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ABSTRACT

REMARK

It has been known for long time that symmetry groups
on quantum mechanical systems give rise to unitary
or antiunitary representations (up to a factor) in
Hilbert space. A new and simple proof for this is

given.

This note does not contain any new result. Only the
proof that symmetries of quantum mechanical systems
give rise to either unitary or antiunitary represen-
tations finds a new and simple form. In order to
state the problem, it seemed, however, necessary to
discuss the implications of symmetries in some
detail.

*)

Submitted for publication in tie Nuovo Cimento.



5857

1. Introduction.

a) Complete set of observables.

We assume a definite physical system S to be given.
The system will be described in a Hilbert space y@, . Take any
observable (hermitian operator) A' and define a class O in

the following way

a e

A € 0L if and only if A commutes with all other A & (U .
Now if A€ () ; A' € () then

Aa €0
ahb +vA' € 0L, (a, b real)

Hence from the distributive and associative law it follows :

OL is an abelian ring with real coefficients.

Let B ¢:OL . This B defines in the same way an abelian
ring . In this way we may divide up all observables into such
rings Cﬂ ,;S ,J: ,J}', eeee o« The set of all observables is not
a ring since the product of two self-adjoint operators may be not
self-adjoint. All operators of any such ring can be brought
simultaneously in diagonal form (spectral representation) and
hence can be measured without interference. There is a proof
by v. Neumann ") that in such a ring OL there exists always an
element AO say, such that all elements of the ring are functions
of AO , namely Ai = fi(Ao). In principle the measurement of

AO alone would determine completely the state of the system.

1)

J. v. Neumann, Math. Grundlagen der Quantenmechanik,

Springer, 1932.



This might be technically impossible. In fact, normally one

takes ore convenient operator A say. If now all other elements

s
of OL cannot be represented a; functions of A1, one takes
another one A2 and so on, till one has as many operators as are
necessary in order to generate the whole ring Cx, . The set of
elements A1 veoe An is called a complete system of commuting
observables. In actual cases, one frequently seems to be able

to construct such a system. For every ring C% ,Q@ ,aC',‘i} ceeo
we assume such a set of generating elements Ai y Bi eoes and
call the set of rings { 0 ,;éf,xf' ...} complete, if every

cbservable belongs to one of the rings.

b) Superselection rules.

Obviously the multiples of the unit operator commute with
all our observables. If there exists, apart from that, another
operator X' commuting with all observables, then the Hilbert
space can be decomposed into superselection subspaces. No obser-
vable will have matrix elements between different superselection

2)

subspaces (that is the reason for the name).

Proof :

Together with X' also X'' (the hermitian conjugate of )
commutes, hence X ='%(X'+X'+) is hermitian and commutes also.

We assume now that X has a discrete spectral representation

: X =2 AX ; with
i

il
>4

. +
Xy =% 5 XX =0 (i #k) and X;
Xi projects into that subspace gﬂi of J& , where X has the

eigenvalue )i.

5857 2) G.G. Wick, A.S. Wightman, E.P. Wigner, Phys.Rev. 88, 101 (1952).
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i J

dimeansion n.

(Always N £ %k , if ‘)J occurs n, times, H€J
<
J

@ ).
From

[XA] - Z:: A [XiA] -0

follows by multiplication with X, from left and right

has

A [Axk] -0 or [AXk:l -0 for A £ o.

Let be (‘?ie ]€i, (Pk égek i £ k. Then at least one o

%i’ (xk is % 0O, say )k % 0. Thus

Since A can be any observable, the proof is complete.

observable can then be brought to the following form

J///

X.

Q8> - (@@ 0 = (P xa® > =y

Any

i’A (pk >=O

and the dimensions (in general infinite) of these boxes on the

diagonal will be the same for all observables. Examples for such

superselection rules are the charge conservation and baryon

conservation.
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Onc sees that in the presence of superselection rules
arbitrary unitary transformations cannot be admitted, since they
would in general mix up the superselection subspaces. Those
unitary transformations, however, which transform from a basis

{‘+’ik belonging to the ring 0[ to a basis {(P ig
belonging to the ring &; , leave the subspace invariant and
are admitted. We may even admit those transformations which

furthermore induce a permutation of the superselection subspaces.

