Nf-dependence
via the plaquette expectation value. However, Nf = 2 simulations with
twisted mass clover fermions and Iwasaki gauge action seem to indicate that
it deviates only by a few percent from the non-perturbative value for O(a)-
improvement of the standard Wilson theory and should thus be sufficient to
stabilise simulations.

The functional forms in Equations (4.11) to (4.13) were fitted to the
data from the ensembles of Table 4.1. The fits that were used can be
motivated by considering the fact that csw can be perturbatively expanded
as a function of g2 and that the lattice β-function for the lattice spacing
depends exponentially on −β at leading order. As a result, the exponential
dependence provides a non-perturbative estimate which is likely to be valid
in the range of csw and β used for the fit and perhaps somewhat beyond.
Errors and covariances of the parameters were estimated by repeating the fits
on simulated datasets with Gaussian distributions. A fit to the interpolated
values of κc leads to the following parametrisation

ln(κc) = −0.12727(5)csw − 0.20339(20)β− 1.3931(5) , (4.11)

in excellent agreement with the data as shown in Figure 4.3a. Of course, this
fit does not reproduce the perturbative value in the limit β → ∞, but in the
relevant parameter region it is much better than a constrained fit which does.
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Figure 4.3: (a): Dependence of κc the parameters β and csw. (b): Dependence of the lattice spacing determined
from the Wilson flow on the parameters β and csw.

Similarly, the values of the lattice spacing derived from w0 as explained
above were fitted with the following function

ln(a/fm) = −1.188(44)csw − 5.184(234)β+ 8.68(46) , (4.12)

giving very good agreement with the data as shown in Figure 4.3b. For the
plaquette, the following three-parameter fit was used

〈P〉 =p0 + p1csw + p2β

〈P〉 =− 0.045(1) + 0.3126(6)csw + 0.0265(1)β ,
(4.13)

where it should be kept in mind that it will only be valid in relatively small
range of β and csw in which it agrees very well with the data, as is clear
from Figure 4.4a. This linear approximation was used in order to derive the
results below.

Using Equation (4.13) in Equation (4.1) above, an estimate for the tadpole-
improved value of csw as a function of β can be obtained by solving the
resulting quadratic equation

p1βc
2
sw + (p2β

2 + p0β− p1β)csw − (p2β
2 + p0β+ 6 · 0.113(3)) = 0 .

The solutions are

csw =
1

2p1β

(
− p0β−β(p2β− p1) ±√

(β(p2β− p1) + p0β)
2 − 4p1β(−p2β

2 −βp0 − 0.678(18))
)

, (4.14)

of which only the positive branch makes sense. Without propagating the
errors on the various fit parameters, this is

csw = 0.428− 0.0424β+√
2.169β−1 + 0.3272+ 0.04849β+ 0.001797β2 , (4.15)
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Figure 4.4: (a): Dependence of the plaquette expectation value on the parameters β and csw. The green band
follows the curve in β when csw is fixed such as to give a = 0.075 fm according to the fit in Equation (4.12). (b):
The green band from (a) in the β-csw plane intersected the line of solutions in Equation (4.15).

which approaches 1 for β � 1, but diverges to −∞ in the limit β → ∞.
The range of β, csw relevant for practical simulations should lie well within
the range of data that was used for the fit. Hence, the value given by
Equation (4.15) should be a good estimate for the tadpole-improved value
of csw for practical simulations with Nf = 2+ 1+ 1 Wilson clover fermions
with the Iwasaki gauge action. The line of solutions for csw is shown in
Figure 4.4b with the propagated uncertainty, the meaning of the intersecting
green line will be clarified below. In Figure 4.5 csw is shown for a range β

far outside the original fit range to give an idea of the asymptotic behaviour
of Equation (4.15) (the estimate of the error band is too small to be visible).
Finally, Equation (4.15) can be used in Equations (4.11) and (4.12) to give the
approximate lattice spacing and critical hopping parameter with this value
of csw as a function of β only.

It is clear that these functions have limited accuracy and correctness,
given that they were not fitted to data on lines of constant physics. However,
the fact that data with vastly different dynamical quark content falls so well
on the fitted curves suggests that the choice of csw and β and the tuning of
μσ and μδ can be carried out largely independently. The rather substantial
Nf and pion mass dependence of w0 is well known, but it is reasonable
to expect that the estimate of the lattice spacing is good to within a few
percent, sufficient for choosing potential simulation points. The estimates
of κc have proven accurate to within less than a per-mille, suggesting that
the tuning effort will be substantially reduced for future simulation points
if the presented formulae are used as first guesses. The uncertainties and
(unquoted) systematic errors entering Equation (4.15) via Equation (4.13)
appear to be smaller than or similar to the 3% theoretical uncertainty on
the perturbative factor in Equation (4.1). It should thus be possible to use
the presented formulae to suggest values of β, csw and κ for the entire
Nf = 2+ 1+ 1 twisted mass clover simulation programme of the ETMC.
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Figure 4.5: Illustration of the
asymptotic behaviour of Equa-

tion (4.15) when extended far be-
yond the original fit range csw ∈
[1.25, 2.25] and β ∈ [1.625, 1.834].
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As an example of a candidate simulation point, in Figures 4.4a and 4.4b,
the green band indicates csw as a function of β such that the lattice spacing
is approximately 0.075 fm. The intersection point

csw ∼ 1.69 , β ∼ 1.79 , (4.16)

thus gives a pair of parameter values for a simulation at this lattice spacing.
The results of Section 4.1.2 and the present section can be taken as a
sufficient demonstration of the fact that tuning the six parameters involved
in Nf = 2 + 1 + 1 simulations with twisted mass clover quarks in indeed
possible.

It would be very interesting to see how Equation (4.15) compares to what
is found in other works with different gauge actions, by matching the results
through some non-perturbative coupling. In Ref. [145] for Nf = 4, csw is
given for Wilson fermions with the plaquette gauge action in a massless
improvement scheme. In Ref. [146], it is argued that the presence of the
charm quark requires working in a massive Nf = 3 + 1 improvement
scheme along a line of constant physics. A numerical result is given for
the tree-level improved Lüscher-Weisz gauge action at one value of β and it
would be insightful to see how the eventual parametrisation will differ from
the result in the massless scheme. Comparison to Equation (4.15) would
also be interesting since in some sense, the effect of the charm has been
included implicitly via the plaquette expectation value, although of course
the meaning of Equation (4.1) is unclear in this sense.

first production simulations with four flavours

First Nf = 2 + 1 + 1 production simulations with the parameters of
Equation (4.10) have been started and the bare physical light quark mass has
been found through the same kind of extrapolation explained in Chapter 3
for the Nf = 2 case. An overview of the tuning to maximal twist of
these simulations is shown in Figure 4.6. The estimate of κc ∼ 0.140072
of Equation (4.11) was refined with three T/2a = L/a = 16 simulations with
aμ� = 0.01 to yield κc ∼ 0.140066. Using this value, further simulations were
conducted with aμ� = 0.007, 0.005, 0.003 for the purpose of extrapolating to
the physical light quark mass. The estimate aμ� = 0.0009 is obtained from
this extrapolation.

As can be seen, the slope of amPCAC is steeper than for the Nf = 2 case,
but less pronounced than in past Nf = 2 + 1 + 1 simulations without the
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Figure 4.6: (left): Tuning to maximal twist in first Nf = 2 + 1 + 1 production simulations (the
slope is due to points outside of the shown 1/2κ interval). (right): μ� dependence of amPCAC as
at κ = 0.140066.
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Figure 4.7: Tuning to maximal
twist in first Nf = 4 production
simulations.

clover term. A particular feature that deserves mention is that also the μ-
dependent shift in mcrit is visible in the data, although the uncertainties
are such that they largely overlap. If these shifts are truly present and
not just finite size effects, the non-linearities are small, hinting at a small
value of c2, compared to simulations without the clover term. Simulations
at the physical light quark mass are in the thermalisation stage at the time
of writing of this thesis and a complete discussion is therefore not possible.
However, the MD histories look encouraging and tuning to maximal twist is
progressing well.

At the same time, the generation of Nf = 4 ensembles for RI-MOM
renormalisation was begun. In contrast to the problematic situation without
the clover term, tuning to maximal twist was possible without issues and
has so far been completed for aμ� = 0.01, 0.008. A summary of the tuning
procedure is given in Figure 4.7. The slope here is slightly higher than in the
Nf = 2+ 1+ 1 case and a μ-dependence can also be seen, but it should be
pointed out that for the purpose of the chiral limit for renormalisation, sea
quark masses below around aμ� = 0.005 are certainly not required. Finally,
it should be remembered that the lattice spacing is a ∼ 0.095 fm or even a bit
higher and that therefore lattice artefacts affecting the phase structure of the
theory and the pion mass splitting, will diminish as the continuum limit is
approached.
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Figure 4.8: Normalised minimal
and maximal eigenvalues of Q†

hQh

as a function of csw in Nf = 2+ 1+

1 simulations at approximately
constant physical situation.
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Table 4.2: Approximation in-
tervals for the rational approxi-
mation of the heavy doublet as

well as normalised eigenvalues in
Nf = 2 + 1 + 1 simulations with

approximately constant physical sit-
uation. Also shown are expectation

values of algorithmic observables.
For more detail, see Section 6.2.

csw = 1.45 csw = 1.65 csw = 2.05

[Smin,Smax]
[
3.24 · 10−5, 3.6

] [
4.0 · 10−5, 4.0

] [
4.0 · 10−5, 4.8

]
〈λmin〉 3.06(1) · 10−5 2.76(1) · 10−5 2.88(1) · 10−5

〈λmax〉 0.7863(4) 0.7203(5) 0.765(2)

〈δH〉 0.051(9) 0.081(10) 0.5(3)

〈exp(−δH)〉 1.001(9) 0.994(10) 0.99(2)

Pacc 0.873(9 0.830(10) 0.79(1)

Effect of the Clover Term on Simulations

To close this section, the effect of the clover term on algorithmic aspects
of the simulation will be discussed. Three of the four simulations for the
computation of the pion mass splitting as a function of csw at approximately
constant physical situation in Section 6.2 were also simulated with practically
identical algorithmic parameters. These are ensembles P145, P165 and P205
with csw = 1.45, 1.65, 2.05 respectively. Clearly β, csw and κ were different
between the three, but all mass preconditioning parameters were essentially
identical. Further, the bounds of the eigenvalue interval for the rational
approximation of the non-degenerate doublet differed significantly between
the three simulations as the clover term has a substantial effect on minimal
and especially maximal eigenvalues. It should be noted that the choices
for the approximation intervals were not made systematically, making the
eigenvalues somewhat difficult to compare. As a side remark it can also be
mentioned that the value of csw increases the inversion cost, which rises with
rising csw.

The Clover Term and The Positivity of the ND Quark Determinant

As discussed in Section 1.3.4, simulating physical strange and charm
quarks using the mass non-degenerate twisted mass quark action requires
μδ > μσ because ZP/ZS < 1.0. In this situation, the positivity of the
quark determinant is not guaranteed. However, monitoring the minimum
eigenvalue of Q

†
hQh in the course of a simulation has consistently shown

that the strange quark mass is sufficiently large to prevent sign changes of
the heavy quark determinant. For the three ensembles here, the kaon masses
range from around 550 MeV at csw = 2.05 to around 490 MeV at csw = 1.45,
likely owing to the fact that ZP/ZS depends substantially on csw and that
the lattice spacings are not perfectly matched.

The unnormalised bounds of the approximation interval are given in
Table 4.2, together with measurements of the normalised minimal and
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Figure 4.9: Box-and-whiskers
type plot of the distributions of
average and maximal forces in
Nf = 2 + 1 + 1 simulations at
roughly constant physical situation
as a function of csw. The quantiles
are 0.0, 0.1573, 0.5, 0.8427, 1.0. From
left to right, the groups of three
are:
(1) gauge,
(2) light degenerate doublet deter-
minant with largest precondition-
ing mass 2aκρ = 0.1,
(3) determinant ratio with 2aκρi =

{0.01, 0.1},
(4) determinant ratio with target
quark mass in numerator,
(5) partial fractions k = 0, 1, 2 of
non-degenerate strange-charm
doublet,
(6) k = 3, 4, 5,
(7) k = 6, 7, 8.

maximal eigenvalues. For the rational approximation to be valid, these
normalised eigenvalues should be well within the interval [Smin/Smax, 1].
Because the strange quark masses differ somewhat and the eigenvalue
bounds were not selected systematically with this comparison in mind, the
effect of the clover term on the eigenvalues Q

†
hQh is not visible in the

expectation values. Looking at the histograms in Figure 4.8, however, shows
that the maximal eigenvalues fluctuate very strongly for csw = 2.05 while
they are quite stable for the two other values. It should be noted that in
simulations without the clover term, the maximal eigenvalues were seen to
be extremely stable with a much smaller variance than seen here. Because of
the observed fluctuations with the clover term, the approximation intervals
have to be chosen to be larger, making the simulation more expensive. In
any case, however, the minimal eigenvalues are well separated from 0 and
it appears that there is thus no problem with regards to the positivity of the
heavy quark determinant.

The Clover Term and Molecular Dynamics Forces

Another consequence of an increasing csw is the well known increase of the
molecular dynamics (MD) forces. The availability of the data presented here
gives a unique view on how the distribution changes as a function of csw,
although much like in the case of the eigenvalues, the mass preconditioning
parameters are not exactly comparable. A summary of the force distribution
for the different monomials in the MD Hamiltonian for the three ensembles
is shown in Figure 4.9 by means of a quantile representation. The forces were
measured at each trajectory and histograms of the average and maximal
forces are shown in Appendix C for completeness. Definitions of the MD
force as well as the meaning of average and maximal are given Chapter 5.

The differences in the forces for the gauge monomial can clearly be
attributed to the reduction in β and are likely only consequential. Looking at
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the fermionic contributions to the force, the average forces are simply shifted
upwards without affecting their distribution substantially. For the maximal
forces however, the central value of the distribution increases with csw and
the distributions become significantly wider in the positive direction. This is
also reflected in δH and the acceptance probability of these three simulations,
as listed in Table 4.2.

For twisted mass fermions at maximal twist, which do not require csw
to be tuned for the purpose of O(a)-improvement, this may suggest an
interesting possibility. If simulations are stable and the pion mass splitting
is not affected by reducing csw below the value suggested by Equation (4.15),
one could reduce the simulation cost by choosing smaller values of csw. As
will be shown in Section 6.2 within the large uncertainties there, there does
indeed not be a difference between the pion mass splitting at csw = 1.45
and csw = 2.05. The cost savings would be further accentuated by the
reduction in the inversion cost and the stricter bounds that could be used
for the eigenvalue interval of the rational approximation.

summary and conclusions

The features so far observed in Nf = 2+ 1+ 1 and Nf = 4 simulations with
the twisted mass clover action suggest that it is suitable for simulating also at
the physical light quark mass. There are certainly no signs of meta-stabilities
in simulations at charged pion masses around 250 MeV and a lattice spacing
around 0.095 fm. Tuning runs at the physical light quark mass are in the
thermalisation stage and show encouraging molecular dynamics histories,
although a detailed analysis is not yet possible.

In this chapter it was shown that a tuning strategy has been devised
which allows all six parameters of the four flavour theory to be tuned in
stages without prior information, starting from simulations with two mass
degenerate light quarks and two further mass degenerate quarks in the
region of the strange quark mass. Using this starting point, values for the µσ
and µδ bare parameters were found which are expected to correspond very
closely to the physical strange and charm quark masses.

Sets of Nf = 2 + 1 + 1 ensembles at different β and csw values were
used for empirical fits to parametrise the lattice spacing and the critical
hopping parameter in terms of β and csw. A similar parametrisation of
the plaquette expectation value was used to give a functional form for the
tadpole-improved value of csw as a function of β, thus significantly reducing
the tuning burden of future simulations. It was firstly seen that – to the
precision required for estimating a target lattice spacing – the exact mass of
the strange and charm quarks does not affect the dependence of the lattice
spacing on β and csw. Further, it was seen that even rather significant
changes of around 10% in µδ and µσ do not induce a retuning of csw, to
within the precision of Equation (4.1). As a result, the proposed functions can
likely provide starting values of β and csw for the entire set of Nf = 2+ 1+ 1
twisted mass clover simulations. Since the fits ignored many sources of
systematic error and a number of approximations were made, deviations are
likely to appear. However, at least in the parameter region so far studied,
the estimate of κc, for example, appears to be valid to within around 0.4
per-mille.

It was further shown that the RHMC algorithm is well suited for the
simulation of the non-degenerate strange and charm quark doublet. The
rational approximation behaves predictably and there are no problems with
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the positivity of the quark determinant. From eigenvalue measurements
it seems that the maximal eigenvalue of Q†hQh fluctuates quite strongly
compared to simulations without the clover term and the effect increases
with increasing csw. This makes simulations more expensive because the
eigenvalue interval for the rational approximation needs to be enlarged.
Similarly, it was shown that the molecular dynamics forces are affected by
the value of csw and the possibility of reducing costs by using smaller values
of csw in simulations was considered.
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Mass preconditioning and multiple time scale integration have been dis-
cussed in Section 1.4.3 and their parameter dependence will be studied in the
present chapter. The average and maximal forces from the different terms in
the effective action span many orders of magnitude and their distributions
are generally not simple Gaussians. The preconditioning masses are continu-
ous parameters, they have a very strong effect on the acceptance probability
and simulations at or close to the physical light quark mass may have three
or more of them. Because tuning a large number of parameters indepen-
dently is costly and impractical, it would be highly beneficial if it were possi-
ble to reduce the parameter space by establishing simple relations amongst
all of the masses based on simple measurements or a theoretical understand-
ing of the parameter dependence. Together with knowledge of the number
of integration steps on different time scales, it may then be possible to tune
all of the parameters simultaneously by tuning their relationships. It will be
shown that these kinds of relations can be found and that such a tuning is
not only possible, but also works well in practice to reduce total simulation
cost.

Despite its significance in allowing simulations at small light quark masses,
the relationship between the observed forces and the preconditioning param-
eters remains poorly understood. Expansions around the free field limit may
allow this relationship to be explored theoretically, but there is no guaran-
tee that the non-perturbative corrections could be captured appropriately.
To begin, therefore, a purely empirical approach will be proposed in which
the (possibly) complex parameter dependence of the forces of the even-odd
preconditioned twisted mass clover determinant and determinant ratios will
be reduced to simple functional forms with only two free fit parameters.
These functional forms are not theoretically motivated, but their leading de-
pendence on the mass preconditioning parameters is quite reasonable. The
dependence is studied entirely in lattice units because the definition of the
forces in the continuum limit is unclear. This approach also captures the
parameter dependence in the way it is encountered in actual simulations as
pure numbers depending on other pure numbers.

The formulae are fitted to measurements on a test ensemble with
forces and preconditioning parameters spanning many orders of magnitude
and are shown to describe the data surprisingly well. In addition, it is
demonstrated that for similar physical situations (target quark mass, lattice
spacing, volume), they provide qualitatively correct predictions of the force
measurements for different simulations. When the physical situation is
very different, the fit parameters determined on the test ensemble fail to
reflect the force hierarchy even qualitatively. However, the hope is that in a
given simulation, these effective functional forms can be fitted to just a few
data points, fixing the fit parameters and allowing the mass preconditioning
scheme to be suitably optimised.

In the last part of this chapter, the functional forms are assumed to be
meaningful and the consequences of the leading dependence as well as their
full form are used to derive several simplified relations between mass pre-
conditioning parameters and force hierarchies. In particular, a mass precon-
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ditioning and integration scheme is explored which is shown to produce
good acceptance at significantly reduced simulation cost compared to cur-
rent production simulations of twisted mass clover ensembles. The idea is
then extended to suggest a mass preconditioning and integration scheme for
simulations at the physical pion mass and the resulting simulation cost is
estimated. A very tentative discussion of the frequency spectra of the force
oscillations based on fast Fourier transforms of long molecular dynamics
trajectories is given in Chapter 11.

functional forms for the forces

In this section, the magnitude of the gauge derivative (or force) coming
from a given term in the effective action will be studied and an attempt
will be made to describe the dependence on the preconditioning parameters
more explicitly. In order to establish an appropriate norm for the force, the
notation of Ref. [79] will be used for the square norm of an element X in the
Lie algebra of SU(3)

‖X‖2 = −2TrX2 ,

but unlike there, the square root will not be taken. Two measures of the
force ‖F‖2 due to a term in the effective action will be considered. Firstly,
the average

‖F‖2av =
1

4V

∑
x,ν
‖F‖2(x,ν) (5.1)

and secondly the maximal force

‖F‖2max = max
x,ν
‖F‖2(x,ν) , (5.2)

where F corresponds to δPaµ of Equation (1.97) and where V is the four-
dimensional lattice volume, x is a site index and ν is a lattice direction,
running from 1 to 4.

For the purpose of this study, a small Nf = 2 twisted mass clover
ensemble was generated with parameters

β = 2.1 , csw = 1.57551 , κ = 0.1373 , aµ` = 0.01 , T/2a = L/a = 16 ,

corresponding to a pion mass of around 450 MeV, MπL ∼ 3.3 and a lattice
spacing a ∼ 0.09 fm.

Subsequently, around 100 measurements of the average and maximal
‖F‖2 due to even-odd preconditioned determinants and determinant ratios
with a wide range of mass parameters were carried out on these configura-
tions. To do this, appropriate pseudofermion fields (see Section 1.4) for the
different terms were generated for each gauge configuration and the analyt-
ical expressions for the forces were evaluated using these fields on the given
gauge background, without actually performing further molecular dynam-
ics integration. It should be noted that the used configurations are not very
well separated and that autocorrelation effects have not been taken into ac-
count. However, this approximates the situation in actual simulations rather
well, where the forces are of course computed on strongly correlated config-
urations. In order make direct contact with simulations, the notation

µ̃i = 2aκµi

will be adopted throughout.
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Forces of the Quark Determinant

Hybrid Monte Carlo simulations of QCD with a pair of mass degenerate
light quarks generally rely on the pseudofermion representation of the light
quark determinant. For Wilson twisted mass lattice QCD at maximal twist,
this takes the form

det
(
Q2 + µ2`

)
∝
∫
Dφ†Dφ exp

(
−φ†

1

Q2 + µ2`
φ

)
, (5.3)

where Q = γ5M is the Hermitian Wilson Dirac operator with the Wilson
quark mass tuned to its critical value up to O(a) shifts. Q may also contain
a clover term and µ` is the (light) twisted quark mass. In practice, even-
odd preconditioning is used and the determinant splits into two parts as
described in detail in Appendix A. For the purpose of mass preconditioning,
the parameter ρ̃ = 2aκρ is introduced. Unlike for standard Wilson clover
fermions, the diagonal components of the Dirac operator, Mee and Moo,
now depend on the twisted quark mass. In order to avoid inverting Mee =

(1 + Tee ± iγ5µ̃) too frequently, the Hermitian even-odd preconditioned
twisted mass clover operator is implemented as follows

Ŵ±(µ̃`, ρ̃) =γ5
[
1+ Too ± iγ5(µ̃` + ρ̃) −Moe(1+ Tee ± iγ5µ̃`)−1Meo

]
=Q̂±(µ̃`)± iρ̃ ,

(5.4)

such that Mee and Moo depend only on the target mass µ̃`. A more
symmetric implementation is possible, but this has not yet been done in
the tmLQCD software suite. The determinant term now takes the form

‖det(1+ Tee + iµ̃`γ5)‖2
∫
Dφ
†
oDφo exp

(
−φ†o

1

Ŵ+Ŵ−
φo

)
, (5.5)

which is real and positive as required and where the φo are defined only on
the odd sites. In order to parametrise the results of this section, the notation

µ̃ = µ̃` + ρ̃ (5.6)

will be adopted.
In the molecular dynamics integration of the equations of motion,

the derivative with respect to the gauge field of the determinant term
needs to be computed. As has been demonstrated for standard Wilson
fermions in Ref. [147], for example, the magnitude of this derivative grows
substantially as the quark mass is lowered. This is complicated further by
increased fluctuations in the force magnitude, with a particular increase
in the occurrence of very large maximal forces as given by Equation (5.2).
In consequence, simulations can become unstable (at constant trajectory
length), unless the number of integration steps is increased substantially,
making them computationally expensive.

It has been shown in Refs. [77, 78, 79] that mass preconditioning can
be used to lower the cost of simulations with light dynamical quarks
through the introduction of determinant ratios which distribute the forces
over multiple terms in the effective action. The mass parameter in the
remaining determinant term can thus be chosen to be sufficiently large to
reduce the forces to an acceptable level and most importantly, dampen the
strong fluctuations.
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Figure 5.1: Square norm of
the forces from an even-odd

preconditioned determinant for
two flavours of mass degenerate
twisted mass quarks at maximal

twist as a function of the mass
parameter μ̃ = 2aκμ. The notation

Δ+ indicates the difference
between the median and 84.27

percentile of the maximal square
norm force. The line corresponds

to Equation (5.7) while the
dashed line is Equation (5.8).
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The average and maximal square norm forces were measured on the test
ensemble introduced above for a wide range of mass parameters μ̃ (setting
ρ̃ = 0.0) to determine the expected forces with just a determinant term in
the effective action for different μ̃�. The results of these measurements are
shown in Figure 5.1. The lines in the figure represent fits of the form

‖F‖2av(μ̃) =
2.74(17)

μ̃+ 0.17(2)
(5.7)

‖F‖2max(μ̃) =
23(2)

μ̃+ 0.11(2)
, (5.8)

which was guessed based on experience and confirmed by trial and error
to best describe the data. It is clear that this is only an effective empirical
description. In particular, the constant term in the denominator helps to
align the model with the data for larger values of μ̃. The inverse dependence
on the quark mass was already described in Ref. [148] and similar empirical
fits for Wilson fermions were attempted in Ref. [147]. There, the quark
masses were much higher, the dependence on the quark mass was milder
and the validity of the fit functions seemed to be limited to a much smaller
range of quark masses than here.

The average force is described rather well by the fitted function, but
the maximal force deviates strongly from the proposed form for μ̃ < 0.01.
The notation Δ+ in the figure indicates the difference between the median
and the 84.27 percentile of the maximal square norm force and represents a
very good measure of the magnitude and frequency of exceptionally strong
fluctuations. This grows substantially below this quark mass, even reaching
the same order of magnitude as the median maximal force. It is likely that
this is the reason why simulations with very light quarks are not feasible
with just a quark determinant. These results suggest that to ensure stable
simulations, mass preconditioning should be used to set the mass parameter
of the determinant μ̃ � 0.2 as this reduces the average and maximal forces
and significantly dampens the fluctuations in the maximal force.

In Appendix D.1, the fits of this section are repeated for determinants
where ρ̃ is varied for μ̃� = 0.0, μ̃� = 0.0002746 and μ̃� = 0.0010984
kept constant, corresponding to the situation encountered when mass
preconditioning is employed. The results suggest that the behaviour is
exactly the same as a function of μ̃, except that the factor (1+ Tee± iγ5μ̃�)

−1

amplifies the forces as μ̃� → 0. The values of the parameters of the fits
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in the appendix are consistent amongst each other, suggesting that the
dominant dependence is truly on µ̃ = µ̃` + ρ̃. In addition, although the
parameter values are different from Equations (5.7) and (5.8), they give the
same constant term when µ̃ = 0.0. Of course, the model is not expected to
be valid there.

In conclusion, it seems that as long as the mass parameter µ̃ = µ̃` + ρ̃

is sufficiently large, both the average and the maximal square norm force
can be described by a simple function of µ̃. When mass preconditioning is
not used (ρ̃ = 0.0) and only a determinant is present, this means that the
simulated quark mass must indeed be quite large for the fluctuations to be
appropriately dampened. When it is used, on the other hand, setting ρ̃ & 0.2
significantly reduces the average and maximal forces and, most importantly,
the fluctuations in the maximal force. Although this gives a target value
for the largest mass preconditioning parameter, a similar model for the
forces coming from determinant ratios is required to inspire a complete mass
preconditioning scheme. This will be the goal of the following sections.

Forces of Quark Determinant Ratios

Mass preconditioning results in a hierarchy of forces because, for a determi-
nant ratio R of the form

R =
det
(
Q2 + (µ` + ρ1)

2
)

det
(
Q2 + (µ` + ρ2)2

) =
det
(
Q2 + µ21

)
det
(
Q2 + µ22

) ,

it is clear that R → 1 as µ1 → µ2. Because a constant cannot depend on
the gauge field, ‖F‖2 → 0 in the same limit. In addition, there should be
some level of symmetry whether µ2 approaches µ1 from above or from
below. When even-odd preconditioning is used, the pseudofermion part
of the determinant ratio is

SPFR = φ†o Ŵ
−(µ̃`, ρ̃2)

1

Ŵ+(µ̃`, ρ̃1)Ŵ−(µ̃`, ρ̃1)
Ŵ+(µ̃`, ρ̃2)φo , (5.9)

where Ŵ± are as defined in Equation (5.4). This suggests a more
complicated behaviour for the forces, but the requirement for them to vanish
in the limit µ2 → µ1 remains the same. The combination of twisted
mass, clover term and even-odd preconditioning is described in detail in
Appendix A. It should be noted that due to the form of Equation (5.4),
the terms corresponding to the first factor in Equation (5.5) cancel for
determinant ratios.

A possible functional dependence on µ̃2 and µ̃1 can be motivated as
follows:

• There cannot be a constant term because of the aforementioned
behaviour of R in the limit µ̃2 → µ̃1.

• The function must be positive because ‖F‖2 is positive, suggesting a
dependence on an absolute value or a term with an even exponent.

• There should be an approximate symmetry under interchange of µ̃1
and µ̃2 and the positivity requirement suggests f ∝ |µ̃2 − µ̃1|

b.

• The determinants depend quadratically on µ̃1 and µ̃2 respectively, this
hints at f ∝ (µ̃2 − µ̃1)

2.
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• There is likely some further dependence on the relative sizes of the
various mass parameters.

In fact, it will be shown below that the average force ‖F‖2av as well as the
maximal force ‖F‖2max can be modelled by

‖F‖2av ∼ aav (µ̃2 − µ̃1)
2

(
µ̃2
µ̃1

)bav

(5.10)

‖F‖2max ∼ amax
(µ2 − µ1)

2

(µ1µ2)
bmax

, (5.11)

with aav,amax,bav and bmax distinct real parameters. The empirical terms
which multiply (µ2 − µ1)

2 were guided by the behaviour of the data in the
regions µ̃1 � µ̃2 and µ̃2 � µ̃1. In addition, amongst all the possibilities
that were tried, this particular form was the only one to follow the data in
the ratio ‖F‖2max/‖F‖2av. This is an important consideration: when only the
leading behaviour is considered or the average and maximal forces are fitted
with functions of the same form, this ratio would reduce to a constant in clear
disagreement with the data. When polynomial fits or Padé approximants are
attempted to take a more model-independent approach, the ratio of the fits
for ‖F‖2max and ‖F‖2av produces singularities and further does not follow the
data at all, despite ‖F‖2av and ‖F‖2max being well described individually. In
addition, the number of fit parameters required for polynomial or Padé fits
makes them unstable and certainly not amenable to being fitted with only
a few data points, at odds with the aims of this chapter. Finally, the simple
form of the fitted functions also interesting consequences to be derived, as
will be seen below.

Of course, it should be remembered that the parameters are effective
and certainly depend on the volume and the dynamical quark content. In
particular, it was hoped that the data could be described with two or at most
three free parameters, in a way which absorbs the dependence on µ̃` and is
well-behaved under scale transformations of the mass parameters, thereby
allowing the functions to be fitted with just a few data points in the tuning
stage of a given simulation.

A dependence on
∣∣µ̃22 − µ̃21∣∣ did not describe the data well at all,

suggesting that the cross terms are indeed essential. As indicated above, the
dependence on (µ2 − µ1)

2 seems reasonable, but presently there seems to
be no explanation for the value and form of the other factors. The presence
of these terms can probably be understood by considering the bounds of
the eigenvalue spectrum of the respective operators since these are bounded
from below by the preconditioning masses. It may be possible to derive
better motivated forms for the forces by expanding the derivative for the
even-odd preconditioned determinant ratio in the free field limit.

Fitting the Functional Forms

In order to fit the proposed functional forms over a wide range of µ̃1 and
µ̃2, ρ̃1 and ρ̃2 were varied while keeping µ̃` = 0.0002476, which corresponds
approximately physically light quarks for this lattice spacing and κ value.
The median as a central value as well as the 15.73 and 84.27 percentiles as
estimates of the spread were determined and fits of the two functional forms
in Equations (5.10) and (5.11) to the medians were carried out. In these fits,
correlations between the data were ignored but they were weighted by the
inverse of an effective variance determined from the percentiles. The data
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Figure 5.2: Average forces
coming from a determinant
ratio as a function of the mass
preconditioning parameters μ̃1 and
μ̃2 on gauge configurations with
the Nf = 2 twisted mass clover
action. The lines correspond to the
fit of the form Equation (5.12).
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Figure 5.3: Maximal forces coming
from an even-odd preconditioned
determinant ratio as a function
of the mass preconditioning
parameters μ̃1 and μ̃2 on gauge
configurations with the Nf = 2

twisted mass clover action. The
lines correspond to the fit in
Equation (5.13).

as well as the fit result are shown in Figures 5.2 and 5.3 and the parameters
take the values

‖F‖2av(μ̃1, μ̃2) = 4.2(2) (μ̃2 − μ̃1)
2

∣∣∣∣ μ̃2

μ̃1

∣∣∣∣
0.18(3)

(5.12)

‖F‖2max(μ̃1, μ̃2) = 21(1)
(μ̃2 − μ̃1)

2

|μ̃1μ̃2|
0.46(1) . (5.13)

Both fits reproduce the qualitative aspects of the data rather well, although
the fit for ‖F‖2av has χ2/df � 1 due to deviations in the region μ1 ∼ μ2. In
Appendix D.2, the figures and fits are also shown with μ̃2 on the abscissa for
completeness. Additionally, the analysis was repeated with a tenfold larger
target mass μ̃� to ascertain the effect of the way even-odd preconditioning is
implemented for the twisted mass clover action. The results in Appendix D.2
suggest that the proposed functional forms remain useful and that the
residual dependence is indeed absorbed into the fit parameters (which now
of course take different values).

Maximal Forces and their Distribution

An issue of particular importance in the tuning of the mass preconditioning
parameters is the difference between the average and the maximal forces
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Figure 5.4: Ratio of the maximal
and average forces from even-odd
preconditioned determinant ratios

with different parameters. The
lines give the ratio of the model

in Equations (5.10) and (5.11)
for constant μ̃2 as a function of

μ̃1/μ̃2, as indicated by the colours.
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coming from the different terms in the effective action. In particular, it
is known that large spikes in the maximal forces can trigger integrator
instabilities, see Ref. [147] for example. As a consequence, it would be of
value if it were possible to model not only the median of the maximal force
as done in the previous section but also its variance, especially in the positive
direction. Figure 5.4 shows the ratio of the maximal force and the average
force for different parameter combinations as measured on the test ensemble.
In addition, the lines depict the prediction from the ratio of Equations (5.12)
and (5.13) overlaid over the data points (i.e. the lines are not lines of best fit).

It seems that within the large errors, ‖F‖2max/‖F‖2av is linearly proportional
to some power of μ̃1/μ̃2 (or equivalently μ̃1 at constant μ̃2 as depicted in the
figure). Some of the points show slightly different behaviour around μ̃1 ∼ μ̃2,
but it should be remembered that the number of measurements is quite low
and it is likely that the distribution of maximal forces has not been sampled
sufficiently well. Further, if the functional forms can truly be trusted, it is
clear that the dependence should be

‖F‖2max
‖F‖2av

∼
amax

aav

∣∣∣μ(bmax−bav)
1 μ

−(bmax+bav)
2

∣∣∣ . (5.14)

Despite the mild fluctuations in the data, the simple dependence indicates
that for any given μ̃1, a μ̃2 can be chosen predictably to reduce the difference
between the average and the maximal force. The indication that the ratio
between maximal and average force is reduced for μ̃2 < μ̃1 is of little
practical value because such a term would in turn require a compensating
term for which the ratio would be larger. Finally, for small values of μ̃2,
the ratio between the average and the maximal forces becomes very large,
although it should be kept in mind that in those situations, ‖F‖2av is usually
small because μ̃2 ∼ μ̃1.

As mentioned above, the most severe complication in the integration of
the equations of motion is the occurrence of large spikes in the maximal
forces. As discussed further below, these spikes are seen especially in the
simulation of very light fermions. Figure 5.5 shows the difference between
the 84.27 percentiles and the median of the maximal forces measured on
the test ensemble (referred to as Δ+(‖F‖2max)) as a function of the mass
preconditioning parameters. At present, no errors have yet been computed
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Figure 5.5: Difference between
84.27 percentiles and the median
of the maximal forces of even-odd
preconditioned determinant ratios
with different parameter combina-
tions, the lines correspond to the
functional form in Equation (5.15)

on the percentiles and as such the data has to be taken at face value. The
lines in the figure correspond to a fit of the form:

Δ+
(
‖F‖2max(μ̃1, μ̃2)

)
= 1.69(23)

(μ̃2 − μ̃1)
2

|μ̃1μ̃2|
0.83(2) , (5.15)

where the errors on the parameters are estimates given by fits which remove
sets of points.

The last quantity to be investigated was the relative size of the positive
variance, Δ+(‖F‖2max)/‖F‖2max, which is a quantity that one would like to
minimize, perhaps above all others. From Figure 5.5 and the result of the fit
(Equation (5.15)), it would seem that μ̃1 and μ̃2 can be chosen such that the
variance is minimised. While this is true, it is of limited usefulness because
the points where it is minimised correspond to the points where the forces
themselves vanish. In particular, the functional forms can be combined as
above to obtain

Δ+(‖F‖2max)

‖F‖2max
∼
1.69(23)
21(2)

|μ̃1μ̃2|
[−0.37(3)] . (5.16)

Still, at the very least the model above can be used to make qualitative
predictions about the size and/or frequency of large spikes in the maximal
forces, potentially aiding in the tuning effort.

force hierarchy relations

The empirical model with the determined fit parameters presented above
is of course not generally applicable, because the phenomenological terms
|μ̃1/μ̃2|

b and |μ̃1μ̃2|
b ′

and the fit parameters carry implicit dependences.
However, because the leading dependence seems to be (μ̃2 − μ̃1)

2, it is
very likely that an approximate force hierarchy, applicable anywhere, can
be established by ignoring these terms. It is further interesting to explore
the consequences of the functional forms and the kinds of relations that can
be derived based on these.

Mass Preconditioning Recurrence Relations

The following ideas are based on arguments from Ref. [138], which suggests
using the RHMC to integrate degenerate flavours on multiple time scales by
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splitting the fermion determinant into equivalent factors of the n-th root. The
factors are then implemented using the partial fraction representation of the
Zolotarev approximation, the individual terms of which are very much like
determinant ratios. It is argued that this splitting is optimal, but simulations
of light dynamical quarks using the RHMC can be very expensive. In the
case of mass preconditioning, a similar argument can be made which may
allow the force contributions to be arranged predictably and then distributed
over multiple time scales. One particularly interesting possibility is to choose
the parameters such that the forces from two or more determinant ratios are
of the same order and can thus be integrated on the same time scale.

Given a pair of determinant ratios

R2R1 =
det
(
Q2 + µ̃22

)
det
(
Q2 + µ̃23

) · det
(
Q2 + µ̃21

)
det
(
Q2 + µ̃22

)
and the target mass µ̃1 = µ̃` (hence ρ̃1 = 0.0), the ratio of their squared
forces is, to leading approximation,

‖F‖2(µ̃3, µ̃2)
‖F‖2(µ̃2, µ̃1)

=
(µ̃3 − µ̃2)

2

(µ̃2 − µ̃1)2
.

The two forces of two determinant ratios can thus be made approximately
equal by requiring

µ̃3 − µ̃2
µ̃2 − µ̃1

= 1 ,

where the square root has been taken and the positive branch is chosen. This
leads to

µ̃3 = 2µ̃2 − µ̃1 ,

while the negative branch would have given µ̃3 = µ̃1 and thus R1R2 = 1,
which is not a useful result.

