
HAL Id: tel-03616854
https://hal.archives-ouvertes.fr/tel-03616854

Submitted on 23 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological defects and other properties of
multicomponent superconductors

Julien Garaud

To cite this version:
Julien Garaud. Topological defects and other properties of multicomponent superconductors. Super-
conductivity [cond-mat.supr-con]. Université de Tours, 2022. �tel-03616854�

https://hal.archives-ouvertes.fr/tel-03616854
https://hal.archives-ouvertes.fr


HABILITATION À DIRIGER DES RECHERCHES

Discipline : Physique 

Année universitaire : 2021/2022

présentée et soutenue publiquement par :

Dr. Julien Garaud

Le 06/01/2022

Défauts topologiques et autres propriétés des supraconducteurs à multiples composantes

-------------

JURY :
(Par ordre alphabétique)

- Mme Amandine AFTALION Directrice de Recherche, CNRS EHESS, Paris

- M. Maxim CHERNODUB Directeur de Recherche, CNRS Université de Tours

- Mme Jutta KUNZ Professeure Université de Oldenburg, ALL

- M. Antti NIEMI Directeur de Recherche, CNRS NORDITA, Stockholm, SE

- Mme Catherine PÉPIN Chercheuse CEA-Saclay

- M. Yakov SHNIR Professeur BLTP, Dubna, RUSS

- M. Paul SUTCLIFFE Professeur Université de Durham, RU





3

Résumé

Il y a eu récemment un certain nombre de développements expérimentaux et de découvertes de nouveaux
matériaux supraconducteurs, dont les degrés de liberté à plusieurs corps ont plusieurs composantes. Ces
supraconducteurs, qui sont décrits par plusieurs condensats supraconducteurs, sont le lieu de nombreux
phénomènes nouveaux, qui sont absents chez leurs homologues à une seule composante. Plusieurs de ces
nouveaux aspects de la supraconductivité à plusieurs composantes sont présentés dans ce mémoire.

Ils hébergent d’abord un large éventail de défauts topologiques. En effet, ayant plusieurs condensats, les
excitations topologiques élémentaires des matériaux à plusieurs composantes sont des vortex fractionnaires.
Ceux-ci peuvent se combiner pour former des états liés d’énergie finie, porteurs de flux. De tels défauts
composites peuvent être de diverses nature, notamment des vortex, skyrmions, hopfions et murs de domaine.
De plus, il existe des invariants topologiques supplémentaires qui permettent de différencier ces différents
types de défauts topologiques.

Par ailleurs, les supraconducteurs à plusieurs composantes sont généralement décrits par des échelles de
longueur caractéristiques supplémentaires. Il est donc en général impossible de construire un unique
paramètre de Ginzburg-Landau. Également, l’interaction entre vortex peut être différente de soit purement
attractive ou soit répulsive. Ainsi, il peut exister une phase supraconductrice, qui n’est ni de type-1 ni de
type-2, où les vortex peuvent former des agrégats entourés de régions dans l’état Meissner.

Enfin, du fait de la compétition entre différents canaux d’appariement, certains états peuvent briser
spontanément la symétrie d’inversion temporelle. Cela implique non seulement de nouvelles excitations
topologiques, mais aussi que les modes collectifs et les échelles de longueur sont sensibles à cette symétrie
brisée. De plus, comme les réponses électriques et magnétiques ont des contributions supplémentaires, les
propriétés thermoélectriques des états supraconducteurs qui brisent la symétrie d’inversion temporelle sont
modifiées.

Abstract

In recent years, there were a number of experimental developments and discoveries of novel
superconducting materials which exhibit multicomponent, many-body degrees of freedom. These
superconductors, that are described by several superconducting condensates, feature many new interesting
phenomena that are absent in their single-component counterparts. Several of these new aspects of
multicomponent superconductivity are addressed in this report.

First of all, they feature a rich spectrum of topological defects. Indeed, since they have several condensates,
the elementary topological excitations in multicomponent superconductors are fractional vortices. These
can combine to form finite energy, flux carrying, bound states. The resulting composite defects can be of
various nature including vortices, skyrmions, hopfions, and domain-walls. Moreover, there exist additional
topological invariants that can differentiate between the different kind of topological defects.

Also, multicomponent superconductors are typically describe by extra characteristic length scales. Thus it is
not possible, in general, to construct a single Ginzburg-Landau parameter. Moreover since the length scales
rule, to some extent, the interactions between the quantum vortices, they can be richer than purely attractive
or purely repulsive. These facts imply that there can exist a new superconducting phase, which is neither in
the type-1 nor in the type-2, where vortices can form aggregates surrounded by Meissner regions.

Finally, because of the competition between different pairing channels, some multicomponent
superconducting states can spontaneously break the time-reversal symmetry. This implies not only that
they allow for new topological excitations, but also that the collective modes and characteristic length
scales are sensitive to the new broken symmetry. Moreover, since the electric and magnetic responses
feature additional contributions, the thermoelectric properties of the superconducting states that break the
time-reversal symmetry can be substantially altered.
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Préface

Nomenclature des citations les citations comme par exemple [JG4] désignent des travaux de
l’auteur. Les références correspondantes sont répertoriées dans la liste des publications, en Annexe C.
Les autres citations, comme par exemple [1], sont des citations régulières, qui sont situées dans la
bibliographie.

Illustrations: Les illustrations présentés dans ce rapport sont du nouveau matériel qui n’a pas été
publié. Elles sont cependant représentatives des résultats obtenus et discutés, dans les articles publiés
précédemment.

Synthèse en français: Le réglement de l’Habilitation à Diriger des Recherches requiert que si le
mémoire est rédigé anglais, il soit accompagné d’un document de synthèse rédigé en français. Ce document
de synthèse en français du mémoire d’HDR est reproduit en Annexe D.

Preface

Nomenclature for citations the citations with for example [JG4] denote the citations of the author’s
works. The corresponding references are listed in the publication list, given in the Appendix C. The other
citations, as for example [1] are “regular” citations, which are located on the bibliography.

Illustrations: Apart from the introduction, all the illustrations presented in this report are new material
that has not been previously published. These are however representative of the results obtained, and
discussed in the previously published papers.

Summary in French: The regulations for the Habilitation to Supervise Researches require that if the
dissertation is written in English, it must be accompanied by a summary document written in French. This
summary in French of the HDR dissertation is reproduced in the Appendix D.
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Introduction

Figure 0.1: A topological defect in a
crystal. One of the columns of atoms
on bottom disappears halfway through the
sample. The place where it disappears
(highlighted in green) is a defect, because
it doesn’t locally look like a piece of the
perfect crystal.

The topological defects and their understanding are at the core
of modern physics. The formalization of their properties,
and of the knowledge of their role in a very broad range
of physical processes is rather recent. However, they have
been heuristically known by mankind for probably more than
three thousand years. Indeed, this is approximately as far
as the processes of quench hardening of metal by smiths
can be traced back [2]. The fast thermal quenches used in
metal hardening processes creates dislocations of the crystal
structures, which are akin to topological defects. This is
similar to the proliferation of topological defects that occur
during phase transitions or other kinds of thermal quenches.
As illustrated in Fig. 0.1, a dislocation in a crystal is a
topological defect, because it cannot be removed by any local
rearrangement.

Associated with broken symmetries, the topological defects
are ubiquitous in physics. They indeed arise in a very broad
context ranging from early universe cosmology and particle
physics [3, 1, 4, 5, 6, 7, 8], to solid state and condensed matter
systems [9, 10, 7]. Depending on the underlying theory,
the topological defects can be of various kind including for
example dislocation in crystals, monopoles, domain-walls, vortices, skyrmions, hopfions, and much more.
They are intimately related with phase transitions [11, 12, 13], and their mere existence can have important
consequences. For example, the possible formation of topological defects during early universe phase
transitions could have greatly impacted the structure formation of the universe [5, 12, 14]. Likewise,
they are believed to drive certain phase transitions in various physical system, as for example the vortex
proliferation in superfluids and superconductors [11]. Vortices, which are line-like objects with specific
topological properties, are probably the most studied topological defects.

Topological defects – Superconductors and superfluids

The vortex physics have been the subject of an intense scientific activity since the second half of the
nineteenth century. Shortly after the earlier works of Helmholtz [15] on fluid dynamics, vortices were
the cornerstone of the “vortex atom" theory of matter conjectured by Kelvin [16]. This failed attempt to
classify the chemical elements as excitations consisting of closed, linked, and knotted vortex loops in the
luminiferous aether 1, yet led to considerable breakthrough in topology as it motivated the creation of the
first knot tables by Tait [17, 18, 19] and to the early knot theories works shortly after.

1The luminiferous aether was a postulated ideal fluid, supposed to fill in the whole universe, and serving as a medium for the
propagation of light waves.

11
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The theory of the vortex atom

Interestingly, the theory of the “vortex atom" of Kelvin and Tait still resonates with some concepts of
modern physics [20, 21], and it inspired several works over the years. Hence, it is a story worth being
told.

In his 1858 work on fluid dynamics, Helmholtz [15] demonstrated that in an ideal fluid (i.e. with an
incompressible and inviscid flow), the circulation of a vortex filament does not vary over the time. He
further demonstrated that a vortex cannot terminate inside such a fluid, but should either extend to the
boundaries of the fluid or form closed loops. Also that, in the absence of external rotational forces, an
initially irrotational flow remains irrotational.

Figure 0.2: A table of inequivalent knots.

Knowing the theorems of Helmholtz, in 1867 Kelvin [16]
noticed that « (...) this discovery inevitably suggests the idea
that Helmholtz’s rings are the only true atoms. » The general
idea was that, because the vortex lines are frozen in the flow of
an ideal fluid, then their topology should be invariant in time:
« It is to be remarked that two ring atoms linked together, or
one knotted in any manner with its ends meeting, constitute
a system which, however it may be altered in shape, can
never deviate from its own peculiarity of multiple continuity
(...) ». That ideal fluid would be the luminiferous aether
that people believed to fill the universe. He then attributed
the spectroscopic properties of matter to the topology of such
vortex lines: « It seems, therefore, probable that the sodium
atom may not consist of a single vortex line; but it may very
probably consist of two approximately equal vortex rings passing through one another, like two links of
a chain. » 2. Kelvin further noticed that in models of « (...) knotted or knitted vortex atoms, the endless
variety of which is infinitely more than sufficient to explain the varieties and allotropies of known simple
bodies and their mutual affinities. ». In short Kelvin conjectured that the different chemical bodies consist
in topologically inequivalent closed, linked and knotted vortex loops, illustrated in Fig. 0.2, of luminiferous
aether.

Subsequently, Tait started to classify the different inequivalent ways to tie such knots [17, 18, 19]. These
works pioneered the field of knots theory in algebraic topology. Kelvin’s theory was eventually falsified,
when Michelson and Morley’s experiment ruled out the existence of aether [22]. Yet the paradigm to
associate vortices in some underlying field with “elementary particles" re-emerged on several occasions. In
a way, these knotted vortices can be seen as the first theoretical example of topological defects.

Vortices and other topological defects in modern physics

About 80 years after Kelvin’s work, it was realized by Onsager [23], and later formalized on solid theoretical
grounds by Feynman [24], that the vortices occupy an important part in modern physics processes. In his
work on superfluid 4He, Onsager [23] observed that the circulation of the superfluid velocity is quantized,
and he further understood that vortex matter basically controls many of the key responses of superfluids.
For example, that the superfluid to normal state phase transition is a thermal generation, and a proliferation
of vortex loops and knots [23]. Also that vortices appear as the rotational response of superfluids.

These ideas somehow partially resonate with Kelvin’s theory of the vortex atom. Indeed, because the
circulation of the superfluid velocity is quantized, then vortices in superfluids are topological defects.

2More precisely, that the spectroscopic properties of the elements should corresponds to vibrational and rotational modes of linked
and knotted vortices « It is probable that the vibrations which constitute the incandescence of sodium vapour are analogous to those
which the smoke-rings had exhibited; and it is therefore probable that the period of the vortex rotations of the atoms of sodium vapour
are much less than T 1/526 of the millionth of the millionth of a second, this being approximately the period of vibration of the yellow
sodium light. »
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Moreover, the rotation of a superfluid results in the formation of a lattice or a liquid of these quantum
vortices. These lattices could be seen as the vortex-matter realisation of crystals and liquids. It was also
later predicted by Abrikosov [25] that the type-II superconductors should form magnetic vortices when
subjected to an external magnetic field, by analogy with the vortices formed as a rotational response of a
superfluid. Later it was further understood that in three dimensions superfluid and superconducting phase
transitions are a thermal generation and a proliferation of vortex loops [26, 27].

Noteworthy, important progresses in modern physics phenomena, where vortices occupy a central part,
were awarded a Nobel prize. As for example to Abrikosov in 2003 [28] for the understanding of their
role in superconductors, or more recently in 2016 to Haldane, Kosterlitz and Thouless for their role in
the phase transitions in two-dimensional systems [29, 11]. The concept of quantum vortices was later
generalized to relativistic theories, as for example in the abelian-Higgs model [30]; theories that might have
been relevant in the early universe [5, 31, 32], and also to the bosonic sector of the Weinberg-Salam theory
of the electroweak interactions [33]. According to the Kibble-Zurek mechanism [12, 13], various kind of
topological defects should be produced during possible early universe phase transitions. This would imply,
among other things, that if topological defects were created, they could substantially contribute to the matter
content of the universe, and have had a nontrivial impact on its history [5, 14]. These interesting ideas are
at the origin of a lot interest for topological defects. This resulted in many seminal works and in a deeper
understanding of the mathematical properties of topological defects.

Figure 0.3: A trefoil knot in Skyrme-
Faddev model.

Thus, as already emphasized there are plethora of different
kind of topological defects, in a broad range of physical
systems. It is kind of meaningless to exhaustively list all of
them. Rather let’s mention two particular kinds of topological
defects that particularly resonate with Kelvin’s theory, as
they were somehow identified with states of matter. A first
example is that of the topological defects in Skyrme model
[34, 35]. The topological defects there are termed skyrmions
3, and the associated topological invariant is interpreted as
the baryon number [36]. Likewise, the research on models
supporting stable knotted topological defects has been of great
interest in mathematics and physics, after the stability of these
objects termed hopfions was demonstrated in the Skyrme-
Faddeev model [37, 38, 39, 40, 41, 42] (for a review, see [43]).
Hopfions in the Skyrme-Faddeev model resemble knots, as
illustrated in Fig. 0.3.

After this general introduction about topological defects, most of the attention will be ported on vortices,
with a particular focus on those that appear in models of superconductivity with multiple components of
the order parameter.

Multi-component superconductors

Superconductivity and superfluidity are states of matter that are characterized by the macroscopic coherence
of the underlying quantum excitations. The underlying physics that describes such systems are quantum
fields theories, and these are the many-body properties, within those theories, that yield the macroscopic
coherence of the quantum excitations. The very interesting feature is that such quantum many-body
problems can be reduced, in the mean field approximation, to nonlinear classical field theories describing
the macroscopic properties of the coherent state represented by a single complex scalar field (the order

3In the main text, the terminology skyrmions is used to characterize slightly different kind of topological defects. They are more
related to the so-called baby-skyrmions, but since they share many topological properties they are often termed skyrmions as well,
with a bit of terminological abuse.
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parameter). These mean field approximations are known as the Gross-Pitaevskii equations for superfluids,
and as the Ginzburg-Landau equations for superconductors. Note that in the case of superconductors, the
complex scalar is supplemented by a real Abelian vector field, describing the electromagnetic potential.
This gauge field becomes massive via the Anderson-Higgs mechanism [44, 45], which is responsible for
the Meissner effect [46]. While in the simplest textbook cases, these order parameters are singlets, they can
be scalar multiplets in more complicated situations.

In condensed matter systems such as superfluids or Bose-Einstein condensates of ultra-cold atoms, theories
with order parameters with multiple components (i.e. described by multiplets or even matrices of complex
scalar fields) have been considered for a long time. They have been known to offer an extremely
rich zoology of topological defects, as for example in superfluid helium [7, 47], spinor Bose-Einstein
condensates [48, 49], or in neutron 3P2 superfluids [50, 51]. In the context of superconductivity, theories
with multiple superconducting gaps where considered from the earlier days of the Bardeen-Cooper-
Schrieffer theory [52, 53, 54]. Yet these multiband/multicomponent theories where for a long time
considered to describe exotic materials.

In the recent years however, there have been an increased interest in such materials, as the number of
known multiband/multicomponent superconductor is rapidly growing. Indeed, in many superconductors,
the pairing of electrons is supposed to occur on several sheets of a Fermi surface which is formed by the
overlapping electronic bands. To name a few of them, this is for example the case of MgB2 [55, 56],
layer perovskite Sr2RuO4 [57, 58, 59], or of the familly of iron-based superconductors [60, 61, 62, 63].
Beyond solid state physics, multicomponent theories also apply to more exotic systems, as certain models
of nuclear superconductors in the interior of neutron stars [64], or the superconducting state of Liquid
Metallic Hydrogen [65, 66], Liquid Metallic Deuterium [67, 68] and other kind of metallic superfluids [69].
This opens the possibility of more complicated field theory models where, typically due to the existence
of multiple broken symmetries, the physics of vortices (and of other topological defects) is extremely rich
with no counterparts in single-component models.

Note that the models where vortices appear, in the context of high-energy physics, are typically very
symmetric because of the underlying properties of the theory. For example, in the case of the Weinberg-
Salam theory of the electroweak interactions, the theory is invariant (among other symmetries) under the
local SU(2) rotations within the scalar doublet (the Higgs field). Models describing condensed matter
systems are typically much less constrained on symmetry grounds, and thus allow for more interaction terms
that explicitly break various symmetries. For example, in two-component superconductors (described by a
scalar doublet) the global SU(2) invariance is explicitly broken down to a smaller subgroup (as for example
U(1) × U(1)). The absence of strong symmetry constraints, and thus the existence of various symmetry
breaking terms is at the origin of many new features. It results, in particular, that vortices can acquire new
properties and are associated to a broad range of new physical phenomena. Those new exotic properties
can be understood as originating in the new broken symmetries. As a results such new phenomena can be
used as signatures to trace back informations on the actual symmetries of some unknown state.

The crucial importance of the topological excitations in the physics of superconductivity made the
Ginzburg-Landau vortices one of the most studied example of topological defects. Indeed, all the transport
properties of superconductors crucially depend on the behaviour of magnetic vortices in these materials.
For example, high critical currents in currently existing commercial superconducting transmission lines
are only achieved by carefully controlling the vortex motion in these materials. The theories for
multiband/multicomponent superconductors extends the usual Ginzburg-Landau theory by considering
more than one superconducting order parameters. Because of the additional fields and the new broken
symmetries, the spectrum of topological excitations and the associated signatures are much richer in
multicomponent systems than in their single-component counterparts. For example multicomponent
superconductors feature fractional vortices, singular/coreless vortices, skyrmions, hopfions, domain-walls,
etc. All these topological excitations can be used as experimental signatures to probe the multicomponent
nature of a superconducting system. Their observability can, for example, provide valuable informations
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about the structure of the order parameter and of the underlying pairing symmetry.

The works discussed in this report, deal with various aspects of the theories with more than one
superconducting condensate. Both for general models of multicomponent superconductors and for material
specific models. In particular through the investigation of the properties associated with the topological
defects that appear therein.

Mean-field Ginzburg-Landau theories

In the single-component, weak-coupling, mean-field, Bardeen-Cooper-Schrieffer theory [70], the
superconducting state is described by a classical complex field which is proportional to the gap function.
Namely, the phenomenologically introduced Ginzburg-Landau theory [71] can be derived as the classical,
mean-field, approximation of the microscopic theory [72], and the modulus of the order parameter is the
density of Cooper pairs. There are various approaches to characterize the properties of superconducting
materials, that are different/complementary to the Ginzburg-Landau theory. For example, methods such as
the Bogoliubov-de Gennes formalism [73, 74], the Eilenberger [75] and Usadel [76] equations for transport,
etc. However, the rest of this report is restricted only to the classical mean-field aspects of superconductivity
of multicomponent systems. That is, to the multicomponent Ginzburg-Landau theory, and to the topological
excitations that occur therein.

Interestingly, the Ginzburg-Landau theory of superconductivity attracted a lot of attention from the
Numerical Analysts community only since the 1990s, after the report of the well-posedness of the problem
[77, 78]. Since then, there have been quite some activity in understanding the mathematical properties of
that problem, see for example [79, 80].

Field theoretical models in the mean field approximation

The details of the multicomponent models may vary, depending on the context of the underlying physical
problem that is considered. For example, via the dependence of the different parameters. Here, we
briefly expose the mathematical structure of the generic mean field models that describe multicomponent
superconductors. The macroscopic properties of such physical systems are typically described by a
Ginzburg-Landau (free) energy functional of the form:

F/F0 =

∫
R3

1

2

∣∣∇×A∣∣2 +
κab
2

(Dψa)∗Dψb + αabψ
∗
aψb + βabcdψ

∗
aψ
∗
bψcψd , (1)

where ψa are the components of the scalar multiplet Ψ ∈ CN , that accounts for the superconducting degrees
of freedom. The scalar multiplet thus reads as Ψ† = (ψ∗1 , ψ

∗
2 , · · · , ψ∗N ), where a, b, c, d = 1, · · · , N ; and

the repeated indices are implicitly summed over. The scalar fields are coupled to the (Abelian) gauge field
A via the gauge derivative D = ∇ + ieA, with e the gauge coupling (the bold fonts denote the vector
quantities). All the matrix and tensor coefficients κ̂, α̂, β̂ obey some symmetry relations, so that the energy
is a real positive definite quantity 4.

It might be convenient to collect all the potential terms in (1) into a single potential term V (Ψ,Ψ†) as

V (Ψ,Ψ†) = αabψ
∗
aψb + βabcdψ

∗
aψ
∗
bψcψd . (2)

Sometimes, the specific structure of the potential V (Ψ,Ψ†) will be unimportant. On other occasions, the
interacting potential will have a central role for the definition of the new physical properties. Thus the
relevant restriction of the most generic potential (2) will be specified when necessary.

The ground state is the state which minimizes the potential energy (2) and that is constant in space:
Ψ0 := argminV (Ψ,Ψ†). Moreover the superconducting ground state is the state that minimizes the

4The Ginzburg-Landau model (1) is isotropic. Anisotropies can be incorporated by using more general kinetic term:
κab;µν(Dµψa)

∗Dνψb.
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energy and that has Ψ†Ψ = const. 6= 0. The criterion for condensation, that is Ψ0 6= 0, is that det α̂ < 0.
The superconducting ground state is degenerate in energy and this defines a manifold called the vacuum
manifold. Roughly speaking this is the topology of that vacuum manifold that specifies the topological
defects that can appear in the theory. For example, the ground state energy is invariant under overall phase
rotations of the multiplet Ψ, thus this defines a vacuum manifold that is a circle. The field configurations
are hence classified by a winding number that is an element of the first homotopy group π1(S1) (this
can alternatively be understood as a consequence that Ψ has to be single-valued). This winding number
determines the vortex content of the theory.

The functional variation of the free energy with respect to the superconducting condensates yields the Euler-
Lagrange equations of motion. These, in the framework of superconductivity, are the Ginzburg-Landau
equations

κabDDψb = 2
δV

δψ∗a
. (3)

Similarly, the variation with respect to the gauge field yields the Ampère-Maxwell equation

∇×B + e
∑
a,b

κabIm
(
ψ∗aDψb

)
= 0 , (4)

whereB = ∇×A is the magnetic field. This equation is used to introduce the supercurrents

J :=
∑
a

J (a) , where J (a) = e
∑
b

κabIm
(
ψ∗aDψb

)
. (5)

Here J is the total supercurrent, while J (a) is the partial current associated with a given superconducting
condensate ψa.

Depending on the properties of the microscopic model under consideration, there can be various additional
requirements further constraining the structure of the tensor parameters κ̂, α̂, β̂. This can yield many
different situations that are useless to be listed here. As mentioned above, the vortex content is specified
by the winding number of the field configuration (more precisely the winding at infinity). The next step is
to explicitly construct the vortex solutions in a given topological sector specified by this winding number.
The theory is clearly nonlinear and the explicit construction of a field configuration with a given winding
number thus has to be addressed numerically. In the works that are discussed here, this is done using
minimization algorithms on the energy within a finite element formulation of the problem (see details in the
Appendix B).

Outline

It is hardly conceivable to disentangle all the aspects related to the new physics that appear in
multicomponent systems. Hence there will surely be some kind of an overlap from time to time. Anyway,
the main body of this report is organized as follows: First, the Chapter 1 sheds the light on the new properties
associated with the topology of the phenomenological multicomponent models. Next, Chapter 2 presents
some new physical properties that occur because of the existence of additional length scales. Finally, the
properties of multicomponent superconducting states that spontaneously break the time-reversal symmetry
are discussed in the Chapter 3.

More precisely, the Chapter 1 is focused on the nature of the topological excitations that appear in
multicomponent superconductors. It is first demonstrated that the condition for the quantization of the
magnetic flux implies that the elementary topological excitations there, are fractional vortices. These are
field configurations that carry an arbitrary fraction of the flux quantum, but that have a divergent energy
per unit length. Yet when the fractional vortices combine to form an object that carries an integer amount
of flux, they form a topological defect which has a finite energy. Depending on the relative position of the
ensuing fractional vortices, the resulting topological defect is either singular or coreless. In the later case,
it can then be demonstrated that there exists an additional topological invariant of a different nature than
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the most common winding number. However, the most simple analysis shows that typically the fractional
vortices attract each other to form a singular defect. It follows that a stabilizing mechanism is necessary
for the existence of coreless defects. Various occurrence of such stable coreless topological defects, termed
skyrmions, are discussed along that chapter. As they have a different core structure, the skyrmions, can
interact differently than the singular (Abrikosov) vortices, and thus have significantly different observable
properties.

While the coreless defects feature interesting new properties, the singular defects also exhibit a rich new
physics. This new physics of the singular defects is discussed in the Chapter 2. The properties of the
magnetic response of superconductors can, to some extent, be seen as the consequence of the interaction
between vortices. More precisely, the textbook dichotomy that classifies the conventional superconductors
into type-1 or type-2 can be understood by whether the vortices attract or if they repel. The vortex
interactions can be determined by the analysis of the length-scales of the theory. Vortices attract when the
coherence length is larger than the penetration depth of the magnetic field (this is the type-1 regime). On
the other hand, if the penetration depth is the largest length scale, vortices repel each other (this is the type-2
regime). In multicomponent superconductors such a dichotomy is not always possible. Indeed, because they
have several superconducting condensates, the multicomponent superconductors usually feature additional
length scales. It thus can happen that the penetration depth is an intermediate length scale, and that the
vortex interaction is long-range attractive (as in type-1) and short-range repulsive (as in type-2). Such a
regime with non-monotonic intervortex forces is termed type-1.5. In that regime vortices tend to aggregate
to form large clusters surrounded by vortex-less regions of the Meissner state. The possible formation of
such aggregates strongly impact the magnetization properties, as compared to the conventional type-1 or
type-2 regimes.

The non-monotonic interactions between vortices are (partially) determined by the length-scales, and
these are determined by the perturbations of the theory around the ground state. As discussed in the
Chapter 3, certain multicomponent superconductors feature unusual ground states that spontaneously break
the time-reversal symmetry. These states are characterized by ground state relative phases between the
condensates that are neither 0 nor π. Depending on the pairing symmetries, there exists various such
superconducting states, e.g. termed p+ip, s+is, s+id, d+id, etc. Yet, the focus will mostly be about
s+is state, which the simplest extension of the most abundant s-wave state, that break the time-reversal
symmetry. The spontaneous breakdown of the time-reversal symmetry in the s+is state typically occurs as
a consequence of the competition between different phase-locking terms. The phase transition to the time-
reversal symmetry broken states is of the second order, so it is associated with a divergent length scale.
Notably this transition can occur within the superconducting state, where the penetration depth is finite. It
follows that, in the vicinity of the time-reversal symmetry breaking transition, the penetration depth can
be an intermediate length scale, thus leading to the non-monotonic vortex interactions mentioned above.
Moreover, the time-reversal symmetry is a discrete operation, so if it is spontaneously broken, then the
ground state has a discrete Z2 degeneracy in addition to the usual U(1). This implies that, in addition to the
vortices, the theory allows for domain-walls excitations. They interact non-trivially with the vortex matter,
and this results in a new kind of topological excitations with different magnetization properties. Finally, the
superconducting states that break the time-reversal symmetry also feature unusual thermoelectric properties.
These can be used to induce specific electric and magnetic responses, when exposed to an inhomogeneous
local heating.

As explain above, the essential of these effects that appear in multicomponent superconductors, are
discussed here in the framework of the Ginzburg-Landau theory. The Appendix A, presents the theoretical
framework, and the textbook properties of the single-component Ginzburg-Landau theory. It indeed
might be useful, for example in order to compare with the properties of the multicomponent Ginzburg-
Landau theories. This may provide a better insight to understand the new features of the multicomponent
theories.

It is emphasized on several occasions that the Ginzburg-Landau theory is a nonlinear classical field theory.
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Being nonlinear implies that except under very special circumstances there are no analytic solutions, and
the problem has to be addressed numerically. This is in particular the case of the results displayed in this
work, and of the results that are discussed there. Technical aspects of the numerical methods are discussed
in the Appendix B. This includes a presentation of the finite element methods used to handle the spatial
discretization of the partial differential equations; also the optimization algorithm to handle the nonlinear
problem. The numerical construction of topological defects also relies on the appropriate implementation
of the topological properties for the numerical algorithm; this is also discussed there.

Remark: The next chapters will follow the plan presented above. They are written, so that they
are as self-contained as possible. Yet there will occasionally be some overlap. There will also be some
redundancy, in particular with the general introduction, when developing the introduction part within each
chapter.



Chapter 1

Topological defects in
multicomponent systems

Unlike single-component Ginzburg-Landau theory, where the topological excitations merely consists
in quantum vortices, theories with multicomponent order parameters feature a much richer spectrum
of topological excitations. Multicomponent superconductors and superfluids, are described by order
parameters for which each of the component is commonly described by a complex field. Overall, all the
superconducting/superfluid degrees of freedom can be cast into a multiplet of complex scalar fields.

The following chapter presents results concerning the properties of the topological excitations in theories
of superconductivity featuring multiple order parameters or order parameters with multiple components. In
the context of superconductivity, theories with multiple superconducting gaps where considered from the
earlier days of the Bardeen-Cooper-Schrieffer theory [52, 53, 54]. Yet these multicomponent/multiband
theories where for a long time considered to describe exotic materials. In the recent years however, there
have been an increased interest in such materials, as the number of known multicomponent superconductor
have been rapidly growing. For example materials such as Sr2RuO4 [57, 58], MgB2 [55], heavy fermion
compounds such as UPt3 [81], the family of iron based superconductors [60], are understood to be
multicomponent/multiband.

The topological properties of multicomponent systems have been widely investigated in the context of
superfluid 3He, see e.g. [82, 83], and the detailed books [47, 7]. Superfluid 3He has been particularly
known to host a broad variety of unusual topological defects [84, 85, 86, 87, 88]. More recently, in
the context ultracold atomic gases, the topological properties of spinor Bose-Einstein condensates were
also investigated in great details [89, 90, 48, 49]. This chapter presents the topological properties of
phenomenological, multicomponent, Ginzburg-Landau models of superconductivity. An overview of the
properties of the conventional, single-component, Ginzburg-Landau models of superconductivity is given
in the Appendix A. This might indeed be useful for the comparison with the new properties that appear in
multicomponent systems.

In the context of multicomponent superconductors and superfluids, the most elementary topological
excitations are fractional vortices. For superfluids, these objects carry a fraction of the circulation of
the superfluid velocity, while for superconductors they carry a fraction of the flux quantum [91, 92, 93].
In short, a fractional vortex is a field configuration of a multicomponent system for which only a single
component has a nonzero phase winding.

In some specific models of superconductivity, the fraction carried by the fractional vortices is half of a flux
quantum (or half of a circulation quantum, in the case of superfluids). There, the fractional vortices are
rather termed half-quantum vortices. Half-quantum vortices were originally predicted to exist in A-phase
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of superfluid 3He [94, 95]. Their existence was relentlessly investigated for, and their observation was
eventually reported in the polar phase of superfluid 3He [96].

The search for half-quantum vortices, have also been very active in solid state physics. In particular for
superconductors which have been argued to have a p-wave pairing, such as Sr2RuO4 [97, 98, 99]. The
observation of half of a flux quantum steps, in the magnetization curves of mesoscopic Sr2RuO4 samples,
was claimed to be the hallmark of half-quantum vortices [100]. The interest in the realization of half-
quantum vortices follows from that their excitation spectrum contains zero-energy Majorana fermions [101].
It follows that the statistics of vortices is non-Abelian [101], which could potentially be used for quantum
computations [102].

As discussed below, the fractional vortices in multicomponent superconductors do not have a finite energy
(per unit length) and the only finite energy topological excitations carry an integer amount of the flux
quantum. It follows that, under usual conditions, fractional vortices are thermodynamically unstable in bulk
systems. Note however that complex setups, such as mesoscopic samples, can allow for fractional vortices
to be energetically favoured [103, 104]. Despite the non-finiteness of their energy, the fractional vortices
are crucially important for multicomponent superconductors. Indeed, they can form bound states that carry
an integer amount of the flux quantum, for which the divergences of the energy compensate.

Hence, fractional vortices are quite elusive objects that, in general, cannot be observed individually. Yet
their integer flux bound states have finite energy, and thus are observable 1. Such integer flux carrying
bound states are termed composite vortices. There are basically two qualitatively different possibilities to
form integer flux composite objects. The first is to superimpose the singularities of all constituting fractional
vortices, and the resulting objects are thus singular composite vortices. The other possibility is to form a
bound state for which the individual singularities do not overlap. The ensuing objects are thus coreless
topological defects. As detailed in this chapter, these feature additional topological invariants, that can
discriminate them from singular defects. Because of these additional topological properties, these coreless
defects are often termed skyrmions.

Fractional vortices are not only important as they are the building blocks of more complex topological
excitations, they are also the cornerstone of the thermodynamical properties of multicomponent systems.
In single-component superconductors, the superconducting phase transition was demonstrated to be
driven by the proliferation of thermally excited vortex loops [26, 27]. Likewise, in multicomponent
superconductors, this is the proliferation of fractional vortices that drives the superconducting phase
transitions, as demonstrated for London superconductors [105, 106, 107], or in Ginzburg-Landau [108].
In the presence of an external field, fractional vortices also play a role in the melting of vortex lattices
[108]. Similarly the thermodynamic properties of multicomponent superfluids strongly depend on the role
of fractional vortices [109, 110, 111].

This chapter, about the topological properties of multicomponent superconductors thus heavily relies on
the concept of fractional vortices. They are indeed crucial in our understanding of the responses of the
multicomponent systems. Below is a plan that details the structure of this chapter, followed by a brief
summary of the author’s contributions about these topological properties.

Plan of the Chapter

As a starting point, the Section 1.1 addresses the question of the flux quantization in multicomponent
superconductors. It is shown there, that the flux quantization formally allows the existence of fractional
vortices. Their basic properties are also discussed. In multicomponent systems, the fractional vortices
are field configurations, where only a single condensate has a phase winding, while the others do not.
The energy of individual fractional vortices is divergent. However, as already emphasized, the energetic
divergence of fractional vortices disappears if they form bound states.

1Here, one could see some kind of an analogy with the quark matter that constitutes the nuclei: The individual quarks carry a
fraction of the electric charge and they are linearly confined to form bound states with an integer charge.
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This implies that, in bulk systems, only composite objects have finite energy. The Section 1.1.3
further develops on the topological properties of the composite topological defects for multicomponent
superconductors. In particular, there exist a hidden topological invariant associated with the topology of
the complex projective space, that characterizes coreless topological defects. This invariant, that classifies
the maps R2 → CPN−1, discriminates coreless from singular vortices. In the case of a two-component
system, the target CP1 space can be identified with the unit two-sphere S2. The topological invariant can
thus be interpreted as the Hopf index, and can be used to characterize knotted vortices in two-component
superconductors.

The flux quantization implies that these additional invariant are non-zero, as long as not all of the
superconducting condensates simultaneously vanish. That is, as long as the fractional vortices in the
different components do not overlap. The interaction between fractional vortices is discussed in Section
1.1.4. Because the interaction between fractional vortices is attractive, the observation of coreless
topological defects is rather difficult. As explained later on, various mechanisms can compensate the
attraction between fractional vortices and thus lead the formation of coreless defects. These coreless defects
that consist in a bound state of fractional vortices are often termed skyrmions. This terminology originates
in the existence of a formal relation between the two-component Ginzburg-Landau models and the Skyrme-
Faddeev model. The relation between these two models is explained in Section 1.2.

The Section 1.3 presents various situations, origintating in different physical mechanisms, that allow the
stabilization of coreless defects rather than singular vortices. First, in Section 1.3.1, in a model of mixtures
of condensates with commensurate charges, introduced in [JG18]. In this rather exotic model, the different
superconducting condensates can feature different electric charges (i.e. different coupling to the gauge field).
There, fractional vortices are naturally split, and thus form coreless bound states. This model can be
applied to describe the superconducting state for liquid metallic deuterium, where the electronic Cooper
pairs coexist with a Bose-Einstein condensate of deuterons.

Next, in Section 1.3.2, the dissipationless intercomponent drag, known as the Andreev-Bashkin effect, is
demonstrated to be responsible for the existence of skyrmions [JG20]. Furthermore, the dissipationless
drag can also stabilize knotted bound states of fractional vortices [JG4]. These knots, characterized by the
Hopf index, are hence termed hopfions. Interestingly, these hopfions remind Kelvin’s earlier idea of knotted
vortices of luminiferous aether to explain classification of atoms.

Next, the properties of topological defects that occur in superconducting s+is states are discussed in
Section 1.3.3. As discussed in more details in Chapter 3, these s+is states break a discrete Z2 symmetry
associated with the time-reversal symmetry, in addition to the usual U(1) gauge symmetry. The spontaneous
breakdown of a discrete symmetry is associated with formation of domain walls. Following [JG19]
these domain walls can be formed by thermal quench, and geometrically stabilized against collapse. As
demonstrated in [JG26] and [JG21], the complex interaction between domain-walls and fractional vortices
leads to the existence of new skyrmionic states.

Summary of the results that are discussed in this chapter

• In [JG23] and [JG13], we showed that the px+ ipy superconducting state allows for skyrmionic
excitations characterized by the homotopy invariants of the S2→S2 maps. They can be alternatively
understood as vortices carrying two quanta of the magnetic flux, that are energetically favoured as
compared to single-quanta vortices [JG13]. These two-quanta vortices form hexagonal lattices in
an external field [JG11]. Close to Hc2 the hexagonal lattices of two-quanta vortices dissociate into
square lattices of single quantum vortices [JG11], and this picture persists beyond the mean field
approximation [JG3].

• Demonstration of an unconventional magnetic response in interface superconductors with a
strong Rashba spin-orbit coupling [JG17]. In the clean limit, interface superconductors, such
as SrTiO3/LaAlO3, are ideal candidates to observe coreless defects characterized by homotopy
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invariants of S2 → S2 maps, in addition to those of S1 → S1 maps. Similar skyrmionic states
also exist in parity-odd nematic superconductors [JG7].

• Identification of the topological properties of flux-carrying topological defects in mixtures of charged
condensates that have different (commensurate) electric charges [JG18]. Such situation is expected
to appear for example in liquid metallic deuterium.

• Prediction of a new phase in U(1)×U(1) superconductors with interspecies dissipationless drag
[JG20]. The dissipationless current interaction renders vortices unstable in favour of skyrmions
whose long-range interaction substantially modifies magnetization processes. These models of
superconductivity with disspationless drag support stable knotted vortices [JG4]. These knots share
many properties with the knots in luminiferous aether conjectured by Kelvin.

• Discovery of new kind of stable topological solitons in three-component superconductors with
spontaneously broken time-reversal symmetry [JG26], and [JG21]. These flux carrying topological
defects, characterized by CP2 topological invariants are skyrmions. Their observation could signal
superconducting states that break the time-reversal symmetry, for example in some iron based
superconductors, as well as in Josephson-coupled bilayers of s± and ordinary s-wave superconductor.

1.1 Flux quantization and fractional vortices

In multicomponent superconductors, the flux quantization relation is modified compared to that of single-
component superconductors (see the background discussion in Section A.3). This modified relation implies
the existence of vortices that carry arbitrary fractions of the elementary flux quantum Φ0, without violating
the flux quantization itself. To illustrate this feature of multicomponent systems, let consider here a
restriction of the generic free energy (1), in the absence of mixed gradient terms. Namely, the gradient
coupling matrix κab is the identity κab = δab, and the Ginzburg-Landau free energy reads as

F/F0 =

∫
1

2

∣∣∇×A∣∣2 +
∑
a

1

2

∣∣Dψa∣∣2 + V (Ψ,Ψ†) . (1.1)

Here again, ψa = |ψa|eiϕa are complex fields representing the superconducting condensates, labelled by
the index a = 1, 2, · · · , N . For the moment, the specific structure of the potential V (Ψ,Ψ†) is rather
unimportant. The potential will be specified later when it is necessary. Again, besides the potential term,
the condensates are indirectly coupled by the electromagnetic interaction via the gauge derivative in the
kinetic termD = ∇ + ieA. The Ampère-Maxwell equation (4) now reads as

∇×B + J = 0 , (1.2)

where the supercurrent is

J ≡ e
∑
a

|ψa|2
(
∇ϕa + eA

)
= e2%2A+ e

∑
a

|ψa|2∇ϕa , with %2 =
∑
a

|ψa|2 , (1.3)

here %2 is the total superconducting density. Here again, the total superconducting current J can be
decomposed in terms of the contributions of the partial currents J (a) carried by the individual condensate
ψa, as

J =
∑
a

J (a) , with J (a) = e|ψa|2
(
∇ϕa + eA

)
. (1.4)
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1.1.1 Separation in charged and neutral modes

To understand the role of the fundamental excitations (i.e. fractional vortices), the Ginzburg-Landau free
energy (1.1) can be rewritten into charged and neutral modes, by expanding the kinetic term as∑

a

∣∣Dψa∣∣2 =
∑
a

(
∇|ψa|

)2
+
∑
a

|ψa|2
(
∇ϕa + eA)2 (1.5)

=
∑
a

(
∇|ψa|

)2
+
∑
a

|ψa|2
(
∇ϕa)2 +A ·

(
e2A

∑
a

|ψa|2 + 2e
∑
a

|ψa|2∇ϕa

)
. (1.6)

Now, using the definition of the current (1.3), allows to eliminate the vector potential, and the kinetic term
thus reads as:∑

a

∣∣Dψa∣∣2 =
∑
a

(
∇|ψa|

)2
+
∑
a

|ψa|2
(
∇ϕa)2 (1.7)

+
1

e2%2

(
J − e

∑
a

|ψa|2∇ϕa

)
·
(
J + e

∑
a

|ψa|2∇ϕa

)
(1.8)

=
∑
a

(
∇|ψa|

)2
+
∑
a

|ψa|2
(
∇ϕa)2 +

J2

e2%2
−
(∑

a |ψa|2∇ϕa
)2

%2
(1.9)

=
∑
a

(
∇|ψa|

)2
+
J2

e2%2
+

1

%2

∑
a,b

|ψa|2|ψb|2∇ϕa · (∇ϕa −∇ϕb) (1.10)

=
∑
a

(
∇|ψa|

)2
+
J2

e2%2
+
∑
a,b>a

|ψa|2|ψb|2

%2
(∇ϕa −∇ϕb)

2 . (1.11)

Hence the kinetic energy can be expressed in terms of three contributions: the density term, the charged
mode that involves the current J , and the neutral mode which involves only the relative phase ϕab :=

ϕb − ϕa between condensates. The free energy now can be written as

F/F0 =

∫
B2

2
+
∑
a

1

2

(
∇|ψa|

)2
+

J2

2e2%2
+
∑
a,b>a

|ψa|2|ψb|2

2%2
(∇ϕab)

2 + V (Ψ,Ψ†) . (1.12)

1.1.2 Factional vortices

The existence of vortices carrying an arbitrary fraction of the flux quantum follows from the evaluation of
the flux for a multicomponent superconductors. The Stokes’ theorem implies that the flux of the magnetic
field through a given areaA can be expressed as the line integral over the contour C which bounds that area
Φ =

∫
AB·dS =

∮
CA·d`. Given the definition of the current (1.3), the vector potential can be expressed in

term of the current J and of the individual phase gradients ∇ϕa. Hence, the magnetic flux reads as

Φ =
1

e2%2

∮
C

(
J − e

∑
a

|ψa|2∇ϕa

)
·d` . (1.13)

Given a large contour C, finite energy considerations imply that the total current J vanishes on that contour
(Meissner screening implies that the current is exponentially suppressed), and that the individual densities
|ψa| are constant to their ground state value. Indeed, the spontaneous breakdown of the U(1) symmetry
implies that the vector potential A is massive, and so is the current J (i.e. the Meissner effect). The first
term in (1.13) thus vanishes, and the flux reads as

Φ =
−1

e%2

∮
C

∑
a

|ψa|2∇ϕa ·d` =
Φ0

∑
a |ψa|2

2π%2

∮
C

∇ϕa ·d` , (1.14)

where Φ0 = 2π/e is the flux quantum 2.

Each of the condensate has to be single valued, hence the phase of the complex fields ϕa winds only
an integer number of times na and thus

∮
C∇ϕa · d` = 2πna. The individual winding number na of a

2Here, the orientation of the closed integration path is chosen so that the flux is positive.
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condensate is independent of the winding of the other condensates. It thus makes sense to consider the
possibility where only a single condensate, say ψa has a unit winding:

∮
C∇ϕa·d` = 2π, while all the other

condensates have zero winding:
∮
C∇ϕb·d` = 0 (for b 6= a). It results that the configuration for which only

one of the condensates has a nonzero winding, carries the flux Φa = Φ0|ψa|2/%2. Such a configuration thus
carries only a fraction |ψa|2/%2, of the elementary flux quantum Φ0. Conversely, if all components have
the same winding number (n1 = n2 = · · · ≡ n), then the flux is quantized: Φ = nΦ0.

The configurations, with a winding in only a single condensate, and that hence carry only a fraction the
elementary flux quantum Φ0 are called fractional vortices [91]. As earlier mentioned, these objects occupy
a central place in the statistical properties of multicomponent superfluids [112, 111, 109, 110, 107] and of
multicomponent superconductors [113, 114, 106, 108, 105, 93].

Note however that the existence of vortex excitations carrying only a fraction of the flux quantum, does
not contradict the traditional arguments for the quantization of the magnetic flux. Indeed when considering
straight vortex lines, it turns out that fractional vortices have an infinite energy per unit length. This follows
from that a single fractional vortex induces a nonzero winding of the relative phases in the neutral modes
of (1.12). Thus straight fractional vortices have logarithmically divergent energy. Indeed, consider for
example the simplest case where only n1 = 1 and nb = 0 (b 6= 1). Then the part of the free energy
containing gradients of the relative phase is

· · ·+
∑
b 6=1

|ψ1|2|ψb|2

2%2
(∇ϕ1b)

2 + · · · . (1.15)

At a large distance r from the core, the densities are approximately constant and thus the contribution of
the neutral sector is approximated by

∼
∫ r

r0

r′dr′
(

1

r′
∂θϕ1b

)2

∼
∫ r

r0

dr′

r′
∼ log

r

r0
, (1.16)

Where r and θ are respectively the radius, and the polar angle of cylindrical coordinates. Note that
if V (Ψ†,Ψ) features phase-locking terms (i.e. potential terms involving the relative phase ϕab, like the
Josephson coupling), then the logarithmic divergence of the energy becomes linear. This is for example
discussed in details, in the appendix of [JG21]. In any case, the divergence due to the winding in the
relative phase puts a strong energy penalty on the existence of fractional vortices.

Figure 1.1: Schematic illustration of a composite
vortex, in the case of a two-component system. The
cones show the densities |ψa| that vanish at the vortex
core. The closed arrows denote the phase winding,
and the circulation of the supercurrents.