2. Definition of symmetry.

A transformation group G may be defined in many ways,

-

- Interchanging of particles,

- Charge conjugation (better perhaps: matter conjugation)
- Lorentz transformations

- Gauge transformations

etc.

a) Active and passive interpretation.

There are two ways of interpretation

i) passive

ii) active

Example : The three dimensional rotation may be interpreted
passively as a rotation of the coordinate system
or actively as a bodily rotation of the system S

under observation.
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In what follows we shall adopt throughout the active
interpretation, which is always feasible, whereas the passive

one looks very strange, if not impossible in some cases.

b) Formal definition of symmetry.

Now we define what we mean by saying that our physical
system S 1is invariant under a group G, which we shall then

call a symmetry group of S

A material system S 1is said to have a symmetry group G,
if for every g EG there exists
i) another material system S' = g5 (symbolically)

ii) a definite function Fg for all observables
such that

o) A' = Fg(A) is again an observable, and

P) the possible results of measuring A' in 8!
are the same as for measuring A in S and

both have the same probability distribution.

In order to put this physical definition in a more mathe-

matical form, we introduce a special notation

A physical state does not determine an element of g,
since together with LP also &ﬂf with IQJ[= 1 represents the

same physical state.

For reasons of clarity, we shall denote by



(a1)

f
¢, ¥,
A

-~

elements of J ,

state vectors,

i.e.

elements with norm 1,

¢,

/ unit-rays, representing physical states,
£,

5o oo S &

rays.

A ray f is the set of all elements QAf with 0 & [A[l< =0
(f fixed). A unit-ray @ is the set of all state vectors oy
with |[D]=1 (P fixed). Addition,

are not defined.

Ravs are not vectors. etc.

We now give the formal definition of symmetry :

4 If we denote the state vectors of S by

¢,V , .... and those of S' by $',¢, ...,
then there is a one-to-one correspondence of the
physical states (represented by unit—rays)

(D)

A

A
¢ «—-s ¢
such that the probabilities are conserved :
<@ ¢/>] = [<o ¥ >
/ Fa
and Qe

by .

<

ir 9'c ', w'e

We shall quote this definition henceforward as (D).

5857



3o Consequences of the existence of a symmetry group.

a) Existence of a unit-ray transformation.

Tt follows from (D) that the existence of a symmetry
group G dimplies only the existence of a group t of unit-ray
transformations 8, which maps the set of all unit-rays onto

itself
A AN AN
¢ ¢« ¥ = OF

That this transformation group is uniquely defined by G and is
isomorphic to G, follows from physical experience. In this form,
however, it is useless for quantum mechanics, since the super-
position principle is true for state vectors rather than for
unit-rays. The problem is therefore to find a group of trans-
formations © defined for elements of the whole Hilbert space,
which is homomorphic, or even possibly isomorphic to the group 5,

and as simple as possible.

~

b) Class of transformations © leading to the same 6O.

Let t ©Dbe a group of unit-ray transformations. If o€+,
we xonsider all transformations © of J  which correspond to

6. Correspondence is defined by

e veo if
(a2)

A A
0¥ ¢ o9y for all Pey

Consider the set of all ©, which correspond to all 5€1n Thuse
9 form a group T, which is homomorphic to the group t. This
is a very large homomorphism, since many @ correspond to the
same é; for instance 91 and 92 may be defined completely

5857
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different for all elements with norm % 1 and yet correspond
to the same 5. Consider the unit element of t, 5 = E. The

set of transformations 6~ E forms an invariant sub-group To

of T (the kernel of the homomorphiim). The factor group T/TO

is then isomorphic to t. If © v 9, then the caset QTO = TOQ
contains all transformations which correspond to 0, we write
@TOAJ 9. The transformations Qéiﬂ) have the property to multiply
state vectors ¢ only with unimodular complex numbers

(leaving their "length" and "direction" constant). On other

elements with norm % 1 they may be defined arbitrarily.

