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1 INTRODUCTION

Isospin violation in decays of ete™ — B°B° at the 7(45) resonance results in a difference between
the branching fractions foo = B(ete™ — BBY) and f,_ = B(ete™ — BT B~). Measurements of
the ratio R*/0 = f, _/foo, summarized in Table [l are consistent with unity within the errors [I].
Theoretical predictions for R*/° range from 1.03 to 1.25 [2]. Currently, almost all published mea-
surements of B meson branching fractions make the assumption that Rt/9 = 1. Precision mea-
surements of foo, f+—, and R*/9 can be used to eliminate this assumption and re-normalize all B
meson branching fractions.

Table 1: Summary of previous measurements of Rt/0

Decay B — J Ldt RT/0 Source

J/Y(KT/K?) 819 fb~1  1.006 4-0.036 + 0.031 BABAR [3]
D/ 2.73 fb~1  1.058 £0.084 +0.136 CLEO [4]
J/ph(+/0) 20.7 fb~'  1.104+0.06 £0.05  BABAR [A]

J [ K*+/0) 9.2 fh~! 1.04 £0.07+£0.04  CLEO [6]

In this paper we report the first direct measurement of fyg. The measurement is based on partial
reconstruction of the decay B® — D**/~, (the inclusion of charge-conjugate states is implied
throughout this paper). This allows a sizeable sample of double tagged events to be identified.
Comparison of the double-tag and the single-tag yields allows a determination of fyy with minimal
input from simulation.

The technique used to measure fyg is as follows: in every event we reconstruct the decay B —
D*t¢~ 1y, as described further below. The sample of events in which at least one B — D*t¢~,
candidate decay is found is labeled as “single-tag sample”. The number of signal decays found in
this sample is

N = 2N gz foo s B(B® — D*t (1), (1)

where Nz = (88726 & 23) x 10? is the total number of BB events in the data sample and € is
the reconstruction efficiency of the decay B® — D*t¢~p,. The technique for measuring N 55 18
described in [7]. The data sample has a mean energy of 10.580 GeV [§] and an energy spread of
only 4.6 MeV. Such a small spread means that any energy dependence of fyg has a negligible effect
on the central value. The subset of single-tag events in which two B° — D**¢~ 7, candidates are
found is labeled as “double-tag sample”. The number of such events is

Ny = NBE f()o €4 [B(EO — D*+€_I7£)]2, (2)

where ¢, is the efficiency to reconstruct two B? — D**¢~, decays in the same event. Note that
every double-tag event contributes two entries to the single-tag sample. Using Eq. () and Eq. (2),
the ratio fyo is given by

CN?

fOOZM7 (3)

where we have defined the coefficient C' = ¢;/€2. C = 1 if the efficiencies for detecting each B
meson are uncorrelated in double-tag events.



2 THE BABAR DETECTOR AND DATASET

The BABAR data sample used in this paper consists of 81.7 fb~! collected at the 7'(4S) resonance
(the on-resonance sample) and 9.6 fb~! collected 40 MeV below the resonance (the off-resonance
sample). Simulated BB events were analyzed through the same analysis chain as the data. The
equivalent luminosity of the simulated sample is approximately three times that of the on-resonance
data.

A detailed description of the BABAR detector and the algorithms used for track reconstruc-
tion and particle identification is provided elsewhere [9]. A brief summary is given here. High-
momentum particles are reconstructed by matching hits in the silicon vertex tracker (SVT) with
track elements in the drift chamber (DCH). Lower momentum tracks, which do not leave signals
on many wires in the DCH due to the bending induced by a magnetic field, are reconstructed by
the SVT alone. Electrons are identified with the ratio of the track momentum to the associated
energy deposited in the calorimeter (EMC), the transverse profile of the shower, the energy loss in
the drift chamber, and the information from a Cherenkov detector (DIRC). Muons are identified in
the instrumented flux return (IFR), composed of resistive plate chambers and layers of iron. Muon
candidates are required to have a path length and hit distribution in the instrumented flux return
and energy deposition in the EMC consistent with that expected for a minimum-ionizing particle.
The Cherenkov light emission in the DIRC is then employed to further reject kaons misidentified
as muons by requiring muon candidates to have a kaon hypothesis probability less than 5%.

