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Abstract

Gottesman—Kitaev—Preskill (GKP) states appear to be amongst the leading candidates for correcting
errors when encoding qubits into oscillators. However the preparation of GKP states remains a
significant theoretical and experimental challenge. Until now, no clear definitions for fault-tolerantly
preparing GKP states have been provided. Without careful consideration, a small number of faults can
lead to large uncorrectable shift errors. After proposing a metric to compare approximate GKP states,
we provide rigorous definitions of fault-tolerance and introduce a fault-tolerant phase estimation
protocol for preparing such states. The fault-tolerant protocol uses one flag qubit and accepts only a
subset of states in order to prevent measurement readout errors from causing large shift errors. We
then show how the protocol can be implemented using circuit QED. In doing so, we derive analytic
expressions which describe the leading order effects of the nonlinear dispersive shift and Kerr
nonlinearity. Using these expressions, we show that to mitigate the nonlinear dispersive shift and Kerr
terms would require the protocol to be implemented on time scales four orders of magnitude longer
than the time scales relevant to the protocol for physically motivated parameters. Despite these
restrictions, we numerically show that a subset of the accepted states of the fault-tolerant phase
estimation protocol maintain good error correcting capabilities even in the presence of noise.

1. Introduction

Fault-tolerant quantum computing will be essential for implementing large scale quantum algorithms that offer
provable speed-ups over the best known classical algorithms. Currently there are many proposals for encoding
qubits into error correcting codes in order to perform universal fault-tolerant quantum computation.
Depending on the underlying physical architecture, some encoding schemes are more suitable than others.

One method proposed by Gottesman, Kitaev and Preskill is to encode a qubit into an oscillator such that
small shift errors in both position and momentum can be corrected. Although some bosonic codes have been
designed to correct realistic errors arising from noise models encountered in the experiment (e.g. photon loss),
recently it has been shown that GKP codes have better error correction capabilities than such codes under the
assumption of perfect encoding and decoding [ 1-3]. In addition, it has been shown how GKP codes can be
concatenated with the toric code in order to achieve larger threshold values compared to toric codes with bare
physical qubits [4—6]. Lastly, given a supply of GKP-encoded Pauli eigenstates, universal fault-tolerant quantum
computation can be achieved using only Gaussian operations [7].

Given the above, it is clear that the fault-tolerant preparation of encoded GKP states is an important problem
that needs to be addressed. Various proposals for preparing GKP states have been outlined [3, 8—15]. However to
our knowledge, no clear definitions for fault-tolerantly preparing GKP states using qubit-cavity couplings have
been proposed. As such, without careful consideration, it is possible that a small number of faults lead to large
uncorrectable shift errors. Inspired by [16], in this work we propose new fault-tolerant definitions for preparing
GKP states which tolerate small shift errors and a small number of faults occurring on ancilla qubits during the
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protocol. We then show how the phase estimation protocol proposed in this work satisfies our fault-tolerance
criteria. In particular, the protocol is robust to a single fault occurring on the ancilla qubits in addition to shift
errors of magnitude at most 0.06. In order to be fault-tolerant, the protocol uses one flag qubit (and thus requires
atotal of two ancilla qubits) to prevent damping errors and imperfect implementations of the required gates
from causing large shift errors. In addition, we provide an algorithm which only accepts a subset of all output
states of phase estimation in order to prevent a single measurement readout error from causing large
uncorrectable shift errors. We then proceed to show how our protocol can be implemented using circuit QED.
We first analytically derive expressions describing the effects of the nonlinear dispersive shift and Kerr
nonlinearity on the evolution of the cavity. We then numerically show that certain states output from the phase
estimation protocol are robust to noise processes found in current 2D and 3D cavities since these can still correct
small shift errors with high probability.

Our paper is structured as follows. In section 2, we provide new metrics which we use throughout the
remainder of the paper to characterize the error correction capabilities of approximate GKP states. The fault-
tolerance definitions used throughout this paper are given in section 3. In section 4.1, we briefly review the phase
estimation protocol described in [3]. In section 4.2, we obtain a new phase estimation protocol and prove that it
is fault-tolerant under our definitions. In section 4.3, we compare the error correction capabilities of various
states obtained from the phase estimation protocol in the noise free case. Section 5 is devoted to the
implementation and error analysis of our protocol in circuit QED. In section 5.1, we provide analytic
expressions for the time evolution of the qubit-cavity coupling when implementing a controlled-displacement
gate. The expressions are derived in appendix B. In section 5.2, we numerically solve a master equation which
includes all considered noise processes, such qubit damping and dephasing, photon loss in addition to
measurement, ancilla state-preparation and gate errors which arise from a depolarizing noise channel. In
section 6 we summarize our results and discuss possible future directions.

2. Goodness of approximate GKP states

Aswas explained in [3, 17], preparing perfect GKP states would require an infinite amount of squeezing. Ina
realistic setting, one can only prepare approximate GKP states with finite squeezing. Perfect GKP states, which
are +1 eigenstates of the mutually commuting operators S, = e 2™ and S, = €74, can correct shift errors
of size at most % Note that for the displacement operator D («) = eqd' ' \ve can write S,=D (v/27)and
S;=D (iv/27). The goal of this paper will be to fault-tolerantly prepare approximate GKP states which can
correct small shift errors correctable by perfect GKP states with high probability (in section 3 we will specify what
we mean by correctable shift errors). Therefore, it is important to have a metric which allows us to compute the
‘goodness’ of an approximate GKP state.

Recall that for perfect GKP states, the logical [0) and |1) states are given by

10) = fj Splg = 0)

k=—0o0
)= > Slg=~7), &
k=—o00

up to normalization. In practice, approximate GKP states analogous to those in equation (1) can be prepared by
first preparing finitely squeezed states in g space and approximately projecting these states onto the S, = 1
eigenspace. For instance, the |g = 0) state can be written as a squeezed vacuum state |sq) with squeezing
parameter A which is given by

dq 2 2
_ —q2/0)
sy = [ N 1a)- @
One can then apply a sum of displacements with a Gaussian filter to obtain
o0 ~
[appros = C - e 2 FD(ky27)Isq), 3)
k=—o0

where Cis a normalization coefficient. As was shown in [3], it is natural to have A = A. In section 4, we will
present a fault-tolerant version of phase estimation for approximately projecting the state in equation (2) onto
the +1 eigenspace of S, (see [3] which provides the first description for using phase estimation to prepare
approximate GKP states).

Naturally because of the finite width of the peaks of approximate GKP states, it will not be possible to correct
ashifterror in p or g of magnitude at most ? with certainty. For example, suppose we have an approximate |0)

GKP state with a peak at g = 0 subject to a shift error e *# with |v| < ? The finite width of the Gaussian peaks

2
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Figure 1. Peaks centered at even integer multiples of /7 in g space. The peak on the left contains large tails that extend into the region
where a shift error is decoded to the logical | ) state. The peak on the right is much narrower. Consequently for some interval §, the

peak on the right will correct shift errors of size ? — 6 with higher probability than the peak on the left.

will have a non-zero overlap in the reglon — <q < 2T
probability the state can be decoded to |1) 1nstead of |0) (see ﬁgure 1 foran 1llustrat10n).

In general, if an approximate GKP state is afflicted by a correctable shift error, we would like the probability
of decoding to the incorrect logical state to be as small as possible. A smaller overlap of the approximate GKP
state in regions in g and p space thatlead to decoding the state to the wrong logical state will lead to a higher
probability of correcting a correctable shift error by a perfect GKP state. These remarks motivate the following
definition

Definition 1. Let |0) be an approximate logical |0) GKP state. We say that |0) is (? -6, 6) -GKP correctable if
q

and only if for a given tuple (6, €)with § < *,and 0 < ¢ < 1, we have
o 2fk+§ i
[ a0 P > 1 - e @
k=—o00 Y2~ Tk—6
We say that |0) is (? -6, ) -GKP correctable ifand only if for a given tuple (8, ¢) with § < **, and
0 < € < 1,wehave
e \ThHS
IR E 5)
PR N

Note that the bounds in equations (4) and (5) are different since GKP states have peaks defined on a rectangular
lattice. Similarly, for an approximate logical | F) state, we have the following definition

Definition 2. Let |-+ ) be an approximate logical | +) GKP state. We say that | 1) is (? -6, 6) -GKP
P

correctable if and only if for a given tuple (8, ¢) with § < ?, and 0 < € < 1,wehave

o) 2/Tk+6 .
[ el )pdp > 1 - e (©)
f o Y 2Tk—6
Wessay that | ) is (? -6, ) -GKP correctable if and only if for a given tuple (6, ¢) with § < ~—, T and
0 < € < 1,wehave
o ST+ ~
o i T )pda>1 - @)
koo Y Th—6
As an example, suppose we have two approximate GKP states |0); and |0), which are ( -6, 61) and

q
(? — 6, 62) correctable for a shift of size el(> —9)r (which is correctable by a perfect |0) GKP state). If e; < &,
q

then |0); will correct a shift of size ? — & with greater probability than |0),. This is due to the fact that |0), hasa

smaller overlap in regions which result in decoding the logical |0) state to the logical |1). In this sense we say that
|0); is better than |0), at correcting shift errors in g space.
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3. Fault-tolerant definitions