On the other hand, if all condensates have the
same winding number, then there is no winding
of the relative phases. As a results, the long-
range contribution of the neutral modes vanishes,
and the corresponding energy is finite. Thus, the
only configurations that yield a finite energy per
unit length are those where all condensates have
the same winding, and hence carry an integer flux.
As a result, the configurations with a fractional
flux cannot be excited in bulk superconductors.
Note however that they can be stabilized near
boundaries [104, 115], in mesoscopic samples
[91, 116, 117, 103, 118] or in samples with
geometrically trapped domain walls [119]. In bulk
systems, the condition for the finiteness of the
energy, thus allows only topological defects that
carry integer flux quanta. These objects, made of
fractional vortices in each of the components, are
thus composite objects. Such a composite vortex is
sketched in Fig. 1.1.
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Figure 1.2: Schematic illustration of a vortex
loop denoted by the gray tube. The closed
arrows denote the phase winding, and the
circulation of the supercurrents. Clearly, a
vortex loop has no net winding at large distance.

Remark here that this derivation is essentially two-
dimensional. This means that this divergence occurs in
either in two dimensions or in three-dimensional systems
with translation invariance along the the third direction.
This is reason for the emphasis on straight vortices. In
three-dimensional systems, fractional vortices oriented
along the third direction have a divergent energy per unit
length. So they will still be energetically penalized. On
the other hand, loops of fractional vortices always have
a finite energy. This can heuristically be understood as
follows: As sketched in Fig. 1.2, a section of a vortex
loop can be seen as pair of a vortex and an anti-vortex. In
a plane such a vortex/anti-vortex pair has no net winding
at large distance, so it is topologically trivial, and the
energy is finite. Moreover because it is topologically
trivial, there is no topological protection, so a vortex
and an anti-vortex attract each other until they annihilate.
Similarly, a vortex loop is topologically trivial, since it
has no net winding at large distance. A vortex loop tend
to collapse because of its line tension, quite similarly to

a vortex/anti-vortex pair that annihilate each other.

In two-dimensions, vortices, either fractional or composite, are characterized by S1 → S1 topological maps.
The first circle S1 denotes the closed path faraway from the vortex core (that is homeomorphic to a circle)
while the second one (the target circle) corresponds to U(1) rotations. Heuristically, the S1 → S1 maps
have the following meaning: they count how many times the target circle is covered while going along the
closed path faraway from the vortex core (i.e. the number of phase windings). Importantly, this number can
be calculated just by inspecting the closed path faraway for the vortex core. This is because the associated
density of the topological invariant is a total divergence. As discussed later on, this is not the case of the
extra invariants.

Depending on how the constituting fractional vortices are located relative to each other, there exist two
qualitatively different ways to construct the composite topological defects. More precisely, as discussed
below, the topological properties depend on whether their individual singularities overlap, or not. If the
singularities do not overlap, the composite topological defect is coreless and can be characterized by an
additional, topological invariant. This motivates the generic terminology of skyrmions [120]. On the other
hand, if all fractional vortices are co-centred, the resulting bound state is a singular (multicomponent)
vortex.

1.1.3 Additional topological properties in multicomponent systems

In addition to the winding number, which is the only topological invariant in single-component
superconductors, multicomponent superconductors can be characterized by extra topological properties. As
previously emphasized, the U(1) topological invariant is associated with the total phase winding at spatial
infinity. Depending on the nature of the topological defect under consideration, the additional invariant
is of different nature. If the objects considered are straight, line-like, topological defects being the bound
state of straight fractional vortices, the additional invariants are given as surface integral characterizing
skyrmions. If on the other hand, the objects consist of closed loops of fractional vortices, the additional
invariant is given as a volume integral characterizing hopfions. Both skyrmion and hopfion numbers are
discussed below. Note that while the skyrmion number is well define for any number of superconducting
condensates, the hopfion number is formally defined only for two-component superconductors.
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CPN−1 topological invariant – Skyrmion number

The winding number, which is defined as a line integral over a closed path, is associated with the maps
S1 → S1. It is related to the elements of the first homotopy of the circle: n ∈ π1(S1) = Z. In contrast,
multicomponent superconductors can be characterized by an additional CPN−1 topological index, which is
defined as an integral over the plane. Given the N -component complex vector Ψ, the CPN−1 topological
index is [JG21]

Q(Ψ) =

∫
R2

iεji
2π|Ψ|4

[
|Ψ|2∂iΨ†∂jΨ + Ψ†∂iΨ∂jΨ

†Ψ
]
dxdy , (1.17)

where ε is the Levi-Civita symbol. Provided Ψ 6= 0 (i.e. if singularities do not overlap), the CPN−1 index
Q(Ψ) is an integer number and it is equal to the number of flux quanta: Q(Ψ) =

∫
B/Φ0 = n (Φ0 being

the flux quantum and n the number of flux quanta) [120]. It results that for a singular vortex, where all the
superconducting condensates simultaneously vanish (i.e. Ψ = 0), the skyrmion number Q(Ψ) = 0. On the
other hand, if the singularities are non-overlapping (i.e. Ψ 6= 0), then Q(Ψ) ∈ Z and the quantization
condition holds. Then Q(Ψ) is a useful quantity that can differentiate between singular vortices and
skyrmions (which are coreless defects).

It should be emphasized again that unlike the flux-quantization condition (1.14), the integral formula for the
topological charge Q(Ψ) above is valid only for field configurations for which Ψ never vanishes. The flux
is still quantized for ordinary singular vortices, for which Ψ vanishes, but it is no longer associated with the
topological charge Q(Ψ), rather with the U(1) topological invariant related to the total phase winding at
spatial infinity (the usual winding number).

Note that the topological number Q(Ψ) is calculated as an integral over the plane R2. Hence it
formally characterizes either two-dimensional systems (R2), or three-dimensional systems with translation
invariance normal to the plane (i.e.R2×R). In the later case,Q(Ψ) should be interpreted as a linear density
of topological charge.

Hints of the demonstration: For the rigorous derivation of the flux and topological charge quantization,
see [JG21]. Using, the definition (1.3) of the total supercurrent J , and the relation Im(Ψ†∇Ψ) =∑
a |ψa|2∇ϕa, the gauge field reads as

A =
1

e2%2

(
J − e

∑
a

|ψa|2∇ϕa

)
=

1

e2%2

(
J − eIm(Ψ†∇Ψ)

)
, (1.18)

where %2 =
∑
a |ψa|2 = Ψ†Ψ is the total superconducting density. It follows that the magnetic field can be

expressed as

Bk =
1

e
εkij

{
∂i

(
J

e%2

)
− ∂i

(∑
a

|ψa|2∇ϕa
%2

)}
(1.19a)

=
1

e
εkij

{
∂i

(
J

e%2

)
+

i

%4

[
%2∇iΨ†∇jΨ + (Ψ†∇iΨ)(∇jΨ†Ψ)

]}
, (1.19b)

where εijk is the Levi-Civita symbol. Going from the first to the second line of (1.19) is merely done by
developing the second term and by eliminating the contributions that are symmetric under i↔ j (since they
are contracted with the Levi-Civita symbol which is antisymmetric). Obviously the flux of B is quantized.
Indeed, applying the Stokes theorem to the equation (1.19a) yields the relation (1.13). Now, computing the
flux from the second equation (1.19b) gives

Φ =
1

e2%2

∮
C

J ·d`−

∫
iεij
e%4

[
%2∇iΨ†∇jΨ + (Ψ†∇iΨ)(∇jΨ†Ψ)

]
dxdy . (1.20)

Since the Meissner current vanishes asymptotically, this determines the relation between the topological
charge (1.17) and the magnetic flux

∫
B = Φ0Q(Ψ) with the flux quantum Φ0 = 2π/e. Again one can see

that Q is a surface integral, since the 2-form integrand is not closed.
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Remark: It is important to stress here that the definition of the magnetic field (1.19) features two
contributions. The first term is the contribution from the standard superconducting currents, while the
second term appears only for multicomponent system. This additional term, which involves relative density
gradients and relative phase gradients, is responsible for various unusual phenomena presented later in
Chapter 3.

Hopfions in two-component superconductors

The above discussion considered the topological properties of straight topological defects, where the
extra invariant is calculated as a surface integral in the plane perpendicular to the vortex line. It is also
possible to define an additional invariant when vortices form close loops, instead of straight defects.
However, this is possible only for two-component superconductors. Topological considerations imply
that knotted vortex loops in two-component superconductors are characterized by an integer topological
index I (see, e.g. , discussions given in Refs. [37, 38, 121, 122, 123, 43, 124]). As for the previous
discussion, this index is well defined when fractional vortices in the different components do not intersect
(Ψ 6= 0). Here, the superconducting degrees of freedom are cast in a 4-dimensional unit vector ζ =

(Reψ1, Imψ1,Reψ2, Imψ2)/
√

Ψ†Ψ. Note that for ζ to be well defined, there should be no zeros of Ψ,
i.e. no overlap between core centres of fractional vortices in both components. The finiteness of energy
implies that a superconductor should be in the ground state at spatial infinity. It follows that infinity is
identified with a single field configuration (up to gauge transformations). Hence, the vector field ζ is a map
from the one-point compactified space to the target 3-sphere ζ : S3 [∼= R3 ∪ {∞}] → S3

Ψ. Maps between
3-spheres fall into disjoint homotopy classes, the elements of the third homotopy group π3(S3

Ψ), which is
isomorphic to the integers: π3(S3

Ψ) = Z. Hence, ζ is associated with an integer number, the degree of the
map ζ, which counts how many times the target sphere S3

Ψ is wrapped while covering the wholeR3 space.
Field configurations are thus characterized by the topological index

I := degζ = − 1

12π2

∫
R3

εijkεabcd ζa∂iζb∂jζc∂kζddr , (1.21)

where ε is the Levi-Civita symbol. As long as ζ is well defined, that is unless Ψ has zeros, the index I
is always an integer. Note that, as discussed for example in [123], the degree of ζ, I is equal to the Hopf
charge of the combined Hopf map h ◦ ζ : S3 → S2.

1.1.4 Interactions between fractional vortices

The finiteness of the energy dictates that fractional vortices cannot exist individually, and should thus form
composite objects carrying an integer flux. These maybe be characterized by the additional invariant
Q(Ψ), if Ψ 6= 0. To determine whether singularities overlap or not, and thus whether singular vortices
or skyrmions are favoured, it is necessary at this point to determine how the fractional vortices interact
together. The Ginzburg-Landau free energy describing multicomponent superconductors is a non-linear
theory and thus detailed investigation of the properties of topological defects typically requires numerical
simulations. However, analysing of the properties in the London limit provides valuable insight on the
behaviour of the topological excitations. As demonstrated below, in the London limit, straight fractional
vortices can be mapped to interacting point charges in two dimensions.

The London limit, assumes that the condensates have a constant density |ψa| = const everywhere, except
at the small cut-off representing the vortex core. Using the Ampère’s law (1.3) to replace the current by the
magnetic field in Eq. (1.12), the free energy further simplifies

F/F0 =

∫
1

2

(
B2 +

1

e2%2
|∇×B|2

)
+
∑
a,b>a

|ψa|2|ψb|2

2%2
(∇ϕab)

2 . (1.22)

In principle the potential V (Ψ,Ψ†) can feature phase-locking terms that depend on the relative phase ϕab
between different condensates. In the following discussion, it is assumed for simplicity that there are no
such terms, and thus that the potential is simply constant and can be dismissed. The interaction energy of
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non-overlapping fractional vortices can be approximated, in this London limit, by considering separately
the charged and neutral modes. First of all, the vector calculus identity

|∇×B|2 = B ·∇×∇×B −∇·(B ×∇×B) , (1.23)

helps to rewrite the charged sector of (1.22) as

FCharged =

∫
B

2

(
B +

1

e2%2
∇×∇×B

)
. (1.24)

The London equation for a point-like vortex carrying a flux Φa, and located at xa, is

λ2∇×∇×B +B = Φaδ(x− xa) , (1.25)

where λ is the London penetration length defined as λ−2 = e2%2. The corresponding solutions of the
London equation (1.25) are given in terms of K0, the modified Bessel of the second kind, as

Ba(x) =
Φa

2πλ2
K0

(
|x− xa|

λ

)
. (1.26)

In the case of two vortices carrying fluxes Φa and Φb, and located at xa and xb, the source term in London
equation reads as Φaδ(x−xa)+Φbδ(x−xb), and the magnetic field is the superposition of two contributions
B(x) = Ba(x) +Bb(x). As a results, the corresponding energy of the charged sector

FCharged =

∫
1

2
(Ba +Bb)

[
Φaδ(x− xa) + Φbδ(x− xb)

]
=

ΦaΦb
2πλ2

K0

(
|x2 − x1|

λ

)
+ Eva + Evb , (1.27)

where Eva ≡
∫
Ba(xa)Φa/2 stands for the (self-)energy of the vortex a. It results that, the interaction

energy between two vortices in components a and b reads as

E
(int),Charged

ab =
2π|ψa|2|ψb|2

%2
K0

(
|xa − xb|

λ

)
. (1.28)

The interaction through the charged sector is thus a screened interaction given by the modified Bessel
function. This interaction is always positive for any a, b having the same sign of the vorticity. It then
determines, a repulsive interaction between any kind of fractional vortices with co-directed winding. That
is vortices, repel while a vortex and an anti-vortex attract each other. The interaction through the neutral
sector, on the other hand, is attractive (resp. repulsive) for fractional vortices in the different (resp. same)
components a and b. The interaction here is logarithmic in the separation of the vortices. Note again that
if there exist phase-locking potential terms, then the interaction is linear in the separation. This was for
example discussed in detail, in the appendix of [JG21]. The energy associated with the neutral sector of
(1.22) reads

FNeutral =
∑
a,b>a

|ψa|2|ψb|2

2%2

∫
(∇ϕab)

2 . (1.29)

At sufficiently large distance, a phase winding around some singularity located at the point xa, is well
approximated by ϕa = θ. Where here θ is the polar angle, and thus

∇ϕa =
eθ

|x− xa|
= z ×∇ ln |x− xa| . (1.30)

The interaction between fractional vortices in different condensates, respectively located at xa and xb, is
calculated as follows: Expanding the neutral sector (1.29), the interacting part reads as

E
(int),Neutral

ab = −|ψa|
2|ψb|2

%2

∫
∇ϕa ·∇ϕb =

|ψa|2|ψb|2

%2

∫
ϕa∆ϕb

=
|ψa|2|ψb|2

%2

∫
ln |x− xa|δ(|x− xb|) = 2π

|ψa|2|ψb|2

%2
ln |xb − xa| . (1.31)
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Similarly, the interaction between two vortices in the same condensate a is computed by requiring that the
phase is the sum of the individual phases ϕa = ϕ

(1)
a + ϕ

(2)
a , while ϕb = 0. Then the interaction reads as

E(int),Neutral
aa = −2π

|ψa|2
∑
c 6=a |ψc|2

%2
ln |x(2)

a − x(1)
a | . (1.32)

Thus the interaction, via the neutral sector, between in different condensates is logarithmically attractive,
while it is repulsive for vortices in the same condensate.

To summarize, noting the separation r ≡ |xa−xb| and R the sample’s size, the interaction energy between
fractional vortices in different condensates is

E
(int)
ab

2π
=
|ψa|2|ψb|2

%2

(
ln
r

R
+K0

( r
λ

))
. (1.33)

On the other hand, interactions between fractional vortices in the same condensates are

E
(int)
aa

2π
= −
|ψa|2

∑
c 6=a |ψc|2

%2
ln
r

R
+
|ψa|4

%2
K0

( r
λ

)
. (1.34)

Equations (1.33) and (1.34) thus give the different interactions between fractional vortices in different
condensates. This can be illustrated in the case of a two-component superconductor. Choosing the energy
scale to be 2π|ψ1|2|ψ2|2/%2 and defining the parameter m as the ratio of densities, m = |ψ1|2/|ψ2|2, the
interaction between the fractional vortices in the various condensates reads as

E11 = ln
R

r
+mK0

( r
λ

)
, E22 = ln

R

r
+

1

m
K0

( r
λ

)
, E12 = − ln

R

r
+K0

( r
λ

)
. (1.35)

Thus, the vortex matter in the London limit of a two-component superconductor is described by a 2-
parameter family (m,R). Figure 1.3 shows the profiles of the different interactions (1.35) between the
different kind of fractional vortices.

r/λ

E11(r/λ)

E22(r/λ)

E12(r/λ)

Figure 1.3: The left panel shows the interaction energies (1.35) (with m = 0.2) between point-like charges
associated with vortices in the different condensates. The blue (big) dot represents the vortex in ψ1 while
the red (small) dots represent the vortices in ψ2. Alike charges always repel while different charges attract
via the long-range logarithmic attraction. The right panel displays a schematic illustration of a composite
vortex where the singularities are co-centred due to the long-range attraction between the fractional vortices
in different condensates. Note that, in general, there are no reasons for the cores of different components to
have same size.

Note that as r → 0, the modified Bessel functions diverges as − ln r. This means that for the interaction
between fractional vortices in different condensates E12, the divergence of the log term is compensated
by the divergence of the Bessel function. They exactly cancel at r = 0, as can be seen inFig. 1.3. The
interaction between the vortices in the same condensates is repulsive. In multicomponent superconductors,
where all condensates have the same number of vortices, the vortices in different condensates will attract
each other to form a bound state of co-centered vortices that minimizes the energy cost of the neutral
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sector [91, 105]. As mentioned earlier, when there are phase-locking potential terms, then the attraction
between fractional vortices is no more logarithmic, and it becomes linear, and the confinement becomes
even stronger.

This means that, at least in the London limit, the tendency for fractional vortices (in the simplest model
used here), is to simply overlap and thus to form a bound state of co-centred vortices, in order to minimize
the energy of the neutral sector. Subsequently, the charged sector can be minimized by maximizing
the separation between the co-centered vortices. That is by forming a triangular Abrikosov lattice of
singular composite vortices. Returning to the discussion about skyrmions and vortices, this implies that
superconducting condensates tend to simultaneously vanish (i.e. Ψ = 0), and thus that the CPN−1 indexQ
(1.17) is zero. As a result, forming skyrmions as lowest energy topological excitations is not a trivial task,
and it typically requires additional ingredients to overcome this tendency to form co-centred composite
vortices. This is discussed later in the Section 1.3.

Note that the above remarks about finiteness of the energy and interaction between fractional vortices
apply for straight vortices in bulk superconducting materials. That is, the energetic divergence of the
fractional vortices formally occurs only in infinite systems. Fractional vortices can yet be stabilized due
to finite-size effects as for example in mesoscopic samples [91, 116, 117, 125, 103, 118]. They can also
be thermodynamically stabilized near sample boundaries due to their interaction with the Meissner currents
[104]. This results in a modified Bean-Livingston barrier with complex partial vortex penetration as shown
in [JG17].

Importantly, as mentioned earlier, the loops of vortices carrying a fractional flux have only a finite energy.
As a result, in three dimensions loops of fractional vortices although quite energetic are still formally
possible and, although dynamically unstable, can for example be thermally excited. Fractional vortex loops,
actually play a central role in the critical properties of multicomponents superconductors [105, 108, 107],
and superfluids [106, 109, 110].

To briefly summarize: The elementary topological excitations in multicomponent superconductors
are fractional vortices. Finite energy considerations dictate that only bound states of fractional vortices
totalling an integer flux should form in bulk systems, and the intervortex interactions promote co-centered
vortices. However, if the individual singularities do not overlap, such a bound state is a coreless defect
called a skyrmion, and it is characterized by an additional hidden CPN−1 topological invariant. Scenarii
where skyrmions are favoured over singular vortices will be discussed in section 1.3. Prior to that, in the
next section, it is further discussed that in the particular case of two-component systems, the topological
properties of the model can also be understood using a mapping to a nonlinear σ-model.

1.2 Duality mapping to a Skyrme-Faddeev model, coupled to
a massive vector J

It is interesting to note that generic model of two-component superconductivity can be mapped to an easy-
plane non-linear σ-model [121, 124]. This mapping further motivates the terminology skyrmion to denote
the bound state of well separated fractional vortices. To achieve this mapping, it is first of all convenient
to consider the free energy expressed in terms of charged and neutral modes (1.12). In the case of two-
components, it reads as

F/F0 =

∫
B2

2
+
∑
a=1,2

1

2

(
∇|ψa|

)2
+

J2

2e2%2
+
|ψ1|2|ψ2|2

2%2
(∇ϕ12)2 + V (Ψ,Ψ†) . (1.36)
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Next, the pseudo-spin unit vector n taking value on the sphere S2, can be defined as the projection of the
superconducting degrees of freedom Ψ onto spin-1/2 Pauli matrices σ:

n ≡ (nx, ny, nz) =
Ψ†σΨ

Ψ†Ψ
, where Ψ† = (ψ∗1 , ψ

∗
2) . (1.37)

To rewrite the free energy (1.12) in terms of the pseudo-spin n, the total density % and the gauge invariant
current J , the following identity is useful

%2

4
∂kna∂kna + (∇%)2 =

|ψ1|2|ψ2|2

%2
(∇ϕ12)2 +

∑
a=1,2

(∇|ψa|)2 . (1.38)

Moreover, noting the relation

4εijk∂i

(∑
a=1,2

|ψa|2

%2
∂jϕa

)
= εijkεabcna∂inb∂jnc, (1.39)

together with the definition of the current (1.3), the magnetic field can be expressed as

Bk =
1

e
εijk

(
∂i

(
Jj
e%2

)
− 1

4
εabcna∂inb∂jnc

)
. (1.40)

The free energy (1.36) can thus be written as

F
F0

=

∫
1

2
(∇%)2 +

%2

8
∂kna∂kna +

J2

2e2%2
+ V (%,n) +

1

2e2

[
εijk

(
∂i

(
Jj
e%2

)
− 1

4
εabcna∂inb∂jnc

)]2

.

(1.41)
In all generality, potential term V depends on the total density % and on the pseudo-spin n. The potential,
which introduces anisotropies on the target 2-sphere, explicitly reads as

V (%,n) =
%2

2

(
a1 + a2nx

)
+
%4

4

(
b1 + 2b2nx + b3n

2
x + b4n

2
z

)
. (1.42)

Depending on the values of the coefficients ai and bi, the potential is either an easy-plane or an easy-
axis. The explicit dependence of ai and bi, on the original potential coefficients αab and βabcd is not
very important at that point. The following relations may however be useful to identify the various
coefficients

%2 = |ψ1|2 + |ψ2|2 , %4 = |ψ1|4 + |ψ2|4 + 2|ψ1|2|ψ2|2 , %4n2
z = |ψ1|4 + |ψ2|4 − 2|ψ1|2|ψ2|2 ,

%4(1− n2
z) = %4(n2

x + n2
y) = 4|ψ1|2|ψ2|2 , %4(1 + n2

z) = 2
(
|ψ1|4 + |ψ2|4

)
,

%2nx = |ψ1||ψ2| cosϕ12 , %
4(n2

x − n2
y) = |ψ1|2|ψ2|2 cos 2ϕ12 . (1.43)

Topological properties: By rewriting the theory using the dual variables, it becomes possible to provide
an alternative understanding of the CP1 topological charge (1.17). The pseudo-spin n (1.37) is a map from
the one-point compactification of the plane (R2 ∪ {∞} ' S2) onto the two-sphere target space spanned by
n. That is n : S2 → S2, which is classified by the homotopy class π2(S2) ∈ Z, thus defining the topological
invariant

Q(n) =
1

4π

∫
R2

n · ∂xn× ∂yn dxdy . (1.44)

As before, since n is ill-defined when Ψ = 0, ordinary (composite) singular vortices, have Q(n) = 0.
Core-split vortices, on the other hand, have an integer topological charge Q(n) ∈ Z which coincides with
the number of carried flux quanta. In a way, Q(n) counts the number of times the pseudo-spin texture of n
wraps the target two-sphere. It is worth emphasizing that the topological charge (1.44) is an integer, when
integrated over the infinite plane R2, or at least an large enough domain Ω ⊂ R2.
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Figure 1.4: Illustration of (anti-)merons and skyrmion solutions. The left panels show the pseudo-spin
n calculated from the Ginzburg-Landau quantities, using the relation (1.45). The arrows show n and the
color scale encodes the value of nz . The right panels display the corresponding Ginzburg-Landau quantities.
Namely the elevation of the surface stems for the density depletion 1− %, while the colouring indicates the
value of the relative phase ϕ12.

Pseudo-spin textures. Skyrmions and Merons: The core-split vortices thus have a skyrmionic
character, with a topological charge Q(n) ∈ Z. In terms of the degrees of freedom of the two-component
Ginzburg-Landau theory (1.36), the pseudo-spin reads as

n =

(
2|ψ1||ψ2|
|ψ1|2 + |ψ2|2

cosϕ12,
2|ψ1||ψ2|
|ψ1|2 + |ψ2|2

sinϕ12,
|ψ1|2 − |ψ2|2

|ψ1|2 + |ψ2|2

)
. (1.45)

From this, it is obvious that the core of a vortex in ψ1 maps to n = (0, 0,−1), while a core in ψ2 gives
n = (0, 0, 1). The vortex cores thus map to the poles of the target sphere.

Moreover, the pseudo-spin associated to a single fractional vortex covers only half of the target sphere.
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Such configurations are sometimes called merons. More precisely, a fractional vortex in ψ2 covers only the
north hemisphere is a meron, while a vortex ψ1 covers only the south hemisphere is an anti-meron. This
interpretation of the fractional vortices as (anti-)merons is displayed in Fig. 1.4. Since the pseudo-spin do
not wrap entirely the target two-sphere, the associated topological charge (1.44) is trivial: Q(n) = 0. Both
the pseudo-spin and the Ginzburg-Landau quantities show that the relative phase have a net winding, and
thus have divergent energy as discussed earlier.

The last line of figure 1.4 displays a skyrmion configuration corresponding to core-split vortices. The
skyrmion, which is a bound state of non-overlapping fractional vortices, can be seen as the bound state of a
meron and an anti-meron. Unlike merons, a skyrmion do not have a net winding of the relative phase ϕ12.
Thus skyrmions, have finite energy. Moreover, the pseudo-spin of a skyrmion do wrap entirely the target
two-sphere. It follows that the associated topological charge (1.44) is integer, here Q(n) = 1.

Note that the configurations that are displayed here, are only illustrations of the topological properties
of (anti-)merons and skyrmion configurations. They are configurations with the appropriate topological
properties, but they are not solutions (i.e. minima) of the Ginzburg-Landau theory (1.36). Indeed, as
discussed earlier, the fractional vortices in the different components (and thus the merons and anti-
merons) typically attract each other. Because of the attraction, merons and anti-merons can annihilate,
thus converting a skyrmion into a singular vortex where the individual singularities superimpose. Yet, as
discussed in the next section, there can exist various mechanism to stabilize skyrmions.

1.3 Existence of skyrmions and exotic vortex states

To summarize briefly, and repeat the topological properties presented in the above sections, the
elementary topological excitations in multicomponent superconductors are fractional vortices. That is,
field configurations with independent phase windings in either of the components, which carry only a
fraction of the elementary flux quantum Φ0. Because they have a winding of the relative phase between
the different components, fractional vortices have divergent energy per unit length. Thus finite energy
requirements dictate that composite vortices (i.e. bound states of fractional vortices in each component) are
the only configurations with finite energy per unit length. As a result these composite vortices, carrying an
integer flux quantum, are the only configurations that can form in bulk multicomponent superconductors.
Depending on the relative positions of the individual singularities, the resulting composite vortex is either
termed singular, if the singularities are superimposed, or coreless, if they do not. Composite coreless
vortices are characterized by the additional topological invariant associated with the complex projective
space CPN−1 (1.17). The existence of the additional invariant motivates the terminology skyrmion to denote
a coreless vortex. The propensity to form either singular or coreless vortices depends on the interaction
energy between the fractional vortices. The London limit calculations, in the most elementary case, state
that fractional vortices are logarithmically bound and that the interaction energy is minimized when they
superimpose. This raises the natural question of whether the skyrmions (the coreless vortices) can form
at all, and be favoured compared to (Abrikosov) singular vortices? In other word is there a mechanism
that provides a short-range repulsion between the fractional vortices, so that they form a bound state with
a finite separation? Note that composite singular defects still feature interesting new properties. These are
discussed later in Chapter 2.

So, in order to form skyrmions, a stabilizing mechanism is needed to counteract the tendency of the
singularities to superimpose. It turns out that there exist various ways to circumvent the confinement of
fractional vortices. For example this can originate in non-linear effects beyond the London approximation,
or by additional interacting terms in the free energy. It follows that, despite the naive arguments, skyrmions
actually exist in many superconducting systems. These mechanisms that enforce the core-splitting, stabilize
skyrmions against collapsing into a singular Abrikosov vortex. One could alternatively say that because of
the extra terms, the Abrikosov vortex is unstable and decay into a coreless defect: a skyrmion. Various
possibility are detailed below.
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1.3.1 Skyrmions in mixtures of commensurately charged
condensates

Typically, in condensed matter systems the multiple superconducting condensates are coupled to the gauge
field via the same gauge coupling which is the charge of the Cooper pairs (twice the charge of their
constituent fermion). Still, it is formally possible to consider the case of a mixture of condensates with
different electric charges. Such a situation is expected to appear for example in the superconducting state
of liquid metallic deuterium, where the deuteron is a charge-1 boson which can form a Bose-Einstein
condensate, that coexists with the Cooper pairs of electrons and/or protons [67, 68, 126]. The Bose-Einstein
condensate of deuterons carries only once the charge of its constituent boson, while Cooper pairs carry twice
the charge of their constituent fermion. There, the electronic Cooper pairs carry a charge −2e while the
Bose-Einstein condensate of deuteron carries an electric charge +e. Interestingly, the flux quantization and
finite energy considerations similar to that discussed in the Section 1.1, dictate that the electric charges
should be commensurate, for the vortex solutions to have finite energy [JG18]. This implies that the
composite vortices carrying an integer flux quantum are bound states of a different number of fractional
vortices in both components. Moreover, the resulting bound state is typically a core-less defect, and these
skyrmions can be characterized by a pseudo-spin texture, and by a hidden CP1 invariant similar to those
discussed above. This was analyzed in details in [JG18].

To account for the possibility to have a mixture of two superconducting condensates carrying different
charges, the gauge derivative in the kinetic term is chosen to have different gauge couplings for the two
individual condensates: Dψa = (∇ + ieaA)ψa (here a = 1, 2). The individual gauge couplings are
conveniently parametrized as ea = ega where ga are integer numbers ga ∈ Z, and e fixes the scale
of the electric charges. Applying this parametrization to liquid metallic deuterium, the couplings are
(g1, g2) = (1, 2) and ψ1 stands for the deuteron condensate while ψ2 (carrying twice the electric charge
of ψ1) denotes the electronic Cooper pairs. When considering the possibility that the condensates can have
different charges, via the redefinition of the gauge derivative, the superconducting current (1.4) reads as
J = e

∑
a ga|ψa|2(∇ϕa + egaA). Since the supercurrent J is screened and that it decays exponentially,

the magnetic flux (1.14) reads as

Φ =
−1

e
∑
b g

2
b |ψb|2

∮
C

∑
a

ga|ψa|2∇ϕa ·d` =
Φ0

∑
a ga|ψa|2

2π
∑
b g

2
b |ψb|2

∮
C

∇ϕa ·d` , (1.46)

where Φ0 = 2π/e is the flux quantum and the closed integration path is chosen for the flux to be positive.
The condensates ψa being complex fields, they wind an integer number of time, and (n1, n2) denotes the
field configurations with the winding na of the condensate ψa. A fractional vortex in the condensate a
carries a fraction Φa/Φ0 = ga|ψa|2/

∑
b g

2
b |ψb|2 of the magnetic flux. As long as g1 6= g2, the condition for

the quantization of the flux, is that each condensate should wind na = ga times. This follows from∑
a

na
Φa
Φ0

=

∑
a naga|ψa|2∑
b g

2
b |ψb|2

= 1 , iff na = ga . (1.47)

A separation into charged and neutral modes, similar to that derived above (1.12), dictates that only the
configurations that carry an integer flux (na = ga) have finite energy [127]. This can be seen by requiring
the absence of logarithmic divergence, and thus that the neutral mode has no winding

0 =

∮
C

∇(g1ϕ2 − g2ϕ1)·d` = (g1n2 − g2n1) . (1.48)

For a configuration carrying a single flux quantum (and since ga and na are integers), this implies that
na = ga. Thus the finite energy configurations winds g1 times in ψ1 and g2 times in ψ2. Note that this
condition implies that the total flux is integer (1.47). On the other hand, when g1n2 − g2n1 6= 0, the
screening is incomplete and the associated energy grows with the system size. Such vortex configurations
are thus thermodynamically unstable in bulk systems.
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Figure 1.5: The left panel shows the structure of a single skyrmion (thus corresponding to the charges
g1 = 1 and g2 = 2), obtained by minimizing the corresponding interaction energy (1.49). It shows the
parametric dependence of the dipole moment defined in point charges mapping with charges q2 = g1 and
q1 = −g2. The composite vortex structure undergoes a phase transition from a dipolar phase below m? to a
quadrupolar phase. The right panel displays a schematic illustration of the a composite vortex with a single
fractional vortex in the condensate ψ1 bound with two vortices in ψ2.

The condensates with different charges favour bound states of fractional vortices with a finite separation,
unlike the inter-vortex interaction derived in Section 1.1.4 [JG18]. Indeed, similar calculation shows that
the intervortex interactions are characterized by the ratio of the charges in the different condensates s = g1

g2
.

The interaction between fractional vortices reads as

E11 =
1

s
ln
R

r
+
m

s
K0

( r
λ

)
, E22 = s ln

R

r
+

s

m
K0

( r
λ

)
, E12 = − ln

R

r
+K0

( r
λ

)
. (1.49)

It follows that the vortex matter in the London limit of a two-component superconductor with
incommensurate charges is described by a 3-parameter family (m, s,R). The individual interactions are
thus similar to that illustrated in Fig. 1.3, and that vortices in different condensates attract each other
to form a bound state of co-centered vortices while vortices in the same condensate always repel each
other. However, since both condensates have a different number of fractional vortices, the system has to
compromise between the fact that vortices in the different condensates tend to overlap, while vortices in
similar condensates repel each other. As illustrated in Fig. 1.5, the integer flux carrying defect is thus a
molecule-like bound state of split fractional vortices.

Skyrmions beyond the London limit. The analysis in the London limit predicts the existence of
coreless topological defects with different number of vortices in the different condensates. The analysis
beyond the London approximation requires to specify the potential for the Ginzburg-Landau energy (1.12),
as for example

V (Ψ,Ψ†) =

2∑
a=1

(
αaa|ψa|2 +

βaa
2
|ψa|4

)
. (1.50)

The coreless vortex solutions are obtained by minimizing the Ginzburg-Landau energy with a suitable
initial guess (see the numerical methods in the Appendix B). These solutions do exist beyond the London
approximation, as can be seen in Figure 1.6. This is the simplest excitations carrying a unit flux quantum,
for different couplings (g1, g2) = (1, 2).

Many other solutions for various couplings (g1, g2), and the possible relevance to describe superconducting
state for liquid metallic deuterium (LMD), were considered in [JG18]. This model of two-condensates with
arbitrary charges was generalized, together with the spectrum of the topological excitation in [128].
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Figure 1.6: Molecule-like topological excitations carrying a single flux quantum, for the different couplings
(g1, g2) = (1, 2). The parameters of the Ginzburg-Landau energy (1.50) are αaa = −1, βaa = 1 , and
e = 0.2. The displayed quantities on the top row are the magnetic field B and the pseudo-spin n. The
bottom row shows the densities of the two components |ψa|2.

Topological properties. The two-component model with different charges, feature similar properties
than the usual two-component model. However, because of the different gauge couplings, the
superconducting degrees of freedom should be collected as

Ψ† =
(
ψ∗g21 , ψ∗g12

)
. (1.51)

Provided this modification, the charge Q(Ψ) (1.17), projection to the pseudo-spin n (1.37), and the
associated charge Q(n) (1.44) are still valid.

1.3.2 Skyrmions and hopfions stabilized by the Andreev-Bashkin
effect

The dissipationless inter-component drag, known as the Andreev-Bashkin effect [129], is a generic
interaction in multicomponent superconductors and superfluids, but it is often neglected. Namely, in
superfluid mixtures with two components, the current of a given component j1,2 generically depends on
both superfluid velocities v1,2. This is due to the inter-component interactions occurring between particles,
and the relations between currents and velocities are:

j1 = ρ11v1 + ρ12v2 , and j2 = ρ22v2 + ρ21v1 . (1.52)

The off-diagonal coefficients ρ12 and ρ21 determine the fraction of the density of one of the superfluid
components carried by the superfluid velocity of the other. They thus describe the inter-component drag.
The inter-component coefficients ρab can be large (compared to the intra-component coefficients ρaa), for
example in strongly correlated systems [130, 131, 132], Fermi-liquids mixtures [133, 134], or in spin-
triplet superconductors and superfluids [135]. More general drag interactions, the dissipationless vector
drag, where recently argued to be occur in certain kind of optical lattices [136].
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The dissipation-less drag (1.52), in a two-component model of superconductivity, can be accounted for by
adding current-current interaction

· · ·+
∑

a,b=1,2

µab
2
Ja · Jb + · · · , (1.53)

to the generic Ginzburg-Landau free energy density. This was discussed in details for example in [137, 138].
There, Ja = Im(ψ∗aDψa), stands for the individual currents in the absence of drag. The off-diagonal
coefficients µ12 = µ21 of the current coupling matrix µ̂ describe the intercomponent drag. The total current,
which is the sum of the individual supercurrents, have a similar structure to that described in (1.52). For
now, assuming the absence of mixed-gradient terms in the free energy (1) (coefficients κab = 0 if a 6= b).
When adding the current-current interactions (1.53), the total current reads as:

J/e =
∑
a

wa|ψa|2(∇ϕa + eA) , where wa = κaa +
∑
b

µab|ψb|2 . (1.54)

The role of wa is to re-weight the individual currents. More precisely, the charged and neutral modes in
(1.12) are renormalized differently due to the inter-component drag.

An analysis of the inter-vortex interaction, similar to that derived in Section 1.1.4, shows that the fractional
vortices should form a bound state with a finite separation [JG20]. Namely, in the London limit, the
intervortex interactions (1.35) are characterized by two additional parameters w > 1 and m > 0, that
depend on the drag. In the case where µ11 = µ22 = µ12 ≡ µ, the interaction between the fractional vortices
in the various condensates reads as [137]:

E11 = ln
R

r
+mwK0

( r
λ

)
, E22 = ln

R

r
+
w

m
K0

( r
λ

)
, E12 = − ln

R

r
+ wK0

( r
λ

)
. (1.55)

Here, w = 1 + µ%2, m = |ψ1|2/|ψ2|2 and λ−1 = e
√
w%2. R stands for the system size and %2 =

∑
a |ψa|2

is the total density. Thus the vortex matter in the London limit of a two-component superconductor with
dissipationless drag is described by a 3-parameter family (m,w,R). The figure 1.7 shows the profiles of
the different interactions (1.55) between the different kind of fractional vortices. Because of the additional
parameter w, the repulsive and attractive contributions in E12 do not compensate at r = 0 any longer.
Instead, they cancel at a finite separation, so that even in the London limit, the interactions tend to form
skyrmions.

r/λ

E11(r/λ)

E22(r/λ)

E12(r/λ)

•
dmin/λ

Figure 1.7: The left panel shows the interaction energies (1.55) (withm = 0.2, w = 1.8) between the point-
like charges associated with vortices in different condensates. The blue (big) dot represents the vortex in ψ1

while the red (small) dots represent the vortices in ψ2. Alike charges always repel, while different charges
interact with a long-range logarithmic attraction, and a short-range repulsion. The right panel displays a
schematic illustration of the Andreev-Bashkin effect in a composite vortex

Skyrmions beyond the London limit: Physically the drag term µ12J1 · J2, promotes counter-flow
compared to co-flowing currents. More precisely, the Andreev-Bashkin term gives a penalty on co-directed
currents J1 and J2 (when µ12 > 0). Note that, as illustrated in Fig. 1.7, if the individual singularities do
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Figure 1.8: A skyrmion solution of two-component superconductor with dissipationless drag interaction
(1.53), with the couplings µ11 = µ22 = µ12 = 2. The parameters of the simple potential interaction (1.50)
are (αaa, βaa) = (−3, 1), and the gauge coupling is e = 0.2. The displayed quantities on the top left panel
is the magnetic field. The other panels on the top row, show the individual densities of the superconducting
condensates |ψ1|2 and |ψ2|2. This is clearly a coreless defect, since both singularities do not overlap. The
bottom left panel shows the associated pseudo-spin texture n (1.37), while the other panels on the bottom
row, are the individual currents Ja.

not overlap, the region in-between features counter-directed currents. It follows that the drag term (when
µ12 > 0) reduces the energy of the configuration by maximizing the region where individual currents are
counter-directed. Hence the Andreev-Bashkin term promotes the region of counter-directed currents and
thus favours core-splitting.

The above calculations in the London limit thus predict that fractional vortices form a bound state where the
individual singularities do not overlap. As illustrated in the Figure 1.8, such solutions also exist beyond the
London approximation (see more examples in [JG20]). The panels showing the individual densities clearly
demonstrate that the numerically obtained solution feature non-overlapping vortices in both components.
Moreover, the drag effect appears clearly from the panels showing the individual currents. Indeed, the
Fig. 1.8 shows that the vortex in ψ1 induces a non-zero circulating current in ψ2. This can be seen by
defining the supercurrent associated with a given condensate

Ja/e =
(
1 + µ|ψa|2

)
Im(ψ∗aDψa) + µ|ψa|2Im(ψ∗bDψb) , with b 6= a . (1.56)

As demonstrated in [JG20], the two-component model with dissipationless drag interaction (1.53), can be
mapped to a Skyrme-Faddeev model similarly to the discussion in Section 1.2:

F
F0

=

∫
1

2
(∇%)2+

%2

8
∂kna∂kna+

J2

2we2%2
+V (%,n)+

1

2e2

[
εijk

(
∂i

(
Jj
we%2

)
− 1

4
εabcna∂inb∂jnc

)]2

.

(1.57)
The difference with the mapping (1.41) is the role of w = 1 + µ%2 that renormalizes the terms involving
the total current J . The coreless vortices are thus characterized, as compared to singular vortices, by the
additional topological charge Q(Ψ) (1.17) or Q(n) (1.44) that is quantized with Q = n (with n being
the number of carried flux quanta). Numerically calculated topological charge is found to be integer (with
typical error of order 10−4 − 10−5).
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The pseudo-spin texture n (1.37) of the corresponding skyrmion tube is also displayed on the bottom left
panel in the Figure 1.8. The skyrmion here consists of one meron and an anti-meron, standing for the
fractional vortices in the individual components, similar to those illustrated in Fig. 1.4. The mapping of
the fractional vortices to point particles suggests the existence of long-range inter-skyrmions dipolar forces.
Indeed, this mapping interprets the fractional vortices as point particles with opposite charges. A bound
state of such charges thus features a dipole moment as well. The detailed analysis of the two-component
U(1)×U(1) superconductors with interspecies dissipationless drag, in Ref. [JG20], confirmed this by various
numerical simulations, in the full Ginzburg-Landau regime.

The magnetic field of these skyrmions, as can be seen in Fig. 1.8, is different from that of singular vortex.
Moreover, the interaction between vortices is long-ranged dipolar [137]. This results in an unconventional
magnetic response in low fields which features vortex lattices lacking the conventional hexagonal structure.
Importantly, the magnetization process, as well shows unconventional properties with square lattice growing
inward from boundaries of the sample [JG20]. Such unusual properties can in principle be identified easily
for example in scanning SQUID measurements.

Hopfions beyond the London limit: The intuition suggests that twisted loops of such skyrmions
might have much more complicated interaction, and possibly would not completely decay, as the loops
of conventional vortices do. Such a twisted skyrmion loop consists of braided closed loops of fractional
vortices. The numerical minimization, starting from various initial states of knotted and linked vortex
loops, demonstrate that knotted vortices can indeed be stabilized because of the Andreev-Bashkin terms
[JG4]. These simulations are, in a way, related to the relaxation processes of vortex tangles formed due to
fluctuations. Indeed, in the absence of an external field, closed loops form dynamically, for example due
to quenches or to thermal fluctuations. Thus the superconducting state here can support an infinite number
of (meta-)stable solutions corresponding to topologically different ways to tie vortex knots. The Figure 1.9
shows 10 stable knotted vortex loops, termed hopfions, with the smallest values of the topological index I
(1.21).

Note that unlike the previously discussed skyrmions, the hopfions here are characterized only by the
hidden topological invariant I (1.21). Indeed the skyrmions, which are straight topological defects, are
characterized by the global U(1) charge (the total winding) and by the additional topological charge Q(Ψ)

(1.17) or Q(n) (1.44). Knots on the other hands are trivial regarding the U(1) charge (the total winding is
zero), while the degree I (1.21) is an integer.

The knotted solutions displayed in Fig. 1.9 are represented by their core structure, and labelled by the
corresponding value of invariant I (1.21). The cyan and magenta tubes enclose the singularities in the
different condensates, and thus indicate the core structure. The knotted solutions are also characterized by
a complicated structure of knotted lines of the magnetic field B. These are not displayed here, but can be
found from [JG4]. The solutions with I = 1− 4 consist of two fractional vortex loops, linked together and
twisted around each other a varying number of times. The solution with I = 5 is a bound state of two pairs
of linked fractional vortex loops, and I = 6 consists of two linked trefoil knots. In all these configurations,
there is a symmetry of exchanging the cores of the different condensates. Interestingly, for higher values
of the topological index I = 7 − 10, the vorticity of the different components are inequivalent, and this
symmetry is no longer available. For example, the I = 7 knot consists in a trefoil knot in one component,
linked to two twisted fractional vortex loops of the other component. These solutions thus form some kind
of isomers.

In contrast to the London limit, the vortex splitting to support skyrmions in the Ginzburg-Landau regime
requires a critical strength of the dissipationless drag. Similarly, the coefficients of the Andreev-Bashkin
term have to be sufficiently strong for the knotted solutions to be stable. Namely, the Andreev-Bashkin
couplings µ̂ should be substantially larger than the usual gradient couplings κaa. It is not obvious why such

4Animations showing the structure of these knotted vortices, and their formation can be found in the Supplemental Material of
[JG4], or at the following webpage.

http://www.theophys.kth.se/~garaud/knots.html
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ψ1 - core

ψ2 - core
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Figure 1.9: Solutions for stable knots with topological charges I=1-10. The various panels display the core
structure where the cyan and magenta tubes are surfaces enclosing the cores of the fractional vortices in each
component. When increasing the index I, the topological structure of the vorticity becomes increasingly
more complex4.

terms should dominate. However, this can be realised in various scenarios, and especially in the vicinity
of some critical points [JG4]. For example near the phase transition to paired phases caused by strong
correlations [130, 132]. There, the ratio of the stiffnesses of counter-flows and co-flows vanishes. This
implies that, close enough to the critical point, the Andreev-Bashkin coupling can be arbitrarily strong [132].
Strong Andreev-Bashkin couplings can also occur close to the phase transition to Fulde-Ferrel-Larkin-
Ovchinnikov (FFLO) state [139, 140], where the gradient couplings κaa change signs (see, e.g., [141]), and
the Andreev-Bashkin interaction remains non-zero. It results that close to a FFLO phase transition, even
systems with relatively weak Andreev-Bashkin interactions µab, satisfy the requirements of the disparities
of the coefficients κ̂ and µ̂.

1.3.3 Chiral skyrmions – Vortex splitting on domain-walls

Here, we present another mechanism that allows for the stabilization of coreless defects. The discussion
here is heuristic, and these aspects will be addressed more quantitatively in the Chapter 3. Namely,
the properties of the domain-walls will be reconsidered in the Section 3.2.1, while the properties of the
skyrmions will be addressed in the Section 3.2.2.

Domain-walls are the topological defects associated with the spontaneous breakdown of a discrete Z2

symmetry (see e.g. [1, 4, 5, 3, 8]). The domain-walls are field configurations that interpolate between
the (discrete) degenerate vacua of the theory. As discussed here, in the framework of multicomponent
superconductors, the domain-walls typically interact non-trivially with the other topological defects such
as vortices. This leads to a new kind of topological defects that can share properties of both domain-walls
and vortices. In particular, the interaction with domain-walls provides a mechanism to split vortex cores,
and thus a possibility to stabilize coreless defects as the bound state of fractional vortices interacting with
domain-walls [142, 120, 119].
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Figure 1.10: The left panel shows the potential energy (bottom), with a discrete degeneracy of the
ground state: ±φ0; and a typical one-dimensional domain-wall solution that interpolates between the two
inequivalent ground states (top). The right panel displays a closed domain-wall, where the inner region is
in one ground-state while the exterior falls into the other ground state. The closed domain-wall tends to
collapse because of its line tension (the energy per unit-length E).