Hadronic events are selected by requiring at least four charged particle tracks reconstructed
by the silicon vertex detector and the drift chamber. To reduce background from continuum
ete” — qq, where ¢ stands for a u, d, s, or ¢ quark, the ratio Ry = Hy/Hj of the second to the
zeroth Fox-Wolfram moments is used [10].

3 ANALYSIS METHOD

We reconstruct the decays BY — D*1¢~ i, with a partial reconstruction technique. The application
of the technique to this mode was first proposed by the ARGUS Collaboration [IT] and has been
used by CLEO [, DELPHI [12], OPAL [T3], and BABAR [I4]. In this technique, only the lepton
from the decay B — D*T¢~ 7, and the soft pion from the decay D*t — DOt are used. No
attempt is made to reconstruct the DY, resulting in high reconstruction efficiency.

To suppress leptons from charm decays, all lepton candidates (electrons and muons) are required
to have momentum between 1.5 GeV/c and 2.5 GeV/c in the eTe™ center-of-mass (CM) frame.
Soft pion candidates are required to have CM momentum between 60 MeV/c and 200 MeV/c. As
a consequence of the limited phase space available in the D*' decay, the soft pion is emitted
within a one radian-wide cone centered about the D** direction in the CM frame. The D** four-
momentum can therefore be computed by approximating its direction as that of the soft pion, and
parameterizing its momentum as a linear function of the soft pion momentum, with parameters
obtained from the simulation. The presence of an undetected neutrino is inferred from conservation
of momentum and energy. The neutrino invariant mass squared is calculated:

M? = (Ebeam — Ep-— EZ)Q — (pp+ + p€)2 ) (4)

where Ey ..., is the beam energy and E; (Ep~) and py (pp+) are the CM energy and momentum
of the lepton (the D* meson). If the decay is properly reconstructed and the neutrino is the only



missing particle, the M? distribution will peak near zero for signal events. Background events,
however, are spread over a wide range of M? values.

In what follows, we use the symbol M? to denote M? for any candidate in the single-tag sample.
In the double-tag sample, we randomly choose one of the two reconstructed B® — D**¢~y; candi-
dates as “first” and the other as “second”. Their M? values are labeled M3 and M3, respectively.
For each of the variables M? (i = s,1,2), we define a signal region M? > —2 GeV?/c* and the
sideband —8 < M? < —4 GeV?/ct.

In addition to signal B — D*T¢~y; decays, the single-tag and double-tag samples contain
several types of events:

e Continuum ete™ — ¢g background.

e Combinatorial BB background, formed from random combinations of reconstructed leptons
and soft pions. This background can also be due to the low momentum soft pions not coming
from a D*, produced by either the same B or other B [IH].

e Peaking BB background, composed of B — D*(nm){i, decays with or without an excited
charmed resonance (D**) [16], where the reconstructed soft pion comes from the decay D** —
D%t leading to an accumulation of these events at high values of M?. These events are
peaking background and are produced both by B? and B~ decays. Their M? distribution
differs from the signal, which allows us to extract their contribution in a fit. Such events are
suppressed by the requirement p; > 1.5 GeV/c on the lepton CM momentum.

e The decays B® — D**7~ 0. and B® — D**/~y(nvy) may be used for the measurement of fo
and are therefore considered as signal. These events peak in M? and come from B° decays.

The double-tag sample contains two additional types of background: M?-combinatorial and M?-
peaking. In M2-combinatorial (M?-peaking) background events the first candidate is combinatorial
(peaking) background.

To determine N and Ny, we perform binned y? fits to one-dimensional histograms of the M?2
and M3 distributions of on-resonance data events, ranging from —8 to 2 GeV?2/c*. Before fitting,
we subtract the continuum background contribution from the histograms. This is done using the
M? and M3 distributions of off-resonance data, scaled to account for the ratio of on-resonance
to off-resonance luminosities and the CM energy dependence of the continuum production cross-
section. In addition, the contributions of the M?2-combinatorial and M?-peaking backgrounds are
subtracted from the M3 histogram before the fit. The M?3-combinatorial background is determined
from the M? sideband, which contain only continuum and combinatorial background events. This
histogram is scaled by the ratio of the number of combinatorial events in the signal region and the
sideband, determined from the simulation. The M3-peaking background subtraction is based on
the simulated M3-peaking events.