This can be extended to more determinant ratios by considering the ratios
of the differences of their preconditioning masses

µ̃4 − µ̃3
µ̃3 − µ̃2

= 1 ,

giving immediately
µ̃4 = 3µ̃2 − 2µ̃1 ,

until finally a recursion relation can be obtained

µ̃n = (n− 1)µ̃2 − (n− 2)µ̃1 . (5.17)

In addition to the target mass µ̃1 = µ̃`, the whole ladder of determinant
ratios now depends only on µ̃2, which can be used to tune the force
contribution of all these terms to some acceptable level. Since the inversion
cost can be presumed known, this allows the simulation cost to be reliably
predicted. The pattern can be broken at some given µ̃m and the force of
the resulting ratio can then be integrated on a finer time scale. If required,
multiple levels of equal forces can be established following the recursion
relation above with µ̃m as the new target mass.

As an alternative to the proposal above, the force ratios can also be tuned
by requiring the ratios of the squared mass differences to be a certain value
different from 1, chosen such that the force hierarchy matches the hierarchy
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of integration steps on the different time scales. Assuming that the squared
forces should increase by a factor of f2 from the coarsest time scale onwards,

(µ̃3 − µ̃2)

(µ̃2 − µ̃1)
= f ,

leads to the recurrence relation

µ̃n =
fn(µ̃2 − µ̃1) + f(fµ̃1 − µ̃2)

f(f− 1)
, (5.18)

which, despite appearances, goes to Equation (5.17) in the limit f→ 1.
The final preconditioning mass µ̃N, which will be in the determinant

term, can be chosen by following the results of Section 5.1.1. It should
of course be kept in mind that the procedure presented here ignores the

contribution
∣∣∣µ̃n/µ̃(n−1)∣∣∣ and the resulting average forces will thus not scale

exactly by the factor f. In addition, the maximal forces depend more strongly
on |µ̃nµ̃(n−1)| and will thus certainly not scale as expected, limiting the
number of contributions that can be integrated on one time scale in the case
f = 1. In principle, however, these effects could also be taken into account
in the construction of the ladder of preconditioning masses. Of course, in
that case knowledge of the phenomenological parameters bav and bmax is
required, defeating the purpose of this simplification.

Simplified Full Formulae for the Forces

It has been shown above how the choice of the preconditioning masses can
be simplified significantly by ignoring the phenomenological terms. The
recurrence relation in Equation (5.18) gives a rule for determining the mass
hierarchy with a specific ladder of forces in mind. A further simplification
of all the functional forms presented in the previous sections occurs when
all of the preconditioning masses are specified in terms of µ̃1. In general for
µ̃n = xnµ̃1, Equations (5.10), (5.11) and (5.15) become

‖F‖2av(xn, xn−1) ∼ aav

∣∣∣∣ xnxn−1
∣∣∣∣bav

(xn − xn−1)
2 µ̃21

‖F‖2max(xn, xn−1) ∼ amax |xnxn−1|
−bmax (xn − xn−1)

2 µ̃
2(1−bmax)
1

∆+
(
‖F‖2max(xn, xn−1)

)
∼ a∆+ |xnxn−1|

−b∆+ (xn − xn−1)
2 µ̃
2(1−b∆+)
1 .

(5.19)

A final simplification can be obtained for µ̃n = xn−1µ̃1, which leads to

‖F‖2av(n) ∼ aav |x|
bav x2n−4 (x− 1)2 µ̃21

‖F‖2max(n) ∼ amax
x2n−4∣∣x2n−3∣∣bmax

(x− 1)2 µ̃
2(1−bmax)
1

∆+
(
‖F‖2max(n)

)
∼ a∆+

x2n−4∣∣x2n−3∣∣−b∆+
(x− 1)2 µ̃

2(1−b∆+)
1 .

(5.20)

In this notation, ‖F‖2(n) corresponds to to the determinant ratio with µ̃n in
the denominator, so the ratio with the target mass in the numerator would be
n = 2. The average forces coming from the different determinant ratios now
follow a very simple pattern because the phenomenological terms cancel in
their ratios √

‖F‖2av(n)

‖F‖2av(n− 1)
= x (5.21)
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and similar simplified relationships hold for all of Equation (5.20), softened
by bmax and b∆+ . This also explains the unwritten rule of placing the
preconditioning masses at equal intervals on a logarithmic scale because√
‖F‖2av and the masses now scale with the same factor. Alternatively, to

get a different scaling for the masses and the forces, the general recurrence
relation may be used

µ̃2 = xµ̃1

µ̃n =
fn(x− 1) + f(x− 1)

f(f− 1)
µ̃1 ,

keeping in mind that unlike Equation (5.20), this again ignores the contribu-
tion from the phenomenological term |µ̃n/µ̃n−1|.

model validation and application

In this section, a validation of the model established in the previous section
is attempted by extrapolating the fit functions to the simulation points of
a number of production simulations and comparing the predictions for
the forces to actual measurements. Based on the target parameters of the
Nf = 2 twisted mass clover ensemble cA2.30.24, a high efficiency simulation
is attempted using the ideas from the previous section and it is shown that
the scheme is indeed much more efficient than the one that was used to
produce this ensemble. Finally, a proposal is made for simulations at the
physical pion mass.

Extrapolations

To validate the model, it was extrapolated to the simulation points of three
Nf = 2 ensembles from Section 6.1 and two Nf = 2 + 1 + 1 ensembles
from Section 6.2.1. The extrapolations are shown in Figure 5.6, compared
to measurements of the forces from the actual simulations. It is clear that
for larger values of µ̃1 and µ̃2, the model reasonably predicts the simulation
points and provides at least a qualitative idea of the force hierarchy. However,
it seems that the measured forces scale with the volume despite being local
quantities and thus the model strongly undershoots the measurements for
the larger lattices. This is not surprising because the eigenvalue density
is different in larger volumes. In addition, as has already been noted
in Section 4.3.1, the average and maximal forces depend on csw and this
likely explains why the predictions for ensemble P125 are quite good while
undershooting the measurements for P205. Finally, it should be understood
that the force measurements are partially quenched observables. As a result,
much like for other quantities such as meson masses, their values will
depend on the effective dynamical field content and hence the target light
quark mass. The values determined for the phenomenological parameters
aav,amax,bav and bmax on the test ensemble are thus certainly inappropriate
for other physical situations.

For new (unfitted) simulation points on the test ensemble introduced
in this section, the model describes the dependence quite perfectly. This
suggests that for wider applicability the model would just need to be
extended by terms which capture the remaining dependences. It should
be noted, however, that the functional forms obtained above are really quite
restrictive due to the leading dependence on (µ̃2 − µ̃1)

2. As a result, it seems
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Figure 5.6: Average and maximal
forces in Nf = 2 (Section 6.1)
and Nf = 2+ 1+ 1 (Section 6.2.1)
simulations with the twisted mass
clover action. Empty symbols
correspond to the predictions
of the model in Equations (5.10)
and (5.11) with μ̃1 and μ̃2

chosen as in the respective
simulations, while filled symbols
are measurements from the actual
simulations. cA2.30.24 corresponds
to a Nf = 2 simulation with
Mπ± ∼ 250 MeV on a lattice
of spatial size L/a = 24 while
cA2.09.48 is at the physical pion
mass on a L/a = 48 lattice. The
P ensembles are Nf = 2 + 1 + 1,
have Mπ± ∼ 250 MeV, L/a = 24

and different values of csw at
approximately constant physics.

reasonable to expect that for any given set of fundamental parameters (lattice
spacing, volume and target mass), it should be possible to obtain reasonable
values for the effective parameters aav,amax,bav and bmax from just a few
measurement points. This should be sufficient to provide a very good
description of the dependence of the forces on the mass preconditioning
parameters and allow the simulation to be continued with optimized ones.
In this way, the functional forms obtained here can be of real practical use.

High Efficiency Simulation of Ensemble cA2.30.24

The results of the previous sections suggest that the forces from the
various determinant ratios can be controlled quite predictably through the
preconditioning masses. Especially the relations in Equation (5.20) allow
the whole tower of forces to be controlled with just one parameter. It will
now be shown that the Nf = 2 ensemble cA2.30.24 (see Chapter 3) was
simulated with a reasonably efficient choice of parameters, but an excessive
number of integration steps. As a metric of simulation cost, the number of
CG iterations in the molecular dynamics, heatbath and acceptance steps will
be used. This is in contrast to other works which make use of the more
accurate total number of matrix vector products. Consequently, the cost
estimates are lower bounds and terms should be added to account for the
cost of the derivatives of the gauge term as well as the contraction of the
force terms of the quark contributions. It should also be remembered that
the number of CG iterations can only be compared meaningfully for equal
volumes.
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Figure 5.7: Molecular dynamics time histories of the four monomials in the simulation of the cA2.30.24 ensemble.
The force labelled μ̃3 = 0.0408328 is a determinant while the two others are determinant ratios.

Table 5.1: Square norm forces in
simulation of ensemble cA2.30.24.

The central value is the median
while the positive and negative

deviations indicate the 84.27 and
15.73 percentiles respectively. †:

This line is for a determinant
rather than a determinant ratio.

time scale t μ̃4−t ‖F‖2av ‖F‖2max

3 0.0008238 1.1
(
+0.4
−0.3

)
· 10−3 1.68

(
+2.80
−0.92

)
· 100

2 0.0088238 3.9
(
+0.4
−0.3

)
· 10−3 1.84

(
+2.06
−0.80

)
· 100

1 0.0408238† 1.30
(
+0.01
−0.01

)
· 101 1.91

(
+0.40
−0.23

)
· 102

0 (gauge) – 1.21
(
+0.01
−0.01

)
· 102 4.67

(
+0.17
−0.13

)
· 102

As shown in Table 3.3 on page 44, the ensemble was simulated on four
time scales. For convenience, the mass parameters are listed in Table 5.1.
The outermost time scale was integrated with 10 steps of the 2MN integrator
and Nt = {1, 2, 2, 10} integration steps overall. The acceptance rate was
around 91%, but the simulation cost was excessive with a total of about
2.3 · 105 CG iterations in the molecular dynamics step per trajectory. A more
efficient simulation with almost the same acceptance rate can be obtained
by changing the integration steps to be Nt = {1, 1, 1, 13}, but the cost per
trajectory is still around 1.75 · 105 CG iterations because so many steps are
necessary on the outermost time scale.

Time histories of the square norm forces in the original simulation are
shown in Figure 5.7, where the average forces are indicated by the lines while
the maximal forces are given by the dotted lines. It should be noted how the
maximal forces of the two determinant ratios are almost the same while their
average square norm forces differ by around a factor of 5. The maximal force
of the monomial with the target mass shows fluctuations over two orders of
magnitude, thus requiring many integration steps on the coarsest time scale
to retain good acceptance. The distribution of the forces is listed in Table 5.1
for the different monomials.

Exploiting what has been learned in the previous sections an alternative
mass preconditioning scheme can be established whose primary aim is to
provide a real hierarchy of maximal forces and to minimse their fluctuations.
To this end, the simulation was carried out on five time scales with three
determinant ratios on the three outermost ones. In order to keep the average
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Figure 5.8: Molecular dynamics time histories of the four monomials in the highly optimised simulation of the
cA2.30.24 ensemble. The force labelled μ̃4 = 0.0527232 is a determinant while the three others are determinant
ratios.

time scale t μ̃5−t ‖F‖2av ‖F‖2max

4 0.0008238 5.54
(
+1.54
−1.17

)
· 10−5 0.80

(
+1.41
−0.35

)
· 10−1

3 0.0032952 8.05
(
+1.74
−1.39

)
· 10−4 0.90

(
+1.36
−0.68

)
· 100

2 0.0131808 5.25
(
+0.39
−0.29

)
· 10−3 1.82

(
+1.54
−0.67

)
· 100

1 0.0527232† 1.270
(
+0.097
−0.002

)
· 101 1.78

(
+0.34
−0.17

)
· 102

0 (gauge) 1.21
(
+0.01
−0.01

)
· 102 4.69

(
+0.13
−0.13

)
· 102

Table 5.2: Square norm forces in
the highly optimised simulation of
ensemble cA2.30.24. The central
value is the median while the
positive and negative deviations
indicate the 84.27 and 15.73
percentiles respectively. †: This line
is for a determinant rather than a
determinant ratio.

and maximal forces on the outermost time scale small, the masses were
chosen as

μ̃n = 4n−1μ̃1 ,

such that

μ̃1 = 0.0008238, μ̃2 = 0.0032952, μ̃3 = 0.0131808, μ̃4 = 0.0527232 .

The number of integration steps was set to be Nt = {1, 1, 1, 1, 6} with the
2MN integrator on all time scales, providing 192 effective integration steps
on the finest one.

The acceptance rate of this scheme was found to be around 90% at a
simulation cost of 1.1 · 105 CG iterations in the molecular dynamics step per
trajectory, a reduction by more than a factor of 2 compared to the original
simulation. In particular, the number of CG iterations on the outermost
time scale is reduced by a factor of around 5 compared to the optimised
original scheme with Nt = {1, 1, 1, 13}. Because the cost estimate ignores
several contributions, the actual cost reduction factor is closer to 2.5. One
would expect that x = 4 < 10 for the scaling of preconditioning masses
would result in significantly more expensive heatbath and acceptance steps.
However, this cost in all three schemes discussed here is around 1.1 · 104 CG
iterations.
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The force histories for this highly optimized mass preconditioning and
integration scheme are shown in Figure 5.8 and statistical data is listed in
Table 5.2. First of all it is notable that a real force hierarchy now exists and
the square norm forces on time scales 4 and 3 differ by about a factor of 16,
as expected. The force on time scale 2 does not quite fit the prediction of
Equation (5.21), but the deviation is small and covered by the distributions
of the two average forces. The maximal forces also display a monotonic
ordering and their fluctuations are somewhat reduced compared to the
original scheme. The maximal force on time scale 2 seems to be quite a bit
lower than naively expected. Taking into account the complete x-dependence
from Equation (5.20) gives

‖F‖2max(4)

‖F‖2max(3)
=

x4

|x5|bmax
· |x
3|bmax

x2
= |x|2(1−bmax) = 8.64 ,

while the measured ratio is only around 2, again suggesting a strong
dependence of bmax on the target quark mass and volume, as the test
ensemble was simulated with rather heavy pions.

An extension of the scheme with a sixth time scale was attempted,
significantly reducing the force magnitude coming from the determinant
factor as suggested in Section 5.1.1. This, however, resulted only in a
marginal increase in acceptance while increasing the simulation cost by
about 20%. It is likely, however, that for simulations with even lighter quark
masses, the guideline suggested in Section 5.1.1 should be followed even
though it was not necessary here.

Scheme Proposal for the Physical Pion Mass

The chief aim of this study is to make simulations at the physical pion mass
computationally cheaper. In this final section, the information from above
will thus be used to propose a scheme for simulations with very small target
quark mass. The simulation of ensemble cA2.09.48 had an acceptance rate
of only around 73% and a molecular dynamics cost of around 5.5 · 105 CG
iterations per trajectory. In addition, around 4.6 · 104 CG iterations were
required for the heatbath and acceptance steps. It was simulated on four
time scales with two determinant ratios on the outermost time scale and
Nt = {1, 1, 2, 13} integration steps with the 2MN integrator overall. This
corresponds to 416 effective steps on the finest time scale. The masses
are listed in Table 5.3 and the resulting square norm forces are shown in
Figure 5.9.

The two determinant ratios on time scale 3 have very similar maximal and
average forces, as required for this scheme. However, the maximal forces are
both as large as the maximal force coming from the determinant ratio on
time scale 2, suggesting that for a better acceptance rate a more hierarchical
distribution would be required. Because the target mass µ̃1 is about a factor
of 3.3 lower than in the simulation of cA2.30.24, six time scales are likely to
be required to obtain a proper force hierarchy and a sufficiently low force
from the determinant factor. The mass scaling factor x = 4 would probably
work well, although a value 10 > x > 4 may be beneficial in terms of total
simulation cost. This is because (x− 1)2µ̃21 will be smaller than for cA2.30.24
even for x > 4 and thus the force on the coarsest time scale is expected
to be lower as well. On the other hand, the fluctuations in the maximal
forces are clearly larger than for cA2.30.24, so keeping x = 4 might provide
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Figure 5.9: Molecular dynamics time histories of the four monomials in the simulation of the cA2.09.48 ensemble.
The force labelled μ̃4 = 0.030247122 is a determinant while the two others are determinant ratios.

time scale t μ̃n ‖F‖2av ‖F‖2max

3 0.000247122 1.76
(
+0.31
−0.28

)
· 10−4 4.47

(
+5.92
−2.15

)
· 100

3 0.001547122 2.77
(
+0.24
−0.23

)
· 10−4 3.47

(
+3.67
−1.60

)
· 100

2 0.005247122 3.44
(
+0.13
−0.13

)
· 10−3 9.79

(
+8.68
−3.68

)
· 100

1 0.030247122† 1.33
(
+0.01
−0.01

)
· 101 3.29

(
+1.07
−0.54

)
· 102

0 (gauge) – 1.33
(
+0.01
−0.01

)
· 102 5.03

(
+0.16
−0.13

)
· 102

Table 5.3: Square norm forces
in the simulation of ensemble
cA2.09.48. The central value is
the median while the positive
and negative deviations indicate
the 84.27 and 15.73 percentiles
respectively. †: This line is for
a determinant rather than a
determinant ratio.

the right balance between intrinsic simulation cost and a dampening of the
fluctuations in the maximal forces.

The number of integration steps on the outermost time scale will
probably have to be no smaller than 9, on account of the larger volume,
but of course this can always be adjusted downwards if the acceptance rate
is good. The proposed scheme would thus be

• Nt = {1, 1, 1, 1, 1, 9}

• μ̃1 = 0.000247122, μ̃2 = 0.000988488, μ̃3 = 0.003953952,
μ̃4 = 0.015815808, μ̃5 = 0.063263232, μ̃6 = 0.253052928

The resulting simulation cost can be predicted quite easily. The number
of CG iterations for a given volume, set of fundamental parameters and
termination criterion can be fitted reliably to a function of the form

NCG
iter(μ̃) ∼

a

μ̃+ b
,

with a and b positive real parameters.
The resulting function is valid up to μ̃ slightly smaller than the lightest

μ̃ used in the fit. It works very well for larger μ̃, as long as the same
stopping criterion is used for all μ̃ considered. Doing so for the simulation
data from ensemble cA2.09.48, gives a = 7.32, b = 0.00042. Using the
number of effective integration steps on each time scale and the number
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of CG iterations predicted by the formula above, gives a cost of 5.66 · 105 CG
iterations for the original scheme. This is in line with what was observed in
the simulation and thus validates this cost model. For the proposed scheme,
a total cost of 6.3 · 105 CG iterations is expected for x = 4 and 4.2 · 105
for x = 6. Figure 5.10 shows the dependence of the simulation cost on x
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Figure 5.10: Simulation cost per
trajectory in terms of number
of CG iterations in the molecu-
lar dynamics step with an op-
timised mass preconditioning
scheme with 6 time scales, n6

steps on the outermost time
scale and a mass scaling factor
x. The horizontal black line
indicates the simulation cost
of the original scheme for the
cA2.09.48 ensemble.

and the number of integration steps n6 on the outermost time scale, with
the cost of the original scheme indicated by the black horizontal line. It is
clear that for n6 = 9 as proposed, x � 5 is required to obtain the same or
a lower total simulation cost. One should keep in mind that for x < 10,
a higher acceptance rate might be expected than with the original scheme,
justifying the extra cost if the right balance is reached. It was unfortunately
not possible to test this scheme in production, but it will certainly be tested
in the future in Nf = 2+ 1+ 1 simulations at the physical pion mass.

optimized mass preconditioning

The results of the previous sections can now be used to propose a simple
general algorithm for an optimized mass preconditioning scheme depending
only on one parameter and the number of integration steps on the outermost
time scale. Given a target quark mass μ̃1 = μ̃�, a mass scaling factor x < 10

is chosen and Nts time scales are used in the integration such that

μ̃Nts = xNts−1μ̃1 � 0.2

in order to minimize the force from the determinant factor as suggested by
the results of Section 5.1.1. The preconditioning masses are thus given by

μ̃n = xn−1μ̃1

and the results from above suggest that the average forces will scale roughly
by the factor x from time scale to time scale. Note that in practice, at least in
the tmLQCD software suite when simulating the twisted mass clover action,
the preconditioning masses are specified via the ρ̃i, in which case

ρ̃n =
(
xn−1 − 1

)
μ̃1

for the scheme proposed here.
The scaling factor determines the forces on the coarsest time scale, and

these in turn determine how many integration steps need to be carried out
there. On all other time scales the number of integration steps is set to
1, which effectively corresponds to 2 or 4 when a second or fourth order
integrator is used. In this way the effective doubling or quadrupling of
integration steps from time scale to time scale provides a close to optimal
integration scheme, when x is chosen appropriately. Although there is no
guarantee that the proposed scheme will be efficient and provide a high
acceptance rate, it certainly produces a predictable hierarchy of forces and
can be used as a starting point. Refinements can be made to the parameters
if a given force turns out to be much larger or smaller than expected. The
full formalism in Equations (5.7) and (5.8) can then be used to predict the
resulting changes.

summary and discussion

The results of this chapter show that the molecular dynamics forces coming
from the mass preconditioning determinant splitting can be fitted to simple
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empirical functions of the mass preconditioning parameters. While the used
fit formulae are not motivated theoretically, the functional dependence on
the preconditioning parameters is strongly constrained by the requirement
that the forces from determinant ratios vanish in the limit µ̃1 → µ̃2. The used
functional forms thus have only two free parameters each for the average and
maximal square norm of the forces for any combination of µ̃1 and µ̃2.

These functional forms were fitted to measurements of the forces in
a small volume at a relatively heavy pion mass and the functions were
found to reproduce the data rather well, where it should be noted that both
the forces and the mass preconditioning parameters span several orders of
magnitude. In order to take into account the way even-odd preconditioning
is implemented for the twisted mass clover action, the fits were repeated
for two target masses µ̃`. The model predictions were checked against
simulation data with different volumes, different pion masses, different Nf
and different β and csw. As expeted, it was found that the model deviates
significantly for simulations with different fundamental parameters, but the
simplicity of the functional forms suggests that fitting these for a given
physical situation can be achieved with just a few measurements. In practice
it is hoped that this will provide empirical guidance for the tuning of the
mass preconditioning parameters.

It has been shown that to leading order, the forces of determinant ratios
are proportional to (µ2 − µ1)

2 and this can be exploited rather easily in the
tuning of the force contributions in practice. In particular, when the masses
are scaled as µ̃n = xn−1µ̃1, a significant simplification of the parameter
dependence occurs. Assuming that the fitted functional forms offer a correct
effective description of the forces, this simplification allows the proposal of
a general algorithm for the choice of a reasonable mass preconditioning and
integration scheme.

It has been shown that for ensemble cA2.30.24, a mass preconditioning
and integration scheme of this type increases simulation efficiency by a factor
of 2.5 compared to the original scheme used for the simulation. For the
physical pion mass, a similar scheme was devised which, it is hoped, should
provide a higher acceptance rate at a very similar cost. Unfortunately, this
choice of simulation parameters could not yet be tested, but an analysis of
the forces in the original cA2.09.48 simulation suggests that it should be
effective. More generally, the presented recurrence relations can be used to
scale the forces and the mass parameters with different factors which may
allow further efficiency gains.

The results should also be valid for standard Wilson fermions (with and
without clover term), as long as the hopping parameter κ is not used for
additional preconditioning purposes. Specifically, for the simulations carried
out in the CLS effort [84], which employ small twisted quark masses to
stabilise simulations, the simplified formulae may be used to establish mass
preconditioning and integration schemes directly.

An understanding of the forces coming from different terms in the
effective action is not sufficient to fully predict the efficiency of a given
simulation. In particular, the presented results do not allow conclusions
to be drawn regarding expected acceptance rates. Refs. [149, 150, 151, 152]
advance an argument based on Shadow Hamiltonians. These are conserved
exactly and can be represented by asymptotic expansions of the molecular
dynamics Hamiltonian with correction terms proportional to powers of the
step sizes δτi. In these analyses it is suggested that the acceptance rate does
not depend on the first derivatives with respect to the gauge field of the
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effective action (the forces), but rather on the second derivatives. In some
sense, the attempt in the present chapter to focus on reducing ∆+

(
‖F‖2max

)
is a reflection of this argumentation. A final aspect which has been ignored
here is the interplay between multiple time scales, the magnitude of the
forces and the tuning parameters λi present in second and higher order
symplectic integrators [74].

It would be highly insightful to attempt a theoretical motivation of the
proposed functional forms such as through expansions of the analytical
expressions for the force around the free field limit, although it is unclear
whether possible non-perturbative corrections can be captured in this way.
This may in turn allow the results of Refs. [149, 150, 151, 152] to be used in
order to draw conclusions on the expected acceptance rate and find sets of
parameters which are optimal with respect to some well-motivated criterion.
In any case even at this stage, it is the opinion of the present author that the
proposed schemes can serve as a very good starting point and refinements
can be made based on the acceptance rate during the initial stages after
thermalisation of a given simulation.
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Part III

P H Y S I C S R E S U LT S

The Nf = 2 and Nf = 2+ 1+ 1 twisted mass clover ensembles
generated as discussed in Chapters 3 and 4 were used to
determine a number of benchmark quantities. As an issue of
central importance to simulations with twisted mass quarks at
small quark masses, the effects of the explicit isospin breaking
are discussed in Chapter 6. The pion mass splitting is measured
on the Nf = 2 ensembles and attempts are made to extrapolate it
to the physical light quark mass, as shown in Section 6.1. A more
extensive analysis is done on Nf = 2+ 1+ 1 ensembles, for which
approximately constant physical situations were simulated at
different values of csw. The pion mass splitting is also measured
there and the effect of the value of csw is discussed in Section 6.2.

In order to test the suitability of the twisted mass clover action
for the computation of physical quantities, a study of the
pseudoscalar meson sector was carried out on the Nf = 2

ensembles. Focussing on the cA2.09.48 ensemble at the physical
charged pion mass, pseudoscalar meson masses and decay
constants and their many ratios are computed in Chapter 7 with
a careful comparison to previous lattice and phenomenological
determinations. Values for the average up/down, strange and
charm quark masses are also provided, computed directly from
the bare quark masses used in the analysis. A particular focus
is put on systematic errors stemming from the ambiguity of the
fit range, which might play an increasing role in calculations on
large lattices and an analysis technique is introduced for this
purpose.





6I S O S P I N S Y M M E T RY B R E A K I N G

The connection between the pion mass splitting, the zero temperature
phase structure for Wilson fermions and the stability of simulations has
been discussed in Section 2.2. In this chapter, measurements of the pion
mass splitting using the new twisted mass clover action in Nf = 2 and
Nf = 2+ 1+ 1 simulations will be presented.

The mass of the neutral pion can be determined from correlation
functions of the interpolating operator P0 in the twisted basis

P0 =
∑

x
χ̄`(x, t) 1f χ`(x, t) , (6.1)

where 1f denotes the unit matrix in flavour space. The corresponding
correlation function CP0(t) has connected and disconnected contributions
and is, therefore, noisy. In order to extract the mass of the neutral pion,
ground state exponentials with forward and backward propagating states
are fitted to the correlation function in a region where the related effective
mass shows an approximate plateau and where the signal quality is still
sufficiently high for the fits to converge. The details of the analysis will
not be discussed here as they can be found in Section 7.1 and Section 7.4.
As will be discussed further below, at large Euclidean times the connected
contribution to CP0(t) is exponentially suppressed because the connected
neutral pion is significantly heavier than the full neutral pion. In order
to benefit from the improved signal quality when the connected piece is
ignored, the neutral pion mass is extracted from the disconnected piece only.

two flavour twisted mass clover pion mass splitting

The motivation for twisted mass clover fermions stems from a quenched
study [118], in which it was shown that the mass splitting between the
charged and neutral connected pions is significantly reduced compared to
standard quenched twisted mass fermions. In this section, it will be shown
that this continues to be the case for simulations with two flavours of mass-
degenerate twisted mass clover quarks all the way down to the physical pion
mass. In addition, there are strong indications that also the mass splitting
between the charged pion and the full neutral pion is reduced significantly.
Parts of these results have been published in Ref. [P6].

It has already been shown in Chapter 3 that no meta-stabilities are
observed with the new action at the lattice spacing of a ∼ 0.092 fm at the
physical pion mass. Figure 3.1 on page 41 further shows that the slope
of amPCAC as a function of the untwisted quark mass is very close to 1. In
addition, although the number of points is quite limited, there does not seem
to be a significant µ-dependent shift as discussed at the end of Section 2.2.2,
indicating that c2 must be very small. Although the gauge action is different,
this might be a reflection of results from Ref. [113] (with the plaquette gauge
action), that c2 & 0 for two flavours of non-perturbatively improved Wilson
fermions.

Table 6.1 lists measurements of the charged, neutral connected and full
neutral pion masses on the twisted mass clover Nf = 2 ensembles discussed
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isospin symmetry breaking

Table 6.1: Charged, neutral
connected and full neutral pion

masses in lattice units determined
on Nf = 2 twisted mass clover

ensembles. †: For cA2.09.48,
disconnected diagrams have not

been computed yet. �: For the full
neutral pion, a study of systematic
effects from excited states was not

possible due to the poor signal.
Nmeas represents the number of

measurements for meson quantities
on the corresponding ensemble.

cA2.09.48 cA2.30.24

aMπ± 0.06196(09)(+12
−05) 0.1147(7)(+4

−7)

aMπ(0,c) 0.1191(05)(+07
−10) 0.1541(13)(+05

−05)

aMπ0 –† 0.09(1)�

Nmeas 1457 728

cA2.60.24 cA2.60.32

aMπ± 0.15941(38)(+15
−21) 0.15769(26)(+15

−14)

aMπ(0,c) 0.18981(61)(+21
−25) 0.18840(44)(+46

−29)

aMπ0 0.11(2)� 0.13(2)�

Nmeas 1351 670

in Chapter 3. The data is presented in Figures 6.3a and 6.3b in units of r0,
in the form which allows it to be compared to the results of Ref. [124]. In
particular, it can be seen in Figure 6.3a that the mass splitting between the
squared charged and neutral connected pion masses is about a factor of three
smaller than with the old action without the clover term. It also seems that a
constant chiral extrapolation is appropriate for this quantity. The difference
between the squared neutral connected and full neutral pion masses is
shown in Figure 6.3b, indicating that this too is significantly reduced.

0 5 10 15 20

0
1
2
3
4
5
6

D
(t
)/
C
(t
)

t/a

Figure 6.1: Disconnected piece
D(t) of the neutral pion corre-
lation function compared to its
connected part C(t) on ensem-
ble cA2.30.24.

A measurement of the full neutral pion mass on ensemble cA2.09.48 is
complicated by the poor signal to noise ratio in large volume as well as
the expense of computing the disconnected contributions at this light quark
mass. It must hence be deferred to a future publication, employing some
variance reduction technique such as the generalized hopping parameter
expansion [153]. However, even the data at larger than physical pion
masses should be considered with care because the plateau quality is
low and no proper assessment of systematic errors could be carried out
given the poor signal to noise ratio. In addition, the data was analysed
under the assumption that the neutral pion is in fact lighter than the
charged ones and as a result also unphysical connected contribution to
the neutral pion correlation function. Hence, the full neutral pion mass
was extracted only from the disconnected contribution. This approach is
justified because the connected part of the neutral pion correlation function
is exponentially suppressed compared to the disconnected contribution, as
shown in Figure 6.1. Although this gives a better signal quality, it may
have biased the analysis to give lower values for the full neutral pion mass,
especially on the ensembles with aμ� = 0.006 where the relative suppression
is not as strong.

While the measurements above are useful for extracting individual
contributions to c2, it is the mass of the full neutral pion which affects
the stability of simulations and exponentially enhanced finite size effects.
Figure 6.3c shows constant and linear extrapolations of a2(M2

π± −M2
π0) to

the physical light quark mass. In the constant extrapolation, the value is
strongly constrained by the (underestimated) uncertainty on the point at
aμ� = 0.003 while the linear extrapolation would likely require at least one
more point to be trustworthy. In any case, plugging in M2

π± at aμ� = 0.0009,
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6.2 study of the pion mass splitting as a function of the sw coefficient
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Figure 6.3: Charged and neutral pion mass splittings (a): (M2
π± −M2

π(0,c))/a
2 and (b): (M2

π(0,c) −M2
π±)/2a2 as a

function of M2
π± in units of r0 (c): Chiral extrapolation to the physical light quark mass of a2(M2

π± −M2
π0) with

a constant fit (�) and a linear fit (�).

both extrapolations give negative values for the squared neutral pion mass
with (likely underestimated) uncertainties.

M2
π0(aμ� = 0.0009)cst = − [112(15) MeV]2

M2
π0(aμ� = 0.0009)lin = − [25(180) MeV]2

Clearly, this is not only unphysical, it is also in contradiction with the
indications from stable simulations and should be checked with an explicit
calculation at the physical light quark mass. Aside from the underestimated
uncertainties and the issues with the signal for the neutral pion mass, this
may also be a sign of chiral logarithms [112] which may enhance the pion
mass splitting in a range of intermediate quark masses. Ignoring these
logarithms would then clearly lead to the wrong extrapolation.

For direct comparison to simulations with the old Nf = 2 and Nf =

2+ 1+ 1 actions, the pion mass splitting on ensemble cA2.30.24 is around
70(10) MeV, where it should be remembered that the uncertainty is
underestimated. Given that the lattice spacing is around 15% higher than
the coarsest lattice spacing employed in Nf = 2 simulations with the old
action, this compares quite favourably to the 60 MeV measured there at a
slightly higher pion mass. However, given all the caveats involved in these
measurements, firm conclusions can simply not be drawn at present.

study of the pion mass splitting as a function of the sw
coefficient

The results of the previous section and the successful simulation at the
physical pion mass with two flavours of twisted mass clover quarks at the
physical charged pion mass suggest that the clover term successfully reduces
the pion mass splitting. However, as discussed in Section 2.2.3, the pion mass
splitting and the phase structure of the lattice theory have shown a strong
dependence on the number of active flavours in the past. This means that
while simulations at the physical pion mass may be feasible for Nf = 2, the
pion mass splitting may turn out to be too large in Nf = 2+1+1 simulations.

Unpublished studies in the quenched approximation by the ETMC
suggest that the magnitude of the pion mass splitting depends on the value
of csw. In particular, it was shown that the neutral connected to charged pion
mass splitting is reduced when going from the tree-level value csw = 1.0 to
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Table 6.2: Parameter values and
numbers of thermalised trajectories

of the Nf = 2 + 1 + 1 ensembles
used for the determination of the
csw dependence of the pion mass

splitting. All ensembles have L/a =

24, aµ` = 0.003, aµσ = 0.1355
and aµδ = 0.145. Ntraj is the

number of thermalised trajectories
while Nmeas is the number of

measurements for the pseudoscalar
meson correlators. Lattice spacings

from w0 = 0.1755(19) fm [142].

P205 P185 P165 P145

β 1.658 1.700 1.745 1.791

csw 2.05 1.85 1.65 1.45

κ 0.136530 0.138857 0.141140 0.143431

〈P〉 0.52749(7) 0.53563(3) 0.54431(3) 0.55327(3)

amPCAC −0.00038(14) −0.00040(14) 0.00027(12) 0.00029(15)

aMπ± 0.1298(9) 0.1305(10) 0.1281(8) 0.1241(9)

aMπ(0,c) 0.196(4) 0.203(5) 0.200(4) 0.191(3)

aMπ0 0.102(10) 0.086(10) 0.097(10) 0.091(14)

aMK 0.2639(19) 0.2590(14) 0.2513(14) 0.2427(13)

w0/a 1.860(11) 1.810(8) 1.768(14) 1.777(12)

a [fm] 0.0944(12) 0.0969(12) 0.0993(15) 0.0988(14)

Mπ± [MeV] ∼ 270 ∼ 260 ∼ 250 ∼ 250

Ntraj 1600 2300 1400 1500

Nmeas 250 250 250 250

the non-perturbatively tuned value for the plaquette gauge action. Based
on this, it can be imagined that there may exist optimal values of csw at
each lattice spacing, different from the non-perturbatively determined value
for O(a)-improvement of standard Wilson quarks, which minimize the pion
mass splitting.

As long as they behave smoothly under variations of the lattice spacing,
these optimal values could be used consistently in order to reduce or even
eliminate the pion mass splitting. Lacking clear guidance from the Symanzik
expansion, a numerical check of the csw dependence of the pion mass
splitting was carried out. For this purpose, four Nf = 2+ 1+ 1 ensembles
with values of csw in the range 1.45 to 2.05 were tuned to approximately
constant physical situation, with a particular focus on matching their lattice
spacings.

Ensembles and Constant Physics

In order to match the lattice spacing for different values of csw, the tuning
in Chapter 4 was performed and the functional form in Equation (4.12) was
determined. With this information, four Nf = 2 + 1 + 1 simulations with
relatively light pion masses of around 250 MeV at four values of csw were
tuned to maximal twist and the charged, neutral connected and full neutral
pion masses were determined on 250 well-separated gauge configurations
each. A list of these ensembles is given in Table 6.2, hereinafter referred to
as the P ensembles.

It should be noted that the lattice spacings are relatively well matched,
differing at a level of at most 5%, as far as can be determined from the scale
w0 = 0.1755(19) fm computed in Ref. [142] forNf = 2+1. It has to be kept in
mind that w0/a may be subject to differing discretization artefacts between
the four ensembles and w0 differs between Nf = 2+ 1 and Nf = 2+ 1+ 1,
as summarized recently in Table 9 of Ref. [154]. The apparent mismatch in
lattice spacings means that the observed pion mass splitting may differ by
up to 10% just by virtue of the lattice spacing and this should be kept in
mind in the following.
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Figure 6.4: 2M2
K −M2

π (top) and
M2

π (bottom) in units of w0 for
the four ensembles from Table 6.2.
Note that the vertical ranges are
the same.

For the purpose of computing the pion mass splitting it is important
to check that the dynamical quark content is consistent between the four
ensembles. Firstly, it is known that lattice artefacts are affected by how close
the charm quark mass is to the cut-off scale 1/a and secondly the value
of ZP/ZS, on which the effective strange and charm quark masses depend,
may be affected by the value of csw. The importance of these facts becomes
clear when comparing the neutral pion mass measurements in Ref. [124] for
ensembles A80.24 and A80.24s, the latter of which has a strange quark mass
lower by about 15-20%. The mass splitting between the charged and neutral
pion is reduced markedly from A80.24 to A80.24s, while the mass splitting
between the purely connected contributions is unaffected.

The bare mass parameters aμσ and aμδ were checked on ensemble
P185 to reproduce the phenomenological value of MDs

/fDs
∼ 8 and the

quark mass ratio mc/ms ∼ 12. This was done by computing aMK and
MDs

/fDs
using Osterwalder-Seiler (OS) valence quarks with a number

of different strange and charm quark masses. Interpolating to the point
MDs

/fDs
∼ 8 in the OS charm and strange quark masses along the lines

where mc/ms ∼ 12 fixes the strange and charm quark masses and gives
aμσ = (aμs + aμc)/2 = 0.1355. The parameter aμδ can then be fixed by
matching the OS and unitary kaon masses through interpolations in aμδ at
fixed aμσ, giving aμδ = 0.145. This procedure is explained in more detail in
Section 4.1.2.

In leading order SU(3) chiral perturbation theory, the quantity 2M2
K −

M2
π is proportional to the strange quark mass. It is shown in Figure 6.4,

together with the squared pion mass in units of w0 for the four P ensembles.
From this it can be seen that the average up/down quark masses are well
matched, the slight deviation of up to 5% corresponds to the mismatch in
lattice spacings. The strange quark mass, however, seems to differ by up to
25% between the four ensembles. Since this difference cannot be attributed
to the mismatch in lattice spacings, one is drawn to conclude that the value
of ZP/ZS has a strong dependence on csw. For the measurement of the pion
mass splitting, the deviation should be kept in mind. However, unlike in the
quoted example from Ref. [124], the strange quark mass is at least a factor
2.7 or so heavier than the light quark mass, which may reduce the impact
of the mismatch. Finally, the relative effect of a deviation in ZP/ZS on the
charm quark mass is much milder (since aμσ is unaffected), suggesting that
all four charm quark masses are similarly close to the cut-off scale.

