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Abstract: Within the framework of the quantum-statistical approach, utilizing both non-Hermitian

Hamiltonian and Lindblad’s jump operators, one can derive various generalizations of the von

Neumann equation for reduced density operators, also known as hybrid master equations. If one

considers the evolution of pure states only, i.e., disregarding the coherence between states and

spontaneous transitions from pure to mixed states, then one can resort to quantum-mechanical

equations of the Schrödinger type. We derive them from the hybrid master equations and study their

main properties, which indicate that our equations have a larger range of applicability compared to

other generalized Schrödinger equations proposed hitherto. Among other features, they can describe

not only systems which remain in the stationary eigenstates of the Hamiltonian as time passes, but

also those which evolve from those eigenstates. As an example, we consider a simple but important

model, a quantum harmonic oscillator driven by both Hamiltonian and non-Hamiltonian terms, and

derive its classical limit, which turns out to be the damped harmonic oscillator. Using this model,

we demonstrate that the effects of dissipative environments of different types can cancel each other,

thus resulting in an effectively dissipation-free classical system. Another discussed phenomenon is

whether a non-trivial quantum system can reduce to a classical system in free motion, i.e., without

experiencing any classical Newtonian forces. This uncovers a large class of quantum-mechanical non-

Hamiltonian systems whose dynamics are not determined by conventional mechanics’ potentials and

forces, but rather come about through quantum statistical effects caused by the system’s environment.

Keywords: open quantum systems; quantum dissipative phenomena; generalized Schrödinger

equation; master equation; density operator; non-Hermitian Hamiltonian

1. Introduction

Any realistic quantum system can be influenced not only by its natural environment,
but can also be affected by the process of measurement, i.e., the interaction with an external
measuring apparatus. Therefore, any observable quantum system is, or eventually becomes,
open. The history of the theory of open quantum systems (OQS) goes back a few decades,
counting from the early studies of dissipative systems based on quantizing classical mod-
els with damping, viscosity, and other phenomenologically introduced characteristics
of dissipation [1].

It soon became clear that these initial attempts were quite limited in terms of their
physical relevance because the role, complexity, and diversity of dissipative phenomena
drastically increase, both qualitatively and quantitatively, in quantum systems, compared
to classical ones. Therefore, one cannot take them all into account by simply starting from
classical dissipative models and quantizing them in a “textbook” manner.

Moreover, quantum systems and experiments exist whose complete description cannot
be achieved using a single-state vector because of the additional randomness or uncertainty
regarding precisely which of their possible quantum states is prepared. These additional
uncertainties could be caused by imperfectness of the devices used in experiments, which
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inevitably induce the classical randomness, or they could occur as a result of correlations
of states due to quantum entanglement.

Thus, a consistent description of open quantum systems requires extensive usage of
quantum statistical approaches [2,3], due to the occurrence of mixed states, i.e., statistical
ensembles of pure states, as soon as a system “opens up”. This requires the OQS formalism
to be upgraded from state vectors to density operators because the latter contain infor-
mation not only about quantum-mechanical states, but also about the classical statistical
probabilities thereof and correlations between them.

In conventional quantum mechanics, dealing with conservative systems, the transition
from the state-vector to density-matrix descriptions is straightforward, and leads to the
von Neumann equation, but, in the case of open systems, the situation is obviously more
complicated, as a result of the above-mentioned diversity in dissipative processes and
environments. This results in various generalizations of the von Neumann equation,
usually aggregated into the OQS approach commonly referred to as the master equations
for reduced density operators.

The Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation, or, simply,
the Lindblad equation, became popular first (chronologically) [4,5], due to the relative
simplicity of its foundations, which are based on the Markovian and rotating-wave approx-
imations [3]. Despite the achieved substantial technical simplifications in open systems’
descriptions, it is obvious that these approximations significantly reduce the range of
applicability of the GKSL approach.

An alternative framework and a range of models, which do not use the above-
mentioned approximation, are based on non-Hermitian Hamiltonians (NH). Probably
the earliest example can be found in the works of Feshbach, who showed that Hamiltonian
operators can acquire anti-Hermitian terms as a result of partition between a subsystem
and its environment [6,7].

Although master equations with non-Hermitian Hamiltonians have long been used—for
example, in quantum optics [2]—the modern version of the NH approach was proposed
relatively recently: when the post-selecting normalization procedure of a reduced density
matrix was introduced [8,9] and transitions from pure to mixed states were considered [10].
This immediately resulted in a vast number of applications in nearly all branches of
quantum physics; for examples from only the very recent literature, see [11–33].

In this paper, we derive various generalizations of the Schrödinger equation for open
systems while using the quantum-statistical approach as a starting point and motivation.
In Section 2, we give a brief introduction to the modern quantum-statistical approach based
on unification of the NH- and GKSL-type master equations. In Section 3, we perform
the dephasing and rank reduction procedures on density matrices, thus resorting from
the density-matrix to the state-vector description. We discuss three types of generalized
Schrödinger equations which occur as a result of dephasing, determine their equivalence
class, and discuss special cases: NH-driven versus GKSL-driven evolution. Their basic
properties are discussed in Section 4, where we focus on the evolution of stationary states,
invariances, and relations between mean values. An instructive example is considered
in Section 5, where we consider OQS models that reduce to the damped oscillator upon
dephasing and averaging in the coherent states basis. Conclusions are drawn in Section 6.

2. Generalized von Neumann Equations

Here, we adopt the quantum-statistical approach that deals exclusively with the
degrees of freedom of a subsystem, wherein all degrees of freedom of the environment
have been averaged (“traced out”). We thus regard the (reduced) density operator of a
subsystem as a primary operator for quantum-statistical description: the mean value of a
quantum observable defined on a Hilbert space associated with the subsystem’s degrees of
freedom is computed as the trace of the product of its operator with the density operator.
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If density operator is normalized, i.e., its trace’s value is constant (can thus be set to 1)
and preserved during the system’s time evolution, then we denote it by ρ̂; otherwise, we
denote it by ϱ̂. The relation between these two density matrices is straightforward:

ρ̂ = ϱ̂/Tr ϱ̂, (1)

therefore, definitions for statistical mean values are

⟨Ô⟩ ≡ Tr (ρ̂ Ô), ⟨Ô⟩ϱ ≡ Tr (ϱ̂ Ô) = ⟨Ô⟩Tr ϱ̂, (2)

where we use the subscript ϱ to differentiate the notations.
Furthermore, we assume that the dissipative environment’s influence upon a subsys-

tem can be encoded in two different, but not mutually exclusive, ways.
The first approach is to use the anti-Hermitian terms of the subsystem’s Hamiltonian.