Given a protocol for preparing an approximate GKP state, errors that occur during the protocol can potentially
accumulate resulting in a large shift error in addition to deforming the output state. This can then result in an
output state which significantly differs from a good approximate GKP state. By good, we mean a state that for a

desired value of 6, the state is (? — 0, 61) and (? — 6, 62) correctable with ¢}, ¢, < 1.
q q
The desired values for § depend on the particular fault-tolerant error correction protocol used to correct

shift errors on encoded data qubits (see for instance [18—22]). For example, one can use a version of the error
correction scheme (which reduces to Steane error correction for qubit CSS stabilizer codes) as proposed by
Glancy and Knillin [9]. In this scheme, logical [0) and | F) ancillas are prepared and interact with the encoded
data qubit viaa CNOT gate to correct the shift errors afflicting the data qubit. It is shown that the largest shift
error that can be corrected is ?. The threshold of ? arises from how shift errors that are initially afflicting the
encoded data qubit and ancilla states propagate through the CNOT gates and combine prior to the
measurement. In practice, if additional shift errors occur during the the error correction scheme (say after

? °.In what
follows, we will assume that after preparing the desired ancilla states using some state preparation protocol, the
ancillas will be used in the error correction scheme of [9] (assumed to be fault-free) to correct shift errors on
encoded data qubits. We also point out that due to the propagation of shift errors in the error correction scheme
of [9], it is important to prepare approximate |0) and | T) states that have small shift errors in both p and q.

If a small number of errors that occur during the preparation of an approximate GKP state result in large
shift errors (or linear combinations of large shift errors) on the output state, then clearly the protocol used would
not be practical. Thus it is important that a given state preparation protocol be fault-tolerant. In what follows we
will define what we mean by fault-tolerant. We start with the following two definitions:

applying the CNOT gates), the largest correctable shift error could potentially be smaller than

N

™
6 "

Definition 3. A shift error is said to be correctable if the magnitude of the shift is less than or equal to
Otherwise, we will say that the shift error is uncorrectable.

Definition 4. Suppose we have a protocol for preparing an approximate GKP state. We will say that the output
state is an ideal approximate GKP state if no faults occur during the protocol.

Thus by definition 4, any approximate GKP state obtained from a state preparation protocol will be called an

ideal approximate GKP state if the protocol is implemented fault free, even if the output state is (? — 0, € )
pq

correctable for some desired 6 with large € (so that the probability of correcting a shift ? — O issmall).

Note that the notion of correctable in definition 3 assumes that only the data and ancilla qubits used in the
error correction scheme of [9] have shift errors. If other operations such as the CNOT gates introduce additional
errors, the correctable threshold would be smaller than /7 /6.

With the above definitions we are now ready to define what it means for a state preparation protocol of an
approximate GKP state to be fault-tolerant. We point out that in section 4 we consider a fault-tolerant state
preparation protocol based on phase estimation. Hence the definitions given below are specific to the case where
an approximate GKP state is obtained by coupling a qubit to an oscillator.

Definition 5. (11, 6)-fault-tolerant state preparation of an approximate GKP state: Suppose we have a protocol
for preparing an approximate GKP state which is obtained by coupling qubits to a harmonic oscillator. Suppose
also that at most m faults occur during the protocol on the qubit Hilbert space and in addition, a correctable shift
error in either p or g of size at most & occurs on the oscillator Hilbert space. We will say that the protocol is an
(m, &)-fault-tolerant state preparation of an approximate GKP state protocol if the output state differs from an
ideal approximate GKP state by a correctable shift error.

A few clarifications are necessary. Firstly, a fault on the qubit Hilbert space corresponds to a location where
an error can occur (see for instance [16]). By location we are referring to a particular time step where either a gate
is implemented, a qubit is prepared, a qubit is measured or a qubit is idling. On the oscillator Hilbert space, ifan
error occurs, we can always expand that error into shift errors (see for instance equation (7.12) in [ 1] and also
[3]). By performing the error correction scheme of [9], measuring the g and p quadratures to perform error
correction will always project the state onto a state with a single shift error in g and p. Lastly, we point out that &
in definition 5 relates to the largest allowed size of the shift error which occurs during the protocol. This should

Using the optimizations considered in [18], using Knill error correction could potentially increase the threshold of % toalarger value.
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Figure 2. Phase estimation circuit for preparing an approximate |0) GKP state. The initial state of the cavity is taken to be the squeezed
vacuum state defined in equation (2). The circuit effectively projects the input squeezed vacuum state onto an approximate eigenstate
of the S, operator while at the same time estimating the phase of the eigenvalue. The phase can be computed so that the output state
can be shifted back to an approximate +1 eigenstate of S,.

not be confused with ¢ in definitions 1 and 2 which relates to the size of a shift error that can be corrected by an
approximate GKP state”.

Intuitively, a fault-tolerant protocol should have the property that if both the number of qubit errors and the
size of shift errors are small, the resulting shift error on the output state should be correctable. Depending on the
desired value for 8, a particular fault-tolerant error correction protocol might be less tolerant to the size of the
shift errors that occurred during the preparation of the approximate GKP state (in practice a different error
correction scheme than Steane error correction could be used).

Suppose a state preparation protocol satisfies definition 5. If during the preparation of the state, m faults
occur on the qubit Hilbert space in addition to a shift error of size at most  on the oscillator Hilbert space, the
remaining shift error on the output state will be corrected in a perfect version of the error correction protocol in
[9]. As we will see in section 4, due to measurement errors, the phase estimation protocol presented in [3] needs
to be modified in order tobea (1, &) fault-tolerant protocol. There are additional fault locations (apart from
measurement errors) which can result in large shift errors that need to be treated with care.

Lastly we describe how we will evaluate the error correction properties of an approximate GKP state
obtained from a noisy state preparation protocol. It is important to compare the goodness of a GKP state
prepared from a noisy circuit to that of an ideal circuit. If the output state of a noisy state preparation protocol is
correctable, the shift error will be removed when performing error correction. Therefore we will compare the

(? — 0, € ) correctable properties of output states after performing an optimal shift back correction (as long
as the shift error is correctable) to the output state. If the shift error is not correctable, the protocol will be

deemed too noisy.
The optimal shift back correction is found as follows. In g space, the optimal shift back ¢, is computed as

e N I
Cha = argmax > [ | (al0) Fda. ®)
¢ e J2 Tkt
Similarly, in p space we have
o0 ~Tk+c+6 <0
cho =argmax 35 [ " 1(pl0) Pdp. ©)
c k=—00 JTk4c—6

For protocols preparing | ), the metric can be defined analogously, but with the integral bounds for pand g
switched.

4. Fault-tolerant phase estimation protocol

In section 4.1 we will give a brief review of the phase estimation protocol presented in [3]. In section 4.2, we will
show how the protocol can be modified so that it becomes a (1, ¢)-fault-tolerant state preparation of an
approximate GKP state and we will provide the value of 0.

4.1. Brief review of the phase estimation protocol for preparing approximate GKP states

The phase estimation circuit for preparing an approximate |0) GKP state is given in figure 2. The H gate is the
Hadamard gate and A(e"?) = diag(1, e). After applying several rounds of the circuit in figure 2, the input
squeezed vacuum state (given in equation (2)) is projected onto an approximate eigenstate of S, with some

® The probability I — ¢ of correcting a shift of size ? — 6 depends on the location and width of the peaks.
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random eigenvalue’ . Additionally, an estimated value for the phase 6 is obtained. After computing the phase,
the state can be shifted back to an approximate +1 eigenstate of S,,.

There are a variety of ways to choose the phases yat each round in the gate A(e!?). In a non-adaptive phase
estimation protocol, half of the values for v can be chosen to be 0 and the other half can be chosen tobe 7 /2. In
an adaptive phase estimation protocol, if the phase to be estimated is § and assuming no prior knowledge of 6,
during the first round the phase can be chosen as 4, = 0. For later rounds, it was shown in [3] that the next
phases can be chosen as

Y = argmax 3 | f 0P, (x[m]]0)). (10)
vy xm=0,1
In equation (10), the probability P, (x[m]]6) is the probability of obtaining measurement outcomes xj, -+, Xy,

when the produced output eigenstate [1/) has eigenvalue e'. Since the measurement results for each round are
independent, the estimated probability is given by

P, (x[m]|0) = [] cos? (m + xiz). (11)
! i=1 2 2
By analytically computing the evolution of the state, the exact probability of obtaining the outcomes x[M] is
derived in appendix D.
Given the final measurement record x [M], the estimated phase 6 is chosen as
§ = arg f " deiP (x[M]]6). (12)

The shift back correction based on the estimated phase @ is given by elz/=4, Note that for either the adaptive or
non-adaptive protocol, the estimated phase and probabilities are computed using equations (11) and (12).