Mass Splitting

The absolute differences between the squared connected neutral pion mass
M2

π(0,c) and the charged pion mass M2
π± are shown in the left panel in the

first row of Figure 6.5 for the four P ensembles. The difference between
the squared charged pion mass and the squared (full) neutral pion mass
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A1 A*1 A*2 B1 B*1 B*2 C1 C2

L/a 32 32 32 32 48 48 24 24

Nf 2 2 2 2+ 1+ 1 2+ 1+ 1 2+ 1+ 1 2 2

β 3.9 4.05 4.05 1.9 2.1 2.1 2.1 2.1
csw – – – – – – 1.57551 1.57551
aµ` 0.004 0.003 0.006 0.003 0.0015 0.003 0.003 0.006
aMπ± 0.1338(02) 0.1038(6) 0.1432(6) 0.1234(03) 0.0695(3) 0.0978(4) 0.1147(10) 0.1594(4)
aM

π(0,c) 0.2080(30) 0.150(3) 0.180(2) 0.2111(35) 0.1124(15) 0.1296(15) 0.1541(14) 0.1898(7)
aM

π0
0.1100(80) 0.090(6) 0.123(6) 0.0811(50) 0.056(3) 0.086(5) 0.09(1) 0.11(2)

w0/a 1.715(5) 2.21(1) 2.192(5) 1.701(13) 2.609(7) 2.544(6) 1.8517(55) 1.8142(41)
a [fm] 0.079(3) 0.063(2) 0.063(2) 0.0885(36) 0.0619(19) 0.0619(19) 0.0914(23) 0.0914(23)

Mπ± [MeV] ∼ 340 ∼ 330 ∼ 450 ∼ 280 ∼ 220 ∼ 310 ∼ 250 ∼ 340

Table 6.3: Nf = 2 and Nf = 2+ 1+ 1 reference ensembles for the pion mass splitting, relabelled for brevity. Ax,Bx:
pion mass measurements taken from Ref. [124], w0/a values should not be seen as final as they are taken from
an unpublished ETMC report, as measured at these quark mass mass values (rather than in the chiral limit). Ax:
Lattice spacing estimates are from Table 1, Ref. [96]. Bx: Lattice spacing estimates are from Equation 31, Ref .[128].
C1,C2: w0/a, pion masses and lattice spacing estimate as published in Ref. [P6].

M2
π0

are shown in the left panel in the second row of Figure 6.5. The data
is presented in units of w20 to account for the apparent slight mismatch in
lattice spacings, although it should be kept in mind that the four values of
w0/a may be subject to different lattice artefacts on account of the value
of csw as well as the mismatch in strange and charm quark masses. The
following two rows of the same figure give the linear mass splittings relative
to the charged pion mass on the given ensembles, thus avoiding potential
ambiguities coming fromw0/a. Although this quantity diverges in the chiral
limit at finite lattice spacing, it is a useful scale-independent measure when
the pion masses are well matched, which is the case for the P ensembles.

It seems that within the present precision, all mass splittings are
compatible within errors and that the value of csw has no effect on their
magnitude. Further, the compatibility of the relative mass splittings suggests
that the effect of csw on w0/a is small, at least as far as can be seen in these
combinations and within these rather large uncertainties. Finally, very much
unlike the situation in Ref. [124], the value of the strange quark mass does
not seem to affect the mass splitting within errors. It should be kept in mind,
however, that the bare mass parameters in lattice units are identical between
the four P ensembles which was not the case for the ensembles in Ref. [124].

As a comparison, the mass splittings from Nf = 2 and Nf = 2+ 1+ 1

simulations without the clover term as well as the mass splittings already
presented in Section 6.1 withNf = 2 twisted mass clover fermions are shown
in the right panels of Figure 6.5. The data for these reference ensembles is
listed in Table 6.3, where for the ensembles without the clover term, the
values for w0/a stem from an unpublished internal ETMC report1 and
should not be taken as final. For consistency, the quoted values of w0/a
are given as measured at the respective light quark masses rather than in
the chiral limit, which would be higher by a few percent. In addition, one
should note the Nf, gauge and fermion action dependence of w0/a, which
becomes apparent when the quoted values are related to the quoted lattice
spacings which were determined in Refs. [96, 128, P6] by other means. It
seems that for similar lattice spacings the values of w0/a may differ by up to
10% depending on the details of the discretisation used and the dynamical

1 Dated 2014.03.19. The present author would like to express his gratitude to U. Wenger for
providing it.
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Figure 6.5:
(
M2

π(0,c) −M2
π±

)
and(

M2
π± −M2

π0

)
in units of w0 as

well as the linear mass splitting
relative to the charged pion mass
for the four ensembles from
Table 6.2 (left) and the reference
ensembles from Table 6.3 (right).
For the reference ensembles,
starred ensemble names and empty
symbols indicate finer lattice
spacings while higher numbers
in the ensemble names indicate
heavier light quark masses. The
A ensembles are Nf = 2 twisted
mass w/o clover, the B ensembles
are Nf = 2 + 1 + 1 twisted mass
w/o clover and the C ensmbles are
Nf = 2 twisted mass clover one of
Chapter 3.

Label a (fm) Mπ± (MeV)

P 0.095 250

A1 0.079 340

A*1 0.063 330

A*2 0.063 450

B1 0.089 280

B*1 0.062 220

B*2 0.062 310

C1 0.092 250

C2 0.092 340
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quark content. Although r0 has not been computed on the P ensembles,
it would be possible to express the low energy constants (LECs) of Wilson
chiral perturbation theory in units ofw0, similar to what is done in Ref. [124]
in units of r0. However, the LECs would carry an intrinsic systematic
uncertainty of up to 40% when expressed in units of w0, on account of w0/a
entering the expressions to the fourth power. For this reason, this kind of
comparison was abandoned.

The reference ensembles in Table 6.3 have been selected such that for
A1 and B1, the lattice spacings and pion masses are as closely matched as
possible to the P ensembles given the further condition that measurements
of the charged, neutral connected and full neutral pion masses are available.
The starred reference ensembles have been chosen to have significantly
lower lattice spacings and two values of the pion mass, the lighter one
of which should match the P ensembles as closely as possible. For these
ensembles, the first two rows of Figure 6.5 confirm that the mass splitting
is only very mildly dependent on the light quark mass. The uncertainties
shown in quantities involving Mπ0 should be taken as lower bounds on
account of the difficulty of controlling the signal to noise ratio in the
quark line disconnected contribution to the correlation function. The mass
splittings scale with the lattice spacing squared and the deviation seen in(
M2
π± −M2

π0

)
for ensemble A*2 is likely to be a statistical fluctuation on

account of the fact that the signal to noise ratio in the neutral pion correlation
function worsens as the quark mass is increased. It is interesting to see that
for ensemble C2, the same increase is observed.

It should be kept in mind that the P ensembles have lattice spacings larger
by 10% to 20% compared to the coarsest reference ensembles. The neutral

connected to charged pion mass splitting
(
M2
π(0,c) −M

2
π±

)
is seen to be on

the level of ensemble A1, while being slightly lower than for ensemble B1.
Comparing the P ensembles to the Nf = 2 twisted mass clover C ensembles,
the mass splitting is substantially larger. In addition, the difference between
Nf = 2 and Nf = 2 + 1 + 1 twisted mass clover ensembles significantly
exceeds the difference between the respective ensembles without the clover
term. This might suggest that the clover term suppresses the mass splitting
for Nf = 2, it does not do so efficiently for Nf = 2+ 1+ 1.

The picture is not quite so clear for
(
M2
π± −M2

π0

)
, which seems to

be quite compatible with Nf = 2 twisted mass ensembles A1, A*1, Nf =

2 + 1 + 1 twisted mass ensembles B*1, B*2 and the Nf = 2 twisted mass
clover ensemble C1, although the lack of a variance reduction method for the
P and C ensembles should be kept in mind. In the relative mass splittings,
comparisons with B1, B*1 and C1 are the most useful since the pion masses
are similar. Here, the value for B1 indicates that both mass splittings are
reduced due to the clover term. On the other hand, compared to C1, the
neutral connected pion is heavier while the full neutral pion seems to have
a compatible mass. Within the substantial uncertainties and in the tested
range, the value of csw does not seem to play a role with respect to the pion
mass splitting. It would be interesting to extend the range of csw values in
this analysis to around and below 1.0.

Future studies including a variance reduction technique for the discon-
nected contribution to the neutral pion correlation function as well as mul-
tiple lattice spacings should give a clearer picture. Unlike in simulations
without the clover term, a dependence on the strange quark mass of the
mass splitting between the charged and full neutral pion is apparently not
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P205 P185 P165 P145

∂(amPCAC)/∂(1/2κ) 3.04(9) 3.22(10) 3.08(20) 2.73(27)

Table 6.4: Slopes of amPCAC vs.
1/2κ for Nf = 2+ 1+ 1 ensembles
of approximately fixed physical
situation with different values of
csw.

visible within errors. This could be seen as an indication of reduced lattice
artefacts from the heavy quark sector in light quark observables and it will be
interesting to see if this is reproduced in scaling studies. It should be kept in
mind, however, that the bare parameters µσ and µδ were not changed here.
By contrast, the differences tabulated in Ref. [124] were due to changes in
the strange and charm quark masses under variation of µδ or both µσ and
µδ.

In conclusion it can be said that the pion mass splitting is reduced by
the clover term also for Nf = 2 + 1 + 1 twisted mass fermions compared
to simulations without it. At a charged pion mass of around 250 MeV, a
weighted average of the four values gives

Mπ± −Mπ0 ∼ 73(18) MeV , (6.2)

which is subject to possibly significant uncontrolled systematic uncertainties
due to the poor signal for aMπ0 . As a result, this value and its error
should be taken as indicative only, also because the estimates of the lattice
spacings are almost certainly a little too high. By comparison, for the B1
(Nf = 2+ 1+ 1) reference ensemble at a comparable charged pion mass, the
splitting was

Mπ± −Mπ0 ∼ 139(10) MeV ,

where the uncertainties and central value are under much better control but
questions remain with regards to the effect of strange and charm masses on
the pion mass splitting.

Given the results of this chapter, it is difficult to conclude whether the
pion mass splitting is sufficiently low with the Nf = 2+ 1+ 1 twisted mass
clover action. However, the measured value agrees surprisingly well with
that measured in Section 6.1 for Nf = 2, perhaps indicating that the Nf-
dependence is much less severe with the twisted mass clover action than
with standard twisted mass fermions.

The PCAC Quark Mass as a Proxy for the Pion Mass Splitting

The results of the previous section suggest that within the range 1.45 6
csw 6 2.05, the value of csw has no influence (within the large uncertainties)
on the size of the pion mass splitting, contradicting evidence from the
quenched approximation as described in Section 2.2.3. Because the signal
for the neutral pion mass is extremely poor, it is helpful to extract as much
information as possible from the available data. As discussed in Section 2.2.2,
c2 as well as the twisted quark mass enter the WtmχPT expression for
the PCAC quark mass at leading order in the LCE regime. The bare
Wilson quark mass am0 can be related to the hopping parameter κ via
κ = (2am0 + 8)

−1. Measurements of amPCAC as a function of 1/2κ of the
four P ensembles presented in the previous section are shown in Figure 6.6.
The slopes of the linear fits shown are listed in Table 6.4.

The data may be interpreted as confirming the result of the previous
section that varying csw in the range 1.45 6 csw 6 2.05 has no significant
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effect on the value of c2, assuming that Zq/ZA is largely independent of csw.
Comparing the situation to the one with two flavours of twisted mass clover
fermions, as shown in Figure 6.7, would suggest that c2 is significantly larger
in theNf = 2+1+1 case, since the lattice spacing is comparable (a difference
of at most 10% could be accounted to the lattice spacing). In fact, the slope
for the Nf = 2 case is very close to 1, which may even indicate that c2 ∼ 0,
although direct measurements of the pion mass splitting suggest otherwise.
It should also be remembered that the LECs entering the expression should
differ between Nf = 2 and Nf = 2+ 1+ 1, making any conclusions difficult.

By contrast, for Nf = 2 + 1 + 1 simulations with the old action at the
coarsest lattice spacing and a light quark mass corresponding to a heavier
charged pion mass than here (ensemble A40)2, the slope was around 5.
In addition, amPCAC showed very strong signs of the µ-dependent shift
discussed in Section 2.2.2. It may be interesting to carry out an analysis
along the lines of Ref. [155] using the full WtmχPT formulae of Ref. [62]
in an attempt to determine c2 indirectly for Nf = 2 and Nf = 2 + 1 + 1

twisted mass clover ensembles. It is clear, however, that this type of analysis
will require the computation of a number of renormalisation constants as
well as simulations with at least one more lattice spacing and perhaps three
different twisted quark masses. It would be particularly interesting to see the
complete behaviour of amPCAC for a wide range of untwisted quark masses
for different values of µ.

2 Talk by G. Herdoiza at GDR “Physique subatomique et calculs sur réseau”, Marseille, June 25-27

2008, http://gdr-lqcd.in2p3.fr/reunion08/talks/Herdoiza.pdf
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7
P S E U D O S C A L A R M E S O N M A S S E S A N D D E C AY
C O N S TA N T S

The Nf = 2 ensembles presented in Chapter 3 were used to compute the
masses and decay constants of pseudoscalar mesons with light, strange and
charm quarks in a partially quenched lattice setup using Osterwalder-Seiler
valence quarks. These computations are an important proof of concept for
calculations at the physical pion mass and will be discussed in the present
chapter. In Section 7.1, the theoretical background for the lattice computation
will be presented, the results will be shown in Section 7.2 and a summary
will be given in Section 7.3. The details of the analysis, especially the
quantification of uncertainties, will be given at the end of the chapter in
Section 7.4. A significant portion of this chapter is based on Ref. [P6].

The decay constant fP of a pseudoscalar meson P parametrises its leptonic
decays and, to lowest order, the decay width is given by [156]

Γ(P → `ν) =
G2F
8π
f2Pm

2
`MP

(
1−

m2`
M2P

)2 ∣∣Vq1q2 ∣∣2 , (7.1)

where GF is the Fermi constant, m` is the lepton mass and MP is the mass
of the pseudoscalar meson.

∣∣Vq1q2 ∣∣ is an element of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [157, 158] between the flavours of the constituent
quarks of P. As a result, the decay constant computed in LQCD and
knowledge of the decay width from experiment allows the determination
of
∣∣Vq1q2 ∣∣. This is especially important for the elements between heavier

quarks, where isolated experimental determinations are poor (e.g. fDs) or
not possible (e.g. fBs [159]).

The CKM matrix parametrises the strength of flavour-changing weak
decays between quarks and thus constitutes an important ingredient in
the quantification of charge-parity (CP) violation in the Standard Model.
Besides its innate importance, an accurate understanding of CP violation
is required to explain the matter-antimatter imbalance in light of the fact
that the universe appears to be matter-dominated.

A further important quantity which can be obtained from lattice data is
the pion decay constant in the chiral limit, which is an essential low energy
constant (LEC) of chiral perturbation theory. Simulations directly at the
physical charged pion mass should prove useful to strongly constrain the
uncertainties of the requisite chiral extrapolation to vanishing quark mass.

The masses of the pseudoscalar mesons are efficient hadronic quantities
for the tuning of bare quark masses in the lattice theory. As will be shown
below, ratios of the masses of the kaon and D meson over the physical
pion mass in the isospin-symmetric limit of pure QCD were used to tune
the strange and charm valence quark masses in the present analysis. The
resulting light, strange and charm quark masses and their ratios are seen to
match their phenomenological values rather well.
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The ratio Mπ/fπ can further be used to set the lattice scale by extrap-
olating to the point where it takes its physical value1. The experimentally
measured value of fπ can the be used to set the scale at this point through

a ∼
aflat
π (µphys)

f
exp
π

, (7.2)

where care has to be taken in regards to lattice artefacts, especially finite
volume effects. In the present chapter finite volume corrections are largely
omitted because the small number of ensembles makes it difficult to estimate
the correction factors. Further, it is interesting to see what kind of results can
be achieved from the raw lattice data.

lattice computation

The extraction of pseudoscalar meson masses and decay constants in the
twisted mass formulation employs interpolating pseudoscalar operators
based on the quark currents of Section 1.3.1 defined in the twisted basis.
The pseudoscalar interpolating operator for flavours f, f ′ ∈ {`, s, c} is defined
as

P±
f,f ′(t) =

∑
x
χ̄f(x, t) iγ5 τ± χf ′(x, t) , τ± =

τ1 ± iτ2

2
, (7.3)

where the χ fields are two-flavour spinors. The pseudoscalar correlation
function then follows as

Cf,f
′

PS (t) = 〈P±
f,f ′(t) P

±
f,f ′(0)

† 〉 , (7.4)

which projects onto the charged pion states in the light sector as the twisted
mass parameters of the flavours f and f ′ enter with opposite signs. For the
kaon and D meson, the same combination is used because it can be shown
that in the case of opposite signs, leading discretisation artefacts are reduced
compared to the same sign correlation function. The details of the lattice
approximation used to compute Equation (7.3) and Equation (7.4) are given
in Section 7.4.

The pseudoscalar meson mass is extracted from Cf,f
′

PS (t) through a
ground state fit involving forward and backward propagating states, as
suggested by the spectral decomposition in the limit t→∞

lim
t→∞Cf,f ′PS (t) =

|〈0|P±
f,f ′(t)|PS〉|2

2Mf,f
′

P

(e−M
f,f ′
P t + e−M

f,f ′
P (T−t)) , (7.5)

where T is the lattice extent in the temporal direction. Hence, M`,`P ,M`,sP and
M`,cP correspond to the charged pion, the kaon and the D meson masses,
respectively. In practice, the correlation function is fitted in a region where
excited states have decayed sufficiently for the ground state to dominate
while the signal to noise ratio of the lattice correlation function, which
worsens with increasing t, is still good. As described in Section 7.4, for
the results presented here, a very careful analysis of the systematic error due
to the fit range dependence was carried out. However, a first estimate of the
appropriate fit range can be obtained by observing a plateau in the effective
mass

Meff(t) = − log
(

C(t)

C(t− 1)

)
, (7.6)

1 or simulating directly at this point, as done for ensemble cA2.09.48
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given here for general correlation functions C(t). This can also be utilised to
determine hadron masses through a constant fit in a region where it assumes
a plateau. In practice, Equation (7.6) is not directly useful for the pion at its
physical mass because the backward-propagating contribution is too large.
Instead of taking the logarithm, then, all the effective masses shown in this
chapter are determined from the relation

C(t)

C(t− 1)
=

cosh [−(t) ·Meff(t)]

cosh [−(t− 1) ·Meff(t)]
, (7.7)

which is solved numerically for Meff(t) at each t.
The determination of pseudoscalar decay constants in tmLQCD at

maximal twist can be approached as in a theory with exact chiral symmetry:
fP is directly related to the matrix element 〈0|P±

f,f ′(t)|PS〉 via

ff,f
′

P = (µf + µf ′)
〈0|P±

f,f ′(t)|PS〉

(Mf,f
′

P )2
+O(a2) , (7.8)

which follows from the PCVC relation in tmLQCD at maximal twist [53].
The lattice dispersion relation for mesons can be taken into account by
exchanging (Mf,f

′

P )2 in Eq. 7.8 for Mf,f
′

P sinhMf,f
′

P . In the following, the
former will be referred to as “Continuum Definition” (CD) and the latter as
“Lattice Definition” (LD). The two definitions are clearly equivalent in the
continuum limit (sinhaMP → aMP as a → 0), but the latter is expected to
somewhat reduce scaling violations, especially for heavy mesons. Since the
continuum limit will not be taken in the present analysis, the two definitions
will be used to interpret the possible consequences of the size of lattice
artefacts in the decay constants. It should be noted though that there is
no argument suggesting that these are indicative of the true lattice artefacts.

In order to determine the ground state masses more reliably, 2 × 2
matrices of correlation functions are built using local and fuzzed [160]
interpolators. By comparing the effective masses of the three types of
correlation functions, the decay of excited states can be better estimated. The
masses are then extracted by solving the corresponding GEVP [161, 19, 162]
or using a constrained matrix fit, the details of which are given in Ref. [134].

analysis results

In the following, the results of the determination of meson masses and
decay constants as well as their ratios will be presented. This section will
be limited mostly to determinations on ensemble cA2.09.48 at the physical
charged pion mass. Although all quantities have also been computed on the
ensembles with larger than physical pion mass, they are only listed and the
light quark mass dependence is not studied explicitly. The closeness to the
physical pion mass of ensemble cA2.09.48 will first be discussed, followed
by a presentation of scale-independent ratios of pseudoscalar quantities in
Section 7.2.1. Dimensionful quantities will be determined in Section 7.2.2,
using the value of the lattice spacing given in Ref. [P6]. Finally, estimates
of light, strange and charm quark masses in physical units will be given in
Section 7.2.3 using the bare quark masses determined in this analysis.

As an example for the mass determinations, Figure 7.1 shows the effective
mass of the nucleon as determined in Ref. [P7], the pion and the kaon, the
latter with aµs = 0.0245. In this figure, the nucleon effective mass has been
computed from a correlation function smeared at both source and sink to
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Figure 7.1: Effective masses
as a function of t/a for nu-

cleon, kaon and pion for the
physical ensemble cA2.09.48.
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improve the signal, while the meson effective masses shown here are from
local-local correlation functions only.

For the nucleon, the expected exponential error growth is observed and
effective masses for t/a > 21 are thus not used in the analysis. The fit range
as well as the fit result and its statistical error are indicated by the solid
line and shaded region. For the pion and kaon, the plateau is visible up
to t = T/2 as expected. As already mentioned above, the final values for
the pseudoscalar masses are the result of a weighted average over many fit
ranges, as described in Section 7.4.1. The indicated fit range is thus only
representative. It should be noted that the errors are too small to be visible
on this scale, but details are shown in Figure 7.4 on page 109.

The Physical Pion Mass and Scale-Independent Quantities

The first set of quantities to be discussed here concerns explicitly scale-
independent quantities such as mass ratios, ratios of masses and decay
constants and ratios of decay constants. Working at the physical pion mass
and with appropriate tuning conditions for the strange and charm quark
masses, these ratios can be compared directly to their phenomenological
determinations and should give important indications of residual lattice
artefacts. The ratio fK/fπ can be used to compute the ratio |Vus| / |Vud| and
the precisely measured experimental value of |Vud| can in turn be used to
compute |Vus|. Since neither continuum nor infinite volume limits are taken
here, the determination of these derived quantities is omitted, however.

The left panel of Figure 7.2 shows the ratio r0M
2
π±/fπ± as a function of

(r0M
2
π±), comparing measurements on the Nf = 2 ensembles of Chapter 3

to published values from Ref. [96] of Nf = 2 twisted mass data without a
clover term. In this particular ratio, a cancellation of lattice artefacts seems to
take place compared to alternative choices. The data is presented with only
Gasser-Leutwyler finite size corrections [163] applied and the experimental
value is indicated by the green star with r0 = 0.4907(86) fm as determined
in Ref. [P6]. The dashed line shows a combined fit of the continuum NLO
χPT expression [164, 165]

M2
π±

fπ±
=

M2
π±

f0

(
1+ 2

M2
π±

(4πf0)2
log

M2
π±

Λ2
4

)
, (7.9)
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Figure 7.2: (a) r0M2
π/fπ as a

function of (r0Mπ)
2 comparing

Nf = 2 results w/o clover term [96]
with the results presented in
this chapter. The solid (Mπ± <

300 MeV) and dashed lines are
NLO χPT fits of Equation (7.9) to
the data as explained in the text.
(b) Ratio of the nucleon mass to the
pion mass as a function of the pion
mass squared in units of r0. Data
for Nf = 2 and Nf = 2 + 1 + 1

w/o clover term and the result
for physical pion mass ensemble
cA2.09.48 is shown.

cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

Mπ±/f
(CD)

π± 1.0254(31)(+26
−12) 1.879(22)(+08

−17) 2.30(11)(+02
−03) 2.2395(76)(+39

−24)

Mπ±/f
(LD)

π± 1.0260(31)(+26
−12) 1.884(22)(+09

−17) 2.31(11)(+02
−03) 2.2489(77)(+38

−23)

Table 7.1: Mπ±/fπ± determined
on different Nf = 2 twisted mass
clover ensembles without any finite
size corrections.

as a function of M2
π± to all the lattice data in units of r0, neglecting lattice

artefacts. The solid line indicates a fit restricted to Mπ± < 300 MeV, giving
f0 = 0.122(4) GeV and �̄4 = 3.3(4). It should be noted that these fit
results are completely in line with those of Ref. [166]. The p-value of this
fit is 0.49 and the inclusion of the chiral logarithm is favoured over the
linear fit. Data for Mπ±/fπ± is given in Table 7.1 for the four different
Nf = 2 twisted mass clover ensembles used in this analysis. If this is fitted
instead of the ratio used above, the results do not change but the p-value
worsens significantly, suggesting residual finite volume and lattice artefacts.
Although the statistical uncertainty is unfortunately large, a comparison
of the values on ensembles cA2.60.24 and cA2.60.32 gives an indication of
the finite volume effects on this ratio. On the other hand, the individual
measurements given in Table 7.4 indicate a much smaller effect.

As discussed in Chapter 3 and Chapter 6, there are good indications
that the clover term reduces the pion mass splitting. As a result, it can be
expected that finite size effects (FSE) are smaller than for ensembles without
the clover term. In addition, at the physical pion mass, the FSE are further
suppressed by a factor of M2

π. Hence, corrections which take into account
the pion mass splitting, as discussed in Refs. [127, 112], are likely to give only
small contributions. Still, once more data becomes available, these kinds of
fits will have to be repeated to quantify the additional FSE from the neutral
pion.

The mass ratio of the nucleon to the pion for Nf = 2 and Nf = 2+ 1+ 1

ETMC ensembles is shown in the right panel of Figure 7.2 as a function
of the pion mass squared in units of r0. The nucleon mass on ensemble
cA2.09.48 at the physical pion mass has been measured on 96 independent
configurations with 16 sources per configuration as discussed in Ref. [P6].
The masses for the Nf = 2 ensembles without clover term have been taken
from Ref. [167] while those for the Nf = 2+ 1+ 1 ensembles are given in
Ref. [99]. The values for r0/a were taken from Ref. [128] for Nf = 2+ 1+ 1

and from Ref. [168] for Nf = 2 without the clover term. As can be seen,
the lattice results follow a universal curve, suggesting that cut-off effects are

101



pseudoscalar meson masses and decay constants

Table 7.2: Bare quark masses in
lattice units and their ratios as de-

termined by matching MK/Mπ
and MD/Mπ to their phenomeno-

logical values. For µc/µs, the
asymmetric error corresponds

to the maximum spreads of the
dividend and divisor while for

the other ratios it derives directly
from MK/Mπ and MD/Mπ.

aµl aµs aµc

0.0009 0.02485(7)(+4−3) 0.3075(15)(+14−14)

µs/µl µc/µl µc/µs

27.61(8)(+4−4) 342.1(1.8)(+1.6
−1.6) 12.39(8)(+6−9)

small in this ratio. Moreover, differences between Nf = 2 and Nf = 2+ 1+ 1
are smaller than the statistical uncertainties.

For quantities involving strange and charm quarks the valence quark
mass needs to be tuned. This was done by matching the phenomenological
values of the pseudoscalar meson mass ratios MK/Mπ and MD/Mπ
through linear interpolations of the lattice data, resulting in the bare quark
masses and their ratios given in Table 7.2. The details of this procedure
are discussed in Section 7.4.2 and bare strange and charm quark masses
using different quantities for tuning are provided. MK/Mπ and MD/Mπ
were chosen because they seem to produce the smallest uncertainties with
the systematic errors currently considered. In addition, this choice retains
predictivity for fK, fD and fDs as well as their ratios.

Ratios of masses and decay constants resulting from this analysis are
given in Table 7.3. It is clear from Figure 7.2 and the value of Mπ/fπ
that the ensemble cA2.09.48 is at the physical pion mass within errors. For
the other quantities, agreement with phenomenological determinations and
continuum limit lattice averages is seen to be quite good. As discussed above
in Section 7.1, a first estimate of the residual O(a2) artefacts can be obtained
by comparing the two definitions (see Equation (7.8)) of the decay constant
in quantities involving fD and fDs . It seems that these effects should
be no larger than about 15%, indicating that a well-behaved continuum
limit is certainly achievable once more ensembles become available. Finally,
the present results are seen to be in full agreement with previous ETMC
determinations from Ref. [169] for Nf = 2 twisted mass fermions in the
infinite volume and continuum limit which gave fK/fπ = 1.210(18) and
fDs/fD = 1.24(3). A summary of the comparison to phenomenological
determinations is given in Figure 7.3 on page 106.

Dimensionful Quantities

All the dimensionful quantities from this analysis are listed in Table 7.4 in
lattice units. Results from ensembles with larger than physical charged pion
mass were computed in the same way as on ensemble cA2.09.48. In partic-
ular, observables involving strange and charm quarks were interpolated to
the strange and charm quark masses given in Table 7.2. This approach may
be an alternative to the one usually employed in partially quenched compu-
tations at larger than physical pion masses. In these, for example, sums of
hadronic masses are held constant as the physical pion mass is approached
whereas here it would be the strange and charm quark masses which are
held fixed at what are likely to be good estimates of their physical values.

In Ref. [P6], the lattice spacing for β = 2.1 is determined from weighted,
correlated averages with χ2/df-stretched statistical errors following the
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CD LD PDG [156] FLAG [170]

Mπ/fπ 1.0254(31)(+26−12)
† 1.0262(30)(+33−18)

† 1.0337(28)? 1.035(11)?

MK/fK 3.1404(55)(+13−11)
† 3.1675(56)(+13−11)

† 3.164(14)? 3.162(18)?

MD/fD 8.395(64)(+41−16)
† 9.466(71)(+41−17)

† 9.11(22) –

MDs/fDs 7.474(21)(+03−03) 8.531(28)(+04−03) 7.64(14) –

MDs/Mπ 14.564(54)(+03−03)
† – 14.603(33)? –

fK/fπ 1.1976(21)(+06−07) 1.1881(21)(+06−07) 1.1979(57) 1.200(15)

fD/fπ 1.694(14)(+04−10) 1.503(12)(+04−07) 1.569(38) 1.61(3)

fDs/fπ 1.998(6)(+1−1) 1.751(5)(+1−1) 1.975(35) 1.91(3)

fD/fK 1.413(12)(+02−03) 1.264(10)(+02−02) 1.309(33) 1.34(2)

fDs/fD 1.206(23)(+04−04) 1.190(22)(+04−04) 1.258(38) 1.19(2)

Table 7.3: Ratios of pseudoscalar meson observables calculated on ensemble cA2.09.48 at the physical
pion mass, interpolated to the strange and charm valence quark masses from the matching procedure
described in Section 7.4.2. The values for the decay constants are computed taking into account
continuum (CD) and lattice (LD) dispersion relations for mesons (see Equation (7.8)). All starred
reference ratios involving Mπ or MK use the isospin symmetric values of these quantities taken from
Ref. [170]. Daggered quantities are not independent and given for reference only. “FLAG” refers to
the Nf = 2+ 1 averages presented therein.

cA2.09.48 cA2.30.24 cA2.60.24 cA2.60.32

aMπ± 0.06196(09)(+12−05) 0.1147(7)(+4−7) 0.15941(38)(+15−21) 0.15769(26)(+15−14)

aMπ(0,c) 0.1191(05)(+07−10) 0.1541(13)(+05−05) 0.18981(61)(+21−25) 0.18840(44)(+46−29)

aMπ0 –† 0.09(1)? 0.11(2)? 0.13(2)?

af
(CD)
π± 0.06042(11)(+07−03) 0.06104(43)(+15−14) 0.06946(22)(+03−05) 0.07043(19)(+06−05)

af
(LD)
π± 0.06038(11)(+07−03) 0.06090(43)(+16−14) 0.06917(22)(+03−05) 0.07013(19)(+06−05)

af
(CD)
K 0.07235(9)(+2−2) 0.07265(31)(+06−06) 0.07774(19)(+07−07) 0.07816(16)(+09−07)

af
(LD
K ) 0.07173(9)(+2−2) 0.07197(32)(+06−05) 0.07692(19)(+07−06) 0.07734(16)(+09−07)

af
(CD)
D 0.1022(9)(+3−7) 0.1087(14)(+09−13) 0.1127(7)(+5−7) 0.1110(10)(+05−06)

af
(LD)
D 0.0906(8)(+2−6) 0.0960(12)(+07−11) 0.0994(6)(+4−6) 0.0980(8)(+4−5)

af
(CD)
Ds

0.1207(2)(+1−1) 0.1220(7)(+1−1) 0.1237(5)(+1−2) 0.1219(5)(+1−1)

af
(LD)
Ds

0.1058(2)(+1−1) 0.1068(5)(+1−1) 0.1082(4)(+1−1) 0.1067(5)(+1−1)

aMDs 0.9022(27)(+06−07) 0.905(3)(+1−1) 0.9062(27)(+02−02) 0.9034(26)(+01−01)

Nmeas 1457 728 1351 670

Table 7.4: Dimensionful pseudoscalar quantities in lattice units determined on the fourNf = 2 twisted
mass clover ensembles in this analysis. Nmeas refers to the number of configurations used and the
uncertainties have been determined as discussed in Section 7.4.
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Table 7.5: Reference values
for the dimensional quantities
calcuated in this study. FLAG

refers to Nf = 2 + 1 averages
from Ref. [170], ETM’09 refers to
Ref. [169] (Nf = 2) and ETM’15

to Ref. [173] (Nf = 2 + 1 + 1).

fK [MeV] fD [MeV] fDs [MeV] MDs [MeV]

ETM’09 158.1(2.4) 197(9) 244(8) –
ETM’15 155.0(1.9) 207.4(3.8) 247.2(4.1) –

PDG 156.2(7) 204.6(5.0) 257.5(4.6) 1968.50(32)
FLAG 156.3(9) 209.2(3.3) 248.6(2.7) –

procedure of Ref. [171]. The lattice spacing is determined from the gluonic
scales t0 [135], w0 [142] and r0 [172], giving

agluonic = 0.0931(10)(15) fm . (7.10)

Similarly, the phenomenological values of MN, Mπ± , fπ and fK are used to
give a hadronic estimate of the lattice spacing

ahadronic = 0.0913(2)(11) fm . (7.11)

Finally, an uncertainty-weighted average is calculated, giving

a = 0.0914(3)(15) fm , (7.12)

where the combined relative uncertainty is around 1.7%. In this way it
is hoped that the effect of different lattice artefacts is captured while not
overestimating the related systematic error.

In order to provide values in physical units for the independent dimen-
sionful quantities in this analysis, agluonic will be used which carries a slightly
larger uncertainty of around 2%. The resulting values for fK, fD, fDs and
MDs are

f
(CD)
K = 153.35(0.18)(+0.04

−0.04)(2.96) MeV ,

f
(CD)
D = 216.71(1.99)(+0.59

−1.47)(4.19) MeV ,

f
(CD)
Ds

= 255.85(0.49)(+0.10
−0.14)(4.95) MeV ,

MDs = 1912.3(5.73)(
+0.13
−0.15)(37.0) MeV ,

where the first uncertainty is statistical, the second from the fit range
ambiguity and the third from the estimate of the lattice spacing. These
results can be compared to various lattice and phenomenological world
averages as well as ETMC determinations listed in Table 7.5. It is interesting
that within the quoted uncertainties, despite the lack of infinite volume and
continuum limits, values largely compatible with those in the literature are
obtained. When the scale ambiguity is not considered, however, it becomes
clear that at least in the charm sector, sizeable lattice artefacts are likely to be
present. A summary of the comparison to phenomenological determinations
is given in Figure 7.3 on page 106.

Quark Masses

At maximal twist the Lagrangian twisted quark mass can be directly related
to the physical renormalised quark mass in some renormalisation scheme
through multiplicative renormalisation. The relevant renormalisation factor
in twisted mass lattice QCD is ZP, since mR

q = Z−1
P µ`. ZP is determined in

Refs. [174, P7] using the RI’-MOM scheme employing the momentum source
technique [175]. The value of ZP at 2 GeV in the MS scheme reads

ZP = 0.501(8)(26)(12) , (7.13)
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where the first error is statistical and the second is a systematic error due
to the extrapolation towards (ap)2 = 0, also including the perturbative
subtraction of leading lattice artefacts [176, 177]. The third error stems from
the conversion of RI’ to MS at 2 GeV.

As both Mπ±/fπ± and Mπ±/MN indicate that ensemble cA2.09.48 with
aµ` = 0.0009 is at or very close to the physical average up/down quark
mass, this can be used to give an estimate in physical units without further
extrapolation. With the ZP-value given above and the estimate of the lattice
spacing from Equation (7.12), the average up/down quark mass takes the
value

mMS
ud(2 GeV) = 3.88(6)(21)(10) MeV , (7.14)

where the first error is statistical, the second from the combined systematic
errors of the lattice scale and ZP, and the third from the conversion of RI’-
MOM to MS at 2 GeV.

From the quark mass ratios µs/µ` and µc/µ` given in Table 7.2, one can
then further compute estimates for the strange and charm quark masses

mMS
s (2 GeV) = 107(2)(6)(3) MeV ,

mMS
c (2 GeV) = 1.33(3)(7)(3) GeV .

(7.15)

Both, mud and ms compare well to the quark mass values determined on
the Nf = 2 ETMC ensembles without clover term [178]. The estimates of
mud and ms can also be compared to the Nf = 2 FLAG [170] averages of
Refs. [168, 179, 180, 87, 86], which read

mud = 3.6(2) MeV , ms = 101(3) MeV ,

giving agreement in both cases. Of course, the values above and especially
their uncertainties should be considered with care since neither a continuum
nor an infinite volume limit were performed. The dependence of the quark
masses and their ratios on the matching conditions is explored in explored
in Table 7.7 in Section 7.4. Clearly, using different ratios of observables to
tune the strange and charm quark masses significantly affects their central
values and uncertainties.

summary and conclusions

In this chapter the computation of observables in the pseudoscalar meson
sector on twisted mass clover ensemble cA2.09.48 was presented. The
ratios Mπ±/MN and Mπ±/fπ± indicate this ensemble is at or very close
to the physical charged pion mass. From the technical point of view, a
careful analysis of the systematic error due to the fit range ambiguity was
introduced, as discussed in detail in Section 7.4.1. It was seen that for some
quantities, most notably the pion mass and decay constant, the resulting
systematic error is on the level of the statistical uncertainty and should
certainly be taken into account.

A summary of the calculated quantities is given in Figure 7.3, where
the lattice result is divided by the phenomenological value of the given
quantity. The contribution to the total uncertainty from the uncertainty of the
phenomenological quantity is indicated separately by the red shaded band,
thus allowing lattice and phenomenological uncertainties to be compared.
Given that no continuum and infinite volume limits were taken, the observed
deviations are modest and may suggest that the scaling properties of the
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Figure 7.3: Ratios of lattice results
and phenomenological values of
the quantities in the legend with
lattice decay constants computed

via the continuum definition.
For dimensionful quantities, the

inner error bar combines the
statistical and systematic errors

in quadrature while the outer error
bar stems from the estimate of the
lattice spacing from gluonic scales

(Equation (7.10)). The red bands
show the contribution of Qphys to

the total uncertainty on Qlat/Qphys
separately (the respective

experimental errors on MN and
MDs

are too small to be visible).
The dotted and dashed lines

indicate per-mille and per-cent
deviations from 1.0 respectively.
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twisted mass clover action are quite favourable. Of course, this will need
to be confirmed by explicit simulations on larger lattices and at finer lattice
spacings. Deviations of up to 10% in observables involving charm quarks
indicate that at this coarse lattice spacing, cut-off artefacts can indeed
be substantial, although the deviations may also be related to the tuning
procedure for the strange and charm valence quark masses.

It was shown that strange and charm valence quark masses can be tuned
by matching ratios of appropriate quantities to their phenomenological
values through simple linear interpolations. In this matching procedure, the
presence of sizeable lattice artefacts in the charm sector should be carefully
considered and Table 7.7 shows that using different quantities can have a
significant impact on the value of the tuned quark masses as well as their
uncertainties. If quantities involving decay constants are used as matching
conditions, the lattice and continuum definitions of these may result in
significantly different quark masses. These deviations could be quantified
as an additional systematic error. By using multiple matching conditions in
parallel, better estimates of the quark masses may be arrived at but doing
so, one would of course sacrifice predictivity for a number of quantities.
With the choice of MK/Mπ± and MD/Mπ± as matching conditions, quark
mass ratios were computed and it was shown that these largely agree with
the available literature. It should also be noted that the uncertainties on
the ratios are quite small and are likely to increase only moderately with
continuum and infinite volume limits. The values of the quark masses,
converted to the MS scheme via appropriate renormalisation constants and
matching factors, are a little high however.
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In dimensionful quantities, the uncertainty is dominated by the ambigu-
ity of the lattice scale. Quantities in the charm sector, especially fD also come
with significant statistical error due to poor plateau quality and systematic
error due to the resulting fit range ambiguity. Thus, for many quantities,
reaching per-mille level uncertainties is likely impossible in this kind of naïve
analyis and procedures involving (heavy meson) WχPT may be necessary,
similar to the ones used in Refs. [173] and [181]. By combining data at larger
than physical pion mass in this way, it may be possible to significantly re-
duce the eventual uncertainties on final results. However, as discussed in
Section 2.2, the chiral extrapolation of lattice data at fixed lattice spacing
may be complicated by the fact that one may be working in different power
counting regimes, such that lattice artefacts cannot be smoothly connected
between lattice data at different light quark masses. In addtion, this kind of
analysis will certainly have to be done on Nf = 2+ 1+ 1 ensembles such that
the effect of additional dynamical flavours, especially the strange quark, is
taken into account correctly.