After the subtraction, the M2 and M3 histograms are fit separately, using a function whose
value for bin j of the histogram is

Ji =2 N'P}, (5)
t

where N! is the number of events of type t (t = signal, combinatorial, peaking) populating the
histogram, and P]t is the bin j value of a discrete probability density function (PDF) obtained from
simulated events of type ¢, normalized such that Zj P]t = 1. The fit determines the parameters N°*
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by minimizing:

2 _ N~ Hj— fi)? 6

X ZJ: 7 Tl (6)

where Hj is the number of entries in bin j of the histogram being fit; op; is the statistical error

on Hj, including uncertainties due to the background subtractions described above; and oy, is the

error on fj, determined from the errors on P}, which are due to the finite size of the simulated
sample.

The results of the fits are presented in Table B The M? and M3 distributions are shown in
Fig. [, with the contributions of the different event types indicated. The fits yield the values N =
786300 £ 1950 and Nz = 3560+ 80. Using the simulation we determine C' = 0.9946 + 0.0078, where
the error is due to the finite size of the simulated sample. Eq. @) then gives foo = 0.486 + 0.010,
where the error is due to data statistics only.

Table 2: Numbers of entries of different types found by the fits to the M2 and M3 histograms
in the signal region. Also shown are the numbers of entries of subtracted backgrounds and the
confidence levels of the fits.

Source M2 M3
Combinatorial BB 558090 £ 760 1520 £ 40
Peaking BB 68170 £260 300 % 20
Signal 786300 £ 2000 3560 £ 80
Continuum 238500 £ 1300 160 £ 40
M3-combinatorial — 180 £ 20
M3-peaking — 60 £ 10
x%/d.o.f. 41/56 48/56
Confidence level 93% 7%

To determine how well the simulation reproduces the M? and M3 distributions of the combina-
torial background in the data, we study the distributions of a sample of same-charge candidates, in
which the lepton and soft pion have the same electric charge. This sample contains only continuum
and combinatorial BB background. We fit the continuum-subtracted M? and M3 histograms of
the same-charge sample using the function f; = NPj, where P} is the bin j value of the PDF of
same-charge simulated BB events, normalized such that > PJ( =1, and the parameter N is deter-
mined by the fit. The histograms, overlaid with the fit function, are shown in Fig. Bl The ratio
between these two histograms is fitted to a constant both for the M? and M3 summed over the
signal region and over all bins are shown in Fig. Bl The accumulated differences D = Zj(H j/ — fj’)
between the same-charge data histograms H J’ and the fit functions are summarized in TableB. Their
consistency with zero indicates that the distributions of simulated combinatorial BB background
events do not lead to significant fake signal yields.

4 SYSTEMATIC STUDIES

We consider several sources of systematic uncertainties in fog. All estimated errors are an absolute
systematic uncertainties in fyg and summarized in Table Bl
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Table 3: The difference D = »°;(H j/ — f]/) between the same-charge data histogram and the fit
function, summed over all bins or over the signal region only. Also shown are the fit y?/d.o.f.
values and confidence levels.

Signal region All bins
M2 M2 M2 M2
D —1300 £2100 —80£80 | —700£3000 —70+80
x%/d.o.f. 17/19 13/19 40/55 34/53
C.L.(%) 59 84 94 98

Table 4: Summary of the absolute systematic errors for fog.

Source d(foo)
M:Z-combinatorial 0.0005
M3-peaking 0.0005

Same charged events  0.0025
Peaking background 0.004
B-meson counting 0.0055
7 (4S) — non-BB 0.0025
Efficiency correlation 0.004
Monte Carlo statistics ~ 0.002
Total 0.009

1. The systematic uncertainty from the M3-combinatorial contribution subtraction in the M3
histogram is 0.0005. The error is obtained by varying the total M3-combinatorial background
by its statistical error and repeating the analysis.

2. An error of 0.0005 is estimated due to the subtraction of the M3-peaking contribution in
the M2 histogram. The error is obtained by comparing the ratio between the numbers
of subtracted M3-peaking and M3-combinatorial events with their ratio of peaking and
combinatorial events in Table

3. Propagating the errors on the quantities D (same charged events) of Table Blleads to an error
of 0.0025 on fyg. To determine this error we vary the signal events both for the single-tag
and the double-tag samples. The largest uncertainty then is taken for the uncertainty on foq.