Any non-Hermitian Hamiltonian operator can always be written as the sum of self- and
skew-adjoint components:

Ĥ = Ĥ+ + Ĥ− = Ĥ+ − i Γ̂, (3)

where we denote Ĥ± = 1
2 (Ĥ ± Ĥ†) = ±Ĥ†

± and introduce a self-adjoint operator Γ̂ ≡
iĤ−, which is commonly referred to as the decay rate operator. It should be noted that,
strictly speaking, the operator Ĥ is not a true Hamiltonian, but rather an analytical way
of writing down a set of two physically relevant operators Ĥ 7→ (Ĥ+, Γ̂), as we shall
demonstrate below.

A second type of dissipation can be described using the non-Hamiltonian (Liouvillian)
term, dubbed the Lindblad’s dissipator:

D̂ρ̂ = ∑
k

γk

(

L̂k ρ̂L̂†
k −

1

2
{ρ̂, L̂†

k L̂k}
)

=
1

2 ∑
k

γk

(

[L̂k, ρ̂L̂†
k ] + [L̂k ρ̂, L̂†

k ]
)

, (4)

where L̂k is called the Lindblad, collapse, or jump operator; γs are non-negative couplings
which can be derived from the correlation functions of the environment (usually playing
the role of relaxation rates for different decay modes); and the summation index runs
k = 1, . . ., N2 − 1, where N is the dimension of the system [4,5]. Thus, D̂ is a Liouvillian-
type operator in the quantum dynamical semigroup form, which is traceless, linear with
respect to the density matrix, and quadratic with respect to the jump operators.

Furthermore, the general equation of motion for the density matrix was proposed
in [9]. For the normalized density matrix, it reads as

d

dt
ρ̂ = − i

h̄

(

Ĥρ̂ − ρ̂ Ĥ†
)

+
i

h̄
⟨Ĥ − Ĥ†⟩ρ̂ + ∑

k

γk

(

L̂k ρ̂L̂†
k −

1

2
{ρ̂, L̂†

k L̂k}
)

= − i

h̄

[

Ĥ+, ρ̂
]

− 1

h̄

{

Γ̂, ρ̂
}

+
2

h̄
⟨Γ̂⟩ρ̂ + ∑

k

γk

(

L̂k ρ̂L̂†
k −

1

2
{ρ̂, L̂†

k L̂k}
)

, (5)

where square and curly brackets denote, respectively, the commutator and anticommutator,
⟨Γ̂⟩ = tr(ρ̂ Γ̂), according to our notations for mean values in (2).

Furthermore, the right-hand side of Equation (5) is essentially a sum of the following
three terms:

− i

h̄

[

Ĥ+, ρ̂
]

, −1

h̄

{

Γ̂, ρ̂
}

+
2

h̄
⟨Γ̂⟩, ∑

k

γk

(

L̂k ρ̂L̂†
k −

1

2
{ρ̂, L̂†

k L̂k}
)

, (6)

which means that it is the generalization of the quantum von Neumann equation (repre-
sented by the first term) based on the unification of the quantum-statistical equation for
non-Hermitian Hamiltonians (second term) with the Lindblad master equation approach
(third term). As discussed in Section 1, the Lindblad’s dissipator and non-Hermitian Hamil-
tonian parts have different physical origins and, thus, should describe different types of
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dissipation. Comparing the structure of Equation (5) to the conventional von Neumann
equation, one can see that it is the operator Ĥ+ that plays the role of a Hamiltonian of the
system, whereas the anti-Hermitian part of Ĥ contributes, together with the Lindblad’s
dissipator, to the non-Hamiltonian (Liouvillian) part. This reaffirms our earlier remark after
Equation (3) about the physical meaning of Ĥ.

Each of the three terms in (6) independently has a vanishing trace, which means that
the trace of ρ̂ is conserved at all times, as it is necessary for the probabilistic interpretation.
It should also be noted that the Lindblad term cannot be entirely absorbed into the non-
Hermitian Hamiltonian term, in general, because it contains not only the anticommutator
{ρ̂, L̂†

k L̂k}, but also the term L̂k ρ̂L̂†
k , which is required by the semigroup structure and

tracelessness of the Lindblad’s dissipator.
Since the density operator is capable of describing not only pure but also mixed states,

it is an important feature when dealing with dissipative systems. However, the case of
pure states is still fairly special: using the master equation in (5), one can show that the
evolution equation for the quantum purity reads as

d

dt
P = R =

4

h̄

[

⟨Γ̂⟩P − Tr(ρ̂2 Γ̂)
]

+ 2 ∑
k

γk

[

Tr(ρ̂L̂†
k ρ̂L̂k)− Tr(ρ̂2 L̂†

k L̂k)
]

, (7)

where P = tr(ρ̂2) is the purity. This equation indicates that the purity evolution rate R
is determined by the NH terms and Lindblad terms independently of each other and in
different ways. If evolution starts from an initially pure state, for which ρ̂2(t0) = ρ̂(t0) =
|Ψ0⟩⟨Ψ0|, then one obtains

R|t=t0
= 2 ∑

k

γk

(

⟨L̂†
k⟩Ψ0

⟨L̂k⟩Ψ0
− ⟨L̂†

k L̂k⟩Ψ0

)

, (8)

where we used the notation ⟨ . ⟩Ψ = ⟨Ψ| . |Ψ⟩ for mean values in the Hilbert space of |Ψ⟩s.
This formula indicates that initially pure states continuously evolve into mixed ones due
to the Lindblad term in the master equation, while its non-Hermitian Hamiltonian part
does not affect this process (this, however, does not preclude non-Hermitian Hamiltonians
alone from triggering spontaneous transitions from pure to mixed states in the presence of
quantum fluctuations, cf. [10]).

Let us now consider the non-normalized density matrix. Its evolution equation can be
derived similarly:

d

dt
ϱ̂ = − i

h̄

(

Ĥϱ̂ − ϱ̂ Ĥ†
)

+ ∑
k

γk

(

L̂k ϱ̂L̂†
k −

1

2
{ϱ̂, L̂†

k L̂k}
)

= − i

h̄

[

Ĥ+, ϱ̂
]

− 1

h̄

{

Γ̂, ϱ̂
}

+ ∑
k

γk

(

L̂k ϱ̂L̂†
k −

1

2
{ϱ̂, L̂†

k L̂k}
)

, (9)

where the trace conservation breaks due to the absence of the compensating term 2
h̄ ⟨Γ̂⟩ϱ̂, cf.