In any case, the results of this chapter serve as a proof of concept that
calculations in the pseudoscalar meson sector at the physical charged pion
mass are possible using twisted mass quarks. The apparent absence of any
surprising strong lattice artefacts suggests that this kind of analysis can be
extended to larger lattice volumes and a continuum limit performed. It is
likely that for this purpose a more involved analysis procedure must be used,
perhaps through the introduction of intermediate scales and the explicit
consideration of lattice artefacts and finite volume corrections. From the
point of view of this analysis, no difficulties are foreseen in the extension to
Nf = 2+ 1+ 1 ensembles.

analysis details

In the final section of this chapter, details of the analysis methods used
for the computation of the results of Section 7.2 will be provided. First,
a somewhat novel technique for quantifying the uncertainty due to the
choice of fit range for correlation functions is introduced. This is followed
by a discussion of the tuning of valence strange and charm quark masses
and the effect of various matching conditions on their central values and
uncertainties. Given these quark mass estimates, the linear interpolations
that were done to give the final results will be discussed. The section
will close with a discussion of further uncertainties which have not been
considered such as lattice artefacts and finite volume effects.

One stochastic Z/2 time-slice source was generated for each gauge
configuration from which propagators were computed for all quark masses.
The correlation function was then constructed using the one-end trick, as
discussed in Ref. [134]. The computation of the correlation functions made
use of the software packages [C5] and [C6] and the analysis techniques are
implemented in [C3] using also routines from [C2].

Local-local, fuzzed-local and fuzzed-fuzzed correlation functions were
computed to improve the isolation of the ground state mass. This was
extracted from a constrained 2 × 2 matrix fit, while the decay constant
extracted from the local-local correlation function. To profit from correlations
in the data, the complete analysis was carried out in a stationary blocked
bootstrap [182] framework with block lengths tuned to accommodate
the short autocorrelations in the data as determined from the Gamma
method [144]. All observables were bootstrapped with the same bootstrap
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Table 7.6: Bare valence quark
mass parameters and fit range

restrictions for the computa-
tion of pseudo-scalar meson

correlators used in this analy-
sis. ? : (0, c) refers to the con-

nected part of the neutral pion;
†: disconnected contributions
have not yet been computed

on the physical point ensemble

L/a bare valence quark masses

24, 32

aµl 0.003 0.006
aµs 0.0224 0.0231 0.0238 0.0245 0.0252 0.0259
aµc 0.2586 0.2704 0.2822 0.294 0.3058 0.3176

48

aµl 0.0009
aµs 0.0231 0.0238 0.0245 0.0252
aµc 0.2704 0.2822 0.294 0.3058

L/a fit range minimum and maximum time-slices

π± π(0,c)? π0 K D Ds (∆t)min
24 [9, 23] [9, 23] [7, 15] [9, 23] [12, 23] [18, 23] 6

32 [9, 28] [9, 28] [7, 15] [9, 28] [13, 27] [15, 27] 6

48 [9, 47] [11, 45] –† [9, 47] [11, 35] [11, 35] 6

samples, preserving all correlations. This reduces the statistical error in
ratios and other combinations of the various computed quantities. It also
allows data to be interpolated such that the result of the interpolation carries
virtually the same statistical uncertainty as the data points the interpolating
curve was fitted to, giving realistic error estimates.

Fit Range Dependence and Reliable Central Values

The choice of fit range for a correlation function is quite ambiguous as
excited state contamination as well as random oscillations in the data can
move the apparent onset of the plateau in effective masses by multiple time-
slices. In addition, correlations between the time-slices can cause data at
several successive source sink separations to rise and fall together, delaying
or expediting the onset of an apparent plateau. This kind of correlation can
be seen in the effective masses of the pion and kaon shown in Figure 7.4,
for example. Both of these effects have been studied to a limited extent as
early as in Ref. [183], but even modern analyses often only take into account
variations of the fit ranges by a few time-slices in either direction, concluding
that the resulting effect is covered by the statistical error. Although this is
true in most cases, for certain quantities, most notably the pion mass and
decay constants, the spread of values determined using different fit ranges
is larger than the statistical error.

It is further observed that round-off errors stemming from the computa-
tion of heavy quark propagators can induce unwanted systematic biases in
the extracted masses and amplitudes. This is especially true with the twisted
mass clover action because the clover term increases the number of matrix
vector products involved in the inversion. The effect can be clearly seen in
the right-most panel of Figure 7.4 showing the effective mass from the Ds
meson correlation function. The effect is also present in the correlation func-
tion of the D meson, but there the statistical error grows much faster and the
deviation cannot be observed.

An additional effect which may bias fit results is the low signal to noise
ratio for large source sink separations. Since the fits in this chapter make
use of the full inverse variance-covariance matrix, enhanced decorrelation at
large source sink separations can increase the relative contribution of these
data to the correlated χ2 function, possibly pushing the central values up or
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Figure 7.4: Effective masses of the pion, kaon and Ds meson computed on ensemble cA2.09.48 from local-local
(black), local-fuzzed (red) and fuzzed-fuzzed (cyan) correlation functions. Oscillations and correlations between
time-slices can clearly be seen here, affecting the apparent locations of the onset of the respective plateaus. The
three lines indicate one possible choice of fit range and the resulting effective mass and statistical errors from a
constant fit, taking into account the full variance-covariance matrix. For the Ds, the deviation for t/a � 32 is likely
a sign of round-off errors which appear because the correlation function is numerically small in this region and
falls by many orders of magnitude over the shown range.
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Figure 7.5: (left) Distribution of masses extracted from constrained matrix fit to kaon correlation function at
aμs = 0.0245 on the set of all “reasonable” fit ranges as described in the body of the text. (right) The same
distribution after weighting according to Eq. 7.16 with the weighted median indicated by the thick vertical line and
34.27 percentiles around the median shown by the shaded area.

down. Combined with a bias due to round-off errors, this can have a similar
effect to excited state contamination.

In order to quantify the ensuing ambiguities coming from these effects
without overestimating them, an analysis technique was implemented which
takes into account all reasonable fit ranges through a weighted average. The
method was subsequently also employed by the authors of Ref. [184]. A
somewhat arbitrary choice of about 0.5 fm is made for the minimum length
of a fit range, denoted (Δt)min (which corresponds to 6 successive time-
slices). The meaning of “reasonable” is that fit ranges are only included
in the analysis for a given quantity if all relevant fits converge on all
bootstrap samples. A full listing of the minimum and maximum source-sink
separations this requirement entails for the various quantities in this analysis
is given Table 7.6. In the case of the kaon on the cA2.09.48 ensemble at the
physical pion mass, for example, this results in 561 fits with a distribution
of fitted masses as shown in the left panel of Figure 7.5. Subsequently, the
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Table 7.7: Bare quark masses re-
sulting from matching the quantity
in the leftmost column. The labels

(LD) and (CD) correspond to fK
(fD) extracted according to the

two definitions given in Eq. (7.8).
The starred aµc are derived from

the corresponding aµs and the
HPQCD charm to strange ratio.
The bold values are the strange

and charm quark masses used for
the final results of the analysis.

aµs aµc

FLAG/HPQCD 0.0247(4) 0.293(6)?

MK/f
(CD)
K 0.02536(10)(+05−05) 0.3005(42)(+06−06)

?

MK/f
(LD)
K 0.02480(10)(+04−04) 0.2938(41)(+04−05)

?

MK/Mπ 0.02485(7)(+4
−3) 0.2940(40)(+04−04)

?

MD/f
(CD)
D – 0.3629(66)(+70−96)

MD/f
(LD)
D – 0.2902(26)(+09−17)

MD/Mπ – 0.3075(15)(+14
−14)

fits are weighted according to their p-values and statistical errors ∆ by the
weight

w =

(
1

∆
(1− 2 · |p− 0.5|)

)2
, (7.16)

resulting in the distribution in the right panel of Figure 7.5.
The same approach is taken for ratios, with the difference that only those

fit ranges are considered which have been analysed for both the dividend
and the divisor and the weight factor is modified to

w =

(
1

∆12

)2
(1− 2 · |p1 − 0.5|) (1− 2 · |p2 − 0.5|) . (7.17)

The median of this weighted distribution is taken as the central value
and its statistical error is computed on the bootstrap samples. The estimate
of the systematic error is given by the 34.27 percentiles around the median of
this weighted distribution. As an example, the median and systematic error
in the determination of aMK at aµs = 0.0245 are shown in Figure 7.5. This
quantifies the ambiguity on the raw data which enters the interpolations and
the subsequent analysis. Clearly, this error needs to be propagated and this
will be discussed below after the tuning of the strange and charm valence
quark masses has been presented.

Tuning the Strange and Charm Valence Quark Masses

In very early versions of this analysis (Ref. [P1], for example), the bare
strange and charm valence quark masses were fixed using theNf = 2 strange
to light quark mass ratio from Ref. [170] and the charm to strange quark
mass ratio given in Ref. [141]. These quark mass ratios will be respectively
referred to as the FLAG and HPQCD ratios in the following. Although this
is in principle valid because the cA2.09.48 ensemble is demonstrably at the
physical pion mass, the quark mass ratios in the literature have significant
uncertainties and simply using their central values to set the valence masses
does not propagate the uncertainty to observables.

In order to obtain a reliable error estimate and to allow comparison
with an analysis performed using quark mass ratios, all quantities in this
analysis were computed at four values each of the bare strange and charm
quark masses. This gives up to 16 different combinations for observables
depending on both, as listed in Table 7.6. At heavier than physical light
quark mass, a total of 36 combinations of strange and charm masses were
used to make more reliable interpolations.
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Figure 7.6: Linear interpolation in the strange and charm quark masses and matching with the phenomenological
values of the ratios MK/Mπ and MD/Mπ. The other points are given for reference and the strange quark mass
from MK/fK is determined using the “continuum definition” of afK with the phenomenological value indicated
by the green band.

The mass dependence was fitted linearly in the valence quark masses,
with independent fits for all quantities in this analysis. The various
quantities can now be interpolated to the bare quark masses given by
the FLAG and HPQCD quark mass ratios and the error can be properly
propagated. Alternatively, the strange and charm quark masses can now also
be fixed by matching to the phenomenological values of ratios of mesonic
quantities. Here, this is done for MK/Mπ± and MD/Mπ± , as shown in
Figure 7.6. This results in much smaller errors on the estimates of the strange
and charm quark masses for the rest of the analysis than using the quark
mass ratios or by matching other quantities, such as MK/fK, for example.

Quark mass estimates extracted from different matching conditions or by
partial application of the quark mass ratios are given in Table 7.7. It is clear
that especially in the charm sector, the choice of matching condition can
significantly affect the central value as well as the uncertainty of the quark
mass estimate, hinting at the presence of various lattice artefacts. All the
final results are quoted with aμs and aμc as determined from the matching
to the phenomenological values of MK/Mπ and MD/Mπ, with the other
values given for comparison only.

It is interesting to note that for the strange quark mass the usage of
the lattice definition of the decay constant in the ratio MK/fK results in
good agreement with the value of aμs as given by the Nf = 2 FLAG
strange to light quark mass ratio and the one determined from MK/Mπ.
In the charm sector, usage of the lattice definition in MD/fD results in a
charm quark mass which agrees with those determined via the HPQCD
charm to strange quark mass ratio and the three strange quark masses
discussed above. The statistical and systematic errors on aμc derived from
the lattice definition of MD/fD are quite small because in this definition,
the charm quark mass dependence of afD is suppressed, giving MD/fD a
substantial slope. The large value of aμc and the associated uncertainties
derived from the continuum definition of MD/fD are just a reflection of
how flat the behaviour of this ratio becomes as a function of aμc, which
can be seen as an indication for discretisation errors. The charm quark mass
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Figure 7.7: Quark mass interpolation of the ratio fDs
/fD on the physical pion mass ensemble cA2.09.48 with the

phenomenological value indicated by the green band.

determined from MD/Mπ has a statistical uncertainty lower by a factor of
two or three compared to the other estimates but disagrees with the other
values. In addition to the possibly sizeable lattice artefacts in MD, finite size
corrections on Mπ are likely to be at the few percent level which means that
without the necessary corrections, the current uncertainties are likely to be
strongly underestimated.

In principle, at the cost of losing predictivity for fK and fD, estimates
for the physical strange and charm quark masses could be derived from
weighted averages of some or all of the lattice determinations given in
Table 7.7 or combined fits in which several matching conditions would be
used simultaneously. The spread of the different values could then be taken
as a first estimate of systematic uncertainties due to discretisation and finite
volume artefacts. For the ensembles at larger than physical pion mass the
values of the bare strange and charm quark masses determined on ensemble
cA2.09.48 were used. Thus, simulations at the physical pion mass give an
alternative approach also for the chiral extrapolation with the strange and
charm quark masses held constant at what are presumably good estimates
of their physical values.

Interpolations

After reliable central values and statistical errors have been determined
for the data as described above, independent linear interpolations were
performed in all quantities under study towards the values of the strange
and charm quark masses listed in Table 7.7. In principle, other approaches
could be used for the interpolations, such as using the squares of the
quantities or forms inspired by chiral perturbation theory, but for reasons
of simplicity and consistency, all the data is interpolated linearly. This
seems to be very well justified by the shortness of the interpolations and
the shape of the quark mass dependences. Here, only the statistical error
is used as a weight for the linear fits because of the difficulties involved
in defining a sum of squared residuals with asymmetric weights. The
statistical uncertainties in the values of the quark masses are propagated by

112



7.4 analysis details

0.022 0.024 0.026 0.028

1
.1
8

1
.1
9

1
.2
0

1
.2
1

1
.2
2

aμs

f K
/f

π
Data
μs from FLAG ratio
μs from MK/fK
μs from MK/Mπ

0.022 0.024 0.026 0.028

1
.1
8

1
.1
9

1
.2
0

1
.2
1

1
.2
2

aμs

f K
/f

π

Data
μs from FLAG ratio
μs from MK/fK
μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.5

1
.6

1
.7

1.
8

aμc

f D
/f

π

Data
μc from FLAG·HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ

0.26 0.28 0.30 0.32 0.34

1
.5

1
.6

1
.7

1.
8

aμc

f D
/f

π

Data
μc from FLAG·HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ

0.26 0.28 0.30 0.32 0.34

7
.0

7.
5

8
.0

8.
5

9
.0

9
.5

aμc

M
D

s
/f

D
s

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

7
.0

7.
5

8
.0

8.
5

9
.0

9
.5

aμc

M
D

s
/f

D
s

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

Figure 7.8: Representative choice of interpolations of various quantities involving decay constants using the
continuum definition (left) and the lattice definition (right) with the phenomenological value indicated by the
green band.
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Figure 7.9: Propagation of the systematic error due to fit range ambiguity to the interpolation of afD. (left):
Distribution resulting from uniform sampling of data from different fit ranges. (right): Distribution resulting from
sampling which accounts for the weights of different data points as relative sampling probabilities. The median
and the 34.27 percentiles around the median, our estimate of the systematic error, are indicated by the thick vertical
line and the grey rectangle.

Taylor expansion, contributing to the total statistical error of the interpolation
results in quadrature. A representative set of these interpolations is shown
in Figure 7.8 with the continuum definition of the decay constant shown in
the left panels and the lattice counterpart in the right panels.

A number of features seen in Figure 7.8 deserve discussion. First of all,
for many of the quantities that were analysed, the quark mass dependence
is so weak that compatible values are obtained over the whole range of
strange and charm quark masses. Consequently, the error is also largely
independent of which set of strange and charm quark masses is used,
as exemplified by the ratio fDs

/fD in Figure 7.7. This is of course not
unexpected for decay constants and it shows that for many quantities, a
slight mis-tuning of the valence strange and charm quark masses does not
lead to significant biases when working at the physical light quark mass.
This might of course change with quantities computed on Nf = 2 + 1 + 1

ensembles with a range of sea and valence strange and charm quark masses.
For a quantity like MDs

/fDs
which has a noticeable slope in both the

strange and charm mass, which interpolation point is chosen has a strong
effect on the central value as well as the errors, which differ by up to a factor
of 4 as shown in the bottom-most panels of Figure 7.8. The next notable
feature concerns the (unsurprisingly) rather large effect of the definition of
the decay constant on ratios involving fD and fDs

, except when both are
involved simultaneously. Clearly, the two definitions agree in the continuum
limit and these differences show that discretisation effects could be at the
level of 15% to 20% for quantities involving charm quarks. It should be kept
in mind, however, that the different dispersion relations do not hint at the
size of actual lattice artefacts. Finally, quantities involving Mπ and fπ are
expected to be subject to finite volume corrections at the few-percent level
which will be accounted for in a future study with finer lattice spacings and
larger volumes.

To propagate the systematic error to the quark mass estimates and the
results of interpolations, 5000 random samples of the data points involved in
a given interpolation were generated by randomly drawing from the various
fit ranges for each combination of quark masses. In order to obtain a reliable
estimate of the resulting error, rather than sampling uniformly, the weights
of Equation (7.16) and Equation (7.17) were used as relative sampling
probabilities, such that data with large weights occurs more frequently in the
set. The effect of this choice can be rather profound and correctly propagates
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Figure 7.10: Error budget for various mesonic observables on ensemble cA2.09.48 relative
to their central values. Those involving strange and charm quarks have been interpolated
to physical strange and charm quark masses as described in Section 7.4.3. The inner error
bar is statistical and includes contributions from the fitting procedure as well as the error
propagated from the uncertainty in the quark mass estimates. The outer error bar indicates
the systematic error due to the ambiguity in the choice of fit range. The dotted and dashed
lines show the per-mille and percent error boundaries respectively. The errors are shown
cumulatively and would add in quadrature if combined.

115



pseudoscalar meson masses and decay constants

the systematic error to derived quantities which is shown in Figure 7.9
for afD. The left panel corresponds to the distribution when the data
from different fit ranges is sampled uniformly and the right panel shows
the distribution when the weights are taken into account, approximately
reproducing the distribution of the raw data at the four different charm
quark masses.

A summary of the statistical and systematic errors is given in Figure 7.10

for the 24 quantities from this analysis, normalised by their respective central
values and including those that are technically not independent. It is clear
that for most quantities, the choice of fit range has a very limited effect on
the total uncertainty and past analyses were probably well-justified in using
only one or a few fit ranges. This is despite the fact that the features of
the effective masses discussed above suggest significant ambiguities in the
estimate of the fit range. For the pion mass and decay constant, however, the
systematic error is on the order of the statistical error and must be taken into
account.

Quantities involving the D meson show significant spread which might
increase even further as the volume is enlarged and more fit ranges become
available. On the one hand this is caused by the lightness of the pions which
limit the signal to noise ratio for large source-sink separations. On the other
hand, this originates from the discussed round-off errors in the computation
of charm quark propagators which cause the effective mass to deviate from
a plateau at a level exceeding the statistical error for large source-sink
separations. Because this limits the maximum source-sink separations that
can be taken into account, future studies should be performed with more
robust solvers, possibly with a number of iterations in quadruple precision.
This should allow to significantly extend the source-sink separation for
which a reasonable plateau can be observed, as suggested in Ref. [185]. It
would probably especially benefit the analysis of quantities related to the Ds
meson.
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Part IV

C O M P U TAT I O N A L A S P E C T S

A major focus in the preparation of this thesis was on computa-
tional aspects of Lattice QCD through numerous changes to the
tmLQCD software suite [143, C1]. This part is dedicated to a re-
port on the work to enable simulations at the physical pion mass
on modern supercomputer architectures as well as a number of
additional developments which resulted from this.

In Chapter 8, the development of multi-threading in modern
hardware architectures will be discussed and how its advantages
and challenges relate to LQCD codes. This will be followed
by an overview of the techniques that were adopted in the
development of a multi-threaded implementation of the tmLQCD
software package. For this purpose, the OpenMP application
programming interface will be introduced.

Based on a number of particular use-cases, the reasoning for the
particular approach taken in tmLQCD will be elucidated with re-
spect to considerations of performance, safety, correctness, main-
tainability, readability and the retention of single-thread optimi-
sations. The value of sampling-based performance profiling in
this process is demonstrated and a visual representation is intro-
duced which aids in the interpretation of these profiles.

As a result of the significant changes to the code-base, a testing
programme was carried out to ensure the continued correctness
of the various algorithms and Chapter 9 outlines a number
of subtle issues which were discovered in this process. A
number of general techniques are presented which were used
for these correctness tests and their optimisation and usefulness
is demonstrated with specific examples.

Subsequently, Chapter 10 gives an overview of the performance
characteristics of the tmLQCD code using these new develop-
ments with a focus on understanding remaining overheads. Parts
of this Chapter 8 and Chapter 8 were presented in Refs. [P2]
and [P3].

Finally, a potentially interesting observation regarding the tuning
of step sizes for integrators with multiple time-scales is presented
in Chapter 11.





8M U LT I - T H R E A D I N G W I T H O P E N M P

Computationally demanding applications such as Lattice QCD make use
of multiple forms of parallelism to scale problems over tens or hundreds
of thousands of computational units on modern supercomputers. For the
past two decades, distributed memory parallel computers have consistently
outranked their shared memory counterparts both in number and in
absolute performance.1 Applications for these systems generally exploit
the parallelism using some implementation of the MPI library [186], which
provides functions and data types for efficient inter-process communication
locally or across network interconnects.

The increase in the performance of supercomputers can be related back
not only to the increased parallelism of these machines, but also to the
increase in the number of components in microprocessors. In 1965, based on
only a few data points, Gordon E. Moore predicted [187] that the number of
components of single integrated circuits would double roughly every 18 to 24

months. This scaling, termed “Moore’s law”, has been satisfied by modern
microprocessors until about the turn of the millennium. In the first few
years of the twenty-first century, however, it became clear that silicon-based
semiconductors would not be able to scale much beyond this point without
increases in on-chip parallelism. For this reason, IBM® invested significant
resources into the POWER4™ [188] and POWER5™ [189] microarchitectures,
two of the first general purpose microprocessors with multiple cores etched
into the same die and capable of executing multiple threads simultaneously.

With the number of functional units on modern processors increasing
into the triple-digit range such as on the Intel ® Xeon ™ Phi, the over-
heads involved in multi-process parallelism are beginning to limit the scal-
ing ability of applications. As a consequence, combinations of distributed
memory and shared memory parallelism such as multi-threading are becom-
ing increasingly important. More concretely, personal communication with
Juelich Supercomuting Centre (JSC) suggested that highest performance on
JuQueen, the new IBM® BlueGene/Q™ installation there, could only be
reached by hybrid codes employing both thread-level parallelism and inter-
process communication. Simulations at the physical pion mass involve ex-
traordinary amounts of computation and the number of functional units
on modern supercomputers is bound to increase significantly in the next
few years. In addition, the BlueGene/Q™ architecture constitutes a pri-
mary provider of computational resources for the ETMC. For these reasons,
a multi-threaded implementation of the tmLQCD code-base was considered
a necessity.

There is a high level of debate on whether threads are the most suitable
mechanism to increase application-level parallelism for deterministic prob-
lems such as scientific computations. For example, Ref. [190] makes a very
strong argument that the inherent non-determinism of threads needlessly
complicates the introduction of concurrency for this class of computational
problem. In particular, the loss of sequential ordering of operations, the
(possibly) countably infinite set of thread interleavings and the related is-

1 A very interesting visualisation of this can be found here: http://www.top500.org/
statistics/overtime/ (visited 2015/05/20)
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sues of memory locking and data races can entail very subtle defects which
hide even in extremely well-tested applications, as in the code discussed
in Ref. [190] by the same authors. The conclusion is that threads are a
fine way of implementing parallelism at a very low level, but at the appli-
cation level, except for server or networking code which is by definition
non-deterministic, they make reasoning about the execution of a program so
complicated that faults are almost guaranteed.

Despite these very serious shortcomings, introducing thread-level paral-
lelism into an existing code-base is generally syntactically simple and there
is very good industry and language support for this kind of augmentation.
In addition, rewriting a substantial application using a more suitable frame-
work is out of reach of most practitioners of scientific computation and the
tmLQCD software suite is no exception to this unwritten rule. Therefore,
keeping in mind that threads significantly affect the semantics of a program,
the decision was taken to implement thread-level parallelism across the tm-
LQCD code-base using OpenMP on account of its ease of use, wide adoption
and portability [191].

In this chapter the challenges that were faced in this process as well as
the methodologies that were adopted will be described. Section 8.1 provides
some background on OpenMP and introduces important nomenclature,
Section 8.2 gives implementation details specific to the tmLQCD software
suite, Section 8.3 discusses the essential issue of overhead reduction while
Section 8.4 deals with the problematic topic of locking and data races.
Finally, the interaction of inter-process communication and multi-threading
is discussed in Section 8.5 and some summarizing remarks are collected in
Section 8.6.

openmp

In order to introduce some important nomenclature and for completeness,
this section gives a short review of the basic functionality of OpenMP. It
is designed around special directives introduced into the source code of a
program which instruct the compiler to execute the parts they enclose (or
precede) in parallel. This is achieved by spawning (forking) multiple threads
and either having each thread execute the same instructions or distributing
different parts of some loop construct amongst the different threads. When
a given work-load has been processed, the threads are joined and program
control is returned to the master thread. More fine-grained parallelism is
also possible, such as forcing a certain part of a routine to be executed by
one thread only and modern versions of OpenMP even provide advanced
constructs for delayed execution.

The details of how these directives are used depend on the type of
application and in the following the focus will be on a structure that is
most relevant for Lattice QCD. This often consists of a driver routine which
manages the computation and context (this could be the main function,
for example) and a multitude of worker routines which typically contain
loops to be iterated over for some given work-load, such as a matrix-vector
multiplication.

When OpenMP is added to such an application, thread-level parallelism
is usually introduced at the level of the worker routines in order to
distribute the loop iterations amongst threads. This procedure is generally
quite straightforward, barring complications such as ensuring that the
loop iterations are independent and the possible requirement of critical
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Figure 8.1: Graphical representa-
tion of a multi-threaded worker
function using fine-grained paral-
lelism. The threads are launched
when the function is entered and
two work-sets in for loops are sep-
arated by a single-threaded section
(for MPI communication, for exam-
ple). The threads are joined before
the function returns.

sections or atomic directives which enforce mutual exclusion to prevent
data races. Figure 8.1 shows a graphical representation of this kind
of implementation with two parallelized loops separated by a single-
threaded section. In order to keep overheads minimal, rather than using
multiple omp parallel for directives, the threads are spawned with a omp
parallel directive as the worker function is entered and the work-load is
distributed using two omp for directives. Several of the shown instructions
have implicit barriers, these directives instruct the compiler to synchronise
data between threads and can have significant overhead. With the basic
nomenclature in place, the next section will focus on the strategies that were
developed for the deployment of OpenMP in the tmLQCD software suite,
based on explicit examples from the code-base and general considerations
such as maintainability, performance and correctness.

implementation

The basic ingredients laid out in Figure 8.1 were used to implement thread-
level parallelism in the tmLQCD software suite and this procedure is detailed
in this section with a particular focus on how functionality was added while
trying to avoid removing any existing optimisations. Further, the topic of
data locality in OpenMP is discussed and its relation to code maintainability
is emphasized, a problem which was found to be simplified by exploiting
variable scoping rules of the C programming language and the OpenMP
standard for C-style languages. Finally, a number of performance-critical
decisions are investigated and possible improvements are discussed.

Exploiting Variable Scoping Rules

A chief concern during the deployment of OpenMP directives in the
tmLQCD code-base was that of maintainability. As will be shown, this
aspect is intertwined with the localisation of variables in the private thread-
local context or the shared thread-global context. This discussion is best
done though a simple example like the function given in Listing 8.1. There,
the qualifier private indicates that thread-local copies of the variables
temp1 and temp2 should be allocated as the parallel section is entered. In
addition, the variables result and x are indicated to be thread-global shared
variables. Other qualifiers exist which allow for more fine-grained control,
especially regarding the initialisation of private and shared variables and the
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copying of their final values from the thread-local context. Although quite
logical and simple, in a more complicated function the list of variables with
qualifiers can have many more members and this makes it a potential source
for difficult to trace bugs. In particular, when the algorithm is changed and
more variables are added or the meaning of some variables is changed, it
could be that updating the qualifier list is forgotten, especially if there are
multiple parallel sections in a function. If one of the added variables was
intended as private but turns out to be shared because it is omitted from
the qualifier, very subtle issues may develop that depend on the execution
environment.

Listing 8.1 thread-local and thread-global variables using qualifiers

function(double * x) {
double temp1, temp2;
double result = 0.0;
#pragma omp parallel for private(temp1, temp2) shared(result, x)
for(int i = 0; 0 < N; ++i){

temp1 = x[i]*x[i+2];
temp2 = temp1*temp1;
#pragma omp atomic
result += temp2;

}
return result;

}

Listing 8.2 thread-local and thread-global variables relying on variable scope
in a C-style language

function(double * x) {
double result = 0.0:
#pragma omp parallel
{
double temp1, temp2;
#omp parallel for
for(int i = 0; 0 < N; ++i){

temp1 = x[i]*x[i+2];
temp2 = temp1*temp1;
#pragma omp atomic
result += temp2;

}
} // OpenMP parallel section closing brace
return result;

}

Because tmLQCD is implemented in the C programming language in
which variable scope is a central language concept, the decision was made
to largely forego the usage of qualifiers and rely on the variable scoping
rules instead in the hope that this potential source of bugs could be mostly
avoided. OpenMP treats variables declared inside parallel sections as private
(and unitialised) by default while those declared outside parallel sections
are automatically shared. With this in mind, Listing 8.2 gives an alternative
implementation of the function without qualifiers in which variable scope
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determines which variable is shared and which is private. In this kind of
implementation changes to the algorithms are less likely to produce difficult
to find bugs because as long as the simple rule regarding variable scope is
followed, the data-localisation is automatic. Although this is quite beneficial,
it will be shown in Section 8.3.1 that it likely complicates the introduction of
so-called orphaned directives for the purpose of reducing overheads.

Conditional Directives

For performance reasons many parts of the tmLQCD code-base use functions
with static variables and loops with dependent iterations. Of course, in order
to parallelise these using OpenMP, they need to be modified to remove the
loop dependencies and static variables. In order to retain the existing single-
thread performance, however, it was decided to implement all OpenMP
directives in conditional blocks depending on the pre-processor constant
OMP.

In Listing 8.3 from derivSb.c, for example, the static keyword is
temporarily redefined to nothing and a parallel section is started. Thus,
when the code is compiled without support for OpenMP, the static variables
are still declared as such and their performance benefit it retained.

Listing 8.3 Redefinition of the static keyword to nothing when OpenMP
is used.

#ifdef OMP
#define static
#pragma omp parallel

{
#endif

[...]
static su3 v1,v2;
static su3_vector psia,psib,phia,phib;
static spinor rr;
[...]

#ifdef OMP
#undef static
#endif

Similarly, in the implementation of operator/D_psi.c, given in List-
ing 8.4, a loop dependency is used to increment the integer iy as well as the
pointers sp and up as the loop progresses. When multiple threads execute
this section, however, their values need to be set explicitly at the beginning
of each iteration to avoid this loop dependency. This is again achieved at
compile-time through reliance on the pre-processor constant OMP.

While these conditional directives have allowed most of the original
structure in tmLQCD to be retained, they tend to affect the readability of the
source-code because the scope of pre-processor conditionals is often hard to
see, even if indentation and comments are used to highlight it. Still, it is
the author’s belief that the usage of conditional directives allows better code-
paths to be chosen at compile-time without code duplication when multi-
threading is not to be used. At the time of writing, it seems that this is quite
beneficial on most Intel® machines with the current code-base.
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Listing 8.4 Loop dependency on iy, sp and up. Without OpenMP their
values carry over from one iteration to the other, otherwise they need to be
set explicitly for each thread.

[...]
#ifndef OMP

iy=g_iup[0][0];
sp=(spinor *) Q + iy;
up=&g_gauge_field[0][0];

#else
#pragma omp for
#endif

for (int ix=0;ix<VOLUME;ix++){
#ifdef OMP

iy=g_iup[ix][0];
up=&g_gauge_field[ix][0];
sp=(spinor *) Q + iy;

#endif
[...]

Retaining Kahan Summations

Rounding errors are an unavoidable part of any numerical computation
which may or may not affect the quantitative and qualitative properties of
a result depending on the type of problem under study. In lattice QCD,
the equations of motion integrated in the molecular dynamics step of the
HMC algorithm are chaotic [192] and rounding errors at various stages in the
simulation may affect physical observables unexpectedly strongly as a result.
This was studied to some extent in Ref. [193] with very heavy dynamical
quarks and small volumes using two integration time-scales. Although no
significant effect on observables could be detected, round-off errors were
predicted to play a measurable role on production lattice volumes in the
energy violation which determines the acceptance probability. The issue was
studied further in Ref. [147] for more realistic volumes and quark masses
and some tests were done for Refs. [79] and [117], but the author is unaware
of any recent studies on present production volumes and physical quark
masses. In general, it is desirable to reduce round-off errors to a minimum,
especially in summation operations in which numbers of vastly different
magnitude may be added together, resulting in significant loss of precision
because of this difference. These operations occur for instance in the
computation of the scalar vector products required in the conjugate gradients
(CG) algorithm or the energy contributions of the different monomials in
the acceptance step of the HMC algorithm. A simple yet effective way of
reducing round-off errors is the Kahan summation [194], in which the sum
and the round-off error are added up concurrently and finally subtracted
from each other.

Unfortunately when a program is parallelised, the summation (reduction)
algorithms offered by MPI and OpenMP do not natively support this kind of
improvement. On the level of inter-process communication, this is probably
not a big issue because the individual contributions to the global sum coming
from different processes can arguably be expected to be of similar magnitude
if the process-local lattice volume is sufficiently large. In addition, there
is nothing which prevents the sum over the process-local volume to be a
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Listing 8.5 Multi-threaded sum retaining Kahan summation for each thread.

double kahan_sum(const double * const input, const unsigned int N){
double res;

#ifdef OMP
#pragma omp parallel
{

int thread_num = omp_get_thread_num()
#endif

double sum=0,kc=0,ks,tr,tt;

#ifdef OMP
#pragma omp for
#endif

for (unsigned int ix = 0; ix < N; ++ix) {
sum += *(input+ix);
/* each thread does its own Kahan summation */
tr=sum+kc;
ts=tr+ks;
tt=ts-ks;
ks=ts;
kc=tr-tt;

}
kc=ks+kc;

#ifdef OMP
/* the results from each thread are stored in a global helper array */
g_omp_acc_re[thread_num] = kc;

} /* OpenMP parallel section closing brace */
/* and added up after leaving the parallel section */
res = 0.0;
for(int i = 0; i < omp_num_threads; ++i)

res += g_omp_acc_re[i];
#else

res = kc;
#endif

return(res);
}
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Kahan sum, thus taking into account the most significant source of rounding
errors because variations from lattice site to lattice site are probably more
significant than from process to process.

In OpenMP, however, summations are usually done using a construct
such as omp parallel for reduction(+:x), where the operand in paren-
theses specifies the reduction operation and the variable name x indicates
which object should be summed up. In a Kahan summation, the last oper-
ation to be carried out for each thread would be the subtraction of the sum
and the rounding error and it is clear that within the confines of OpenMP
doing so is not possible. This is because keeping track of the round-off error
introduces a special kind of loop dependency which not only depends on
the iteration, but also which part of the loop is being executed.

OpenMP doesn’t guarantee the order in which reductions are carried
and because rounding errors can make identifying subtle bugs extremely
difficult, especially in a mutli-threaded program. As a result, it was decided
to retain the Kahan sums by foregoing OpenMP reduction directives in
favour of the manual approach given in Listing 8.5. Here, each thread
performs a Kahan summation for its part of the sum over some loop (over
lattice sites, for example) and the results for each thread are stored in a
global pre-allocated array (of which there are two: one for real and one for
complex double precision variables). The final reduction is carried out by
the master thread once the parallel section has been exited, resulting in a
similar situation as with pure MPI because the summands in the final sum
are likely to be of a similar order of magnitude. Because the implementation
here adds a small overhead, it would be interesting to see what effect, if any,
the removal of Kahan summations would have on physical observables or
the number of CG iterations to reach a certain accumulated residual and the
deviation of this from the real residual, but this has not been attempted yet.

Summary

The deployment of OpenMP in the tmLQCD software package stands out
through a number of particular considerations. First of all, keeping optimi-
sations in the single-threaded versions of many functions was considered
important and thus OpenMP directives were made dependent on the pre-
processor constant OMP. In the author’s opinion, even though this makes the
code less readable, it results in a code-base which is at least theoretically
more optimal than an implementation which attempts to compromise be-
tween the requirements of multi-threaded and single-threaded execution. In
addition, the fact that all the OpenMP directives can be reliably disabled
allows for checking serial and multi-threaded codes against each other, func-
tionality which may be quite useful for testing purposes. This is especially
true if bugs in the compiler or how it is set up on some machine make the
compiler always interpret OpenMP directives, even if a flag to disable them
is passed.

A further important focus was that of maintainability and here the
decision was made to avoid data-locality qualifiers wherever possible and
instead rely on the variable scoping rules of the C programming language.
Although this makes for a more readable code-base and certainly reduces the
probability of bugs related to keeping the qualifier lists up to date, it is likely
that it interferes with the deployment of so-called orphaned directives. Finally,
it was considered important to retain Kahan summations in important
parts of the code-base, foregoing the OpenMP reduction directive for a
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manual approach which allows multi-threaded Kahan summations to be
implemented. Moving on from details of the implementation to more
practical matters, the issue of overheads related to multi-threading and their
reduction will be discussed in the next section.

reducing overheads

Although the standard implementation procedure shown in Figure 8.1 is
generally effective, it will be shown below that some of the largest overheads
still stem from thread-management in parallel directives. This experience
agrees with conclusions from the literature such as Ref. [195] or, for a larger
scale shared-memory machine, Ref. [196]. Even on machines like BG/Q,
where shared-memory parallelism is local to one node, hardware threads
are kept alive between parallel sections and thread sleeping is rather light-
weight, resetting the thread-local stack and ensuring proper synchronization
of shared variables induces significant costs.

In this section a number of overheads specific to multi-threaded code
will be discussed and the strategies that are available for reducing these
overheads as well as the choices that were made during the work on the
tmLQCD software package. In particular, two mitigation strategies for
thread management overheads will be considered and the issues of thread
contention and false sharing as well as thread idling from cache misses will
be discussed.

Many of the strategies described in this section were guided by measure-
ments using SCALASCA [197], an automatic instrumentation-based toolkit
which uses profiling for performance measurements of highly parallel appli-
cations. It must be noted here that tools relying on instrumentation are often
seen critically because they are known to have large overhead, thus poten-
tially skewing the measurements. In the author’s experience, however, the
relative timings given by SCALASCSA of various sections of a given routine
seem to reflect manual timings sampled from hardware counters. Further,
relative reductions in overheads from optimisations seem to agree between
profiling and time-to-solution measurements without instrumentation. Thus,
since the main focus is on measuring and minimizing relative cost, one can
argue that for this purpose SCALASCA profiles provide a convenient and
appropriate measurement framework, although of course absolute timings
of an instrumented application can be orders of magnitude larger than the
uninstrumented version.