The domain-walls, also referred to as kinks, thus appear in models where the ground state has a discrete
degeneracy. The φ4-model is a textbook example of a theory that features domain-wall solutions (for
detailed textbook discussion see e.g. [1, 4, 5, 3, 8]). As a reminder, this is a theory of a real scalar field
with a quartic self-interacting potential V (φ) ∝ (φ2 − φ2

0)2. As illustrated in Fig. 1.10, the ground
state of this potential has a discrete degeneracy: ±φ0. In one spatial dimension, the domain-walls feature
topological protection and thus cannot transform into either of the ground-states. Indeed, the configurations
that interpolate between −φ0 and +φ0 fall into disjoint homotopy classes, and thus no finite energy
transformation can transform it to a constant ground state, see Fig. 1.10. In two dimensions, on the other
hand, the Hobart-Derrick theorem implies that there are no static finite-energy solutions [143, 144]. Indeed,
either the field asymptotically fall into degenerate ground states and in that case the domain-wall is infinitely
long, or the domain-wall is closed with a finite length, but topological trivial. Thus closed domain-walls in
two dimensions, being topologically trivial, do not enjoy any kind of topological protection. The energy of
a closed domain-wall is finite and proportional to its length. Hence, as illustrated on the right panel of the
Figure 1.10, since a closed domain-wall has no topological protection, it dynamically collapses due to its
line tension (similarly to a vacuum bubble that shrinks because of its surface tension).

There exist various possibilities for a superconducting state to spontaneously break a discrete Z2 symmetry.
One of them, is to break the time-reversal symmetry. The breakdown of the time-reversal symmetry
typically occurs due to the competition between different phase-locking terms, between the different
condensates. Aspects of time-reversal symmetry breaking in multicomponent superconductors, and
especially the so-called s+is state, are developed in details later in the Chapter 3. The details of the
spontaneous breakdown of the time-reversal symmetry, may differ depending on the underlying properties
of the model under consideration. For example, depending on whether the system is described by a
two- or three-component Ginzburg-Landau theory, the terms responsible for the spontaneous breakdown
of the time-reversal symmetry will be different (see the discussion in the Chapter 3). Considering
again the scalar multiplet Ψ, the superconducting ground state is the field configuration Ψ0 defined as
Ψ0 := argminV (Ψ,Ψ†). Heuristically, the time-reversal symmetry of the ground-state can be understood
as the invariance Ψ0 under complex conjugation (up to global U(1) transformations). Conversely, a
superconducting state that spontaneously breaks the time-reversal symmetry satisfies the condition

Ψ∗0eiχ 6= Ψ0 ∀χ . (1.58)
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Depending on the number of components, the difference between time-reversal symmetric (TRS) and
broken time-reversal symmetry (BTRS) states, can be illustrated with the following simple examples (for
normalized states Ψ†0Ψ0 = 1). For example, in the case of two components:

Ψ0 = (1,−1)/
√

2 : Ψ∗0 = (1,−1)/
√

2 = Ψ0 =⇒ TRS

Ψ±0 = (1,±i)/
√

2 : Ψ±∗0 = (1,∓i)/
√

2 = Ψ∓0 6= Ψ±0 =⇒ BTRS .

Similarly, the case of three-components can be illustrated by:

Ψ0 = (1, 1,−1)/
√

3 : Ψ∗0 = (1, 1,−1)/
√

3 = Ψ0 =⇒ TRS

Ψ±0 = (1, e±iπ/3, e∓iπ/3)/
√

3 : Ψ±∗0 = (1, e∓iπ/3, e±iπ/3)/
√

3 = Ψ∓0 6= Ψ±0 =⇒ BTRS .

The superconducting states that break the time-reversal symmetry are thus not invariant under complex
conjugation. More precisely, the time-reversal operations (the complex conjugation) sends one ground state
onto the other. Symmetry-wise, in addition to the spontaneous breakdown of the U(1) gauge symmetry, the
time-reversal symmetry breaking states also break the discrete Z2 symmetry associated with the complex
conjugation. Using the above notations, Ψ±0 are thus two disconnected ground-states related to each other
by the time-reversal operations Ψ±∗0 = Ψ∓0 . Hence the theory supports domain-walls as those illustrated in
the Figure 1.10.

As discussed in more details in the Chapter 3, the frustrated competition between phase-locking terms
in superconductors with two, three (or more) components yields ground states where the relative phases
ϕab = ϕb−ϕa are neither 0 nor π. Since it is not invariant under complex conjugation, such a ground-state
spontaneously breaks the time-reversal symmetry [145, 146]. Indeed, for a two-component superconductor,
the inter-component Josephson interaction ∝ |ψa||ψb| cosϕab either locks or anti-locks the phases, so
that the ground-state relative phase is respectively 0 or π. With more than two components, each inter-
component Josephson coupling favours (anti-)locking of the two corresponding phases. However, these
Josephson terms can collectively compete so that optimal phases are neither locked nor anti-locked. Let
consider here a simple potential for a three-component model with competing phase-locking terms

V =

3∑
a=1

{
− |ψa|2 +

1

2
|ψa|4 +

3∑
b>a

|ψa||ψb| cosϕab

}
. (1.59)

The invariance under complex conjugation implies that, the potential energy does not change if the sign
of all relative phases is changed, ϕab → −ϕab. It follows that if any of the relative phases ϕab is not an
integer multiple of π, then the ground state has an additional discrete Z2 degeneracy. This is the case of the
potential (1.59) that admits two possible ground states: Ψ+

0 with ϕ12 = 2π/3, ϕ13 = −2π/3 or Ψ−0 with
ϕ12 = −2π/3, ϕ13 = 2π/3. This potential thus allows for domain-walls that interpolate between Ψ+

0 and
Ψ−0 .

The domain-walls can typically form during cooling processes via the Kibble-Zurek mechanism [12, 13].
As mentioned previously, closed domain-walls in two spatial dimensions are unstable and collapse for
dynamical reasons. Similarly domain-walls in finite domains decay for the same reasons. However, as
demonstrated in [JG19] they can be stabilized by geometric barrier in non-convex domains, or by the
existence of pinning centres. Such a mechanism for the geometric stabilization of domain walls, illustrated
in Fig. 1.11, may help for their observability. If during a quench a domain-wall ending on the short (non-
convex) parts of the domain, is created via the Kibble-Zurek mechanism, it can relax to a (meta)stable
configuration. Indeed, for both ends of the domain-wall to join and then collapse to zero size, the domain-
wall would have to first increase its length. Unlike the domain-walls in chiral p-wave superconductors, that
carry a uniform magnetic field orbital momentum of Cooper pairs (see e.g. [147, 148, 149]), domain-walls
between s+is states carry a magnetic field only locally [JG19]. Namely it features opposite local field at
its ends, with a total net flux through the sample that is zero.
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Figure 1.11: This sketches the principle of the geometric stabilization of domain-walls in non-convex
domains [JG19]. The domain-walls, for example formed via the Kibble-Zurek mechanism in a rapid
quench, are geometrically trapped. Indeed, for a domain-wall to escape it should increases its length,
which is energetically costly.

along the walls

The fractional vortices are confined together, due to the energy cost associated with the neutral sector. Note
that since the phase-locking terms in (1.59) provide a potential energy for the relative phases, the attraction
here is linear and not logarithmic as derived in (1.33). A domain-wall interpolating between two time-
reversal symmetry broken states is, by definition the region where the phase-locking is the least optimal.
As a result, it allows to accommodate a more favourable relative phase by splitting the integer flux singular
vortices into fractional flux vortices. Moreover since the superfluid density is suppressed on a domain-wall,
because of the field gradients, it can pin vortices. Thus while in the bulk, the fractional vortices are confined
because of the strong linear attractive interaction, they repel each other when bound to a domain-wall (see
detailed discussion in [142, 120, 119], and later in Section 3.2.2). This implies that the magnetization
processes can be strongly altered if a system has some pre-existing domain-walls that are geometrically
trapped [JG19]. Indeed, since some density components are depleted at the domain wall, the vortex entry
for the corresponding component costs much less energy there, than from other parts of the boundaries. It
follows that the first vortex entry can occur at lower fields than Hc1, since they have to overcome a smaller
Bean-Livingston barrier on the domain-wall than in the bulk.

The interaction between fractional vortices confined on the domain-walls between different time-reversal
symmetry broken s+is states is repulsive. On the other hand, closed (bare) domain-walls, as sketched
in Fig. 1.10, collapse due to their line tension. This thus hints to a scenario where both tendency would
compromise, leading to an object with a closed domain-wall of finite size, stabilized by the repulsion
between confined fractional vortices. As demonstrated in [JG26] and [JG21], such composite objects
can indeed be formed either as metastable states, or as thermodynamically stable excitations, in external
fields. Moreover, as these flux carrying topological defects consist in non-overlapping fractional vortices,
they carry a quantized CP2 topological invariant (1.17). These composite objects, that are bound states of
domain-walls and fractional vortices are called chiral CP2 skyrmions. The prefix chiral refers to the fact
that the fractional vortices order differently along the wall, in the different time-reversal symmetry broken
states [JG21].

The chiral CP2 skyrmions can be formed via various scenario, as for example during field-cooled quenches
in external fields [119]. Since the have very specific magnetic signatures, they may be observed (and easily
discriminated from singular vortices) for example in high-resolution scanning SQUID, Hall, or magnetic
force microscopy measurements [142, 120].
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1.3.4 Skyrmions stabilized by condensate repulsion

It was previously emphasized that the existence of skyrmions requires a stabilizing mechanism to counteract
the predisposition of the singularities to superimpose. Some of the mechanisms presented above can split
the vortex cores, even in the London limit. This is for example the case of condensates with commensurate
charges in Sec. 1.3.1, or with dissipationless drag introduced in Sec. 1.3.2. The core-splitting mechanism
is still effective beyond the London limit. Roughly speaking, these mechanisms for core splitting rely
on modifications on the kinetic terms. On the other hand, the mechanism that splits the fractional
vortices confined on a domain-wall, introduced in Sec. 1.3.3, has no counterpart in the London limit. The
stabilization of the chiral CP2 skyrmions is thus purely a nonlinear effect. This section, presents another
mechanism which is also purely nonlinear, and that originates only in the potential terms; namely the bi-
quadratic inter-component coupling. This interaction which impedes the coexistence of the condensates is
relevant for a broad variety of models.

Using the generic structure of the potential term (1), the bi-quadratic interactions are the terms which are
quadratic in two of the individual densities. Namely they read as

· · ·+
∑
a,b>a

βab|ψa|2|ψb|2 + · · · , (1.60)

where the coefficients correspond to βab := βabab in (1). Depending on the sign of the bi-quadratic
coupling βab, this interaction either promotes (βab < 0) or impedes (βab > 0) the coexistence of both
condensates densities |ψa|2 and |ψb|2. For example, if the bi-quadratic interaction is repulsive (βab > 0)
and strong, it can promote a phase separation where one of the condensate vanishes in the ground state (for
example |ψa| 6= 0 and |ψb| = 0). These terms not only modify the ground state properties, but also alter
the interactions between the elementary topological defects. Indeed, the repulsive bi-quadratic interaction
(when βab > 0) typically promotes core splitting of the composite vortices. That is, it enforces the situation
where the singularities of the ensuing fractional vortices do not overlap. This kind of inter-component
interactions obviously cannot be accounted by the the London limit, where densities are constant.
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Figure 1.12: A skyrmion solution of a two-component superconductor, stabilized by the repulsive bi-
quadratic interaction (1.60). The parameters of the later detailed potential (2.12) are (αaa, βaa) = (−1, 1),
β12 > 0 and the gauge coupling is e = 0.25. The displayed quantity on the top left panel is the magnetic
field. The other panels on the top row, show the individual densities of the superconducting condensates
|ψ1|2 and |ψ2|2. The bottom left panel shows the associated pseudo-spin texture n (1.37), while the other
panels on the bottom row, are the individual currents Ja.
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As illustrated in the Figure 1.12, the bi-quadratic interaction indeed can favour core splitting. It is clear
from the panels showing the individual densities that the solution feature non-overlapping vortices in both
components, thus implying that the vortex is coreless. It follows that again it is characterized by the
additional invariant Q(Ψ) = 1 (1.17). The skyrmion here consists of one meron and an anti-meron of
the pseudo-spin texture n (1.37). Again these stand for the fractional vortices in the individual components,
similarly to Fig. 1.4.

These skymrions have a magnetic field that is not axially symmetric, and thus may be detectable by local
magnetic field measurement, such as scanning SQUID. Furthermore, similarly to the skyrmions stabilized
by the Andreev-Bashkin term in Sec. 1.3.2, the relative phase exhibits a dipolar mode that is long-ranged.
These skyrmions thus interact non trivially together.

As already mentioned, the bi-quadratic interaction (1.60) in the phenomenological Ginzburg-Landau
models, may occur in a broad variety of contexts describing different microscopic physics. Below, is a
brief overview of the different microscopic systems which yield a bi-quadratic interaction that stabilizes
skyrmions.

Skyrmions in interface superconductors. Superconductors with strong Rashba spin-orbit coupling
can exhibit skyrmions similar to that displayed in Fig. 1.12. More precisely, in a weak-coupling theory for
a clean superconductor with isotropic pairing interactions (s-wave pairing), an in-plane Zeeman field, and
a strong Rashba spin-orbit coupling, the resulting Ginzburg-Landau theory features bi-quadratic interaction
(1.60). As discussed in details in [JG17], this applies for example to interface superconductors, such as
SrTiO3/LaAlO3.

Skyrmions in immiscible mixtures of two condensates. The bi-quadratic interactions can also be
responsible for the spontaneous breakdown of a discrete Z2 symmetry, different than the competition
between phase-locking terms discussed in Sec. 1.3.3. For example, if a global SU(2) symmetry is explicitly
broken by bi-quadratic interactions (1.60). Namely, for a potential term V = Λ(Ψ†Ψ−Ψ2

0)2 + δ|ψ1|2|ψ2|2.
There the global SU(2) symmetry of the potential is explicitly broken down to U(1)×U(1)×Z2. If the
symmetry breaking parameter δ > 0, then the condensates cannot coexist and the ground state is either
(Ψ0, 0) and (0,Ψ0). This thus describes an immiscible mixture of two condensates. As a result the theory
also supports domain-walls which can combine to the vorticity and result into skyrmions [JG16]. This is
easily understood that when one of the component is suppressed (e.g. at a vortex core), then it is beneficial
to condense the other component there. They can form giant skyrmions carrying several flux quanta even in
a type-2 regime. As discussed [JG16] and [JG15], this strongly affect the magnetization properties.

Skyrmions in nematic superconductors The Ginzburg-Landau theory that describes some odd-
parity nematic superconductors feature skyrmions similar to that displayed Fig. 1.12. As argued in [JG7],
CuxBi2Se3 is a candidate material for the existence of such skyrmions. Note however that the appropriate
Ginzburg-Landau theory to describing such nematic superconductors, also features additional kinetic terms
that are anisotropic and mix the different components. These extra terms read as [JG7]

κ1Re [(Dxψ1)∗Dxψ2 − (Dyψ1)∗Dyψ2] + κ2Im [(Dxψ1)∗Dyψ2 + (Dyψ1)∗Dxψ2] . (1.61)

Such term definitely alter the structure of the skyrmions, and their interactions. However, this is again the
bi-quadratic interaction that is the principal ingredient of the vortex splitting.

Skyrmions in chiral p-wave superconductors Chiral p-wave superconductors also feature bi-quadratic
interaction that promotes core splitting. Like for the nematic superconductors, they also feature additional
kinetic terms of the form (1.61). As demonstrated in [JG23], the Ginzburg-Landau models for p+ip

superconductors, do support skyrmion excitation. Depending on the regions of the parameter space they can
be energetically favoured as compared to singular vortices. In particular, it was demonstrated that charge-2
skyrmions can be interpreted as two-quanta vortices, and that they are always preferred over isolated single
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quanta vortices [JG13]. Lattices of these two-quanta vortices form spontaneously in an external magnetic
field. In high applied field, the lattice of two-quanta vortices dissociates into a lattice of single quantum
vortices [JG11], and this picture persists beyond the mean field approximation [JG3].



Chapter 2

Type-1.5 superconductivity

Superconductors with multicomponent order parameters, not only allow for a rich zoology of topological
defects that have no counterpart in single-component systems (fractional vortices, skyrmions, hopfions,
etc), but they also allow for richer kind of interactions between them. As introduced in the previous chapter,
the elementary topological excitations in multicomponent superconductors are vortices carrying a fraction
of the flux quantum. These combine to form composite defects (either singular or coreless) so that, in
the bulk, the only finite-energy excitations carry an integer flux. Regardless of their core structure, the
interactions between the topological defects are ruled, to a large extent, by the characteristic length-scales
of the theory (or equivalently the mass spectrum). Single-component superconducting condensates are
characterized by a the coherence length ξ associated with the density variations (Anderson-Higgs mode).
Multicomponent order parameters, on the other hand, typically feature several length-scales. While the
associated scalar modes are typically attractive, the charged modes, associated with penetration depth λ of
the gauge field, mediate repulsion between flux carrying defects. See the discussion about single-component
superconductors in the Appendix A.

The textbook classification divides superconductors into two classes, depending on their behaviour in an
external field. This classification is quantified by the dimensionless Ginzburg-Landau parameter κ defined
as the ratio of both fundamental length-scales κ = λ/ξ. When

√
2λ < ξ (type-1), superconductors

expel low magnetic field (the Meissner state), while macroscopic normal domains are formed when large
fields are applied [150, 73]. On the other hand type-2 superconductors, for which ξ <

√
2λ, feature

thermodynamically stable vortex excitations [151]. More precisely, the magnetic field is expelled below
some critical value Hc1. Above this value, and until the destruction of superconductivity at the second
critical fieldHc2, type-2 superconductors form lattices or liquids of vortices carrying a flux quantum. These
behaviour are summarized in Fig. 2.1 and in tables 2.1 and 2.2. The energy cost of a boundary between
normal and superconducting states is positive in the type-1 regime. The absence of thermodynamically
stable vortices, and the formation of macroscopic normal domains, thus follows from the minimization
of the interface energy. It results that intervortex forces are purely attractive (thus vortices collapse to
a giant vortex). On the other hand, type-2 superconductors support thermodynamically stable single-
quanta vortices, as the boundary energy between normal and superconducting states is negative. The
interaction between vortices is purely repulsive, and they form (triangular) Abrikosov lattices 1 [151]. In
the Ginzburg-Landau theory, at the critical value κ = 1/

√
2 (called the Bogomol’nyi point), vortices do not

interact [152, 153]. There, the current-current repulsion exactly compensates the core-core attraction at all
distances.

1As stated in the introduction, these lattices can be seen as crystal realisation of the vortex-matter. This in a sense resonates with
Kelvin’s ides.
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Figure 2.1: Phase diagrams of superconductors in type-1, type-2 and type-1.5 regimes.

Unlike in single-component superconductors, it is not possible to construct a single dimensionless parameter
for multicomponent superconductors featuring several coherence lengths ξa. Hence the usual type-1/type-2
dichotomy is insufficient to capture the whole physics, and to classify multicomponent superconductors.
Indeed, since the coherence lengths ξa associated with the superconducting condensates are typically
different, the penetration depth λ can formally be an intermediate length-scale: ξ1< · · ·<

√
2λ< · · ·<ξN .

For such a length-scale hierarchy, the modes associated with the length-scales larger than
√

2λ provide
long-range attraction as in type-1 superconductors. On the other hand, the modes with length-scales shorter
than

√
2λ enable short-range repulsion, as in the type-2.

Consider, for example, a two-component superconductor satisfying this length-scale hierarchy: ξ1 <√
2λ < ξ2. There, the mode associated with the largest length-scale ξ2 should provide a long-range

intervortex attraction (loosely speaking due to the “outer cores" overlap). On the other hand, the current-
current and electromagnetic interaction associated with λ provides a short-range repulsive interaction. The
competition between these behaviours opens the possibility of a non-monotonic intervortex interacting
potential that is long-range attractive (as in type-1 regime) and short-range repulsive (as in type-2 regime).
This compromise between the type-1 and type-2 behaviours motivated the type-1.5 terminology of such
states [154]. The hierarchy where λ is an intermediate length-scale is a necessary, although not sufficient
condition, to realize non-monotonic intervortex interactions. Yet, if realized, the non-monotonic forces
result in a preferred intervortex distance such that two vortices form a bound state, and that many vortices
coalesce to form vortex aggregate (clusters), coexisting with macroscopic domains of Meissner (vortexless)
state: the semi-Meissner state [155].
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Characteristic
lengths-scales

Intervortex interaction Energy of N -quantum
vortex

Single-component
type-1

Penetration length λ and
coherence length ξ, with
λ/ξ < 1/

√
2

Attractive E(N)
N < E(N−1)

N−1 .
Vortices collapse onto an
N -quantum single mega-
vortex.

Single-component
type-2

Penetration length λ and
coherence length ξ, with
λ/ξ > 1/

√
2

Repulsive E(N)
N > E(N−1)

N−1 .
N -quantum vortex decays
into N infinitely separated
single-quantum vortices

Multicomponent
type-1.5

Multiple length scales ξa,
and the penetration length
λ. Non-monotonic vortex
interaction occurs when
ξ1 ≤ · · · <

√
2λ ≤ · · · ≤

ξN

Non-monotonic: long-
range attractive and short-
range repulsive

N -quantum vortices decay
into vortex
clusters. Isolated single-
quantum vortices attract to
form a cluster

Table 2.1: Characteristics of bulk clean superconductors in the type-1, type-2 and type-1.5 regimes. Here
the most common units are used in which the value of the Ginzburg-Landau parameter κ which separates
type-1 and type-2 regimes in a single-component theory is κc = 1/

√
2.

The magnetic response of single-component superconductors can be classified by considering interface
energy between the superconducting and the normal state (see details in Appendix A). In the type-1.5
regime of multicomponent systems, such an argument cannot be straightforwardly applied. Indeed, the
energy per vortex greatly depends on whether or not the vortex is located inside a cluster. Indeed, inside
a cluster (where the vortices are placed in a minimum of the interaction potential), the energy per flux
quantum is smaller than that for an isolated vortex. Hence, the formation of a single isolated vortex might
be energetically unfavourable, while the formation of vortex clusters can be favourable. Moreover, besides
the energy of the vortices inside the clusters, there appears additional characteristics associated with the
energy of the boundary of the cluster itself. In other words systems with inhomogeneous vortex states are
characterized by several different interfaces, some of which having positive and some with negative free
energy. Overall, this is the non-monotonic intervortex interaction which defines the essential properties of
the type-1.5 regime, but this is not a state-defining one. Indeed, the attraction between vortices can arise
under certain circumstances in single-component materials as well. However, in the case of the type-1.5
regime, the long-range attraction is a consequence of multiple coherence lengths and comes with several
new physical effects discussed below.

The previous chapter introduced the generic framework of multicomponent systems, and of their topological
properties. There was a particular focus on the various interactions that can result in coreless topological
defect. Here the central point is about singular defects where the core of constituting individual vortices
overlap.

Plan of the Chapter

As stated in the introduction of this chapter, the essential ingredient for the type-1.5 regime in
multicomponent superconductors, is to have a hierarchy such that the penetration depth is an intermediate
length-scale. Thus, as a starting point, the Section 2.1 will present the general framework for the analysis of
the length-scales. This follows from the analysis of the eigenspectrum of the (linear) perturbation operator
around the ground state. The general framework is then supplemented with a particular example that can
be addressed analytically.
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Superconducting/normal
state interface energy

Magnetic field required
to form a vortex

Phases in an external
magnetic field

Single-component
type-1

Positive Larger
than the thermodynamical
critical magnetic field

(i) Meissner state at low
fields;
(ii) Macroscopically large
normal
domains at elevated fields.
First order phase transition
Meissner→Normal

Single-component
type-2

Negative Smaller
than the thermodynamical
critical magnetic field

(i) Meissner state at low
fields,
(ii) Vortex lattices/liquids
at larger fields.
Second order phase
transitions:
Meissner→Vortex
and Vortex→Normal (at
the level of mean-field
theory).

multicomponent
type-1.5

Negative SC/N interface
energy inside vortex clusters
but positive energy of the
cluster’s boundary

Either: (i) smaller than the
thermodynamical critical
magnetic field or
(ii) larger than critical
magnetic field for single
vortex but smaller than
critical magnetic field for a
vortex cluster of a certain
critical size

(i) Meissner state at low
fields,
(ii) Macroscopic phase
separation into
vortex clusters coexisting
with Meissner domains at
intermediate fields
(iii) Vortex lattices/liquids
at larger fields. Vortices
form via a first order phase
transition. The transition
from vortex states
to normal state is second
order.

Table 2.2: Continued characteristics of the type-1, type-2 and type-1.5 regimes. The corresponding
magnetization curves in these regimes are displayed on Fig. 2.1.
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The length-scales, defined from the eigenspectrum of the perturbation operator, determine the asymptotic
behaviour of vortex matter. In particular, as detailed in the Section 2.1.3, this controls the long-range
interaction between vortices [156]. If the penetration depth is an intermediate length-scale, then the
intervortex forces are long-range attractive and short-range repulsive. This strongly suggests that vortices
should form bound states with a preferred separation.

When the length-scale hierarchy allows for non-monotonic intervortex forces, then vortices can aggregate
together thus forming vortex clusters surrounded by vortex-less regions of Meissner state. Few examples of
such clusters are exemplified in Section 2.2.

Next, the Section 2.3 examines the possible mechanism that should lead to the formation of vortex clusters;
and the various models where this was observed. The possible experimental signatures of the vortex clusters,
and their relevance are presented there as well.

Summary of the results that are relevant for this chapter

• Finding of a new kind of multibody intervortex forces in multiband superconductors [JG27]. The non-
monotonic intervortex interactions lead to the formation of vortex clusters surrounded by macroscopic
Meissner domains (vortexless state). The structure formation can be highly impacted by non-pairwise
intervortex interactions, originating in the nonlinear superposition of vortices. The non-monotonic
intervortex forces also result in cluster formation in three-band superconductors [JG25]. See reviews
in [JG24]. Non-monotonic intervortex forces can also occur in superconducting systems with
competing order parameters. That is when the intercomponent interactions prohibit the coexistence
of two condensates in the ground state [JG16] and [JG15].

• Explanation of the vortex coalescence in an putative two-band model for Sr2RuO4 superconducting
material [JG22]. We argued that the observed vortex coalescence in Sr2RuO4 can be explained by
non-monotonic interactions originating in the multiband nature of Sr2RuO4 . Vortex coalescence in
Sr2RuO4 received experimental support from µSR measurements in Phys. Rev. B 89, 094504 (2014)
[157].

• Prediction of an unconventional magnetic response in interface superconductors with a strong
Rashba spin-orbit coupling [JG17]. We demonstrate microscopically that in the clean limit interface
superconductors, such as SrTiO3/LaAlO3, can exhibit formation of vortex clusters.

• In a series of works on the microscopic properties of dirty two-band superconductors, we
demonstrated that they feature regions of the parameter space, where the hierarchy of length-scales
allows in principle the formation of vortex clusters due to the vicinity of an hidden second order phase
transition within the superconducting state [JG9]. This should similarly occur in clean three-band
systems [JG10]. Numerical simulations show that it indeed occurs, and that this results in peculiar
signals that can be discriminated from other scenarios via global measurements of the response of
muon-spin-rotation experiments [JG5].

2.1 Length-scales in multicomponent systems

The possibility that the interaction between vortices in multicomponent systems can be non-monotonic
relies on the non-trivial hierarchy of the length-scales of the theory. It is also based on the asymptotic
interaction between vortices already introduced in the previous section 1.1.4. Before reviewing the
intervortex interactions in the context of the semi-Meissner state, we review below the general framework,
and the analysis of the length-scales of multicomponent Ginzburg-Landau theory.

http://dx.doi.org/10.1103/PhysRevB.89.094504
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To illustrate the underlying mechanism for the semi-Meissner state, let consider here a restriction of the
generic free energy (1), forN superconducting condensates coupled via various intercomponent interactions

F/F0 =

∫
1

2

∣∣∇×A∣∣2 +

N∑
a=1

1

2

∣∣Dψa∣∣2 + V (Ψ,Ψ†) , (2.1a)

where V (Ψ,Ψ†) =

N∑
a=1

(
αaa|ψa|2 +

1

2
βaa|ψa|4

)
+

N∑
a=1

N∑
b>a

αab
(
ψ∗aψb + ψ∗bψa

)
(2.1b)

+

N∑
a=1

N∑
b>a

βab|ψa|2|ψb|2 +

N∑
a=1

N∑
b>a

γab
2

(
ψ∗2a ψ

2
b + ψ∗2b ψ

2
a

)
. (2.1c)

For simplicity again, we consider the absence of mixed gradient terms (namely κab = δab). The role of
mixed gradient terms 2, in the context of the semi-Meissner state, was discussed in details in [158]. Also the
possibility to eliminate mixed gradient terms in two-component systems was discussed in [159, 160]. The
role of mixed gradients, and the possibility for anisotropies was also considered, see [161] and [162] for
extensions to chiral p-wave superconductivity. In principle other interaction terms are allowed on symmetry
grounds, but the potential (2.1c) is general enough for the current discussion. The ground state values of
the fields |ψa| and ϕab of free energy (2.1) are found by minimizing its potential energy:

Ψ0 = argmin
Ψ∈CN

V (Ψ,Ψ†) . (2.2)

The ground state is determined by the system of equations given by the variations of the potential, with
respect to the physical degrees of freedom |ψa| and ϕa.

2.1.1 Length-scales

The length-scales that characterize the superconducting degrees of freedom are called the coherence lengths,
while that associated with the gauge field is the London penetration depth. These length-scales are the
exponents that characterise how the ground state is recovered from an infinitesimal perturbation. The
analysis of the length-scales, or equivalently of the mass spectrum, of the theory is achieved by investigating
the linear response to infinitesimally small perturbation

ψa = (ua + εfa) exp

{
i

(
ϕ̄a + ε

φa
ua

)}
, and A = εa . (2.3)

Here, ua and ϕ̄a are respectively the ground state densities and phases introduced in the previous section.
fa ≡ fa(x) are the density amplitudes, while φa ≡ φa(x) are the normalized phase amplitudes. The
amplitudes a ≡ a(x) characterize the fluctuations of the gauge field around the ground state.

Inserting the expansion (2.3) inside the free energy (2.1), and collecting order by order in ε determines the
fluctuation operator. More precisely, the zeroth order in ε defines the energy of the ground state, and the first
order in ε determines by the ground state. The quadratic term in ε defines the perturbation operator whose
eigenvalues determine the mass spectrum of the theory. The fluctuations are characterized by a system of
Klein-Gordon equations for the 2N condensate fluctuations (N densities plus N phases), plus one Proca
equation for the gauge field. In the gauge where ∇·a = 0, the fluctuation operator reads as

1

2
ΥT
(
−∇2 +M2

)
Υ , where Υ = (f1, · · · , fN , φ1, · · · , φN ,a)T . (2.4)

2Mixed gradient terms are kinetic terms that mix different component and/or different directions: (Diψa)∗Djψb + cc.
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HereM2 is the (squared) mass matrix that can be read from

ΥTM2Υ = e2
N∑
a=1

u2
aa

2 +

N∑
a=1

2(αaa + 3βaau
2
a)f2

a +

N∑
a=1

N∑
b>a

2αabfafb cos ϕ̄ab (2.5a)

+

N∑
a=1

N∑
b>a

2αab
uaub

{
(uafb + fbua)

(
φbua − φaub

)
sin ϕ̄ab −

1

2

(
φbua − φaub

)2
cos ϕ̄ab

}
(2.5b)

+

N∑
a=1

N∑
b>a

2
(
βab + γab cos 2ϕ̄ab

)(
u2
af

2
b + 4uaubfafb + u2

bf
2
a

)
(2.5c)

−
N∑
a=1

N∑
b>a

4γab

{(
ubφa − uaφb

)2
cos 2ϕ̄ab + 2(uafb + fbua)

(
φbua − φaub

)
sin 2ϕ̄ab

}
. (2.5d)

The eigenspectrum of the matrix M2 determines the squared masses of the excitations and the
corresponding normal modes. The inverse of each massma defines a characteristic length-scale `a := 1/ma

of the theory. Note that the eigenspectrum ofM2 always contains a zero mode, which is associated to the
Goldstone boson that gives the mass to the gauge field.

Remark that there are alternative possibilities to investigate the length-scale spectrum of the theory. For
example, by inserting a perturbative expansion in terms of the gauge invariant physical fields inside the free
energy (1.12), expressed in terms of charged and neutral modes. Such an approach is explained in details
in the Section A.1 of the Appendix A, in the case of single-component Ginzburg-Landau theory.

Penetration depth: Clearly, the gauge field fluctuations always decouple from the fluctuations
associated with the superconducting state. The (squared) mass of the gauge field is given by the total density

as mA = e2
∑N
a=1 u

2
a. The associated length-scale, the penetration depth is thus λ = 1/e

√∑N
a=1 u

2
a. It

is important to note that, given a ground state, the penetration depth can be adjusted to any value by tuning
the gauge coupling e.

Length-scale hierarchy: It is important to stress that the modes associated to the superconducting
fluctuations are in general all coupled together. This means that, the matrix M2 is in general a dense,
symmetric, square matrix. Unless M2 is a multiple of the identity, the mass spectrum cannot be fully
degenerate. This implies that there is a hierarchy of the eigenmasses:

m0 = 0 ≤ mI ≤ mII ≤ · · · ≤ m2N−1 , (2.6)

and at least one the inequality is a strict inequality. The first mass m0 = 0 is the Goldstone zero mode
associated with the global symmetry mentioned above. It follows that there is a hierarchy of the physical
length-scales

`I ≥ `II ≥ · · · ≥ `2N−1 , (2.7)

where at least one the inequality is a strict inequality. Note that in certain situations, because of the
underlying symmetry, the mass matrix can become block-diagonal. This is for example the case which
is discussed below. The underlying symmetry is thus associated with a zero mode, but this does not change
the fact that, in general, the mass spectrum is non-degenerate.

Now, taking the penetration depth into account, there are only three possible hierarchies of the length-scales
:

• all the coherence lengths are larger than λ (which is a type-1 behaviour)

• all the coherence lengths are smaller than λ (which is a type-2 behaviour)

• the penetration depth λ is an intermediate length-scale (the so-called “type-1.5" regime [154])

Since the penetration depth can be adjusted to any value by tuning the gauge coupling e, the hierarchy (2.7)
implies that for any set of parameters of the theory, it is possible to find a value of e such that λ is an
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intermediate length-scale
`I ≥ · · · ≥ λ ≥ · · · ≥ `2N−1 . (2.8)

Of course, this does not imply that such choice of parameter is realized in the nature. The physical
realizability of the length-scale hierarchy (2.8) is discussed later. The discussion of the hierarchy of
length-scales can further be extend to anisotropic models [161]. As discussed below, since the intervortex
interactions are related to the long-range asymptotics, such a hierarchy of the length-scales suggests long-
range attractive, short-range repulsive intervortex forces.

Remark that the eigenmasses ma, or equivalently the length-scales `a, can be used to determine the
coherence lengths ξa =

√
2/ma =

√
2`a. The factor

√
2 factor in the definition of coherence length

is a matter of convention. This convention is that where the non-interacting regime (the Bogomol’nyi
regime [153]) is κ = 1/

√
2 for single-component superconductors [163], see Appendix A. The length-scale

hierarchy (2.8) thus becomes:
ξI ≥ · · · ≥

√
2λ ≥ · · · ≥ ξ2N−1 . (2.9)

Coherence lengths: The expression of the mass matrix (2.5) is very generic, and not all aspects
are relevant for the present discussion. In particular, depending on the properties of the ground state,
the perturbation operator can greatly simplify. There exist two-qualitatively different ground states:
Ground states with trivial phase-locking, i.e. ϕ̄ab = 0, π, and ground state with non-trivial relative phases
ϕ̄ab 6= 0, π. The later case features new properties, and will be discussed in more details later in the Chapter
3 about the superconducting states that break the time-reversal symmetry. So, let focus here on the case of
trivial phase-locking, where the ground state relative phases are ϕ̄ab = 0, π. There, since sin ϕ̄ab = 0, the
normalized phase amplitudes φa decouple from the density amplitudes fa.

The mass of the density amplitudes fa are thus given by the eigenvalues ofM2
ff defined from

ΥT
fM2

ffΥf =

N∑
a=1

2(αaa + 3βaau
2
a)f2

a +

N∑
a=1

N∑
b>a

2αabfafb cos ϕ̄ab (2.10a)

+

N∑
a=1

N∑
b>a

2
(
βab + γab cos 2ϕ̄ab

)(
u2
af

2
b + 4uaubfafb + u2

bf
2
a

)
. (2.10b)

Hence, as long as αab 6= 0, or βab 6= 0, or γab 6= 0, the density modes are in general mixed. It follows that
the characteristic length-scales of the density fields are associated with the linear combinations of the fields,
see e.g. [164, 158, 165]. Physically this implies that disturbing one of the density fields necessarily perturbs
the others. This also implies that in a vortex, the long-range asymptotics of all density fields is governed by
the same exponent, corresponding to a mixed mode with the smallest mass.

The masses of the normalized phase amplitudes φa, on the other hand are given by the eigenvalues ofM2
φφ

defined from

ΥT
φM2

φφΥφ = −
N∑
a=1

N∑
b>a

( αab
uaub

cos ϕ̄ab + 4γab cos 2ϕ̄ab

)(
ubφa − uaφb

)2 (2.11a)

= −
N∑
a=1

N∑
b>a

(
αabuaub cos ϕ̄ab + 4γabu

2
au

2
b cos 2ϕ̄ab

)
φ̂2
ab . (2.11b)

Here, the (non-normalized) relative phase amplitudes φ̂ab := φb

ub
− φa

ua
have been introduced, as they directly

relate to the fluctuations of the relative phases. This is the mass of the Leggett’s mode [166], and the
associated length sets the scale at which a perturbed phase difference recovers its ground state values. For
discussion of these collective excitations in two-band superconductors see, e.g. , [167]. Observation of the
Legget mode in MgB2 was reported in [168].

Note that for the single-component Ginzburg-Landau model, the coherence length is occasionally indirectly
assessed. For example through the overall size of the vortex core or from the slope of the order parameter
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near the center of the vortex core. These estimates give consistent results, only in some special cases. For
example, even in the simplest single-component s-wave superconductors, away from Tc all these definitions
give inconsistent results [169]. In the multicomponent systems discussed here, the physics of the length-
scales is more complicated. Thus they should not be a priori expected to be easily assessable from quantities
such as the slope of the order parameter near the vortex center.

2.1.2 A simple illustrative example

In general, neither the ground state, nor the mass spectrum can be addressed analytically. As a simple
illustrative example, we consider here the case of a two-component Ginzburg-Landau model (2.1) with
N = 2 and where α12 = γ12 = 0. The potential thus reads as

V (Ψ,Ψ†) =

2∑
a=1

(
αaa|ψa|2 +

1

2
βaa|ψa|4

)
+ β12|ψ1|2|ψ2|2 . (2.12)

In this example, which was investigated in great details in [JG15], both the ground state and the mass
spectrum can be found analytically. The condensates in (2.12) are directly coupled together by only via a
bi-quadratic (density-density) interaction potential term when β12 6= 0. Since there is no coupling of the
relative phase ϕ12, the theory features a U(1)×U(1) symmetry of the potential for generic values of the
coupling constants 3. For positive values of β12, the biquadratic interaction is repulsive, i.e. the condensates
tend to suppress each other.

The ground state (2.2), for the particular potential (2.12), is defined by the ground state densities ua that
satisfy:

2
(
α11 + β11u

2
1 + β12u

2
2

)
u1 = 0 and 2

(
α22 + β22u

2
2 + β12u

2
1

)
u2 = 0 . (2.13)

Apart from the normal state (u1 = u2 = 0), there are two qualitatively different solutions of (2.13) 4 the
miscible-phase for which both condensates have a non-zero ground state density (u1, u2 6= 0), and the
immiscible-phase for which only one condensate has a non-zero ground state density: either u1 6= 0 and
u2 = 0 or u1 = 0 and u2 6= 0. Assuming that αaa < 0 and βaa > 0, the qualitatively different stable phases
determined by (2.13)

miscible-phase: (u2
1, u

2
2) =

(
α22β12 − α11β22

β11β22 − β2
12

,
α11β12α22β11

β11β22 − β2
12

)
(2.14a)

if β11β22 > β2
12 , α22β12 − α11β22 > 0 and α11β12 − α22β11 > 0 .

immiscible-phase: (u2
1, u

2
2) =

(
−α11

β11
, 0

)
or
(

0,
−α22

β22

)
(2.14b)

if α22β11 − α11β12 > 0 or α11β22 − α22β12 > 0 .

The ground state in the miscible phase spontaneously breaks the U(1)×U(1) symmetry. In the immiscible
phase, only one of the U(1) is spontaneously broken while the other, associated with the suppressed
condensate, remains unbroken. The different ground states phases are illustrated in Fig. 2.2. The top panel
of Fig. 2.2 shows the ground state densities as functions of β12 that parametrizes the bi-quadratic density
interaction. Depending on its value, the ground state is either in a miscible phase or in an immiscible phase,
and there is a parametric transition between both phases.

The density and relative phase sectors of the perturbation operator decouple. Moreover, in agreement with
the U(1)×U(1) symmetry of the theory, the perturbations of the relative phase (2.11), the Leggett mode,
are masslessM2

φφ = 0. The remaining non-trivial perturbations are defined by the mass matrix

M2
ff = 2

(
α11 + 3β11u

2
1 + β12u

2
2 2β12u1u2

2β12u1u2 α22 + 3β22u
2
2 + β12u

2
1

)
, (2.15)

whose eigenvalues are m2
I and m2

II are non-degenerate. As a result, as illustrated on the bottom panel of

3The symmetry of the theory is enlarged to U(1)×U(1)× Z2, for special values of the parameters α11 = α22, and β11 = β22.
4Note that for the extrema to be a minimum, the eigenvalues of the Hessian matrix must be positive.



56 Chapter 2. Type-1.5 superconductivity

0.0

0.2

0.4

0.6

0.8

1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

β12

|ψ
a
|2

lo
g
` a

|ψ2|2

|ψ1|2

`I

`II

λ

Figure 2.2: The ground state and length-scales of the two-component model (2.12) as functions of the
bi-quadratic density coupling β12, for the parameters (a11, β11) = (−1, 1), and (a22, β22) = (−0.95, 1).
The top panel shows the ground state densities |ψa|2, while the bottom panel shows the relevant length-
scales. Depending on the value of β12, the ground state is either in a miscible phase (red background) or
in an immiscible phase (green background). There is clearly a length-scale hierarchy `I > `II , and the
penetration depth λ can be either the largest length-scale, or intermediate in the vicinity of the symmetry
changing transition. Here e = 1, but since gauge coupling scales the value of λ, it is clear that there always
exist regimes that satisfy the length-scale hierarchy `I > λ > `II .

Fig. 2.2, the corresponding length-scales `I and `II are also non-degenerate. At the transition between the
miscible, and the immiscible phase, the smallest mass m2

I becomes massless, and thus `I diverges here. On
the other hand, the penetration depth λ = 1/e

√
u2

1 + u2
2 is always finite, even at the transition between the

two phases. This implies in particular that the length-scale hierarchy (2.8) can always be realized in a close
enough vicinity of the transition.

It is important to emphasize again that `I,II corresponds to hybridized modes and cannot be attributed to a
given condensate separately. That is, m2

I,II are the decay rates of a linear combination of ψ1 and ψ2.

2.1.3 Long-range intervortex forces

The analysis of the perturbation operator (2.4), (2.5) not only determines the mass spectrum, the length-
scales, and the hybridization of the various modes, but it also determines the asymptotic intervortex forces.
The typical vortex profiles are illustrated in Fig. 2.3. The asymptotic behaviour of vortices is determined by
the same linearized theory. Assuming that the singularities in the different components overlap, as sketched
in Fig. 2.4, the linearized theory yields the following long-range intervortex interaction [156, 155, 164, 158]:

Eint(r) = CλK0(r/λ)−
∑

a=I,II,···

CaK0(r/`a) , (2.16)

where K0 is the modified Bessel function of the second kind, and r is the distance that separates two
vortices. The coefficients Cλ and Ca depend on the eigenstates of the perturbation operator (the normal
modes) and on the nonlinearities 5. The first term describes the repulsion driven by the magnetic and
current-current interactions. The second term, associated with the scalar fields, is attractive. Thus, at

5Note that in the case of zero modes, the corresponding coefficient C is zero, so it do not mediate any interaction.
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Figure 2.3: The panels on the top row illustrate the vortex profiles in single-component type-1 and type-
2 regimes. The bottom left panel shows a vortex profile when the penetration depth is an intermediate
length-scale. This allows, in principle, for non-monotonic intervortex forces as illustrated in the bottom
right panel.

very large distance r, the intervortex interaction Eint(r) is dominated by whichever term corresponds to
the largest length-scale. Or equivalently, by the smallest of the masses. The length-scales λ and `a thus
determine whether the vortices attract or repel at long range. The overall asymptotic intervortex interaction
(2.16), when the length-scale hierarchy allows for non-monotonic forces, is represented in the bottom right
panel of Fig. 2.3.

Figure 2.4: A composite vortex with
two co-centred fractional vortices, in the
case of a two-component system. Here the
singularities of both condensates overlap.

When the penetration depth λ is an intermediate length-
scale, i.e. for a hierarchy of the length-scale (2.8), the vortices
feature a long-range tail of the scalar fields. This results
in long-range attractive intervortex forces (dominated by the
core-core interactions). On the other hand, at the intermediate
scales specified by the penetration depth of the magnetic
field, the interactions are dominated by the current-current
interactions which are repulsive. It follows that the long-
range intervortex interacting potential (2.16) predicted by the
linear theory can be long-range attractive and short-range
repulsive. This results in non-monotonic intervortex forces,
see the calculations in different models [155, 164, 158, 165,
170, 171, 172, 173]. These forces can promote the formation
of a bound state of vortices. In such a bound state, the
distance separating the vortices does not directly follow from
the linearized theory, but it is determined by full nonlinear
theory.

Importantly, in multicomponent superconductors, there can be second order phase transitions within the
superconducting state. That is, phase transitions for which the total density, and thus the penetration depth
λ are finite. This is for example the case of the transition between miscible and immiscible phases displayed
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in Fig. 2.2, see e.g. [174]. Transitions to the time-reversal symmetry breaking s+ is state, discussed in more
details in the Chapter 3 also occur within the superconducting state, see e.g. [175, 160, 159]. Since second
order phase transitions are associated with a divergent length-scale, and that λ remains finite, the penetration
depth is always an intermediate length-scale close enough to the transition. This implies that in the vicinity
such transition the length-scale hierarchy (2.8) is always satisfied.

The analysis of the long-range intervortex forces thus opens the possibility for non-monotonic interaction
between composite vortices, that are long-range attractive and short-range repulsive (see e.g. [155, 164,
158]). Thus, the long-range properties can be easily determined by the analysis of the length-scales of
the model. However, the length-scale analysis provides only a necessary, yet not sufficient condition for
the existence of non-monotonic forces beyond the linear approximation [164, 158]. It is thus necessary
to investigate the intervortex forces at the nonlinear level. This was investigated in details at the level of
the Ginzburg-Landau theory, and it was demonstrated that non-monotonic forces exist for various kind of
potential and also survives the existence of mixed-gradient term [164, 158]. It was further demonstrated
that this behaviour can also appear in fully microscopic models [165].

In practice, the demonstration that non-monotonic forces exist at the nonlinear level can be done in the
following way. In a descretized system, start with an ansatz that describes to separated vortices (see
e.g. Appendix B.2.3, for discussion of such an ansatz). Then relax all degrees of freedom except those
corresponding to the core location. After convergence, the resulting configuration is that of two vortices at
a certain distance. The energy of such a configuration is thus the energy of two isolated plus the interaction
energy between the vortices. Repeating the procedure for various vortex separations provides the interaction
energy between the vortices. This procedure was used to determine that two-component superconductors
indeed can support non-monotonic forces at the non-linear level [164, 158, 176]. The same procedure
was also used to investigate the interactions between three and four vortices [177, 178], and that the
nonlinear superposition can result in unusual additional effects. Note also that the criteria that determine
the conditions for non-monotonic intervortex interaction can also be supplemented with the analysis of the
surface energy between superconducting and normal states [179].