4. The PDFs P! (t = peak) of the peaking background come from simulated event samples
containing different D** resonances or non-resonant events. We vary the ratio of the branching
fraction of the resonant and the non-resonant production such that the variation of this ratio is
wide enough to include poorly known decays. We repeat the analysis procedure to determine
Ng and Ng. The resulting error on fpo is 0.004.

5. Uncertainties in the branching fractions of B® — D**7~ 1, and B® — D**¢~5,(n~y) relative
to B® — D**/~ 1, lead to uncertainties in the PDFs P! (¢ = signal) of the signal events. This
uncertainty in foo is negligible.
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10.

11.

12.

. The error due to the uncertainty in Nz is 0.0055. It includes the uncertainties for differ-

ences in the cross sections and efficiencies for muon pairs and continuum events between
on-resonance and off-resonance samples, hadronic selection criteria and the uncertainties in
the tracking efficiency.

In this paper the impact of non-BB decays of the 1(4S) on B-meson counting has been
accounted for as a systematic error. The upper limit for the branching fraction of 7°(45)
decays into non-BB is 4% at 95% confidence level [I7]. We conservatively estimate the
systematic error by decreasing the 4% upper limit on the branching fraction to 2%. From
this variation we estimate an error of 0.0025 due to the effect on N,z of a possible decay.

. We note that the lepton momentum spectrum in the Monte Carlo simulation is different from

the one we observe in the data. We tune the simulation to the data by rejecting simulated
events in such a way that the two lepton momentum spectra agree. We repeat the analysis
procedure without the rejected events. The systematic error due to the uncertainty in the
lepton momentum spectrum is negligible.

. There is a small efficiency correlation between the single-tag and the double-tag samples.

The systematic uncertainty due to this efficiency correlation is estimated by propagating the
Monte Carlo simulation systematics error of C' into fgg. The simulation statistical error in C
leads to a 0.004 error in fpo. In addition to the Monte Carlo simulation systematics error of
C, we study the effect of track multiplicity on the efficiency correlation.

We perform a similar procedure as mentioned above for the pion momentum spectrum. The
error due to the uncertainty in the pion momentum spectrum is negligible.

An error of 0.002 is due to the finite size of the simulated sample, calculated using oy, in

Eq. ([@).

The x? estimator used in Eq. (@) can be biased. We did an alternative binned likelihood fit
and found that the result differed by only 0.03% for fog.

We combine the uncertainties given above in quadrature to determine an absolute systematic
error of 0.009 in fyo.

5 SUMMARY

To summarize, using partial reconstruction of the decay BY — D*T¢~y; we have obtained a pre-
liminary result for the branching fraction

foo = 0.486 £ 0.010 £ 0.009, (7)

where the first error is statistical and the second is systematic. Since this measurement is done by
comparing the numbers of events with one and two reconstructed B® — D*+t¢~1; decays, it does not
depend on branching fractions of the BY and the D** decay chains, on the simulated reconstruction
efficiency, on the ratio of the charged and neutral B meson lifetimes, nor on assumptions of isospin
Symmetry.
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Figure 1: The M2 (top) and M3 (bottom) distributions of the on-resonance samples. The con-
tinuum background has been subtracted from the M? distribution. For the M3 distribution, the
M:2-combinatorial, and the M?-peaking have been subtracted. The levels of the simulated signal,
peaking BB and combinatorial BB background contributions are obtained from the fit.
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Figure 2: The M? (top) and M3 (bottom) distributions of the same-charge on-resonance samples.
The continuum background has been subtracted from the M? distribution. For the M3 distri-
bution, the continuum background, the M?3-combinatorial and the M?-peaking backgrounds have
been subtracted. The level of the simulated combinatorial BB background is obtained from the fit.
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Figure 3: The ratio between data and the combinatorial BB background of the same-charge sample
both for the M? and M3 summed over the signal region and over all bins. The values are fit to a
constant. upper left: for the M? summed over the signal region; upper right: for the M3 summed
over the signal region; lower left: for the M? summed over all bins; lower right: for the M2 summed
over all bins.
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