4.2. (1, 6) fault-tolerant state preparation using phase estimation
From the circuit of figure 2 and from equation (12), a measurement readout error can result in the wrong
estimated phase which in turn results in an incorrect shift-back correction (application of e where v is
computed using equations (10) and (11)). Now suppose that the output state is afflicted by a shift error of the
form e~"4. In this case, the final output state will have a total shift error of the form e=i"=")4, If
v — wlmod v7 > /7 /6, then the shift error will be uncorrectable and thus the phase estimation protocol will
not be fault-tolerant®. In what follows we will identify an output state of the phase estimation protocol as x [m] if
it arises from the measurement outcomes x;, ---, X, in the fault-free case.

Consider the case where the phase estimation protocol is implemented in 1 rounds and let us assume that a
single measurement readout error occurs and that all other operations are fault free. In this case the output state
Xout ] will have one bit which differs from the bit string X o, [#71] that would have been obtained in the fault free
case (so that the Hamming distance dy (Xouc [#1], Xcore [11]) = 1). The shift-back operation of equation (10) applied
to the output state will be the shift correction of an output state that is one Hamming distance away from the actual
state that was produced. Thus to ensure that the protocol is (1, §) fault-tolerant for some &, we should only accept
output states X, [#1] which have the property that applying the shift back correction corresponding to any other
state x'[m] with dy (x'[m], x[m]) = 1results in a correctable left-over shift error. These remarks motivate the
following protocol to prepare an approximate |0) state which is fault-tolerant to a single measurement readout error.

Calculation of acceptance set A, and . Consider all output states obtained from an 1 round fault-free
phase estimation protocol of section 4.1. Let A,, = @ (which we call the acceptance set) and I, = @. For
each output state x [m], do the following

1. Compute the shift correction v,, = % arg f_ " doei’p (x[m]]0).
2.Let j[m]beabitstring of size m. Forall j € {1, ---, m} such that dy (x[m], j[m]) = 1, compute

the shift correction v/ = % arg f; d0e’P(j[m]|0).

3.1f #j such that |4, — v mod v7 > %, append x[m]toA,,and Vj € {1, ---, m}, append

[, — v,gf)lto L.
If A, = @, 6 = max,,[,,.

7 . . . e
The phase 6 that is obtained depends on the measurement outcome of the ancilla qubit in each round.

8 Note that |[v — w| should be taken modulo /7 since a perfect |0) GKP state in p space has peaks at any integer multiple of /77 .




10P Publishing

New J. Phys. 21 (2019) 093007 Y Shi et al

Table 1. The first row displays the accepted measurement strings (set A,) for the four round non-adaptive phase estimation protocol. If the
protocol does not output an element of A4, the output is rejected and the protocol begins anew. The second row displays the largest shift
difference that can occur when applying the phase estimated shift in the presence of a single measurement readout error. As can be seen,
these are allless than /7 /6 = 0.295. The third row gives the probabilities of obtaining each state at the output of the phase estimation
protocol.

Four round phase estimation protocol acceptance set A4 1111 1010 0101 1000 0010
Largest shift difference 0.235 0.225 0.225 0.225 0.225
Probability of obtaining output state 0.1258 0.1287 0.1279 0.0505 0.0499

(1, 6) fault-tolerant 1 round phase estimation protocol for measurement readout errors. Consider the
acceptance set A,, = @ and 6 computed from the procedure described above. During an implementation
of the phase estimation protocol subject to measurement readout errors, if the obtained output state

x[m] & A,,, abort the protocol and start anew.

Note that during the protocol, there can be more than one measurement readout error. However if more
than one readout error occurs, it is possible that the output state is afflicted by a shift error of magnitude greater
than /7 /6. Our protocol only guarantees protection against a single readout error.

As an example, consider the four round phase estimation protocol. Applying the procedure described above
for the adaptive phase estimation protocol, we find that A4 is empty when choosing the initial phase tobe 7, = 0
orv, = g This indicates that the adaptive phase estimation protocol of four rounds described in section 4.1 is
not fault-tolerant to single measurement readout errors’. If the phases are computed using the non-adaptive
phase estimation protocol and applying the protocol described above, we find that § = ? — 0.235 =~ 0.0604.
The set A, of accepted measurement strings is given in table 1 and has |A4| = 5. The total probability of
obtaining a state in A, is roughly 48.3%. For the phase estimation protocol with more than four rounds, the
acceptance set and the acceptance probability is very sensitive to the initial phase v, and the domain of the
optimized . For example, if we choose the initial phase , to be g and the range of yto be [0, 27], we get 18
accepted states (for the adaptive protocol). In this case the total probability of obtaining a state in Ag is 6.25%. If
we choose the initial phase +, to be 0, the acceptance set has four states and the probability of obtaining a state in
Agis 1.3%. For the non-adaptive phase estimation protocol, |Ag| = 66 but the total probability of obtaining a
state in Ag is roughly 79.2%. These results indicate that although the adaptive phase estimation protocol
outperforms the non-adaptive protocol in the fault-free case [3, 23] the adaptive phase estimation protocol
cannot be used in the presence of measurement readout errors for four rounds, and has significantly fewer states
in Ay for eight rounds. Therefore in a noisy implementation of phase estimation, the non-adaptive protocol is
preferable. A list of the states belonging to the acceptance set Ag for both the adaptive and non-adaptive
protocols can be found at https: //github.com/godott/GKP_phase_estimation.git.

Suppose now that for m rounds the set A,, is not empty. We then know there exists a  such that the protocol
isa (1, &) fault-tolerant m round phase estimation protocol for measurement readout errors. However there are
other faultlocations where a single fault resulting in a qubit error could potentially lead to an uncorrectable shift
error on output states. Note that an X error prior to applying the controlled- D (/27 ) gate will do nothing since
the qubitis in the |4 ) state. A Z error will just change the sign of one of the peaks of the output state in p space.
However a damping event occurring on the ancilla qubit before or during the application of the controlled-
D(J/27) gate can result in incorrectly applying the D (+/27) displacement on the cavity. If several damping events
occur during the protocol, the output state in p space could potentially be badly deformed. In [3] it was proposed
to replace the ancilla qubit by a k-qubit cat state so that if a single qubit undergoes damping, a single shift error of

size D (@) would occur which can be made small for large k. However this approach would require the fault-

tolerant preparation of a large k-qubit cat state which would significantly increase the required resources in
addition to adding substantially more locations where errors can occur. Similar issues were observed in [24] for
preparing cat codes. However large cavity displacements were mitigated by interacting the cavity with a three level
system | f), |e) and |¢) instead of a qubit. A transition from | f) to |e) would not cause the incorrect gate from being
applied. Thus two damping events would be required to cause the incorrect gate from being applied.

Here we propose an alternative solution for mitigating damping errors during the application of the
controlled- D (v/27 ) gate which uses a single extra flag qubit [25-30]. Consider the circuit in figure 3. If a bit flip
error occurs before or during the application of the controlled- D (+/27) gate, the flag qubit will be measured as 1
instead of 0. In such a case the strategy will be simply to abort the protocol and start anew. The analysis for a

However it is possible that the adaptive phase estimation protocol described in section 4.1 could be modified to be fault-tolerant to
measurement readout errors. We leave such analysis to future work.
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Figure 3. Phase estimation circuit with an additional flag qubit. If a damping event occurs during the application of the controlled-
D(V2m) gateresultingina D (v/27) error, the flag qubit will be measured as 1 instead of 0. If the flag is measured as 1, we abort the
protocol and start anew.

general damping event using the flag qubit is given in appendix A. It is shown that if ever a damping event on the
|+) ancilla qubit causes the wrong D (7/27) gate to be applied, the flag qubit will be measured as 1 instead of 0 in
which case we abort the protocol and start anew. Thus with the flag qubit, the phase estimation protocol is
robust to a damping error during the application of the controlled displacement gate. Note however that if a fault
occurs in addition to a damping event, the shift error resulting from the damping event can potentially go
undetected. For instance, if in addition to damping, the flag qubit is subject to a measurement error, the
measurement outcome can be 0 instead 1 resulting in acceptance when the protocol should have been aborted.