Large systems where vortices are approximated as point particles with the effective non-monotonic
interaction revealed an extremely rich physics of vortex structure. Indeed, the multi-scale nature of the
interaction allows for vortex arrangements that are much more complicated than the Abrikosov lattices that
occur in purely repulsive systems. These include vortex clusters and stripe phases [180, 181, 182], stripe
and gossamer phases [183], honeycomb and square lattices [184], multi-stripe phases, polymer phases,
void phases [185]. This richness of the large scale organizations have been confirmed in simulations of
type-1/type-2 bilayers [186].

2.2 Vortex clusters

The discrepancy of the length-scales thus opens the possibility for long-range attractive and short-range
repulsive intervortex forces. It was thus demonstrated that the non-monotonic forces do survive at the
nonlinear level [164, 158]. The non-monotonic forces indicate a preferred separation between two vortices.
Hence they should form a bound state. When there are more than two-flux quanta, this means that they
should form aggregates, or clusters of various shape. This expectation is supported by the analysis of point
particle vortices with multi-scale interaction [180, 181, 182, 183, 184, 185].

These strong indications of the existence of clusters should however be investigated in details, at the
nonlinear level of the original Ginzburg-Landau theory. The numerical minimization of multi-vortex states,
in the regime of non-monotonic interactions, shows that two-component Ginzburg-Landau models indeed
allow the formation vortex clusters [JG27], as illustrated for example in Fig. 2.5 6. The discretization

6The displayed numerically obtained solutions are typically a close view of the relevant quantities. In general, except when
considering mesoscopic domains, the actual numerical grid is chosen to be much larger. This rules out any kind of complicated
stabilizing boundary effects.
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Figure 2.5: A vortex cluster solution of a two-component superconductor, carrying 9 flux quanta. The
parameters of the simple potential interaction (2.1c) are (α11, β11) = (−1, 1), (α22, β22) = (−0.6, 1), and
the gauge coupling is e = 1.5. Here α12 = β12 = γ12 = 0, thus the theory as a U(1)×U(1) symmetry. The
displayed quantities on the top left panel is the magnetic field. The other panels on the top row, show the
individual densities of the superconducting condensates |ψ1|2 and |ψ2|2. The bottom left panel shows the
total current, while the other panels on the bottom row, are the individual currents Ja. The color map here
shows the magnitude of the supercurrents |Ja|. This is a close view of the cluster, but the actual numerical
grid is larger.

method, the choice of the numerical algorithm, and the general procedure are presented in details in
the Appendix B. Yet this can be outlined as follows: The (nonlinear) minimization algorithm typically
converges easily to the solution, provided a suitable initial guess. In short, an initial field configuration
which winds n times in each of the condensate will converge to a configuration that carries n flux quanta
(see detailed discussion in Section B.2.3). Provided the parameter set allows for non-monotonic forces this
typically results in a cluster carrying n flux quanta, as that displayed in Fig. 2.5.

As can be seen from the density panels of Fig. 2.5, the first component clearly forms nine vortices that
repel each other like in type-2 superconductors. The second component, on the other hand, is almost fully
depleted inside the vortex cluster (like in the type-1). Finally, there is a clear overlap of the magnetic field
of the different vortices. Here, the interesting feature is that the cluster clearly comprises between the
tendencies of the different condensates. Indeed, the first component tends to form a regular vortex lattice,
while the second condensate favours a circular normal domain with a supercurrent predominantly located
on the boundary. This competition between forming a circular cluster, and a triangular lattice leads to a
variety of clusters which are neither an hexagonal lattices nor a fully circular boundary. For more details of
the various possible cluster, see [JG27].

The existence of vortex aggregates due to non-monotonic intervortex forces easily promotes to more than
two components. The figure 2.6 shows an example of a vortex cluster in the case of a three-components
model. The case of vortex clusters occurring in three-components models was demonstrated in details in
[JG25]. Unlike the cluster illustrated in Fig. 2.5 all components of the cluster in Fig. 2.6 form vortices
with different core sizes. While the cluster in Fig. 2.5 had to comprise between type-1-like and type-2-like
behaviours, the cluster in Fig. 2.6 easily fits with a triangular lattice.

Remark about the hybridization: In single-component Ginzburg-Landau model, the coherence length
can easily be guessed from the size of the vortex cores. This is not true in general for in multicomponent
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Figure 2.6: A vortex cluster solution of three-component superconductor, with the parameters of the
potential term (2.1c) are (α11, β11) = (α22, β22) = (−3, 3), (α33, β33) = (2, 0.5), α12 = 2.25
α13 = α23 = −3.7 and the gauge coupling is e = 1.35. The other parameters are βab = γab = 0. The
displayed quantities on the top row are the magnetic field and two relative phases ϕ12 and ϕ13. The middle
row shows the densities of the three components |ψa|2, from which it is clear that the cores in the different
components have different sizes. The panels on the bottom row displays the associated super-currents Ja.
Interestingly, as can be seen from the relative phase panels, the cores in the different components do not
fully overlap at the exterior of the cluster.

models. Indeed, as already discussed in the previous section, the length-scale analysis shows that the
various modes are in general hybridized, and thus that it is not possible to attribute a single length-scale to
a given condensate. This is especially the case when there are phase-locking terms. Thus inspection of the
vortex core sizes can easily the discrepancy of the length-scales. The cluster illustrated in Fig. 2.6 is a good
example of this: The cores in the different condensates seems to have almost the same sizes. Yet there is a
strong cluster structure.

2.3 Formation of vortex clusters. Realization of semi-
Meissner states

The vortex clusters presented above are found numerically by the minimization of the Ginzburg-Landau
free energy, given an initial guess with the appropriate winding, see details in the Appendix B. They thus
represent vortex clusters surrounded by voids of the Meissner state. Hence the terminology semi-Meissner
state. The properties of the semi-Meissner state can also be investigated in an external applied fieldHe, by
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minimizing the Gibbs free energy,

G = F −
∫
B ·He , (2.17)

instead of the Helmholtz free energy F (2.1). Thus simulations in increasing values of the external field
He, reproduce the magnetization curves sketched in Fig. 2.1. Complementary to the investigation of the
magnetization properties, are simulations that mimic field cooled experiments. Indeed for realistic models,
the various parameters are temperature dependent. For example, the parameters of the quadratic terms
depend on the temperature T as αaa ≡ αaa(T ) = α

(0)
aa (T/Tc,a−1). Here α(0)

aa is the value of the coefficient
at zero temperature, while Tc,a is the characteristic temperature where the condensate ψa becomes active.
Here “active", means: The temperature below which ψa would condense, if decoupled from the other
condensates.

A magnetization process thus accounts to a vertical line in the H − T phase diagrams sketched in
Fig. 2.1. A field cooled experiment on the other hand accounts to an horizontal line in the H − T phase
diagrams. In practice, in numerical simulations, a magnetization process is realized by minimizing the
Gibbs energy (2.17), at a given value of the applied field He. After convergence, then the value of He

is increased/decreased, and the procedure is repeated for the new value of the external field. Likewise, a
field cooled experiment is simulated by by minimizing the Gibbs energy in an external field He, at a given
value of the parameters αaa(T ). Then, after convergence, the temperature modified, and the minimization
is restarted for the new parameters αaa(T + δT ). Surely, simulating such processes is much more time
consuming than the construction of (isolated) topological defects.

It should be expected that the magnetic response near the second critical field Hc2, or in the vicinity of the
critical temperature, reduces to single-component. See for example the discussions [165, 187, 188] or the
reviews [177, 189, 190]. This can also be seen from the high field behaviour of the magnetization curve
in Fig. 2.1. Indeed, in high field, there is no way to tell the difference between the magnetization curve of
type-1.5 and usual type-2. Heuristically this follows from the fact that the intervortex distance in a vortex
lattice become small. In that case, the vortex attractionis too weak, and the vortices are not “free” to form
aggregates.

However, at lower temperature the non-monotonic forces can set in and lead to the formation of vortex
clusters. This is again sketched in Fig. 2.1. Thus, in a field cooled experiment the Abrikosov lattice can
collapse into clusters at low temperatures. This was confirmed for example in simulations for clean interface
superconductors [JG17]. Measurement of the flux carrying area thus show that clusters form. Indeed, the
flux carrying area, illustrated in Fig. 2.7, is defined as

Flux carrying area =

∫
Θ (B/Bmax − δB) . (2.18)

Here Θ is the Heaviside step function, δB some tolerance, and Bmax is the maximal value of the magnetic
field. The local internal flux density of the flux carrying regions is the value of the magnetic field, averaged
over the flux carrying regions. This can be formally defined as:

Internal flux density =

∫
Θ
(
|B|/Bmax − δB

)
|B|∫

Θ
(
|B|/Bmax − δB

) . (2.19)

The internal flux density should show a strong peak where the attractive intervortex forces are strongest and
where thus the clusters are the most compact. These effects for the clusterization was discussed in [JG5],
in the context of dirty two-band superconductors.

Models with semi-Meissner states

In all the discussions above, all parameters of the Ginzburg-Landau theory are given as free parameters.
This is of course not the case in real life, where the various parameters cannot in general be chosen
independently. Thus, taking into account the underlying microscopic properties of a given model of
superconductivity constraints the relation between the various parameters. In particular, the various
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Figure 2.7: Principle to determine the fraction of sample containing flux. For a given distribution of the
magnetic field, the regions for which the magnetic field is below a threshold value δBBmax are said to be
in the Meissner state. Conversely, regions for which |B| > δBBmax are the flux carrying regions.

parameters are temperature dependent. It follows that the conditions for the realization of the type-1.5
regime, may be satisfied only in a given interval of the temperature. Moreover, it is quite expectable that if
vortex bound states are formed, their typical size should also be temperature dependent.

Various works investigated the possibility to realize semi-Meissner states from realistic microscopic theory
of multi-band superconductors, see e.g. [165, 191, 80]. Also models for clean interface superconductors,
such as SrTiO3/LaAlO3 predict the unconventional magnetic response due to non-monotonic intervortex
forces [JG17].

Also dirty two-band superconductors can feature a second order phase transition to the s+is state that
breaks the time-reversal symmetry see e.g. [JG9] and [JG5]. In the vicinity of such a transition, the
necessary length-scale hierarchy should be realized, thus opening the possibility for cluster formation. This
was discussed in more details [JG25] and [JG5]. See also the related discussion in the next chapter.

Applicability and experimental relevance

In the regime where the penetration depth is an intermediate length-scale, vortices can thus have a long-
range attractive and short-range repulsive interaction. It follows that vortices can aggregate into clusters
surrounded by Meissner domains. Experimental works using magnetic decoration, scanning SQUID and
scanning Hall probes measurements reported inhomogeneous vortex distribution on clean superconducting
material MgB2 [154, 192, 181]. Being a two-band material, the very inhomogeneous distribution of vortices
was attributed to non-monotonic forces originating from the competing type-1 and type-2 behaviours. This
regime was termed “type-1.5 superconductivity" [154]. When cycling field, the observation that the vortex
clusters form in different parts of the sample, allows to rule out the alternative explanation that the observed
aggregation is due to pinning.

Several experimental works reported local vortex coalescence in layered-perovskite superconductor
Sr2RuO4 [193, 194, 195, 196]. The semi-Meissner state was proposed to be responsible for the aggregates
observed in Sr2RuO4. This proposal followed from both theoretical [JG22], and experimental scanning
SQUID [197], and muon-spin rotation measurements [157]. There, it was observed that the vortex clusters
contract upon temperature decrease, well below Tc. This behaviour hints for attractive inter-vortex forces,
rather than pinning, to be responsible for the cluster formation. Note that earlier experiment also reported
attractive inter-vortex forces, which were attributed to domain walls trapping vortices [193]. However
signatures domain-walls were not observed in surface probes [197].

The scenario of vortex coalescence attributed to the semi-Meissner regime received experimental support as
well in other superconducting material such as LaPt3Si [198, 199]. Further theoretical predictions argued
that the type-1.5 regime could be realized as well for certain interface superconductors SrTiO3/LaAlO3
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[JG17], and should generically be present near transitions from s to s+is pairing states in iron-based
superconductors [JG25] and [JG25]; or in the context of dirty two-band materials [JG5].

For other works on this and related subjects see e.g. [200, 181, 201, 202, 203, 182, 178, 184, 174, 204,
185].

Controversy about the existence of type-1.5 regime. Note that the possibility to realize type-1.5
regime was heavily debated on theoretical grounds [205, 206, 188, 207]. In my view the question is sorted
and there is no doubt that this phenomenon do exist. This follows the accumulation of theoretical and
numerical works demonstrating the existence of this regime. Moreover one of the earlier works claiming of
inexistence of the type-1.5 regime [206, 206] bases its conclusions on an erroneous set of equations; for the
detailed demonstration, see [190]. Using the equations obtained by this incorrect derivation, several further
papers propagated misconceptions about the possibility of having a type-1.5 regime. Having in mind that
the objections, against the existence of type-1.5 regime, originate into incorrect equations, there is no doubt
about the theoretical relevance of such a physics. While there is no reason to doubt about the theoretical
possibility of the type-1.5 regime, there is no guarantee that this is realized in nature. Note however, that as
mentioned above, several experiments are consistent with that physics.





Chapter 3

Superconducting states that Break
the Time-Reversal Symmetry

Theories that describe the physics of superconductors (or superfluids) are invariant under complex
conjugation. This invariance is usually referred to as the time-reversal symmetry (TRS). As already
emphasized, the properties of multicomponent superconducting states can be qualitatively different from
their simplest single-band s-wave counterparts. In multicomponent systems, the time-reversal symmetry
can be spontaneously broken by the ground state. That is, the ground state is not invariant (up to global
phase rotations) under complex conjugation. Such states can appear if the relative phase, between the
superconducting gap functions in the different bands, differ from 0 or π [208, 209, 210, 146, 211, 212, 145,
213, 171, 214, 215, 216]. It results that, in addition to the breakdown of the usual U(1) gauge symmetry,
such superconducting states feature a discrete Z2 degeneracy, associated with the spontaneous breakdown
of the time-reversal symmetry (BTRS).

Spontaneously broken time-reversal symmetry (BTRS) states attracted much interest in the context of
unconventional spin-triplet superconducting models, especially the px + ipy state, which have been
intensively studied in relation with layered perovskite superconductor Sr2RuO4 . Another time-reversal
symmetry breaking state, which attracted more recently a lot of attention, is the s+is superconducting
state. Indeed, it received a strong theoretical support in relation with some iron-based superconductors, and
in particular with hole-doped Ba1−xKxFe2As2 [217, 218, 219, 220, 215]. The s+is state is of particular
interest, as it is the simplest time-reversal symmetry breaking extension of the most abundant s-wave state.
It is a complex admixture of distinct superconducting states, with the same symmetry, that compete through
phase-locking terms. In pnictides, it is believed to originate in the competition between different pairing
channels [215], but could as well be engineered on interfaces of superconducting bilayers [145].

The spontaneous breakdown of the time-reversal symmetry has various interesting physical consequences.
Some of which, like the existence of domain-walls, where earlier discussed in Chapter 1. Iron-based
superconductors [60] are among the most promising materials for the observation of the time-reversal
symmetry breaking s+is states that originate in the multiband character of superconductivity and several
competing pairing channels. Indeed, the experimental data show that in the hole-doped 122 compounds
Ba1−xKxFe2As2, the symmetry of superconducting state can change depending on the doping level x. A
typical band structure of Ba1−xKxFe2As2 consists of two hole pockets at the Γ point and two electron
pockets at (0, π) and (π, 0). At moderate doping level x ∼ 0.4 various measurements, including ARPES
[221, 222, 223], thermal conductivity [224] and neutron scattering experiments [225], are consistent with
the hypothesis of an s± state where the superconducting gap changes sign between electron and hole
pockets. On the other hand, the symmetry of the superconducting state at strong doping x → 1 is not so
clear, regarding the question whether the d channel dominates or if the gap retains s±-symmetry changing

65
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sign between the inner hole bands at the Γ point [218, 219]. Indeed, there are evidences that d-wave pairing
channel dominates [226, 227, 228, 229] while other ARPES data were interpreted in favour of an s-wave
symmetry [230, 231]. In both situations this implies the possible existence of an intermediate complex
state that compromises between the behaviours at moderate and high doping. Depending on whether d
or s channel dominates at strong doping such a complex state is named s+is or s+id. Both of these
superconducting states break the time-reversal symmetry.

The s+is state is isotropic and preserves crystal symmetries [215]. On the other hand, the s+id state
breaks the C4 symmetry, while it remains invariant under combination of time-reversal symmetry operation
and C4 rotations. Being anisotropic, it is thus qualitatively different from s+is state. Note that the s+id

superconducting state is also qualitatively different from the (time-reversal preserving) s + d states that
attracted interest in the context of high-temperature cuprate superconductors (see e.g. [232, 233, 234]). It
also contrasts with d + id state, which can appear in the presence of an external magnetic field, and that
violates both parity and time-reversal symmetries [208, 235] . While it is an interesting scenario, possibly
relevant for pnictides, the properties of the s+id state will not be further considered here. The focus will
be put on the analysis of s+is superconducting state. This state is of particular theoretical interest, being
the simplest extension of the most abundant s-wave state, that breaks the time-reversal symmetry. Also, it
is expected to arise from various microscopic physics [146, 210, 236, 63, 215, 237]. The s+is state could
as well be fabricated on demand on the interfaces of superconducting bilayers [145].

The experimental observation of the s+is or s+id time-reversal symmetry breaking states is challenging.
Indeed, this requires probing the relative phases between the components of the order parameter in different
bands, which is a challenging task. For example the s+is state does not break the point group symmetries
and is therefore not associated with an intrinsic angular momentum of the Cooper pairs. Consequently it
cannot produce a local magnetic field and thus is a priori invisible for conventional methods like muon
spin relaxation and polar Kerr effect measurements that were for example used to probe time-reversal
breaking p+ip superconducting state in e.g. Sr2RuO4 compound [58]. Several proposals were voiced,
each with various limitations, for indirect observation of BTRS signatures in pnictides. These, for example,
include the investigation of the spectrum of the collective modes which includes massless [213] and mixed
phase-density [171, 238, 215, 239] excitations. Also, it was proposed to consider the properties of exotic
topological excitations such as skyrmions and domain walls [142, 120, 119], unconventional mechanism
of vortex viscosity [240], formation of vortex clusters [171], exotic reentrant and precursor phases induced
by fluctuations [241, 242, 243, 244]. Moreover, spontaneous currents were predicted to exist near non-
magnetic impurities in anisotropic superconducting s+id states [209, 216] or in samples subjected to strain
[216]. The latter proposal actually involves symmetry change of s+is states and relies on the presence
of disorder, which can typically have uncontrollable distribution. It was also pointed out that the time-
reversal symmetry breaking s+is state features an unconventional contribution to the thermoelectric effect
[245]. Related to this an experimental set-up, based on a local heating was recently proposed [246]. The
key idea being that local heating induces local variations of the relative phases, which further yield an
electromagnetic response that is directly observable.

Plan of the Chapter

The existence of the s+is state can originate from various mechanisms, including the competition between
different pairing channels, or impurity scattering. These aspects will not be addressed here. Instead we
will discuss how this s+is state appears in phenomenological Ginzburg-Landau models. Discussions of
the microscopic origin of the s+is state, and its relation to Ginzburg-Landau models was for example
discussed in [JG14] and [JG10]. See also [JG9] and [JG5] for discussions of the s+is state that originates
in impurity scattering.

As a starting point, the Section 3.1 presents the mechanism of phase frustration, that is responsible for
the spontaneous breakdown of the time-reversal symmetry, in three-component superconductors. Namely,
this is the competition between different phase-locking terms that can result in the s+is state. Since the
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time-reversal symmetry is a discrete operation, its spontaneous breakdown implies that the ground state
features a discrete degeneracy. The properties of such ground state will be analyzed in Section 3.1.1, while
the corresponding length-scales are derived in Section 3.1.2. The case of a two-component s+is state will
also be addressed in this section.

Next, the properties of topological defects that can occur in superconducting states which break the time-
reversal symmetry are addressed in the Section 3.2. There is some overlap with the discussions of Section
1.3.3 of the Chapter 1. The fact that the ground state breaks a discrete symmetry implies that the theory
allow for domain-wall excitations. These domain-walls between different time-reversal symmetry broken
states are constructed in Section 3.2.1. The domain-walls interact non-trivially with the vortex matter. As
detailled in Section 3.2.2, closed domain-walls can form bound states with vortices. As discussed in the
Chapter 1, since the resulting composite defects are coreless, they feature extra topological properties: they
are the chiral CP2 skyrmions.

Finally, in the thermoelectric properties of the s+is state will be discussed in Section 3.3. The new
thermoelectric properties of the s+is state are consequences of the modified current, and magnetic relations
in multicomponent superconductors.

Summary of the results that are relevant for this chapter

• In [JG10] we have demonstrated that the mean field theories for the s+ is superconducting states,
that break the time-reversal symmetry, are quantitatively consistent with microscopic multi-band
models. We have further demonstrated that the s+ is state can also appear in two-band systems
due to impurity scattering [JG9]. Within the quasiclassical approximation we show that the s+ is

state forms as an intermediate phase at the impurity-driven crossover between s± and s++ states. We
further established in [JG10] and [JG5] that the s+is domain is surrounded by a line of second-order
phase transition, which implies the existence of a soft mode with a divergent length-scale. The other
coherence lengths remain finite at this transition and thus there is an infinite disparity of coherence
lengths, which may lead to unusual vortex physics with non-monotonic forces [JG5] and [JG6].

• In [JG14] and [JG12] we have demonstrated that the existence of time-reversal symmetry broken
states measurably impacts the thermoelectric response of superconductors. In [JG14] we predicted
that superconductors which break the time-reversal symmetry feature a giant thermoelectric effect of
principally different nature than that in single-component superconductors. It originates in thermally
induced intercomponent counterflows, in contrast to the counterflows of normal and superconducting
currents in the classical Ginzburg mechanism. We have further demonstrated in [JG12] that these
unconventional thermoelectric properties can be used to induce experimentally observable magnetic
and electric fields by local heating of candidate materials. The induced fields are sensitive to the
presence of domain-walls and crystalline anisotropy, while nonstationary heating process produces
an electric field and a charge imbalance in the different bands [JG12].

• Prediction of the experimental signatures of domain-wall structures that form during quenches, via
the Kibble-Zurek mechanism, in superconductors with broken time-reversal symmetry originating in
s+is gap structure [JG19]. As it is a discrete symmetry, the spontaneous breakdown of the time-
reversal symmetry in the s+is state, dictates that it possess domain wall excitations. We also discuss
the influence of geometrically stabilized domain-walls on the magnetization processes.

• Discovery of a new kind of stable topological solitons in three-component superconductors that
spontaneously breaks the time-reversal symmetry [JG26] and [JG21]. These flux carrying topological
defects, are characterized by a hidden topological charge, associated with the topology of the complex
projective space CPN−1. These CP2 skyrmions can spontaneously form in field cooled experiment
[JG19], when the cooling process goes through the phase transition to the time-reversal symmetry
broken state.
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• Findings of a new kind of collective mode in three-band superconductors with broken time-reversal
symmetry [JG25]. This collective mode is associated with mixed phase-density collective excitations.
Thus it is different from the Leggett’s mode.

3.1 Phase frustration in three-band superconductors

The time-reversal symmetry breaking s+is states occurs due to the competition between different pairing
channels. At the level of the mean field theory, this manifests itself through the existence of competing
phase-locking terms. When different phase-locking terms cannot be simultaneously satisfied, the system
may comprise via non-trivial relative phases between the condensates [145, 146, 247, 248]. It was indeed
observed that the inclusion of a third superconducting condensate leads to qualitatively different physics
compared to two-component systems [145, 146, 247, 248]. As detailed below, the states with non-trivial
relative phases (i.e. when at least one is neither 0 nor π) break the time-reversal symmetry.

To illustrate how phase frustration leads to the spontaneous breakdown of the time-reversal symmetry, we
consider here a restriction of the generic free energy (1), for three superconducting condensates coupled via
bilinear Josephson interaction:

F/F0 =

∫
1

2

∣∣∇×A∣∣2 +

3∑
a=1

1

2

∣∣Dψa∣∣2 + V (Ψ,Ψ†) , (3.1a)

where V (Ψ,Ψ†) =

3∑
a=1

(
αa|ψa|2 +

1

2
βa|ψa|4

)
+

3∑
a=1

3∑
b>a

ηab(ψ
∗
aψb + ψ∗bψa) , (3.1b)

Here again, ψa = |ψa|eiϕa are complex fields representing the three superconducting condensates labelled
by the indices a, b = 1, 2, 3. For simplicity, mixed gradient terms are not considered (namely κab = δab).
Besides the electromagnetic coupling, the different condensates are directly coupled via the (bilinear)
Josephson interaction:

ηab(ψ
∗
aψb + ψ∗bψa) = 2ηab|ψa||ψa| cos(ϕab) , (3.2)

where ϕab = ϕb − ϕa denotes the relative phase between two condensates. Such a multicomponent
Ginzburg-Landau free energy can, in certain cases, be derived microscopically at temperatures close to
Tc (for a review see [249], see also [JG10]). Note that the existence of three superconducting bands
is not by any means a sufficient condition for a system to have Ginzburg-Landau expansion like that
displayed in (3.1). However many of the question of phase-frustration which is considered here, do not
require to be in the high-temperature region where the Ginzburg-Landau expansion (3.1) can be formally
justified. In the following, the minimal Ginzburg-Landau model (3.1) is used as a convenient framework to
discuss qualitatively the physics of phase frustration, and how it leads to time-reversal symmetry breaking.
Discussions on microscopic physics aspects can be found, for example, in [JG6], [JG10], and [JG9]. Note
that three-component models feature in principle additional terms allowed by symmetry, e.g. bi-quadratic
terms in density (see for example [120]). However these terms play a little role in the phase frustration that
leads to the breakdown of the time-reversal symmetry. Hence we focus here on the simplest model.

The quartic coefficients βa are positive so that the free energy (3.1) is bounded from below. On the other
hand, the quadratic coefficients αa change signs at some characteristic temperatures which are generally
different for all components. Below this characteristic temperature αa < 0 and the band is said to be active,
while above it, αa > 0 and the band is passive. Nevertheless, passive bands can feature nonzero superfluid
density because of the interband Josephson tunnelling terms with the coupling ηab. For the superconducting
state to exist, the determinant of the second order couplings should be negative 1. Hence, for the potential
(3.1b), the superconducting states exists if

α1α2α3 + 2η12η13η23 − α1η
2
23 − α2η

2
13 − α3η

2
12 < 0 . (3.3)

1Using the notations of (1), the criterion for the existence of the superconducting state is det α̂ < 0 where α̂ denotes the
(symmetric) matrix of the coefficient αab of the bilinear terms αabψ∗

aψb.
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Figure 3.1: Schematic illustration of phase locking
patterns. Panels (a) and (b) show the two possible
phase locking for two components; either zero or
π. Panels (c), (d) and (e) display the possible,
qualitatively different, phase locking in the case of
three components. Panels (c) and (e), the relative
phases are said to be trivial (i.e. either zero or π). The
case of the panel (d) is a three frustrated component
superconductor, with non-trivial phase locking.

When the parameters satisfy the condition (3.3),
systems with more than two condensates can
exhibit frustration of the competing Josephson
coupling terms. When ηab < 0, a given Josephson
interaction term (3.2) is minimal for zero relative
phase ϕab, and this coupling is a “phase-locking".
On the other hand, when ηab > 0, the Josephson
interaction is minimal for the relative phase ϕab =

π, and this coupling is a “phase-antilocking" 2. The
behaviour of the individual phase-locking terms
between two condensates is illustrated in Fig. 3.1.
There, the panel (a) shows a relative phase ϕ12 =

π, and thus corresponds to η12 > 0. Panel (b) on
the other hand shows the zero relative phase that
minimizes the Josephson interaction for a negative
Josephson coupling η12 < 0.

Now, in the case of three condensates, depending
on the signs of the couplings ηab, the individual
Josephson terms cannot always be simultaneously
minimal. Indeed, the relative phases are not all
independent; for example

ϕ23 := ϕ3 − ϕ2 = ϕ3 − ϕ1 + ϕ1 − ϕ2 := ϕ13 − ϕ12. (3.4)

Such a situation, where the phase-locking terms compete with each other, and where the system comprises
between the individual tendencies, is called frustrated. Note that, as detailed below, frustration in three-
component systems like (3.1) is a necessary (yet not sufficient) condition for the spontaneous breakdown
of the time-reversal symmetry. The condition for frustration can be determined in terms of the sign of the
Josephson couplings ηab. Indeed there are four principal situations, summarized in the Table. 3.1. Note that
frustration also occurs in the general case of arbitrary number of components. There are more possibilities
for such systems to be frustrated, which allows for even richer physics than in three-components. Frustration
in four-component systems was discussed in details in [250].

Case Sign of η12, η13, η23 Ground state phases
1 −−− ϕ1 = ϕ2 = ϕ3

2 −−+ Frustrated
3 −+ + ϕ1 = ϕ2 = ϕ3 + π
4 + + + Frustrated

Table 3.1: Illustration of the qualitatively different representative situation in the case of three-component
superconducting condensates coupled via bilinear Josephson interaction. Depending of the sign of the ηab,
there are four principal situations. The ground state phases are given when the signatures do not lead to
frustration.

Example of phase frustration and broken time-reversal symmetry: The simplest illustration of
phase frustration is the case where the coefficients of the three components are completely symmetric, and
all Josephson couplings are repulsive. For example, with the individual couplings αa = −1, βa = 1 for
a = 1, 2, 3, and the Josephson couplings η12 = η13 = η23 = −1. Each individual phase-locking term
favours relative phases that equal π. This is however impossible, since, e.g.

if ϕ12 = ϕ13 = π , then ϕ23 ≡ ϕ13 − ϕ12 = 0 6= π (with ϕab = ϕb − ϕa) .

2In two-component systems, there exists a “parametric” symmetry with respect to the sign change of the Josephson coupling
ηab → −ηab. Indeed, such change can be compensated by an overall change of the relative phase ϕab → ϕab ± π, so that the
system recovers the same interaction. However, in systems with more than two condensates there is generally no such symmetry.
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Hence, since the individual phase-locking terms cannot be simultaneously satisfied, the system is said to be
frustrated. Instead, the ground state has all the relative phases equal to ±2π/3 mod 2π. More precisely, it
can be shown that

either ϕ12 = +2π/3 , ϕ13 = −2π/3 , ϕ23 = +2π/3 mod 2π , (3.5a)

or ϕ12 = −2π/3 , ϕ13 = +2π/3 , ϕ23 = −2π/3 mod 2π . (3.5b)

Figure 3.2:
Schematic illustration of the two inequivalent ground
states (3.5). Since both configurations are mirror of
each others, these states are also referred to as chiral
states. The circulating arrows denote circulating
interband tunneling currents.

Here, not only the system is frustrated, but
also it features a discrete degeneracy. Indeed,
since the relative phases are gauge invariant,
both configurations (3.5a) and (3.5b) cannot be
transformed into each other by a global phase
rotation. Both these configurations are displayed
in Fig. 3.2. They are related to each other
by the complex conjugation, associated with
the time-reversal transformation T (ψa) = ψ∗a.
Since T (ϕab) = −ϕab, the two ground states
are indeed related to each other by the time-
reversal transformation. Hence the ground state
is said to spontaneously break the time-reversal
symmetry.

The ground state here, thus features a discrete
U(1)×Z2 degeneracy. In a phase transition the
ground state randomly picks either of the chiralities, and this may lead to the formation of domain-walls
via the Kibble-Zurek mechanism [12, 13]. This was further discussed in [JG19] and in Sec. 1.3.3. See
also the continued discussion in Sec. 3.2.1. Under certain conditions, the spontaneous breakdown of the
time-reversal symmetry also allows for composite topological excitations which are bound states of closed
domain walls and vortices [142, 120], see Sec. 1.3.3 and the continued discussion in Sec. 3.2.2.

3.1.1 Ground state of a three-component superconductor

As discussed above, frustration occurs depending on the signatures of the different Josephson couplings,
as summarized in Table 3.1. Frustration is a necessary, yet not sufficient, condition for the spontaneous
breakdown of the time-reversal symmetry. The breakdown occurs depending on the relative values of the
Josephson couplings. The dependence of the ground state, with respect to a given coupling illustrates this.
The ground state values of the fields |ψa| and ϕab of the free energy (3.1) are found by minimizing its
potential energy:

Ψ0 = argmin
Ψ∈CN

V (Ψ,Ψ†) , with V =

3∑
a=1

{
αa|ψa|2 +

1

2
βa|ψa|4 +

3∑
b>a

ηab|ψa||ψb| cosϕab

}
. (3.6)

The ground state is determined by the system of equations given by the variations of the potential, with
respect to the physical degrees of freedom |ψa| and ϕa. The variation with respect to the densities read
explicitly

δV

δ|ψ1|
:= 2α1|ψ1|+ 2β1|ψ1|3 + η12|ψ2| cosϕ12 + η13|ψ3| cosϕ13 = 0 , (3.7a)

δV

δ|ψ2|
:= 2α2|ψ2|+ 2β2|ψ2|3 + η12|ψ1| cosϕ12 + η23|ψ3| cosϕ23 = 0 , (3.7b)

δV

δ|ψ3|
:= 2α3|ψ3|+ 2β3|ψ3|3 + η13|ψ1| cosϕ13 + η23|ψ2| cosϕ23 = 0 . (3.7c)
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Variations of with respect to the phases, on the other hand, read as

δV

δϕ1
:= +η12|ψ1||ψ2| sinϕ12 + η13|ψ1||ψ3| sinϕ13 = 0 , (3.8a)

δV

δϕ2
:= −η12|ψ1||ψ2| sinϕ12 + η23|ψ2||ψ3| sinϕ23 = 0 , (3.8b)

δV

δϕ3
:= −η13|ψ1||ψ3| sinϕ13 − η23|ψ2||ψ3| sinϕ23 = 0 . (3.8c)

The potential is invariant under global rotation of all phases. Thus it can be convenient to fix the gauge
by imposing the value of one of the phases, for example ϕ1 = 0. In that case, the equation δV/δϕ1 = 0

Eq. (3.8a), becomes trivial as it is a linear combination of the other two. Finding the ground state thus boils
down to solving the nonlinear system of five equations. The three density equations (3.7), plus the two
nontrivial equations of (3.8). This cannot, in general, be solved analytically and thus requires numerical
methods such as Nonlinear Conjugate Gradient or Newton-Raphson algorithm.

Alternative to the gauge fixing: Remark that another possibility, to determine the ground state is to
consider, together with the density equations (3.7), the variations with respect to the relative phases (which
are gauge invariant quantities). This however have to be addressed carefully. Indeed, it is important to stress
again that the three relative phases ϕab are not independent. It is thus necessary to first express one in terms
of the other two, e.g.ϕ23 = ϕ13 − ϕ12, see Eq. (3.4). The variations of the potential with respect to the
remaining relative phases thus yield the equation

δV

δϕ12
:= −η12|ψ1||ψ2| sinϕ12 + η23|ψ2||ψ3| sin(ϕ13 − ϕ12) = 0 , (3.9a)

δV

δϕ13
:= −η13|ψ1||ψ3| sinϕ13 − η23|ψ2||ψ3| sin(ϕ13 − ϕ12) = 0 . (3.9b)

Note that this alternative is peculiar to systems with more than two components. Indeed, when there are only
two components, fixing the gauge and working with the relative phase are completely equivalent.

Practical implementation: While expressing the complex degrees of freedom in terms of moduli and
phases ψa = |ψa|eiϕa , is physically intuitive, it is not convenient for numerical computations. Indeed,
the moduli are strictly positive quantities, |ψa| ∈ R+. This makes the functional non-convex, and thus
unsuitable for some algorithms, such as the Nonlinear Conjugate Gradient (see details in the Appendix
B.2). Indeed, the Nonlinear Conjugate Gradient algorithm works when the functional is approximately
quadratic near the minimum. This is the case when the function is twice differentiable at the minimum
and the second derivative is non-singular there. This is obviously not always true when considering the
moduli. The alternative to this issue is to parametrize the superconducting degrees of freedom, in terms
or the real and imaginary parts of the complex fields ψa = Xa + iYa, instead of the moduli and phases
ψa = |ψa| exp{iϕa}. When working with real and imaginary parts of the complex fields, gauge fixing of
e.g.ϕ1 = 0 is achieved by setting Y1 = 0, since Ya ≡ |ψa| sinϕa. However, it can also be convenient not to
fix the gauge at all, and to consider only the gauge invariant quantities.

Consider, as an example, the situation where all Josephson couplings are positive. As can be seen in
Table. 3.1, this situation is frustrated. The dependence of the ground state, with respect to a single Josephson
coupling (here η23) are displayed in Fig. 3.3. It shows three qualitatively distinct phases. At small values
of η23 (regime (a)), the relative phases are all trivial: [ϕ12, ϕ13, ϕ23] = [π, π, 0]. In the opposite limit, for
large values of η23 (regime (c)), the one condensate (here ψ1) is fully depleted. It follows that only one of
the relative phase, here ϕ23, is relevant. The two remaining phases are [ϕ2, ϕ3] = [−π/2, π/2]. The most
interesting phase here is the phase (b). Indeed, as stated above, the relative phases here are neither 0 nor
π. As stated above, this implies that the ground state features a discrete degeneracy, since it is not invariant
under the time-reversal transformation T (ϕab) = −ϕab. The ground state here thus spontaneously breaks
the time-reversal symmetry.
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Figure 3.3: Ground state phases of the three-components superconductor (3.1), as function of η23. The
other parameters of the Ginzburg-Landau potential energy are αa = 1, βa = 1, and η12 = η13 = 2.
The top graph shows the ground state densities |ψa|, while the bottom graph shows the relative phases
ϕab. All individual couplings are not simultaneously satisfied, so the system is frustrated. However, for
small coupling η23 (regime (a)), the relative phases are trivial (i.e. either 0 or π). For intermediate values
of η23 (regime (b)), all ground state relative phases are non-trivial. Hence the ground state features a
discrete symmetry: U(1) × Z2 rather than U(1). Indeed, the energy is invariant under ϕab → −ϕab,
but the configuration cannot be continuously transformed into each other. For large Josephson coupling
η23 (regime (c)) the third condensate vanishes, and the only remaining relative phase is ϕ12 = π. The
red background denotes the region of broken time-reversal symmetry. As discussed later on, the both
transitions (a)↔ (b) and (b)↔ (c) are of the second order. Similar diagram showing the ground state of
three-component superconductor can be found in [JG25].

Symmetry-wise, in the phases (a) and (c), the ground state features the usual U(1) degeneracy associated
with the global rotation of all phases. In the phase (b), on the other hand, the ground state has an extra
discrete degeneracy Z2 so that the overall degeneracy is U(1)×Z2. Clearly, both phases (a) and (c) are
symmetric under the time-reversal operations T (ϕab) = −ϕab, while the phase (b) is not. Moreover,
as discussed below, the both transitions (a)↔ (b) and (b)↔ (c) are of the second order. These are thus
associated with a divergent length-scale.

3.1.2 Length-scales of a three-band superconductor

The spontaneous breakdown of the time-reversal symmetry, as presented here at the phenomenological level
of the Ginzburg-Landau theory, is a property of the ground state. This however also qualitatively affects the
excitations, and in particular in the vicinity of the transitions of the time-reversal symmetry broken states.
The detailed analysis of the length-scales and of the associated modes of the perturbation operator indeed
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reveals new, interesting properties. To have a grasp on this, let’s follow the procedure of the analysis of
the perturbation operator described previously in Sec. 2.1. It might also be useful to compare with the
analysis of the mass spectrum for single-component Ginzburg-Landau model in the section Sec: A.1 of the
Appendix A. The analysis of the perturbation operator determines the mass spectrum (and thus the length-
scales), and the corresponding modes. For a detailed discussion of the perturbative spectrum of three-band
superconductor, see [171, 251].

Considering the perturbative expansion in terms of the infinitesimal parameter ε

ψa = (ua + εfa) exp

{
i

(
ϕ̄a + ε

φa
ua

)}
. (3.10)

Here, ua and ϕ̄a are respectively the ground state densities and phases, introduced in the previous section.
fa ≡ fa(x) are the density amplitudes, while φa ≡ φa(x) are the normalized phase amplitudes. For
simplicity here, we do not consider the excitations of the gauge field, and focus only on the properties of the
superconducting degrees of freedom. The fluctuations are thus characterized by a system of Klein-Gordon
equations for the six condensate fluctuations (three densities, plus three phases). The Klein-Gordon system
reads as

1

2
ΥT
(
−∇2 +M2

)
Υ , where Υ = (f1, f2, f3, φ1, φ2, φ3)T . (3.11)

HereM2 is the squared mass matrix that is straightforwardly obtained by retaining the quadratic order of
the infinitesimal parameter ε, after introducing the expansion (3.10) into the free energy (3.1). The squared
mass matrix can thus be read from

ΥTM2Υ =

3∑
a=1

2(αa + 3βau
2
a)f2

a +

3∑
a=1

3∑
b>a

2ηabfafb cos ϕ̄ab (3.12a)

+

3∑
a=1

3∑
b>a

2ηab
uaub

{
(uafb + fbua)

(
φbua − φaub

)
sin ϕ̄ab −

1

2

(
φbua − φaub

)2
cos ϕ̄ab

}
. (3.12b)

The eigenspectrum of the matrix M2 determines the squared masses of the excitations, the associated
length-scales and the corresponding normal modes.

Before quantitatively investigating the mass spectrum, important qualitative properties can be determined
by carefully examining the structure of the mass matrix. As emphasized in the previous section, the current
model features essentially different states, depending on whether the ground state relative phases are trivial
or not.

In the case of a trivial phase-locking, i.e. ϕ̄ab = 0, π, the mass matrix (3.12) simplifies, and the
density amplitudes fa decouple from the normalized phase amplitudes φa. Indeed, since sin ϕ̄ab = 0 in that
case, the mass matrix becomes block-diagonal (namelyMfφ). The mass of the density amplitudes fa are
thus given by the eigenvalues ofM2

ff defined from

ΥT
fM2

ffΥf =

3∑
a=1

2(αa + 3βau
2
a)f2

a +

3∑
a=1

3∑
b>a

2ηab cos ϕ̄abfafb . (3.13)

Hence, as long as ηab 6= 0, the density modes are in general mixed. It follows that, as previously discussed in
Sec. 2.1, the characteristic length-scales of the density fields are associated with linear combinations of the
fields, see e.g. [164, 158, 165]. This means physically that disturbing one of the density fields necessarily
perturbs the others. This also implies that in a vortex, the long-range asymptotics of all density fields is
governed by the same exponent, corresponding to a mixed mode with the lowest mass.

The masses of the normalized phase amplitudes φa, on the other hand are given by the eigenvalues ofM2
φφ

defined from

ΥT
φM2

φφΥφ =

3∑
a=1

3∑
b>a

−ηab cos ϕ̄ab
uaub

(
φbua − φaub

)2 ≡ − 3∑
a=1

3∑
b>a

ηabuaub cos ϕ̄abφ̂
2
ab . (3.14)
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Here again, the (non-normalized) relative phase amplitudes φ̂ab := φb

ub
− φa

ua
have been introduced, as they

directly relate to the fluctuations of the relative phase. This defines again the mass of the Leggett’s mode
[166].

On the other hand, for a non-trivial phase-locking, i.e. ϕ̄ab 6= 0, π, the density fluctuation are always
coupled to the phase fluctuations. Indeed, since there sin ϕ̄ab 6= 0, the decoupling discuss in the previous
paragraph is not possible:

ΥTM2
fφΥ =

3∑
a=1

3∑
b>a

2ηab sin ϕ̄ab
uaub

(uafb + fbua)
(
φbua − φaub

)
6= 0 . (3.15)

It follows that when the time-reversal symmetry is broken, there are no “phase-only" Leggett’s modes.
Instead there appears a new kind of collective excitations where the phase difference modes are hybridized
with the density (Higgs) modes [171, 215, 238, 239]. These hybridized normal modes have a complex
structure that mixes all density amplitudes, to all the phase amplitudes. This is not further discussed here,
and the detailed analysis of the hybridized modes can be found for example in [JG25]. As discussed below,
the hybridized modes can be associated with large characteristic length-scales even in the case of strong
Josephson coupling. Note finally that, in principle, there could be accidental decouplings, but possibility
this will not be discussed here. Such a possibility was discussed in a broader context of four-component
models [250].

The examination of the structure of the mass matrix thus predicts important qualitative properties, especially
when the time-reversal symmetry is broken. Now, for a more quantitative discussion, the eigenvalue
spectrum ofM2 has to be determined given the ground state ua, ϕ̄ab. This is easily handle numerically with
standard linear algebra tools. The figure 3.4 shows the various length-scales associated with the ground
state displayed in Fig. 3.3, here again as functions the Josephson coupling η23. The eigenspectrum of
(3.11), with the (squared) mass matrix (3.12), is the set of 6 squared masses M2

a, whose corresponding
lengths `a = 1/Ma are the physical length scales of the model. Note again that there is a spontaneously
broken U(1) symmetry associated with the simultaneous rotation of all phases. This mode has a zero
mass, and it can easily be decoupled 3. Thus there are only 5 physical lengths that are associated with the
superconducting condensates. The additional length-scale given by the London penetration depth, is not
discussed here.

Investigating the ground state data in Fig. 3.3, and the associated length-scales in Fig. 3.4, shows again
that there are three qualitatively distinct regimes, depending on the Josephson coupling η23. At η23 = 1.6

there is a transition between the regime where with the usual U(1) degeneracy, and the regime where the
ground state has an overall U(1)×Z2 degeneracy. A similar transition between U(1)×Z2 and U(1) states,
occurs at η23 = 4. As explained above, in the U(1) regimes, the density modes are mixed and there is no
mixing between the density modes and the phase modes. It follows that the perturbations of the phases
and of the densities recover independently of each other. The fluctuations of the phase modes are the three-
component generalization of the standard Leggett’s modes. In the U(1)×Z2 regime all the modes are mixed,
thus any perturbation of the densities induces a perturbation of the relative phases, and vice versa. At the
two transition points, η23 = 1.6 and η23 = 4, there is a divergent length-scale. The examination of the
corresponding eigenvector shows that in the U(1) regimes this a mode is a phase-only. Thus a Leggett
mode becomes massless at the transitions to the time-reversal symmetry broken states. This was realized
in the London model in [213], and in general Ginzburg-Landau model [171, 251]. It follows that here, the
decay of the corresponding perturbation is not exponential, but it is governed by a power law.

The perturbation operator thus features a divergent length-scale in the vicinity of both transitions to the
s+is, time-reversal symmetry breaking state. This transition is thus of the second order. Indeed, the theory
of the mean-field second-order phase transitions states that the mass of one of the modes should go to zero,

3In practice it is convenient not to decouple this mode. Indeed, first of all this makes the system much simpler to write. Moreover
the zero mode provides an estimation of the numerical resolution of masses.
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Figure 3.4: Length-scales of the three-components superconductor (3.1), as functions of the Josephson
coupling η23. The other parameters of the Ginzburg-Landau potential energy are αa = 1, βa = 1, and
η12 = η13 = 2. This parameter set corresponds to the ground states displayed in Fig. 3.3. Here, the length-
scale of the U(1) zero mode is not shown as it corresponds to an unphysical degree of freedom, so there are
only 5 length-scales associated with the superconducting degrees of freedom. The penetration depth, which
is not displayed here, is always finite. Here again one can clearly identify three different regimes. In the
central regime, which is denoted by the red background, the time-reversal symmetry is broken, while the
two other regimes are time-reversal symmetric. The transition from the time-reversal symmetric states to
the time-reversal symmetry broken states is a symmetry change. It is thus expected to be accompanied by a
divergent length-scale. Similar diagram showing the length-scales of three-component superconductor can
be found in [JG25]. There are also more details like the various eigenmodes.

while other length-scales remain finite. Unlike the phase transition to the normal state, at which the gauge
field becomes massless, the penetration depth is always finite at these transitions 4.

In the vicinity of these transition points, the largest length-scale is anomalously large due, to the frustration
between Josephson couplings. Since the penetration depth remains finite, this implies that there exists
always a region, close enough to the phase transition, where λ is an intermediate length scale. It follows,
as discussed in the Chapter 2, that superconductors that are in the vicinity of a time-reversal symmetry
breaking transition are potentially type-1.5, with long-range attractive and short-range repulsive intervortex
forces.