Thread-Management Overhead

As mentioned above it was observed that in the tmLQCD software suite, the
main overhead related to OpenMP originates from omp parallel directives.
The relative effect of this kind of overhead on performance depends very
strongly on the complexity of the work-load in a worker function and it is
important to keep this in mind when looking for optimisations. Generally,
when a function is computationally simple, only a small fraction of time
will be spent on the actual work-load with the rest going towards thread
management, synchronization and communication overheads. In order to
understand this in more detail, the scalar_prod_r routine which computes
the scalar product of two vectors provides a good example and a version
without Kahan summation is given in Listing 8.6.
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Listing 8.6 Simplified version of scalar_prod_r function.

double scalar_prod_r(const spinor * const S, const spinor * const R,
const int N, const int parallel)

{
double ALIGN res = 0.0;

#ifdef MPI
double ALIGN mres;

#endif

#ifdef OMP
#pragma omp parallel

{
int thread_num = omp_get_thread_num();

#endif
double ALIGN ds=0.0;
const spinor *s,*r;

#ifdef OMP
#pragma omp for
#endif

for (int ix = 0; ix < N; ++ix) {
s = S + ix;
r = R + ix;

ds += sp(s,r);
}

#ifdef OMP
g_omp_acc_re[thread_num] = ds;

} /* OpenMP closing brace */

for(int i = 0; i < omp_num_threads; ++i)
res += g_omp_acc_re[i];

#else
res = ds;

#endif

#if defined MPI
if(parallel)
{

MPI_Allreduce(&res, &mres, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
return mres;

}
#endif

return res;
}
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Figure 8.2: Profile of relative time
spent in different parts of the
scalar_prod_r routine in the
tmLQCD software suite on 512

nodes of BlueGene/Q during an
inversion of the Dirac operator on
a realistic 483 · 96 lattice. The three
parts of the legend, top to bottom,
each correspond to one bar from
left to right. The colouring of the
bars is mirrored in the colouring
of the legend, although some
parts of the bars can be so small
as to be invisible. The specifier
“self” denotes the time spent in a
function or section before any of
its subroutines are called. For omp
parallel, this corresponds to the
time it takes to spawn the threads.

Figure 8.2, produced by profiling the CG algorithm on a realistic 483 · 96
volume using SCALASCA on 512 nodes of IBM® BlueGene/Q™, shows the
relative time spent in the scalar product function and its subroutines from
left to right. Because this type of figure is quite complicated and will occur
frequently in what follows, it is worth to understand how to best read it.
The labels on the horizontal axis give the name of the function, subroutine
or directive block under consideration. In the bars, going from bottom to top
matches the order of execution in the program and the elements in the three
blocks in the legend are arranged in the same order as the parts of the bars,
so that both the colour code and their ordering can be used to identify which
part is which. The different fractions of the bar give the share of time spent in
the sub-parts, the names of which are given in the legend in as many groups
as there are bars in the plot. Here, scalar_prod_r has three sub-parts:
scalar_prod_r_self, omp parallel and MPI_Allreduce. The qualifier
self refers to time spent in the routine or block under consideration but not
spent in any of its sub-blocks. For this function, this may be the time needed
to allocate memory for any local variables, for example. The next bar in the
middle shows the time spent in the omp parallel block and its sub-parts
while the rightmost bar gives the time spent computing the actual work-load
in the omp for work-sharing construct.

Analysing the figure in more detail, the routine spawns threads in a omp
parallel section and then iterates over the lattice volume in a omp for
section. After the scalar product for the local volume has been computed,
MPI_Allreduce carries out the global sum. Keeping in mind the meaning
of the self qualifier, it can be seen that the block omp parallel self is very
closely related to the overhead for spawning threads in scalar_prod_r. It
is clear from the figure that almost 50% of the total time spent in the function
is lost on thread management overhead with another 20% spent in the global
sum. It will be seen below that this confirms the view that computationally
simple functions are dominated by thread management overhead because
this overhead is much smaller (yet still significant) in a computationally more
complex construct and a prime candidate for optimisations.

It must be noted that the types of overheads seen and the amount of time
spent in different parts of functions and their subroutines can vary substan-
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Figure 8.3: SCALASCA profiles
of the sclar_prod_r function
on 512 (256) nodes of BG/Q

(SuperMUC), using 1 (2) tasks
per node and 64 (8) threads per

process during an inversion
on a lattice volume of 483 · 96.
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tially from architecture to architecture, further complicating the problem of
achieving ideal or close to ideal performance and possibly necessitating dif-
ferent specialised implementations. To illustrate this fact, Figure 8.3 shows
a comparison between SCALASCA profiles of the sclar_prod_r function
given the exact same work-load on BG/Q and SuperMUC, an Intel®-based
supercomputer with a fat tree network topology up to 512 nodes equipped
with two eight-core Xeon™ processors each. It is clear that on this ma-
chine, the collective MPI communication at the end of the computation of
the scalar product is a far more important target for optimisation, although
this situation may change as the number of cores on this type of architecture
approaches that of the BG/Q. Still, this serves to underline the importance
of carefully measuring the performance characteristics on different architec-
tures in order to identify hot spots and determine optimisation strategies.

Combining Operations

One obvious way of reducing or eliminating thread management overhead is
to combine operations which frequently occur in sequence into a single omp
parallel section. In tmLQCD, this strategy was adopted for the application
of the even-odd preconditioned twisted mass Dirac operator where the
combination (M±ee)

−1Meo occurs frequently and was usually done in two
subroutines with a volume loop each. First, the even-odd hopping matrix
was applied to a spinor and then the even-even inverse part was applied to
the result, now both of these operations are done in the same volume loop.

This kind of combination can introduce code duplication because either
operation can still be required on its own in other routines, thus requiring
multiple implementations. For the case above, this was solved using
preprocessor constants and directives which are used to compile several
versions of the hopping matrix combined with different simple operations
which occur frequently. For definiteness, an extract of the relevant code
sections is given in Listing 8.7. While this minimizes code duplication, it
does produce a larger binary and it may reduce readability of the code.
Finally, the usage of include directives is not compatible with automatic
instrumentation using performance tools like SCALASCA [197] which fail to
instrument the included code sections (which are the most important ones).
As a result, if one wishes to use such a tool, it becomes necessary to produce
a version of the code-base in which the included files are actually copied into
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the code before even the pre-processor is run, adding more development
overhead.

Listing 8.7 Source code extract from the half-spinor hopping matrix with
simple operations _MUL_G5_CMPLX and _TM_SUB_HOP combined with the
hopping matrix through include statements and preprocessor constants.

operator/halfspinor_body.c
--------------------------
[...]
for(unsigned int i = 0; i < bodyV; i++){

[...]
#ifdef _TM_SUB_HOP

pn=p+i;
#endif

[...]
#ifdef _MUL_G5_CMPLX

_hop_mul_g5_cmplx_and_store(s);
#elif defined _TM_SUB_HOP

_g5_cmplx_sub_hop_and_g5store(s);
#else

_hop_store_post(s);
#endif
}
[...]

operator/Hopping_Matrix.c
-------------------------
void Hopping_Matrix

(const int ieo, spinor * const l, spinor * const k) {
[...]
#include "operator/halfspinor_body.c"
[...]

}

operator/tm_times_Hopping_Matrix.c
----------------------------------
void tm_times_Hopping_Matrix

(const int ieo, spinor * const l, spinor * const k,
complex double const cfactor) {

[...]
#define _MUL_G5_CMPLX
#include "operator/halfspinor_body.c"
[...]

}

Orphaned Directives

Thread-management overhead can be reduced more comprehensively by us-
ing more coarse-grained parallelism. In particular, this can be accomplished
through so-called orphaned directives which have been shown [198] to pro-
vide a significant performance benefit. These are instances of work-sharing
directives such as omp for not syntactically enclosed by an omp parallel
section. When such a directive is encountered by multiple threads2, work
sharing functions as expected if the compiler supports orphaned directives.
When encountered outside of the execution context of a parallel section,
the directive is simply ignored and the routine is executed single-threaded.
For definiteness, Figure 8.4 illustrates the usage of orphaned directives. Here,

2 which must have been launched by a parallel directive somewhere above the current
execution context in the call hierarchy
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Figure 8.4: Graphical representa-
tion of a multi-threaded worker

function using coarse-grained par-
allelism though orphaned direc-
tives. The threads are launched

further up in the function hierar-
chy and all of them enter the func-
tion f(x). Inside the function, two

orphaned omp for sections dis-
tribute the work-load and code

inside an omp single section is ex-
ecuted single-threaded. All threads

return to the calling function.

the threads are spawned in the calling function and enter f(x) in parallel
where the work-sharing constructs are executed as expected and all threads
return to the calling function once they complete their workload. This should
be compared to Figure 8.1 in which the threads are spawned only once f(x)
has been entered.

As will shown in Chapter 10 below, trial benchmarks show that orphaned
directives can result in a significant reduction of overheads but they
entail several significant complications. Firstly, at least in principle, this
kind of orphaning cannot be easily implemented incrementally because
wherever an orphaned function is called, it must be entered by multiple
threads. As a consequence, in order to avoid leaving parts of the code-base
unparallelized and suffering severe penalties via Amdahl’s law [199], one
some function has been equipped with orphaned directives, every single
function calling it must set up the required parallel section. In addition,
dealing correctly with nested parallel sections is quite complicated, requiring
therefore that if one sub-routine called by some function has orphaned
directives, all of them must in order to avoid this nesting of parallel sections.
Finally and most importantly, the burden of managing data-locality and
coherence moves up the function hierarchy, entailing that the calling function
needs to prepare private and shared memory before the sub-routine is
entered. This severely complicates the writing of multi-threaded software
and necessitates significant changes to function signatures in order to satisfy
these requirements.

At first sight, the severeness of this problem of this problem seems quite
shocking because it breaks a fundamental idea in software modularisation:
the independence of interface and implementation. It can be envisioned,
however, that in most cases function signatures simply need to be modified,
exposing more of the internal workings to the calling code without sign-
ficantly breaking the modularisation paradigm, although of course some
maintanability and readability is necessarily lost. In fact, in many situa-
tions in the tmLQCD software suite this is already done by relying on the
calling code to allocate and free temporary working memory, for instance.
Less severely, any maintainability benefits gained from relying on scoping
rules to ensure proper locality of variables as discussed in Section 8.2.1 will
almost certainly be lost, at least as far as thread-global variables are con-
cerned. Finally, some operations would be more difficult to implement, a
multi-threaded Kahan summation, for example, would require the final sum
to be carried out in a omp single section, possibly inducing more overhead
than the performance gain achieved from using orphaned directives in the
first place.
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Figure 8.5: Illustration of false
sharing. Even though none of
the four threads shares any of the
values in the cache line, all of the
threads must load the cache line. If
one of the threads were to change a
value, the result would be written
back to memory and all threads
would be forced to refetch the
entire cache line even tough only
one of the values had changed.

For these reasons, orphaned directives have only been tested to a limited
extent in tmLQCD, although a potential strategy for a full implementation
has been established. OpenMP provides mechanisms for determining
whether the execution context is within a parallel section which should
enable the design of two versions of each multi-threaded routine with the
correct code-path chosen based on the execution context. It is envisioned
that code duplication can be avoided with the same strategy used for the
combination of multiple routines into single parallel sections through
include statements. There remain, however, a number of questions on how
data locality should be handled in these situations. Given that increased on-
chip parallelism and increases in multi-threading by orders of magnitude are
the cornerstone of current concepts towards exascale supercomputers [200],
a dedicated effort towards solving this issue in tmLQCD will be necessary
in the very near future. As a final conclusion one can also imagine the
important role that performance modelling and measurement will play
in any such endeavor because the performance characteristics of different
approaches will be difficult or impossible to predict, requiring either
accurate models or the implementation of multiple solutions and their
subsequent comparison.

Avoiding Cache Contention and False Sharing

In multi-threaded programming two closely related issues which can eas-
ily produce performance bottlenecks are cache contention and false shar-
ing [201]. For performance reasons, reading from memory on most archi-
tectures can only be accomplished in blocks of a certain size, referred to as
the size or length of the cache line. In addition, the number of these cache
lines which can concurrently be pre-fetched from memory is also limited, on
the BG/Q, this number is lower than the number of hardware threads. This
means that when many threads read from memory at the same time, the
pre-fetching algorithms in the compiler and hardware will have to contend
with competition between threads. In particular, when too many threads at-
tempt to issue pre-fetch instructions, performance is markedly reduced. This
agrees with experience with pre-fetching instructions in tmLQCD on Blue-
Gene/Q™ in the hopping matrix kernel, for which these instructions seem
to provide only very small benefits and even then only in well-chosen places.
One is forced to conclude that the memory access patterns in multi-threaded
programs must be carefully studied if this kind of overhead is to be reduced.

False sharing is a related issue, illustrated in figure Figure 8.5. Here,
four threads running on four cores load sequential values from memory into
their respective registers and as discussed above, when a datum is requested
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from main memory, an entire block of sequential data must be loaded rather
than the single value. As an additional complication, whether this block
begins exactly at the requested value or at some coarser byte-level boundary
depends on the architecture in question. When multiple threads read from
the same or overlapping cache lines and one of the threads commits a new
value to memory, the entire cache line is invalidated to ensure consistency.
This forces all cores to reload the cache line, even though only one value was
changed and their respective data remains unaffected. Further, the existence
of multiple levels of cache complicates the matter even more because an
invalidated cache line must be propagated from memory along the different
cache levels, some of which may be shared by all cores of a given processor,
like the level 2 cache in this example. The issue can become most severe
when all threads are reading from and writing to locations that are very
close in memory. In Lattice QCD and in tmLQCD in particular this occurs
when a datum at a given lattice site affects another at a different lattice site,
such as in the application of the hopping matrix or any derivatives that
are computed during the molecular dynamics step of Hybrid Monte Carlo.
Looking at these two examples, it will be shown below that the issue is
intertwined with the necessity of mutual exclusion for many operations in a
multi-threaded program.

There there exist strategies to reduce or eliminate both cache contention
and false sharing, however, time constraints have allowed only a small subset
to be implemented in tmLQCD because the required structural changes
were simply excessive at this time. Competition between threads can be
eliminated once it is understood exactly how many cycles each operation
for every given thread consumes and by optimizing the movement of
data with respect to the ordering of any other operations. This has been
achieved, for example, in the BAGEL [202] assembler generation library
which generates highly optimized assembler code for computational kernels
common in Lattice QCD. False sharing can be eliminated by ensuring that
multiple threads always write to memory that is sufficiently well separated
to avoid invalidations. This can be achieved by using a thread-optimized
data layout with domain decomposition (in terms of data layout, not in
terms of multi-grid iterative solvers) depending on the number of threads
as well as the addition of padding for data structures which do not fill
a cache line completely. Both solutions suffer from added complications:
the data layout is affected by the neighbourhood relationships of different
lattice sites as well as the boundary conditions of the problem and too
much padding can reduce the total memory bandwidth and interfere
with optimisations for increasingly long single instruction multiple data
vector units on modern processors. An implementation of Lattice QCD
kernels which takes into account the very complicated restrictions on
the Intel® Xeon Phi™ architecture has been presented in Ref. [203].
In order to offload the burden of measuring and understanding various
architecture dependent overheads, work is currently under way to leverage
the computational kernels from these code generators in the tmLQCD
software suite, although the work is currently still in its early stages.

Reducing Cache Misses and Thread Idling

A cache miss occurs when the prediction algorithms on a processor are
unable to load a datum into a low-level cache before it is actually required,
thus incurring the full performance penalty for loading data directly from
main memory. When a cache miss occurs in a multi-threaded program, one
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or multiple threads may idle waiting for data from memory and depending
on the operations to be carried out, no other threads may be available to
take over at this moment. Reducing cache misses is important also in single-
threaded programs, but the above-mentioned cache contention and false
sharing potential make it crucial and difficult to deal with in multi-threaded
ones. Finally, optimisations which may not be required for single-threaded
execution can become important when multiple threads are operating, as
will be discussed now.

A particular example from the tmLQCD code-base concerns the imple-
mentation of the full spinor hopping matrix in which the communication
of the boundary terms of the input spinors is done before any computation
and all four spin components are communicated. While this restricts perfor-
mance on distributed-memory machines, the fact that only one volume loop
is required potentially allows for relatively small OpenMP overhead. This
property makes the full spinor hopping matrix an ideal candidate for exe-
cution on a single high-powered multi-core processor or a single accelerator
card, when communication overhead is not an issue because no communica-
tion is done.

While introducing OpenMP into this function it was noticed that perfor-
mance was far below expectations, reaching only about 20% of peak on a
dual socket, four core Intel™ Xeon™ X5560 machine while running with 8

threads, significantly slower than the corresponding half spinor version with
on-node communication between 8 MPI tasks. In tmLQCD, the neighbour-
hood relationships between different lattice sites are stored in a global array
and careful analysis using the Intel® VTune™ performance tool revealed
that cache misses for this array were responsible for extensive thread idling.
When the lattice index of, say, the neighbour into the negative “2” direction
of lattice site x was required, the compiler was able to correctly pre-fetch the
necessary datum into cache. However, when the neighbour of a neighbour
was required, the pre-fetching mechanism failed.

To resolve this issue a new global array g_hi was introduced which holds
the neighbourhood relationships required for all 16 operations per lattice
site in the full-spinor hopping matrix in sequential order. By using this
array, all cache misses were removed and performance increased to almost
50% of peak which is quite exceptional and outperforms the corresponding
half-spinor implementation by about 25%, as can be seen by comparing the
darker bar (1) with the light bar (8) in Figure 10.1 in Chapter 10. This
example shows how important the careful study of overheads can be to
achieve good performance and as mentioned before, the situation will only
become more complicated as parallelism increases.

Summary

This section dealt with the identification and reduction of overheads re-
lated to the multi-threaded execution of various parts of the tmLQCD soft-
ware suite. Particular attention was devoted to thread management over-
heads which were found to be generically large through profiling using
SCALASCA and other performance tools, especially on BG/Q. First of all,
the usage of include statements and pre-processor directives allows the
generation of multiple versions of certain routines such as the hopping ma-
trix combined with various simpler functions in combinations that occur
frequently, such as the addition of the twisted mass term or multiplication
with a gamma matrix. In this way, the significant overhead of computation-
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ally simple routines can be reduced without code duplication. Secondly, by
employing data layouts which take into account the number of threads and
the underlying architecture, overheads stemming from cache contention and
the potential for false sharing can be significantly reduced. Finally, the topic
of cache misses and resulting thread idling was discussed with the specific
example of the full spinor hopping matrix, for which the addition of a pre-
computed set of pointers was able to significantly increase performance on
a particular architecture.

It can be concluded that multi-threading entails many overheads which
must be properly identified and maximally reduced to obtain good perfor-
mance, evidence for which will be given in Chapter 10. The relative im-
portance of various overheads depends on the architecture and as such, lat-
tice QCD codes on modern supercomputers are likely to require many spe-
cialised versions in the medium to long term future, complicating an already
difficult part of the computational aspect of LQCD. One way of achieving
many of the overhead reductions discussed above in general is via the usage
of code generators, as presented in Refs. [202] and [203]. Because the burden
of overhead reduction is going to become worse as supercomputers become
more complicated, an effort is currently under way to utilize the optimized
computational kernels from these code generators in the tmLQCD software
suite but this is still at a very early stage.

locking and data races

The most difficult problem encountered when dealing with multi-threading
is that of data locality as well as synchronization and the resulting need for
mutual exclusion in concurrent operations. It is easy to imagine that when
multiple threads read and write from and to the same memory location, the
order of the operations can affect the result since a reading thread might
inadvertently read an intermediate value of a given memory location. For
this reason, it is necessary to prevent concurrent access to memory which
can potentially be accessed bidirectionally by multiple threads. A further
classification of the problem is whether multiple threads read while one
thread may write or multiple threads read and write at the same time.
The issue is particularly complicated by the fact that it may not always be
syntactically obvious that a given code segment will produce reads and
writes to the same memory location. In addition, the detection of the
consequences of these conflicts as deviations from some expected result is
complicated by the fact that they occur probabilistically: their occurrence
increases with the amount parallelism and so they may go completely
unnoticed even in comprehensive tests if only a small number of threads
is operating.

The neighbourhood relationship of a four dimensional lattice implies
that one site may have up to eight neighbours depending on the boundary
conditions. In operations such as the next-neighbour hopping matrix or the
computation of derivatives with respect to the gauge field in the molecular
dynamics step of Hybrid Monte Carlo, loops over the volume produce the
most problematic pattern of multiple threads reading and writing to the
same memory locations from multiple instructions in different source-code
lines. In the sections below the available mutual exlusion mechanisms of
OpenMP will be discussed and their usage in tmLQCD presented.
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Critical and Atomic Sections

The most important mutual exclusion mechanisms provided by OpenMP
are the omp critical and omp atomic directives. The former forces an
enclosed code section to be executed by at most one thread at the same
time and is generally safe and suited for longer code sections. The latter is
intended for atomic updates of a single memory location given in the line
immediately following the directive, where atomic means that the operation
must be reducible to a single hardware instruction on an elementary type.
An example of such operations is given in Listing 8.8, where it must be noted
that for the second operation, the pointers real_field and other_field
must refer to distinct memory regions.

Listing 8.8 Atomic updates of memory locations in OpenMP.

[...]
extern unsigned int * indices;
extern double * real_field;
extern double * other_field;
unsigned int count;

#pragma omp parallel for
for(unsigned int x = 0; x < N; ++x) {

#pragma omp atomic
++count;
#pragma omp atomic
real_field[indices[x]] += other_field[x];

}
[...]

The most prominent examples in tmLQCD where such operations are
necessary are the derivatives with respect to the gauge field in the molecular
dynamics step of the Hybrid Monte Carlo simulation. The next-neighbour
nature of the (twisted mass) Wilson Dirac matrix (Equation (1.36)) implies
that the derivative with respect to the gauge field Uµ(x) has contributions
to the force at lattice sites x and x− aµ̂. When a clover term is present, the
force contribution is even more non-local.

In order to maximize cache re-use, the force computation iterates over the
gauge field rather than the derivative field, necessitating mutual exclusion
when the latter is updated. The derivative field is an anti-hermitian traceless
3× 3 complex matrix for each lattice site and direction, but it is stored in the
form of eight real parameters which are exponentiated with the Gell-Mann
matrices when the gauge field is integrated at each molecular dynamics step.
At first, in order to guarantee safety, the updates of the components of the
force field were implemented as critical sections updating either all eight
components or each component separately. Unfortunately, this resulted in
intolerable overhead and cannot be recommended as a strategy in a lattice
QCD codes. As a consequence, the mutual exclusion was thus implemented
using the omp atomic directive in the form given in Listing 8.9.

There are two reasons why this form may not be thread-safe. Firstly,
the usage of functions on the right hand side is not strictly allowed in
this construct, although it seems that none of the compilers on any of the
architectures that were tested produce conflicts here. The second reason
is more subtle and debated: when multiple reads and writes occur to the
same memory location from multiple threads and originate from atomic
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Listing 8.9 Atomic updates of the derivative field components 1, 2 and 3

at lattice site x in direction µ. u is a 3× 3 complex matrix and c is a real
constant.

[...]
# pragma omp atomic
derivative[x][mu].d1 += c*(-cimag(u.c10)-cimag(u.c01));
# pragma omp atomic
derivative[x][mu].d2 += c*(+creal(u.c10)-creal(u.c01));
# pragma omp atomic
derivative[x][mu].d3 += c*(-cimag(u.c00)+cimag(u.c11));
[...]

statements on multiple source lines, the absence of data races cannot be
guaranteed [204], despite the fact that the OpenMP specification seems
to imply otherwise. As will be shown in Chapter 9, however, even very
long simulations did not display any indication of conflicts within errors,
at least for the observables that were tested. Finally, it should be noted
that the chosen implementation clearly does not produce an atomic update
of the entire derivative field for a given lattice point and direction. It is
therefore imperative that the derivative is not used while being updated
in this manner, which is luckily the case in tmLQCD but which might no
longer be true if some clever new form of domain decomposition is used for
integrating the equations of motion.

Push-style Algorithms with a Halo Buffer

Figure 8.6: Pictorial represen-
tation of the concept of a halo
buffer. Some function f(x) maps
x into its neighborhood, x ± µ.
In 2 dimensions, each lattice
point x can be equipped with
n = 4 exclusive regions of mem-
ory to store the results of f(x),
ensuring that this memory is
only ever written to once and
foregoing the need for mutual
exclusion in multi-threaded ap-
plications.

The above implementation of the derivative of a pseudo-fermion term is an
example of what will be reffered to as a “push-style algorithm” in which
data from one memory location affects data at one or more other memory
locations. Because it is often computationally beneficial to load this data only
once, multiple writes to the data in the other memory locations will occur. As
was discussed before, multi-threading forces a balance between the overhead
of mutual exclusions in this type of algorithm and any performance benefits
that are gained from this non-locality through cache re-use. Although
using the omp atomic directive seems to produce correct code with the
considerations outlined at the end of the last section, there is still some
overhead associated with it.

An alternative to locking which can be attractive for multi-threaded code
is the introduction of a halo buffer, which is exclusive memory allocated for
all data affected by a given datum, a two-dimensional illustration of this is
given in Figure 8.6. As an actual example and because the nomenclature will
be used in the next section, the half-spinor implementation of the hopping
matrix will be discussed in the following. With the Wilson parameter set
to r = 1, the hopping part of the twisted mass Dirac operator is given by
Equation (8.1)

φ(x) =

4∑
µ=1

[
Ux,µ(1+ γµ)ψ(x+ aµ̂) +U

†
x−aµ̂,µ(1− γµ)ψ(x− aµ̂)

]
. (8.1)

The projection ρ±(x + aµ̂) = (1 ± γµ)ψ(x + aµ̂), for example, results
in a four-component spinor with only two independent components, as
ρ±3 (x+ a1̂) = ±iρ

±
2 (x+ 1̂), for instance. Consequently, significant savings in
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communication can be made by communicating only two components and
carrying out the reconstruction to four components and multiplication by
the gauge field after the communication. In the implementation in tmLQCD,
eight two-component complex double halo buffers for each lattice point are
allocated to store the result of what is called the pre or projection step which
involves one loop over the lattice volume. The contents of these buffers are
communicated if they are on the boundaries of the local lattice, after which
a second loop over the volume serves to reconstruct the full neighbourhood
spinors and to calculate final result of the application of the hopping matrix
in the post or reconstruction step.

Since all the buffers are non-overlapping, it is not possible for multiple
threads to read from and write to the same memory location, thus removing
the need for locking in a multi-threaded implementation of the function. The
overhead coming from the second volume loop is small compared to the gain
and this continues to be true in a multi-threaded implementation, as will be
shown in Chapter 10. There are several functions in the tmLQCD software
suite for which the multi-threaded implementation could benefit from the
introduction of halo buffers, but the performance impact of these potential
changes has not been investigated yet. An example are the derivatives of
the pseudo-fermion parts for the various fermionic monomials discussed
in the previous section. However, unlike for the half-spinor hopping
matrix, the changes would require code duplication because when the
routine is executed without multi-threading, the resulting overhead would
be unacceptable.

Summary

The issue of overheads is a very important consideration when dealing with
multi-threaded code because making it perform well requires considerable
effort. During the development process a major overhead was found to
come from thread management at the beginning of parallel sections. This
resulted in a strategy which employs pre-processor constants to generate
multiple versions of the hopping matrix function combined with a number
of simple operations with which it frequently appears in sequence and
which were normally done in separate function calls, significantly reducing
this overhead. Further, the usage of orphaned directives was explored and
some preliminary benchmarks are presented in Chapter 10 which indicate
that their usage is a very effective technique for reducing overheads, but
their deployment requires careful planning and may interfere with some
of the design ideas laid out in Section 8.2. In addition, the role of cache
misses was studied and a simple modification was introduced to the way
that indices are stored in the full spinor hopping matrix, leading to a
significant performance improvement on certain hardware, showing just
how important it is to measure and understand hot spots in numeric
applications like lattice QCD. It must also be understood that these are
entirely dependent on the underlying architecture, as was demonstrated by
looking at the scalar_prod_r function on BlueGene/Q™ and SuperMUC.
This view is reinforced in the next section which deals with the interplay of
shared and distributed memory parallelism and the prospect of overlapping
communication and computation for the purpose of hiding or reducing the
communication overhead.
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Figure 8.8: SCALASCA profile of
the non-overlapping half-spinor
implementation of the hopping

matrix on BlueGene/Q™ on 32

nodes using 1 MPI process per
node and 64 threads per process

with the ideal local volume of Vl =
124 lattice sites. Communication is
done entirely using portable MPI.
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overlapping communication and computation

As a final and very important topic, the overlapping of communication
and computation will be discussed in this section. Distributed memory
parallelism requires explicit communication of the boundary or surface terms
while operations on the body or bulk of the domain are fully local to one
process. The size of the surface depends on the details of the algorithm and
in the case of Lattice QCD with Wilson fermions, this usually corresponds to
one or two lattice points in every lattice dimension plus some overlapping
ones from the corners. The overhead of the communication step in a parallel
computation depends on the available bandwidth and the amount of data
that needs to be communicated. In order to minimize this overhead, it would
be beneficial to compute the boundary terms, start the communication and
at the same time do computations which are independent of the boundary
terms. When these are completed, the program would wait until the
communication completes and compute any remaining work-load. This
approach is even more attractive in light of the fact that on modern machines
a lot of the actual communication is offloaded to the networking hardware,
thus freeing up the CPU to be otherwise occupied.

Unfortunately, it seems that many MPI implementations do not natively
support overlapping communication and computation in single-threaded ap-
plications. Even though they offer non-blocking point-to-point communica-
tors such as MPI_Isend and MPI_Irecv and some benefit is derived from
being able to queue communications in all directions in one step, the actual
communication still takes place in the subsequent MPI_Wait or MPI_Waitall
calls which are of course blocking. This is shown in Figure 8.8 which shows
the relative time spent in different parts of the half-spinor hopping matrix
function (see Equation (8.1) and discussion there) on BlueGene/Q™ in a
benchmark on 32 nodes using 1 MPI process per node and 64 threads per
MPI process. A description of how the figure is to be read is given in Sec-
tion 8.3.1.
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8.5 overlapping communication and computation

The hopping matrix function is entered and a parallel section launches
the threads after which about 20% of the total time has already been
spent on tasks unrelated to the actual computation (Hopping_Matrix self
and omp parallel self). When the threads have been spawned, the
pre loop computes the data to be communicated (including the bulk
contribution which doesn’t pass through MPI) and the communication
is launched in the following omp single section. This single thread
queues all the communications and runs MPI_Waitall in the function
xchange_halffield. During this time, most threads idle waiting and in
the end only about 40% of the total time is spent in actual computations.

In a multi-threaded implementation it is clear that this is not ideal
because the thread idling can be avoided. After changing the data layout
to separate the body from the surface, an implementation with three
loops and two single sections can be constructed as shown in Figure 8.9a.
The function is entered and the threads are launched after which the
data to be communicated is computed in the omp for surface section.
Subsequently the communication is queued by xchange_halffield in a
omp single nowait section which has no implicit barrier and thus very
low overhead, allowing n− 1 threads to be otherwise occupied. The next
loop computes the bulk contribution, after which the next single section
calls MPI_Waitall. Unfortunately, as becomes clear comparing Figure 8.8
and Figure 8.9a, a lot of thread idling occurs in this single section, indicating
that the communication is actually only started once MPI_Waitall is called.
Although the relative share of time spent in computation has increased to
about 50%, the added overhead from having three loops make this only
marginally faster, as will be seen in Chapter 10 in Figure 10.4.

An alternative implementation which attempts to eliminate this thread
idling is shown in Figure 8.9b. Here, after the data to be communicated
has been computed, the omp single nowait section queues all communi-
cation and immediately calls MPI_Waitall, thus actually starting the com-
munication. In this time, the remaining threads already work on the bulk
computation in omp for body and the communicating thread is joined by
the implicit barrier in this loop before the post step is executed. This has
the benefit of avoiding the overhead of a second omp single section, but it
is insufficient to really improve performance. Unfortunately, while having
the lowest overhead, the default static scheduling for the omp for work-
sharing directive means that the communicating thread is assigned the same
work-load as the other threads, and his results in a significant amount of
time spent waiting for this thread after it has completed the communication.

A final improvement can be made to this implementation by modifying
the scheduling for the bulk computation loop. OpenMP offers four types
of work scheduling, a review with measurements of overheads on different
architectures is given in Refs. [195, 196].

• static scheduling in which each thread is given the same amount of
work with the lowest overhead

• static,n scheduling in which each thread is given n iterations of
a loop from a first-come first-serve queue, the overhead of which
increases with decreasing chunksize

• dynamic,n scheduling which allocates chunks of size n dynamically
to any threads which are not occupied and has the highest overhead
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Figure 8.9: SCALASCA profile of time spent in the sub-parts of the half-spinor hopping matrix in the tmLQCD
benchmark application. The legend gives the division of each bar where the qualifier "self" refers to time spent
in a given part which is not spent in any of its sub-parts. Panel (a) shows the distribution in the function where
non-blocking communicators are called before and MPI_Waitall is called after the body loop. Panel (b) shows
the situation when the same thread is used to start and wait for communication, with implicit synchronization at
the end of the body loop.

• guided,n scheduling which allocates work in an exponentially decay-
ing fashion up to a minimum chunksize n on a first-come first-serve
basis, implying the first thread gets the most work while subsequent
threads are given less

After some amount of testing it was found that guided scheduling with
n = 32 delivered the best performance for the situation given in Figure 8.9b
when MPI is used for communication.

On BlueGene/Q™ there is an alternative communication library in the
form of the IBM® MU SPI, which can be used to write directly to memory
on a remote node (also called remote direct memory access (RDMA)).
Although this can also be achieved in a portable way with MPI using
MPI_Get and MPI_Put, the structure of MPI RDMA makes it hard to use for
overlapping communication and computation and the overheads are rather
large. It will be shown in Chapter 10 that SPI, unlike the non-blocking MPI
communicators discussed above, starts communication immediately and has
very low overheads. These two properties mean that when SPI is used
for communication, the implementation with two omp single sections is
faster than the one using guided,32 scheduling in the body computation
and one omp single section for communication. It is clear that all these
options depend strongly on the problem and the architecture and therefore
a judicious choice is only possible after careful benchmarks.

Finally it should be mentioned that another alternative implementation
is possible, some ideas of which were presented in Ref. [205]. Here the
communcations are started as soon as the data becomes available, rather
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8.6 summary and concluding remarks

than computing the whole surface before the communication is started. The
implementation in Ref. [205] is incomplete, however, in that it also only uses
MPI_Isend and MPI_Irecv which, as was shown above, only queue the
communications. It would be interesting to pursue this kind of strategy with
SPI to see if the asynchronous queueing of smaller amounts of data and the
larger number of opemmp single nowait sections would be able to reduce
the significant amount of time spent waiting for all threads to rejoin at the
implicit barrier in the body computation in Figure 8.9b.

summary and concluding remarks

In this chapter the addition of multi-threading via OpenMP into the
tmLQCD software suite was discussed. Specific implementation details
such as conditional directives and multi-threaded Kahan summations stand
out compared to other lattice QCD codes which provide OpenMP support
such as the Columbia Physics System [206] or the MILC suite [207]. Also
in contrast to these codes, almost the entire tmLQCD code-base has been
multi-threaded and thus prepared for the current and next generation of
supercomputers with ever-increasing numbers of functional units.

In this work, overheads associated with the use of threads were consid-
ered on multiple architectures with a specific focus on IBM® BlueGene/Q™
and improvements were made where possible, guided by measurements us-
ing SCALASCA and other performance tools. The most prominent potential
improvement, the usage of orphaned OpenMP directives, was tested, but a
full deployment has not been carried out on account of the significant com-
plications with regards to data locality and the potential loss of decoupling
between function interfaces and their implementations. Further, the issues
of locking and data races were studied carefully and working high perfor-
mance solutions were found for the computation of derivatives in the molec-
ular dynamics and the full and half spinor hopping matrix implementations.
In addition, the interplay of shared and distributed memory parallelism was
considered with a specific focus on the possibility of implementing true over-
lapping communication and computation in the hopping matrix kernel in
the hope of overcoming some limitations of non-blocking MPI communica-
tors and in order to hide communication overheads. Several implementa-
tions of an overlapping hopping matrix were tested and two were deployed.
The first uses MPI communicators and tuned thread scheduling to allow
some communication overhead to be hidden on all kinds of MPI machines
while the second uses a more naïve approach with SPI communication on
IBM® BlueGene/Q™.

The significant number of changes to the code-base and the potential for
subtle bugs from multi-threading as a result of the work described in this
chapter and other development work required careful testing procedures to
be established and carried out. These tests and their results will be discussed
in Chapter 9 while the performance of the new implementations of various
parts of the code-base will be laid out in Chapter 10.
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9C O R R E C T N E S S T E S T S

In the preparation of this thesis, changes to about 60% of the source code
of the tmLQCD software suite were made. First, a transition from a hand-
crafted complex data-type to the standard C99 complex type affected almost
every single code line. Implementations of the twisted mass clover operators
and actions as described in Appendix A were added. In addition, a version
of the RHMC [138] for all the actions available in tmLQCD was introduced,
chiefly however to simulate the non-degenerate twisted mass clover doublet.
Finally, significant changes were caused by the addition of specialised code
for BlueGene/Q and the introduction of OpenMP, but especially by the latter
because almost every routine was parallelised.

As a consequence of these developments, a large-scale testing programme
was embarked upon to ensure continued correctness. It is the aim of
this chapter to present the methods that were developed for this testing
programme and to demonstrate their wide applicability. Because a general
discussion of possible problems in Lattice QCD codes is far beyond the
scope of this work, this will be done on the basis of a number of specific
examples. A particular emphasis is placed on the fact that the techniques
presented here can uncover issues which may otherwise be very difficult or
completely impossible to detect. It should be noted that the tests that were
conducted go well beyond what is usually done for LQCD codes. This is
especially important in light of the precision desired for new LQCD results
to be phenomenologically useful.

Early on in the testing programme, it was realised how valuable high
statistics Hybrid Monte Carlo runs can really be, despite their apparent
simplicity. Insights about the correctness of the HMC implementation can
be gained through short sample trajectories by tracking the energy violation
using different code paths to simulate the same physics. However, the
chaotic nature of the equations of motion and the added non-determinism
when threads are used necessitates a more rigorous testing framework, lest
severe but otherwise undetectable bugs be missed. This will will be shown in
Section 9.1, demonstrating how a number of issues were found even though
they passed every other test and did not produce any suspicious behaviour.

The implementation of the operators and RHMC for the non-degenerate
twisted mass clover doublet was tested rigorously. Even though the above-
mentioned high statistics runs did not point to any issues, first large-
scale simulations with Nf = 2 + 1 + 1 twisted mass clover quarks had
puzzling acceptance problems, culminating in a complete loss of acceptance
as the volume was increased further. This prompted a further set of
tests described in Section 9.2, chiefly an approach in which the derivative
of the action contribution of the non-degenerate doublet was computed
numerically and compared to the implementation of the analytical derivative.
This was complemented by a further check presented in Section 9.3, in
which the behaviour of the plaquette expectation value as a function of the
mass splitting parameter µδ was studied. Specifically, the expected slope
∂〈P〉/∂(µ2δ) was computed as a valence observable and compared to that
obtained from direct simulations with a number of different µδ.

145



correctness tests

high statistics runs

The tmLQCD package is a highly versatile code-base for simulations with
Wilson fermions which contains support for many different types of mass-
degenerate and mass non-degenerate fermion monomials with and without
twisted mass as well as with and without a clover term. It contains a number
of different simulation algorithms such as HMC, RHMC and PHMC for
configuration generation and supports parallelisation via MPI and OpenMP.
The parallelisation is quite flexible as the lattice volume can be distributed
in up to four dimensions and a number of optimisations for different
computer architectures are available. As a result, tmLQCD can be run in
many different ways and the interconnectedness and interdependence of the
various parts of the code-base lead to a large number of potential points of
failure.

There exist a number of simple ways for testing large portions of the
code-base for correctness. First of all, the implementations of the Dirac
operators and their parallelisation can be tested by doing inversions and
comparing the results against other code-bases, if available. The different
parallelisations can be compared against each other until one is convinced
that any remaining differences are due to round-off errors only. In addition,
different Dirac operators can be used in the limits where they are equivalent,
thus allowing a comparison when no separate code-base exists. Of course,
this kind of test may hide issues because they may only occur outside
of those limits. A strong test of this kind is the computation of the real
residual between the even/odd preconditioned Dirac operator and the non-
preconditioned one.

For configuration generation, the acceptance step of the HMC algorithm
provides a relatively strong test of the consistency of the action and the
derivatives that are necessary for molecular dynamics. While this is true, it
must be noted that the energy violation is an extensive quantity and is often
insufficient in magnitude to show problems on the small lattice volumes
that are usually used in testing, an issue which will be discussed in more
detail in Section 9.2. In addition, subtle issues with the parallelisation or
random numbers may not show even in production, despite having possibly
significant effects on the expectation values and statistical errors of certain
observables. This is because the biases introduced by such issues may
only be visible if results from simulations with different parallelisations are
compared against each other in the high statistics limit, which of course is
not usually done.