Equation (6). The dynamical value of the density matrix’s trace is no longer an identity but
a solution to the first-order differential equation

d

dt
Tr ϱ̂ =

2

ih̄
Tr
(

ϱ̂Ĥ−
)

= −2

h̄
⟨Γ̂⟩ϱ , (10)

where, in the last step, we assume the notations in (2).
The existence of two types of density operators, normalized and non-normalized,

can be useful in certain applications, for example, when a system can evolve in either a
sustainable or a non-sustainable way [34]. Then, the non-normalized density operator
describes the system which inevitably decays (or diverges), whereas the normalized density
operator indicates that gain and loss somehow balance each other out; therefore, the system
sustains itself.
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3. Generalized Schrödinger Equations

In this section, we derive relations between quantum-statistical master equations
from the previous section and the quantum-mechanical Schrödinger-type equations for
state vectors.

3.1. Dephasing and State-Vector Reduction

If one considers the evolution of only the state vectors, then one narrows the physical
picture by neglecting various quantum-statistical phenomena, such as coherence, because
they are predominantly described by the off-diagonal components of a density matrix.
In other words, a forced dephasing can be performed, which turns a system into a plain
statistical mixture, thus making its description closer to the classical. If this is acceptable, if
an initial state can be prepared to be pure, and also if “mixing” quantum fluctuations can
be neglected, then one can indeed resort to a state-vector description, i.e., consider, for each
state, the time evolution of only one diagonal element of a density matrix. The rank of the
latter thus effectively reduces to one because its other elements are assumed to be zeros.

We thus consider the special case of a statistical operator:

ρ̂ → |Φ⟩⟨Φ|, ϱ̂ → |Ω⟩⟨Ω|, (11)

for which Equation (5) reduces to a Hermitian conjugate pair of equations of a Schrödinger type:

ih̄ ∂t |Φ⟩ =

[

Ĥ+
i

2
h̄ ∑

k

γk

(

⟨L̂†
k⟩Φ

⟨Φ|Φ⟩ − L̂†
k

)

L̂k

]

|Φ⟩ − 1

2
⟨Ĥ − Ĥ†⟩Φ|Φ⟩

=

[

Ĥ+ +
i

4
h̄ ∑

k

γk

⟨Φ|Φ⟩
(

⟨L̂†
k⟩Φ L̂k − L̂†

k⟨L̂k⟩Φ

)

]

|Φ⟩ (12)

−i

[

Γ̂ − ⟨Γ̂⟩Φ − 1

4
h̄ ∑

k

γk

(

⟨L̂†
k⟩Φ L̂k + L̂†

k⟨L̂k⟩Φ

⟨Φ|Φ⟩ − 2L̂†
k L̂k

)]

|Φ⟩,

and, similarly, for the non-normalized density matrix evolution (9):

ih̄ ∂t |Ω⟩ =

[

Ĥ+
i

2
h̄ ∑

k

γk

(

⟨L̂†
k⟩Ω

⟨Ω|Ω⟩ − L̂†
k

)

L̂k

]

|Ω⟩

=

[

Ĥ+ +
i

4
h̄ ∑

k

γk

⟨Ω|Ω⟩
(

⟨L̂†
k⟩Ω L̂k − L̂†

k⟨L̂k⟩Ω

)

]

|Ω⟩ (13)

−i

[

Γ̂ +
1

4
h̄ ∑

k

γk

(

2L̂†
k L̂k −

⟨L̂†
k⟩Ω L̂k + L̂†

k⟨L̂k⟩Ω

⟨Ω|Ω⟩

)]

|Ω⟩,

where, in the second and subsequent lines of either Equation (12) or (13), we explicitly
separate Hermitian and anti-Hermitian components of the Lindblad part:

Ĥ(Φ)
L =

i

2
h̄ ∑

k

γk

(

⟨L̂†
k⟩Φ

⟨Φ|Φ⟩ − L̂†
k

)

L̂k, Ĥ(Ω)
L =

i

2
h̄ ∑

k

γk

(

⟨L̂†
k⟩Ω

⟨Ω|Ω⟩ − L̂†
k

)

L̂k, (14)

ĤL± =
1

2
(ĤL ± Ĥ†

L) = ±Ĥ†
L±, Γ̂L = iĤL− , (15)

assuming our usual notations.
One can see that the Lindblad term can be now viewed as a part of the non-Hermitian

Hamiltonian in Equation (12) or Equation (13), which was not possible in the underlying
master equations (due to the presence of the term containing a density matrix “sandwiched”
between two Lindblad operators). This is a side effect of the imposed dephasing procedure
in (11), which turns some of the Lindblad operators into their averages.
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Another side effect of the dephasing and rank-truncating of the original density
matrices is that the norms of the corresponding state vectors |Φ⟩ and |Ω⟩ are not conserved
in general (which is not surprising for |Ω⟩ but is for |Φ⟩). From Equations (12) and (13),
one obtains the evolution equation for the norms:

∂t ⟨Φ|Φ⟩ = −2

h̄
⟨Γ̂⟩Φ(1 − ⟨Φ|Φ⟩)+ ∑

k

γk

(

⟨L̂†
k⟩Φ⟨L̂k⟩Φ

⟨Φ|Φ⟩ − ⟨L̂†
k L̂k⟩Φ

)

, (16)

∂t ⟨Ω|Ω⟩ = −2

h̄
⟨Γ̂⟩Ω + ∑

k

γk

(

⟨L̂†
k⟩Ω⟨L̂k⟩Ω

⟨Ω|Ω⟩ − ⟨L̂†
k L̂k⟩Ω

)

, (17)

which can be viewed as first-order differential equations for, respectively, ⟨Φ|Φ⟩ and ⟨Ω|Ω⟩
as functions of time. Each of these equations is in fact a generalization of the normalization
condition of a state vector in terms of an inner product. They also indicate that the GKSL-
type dissipation dynamically breaks the normalization of both wavefunctions Φ and Ω.

The norm (non-)conservation can be used in certain applications, for example, in
establishing the classical limit of a dissipative system. According to Equation (16), the
classical regime is necessary to stop the ultimate decay of the system because the Lindblad
operators tend to become uncorrelated in the classical limit; therefore, the right-hand side of
Equation (16) tends to zero, and ⟨Φ|Φ⟩ = 1 becomes a solution. This feature can be useful
in decoherence models and in theories of mesoscopic systems and quantum chaos [35,36].