Time-reversal symmetry breaking in two-components superconductor

In this section, we extensively discussed how the s+is time-reversal symmetry breaking states occur in
three-component superconductors, due to the competition between the bilinear Josephson couplings. Such
a three-component Ginzburg-Landau theory is relevant to describe a three-band superconducting state, with
an intra-band dominated pairing (see e.g. [JG10]). However, the s+is state can also be realized in two-
component Ginzburg–Landau models. For example, microscopic three-band model, with an interband
dominated repulsive pairing were suggested to be relevant for some iron-based superconductors [220, 215,

4The penetration depth here is not displayed. Yet it is clear from the data presented in Fig. 3.3, that the total density do not vanish.
Since it is proportional to mass of the gauge field, this implies that the penetration depth is always finite.
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239]. In this case, only two fields can nucleate and the relevant model is a two-component Ginzburg–
Landau theory, see e.g. [JG10]. Similar model can also be realized in dirty two-band superconductor, due
to impurity scattering [252, 249, 253], see also [JG9].

The most generic potential free energy (1) of a two-component Ginzburg–Landau model reads as:

V (Ψ,Ψ†) =

2∑
a=1

(
αaa|ψa|2 +

βaa
2
|ψa|4

)
(3.16a)

+ 2(α12 + γ11|ψ1|2 + γ22|ψ2|2)|ψ1||ψ2| cosϕ12 (3.16b)

+ (β12 + γ12 cos 2ϕ12)|ψ1|2|ψ2|2 . (3.16c)

This potential can describe an s+is state, and the coefficients of the Ginzburg-Landau functional can be
calculated from a given set of input microscopic parameters, from the relevant microscopic model. See
for example [JG10] for the case of a interband dominated pairing for clean superconductors, or [JG9] and
[JG5] for dirty two-band superconductors. Note that in the s+is case, the superconducting condensates are
also coupled via mixed gradients terms (Dψ∗1Dψ2 + c.c.), which do not impact the ground state. However,
such terms play a role in the length scales and the associated normal modes. Details of the length scales
and normal modes of such an s+is superconducting state was investigated in [JG5].

Here again, the potential (3.16) cannot always be minimized analytically. Yet, qualitative information can
be understood by considering the different phase locking term. Indeed, the first phase-locking term (3.16b)
promotes the relative phase ϕ12 to be either 0 or π, depending the sign of the density-dependent effective
coupling (α12 + γ11|ψ1|2 + γ22|ψ2|2). The second phase-locking term, coupled via γ12 in (3.16b) favors
either ϕ12 = ±π/2 when γ12 > 0, or ϕ12 = kπ (with k ∈ Z) when γ12 < 0. As for the three-components
discussed above, the different phase-locking terms can compete with each other, and thus may lead to
frustration and to a discrete degeneracy of the ground state.

The relative phase is determined by the equation δV/δϕ12 = 0:(
α12 + γ11|ψ1|2 + γ22|ψ2|2

)
|ψ1||ψ2| sinϕ12 + γ12|ψ1|2|ψ2|2 sin 2ϕ12 = 0 .

This has different solutions in the different states:

s± : ϕ12 = π , s++ : ϕ12 = 0 , s+ is : ϕ12 = ± arccos

(
−α12 + γ11|ψ1|2 + γ22|ψ2|2

2γ12|ψ1||ψ2|

)
.

The ground state values of the densities are determined by the other equations δV
δ|ψa| = 0. The whole

nonlinear system has to be solve numerically.

For example, let’s consider the situation where the weighted Josephson couplings γaa = 0, and where
the biquadratic density term vanishes (β12 = 0). The dependence of the ground state, with respect to the
bilinear (α12) and biquadratic (γ12) Josephson coupling is displayed in Fig. 3.5. As for the three-component
model, the diagram shows three different phases: Two are time-reversal symmetric, and the time-reversal
symmetry is broken in the third phase. The time-reversal symmetric states are the s± state (the red region
with ϕ12 = π) and the s++ state (the blue regions with ϕ12 = 0).

The principal message here is that the time-reversal symmetry breaking s+is state, that occurs in three-
component models due to phase frustration, also have two-component counterpart. Here again, this is the
frustrated competition between different phase-locking terms, that can result in ground states with non-
trivial ground state relative phase. The principal difference is that in the case of three components, the
competition between bilinear Josephson couplings is sufficient to result in frustration. On the other hand,
the existence of higher order Josephson terms is necessary to obtain the frustration.

The transition between both time-reversal symmetric states can occur either via a direct crossover (directly
from (a) to (c)), or via the intermediate complex s+is state, that breaks the time-reversal symmetry (the
region (b) of Fig. 3.5, where ϕ12 6= 0, π). Discussions of the phase diagram of the two-component s+is

state with the relevant length scales, in terms of the parameters of the microscopic theory can be found in
[JG9], [JG5].
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Figure 3.5: Ground state phases of the two-components superconductor, as function of linear (α12) and
bilinear (γ12) Josephson couplings. The other parameters of the Ginzburg-Landau potential energy are
αaa = −1, βaa = 1, and β12 = γ11 = γ22 = 0. The top panel shows the ground state relative phase ϕ12.
Both phase-locking cannot always be simultaneously satisfied, so the system can be frustrated. There are
two phases for which the relative phase is trivial. In the regime (a) ϕ12 = π, while in the regime (c) ϕ12 = 0
In the intermediate regime (b), the ground state relative phase is non-trivial, and the ground state features
the discrete symmetry U(1) × Z2 rather than U(1). Similar phase diagram is found in [254, 159] where
the parameters of the Ginzburg-Landau theory are expressed in terms of the parameters of the underlying
microscopic theory.

Crossover region. The direct crossover from the s± state (a) to the s++ state (c) do not break the time-
reversal symmetry. Moreover, since it is not associated with a symmetry change, there are no divergent
length-scale here. Yet vortices feature interesting new properties in the vicinity of that crossover, and there
is a transition in the structure of vortex cores [JG8]. More precisely, in addition to the common singularity
of both condensates, the vortices can acquire a circular nodal line around the singular point. This nodal
line in one of the superconducting condensates results in a peculiar “moat"-like profile of the associated
condensate. In other words, these new solutions realize the s± state (ϕ12 = π) near the vortex core,
while the phase locking in the bulk is the s++ state (ϕ12 = 0). See the detailed discussion [JG8]. As further
discussed in [JG6], this implies that in an external field, there can be global transitions of the overall relative
phase.

Other superconducting states that break the time-reversal symmetry. As discussed earlier, the
s+is state is the simplest time-reversal symmetry breaking extension of the most abundant s-wave state.
There exist different superconducting states, that also break the time-reversal symmetry, as for example the
s+id, d+id, or p+ip states. All these models are described by potential similar to (3.16), and also feature
domain wall excitation. However, as they may break different point group symmetries, they have essentially
different kinetic terms. For example, see the different kinetic term in the two-component s+is state features
mixed gradients (Dψ∗1Dψ2 + c.c.) while in the s+id state, these are (Dxψ

∗
1Dxψ2 −Dyψ∗1Dyψ2 + c.c.).

As discussed later on, this can lead to different responses between these states [JG12]. Similarly, the chiral
p+ip state also have a different structure of the kinetic term.
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3.2 Topological defects in the time-reversal symmetry
breaking states

The topological properties of the superconducting states that break the time-reversal symmetry where
already partially addressed in Chapter 1. Indeed, in Section 1.3.3 features a heuristic description of domain-
walls, and how they can pin vortices. Below, we continue with a more quantitative description of the
properties of the additional topological defects in time-reversal symmetry breaking states. In particular, in
relation with the underlying three-component models.

3.2.1 Domain-walls

As explained in Section 1.3.3, domain-walls are the topological defects that are naturally associated with
the spontaneous breakdown of a discrete Z2 symmetry. Hence it is natural to expect that domain-walls
should form in superconducting states that break the time-reversal symmetry. Following the analysis in
[JG19] these domain walls can be formed by thermal quench, and be geometrically stabilized against
collapse.
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Figure 3.6: A domain-wall solution of a three-component superconductor that breaks the time-reversal
symmetry. The parameters of the Ginzburg-Landau free energy (3.1) are αa = 0, βa = 1, and
η12 = η13 = η23 = 1 and e = 0.1. The top panel displays the relative phases, and the bottom panel
shows the densities. The domains-wall interpolates between two inequivalent phase-locking. At x = 0, the
relative phases are ϕ12 = ϕ13 = π and ϕ23 = 0, thus the Josephson couplings term cosϕab are the most
unfavourable there.

The figure 3.6 shows a domain-wall solution of a three-component Ginzburg-Landau model (3.1), when the
time-reversal symmetry is broken. Here, the domain-wall interpolates between the two inequivalent ground
states, with different chiralities. These solutions are found numerically by minimizing the free energy
(3.1) with an appropriate initial guess. More precisely, the domain-walls interpolating between the distinct
ground states fall into disjoint homotopy classes, and thus no finite energy transformation can transform it
to a constant ground state (see e.g. the textbooks [1, 4, 5, 3, 8]). It follows that such an initial state is very
robust to the minimization of the energy. As discussed in more details in the Section B.2.3 of Appendix B,
the knowledge of the topological properties is also very useful for the numerical construction of topological
defects.
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It is clear from the top panel of Fig. 3.6 that the domain interpolates between the two ground states that are
complex conjugate of each other. At the domain-wall, here at x = 0, the relative phase are such that the
Josephson couplings terms |ψa||ψb| cosϕab there are energetically the most unfavourable. As a result, the
total density there is reduced, in order to reduce the energy cost.

Magnetic signature of the domain-walls: Unlike the domain-walls that appear for example in chiral
p-wave superconductors, the s+is domain-walls are not associated, in principle, with a non-zero magnetic
field. Indeed, the domain-walls in chiral p-wave superconductors, carry a uniform magnetic field due to
the orbital momentum of the Cooper pairs (see e.g. [147, 148, 149], see also the discussion in [255] and
detailed analysis in [256, 257]). The domain walls between the two s+is states, on the other hand, are
kinks in the relative phases. Inspection of the separation in charged and neutral modes (1.12) makes it
natural to expect that the associated gradients in the relative phases do not couple to the charged modes. It
is however possible, as demonstrated in [JG19], that domain-walls between s+is states carry a magnetic
field only locally, with no net flux through the sample. Indeed, in multicomponent superconductors the
relation between the magnetic field and the total current is more complicated than the usual London’s
magnetostatics relation. More precisely, the magnetic field can be expressed as [JG21], [JG19]:

Bk = εkij

{
∇i
(

Jj
e2%2

)
+

i

e%4

(
%2∇iΨ†∇jΨ + (Ψ†∇iΨ)(∇jΨ†Ψ)

)}
. (3.17)

Here J is the total Meissner current, ρ := (Ψ†Ψ)1/2 is the total density, and Ψ† = (ψ∗1 , ψ
∗
2 , ψ

∗
3) is scalar

multiplet which carries all the superconducting degrees of freedom. For details of the derivation, see
the related discussion in Section 1.1.3, and for generalization to anisotropic models see [258]. The first
term in (3.17) is the standard contribution to the magnetic field from the superconducting currents, while
the second term is the additional contribution due to the inter-component interactions. Importantly, this
second term depends only on the relative phases and relative densities of the condensates. This can be seen
more explicitly in the discussion about thermoelectric effects in Sec. 3.3, for example in equation (3.23).
As emphasized in [JG19], there can be situations where these additional contributions are only partially
screened by the standard London contribution, thus resulting in a non-zero signature of the magnetic
field.

Note that the relative phase gradients alone do not induce magnetic fields since they do not lead to charge
transfer in real space. However, a magnetic field do appear if, in addition there are relative density gradients
that are not collinear to the relative phase gradients. Such a local magnetic field is expected to be stronger
on domain-walls, since the relative phase gradients are stronger there.

In [JG19], it was demonstrated that such uncompensated contribution can occur if a domain-wall is attached
to a boundary with an important curvature, such as "bumps" in a non-convex geometry, or pinning centres.
The magnetic signatures of domain-walls, and the possibility to discriminate s+is domain-walls with s+id

domain walls, was discussed in [259]. As further discussed in Sec. 3.3, the possibility to observe this
additional contribution via thermoelectric properties was also discussed in [JG14] and [JG12] .

Formation of the domain-walls. The spontaneous breakdown of the time-reversal symmetry dictates
that the s+is state possess domain wall excitations. It is well known that going through a phase transition
allows uncorrelated regions to fall into different ground states [12, 13]. This is the Kibble-Zurek mechanism
for the formation of topological defects. For a review of the Kibble-Zurek mechanism in conventional
superconductors, see [260]. Here, while a superconductor goes through the transition to the time-reversal
symmetry broken state, domain walls are created as different regions fall into either of the Z2 states [119].
Similarly, domain-walls can form in the context of chiral p-wave superconductors [149]. Moreover, the
Kibble-Zurek mechanism relates the number of produced topological defects, with "speed" of the transition.
Heuristically, a rapid transition produces more topological defects.

However, in finite systems, domain-walls can be dynamically eliminated by continuously be moved out
of the domain. Nevertheless, as demonstrated in [JG19], they can be stabilized by pinning centres. They
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can also be stabilized in non-convex geometries, as discussed earlier in the Section 1.3.3. The geometric
stabilization, illustrated in Fig. 1.11, may help for the observability of domain-walls formed during a phase
transition to the time-reversal symmetry broken states.

Furthermore, as discussed shortly, the domain-walls interact non-trivially with vortices. In a nutshell,
to accommodate the unfavourable relative phase at the domain-wall, they tend to confine the vorticity.
Moreover the points where the domain walls are attached to the boundaries, are easy entry points for
vortices to enter the system. It follows that the magnetization process, when the zero field configuration
features a stabilized domain-wall, is different than when domain-walls are initially absent [JG19]. This
can be observed via the fact the first (fractional) vortex entry occurs at much lower fields than the bulk
Hc1. It can also be seen that the vortex matter distributes differently. Hence repeating measurements of the
magnetization process after rapid cooling (or other kind of quench) could easily identify the presence of
domain-walls, and consequently signal that the time-reversal symmetry is broken [JG19].

3.2.2 Chiral CP2 skyrmions

As mentioned above, the domain-walls interact non-trivially with vortices. It follows that, as demonstrated
in [JG26] and [JG21], domain-walls can combine with vortices to form new kind of topological defects
called chiral CP2 skyrmions. The existence of such states, associated with new non-trivial topological
properties, was already partially discussed in section 1.3.3. The underlying mechanisms of the interaction
between domain-walls and vortices are discussed here in more details.

As previously explained, and as can be seen from the Fig. 3.6, the relative phases at the domain-wall provide
the energetically most unfavourable Josephson couplings terms |ψa||ψb| cosϕab. Moreover the domain-wall
feature an additional energy cost, associated with a gradient in the relative phase ϕab in (1.12). It follows
that the total density is reduced to accommodate the extra energy cost. As a results, if a vortex is close
to a domain-wall, the depletion of the densities acts attractively to bind the vortex to the domain-wall.
Moreover, if an integer composite vortex is located on a domain wall, the Josephson terms tend to split it
into fractional vortices, thus allowing more favourable relative phase in between the split fractional vortices.
In the absence of domain-walls, fractional vortices are linearly confined by the Josephson interaction terms,
as discussed in the section 1.1.4 or in [JG21]. On the other hand, domain-walls tend to confine vortices and
to split them into fractional vortices that repel each other. This was discussed in details in [JG19].

Because of its line tension, as sketched earlier in Fig. 1.10, a closed domain-wall collapses to zero size. In
contrast, fractional vortices confined on a domain-wall repel each other. This opens the possibility for a
composite solution consisting in a closed domain-wall ‘decorated’ with vortices to be (meta)stable. Indeed,
for large enough penetration depth, the repulsion between the fractional vortices confined on the domain
wall can become strong enough to overcome the domain-wall’s tension. It thus results in a composite
topological defect made of n fractional vortices in each condensate |ψa|, distributed along a closed domain-
wall. Such a configuration, that carries n flux quanta, is stabilized by the competing forces, see [JG26]and
[JG21].

The figure 3.7 shows the details of a composite solution consisting in 6 fractional vortices in each of the
condensates ψa, distributed along a closed domain-wall. As explained earlier, this numerical solution
is obtained by minimizing the energy, from an initial configuration that winds 6 times in each of the
condensates (see details in Appendix B and Section B.2.3). As can be seen from the three panels showing
the densities |ψa|2, the cores of the different fractional vortices do not overlap, and thus Ψ(x) 6= 0

everywhere. It follows, as explained in details in Section 1.1.3, that these solutions are associated with
a non-vanishing CP2 topological invariant Q (1.17). The flux quantization implies that Q = 6. Hence the
solution displayed in Fig. 3.7, is called a chiral CP2 skyrmions 5 of the three-component model (3.1).

5The adjective chiral follows from that, far from the vortex cores, one of the ground state phase locking is realized (here
ϕ12 = −ϕ13 = 2π/3), while the other ground state relative phase is realized inside the topological defect. It follows that the
solution transforms non-trivially under the time-reversal operations. For detailed discussion, see [120].
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Figure 3.7: A Skyrmion solution of a three-component superconductor that breaks the time-reversal
symmetry. The parameters of the Ginzburg-Landau energy (3.1), are αaa = −1, βaa = 1 αab = 1 (with
a 6= b), and e = 0.25. The solution here carries six flux quanta and thus consists in 18 fractional vortices
(six for each component). The displayed quantities on the top row are the magnetic field and two relative
phases ϕ12 and ϕ13. The middle row shows the densities of the three components |ψa|2, while the bottom
row displays the associated super-currents. The flux quantization implies that these chiral skyrmions carry
a topological charge (1.17) Q(Ψ) = 6.

Depending on the details of the model, a chiral CP2 skyrmions carrying Q flux quanta, might be
energetically favoured compared to a set of Q single quanta vortices [120]. In such a case, the skyrmions
are expected to spontaneously form in an external field. By contrast, if the skymions are more energetic than
vortices they exist as robust metastable solution. Indeed unpinning the vortices from the domain-walls is
energetically costly and they are quite stable to perturbations [142, 120]. Metastable skyrmions can form in
field-cooled experiments via the Kibble-Zurek mechanism, when the transition to time-reversal symmetry
broken states Tc,Z2 occurs below the superconducting critical temperature Tc [JG19]. Moreover, in a finite
sample a skyrmion is surrounded by regular vortices, the later press the skyrmion, thus having a stabilizing
effect against its decay.

Because of the splitting of the fractional vortices, the magnetic flux is distributed along the domain wall.
This can be seen in the top left panel of the figure 3.7. The choice of the parameters of the Ginzburg-
Landau theory here are very symmetric, and thus flux is evenly distributed along the domain wall. When
the parameters are different, then the chiral skyrmions can feature very exotic signatures of the magnetic
field. This is discuss in details in [JG26] and [JG21]. Since they have very distinct signatures of the magnetic
field, they can be observed by scanning SQUID or Hall or magnetic force microscopy experiments.

Skyrmions can also exist in other time-reversal symmetry breaking states. As mentioned earlier,
there exist superconducting states with different symmetries, that also break the time-reversal symmetry. As
they also allow for domain-wall excitations, it is now rather natural to expect that they can allow for chiral
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skyrmions as well. As already discussed at the end of the Sec. 1.3.4, p+ip superconductors indeed support
stable skyrmionic excitations [JG23]. Some of these can be interpreted as vortices carrying two flux quanta
[JG13], and form lattices see [JG11] and [JG3]. Skyrmions were also shown to have an important role in
the magnetization process of mesoscopic samples of p+ip superconductors [261, 262, 263]. For similar a
discussion of skyrmions in the s+id state, see [264].

3.3 Thermoelectric properties of superconductors that break
the time-reversal symmetry

js

jn

j = jn + js = 0

Figure 3.8: Schematic illustration of the
Ginzburg mechanism for the thermoelectric effect:
A temperature gradient results in a charge transfer
by thermal quasiparticles, that is compensated by the
counterflow of the superconducting current.

As discussed earlier, the magnetostatic properties
of multi-component superconductors feature an
additional contribution due to the intercomponent
interactions. These extra contributions can be
excited by applying thermal gradients to a multi-
component superconductor, as demonstrated in
[JG14] and [JG12].

The thermoelectric effects in superconductors,
were discussed by Ginzburg in the mid 1940’s
[265, 266, 267, 268]. These originate in the
charge transfer by thermal quasiparticles [269],
which is compensated by the counterflow of the
superconducting current. Namely, a temperature
gradient applied to a superconductor induces an
electric current Jn = bn∇T , where bn is the
thermoelectric coefficient. This current is carried by quasiparticles that exist at finite temperatures. In
superconductors, the total current also features the contribution from the superconducting electrons Js. It
follows that, in contrast to a normal metal, the total current a superconductor vanishes in order to obey the
Meissner effect, the thermoelectric current is cancelled by the superconducting current: J = Js + Jn = 0.
As a result, the counterflow of the superconducting current is Js = −bn∇T . This is sketched in
Fig. 3.8. In the recent years, there was a revival of the interest about this thermoelectric effect, see
e.g. [270, 271, 272, 273, 274, 275].

Remark that as it is determined by the dissipative normal current, a thermally induced supercurrent is
irreversible, since Js changes its sign under the time-reversal transformation while bn and ∇T remain
invariant. As discussed below, since multicomponent superconductors feature additional contributions due
to the inter-component interaction, the thermoelectric effect can be substantially altered. In particular, in
superconductors that break the time-reversal symmetry [JG14].

3.3.1 Current relations in multicomponent superconductors

It was emphasized, in Sec. 1.1.3 and in Sec. 3.2.1, that the magnetic field gets an additional contribution
to the Meissner currents (see e.g. Eq.(3.17)). This extra contribution, which is due to the inter-
component interactions, depends on the gradients of relative phases and relative densities. Similarly, the
superconducting current features an extra contribution due to relative phase gradients. This can be seen
by rewriting the current in terms of the total phase and of the relative phases. For an arbitrary number of
components N , the individual phases can be written as

ϕa = ϕΣ +
1

N

∑
b6=a

ϕab , where ϕΣ =
1

N

N∑
a=1

ϕa , and ϕab := ϕb − ϕa . (3.18)
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The total current J = e
∑
a |ψa|2(∇ϕa + eA) thus reads as

J/e = %2
(
∇ϕΣ + eA

)
− 1

N

∑
a

∑
b 6=a

|ψa|2∇ϕab (3.19a)

= %2
(
∇ϕΣ + eA

)
+

1

N

∑
a

∑
b>a

(
|ψb|2 − |ψa|2

)
∇ϕab , (3.19b)

where again %2 =
∑
a |ψa|2. Finally, introducing the notation QΣ := ∇ϕΣ − eA, the current reads as

J = e%2QΣ +
e

N

∑
a

∑
b>a

(
|ψb|2 − |ψa|2

)
∇ϕab . (3.20)

The first term here is a usual Meissner current while the second part describes the charge transfer by the
counter-currents of the different superconducting condensates.

3.3.2 Thermoelectric relations in multicomponent superconductors

The key idea behind the multicomponent thermoelectric effect is that, a since the relative phases are
generically temperature-dependent ϕab = ϕab(T ), a temperature bias generates a relative phase gradient
between the different components. Assuming that temperature gradients are small, so that the order
parameter is determined by the local temperature, the phase relation (3.18) becomes

ϕa = ϕΣ + Γa(T )∇T , where Γa(T ) =
1

N

∑
b 6=a

dϕab(T )

dT
, (3.21)

and again ϕΣ = 1
N

∑N
a=1 ϕa. The coefficients Γa(T ) are called the thermophase coefficients. It follows

that the current (3.20) can be written as

J = e%2
(
QΣ + Γ(T )∇T

)
, where Γ(T ) =

∑
a

|ψa(T )|2

N%(T )2
Γa(T ) . (3.22)

j2

j3

j = j2 + j3

Figure 3.9: A superconducting
sample subject to thermal gradients. The thermophase
effect appears because of the temperature-dependent
intercomponent relative phase ϕab = ϕab(T ). In the
case of a superconducting state that breaks the time-
reversal symmetry, the total thermally induced current
J will have opposite directions for different TRSB
states.

Note that the thermophase coefficients are odd
under the time-reversal transformation: T (Γa) =

−Γa. This implies that, in a superconductor
that breaks the time-reversal symmetry, the
thermophase coefficients are opposite for the
different s+is states. Thus the thermally induced
superconducting currents are sensitive to the
time-reversal transformation. Hence, given a
temperature bias, the currents flow in opposite
directions for the different time-reversal symmetry
broken states [JG14]. This is sketched in
Fig. 3.9.

As demonstrated in [JG14], the thermophase
coefficients can be large in the vicinity of the
time-reversal symmetry breaking transition TZ2 .
Moreover, the discussed thermoelectric effect
generically dominates at low temperatures in the
s+is state. More precisely the new contribution
is important in the vicinity of the time-reversal
symmetry breaking phase transition TZ2 , which can occur at much lower temperature than Tc. There, the
usual contribution to the Ginzburg mechanism due to the thermal quasiparticles is typically extinct.
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3.3.3 Magnetic and electric fields induced due to thermal gradients

Similarly to the total current (3.20), the magnetic field B features additional contributions as already
demonstrated in (3.17) (see also the corresponding discussion in Sec. 1.1.3). Using the notations of (3.19)
and (3.20), the magnetic field reads as

B = ∇×
(
J

e2%2

)
−∇×∇ϕΣ +

∑
a

∑
b>a

∇×
(
|ψa|2 − |ψb|2

Ne%2
∇ϕab

)
. (3.23)

Here again, the first term is the contribution of the Meissner currents and the second term is the contribution
of the total vorticity. Finally, the most interesting new contribution is the last term.

In the absence of phase windings, then the equation (3.23) can further be simplified. Indeed, when none of
the phase has a singularity then all ∇×∇ϕ ≡ 0, and the magnetic field reads as

B = ∇×
(
J

e2%2

)
+
∑
a

∑
b>a

∇
(
|ψa|2 − |ψb|2

Ne%2

)
×∇ϕab if

∮
∇ϕa · d` = 0 ∀a . (3.24)

It is clear from there, that when the relative density gradients are collinear with the relative phase gradients,
then there are no new contributions to the magnetic field. The most interesting situation is when they
are perpendicular. The additional contribution can be screened only partially and thus leads to non-trivial
signatures of the magnetic field (3.24). As discussed below, there are various situations to take advantage
of this, to highlight new properties of the s+is state.

As already repeated on various occasions the time-reversal symmetry breaking s+is state feature domain
wall excitations. It is known that such domain walls do not carry magnetic field at constant temperature
[119]. Clearly, the relative phase gradients, are the most important, where the domain is located. So
intuitively this is a good starting point for searching the extra contribution to the magnetic field of (3.24).
One way to impose relative density variations is to apply a temperature gradient along the domain wall. For
example, the temperature dependence of the coefficients of the quadratic term of the Ginzburg-Landau
theory can be modelled as αaa ∝ [T (x)/Tc,a − 1] (Tc,a being a characteristic constant). There, the
thermophase coefficients Γ(T ) have opposite signs in the s+ is/s− is domains. Therefore, in the vicinity
of the interface between these, there should be a net superconducting current and a thermally induced
magnetic fieldB (3.24). Such a local modification of the parameters was demonstrated to be responsible for
the existence of spontaneous magnetic field in different models time-reversal symmetry breaking states, in
various situations. These include the responses to linear thermal gradients [JG14] and [JG1], hotspot created
by a laser pulse [JG12], or [276], but also the effect of impurities [216, 277], and other inhomogeneous
arrays [JG5], [278].

Multicomponent superconductors are characterized by additional intercomponent contributions, not only to
the magnetic field, but also to the electric field E = −∂tA−∇A0. This can be seen by similar procedure
that when rewritingB, or by combining Eq.(3.24) to Faraday’s law. The electric field thus reads as

E = ∂t

(
J

e2%2

)
+
∑
a

∑
b>a

∂t

(
|ψb|2 − |ψa|2

Ne%2
∇ϕab

)
−∇Φ where Φ = A0 − ∂tϕΣ . (3.25)

Here, the gauge invariant potential field Φ is determined by the sum of chemical potential differences
between the quasiparticles µq = eA0 and each of the condensates µ(a)

p = −∂tϕa/N . Each of the
partial potential differences Φ(a) = [µq − µ

(a)
p ]/e is proportional to charge imbalance in the a-th band

Q∗a = 2e2ν0Φ(a) where ν0 is the density of states [279, 280, 281].

Thus, as for the magnetic field, the electric field feature a contribution from the intercomponent
interactions. As discussed in details in [JG12], this additional contribution can be used to probe the
properties of superconducting states that break the time-reversal symmetry. In particular by measuring the
nonequilibrium electric responses generated by nonstationary heating when the local temperature evolves,
recovering from the initial hot spot created, e.g. , by a laser pulse [282, 246, 276]. More precisely, in a
multicomponent system, a charge imbalance can be generated by the spatial and temporal variations of
the intercomponent relative phase. This originates in a nonequilibrium redistribution of the Cooper pairs
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between the different components, and thus creates an imbalance of partial chargeQ∗a. The generated charge
imbalance can be measured using the normal metal and superconducting potential probes [283, 284].

Similarly to the spontaneous magnetic field, the induced charge imbalances are sensitive to the broken
time-reversal symmetry. Indeed, for the same heating protocol, the degenerate s+ is and s− is states
produce opposite electric fields and charge imbalances. It is thus possible to discriminate between the
usual thermoelectric response occurring in conventional superconductors, and the unconventional response
that signals states that break the time-reversal symmetry. Moreover, the responses are also sensitive to the
pairing symmetry, and can for example differentiate the s+is from the s+id state [JG12].





Overview and Perspectives

Overview

This report tried to convey the message that multicomponent models, and in particular multicomponent
superconductors, host a very rich physics that is absent in their single-component counterparts.

As emphasized in the introduction, the topological excitations are ubiquitous in physics, as they appear
for example in solid state physics, condensed and soft matter systems, high-energy physics, and more.
Depending on the associated topological properties, these kind of objects have different structure. They can
be particle-like, point-like, "wall"-like, or line-like. In the later case, the topological defects are termed
vortices, and they have been extensively studied in the context of superfluidity and superconductivity.
Vortices can determine to a large extent the thermodynamic, electric and magnetic properties of the
considered materials. The choice of the narrative in the introduction tries to emphasize that vortices attracted
a lot of attention for a long time, and that some old concepts are still relevant in modern physics.

Because of the larger number of degrees of freedom, the multicomponent models of superconductivity
allow for a rich spectrum of topological defects. The first chapter was essentially dedicated to formalize
the topological properties of the multicomponent superconductors. It was further discussed various
contributions of the author, in the construction of new kind of topological defects in different models
of multicomponent superconductivity. These new topological defects may be used to identify properties
of the underlying models. Moreover, it was emphasized in the second chapter, that multicomponent
superconductors not only host new kind of topological excitations, but also that they can interact differently
than the usual vortices. This new interaction between the vortices is essentially different from that of type-
1 or type-2 single-component superconductors. It follows that vortices can form aggregates, and this have
important impact on the various observable physical processes. Finally, there can also exist superconducting
states that break the time-reversal symmetry, because of the competition between different pairing channels.
These states are associated with new effects that can be measured, as discussed in the last chapter.

It is important to stress again that all the author’s contributions rely on an intensive use of numerical
techniques. The numerical aspects are quite often disregarded, in favour of the discussions of the physical
properties. It seemed important to take the opportunity of this report, to present in more details these
numerical aspects.

All the results discussed in this report seek to emphasize the richness of the physics of multicomponent
system. This is just the tip of the iceberg, and many more can be said. Despite the physics of topological
defects is quite an old story now, there is still a lot to be discovered.

87



88 Chapter 3. Superconducting states that Break the Time-Reversal Symmetry

Perspectives

As it was emphasized in the report, there is a growing number of known multiband/multicomponent
superconducting materials. Hence this is an always evolving playground to look for new relevant theories,
and to investigate their topological properties. So in some sense, there are always unknown projects that
may be worth investigating because of their relevance to new materials. In any case, many aspects of
models of multicomponent superconductors are probably still to be discovered. Below, we can present
three promising directions in relations with the aspects discussed in the report.

Project 1: Anomalous superconducting states that break the time-reversal symmetry. Some of the
new properties of the s+is state, which spontaneously breaks the time-reversal symmetry, were reported in
details in this report. These include, among other things, the existence of collective modes which includes
massless [213] and mixed phase-density [171, 238, 215, 239] excitations, unconventional mechanism of
vortex viscosity [240], formation of vortex clusters [171], unconventional contribution to the thermoelectric
effect [245, 246]. The s+is state is also predicted to host topological excitations such as skyrmions and
domain walls [142, 120, 119].

Recently, the specific heat measurement in hole-doped Ba1−xKxFe2As2, at doping x ≈ 0.8 showed an
intriguing behaviour [285]. Namely, the spontaneous Nernst effect and muon spin rotation experiments
indicates a state in which the Cooper pairs are incoherent, but which spontaneously breaks time-reversal
symmetry. When a multicomponent superconductors breaks the time-reversal symmetry, there can be
multiple phase transitions. At the level of the mean-field theory, the superconducting phase transition Tc
always occurs at a temperature equal to or higher than the transition temperature of the broken time-reversal
symmetry TZ2 . The recent results show an opposite behaviour where TZ2 > Tc [285]. All the discussion
about the role of the fluctuations, and the implications are beyond the discussions here. Yet a few remarks
on the structure of the model opens interesting perspectives.

As discussed in this report, multi-component superconductor feature an additional contribution to the
magnetic field because of the inter-component interactions (3.17). Then, the Ginzburg-Landau free energy
expressed in terms of charged and neutral modes (1.12) can further be written as

F =
1

2

[
εkij

{
∇i
(

Jj
e2%2

)
+

i

e%4
Zij
}]2

+
J2

2e2%2
+ ∇Ψ† ·∇Ψ +

1

4%2

(
Ψ†∇Ψ−∇Ψ†Ψ

)2
+ V (Ψ) ,

where Zij = %2∇iΨ
†∇jΨ + (Ψ†∇iΨ)(∇jΨ

†Ψ) . (3.26)

In the anomalous state, the superconducting part of the model is disordered, and the part corresponding
to London screening is absent, that is J = 0. Then an effective model for the new state, can be derived
from (3.26), with requiring that the superconducting current vanish J = 0. This amount to retain only the
degrees of freedom that are related to relative phases. The corresponding model thus reads as [285]

F =
1

2

[
iεkij
e%4
Zij
]2

+ ∇Ψ† ·∇Ψ +
1

4%2

(
Ψ†∇Ψ−∇Ψ†Ψ

)2
+ V (Ψ) . (3.27)

As discussed in details in [285], the effective theory for the anomalous normal state, which breaks the
time-reversal symmetry, allows for domain walls excitations. These feature magnetic signatures, as those
discussed in the main body in the Chapter 3.

This new effective model offers lot of new opportunity to observe unusual properties of multi-component
models in an anomalous state. That is, there is an opportunity to observe some of the topological properties
of multi-component superconductors, above the critical temperature. Of course here, the model (3.27) is
obtained heuristically, and a careful derivation is required to properly handle how the different terms should
be renormalized, when the superconducting part of the model is disordered.

Project 2: Other superconducting states that break the time-reversal symmetry. Not only the
number of known multiband/multicomponent superconductors is growing, but also of those that break the
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time-reversal symmetry [286]. It was emphasized in this report that the superconducting states which
spontaneously break the time-reversal symmetry feature new properties. Most of the focus was on the
s+is state, which is highly relevant for iron based superconductors. Another very investigated time-
reversal symmetry breaking state, is the p+ip in relations with spin-triplet superconducting models. There
are various other superconducting states, which break the time-reversal symmetry, but with other pairing
symmetries, e.g. s+id, d+id. Also for example, it was recently argued that the pairing in Sr2RuO4 could
be either d+id or d+ig [287, 288]. These states that are different from p+ip or s+is, are much less studied,
and in particular their topological properties.

Since they break the time-reversal symmetry, all these states should feature domain-wall excitations as well.
However, the difference is that they break different point group symmetries. At the level of the Ginzburg-
Landau model, this manifests by having different, more rich structure of the kinetic terms in the form of
anisotropies and mixed gradients. Like for example (Dxψ

∗
1Dxψ2 −Dyψ∗1Dyψ2 + c.c.) for the s+id state

which breaks the C4 symmetry. Or for example the d+id state, which violates both parity and time-reversal
symmetries [208, 235] .

The peculiarities of these other pairing symmetries, have been much less studied. For example because
of their different structures, they should also manifest thermoelectric responses qualitatively different from
those discussed in the Chapter 3. Moreover, the structure of the topological defect should also definitely be
sensitive to that.

Project 3: Knots and vortons in the electroweak theory. The idea here, is to look for topological
defects in a theory different than that describing multi-component superconductivity. More precisely, the
goal is to investigate the possibility that the Weinberg-Salam theory of the electroweak interactions could
host topological defect with a knotted structure.

As emphasized in the introduction, the idea of knotted vortices is an old story that received a new breath
after knotted topological defects were constructed in the Skyrme-Faddeev model [38]. Since that, there was
a lot of activity in tracking similar object in various physical systems as for example in spinor Bose-Einstein
condensates [289], optical beams [290], nematic colloids [291], magnetic materials [292, 293], and more;
for a review on knots, see [43].

Vortons are objects that, although formally different, are quite alike to knotted vortices. These are closed
loops of superconducting vortices [32], that are expected to be stabilized against contraction by the
centrifugal force produced by the current [294]. They are expected to occur in a model first introduced
by Witten [32], which a two-component model but with two abelian gauge fields (instead of one for
superconductors). The explicit construction of vorton, and the demonstration of their potential stability
is however rather recent [43, 295, 296, 297].

The bosonic sector of the Weinberg-Salam theory of the electroweak interactions, can be seen, to some
extent, as a multi-component theory but more involved than those discussed in this report. Indeed, it is a
theory of a doublet of complex scalars (the Higgs field). But the gauge sector is more complicated, as also
contains a non-Abelian SU(2) gauge field, in addition to the U(1) gauge field. It is usually assumed that
the electroweak theory admits no solitons, however there are indications that it might host some kind of
vortons, or knotted vortices. Not only the theory allows for vortices, but also in some limiting cases, it can
be very similar to the model of Witten where vortons exist.

Strictly speaking the electroweak theory is different than the models of multicomponent superconductivity
models discussed in the main body of the report. Yet since they share some properties. One could
imagine that this theory supports knotted vortex solutions similar to those obtained in the framework of
two-component superconductors with dissipationless Andreev-Bashkin drag interaction [JG4]. If such
electroweak vortons or knotted vortices exist, this could be of scientific value.
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Appendix A

Single-component
Ginzburg-Landau theory

The main body of this report presents results regarding the properties of the theories of superconductivity
featuring multiple order parameters or order parameters with multiple components. It might be useful, for
a better understanding of the peculiarities of multicomponent theories, to review the essential properties of
of the conventional, single-component, models of superconductivity. Covering all the microscopic aspects
of conventional superconductivity is well beyond the scope of the present discussions, and these will not
be discussed here. Both microscopic, and mean field aspects of single-component superconductivity are
extensively discussed in a great number of classical textbooks, see e.g. [298, 73, 163, 299, 300, 301, 302,
303, 304, 305].

Hence the present background review is restricted only to the classical mean-field aspects of
superconductivity. More precisely, this Appendix presents the general theoretical framework, and the
textbook properties of the single-component Ginzburg-Landau theory.

The Ginzburg-Landau theory [150] was introduced in 1950, to account for the properties of the
superconducting state. This phenomenological theory is based on the Landau theory of theh second order
phase transitions, where the (macroscopic) order parameter ψ = |ψ|eiϕ, is a complex scalar field. The
order parameter ψ is often equivalently termed superconducting condensate. The microscopic Bardeen-
Cooper-Schrieffer theory of superconductivity [70] was derived later in 1957. Shortly after, in 1959 Gor’kov
demonstrated that the Ginzburg-Landau theory can be derived as classical approximation of the microscopic
theory [72], and the modulus of the order parameters ψ is actually the density of Cooper pairs: ns = |ψ|2.
Strictly speaking, the Ginzburg-Landau theory is valid only in a close vicinity of the critical temperature
Tc where the superconductivity is destroyed, and it assumes that ψ is small and is slowly varying (small
gradients).

Remark that besides its fundamental applications in solid state physics, the Ginzburg-Landau theory
attracted a lot of attention in the mathematical community from the 1990’s, after the report of the well
posedness of the problem [77, 306, 78, 307]. Since these earlier works, there have been a big activity in
understanding the mathematical properties of that problem, see for example [79]. In parallel there also have
been continuous efforts in the physics community to have optimal formulation for numerical solvers, see
for example [308, 309].

In the vicinity of the critical temperature, the superconducting state is governed by the Ginzburg-Landau
free energy, whose density reads as [150] (see textbook discussions, e.g., [73, 163]):

F = α|ψ|2 +
β

2
|ψ|4 +

1

2m?

∣∣∣∣(~
i
∇− e?

c
A

)
ψ

∣∣∣∣2 +
B2

8π
. (A.1)
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Here e? and m? are respectively the effective charge and mass of the Cooper pairs, ~ is the reduced Planck’s
constant and c is the speed of light. For a consistency with the text of the main body of the report, it is
convenient to consider the Ginzburg-Landau free energy F =

∫
d3xF , whose density (in conveniently

chosen dimensionless units) reads as

F =
B2

2
+

1

2
|(∇ + ieA)ψ|2 + α|ψ|2 +

β

2
|ψ|4 . (A.2)

Since ψ is a charged scalar field, it is coupled to A, the vector potential of the magnetic field B = ∇×A,
via the gauge derivative D ≡ (∇ + ieA). e is a coupling constant sometimes called the gauge coupling
constant. For the energy to be bounded from below, the parameter β must be positive, while α is either
positive or negative. In the presence of an external applied field He, this is the Gibbs free energy,

G = F −
∫
B ·He , (A.3)

that should be considered instead of the Helmholtz free energy F . The Ginzburg-Landau theory (A.2)
is thus as classical field theory, where the physical degrees of freedom are a complex scalar field ψ(x)

standing for the superconducting condensate and the gauge field A(x) (the vector potential), a real vector
field.

The functional variation of the Ginzburg-Landau functional (A.2) with respect to ψ∗ gives the Ginzburg-
Landau equation

DDψ = 2
(
α+ β|ψ|2

)
ψ with D ≡ (∇ + ieA) , (A.4)

while the variations with respect to the vector potential A yield the Ampère-Maxwell equation

∇×B + J = 0 , with J = eIm(ψ∗Dψ) = e|ψ|2(∇ϕ+ eA) . (A.5)

The right-hand side of the Ampère-Maxwell equation, J , is termed superconducting current or
supercurrent. The Ginzburg-Landau equation (A.4) together with the Ampère-Maxwell equation (A.5)
are the Euler-Lagrange equations of motion of the Ginzburg-Landau theory (A.2).

Both the superconducting condensate ψ and the gauge field satisfy the boundary conditions that represent
the physical properties of the system. The conditions on a Superconductor/Insulator interface ∂ΩSI are

Dψ · n = 0 , (∇×A)× n = He × n , (A.6)

while the Superconductor/Normal metal interface ∂ΩSN is described by

Dψ · n = iγψ , (∇×A)× n = He × n . (A.7)

The real parameter γ depends on the details of the materials. Here, n is the outgoing normal vector to the
interface. In all generality, the overall boundary ∂Ω is thus defined as ∂Ω = ∂ΩSI ∪ ∂ΩSN .

Gauge invariance

The theory is well known to be invariant under the local transformations generated by the elements having
value in the Lie algebra of the U(1) gauge group (see, e.g. [73, 163]). The spontaneous breakdown of that
symmetry is responsible for the longitudinal component of the photon to become massive and then being
effectively a massive vector (Proca) field. In other words, in the Meissner state the gauge field is massive
with an exponential decay to due the screening currents. The U(1) transformations Gχ that are symmetries
of the free energy (A.2), of the Ginzburg-Landau (A.4) and of the Ampère-Maxwell (A.5) equations are

Gχ : (ψ,A) 7−→
(
ψeiχ,A− 1

e
∇χ

)
, (A.8)

for any (sufficiently smooth) real-valued function χ := χ(t,x). The observable physical quantities
such as B, J , |ψ|, etc are invariant under these gauge transformations (A.8). Obviously any choice
of the gauge function χ(t,x) that preserves the boundary behaviour (A.6) and (A.7) is physically valid,
since it does not affect the physical observables. However, it is important to note that different choices
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of gauge do lead to different mathematical structures of the system. This is well known that some
structures are easier to analyse, for example numerically, than some others (see detailed discussions in,
e.g. , [78, 306, 310, 311, 312, 313].

Dynamics

The Ginzburg-Landau energy describes the magnetostatic properties of superconductors. Their dynamics
is described by the time-dependent Ginzburg-Landau equations [314, 315, 316]. In the dimensionful units
of Eq.(A.1), the time-dependent Ginzburg-Landau equations reads as

~2

2m?D
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∂t +

ie?
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At

)
ψ +

1

2m?
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i
∇− e?

c
A

)2

ψ +
(
α+ β|ψ|2

)
ψ = 0 , (A.9a)

∇×∇×A = −4πσ

c

(
1

c
∂tA+ ∇At

)
+

4π

c
Js + ∇×He . (A.9b)

Here, σ is the normal state conductivity and D is a diffusion constant. At is the electrostatic potential, He

stands for an externally applied field and Js is the supercurrent that reads as:

Js =
e?~
m?

(
Im (ψ∗∇ψ)− e?

~c
|ψ|2A

)
. (A.10)

Up to the 4π
c factor, the left hand side of Eq.(A.9b) is the total current being the superposition of

superconducting and normal currents: J = Jn + Js. Indeed the normal current satisfies Ohm’s law
(Jn = σE), and according to Faraday’s law the electric field isE = − 1

c∂tA−∇At. As a result Eq.(A.9b),
in absence of an external field He, is the Ampère’s law: ∇×B = 4π

c J .

It is important to emphasize the dissipative nature of the time-dependent Ginzburg-Landau equations.
Indeed, the time-dependent equation (A.9), can be understood as a gradient flow of the free energy (A.1).
This implies in particular that the time evolutions leads to stationary solutions, that are (local) minima of
the free energy (A.9). For rigorous demonstration of that statement, see [77, 306, 78, 307, 79].

The next discussions are only about the stationary properties of the Ginzburg-Landau theory. Hence it is
convenient to re-introduce the dimensionless units of Eq. (A.2).

Relativistic version: the Abelian-Higgs Model

The Ginzburg-Landau model is very similar to the Abelian-Higgs Model that has been extensively studied
in the framework of high-energy physics. Indeed, this is the theory of a complex scalar field charged under
the U(1) gauge group of electromagnetism. In that framework, the scalar field ψ is the Higgs field, and
the gauge field is the four-potential of the electromagnetic field (At,A) . The energy in the Abelian-Higgs
model, which reads as

E =

∫
d4x

{
1

2
(E2 +B2) + |Dtψ|2 + |Dψ|2 +

β

8
(|ψ|2 − 1)2

}
, (A.11)

is very similar to that of the Ginzburg-Landau theory. Again, the gauge derivative is Dµψ = (∂µ+ ieAµ)ψ.
The constant β is the self-interacting constant of the scalar field, and it is similar to the Ginzburg-Landau
parameter κ introduced below.

The close similarity between both models, implies that they share the same static solutions. However, it is
important to stress that the dynamics is very different. Indeed, while the dynamics in the Abelian-Higgs
model is relativistic, the dynamics of superconductors is determined by the time-dependent Ginzburg-
Landau equations (A.9). As discussed above, the latter is a dissipative equation, while the dynamics of
the Abelian-Higgs model is “wave-like".
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A.1 Ground state, Length-scales and the Meissner effect

Superconducting ground state

The ground state is, by definition, the state which gives the minimal value of the energy. Since the magnetic
and kinetic energy contributions are quadratic, the minimum of the energy satisfies{

∇×A = 0

(∇ + ieA)ψ = 0
whose general solutions are

{
A = ∇χ(x)

ψ = const.× eieχ(x) , (A.12)

for an arbitrary regular function χ(x). The solutions (A.12) are easily identified with the gauge
transformations (A.8). It is thus straightforward to choose the simplest solution A = 0 and ψ = constant,
that simultaneously minimize both magnetic and kinetic contributions in the free energy. It follows that the
minimal energy configuration corresponds to the minimum of the potential energy

V (ψ) = α|ψ|2 +
β

2
|ψ|4 . (A.13)

Depending on the sign of the parameter α, there are two possible minima

argminV (ψ) :=

{
|ψ| = 0 , if α ≥ 0

|ψ| =
√
−α
β , if α < 0

and minV (ψ) =

{
0 , if α ≥ 0
−α2

β , if α < 0
. (A.14)

Note that the extremality of V only imposes value of the modulus of ψ, whereas its phase can assume any
value. Thus the ground state is degenerate, defined only up to the pure gauge transformations (A.8). The
two different minima (A.14) termed the normal state (where ψ = 0) and the superconducting ground state
ψ0 :=

√
−α/β.

