
Making Mock Galaxy Catalogs with ADDGALS 

Michael T. Busha & Risa H. Wechsler 
KTPAC, Stanford University, 452 Lomila Mall. Blanford, CA 94305, USA 

We present the ADDGALS algorithm for making mock photometric galaxy catalogs. This is 
a statistical method that attempts Lo connect galaxy magnitudes to the local dark matter 
density in an N-body simulation such that the luminosity function and luminosity dependent 
2-pt function arc correctly modeled. Colors from a training set are then added such that 
the color-environment relation is reproduced. Comparisons are made to observational data, 
showing that we reproduce both the large scale and inter-cluster distribution of colors aud 
magnitudes. We also discuss ongoing applications of the mocks, including attempts to calibrate 
optical cluster finders and photometric redshift estimators. 

1 Introduction 

Because images can be taken rapidly, large-scale photometric surveys have become a driving 
force in cosmology by providing deep, detailed maps of a large portion of the universe. Such 
surveys allow us probe cosmology through, among other things, studies of galaxy clu~ters, baryon 
acoustic oscillations (BAO), and weak lensing. However, achieving competitive percent level con­
straints on cosmological parameters requires the ability to characterize and constrain systematic 
uncertainties, many of which depend on both the behavior of the analysis tools and the underly­
ing dark matter observable relation. One way to address this is to connect the observed galaxy 
distribution with the predicted dark matter distribut.ion, whose cosmological dependences can 
be accurately simulated. Mock galaxy catalogs play an essential role in accomplishing this by 
letting us run analysis tools on a data set whose underlying cosmological model is known. 

Currently there are a number of methods for making mock galaxy catalogs from ~-body 
simulations, the most. common of which include modeling the halo occupation (HODj, semi­
analytic modeling (SAMf, and matching the snbhalo distribution with the observed galaxy 
population by abundanct!. However, the latter two methods require high-resolution simulations 
that resolve either subhalos or the halo mass accretion history, and the former requires that you 
resolve all halos expected to host a galaxy down to some magnitude limit. For upcoming surveys 
such as DES, which will map 5,000 sq deg to z ~ 1.5, this requires N-body simulations with 
> 5 x 1010 particles for a HOD and substantially more for the other methods. By comparison, the 
largest published simulation contains only 1010 particles. We present an alternative algorithm, 
ADDGALS (Adding Density Determined GAiaxies to Lightcoue Simulations), that c:au produce a 
comparable mock using more than an order of magnitude or more fewer particles. 

2 The ADDGALS Algorithm 

ADDGALS is an algorithm for "painting" galaxies onto dark matter particles in an :\'-body simu­
lation by matching galaxy luminosities with local da.rk matter densities, not dark matter halos. 
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lt is designed to work on either a single snapshot or lightcone output. The later is particularly 
11sefnl bPf'aH~P. it nllows for rlircct ~omparison -with gnlaxy snrveys. In n<ldit.ion to an N-body 
simulation, the algori t hm takes as inputs a galaxy luminosity function, a luminosity-dependent 
correlation function , and a dist ribution of gala.xy colors given luminosity and environment. 

2.1 Galaxy Luminosities 

The assignment of galaxy luminosities assumes that the primary physical processes setting a 
galaxies luminosity operate at a scale around M •. We therefore smooth our simulation at the 
lagrangian scale 1.8 x 1013h- 1:VI0 , which allows the algorithm to work on simulations with 
particle mass resolution as poor as~ 1012h-1M 0 . 

To paint galaxies onto particles, we first generate a list of galaxy luminosities by extracting 
them from a luminosity function, 

</>(Al)dM = 0.4 ln(10)¢.10-0.4(M-M.)(a+l) exp[-10-o 4(M-M.))dA/. {1) 

We use </i. = 0.0149, M. - 5 log h = -20.44, and n = -1.05, fit to the observed SDSS r-band 
luminosity function at z = 0.12 . These galaxies are then assigned to dark matter particles in 
the simulation by connecting galaxy luminosity to the local dark matter density using Rfi, the 
radius a.round a particle containing 1.8 x 1013 h- 1 ~·I0 of dark matter. This relation is motivated 
by measurements of SAivISI and subhalo distributiom? in high-resolution simulations. Figure 1 
shows the distribution if R6 as a function of galaxy magnitude for a SAM. We characterize this 
as a log-normal plus a gaussian for the "central" and "field" peaks. This gives the probability 
for a galaxy to have R,, given L as 

P(R6IL/ L.) = (1 - p(L/ L.))e-(ln(R,,)-l.<c(L/L.JJ2/2ac(L/L.)2 / R.,/2;ac(L/ L.) 

+p(L/ L.)e(R,-1<1(L/L.))2/2u1(L/L.)' /~a 1(L/ L.). (2) 

Here, µc, ac, /J.f, and OJ define the log-normal and the gaussian while p(L/ L.) determines the 
relative height of the peaks. Galaxies are attached to simulation particles using P(R8IL/ L.) to 
select a. dark matter overdensity and then randomly choosing a particle with that density. When 
putting galaxies into lightcone simulations, magnitudes are passively evolved by the relation 
M(z) = M(z = 0.1) - Q(z - 0.1) with Q = 1.3 3 . 