For other applications, it is more robust to use models with a state vector whose norm
is conserved at all times, cf. the generalized Schrödinger equations proposed in [37–39].
These models also cover situations when the measuring process is restarted or calibrated to
compensate for the “leakage” of probability.

Therefore, let us introduce the normalized state vector:

|Ψ⟩ ≡ ⟨Ω|Ω⟩−1/2 |Ω⟩, (18)

by analogy with the normalization procedure for density matrices (1). Its dynamics are
governed by the following equation:

ih̄ ∂t |Ψ⟩ =

[

Ĥ+
i

2
h̄ ∑

k

γk

((

⟨L̂†
k⟩Ψ − L̂†

k

)

L̂k − ⟨L̂†
k⟩Ψ⟨L̂k⟩Ψ + ⟨L̂†

k L̂k⟩Ψ

)

]

|Ψ⟩ − 1

2
⟨Ĥ − Ĥ†⟩Ψ|Ψ⟩

=

[

Ĥ+ +
i

4
h̄ ∑

k

γk

(

⟨L̂†
k⟩Ψ L̂k − L̂†

k⟨L̂k⟩Ψ

)

]

|Ψ⟩ (19)

−i

[

Γ̂ − ⟨Γ̂⟩Ψ − 1

4
h̄ ∑

k

γk

(

⟨L̂†
k⟩Ψ L̂k + L̂†

k⟨L̂k⟩Ψ − 2L̂†
k L̂k − 2⟨L̂†

k⟩Ψ⟨L̂k⟩Ψ + 2⟨L̂†
k L̂k⟩Ψ

)

]

|Ψ⟩,

where we remember the notation in (3). One can directly check that the norm of a state
vector is conserved at all times: ∂t ⟨Ψ|Ψ⟩ = 0. Although the corresponding density ma-
trix |Ψ⟩⟨Ψ| would no longer be a solution to either of the original master equations—(5)
and (9)—this equation belongs to the same equivalence class as Equations (12) and (13).

Indeed, three state vectors are related through the transformations

|Ψ⟩ = ⟨Ω|Ω⟩−1/2 |Ω⟩ = ⟨Φ|Φ⟩−1/2 |Φ⟩,

|Ω⟩ = exp

[

−
∫

(

1

h̄
⟨Γ̂⟩Ψ +

1

2 ∑
k

γk

(

⟨L̂†
k L̂k⟩Ψ − ⟨L̂†

k⟩Ψ⟨L̂k⟩Ψ

)

)

dt

]

|Ψ⟩ (20)

= exp

(

−1

h̄

∫

⟨Γ̂⟩Φ dt

)

|Φ⟩,
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defined up to a standard unitary transformation. These relations mean that the three
generalized Schrödinger equations we have derived, (12), (13), and (19), belong to the same
equivalence class as defined above.

To summarize, by performing dephasing and rank reduction of the quantum-statistical
equations, we derived three forms of the generalized Schrödinger equation: (12), (13),
and (19). The former two were derived from, respectively, Equations (5) and (9), whereas
the latter is the one with a conserved norm. These equations belong to the same equivalence
class as (20); therefore, the choice between them for a specific model is a matter of physical
relevance, cf. the remarks at the end of Section 2.

3.2. Special Cases of a Normalized State-Vector Equation

For reasons given in the previous section, we choose Equation (19) as the main object
of our studies. For brevity, we omit the Lindblad operators’ summation and related indices
from now on, i.e.,

∑
k

γk

(

L̂k ρ̂L̂†
k −

1

2
{ρ̂, L̂†

k L̂k}
)

7→ γ

(

L̂ρ̂L̂† − 1

2
{ρ̂, L̂† L̂}

)

, (21)

while implying the summation whenever the Lindblad operators occur in a
quadratic combination.

Since the NH and GKSL parts of Equation (19) have quite different physical origins
and applications, it is convenient to consider them separately:

• Generic NH-driven evolution. In this case, we neglect the Lindblad part; therefore,
Equation (19), as well as Equations (12) and (13), reduce to

ih̄ ∂t |Ψ⟩ = Ĥ|Ψ⟩ − 1

2
⟨Ĥ − Ĥ†⟩Ψ|Ψ⟩

= Ĥ+|Ψ⟩ − i
(

Γ̂ − ⟨Γ̂⟩Ψ

)

|Ψ⟩, (22)

where the anti-Hermitian part Ĥ− = −iΓ̂ is assumed to account for all dissipative
effects except those coming from the Lindblad’s jump operators;

• GKSL-driven evolution. In this case, we neglect the non-Lindblad dissipation part;
therefore, Equation (19) reduces to

ih̄ ∂t |Ψ⟩ =

[

Ĥ+ +
i

2
h̄γ
((

⟨L̂†⟩Ψ − L̂†
)

L̂ + ⟨L̂† L̂⟩Ψ − ⟨L̂†⟩Ψ⟨L̂⟩Ψ

)

]

|Ψ⟩

=
(

Ĥ+ + ĤL+

)

|Ψ⟩ − i (Γ̂L − ⟨Γ̂L⟩)|Ψ⟩, (23)

ĤL+ ≡ i

4
h̄γ
(

⟨L̂†⟩Ψ L̂ − ⟨L̂⟩Ψ L̂†
)

,

Γ̂L ≡ −1

4
h̄γ
(

⟨L̂†⟩Ψ L̂ + ⟨L̂⟩Ψ L̂† − 2L̂† L̂
)

,

where Ĥ+ is a Hermitian part of the original subsystem’s Hamiltonian, and we assume
the notations in (21).
This equation confirms that the GKSL-driven evolution of a state vector belongs to a
class of non-Hermitian Hamiltonian evolutions with a conserved norm; see also the
remark after Equation (15).

In the next section, we study these special cases separately, while keeping OQS applications
in mind.

4. Basic Properties

Let us study the main properties of the generalized Schrödinger equation in (19) while
focusing on its limit cases, as discussed in Section 3.2 above.
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4.1. Generic NH-Driven Evolution

In this special case, evolution is governed by Equation (22). It conserves the norm of
the state vector because

∂t ⟨Ψ|Ψ⟩ = 0 (24)

at all times. The evolution equation is invariant under a complex-valued shift of the zero of
the operator Ĥ:

Ĥ 7→ Ĥ+ (ε0 − iγ0) Î, |Ψ⟩ 7→ e−iε0t/h̄ |Ψ⟩, (25)

with Î being the identity operator, as per usual. Remember that the conventional Schrödinger
equation for conservative systems is invariant only under a real-valued shift in the zero of
the Hamiltonian operator; therefore, the invariance in (25) is something which is more gen-
eral. This seems plausible from the phenomenological point of view because observables
should be independent not only from the real-valued shifts in the energy’s zero but also
from the imaginary-valued shifts that could possibly occur due to quantum fluctuations
and virtual particles.