T < Tc

T > Tc

ψ

V (|ψ|2)

Figure A.1: The potential energy
depending on the sign
of the parameter α. Above Tc, α > 0

and there is a unique minimum, while
below Tc, α < 0 and the potential
looks like the ‘mexican hat’.

In a first approximation, the parameter α is the only temperature
dependent parameter

α(T ) = α0

(
T

Tc
− 1

)
. (A.15)

This implies that above the critical temperature Tc, the parameter
α > 0 and thus the normal state is energetically favoured. On
the other hand, below the critical temperature α < 0, and the
superconducting state is preferred. These two different regimes are
qualitatively displayed in Fig. A.1.

Finally, the condensation energy, is defined as the energy difference
between the normal state ψ = 0 and the superconducting state ψ0

fn = F(ψ = 0)−F(ψ0) =
α2

2β
=
H2
c

2
(A.16)

The value of magnetic field Hc is called the thermodynamical
critical magnetic field. While the external magnetic field penetrates
without change, into the volume occupied by the normal state, it is expelled from the superconducting
state. Thus, free energy of the normal state in a magnetic field H > Hct is lower than that of the uniform
superconducting state, with expelled field. In the simplest case to be discussed below, Hct denotes the value
of the external fields which destroys the superconductivity.

Length-scales in the Ginzburg-Landau theory

Borrowing the terminology of classical field theories, the length-scales are defined as the inverses masses
of the mass spectrum of the theory. The mass spectrum of the theory is defined by the fluctuations of the
fields around their ground state values. Since it is always possible to find a gauge where the ground state
is (ψ,A)GS = (ψ0, 0), the perturbative expansion around the ground state, in terms of the infinitesimal
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parameter ε reads as

ψ = (ψ0 + εf) exp

{
iε
φ

ψ0

}
and A = εa . (A.17)

Here, f ≡ f(x) is the density amplitude, φ ≡ φ(x) is the normalized phase amplitude, and a ≡ a(x) are
the gauge field fluctuations. The fluctuations are thus characterized by a system of Klein-Gordon equations
for the two condensate fluctuations (one for the density plus one phase), and one Proca equation for the
gauge field fluctuations. Choosing the gauge ∇·a = 0, the system reads as

1

2
ΥT
(
−∇2 +M2

)
Υ , where Υ = (f, φ,a)T . (A.18)

HereM2 is the squared mass matrix that is straightforwardly obtained by retaining the quadratic order of
the infinitesimal parameter ε, after introducing the expansion (A.17) into the free energy (A.2). The squared
mass matrix can thus be read from

ΥTM2Υ = 2(α+ 3βψ2
0)f2 + e2ψ2

0a
2 . (A.19)

Note that the fluctuation operator (A.18) and (A.19) can also be obtained by linearizing the equations of
motion (A.4) and (A.5), in the expansion parameter ε. The eigenspectrum of the matrixM2 determines the
squared masses of the excitations and the corresponding normal modes. The inverse of each mass defines
a characteristic length-scale of the theory. Overall, since the equations that define the mass spectrum of the
fluctuations are

∇2f = −4αf , ∇2φ = 0 , and ∇2a = e2ψ2
0a , (A.20)

the masses are
m|ψ| = 2

√
−α , mϕ = 0 , and mA = eψ0 . (A.21)

Here mϕ = 0 is the Goldstone boson that gives mass to the longitudinal component of the gauge field [45].
Having obtained the mass spectrum (A.21), the relevant length-scales that characterize the superconducting
ground state of the single-component Ginzburg-Landau model are

ξ =

√
2

m|ψ|
=

1√
−2α

, and λ =
1

mA
=

1

eψ0
, (A.22)

where ξ is coherence length and λ is the penetration depth. The factor
√

2 factor in the definition of
coherence length is a matter of convention. This convention is that where the non-interacting regime (the
Bogomol’nyi regime [153]), is κ = 1/

√
2 for single-component superconductors [163].

The Ginzburg-Landau functional depends on three parameters, α, β and e. These determines the two
fundamental length-scales: The coherence length ξ of the superconducting condensate and the penetration
depth λ of the magnetic field. Actually the whole theory depends on a unique parameter κ, the Ginzburg-
Landau parameter, defined as the ratio of the two length-scales:

κ =
λ

ξ
=

√
2β

e
. (A.23)

Alternative derivation of the mass spectrum: The analysis above contains unphysical degrees of
freedom. Indeed, as the gauge is not fixed there, the massless Goldstone mode appears. It is possible to find
directly the physical mass spectrum of the theory, by rewriting the free energy (A.2), only in terms of the
density and of the magnetic field. Given the definition of the supercurrent (A.5), the gradient term in the
free energy can be written as

|Dψ|2 = (∇|ψ|)2 + |ψ|2(∇ϕ+ eA)2 = (∇|ψ|)2 +
J2

e2|ψ2|
. (A.24)
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Hence, using the relation (A.24) together with the Ampère-Maxwell equation (A.5), the free energy (A.2)
can be rewritten as

F =
1

2

(
J2

e2|ψ2|
+B2

)
+

1

2
(∇|ψ|)2 + α|ψ|2 +

β

2
|ψ|4 (A.25a)

=
1

2

(
(∇×B)2

e2|ψ2|
+B2

)
+

1

2
(∇|ψ|)2 + α|ψ|2 +

β

2
|ψ|4 . (A.25b)

Expressing the free energy in such a way has the advantage to stress the dependence on the gauge invariant
physical degrees of freedom explicitly. Returning to the investigation of the mass spectrum, the perturbative
expansion around the ground state, in terms of the infinitesinal parameter ε reads as

|ψ| = ψ0 + εf and B = εeψ0b . (A.26)

Here, f ≡ f(x) is the density amplitude, b ≡ b(x) are the magnetic field fluctuations. In contrast with
the expansion (A.17), the expansion (A.26) depends only on the physical fields. The fluctuations are thus
characterized by a system of one Klein-Gordon equation for the condensate fluctuations, and one Proca
equation for the magnetic field fluctuations. Introducing the expansion (A.26) into the free energy (A.2),
and retaining the quadratic order of the infinitesimal parameter ε yields the equation

1

2
ΥT
(
−∇2 +M2

)
Υ , where Υ = (f, b)T . (A.27)

The squared mass matrixM2 can be read from

ΥTM2Υ = 2(α+ 3βψ2
0)f2 + e2ψ2

0b
2 . (A.28)

Again, the eigenspectrum of the matrixM2 determines the squared masses of the excitations

m|ψ| = 2
√
−α , and mB = eψ0 , (A.29)

and the associated length-scales ξ and λ are obviously the same as in (A.22).

Meissner effect

The Meissner effect is the expulsion of a magnetic field from a superconductor, when it is in the
superconducting state. In a weak external applied field, the superconductor expels (almost) all magnetic
flux, by setting up surface currents. This relates to the above mentioned fact, that the Ampère-Maxwell
equation becomes a Proca equation on a constant superconducting ground state |ψ| = ψ0 =

√
−α
β . This

is more intuitive physically, when considering the London equation for the magnetic field. On a constant
superconducting state ψ = ψ0, taking the curl of the Ampère’s equation (A.5), yields the London equation

∇×∇×B + e2ψ2
0B = 0 ⇔ ∇2B = e2ψ2

0B (since ∇×∇×B = ∇(∇·B)−∇2B) . (A.30)

The London equation thus turns into a Helmholtz equation for the magnetic field, with the eigenvalue of
the Laplacian mB = eψ0. In other words, the magnetic field is a massive vector field of squared mass
m2

B = e2|ψ0|2. This defines a length-scale, as the inverse mass of the magnetic field, called the London
penetration depth λ = 1/mB = 1/e|ψ0|. The London equation (A.30) implies that an externally applied
field decays exponentially inside the superconductor with the decay length given by λ. Alternatively, as
demonstrated earlier, the London penetration depth can be understood as the length-scale, at which a small
fluctuation of the vector potential recovers to its ground state value A = 0.

A.2 Interface energy – Type-I/type-II dichotomy

Now, consider the full non-linear problem of the interface between the normal state and the superconducting
state, in an external field He = (0, 0, H). The value of the external magnetic field is set equal to the
thermodynamical critical field Hc. The associated magnetic field reads as B = (0, 0, B(x)). The interface
is located at x = 0 and the normal state fills the semi-infinite space x < 0, while x > 0 corresponds to
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the bulk superconductor. As the problem is considered in an external field, the relevant energy is the Gibbs
energy (A.3).

On the right boundary, far in the bulk superconductor, the superconducting state completely recovers. On
the left boundary, this is the normal state in an external field Hc. This sets the boundary conditions

ψ(x→ +∞) = ψ0 and B(x→ +∞) = 0 , (A.31a)

ψ(x→ −∞) = 0 and B(x→ −∞) = Hc . (A.31b)

As a result, the values of the Gibbs energy on these boundaries are G(x→ +∞) = F(|ψ0|) (the free energy
of a superconductor without an external field) and G(x → −∞) = fn − H2

c /2 (since the free energy of
the normal state in external field is F = fn + H2

c /2). The interface energy (or boundary surface energy
between normal and superconducting state) is defined as the difference

σns =

∫ +∞

−∞

(
G(x)− fn +

H2
c

2

)
dx (A.32a)

=

∫ +∞

−∞

( |B −Hc|2
2

+
1

2
|Dψ|2 + α|ψ|2 +

β

2
|ψ|4

)
dx (A.32b)

The evaluation of the interface energy (A.32) has to be done numerically. However, in the limiting cases
κ� 1 and κ� 1, it can be estimated analytically.

In the κ� 1, |ψ| recovers its ground state value ψ0 very quickly. Thus, the energy cost associated with the
density gradients can be neglected. Now the problem reduces to dealing with the screening of the magnetic
field in a region of width λ. The associated interface energy is

σns(κ� 1) =

∫ +∞

−∞

(λ2

2
B′2 +

1

2
B2 −BHc

)
dx , (A.33)

where ′ denotes the differentiation with respect to x and B = B0e−x/λ. This give a negative interface
energy

σns(κ� 1) ≈ H2
cλ

2
= − 1

2e

(−α)3/2

β1/2
. (A.34)

In the limit where κ � 1 the magnetic field is much more localized than the superconducting condensate.
It is screened at the length-scale λ, which is much smaller than the coherence length ξ. This means that the
dominant contribution to the energy comes from the condensate ψ. As a result the boundary of width ξ is
approximated by

σns(κ� 1) =
α2

2β

∫ +∞

−∞

(
4ξ2|ψ̃|′2 + (1− |ψ̃|2)2

)
dx , (A.35)

where ψ̃ = ψ/ψ0. Substituing, ψ̃ = tanh(x/2ξ), estimates the integral

σns(κ� 1) ≈ 4α2

3β
ξ =

(−2α)3/2

3β
, (A.36)

which is positive.

In the limit where κ � 1, the interface energy (A.34) is negative, while it is positive in the limit
κ � 1 (A.36). The crossover between positive and negative interface energies is obtained for the critical
value κ = 1/

√
2. The sign of the interface energy determines the division between two classes of

superconductors. The type-1 superconductors (κ < 1/
√

2) have a positive interface energy (σns > 0),
while the type-2 superconductors (κ > 1/

√
2) have a negative interface energy (σns < 0).

Physically this means that in type-1 superconductors there is an energy penalty for forming interfaces.
This results in a preference for forming macroscopically large normal domains that minimize the length of
the interface. In type-2 superconductors, this is the opposite. Since the interface energy is negative, it is
beneficial to have the maximal length of interface. And thus creating large number of small domains. These
small domains are the vortices which are discussed in the next section.
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A.3 Quantization of the magnetic flux – Vortices

The Stokes’ theorem implies that the flux of the magnetic field through a given area A can be expressed as
the line integral over the contour C bounding that area Φ =

∫
AB ·dS =

∮
CA·d`. Given the definition of

the current (A.5), the vector potential A can be written in terms of the phase gradient ∇ϕ and the current
J . It follows that the magnetic flux reads as

Φ =
1

e

∮
C

(
J

e2|ψ|2
−∇ϕa

)
·d` . (A.37)

Since in the bulk of the superconductor, |ψ| quickly converges to its ground state ψ0 and that J decays
exponentially fast due to Meissner screening, the magnetic flux through A reads as

Φ =
−1

e

∮
C

∇ϕ · d` . (A.38)

Since ψ has to be single-valued, the circulation of phase can only take values 2πn where n is an integer. As
a result, the associated flux is

Φ =
−2π

e
n = Φ0n . (A.39)

The flux is thus quantized in units of Φ0 = −2π/e, the flux quantum. The integer n, called the winding
number, counts the number of times the phase ϕ winds along the (large) contour C. The winding number,
which is defined as a line integral over a closed path, is related to the maps S1 → S1. It is associated with
the elements of the first homotopy of the circle: n ∈ π1(S1) = Z.

Figure A.2: Schematic illustration
of a singular vortex line surrounded
by screening currents.

If a configuration have a non-zero phase winding, then the density
(|ψ|) should vanish at the point around which the phase winds. The
phase winding is compensated by having a non-trivial configuration
of A that carries quantized flux. Thus, the magnetic field cannot
penetrate into the bulk of a superconductor without causing a singular
vortex.

The finiteness of the energy imposes that at spatial infinity, the
condensate has to be of constant modulus ψ0 with an integer phase
winding, andA has to be a pure gauge. Assuming axial symmetry, in
cylindrical coordinates, the fields can be parametrized as

ψ = f(ρ)einθ , and A = v(ρ)(sin θ,− cos θ) . (A.40)

This is the Abrikosov-Nielsen-Olesen ansatz [151, 30] which
simplifies the Ginzburg-Landau equation (A.4) and (A.5) to a set of
two ordinary differential equations. Yet these equations are nonlinear, so they cannot, in general, be solved
analytically. A typical vortex configuration is sketched on the figure A.2. A vortex is a singular line around
which circulate Meissner currents, that screen the magnetic field away from the vortex. Typical vortex
profiles in the type-1 and type-2 regimes are displayed in Fig. A.3.

Vortex interaction: Type-I/type-II dichotomy

As previously emphasized, depending on the value of the Ginzburg-Landau parameter κ, superconductors
can classified into two different classes; type-1 and type-2. This classification followed from the different
behaviour of interface energy between the normal and superconducting state. This dichotomy can also be
understood by considering the interaction between vortices that should form in an external field.

In the case of type-2 superconductors, i.e. for κ > 1/
√

2, the long-range interaction between vortices is
dominated by the the magnetic interaction. It follows that vortices repel (as is also the case in the London
limit κ � 1). On the other hand, for type-1 superconductors, i.e. for κ < 1/

√
2, the attractive interaction

between the cores dominates the magnetic interactions at all separations. As a result, in the regime where
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Figure A.3: The panels illustrate the vortex profiles in single-component type-1 and type-2 regimes.

ξ > /
√

2λ, separated vortices will collapse onto each other to form a vortex with a larger winding number
(a megavortex). This leads to the formation of the macroscopically large domains of the normal state. Note
that this is obviously consistent with the results from the interface energy where, when κ < 1/

√
2 it is

beneficial to minimize the interface area. In the limiting case where κ = 1/
√

2, i.e. when ξ =
√

2λ, the
vortices are non-interacting [152, 153]. More precisely, the repulsion due to the magnetic field exactly
compensates the attraction of the cores. This non-interacting regime is called the Bogomol’nyi point of the
phase diagram.

The properties of the vortex matter and their interactions, in the single-component Ginzburg-Landau for
conventional superconductors, can thus be summarized as follows

• Type-1 :
√

2λ < ξ: The vortices attract each other to form macroscopically large domains.

• BP :
√

2λ = ξ: the vortices are non-interacting and all vortex superpositions have the same energy
[152, 153].

• Type-2 :
√

2λ > ξ: The vortices repel each other to form a vortex lattice [151].

The qualitative difference between the type-1 and type-2 regimes can be seen in the vortex profiles displayed
in the Fig. A.3.

A.4 Phase diagrams and critical fields

As stated earlier, in the presence of an applied external field He, this is the Gibbs free energy (A.3) that
should be considered instead of the Helmholtz free energy F (A.2). The response to an applied external
magnetic field is summarized in the diagrams Fig. A.4.

First critical field

The first critical field Hc1 is defined as the applied magnetic field at which the formation of a single vortex
becomes energetically favourable. In other words, Hc1 is the thermodynamic field at which the presence of
vortices into the sample becomes energetically favourable as compared to the Meissner state. It is defined
as Hc1 = Ev/Φv , where Ev and Φv are the energy and magnetic flux of the vortex. That is

Hc1 =

∫
(F(ψv,Av)−F(ψ0, 0))∫

∇×A
, (A.41)

where (ψ0, 0) denotes the ground state configuration of the superconducting condensates and (ψv,Av), the
configuration of a vortex. Note however that the corresponding external field He should be smaller than
the thermodynamical critical magnetic field Hct (A.16)

Hct = 2
√
F(0, 0)−F(ψ0, 0) , (A.42)
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HH

TcTc
TT

Type-2Type-1

Meissner stateMeissner state

Vortex lattice

Normal stateNormal state

-M

Hc1 Hc Hc2
H

Type-1

Type-2

Figure A.4: Phase diagrams of the different regimes in single-component Ginzburg-Landau theory. The
two H − T diagrams sketch the difference between the response of type-1 and type-2 superconductors to
an external field H . As discussed below, in the type-2 regime, since the first critical field is smaller that
the thermodynamical critical field, there exist an intermediate state between the Meissner state and the
normal state. This intermediate state is that of a vortex lattice. The rightmost panel shows the difference of
the magnetization response M between type-1 and type-2. The type-1 regime features a first order phase
transition between the superconducting state and the normal state. In the type-2 regime, at the level of
mean-field theory, there are second order phase transitions between Meissner and vortex states and between
vortex and normal states.

above which it is no longer beneficial to form a superconducting condensate.

If the first critical field is smaller than the thermodynamical critical field Hc1 < Hct (this is the case for
type-2 and not for type-1), then vortices start to enter the superconductor. Thus in the type-2 regime,
increasing the applied field, results in an intermediate state between the Meissner and normal states.

Second critical field

When higher field is applied, more and more vortices enter the system. They repel each other with length-
scale given by λ. When vortices are more and more packed, and vortex cores start to overlap. This results in
an overall suppression of the density |ψ|, so that there is a certain value of the field that completely destroys
the superconductivity. This value of the field is called the second critical field at which superconductivity
is destroyed. Thus, close to the second critical field Hc2, the magnetic field is approximately constant,
B = Bez = Hez and the density |ψ| is small. As a result, the Ginzburg-Landau equation can be linearized

DDψ = 2αψ . (A.43)

In the Landau gauge, the vector potential reads as A = (0, Hx, 0)−1. There, the equation (A.43) do not
depend on y, so a convenient choice (in a first approximation) of variable separation is ψ ≡ ψ(x). The
linearized Ginzburg-Landau equation (A.43) thus becomes the equation of an harmonic oscillator:

ψ′′ − (eHx)2ψ = 2αΨ . (A.44)

Thus the solution has the form ψ(x) = C exp
(
− x2

2`2

)
with the arbitrary constant C and eH = 1/`2. The

equation (A.44) further simplifies

eHc2 =
1

`2
≡ −2α =

1

ξ2
. (A.45)

As a result,

Hc2 =
1

eξ2
=

Φ0

2πξ2
. (A.46)

Note that this means in particular that close to Hc2, there is one (diverging) length-scale.



A.4. Phase diagrams and critical fields 103

The thermodynamical critical field (A.16) is H2
c = α2/β = e−2ξ−2λ−2/2. Hence the ratio of the second

critical field with the thermodynamical critical field is

Hc2√
2Hc

=
λ

ξ
= κ . (A.47)

In terms of the critical fields, type-1 and type-2 superconductors have the phase diagram summarized
in Fig. A.4. Type-1 and type-2 superconductors, thus have a different behaviour in an external
field, summarized in the phase diagrams in Fig. A.4. For type-1, the critical field simply destroys
superconductivity to favour the normal state. In type-2 superconductors, when the applied fieldHe exceeds
Hc1 the magnetic field starts to penetrate the bulk superconductor in the form of quantized vortices.





Appendix B

Numerical methods

Many of the results discussed in the main body rely on numerical simulations, but the focus is made on the
physical properties and very few words are said about these simulations. Here is a detailed discussion of the
numerical methods used to investigate the physics discussed in the main part. This starts, in Section B.1,
with a general overview of the finite element methods used for the spatial discretization. Next, details of the
algorithm used to solve the (nonlinear) Ginzburg-Landau problems are discussed in the Section B.2. The
important aspects of having a suitable choice of an initial guess, are detailed in the Section B.2.3. Finally,
the question of the evolution of time-dependent problems is addressed in the Section B.3.

B.1 Basic concepts for Finite Element methods

There exists various approaches to address the spatial discretization of partial differential equations. The
finite difference method, which is based upon local Taylor expansions to approximate the derivative, is
most historical. This discretization technique covers the space with lattices which are topologically square
or cuboid network. This method is rather intuitive, but it makes it difficult to handle complex geometries.
This difficulty motivated the approach of the finite element method. The finite element methods have often
been historically preferred for their rigorous provable stability, and because of their natural applicability to
complex geometries. The relative advantages of both methods have been heavily debated, and it is fair to
say that nowadays both methods lie more or less on the same ground. Both with their own advantages and
difficulties. There exist many more different approaches, such as the spectral methods, which will not be
exhaustively listed here. Finite differences or finite elements methods are more or less frequent, depending
on the different scientific communities. For example, and very roughly speaking, finite differences are
extensively used for simulations of lattice gauge theories, while finite elements are customary for example
in engineering and mathematics.

The numerical investigations discussed in the main body, and the corresponding papers, extensively used
finite element methods for a broad variety of problems including direct solving, minimization, constrained
optimization, time-evolution, etc. In practice, the spatial discretization is handled within a the finite-element
framework provided by the FreeFEM++ 1 library [317]. There, the finite element methods are based one the
weak formulation (the variational formulation) of partial differential equation. Below is presented a brief
and non exhaustive description of the concepts used in finite element methods. Detailed introductions can
be found in many textbooks, see for example [318, 319, 320, 321].

1https://freefem.org/
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B.1.1 Finite-element formulation

Consider the domain Ω which a bounded open subset ofRd and denote ∂Ω its boundary. W k,p(Ω) denotes
the Sobolev space of order k on Ω. That is, the subset of functions f in Lp(Ω) such that f and their weak
derivatives have a finite Lp-norm up to order k. The Hilbert space equipped with the L2-norm is denoted
Hk(Ω) = W k,2(Ω), and HkΩ = {u + iv |u, v ∈ Hk(Ω)} denotes the Hilbert spaces of complex-valued
functions. The inner products are denoted by 〈·, ·〉, as for example:

〈u, v〉 =

∫
Ω

uv , for u, v ∈ Hk(Ω) , and 〈u, v〉 =

∫
Ω

u∗v , for u, v ∈ Hk(Ω) . (B.1)

Once the equations are formulated in their weak form, the appropriate Hilbert spaces have to be discretized
using finite element spaces for a given partition Th of Ω.

Figure B.1: Example of the mesh of a disc.

More precisely, Th is a regular partition of the domain Ω with
Ω = ∪nt

k=1Ωk. The name Th refers to the family {Tk}k=1,··· ,nt

of the nt triangles 2 that compose the mesh, as illustrated
for example in Fig. B.1. Typically h refers to the mesh size
h = maxΩk∈Th{diam Ωk}. In practice, for a given boundary
of the domain, the mesh can be automatically generated using
for example the Delaunay-Voronoi algorithm. Next, given
a spatial discretization, the functions are approximated to
belong to a finite element space whose properties correspond
to the details of the Hilbert space to which the functions
belong. A finite element space associated to a scalar function,
say w, is typically, a space of polynomial functions P(r) of
order r on the elements (the triangles), with certain matching
properties at edges, vertices, etc. P(r) denotes the r-th order
Lagrange finite-elements. This describes a linear vector space
of finite dimension, for which a basis can be found. The
canonical basis is made of functions, called the hat functions
φk and thus

Vh(Th,P(r)) =
{
w(x) =

M∑
k=1

wkφk(x), φk(x) ∈ P(r)
}
. (B.2)

Here M is the dimension of Vh (the number of vertices), the wk are called the degree of freedom of w and
M the number of the degrees of freedom. Now for a given order of approximation of polynomial functions
P(r), the shape functions φk(x) are constructed from the triangle Tk. For example Vh(Th,P(1)) denotes
the space of continuous, piecewise linear functions of x, y on each triangle of Th. To summarize a given
function is approximated as its decomposition:

w(x) =

M∑
k=1

wkφk(x) , (B.3)

on a given basis of φk(x) that is chosen according to the mathematical prescriptions of the problem.

B.1.2 A simple example: The Poisson equation

To illustrate the concept of weak formulation of partial differential equations, let consider the simple case
of the Poisson equation with Dirichlet condition u = 0 on ∂Ω:

∇2u = f . (B.4)

2In the case of a three dimensional space, the mesh is composed of nt tetrahedra.
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The weak form, or variational form, is derived by multiplying (B.4) by an arbitrary test function v and
integrating over Ω:

−
∫

Ω

v∇2u+

∫
Ω

vf =0 (B.5a)∫
Ω

∇u ·∇v +

∫
Ω

vf =

∫
∂Ω

v∇u · n , (B.5b)

where the second line follows from the Green’s formula (integration by parts), and n is the outgoing vector
normal to ∂Ω. The test functions v should satisfy the boundary condition v = 0 on ∂Ω, and thus the problem
can be written as

a(u, v) + `(f, v) = 0 (B.6)

with a(u, v) = 〈∇u,∇v〉 and `(f, v) = 〈f, v〉. The weak form (B.6) defines a linear algebraic system.
Indeed inserting a finite element decomposition, as in (B.3), into (B.6), the problem boils down to

M∑
k=1

Aikuk + Li = 0 ,with Li = 〈f, φi(x)〉 , (B.7)

for all i = 0, · · · ,M − 1. Li is a vector and Aik is called the stiffness matrix. In a matrix notation, the
Poisson equation problem (B.4) reads as

[A] [uh] + [L] = 0 , (B.8)

whose solution simply requires the inversion of the stiffness matrix [A]:

[uh] = − [A]−1 [L] . (B.9)

Note that the stiffness matrix [A] is a sparse matrix, which can in principle be efficiently preconditioned.
Variety of numerical tools and libraries are available to perform linear algebra operations such as the matrix
inversion.

B.1.3 A less simple example: The Ampère-Maxwell equation

As a further example, let’s consider the Ampère-Maxwell equation with the boundary condition B = B0

on ∂Ω:
∇×B + J = 0 . (B.10)

Again, the weak form is derived by multiplying (B.10) by an arbitrary test functionAv and integrating over
Ω: ∫

Ω

∇×Av ·B +

∫
∂Ω

Av × n ·B +

∫
Ω

Av · J =0 (B.11a)∫
Ω

∇×Av ·∇×A+

∫
Ω

Av · J =

∫
∂Ω

n×Av ·B0 , (B.11b)

where the magnetic field on the r.h.s. of (B.11b) has been replaced by the boundary condition B = B0 (n
is the outgoing vector normal to ∂Ω). The problem can be written as

a(A,Av) + `(J ,Av) = 0 (B.12)

with a(A,Av) = 〈∇×A,∇×Av〉 and `(J ,Av) = 〈J ,Av〉. Here, the scalar product acts on the vectorial
space. For detailed discussions, see e.g. [322, 323]. Again, inserting the finite element decomposition for
A defines a linear system that can be solved similarly to the discussion in Sec. B.1.2. Note that in the case
of Ginzburg-Landau models, the current J depends on the gauge field A.

B.2 Minimization of the Ginzburg-Landau free energy

Many of the problems discussed in the main body require to numerically minimized the Ginzburg-Landau
free energy. This is a non-trivial nonlinear optimization problem for a field theory. The choice of the
discretization of the fields was usually done within the finite element formulation discussed in the previous
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section, an the choice for the optimization algorithm was typically the Non-Linear Conjugate Gradient
method. Below, are briefly introduced the principles of this method, while the actual formulation of the
Ginzburg-Landau minimization problem is discussed after.

B.2.1 The Nonlinear Conjuguate Gradient method

The NonLinear Conjugate Gradient method (NLCG) is a numerical method to solve iteratively
unconstrained optimization problems. It is used to find a local minimum of a nonlinear function f(x)

using only its gradient ∇xf (unlike the Newton-Raphson method that needs the second variation of the
function). This method requires the function f to be approximately quadratic close to the minimum. That
is, the function should be twice differentiable and the second derivative should be non-singular, near the
minimum [324, 325, 326, 327]. Given the function of n variables, the conjugate gradient method aims at
solving the nonlinear, unconstrained optimization problem

min{f(x)|x ∈ Rn} ,
where f : Rn 7→ R is continuously differentiable and bounded from below. Starting from an initial guess
x0 ∈ Rn, the nonlinear conjugate gradient method generates a recurrence

xk+1 = xk + αkdk .

Here, αk is a (positive) step size obtained by a line search. The conjugate direction dk is generated by the
rule

dk = −gk + βk−1dk−1 .

Here gk is a column vector of the gradient of f in all directions, gk = ∇xf(xk). Finally βk is the conjugate
gradient parameter that can be updated according to different rules [326]. The most common update rules
are those of Fletcher-Reeves [328] and Polak-Ribière-Polyak [329, 330]; these are defined as:

βFRk−1 =
gTk gk

gTk−1gk−1
, and βPRPk−1 =

gTk (gk − gk−1)

gTk−1gk−1
. (B.13)

For other kind of updates of βk see, e.g. , [326]. The whole algorithm can be summarized as

Algorithm 1 NonLinear Conjugate Gradient algorithm for the optimization problem: min{f(x)|x ∈ Rn}
1: Initialize the recurrence with the initial guess x0.
2: Calculate the steepest direction d0 := −g0 = −∇xf(x0)

3: Find the adjustable step length α by performing a line search in this direction
α0 = argmin αf(x0 + αd0) and generate x1 = x0 + α0d0

4: while unconverged do
5: Calculate the steepest direction gk = ∇xf(xk)

6: Compute βk according to the Flecther-Reeves or Polak-Ribière-Polyak formulas (B.13)
7: Update the conjugate direction: dk = −gk + βk−1dk−1

8: Perform a line search: optimize αk = argmin αf(xk + αdk)

9: Update the degrees of freedom xx+1 = xk + αkdk
10: Check the convergence
11: end while

The line search to find the optimal size of the adjustable step αk = argmin αf(xk +αdk) can be done
with different methods. Depending on the problem, it can sometimes be done with an exact line search by
solving for example polynomial equations. Alternatively, the line search can be approximated numerically
by methods like bisection. The optimal step size can more accurately be estimated using Wolfe conditions
(see e.g. [327]).
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The convergence criterion can be chosen in various ways. One can simply choose a maximum number
of iteration, but this does not guarantee that an actual solution has been obtained. One criterion is to iterate
until the gradient is smaller than a specified tolerance εtol: |gk| < εtol. Another choice is to put a condition
on the relative value of the gradient |gk|/|gk−1| < εtol. For detailed discussions about the appropriate
choice of the convergence criterion, see [326].

B.2.2 Nonlinear Conjugate Gradients for Ginzburg-Landau

Let Ω denote the superconductor where both the superconducting condensate ψ and the vector potential A
has value 3. In dimensionless quantities, the theory is described by the functional

F =

∫
Ω

B2

2
+

1

2
|(∇ + ieA)ψ|2 + α|ψ|2 +

β

2
|ψ|4 , (B.14)

where e is the gauge coupling and α and β are the potential parameters. The Euler-Lagrange equations of
motion obtained by varying the free energy functional with respect to the superconducting (ψ) and gauge
(A) degrees of freedom are the Ginzburg-Landau equations

DDψ = 2
(
α+ β|ψ|2

)
ψ , with D ≡ (∇ + ieA) , (B.15a)

∇×∇×A+ J = 0 , with J = eIm(ψ∗Dψ) = e|ψ|2(∇ϕ+ eA) . (B.15b)

It is convenient to write the superconducting degrees of freedom in terms of real and imaginary parts:
ψ = ψR + iψI . Now, multiplying by the test functions ψvR, ψvI and Av in Ω yields, after integration by
parts, the weak form for the Ginzburg-Landau equations

∇Fψ :=

∫
Ω

(∇ψR − eAψI) · (∇ψvR − eAψvI ) + (∇ψI + eAψR) · (∇ψvI + eAψvR)

+

∫
Ω

2
(
α+ β(ψ2

R + ψ2
I )
)
(ψRψ

v
R + ψIψ

v
I )

−
∫
∂Ω

[
ψvR(∇ψR − eAψI) + ψvI (∇ψI + eAψR)

]
· n = 0 (B.16a)

∇FA :=

∫
Ω

∇×A ·∇×Av + eAv ·
[
ψR(∇ψI + eAψR)− ψI(∇ψR − eAψI)

]
−
∫
∂Ω

Av × n ·B0 = 0 (B.16b)

where B0 is an external field. Given the inner products (B.1) the equations (B.16) can be rewritten as

∇Fψ := 〈∇ψR − eAψI ,∇ψvR − eAψvI 〉+ 〈∇ψI + eAψR,∇ψvI + eAψvR〉
+
〈
2
(
α+ β(ψ2

R + ψ2
I )
)
ψR, ψ

v
R

〉
+
〈
2
(
α+ β(ψ2

R + ψ2
I )
)
ψI , ψ

v
I

〉
= 0 (B.17a)

∇FA := 〈∇×A,∇×Av〉+
〈
e2|ψ|2A,Av

〉
+ 〈e(ψR∇ψI − ψI∇ψR),Av〉 = 0 . (B.17b)

The Ginzburg-Landau equation is obviously nonlinear, thus it cannot be directly formulated as a linear
system as in for example Sec. B.1.2. The Ampère-Maxwell equation (B.17b), on the other hand, is bilinear
in A,Av . Hence, given a configuration of the superconducting degrees of freedom ψ, it can be solved as
a linear system, as in Sec. B.1.3. This do not take into account the backreaction of the gauge field, on
the superconducting degrees of freedom. So this cannot give a solution of the Ginzburg-Landau equations.
However, this can be used to provide an initial configuration of the gauge field that satisfies the Maxwell
equation on-shell.

3Note that in principle, the gauge field A is valued on the whole R3 space. Thus in principle the gauge field part should take the
infinite space into account, to accurately describe effects such as the stray fields. This is rather technical and these aspects shall be
omitted here.
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The two equations (B.17), describe the gradient of the free energy with respect to all degrees of freedom.
The set of degrees of freedom can be cast in x := {ψR, ψI ,A}, and the gradient, which can be seen as
the Fréchet derivative of F , becomes ∇xF := {∇Fψ,∇FA}. From this, given an appropriate initial
configuration, the nonlinear conjugate gradient Algorithm 1 can straightforwardly be used to minimize
the free energy. In a nutshell, the NLCG Algorithm 1 for the Ginzburg-Landau energy, is summarized in
Algorithm 2.

Algorithm 2 NonLinear Conjugate Gradient algorithm for Ginzburg-Landau
1: Define an initial guess ψ0 for the superconducting degrees of freedom (see discussion in Sec. B.2.3)

Find the solution A0 of the Ampère-Maxwell equation (B.17b) with a linear solver
Initialize the recurrence with x0 = {ψR,0, ψI,0,A0}.

2: Calculate the steepest direction d0 := −g0 = −∇xF(x0), with ∇xF := {∇Fψ,∇FA}
3: Find the adjustable step length α by performing a line search in this direction
α0 = argmin αF(x0 + αd0) and generate x1 = x0 + α0d0

4: while unconverged do
5: Calculate the steepest direction gk = ∇xF(xk) with ∇xF := {∇Fψ,∇FA}
6: Compute βk according to Flecther-Reeves or Polak-Ribière-Polyak formulas (B.13)
7: Update the conjugate direction: dk = −gk + βk−1dk−1

8: Perform a line search: optimize αk = argmin αf(xk + αdk)

9: Update the degrees of freedom xx+1 = xk + αkdk
10: Check the convergence
11: end while

The whole technical discussion here about the finite-element formulation, and the numerical minimization
of the Ginzburg-Landau free energy has been done for a single-component model. The extension of all
this machinery to multiple superconducting condensates is rather straightforward. The last key ingredient
is now the initial guess for the superconducting degrees of the freedom.

B.2.3 Initial guess for the Ginzburg-Landau energy minimization

A crucial step for the minimization is the choice of the initial guess. A wise initial guess not only
improves the convergence of the algorithm, but also makes it possible to imprint some of the desired
properties. This is a crucial step when numerically studying topological excitations. The key idea is that
for the minimization algorithm to converge to a configuration that has the desired topological properties,
the starting configuration itself should exhibit these properties. The rationale is the following: different
topological sectors are typically separated by big energy barriers, so gradient minimization easily converges
to a configuration that has the same topological properties than the starting configuration 4.

As explained previously the gauge degrees of freedom can be found easily by solving the Ampère-Maxwell
equation (B.17b), given a configuration of the superconducting degrees of freedom Ψ. Two qualitatively
different excitations are present in the various examples discussed in the main body: vortices and domain-
walls. As in the main body, the superconducting degrees of freedom are cast into theN -component complex
field Ψ, such that Ψ† = (ψ∗1 , · · · , ψ∗N ). The starting field configuration can be expressed as the product of
two fields that carry the information about the qualitatively different topological excitations:

Ψ = Ψ(v)Ψ(dw) . (B.18)

Here Ψ(v) contains the informations about vortices, and Ψ(dw) encodes the informations about domain-
walls.

4The infinite energy barriers that separate the different topological sectors are usually defined in infinite space. Moreover the spatial
discretization also limits the arguments from the topology. So, strictly speaking, in finite domains, there are only finite energy barriers
between different topological sectors.
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Ground-state: In the ground-state Ψ0, the superconducting condensates are constant, whileA is a pure
gauge and can be chosen to be zero. As discussed in the main body, for example in Sec. 3.1.1, in practice
it is always better to work with real and imaginary parts ψa = Xa + iYa, rather than moduli and phase.
The real and imaginary parts Xa, Ya of the ground-state condensate are configurations that minimize the
potential energy V . They should thus be extrema

dV

dXa
= 0 and

dV

dYa
= 0 . (B.19)

The solutions of this system, except under very special conditions, cannot be solved analytically. They
determine the ground-state densities ua and phases ϕ̄a according to

ua = X2
a + Y 2

a and ϕ̄a = arctan (Ya/Xa) . (B.20)

The ground-state is thus the complex vector that reads as Ψ†0 = (u1e−iϕ̄1 , · · · , uNe−iϕ̄N ). For the extrema
to be a minimum, the Hessian matrix should have only positive eigenvalues:

HΨn = λnΨn , λn > 0 with Hab =
d2V

dfadfb

∣∣∣∣
Ψ0

, and fa = Xa, Ya . (B.21)

Note that the physical length-scales, are determined by the stability condition of the obtained ground-state.
That is, the mass of the various excitations are determined by the eigenvalues of the Hessian matrix.

Starting guess for vortices: The initial field configuration with nav vortices in a given condensate ψa
(where a = 1, · · ·N ) is prepared by using an ansatz which imposes phase windings around each of the
spatially separated nav vortex cores

ψ(v)
a = |ψ(v)

a |eiΘa(x,y) , with |ψ(v)
a | =

nv∏
k=1

√
1

2

(
1 + tanh

(
4

ξa
(Rak(x, y)− ξa)

))
. (B.22)

Here, ξa parametrizes the size of the core while the total phase Θa(x, y) and the distanceRak(x, y) from the
position (xak, y

a
k) of the core of the k-th vortex of the a-condensate, are defined as

Θa(x, y) =

nv∑
k=1

tan−1

(
y − yak
x− xak

)
, and Rak(x, y) =

√
(x− xak)2 + (y − yak)2 . (B.23)

Here, ψ(v)
a is not normalized to its ground-state value ua (B.20). The normalization to the appropriate

ground-state density is carried out by Ψ(dw) that carries the informations about domain-walls.

Remark that, in all generality, the numbers nav of the vortices in a given condensate ψa can be different.
However, as explained in details in Sec. 1.1.2, the finite energy considerations dictate that the different
condensates should have the same number of vortices nav = nv .

Note also that many of the new topological defects discussed in the main body are characterized by non-
overlapping cores. It is thus a good strategy to chose different positions (xak, y

a
k) for the core of k-th vortex

of the a-condensate. Indeed, it may be difficult for the minimization algorithm to split the cores. On the
other hand if there are no mechanism to enforce the core splitting, it is easy for the minimization algorithm
to re-unite the fractional vortices because of the long-range attraction.

Starting guess for domain-walls The domain-walls are topological excitations that are associated with
the spontaneous breakdown of a discrete symmetry. These are field configurations that interpolate between
inequivalent ground-states that are disconnected. If there exist two disconnected ground states, say Ψ0 and
Ψ′0, the configuration that interpolates between the two inequivalent ground-states can be parametrized as
follow:

Ψ(dw) =
Ψ0 + Ψ′0

2
+

Ψ0 −Ψ′0
2

tanh

(
x⊥ − x0

ξ(dw)

)
, (B.24)

where ξ(dw) determines the width of the domain-wall. In (B.24), x0 is the curvilinear abscissa that
determines the position of the domain-wall, and x⊥ is the coordinate perpendicular to the domain-
wall.
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In the main body, say in Sec. 3.2.1 we have been interested in domain-walls that interpolate between regions
with inequivalent relative phases between the condensates. When the ground-state breaks time-reversal
symmetry, its complex conjugate is not a gauge equivalent. That is, there exists no real number χ0 such that
Ψ∗0 = eiχ0Ψ0. If no such transformation exists, then Ψ∗0 6≡ Ψ0 and the configurations with ϕ̄a and −ϕ̄a are
disconnected and degenerate in energy. Domain-walls that interpolate between Ψ0 and Ψ∗0 are topologically
protected as their unwinding would require to overcome an infinite energy barrier, see for example textbook
discussion in [1, 3]. The domain-wall that interpolates between Ψ∗0 and Ψ0 can thus be parametrized by:

ψ(dw)
a = ua exp

[
iϕ̄a tanh

(
x⊥ − x0

ξ
(dw)
a

)]
. (B.25)

If there are no domain-walls, the ψ(dw)
a = ua is simply the ground-state density.

The knowledge of the ground-state properties Ψ0, together with the domain-walls Ψ(dw) and vortex Ψ(v)

contents, thus prepares an initial configuration of the superconducting degrees of freedom Ψ (B.18) that has
the desired topological content. Solving the Ampère-Maxwell equation (B.17b) for Ψ gives a gauge field
A that satisfies the gauge part on-shell. This together makes an initial field configuration that is suitable for
the minimization of the Ginzburg-Landau energy using the Non-Linear Conjugate Gradient Algorithm 2.
This typically converges rather fast.

Note that it is often necessary to rely on parallel computing, so that the numerical calculations, are efficient.
Simple parallelization requires parallel linear algebra distributed solvers, and the knowledge of the Message
Passing Interface (MPI). There are also very involved elegant techniques such as the Domain Decomposition
Methods (DDM) [331, 332, 333]. These very technical aspects are not discussed further here.

B.3 Time evolution: forward extrapolated Crank-Nicolson

Most of the problems discussed in the main body require the numerical minimization techniques for non-
linear problems discussed in Sec. B.2. Sometimes it is also important to know the dynamical (time-
evolution) properties of the system. For example, the time-dependent Ginzburg-Landau equation (see
e.g. [314, 315, 316]), was important to investigate the thermoelectric properties of non-stationary processes
in [JG12]. Here is detailed an algorithm used for time-evolution of (non)linear systems, the Crank-Nicolson
algorithm [334]. It is a finite difference implicit method in the time dimension that was for example
originally designed to simulate the time-evolution of the heat equation [334]. Afterwards, it was also
used in framework of the non-linear Schrödinger equation [335]. It is also used to investigate the dynamics
of superfluids and Bose-Einstein condensates of ultracold atoms [336]. Here, the details of this algorithm,
are discussed in the context of the Gross-Pitaevskii equation. A slightly different code is necessary for
superconductors in order to account for the gauge field as in [JG12]. Yet it can be straightforwardly adapted
to Ginzburg-Landau problems. See for example, the related works [322, 323, 337].

The algorithm presented here is a semi-implicit version that accounts efficiently for the non-linearities.
More precisely, for efficient calculations, the nonlinear part is linearized using a forward Richardson
extrapolation. The time-dependent Gross-Pitaevskii equation reads as:

i∂tψ = −1

2
∇2ψ +

[
V (x) + g|ψ|2

]
ψ . (B.26)

The weak from is obtained by multiplying by test functions ψw ∈ H(Ω) and by integrating by parts the
Laplace operator. In terms of the inner products (B.1), the weak form of (B.26) reads as

〈ψw, i∂tψ〉 =
1

2
〈∇ψw,∇ψ〉+

〈
ψw,

[
V (x) + g|ψ|2

]
ψ
〉
. (B.27)

The time is discretized as t = k∆t and the wave function at the step k is ψk := ψ(k∆t). This turns the
continuous evolution into a recursion over the uniform partition {t}Nt

k=0 of the time variable. The Crank-
Nicolson scheme, uses the Forward-Euler definition of the time derivative, while the r.h.s of Eq. (B.27) is
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evaluated at the averaged times. Using the following notations

∂tψ := δtψk =
ψk+1 − ψk

∆t
, and ψ̄k =

ψk+1 + ψk
2

, (B.28)

the Crank-Nicolson scheme for the Gross-Pitaevskii equation (B.27) reads as:

〈ψw, iδtψk〉 =
1

2

〈
∇ψw,∇ψ̄k

〉
+
〈
ψw, V (x)ψ̄k

〉
+
〈
ψw, g|ψ̄k|2ψ̄k

〉
. (B.29)

This fully implicit scheme results in a nonlinear algebraic system which is difficult to solve. Alternatively
the nonlinear part can be approximated in terms of the values at previous time steps. Namely, the fields in
the nonlinear term are approximated by using an extrapolation of the previous time steps. This extrapolation
should retain the same order of truncation error as the rest of time series. Using the forward extrapolation,
the averaged wave function in the non-linear term becomes ψ̄k ≈ (3ψk − ψk−1)/2. By, defining the time-
discretized operators:

O1ψ =

〈
ψw,

iψ

∆t

〉
−
〈
∇ψw,

1

4
∇ψ

〉
−
〈
ψw,

1

2
V (x)ψ

〉
, (B.30a)

O2ψ =

〈
ψw,

iψ

∆t

〉
+

〈
∇ψw,

1

4
∇ψ

〉
+

〈
ψw,

1

2
V (x)ψ

〉
, (B.30b)

Ukψ =
〈
ψw,

g

8
|3ψk − ψk−1|2ψ

〉
, (B.30c)

the Eq. (B.29) can be written in a compact form as

O1ψk+1 = O2ψk + Un(3ψk − ψk−1) . (B.31)

Hence the time-evolution is formally given by the recursion

ψk+1 = O−1
1

[
O2ψk + Uk(3ψk − ψk−1)

]
. (B.32)

Next, as discussed in Sec. B.1.1, the spatial discretization is achieved by replacing the wave function ψ with
its finite-element space representation ψ(h) ∈ Vh(Th,P(2)) in the Gross-Pitaevskii equation (B.32). The
time-discretized evolution operators (B.30) thus become matrices:

O1 7→Mψ , O2 7→Nψ , and Uk(3ψk − ψk−1) 7→ Lψ , (B.33)

and the recursion Eq. (B.32) reduces to a linear algebraic system that reads as:

[Mψ]
[
ψ

(h)
k+1

]
− [Nψ]

[
ψ

(h)
k

]
= [Lψ] . (B.34)

The vector Lψ which is a function of ψ(h)
k and ψ(h)

k−1, has to be recalculated at each time step. On the other
hand, the matrices Mψ and Nψ are constant over time. They thus need to be allocated just once. Finally
the recursion is thus [

ψ
(h)
k+1

]
= [Mψ]−1

(
[Nψ]

[
ψ

(h)
k

]
+ [Lψ]

)
. (B.35)

The numerical simulations of the time-evolution algorithm (B.35) accurately reproduce the expected
properties of the Gross-Pitaevskii equation. For example, it preserves the conserved quantities like the
energy, the angular momentum, and the norm of the wave-function. For superconductors, on the other
hand, there are no such conserved quantities, as the dynamics is dissipative. Yet the algorithm discussed
here can easily be upgraded to include gauge degrees of freedom.
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Appendix D

Synthèse en français du mémoire
d’HDR

Le corps principal du mémoire, les différents chapitres et les annexes sont rédigés en anglais.
Ce chapitre de synthèse reprend dans les grandes lignes, en français, les éléments et les résultats
principaux qui y sont discutés. En particulier, on reprend ici les éléments de l’introduction, ainsi que
les motivations et résumés des résultats présentés dans chaque chapitre. On reprend également les
résumés décrivant les différentes annexes.