Any coset of To may be represented by one of its elements,
but if we select one element of each coset, then in general these

elements will not form a group-.

It will be shown that elements © can be selected from
the cosets such that they are either unitary or antiunitary and

form a representation up to a factor.

¢) Conservation of the norm.

First we postulate

f

of = Il T

(3.1)

By this © is defined in the whole of Jﬂ once it is defined for
state vectors. These 6 still form a group. The invariant sub-
group TO contains now all those @O which merely multiply each
element of 2 with a unimodular complex factor such that

f =W . . = W
QO f/Hfﬂ f The factor depends only on Ve shall

£
[F
call henceforward this invariant sub-group £ . This is in fact
a very strong restriction. Its effect is that two transformations
© and 6', which both correspond to one single ©, differ at

most by a QOEQ .



Obviously the restriction is not too strong, since it

affects not the transformation of state vectors.

d) Complete orthonormal systems.

Theorem 1 :

Complete orthonormal systems are transformed

into complete orthonormal systems.
Proof

Let {kki‘} be a complete orthonormal system, and

~

e Vo

@'rv@“

then @6'~VE . &ki - 4’; = Q\Pi and from (D)

[ <ot ety |= |[<H te> | = Ore (3.2)

A

It remains to show that %\Pi]' is complete. Assume it is not,
! 1

then there exists a 4/0 orthogonal on all 4/1. Then

@'4/; = “Vo were orthogonal on all #/i against the assumption.

5857
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Proof

10.

e) The restricted distribution law, Linearly

independent elements.

Theorem 2 :

i) If f, g, h ... are lineraly independent,
then ©of, ©g, 6h ... are also.

i1) o(f+g) = W(f,g)ef + W(g,f)0g with
lLu(f,g)l = 1 for any pair of elements
f, g .

i) Let f, ... fn be linearly independent. For that it

1
is necessary and sufficient that

det F > 0, where F is the matrix with elements
P P2 (f., f

ik T ki © i0 > -
Assume Qf1 oo Ofn were linearly dependent, then
det F' = 0, where, according to (D)

*

1 — 1 = = i (*) =
Fi, = By o= <erg,en > = W £,£, > with | M
Decomposing in an arbitrary way éjik = Qﬁildk such that

(LJil = ]C)kl = 1, one can write

*
F' = WFW , where

&
1l
&
w

Wa,

Then det F' = (detl))(det co*) det F = det F

against the presupposition.

It
O

1.
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ii)For f = \g it is trivial. Let £, g be linearly
independent. They span a sub-space M. For any hGM'L

l(@h, G(f+g)>| =‘<h, f+g>l -0

Hence ©O(f+g) belongs to the subspace spanned by ©of and
eg :

o(f+g) = M(f,g)ef + nlf,g)ee.

Define k(f,g) = f - (—g’—-§f>€ ;5 {kyg> =0

| ol
Then

| ok, o(z+e)>| = |k, tra>] = | ¢k, >| but also
[ ok, 9(f+g)>|=]<9k,7\(f,g)9f>|= |7\(f,g)| ey |

Hence r)(f,g)l = 1. From interchanging f and g
it follows that \ (f,g) = /L(g,f) = L)(gg), g.e.d.

In particular :

ol =2 clgd, with lci (= leid (3.3)

f) The operator function.

We can now write down explicitly the operator function

Al Fg(A) .

Let @wé(g). If
o= ey N/i><+il g
then

H(A)=/«\'=ZO~L|94€ SOV [ = 2 a; N>k | (3-4)
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We have to show that this is unique. Thus any © ~v©6(g) must

give the same. Take ©' = OOO s QOQ_Q:
A= e lgl wok | = o o sco ! | = o uof ek = A

It follows that A' has the same eigenvalues as A and the

!
transformed state vectors ‘Vi are the new eigenvectors.
Theorem 3 :

The expectation values are conserved.

Q“P” Z C‘ll @“K

=
1]
™M
[
_Q_

then
b Ay S X . S
(P NBYS < 2 c'} HARCIALI A AL A 2 ¢ lcll®
u 2z
<OAQs = 2ol
These are equal on account of (3.3). That means : Corresponding
measurements in corresponding states will always yield the same

rcsults. Hence the whole pnysics is unchanged. That is the

meaning of our definition of symnmetry.

g) Superselection subspaces.