Norm conservation and shift invariance are the features that simultaneously occur in
the master equation in (5).

Furthermore, if |Ψ⟩ is an eigenvector of the decay rate operator Γ̂, then our equation
reduces to the ordinary Schrödinger equation with the Hermitian Hamiltonian Ĥ+.

If Ĥ is time-independent, then mean values of its components evolve according to the
following formulae:

d

dt
⟨Ĥ+⟩Ψ =

2

h̄

(

⟨Ĥ+⟩Ψ⟨Γ̂⟩Ψ − 1

2
⟨{Ĥ+, Γ̂}⟩Ψ

)

, (26)

d

dt
⟨Γ̂⟩Ψ =

2

h̄

(

⟨Γ̂⟩2
Ψ − ⟨Γ̂2⟩Ψ +

i

2
⟨
[

Ĥ+, Γ̂
]

⟩Ψ

)

=
i

h̄
⟨
[

Ĥ+, Γ̂
]

⟩Ψ − 2

h̄
Var(Γ), (27)

where Var(X) ≡ ⟨X2⟩Ψ −⟨X⟩2
Ψ is a variance of a physical variable described by the operator

X̂. Therefore, if |Ψ⟩ is an eigenvector of Ĥ+, then the average energy is conserved, and, if it
is an eigenvector of the decay operator Γ̂, then the mean values of both energy and decay
rate are conserved.

Furthermore, the evolution Equation (22) allows the usual stationary states, i.e, the
eigenvectors of the Hamiltonian Ĥ+, only if the latter commutes with the decay operator
(which corresponds to Ĥ being a normal operator).

This means that our model, even in its truncated form (without the Lindblad part),
can describe two types of dissipative systems: those with balanced gain and loss, for which
[

Ĥ+, Γ̂
]

= −(i/2)
[

Ĥ, Ĥ†
]

= 0 (hence, the usual stationary states can exist [13]), and those
with strong dissipation, for which

[

Ĥ+, Γ̂
]

̸= 0 (hence, no usual stationary states can exist
in general). This feature significantly expands the range of applicability of our generalized
Schrödinger equation approach compared to some other generalizations, cf. [37], and places
the proverbial pyramid on its base.

4.2. GKSL-Driven Evolution of L-Eigenvector

Let us consider the special case of purely GKSL-driven evolution in (23), with two
additional assumptions: we restrict ourselves to only one species of Lindblad jump opera-
tors (hence, the index k takes only one value), and we assume that our state vector is an
eigenvector of the jump operator:

|Ψ⟩ = |L⟩ : L̂|L⟩ = L|L⟩, ⟨L|L⟩ = 1, (28)

where an eigenvalue L = ⟨L|L̂|L⟩ is a complex-valued function of time in general.
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Under these assumptions, Equation (23) yields the following evolution equation for
the state vector |L⟩:

ih̄ ∂t |L⟩ =

[

Ĥ+ − i

2
h̄γ1

(

L̂† − L∗ Î
)

L̂

]

|L⟩

=
(

Ĥ+ + ĤL+

)

|Ψ⟩ − i (Γ̂L − ⟨Γ̂L⟩L)|Ψ⟩, (29)

ĤL+ ≡ i

4
h̄γ1

(

L∗ L̂ − LL̂†
)

7→ i

4
h̄γ1

(

|L|2 − LL̂†
)

,

Γ̂L ≡ −1

4
h̄γ1

(

L∗ L̂ + LL̂† − 2L̂† L̂
)

7→ −1

4
h̄γ1

(

|L|2 − LL̂†
)

,

where the notation ‘ 7→’ indicates that the projection of the jump operator on the eigen(ket)vector
is implied. Notice also that, for this model,

⟨ĤL+⟩L = 0, ⟨Γ̂L⟩L = 0, (30)

which can be directly verified.
Otherwise, this model belongs to a class of NH models discussed in Section 4.1, as

one can clearly see from the form of its evolution equation. This means that the properties
in (24) and (25), as well as other generic properties of NH-driven evolution equations,
would be valid for this case too.

If operators Ĥ+ and L̂ are themselves time-independent, then their mean values evolve
according to the following equations:

d

dt
⟨Ĥ+⟩L =

γ1

2
|L|2
(

2⟨Ĥ+⟩L −
1

L
⟨L̂Ĥ+⟩L −

1

L∗ ⟨Ĥ+ L̂†⟩L

)

=
γ1

2
|L|2⟨ĈL+ + Ĉ†

L+⟩L =
γ1

2
|L|2⟨Ĉ∆+⟩L, (31)

1

L

d

dt
L = − i

h̄

(

1

L
⟨L̂Ĥ+⟩L − ⟨Ĥ+⟩L

)

+
γ1

2

(

|L|2 − ⟨L̂L̂†⟩L

)

=
i

h̄
⟨ĈL+⟩L −

γ1

2
⟨ĈL⟩L, (32)

1

L∗
d

dt
L∗ =

i

h̄

(

1

L∗ ⟨Ĥ+ L̂†⟩L − ⟨Ĥ+⟩L

)

+
γ1

2

(

|L|2 − ⟨L̂L̂†⟩L

)

= − i

h̄
⟨Ĉ†

L+⟩L −
γ1

2
⟨ĈL⟩L, (33)

where we denoted ĈL ≡
[

L̂, L̂†
]

= Ĉ†
L, ĈL+ ≡

[

Ĥ+, L̂/L
]

, Ĉ∆+ ≡
[

Ĥ+, ∆̂L

]

and
∆̂L ≡ L̂/L − L̂†/L∗ = −∆̂†

L.
From the first of these equations, one can deduce that the original subsystem’s

average energy is conserved if operators Ĥ+ and i ∆̂L commute, i.e., they have
common eigenvectors.

Furthermore, by rearranging those equations one can obtain the relation

d

dt
⟨Ĥ+⟩L = γ1|L|2⟨Ĥ+⟩L −

ih̄γ1

2

(

1

L

dL

dt
− 1

L∗
dL∗

dt

)

, (34)

which can be regarded as a first-order differential equation for ⟨Ĥ+⟩L as a function of time.
Solving it, we obtain the relation between mean values

⟨Ĥ+⟩L = ⟨Ĥ+⟩0 e
γ1

∫ t
t0
|L|2dt′ − ih̄γ1

2
ln(L/L∗)

− ih̄γ2
1

2
e

γ1

∫ t
t0
|L|2dt′

t
∫

t0

e
−γ1

∫ t′
t0
|L|2dt′′

ln(L/L∗)|L|2dt′, (35)
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where ⟨Ĥ+⟩0 = ⟨Ĥ+⟩L

∣

∣

t=t0
is an initial value of average energy as a function of time.