Suppose that only a single damping event occurs during the four round phase estimation protocol, and that
all other operations are fault-free. Using the analytic expressions derived in appendix A and for a damping rate
of p = 0.5, we performed simulations to numerically characterize the effects of qubit damping on the prepared
GKP state. We found that the shift error resulting from a single damping event was negligible compared to the
largest shift error resulting from a single measurement readout error.

Lastly, an X error prior to the A(el) gate will change the sign of . After propagating through the Hadamard
gate, the X error will become a Z error which will not affect the measurement outcome of the ancilla qubit. For
the four round non-adaptive phase estimation protocol, we performed a simulation which showed that the shift
error resulting from a single X error prior to the A(e"?) gate is much smaller than the largest shift error arising
from a measurement readout error on the ancilla qubit.

Let us assume that the noise model afflicting the oscillator can cause a shift error of size at most & in p space
(i.e. a shift of the form e~19). From the above, the largest shift error that can arise from a single fault afflicting the
qubit space during the four round fault-tolerant phase estimation protocol is 0.235 < /7 /6. Following
definition 5, we conclude that the protocol described in this sectionisa (1, &)-fault-tolerant state preparation of
an approximate logical [0) GKP state with § = 7 /6 — 0.235 ~ 0.06.

In section 5 we will discuss a physical implementation of the phase estimation protocol using circuit QED. A
much more detailed analysis of the noise afflicting the cavity and the resulting shift errors will be provided.

4.3. Goodness of approximate |0) states obtained from the noise free phase estimation protocol
In section 5.2, the fault tolerant implementation of phase estimation described in this section is analyzed for a
noise model which introduces gate noise, measurement readout errors and ancilla state preparation errors in
addition to photon loss, amplitude damping and dephasing. Here we consider a noiseless implementation of the
four round non-adaptive phase estimation protocol described in this section which will be used to benchmark
the noisy implementation.

Since the shift correction obtained from non-adaptive phase estimation is in p space, for a range of values for
6, we computed € using the integral in definition 1 after performing a shift back correction using equation (9).

This allowed us to compute the probability of correcting shift errors in p of size ? — 6. Plots for the states 0101

and 1000 which belong to A, (see table 1) are given in figure 4. The (? — 0, € ) correctable properties of the
p

other states in A, are similar to the ones shown in figure 4. It can be seen that for small values of size ? -0,
both states can correct the shift error with probability close to 1.

5. Circuit QED implementation

5.1. State evolution in the dispersive regime
In this section we will describe a direct implementation of the controlled- D (/27 ) gate. From [31, 32], the
Hamiltonian describing the coupling between a qubit and a cavity in the dispersive regime is given by

8
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Figure 4. (Left) Plot illustrating the probability of correcting a shift error of size g — 6 for the states 0101 and 1000 obtained via a
non-adaptive noise free simulation of the phase estimation protocol presented in section 4. (Right) Wave function density |1/ (p) | of
the states 0101 and 1000 illustrated in p space. The horizontal axis corresponds to values of p.

H, = @,a'a + @,Z + xa'aZ — ¢(a’a)*Z, (13)

where ¢ = i—z, X = gEZ - 0,0 =w + ¢and @, = = 2+ X Here gis the coupling strength between the qubit
and the cavityand A = |w, — w,|. Theterm ¢ (a%a)>Z corresponds to the nonlinear dispersive shift. The
Hamiltonian in equation (13) can be derived by performing an exact diagonalization of the Jaynes—Cummings
Hamiltonian and keeping only leading order terms in ¢ [32]. Note that a more systematic treatment of the qubit
as an anharmonic oscillator leads to an additional term in equation (13) given by — § (a'a)? which is referred to

as the Kerr nonlinearity [33]. Hence, in our analysis, we choose the system Hamiltonian to be given by

H,= @,a'a + @,Z + xa'aZ — ¢(a’a)*Z — %(a*a)z. (14)

The direct implementation of the controlled- D (v/ 27 ) gate can be achieved using the drive Hamiltonian
Hi(t) = E@t)aTe @it + E¥(t)aelwit, (15)

where £(t) describes the pulse shape of the drive and wj is the drive frequency. Thus the total Hamiltonian
describing the evolution of the qubit-cavity system during the implementation of the controlled- D (v/27 ) gate is
given by

H(t) = H, + Hy(t). (16)

Going into the rotating frame of the qubit and the cavity and defining ¢, = ¢ £ Kand wy = £, in
appendix B we show that
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Table 2. Parameter values for the two simulations of the non-
adaptive noisy phase estimation protocol. The values for x are
chosen based on state of the art 3D cavities. The parameters in the

27

second columnresultsina T time givenby T = —~ = 10 ms. Fora
resonator frequency f, = 7 GHz, the quality factor is given by

Q= f — 7 % 107. Forall simulations, the squeezing level of

K/ (@m)

the input squeezed vacuum state is chosen to be 0.2.

Y Shietal

Parameter values Simulation 1 Simulation 2
P 5x107° 10°°
2"—_ 1.59 x 107° MHz 1.59 x 107° MHz
ﬁ 1.06 x 107> MHz 1.06 x 10~* MHz
;—j 7.96 x 10~* MHz 7.96 x 10~°> MHz
g 8.92 MHz 5.09 MHz
A 0.32 GHz 0.32 GHz
K (Kerr) 10~* MHz 107> MHz
T
VR(O, T):%ﬂ‘/; H(t"dt
= R(T)D(A;)e|0) (0] + R(T)D(A_)e™ |1)(1], 17)
where
Ri(T) = e iTexa'a(] + T, (a'a)?), (18)
T . ' T .
AL = —i f &tedt T ¢.(2a'a — 1) f £y teidt + O(¢), (19)
0 0

_ i T T 1(CX( 4! iw(t'—t) N ok —iwy(t'—t)
Bi——zj; dtjt‘ At/ (EXt) E()e — &) EXD)e )

* %(Zia = fOT de [ dUEEDED 1 S EN TN — 1)+ 0. (0)

In deriving equations (18)—(20), we kept only leading order terms in ¢,_since the Hamiltonian in equation (14)
neglects higher order terms in ¢» and K. We keep only leading order terms since with current experimental
parameter values, ¢, is roughly three orders of magnitude smaller than .

Firstly, notice that the terms R.(T) introduce a relative rotation between the |0) and |1) state of the qubit.
Neglecting the terms proportional to ¢, it was shown in [3] that by choosing the total interaction time to be
T = 7/, therelative rotation between |0) and | 1) can be set to one. However due to the presence of the
nonlinear dispersive shift and Kerr terms in equation (18), it is clear that the relative rotation cannot be
completely removed. Further, R.(T) does not depend on the pulse shape £(¢) of the drive term. Therefore even
with an optimized pulse shape (see below), the effects from the nonlinear dispersive shift and the Kerr will cause
an undesired relative rotation between the qubit states. Regardless, we will still choose the interaction time T'to
be 7 / x to ensure that we eliminate the relative rotation from the leading order terms in equation (18). In
appendix B.4, we provide further details using the analytic expressions to show that to mitigate the effects due to

the nonlinear dispersive shift and Kerr terms would require the protocol to take place on time scales of order ¢>L
+

which (for the parameter values in table 2) is four orders of magnitude larger than % For such long time scales,
noise terms such as photon loss, dephasing and damping would render the protocol impractical.

The terms in equation (17) that perform the desired controlled displacement gate are given by A in
equation (19). The goal is to choose a pulse shape that implements the desired gate while at the same time
minimizes the contributions from the nonlinear dispersive shift and the Kerr term (terms proportional to ¢_in
equation (19)). In order to be experimentally relevant, it is important to choose a pulse shape that is accessible to
near term experiments using 2D and 3D cavities. We chose a Gaussian pulse with the following parameters

\/27r) _=p?
e

Et) ~ —2.09562( W, 21)

where ;1 = % ando = &. With this Gaussian pulse we obtain

/ T
A~ :F% F ¢ (2a'a — 1) f E(ytedt. (22)
0

The amplitude of the Gaussian, given by —2.09562 (g), is chosen numerically to ensure that the appropriate

gate is being performed.

10
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Since both the A, and A_ terms are symmetric with opposite signs, the gate D (f \/? ) in figure 3 is not

required. Furthermore, the first term in equation (22) is independent of x. However the contribution from the
second term in equation (22) will depend on the coupling strength and relative frequencies between the qubit
and the cavity. Thus reducing the value of y will minimize the undesired effects arising from the nonlinear
dispersive shift and the Kerr term while still producing the desired gate.

The B.. terms of equation (20) result in a phase difference between the |0) and |1) qubit states. However,
computing the first integrals in equation (20) (i.e. terms before ¢..), we find that for our chosen pulse, the phase
difference remains fixed during every round of the phase estimation protocol. Therefore after applying the
controlled displacement gate, we apply an additional phase gate which removes the phases introduced by the left
most integrals of B_.. Note however that the ¢ terms in B, will not be canceled and will thus introduce
additional shift errors.