Figure D.1: Un défaut topologique
dans un cristal. Une des rangées
d’atomes en bas disparaît à mi-
chemin de l’échantillon. L’endroit où
la rangée disparaît est un défaut, car
il ne ressemble pas localement à un
morceau du cristal parfait.

Les défauts topologiques et leur compréhension sont au coeur
de la physique moderne. La formalisation de leurs propriétés
et la compréhension de leur rôle dans de nombreux processus
physiques est relativement récente. Cependant, ils sont connus
heuristiquement par l’humanité depuis probablement plus de trois
mille ans. C’est en effet approximativement aussi loin que l’on
puisse retracer les processus de trempe de métaux par les forgerons
[2]. La trempe, c’est-à-dire le refroidissement rapide, utilisée dans
les procédés de durcissement des métaux crée des dislocations de
la structure cristalline, qui s’apparentent à des défauts topologiques.
Ce procédé est similaire à la prolifération de défauts topologiques
qui se produit lors des transitions de phase [12, 13]. Comme
illustré sur la Fig. D.1, une dislocation dans un cristal est un
défaut topologique, car elle ne peut être supprimée par aucun
réarrangement local.

Associés aux symétries brisées, les défauts topologiques sont
omniprésents en physique. Ils apparaissent en effet dans un
contexte très vaste, allant de la cosmologie de l’univers primordial
et de la physique des particules [3, 1, 4, 5, 6, 7, 8], à la physique
du solide et de la matière condensée [9, 10, 7]. En fonction la
théorie sous-jacente, les défauts topologiques peuvent être de différentes natures, comme par exemple les
dislocations dans les cristaux liquides, les monopôles, les murs de domaine, les vortex, les skyrmions, les
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hopfions, et bien plus encore. Ils sont intimement liés aux transitions de phase [11, 12, 13], et leur simple
existence peut avoir un grand impact. Par exemple, la possible formation de défauts topologiques dans
l’univers primordial aurait pu avoir un impact considérable sur la formation des structures de l’univers
aux grandes échelles[5, 12, 14]. De même, on pense qu’ils sont à l’origine de certaines transitions de
phase dans divers systèmes physiques, comme par exemple la prolifération de vortex dans les superfluides
et les supraconducteurs [11]. Les vortex, qui sont des objets linéiques avec des propriétés topologiques
spécifiques, sont probablement les défauts qui ont été le plus étudiés.

Défauts topologiques – Supraconducteurs et superfluides

La physique des vortex fait l’objet d’une intense activité scientifique depuis la seconde moitié du XIXe
siècle. Peu de temps après les premiers travaux de Helmholtz [15] sur la dynamique des fluides, les vortex
sont devenus la clé de voûte de la théorie de la matière de l’« atome vortex » conjecturée par Kelvin [16].
Cette tentative de classer les éléments chimiques en tant qu’excitations constituées de boucles de vortex
dans l’éther luminifère 1, liées et nouées se solda par un échec. Cependant elle conduit à des progrès
considérable en topologie car elle a motivé la création des premières tables des noeuds par Tait [17, 18, 19]
et les travaux sur la théorie des noeuds peu de temps après.

La théorie de « l’atome vortex »

Fait intéressant, la théorie de « l’atome vortex » de Kelvin et Tait résonne encore avec certains concepts de
la physique moderne [20, 21], et elle a inspiré plusieurs travaux au fil des ans. Ainsi, c’est une histoire qui
mérite d’être racontée.

Dans son travail de 1858 sur la dynamique des fluides, Helmholtz [15] démontra que dans un fluide parfait
(c’est-à-dire caractérisé pas un écoulement incompressible et non visqueux), la circulation d’un filament
vortex est invariante dans le temps. Il a par ailleurs démontré qu’un vortex ne peut pas se terminer à
l’intérieur d’un fluide, mais qu’il doit soit s’étendre jusqu’aux limites du fluide, soit former des boucles
fermées. Enfin qu’en l’absence de forces de rotation externes, un écoulement initialement irrotationnel
reste irrotationnel.

Figure D.2: Une des noeuds inéquivalents.

Connaissant les théorèmes de Helmholtz, Kelvin remarqua
en 1867 [16] que « (...) this discovery inevitably suggests
the idea that Helmholtz’s rings are the only true atoms. »
L’idée générale étant que, puisque les lignes de vortex sont
figées dans l’écoulement d’un fluide idéal, alors leur topologie
doit être invariante dans le temps : « It is to be remarked
that two ring atoms linked together, or one knotted in any
manner with its ends meeting, constitute a system which,
however it may be altered in shape, can never deviate from
its own peculiarity of multiple continuity (...) ». Ce fluide
idéal serait l’éther luminifère dont on pensait à l’époque qu’il
emplissait l’univers. Kelvin a ensuite attribué les propriétés
spectroscopiques de la matière à la topologie des lignes de
vortex : « It seems, therefore, probable that the sodium atom
may not consist of a single vortex line; but it may very probably consist of two approximately equal vortex
rings passing through one another, like two links of a chain. ». Il remarqua de plus que les modèles de « (...)
knotted or knitted vortex atoms, the endless variety of which is infinitely more than sufficient to explain the
varieties and allotropies of known simple bodies and their mutual affinities. ». En bref, Kelvin a conjecturé

1L’éther luminifère était un fluide idéal postulé. Sensé remplir l’univers, il devait servir de support à la propagation des ondes
lumineuses.
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que les différents éléments chimiques sont constitués de boucles fermées de vortex dans l’éther, liées et
nouées entre elles de façon topologiquement inéquivalentes, illustrées dans Fig. D.2.

Par la suite, Tait a commencé à classifier les différentes manières inéquivalentes de réaliser de tels nœuds
[17, 18, 19]. Ces travaux ont été les pionniers du domaine de la théorie des nœuds en topologie algébrique.
La théorie de Kelvin a finalement été falsifiée, lorsque l’expérience de Michelson et Morley a exclu
l’existence de l’éther [22]. Cependant, le paradigme d’associer des vortex d’un champ sous-jacent à
des “particules élémentaires” est réapparu à plusieurs reprises. D’une certaine manière, ces vortex noués
peuvent être considérés comme les premiers exemples théoriques de défauts topologiques 2.

Vortex et défauts topologiques dans la physique contemporaine

Environ 80 ans après les travaux de Kelvin, il a été réalisé par Onsager [23], et plus tard formalisé sur des
bases théoriques solides par Feynman [24], que les vortex occupent une part importante dans les processus
physiques modernes. En particulier dans son travail sur l’4He superfluide, Onsager [23] a observé que la
circulation de la vélocité du superfluide est quantifiée. De plus il compris que la matière-vortex contrôle
essentiellement la plupart des réponses clés des superfluides. Par exemple, que la transition de phase
de l’état superfluide à l’état normal est une en fait génération thermique et une prolifération de boucles
et de noeuds de vortex [23]. Également que les vortex apparaissent comme la réponse rotationnelle des
superfluides.

Ces idées résonnent en quelque sorte (en partie) avec la théorie de Kelvin de l’atome vortex. En effet,
puisque la vitesse de circulation du superfluide est quantifiée, alors les vortex sont des défauts topologiques
dans le superfluide. De plus, la rotation d’un superfluide se traduit par la formation d’un réseau ou d’un
liquide de ces vortex quantiques. Ces réseaux peuvent être considérés comme la réalisation de cristaux et
de liquides de la matière-vortex. Plus tard, Abrikosov a prédit que les supraconducteurs de type-2 doivent
former des vortex magnétiques en réponse à un champ magnétique appliqué [25], par analogie avec les
superfluides ou les vortex sont formés en réponse à une rotation. Plus tard, il a également été réalisé qu’en
trois dimensions, les transitions de phases superfluides et supraconductrices sont une génération thermique
et une prolifération de boucles de vortex [26, 27].

Figure D.3: Un noeud trèfle dans le
modèle de Skyrme-Faddev.

A noter que d’importants progrès dans la physique moderne,
où les vortex jouent un rôle clé, ont reçu un prix Nobel.
Comme par exemple à Abrikosov en 2003 [28] pour
ses travaux sur la compréhension de leur rôle dans les
supraconducteurs, ou plus récemment en 2016 à Haldane,
Kosterlitz et Thouless pour avoir déterminé leur rôle dans
les transitions de phase dans les systèmes bidimensionnels
[29, 11]. Le concept de vortex quantiques a ensuite été
généralisé à des théories relativistes, comme par exemple
dans le modèle Higgs-abélien [30]; des théories qui auraient
pu être pertinentes dans le contexte de l’univers primordial
[5, 31, 32], ou encore au secteur bosonique de la théorie
de Weinberg-Salam des interactions électrofaibles [33].
D’après le scénario de Kibble-Zurek [12, 13], divers types
de défauts topologiques auraient dû être produit lors des
possibles transitions de phase de l’univers primordial. Cela
impliquerait, entre autres, que si de tels défauts topologiques étaient créés, ils pourraient contribuer
substantiellement au contenu en matière de l’univers et avoir un impact non négligeable sur son histoire
[5, 14]. Ces idées sont à l’origine d’un grand intérêt pour les défauts topologiques. Cela a abouti à de
nombreux travaux fondateurs et à une meilleure compréhension des propriétés mathématiques des défauts

2On ne manquera pas d’y voir une certaine analogie avec la théories des cordes.
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topologiques.

Ainsi, comme déjà mentionné, il existe une pléthore de différents types de défauts topologiques, et dans
un large éventail de systèmes physiques. C’est un peu dénué de sens de les lister de manière exhaustive.
Mentionnons plutôt deux types particuliers de défauts topologiques qui résonnent particulièrement avec la
théorie de Kelvin, car ils sont en quelque sorte identifiés en lien avec des états de la matière. Un premier
exemple est celui des défauts topologiques dans le modèle Skyrme [34, 35]. Les défauts topologiques y
sont appelés skyrmions 3, et l’invariant topologique associé est interprété comme le nombre de baryons
[36]. De même, la recherche sur les modèles supportant des défauts topologiques, noués, stables a été d’un
grand intérêt en mathématiques et en physique, après que la stabilité de ces objets nommés hopfions ait
été démontrée dans le modèle Skyrme-Faddeev [37, 38, 39, 40, 41, 42] (pour une revue, voir [43]). Les
hopfions du modèle de Skyrme-Faddeev ressemblent aux noeuds illustrés dans Fig. D.3.

Après cette introduction générale sur les défauts topologiques, l’essentiel de l’attention sera porté sur les
vortex, avec un focus particulier sur ceux qui apparaissent dans les modèles de supraconductivité avec de
multiples composantes du paramètre d’ordre.

Supraconducteurs à multiple composantes

La supraconductivité et la superfluidité sont des états de la matière caractérisés par la cohérence
macroscopique des excitations quantiques sous-jacentes. La physique qui décrit de tels systèmes est celle
des théories quantiques des champs, et ce sont les propriétés du problème à N-corps, au sein de ces théories
qui déterminent la cohérence macroscopique des excitations quantiques. La propriété intéressante est que
ces problèmes quantiques à N-corps peuvent être réduits, dans l’approximation de champ moyen, à des
théories classiques des champs, non linéaires, décrivant les propriétés macroscopiques de l’état cohérent
représenté par un seul champ scalaire complexe (le paramètre d’ordre). Ces approximations de champ
moyen sont les équations de Gross-Pitaevskii pour les superfluides et les équations de Ginzburg-Landau
pour les supraconducteurs. A noter que dans le cas des supraconducteurs, le champ scalaire complexe
est complété par un champ vectoriel abélien réel, décrivant le potentiel du champ électromagnétique. Ce
champ de jauge devient massif par le mécanisme d’Anderson-Higgs[44, 45], qui est responsable de l’effet
Meissner [46]. Alors que dans les cas les plus simples, les paramètres d’ordre sont des singulets, il peuvent
être des multiplets scalaires dans des situations plus compliquées.

Dans les systèmes de la matière condensée comme les superfluides ou les condensats de Bose-Einstein
d’atomes ultra-froids, les théories avec des paramètres d’ordre à plusieurs composantes (c’est-à-dire décrites
par des multiplets ou des matrices de champs scalaires complexes) ont été envisagées depuis longtemps.
Elles sont connus pour admettre un éventail extrêmement riche de défauts topologiques, comme par exemple
dans l’hélium superfluide [7, 47], ou dans les superfluides neutroniques 3P2 [50, 51]. Dans le contexte de
la supraconductivité, les théories avec de multiples gaps supraconducteurs ont été considérées depuis les
débuts de la théorie Bardeen-Cooper-Schrieffer [52, 53, 54]. Pourtant, ces théories multi-bandes/multi-
composantes ont longtemps été considérées comme décrivant des matériaux exotiques.

Cependant, il y a eu relativement récemment un intérêt accru pour de tels matériaux, car le nombre
de supraconducteurs multi-bandes/multi-composantes connus augmente rapidement. En effet, dans de
nombreux supraconducteurs, l’appariement des électrons est supposé se produire sur plusieurs feuillets de
la surface de Fermi formée par le chevauchement des bandes électroniques. Pour n’en citer que quelques-
uns, c’est par exemple le cas du MgB2 [55, 56], du supraconducteur pérovskite Sr2RuO4 [57, 58, 59], ou de
la famille des supraconducteurs à base de fer [60, 61, 62, 63]. Au-delà de la physique du solide, les théories
à multiples composantes s’appliquent également à des systèmes plus exotiques, comme certains modèles
de supraconductivité nucléaire à l’intérieur des étoiles à neutrons [64], ou aux états supraconducteurs de

3Dans le texte principal, la terminologie skyrmions est utilisée pour caractériser des types de défauts topologiques légèrement
différents. Ils sont davantage liés aux “baby-skyrmions”. Comme ils en partagent de nombreuses propriétés topologiques, ils sont
souvent également appelés skyrmions, par abus de langage.
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l’hydrogène liquide métallique [65, 66], du deutérium liquide métallique [67, 68] et d’autres types de
superfluides métalliques [69]. Cela ouvre la possibilité de modèles de théorie des champs plus complexes
où, généralement en raison de l’existence de plusieurs symétries brisées, la physique des vortex (et des
autres défauts topologiques) est extrêmement riche et sans équivalent dans des modèles plus simples.

Notons que les modèles où les vortex apparaissent, dans le contexte de la physique des hautes énergies,
sont généralement très symétriques en raison des propriétés sous-jacentes de la théorie. Par exemple, dans
le cas de la théorie de Weinberg-Salam, la théorie est invariante (entre autres symétries) sous les rotations
locales SU(2) au sein du doublet scalaire (le champ de Higgs). En matière condensée les modèles sont
généralement beaucoup moins contraints sur pour des raisons de symétrie. Ils autorisent ainsi plus de termes
d’interaction qui brisent explicitement diverses symétries. Par exemple, dans les supraconducteurs à deux
composantes (décrits par un doublet scalaire), l’invariance globale SU(2) est explicitement brisée vers un
sous-groupe plus petit (comme par exemple U(1)×U(1) ). L’absence de contraintes fortes sur les symétries,
et donc l’existence de divers termes de brisure explicite de symétrie sont à l’origine de nombreuses nouvelles
propriétés. Il en résulte notamment que les vortex peuvent acquérir de nouvelles caractéristiques, et sont
associés à un large éventail de nouveaux phénomènes physiques. Ces nouvelles propriétés exotiques
peuvent être comprises comme provenant des nouvelles symétries brisées. Par conséquent, ces nouveaux
phénomènes peuvent être utilisés comme signatures pour obtenir des informations sur les symétries d’un
état inconnu.

L’importance cruciale des excitations topologiques dans la physique de la supraconductivité a fait des
vortex de Ginzburg-Landau l’un des exemples les plus étudié de défauts topologiques. En effet, les
propriétés de transport des supraconducteurs dépendent de manière cruciale du comportement des vortex
magnétiques dans ces matériaux. Par exemple, les courants critiques élevés dans les lignes de transmission
supraconductrices commerciales actuelles ne sont atteints qu’en contrôlant soigneusement le mouvement
des vortex dans ces matériaux. Les théories pour les supraconducteurs multi-bandes/multi-composantes
étendent la théorie de Ginzburg-Landau en considérant plus d’un paramètre d’ordre supraconducteur.
En raison des champs supplémentaires et des nouvelles symétries brisées, le spectre des excitations
topologiques et les signatures associées sont beaucoup plus riches dans les systèmes multicomposantes
que dans leurs homologues monocomposantes. Par exemple, les supraconducteurs multicomposantes
peuvent présenter des vortex fractionnaires, des vortex singuliers/sans-coeur (coreless), des skyrmions, des
hopfions, des murs de domaine, etc. Toutes ces excitations topologiques peuvent être utilisées comme
signatures expérimentales de la nature multicomposante d’un système supraconducteur. Leur observabilité
peut par exemple fournir des informations précieuses sur la nature du paramètre d’ordre et de la symétrie
d’appariement sous-jacente.

Les travaux présentés dans ce rapport traitent de divers aspects de la supraconductivité des théories avec plus
d’un condensat. Aussi bien pour des modèles génériques de supraconducteurs multi-composantes que pour
les modèles de matériaux particuliers. Notamment par l’analyse des propriétés inhabituelles des défauts
topologiques qui y apparaissent.

Théorie de champ moyen de Ginzburg-Landau

En considérant l’approximation du champ moyen et à couplage faible, dans la théorie de Bardeen-
Cooper-Schrieffer [70] à une composante, l’état supraconducteur est décrit par un champ classique
complexe qui est proportionnel à la fonction de gap. C’est-à-dire, la théorie de Ginzburg-Landau [71],
introduite phénoménologiquement peut être dérivée comme l’approximation classique du champ moyen
de la théorie microscopique [72], et le module du paramètre d’ordre est la densité de paires de Cooper.
Il existe différentes approches pour caractériser les propriétés des matériaux supraconducteurs, qui sont
différentes/complémentaires à la théorie de Ginzburg-Landau. Par exemple, des méthodes telles que le
formalisme de Bogoliubov-de Gennes [73, 74], les équations d’Eilenberger [75] et d’Usadel [76] pour le
transport, etc. Cependant, le reste de ce rapport se limite uniquement aux aspects classiques et en champ
moyen, de la supraconductivité des systèmes à plusieurs composantes. C’est-à-dire à la théorie de Ginzburg-
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Landau à plusieurs composantes et aux excitations topologiques qui s’y apparaissent.

Il est intéressant de noter que la théorie de Ginzburg-Landau de la supraconductivité n’a attiré beaucoup
d’attention de la part de la communauté des analystes numériques que depuis les années 1990, après qu’il ait
été rapporté que le problème est bien posé [77, 78]. Depuis, il y a eu une grande activité pour comprendre
les propriétés mathématiques de ce problème, voir par exemple [79].

Théorie générale à multiples composantes

Les détails des modèles à multiples composantes peuvent varier, selon le contexte du problème physique
sous-jacent considéré. On exposera ici brièvement la structure mathématique des modèles génériques qui
décrivent les supraconducteurs à plusieurs composantes (dans l’approximation de champ moyen). Les
propriétés macroscopiques de tels systèmes physiques sont généralement décrites par la fonctionnelle
d’énergie (libre) de Ginzburg-Landau de la forme:

F/F0 =

∫
R3

1

2

∣∣∇×A∣∣2 +
κab
2

(Dψa)∗Dψb + αabψ
∗
aψb + βabcdψ

∗
aψ
∗
bψcψd (D.1)

où ψa sont les composantes du multiplet scalaire Ψ ∈ CN . Le multiplet scalaire est Ψ† =

(ψ∗1 , ψ
∗
2 , · · · , ψ∗N ), où a, b, c, d = 1, · · · , N ; et les indices répétés sont implicitement sommés. Les champs

scalaires sont couplés au champ de jauge (abélien) A via la dérivée de jauge D = ∇ + ieA, avec e la
constante couplage de jauge (les caractères gras désignent les quantités vectorielles). Tous les coefficients
tensoriels κ, α, β obéissent à des relations de symétrie, de sorte que l’énergie est une quantité réelle, définie
positive 4.

Il peut être pratique de collecter tous les termes potentiels dans (D.1) en un seul terme potentiel V (Ψ,Ψ†)

comme
V (Ψ,Ψ†) = αabψ

∗
aψb + βabcdψ

∗
aψ
∗
bψcψd . (D.2)

Parfois, la structure spécifique du potentiel V (Ψ,Ψ†) sera sans importance. À d’autres occasions, le
potentiel d’interaction aura un rôle central pour définir des nouvelles propriétés physiques. Ainsi, la
restriction pertinente du potentiel le plus générique (D.2), sera spécifiée lorsque nécessaire.

L’état fondamental est l’état qui minimise l’énergie potentielle (D.2), et qui est spatialement constant:
Ψ0 := argminV (Ψ,Ψ†). De plus l’état fondamental supraconducteur est l’état qui minimise l’énergie
et qui a Ψ†Ψ = const. 6= 0. L’état fondamental est dégénéré en énergie et cela définit une variété
appelée variété du vide. En gros, c’est la topologie de cette variété du vide qui spécifie la nature des
défauts topologiques qui peuvent apparaître dans la théorie. Par exemple, l’énergie de l’état fondamental
est invariante sous les rotations globales de la phase du multiplet, cela définit ainsi variété du vide qui est
isomorphe au cercle. Les configurations des champs sont ainsi classées par un nombre d’enroulement (le
winding number) qui est un élément du premier groupe d’homotopie du cercle π1(S1) (cela peut également
être compris comme une conséquence du fait que Ψ doit être univalué). Ce nombre d’enroulement
détermine le contenu en vortex de la théorie.

La variation fonctionnelle de l’énergie libre par rapport aux condensats supraconducteurs ψ∗a donne les
équations du mouvement d’Euler-Lagrange. Dans le cadre de la supraconductivité, ce sont les équations de
Ginzburg-Landau

κabDDψb = 2
δV

δψ∗a
. (D.3)

De même, la variation par rapport au champ de jauge A donne l’équation d’Ampère-Maxwell

∇×B + e
∑
a,b

κabIm
(
ψ∗aDψb

)
= 0 . (D.4)

4Le modèle de Ginzburg-Landau (D.1) est isotrope. Les anisotropies peuvent être incorporées en utilisant un terme cinétique plus
général : κab;µν(Dµψa)∗Dνψb.
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Cette équation permet d’introduire les supercourants

J :=
∑
a

J (a) , where J (a) = e
∑
b

κabIm
(
ψ∗aDψb

)
. (D.5)

Ici J est le supercourant total, et J (a) désigne le supercourant partiel associé à un condensat donné
ψa.

En fonction des propriétés du modèle microscopique considéré, il peut y avoir diverses exigences
supplémentaires contraignant davantage la structure des paramètres tensoriels κ, α, β. Cela peut donner
lieu à de différentes situations qu’il est inutile d’énumérer ici. Comme mentionné plus haut, la teneur
en vortex est spécifiée par le nombre d’enroulement de la configuration du champ (plus précisément par
l’enroulement à l’infini). L’étape suivante consiste à construire explicitement les solutions de vortex dans un
secteur topologique donné, spécifié par ce nombre d’enroulement. La théorie étant clairement non linéaire,
la construction explicite d’une configuration du champ pour un nombre d’enroulements donné doit donc
être abordée numériquement. Dans les travaux qui sont discutés ici, cela est fait en utilisant des algorithmes
de minimisation sur l’énergie, conjointement à une formulation du problème selon la méthode des éléments
finis. Ces aspects techniques sont détaillés dans la seconde annexe.

Plan du rapport

Il est difficilement concevable de séparer tous les aspects liés à la nouvelle physique qui apparaissent
dans les systèmes multi-composantes. Il y aura ainsi sûrement des chevauchements ou bien des redites
de temps à autre. Quoi qu’il en soit, le corps principal de ce rapport est organisé comme suit : D’abord, le
chapitre 1 met en lumière les nouvelles propriétés associées à la topologie des modèles phénoménologiques
à multiples composantes. Ensuite, le chapitre 2 présente certaines nouvelles propriétés physiques qui
apparaissent en raison de l’existence d’échelles de longueur supplémentaires. Enfin, les propriétés des
états supraconducteurs multi-composantes qui brisent spontanément la symétrie d’inversion temporelle sont
discutées dans le chapitre 3.

Plus précisément, le premier chapitre est dédié à la nature des excitations topologiques qui apparaissent
dans les supraconducteurs à multiples composants. Il est tout d’abord démontré que la condition de
quantification du flux magnétique implique que les excitations topologiques élémentaires y sont des vortex
fractionnaires. Ce sont des configurations des champs qui portent une fraction arbitraire du quantum de flux,
mais qui ont une énergie par unité de longueur divergente. Cependant, lorsque des vortex fractionnaires se
combinent pour former un objet qui portent une quantité entière de flux, ils forment un défaut topologique
d’énergie finie. Selon la position relative des vortex fractionnaires, le défaut topologique qui en résulte
est soit singulier soit sans-coeur (coreless). Dans ce dernier cas, on peut alors démontrer qu’il existe un
invariant topologique supplémentaire, dont la nature est différente de celle du nombre d’enroulement le plus
courant. Néanmoins, l’analyse la plus simple montre que typiquement les vortex fractionnaires s’attirent
pour former un défaut singulier. Il s’ensuit qu’un mécanisme de stabilisation est nécessaire pour l’existence
de défauts sans-coeur. Diverses occurrences de tels défauts topologiques sans-coeur et stables, appelés
skyrmions, sont présentées tout au long de ce chapitre. Comme ils ont une structure du coeur différente, les
skyrmions peuvent interagir différemment en comparaison des vortex singuliers (d’Abrikosov). Ainsi il ont
des propriétés observables qui sont significativement différentes.

Alors que les défauts sans-coeur présentent de nouvelles propriétés intéressantes, les défauts singuliers
présentent également une nouvelle physique riche. Cette nouvelle physique des défauts singuliers est
discutée dans le second chapitre. Les propriétés de la réponse magnétique des supraconducteurs peuvent,
dans une certaine mesure, être considérées comme la conséquence de l’interaction entre les vortex. Plus
précisément, la dichotomie classique qui classe les supraconducteurs conventionnels en type-1 ou type-2,
peut être comprise selon que les vortex s’attirent ou s’ils se repoussent. Les interactions entre vortex peuvent
être déterminées, en partie, par l’analyse des échelles de longueur de la théorie. Les vortex s’attirent lorsque
la longueur de cohérence du condensat est supérieure à la longueur de pénétration du champ magnétique
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(c’est le régime de type-1). En revanche, si la longueur de pénétration est la plus grande échelle de longueur,
les vortex se repoussent (c’est le régime de type-2). Dans les supraconducteurs à plusieurs composantes,
une telle dichotomie n’est pas toujours possible. En effet, puisqu’ils comportent plusieurs condensats
supraconducteurs, les supraconducteurs à multiples composantes présentent généralement des échelles de
longueur supplémentaires. Il peut donc arriver que la longueur de pénétration (qui est unique) soit une
échelle de longueur intermédiaire, et que l’interaction entre vortex soit attractive à longue portée (comme
dans le type-1) et répulsive à courte portée (comme dans le type-2). Un tel régime avec des forces inter-
vortex non monotones est appelé type-1.5. Dans ce régime, les vortex ont tendance à s’agréger pour former
des clusters entourés de régions de l’état de Meissner (donc sans vortex). La possible formation de tels
agrégats impacte fortement les propriétés de magnétisation, par rapport aux régimes conventionnels de
type-1 ou de type-2.

Les interactions non monotones entre les vortex sont en partie déterminées par les échelles de longueur,
et celles-ci sont déterminées par les perturbations autour de l’état fondamental de la théorie. Certains
supraconducteurs à multiples composantes présentent des états fondamentaux inhabituels qui brisent
spontanément la symétrie d’inversion temporelle. Ces aspects sont discutés dans le troisième chapitre.
Ces états, qui brisent la symétrie d’inversion temporelle, sont caractérisés par un état fondamental dont
les phases relatives entre les condensats ne sont ni 0 ni π; par phase relative, on entend la différence
entre les phases de différents condensats. Il existe divers états supraconducteurs de ce type, par exemple
appelés p+ip, s+is, s+id, d+id, etc. Cependant, l’accent sera mis sur l’état s+is, qui est l’extension
de l’état s-wave le plus commun, et qui brise la symétrie d’inversion temporelle. La brisure spontanée de
la symétrie d’inversion du temps dans l’état s+is se produit typiquement à cause de la compétition entre
différents termes de verrouillage des phases (phase-locking). La transition de phase vers les états brisant
la symétrie d’inversion temporelle est du second ordre, et est donc associée à une échelle de longueur
divergente. Notamment, cette transition peut se produire dans l’état supraconducteur où la longueur de
pénétration est finie. Il s’ensuit qu’au voisinage de la transition de cette brisure de la symétrie d’inversion
temporelle, la longueur de pénétration peut être une échelle de longueur intermédiaire, menant ainsi à de
interactions non monotones entre vortex évoquées plus haut. De plus, la symétrie d’inversion temporelle
est une opération discrète, donc si elle est spontanément brisée, alors l’état fondamental possède une
dégénérescence discrète Z2 en plus de la dégénérescence U(1) habituelle. Ceci implique qu’en plus des
vortex, la théorie admet des excitations du type mur de domaine. Ceux-ci interagissent de manière non
triviale avec les vortex, ce qui mène un nouveau type d’excitations topologiques avec différentes propriétés
magnétiques. Enfin, les états supraconducteurs qui brisent la symétrie d’inversion du temps présentent
des propriétés thermoélectriques inhabituelles. Celles-ci peuvent être utilisés pour induire des réponses
électriques et magnétiques spécifiques, lorsque le matériau est exposé à des variations locales inhomogènes
de la température.

Comme expliqué ci-dessus, l’essentiel de ces effets qui apparaissent dans les supraconducteurs à multiples
composantes, sont discutés ici dans le cadre de la théorie de Ginzburg-Landau. La première annexe,
présente le cadre théorique et les propriétés de la théorie de Ginzburg-Landau à une seule composante,
qu’on retrouvera dans la plupart des manuels. Il est en effet parfois utile, de comparer les propriétés
des théories de Ginzburg-Landau multi-composantes avec les résultats classiques. Cela peut fournir un
meilleur apperçu afin de mieux appréhender les nouvelles caractéristiques qui apparaissent dans les théories
à multiples composantes.

Il est à plusieurs reprises souligné que la théorie de Ginzburg-Landau est une théorie des champs classique
qui est non linéaire. Être non linéaire implique que, sauf dans des circonstances très particulières, il n’y a
pas de solutions analytiques, et que le problème doit être traité numériquement. C’est notamment le cas des
résultats affichés dans cet ouvrage, et des résultat des travaux qui y sont discutés. Les aspects techniques
des méthodes numériques sont présentés dans la seconde annexe. Cela comprend une présentation des
méthodes d’éléments finis utilisées pour gérer la discrétisation spatiale des équations aux dérivées partielles;
également l’algorithme d’optimisation pour gérer la non linéarité du problème. La construction numérique



127

des défauts topologiques repose également sur l’implémentation appropriée des propriétés topologiques
pour l’algorithme numérique; c’est également discuté dans cet annexe.

Synthèse du Chapitre 1 - Les défauts topologiques dans les
systèmes à plusieurs condensats supraconducteurs

Contrairement à la théorie de Ginzburg-Landau à une seule composante, où les excitations topologiques
consistent uniquement en des vortex quantiques, les théories dont le paramètre d’ordre a plusieurs
composantes présentent un spectre d’excitations topologiques beaucoup plus riche. Les supraconducteurs
et les superfluides à plusieurs composantes sont décrits par des paramètres d’ordre duquel chacune des
composantes est décrite par un champ scalaire complexe. Ainsi, tous les degrés de liberté supraconducteurs/
superfluides peuvent être assemblés en un multiplet de champs scalaires complexes.

Ce chapitre présente des résultats relatifs aux propriétés topologiques des théories de la supraconductivité
comportant des paramètres d’ordre multiples ou des paramètres d’ordre à plusieurs composantes. Ces
propriétés topologiques sont étudiées ici dans le cadre des théories de Ginzburg-Landau. Les excitations
topologiques les plus élémentaires y sont des vortex fractionnaires qui portent une fraction du quantum de
flux [91, 92, 93]. En bref, il s’agit d’une configuration de champ pour laquelle une seule des composantes
a un nombre d’enroulement non nul.

Dans certains modèles spécifiques de supraconductivité, la fraction portée par ces vortex fractionnaires est
d’un demi quantum de flux. Là, les vortex fractionnaires sont plutôt appelés des vortex à un demi-quantum
(half-quantum vortices). L’existence des vortex à un demi-quantum a été à l’origine prédite dans la phase
A de l’3He superfluide [94, 95]. Leur existence a été étudiée sans relâche et leur observation a finalement
été rapportée dans la phase polaire de l’3He superfluide [96].

La recherche de vortex porteurs d’un demi-quantum de flux a également été très active en physique du
solide. En particulier pour les supraconducteurs dont on a soutenu qu’ils avaient un appariement de type
p-wave, comme Sr2RuO4 [97, 98, 99]. L’observation de pas d’un demi-quantum de flux dans les courbes de
magnétisation d’échantillons mésoscopiques de Sr2RuO4 , a été revendiquée comme la marque des vortex
portant un demi-quantum [100]. L’intérêt pour la réalisation de tels vortex vient du fait que leur spectre
d’excitation contient des fermions de Majorana d’énergie nulle [101]. La statistique de ces vortex est non
abélienne [101], ce qui pourrait potentiellement être utilisé comme éléments de base pour l’informatique
quantique (des qbits) [102].

L’énergie par unité de longueur des vortex fractionnaires n’est malheureusement pas finie. Ainsi, dans
des conditions habituelles, les vortex fractionnaires sont thermodynamiquement instables dans le volume.
Notons cependant que des échantillons mésoscopiques, peuvent permettre de favoriser énergétiquement les
vortex fractionnaires [103, 104].

Les vortex fractionnaires sont des objets assez insaisissables qui ne peuvent donc, en général, pas être
observés individuellement. Cependant, leurs états liés portant un flux entiers ont une énergie finie et
sont donc observables. Les vortex fractionnaires sont importants non seulement parce qu’ils sont les
éléments constituants des excitations topologiques plus complexes, ils sont également la pierre angulaire
des propriétés thermodynamiques des systèmes à plusieurs composantes. Dans les supraconducteurs
à une seule composante, la transition de phase est entraînée par la prolifération de boucles de vortex
excitées thermiquement [26, 27]. De même, dans les supraconducteurs à plusieurs composantes, c’est
la prolifération de vortex fractionnaires qui entraîne les transitions de phase, comme démontré dans la
limite de London [105, 106, 107], ou dans Ginzburg-Landau [108]. En présence d’un champ externe, les
vortex fractionnaires jouent également un rôle dans la fusion des réseaux de vortex [108]. De même, les
propriétés thermodynamiques des superfluides à plusieurs composantes reposent fortement sur le rôle des
vortex fractionnaires [109, 110, 111].
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Plan détaillé du chapitre 1

Pour commencer, une première Section 1.1 aborde la question de la quantification du flux du champ
magnétique dans les supraconducteurs à multiples composantes. On y montre que la quantification du flux
autorise formellement l’existence de vortex fractionnaires. Leurs propriétés élémentaires sont également
discutées. Dans les systèmes à plusieurs composantes, les vortex fractionnaires sont des configurations
des champs, pour lesquelles un seul condensat possède un nombre d’enroulement de la phase non nul,
tandis que les autres non. Considérés individuellement, l’énergie des vortex fractionnaires est divergente.
Cependant, cette divergence de l’énergie disparaît s’ils forment des états liés. Plus précisément, si tous les
condensats possèdent le même nombre d’enroulement.

Cela implique que, dans le volume de ces systèmes, seuls les objets composites ont une énergie
finie. La section 1.1.3 développe davantage les propriétés topologiques des défauts composites pour les
supraconducteurs à multiple composantes. En particulier, il existe un invariant topologique caché associé à
la topologie de l’espace projectif complexe, qui caractérise les défauts topologiques sans-coeur (core-less).
Cet invariant, qui classe les applications R2 → CPN−1, permet de différencier les vortex sans-coeur des
vortex singuliers. Dans le cas d’un système à deux composantes, l’espace cible CP1 peut être identifié avec
la 2-sphère unité S2. L’invariant topologique peut alors être interprété comme l’indice de Hopf, et peut être
utilisé pour caractériser les vortex noués dans les supraconducteurs à deux composantes.

La quantification du flux implique que ces invariants supplémentaires sont non nuls, tant que tous
les condensats supraconducteurs ne disparaissent pas simultanément. C’est-à-dire tant que les vortex
fractionnaires dans les différents composantes ne se superposent pas. L’interaction entre les vortex
fractionnaires est analysée dans la section 1.1.4. Étant donné que l’interaction entre les vortex fractionnaires
est attractive, l’observation des défauts topologiques sans-coeur est plutôt difficile. Comme expliqué en
détails après, divers mécanismes peuvent compenser l’attraction entre les vortex fractionnaires et ainsi
mener à la formation de défauts sans-coeur. Ces défauts sans-coeur qui sont un état lié de vortex
fractionnaires sont souvent appelés skyrmions. Cette terminologie trouve son origine dans l’existence d’une
relation formelle entre les modèles de Ginzburg-Landau à deux composantes et le modèle de Skyrme-
Faddeev. La relation entre ces deux modèles est présentée explicitement dans la section 1.2.

La section 1.3 présente des diverses situations où différents mécanismes physiques permettent de stabiliser
des défauts sans-coeur au dépens des vortex singuliers. Tout d’abord, dans la Section 1.3.1, dans un modèle
d’une mixture de condensats possédant différentes charges électriques (commensurables), introduit dans
[JG18]. Dans ce modèle assez exotique, les différents condensats supraconducteurs peuvent avoir des
charges électriques qui sont différentes (c’est-à-dire qu’ils ont un couplage au champ de jauge qui est
différent). Là, les vortex fractionnaires sont naturellement divisés et forment ainsi un état lié sans-coeur.
Ce modèle peut être appliqué pour décrire phénoménologiquement l’état supraconducteur du deutérium
liquide métallique, où des paires de Cooper électroniques coexistent avec un condensat de Bose-Einstein de
deutérons.

Ensuite, dans la section 1.3.2, il est démontré que l’entraînement inter-composantes non dissipatif, connu
sous le nom d’effet Andreev-Bashkin, est responsable de l’existence des skyrmions [JG20]. De plus, cet
entraînement non dissipatif peut également stabiliser des états liés des vortex fractionnaires noués [JG4].
Ces noeuds, caractérisés par l’indice de Hopf, sont ainsi appelés hopfions. Fait intéressant, ces hopfions
rappellent l’idée antérieure de Kelvin de vortex noués d’éther luminifère pour expliquer la classification des
atomes.

Après, les propriétés des défauts topologiques qui se produisent dans les états supraconducteurs s+is sont
analysées dans la section 1.3.3. Cet état s+is sera considéré plus en détail dans le chapitre 3. L’état s+is

brise une symétrie discrète Z2 associée à la symétrie d’inversion temporelle, en plus de l’habituelle symétrie
de jauge U(1). La brisure spontanée d’une symétrie discrète est associée à la formation de murs de domaine.
Suivant [JG19], ces murs de domaine peuvent être se former lors de refroidissements rapides du matériau
supraconducteur et peuvent être stabilisées géométriquement contre leur expulsion. Comme démontré dans
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[JG26] et dans [JG21], l’interaction complexe entre les mur de domaine et les vortex fractionnaires conduit
à l’existence de nouveaux états skyrmioniques.

Résumé des résultats qui seront présentés dans le chapitre 1

• Dans [JG23] et [JG13], nous avons démontré que l’état supraconducteur px+ ipy permet des états
de type skyrmion qui sont caractérisées par les invariants d’homotopie des applications S2 → S2.
Ils peuvent être alternativement compris comme des vortex portant deux quanta de flux du champ
magnétique. De plus ils sont favorisés énergétiquement par rapport aux vortex portant un seul
quantum de flux [JG13]. Dans un champ magnétique appliqué, ces vortex à deux quanta se forment
spontanément et s’organisent en réseaux hexagonaux [JG11]. Au voisinage du second champ critique
Hc2 le réseau hexagonal des vortex à deux quanta se dissocient en un réseau carré de vortex
quantiques simples [JG11]. Ce scenario persiste au-delà de l’approximation du champ moyen lorsque
les fluctuations sont prisent en compte [JG3].

• Démonstration que les supraconducteurs interfaciaux avec un fort couplage spin-orbite de Rashba
ont une réponse magnétique inhabituelle [JG17]. Nous démontrons microscopiquement que dans la
limite pure, les supraconducteurs interfaciaux, tels que SrTiO3/LaAlO3, sont des candidats idéaux
pour observer les défauts caractérisés par le groupe d’homotopie des applications S2 → S2 (en
supplément des invariant des applications S1 → S1). Des états skyrmioniques similaires existent
également dans les supraconducteurs nématiques tels que CuxBi2Se3 [JG7].

• Identification des propriétés topologiques des mixtures de condensats chargés ayant des charges
électriques différentes (commensurables) [JG18]. Une telle situation devrait apparaître par exemple
dans le deutérium liquide métallique.

• Prédiction d’une nouvelle phase dans les supraconducteurs U(1)×U(1) avec un entraînement inter-
composantes non dissipatif [JG20]. L’interaction non dissipative rend les vortex singuliers instables
au profit des skyrmions, dont l’interaction à longue portée modifie sensiblement les processus
d’aimantation. Ces modèles de supraconductivité avec un entraînement non dissipatif stabilise
également des vortex noués stables [JG4].

• Découverte d’un nouveau type de solitons topologiques stables dans des supraconducteurs à trois
composantes qui brisent spontanément la symétrie d’inversion temporelle [JG26] et [JG21]. Ces
défauts topologiques porteurs de flux, qui sont caractérisés par des invariants topologiques CP2, sont
des skyrmions. Leur observation pourrait signaler des états supraconducteurs qui brisent la symétrie
d’inversion temporelle, par exemple dans certains supraconducteurs à base de fer, ainsi que dans des
multi-couches entre s± et s-wave ordinaire, couplées par l’interaction Josephson.

Synthèse du Chapitre 2 - Le régime supraconducteur de type-
1.5

Les supraconducteurs avec des paramètres d’ordre multi-composantes ont non seulement une grande variété
de défauts topologiques, sans équivalent dans les systèmes mono-composantes (vortex fractionnaires,
skyrmions, hopfions, etc.), mais ils permettent également des interactions plus riches entre eux. Comme
introduit dans le chapitre précédent, les excitations topologiques élémentaires sont des vortex portant une
fraction du quantum de flux. Ceux-ci se combinent pour former des défauts composites qui portent un
flux entier. Indépendamment de leur structure centrale, les interactions entre les défauts topologiques
sont régies, dans une large mesure, par les échelles de longueur caractéristiques de la théorie. Les
condensats supraconducteurs à une seule composante sont caractérisés par la longueur de cohérence ξ
associée aux variations de densité (mode d’Anderson-Higgs). Les paramètres d’ordre multi-composantes,
d’autre part, comportent généralement plus d’échelles de longueur. Alors que les modes scalaires associés
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sont typiquement attractifs, les modes chargés, associés à la longueur de pénétration λ du champ de jauge,
médient la répulsion entre les défauts porteurs de flux.

La classification usuelle divise les supraconducteurs en deux classes, en fonction de leur comportement dans
un champ externe. Cette classification est quantifiée par le paramètre de Ginzburg-Landau sans dimension
κ défini comme le rapport des deux échelles de longueur fondamentales κ = λ/ξ. Lorsque

√
2λ < ξ

(type-1), les supraconducteurs expulsent un champ magnétique faible (l’état de Meissner), tandis que des
domaines normaux macroscopiques se forment lorsque les champs appliqués sont importants [150, 73].
D’autre part, les supraconducteurs de type-2, pour lesquels ξ <

√
2λ, présentent des excitations de type

vortex qui sont thermodynamiquement stables [151]. Le champ magnétique est expulsé en dessous d’une
certaine valeur critique Hc1. Au-dessus de cette valeur, et jusqu’à la destruction de la supraconductivité au
second champ critique Hc2, les supraconducteurs de type-2 forment des réseaux ou des liquides de vortex
portant un quantum de flux. Le coût énergétique de l’interface entre l’état normal et l’état supraconducteur
est positif dans le régime de type-1. L’absence de vortex thermodynamiquement stables et la formation
de domaines normaux macroscopiques découlent donc de la minimisation de cette énergie d’interface. Il
en résulte également que les forces inter-vortex sont purement attractives. Ainsi les vortex s’effondrent en
un vortex géant, minimisant ainsi l’interface. D’autre part, les supraconducteurs de type-2 supportent des
uniquement des vortex à un seul quantum, thermodynamiquement stables, car l’énergie de l’interface entre
l’état normal et l’état supraconducteur est négative. L’interaction entre les vortex est purement répulsive,
ils forment des réseaux d’Abrikosov (triangulaires) [151]. Cet ensemble de vortex maximise l’interface.
Dans la théorie de Ginzburg-Landau, à la valeur critique κ = 1/

√
2 (appelée le point de Bogomol’nyi), les

vortex n’interagissent pas [152, 153]. Là, la répulsion courant-courant compense exactement l’attraction
coeur-coeur à toutes les distances.

Contrairement aux supraconducteurs à une seule composante, il n’est pas possible de construire un
seul paramètre sans dimension pour les supraconducteurs à plusieurs composantes, présentant plusieurs
longueurs de cohérence ξa. Par conséquent, la dichotomie habituelle type-1/type-2 est insuffisante pour
capturer l’ensemble de la physique et pour classer les supraconducteurs à plusieurs composantes. En
effet, comme les longueurs de cohérence ξa associées aux condensats supraconducteurs sont typiquement
différentes, la longueur de pénétration λ peut être formellement une échelle de longueur intermédiaire
: ξ1 < · · · <

√
2λ < · · · < ξN . Pour une telle hiérarchie des échelles de longueur, les modes associés

aux échelles de longueur supérieures à
√

2λ fournissent une attraction à longue portée comme dans les
supraconducteurs de type-1. En revanche, les modes avec des échelles de longueur plus courtes (que

√
2λ)

permettent une répulsion à courte portée, comme dans le type-2.

Considérons par exemple un supraconducteur à deux composantes satisfaisant cette hiérarchie des échelles
de longueur : ξ1 <

√
2λ < ξ2. Là, le mode associé à la plus grande échelle de longueur ξ2 devrait fournir

une attraction à longue portée entre vortex (en gros en raison du chevauchement des coeurs). D’autre part,
les interactions courant-courant et électromagnétique associées à λ fournissent une interaction répulsive
à courte portée. La compétition entre ces comportements ouvre la possibilité d’un potentiel d’interaction
inter-vortex non monotone, qui est attractif à longue portée (comme dans le régime de type-1) et répulsif
à courte portée (comme dans régime de type-2). Ce compromis entre les comportements de type-1 et
de type-2 a motivé la terminologie type-1.5 de tels états [154]. La hiérarchie où λ est une échelle de
longueur intermédiaire est une condition nécessaire, mais pas suffisante, pour réaliser des interactions inter-
vortex non monotones. Pourtant, si elles sont réalisées, les forces non monotones entraînent une séparation
préférentielle entre vortex telle que deux vortex forment un état lié. Ainsi, de nombreux vortex fusionnent
pour former un agrégat de vortex (cluster), coexistant avec les domaines de l’état de Meissner (sans vortex):
l’état semi-Meissner [155].