Furthermore, let us study the eigenvectors of the Hamiltonian Ĥ+, which are solutions
to the evolution equation (Equation (29)). For simplicity, let us consider a special case when
Ĥ+ commutes with the Lindblad operator:

[

Ĥ+, L̂
]

= 0, (36)

thus, having common eigenvectors, Ĥ+|Lε⟩ = ε|Lε⟩. In this case, mean value of Ĥ+ is
conserved in time, which corresponds to an open system with balanced gain and loss.

Let us also perform the decomposition into the projected and orthogonal parts with
respect to the vector |Lε⟩:

L̂†|Lε⟩ = L∗|Lε⟩+ L⊥|⊥⟩, (37)

where ⟨Lε|⊥⟩ = 0 and L⊥ = ⟨⊥|L̂†|Lε⟩/⟨⊥|⊥⟩. Then, Equation (29) reduces to the
differential equation

∂t |Lε⟩ = − iε

h̄
|Lε⟩ −

γ1

2
LL⊥|⊥⟩, (38)

whose formal solution can be written in the form

|Lε⟩ = e−iε(t−t0)/h̄



|L⟩0 −
γ1

2

t
∫

t0

dt′ eiεt′/h̄LL⊥|⊥⟩



, (39)

where |L⟩0 = |Lε⟩
∣

∣

t=t0
is an initial value of |Lε⟩ as a vector function of time.

Equation (38) and the solution in (39) demonstrate that the eigenstates of the Hamilto-
nian Ĥ+, which are solutions of Equation (29), are not stationary in general, even in the
balanced case with conserved average energy. This reaffirms that the evolution in (29) is
indeed of a dissipative type, with the time-dependent source/sink vector LL⊥|⊥⟩.

5. Example: Dissipative Harmonic Oscillator

In the conventional quantum mechanics of conservative systems, the harmonic os-
cillator is a benchmark model with a clearly derivable classical limit and plenitude of
applications. Its Hamiltonian can be written in the standard form:

ĤHO = p̂2/2 + mω2q̂2/2 = h̄ω(â† â + 1/2), (40)

where â = (
√

mω/h̄ q̂ + i p̂/
√

mωh̄)/
√

2 and â† are ladder operators whose commutator
[â, â†] = 1, as per usual.

By taking quantum averages in the eigenbasis of the operator â, usually referred to as
coherent states, one can obtain a set of ordinary differential equations:

d

dt
α = −iωα, (41)

d

dt

(

⟨ p̂⟩α

⟨q̂⟩α

)

=

(

0 −mω2

1/m 0

)(

⟨ p̂⟩α

⟨q̂⟩α

)

, (42)

where â|α⟩ = α|α⟩. From these equations, a second-order differential equation
immediately follows:

d2q

dt2
+ ω2q = 0, (43)

where q = ⟨q̂⟩α, which describes the classical harmonic oscillator.
On the other hand, let us recall the classical damped oscillator

d2q

dt2
+ 2δ

dq

dt
+ ω2

0q = 0, (44)
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where δ = µ/2m̃, ω0 =
√

κ/m̃, and m̃, κ, and µ are, respectively, mass, spring constant,
and friction. This model was extensively used in the early quantization attempts of dissipa-
tive systems.

The straightforward quantization of the system in (44) via the Lagrangian approach
has been shown to be somewhat inconsistent [1,40]. The currently prevailing point of view
is that the damped oscillator can be a classical limit of a number of quantum models; one
example is the model based on Gisin’s generalized Schrödinger equation.

In our case, the question arises: what model, as defined by means of both Hamiltonian
and non-Hamiltonian (Liouvillian) terms, recovers Equation (44) in the classical limit?

Similarly to the previous section, let us consider cases of generic NH-driven and GKSL-
driven evolutions separately first; then, we consider the unified NH–GKSL evolution.

5.1. Generic NH-Driven Evolution

Let us generalize the Hamiltonian (40) by moving its overall coupling constant into the
complex domain. From the quantum-mechanical point of view, it is a natural generalization
because coupling constants are not observables per se and, therefore, do not have to be real
numbers, especially in the presence of quantum fluctuations and virtual particles. We thus
assume that

Ĥ = (1 − iη/ω)ĤHO = h̄(ω − iη)(â† â + 1/2), (45)

while the notations in Equation (40) remain intact. Correspondingly, the evolution of this
system is described by Equation (22), with the following associations:

Ĥ+ = h̄ω(â† â + 1/2), Γ̂ = h̄η â† â, (46)

while mean values are assumed to be computed in the eigenbasis |α⟩ of the operator â.
Note that solutions to other generalized Schrödinger Equations (12) and (13), in this basis,
are related to |Ψ⟩ via the transformations

exp

(

η
∫

|α|2 dt

)

|α(Ω)⟩ = |α(Ψ)⟩ = |α(Φ)⟩, (47)

which can be easily derived from Equation (20); it is, thus, sufficient to study a case of a
normalized state vector |Ψ⟩, as mentioned before.

Upon averaging in the basis |α⟩, we obtain the analogues of Equations (41) and (42)
for the model in (45):

d

dt
α = −(η + iω)α, (48)

d

dt

(

⟨ p̂⟩α

⟨q̂⟩α

)

=

(

−η −mω2

1/m −η

)(

⟨ p̂⟩α

⟨q̂⟩α

)

, (49)

from which a second-order differential equation immediately follows:

d2q

dt2
+ 2η

dq

dt
+ (ω2 + η2)q = 0, (50)

where q = ⟨q̂⟩α. Thus, the classical limit of the model (45) is the damped oscillator (44),
with

δ 7→ η, ω2
0 7→ ω2 + η2, (51)

which means that the NH coupling induces friction in the classical limit. Solving this, we
reveal the following cases:
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• If ω ̸= 0 and η > 0, then the damping is subcritical, which is an exponential decay
with oscillations with the frequency ω:

q(t) = q0 exp (−ηt)

[

cos (ωt) +
η + q̇0/q0

ω
sin (ωt)

]

, (52)

where q0 and q̇0 are, respectively, oscillator’s position and velocity at t = 0;
• If ω = 0 and η > 0, then the damping is critical:

q(t) = lim
ω→0

q0 exp (−ηt)

[

cos (ωt) +
η + q̇0/q0

ω
sin (ωt)

]

= q0 exp (−ηt)[1 + (η + q̇0/q0)t], (53)

which is rather surprising because the “Hamiltonian” (45) is completely skew-adjoint
in this case, yet it still yields a realistic classical system upon averaging.