5.2. Full noise analysis and master equation results

In this section we perform a numerical analysis for the noisy implementation of the phase estimation protocol
described in section 4.2. The simulation is performed in several steps that we now describe. First, the controlled
displacement gate is modeled using the following master equation

p = —ilH(¢), p] + £Dlalp + nDlo-1p + % Dlo:1p, (23)

where H(?) is given by equation (16) after going into the rotating frame and

D[L]p = RLpL" — L'Lp — pL'L) /2. The density matrix corresponds to the joint state of the cavity, ancilla
qubit and flag qubit. The parameters x, v, and v, correspond to the photon loss rate, the qubit decay rate and
qubit dephasing. The pulse shape of the drive is given by equation (21). The total evolution time of the controlled
displacement is given by g with y = gzz - ¢.

Both before and after the controlled displacement gate, the state of the cavity is subject to photon loss and its
evolution is computed by solving a master equation. Based on current gate, state preparation and measurement
times, we chose the evolution time from the preparation of the ancilla to the first CNOT gate (after which the
controlled-displacement gate is performed) to be 0.14 ys. Similarly, the evolution time after the controlled-
displacement gate to the time the ancilla is measured is also chosen to be 0.14 us. Thus during one round, the
cavity freely evolves with photon loss for a total of 0.28 us. In addition, before and after the controlled
displacement gate, we allow all qubit locations to fail with the following depolarizing noise model

1. With probability p, each two-qubit gate is followed by a two-qubit Pauli error drawn uniformly and
independently from {1, X, Y, Z}**\ {I ® I}.

2. With probability z?p, the preparation of the |0) state is replaced by [1) = X]0).

3. With probability %p, any single qubit measurement has its outcome flipped.

4. With probability p/10, each Hadamard gate is followed by a Pauli error drawn uniformly and independently
from{X,Y,Z}.

We chose p/10 for Hadamard gate failures since for current superconducting architectures, single qubit gate
fidelities are about an order of magnitude higher than two-qubit gate fidelities. In practice, the gate errors applied
to the qubit Hilbert space will depend strongly on the circuit QED architecture and should also be modeled using
amaster equation as in equation (23). However, we chose a depolarizing model in order to reduce the
computation time and simplify the analysis. We also mention that in our analysis we assumed that gis tunable.
Thus both before and after the controlled-displacement gate, the cavity and qubit system is decoupled and can be
treated separately.

The master equation was numerically solved using Qutip [34], our code can be accessed at https://github.
com/godott/GKP_phase_estimation.git. Due to the long computation time during the controlled displacement
gate, performing a full Monte Carlo simulation to take into account gate errors with the depolarizing model was
unfeasible (i.e. gate locations both before and after the controlled displacement gate). Instead, we analytically
computed the error probabilities for each Pauli operator (using the depolarizing noise model described above)
immediately after the first CNOT gate, before both measurement locations and before the phase gate'”. At each
location, all possible Pauli operators based on their associated probabilities were added. For a given Pauli error,
the probabilities (which are expressed as functions of p) were then used (in addition to the state evolution

1% The error probabilities were computed by considering all possible single-fault locations resulting in a given error at the considered
location. For instance, a Z ® I error after the first CNOT gate can arise from a Z ® I error from the faulty CNOT gate, but also from a Z error
after the application of the Hadamard gate prior to the CNOT gate.
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Figure 5. Probability of correcting a shift errors of size ? — 6 for parameters chosen from the second (labeled ‘Simulation 1’) and

third (labeled ‘Simulation 2’) column of table 2 in addition to the case where no noise is present. The plots are for the states 1000, 0101
and 1111 obtained from the four round fault-tolerant phase estimation protocol described in section 4.

obtained from the master equation) to compute the final probability of obtaining a given output state. Instances
with two or more faults occurring on the qubit Hilbert space before and after the controlled-displacement gate
were neglected. However our analysis is still more complete than previous implementations which considered
only measurement errors and errors during the controlled-displacement gate. More details of the Pauli
simulation can be found in appendix D.

We performed two different simulations where for each simulation, the chosen parameter values are given in
table 2. The parameters chosen for the first simulation (middle column in table 2) are based on current
experimental values for 2D and 3D cavities [24, 35-39]. The parameters chosen for the second simulation are
based on values that might be obtained with improved future technologies. Plots showing the probability of
correcting shift errors ? — ¢ after performing a shift correction of the output states of the noisy phase
estimation protocol using equation (9) are given in figure 5. In what follows we will refer to these plotsas ¢ — §
plots. Note that noise during the phase estimation protocol introduces more shift errors in p space. Therefore in
figure 5, only ¢ — ¢ plots in p space are shown.

For the four round phase estimation protocol, we find that the state 1010 has a similar ¢ — § plot to the one
for the state 0101 whereas the state 0010 has a similar ¢ — ¢ plot to the one for the state 1000. The probability of
obtaining each state for the two noisy simulations (parameters in table 2) are given in table 3. It can be seen that
the probability of the state 0101 to correct shift errors is significantly more affected by the noise than the state
1000 or 1111. To understand why this is the case, it is useful to look at the wave function densities for these three
states in the g basis when no noise is present (see figure 6). Comparing the wave function densities, it can be
observed that the state 1000 has three peaks with similar amplitudes, whereas the states 0101 and 1111 have two
smaller peaks compared to the peak at the center. Performing a numerical analysis, it is found that when only
damping is present (with all other noise terms including Kerr and nonlinear dispersive shift set to zero),
damping has a negligible effect on the height of the peaks for all considered states. However performinga
numerical simulation with only the Kerr and nonlinear dispersive shift terms present, these terms significantly
reduce the height of the peaks for the state 0101 and 1010. Therefore, these states are left with one large peak in g
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Figure 6. Wave function density |1/ (q)|* of the states 1000,0101 and 1111 obtained from the noise free non-adaptive phase estimation
protocol.

Table 3. The second row corresponds to the probabilities of obtaining the output states of A4 for the parameters chosen from the second
column of table 2 conditioned on all flag measurements being 0. The third row is identical but for the parameters chosen from the third
column of table 2. The probabilities are smaller for noisier circuits since the flag qubit has a higher chance of being measured as 1 causing the

protocol to be aborted.

Four round phase estimation protocol acceptance set A, 1111 1010 0101 1000 0010

Probability of obtaining output state noisy simulation 1 0.1297 0.0727 0.0737 0.0474 0.0429
Probability of obtaining output state noisy simulation 2 0.1468 0.0982 0.0978 0.0514 0.0448

with all other peaks close to zero which results in a wave function density with very low resolution in p space
(which thus affects the ability for these states to correct shift errors in p). Interestingly, the state 1111 is more
robust to the Kerr and nonlinear dispersive shift contributions since there is a much smaller reduction in the
amplitudes of the smaller peaks compared to those for the states 0101 and 1010 (see figure 7). Furthermore, the
states 1000 and 0010 have three large peaks in g and thus even with a reduced amplitude, these states have a
higher wave function density resolution in p space.

6. Conclusion

In this work we presented a fault-tolerant state preparation protocol for preparing GKP states using phase
estimation. In section 2 we provided metrics for comparing how good approximate GKP states are at correcting
shift errors in both g and p space. In section 3, we provided a definition for the (i1, 6)-fault-tolerant state
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Figure 7. Wave function density of the states 1111 and 0101 where all noise terms are excluded apart from the Kerr and nonlinear
dispersive shift terms Comparing to figure 6, the Kerr and nonlinear dispersive shift terms reduce the amplitudes of the two small
peaks of the 0101 state significantly more than those for the 1111 state.

preparation of an approximate GKP state where 11 is the maximum number of allowable faults which can occur
on the qubit Hilbert space and 8 is the maximum allowed shift error that can affect the oscillator. Using a non-
adaptive phase estimation protocol with one ancilla qubit and one flag qubit, in section 4 we showed how the
protocol can be made into a (1, 0.06)-fault-tolerant state preparation of an approximate GKP state. The flag
qubitis used to detect damping errors. In addition, it was shown how the adaptive phase estimation protocol of
section 4.1 can not be made fault-tolerant in the presence of measurement readout errors. For the four round
non-adaptive phase estimation protocol, 5 of the 16 output states can be used in the presence of measurement
readout errors. The total probability of obtaining the accepted states is approximately 0.48. In section 5, we
considered how the protocol can be implemented in circuit QED. We first provided (to leading order) analytic
expressions of the nonlinear dispersive shift and Kerr terms during the evolution of the qubit and cavity in the
fault-tolerant phase estimation protocol. We used these expressions to find a Gaussian pulse shape that allows
one to implement the desired gates. However to mitigate effects due to the nonlinear dispersive shift and Kerr
terms would require the protocol to be implemented on time scales four orders of magnitude larger than those
that were considered in this work. Due to the noise processes afflicting the system, such long time scales would
render the protocol impractical. Performing two different simulations for both current and futuristic parameter
values found in 2D and 3D cavities, we numerically solved a master equation to study the affects of qubit
damping, dephasing and photon loss on the cavity in addition to gate and measurement errors during the
protocol. Itis shown numerically that 3 of the 5 accepted states (for the four round non-adaptive phase
estimation protocol) are much more robust to noise arising from the nonlinear dispersive shift and Kerr terms
and maintain good error correction capabilities even in the presence of noise.