Theorem 4 :

All ©&€T will, apart from a mapping of
superselection subspaces onto themselves,

at most induce a permutation of these spaces.

5857
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Proof :

i)

ii)

ii1)

ii)

13,

From theorem 1 it follows that orthogonal subspaces

are transformed into orthogonal subspaces.

From theorem 3 it follows that the transformed
observables have no matrix elements between the

transformed superselection subspaces.

The transformation of the observables is a mapping
of the set of all observables onto itself. Th 3

set defines the decomposition = 1, & Qf,l@ }6’3@
up to the order in which the ']fi are counted, thus
a certain ©€T induces a well-defined permutation

of the mﬁi (which might be the unit-permutation).

h) Continuity.

There are two types of continuity :

by symmetry operations on the physical system

neighbouring physical states are transformed into
neighbouring physical states. This is a physical
experience. It is contained in our definition of

symmetry (D) :
[<Pi@rs | = 1<y s

Let @ - Y(+) follow a continuous path, then both
sides have to be continuous functions of t. This does
not imply that Pr(t) 4is also continuous, since it

may contain any discontinuous phase factor L (t).

The symmetry group G may be continuous or partly

continuous : There may exist continuous paths g(t).



(a3)

(a4)

We shall presently discuss the first type of continuity.

For this we define distance and neighbourhood of unit-rays s

The distance of two unit-rays @ and 4} is
d = ming, I -0yl where
e "/{5 and VY e \/{\/ is an otherwise

arbitrary pair of state vectors.

~

A € -neighbourhood of @ is the set of all
unit-rays  whose distance from Y is ¢ & -

With these definitions the first type of continuity can be

stated as

Theorem 5

A

The transformations @, which correspond

to elements gé&G are continuous.

This is obvious since neighbouring rays are transformed in

neighbouring rays.

Theorem 6

~

In the set of all ©e © there is at
least one which is continuous in the

whole considered superselection subspace.
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Sketch of a proof

By construction. Take an arbitrary state vector (Po'
It belor}gf to ) q) Take now an arbitrary state vector %‘6 C@‘/
where @ Y = @', Define © %LPO = ’)\"PC') for all A
(0 & (2] £ o©). Hereby © is defined for multiples of (Po'
We now define it for any element g :

A

Let \P be any state vector and \{/ its unit-ray.
Find &) such that

"‘-PO-LO‘P" = min ; (4’0 = WY is nearest to (PO)

/ ey

Find further (' such that, with Y € &V
" "PJ-»L\)“!/I" = min 3 ("Po/‘ 'Y’ is nearest to (P:))
Define @/“'\Po:/‘"q/c') for any M (Oél/«l(oo).

We have to show that this © is continuous. Given f, we must
find a neighbourhood N, of f such that for all géNf
for - ol <& .

Put f = 7\\’/0, g=/l4,¢o, where \-‘/o and ¢o are

nearest to LPo in the above sense. Then
lef-eg( = "?\‘(/o‘-/ud); e - 0o 1+ 12 4l

To make this smaller than & , choose
I2-p | < Ea
-l < &
o To AV Y
1

To achieve the last inequality, take the set of all ngO

fulfilling it. To each of them belongs a unit-ray @'. Call
~1
the set of these unit-rays {Qf }(5 . Transform each of these

unit-rays with ¢™'. his gives a set §¢ }5 . Find the
nearest element ¢o to (Po of each (€ {Qf}a . These Qfo
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form an open set containing ‘PO and defining a neighbourhood
of \l/o'. iny g = g, for which g 1lies in this neighbour-
hood and for which |- | < ta | fulfils the condition.

i) Reduction to unitary and antiunitary transformations

Theorem 7 :
Given any ©, we can choose such a
8N O that © is either unitary or
antiunitary in the whole considered
superselection subspace and moreover

continuous.