One very effective way for checking for these sorts of problems is the
usage of high statistics tests. These consist of very long runs of the HMC
algorithm (O(104) trajectories or more) for different physical situations,
different mass preconditioning and different parallelisations on moderate
lattice volumes (84 or larger, say). They can be run on commodity hardware
and allow the determination of benchmark observables, the plaquette
expectation value 〈P〉 for example, to very high precision. By comparing
different situations which should give identical results up to round-off errors
and statistical fluctuations, systematic effects can be identified. A plethora of
high statistics runs was carried out after the major changes to the tmLQCD
software were nearing completion. A complete discussion of all tests and
the different parameters for the tests is beyond the scope of this thesis,
suffice it to say that the complete set of runs contains around 130 different
combinations of monomials, mass preconditionings and parallelisations. The
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9.1 high statistics runs

chief aim of this section is to use the given examples to advance the argument
that high statistics runs should be an integral and regular part of the
development process for LQCD codes.

Three examples of faults which may hide even in production situations
were uncovered in this testing programme. Although it is clear that the
exact same issues are unlikely to be uncovered in different codes, they do
serve as interesting case studies of very subtle faults which can be uncovered
with high statistics runs. For this reason, they are described in detail in
Appendix E while only the main results will be summarized here.

The non-determinism involved in the usage of threads makes it difficult
to differentiate between genuine faults and differences due to round-off
errors and execution order. When data races are introduced by threading,
their effect may not show at all in normal testing procedures. This is because
their occurence is probabilistic and depends on the current execution context,
the architecture, the number of concurrent threads and the given work load.
One such issue was encountered in the computation of the MD derivative
of the clover term. Only through very high statistics runs with different
numbers of threads was it realised that the acceptance rate, but not the
expectation value, was affected by the fault. This was well after the code-
base had already been thoroughly tested.

The remaining two issues were related to the parallelisation logic of
the pseudo random number generator (PRNG) employed in tmLQCD, as
described in Appendix E.2. In the first case, after it was discovered,
it was realised that the bug had affected two ETMC Nf = 2 + 1 + 1

production ensembles which had to be regenerated as a consequence.
During production, it would have perhaps been possible to see the issue,
had the parallelisation or architecture been changed in the middle of the
production process. In the worst case scenario, however, it could have been
simply put off as a thermalisation effect. In certain situations, different
MPI processes would reuse random numbers that had already been used
elsewhere for a different purpose. The only easily visible effect of the
bug was to significantly increase autocorrelations between the generated
gauge configurations as the number of processes was increased. After it
was fixed, it was realized that the bug also introduced a significant bias (in
the high statistics limit) into the expectation value of the plaquette. This
kind of problem is completely undetectable without high statistics runs
with different parallelisations, which explains why it was able to remain
undiscovered for so long. The second issue of this type was actually
introduced when the above problem was fixed. It involved the computation
of the PRNG seed for each MPI process and only very mildly affected the
high statistics runs done for the previous problem. A specially designed
high statistics run with 8 quark flavours significantly amplified the effect
that it had on the expectation values. This even allowed the exact point in
the logic to be identified because a pattern emerged in the bias that the bug
introduced.

Based on experience with the case studies discussed in Appendix E, it
has become the present author’s opinion that high statistics runs are an
excellent type of integration test which should be a central part of the software
development process for LQCD applications. Special purpose setups can be
used to pinpoint suspected issues, as was done for the problem involving the
PRNG seed. More generally, high statistics runs should be run thoroughly
and regularly and checked against known results as modifications are made
to a code-base or new features are added. In this process, it is especially
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important to have as wide a variety of tests as possible because more often
than not, differences between situations which should be identical hint at
problems with the code-base. Because of the sheer number of combinations
of different parameters, parallelisations and architectures, the process should
be automated. To a limited extent, this kind of automation was attempted
for tmLQCD by the present author in [C7, C8], although the framework
is currently implemented only for one type of machine and should be
generalised at some point in the future. Sometimes high statistics runs
may hint at problems, but it may be unclear where exactly these originate.
In the next section another type of testing framework will be presented
which focusses on ensuring that derivatives in molecular dynamics and the
simulated actions are implemented consistently.

numerical derivative

The HMC algorithm requires the integration of the equations of motion
of the gauge field and conjugate momenta in its molecular dynamics step
and this generally constitutes the most complicated part of configuration
generation in lattice QCD, both conceptually as well as computationally.
Two features of the system and its equations of motion make testing the
correctness of the integration algorithm quite complicated. Firstly, one is
dealing with a chaotic system [192] in the sense that small differences in
initial conditions quickly lead to divergent integration trajectories. This
makes it difficult to differentiate between bugs and the consequences of
simple round-off errors, therefore requiring testing to be done in conditions
which minimize round-off. Secondly, the energy of the system and the
energy violation from finite step-size integration are extensive quantities,
making the acceptance test an unreliable measure of correctness in small
volumes on which test runs are usually performed.

In light of these aspects, it is important to have a framework which
allows the implementation of the integration algorithm to at least be checked
for consistency and potential bugs to be traced to specific sections in the
code. This can be achieved practically by computing the derivative of
the action with respect to the gauge field numerically and comparing it
against what can be derived analytically and computed directly. It will
be shown that although the idea is straightforward, there are some subtle
issues which need to be considered. After the theoretical background of the
method and its implementation have been presented, a particular bug will
be discussed which was identified using this method after being mistaken
for a fundamental problem of the simulated system.

Motivation & Background

Although the details of the HMC algorithm have already been discussed in
Section 1.4.1, it is useful to review the updating scheme of the phase space
variables in the leapfrog symplectic integration scheme, which alternates
between updates of the conjugate momenta P and the link variables U.

δPaµ(x, τ) =
{
∂

∂α
HMD

[
eiαλaUµ(x, τ)

]}
α=0

Paµ(x, τ+ 1/2δτ) = Paµ(x, τ− 1/2δτ) + δτ · δPaµ(x, τ)

Uµ(x, τ+ δτ) = exp [δτ · Pµ(x, τ+ 1/2δτ)]Uµ(x, τ) ,

(9.1)
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9.2 numerical derivative

where HMD is the molecular dynamics Hamiltonian and where half-steps
of length δτ/2 are done at the beginning and end of the trajectory. The
exponential map ensures that the Uµ(x) remain in SU(3) up to round-
off errors and in practice these small deviations are corrected by group
projections at regular intervals.

In modern simulations, the evolution is somewhat more complicated
because multiple time-scales are used for different parts of the effective
action and higher order nested integrators lead to more involved updating
schemes, but the basic features are the same. It is useful to note that the
derivative in Equation (9.1) splits into the sum of the derivatives of the
individual contributions Si in Equation (1.93). The following discussion will
focus on these individual terms. When the definition in Equation (1.96) is
followed through, one obtains an expression in terms of products of gauge
fields and inverses as well as derivatives of the Dirac operator. This can
of course be computed directly and will be referred to as the analytical
derivative δP with components δPaµ(x, τ) of a given monomial Si.

A second order numerical approximation to δPaµ(x, τ) can be computed
from the difference in action obtained when the gauge field at one lattice
point x and in one direction µ is rotated by small angles ±ε for one generator
λa

δPaµ(x, τ) =
Si[e

iλaεUµ(x, τ)] − Si[e−iλaεUµ(x, τ)]
2ε

= δPaµ(x, τ) +O(ε3) .
(9.2)

Comparison to the analytical derivative can then be used to demonstrate
consistency between the implementation of the action contribution Si and
the analytical derivative for a given monomial. In practice, all the numerical
approximations involved in the computation of either version of δPaµ(x, τ)
must be checked first and the implementations can then be considered
consistent if they differ by no more than some small number ω

∆P =
∣∣δPaµ(x, τ) − δPaµ(x, τ)

∣∣ < ω ,

which will be seen to depend strongly on the action being simulated and the
aforementioned numerical approximations.

Implementation and Tests

In tmLQCD, the numerical derivative was implemented in a separate code-
base which supports some advanced memory management features and
can be found in branch ndcloverrat_num_deriv in the present author’s
public git repository1. The implementations of the different monomials
were extended with the addition of a function for the computation of the
numerical derivative as well as the optional parameters numderiv=yes/no
and decouple=yes/no. The meaning of the former should be obvious
while the latter can be used to turn the monomial into a spectator, meaning
that although the derivative and action contributions are computed, the
monomial does not participate in the dynamics of the system.

In this way, the derivative implementations can be compared even over
many integration steps while ensuring that any bugs in the implementation
do not cause instabilities in the dynamics which could be misinterpreted.
The code was further instrumented with a facility for writing to disk the
values of δPaµ(x, τ) and δPaµ(x, τ) as the trajectory progresses, either for the
whole volume or a randomly selected subset of lattice points.
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Table 9.1: Parameters and scan
ranges for tests of numerical

derivative. σs: absolute squared
CG residue in computation of

energy contribution for numerical
derivative. σf: absolute squared

CG residue in computation
of analytical derivative. ε:

rotation angle for numerical
derivative. All parameters were

stepped through by factors of 10.

name V gauge β κ 2κaμ csw τ Nint

TM 24 tlSym 3.8 0.17 0.01 0 1.0 100

cTM 1.1
c∗TM 2.5

parameter σs σf ε

range 10−2 − 10−26 10−2 − 10−26 10−2 − 10−10

Figure 9.1: Histograms of
δPaμ(x, τ) for all x, μ, a and τ.

From top to bottom: TM, cTM
and c∗TM. Note how strongly

the width of the distribution
depends on the value of csw.
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In order to establish under which conditions the analytical and numerical
derivatives can be trusted and thus compared, a number of tests were
performed using monomials of degenerate twisted mass fermions with and
without a clover term2. In addition to testing different situations, the tests
also involved scans in three parameters:

• σf, the (accumulated) absolute squared target residual of the conjugate
gradient solver in the analytical derivative computation;

• σs, the (accumulated) absolute squared target residual of the conjugate
gradient solver in the computation of the action contributions entering
in Equation (9.2);

• ε, the rotation angle in Equation (9.2).

The tests were carried out reproducibly along identical trajectories in which
only the gauge monomial participated in the dynamics of the system. For
simplicity, a leapfrog integrator was used and both the gauge and fermionic
monomials were put onto the same time-scale. The parameters and the
ranges of σs, σf and ε for the different tests are listed in Table 9.1.

Three physical situations TM(csw = 0.0), cTM(csw = 1.1) and c∗TM(csw =

2.5) were tested and Figure 9.2 shows typical trajectories of δPa
μ(x, τ) for TM

and c∗TM. Both trajectories are smooth but the magnitude of the derivative
is increased markedly with the value of csw. To demonstrate this and to

1 https://github.com/kostrzewa/tmLQCD/tree/ndcloverrat_num_deriv
2 these are considered to be implemented correctly
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Figure 9.2: δPaμ(x, τ) for one
lattice site x, one generator a and
one direction μ for two physical
situations TM (top) and c∗TM
(bottom).
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Figure 9.3: 34.27 percentiles
around the median of the
difference between the most precise
computation of the analytical
derivative (σf = 10−26) and the
analytical derivative at a given
value of σf evaluated for all x,
μ, a and τ for the two physical
situations TM (top) and c∗TM
(bottom).

show the typical range of values, the histograms in Figure 9.1 give the dis-
tribution of the values of the derivative for all lattice points, all directions,
all generator indices and all time-steps. It is clear that the width of the dis-
tribution depends crucially on the value of the clover coefficient and that it
could be expected that large values of csw may lead to instabilities unless the
time-step is reduced appropriately.

The results of the scans in σf are shown in Figure 9.3 for physical
situations TM(csw = 0.0) and c∗TM(csw = 2.5). The blue band depicts the
15.73 and 84.27 percentiles of the distribution of δPa

μ(x, τ,σf = 10−26) −

δPa
μ(x, τ,σf) for all x, μ, a and τ. It can be seen that increasing the

solver precision leads to a convergence of the median value of the analytical
derivative. In addition, it appears that when the clover term is added to
the action, the solver precision must be increased compared to the standard
twisted mass case to obtain the same accuracy. Finally, one can conclude
that for this test, the highest possible precision can be used for the analytical
derivative without worrying about accidental divergences due to round-off
errors, at least for the physical situations considered here.

Scans in the two remaining parameters σs and ε relating to the numerical
derivative are depicted in Figure 9.4 as the maximum absolute difference
between δPa

μ(x, τ,σf = 10−26) and δPa
μ(x, τ, ε,σs). A notable feature is that

differences on the order 10−4 can be observed for the TM case when the
solver precision is insufficient. Much more striking, however, is the fact
that for c∗TM the maximum absolute difference between the numerical and
analytical derivatives can diverge severely as ε is reduced below around
10−6, even for the highest solver precision. Given that σs = 10−26 is on
the edge of what is possible in double precision arithmetic, it seems that
when csw is comparatively large, disagreements between the numerical and
analytical derivatives on the order of 10−5 may be observed without actually
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Figure 9.4: max[|δPaμ(x, τ, 10−26) −

δPa
μ(x, τ, ε,σs)|]. Maximum abso-

lute difference between δPaμ(x, τ) at
the highest precision and δPa

μ(x, τ)
as a function of σs and ε for two

different physical situations.
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indicating a discrepancy. In addition, if ε and σs are chosen unwisely, large
differences can appear and suggest faults where there are none.

Having said that, an optimum value of ε = 10−5 seems to exist and it
appears to be advisable for the solver precision to be maximized both for the
analytical and the numerical derivative computations. The test of the non-
degenerate clover twisted mass rational approximation monomial was thus
carried out using the highest practical precision in the multiple right hand
side solver and ε = 10−5. The expected tolerance of the test was taken to be
around ω ∼ 10−6, given that no unusually large clover coefficient would be
used.

Results

After optimal parameters for the numerical derivative and the comparison
to the analytical derivative had been established, the framework was applied
to the test of the non-degenerate twisted mass clover rational approximation
monomial. The test was carried out using Nf = 1+ 1 flavours decoupled
from the dynamics of the system which consisted of a tree-level Symanzik-
improved gauge action on a 24 volume with 200 leapfrog steps and a
trajectory length of τ = 1.0. The remaining parameters were set to the
following values:

• β = 3.3, κ = 0.17, csw = 1.0, aμσ = 0.1105, aμδ = 0.0935, σf = 10−19,
σs = 10−19, ε = 10−5.

Note that the twisted mass aμσ and the mass splitting aμδ were chosen such
as to guarantee that the lighter of the two quarks would retain a positive bare
mass parameter to not induce any unnecessary complications due to a quark
determinant with a fluctuating sign.

The result of the test for one trajectory is shown in Figure 9.5 as the
difference between the numerical and analytical derivatives with the bug
shown in the left panel while the situation without the bug is depicted in
the right one. It is clear that the inconsistency seemed to induce smooth
systematic differences which disappeared into random noise once the bug
was fixed. The distributions of the deviations for both situations are shown
for all lattice sites and directions as well as all generator indices and all time-
steps in the histograms in Figure 9.6. It is notable that despite the total loss of
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9.2 numerical derivative
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Figure 9.5: Difference between
the numerical and analytical
derivatives along a trajectory for
non-degenerate twisted mass clover
fermions. Shown at the left is the
situation with the bug present
while the right shows the situation
after the bug had been fixed.
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Figure 9.6: Histograms of of the
difference between the numerical
and analytical derivatives with
(top) and without (bottom) the
bug in the implementation of the
non-degenerate clover twisted mass
rational approximation monomial.

acceptance on large volumes with the bug present, the deviations between
the analytical and numerical derivatives can be seen to be on the order of
10−3 or smaller, which means that an unwise choice of ε and σs could have
masked the problem completely as the tolerance ω could then have been of
the same order. A posteriori, the difference in the horizontal scales in the
top and bottom panels of Figure 9.6 is evident and the distribution with the
bug also seems to deviate mildly from a Gaussian shape.

The bug that was observed in the implementation was related to even-
odd preconditioning, which splits the quark determinant into a local part
which can be calculated exactly (up to round-off errors) and a part which
requires evaluation via pseudo-fermions, as given in Appendix A.2. It
turned out that the energy contribution of the local part for the acceptance
step was implemented incorrectly and this was thus accepting and rejecting
configurations with the wrong probability distribution, resulting in the
loss of acceptance on large volumes. In the present test, the observed
deviation between the numerical and analytical derivatives thus resulted
from the numerical derivative being computed incorrectly (since Si was not
implemented correctly).

Summary and Conclusions

In this section, the numerical implementation of the derivative of the
action contribution Si of a given monomial was presented. It was shown
how this can be used to check the consistency of the calculation of the
energy contribution and the analytical derivative for the molecular dynamics
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step of the HMC algorithm. In particular, a bug was uncovered in the
implementation of the action of the non-degenerate twisted mass clover
monomial, making it inconsistent with its correctly implemented analytical
derivative.

It was shown that this required some level of tuning of the various
numerical approximations and that differences between the analytical and
numerical derivatives must be considered across many integration steps
to reveal systematic effects. From Figure 9.4 it should be clear that single
observations of the analytical and numerical derivatives may be misleading,
because round-off errors can appear even at the order 10−4 for certain
physical situations. In addition, the difference may even diverge if the
different parameters are not chosen correctly. Further, deviations from
Gaussianity in the distribution of the differences as in Figure 9.6 can serve as
an indication for inconsistencies. Finally, it must be stressed again that the
test described in this section only demonstrates that the analytical derivative
and the corresponding action contribution are implemented consistently, but
not whether the desired distribution is being simulated. In the next section
a method will be presented which allows this to be done at least in principle
and this will be used to demonstrate that non-degenerate twisted mass clover
action is now indeed implemented correctly.

derivatives of the plaquette

As demonstrated in the previous section, the initial implementation of the
non-degenerate twisted mass clover doublet via the rational approximation
was incorrect. After the issue was identified and fixed, the test via the
numerical derivative shows that the simulated action and the molecular
dynamics derivatives are now implemented consistently. However, this does
not mean that the action has actually been implemented correctly. In order
to ensure that this is indeed the case, a further test was carried out, based on
principles from Ref. [64].

Theoretical Background

The non-degenerate twisted mass clover action in is given by

Sh =
∑
x

χ̄(x)

[
DW[U] +mW + iµσγ5τ

3 − µδτ
1 +

i

4
cswσµνF

µν[U]

]
χ(x) ,

(9.3)
where χ̄ and χ are flavour doublets, τ1 and τ3 act in flavour space while γ5

and σµν = i/2 [γµ,γν] act in Dirac space. DW is the massless Wilson Dirac
operator, mW is usually tuned to mcrit and Fµν is the field strength tensor
in the clover definition.

This can be rewritten as

Sh = Sµσ + µδSδ , (9.4)

with Sδ = −
∑
x

χ̄(x)τ1χ(x) (9.5)

and where Sµσ is the degenerate twisted mass clover action with twisted
quark mass µσ.
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9.3 derivatives of the plaquette

Adopting the notations
∫
Du =

∫
DUDχ̄Dχ and Sdeg = SG + Sµσ , the

expectation value of the plaquette 〈P〉 is then given by:

〈P〉 =
∫
DuP e−Sdeg−µδSδ∫
Due−Sdeg−µδSδ

, (9.6)

which can be expanded around µδ = 0 to give

〈P〉 '

∫
DuP

[
1− µδSδ +

µ2δ
2 S

2
δ + . . .

]
e−Sdeg

∫
Du

[
1− µδSδ +

µ2δ
2 S

2
δ + . . .

]
e−Sdeg

. (9.7)

Truncating the series at order µ2δ and evaluating the denominator, one
obtains

〈P〉 '

∫
DuP

[
1− µδSδ +

µ2δ
2 S

2
δ

] [
1+ µδ〈Sδ〉µδ=0 −

µ2δ
2 〈S

2
δ〉µδ=0

]
e−Sdeg∫

Due−Sdeg
,

(9.8)
where the notation 〈〉µδ=0 means that the expectation value is calculated
using the degenerate fermion effective action. Then, evaluation of the
remaining integrals gives

〈P〉 ' 〈P〉µδ=0 +
µ2δ
2

(
〈PS2δ〉µδ=0 − 〈P〉µδ=0〈S

2
δ〉µδ=0

)
, (9.9)

where 〈Sδ〉µδ=0 = 0 and 〈PSδ〉µδ=0 = 0 have been used. Based on this, the
derivative of the plaquette expectation value with respect to µ2δ is given by

∂〈P〉
∂µ2δ

=
1

2

{
〈P
∑
x,y

(χ̄τ1χ)(x)(χ̄τ1χ)(y)〉µδ=0−

〈P〉µδ=0〈
∑
x,y

(χ̄τ1χ)(x)(χ̄τ1χ)(y)〉µδ=0

}
. (9.10)

This can now be evaluated on degenerate twisted mass clover gauge
configurations as

∂〈P〉
∂µ2δ

'

 1

Nc

Nc∑
i=1

(−1)

[
P
∑
x,y

Tr[Su(x,y)Sd(y, x)]

]
Ui

−

1

Nc

Nc∑
j=1

[P]Uj
1

Nc

Nc∑
i=1

(−1)

[∑
x,y

Tr[Su(x,y)Sd(y, x)]

]
Ui

 , (9.11)

where Nc is the number of configurations. The traces can be estimated using
the one-end trick from the 〈SS†〉 correlation function, keeping in mind the
field normalisation used in the tmLQCD software suite.∑

x,y
Tr [Su(x,y)Sd(y, x)] ∼ (1/2)(

√
κ)2 · L3 · T · 〈SS†〉 (9.12)

Numerical Setup and Results

The plaquette expectation value must be computed on a number of ensem-
bles with µ2δ small but non-zero, giving 〈P〉 as a function of µ2δ. The slope
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Table 9.2: Simulation parameters
for the computation of the plaque-
tte as a function of μ2

δ. A rational
approximation of order 6 was used

for the non-degenerate doublet.

code L3 · T aμσ aμδ Nc

Nf = 2 84 0.2 0.0 1500

Nf = 1+ 1 84 0.2 {0.03, 0.05, 0.07, 0.1, 0.12} 1500

Figure 9.7: Dependence of 〈P〉 on
μ2
δ in Nf = 1 + 1 simulations

with μσ = 0.2 using the RHMC.
Only the filled points have been

used in the fit and the empty
RHMC point is a simulation with
μδ = 0.0. The lattice size is 84.
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thus determined should be equal to that in Equation (9.10), for which the
correlation functions are evaluated on degenerate twisted mass clover ensem-
bles. These are generated using the Nf = 2 twisted mass clover code-base
which is well tested and which doesn’t use the rational approximation. In
order to guarantee that the non-degenerate determinant be positive-definite,
the condition μδ < μσ = 0.2 was followed and in order to ensure that P and
S are sufficiently correlated with a large signal to noise ratio, a small volume
L3 · T = 84 was used. The simulation parameters are listed in Table 9.2.

A simple linear fit of the form 〈P〉 = c0 + c1(aμδ)
2 was used to extract

the slope from the Nf = 1+ 1 configurations. The error on the fit parameters
is computed using simulated datasets with Gaussian distributions and the
fit result

〈P〉 = 0.60125(2) + 0.040(2)(aμδ)
2 , (9.13)

is shown with the data in Figure 9.7. The numerical evaluation of
Equation (9.10) gives

∂〈P〉
∂(aμδ)2

∼ 0.038(2) , (9.14)

where the correlations in the data have been taken into account in a
stationary blocked bootstrap analysis. This is clearly compatible with the
value in Equation (9.13) and together with the results of Section 9.2 confirms
that the non-degenerate twisted mass clover action is simulated correctly
using the RHMC.

test of the rhmc for four flavour simulations

Before concluding this chapter, a peculiar observation will be checked in
this section to ensure that using the RHMC as implemented in tmLQCD
does not introduce unexpected biases in observables. In Figure 9.7, the
simulations at μδ = 0.0 using the HMC and RHMC respectively are just
compatible within errors. This is well within the statistical variation that can
be expected from using different algorithms and different random numbers.
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9.4 test of the rhmc for four flavour simulations

〈P〉 amPCAC aMπ± afπ 〈δH〉 〈exp(−δH)〉 λmin(10
−5) λmax

A 0.54067(2) 0.00036(14) 0.2369(20) 0.0755(3) 0.027(3) 1.001(3) 2.904(8) 0.7616(3)
B 0.54065(2) 0.00041(16) 0.2363(9) 0.0761(3) 0.030(3) 0.998(3) 3.236(9) 0.8463(3)
C 0.54065(2) 0.00042(14) 0.2344(9) 0.0768(3) 0.025(3) 1.003(3) 3.236(9) 0.8458(3)

Table 9.3: Expectation values of observables in Nf = 2+ 1+ 1 simulations with different eigenvalue intervals and
orders for the rational approximation. The unnormalised approximation intervals are A: λ ∈ [4 · 10−5, 4.0], B(order
9), C(order 12): λ ∈ [3.6 · 10−5, 3.6].

However, in some Nf = 2+ 1+ 1 test runs not discussed here, it seemed that
the details of how the approximation interval for the rational approximation
of the non-degenerate heavy doublet were chosen, affected the value of
amPCAC measured in the simulation. In particular, when the eigenvalue
interval was set such that many of the measured maximal eigenvalues of the
non-degenerate twisted mass clover operator would be just below the upper
bound, the measured value of amPCAC seemed to be higher by about two
standard deviations compared to a run with a wider approximation interval.

During this particular simulation, a very small number of normalised
maximal eigenvalues (O(10) out of several thousand) were measured to be
larger than unity, violating the approximation interval. Some bias could
probably be expected if this happened frequently, but the effect seemed to
be too substantial, prompting three test simulations conducted on smaller
lattices. This aspect is particularly important considering the fact that with
the clover term present, the maximal eigenvalues seem to fluctuate much
more strongly than they do without, as discussed already in Chapter 4.

The simulations A, B and C were set up with parameters chosen as in
the first Nf = 2+ 1+ 1 production simulations discussed in Chapter 4 with
a relatively heavy light quark mass of aµ` = 0.01. The parameters were

• β = 1.726, csw = 1.74, κ = 0.140066, aµ` = 0.01, aµσ = 0.1408 and
aµδ = 0.1521,

corresponding to a pion mass of around 450 MeV giving Mπ±L ∼ 3.4 on a
lattice of size T/2a = L/a = 16 and a lattice spacing around 0.1 fm. The
Kaon mass is expected to be somewhat heavier than physical while the D
meson is likely to be only very slightly heavier. The light quark doublet was
simulated with two determinant ratios with preconditioning masses ρ̃3 = 0.2
and ρ̃2 = 0.02 and the simulations were carried out on four time scales with
Nt = {1, 1, 1, 12} steps of the 2MN integrator (12 steps on the coarsest time
scale). The determinant was placed on time scale 1 and the determinant
ratios on time scales 2 and 3 respectively while the gauge field was integrated
on time scale 0. For the simulation of the non-degenerate doublet, rational
approximations of order 9 (A,B) and 12 (C) were chosen and partial fractions
{0, 1, 2, (3)C} were integrated on time scale 1, partial fractions {3, 4, 5, (6)C} on
time scale 2 and the remaining partial fractions on the outermost time scale.
The approximation intervals were chosen as

• A: λ ∈
[
4 · 10−5, 4.0

]
B,C: λ ∈

[
3.6 · 10−5, 3.6

]
,

such that in both cases the measured normalised eigenvalues should be in the
interval

[
1 · 10−5, 1.0

]
for the approximation to be valid.

The mean values for a number of observables from simulations A, B
and C from 5200 thermalised trajectories each are given in Table 9.3. In
runs B and C, 5 and 3 normalised maximal eigenvalues respectively were
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Figure 9.8: Normalised minimal
and maximal eigenvalues of the

non-degenerate twisted mass
clover operator in Nf = 2+ 1+ 1

simulations with parameters as
described in the text and two

unnormalised eigenvalue ranges
for the rational approximation. A
corresponds to λ ∈ [4 · 10−5, 4.0]
and B(order 9) as well as C(order

12) to λ ∈ [3.6 · 10−5, 3.6]. B and C
are seen to overlap, as they should.
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measured to be larger than 1.0 . The full distributions of the normalised
minimal and maximal eigenvalues of the non-degenerate twisted mass clover
operator for the given μσ and μδ are given in Figure 9.8. It is encouraging
to see that the observation mentioned above was probably just a statistical
fluctuation and that the approximation interval and polynomial order do
not seem to introduce a bias in the measured observables, even if a small
number of maximal eigenvalues falls outside the approximation interval.
One should keep in mind, however, that this test was carried out on a
relatively small volume and with only three sets of parameters. In addition,
the approximation interval may affect the Kaon mass and as such it might be
prudent to carry out a comparison on these configurations. Further, simple
residual tests could be done where the inverse of the non-degenerate Dirac
operator is calculated using the rational approximation and r = (1−DD−1)b
is computed. As a final test, ensemble averages of the action contributions
and perhaps gauge derivatives of monomials with different intervals and
polynomial orders could be compared.

conclusions

In this chapter, it was shown how the tmLQCD code-base was rigorously
tested after very substantial changes were made to it. The value of high
statistics HMC runs was demonstrated in Section 9.1 by explaining how
three subtle but severe bugs were uncovered. In addition, it was shown
how specially designed tests can be used to amplify suspected bugs and
even pinpoint their most likely location in the code. The importance of these
kinds of tests becomes especially apparent when the non-determinism from
multi-threading makes it difficult to differentiate between real issues and
differences which arise only because of changes in execution order or round-
off errors.

The technique of using a numerical implementation of the derivative to
check the consistency of a given action contribution and its analytical deriva-
tive was introduced in Section 9.2. It was shown how single observations of
the difference between numerical and analytical derivatives may be mislead-
ing and how the parameters controlling the various approximations need to
be carefully chosen to avoid drawing wrong conclusions. An application of
the technique demonstrated that a particular bug in the implementation of
the non-degenerate twisted mass clover action had been successfully fixed.

In Section 9.3 it was shown how a partially quenched calculation of the
contribution of some term in the effective action can be used to calculate
the derivative with respect to the coefficient of this term. In particular,
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9.5 conclusions

the derivative of the plaquette expectation value with respect to the mass
splitting parameter µδ was computed using this technique. This was
compared to the direct evaluation from simulations with a range of different
µδ, where the RHMC was used to simulate the non-degenerate twisted mass
clover doublet. The observed agreement further supports the observation
that the non-degenerate twisted mass clover action is implemented correctly
in the tmLQCD software package.

Finally, in Section 9.4, a further test of the RHMC algorithm implemented
in tmLQCD showed that the choice of approximation interval of the rational
approximation for the non-degenerate twisted mass clover doublet does not
seem to affect the expectation vales of several observables. Simulations
of Nf = 2 + 1 + 1 twisted mass clover fermions can thus proceed with
confidence, although it would be prudent to conduct further tests of the
rational approximation by varying more parameters.

Modern algorithmic features as well as the large number of optimisations
for modern architectures have increased the complexity of lattice QCD codes
significantly over the last decade or so. This level of complexity introduces
significant interconnectedness of, and interactions between, different parts
of the code-base. Coupled with the non-determinism introduced by multi-
threading, this has made it very difficult to reason about the execution order
and side-effects of the various parts of a given application. As a result,
integration tests meant to check large parts of the code-base in production-
level conditions should become an integral part of the software development
process. The methods presented in this chapter provide a good set of
such tests and will certainly complement the more specific but limited unit
testing framework which has also been implemented in tmLQCD during the
preparation of this thesis, but which has not been discussed here.
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The complexity of lattice QCD codes like tmLQCD has steadily increased
with the introduction of more involved algorithms over the past ten years
or so. As a result, writing special-purpose implementations of whole LQCD
codes for specific machines is generally not possible anymore. This in turn
entails that a code-base like tmLQCD needs optimisations for many different
architectures which are often at odds with each other. Succeeding with a
hybrid parallelisation, as discussed in Chapter 8 for example, is a challenge
of balancing various overheads. As a result, the performance characteristics
of the computational kernels, various algorithms and programs as a whole
must be understood and bottlenecks identified.

Traditionally, this is done by establishing a performance model of a given
algorithm on a given architecture, possibly with parameters that need to
be determined empirically, and trying to optimize the features suggested
by the model. Unfortunately, optimising in this way is extremely time
consuming and beyond the scope of many practitioners of LQCD. Therefore,
as discussed in Chapter 8, the optimisation of the various additions to
tmLQCD was performed through sampling profiles using the SCALASCA
toolkit [197]. In this chapter, the performance characteristics of the optimised
routines will be discussed based on benchmarks of the hopping matrix
kernel.

the hopping matrix

In LQCD simulations which do not employ any gauge field smearing, the
dominant expenditure of compute cycles occurs in the application of the so-
called hopping matrix H. This involves the multiplication of fermion spinors
with gamma matrices and gauge field components

H
αβ
ij (x,y) = κ

4∑
µ=1

[
(Uµ(x)(1+ γµ)δ(x+ aµ̂,y))αβij (10.1)

+
(
U†µ(y)(1− γµ)δ(x− aµ̂,y)

)αβ
ij

]
, (10.2)

where δ(x,y) gives the neighbourhood relationship between lattice sites.
In tmLQCD, the quark field boundary conditions are implemented by
multiplying κ with a complex phase and as a result, the application of the
hopping matrix requires a total of 1608 floating point operations (FLOPs) per
lattice site.

The next-neighbour nature of the LQCD action means that when domain
decomposition with inter-process communication is used for parallelisation,
the processes need to communicate boundary terms of the gauge and spinor
fields to a depth which depends on the algorithm under consideration. For
the hopping matrix, this corresponds to one lattice site in each boundary
direction for both spinor and gauge fields. The structure of H means that the
amount of data that needs to be communicated can be halved by exploiting
the fact that

ρ±(x+ aµ̂) = (1± γµ)ψ(x+ aµ̂) (10.3)
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is a spinor with only two independent components. The so-called half-
spinor hopping matrix first computes this projection, communicates the
result on the boundaries, projects back to a four-component spinor and
only then performs the remaining multiplications. This comes at the cost
of having two loops over the volume compared to the full-spinor matrix,
which communicates the unprojected spinors before looping over the volume
once. Quite generally, whenever inter-process communication is used, the
half-spinor matrix is faster because usually performance is very much
bound by the communication latency and bandwidth. However, multiple
volume loops lead to larger multi-threading overheads, and these need to be
carefully balanced.

As has already been discussed in Section 8.5, the hopping matrix can be
optimised further by overlapping communication and computation. The process-
local lattice domain naturally splits into a surface and a body contribution,
depending on whether or not the given lattice site is on the boundary.
On modern architectures, the communication process is offloaded largely
onto the networking hardware and as a result, the CPU idles while the
communication of the boundary terms is in progress. In the half-spinor
implementation of the hopping matrix, the projection and multiplication
stages for lattice sites in the body of the local domain can be done right away,
since no data needs to be communicated. Consequently, the communication
overhead can be reduced or hidden if this is done while the communication
is in progress. As a downside, a further overhead is introduced because a
third (partial) volume loop becomes necessary. Consequently, as described in
Section 8.5, the computation must be balanced with care if the optimisation
is to bear fruit.

In the following measurements, the nomenclature introduced here will
be used frequently without further exposition.

performance measurements

The measurements in this section are based on results from the tmLQCD
benchmark application which applies the hopping matrix H many times,
computes the number of theoretical FLOPs executed and divides by the
elapsed time. Many other routines were optimised during the preparation
of this thesis, but since the hopping matrix is dominant almost everywhere,
it is essential for it to be as fast as possible. The following measurements
also feature a separate indication with communication disabled. This means
that the computation is done as usual, but dummy routines which return
immediately are called instead of the communication routines. Of course,
the results of these computations are meaningless, but the measurement
allows the communication overhead to be monitored. As will be seen, this
is especially insightful when the performance is very sensitive to the local
lattice volume.

Commodity Intel Clusters

Baseline performance was established on a commodity Infiniband cluster
with two, quad-core Intel Xeon X5560 processors per node with Hyper-
threading disabled. The full- and half-spinor matrices were benchmarked
in pure MPI, pure OpenMP and hybrid OpenMP/MPI parallelisation using
a lattice volume of 16 · 83 sites per node. This optimally utilises the L2 cache
when two double precision spinor fields and the double precision gauge
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10.2 performance measurements

NT ,NX,NY Nthreads V

MPI, 8 nodes 4, 4, 4 – 32 · 163
MPI, 1 nodes 2, 2, 2 – 16 · 83
Hybrid, 8 nodes 2, 2, 2 4 32 · 163
OpenMP, 1 nodes – 8 16 · 83

Table 10.1: Parallelisation param-
eters for baseline performance
benchmarks shown in Figure 10.1.

(8) OpenMP (full-spinor, 1 node)

(7) OpenMP (half-spinor, 1 node)

(6) Hybrid (full-spinor, 8 nodes)

(5) MPI (full-spinor, 8 nodes)

(4) Hybrid (half-spinor, 8 nodes)

(3) MPI (half-spinor, 8 nodes)

(2) MPI (full-spinor, 1 node)

(1) MPI (half-spinor, 1 node)

GFlop/s per node

10 15 20 25 30 35 40 45

Figure 10.1: tmLQCD hopping
matrix benchmarks on a dual-
socket Intel Xeon X5560 Infiniband
cluster. The lighter bars show
performance with communication
routines explicitly disabled.
Parallelisation details in Table 10.1.

field are considered as the working set. Measurements were done on one
and eight nodes of this machine, chiefly to study the performance character-
istics of the multi-threading that had been added to the code-base.

The OpenMP implementation in tmLQCD is designed such that the
code can be compiled with all OpenMP instructions explicitly disabled if
they are not going to be used. In addition, this mode also enables some
manual optimisations which are not possible when multi-threading is used
because they lead to loop dependencies. This version was used for pure MPI
measurements.

The different parallelisations are characterised by the number of MPI
processes in each direction and the number of OpenMP threads per process
(if used). In tmLQCD, the slowest running array dimension is T, followed by
X, Y, Z, spin (if present), colour and finally the real and imaginary parts. MPI
parallelistation was done in the three dimensions T, X and Y and four threads
per process were used in the hybrid mode with a kernel which attempted
to overlap communication and computation. Pure OpenMP was naturally
only run on only one node with 8 threads. The details are summarized
in Table 10.1. The code was compiled with version 14.0.3.174 of the Intel
compiler suite, with only -O3 -axSSE4.2 as compiler flags beyond the
defaults.

The benchmark results are shown numbered in Figure 10.1 in units of
GFlop/s per node. The lighter bar indicates performance with communica-
tion routines disabled. The fastest performance on one node is achieved by
the pure OpenMP (8) with the full-spinor implementation of the hopping
matrix and the optimisation of the neighbourhood look-up array described
in Section 8.3.1. Performance on this architecture is surprisingly good with
the OpenMP result corresponding to an efficiency of over 50% in terms of
the theoretical peak performance1. It is interesting to note the overhead
stemming from the half-spinor implementation of H with pure OpenMP (7),

1 The full-spinor OpenMP implementation is likely to be a very good starting point for optimizing
tmLQCD for high performance on Intel Xeon Phi accelerator cards with communication
disabled, which would be ideal for trivially parallelisable workloads such as inversions. In
its current state, however, the efficiency on Xeon Phi is only around 3% on account of the
poor auto-optimisation for the large SIMD unit. Reaching high performance on this achitecture
involves a much larger number of optimisations [208].
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likely a result of the second volume loop. The next fastest result on a sin-
gle node is pure MPI (1) with the half-spinor implementation, suffering a
substantial communication overhead of almost 10 GFlop/s compared to (8).

For the larger total volumes, the half-spinor pure MPI (3) implementation
is fastest and the communication overhead grows by about another 6
GFlop/s compared to only node-local communication. Comparing hybrid
parallelisation (4) and pure MPI (3) with communication routines disabled,
one sees that the threading overhead is around 10 GFlop/s while the
communication overhead is significantly smaller than in the pure MPI case.
As a result, despite overlapping communication and computation hiding
some of the overhead and the apparent good performance of OpenMP on
this architecture, the hybrid code is slower than the pure MPI code. It should
be noted though that when many nodes are used on this kind of machine,
there may come a point where the hybrid implementation scales better than
the pure MPI counterpart because of inter-process overheads.

This is in fact observed on larger machines such as the Cray XC30/XC40.
In addition, with many architectures now equipped with twelve, fourteen
or sixteen core CPUs, usually with two hardware threads per core, the
limitations of pure MPI parallelisation are being reached. Especially when
the number of cores contains factors of three, five or seven, the usual domain
decomposition of lattice volumes containing or requiring factors of two is not
possible, thus ruling out pure MPI parallelisation utilising all available cores.
In these cases, the usage of a hybrid parallelisation can increase efficiency by
as much as double digit percentages.