The pulse shape used in this work to implement the controlled-displacement gate of the protocol was
obtained from the analytical expressions describing the time evolution of the qubit-cavity system. An important
direction for future work is to find a pulse shape using methods such as optimal control [33, 40] in order to
obtain a pulse which can further mitigate the effects from the nonlinear dispersive shift and Kerr terms Since the
nonlinear dispersive shift and Kerr terms are the dominant source of noise that reduce the error correcting
capabilities of approximate GKP states, using optimal control could potentially allow the protocol to be
implemented using a larger number of rounds in order to obtain better approximate GKP states.

The fault-tolerant state preparation of approximate GKP states presented in this work is tailored to protocols
that use phase estimation. An interesting direction for future work would be to find fault-tolerant
implementations for preparing approximate GKP states that apply to broader schemes such as those found in
[10, 13]. In addition, fault-tolerant state preparation protocols for hexagonal GKP codes could be analyzed since
these offer better error correction capabilities than GKP codes on a square lattice. It would also be interesting to
extend the ideas presented in this work beyond state preparation. For instance, fault-tolerant protocols for the
implementation of logical gates would be of great interest.
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Appendix A. Shift error arising from amplitude damping before the controlled-
displacement gate

Consider amplitude damping on the |+) ancilla state before the controlled displacement gate as shown in figure
Al.Let|p) be the input state part of the cavity Hilbert space. Defining p as the damping rate, after the controlled-
displacement gate, the state of the system can be written as

) = %{IOOH@ + T PIN)DGIDNE) + JBI0L) ). (A1)

Here we have omitted writing the state of the environment interacting with the first ancilla qubit. However, this
does not affect the result of the calculations that follow.
After the second CNOT gate, the state becomes

@) = %uoow + TP D(IMg) + Jplo1) o) ). (A2)

If the flag qubit is measured as 1, the protocol is aborted. So assume that the flag is measured as 0. In this case
the state becomes (tracing out the flag qubit)

@y _ L -
) WHOWH‘/I pI1)D(2m) o) }. (A3)

Applying the remaining gates in figure A1, the final state prior to the measurement of the ancilla qubit is

[yp@) = ﬁ{lom + e T — pD(27)lp) + 11)(1 — €1 — pD(V2m))|p)}. (A4)

If the measurement of the ancilla is 0, the output state will be

out,0y 1 iy _
|3out0) m{(l‘f'e JI—pD(27)|p)}. (A5)

If the measurement of the ancilla is 1, the output state will be

out,1y 1 _ aly _ A
|ypoust) m{“ e /1 — pD(V2m))|p)}. (A6)

Both outcomes occur with probability 1/2.

4 e HH =,

|0)-o—o{=]

Z

Figure Al. Controlled-displacement circuit with the flag qubit. The protocol is aborted if the flag qubit measurement is non-trivial.

15



10P Publishing

New J. Phys. 21 (2019) 093007 Y Shi et al

Appendix B. Analytic derivation of the unitary operator describing the evolution of the
qubit-cavity system during the implementation of the controlled- D (/27 ) gate

B.1. Implementation of the controlled- D (/27 ) gate in the lab frame

In this section, we will derive the unitary operator describing the evolution of the qubit-cavity state during the
application of the control-displacement gate. In the dispersive regime, the qubit-cavity interaction can be
described as:

H(t) = Hy + Hy(1), (B1)
where
H, = @,a'a + @, Z + xa'aZ — ¢(a’a)*Z. (B2)
and
Hy(t) = &) (a + ah). (B3)

In equation (B2), ¢ = %, O =w + o, x = ng — ¢and &, = % The term ¢ (a’a)?>Z corresponds to
the nonlinear dispersive shift. Note that we have not included the Kerr term — g((ﬂa)z. Atthe end of this section
we will modify our results to take into account its effect. We also note that in writing the drive Hamiltonian in
equation (B3), we neglected a term of the form AX (where A = (g/A)) and all higher powers in \. For parameter
values considered in this paper, we found the effect of this term to be negligible. Additionally, we chose a pulse
shape which is real valued.

In equation (B3), we represent the drive pulse £(¢) as
E(t) = Qu(t)cos(wyt) + €1, (¢)sin(wyt), (B4)
where w; = @, — x is the drive frequency.

Since the Hamiltonian does not commute at different times, the unitary operator describing the time
evolution under the Hamiltonian of equation (B1) is given by

H T r !
V(, T) = Te i), HOvar (B5)

The right-hand side of equation (B5) can be computed using the Suzuki-Trotter decomposition, so that

n—oo

n
V(, T)= ( lim H e;T(w,Jr(xcm*a)Z)a*ae,i,Tg(tj)(aﬂf)]eiTwaz
j=1

n
_ [ lim H eif(w+qﬁa"’u)u"’aeifg(fj)(u+a{')]eiij,,T|0> <0|

n—00 Sy

n

+ [hm H e—if(w+d>aTa)aTae—if£(tj)(a+aT)]eiwﬂTl1> <1|, (B6)

n—oo -
j=1

wheref = T/n,wy = O, £ X.
Now, the two terms on the right-hand side of equation (B6) can be decomposed as

n
lim J] e i@ -daadae-iiéup@a) = Jim R*(R, "Dy, R -+ (R, *D,RH(R, 'DyRY), (B7)
n—oo j:1 n—o0
where
Rn — efif(mrfd)a%u)a*'a’ (B8)
and
Dt] _ efifé'(tj)(unLaT). (B9)

Hence from the above, we see that we need to compute terms of the form

R’:thka _ ei?k(wurf ¢u*a)a“uefit~£(tk)(u+u*) efit‘k(u@f@a%u)a*a. (B10)

In order to compute the products appearing in equation (B10), we will use the identity AeBA™! = ¢ABA™",
Defining

H' = k(wy — ¢a'a)a’a, (B11)
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and
Ay = e i@ @ta), (B12)
with
A(F) = elfl'TAzeiH'T (B13)
we have that
A(F) = exp (—it&(t) e (a + ah)e H'D), (B14)

The term e''*(a + a’)e H'T in equation (B14) can be computed using Heisenberg’s equation of motion. We
obtain

9@ _itmr, ooy, (B15)
df
with
[H', a] = k(¢' + 2¢a’a)a, (B16)
where we defined
We thus have the following set of coupled differential equations:
LD ik’ + 200 Da@a), (B18)
t
and
A
% — —ikd (' + 26a' Da(D), (B19)
The solutions to equations (B18) and (B19) are given by
a(f) = aeikf(¢’+2®(a"*a71)), (B20)
and
aT(f) _ efikf(¢’+2¢(a+a71))a'r‘ (B21)

To see this, we take a derivative of equation (B20) to obtain

da(f)

)F = ik¢'a(F) + 2ik¢a(F)(a’a — 1). (B22)
t
Comparing equations (B18) and (B22), we must have that

a®(afa — 1) = at(H)a2 (). (B23)

Using equations (B20) and (B21) and defining H,, = —kt (¢’ + 2¢(a’a — 1)), we have that

a% (f)aZ(i‘) — elH,eta'i“e—lH,etelHretae—lH,Etae—lH,et

— aTeleoktanIOktaelemt

= a'age et
= a’aa (%), (B24)
as desired. A similar calculation can be done for a' (). Hence we have that
A(F) = exp (—ifE(ty) (ae'®F + e 1 Pighy), (B25)
for
O, = k(¢' + 2¢(afa — 1)). (B26)

Writing V(0, T) (equation (B6)) as
V(0, T) = Vi(0, T)[0) (0] + V-(0, T)[1)(1], (B27)

using equation (B25) and the fact that R/ = e~iT(w+—¢@'@d'a = R (T'), we can write

n

Vi(0, T) = R(T) lim [] exp{Acat — aA[}, (B28)
n—0o0 k:1
where we defined
A = —Leyeira (B29)
n
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Notice that we can write V., (0, T) as products of displacements D(A;). However, now Ay is an operator

instead of a complex number. In order to compute the products in (B28), we will need to obtain a relation for

terms of the form D(A;)D(A;) (where Ay is given in equation (B29)). Since A is proportional to T/# and

remembering that we will take the limit where n — o0, using Baker—Campbell-Hausdorff, we have the exact

relation
exp {Ara’ — aAlj + AjaT —aA;} = D(Ay)D(Aj)exp { —%[Ak(ﬂ — aA,j', Aja+ — aAj] }