Thus, in the classical limit, the model described by Equations (45) and (22) reduces to
either an underdamped or a critically damped harmonic oscillator, depending on the value
of frequency.

5.2. GKSL-Driven Evolution

Let us consider the conventional harmonic oscillator in (40) and assume that its
evolution is affected by the dissipative effects described by two jump operators:

L̂1 = â, L̂2 = â†, (54)

with the non-negative relaxation rates γ1 and γ2, respectively. Then, Equation (23) takes
the form

ih̄ ∂t |Ψ⟩ = ĤHO|Ψ⟩+ i

2
h̄
[

γ1

(

(⟨â†⟩Ψ − â†)â + ⟨â† â⟩Ψ − ⟨â†⟩Ψ⟨â⟩Ψ

)

+ γ2

(

â ↔ â†
)]

|Ψ⟩

=
(

ĤHO + ĤL+

)

|Ψ⟩ − i (Γ̂L − ⟨Γ̂L⟩)|Ψ⟩, (55)

ĤL+ ≡ i

4
h̄
[

γ1

(

⟨â†⟩Ψ â − ⟨â⟩Ψ â†
)

+ γ2

(

⟨â⟩Ψ â† − ⟨â†⟩Ψ â
)]

,

Γ̂L ≡ −1

4
h̄
[

γ1

(

⟨â†⟩Ψ â + ⟨â⟩Ψ â† − 2â† â
)

+ γ2

(

⟨â⟩Ψ â† + ⟨â†⟩Ψ â − 2ââ†
)]

,

where ĤHO is borrowed from Equation (40), and a shorthand notation ↔ means an inter-
change of symbols.

In the eigenbasis of the operator â, solutions to other generalized Schrödinger
Equations (12) and (13) are related via the transformations

|α(Ω)⟩ = exp

(

−1

2
γ2t

)

|α(Ψ)⟩ = |α(Φ)⟩, (56)

which can be easily derived from Equation (20); it is, thus, sufficient to study a case of a
normalized state vector |Ψ⟩ only.

Upon averaging in the basis |α⟩, Equation (55) yields the following analogues of
Equations (41) and (42):

d

dt
α = −

(

1

2
γ1 + iω

)

α, (57)

d

dt

(

⟨ p̂⟩α

⟨q̂⟩α

)

=

(

−γ1/2 −mω2

1/m −γ1/2

)(

⟨ p̂⟩α

⟨q̂⟩α

)

, (58)
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from which a second-order differential equation immediately follows:

d2q

dt2
+ γ1

dq

dt
+

(

ω2 +
1

4
γ2

1

)

q = 0, (59)

where q = ⟨q̂⟩α, as per usual.
Thus, the classical limit of the model in (55) is the damped oscillator (44) with

δ 7→ 1

2
γ1, ω2

0 7→ ω2 +
1

4
γ2

1, (60)

which means that the Lindblad evolution also induces friction in the classical limit.
It is worth noticing that the γ2-coupled term, γ2

(

(⟨â⟩Ψ − â)â† + ⟨ââ†⟩Ψ − ⟨â⟩Ψ⟨â†⟩Ψ

)

,
does not affect the evolution of coherent-state mean values based on Equation (19). This
indicates that this term represents higher-order corrections that can be taken into account
when returning to the more general (density operator) formalism.

Furthermore, by solving Equation (59), we reveal the following special cases:

• If ω ̸= 0, then the damping is subcritical, which is an exponential decay with oscilla-
tions with the frequency ω:

q(t) = q0 exp (−γ1t/2)

[

cos (ωt) +
γ1/2 + q̇0/q0

ω
sin (ωt)

]

, (61)

where q0 and q̇0 are, respectively, oscillator’s position and velocity at t = 0;
• If ω → 0, then the damping turns critical:

q(t) = lim
ω→0

q0 exp (−γ1t/2)

[

cos (ωt) +
γ1/2 + q̇0/q0

ω
sin (ωt)

]

= q0 exp (−γ1t/2)[1 + (γ1/2 + q̇0/q0)t], (62)

which is also surprising because the Hamiltonian can be neglected. In this case,
system’s evolution is driven solely by the non-Hamiltonian (Liouvillian) term, yet we
obtain a physically relevant classical system upon averaging.

5.3. NH–GKSL Evolution and Cancellation of Dissipations

Now let us unify the models described in Sections 5.1 and 5.2: we assume that the
dissipative effects are encoded both in the non-Hermitian Hamiltonian (45) and in the
Lindblad term with two jump operators (54).

In this case, Equation (19) takes the form

ih̄ ∂t |Ψ⟩ =
(

1 − i
η

ω

)

ĤHO |Ψ⟩+ i
η

ω
⟨ĤHO⟩Ψ|Ψ⟩+

i

2
h̄
[

γ1

(

(⟨â†⟩Ψ − â†)â + ⟨â† â⟩Ψ − ⟨â†⟩Ψ⟨â⟩Ψ

)

+ γ2

(

â ↔ â†
)]

|Ψ⟩

=
(

ĤHO + ĤL+

)

|Ψ⟩ − i
(

Γ̂L − ⟨Γ̂L⟩Ψ + Γ̂η − ⟨Γ̂η⟩Ψ

)

|Ψ⟩, (63)

ĤL+ ≡ i

4
h̄
[

γ1

(

⟨â†⟩Ψ â − ⟨â⟩Ψ â†
)

+ γ2

(

⟨â⟩Ψ â† − ⟨â†⟩Ψ â
)]

,

Γ̂L ≡ −1

4
h̄
[

γ1

(

⟨â†⟩Ψ â + ⟨â⟩Ψ â† − 2â† â
)

+ γ2

(

⟨â⟩Ψ â† + ⟨â†⟩Ψ â − 2ââ†
)]

,

Γ̂η ≡ h̄η â† â,

where ĤHO has been defined in Equation (40), and shorthand notation ‘↔’ means an
interchange of symbols.
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In the eigenbasis of the operator â, solutions to the other generalized Schrödinger
Equations (12) and (13) are related via the transformations in (20):

exp

(

η
∫

|α|2 dt

)

|α(Ω)⟩ = exp

(

−1

2
γ2t

)

|α(Ψ)⟩ = |α(Φ)⟩, (64)

which supports our decision to study the normalized state-vector case (see the end
of Section 3.1).

