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Abstract

The Bern-Carrasco-Johansson (BCJ) double copy, which relates the scattering amplitudes
of gauge and gravity theories has been an active area of research for a few years now.
In this thesis, we extend the formalism of BCJ to consider classical solutions to the field
equations of motion, rather than scattering amplitudes.

One first approach relies on a family of solutions to the Einstein equations, namely
Kerr-Schild metrics, which linearise the Ricci tensor. Using them we propose a simple
ansatz to construct a gauge theory vector field which, in a stationary limit, satisfies lin-
earised Yang-Mills equations. Using such ansatz, that we call the Kerr-Schild double copy,
we are able to relate, for example, colour charges in Yang-Mills with the Schwarzschild and
Kerr black holes. We extend this formalism to describe the Taub-NUT solution (which is
dual to an electromagnetic dyon), perturbations over curved backgrounds and accelerating
particles, both in gauge and gravity theories.

A second, more utilitarian approach consists on using the relative simplicity of gauge
theory to efficiently compute relevant quantities in a theory of perturbative gravity. Work-
ing along this lines, we review an exercise by Duff to obtain a spacetime metric using
tree-level graphs of a quantum theory of perturbative gravity, and repeat it using a BCJ
inspired gravity Lagrangian. We find that the computation is notably simplified, but a new
formalism must be developed to remove the unwanted dilaton information, that naturally
appears in the double copy.
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Chapter 1

Introduction

The recent years in physics have been marked by a couple of major discoveries, performed
using two of the biggest experiments ever created. Last year, the Laser Interferometer
Gravitational Observatory (LIGO) collaboration announced the detection of gravitational
waves [6], while five years ago, the ATLAS and CMS collaborations announced the dis-
covery of the Higgs boson particle in the Large Hadron Collider (LHC) at CERN [7, 8].
Besides being wonders of engineering, a great deal of the importance of these experiments
comes from the fact that they provide validation of General Relativity (GR) in the case
of LIGO, and the Standard Model (SM) of particle physics in the case of LHC, which
are two of the most successful theories ever formulated to describe the universe we live
in. Such breakthroughs would not have been possible without the continuous effort of
theoretical physicists1 devoted to coming up with theories that better describe Nature.
The SM is an example of a gauge theory, and as such, it is formulated in the language we
call Quantum Field Theory (QFT), where one important object used to describe particles
and their interaction is the scattering amplitude. In the textbook approach to QFT2,
a theory is defined by its Lagrangian. Then, the computation of scattering amplitudes
(where a perturbative expansion is allowed) can be performed using Feynman diagrams.
The philosophy of this is simple: a set of rules (called Feynman rules) describing particle
interaction and propagation is to be deduced from the Lagrangian. Then, we have to draw
diagrams representing every single way that the process we are interested in can occur,
and follow our Feynman rules to assign every diagram a value. The sum of all diagrams
yields the scattering amplitude. Although this is in principle all we need, in practice this is
only possible for the simplest examples, since more complicated problems become swiftly
too complex to manage, even using computers. In the now classic review “Calculating

1Proof of this is that the hard work of hundreds of physicists (thousands of people) at LHC resulted
in a Nobel prize for two theoretical physicists (Englert and Higgs) who had no involvement whatsoever in
the experiment. A milder result can be seen in LIGO, as one of the Nobel prize laureates (Thorne) was
involved with the experiment, but is a theoretical physicist nonetheless.

2See, for example, [9, 10]

1



CHAPTER 1. INTRODUCTION 2

scattering amplitudes efficiently” [11], where Dixon shows a collection of tricks to avoid
computing amplitudes with Feynman diagrams, he cites, among other reasons for the in-
efficiency of the Feynman diagram approach, that there are too many such diagrams, and
that a single diagram can have many terms. Let us comment briefly on this now. First,
imagine we want to compute the amplitude for the process of scattering of four gluons, two
of them with negative helicity, and two of them positive3. To do this, we need to consider
four Feynman diagrams. The result can be cast into the nice and compact formula4

A(1−2−3+4+) = ig2 〈12〉4

〈12〉〈23〉〈34〉〈41〉
. (1.1)

Now, consider we were to compute the amplitude for eight gluons, instead of four, where
again two of them have negative helicities, while the rest have positive polarization. Instead
of four diagrams, we would need to look at (literally) millions of them, yet, the amplitude
wouldn’t grow that much in complexity, as it can be described by

A(1−2−3+4+5+6+7+8+) = ig6 〈12〉4

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉
. (1.2)

Actually, we could consider any number of gluons, such that two (say, the first two) of
their helicities are negative, while all the other are positive. Tha amplitude is given by

A(1−2−3+ . . . n+) = ign−2 〈12〉4

〈12〉〈23〉 . . . 〈n− 1 n〉〈n1〉
. (1.3)

The last equation is called the Parke-Taylor formula [12], and it has played a major role in
shifting the paradigm of the computation of scattering amplitudes. It hints that (at least
in this case) it doesn’t matter that there are too many diagrams, because in the end you
can obtain a simple compact result due to lots of terms cancelling out. It goes to show that
a Lagrangian approach, i.e. using Feynman diagrams, is very inefficient in this problem,
as it would be as well in many others. The Parke-Taylor formula celebrated its 30th
birthday last year. In that time, several brilliant scientists have developed many ingenious
tricks and techniques to study scattering amplitudes avoiding the Lagrangian approach.
Recursion relations [13, 14] to build trees out of (smaller) trees, generalized unitarity to
build loops out of trees [15–19], novel mathematics to deal with integration [20], exploiting
supersymmetry [21], or other symmetries of the theories [22–24], Wilson loops [25,26], or
even more mathematical ideas like describing amplitudes in terms of twistors [27] or getting
rid also of the spacetime and interpreting amplitudes like geometric objects [28], are some

3This is, in some sense, the simplest non-trivial amplitude for definite helicities we can compute.
Amplitudes with all or all but one equal helicities vanish. See [11] for a nice argument of why this
happens.