The commutator on the right-hand side of equation (B30) has four terms
[Ara" — aA[, Aja" — aAj] = [Ara’, Aja'] — [Ara, aA]] — [aA], Aja'] + [aA[, aA]].
As we will show, two of these terms vanish when taking the limit 7 — oo.
First, we compute

_. 2 . .
[Aka’, Aja’] = (i) Et) E(t)[e " P al, e n¥al],
n

with
[e " %ql, e %) = e " Pgle " ¥ig" — e " ligTe w g
= e 1 ®glel Pre— T Pusigleh Purnen Phrj — o= Ligheli Do P gfen e L,
Now, terms such as e~ * %a'er ¥ can be computed by defining
Htemp = 7j¢/(1 + S(Q%a - 1))’

and invoking Heisenberg’s equation of motion. Using [Hiemp, a'] = —j¢’ ba’ and solving the differential
equation, we obtain

e ln ]aTenq:' = e n]¢ 5aT
Using the result of equation (B35) into equation (B33), we have
[e7%¢kaT’ ef%q)jaT] — eTko/éaTei‘l (k+])¢/5aTeT¢'(k+1) — e 7 ]d’/éaTe 7 (]+k)¢/6e T <I)(kﬂ)
= e G+ 3(gke's _ ilio'd) (gh)2ew e,

Using ¢/6 = 2¢ and expanding equation (B36) to leading order in ¢, we obtain

e, e a1 - 2L+ o)L et
n
—21T

— D (ahed den,

Inserting equation (B37) into equation (B32), we obtain
[Aa’, Aja’] = 2( ) (k — ) OEM) Et) (ah)2e ™ Yo + O(¢?).
A similar calculation shows that
e ) (k — DOSHIEM)Pera + O,
Next we compute the cross terms. We first have
- t iT 2 —iT ¢, t il .
[Ara’, aAl]l = | — | E@)E@) e Pa’, aer™],
n

with

[en %al, aer®] = e Palaer® — gerdien %ql

— e i ¢‘kaTen q)ke n <I)kaen q)ke n Cbke,, ®; eirizT@(kaf)aT
= aTaen Pie—jy — aen S a'e P —hen )

= (a'a — ad'e k=) P

= (ala(l — e ok=i)y — W k=) P,

(B30)

(B31)

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)

(B38)

(B39)

(B40)

(B41)

18



I0OP Publishing New J. Phys. 21 (2019) 093007 Y Shietal

Expanding the term proportional to a’a to leading order in ¢, equation (B41) becomes

[en ®al, aer®) ~ ( patak — j) — en ok 1)) P, (B42)
Inserting equation (B42) into equation (B40), we obtain
iT
[Axa’, aA k] ~ 2( ) Pk — )EM)Et))ataet Pun — ( ) Et)Etje ok-Den i, (B43)
The last commutator to compute is
[aA}, Aja"] = (_ ) Et) E(t)) [aer ™, en %], (B44)
n
with
[aer %, e %aT] = gen®e-na’ — e YigTaer U
= en TP e a P gen Lo gl — enPu-penPhgten Phant Pk gen Pk
= enPhi(ata(en **k=D) — 1) 4 i ok-p)
o en Pl ])( ok — j)aTa + e%aﬁ(kfj)) (B45)
n
so that
iT 2
[aA[, Aja] ~ 2( ) ok — HEM)EE) e *rata + ( ) E(t) Etj)en Penen ¢k—)) (B46)
n

Inserting equations (B38), (B39), (B43) and (B46) into equation (B30), we have
D(Ax + Aj) = D(AY)D(4; )exp[——{Z( ;T) (k — ) PEM) Et)) (ah) e Paon
+ Z(IT) (k — OEM) Et)erPera — 2( ) ok — j)EW) E(t))ataen Pe-p
( ) Et) E(tj)en ok Dei o — 2( ) ok — NEW)EL)ere-ra’a
- ( - ) Et) Etj)en Pu-nen o= J)}] (B47)
Since the product D(4,) D(A,, _ 1) --- D(A2)D(A,) will produce sums in the exponents proportional to r?, all

3
terms in equation (B47) proportional to (%) will vanish in the limit where n — 00. Hence equation (B47)

simplifies to

. TY? [ edTotk—Deat®u—j — A ok—7)en e
D(Ax + Aj) = D(A)D(Aj)exp 15(tk)5(fj)(;) 2i

: TV . (T=
= D(A)D(Aj)exp [—15(tk) S(tj)(;) sin (;q)(k]-))], (B48)
where ;_ ) is defined as

Py—jy = (k — (¢ — wy + 2¢a'a). (B49)

We thus have that the product of the modified displacement operators is given by
. TY . (T=
D(Ay)D(A)) = D(Ax + Aj)exp|i(t) E(t)) " sin ;@(k,j) . (B50)

We now wish to compute
B, = D(A)D(Ay-1)D(A4-2) -+ D(A)D(A. (B51)
First notice that for any operators A and B, to leading order e”e® = e®e”¢! #1. Now for terms of the form
exp [iE(tk) &) (%)2 sin (%@k, j))] D, Am), the commutator of the two exponents will be proportional

3 . . L. ..
to (Z) which will vanish in the limit where # — 00. Hence, we can commute all terms
n

exp [iE(tk) &(t)) (%)2 sin (%CI_>(k, j))] to the right-hand side of P,,. Hence we have
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B = D(Zn:Ak) exp [1 Zn: T—zzg(tk) g(tj) sin (26(;{]'))]. (B52)
k=1 n h

k<j

Now, taking the limit where n — oo of P,,, we obtain

. . i _iT —iT g . e - T2 . T—
lim P, = D] lim Z — & e Yk |exp|ilim Z—zg(tk)g(tj)sm —dg_j)
n n

n—o00 n— 00 k=1 n—o00 k<j n
—p|-i f " e0ye®de | exp| —i f " f " A E®) £ sin (B( — 1) (B53)
0 0 t
We conclude that
Vi(0, T) = R(T)D(A;)e'®, (B54)
where
R.(T) = efiT(erfou*u)a*u, (B55)
T .
Ay = —i f E(t)e 1t (B56)
0
and
T T .
B, = — f dr f drED EX)sin (B — 1)). (B57)
0 t

Hence to conclude, the unitary evolution of the Hamiltonian described in equation (B1) is given by
V(0, T) = R (T)D(A,)eBre™@T]0) (0] + R (T)D(A_)e'B-elT|1)(1]. (B58)

Recall that in deriving the expression for V. (0, T), in several steps of the calculation we expanded to leading
order in ¢. Hence the expressions obtained in equations (B55)—(B57) are only valid to leading order in ¢. Hence
toleading order in ¢, we have

Ru(T) = e iTesa'a(] + iT¢(a'a)?) + O$?), (B59)
T . T .
Ay = —i f E(t)estdt T ¢ata — 1) f Sy reistdt + O(¢2), (B60)
0 0
and
Bi=| " dr J DAt em) E')sin (walt' — 1)) + d2ata + 1) S " dr

x [T ArEn Etycos (it — D)X — 1) + O, (B61)

B.2. Including the Kerr nonlinearity
When including the Kerr nonlinearity, the Hamiltonian during the control-displacement gate is now given by

H(t) = @;ala + @, Z + xa'aZ — ¢(a’a)*Z — g(rﬂa)z. (B62)

In this case, we have that

n—0o0

n
vV, T)= [ lim H ei?(w+(¢+1§)a"u)u"'aeifE(tj)(qua“)]eiwaT|0> (0]
j=1

n
+ {hm H e—if(w:‘r((f)—%)afa)a‘\ae—iff(tj)(a+ﬂ) ei@aT|1><1|) (B63)
n—00 in1

Hence, we see that the analysis of section B.1 is exactly the same, with ¢ — ¢ £ g inR, (T),A and B.