Furthermore, upon averaging in the basis |α⟩, Equation (63) yields the following
analogues of Equations (41) and (42):

d

dt
α = −

(

1

2
γ1 + η + iω

)

α, (65)

d

dt

(

⟨ p̂⟩α

⟨q̂⟩α

)

=

(

−η − γ1/2 −mω2

1/m −η − γ1/2

)(

⟨ p̂⟩α

⟨q̂⟩α

)

, (66)

from which a second-order differential equation immediately follows:

d2q

dt2
+ 2(η + γ1/2)

dq

dt
+
(

ω2 + (η + γ1/2)2
)

q = 0, (67)

where q = ⟨q̂⟩α, as per usual.
Thus, the classical limit of the model in (55) is the damped oscillator in (44) with

δ 7→ η + γ1/2, ω2
0 7→ ω2 + (η + γ1/2)2, (68)

which means that the NH–GKSL evolution also induces friction in the classical limit. Its
solutions reveal the following special cases:

• If ω ̸= 0 and η = −γ1/2 (the latter is possible because η can be both positive and
negative, unlike the strictly non-negative Lindblad relaxation constants), then the
damping term disappears in Equation (67). In this case, evolution becomes a plain
oscillation with the frequency ω:

q(t) = q0

(

cos (ωt) +
q̇0

q0ω
sin (ωt)

)

, (69)

where q0 and q̇0 are, respectively, the oscillator’s position and velocity at t = 0. This
indicates that the dissipative effects associated with NH and GKSL terms can act
against each other, which leads to their mutual cancellation;

• If ω ̸= 0 and η ̸= −γ1/2, then the damping is subcritical, which is an exponential
decay with oscillations at the frequency ω:

q(t) = q0 exp (−(η + γ1/2)t)

[

cos (ωt) +
η + γ1/2 + q̇0/q0

ω
sin (ωt)

]

, (70)

where q0 and q̇0 are, respectively, oscillator’s position and velocity at t = 0;
• If ω → 0 and η + γ1/2 > 0, then the damping becomes critical:

q(t) = lim
ω→0

q0 exp (−(η + γ1/2)t)

[

cos (ωt) +
η + γ1/2 + q̇0/q0

ω
sin (ωt)

]

= q0 exp (−(η + γ1/2)t)[1 + (η + γ1/2 + q̇0/q0)t], (71)

which is somewhat surprising because the Hamiltonian is neglected in this case;
therefore, the evolution becomes dominated by the Liouvillian term, yet we obtain a
physically realistic classical system upon averaging;
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• If ω → 0 and η + γ1/2 = 0, then the damping disappears, while the average value of
⟨q̂⟩α grows linearly in time:

q(t) = lim
ω→0

q0

(

cos (ωt) +
q̇0

q0ω
sin (ωt)

)

= q0 + q̇0t, (72)

which corresponds to a system in free motion. Notice that this classically free system
descends from a quantum system that does not have a Hamiltonian, hence it experi-
ences no forces in a sense of Newton’s first law of motion, yet its underlying dynamics
are non-trivial (due to the presence of non-Hamiltonian terms).

6. Conclusions

In the present study, we started out with the quantum-statistical approach, using
both the non-Hermitian Hamiltonian and Lindblad’s jump operators: we presented var-
ious generalizations of the von Neumann equation for density operator, which did not
assume the Markovian approximation in a general case. We demonstrated that, if one
performs the dephasing procedure by neglecting off-diagonal components of the density
matrix that are responsible for coherence and spontaneous transitions from pure to mixed
states, followed by neglecting all but one diagonal component thereof, then one reduces
quantum-statistical equations to quantum-mechanical Schrödinger-type equations for state
vectors. We thus restricted ourselves to dealing with pure states only, but it can be a robust
approximation in a number of cases where one has the full classical statistical information
about a system (which does not imply the full knowledge of the possible outcomes of
quantum measurement).

We first obtained generalized Schrödinger Equations (12) and (13), which directly
originated from the master equations, i.e., Equations (5) and (9), for normalized and non-
normalized density operators, respectively. We showed that both evolutions, (12) and (13),
do not preserve the norm of a state vector, due to the fact that the dephasing and rank
reduction procedures replace some jump operators with their mean values. Therefore,
in addition to those equations, we derived the generalized Schrödinger Equation (19),
which directly descends from neither of the original master equations, but describes the
time evolution of the state vector with a conserved norm. In a sense, Equation (19) can
be viewed as a state-vector analogue of Equation (5) because it is also derived using the
post-selecting procedure of normalization.

Furthermore, we demonstrated that all three Equations, (12), (13), and (19), belong to
the same equivalence class. For this reason, we focused our studies on the evolution in (19),
while keeping in mind applications to open quantum systems. We demonstrated that
equations from the equivalence class in (20) can describe not only systems which can stay
in the stationary eigenstates of the Hamiltonian, but also those which can evolve from those
eigenstates. This indicates that our generalizations have a broader range of applicability
than some of the generalized Schrödinger equations proposed hitherto. Another advantage
is that they do not contain any stochastic terms or other random functions.

From a mathematical viewpoint, each of these equations in general is both nonlinear
(with respect to wavefunction) and non-local because various mean values inside their
structure contain wavefunction and integration over the whole configuration space. These
two features indicate that our equations form a modeling framework that not only has a
rich mathematical structure, but is also a priori more natural for describing diverse quantum
phenomena and systems, including those involving measuring apparati.

Finally, as an instructive example, we considered the model of the quantum harmonic
oscillator in the presence of dissipative effects described by non-Hermitian Hamiltonian and
Lindblad’s terms. Using coherent states’ basis, we derived its classical limit, which turned
out to be the damped harmonic oscillator, though with different regimes. In particular, we
considered the case when non-Hermitian Hamiltonian and Lindblad’s dissipative effects
cancel each other out, thus resulting in the decay-free evolution of an oscillating system, at
least in the leading-order approximation after dephasing and averaging.
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Yet another interesting example shown is the classically free system which descends
from a non-trivial (not free from interactions) quantum system. A seeming contradiction
to Newton’s first law of motion is resolved due to the fact that the quantum system in
question does not have a Hamiltonian, therefore no Newtonian forces are present therein;
instead, its quantum dynamics are governed by NH and GKSL terms, which are both
non-Hamiltonian by nature. This uncovers a way to formulate a large class of quantum-
mechanical non-Hamiltonian models whose dynamics are not determined by conventional
potentials and forces, but which come about through the quantum statistical effects of the
system’s environment.
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