Dans l’ensemble, c’est l’interaction inter-vortex non monotone qui définit les propriétés essentielles du
régime de type-1.5, mais ce n’est pas suffisant pour définir cet état. En effet, l’attraction entre les vortex peut
également survenir dans certaines circonstances dans les matériaux à une seule composante. Cependant,
dans le cas du type 1.5, l’attraction à longue portée est une conséquence de plusieurs longueurs de cohérence
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et s’accompagne de plusieurs nouveaux effets physiques discutés ci-dessous.

Plan détaillé du chapitre 2

L’ingrédient essentiel pour la réalisation du régime de type-1.5 dans les supraconducteurs à multiples
composantes est d’avoir une hiérarchie des longueurs caractéristiques telle que la longueur de pénétration
soit une échelle intermédiaire. Ainsi, comme point de départ, la Section 2.1 présentera le cadre général pour
l’analyse des échelles de longueur. Ceci résulte de l’analyse du spectre propre de l’opérateur (linéaire) des
perturbations autour de l’état fondamental. Le cadre général est ensuite complété par un exemple particulier
qui peut être traité analytiquement.

Les échelles de longueur, définies à partir du spectre propre des perturbations, déterminent le comportement
asymptotique des vortex. En particulier, comme détaillé dans la section 2.1.3, cela contrôle l’interaction à
longue portée entre les vortex. Si la longueur de pénétration est une échelle de longueur intermédiaire, alors
les forces inter-vortex sont attractives à longue portée et répulsives à courte portée. Cela suggère fortement
que les vortex devraient former des états liés avec une séparation préférentielle.

Lorsque la hiérarchie des échelles de longueur autorise des forces inter-vortex non monotones, alors les
vortex peuvent s’agréger ensemble formant ainsi des clusters de vortex entourés de régions sans vortex, de
l’état de Meissner. Quelques exemples de tels clusters sont considérés dans la section 2.2.

Ensuite, la section 2.3 examine les possibles mécanismes qui devrait conduire à la formation d’agrégats de
vortex; ainsi que les différents modèles où cela a été observé. Les signatures expérimentales possibles de
ces amas de vortex, et leur pertinence expérimentale y sont également discutés.

Résumé des résultats qui seront présentés dans le chapitre 2

• Découverte d’un nouveau type de forces inter-vortex à plusieurs corps dans les supraconducteurs
multibandes [JG27]. Les interactions inter-vortex sont non monotones et mènent à la formation
d’amas de vortex entourés de domaines de Meissner macroscopiques (c’est-à-dire des état sans
vortex). La formation des structures peut être fortement impactée par les interactions entre vortex
non-par-paires (non pairwise), provenant de la superposition non linéaire des vortex. Les forces
inter-vortex non monotones entraînent également la formation de clusters dans les supraconducteurs
à trois bandes [JG25]. Pour une revue de ces phénomènes, voir [JG24]. Des forces inter-
vortex non monotones peuvent également se produire dans des systèmes supraconducteurs avec des
paramètres d’ordre en compétition. C’est-à-dire lorsque, dans l’état fondamental, les interactions
inter-composantes interdisent la coexistence des deux condensats [JG16] et [JG15].

• Explication de la coalescence de vortex, dans un modèle putatif à deux bandes pour le matériau
supraconducteur Sr2RuO4 [JG22]. Nous avons soutenu que la coalescence de vortex parfois observée
dans Sr2RuO4 peut s’expliquer par des interactions non monotones provenant de la nature multibande
de Sr2RuO4 . Ce scenario de la coalescence des vortex dans Sr2RuO4 a reçu un soutien expérimental
des mesures de µSR dans Phys. Rev. B 89, 094504 (2014) [157].

• Prédiction de la réponse magnétique inhabituelle dans les supraconducteurs interfaciaux avec un fort
couplage spin-orbite (du type Rashba) [JG17]. Nous démontrons microscopiquement, et au travers
de diverses simulations, que les supraconducteurs interfaciaux tels que SrTiO3/LaAlO3, peuvent
présenter la formation de clusters de vortex.

• Dans une série de travaux sur les propriétés microscopiques des supraconducteurs à deux bandes,
avec des impuretés, nous avons démontré qu’il existe des régions du diagramme des phase où la
hiérarchie des échelles de longueur permet en principe la formation d’amas de vortex. L’origine
d’une telle hiérarchie est la proximité d’une transition de phase du second ordre, cachée au sein de
l’état supraconducteur [JG9]. Cela devrait se produire de la même manière dans les systèmes pures à
trois bandes [JG10]. Des simulations numériques montrent qu’en effet cela se produit, et que cela se

http://dx.doi.org/10.1103/PhysRevB.89.094504
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traduit par des signaux particuliers qui peuvent être distinguer la coalescence par rapport à d’autres
scénarios, via des mesures globales de la réponse d’expériences de µSR [JG5].

Synthèse du Chapitrer 3 - Les états supraconducteurs qui
brisent la symétrie d’inversion temporelle

Les théories qui décrivent la physique des supraconducteurs (ou des superfluides) sont invariantes sous
conjugaison complexe. Cette invariance est généralement appelée symétrie d’inversion du temps. Dans
les systèmes à plusieurs composantes, la symétrie d’inversion temporelle peut être spontanément brisée par
l’état fondamental. C’est-à-dire que l’état fondamental n’est pas invariant, aux rotations globales de phase
près, sous conjugaison complexe. De tels états peuvent apparaître si la phase relative entre les fonctions
de gap supraconducteur dans les différentes composantes diffère de 0 ou π [208, 209, 210, 146, 211, 212,
145, 213, 171, 214, 215, 216]. Il en résulte qu’en plus de la brisure habituelle de la symétrie de jauge
U(1), ces états supraconducteurs présentent une dégénérescence discrète associée à la brisure spontanée de
la symétrie d’inversion temporelle.

Les états brisant spontanément la symétrie d’inversion temporelle ont suscité beaucoup d’intérêt dans le
contexte des modèles supraconducteurs non conventionnels à triplet de spin, en particulier l’état px + ipy
qui a été intensivement étudié en relation avec le supraconducteur Sr2RuO4 . L’état supraconducteur s+is

est un autre état brisant la symétrie d’inversion du temps, qui a attiré beaucoup d’attention. En effet, il
a reçu un fort soutien théorique en relation avec certains supraconducteurs à base de fer, et en particulier
Ba1−xKxFe2As2 avec un dopage de trous [217, 218, 219, 220, 215]. L’état s+is est un mélange complexe
d’états supraconducteurs distincts, ayant la même symétrie, et qui sont en compétition au travers de termes
de verrouillage des phases. Dans les pnictides, on pense qu’il provient de la compétition entre différents
canaux d’appariement [215]. Cet état pourrait également être conçu artificiellement sur des interfaces de
bicouches supraconductrices [145].

La brisure spontanée de la symétrie d’inversion temporelle a diverses conséquences physiques intéressantes.
Certaines, comme l’existence de murs de domaine, ont été discutés précédemment au chapitre 1. Les
supraconducteurs à base de fer [60] sont parmi les candidats les plus prometteurs pour l’observation des
états s+is. En effet, les données expérimentales montrent que dans les composés 122 Ba1−xKxFe2As2

dopés en trous, la symétrie de l’état supraconducteur change en fonction du niveau de dopage x. Une
structure de bande typique de Ba1−xKxFe2As2 se compose de deux poches de trous au point Γ et de deux
poches d’électrons à (0, π) et (π, 0). A des niveaux modérés de dopage x ∼ 0.4 diverses mesures, incluant
ARPES [221, 222, 223], de conductivité thermique [224] et des expériences de diffusion de neutrons [225],
sont cohérentes avec l’hypothèse d’un état s± où l’etat supraconducteur change de signe entre les poches
d’électrons et de trous. D’autre part, la symétrie de l’état supraconducteur à fort dopage x → 1 n’est pas
aussi claire quant à la question de savoir si le canal d domine, ou si le gap conserve la symétrie s± qui
change de signe entre le bandes de trous internes au point Γ [218, 219]. En effet, il existe des preuves
que canal d-wave domine [226, 227, 228, 229] tandis que d’autres données ARPES ont été interprétées en
faveur d’une symétrie s-wave [230, 231]. Dans les deux situations, cela implique l’existence possible d’un
état complexe intermédiaire qui compromet entre les comportements à dopage modéré et élevé. Selon que
le canal d ou s domine à fort dopage, un tel état complexe est nommé s+is ou s+id.

L’état s+is est isotrope et préserve les symétries cristallines [215]. D’autre part, l’état s+id brise la
symétrie C4, alors qu’il reste invariant sous la combinaison d’une opération de symétrie par inversion
du temps et des rotations C4. Étant anisotrope, l’état s+id est donc qualitativement différent de l’état
s+is. Notons que l’état supraconducteur s+id est aussi qualitativement différent des états s+d (préservant
l’inversion temporelle), qui ont suscité l’intérêt dans le contexte des supraconducteurs cuprates à haute
température (voir par exemple [232, 233, 234]). Il contraste également avec l’état d + id, qui peut
apparaître en présence d’un champ magnétique externe, et qui viole à la fois les symétries de parité et
d’inversion du temps [208, 235] . Bien qu’il s’agisse d’un scénario intéressant, peut-être pertinent pour
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les pnictides, les propriétés de l’état s+id ne seront pas davantage examinées ici. L’accent sera mis sur
l’analyse de l’état supraconducteur de s+is. Cet état devrait résulter de diverses physiques microscopiques
[146, 210, 236, 63, 215, 237].

L’observation expérimentale des états s+is ou s+id, qui brisent la symétrie d’inversion temporelle, est un
défi. En effet, cela nécessite de sonder les phases relatives entre les composantes du paramètre d’ordre,
ce qui est une tâche difficile. Par exemple, l’état s+is ne brise pas les symétries des groupes ponctuels et
n’est donc pas associé à un moment cinétique intrinsèque des paires de Cooper. Par conséquent, il ne peut
pas produire de champ magnétique local et est donc a priori invisible pour les méthodes conventionnelles
telles que la relaxation du spin du muon et les mesures de l’effet Kerr polaire qui ont par exemple été
utilisées pour sonder l’état supraconducteur p+ip qui brise l’inversion temporelle. Plusieurs propositions
ont été émises, chacune avec diverses limitations, pour observer indirectement des signatures de la brisure
de la symétrie d’inversion du temps dans les pnictides. Celles-ci, par exemple, incluent l’étude du spectre
des modes collectifs, qui comprend des excitations à masse nulle [213], et qui mélangent des modes de
densité et des modes de phases [171, 238, 215, 239] . En outre, il a été proposé de considérer les propriétés
des excitations topologiques exotiques telles que les skyrmions et les murs de domaine [142, 120, 119],
des mécanismes non conventionnels de la viscosité des vortex [240], la formation d’amas de vortex [171],
des phases exotiques réentrantes et précurseures induites par les fluctuations [241, 242, 243, 244]. Il a
été prédit que des courants spontanés existent à proximité d’impuretés non magnétiques dans des états
s+id supraconducteurs anisotropes [209, 216] ou dans des échantillons soumis à une contrainte [216].
Cependant, cette dernière proposition implique en fait un changement de symétrie des états s+is et repose
sur la présence d’impuretés qui peuvent avoir une distribution incontrôlable. Il a également été souligné
que l’état s+is brisant la symétrie d’inversion temporelle présente une contribution non conventionnelle à
l’effet thermoélectrique [245]. En lien avec cela, un montage expérimental, basé sur un chauffage local a
été proposé [246]. L’idée clé étant que le chauffage local induit des variations locales de phases relatives
qui donnent une réponse électromagnétique directement observable.

Plan détaillé du chapitre 3

L’existence de l’état s+is peut provenir de divers mécanismes, y compris la compétition entre différents
canaux d’appariement, ou la diffusion d’impuretés. Ces aspects microscopiques ne seront pas abordés ici.
Au lieu de cela, on présentera la manière dont cet état s+is apparaît dans les théories phénoménologiques
de Ginzburg-Landau.

Comme point de départ, la Section 3.1 présente le mécanisme de frustration de phases, responsable de la
brisure spontanée de la symétrie d’inversion temporelle, dans les supraconducteurs à trois composantes. Il
s’agit ici de la compétition entre les différents termes de verrouillage des phases qui peut entraîner l’état
s+is. Puisque la symétrie d’inversion du temps est une opération discrète, sa brisure spontanée implique
que l’état fondamental présente une dégénérescence discrète. Les propriétés d’un tel état fondamental seront
analysées dans la section 3.1.1, tandis que les échelles de longueur correspondantes seront dérivées dans la
section 3.1.2. Le cas d’un état s+is à deux composantes sera également traité dans cette section.

Ensuite, les propriétés des défauts topologiques qui peuvent apparaître dans les états supraconducteurs qui
brisent la symétrie d’inversion du temps sont abordées dans la section 3.2. Il y aura un chevauchement
partiel avec les discussions de la section 1.3.3 du chapitre 1. Le fait que l’état fondamental brise une
symétrie discrète implique que la théorie admet des murs de domaine. Ces murs de domaine entre différents
états brisant la symétrie d’inversion temporelle seront construits explicitement dans la section 3.2.1. Les
mur de domaine interagissent de manière non triviale avec les vortex. Comme détaillé dans la section
3.2.1, des murs de domaine fermés peuvent former des états liés avec des vortex. Comme discuté d’abord
dans le chapitre 1, puisque les défauts composites qui en résultent sont sans-coeur, ils ont des propriétés
topologiques supplémentaires: ce sont les skyrmions chiraux CP2.

Enfin, les propriétés thermoélectriques de l’état s+is seront discutées dans la section 3.3.
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Résumé des résultats qui seront présentés dans ce chapitre

• Dans [JG10] nous avons démontré que les théories du champ moyen pour les états supraconducteurs
s+is, qui brisent la symétrie d’inversion temporelle, sont quantitativement cohérentes avec les
modèles microscopiques à plusieurs bandes. Nous avons par ailleurs démontré que l’état s+is peut
également apparaître dans les systèmes à deux bandes en raison de la diffusion due à des impuretés
[JG9]. Dans l’approximation quasi-classique, nous montrons qu’en fonction du niveau des impuretés,
l’état s+is est une phase intermédiaire entre les états s± et s++. Nous avons en outre établi dans
[JG10] et dans [JG5] que la phase s+is est entouré d’une ligne de transition de phase du second
ordre. Cela implique l’existence d’un soft-mode avec une échelle de longueur divergente. Les autres
longueurs de cohérence restent finies à cette transition, et il existe donc une disparité infinie des
longueurs de cohérence, ce qui peut conduire à une physique des vortex inhabituelle avec des forces
non monotones [JG5] et [JG6]. Ces forces inter-vortex, attractives à longue portée et répulsive à
courte portée, permettent la formation d’agrégats de vortex.

• Dans [JG14] et [JG12] nous avons démontré que l’existence d’états brisant la symétrie d’inversion
du temps a un impact mesurable sur la réponse thermoélectrique des supraconducteurs. Dans
[JG14], nous avons prédit que les supraconducteurs qui brisent la symétrie d’inversion temporelle
présentent un effet thermoélectrique géant, dont la nature est essentiellement différente de celui
des supraconducteurs à une seul composante. Cet effet provient des contre-courants inter-
composantes induits thermiquement, contrairement aux contre-courants entre les courants normaux
et supraconducteurs dans le mécanisme de Ginzburg traditionnel. Nous avons par ailleurs démontré
dans [JG12], que ces propriétés thermoélectriques non conventionnelles peuvent être utilisées pour
induire des champs magnétiques et électriques, mesurables expérimentalement, en réponse à un
chauffage local des matériaux candidats. Les champs induits sont sensibles à la présence de murs
de domaine, ainsi qu’à l’anisotropie cristalline. De plus, un processus de chauffage non stationnaire
produit un champ électrique et un déséquilibre de charge dans les différentes bandes [JG12], qui est
également mesurable.

• Description des signatures expérimentales des murs de domaine se formant lors de quenchs, via
le mécanisme de Kibble-Zurek, dans des supraconducteurs à brisant spontanément la symétrie
d’inversion temporelle, ayant la structure du gap s+is [JG19]. Comme il s’agit d’une symétrie
discrète, la brisure spontanée de la symétrie d’inversion temporelle dans l’état s+is, dicte qu’elle
possède des excitations de type mur de domaine. Nous discutons également de l’influence des murs
de domaine, stabilisées géométriquement, sur les processus de magnétisation.

• Découverte d’un nouveau type de solitons topologiques stables, dans les supraconducteurs à trois
composantes, qui brisent spontanément la symétrie d’inversion du temps [JG26] et [JG21]. Ces
défauts topologiques portant un flux magnétique, sont caractérisés par un ivariant topologique cachée,
associée à la topologie de l’espace projectif complexe CPN−1. Ces skyrmions CP2 peuvent se
former spontanément lors d’expérience de refroidissement sous champs [JG19], lorsque le processus
de refroidissement passe par la transition de phase vers l’état brisant la symétrie d’inversion du temps.

• Découvertes d’un nouveau type de mode collectif, dans les supraconducteurs à trois composantes
brisant la symétrie d’inversion temporelle [JG25]. Ce mode est associé à des excitations collectives
mélangeant densités et phases. Il est donc différent du mode Leggett.

Synthèse de l’Annexe A - Théorie de Ginzburg-Landau à une
composante

Le corps principal de ce rapport présente les résultats concernant les propriétés des théories de
la supraconductivité comportant plusieurs paramètres d’ordre, ou bien avec un paramètre d’ordre
à plusieurs composantes. Il est utile, pour une meilleure compréhension des particularités des
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théories multicomposantes, de passer en revue les propriétés essentielles des modèles conventionnels de
supraconductivité à une seule composante. Couvrir tous les aspects microscopiques de la supraconductivité
conventionnelle est au-delà des présentes discussions, et ceux-ci ne seront pas discutés ici. Les aspects
microscopiques et de champ moyen de la supraconductivité à une seule composante sont largement discutés
dans un grand nombre de manuels classiques, voir par exemple [298, 73, 163, 299, 300, 301, 302, 303, 304,
305].

Par conséquent, la présente revue se limite uniquement aux aspects classiques de la théorie de champ moyen
de la supraconductivité. Plus précisément, cette annexe présente le cadre théorique général et les propriétés
de la théorie de Ginzburg-Landau à une seule composante.

La théorie de Ginzburg-Landau [150] a été introduite en 1950, pour rendre compte des propriétés
macroscopiques de l’état supraconducteur. Cette théorie phénoménologique est basée sur la théorie de
Landau de transition de phase du second ordre, où le paramètre d’ordre macroscopique, noté ψ = |ψ|eiϕ, est
un champ scalaire complexe. Le paramètre d’ordre ψ est souvent appelé de manière équivalente condensat
supraconducteur. La théorie microscopique de la supraconductivité de Bardeen-Cooper-Schrieffer [70]
a été dérivée plus tard en 1957. Peu de temps après, en 1959, Gor’kov a démontré que la théorie de
Ginzburg-Landau peut être dérivée comme une approximation classique de la théorie microscopique [72],
et le module du paramètre d’ordre ψ est en fait la densité de paires de Cooper : ns = |ψ|2. Au sens strict,
la théorie de Ginzburg-Landau n’est valable que dans un proche voisinage de la température critique Tc
où la supraconductivité est détruite, et suppose que ψ est petit et varie lentement (que les gradients sont
petits).

Notons qu’en plus de ses applications fondamentales en physique du solide, la théorie de Ginzburg-Landau
a attiré beaucoup d’attention dans la communauté des mathématiques à partir des années 1990, après qu’il
ait été démontré qu’il s’agit d’un problème bien posé [77, 306, 78, 307]. Depuis ces travaux, il y a eu une
activité important pour comprendre les propriétés mathématiques de ce problème, voir par exemple [79].
Parallèlement, des efforts continus ont également été déployés dans la communauté des physiciens pour
avoir une formulation optimale pour les solveurs numériques, voir par exemple [308, 309].

Plan détaillé de l’annexe A

Dans ce chapitre on introduit la théorie de Ginzburg-Landau ainsi que les équations décrivant la dynamique
du condensat supraconducteur. Ensuite, les propriétés de l’état fondamental sont discutées, ainsi que la
détermination des échelles de longueur caractéristiques et de l’effet Meissner. En particulier, les échelles
de longueur sont déterminées à partir du spectre de masse de la théorie, obtenu en étudiant l’opérateur des
perturbations linéaires autour de l’état fondamental supraconducteur.

Ensuite, nous considérons la condition de quantification du flux magnétique, et il est démontré que
cela implique l’existence de vortex magnétiques. Une dichotomie peut être établie pour classer les
supraconducteurs en deux types selon les propriétés d’interaction des vortex. En particulier que dans le
régime de type-1 les vortex s’attirent, alors qu’ils se repoussent dans le régime de type-2. Cette image est
complétée par l’analyse des champs critiques, ce qui permet d’établir qualitativement les diagrammes de
phases des différents types de supraconducteurs.

Synthèse de l’Annexe B - Méthodes numériques

La plupart des résultats présentés dans le corps principal du rapport reposent sur des simulations
numériques. L’accent à été mis sur les propriétés physiques et très peu de mots ont été dits sur les détails de
ces simulations. On présente dans cette annexe, une discussion détaillée des méthodes numériques utilisées
pour étudier la physique des différents systèmes introduits dans la partie principale. Cela commence, dans
la section B.1, par un aperçu général des méthodes d’éléments finis utilisées pour la discrétisation spatiale.
Ensuite, les détails de l’algorithme utilisé pour résoudre les problèmes (non linéaires) de Ginzburg-Landau
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sont présentés dans la section B.2. Les aspects importants du choix approprié de la configuration initiale
sont détaillés dans la section B.2.3. Enfin, la question de l’évolution des problèmes dépendant du temps est
abordée dans la section B.3.

Plan détaillé de l’annexe B

Il existe différentes méthodes pour aborder la discrétisation spatiale des équations aux dérivées partielles.
La méthode des différences finies, qui est basée sur des développements en séries de Taylor pour
approximer la dérivée, est la plus ancienne. Cette technique de discrétisation représente l’espace en
réseaux topologiquement carrés ou en réseau de cuboïdes. Cette méthode est plutôt intuitive, mais elle
rend difficile la manipulation de géométries complexes. Cette difficulté a motivé l’approche de la méthode
des éléments finis. Historiquement, les méthodes des éléments finis ont souvent été préférées pour la
démontrabilité rigoureuse de leur stabilité, ainsi que pour leur applicabilité naturelle à des géométries
complexes. Les avantages relatifs des deux méthodes ont longtemps été fortement débattus, et il est juste
de dire qu’aujourd’hui les deux méthodes sont sensiblement équivalentes. Chacune avec ses avantages et
ses inconvénients. Il existe de nombreuses approches différentes comme les méthodes spectrales, qui ne
sont pas exhaustivement listées ici. Les méthodes aux différences finies ou aux éléments finis sont plus ou
moins fréquentes selon les différentes communautés scientifiques. Par exemple, et très grossièrement, les
différences finies sont largement utilisées pour les simulations des théories de jauge sur réseau, tandis que
les éléments finis sont plus communs, par exemple en ingénierie et en mathématiques.

Les simulations numériques discutées dans le corps principal, et les articles correspondants, ont largement
utilisé les méthodes d’éléments finis, pour une grande variété de problèmes incluant la résolution directe, la
minimisation, l’optimisation contrainte, l’évolution temporelle, etc. En pratique, la discrétisation spatiale
est gérée dans un cadre fourni par la bibliothèque FreeFEM++ 5 [317]. Les méthodes des éléments finis
sont basées sur la formulation faible (la formulation variationnelle) d’équation aux dérivées partielles. On
présentera une description brève et non exhaustive des concepts utilisés dans les méthodes des éléments
finis. Des introductions détaillées peuvent être trouvées dans de nombreux manuels, voir par exemple
[318, 319, 320, 321].

Après cette introduction aux principes des méthodes d’éléments finis, on se focalisera sur les aspects
algorithmiques qui permettent la résolution des problèmes non linéaires. En effet, la plupart des problèmes
discutés dans le corps principal nécessitent de minimiser numériquement l’énergie libre de Ginzburg-
Landau. Il s’agit d’un problème d’optimisation non linéaire, pour la théorie des champs considérée, et
le choix l’algorithme était généralement la méthode du gradient conjugué non linéaire. Il s’agit d’une
méthode numérique pour résoudre des problèmes d’optimisation non contraints, de manière itérative. On
présentera brièvement les principes de cette méthode, puis on en montrera la formulation explicite pour le
problème de minimisation dans la théorie de Ginzburg-Landau.

Ensuite on présentera en détails les aspects relatif au choix de la configuration initiale pour l’algorithme de
minimisation. En effet, le choix de la configuration initiale pour la minimisation est une étape cruciale dans
la construction de nouvelles solutions. Un choix initial judicieux améliore non seulement la convergence de
l’algorithme, mais permet également d’initier certaines des propriétés souhaitées. L’idée clé est que pour
que l’algorithme de minimisation converge vers une configuration qui possède les propriétés topologiques
souhaitées, la configuration de départ doit elle-même avoir ces propriétés. Le raisonnement est le suivant
: différents secteurs topologiques sont généralement séparés de grandes barrières énergétiques, ainsi la
minimisation converge facilement vers une configuration qui a les mêmes propriétés topologiques que la
configuration de départ. Remarquons que les barrières énergétiques infinies, qui séparent les différents
secteurs topologiques, sont généralement définies dans un espace infini. De plus la discrétisation spatiale
limite également les arguments issus de la topologie. Donc, à proprement parler, dans les domaines finis, il
n’y a que des barrières d’énergie finies entre les différents secteurs topologiques.

5https://freefem.org/

https://freefem.org/
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On discutera enfin des algorithmes pertinents pour l’analyse de problèmes dépendants du temps. En effet,
la plupart des problèmes discutés dans le corps principal nécessitent les techniques de minimisation pour
les problèmes non linéaires. Cependant, il est parfois important de connaître les propriétés dynamiques
d’évolution temporelle du système. Par exemple, avec l’équation de Ginzburg-Landau dépendante du
temps, voir par exemple [314, 315, 316]. On présentera en détail un algorithme utilisé pour l’évolution
temporelle des systèmes (non)linéaires, l’algorithme de Crank-Nicolson [334]. Il s’agit d’une méthode
implicite aux différences finies dans la dimension temporelle qui a été conçue à l’origine pour simuler
l’évolution temporelle de l’équation de la chaleur [334]. Par la suite, cette méthode a également été utilisé
dans le cadre de l’équation de Schrödinger non linéaire [335], et pour étudier la dynamique des superfluides
et des condensats de Bose-Einstein d’atomes ultra-froids [336]. On présentera les détails de cet algorithme
dans le contexte de l’équation de Gross-Pitaevskii. Une version légèrement différente est nécessaire pour
les supraconducteurs, afin de prendre en compte le champ de jauge, voir par exemple les travaux connexes
[322, 323, 337].

Conclusion et perspectives

Conclusion

Ce mémoire tente de faire passer le message que les modèles à plusieurs composantes, et en particulier
les supraconducteurs à multiples composantes, hébergent une physique très riche, qui est absente de leurs
homologues à une seule composante.

Comme souligné dans l’introduction, les excitations topologiques sont omniprésentes en physique. Ainsi,
elles apparaissent par exemple dans la physique du solide, dans les systèmes de la matière condensée, la
physique des hautes énergies, etc. Selon les propriétés topologiques associées, ces objets ont des structures
qui sont différentes. Ils peuvent être semblables à des particules, à des singularités ponctuelles, à des parois
ou encore à des lignes. Dans ce dernier cas, les défauts topologiques sont les vortex, et ils ont été largement
étudiés dans le contexte de la superfluidité et de la supraconductivité. Les vortex déterminent, dans une
large mesure, les propriétés thermodynamiques, électriques et magnétiques des matériaux considérés. Le
choix du récit dans l’introduction tente de souligner que les vortex ont attiré l’attention depuis longtemps,
et que certains concepts relativement anciens sont toujours d’actualité dans la physique moderne.

En raison du plus grand nombre de degrés de liberté, les modèles multicomposantes de supraconductivité
permettent un riche spectre de défauts topologiques. Le premier chapitre était essentiellement consacré à
la formalisation des propriétés topologiques des supraconducteurs à multiples composantes. Il a ensuite été
discuté diverses contributions de l’auteur, dans la construction de nouveaux types de défauts topologiques,
dans différents modèles de supraconductivité multicomposantes. Ces nouveaux défauts topologiques
peuvent être utilisés pour identifier les propriétés des modèles sous-jacents. De plus, il a été souligné dans
le deuxième chapitre, que les supraconducteurs multicomposantes hébergent non seulement de nouvelles
d’excitations topologiques, mais aussi qu’ils peuvent interagir différemment des vortex habituels. Cette
nouvelle interaction entre les vortex est essentiellement différente de celle des supraconducteurs à une seule
composante, de type 1 ou de type-2. Il s’ensuit que les vortex peuvent former des agrégats, ce qui a un
impact important sur divers processus physiques observables. Enfin, il peut également exister des états
supraconducteurs qui brisent la symétrie d’inversion temporelle, à cause de la compétition entre différents
canaux d’appariement. Ces états sont associés à de nouveaux effets mesurables, comme on l’avons vu dans
le dernier chapitre.

Il est important de souligner à nouveau, que toutes les contributions de l’auteur reposent sur une utilisation
intensive des méthodes numériques. Les aspects numériques sont bien souvent négligés, au profit des
discussions sur les propriétés physiques. Il à semble opportun de profiter de ce mémoire, pour présenter
plus en détail ces aspects des méthodes numériques.
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Les résultats présentés dans ce rapport visent à souligner la richesse de la physique des systèmes à plusieurs
composantes. Ce n’est que la pointe de l’iceberg, et beaucoup d’autres choses peuvent encore être dites.
Bien que la physique des défauts topologiques soit une histoire assez ancienne maintenant, il reste encore
beaucoup à découvrir.

Perspectives

Comme cela a été souligné dans le mémoire, il existe un nombre croissant de matériaux supraconducteurs
multibandes/multicomposantes connus. C’est donc un terrain de jeu en constante évolution pour rechercher
de nouvelles théories pertinentes, et en étudier les propriétés topologiques. Ainsi, dans un certain sens, il y
a toujours des projets encore inconnus qui méritent d’être étudiés, en raison de leur pertinence par rapport
à certains nouveaux matériaux. En tout cas, de nombreux aspects des modèles de supraconducteurs multi-
composants sont probablement encore à découvrir. On présentera trois directions intéressantes, en relation
avec les aspects abordés dans le rapport.

Projet 1 : États supraconducteurs anormaux qui brisent la symétrie d’inversion temporelle.
Certaines des nouvelles propriétés de l’état s+is, qui brise spontanément la symétrie d’inversion du temps,
ont été décrites en détail dans ce mémoire. Elles sont, entre autres, l’existence de modes collectifs qui
incluent des excitations de masse nulle [213], des modes mélangeant phase et densité [171, 238, 215, 239],
un mécanisme non conventionnel de la viscosité des vortex [240], la formation d’agrégats de vortex [171],
une contribution inhabituelle à l’effet thermoélectrique [245, 246]. L’état s+is doit également héberger des
excitations topologiques telles que des skyrmions et des murs de domaine [142, 120, 119].

Récemment, la mesure de chaleur spécifique du composé Ba1−xKxFe2As2 dopé en trous, au dopage
x ≈ 0.8, a montré un comportement intrigant [285]. À savoir, les expériences de l’effet Nernst
spontané et de rotation de spin du muon (muon spin rotation), indiquent un état qui brise spontanément
la symétrie d’inversion du temps, mais dans lequel les paires de Cooper ne sont pas cohérentes. Lorsqu’un
supraconducteur à plusieurs composantes brise la symétrie d’inversion temporelle, il peut y avoir plusieurs
transitions de phase. Au niveau de la théorie du champ moyen, la transition de phase supraconductrice Tc
se produit toujours à une température supérieure ou égale à la température de transition de la brisure de la
symétrie d’inversion de temps TZ2 . Les résultats récents montrent un comportement opposé où TZ2 > Tc
[285]. Toutes les discussions sur le rôle des fluctuations et leurs implications dépassent les discussions ici.
Cependant, quelques remarques sur la structure du modèle ouvrent des perspectives intéressantes.

Comme indiqué dans ce mémoire, les supraconducteurs à plusieurs composantes possèdent une contribution
supplémentaire au champ magnétique, en raison des interactions entre composantes. En reprenant
l’expression de l’énergie libre de Ginzburg-Landau, en termes de modes chargés et neutres, on peut réécrire
le modèle comme
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Dans l’état anormal, la partie supraconductrice du modèle est désordonnée, et la partie correspondant
l’écrantage de London est absente, c’est-à-dire J = 0. Alors, un modèle effectif décrivant le nouvel état
anormal, peut être dérivé à partir (D.6), en exigeant que le courant supraconducteur disparaisse J = 0. Cela
revient à ne retenir que les degrés de liberté qui sont liés aux phases relatives. Ce modèle s’écrit donc [285]
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Comme discuté en détail dans [285], la théorie effective de cet état anormal, qui brise la symétrie d’inversion
du temps, permet des excitations de murs de domaine. Ceux-ci comportent des signatures magnétiques,
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analogues à celles discutées dans le chapitre 3.

Ce nouveau modèle effectif offre de nombreuses opportunités pour observer des propriétés inhabituelles
des modèles multicomposantes dans un état anormal. C’est-à-dire qu’il est possible d’observer certaines
des propriétés topologiques des supraconducteurs à plusieurs composantes, au-dessus de la température
critique. Bien entendu ici, le modèle (D.7) est obtenu de manière heuristique, et une dérivation rigoureuse
est nécessaire pour gérer correctement la manière dont les différents termes doivent être renormalisés,
lorsque la partie supraconductrice du modèle est désordonnée.

Projet 2 : Autres états supraconducteurs qui brisent la symétrie d’inversion temporelle. Non
seulement le nombre de supraconducteurs multibandes/multicomposants connus augmente, mais aussi de
ceux qui brisent la symétrie d’inversion du temps [286]. Il a été souligné dans ce rapport que les états
supraconducteurs qui brisent spontanément la symétrie d’inversion temporelle présentent de nouvelles
propriétés. L’accent a été mis principalement sur l’état s+is, qui est pertinent pour la famille des
supraconducteurs à base de fer. Un autre état brisant la symétrie d’inversion du temps, qui a été très
étudié en lien avec les modèles supraconducteurs à triplets de spin, est l’état p+ip . Il existe divers
autres états supraconducteurs, qui brisent la symétrie d’inversion temporelle, mais avec d’autres symétries
d’appariement, comme s+id, d+id. Par exemple, il a été récemment avancé que l’appariement dans
Sr2RuO4 pourrait être soit d+id soit d+ig [287, 288]. Ces états, différents de p+ip ou s+is, sont beaucoup
moins étudiés, et notamment leurs propriétés topologiques.

Puisqu’ils brisent la symétrie d’inversion du temps, tous ces états doivent également comporter des
excitations du type mur de domaine. Cependant, la différence est ces états brisent différentes symétries de
groupes ponctuel. Au niveau du modèle de Ginzburg-Landau, cela se manifeste par une structure différente
et plus riche des termes cinétiques, sous forme d’anisotropies et de mélange de gradients. Comme par
exemple (Dxψ

∗
1Dxψ2 − Dyψ∗1Dyψ2 + c.c.), pour l’état s+id qui brise la symétrie C4. Ou par exemple

l’état d+ id, qui viole à la fois les symétries de parité et d’inversion temporelle [208, 235] .

Les particularités de ces autres symétries d’appariement ont été beaucoup moins étudiées. Par exemple, en
raison de leurs structures différentes, ils devraient également manifester des réponses thermoélectriques
qualitativement différentes de celles discutées dans le chapitre 3. De plus, la structure des défauts
topologiques doit aussi certainement y être sensible.

Projet 3 : Noeuds et vortons dans la théorie électrofaible. L’idée ici, est de rechercher des défauts
topologiques dans une théorie différente de celle décrivant la supraconductivité à plusieurs composantes.
Plus précisément, l’objectif est d’étudier la possibilité que la théorie de Weinberg-Salam, des interactions
électrofaibles, puisse héberger des défauts topologiques avec une structure nouée.

Comme souligné dans l’introduction, l’idée des vortex noués est une histoire ancienne qui a été ravivé,
après la construction de défauts topologiques noués dans le modèle de Skyrme-Faddeev [38]. Depuis, il y
a eu beaucoup d’activité dans la recherche d’objets similaires, dans divers systèmes physiques comme par
exemple dans les condensats de Bose-Einstein spinoriels [289], les faisceaux optiques [290], les colloïdes
nématiques [291], des matériaux magnétiques [292, 293], et plus encore. Pour une revue sur les noeuds,
voir [43].

Les vortons sont des objets qui, bien que formellement différents, sont assez semblables aux vortex
noués. Ce sont des boucles fermées de vortex supraconducteurs [32] qui devraient être stabilisées
contre la contraction, par la force centrifuge produite par le courant [294]. Ces vortons doivent se
produire dans un modèle introduit pour la première fois par Witten [32]. Il s’agit d’un modèle à deux
composantes, mais avec deux champs de jauge abéliens (au lieu d’un seul pour les supraconducteurs).
La construction explicite des vortons, et la démonstration de leur stabilité potentielle est cependant assez
récente [43, 295, 296, 297].

Le secteur bosonique de la théorie de Weinberg-Salam des interactions électrofaibles, peut être vu, dans
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une certaine mesure, comme une théorie à plusieurs composantes mais plus complexe que celles discutées
dans ce mémoire. En effet, il s’agit d’une théorie d’un doublet de champs scalaires complexes (le champ
de Higgs). Par contre le secteur de jauge est plus compliqué, car il contient également un champ de jauge
non-abélian SU(2), en plus du champ de jauge U(1). On suppose généralement que la théorie électrofaible
n’admet pas de solitons, cependant, il y a des indications qu’elle pourrait héberger une sorte de vortons, ou
des vortex noués. En effet, d’une part la théorie héberge des vortex, mais aussi dans certains cas limites,
elle est très similaire au modèle de Witten où l’on sait que les vortons existent.

À proprement parler, la théorie électrofaible est différente des modèles de supraconductivité à plusieurs
composants discutés dans le corps principal du rapport. Pourtant, puisqu’ils partagent certaines propriétés,
on peut imaginer que cette théorie possède des solutions de type vortex noués, similaires à ceux obtenus
dans le cadre des supraconducteurs à deux composantes avec l’interaction d’entrainement non dissipatif
d’Andreev-Bashkin [JG4]. La potentielle existence de tels vortons électrofaibles, ou de vortex noués,
pourrait être d’une grande valeur scientifique.
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[146] V. Stanev and Z. Tešanović, “Three-band superconductivity and the order parameter that breaks time-
reversal symmetry,” Physical Review B 81, 134522 (2010).

[147] D. G. Ferguson and P. M. Goldbart, “Penetration of nonintegral magnetic flux through a domain-wall
bend in time-reversal symmetry broken superconductors,” Physical Review B 84, 014523 (2011).

[148] S. Raghu, A. Kapitulnik, and S. A. Kivelson, “Hidden Quasi-One-Dimensional Superconductivity
in Sr2RuO4,” Physical Review Letters 105, 136401 (2010).

[149] V. Vadimov and M. Silaev, “Predicted Nucleation of Domain Walls in px + ipy Superconductors
by a Z2 Symmetry-Breaking Transition in External Magnetic Fields,” Physical Review Letters 111,
177001 (2013).

[150] V. L. Ginzburg and L. D. Landau, “On the Theory of Superconductivity,” Soviet Journal of
Experimental and Theoretical Physics 20, 1064 (1950), [original Russian: Zh. Eksp. i Teor. Fiz.
20, 1064 (1950)].

[151] A. A. Abrikosov, “Magnetic properties of superconductors of the second group,” Soviet Journal of
Experimental and Theoretical Physics 5, 1174 (1957), [original Russian: Zh. Eksp. i Teor. Fiz. 32,
1442 (1957)].

http://dx.doi.org/ 10.1111/j.1365-2966.2008.13426.x
http://dx.doi.org/ 10.1111/j.1365-2966.2008.13426.x
http://dx.doi.org/ 10.1103/RevModPhys.47.331
http://dx.doi.org/ 10.1103/RevModPhys.47.331
http://dx.doi.org/ 10.1103/physrevlett.127.100403
http://dx.doi.org/10.1103/PhysRevB.89.104508
http://dx.doi.org/ 10.1103/PhysRevB.100.094515
http://dx.doi.org/ 10.1103/PhysRev.135.A550
http://dx.doi.org/ 10.1103/PhysRev.135.A550
http://dx.doi.org/10.1016/S0375-9601(96)00894-8
http://dx.doi.org/10.1103/PhysRevLett.107.197001
http://dx.doi.org/ 10.1088/0370-1328/82/2/306
http://dx.doi.org/ 10.1088/0370-1328/82/2/306
http://dx.doi.org/10.1063/1.1704233
http://dx.doi.org/10.1209/0295-5075/87/17003
http://dx.doi.org/10.1103/PhysRevB.81.134522
http://dx.doi.org/ 10.1103/PhysRevB.84.014523
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.111.177001
http://dx.doi.org/10.1103/PhysRevLett.111.177001
http://dx.doi.org/ 10.1016/B978-0-08-010586-4.50035-3
http://dx.doi.org/ 10.1016/B978-0-08-010586-4.50035-3
http://www.mn.uio.no/fysikk/english/research/groups/amks/superconductivity/vortex/1957.html
http://www.mn.uio.no/fysikk/english/research/groups/amks/superconductivity/vortex/1957.html


Bibliography 149

[152] L. Kramer, “Interaction of vortices in type II superconductors and the behavior near Hc1 at arbitrary
temperature,” Zeitschrift für Physik 258, 367–380 (1973).

[153] E. B. Bogomol’nyi, “Stability of Classical Solutions,” Soviet Journal of Nuclear Physics 24, 449
(1976), [original Russian: Yad. Fiz. 24, 861-870, (1976)].

[154] V. Moshchalkov, M. Menghini, T. Nishio, Q. H. Chen, A. V. Silhanek, V. H. Dao, L. F. Chibotaru,
N. D. Zhigadlo, and J. Karpinski, “Type-1.5 Superconductivity,” Physical Review Letters 102,
117001 (2009).

[155] E. Babaev and M. Speight, “Semi-Meissner state and neither type-I nor type-II superconductivity in
multicomponent superconductors,” Physical Review B 72, 180502 (2005).

[156] J. M. Speight, “Static intervortex forces,” Physical Review D 55, 3830–3835 (1997).

[157] S. J. Ray, A. S. Gibbs, S. J. Bending, P. J. Curran, E. Babaev, C. Baines, A. P. Mackenzie, and S. L.
Lee, “Muon-spin rotation measurements of the vortex state in Sr2RuO4: Type-1.5 superconductivity,
vortex clustering, and a crossover from a triangular to a square vortex lattice,” Physical Review B 89,
094504 (2014).

[158] J. Carlström, E. Babaev, and M. Speight, “Type-1.5 superconductivity in multiband systems: Effects
of interband couplings,” Physical Review B 83, 174509 (2011).

[159] J. Garaud, A. Corticelli, M. Silaev, and E. Babaev, “Properties of dirty two-band superconductors
with repulsive interband interaction: Normal modes, length scales, vortices, and magnetic response,”
Physical Review B 98, 014520 (2018).

[160] J. Garaud, M. Silaev, and E. Babaev, “Microscopically derived multi-component Ginzburg–Landau
theories for s + is superconducting state,” Physica C: Superconductivity and its Applications 533,
63–73 (2017).

[161] T. Winyard, M. Silaev, and E. Babaev, “Hierarchies of length-scale based typology in anisotropic
U(1) s-wave multiband superconductors,” Physical Review B 99, 064509 (2019).

[162] M. Speight, T. Winyard, and E. Babaev, “Chiral p-wave superconductors have complex coherence
and magnetic field penetration lengths,” Physical Review B 100, 174514 (2019).

[163] M. Tinkham, Introduction To Superconductivity (McGraw-Hill, 1995) p. 454.

[164] E. Babaev, J. Carlström, and M. Speight, “Type-1.5 Superconducting State from an Intrinsic
Proximity Effect in Two-Band Superconductors,” Physical Review Letters 105, 067003–+ (2010).

[165] M. Silaev and E. Babaev, “Microscopic theory of type-1.5 superconductivity in multiband systems,”
Physical Review B 84, 094515 (2011).

[166] A. J. Leggett, “Number-Phase Fluctuations in Two-Band Superconductors,” Progress of Theoretical
Physics 36, 901–930 (1966).

[167] S. G. Sharapov, V. P. Gusynin, and H. Beck, “Effective action approach to the Leggett’s mode in
two-band superconductors,” The European Physical Journal B - Condensed Matter and Complex
Systems 30, 45–51 (2002).

[168] G. Blumberg, A. Mialitsin, B. S. Dennis, M. V. Klein, N. D. Zhigadlo, and J. Karpinski, “Observation
of Leggett’s Collective Mode in a Multiband MgB2 Superconductor,” Physical Review Letters 99,
227002 (2007).

[169] F. Gygi and M. Schlüter, “Self-consistent electronic structure of a vortex line in a type-II
superconductor,” Physical Review B 43, 7609–7621 (1991).

http://dx.doi.org/ 10.1007/BF01391501
http://dx.doi.org/ 10.1103/PhysRevLett.102.117001
http://dx.doi.org/ 10.1103/PhysRevLett.102.117001
http://dx.doi.org/10.1103/PhysRevB.72.180502
http://dx.doi.org/10.1103/PhysRevD.55.3830
http://dx.doi.org/ 10.1103/PhysRevB.89.094504
http://dx.doi.org/ 10.1103/PhysRevB.89.094504
http://dx.doi.org/ 10.1103/PhysRevB.83.174509
http://dx.doi.org/10.1103/PhysRevB.98.014520
http://dx.doi.org/http://dx.doi.org/10.1016/j.physc.2016.07.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.physc.2016.07.010
http://dx.doi.org/10.1103/PhysRevB.99.064509
http://dx.doi.org/10.1103/physrevb.100.174514
http://dx.doi.org/10.1103/PhysRevLett.105.067003
http://dx.doi.org/10.1103/PhysRevB.84.094515
http://dx.doi.org/ 10.1143/PTP.36.901
http://dx.doi.org/ 10.1143/PTP.36.901
http://dx.doi.org/10.1140/epjb/e2002-00356-9
http://dx.doi.org/10.1140/epjb/e2002-00356-9
http://dx.doi.org/10.1103/PhysRevLett.99.227002
http://dx.doi.org/10.1103/PhysRevLett.99.227002
http://dx.doi.org/10.1103/PhysRevB.43.7609


150 Bibliography

[170] J. Carlström, J. Garaud, and E. Babaev, “Semi-Meissner state and nonpairwise intervortex
interactions in type-1.5 superconductors,” Physical Review B 84, 134515 (2011).

[171] J. Carlström, J. Garaud, and E. Babaev, “Length scales, collective modes, and type-1.5 regimes in
three-band superconductors,” Physical Review B 84, 134518 (2011).

[172] J. Garaud, D. F. Agterberg, and E. Babaev, “Vortex coalescence and type-1.5 superconductivity in
Sr2RuO4,” Physical Review B 86, 060513 (2012).

[173] M. Speight and T. Winyard, “Intervortex forces in competing-order superconductors,” Physical
Review B 103, 014514 (2021).

[174] J. Garaud and E. Babaev, “Vortex chains due to nonpairwise interactions and field-induced phase
transitions between states with different broken symmetry in superconductors with competing order
parameters,” Physical Review B 91, 014510 (2015).

[175] M. Silaev, J. Garaud, and E. Babaev, “Phase diagram of dirty two-band superconductors and
observability of impurity-induced s+ is state,” Physical Review B 95, 024517 (2017).

[176] S.-Z. Lin and X. Hu, “Vortex states and the phase diagram of a multiple-component Ginzburg-Landau
theory with competing repulsive and attractive vortex interactions,” Physical Review B 84, 214505
(2011).

[177] E. Babaev, J. Carlstrom, J. Garaud, M. Silaev, and J. M. Speight, “Type-1.5 superconductivity
in multiband systems: magnetic response, broken symmetries and microscopic theory. A brief
overview,” Physica C Superconductivity 479, 2–14 (2012).

[178] A. Edström, “Three and four-body intervortex forces in the Ginzburg–Landau models of single- and
multicomponent superconductivity,” Physica C: Superconductivity 487, 19–26 (2013).
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