B.3. Controlled-displacement gate in the rotating frame
In this section, we consider the same Hamiltonian as in equation (B1) but with a drive term of the form

Hi(t) = E@)afewat + £X(t)qgelwat, (B64)
We will go into the rotating frame of both the qubit and the cavity. We define
H! = w,a'a + ©,Z. (B65)
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With U () = /" and applying the transformation U (t)H (1) U~!(¢) — iU(t)% U~1(t) = Hx(t)tothe
Hamiltonian in equation (B1) with H,(f) given in equation (B64), we obtain

Hy(t) = xZd'a — ¢p(a'a)’Z + E(t)ael@—wdt L £¥()ge i@ —walt (B66)
The frequency dependence in the drive term of equation (B66) can be eliminated by choosing w; = ©,. Again,
we wish to compute the unitary evolution
r
Vi(0, T) = Tei), et (B67)
Using the Suzuki-Trotter decomposition

n
Ve(0, T) = [ lim ] eifwww‘*ueif<f<ff>a“+f*<ff>“>)|o> (ol

n—oo j:1

n
+ | lim H e~ ifw toa'aalag—if (Eta"+Ewa) || 1) (1, (B68)
n—oQ ]:1
where now we have thatw, = +y.
Comparing equation (B68) to equation (B6), we see that we can follow the same steps as in appendix B.1 by
using the new values for wand replacing £ by £* in the conjugate expressions. Doing so, we obtain

Vk(0, T) = Ry(T)D(A;)el®|0) (0] + R_(T)D(A_)e®[1) (1], (B69)
where
Ro(T) = e~iTwsa'a(] £ iT¢(a'a)?), (B70)
T . T .
As = —i f E(t)estdt T ¢Qata — 1) f St tedt + O(¢?), (B71)
0 0

i T o *( 4 iwi(t' 1) N EX(+) e~ iwt'—1)
Bo=—= [ ar[ arEheme - EuHEW)e )

* Wat = ar J L (E)E e - EEE DS )@ — 1)+ 0. (BT
0 t

B.4. Effects of the nonlinear dispersive shift and Kerr term on the unitary evolution of the qubit-cavity
system

In this section we will show that regardless of the chosen pulse shape (even with numerical tools such as optimal
control), to leading order in ¢, the changes to the unitary evolution of the qubit-cavity system due to the
nonlinear dispersive shift and Kerr terms cannot be completely removed for time scales T < oi Using

equations (B55), (B60) and (B61), we can write (for instance choosing the terms affecting the |0) (0])

R.(T)D(A,) = e7iw+TaTaeiw+T¢+(a*a)2e11atll*aflzg(zafaf1)aT+Iz*¢+a(zaTa71), (B73)
where we define
T .
L= _if E(t)edt, (B74)
0
and
T .
L= f E(t)tew+dt. (B75)
0

Let A = iw, T¢, (a'a)>and B = La' — ['a — L¢,(2a'a — 1)a" + I'¢,a(2a’a — 1). Using the Baker—
Campbell-Hausdorfflemma and keeping only leading order terms in ¢, , we have

eAeB = gA+B+1[ABI- L [BIABI—55[B,(B,[B[BAIl (B76)
Computing the commutators, we find

oAgB e%,‘erT@(_%ulp+|11|2)e[(12¢++(1+%iw+T¢+)Il)a*7(I;@Jr(l7%imTQr)IIT)a+éiw+T¢+(Ilz(u*)z+4|II|2a*aJr(I*)zuz)

+iw, To (L a’faiaJrIfaTaa) —25 Qra“aa‘\qL 2[2' <7')+aa7a+w+T<7>+ (a*a)?]
(B77)
Notice that the last term in equation (B77) is proportional to (afa)? and independent of the pulse shape

(performing the same calculation as above including the B, term will not change the conclusion). The terms
dependent on the pulse shape are expressed as lower powers of a and a'. One cannot eliminate all terms
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proportional to ¢, unless one chooses a time scale comparable to @— For time scales on the order of , higher

order terms in ¢, will be relevant and therefore it might possible to choose pulse (with numerical techmques
such as optimal control) which can eliminate effects from the nonlinear dispersive shift and Kerr terms However
using the parameters of table 2, — ¢ is roughly four orders of magnitude longer than the chosen time scale

(T = ;) of our protocol. For such long time scales, effects due to photon loss, damping and dephasing would

render the protocol impractical.

Appendix C. Probability of measuring accepted measurement strings

In this section, we derive the analytic expression for output states obtained from phase estimation protocols and
their corresponding probabilities.

C.1. Phase estimation measurement operator of 1 round

From figure 2, the operator describing the evolution of a single round of phase estimation in terms of the

D(*\/Z) + (;l)xel'ﬂ’D(\/ﬁ) |x — 0’ 1 } can be Written as

measurement operator set {Mx =

Urleasure = {|0> <0| Y MO + |1> <1| & A/Il} (Cl)
After the measurement, the state become

o Ur’ryleasurel ¢input>
| 1/}0utput> e
Pry

1 -
= 2\/P_1;C (D(fm)lwinpu& + (*l)xel’D(\/E)W}inpuO)

1 .
= ﬁwkm M input) + 0T D(V27) [inpur)) (C2)

where Pr, is the probability of measuring x € {0, 1}.

C.2. Phase estimation measurement operator after M rounds
After M arounds of the phase estimation circuit, the following state will be generated:

™ (7, + X, ™
|D(x[M])) = ZM\/— H [ ( \/;) + et )D(\/;)]bq.vac), (C3)

where N = [, Pr, is the normalization factor. From the product of M sums, if we choose j of them to be positive

shifts (D ( E ) ), M — jto be negative shifts (D (f \/? ) ), we can produce a peak at

NT/2(G— M — ) =2 (j — M/Z) in g space, and the produced phase is Hlesj elitxm) (S;jis the set of
rounds we choose to be positive shifts). There are (%I ) ways to choose such an S;, by choosing any of such S; we

can produce a peak at V27 ( j — M/2). Thus, |®(x[M])) can be written as:

|®(x[M])) = ¢j(x[M)D(2m (j — M/2))|sq.vac), (C4)

r z
where N ~ zfi ol [M1) 2 with ¢;(x[M]) = sy Ties, ellytam,

C.3. Probability

Assume we already performed M — 1 rounds of phase estimation and the measurement results X ,..., xpr—; and
angle parameters we chose (denoted as +,, ...7,,_,) areknown. Then from (C4), the input state to the Mth round
is (including the qubit):

M—-1
= W ,Zo ¢j(x[M — 1)D(V2m (j — (M — 1)/2))[0) ® |sq.vac). (C5)

|¢)input>
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The probability of measuring x,,is thus given by
Per = <CI)input I ( Ur’;/leasure )Jr Ur’;;easurel CI)irlput >M

= 2Mm Jzocj(x [MDD(N2m (j — (M) /2))Isq.vac) | . (Co)

Notice that the transfer probability from one peak to another is almost 0 (< 10~ >°) assuming an initial
squeezing level of 0.2. Therefore, we can make the following approximation

! Sl IMD DGR — (M) /2)) sqovac) (C7)

22Mpy ... Pry,, L i20

M
=—22MPTI o 2 |GIMD {sqvaclD'(V2m (j — (M) /2)ID(2m (j — (M) /D)lsqvac) - (CB)

XM-1 j=0

1

Z > T elorr=mp (C9)

ZZMle Proy 20 1s) e

_ ;Z (Z H el(w,+xm)][z H i(wakW)] ) (C10)

2M
250 Pry o Proy 550 [\ fs7) resy ST} kes;

The above expression is recursive, hence substituting Pr,,,  into it, we find

M o _—
Zj:o[(z{%"’}nlesj’" ¢ 1Wr}cm))(Z{s}‘}ers}“ el ))]

M— i — .
421':01[(2{81"’]1_[1@5;1 ¢ I(N"erlﬂ))(z:{s;x}nkes; el“k”k”))]

Pr,, ~

(C11)

Appendix D. Details of numerical simulation

From the depolarizing noise model described in section 5.2, we computed error probabilities for all Pauli errors
arising from a single fault at the locations indicated by the blue boxes in figure D 1. For instance, the probability
ofan] ® Zerror atlocation L, is given by

Py = _1p5 (P1xPly + Ply(1 — P1,) + (I — Pl)(1 — Ply)) + (1 — p)(1 — Ply)Ply, (D1)
where
p
Pl = £, D2
X =15 (D2)

during the first round, and

Py =2, (D3)
3
in later rounds. Similarly
2
Pl, = 1(1 - ﬂ) + 2y (1 - ﬂ)ﬁ, (D4)
15 10 450 15/ 15
for the first round and
Pl, — z—p(l - i) L 2P (1 - 2—p)ﬂ. (D5)
3 10 3 30 3 )15
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sa)-{2(-/H}{D(v2n)

i
orol)—o 0 =,

Figure D1. Illustration of error locations (blue boxes) before and after the controlled displacement gate, where Pauli errors were added
based on their corresponding error probability polynomials (computed from the depolarizing channel described in section 5.2).
Errors during the controlled-displacement gate were simulated using the master equation described in section 5.2.

O>T~ o =,

With a Pauli error added at either locations Ly, L,, L3 or Ly, we update the state of the qubit before performing
the master equation simulation described in section 5.2. With the analytic error probability for the Pauli error,
in addition to the evolution of the state during the master equation, we can compute the total probability of
obtaining the output state. As mentioned in section 5.2, such an analysis ignored second order Pauli error events
(before and after the controlled displacement gate).
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