• R, 

Figure J: Probability distribution of local dark matter overdensity, R,, around semi-arialytic galaxies in the 
Milleuuium Si.lllulatio1f4

• Colors repre:;eut galaxi"" witli <liffereut maguitu<les: M. = -22 (red), M . = -21 
(green) , Mr= -20 (blue), M. = -19 (black). 

The parameters in equation 2 are determined using information about the correlation func­
tion. Taking the observed luminosity-dependent 2-point function from SDSS1°, we run an :MCMC 
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oYer a parameterization for the evolution of µc, Cle, µf, CTJ, and p with magnitude until we match 
the ohwrvations. Thns, the algorithm is <lesignP<l to rcpro<lnce both the luminosity fnnct.ion 
and magnitude dependent 2-point function in the r band. 

2.2 BCGs 

While t.h<' above method works for most galaxies, comparisons with SDSS shows that the BCG 
population is incorrect. First, because galaxies are inserted without direct knowledge the halos 
distribution, there is no guarantee that a bright. galaxy ,,.;11 be placed at. the cent.er of each halo. 
Additionally, eYen the brightest galaxy in a duster-sized halo is typically dimmer than observed 
BCGs for halos of similar mMs. To correct this, we add BCGs to halo centers separately, using 
an observed luminosity-mass relation, 

(:3) 

Here Ln = 2.8 x 109 , Mc = 3. 7 x 109 , a = 29. 78, b = 29.5, and k = 0.02551· 11 
. We also add a 

15o/c scatter in log-luminosity at fixed mass to match observationSi. 

2.3 Galaxy Colors 

While sections 2.1 and 2.2 created a distribution galaxies with r-baud magnitudes, in order to 
model photometric surveys we must also include colors. To do this, we take a training set or 
SEDs from the SDSS catalog and map them to onr simulated galaxies so that. we match the 
color-environment relation. We measure the distance to the 5th nearest galaxy for our mock 
catalog and randomly select a SDSS galaxy with similar galaxy ovcrdensit.y and M, and assign 
its SED to our galaxy. The SED is then k-corrected to the appropriate redshift and filters are 
applied to return colors. 

3 Comparisons with Data 

Figure 2(a) compares our 9, r, and i band luminosity functions with the best fit Schechter 
functions from the SDSS sample at z = 0.12. There is excellent agreement in the r band (which 
was an input constraint), although there is a slight excess at the bright end, M, < -22.2, due 
to the addition of BCGs. We see similarly good agTeement in the g and i bands. It is important 
to empha.8ize that information from the.se hauds Wa.8 not <liredly input into the catalogs. This 
agreement deraonstrates that our method for mapping SEDs to galaxies reproduces the observed 
large scale distribution of colors. 

We h;we also tudiecl local color trends by looking at cluster members. Figure 2(b) shows 
the distribution of galaxies in color-magnitude space around a rich cluster identified by the 
maxBCG6 cluster finder. This cluster finder works by looking for a suitable BCG candidate at 
the end of a well-def;ned red sequence. Such a red stxiuence is dearly present iu Figure 2(b), 
indicating that we are able to simultaneously reproduce local color structure. 

4 Applications of the Catalogs 

As noted in the introdnrlion, the primary purpose or ADDGAI.S is Lo rreai.e a realistic- catalog 
'-'ith a gala;...-y distribm.ion to whir.h photometric data from large surveys C-Bll he compared. In 
p?.rticular, we are working o prepare for the upcoming Dark Energy Survey (DES) , a 5.000 
sq deg survey in the ugriz Y bands that will constrain dark en.ergy using studies of supernovae. 
BAO, weak lensing, and clusters. Many sy t.t>,1111\tics ueed to be !\ddressed ancl lUlder r.ood before 
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Figure 2: (a) The g (green) , r (red), and i (blue) band luminosity functions for our mock catalog (points) and best 
fit Schechter functions to the SDSS data2 (lines). (b) The color-magnitude distribution for ADDGALS generated 
galaxies in a cluster identified by maxBCCf. Black points show the distribution of all gala"<i~-s around the halo, 

while red diamonds show the identified red cluster members. The blue diamond marks the identified BCG. 

competitive cosmological constraints can be extracted. These mocks are being used to, among 
other things, help calibrate optical cluster finders and photometric redshift estimators. 

In order for clusters to provide competitive cosmological constraints, issues such as the 
purity, completeness, and the ma.ss-0bservable relation of cluster finders need to be understood. 
We are in the process of directly comparing ~ 7 different cluster finders, including red sequence, 
voronoi tessellation, and matched filter methods. By running all of the cluster finders on the 
same mock, we are able to directly compare the results of these methods with each other and with 
the underlying dark matter distribution. Additionally, the results are being used to optimize 
the cluster finders. 

The catalogs are also serving as a testing platform for a number of photometric redshift 
estimators. We have been working to understand the accuracy of template, neural network, and 
boosted decision tree methods using these catalogs. This is a difficult task because DES will 
be pushing to high-z environments where little spectroscopic information exists. In particular, 
we need to be able to characterize the amount of scatter and rate of catastrophic failures for 
each photo-z estimator. Failure to do so will result in both an increase in systematic errors and 
possible bias when extracting c.osmological parameters from photometric surveys. 
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