This theorem has first been proved by E.P. Wigner ?) without
taking into account the antiunitary operators. This has been
done explicitly also by E.P. Wigner in his Lorentz-chair
lectures, University of Leyden 1957 (not published). His proof
is rather complicated and the following simple proof is the

only essentially new thing in this paper.

Prooi

~

The theorem means that given a © and a ©'nNv 6, we
can find such a @O e 0, that QOQ' = 0 is either unitary

or antiunitary. We construct @o.

3) B.P. Wigner, Gruppentheorie und ihre Anwendungen an

die Quantenmechanik, (1931), p.251.
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o, ) Take any continuous @' ru ©. From theorem 2 it follows

that for linearly independent elements f, g, h

O (Fahieg )= ,d(fm,g)[ta (fyh)o'f+ w(h,f)@'h] +(g,f+h)0'g

Interchanging g and h and comparing the coefficients
leads to

C\)(f+g',h) LU(f,g)

1l

W (f+h,g)W (f,h) coefficient of O'f

L (f+g,h)W(g,f) = W (g,f+h) coefficient of O'g

W (f+h,g) W(h,f) - Lo (h,f+g) coefficient of €'h

This gives, by dividing the first two and eliminating
W (f+h,g) with the help of the third equation

From ©'(f+0) = W(f,0)0'f = 9'f follows W (f,0) = 1.

We put J(0,f) = E%fj' Letting now h —» O one obtains

W(t,g) = L)

u(f+g)

u(f) 4dis unimodular by definition. That it is continuous
and independent of the norm ”f " , follows from the

corresponding properties of @Q'.
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We have therefore a unimodular function u(f) such that

u(f+g) ' (f+g) = u(f) o'f + u(g) o'g.

u(f) 1is an element QOG L. Now 6,8' = 6 is
distributive : ©(f+g) = of + 8g, and O is again

continuous.

/3»)4) <o(f+g),0(f+g)> = (f+g, T+g>=|[£ ]| + [g| +2Re(f 8>
o(f+g).o(f+g)>= £l + lgll + 2Re Lof,0e >
Hence

Re {of, o8g >

il

Re {f,g> and

il

[<ef, Ge>|=|<fe>]

Only two solutions : Im <of, 6g> = IIm <feg>
thus

Il

Either {of, 0g>
or of, eg >

(T,g > 6 1is unitary

1

g, f > © is antiunitary.

Since © 1s continuous, it is either in the whole
subspace unitary or in the whole subspace antiunitary.

Note that the same cannot be concluded for the whole

of J@ .

4) The following argument is due to Dr. J.M. Jauch

(private communication).

2857
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j) Dependence on the group element g.

Representation up to a factor.

We have now unitary or antiunitary @'s.. For this we
have paid much. Beginning with a given ', we found the
unimodular wu(f) wuniquely defined up to a unimodular factor.

(8), which does no longer depend on f.

Assume we
had started with a 6", we would have found a u"(f) represented
by the group element @géHEL. Now 8 8' and Q;Q” can differ
only by another @g'é;&l. But this @é” can be only a constant
unimodular (J , since otherwise QO and Og were not

uniquely defined (apart from a constant factor).

Therefore we can postulate that © shall be unitary or
antiunitary (We cannot choose between these two) but we pay for
this by loosing all freedom but for the freedom of multiplying
© by a unimodular & (@). Apart from that, © is then a
uniquely defined function of é and therefore of the group

element g.

With a choice of the remaining free function & (Q)
everything is fixed : We have then chosen exactly one trans-
formation ©(g) from every coset. We cannot expect these

transformations to form a group, but we have always
s(gy) o(e,) = w(g,e,) o(g,8,)

This is called a "representation up to a factor" or a "ray

representation".

It should be clear that if we admit arbitrary phase

factors, then the @ form a group. Its invariant sub-group
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20.

corresponding to é = E is now the group &2 of complex
unimodular numbers, and the factor group T/uD still is
isomorphic to the group G. It is by fixing these phase factors
that the group property is lost. It may happen, however, that
these phase factors can be chosen such that the ©'s still

form a group. Under which circumstances this is possible, is
discussed in full generality by V. Bargmann, Ann. of Math. 59, 1
(1954).
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