BlueGene/Q

The main production architecture for the ETMC at the time of writing of this
thesis was IBM BlueGene/Q (BG/Q). Consequently, a significant amount of
time was invested into understanding the performance characteristics on
machines of this type and introducing various optimisations. This was
discussed in Section 8.5 and benchmark results on this architecture will
be presented here. The BG/Q compute chip [209] has seventeen cores,
sixteen of which are available to compute applications, each capable of four
hardware threads with very fast switching between them. Peak performance
is quoted as 204.8 GFlop/s per compute chip. Nodes are networked in
a five dimensional torus using dedicated network controllers, assisted by
the seventeenth CPU core. As a result, there is in principle almost no
communication overhead as far as the compute cores are concerned. This
means that overlapping communication and computation should be highly
efficient and this is in fact observed, with the hybrid implementation of the
code being almost a factor of two faster than the pure MPI one, as will
bee seen below. The details of the implementation of the hopping matrix
kernel were already discussed in Section 8.5 and the reader is referred there
for various nomenclature. All the measurements in this section were done
using double precision floating point arithmetic.

A particular feature of performance on BG/Q, at least with tmLQCD, is
a significant dependence of the efficiency on the node-local lattice volume.
This is likely due to inefficiencies in the way data is read from and written
to memory in the computational kernels in tmLQCD as it is less apparent in
more advanced implementations, such as that of Ref. [202].

The performance characteristics were studied as a function of the thread-
local volume L4 and the distribution of threads Nth and MPI processes
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(b) The number of threads times the
number of processes per node is kept
constant at 64.

Figure 10.2: Performance on
32 nodes of BG/Q in GFlop/s
per node using an overlapping
OpenMP/MPI hopping matrix for
different node-local lattice volumes
L4. Empty symbols correspond to
inter-process communication being
disabled.

NMPI (using MPI rather than IBM MU SPI communication), the result of
which can be found in Figure 10.2. The scaling with the number of threads
with one process per node is shown in Figure 10.2a. The empty symbols
show performance with communication disabled and it is clear that going
from L = 8 to L = 16, the optimal local lattice volume is V = 124 where
cache usage is maximised. Dropping out of cache (L = 16) induces an
extreme performance regression while not fully utilising cache results in
a performance plateau from Nth = 32 onwards. For the optimal L = 12

and sub-optimal L = 8 lattice extents, performance grows linearly to 64

and 32 threads respectively, which shows that when cache utilisation is
optimal, OpenMP overheads are suppressed. This is true with and without
communication, but evidently the MPI overhead on BG/Q is quite severe, as
will be seen further below.

The performance of the hopping matrix when the product NMPI ·Nth =

64 is held constant is shown in Figure 10.2b. Again, looking first at the empty
symbols, with communication switched off, performance is maximsed for
Nth = 1, but this result is not meaningful as soon as communication is
enabled, as will be seen further below. More realistically, it is seen that for the
optimal lattice extent L = 12, maximizing the number of threads and having
one process per node is advisable as the increased OpenMP overhead seems
to be amortized well. On the other hand, for the sub-optimal lattice extent,
there is a significant regression above Nth = 16 onwards. This may suggest
that for volumes which do not fully utilise the L2 cache, working with
fewer threads per process is beneficial. When communication is switched
on, for the optimal volume maximum performance is reached from Nth = 32

onwards while the non-optimal volume is rather flat over the whole range.
The effect of the optimisation strategies on the hopping matrix kernel

is shown is shown in Figure 10.3a. Before optimisation and using MPI
communication only, the black diamonds give an efficiency of below 5%.
Utilising the full SIMD through QPX intrinsic functions, as far as possible
with the current memory layout in tmLQCD, leads to the red squares
(with communication disabled). Enabling MPI communication results in the
magenta circles, showing a significant performance regression. Switching
to SPI communication routines (cyan triangles) improves this somewhat but
only when the processes are mapped correctly to the network is maximum
performance with communication reached (dark blue downward pointing
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Figure 10.3: (a): Different
optimisation levels of the hopping

matrix computational kernel
in tmLQCD on BG/Q with

different node-local lattice volumes
L4. (b): Overhead estimates in

hopping matrix for optimal node-
local lattice volume V = 124.
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triangles). This last measurement at L = 12 represents about 24% of peak
performance and the strong dependence on the node-local lattice volume is
apparent.

An estimate of the various overheads which are still present and explain
the differences between the various implementations can be gathered from
Figure 10.3b which can be read from top to bottom. The measurements
stem from 32 nodes with a node-local lattice volume of V = 124 and full
utilisation of QPX. When all communication is disabled and no OpenMP
is used, the hopping matrix performs at just below 60 GFlop/s per node,
giving the current maximum performance that can be reached with tmLQCD.
Enabling OpenMP (which is necessary for overlapping communication
and computation), has an overhead of around 8 GFlop/s. Enabling SPI
communication with this overlapping code leads to a small performance
regression of about 2 GFlop/s, showing that the overlapping kernel with
SPI communication is very good at hiding the communication latency. In
fact, when overlapping is disabled, performance drops by another 8 GFlop/s.
Switching back to the overlapping kernel but using MPI for communication
instead, produces even lower performance, indicating that the MPI overhead
is over 12 GFlop/s or so, which is very substantial. Switching off
overlapping with MPI communication deteriorates performance further and
shows the significant impact that hiding communication latency through
overlapping communication and computation can have, even when using
MPI communicators.

A complete overview of the performance and the various overheads is
shown in Figure 10.4, including the differences between the different ways in
which overlapping communication and computation can be implemented, as
discussed in Section 8.5. As should be clear from Figure 10.3b, a remaining
significant overhead is the one due to threading with OpenMP. Following
the argument in Section 8.3.1, most of this stems from thread management
at the entry and exit points of multi-threaded routines and can be reduced
or eliminated through the usage of orphaned directives. When this is done
for the hopping matrix kernel, performance with communication increases
by about 3 GFlop/s (comparing the dark bars of 1 and 2). Performance
with communication disabled, however, increases substantially more, almost
all the way to the performance without OpenMP, in excess of 60 GFlop/s
per node. This confirms that most of the OpenMP overhead is indeed
from thread management. It also indicates that there exist additional
communication overheads even with SPI, because the difference in (1)

between performance with and without communication is much greater than
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(11) Pure MPI (64 proc/node)

(10) OpenMP/MPI (no overlap)

(9) Pure MPI (32 proc/node)

(8) OpenMP/MPI (start/wait)

(7) OpenMP/MPI (start+wait, static)

(6) OpenMP/MPI (start+wait, guided)

(5) OpenMP/SPI (no overlap)

(4) OpenMP/SPI (start+wait, static)

(3) OpenMP/SPI (start+wait, guided)

(2) OpenMP/SPI (start/wait)

(1) OpenMP/SPI (orphaned, start/wait)
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Figure 10.4: Performance measure-
ments for different versions of the
hopping matrix. The lighter bar
shows measurements without com-
munication. Unless noted other-
wise, the hybrid kernel attempts to
overlap communication and com-
putation. QPX intrinsics are used
throughout.

when orphaned directives were not used (2). In principle this suggests that
if orphaned directives were deployed and further tuning were done to the
SPI communication, a performance just below 60 GFlop/s per node would
be attainable with the current tmLQCD memory layout in double precision.

conclusions

It has been shown in this chapter that the optimisations of the tmLQCD
code-base in the process of preparing this thesis were largely effective at
increasing performance. On BlueGene/Q, a combined performance increase
of around a factor of 6 was attained compared to the unoptimised code and
this was only possible through a combination of multi-threading, utilising
the available SIMD units and mapping the problem to the network correctly.
Many of the various overheads on this crucial architecture were understood
and catalogued, allowing good choices to be made with regards to how
computations for different lattice volumes are parallelised. It has been
shown that a good choice can impact performance almost by around a factor
of 2 and that computations which spill out of cache should be avoided at all
costs on this architecture.

The performance modelling done using SCALASCA in Chapter 8 has
turned out to be largely representative of real world performance, correctly
explaining for instance the origin of the observed OpenMP overheads. It was
also shown that well-chosen benchmarks can provide estimates for the size
of different overheads and hint at where optimisations might be possible
and necessary. Together with algorithmic advances, the optimisation for
new architectures has been a driving force of lattice QCD and this will likely
become much more important as new machines with increasingly hybridised
compute units emerge on the path to exa-scale performance. In the future,
therefore, it would be desirable to have more formal performance models of
the tmLQCD computational kernels in order to enable optimisations to be
planned.
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11I N T E G R AT O R T U N I N G V I A F O U R I E R T R A N S F O R M S

In the last chapter of this part, a potentially interesting observation regarding
the behaviour of the molecular dynamics forces of quark determinants and
determinant ratios will be explored. Using the notation of Section 9.2, the
gauge derivative of a given term in the effective action is given by δPaµ(x, τ).
The magnitude of the forces has been studied empirically as a function of
the mass preconditioning parameters in Chapter 5. As seen there, light
dynamical fermions are known to produce strong fluctuations, including
deviations which exceed the average forces by orders of magnitude. In
addition to these exceptional spikes, it seems from practical experience that
the frequency of the fluctuations in the forces depends inversely on some
unknown power of the quark mass in the operator in the determinant and on
some complicated combination of the parameters in the determinant ratio.

The argument can be made that naïvely there are thus two sources
of finite step size integration errors that occur in molecular dynamics
integration of these force contributions. On the one hand, when δτδP is
too large, the momentum update TP (Equation (1.100)) will not be a small
increment, thus inducing a source of error. This reasoning historically led to
improvements in integrators and the determinant splitting techniques that
have been discussed in Chapter 5.

Another potential source of finite step size errors may be seen from a
different perspective. Clearly, δPaµ(x, τ) are smooth functions of τ, a fact not
reflected by the molecular dynamics histories shown in Chapter 5 because
the measurements are only taken once every trajectory of length τ = 1.0. As
a result, although these histories indicate average and maximal forces rather
well and show signs of the frequency of exceptionally large fluctuations, they
do not provide a measure of the characteristic frequencies which contribute
to δPaµ(x, τ). The integration process can also be interpreted as a sampling
problem of the “signal” δP, sampled at intervals δτ, the integrator step size.
When this has contributions from fluctuations with characteristic frequencies
f which exceed

f >
1

2δτ
, (11.1)

they cannot be sampled correctly, leading to integration errors of a different
kind. It is clear that the Nyquist-Shannon sampling theorem does not really
apply here because δP may not be sufficiently band-limited, but it may
still provide some level of guidance for choosing a minimum step size to
avoid these integration errors. It will be shown in the following that in the
cases that were studied, δP does appear to be largely band-limited, with
the limiting frequency increasing as the quark mass is lowered. In addition,
mass preconditioning seems to have a substantial effect also on the dominant
characteristic frequencies present in δPaµ(x, τ).

background

Using the developments of Section 9.2, the molecular dynamics histories
of the δPaµ(x, τ) for the different monomials in the action can be analysed
directly. The idea is to use the fast Fourier transform (FFT) of δPaµ(x, τ) to
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determine the minimum number of integration steps required to resolve the
finest fluctuations. To this end, after a simulation is thermalised, one long
trajectory (∆τ > 10 or so) would be simulated with many integrations steps.
During this trajectory, δPaµ(x, τ) would be sampled for a randomly chosen
subset of a, µ and x for all τ. The FFT of this trajectory can then be taken to
provide estimates of the dominant frequencies in the signal

F
[
δPaµ(x, τ)

]
(fm) =

n∑
k=1

[
δPaµ(x, k) − 〈δPaµ(x)〉∆τ

]
·

exp
{
−2πi

(k− 1)(m− 1)

n

}
, (11.2)

where the mean value of δP has been subtracted to remove the constant
term1, k is the integration step and n is the total number of integration
steps on the considered time scale. Further, fm is the discrete frequency
component in units of the trajectory length which goes from f1 = 0, f2 =

1/∆τ to fn = (n − 1)/∆τ. Since δP is real, only n/2 − 1 amplitudes are
unique and because the mean has been subtracted, F

[
δPaµ(x, τ)

]
(f0) = 0.

The number of steps on each time scale t is specified by Nt, resulting in
nt = 2Nt + 1 effective steps for the 2MN integrator.

As will be seen below, the FFT for a single δPaµ(x, τ) is noisy, making the
interpretation difficult. Increasing the trajectory length would help, but ∆τ
would need to be taken impractically large to avoid this. However, it seems
that because the forces everywhere on the lattice are similar, the dominant
discrete frequencies can be isolated by averaging the amplitudes of the FFT
over the combinations of a, µ and x that were sampled. Labelling these
combinations with the super-index Ai = (x,µ,a), the frequency spectrum
for each of the monomials is then given by the moduli of the amplitudes in
Equation (11.2), averaged over these Nc time histories

‖F [δP] (fm)‖av =
1

Nc

Nc∑
i=1

‖F [δP(Ai)] (fm)‖ . (11.3)

It is at present unclear to what extent this averaging may introduce
systematic biases into the observed average amplitudes.

numerical setup

The idea in its current form is demonstrated here on the basis of a simulation
using Nf = 2 Wilson twisted mass clover fermions and Iwasaki gauge action
with simulation parameters:

• T/2a = L/a = 16, β = 2.1, κ = 0.1373, csw = 1.57551, aµ` = 0.01(µ̃` =
0.002746), corresponding to Mπ± ∼ 450 MeV

• four time-scales ti with the gauge monomial on the finest one (t0)

• mass preconditioning with two determinant ratios and parameters
ρ̃3 = 0.3, ρ̃2 = 0.03, ρ̃1 = 0.0.

• second order minimal norm (2MN) integrator [74] on all time scales

• trajectory length ∆τ = 1.0 with Nt integration steps on each time scale
t, Nt = {1, 1, 1, 13}.

1 for ∆τ sufficiently large this is zero anyway
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Figure 11.1: Contributions to the
derivative for one μ,a, x of the
four monomials along a trajectory
of length Δτ = 20.0. The gauge
contribution is in the top-most
panel. The next panel gives the
contribution of the determinant
(with ρ̃ = 0.3) and the lower-most
panel of the determinant ratio with
the target mass μ̃ = 0.002437 in the
numerator.

This is the same ensemble that was used for Chapter 5 and after thermalisa-
tion, the acceptance rate was found to be around 93% with these parameters.

results

To test the method, a trajectory of length Δτ = 20.0 was integrated using
the 2MN integrator with the number of steps on the coarsest time scale
set to N3 = 400, corresponding to an effective number of integration steps
n3 = 801. The time history of δPa

μ(x, τ) for each monomial in the MD
Hamiltonian is recorded for 1024 combinations x,μ and a. The total number
of collected samples is thus

• Nc = 1024 combinations of x,μ and a (hence, effectively, 1024

trajectories),

• nt = 2Nt + 1 effective integration steps on a given time scale,

which corresponds to 820224 samples for N3 = 400 and increases by a factor
of two for each of N2,N1,N0. Typical molecular dynamics histories of the
derivative contributions for the gauge, determinant and the two determinant
ratio monomials are shown in Figure 11.1 from top to bottom. The FFT of
a single δPa

μ(x, τ) is shown in Figure 11.2. Evaluation of Equation (11.3)
for the trajectory described above leads to Figure 11.3, which shows the
averaged FFT moduli of the trajectories ordered from top left to bottom
right. Because the contributions from different time scales are sampled at
different rates, the discrete frequencies fm in this figure have been rescaled
to be comparable and are expressed in units of unit length trajectories (so
f = 2.0 corresponds to a mode with period T = 0.5). The data is further
normalised such that the maximum amplitude has unit modulus and the
dotted vertical and horizontal lines indicate at which frequency this relative
amplitude drops below 0.01, chosen as an arbitrary point of reference.
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Figure 11.2: The modulus of Equation (11.2) evaluated for a single trajectory of the force contribution due to the
determinant ratio on the outermost time scale with ρ̃1 = 0.0,ρ̃2 = 0.03. The discrete frequencies have been rescaled
to be in terms of unit length trajectories.

It should be noted at this point that it was checked whether the
trajectories shown in Figure 11.1 are stable with respect to changes in the
number of integration steps. For this purpose, the sampling was repeated
and N3 was reduced in steps of 50. Until N3 < 200, the resulting trajectories
are very similar to Figure 11.1, with first differences starting to appear at
around τ = 15. In any case, up to this point the frequency spectra can
be completely resolved including the point where the relative amplitude
reaches 0.01. For trajectories with even fewer integration steps, differences
appear much earlier in the course of trajectory. Especially for monomials
on the outer time scales, it is visually obvious that the fluctuations are not
being sampled correctly. In the frequency spectra one observes that the
frequency where the relative amplitude drops below 0.01 is not sampled.
MD histories and frequency spectra with N3 = 300 and N3 = 150 are
shown in Appendix F. Increasing the number of integration steps above
N3 = 400 does not lead to visually discernible differences, nor does it affect
the conclusions regarding the drop of the relative amplitude below 0.01.

The first notable feature is that the derivative from the gauge monomial
has a clear dominant frequency around f = 1, which can be confirmed
(approximately) by looking at top-most panel of Figure 11.1. Further,
the point at which the normalised modulus drops below 0.01 is highest
for the determinant ratio with the target mass in the numerator on the
outermost time scale and seems to decrease monotonically as the mass in the
numerator is increased. In addition, as the mass parameter in the numerator
is decreased, a larger range of frequencies contribute significantly to the
dynamics.

The idea now is to use the point where the relative amplitude of the
signal on the outermost time scale drops below 0.01 as a basis for selecting
the number of integration steps. For the determinant ratio with the target
mass in the numerator shown here, this frequency is seen to be f ∼ 10

and so it follows that around 20 effective integration steps per τ = 1.0
should be required on the outermost time scale to capture the dominant
fluctuations in the force. This would correspond to Nt = {1, 1, 1, 10} in the
notation that has been used above. Testing this integration scheme in practice
shows that indeed the acceptance rate remains around 90% going from
N3 = 13, 12, 11, 10 and drops significantly when the number of integration
steps is reduced further. Of course, given the limited scope of this analysis,
this serves as no more than an indication.
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Figure 11.3: Evaluation of Equation (11.3) on the test trajectory introduced in the text. From top left to bottom
right: gauge monomial, determinant, determinant ratio with ρ̃3 = 0.3 in the denominator, determinant ratio with
ρ̃2 = 0.03 in the denominator. The data has been normalised with respect to the maximum average modulus. The
discrete frequencies have been rescaled to be comparable.

Trajectory without Mass Preconditioning

It is interesting to use the technique to explore the role that mass precondi-
tioning plays in suppressing large amplitude, high frequency oscillations in
the fermionic contribution to the force. For this purpose, a trajectory was
integrated with just a quark determinant with the target mass parameter
on time scale t1 and the gauge monomial on time scale t0. On account
of the substantial computational cost, it had to be limited to a length of
Δτ = 1.0 with Nt = {1, 400}. Typical trajectories of the gauge monomial and
the fermion determinant forces are shown in Figure 11.4, together with the
averaged amplitudes of the frequency modes.

It is clear that the fermion force is of substantial magnitude, comparable
to that of the determinant term in Figure 11.1. The fluctuations are more
regular, but the FFT average shows that many more frequency modes
contribute strongly with a prominent shoulder of frequencies extending to
about f = 30. It is interesting to note that the determinant ratios in
Figure 11.3 show a similar feature to a much lesser extent and that the width
seems to be depend on the mass parameter in the numerator. The quark
determinant can be thought of as a determinant ratio with an infinite mass
in the denominator, which suggests that this could be taken as the limiting
case in an attempt to theoretically understand the observed patterns.

The gauge force, on the other hand, is comparable to the one shown
in Figure 11.1, considering the different trajectory lengths. The FFT of
the gauge force trajectory of course has no meaning because the trajectory
was too short for this purpose. It is tempting to conclude that mass
preconditioning seems to suppress not only the amplitude of the average
forces, it also significantly affects the dominant frequencies which contribute
to the forces of the fermion monomials in the MD Hamiltonian. However,
a more comprehensive study of the force histories for determinants with
different quark masses is necessary to form a complete picture.
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Figure 11.4: (top): Representative trajectories of the gauge (left) and determinant ratio (right) monomials over a
trajectory without mass preconditioning. (bottom): Equation (11.3) evaluated on the collection of these trajectories.

Trajectory with Optimized Mass Preconditioning

Using a mass preconditioning scheme along the lines of Section 5.4 with five
time scales and x = 4 results in MD histories for the gauge, determinant
and three determinant ratio monomials as shown in Figure 11.5. Compared
to the original scheme, high frequency modes seem to be even further
suppressed with the fermionic monomials not showing signs of the kind
of shouldering visible in Figure 11.3. Although the cut-off frequency for
the determinant ratio on the outermost time scale is somewhat higher, the
frequencies just below this cut-off are much more strongly suppressed than
in the original scheme. This seems to confirm that mass preconditioning
indeed suppresses higher frequency modes, although the results should be
carefully checked before being used to guide the optimisation of simulations.

Conclusions

In this chapter a tentative attempt was made at using long molecular
dynamics histories of forces to explore the effect of mass preconditioning
on the frequency of large amplitude, high frequency oscillations in the
fermionic forces. The fast Fourier transform of long trajectories with many
time steps of these forces was taken and the frequency spectrum was
averaged over many lattice sites, directions and SU(3) generators. The
resulting frequency distributions are seen to drop off significantly for high
frequencies when mass preconditioning is used. In particular, the frequency
spectra of the fermionic contributions seem to approach each other as the
extent of mass preconditioning is increased. One should note that the
resulting spectra are reminiscent of Brownian noise, but are not seen to drop
off as strongly with the frequency for low frequencies.

For the gauge contribution, a peak is identified at a frequency f ∼ 1

and it would be insightful to understand where this originates and whether
it depends on relevant parameters such as the inverse gauge coupling β

or the type of gauge action used. It is interesting that the monomials
that are usually integrated on finer time scales have large magnitudes, but
seemingly show smaller contributions from higher frequencies, compared to
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Figure 11.5: Representative MD
trajectories and their normalised
average frequency amplitudes of
the forces in a simulation with
mass preconditioning following
Section 5.4 on five time scales and
x = 4. The gauge monomial is in
the topmost row, followed by the
determinant and three determinant
ratios. For the FFTs, the same order
is given top-left to bottom-right
and then bottom-centre.
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the monomials usually integrated on the coarser time scales. This would
suggest that achieving good acceptance may require balancing the high
frequency oscillations on the coarsest time scales (and the required number
of integration steps) against the number of integration steps required on the
finer time scales due to the magnitude of the forces.

The frequency at which the amplitude of the frequency spectrum drops
by a factor of 100 relative to its maximum, is seen to be affected by the
preconditioning masses. Using this criterion to select the number of effective
integration steps on the outermost time scale was shown to provide a good
estimate of the minimum number of integration steps required to retain a
high acceptance rate, at least for the single simulation tested here.

It would therefore be interesting to extend the present investigation
to a wider range of mass preconditioning schemes, in particular in large
volume and at, or close to, the physical pion mass. Studies with a range of
inverse gauge couplings and perhaps different gauge actions would likely
also provide interesting data. Further, if a more general pattern were found
– perhaps a functional dependence of f on the preconditioning masses – this
could be used to supplement the proposal of Section 5.4 with a suggested
number of integration steps on the outermost time scale. Finally, lacking
theoretical guidance, the analysis could be applied to ongoing simulations
to check if, for example, the kind of shouldering of the frequency spectrum
is observed. This could be taken as a signal for possible optimisations to
improve acceptance rates by adjusting the mass preconditioning parameters
to the number of integration steps.

176



C O N C L U S I O N S A N D O U T L O O K

The aim of this thesis was to investigate the feasibility and practicality
of simulations with physically light quarks in the Wilson twisted mass
discretisation of Lattice QCD at maximal twist. With the addition of the
Sheikholeslami-Wohlert term to the twisted mass action, it was found that in
two flavour simulations, the physical charged pion mass can be successfully
reached and the theory tuned to maximal twist, ensuring O(a)-improvement.
It was shown further that the bare quark mass parameter at which the
charged pion mass takes its physical value can be extrapolated successfully
from only a few simulations with heavier than physical quarks. No signs
of meta-stabilities were observed , indicating that any phase transition
points in the space of bare parameters must be sufficiently far away from
the physically interesting region. In addition, no unexpectedly long auto-
correlations were observed which could have hinted at the presence of very
light stable particles in the spectrum. Large fluctuations in the molecular
dynamics forces as well as spikes in the molecular dynamics histories
of the energy violation were investigated. It was found that integration
schemes with more time scales and a determinant splitting over more terms
seem to reduce their occurrence, suggesting that they do not constitute a
fundamental problem.

The involved parameter tuning for simulations with light, strange and
charm quarks was discussed and parameter sets were proposed for first
simulations at a lattice spacing of around 0.095 fm. A two-pronged tuning
strategy was investigated which separates the tuning of strange and charm
quark masses from the tuning of β and csw, resulting in seemingly good
parameter estimates at a reasonable computational cost. It was found that
if β and csw are chosen appropriately, the values of µσ and µδ tuned in the
valence sector are good estimates and do not seem to require retuning once
they are used as sea quark mass parameters in Nf = 2+ 1+ 1 simulations.

The dependence on csw and β of the lattice spacing, critical hopping
parameter and plaquette expectation value was determined from simple
empirical fits to simulation data spanning a wide range of parameter values.
Somewhat surprisingly, it is seen that this procedure is sufficiently accurate
for the purpose of choosing simulation points, likely because it appears to
be rather insensitive to the values of µσ and µδ or the light quark mass.
As a result, values of β and csw can be found which correspond to a given
lattice spacing within a few per-cent and to the tadpole-improved value of
csw within the available perturbative precision. In addition, the estimate of
the critical hopping parameter κc at these values of β and csw is seen to be
accurate to within around half a per-mille for light quarks corresponding to
a pion mass of around 250 MeV.

Simulations with light, strange and charm quarks in the sea were carried
out with these parameter sets with the aim of studying the impact of the
value of csw on the simulation algorithm and the pion mass splitting. It
was found that the rational hybrid Monte Carlo algorithm works well for
the simulation of the non-degenerate strange and charm quark doublet
and that no issues appear with regards to the positivity of the heavy
quark determinant. Significant fluctuations are seen in the maximal
eigenvalues of the non-degenerate twisted mass clover operator and these
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make simulations somewhat more expensive because a generous eigenvalue
interval must be chosen for the rational approximation. No issues with
stability were observed, although simulations with approximately matched
physical situations at different values of csw indicated that larger values
of csw induce larger molecular dynamics forces and correspondingly lower
acceptance and higher cost.

A set of tuning runs with different light quark masses was used to
provide an estimate of the bare quark mass corresponding to the physical
charged pion mass in four flavour simulations. Runs at this light quark mass
were started, showing promising thermalisation properties and no problems
with tuning to maximal twist. First mass degenerate four flavour simulations
– historically the most problematic – were successfully tuned to maximal
twist at several values of the bare light quark mass, providing compelling
evidence for a substantial reduction of the pion mass splitting due to the
clover term. The accumulated evidence seems to indicate that the tuning of
Nf = 2+ 1+ 1 simulations at the physical charged pion mass is feasible and
the simulations done so far do not seem to point to any practical problems.

The pion mass splitting was studied on Nf = 2 and Nf = 2 + 1 + 1

gauge configurations and it was found that compared to previous Nf = 2

simulations, at a charged pion mass of 250 MeV the splitting is reduced
somewhat, although an exact comparison is difficult because of differing
lattice spacings. In the Nf = 2+ 1+ 1 case, it was seen that the improvement
amounts to almost a factor of two reduction at a charged pion mass of
around 250 MeV, where the comparison is more straightforward on account
of the size of the improvement. The dependence of the pion mass splitting
on the value of csw was studied in the range csw = 1.45 to csw = 2.05
and approximately constant physical situation, showing no effect within
the sizeable uncertainties. This suggests that if simulations with small to
moderate values of csw are stable and show no indications of a large pion
mass splitting, it might be beneficial to simulate at smaller values of csw
than would be required for on-shell O(a)-improvement for standard Wilson
quarks. Smaller values of csw show smaller fluctuations in the forces due to
the quark determinant and smaller fluctuations in the maximal eigenvalues
of the non-degenerate twisted mass operator, thus reducing simulation cost.

Benchmark calculations of pseudoscalar meson masses and decay con-
stants were carried out at the physical light quark mass, leading also to esti-
mates of the light, strange and charm quark masses and their ratios. It was
shown that in a simple computation, ignoring all finite size and lattice arte-
fact corrections, compatibility with phenomenological determinations could
be obtained. Only in the charm sector, where sizeable lattice artefacts are
to be expected, were significant deviations from experiment observed. Their
magnitude, however, does not preclude a well-behaved continuum extrap-
olation, although of course this will have to be confirmed. The statistical
and systematic uncertainties so far obtained on phenomenologically highly
relevant quantities like fD, fDs and their ratio are still somewhat large. Ob-
taining lattice results with phenomenologically interesting uncertainties will
likely require an analysis involving multiple light quark masses and inter-
polations using heavy meson χPT. When this is done, however, special care
must be taken to consider the relative size of the light quark masses and
lattice artefacts as sources of chiral symmetry breaking.

To tune the valence strange and charm quark masses, linear interpo-
lations of all observables in the analysis were carried out and the ratios
MK/Mπ± and MD/Mπ± were matched to their phenomenological values.
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From the data it is seen that this simple approach is well-justified, especially
since the interpolations are quite short. The resulting strange and charm
quark masses and their ratios are shown to be compatible with various de-
terminations in the literature after being multiplied by the appropriate RI’-
MOM matching factor.

A particular source of systematic uncertainty which may become signif-
icant on very large lattices is the ambiguity of the fit range for correlation
functions. Excited state contributions, round-off errors of heavy quark prop-
agators as well as correlations in the lattice data can result in a situation
where identifying a plateau in the effective mass of a given correlation func-
tion is non-trivial. In addition, even if a plateau is identified and a fit range
chosen, analysis shows that there exist many fit ranges with similar reduced
χ2 values. It was argued, therefore, that all of these fit ranges should be con-
sidered and a method was proposed for estimating the resulting systematic
uncertainty in meson masses, decay constants and their ratios. In most cases
on a L/a = 48 lattice, the uncertainty was found to be small, but in the case
of pion correlation functions, an effect at the order of the statistical error was
seen, such that it should be taken into account. It is likely that the technique
will become even more relevant for lattices of spatial extent L/a = 64 and
above.

Significant importance was paid to exploring possible optimisations of
the simulation algorithm. The parameter dependence of mass precondition-
ing was studied and simple empirical formulae with only two fit parameters
were proposed which allow the forces of determinant and determinant ratio
terms in the effective action to be expressed in terms of the mass precon-
ditioning parameters. Although lacking a thorough theoretical motivation,
when fitted to to data spanning many orders of magnitude, the resulting
curves were seen to represent the data rather well. It is hoped that the for-
mulae can be used in practice by fitting them to a few data points for a given
simulation and using the resulting parameter dependence to tune the mass
preconditioning scheme.

Based on these formulae, a mass preconditioning and integration scheme
was suggested which was shown to be effective at reducing simulation cost
by providing a more predictable hierarchy of molecular dynamics forces,
even without knowledge of the values of the fit parameters. This work
was complemented by a tentative analysis of fast Fourier transforms of
long molecular dynamics histories of the forces due to various terms in
the effective action. It was shown that the spectrum of frequencies which
contribute substantially to the dynamics seems to depend inversely on the
preconditioning masses in some, as yet unspecified way. Finally, it was
suggested that these frequency spectra might be used to tune the number
of integration steps in Hybrid Monte Carlo simulations with multiple time
scales.

Despite the potential for efficiency gains from tuning the mass precon-
ditioning scheme, the simulations are rather expensive and algorithmic ad-
vances will have to be made in order for a complete simulation programme
to be viable. On lattices with spatial extent up to L = 48, the CG algorithm
is rather competitive with twisted mass quarks, even at the physical charged
pion mass. When the volume is increased, however, the usage of better
solvers becomes a necessity. Inexact deflation [210] has been investigated by
the ETMC, but the behaviour of the inner solver is inconsistent with the sit-
uation of standard Wilson quarks. This situation, likely caused because the
twisted mass Dirac operator exhibits a shifted zero quark mass Wilson spec-
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trum at maximal twist, is in the final stages of being resolved. Hierarchically
deflated CG [211] might be ideally suited for twisted mass quarks because it
operates directly on the normal equations, but its implementation is highly
non-trivial, especially given the relative rigidity of the tmLQCD code-base.
Similarly, adaptive aggregation based domain decomposition [212] would
likely perform well, but the implementation is also quite involved. It should
be noted that for the purpose of analysis, exact deflation and EigCG [213]
are seen to work very well, although these are of course unsuitable for en-
semble generation since the number of systems to be solved for each gauge
configuration must be very large.

A number of essential additions were made to the tmLQCD software
suite. Multi-threading was introduced into the entire code-base via OpenMP,
following a strategy which aimed at preserving existing single-thread opti-
misations. At the same time, care was taken to make the resulting code
easy to read and to maintain, especially by exploiting variable scoping rules
for automatic management of thread-level data locality. The multi-threaded
routines were carefully profiled using SCALASCA and a graphical repre-
sentation was developed for the identification of bottlenecks. Using this
information, a number of optimisations were introduced and their effective-
ness confirmed through benchmarks. In addition, orphaned directives were
explored as a means of reducing or eliminating the substantial thread man-
agement overhead. Benchmarks of a test implementation of the hopping
matrix kernel using orphaned directives showed that the SCALASCSA pro-
files indeed provide relevant information for the identification of overheads.
Unfortunately, the usage of orphaned directives makes the management of
data locality significantly more complicated and it is currently unclear how
they can be deployed more generally.

Optimisations for the IBM BlueGene/Q supercomputer architecture were
introduced which, combined, led to a factor of six improvement in the
hopping matrix kernel. The performance characteristics on this machine
were carefully mapped and recommendations formulated for the efficient
simulation on lattices of different volumes. In this context, particular effort
was invested into the study of hopping matrix kernels which attempt to
overlap communication and computation with the help of threads. An
optimised overlapping kernel was devised for BlueGene/Q using SPI
communicators and a naïve thread workload assignment.

The standard MPI kernel with overlapping communication and computa-
tion, hybrid parallelisation and optimised thread scheduling is unfortunately
generally not as fast as pure MPI parallelisation. However, multi-threading
helps significantly when scaling to very large machine partitions and threads
allow to efficiently absorb prime factors in the number of cores, a circum-
stance which is becoming increasingly common.

Several techniques for testing the simulation algorithm were presented
and demonstrated using specific examples from the tmLQCD software
suite. A combined approach was explored for testing the molecular
dynamics implementation. First, numerical derivatives are computed and
then compared to their analytical counterparts to check if the action and the
derivatives are implemented consistently. In addition, the expectation value
of some observable is expanded around the vanishing limit of a relevant
parameter in the action and an expression is derived for the derivative of this
expectation value with respect to the parameter. This derivative can then be
computed in a partially quenched manner given a sufficiently strong signal
and checked against the value obtained directly from simulations at non-zero
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values of the relevant parameter. With the growing complexity of LQCD
software packages in mind, high statistics runs were proposed as reliable
integration testing frameworks, the use of which should become part of the
development process of LQCD codes. Their effectiveness at discovering bugs
which are otherwise very hard or impossible to identify was demonstrated
with three examples encountered in tmLQCD, one of which had even gone
unnoticed in production simulations, altough its effects were á posteriori
seen to be quite substantial.

From the numerical side, continuum and infinite volume limits at the
physical pion mass will be subject to two major challenges. The complexity
of simulation software has reached a point at which software packages
for LQCD cannot be written specifically for a given architecture any more.
Coupled with the many architectures that are in use, this requires many
different optimisations to be provided in a modular fashion in one software
package. These different optimisations are often at odds with each other,
resulting in a significant engineering challenge which will have to be
overcome. A sign of the times is the emergence of dedicated libraries
of extremely highly optimised, architecture-specific computational kernels
such as BAGEL [202], QUDA [214] and QPhiX [203]. Except for BAGEL,
these projects have many developers working on them practically full-
time. Although it is possible and worthwhile to rely on them, providing
the necessary interfaces is often non-trivial. When that is achieved, it is
unclear to what extent they will remain supported by the original developers,
potentially causing significant future maintenance overheads. These issues
must be overcome if phenomenologically relevant simulations of tmLQCD
at the physical pion mass are to be carried out.

The second and related complication which has yet to be dealt with prop-
erly is the increasing relevance of hybrid architectures as supercomputers are
pushed towards the exa-scale using accelerators. A simple example where
Amdahl’s law is already having an impact is in the generation of random
numbers. On Intel Xeon Phi, for instance, the low performance of individ-
ual execution units leads to significant idling as random numbers are gen-
erated by a single core. This may be alleviated by having more copies of
the pseudorandom number generator, but this may induce problems with
correlations. The alternative is to implement multi-threaded generators, but
this is complicated significantly by the non-deterministic execution order of
multi-threaded routines. Hybrid architectures pose a particular challenge
for the tmLQCD simulation software because of its rigid implementation:
using these new systems will require structural changes which amount to
rewriting many of its basic components. Given these challenges, the testing
frameworks that have been investigated will certainly prove useful.

In conclusion it can be said that Nf = 2 simulations with twisted
mass clover quarks at the physical pion mass are certainly possible and
they seem to produce promising physics results, although of course their
relevance in light of Nf = 2 + 1 and Nf = 2 + 1 + 1 data is limited to
the exploration of unquenching effects. The tuning of Nf = 2 + 1 + 1

simulations at the physical pion mass was shown to be unproblematic and
apparently unaffected by complications from the interaction of multiple
scales. Simulations at relatively coarse lattice spacings can proceed and are
practical on the currently modest lattice volumes. Continuum and infinite
volume limits, however, hinge on the successful implementation of better
algorithms for the inversion of the twisted mass clover Dirac operator at
maximal twist, especially for the calculation of molecular dynamics forces.

181



conclusions and outlook

Without these additions, simulations on large lattices of size L = 64 and up
are prohibitively expensive and not presently viable.
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AE V E N - O D D P R E C O N D I T I O N E D T W I S T E D M A S S C L O V E R
D I R A C O P E R AT O R

mass degenerate twisted mass clover doublet

The implementation of the even-odd preconditioned Wilson Dirac operator
in the presence of the clover term, the related even-odd preconditioned
effective action and the integration of the equations of motion have been
discussed in Ref. [64]. The tmLQCD software suite largely follows the
strategy outlined there, but a subtlety arises when the twisted mass term
is added. Starting from the fermion action in the hopping parameter
representation in the twisted basis

SF,2 =
∑
x

{
χ̄(x)[1+ 2κcswT(x) + 2iaκµγ5τ

3]χ(x)

− κχ̄(x)

4∑
µ=1

[
Uµ(x)(r+ γµ)χ(x+ aµ̂)

+U†µ(x− aµ̂)(r− γµ)χ(x− aµ̂)
]}

≡
∑
x,y

χ̄(x)Mxyχ(y) ,

(A.1)

with the clover term T(x). For convenience, the definitions

µ̃ ≡ 2aκµ , c̃sw ≡ 2κcsw ,

will be used and the SW coefficient will be absorbed

T = c̃swT(x) .

The hermitian, two flavour twisted mass clover operator, Q, is given by

Q ≡ γ5M =

(
Q+

Q−

)
, (A.2)

where the subscripts refer to the sign of the twisted mass term from the τ3

in flavour space. Decomposing the lattice into even and odd sites, the Schur
decomposition of the sub-matrices Q± follows

Q± = γ5

(
1+ Tee ± iµ̃γ5 Meo

Moe 1+ Too ± iµ̃γ5

)
= γ5

(
M±ee Meo
Moe M±oo

)
=

(
γ5M

±
ee 0

γ5Moe 1

)(
1 (M±ee)

−1Meo
0 γ5

(
M±oo −Moe(M

±
ee)

−1Meo
)) ,

(A.3)

where the even and odd subscripts, e and o, have their obvious meanings.
When the clover term is not present, the same decomposition applies and
(M±ee)

−1 is simply a µ̃-dependent constant. With it present, it depends on
the gauge field and must be inverted numerically, which will be discussed
below. Unlike in the standard Wilson case, this inverse now also depends on
±µ̃.

185



even-odd preconditioned twisted mass clover dirac operator

The quark determinant splits into the factors

det(Q) = det(Q+)det(Q−) ,

and the det(Q±) are proportional to

det(Q±) ∝ det(1+ Tee ± iµ̃γ5)det(Q̂±) , (A.4)

where Q̂± is referred to as the even-odd preconditioned Dirac operator and
is defined only on odd lattice sites

Q̂± = γ5

[
(1+ Too ± iµ̃γ5) −Moe(1+ Tee ± iµ̃γ5)−1Meo

]
. (A.5)

Hence,
det(Q) = ‖det(1+ Tee + iµ̃γ5)‖2 det(Q̂+Q̂−) ,

and the contribution to the path integral weight is given by

e−Seff = exp

[
−
∑
x

log detMee(x)

]
·
∫
Dφ†oDφo exp

[
−φ†o

1

Q̂+Q̂−
φo

]
,

(A.6)
where Mee(x) is a 24× 24 matrix in colour, spin and flavour which splits
into four 6× 6 blocks with A(x) and B(x) individually hermitian

Mee(x) =


A(x) + iµ̃ 0 0 0

0 B(x) − iµ̃ 0 0

0 0 A(x) − iµ̃ 0

0 0 0 B(x) + iµ̃

 , (A.7)

such that

log detMee(x) = log ‖det[A(x) + iµ̃]‖2 + log ‖det[B(x) + iµ̃]‖2 . (A.8)

The second term in Equation (A.6) is expressed in terms of pseudofermion
fields defined only on odd sites. As a result, the inverses of (1+ Tee(x) +

iµ̃γ5) and (1 + Too(x) − iµ̃γ5) are needed only on even and odd sites
respectively which is exploited to save memory and reduce the amount of
computation required.

Mass Preconditioning

Mass preconditioning in the presence of the clover term has been discussed
in Chapter 5. Adding the preconditioning parameter ρ̃ = 2aκρ simply as a
shift in the twisted quark mass µ̃` is complicated by the µ̃-dependence of
the inverse of Mee, as this would now have to be computed for every µ̃, ρ̃
combination in the action. For efficiency reasons, mass preconditioning in
the presence of the clover term is thus implemented as follows. The even-odd
preconditioned Dirac operator with mass preconditioning takes the form

Ŵ±(µ̃`, ρ̃) =γ5
[
1+ Too ± iγ5(µ̃` + ρ̃) −Moe(1+ Tee ± iγ5µ̃`)−1Meo

]
=Q̂±(µ̃`)± iρ̃ ,

(A.9)

such that Mee and Moo depend only on the target mass µ̃`. The even-odd
preconditioned quark determinant with mass preconditioning is thus

‖det(1+ Tee + iµ̃`γ5)‖2 ·
∫
Dφ
†
oDφo exp

[
−φ†o

1

Ŵ+Ŵ−
φo

]
. (A.10)
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A.2 mass non-degenerate twisted mass clover doublet

mass non-degenerate twisted mass clover doublet

Even-odd preconditioning for the mass non-degenerate twisted mass clover
doublet proceeds in the same fashion, but the two flavour operator does
not split into blocks. Starting again with the hopping representation of the
fermionic action

SF,ND =
∑
x

{
χ̄h(x)[1+ 2κcswT(x) + 2iaκµσγ5τ

3 − 2κµδτ
1]χ(x)

− κχ̄(x)

4∑
µ=1

[
Uµ(x)(r+ γµ)χ(x+ aµ̂)

+U†µ(x− aµ̂)(r− γµ)χh(x− aµ̂)
]}

≡
∑
x,y

χ̄(x)Mhxyχ(y) ,

(A.11)

and proceeding in exact analogy with Appendix A.1, defines the operator

Qh = γ5M
h . (A.12)

The even-odd decomposition is then given by

Qh =

(
γ5(1+ Tee + iµ̃σγ5τ

3 − µ̃δτ
1) Qheo

Qhoe γ5(1+ Too + iµ̃σγ5τ
3 − µ̃δτ

1)

)
=

(
Qhee 0

Qhoe 1

)
·
(
1 (Qhee)

−1Qeo
0 Q̂hoo

)
(A.13)

where Q̂hoo is given by

Q̂hoo = γ5(M
h
oo − (Mhoe (Mhee)

−1 Mheo) , (A.14)

with
Mhoo|ee = 1+ Too|ee + i ¯˜σµγ5τ

3 − µ̃δτ
1 , (A.15)

and Q̂h now satisfies τ1 hermiticity

(Q̂h)† = τ1 Q̂h τ1 .

Because 1 + Tee is unchanged and hermitian, the inverse of Mhee can be
computed via

(1+ Tee + iµ̃σγ5τ
3 − µ̃δτ

1)−1 =
(1+ Tee − iµ̃σγ5τ

3 + µ̃δτ
1)

(1+ Tee)2 + µ̃2σ − µ̃2δ
. (A.16)

In practice, ((1+ Tee)2 + µ̃2σ − µ̃2δ)
−1 is computed and stored and (Mhee)

−1

is applied in two stages in the current implementation.
The heavy quark determinant factorises into

det(Qh) = det[γ5(1+ Tee + iµ̃σγ5τ3 − µ̃δτ1)] · det[Q̂hoo] , (A.17)

where the first factor is computed as above, via the 24× 24 colour, spin and
flavour matrix

Mhee(x) =


A(x) + iµ̃σ 0 −µ̃δ 0

0 B(x) − iµ̃σ 0 −µ̃δ
−µ̃δ 0 A(x) − iµ̃σ 0

0 −µ̃δ 0 B(x) + iµ̃σ

 , (A.18)
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even-odd preconditioned twisted mass clover dirac operator

where A and B are the same 6×6matrices as in the mass degenerate case and
are individually hermitian. This can be simplified by a Schur decomposition
in flavour space:

det(Mhee) = det
(
K D

D K†

)
= det

[(
K D−KD−1K†

D 0

)
·
(
1 D−1K†

0 1

)]
= −det(D) · det(D−KD−1K†)

= det(KK† −D2)

= det(A2 + µ̃2σ − µ̃2δ) · det(B2 + µ̃2σ − µ̃2δ) ,

where the sign in the second line comes from the first term and in the
third line the proportionality of D to the identity matrix was used. The
second term, det(Q̂hoo) is computed through a rational approximation using
standard methods [137, 138].
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B
P S E U D O S C A L A R I N T E R P O L AT I O N S

In this appendix, the interpolations in the valence strange and charm quark
masses of all observables in Chapter 7 are shown, as computed on ensemble
cA2.09.48 at the physical charged pion mass. For quantities involving decay
constants, the figure on the left hand side shows data with decay constants
using the continuum meson dispersion relation while the right hand side
shows the lattice dispersion relation. For those quantities which do not
involve a decay constants, the estimate of aμs from matching MK/fK is
computed with fK in the continuum definition on the left and the lattice
definition on the right.
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pseudoscalar interpolations

0.26 0.28 0.30 0.32 0.34
0
.1
1
9

0
.1
2
0

0
.1
2
1

0
.1
2
2

aμc

a
f D

s

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

0
.1
0
5
0

0
.1
0
5
5

0
.1
0
6
0

0
.1
0
6
5

aμc

a
f D

s

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.1
5

1
.2
0

1
.2
5

1
.3
0

1
.3
5

1
.4
0

aμc

f D
s
/f

D

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.1
5

1
.2
0

1
.2
5

1
.3
0

1
.3
5

1
.4
0

aμc
f D

s
/f

D

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.5
5

1
.6
0

1
.6
5

1
.7
0

1
.7
5

1
.8
0

1
.8
5

aμc

f D
s
/f

K

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.5
5

1
.6
0

1
.6
5

1
.7
0

1
.7
5

1
.8
0

1
.8
5

aμc

f D
s
/f

K

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.9
5

2
.0
0

2
.0
5

2
.1
0

2
.1
5

aμc

f D
s
/f

π

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

0.26 0.28 0.30 0.32 0.34

1
.9
5

2
.0
0

2
.0
5

2
.1
0

2
.1
5

aμc

f D
s
/f

π

Data
μs and μc from FLAG/HPQCD ratios
μc = HPQCD ratio ·μs from MK/fK
μc = HPQCD ratio ·μs from MK/Mπ

μc from MD/Mπ, μs from MK/Mπ

190



pseudoscalar interpolations
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pseudoscalar interpolations
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Figure C.1: Box-and-whiskers type
plot of the distributions of average
and maximal forces in Nf =

2 + 1 + 1 simulations at roughly
constant physical situation as a
function of csw. The quantiles
are 0.0, 0.1573, 0.5, 0.8427, 1.0.
From left to right, the groups
represent: (1) gauge, (2) light
degenerate doublet determinant
with largest preconditioning mass
2aκρ = 0.1, (3) determinant
ratio with 2aκρi = {0.01, 0.1},
(4) determinant ratio with target
quark mass in numerator, (5)
partial fractions k = 0, 1, 2 of non-
degenerate strange-charm doublet,
(6) partial fractions k = 3, 4, 5, (7)
partial fractions k = 6, 7, 8.

This appendix collects a number of force measurements from three of
the four ensembles used for the measurement pion mass splitting as a
function of csw in Section 6.2. Since the physical situation is tuned to be
approximately constant, the volumes and lattice spacings are comparable
and so is the dynamical quark content. The simulations were almost of
the same length such that a sufficient number of force measurements can
usefully be compared via histograms. In addition, all the algorithmic settings
were exactly the same between the three ensembles, except for the eigenvalue
approximation interval for the rational approximation at csw = 2.05. The
upper end of the approximation interval had to be increased substantially
compared to the ensembles at csw = 1.45, 1.65 because the maximum
eigenvalues seem to scale with csw, likely stronger than linearly.
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md forces as a function of the sw coefficient

Figure C.2: Distribution of average
forces as a function of csw in

Nf = 2+ 1+ 1 simulations. From
top to bottom: (1) gauge, (2) light

degenerate doublet determinant
with largest preconditioning mass

2aκρ = 0.1, (3) determinant
ratio with 2aκρi = {0.01, 0.1},

(4) determinant ratio with target
quark mass in numerator, (5)

partial fractions k = 0, 1, 2 of non-
degenerate strange-charm doublet,

(6) partial fractions k = 3, 4, 5,
(7) partial fractions k = 6, 7, 8.

F
re
q
u
en

cy

82 84 86 88 90 92

0

500

1000

1500

csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en
cy

13 14 15 16 17 18 19 20

0

500

1000

1500

csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en
cy

0.04 0.05 0.06 0.07 0.08 0.09 0.10

0

100

200

300

400
csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en

cy

0.002 0.004 0.006 0.008

0

20

40

60

80

100

120 csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en

cy

4.0 4.5 5.0 5.5

0

500

1000

1500
csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en

cy

0.3 0.4 0.5

0

500

1000

1500
csw = 1.45
csw = 1.65
csw = 2.05

avg(F 2)

F
re
q
u
en
cy

0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018

0

100

200

300

400 csw = 1.45
csw = 1.65
csw = 2.05

196



md forces as a function of the sw coefficient

F
re
q
u
en
cy

300 320 340 360 380

0

50

100

150

200

250 csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en
cy

150 200 250 300 350 400

0

50

100

150

200

250

300 csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en
cy

10 20 30 40 50 60 70

0

100

200

300

400 csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en

cy

0 10 20 30

0

100

200

300

400

500

600 csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en

cy

30 40 50 60

0

50

100

150

200 csw = 1.45
csw = 1.65
csw = 2.05

F
re
q
u
en

cy

10 20 30 40

0

100

200

300

400 csw = 1.45
csw = 1.65
csw = 2.05

max(F 2)

F
re
q
u
en

cy

0 1 2 3 4 5 6

0

100

200

300

400

500
csw = 1.45
csw = 1.65
csw = 2.05

Figure C.3: Distribution of
maximum forces as a function
of csw in Nf = 2 + 1 + 1

simulations. From top to bottom:
(1) gauge, (2) light degenerate
doublet determinant with largest
preconditioning mass 2aκρ =

0.1, (3) determinant ratio with
2aκρi = {0.01, 0.1}, (4) determinant
ratio with target quark mass in
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determinant forces

In this section, further measurements of the square norm forces of a mass-
degenerate even-odd preconditioned twisted mass clover determinant on
the test ensemble presented in Chapter 5. Complementary to the results
presented in Section 5.1.1, the measurements were repeated varying ρ̃ while
keeping μ̃� constant, which is actually the situation encountered in practice.

Figure D.1 shows the analysis resutl for μ̃� = 0.0010984, resulting in fits
of the form

‖F‖2av(μ̃) =
4.59(16)

μ̃+ 0.29(2)
(D.1)

‖F‖2max(μ̃) =
39(5)

μ̃+ 0.19(4)
. (D.2)

Figure D.2 shows the analysis result for μ̃� = 0.0002746, resulting in fits of
the form

‖F‖2av(μ̃) =
4.59(16)

μ̃+ 0.29(2)
(D.3)

‖F‖2max(μ̃) =
39(5)

μ̃+ 0.19(4)
. (D.4)

Finally, Figure D.3 shows the analysis results for μ̃� = 0.0, resulting in fits of
the form

‖F‖2av(μ̃) =
4.59(17)

μ̃+ 0.29(2)
(D.5)

‖F‖2max(μ̃) =
39(5)

μ̃+ 0.19(4)
. (D.6)
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)
‖F‖2av Figure D.1: Square norm of

the forces from an even-odd
preconditioned determinant for
two flavours of mass degenerate
twisted mass quarks at maximal
twist as a function of the mass
parameter μ̃ = μ̃�+ ρ̃ = 2aκ(μ�+ρ),
where 2κμ� = 0.0010984 and ρ̃ is
varied. The notation Δ+ indicates
the difference between the median
and 84.27 percentile of the maximal
square norm force.
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Figure D.2: Square norm of
the forces from an even-odd

preconditioned determinant for
two flavours of mass degenerate
twisted mass quarks at maximal

twist as a function of the mass
parameter μ̃ = μ̃�+ ρ̃ = 2aκ(μ�+ρ),

where 2κμ� = 0.0002746 and
ρ̃ is varied. The notation Δ+

indicates the difference between
the median and 84.27 percentile of

the maximal square norm force.

‖F
‖2

10

100

1000

1e-03 1e-02 1e-01

μ̃

‖F‖2max

Δ+
(‖F‖2max

)
‖F‖2av

Figure D.3: Square norm of
the forces from an even-odd

preconditioned determinant for
two flavours of mass degenerate
twisted mass quarks at maximal

twist as a function of the mass
parameter μ̃ = μ̃� + ρ̃ =

2aκ(μ� + ρ), where 2κμ� = 0.0
and ρ̃ is varied. The notation Δ+

indicates the difference between
the median and 84.27 percentile of

the maximal square norm force.
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Figure D.4: Average forces
coming from a determinant
ratio as a function of the mass
preconditioning parameters μ̃1 and
μ̃2 on gauge configurations with
the Nf = 2 twisted mass clover
action. The lines correspond to the
fit of the form Equation (5.12).
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Figure D.5: Maximal forces coming
from an even-odd preconditioned
determinant ratio as a function
of the mass preconditioning
parameters μ̃1 and μ̃2 on gauge
configurations with the Nf = 2

twisted mass clover action. The
lines correspond to the fit in
Equation (5.13).

determinant ratio forces

For completeness, the results of Section 5.1.2 are shown in Figures D.4
and D.5 with μ̃2 on the abscissa.

Forces with a Higher Target Mass

As discussed in Section 5.1.2, when even-odd preconditioning is used with
the twisted mass clover action, the target mass μ̃� appears in the inverse of
the clover term without a preconditioning mass ρ̃. The results in Section 5.1.2
were obtained with μ̃� = 0.0002746, relevant for simulations at the physical
pion mass. For completeness, the analysis was repeated with a tenfold higher
μ̃� = 0.002746 for a smaller range of ρ̃1 and ρ̃2. The results are given in
Figures D.6 to D.11 and Equations (D.7) to (D.9).
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Figure D.6: Average forces
coming from a determinant

ratio as a function of the mass
preconditioning parameters μ̃1 and

μ̃2 on gauge configurations with
the Nf = 2 twisted mass clover
action. The lines correspond to

the fit of the form Equation (D.7).
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‖F‖2av(μ̃1, μ̃2) = 3.21(9) (μ̃2 − μ̃1)
2

∣∣∣∣ μ̃2

μ̃1

∣∣∣∣
0.07(1)

(D.7)

‖F‖2max(μ̃1, μ̃2) = 17(2)
(μ̃2 − μ̃1)

2

|μ̃1μ̃2|
0.47(2) (D.8)

Δ+
(
‖F‖2max(μ̃1, μ̃2)

)
= 22(9)

(μ̃2 − μ̃1)
2

|μ̃1μ̃2|
0.48(5) (D.9)

Although more measurements would be necessary to draw firm conclusions,
it appears that

• In ‖F‖2av, the phenomenological factor |μ̃2/μ̃1| becomes less significant
as μ̃� is increased. The scale of the forces is somewhat reduced as
expected.

• In ‖F‖2max, the overall scale is a little bit lower while the phenomenolog-
ical factor is the same within errors, suggesting that this form may be
universal.

• In Δ+(‖F‖2max), both parameters take on very different values, but the
suggested form does describe the data well.

One is thus tempted to conclude that the proposed fit forms are indeed
appropriate and that as argued in Section 5.1.2, a few measurements should
be sufficient to determine the parameters. In addition, the suggested
simplified forms remain valid.
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coming from a determinant
ratio as a function of the mass
preconditioning parameters μ̃1 and
μ̃2 on gauge configurations with
the Nf = 2 twisted mass clover
action. The lines correspond to the
fit of the form Equation (D.7).
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Figure D.8: Maximal forces coming
from an even-odd preconditioned
determinant ratio as a function
of the mass preconditioning
parameters μ̃1 and μ̃2 on gauge
configurations with the Nf = 2

twisted mass clover action. The
lines correspond to the fit in
Equation (D.8).
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Figure D.10: Ratio of the maximal
and average forces from even-

odd preconditioned determinant
ratios with different parameters.

The lines give the ratio of the
model in Equations (D.7) and (D.8)

for constant μ̃2 as a function of
μ̃1/μ̃2, as indicated by the colours.
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Figure D.11: Difference between
84.27 percentiles and the median

of the maximal forces of even-odd
preconditioned determinant ratios
with different parameter combina-
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functional form in Equation (D.9)
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This appendix collects the result of a number of high statistics runs which
uncovered three particularly subtle issues with the tmLQCD code-base. The
issue described in Appendix E.3 even affected Nf = 2 + 1 + 1 production
simulations which had to be repeated as a consequence. It is clear that these
exact issues will not be encountered in different code-bases, but they do
serve as very good case studies of the kinds of subtle faults which can be
uncovered and which are otherwise very difficult or impossible to identify.

non-deterministic bug in clover force computation

Parallelisation using threads is complicated chiefly by data locking issues
as discussed in detail in Section 8.4. The computation of the derivative
of the clover term required for molecular dynamics is the most non-trivial
calculation in the code-base when it comes to the potential for data races.
Even though the routine sw_all was reviewed and tested thoroughly
during development and no apparent problems were found with 2, 4 or
8 threads on an Intel® Xeon™ machine, once simulations were started
on IBM® BlueGene/Q™ with 64 threads, there was a puzzling loss of
acceptance in the HMC. At the time it was of course not clear where this
issue originated and the problem was only identified after the procedure
discussed in the following.

It turns out that the issue was caused by a lack of proper memory
locking in just a few lines of the routine mentioned above. The bug was
not discovered because even though the conflicts in this function are not so
rare even with just 2 threads, the non-determinism of the instruction order
in a multi-threaded application makes it very difficult to predict by how
much δH, for example, should differ between a multi-threaded and a serial
execution. The very small deviations in δH that were seen on a trajectory
to trajectory basis in initial testing, were attributed to this non-determinism.
It should be noted that after the issue has been resolved, there continue
to be small deviations in δH between serial and multi-threaded executions.
However, they grow at a much smaller rate with the volume, and à posteriori,
it is clear that these are now purely the result of round-off differences due to
differences in execution order.

These kinds of failures are extremely dependent on the execution
environment on which the probability of conflicts strongly depends and will
therefore often appear with clear consequences only in production situations.
They are difficult to find by inspection because multi-threading makes it
much harder to reason about program execution order. Further, as explained
above, under typical testing conditions it is often difficult to differentiate
their consequences from benign differences in round-off. However, as will
be shown below, high statistics runs can help in detecting this kind of
issue early on and in a methodical manner, if they are conducted across
a sufficiently wide set of parameter combinations (in this case this is the
number of threads).
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Figure E.1: Plaquette expectation
values from different parallelisa-
tions of high-statistics runs with

the Nf = 2 tmclover action indicat-
ing the effect of a data race in the
derivative of the clover term. The

red � show the situation with the
bug while the blue � show the sit-
uation with the bug fixed. All the

points are compatible within errors,
but the different acceptance rates

reveal that there must be an issue. 0.60150 0.60154 0.60158
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For the purpose of identifying the origin of the loss of acceptance, a set
of runs with 105 trajectories each was set up with parameters mirroring the
problematic situation but in smaller volume:

• Iwasaki gauge action, V = 84, β = 2.1, κ = 0.13729, aμ� = 0.1,
csw = 1.57551

• Parallelisations: OpenMP with 8 threads, Hybrid with 2 processes à 4
threads, Hybrid with 4 processes à 2 threads and, as a reference, MPI
using 32 processes and no multi-threading

• Random numbers chosen in such a way as to be completely identical
between the different runs.

The plaquette expectation values from these runs are shown in Figure E.1
together with the respective integrated autocorrelation times and acceptance
rates. As can be seen, all the points are compatible within errors and, most
importantly, if there were just one simulation, one would not be able to
see that there is something wrong. However, the acceptance rate decreases
with as the number of concurrent threads is increased (red triangles in
the figure). Once the bug was fixed, there is only a mild difference in
autocorrelation times which can be understood because OpenMP effectively
increases the amount of randomness in the simulation (and thus lowers the
autocorrelation time).

This result indicates that the accept-reject step successfully rejected those
trajectories where thread collisions led to deviations in the value of the
derivative. It can also be interpreted further. The fact that the acceptance
rate is reduced combined with the apparent lack of any bias points to
the molecular dynamics part of the simulation and in particular, to the
computation of derivatives. If there were a thread-related issue with
the heatbath or acceptance steps, the simulated probability distributions
would be different and bias would be bound to appear in the central
values. Once one has established that the heatbath and acceptance steps
are implemented correctly, one is led to conclude that the increase in energy
violation responsible for the decrease in acceptance rate, must originate in
the computation of the derivative.

A further conclusion one can draw from this test is that multi-threaded
code can indeed fail in very subtle ways. Without a comprehensive testing
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programme in place, wrong conclusions may be reached about the stability
of simulations, autocorrelation times, acceptance rates or even about physical
results. In this particular case, one might have come to the conclusion that
the twisted mass clover action simply requires a somewhat higher number
of integration steps to give good acceptance. This may even have allowed
successful simulations (possibly significantly overestimating their cost), until
some bias might have possibly surfaced in some other observable at a much
later point in time. Clearly, high statistics runs are a valuable tool for
identifying issues early on and with the added non-determinism of threads,
they have become essential. Their central role in the identification of various
problems will be further underlined below.

random numbers in parallel applications

A very important consideration in any kind of simulation which makes
use of stochastic properties is the quality and reliability of the pseudo-
random number generators (PRNGs) used in the simulation. There exist
numerous types of PRNG and the criteria for labelling them “good” or
“bad” depend on the application. A comprehensive review of PRNG types,
quality and testing methodology is given in Ref. [215] and references therein.
The fact that PRNGs are crucial is best exemplified by the well-known
PRNG-dependent systematic errors in Monte Carlo simulations of the Ising
model, presented in Ref. [216]. Particular problems can be expected if the
random number chains contain correlations between sequences or individual
elements in a sequence, but also when chains generated with different
starting values (seeds) show correlations of some type.

As an aside: the advent of hybrid architectures with high levels
of shared memory parallelism presents a new challenge in this respect.
Random number generation may become a bottleneck as the power of
single execution units on these architectures is reduced while their number
increases. As a result, unless a PRNG with hybrid parallelisation is used,
many execution units will idle while one is generating random numbers.
In fact, this has been observed when running tmLQCD on Intel® Xeon
Phi™ in native mode. Overcoming this bottleneck is a non-trivial problem
because the non-determinism inherent in the usage of threads presents
a formidable challenge in the implementation of multi-threaded random
number generators which need to be both reliable and fast. This should
be considered an unsolved problem in the case of tmLQCD.

The need for massive parallelism in LQCD calculations further compli-
cates the quality criteria that a PRNG has to satisfy because using PRNGs in
parallel is not straightforward. In principle, three modes of operation can be
considered:

1. A sequential mode which generates the same random numbers as in the
sequential execution of a program by transferring the PRNG state from
one process to the next in the right order, as depicted in the left panel
of Figure E.2.

2. A parallel mode in which each process contains a random number
generator which has been seeded independently and chains of random
numbers are generated without any inter-process communication, as
shown in the right panel of Figure E.2.

3. A generalisation of the parallel mode in which each sub-lattice of some
size is associated with a PRNG. The most extreme such implementation
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Figure E.2: Depiction of two modes of operation of pseudo-random number
generators (PRNG) in parallel applications with n processes. vi are vectors of random
numbers of some length l. In the left panel, the PRNG of process 0 is seeded
upon program initialisation. It then generates a vector v0 of random numbers and
afterwards sends its state to process 1, which generates its vector v1 and so on until
all processes have generated random numbers and process n− 1 sends its state to
process 0. In the right panel, the PRNG of all processes are initialised with different
seeds si and generate independent chains of pseudo-random numbers without any
further inter-process communication.

would have one PRNG for each lattice site. Each one is seeded
independently and random numbers are generated without inter-
process communication. This last mode is not implemented in
tmLQCD.

While the sequential mode has the benefit of reproducing the random
number chains used in sequential execution in a parallel program, the
necessity of inter-process communication can make it substantially slower
than the parallel mode. This mode can be implemented in an alternative
way by having each process generate random numbers for the entire lattice
but using only those numbers that are necessary for the process-local
domain while discarding all others. Although it may appear that this
could be substantially more expensive, when many processes are used, the
serialisation and communication overheads of the implementation depicted
in Figure E.2 are much greater. In the parallel mode, it must be ensured that
any possible correlations in the seeds do not produce correlations between
the different random number chains. In addition, the latter mode makes
debugging more complicated because the random number chains depend on
the number of processes. From these compromises one can conclude that the
sequential mode is more suitable and necessary for testing and debugging,
while the parallel mode is advisable for production runs, as long as the
absence of correlations has been demonstrated.

The random number generator used in the tmLQCD code-base is
RANLUX [217], operated in the parallel mode by default with some
exceptions. The sequential mode is available for testing purposes and
has been implemented in the more efficient way. The high statistics runs
presented in this section uncovered two bugs in the PRNG framework
implemented in the tmLQCD code-base one of which affected two Nf =

2+ 1+ 1 ETMC production ensembles.
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Figure E.3: Plaquette expectation
values from Nf = 2 + 1 + 1

high statistics runs with different
parallelisations showing the effect
of incorrectly switching between
sequential and parallel modes in
the PRNG. The red � correspond
to the situation with the bug
present while the blue � show
the situation after the bug has
been fixed. The autocorrelation
times and acceptance probabilities
correspond to the respective side
and the parallelisation is listed on
the right.

incorrectly switching between prng modes

The default behaviour of the tmLQCD software suite is to operate the PRNG
such that each process has its own independently seeded generator, relying
on the good quality criteria of RANLUX to ensure that no correlations are
produced between the random number chains of different processes. The
various routines which provide random numbers for gauge, pseudo-fermion
and conjugate momentum fields for different purposes. They are called
with an argument which selects between the sequential and parallel modes
and in theory this can be switched back and forth as program execution
progresses. In addition, a global flag is provided in the input file which is
supposed to make the mode consistent across all functions. However, when
the routines for the Polynomial Hybrid Monte Carlo algorithm [218] were
added to version 5 of the code-base, a particular routine requested random
numbers in the sequential mode, whatever the aforementioned global flag
was set to. In principle this should not be a problem, but unfortunately
the particular function that it called assumed that the entire program was
running in the sequential mode if it was called with the respective flag.

As a result, the PRNGs would behave as follows for N processes:

1. The program would be started in the parallel mode and a number of
routines would request random numbers normally.

2. The problematic routine would be called, and processes 0 to N − 1

would each generate m random numbers in sequence, correctly.

3. At the end of the routine, process 0 and N− 1 would be left in the same
state while all other processes would be in intermediate states.

4. The remaining routines of the program would now operate in the
parallel mode.

• Process 0 and N− 1 would generate the same random numbers
until the next call of the problematic routine.

• For any other process n | 1 < n < N − 1, the generation of m

random numbers would result in the PRNG state of process n+ 1,
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Figure E.4: Histograms showing
the distribution of the plaquette

observable in the molecular
dynamics history of identically

parallelised Nf = 2 + 1 + 1 high
statistics runs with and without

the bug described in the text.
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the same random numbers would thus be recycled for different
purposes and different parts of the lattice.

The effect of this bug can best be understood from Figure E.3 which
shows the plaquette expectation values, their autocorrelation times and
the acceptance rates for Nf = 2 + 1 + 1 high statistics runs with the non-
degenerate doublet simulated using the PHMC. All the simulations with
the bug present show a clear bias which increases the plaquette expectation
value. In addition, a marked increase in the variance can be seen in
Figure E.4. At first sight this seems to be counter-intuitive because the
amount of randomness is reduced by the recycling of random numbers,
but it is likely caused by the fact that cancellations between negative and
positive deviations from the mean value are suppressed. The width of the
distribution increases autocorrelation times as expected, but there is only a
mild effect on the acceptance rate. This explains why the bug was not noticed
in the production of the Nf = 2+ 1+ 1 ensembles D15.48 and D45.32, which
had to be regenerated as a consequence and once again reinforces that high
statistics runs with different parametrisations should be an essential part of
the software development process of LQCD applications.

After the bug had been fixed the set of high statistics runs was repeated
and a situation was seen where all parallelisations were compatible within
errors with regards to their central value, integrated autocorrelation time
and acceptance rate. Upon closer inspection of Figure E.3, however, there
seems to be a pattern in the data points with four-dimensional parallelisation,
indicating some bias which pushes the expectation value up mildly and
which affects the autocorrelation time slightly as the number of processes is
varied. In the next section it will be shown that this almost undetectably mild
bias is in fact yet another bug which was introduced in the process of fixing
the present one. It has only a minimal effect on the plaquette expectation
value in the Nf = 2 + 1 + 1 simulations done here, but will be shown to
emerge clearly with specially chosen simulation parameters.

incorrect prng initialisation

As a result of the issue described in the previous section, changes were made
to the entire PRNG framework in the tmLQCD software suite. In addition
to a safer and faster implementation of the sequential mode, the seeding
of the PRNGs in the parallel mode was modified to ensure that in two
identical runs with the same number of processes, the distribution of PRNG
seeds in the parallel mode was guaranteed to be the same. Unfortunately, a
bug was introduced which would have been quite undetectable in the early
stages of a production run, unless the parallelisation was changed or two
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Figure E.5: Plaquette expectation
values from Nf = 8 high statistics
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hinting at a bug in the computation
of the process-local seed for the
PRNG. Red � correspond to the
situation with the bug present
while blue � show the situation
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Figure E.6: Histograms of the
plaquette expectation value from
two Nf = 8 high statistics runs
with different parallelisations.
(top): Some processes have
been started with the same seed.
(bottom): The bug has been fixed.

different volumes would be run concurrently. This bug neither affected the
autocorrelation time nor the acceptance rate, leading instead to statistically
significant biases given sufficient statistical accuracy. Luckily, at this point in
time the framework for high-statistics tests was well established and more
tests were carried out which uncovered this issue.

As described in the previous section, it was seen that the bug had a
minor but visible effect on the plaquette expectation value but it was initially
unclear what the problem was, where it originated from and whether there
was some discernible pattern in the deviations. Based on the assumption
that it was related to random numbers, a special set of Nf = 8 high statistics
runs was carried out with the hope that the increased number of fermions –
and hence random numbers for pseudo-fermion fields – would make some
pattern emerge which would help in identifying the issue. As can be seen
in Figure E.5 after 105 trajectories, this assumption was well justified. The
significant bias was already visible after a fraction of the total simulation
time, but the pattern which eventually hinted at the origin of the problem in
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the calculation of the seed for each process, only became apparent after the
statistical error was sufficiently suppressed.

This set of data has the quite remarkable feature that even though
several processes were given the same seed, the autocorrelation time and
error of the observable was only very mildly affected. In a production
situation, there would therefore have been no hint whatsoever of the bug,
unless the parallelisation was changed midway or some other observable
showed unexpected behaviour. This becomes quite clear looking at the
histograms in the top panel of Figure E.6 which shows the distribution
of the plaquette observable in the molecular dynamics histories with the
most extreme deviation between two parallelisations (OpenMP vs. MPI with
256 processes). As can be imagined, in this case individual observations of
the plaquette or in fact the energy violation show no hint of there being
something significantly wrong. The situation after the bug had been fixed is
shown in the lower panel of the same figure from which it can be concluded
that the calculation of the process-local seed is now correctly implemented.
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FA D D I T I O N A L FA S T F O U R I E R T R A N S F O R M S

Figures F.1 and F.2 are complementary material to Chapter 11 and show
trajectories of gauge, quark determinant and determinant ratio forces and
averaged FFTs thereof. The number of integration steps is halved between
Figure F.1 and Figure F.2.
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Figure F.1: Representative MD
trajectories and the normalised
average frequency amplitudes
of the forces in a simulation
with mass preconditioning as
in Chapter 11 with N4 = 300

integration steps on the outermost
time scale. Top to bottom, top-
left to bottom right: gauge,
determinant and two determinant
ratios.
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additional fast fourier transforms

Figure F.2: Representative MD
trajectories and the normalised
average frequency amplitudes

of the forces in a simulation
with mass preconditioning

as in Chapter 11 with N4 =

150 integration steps on the
outermost time scale. Top to

bottom, top-left to bottom
right: gauge, determinant

and two determinant ratios.

-10

-5

0

5

10

δP
a μ
(x
,τ
)

-2

-1

0

1

2

δP
a μ
(x
,τ
)

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

δP
a μ
(x
,τ
)

-0.10

-0.05

0.00

0.05

0.10

δP
a μ
(x
,τ
)

τ
0 5 10 15 20

‖F
[δ
P
](
f
)‖

a
v
·N

−
1

f
0 5 10 15 20

1e-03

1e-02

1e-01

1e+00

‖F
[δ
P
](
f
)‖

a
v
·N

−
1

f
0 5 10 15 20

1e-03

1e-02

1e-01

1e+00

‖F
[δ
P
](
f
)‖

a
v
·N

−
1

f
0 5 10 15 20

1e-03

1e-02

1e-01

1e+00

‖F
[δ
P
](
f
)‖

a
v
·N

−
1

f
0 5 10 15 20

1e-03

1e-02

1e-01

1e+00

214



P U B L I C AT I O N S A N D C O N F E R E N C E C O N T R I B U T I O N S

[P1] A. Abdel-Rehim, P. Boucaud, N. Carrasco, A. Deuzeman, P. Dimopoulos, R. Frezzotti,
G. Herdoiza, K. Jansen, B. Kostrzewa, M. Mangin-Brinet, I. Montvay, D. Palao, G. Rossi,
F. Sanfilippo, L. Scorzato, A. Shindler, C. Urbach, and U. Wenger. A first look at maximally
twisted mass lattice QCD calculations at the physical point. PoS, LATTICE2013:264, 2013.
arXiv:1311.4522 [hep-lat].

[P2] A. Deuzeman, K. Jansen, B. Kostrzewa, and C. Urbach. Experiences with OpenMP in
tmLQCD. In 31st International Symposium on Lattice Field Theory, number 416 in PoS(LATTICE
2013). arXiv:1311.4521 [hep-lat].

[P3] A. Abdel-Rehim, F. Burger, B. Kostrzewa, A. Deuzeman, L. Scorzato, and C. Urbach. Recent
developments in the tmLQCD software suite. In 31st International Symposium on Lattice Field Theory,
number 414 in PoS(LATTICE 2013). arXiv:1311.5495 [hep-lat].

[P4] C. Alexandrou, V. Drach, K. Hadjiyiannakou, K. Jansen, B. Kostrzewa, and C. Wiese.
Looking at the gluon moment of the nucleon with dynamical twisted mass fermions. PoS,
LATTICE2013:289, 2014. arXiv:1311.3174 [hep-lat].

[P5] A.Abdel-Rehim, C. Alexandrou, P. Dimopoulos, R. Frezzotti, K. Jansen, C. Kallidonis,
B. Kostrzewa, M. Mangin-Brinet, G. Rossi, C. Urbach, and U. Wenger. Progress in
Simulations with Twisted Mass Fermions at the Physical Point. PoS, LATTICE2014:119, 2015.
arXiv:1411.6842 [hep-lat].

[P6] A. Abdel-Rehim, C. Alexandrou, F. Burger, M. Constantinou, P. Dimopoulos, R. Frezzotti,
K. Hadjiyiannakou, K. Jansen, C. Kallidonis, B. Kostrzewa, G. Koutsou, M. Mangin-Brinet,
M. Petschlies, G. Pientka, G. Rossi, C. Urbach, and U. Wenger. Simulating QCD at the Physical
Point with Nf = 2 Wilson Twisted Mass Fermions at Maximal Twist. 2015. arXiv:1507.05068
[hep-lat].

[P7] A. Abdel-Rehim, Alexandrou, M. C. Constantinou, P. Dimopoulos, R. Frezzotti, K. Had-
jiyiannakou, K. Jansen, C. Kallidonis, B. Kostrzewa, G. Koutsou, M. Mangin-Brinet,
M. Oehm, G. Rossi, C. Urbach, and U. Wenger. Nucleon and pion structure with lattice QCD sim-
ulations at physical value of the pion mass. Phys. Rev., D92(11):114,513, 2015. arXiv:1507.04936
[hep-lat].

215

http://arxiv.org/abs/1311.4522
http://arxiv.org/abs/1311.4521
http://arxiv.org/abs/1311.5495
http://arxiv.org/abs/1311.3174
http://arxiv.org/abs/1411.6842
http://arxiv.org/abs/1507.05068
http://arxiv.org/abs/1507.05068
http://arxiv.org/abs/1507.04936
http://arxiv.org/abs/1507.04936


S O F T WA R E D E V E L O P M E N T

[C1] tmLQCD – Versatile simulation and inversion code for various types of Wilson quarks. https:
//github.com/etmc/tmLQCD

[C2] hadron – Comprehensive library of R routines for the analysis of lattice QCD data such as
correlation functions. https://github.com/etmc/hadron

[C3] Rscripts – Large collection of R routines for the analysis of various lattice QCD data. Large array
of specialised and generalised plotting routines for various types of data. Integrates with and relies
heavily on routines from [C2]. Suitable for automated analysis of data produced with [C5, C6, C4].
https://github.com/kostrzewa/misc_R_scripts

[C4] numderiv – Extension of [C1] with support for the computation of numerical molecular dynamics
derivatives for most of the fermionic monomials supported by tmLQCD. Based on advanced
memory management framework written by A. Deuzeman. https://github.com/kostrzewa/
tmLQCD branch ndcloverrat_numderiv

[C5] libvcvpp – C++ interface and wrapper for a generalized contraction code with a flexible input
file format which allows the definition of correlation functions in terms of quark lines. The current
implementation has support for meson correlation functions with smearing and fuzzing. Point,
timeslice and volume sources are supported and various levels of dilution can be used. Propagators
should be provided in LIME format. Particularly well suited for automating workflows with
many valence quark masses. Also includes support for propagators computed using the tmLQCD
multiple mass solver. Designed to be straight-forward to extend to more complicated observables.
Based on MPI-parallel contraction routines from CVC by M. Petschlies, it provides a class library
defining the basic objects required for the contraction of quark propagators. Output format is
fully backwards-compatible to ETMC contraction code written by C. Urbach and M. Wagner.
https://github.com/kostrzewa/cvc, branch libcvcpp

[C6] bgqmeson_2pt – Jobscript and input file generator for the automatic computation of meson two-
point functions on BG/Q, designed to seamlessly integrate [C1] and [C5]. Trivially extensible to
other machines with the LoadLeveler (LL) workload scheduler. Makes extensive use of advanced
LL scheduling features. Modular design should allow extension to other architectures. https:
//github.com/kostrzewa/jobscripts subproject generators/bgqmeson_2pt

[C7] highstat-gen – Jobscript and input file generator for the automated running of high statistics
runs using [C1]. In its current form limited for usage on a particular cluster. Somewhat modular
design should allow generalisation. Integrates with [C8]. https://github.com/kostrzewa/
jobscripts subproject generators/bgqmeson_2pt

[C8] highstat-analysis – Collection of R routines for the analysis of data generated in high statistics
runs using [C1]. Integrates with [C7].
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