4We will not explain here what the notation means, as we’re not interested in the value itself, but just
want to make a point. We refer the reader to the aforementioned Dixon [11].
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of the most emblematic areas of research in the amplitudes community. Some of these
subjects have been reviewed in [29–31]. After this intermission, we can go back to our
main tread. There is another example we can explore that relates to Dixon’s second point.
Let us compute the three graviton scattering amplitude.

In 1967, Bryce DeWitt wrote three papers on perturbative quantization of gravity
[32–34]. In the third of them, he constructs Feynman rules for a graviton field.

To understand a bit more about this, we may (as he does) review the case for the
three-point Feynman rule for Yang-Mills theory. He expresses it in the form5

δS3

δAaµδA
b
νδA

c
ρ

= fabc ((pρ − qρ)ηµσ + (qµ − rµ)ησρ + (rσ − pσ)ηρµ) , (1.4)

where particle 1 comes in with momenta p and colour index a, particle 2 comes in with
momenta q and colour index b and particle 3 comes in with momenta r and colour index
c. The action S3 refers to those terms in the Yang-Mills Lagrangian that contain exactly
three gluon fields.

In an analogous fashion, DeWitt then gives the three-point Feynman rule for three
gravitons

δS3

δhµνδhστδhρλ
= sym

[
−1

4
P (p · qηµνηστηρλ)− 1

4
P (pσpτηµνηρλ) +

1

4
P (p · qηµσηντηρλ)

+
1

2
P (p · qηµνησρητλ) + P (pσpληµνητρ)− 1

2
P (pτqµηνσηρλ)− 1

2
P (pρqληµσηντ )

+
1

2
P (pρpληµσηντ ) + P (pσqλητµηνρ) + P (pσqµητρηλν)− P (p · qηνσητρηλµ)

]
,

(1.5)

where the action S3 refers to the terms in the Einstein-Hilbert action6 that, when expanded
in powers of the graviton hµν , contain exactly three such fields. The “sym” standing in
front of these expressions indicates a symmetrization is to be performed on each index pair
{µ, ν}, {σ, τ} and {ρ, λ}. The symbol P indicates a summation is to be carried out over
all distinct permutations of the momentum-index triplets {p, µ, ν}, {q, σ, τ} and {r, ρ, λ}.

This expression may not seem that intimidating, but a full expansion of it contains
171 separate terms, in contrast with the six terms coming from expanding eq. (1.4) for
the three-gluon vertex in Yang Mills. Moreover, the number of terms for the four-graviton
vertex (that we do not show here) is 2580. This renders the approach of computing
physical quantities using Feynman diagrams rather prohibitive7. The approach we’ll take
is a different one. To introduce it, let us look at possibly the simplest example, i.e. the

5c.f. eq. (1.27).
6c.f. eq. (1.74).
7Although some people actually made heroic efforts to compute things in this framework.
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three-graviton scattering amplitude. Again, before doing this, we will look at the Yang-
Mills case.

The first issue with using Feynman diagrams is that they are obtained from rules
which depend on the gauge, and hence are not directly physical. To obtain any physical
observable we need the external particles to be “on-shell”. For gluons or gravitons this
means being massless and it will impose (for the three particles scattering case)

k2
i = 0, ki · kj = 0, (1.6)

where we use the notation kµ1 ≡ pµ, kµ2 ≡ qµ, kµ3 ≡ rµ, and the second equality follows from
momentum conservation. To get the scattering amplitude, for external gluons, we must
contract eq. (1.4) with three transverse polarization vectors. Gluons can have positive or
negative helicity polarization satisfying ε±i · ki = 0. We will also be able to choose our
polarization vector in such a way that ε±i · ε±j = 0. If we consider gluons 1 and 2 to have
negative helicity, and the third one to have positive helicity, the contraction yields

ε−1 µε
−
2 σε

+
3 ρ

δS3

δAaµδA
b
σδA

c
ρ

= −2ifabc((k1 · ε2)(ε1 · ε3)− (k2 · ε1)(ε2 · ε3)). (1.7)

Here we have also used the conservation of momentum k3 = −k1− k2. We may read from
this last expression an “on-shell Feynman rule” for Yang-Mills theory as〈

δS3

δA−aµ δA−bσ δA
+c
ρ

〉
on-shell

= −2ifabc(k1
σηµρ − k2

µηρσ). (1.8)

We can perform an analogous procedure now for perturbative gravity. Gravitons are
also massless so they must also be in one of two states (in four dimensions), which can
be taken to have helicity ±2. Their polarization tensors then factorize into a product of
spin-1 polarization vectors: ε±±µνi = ε±µi ε±νi . The constraints from dotting the graviton
Feynman rule into polarizations allow us to write

ε−1 µνε
−
2 στε

+
3 ρλ

δS3

δhµνδhστδhρλ
= 4

(
(ε−1 · ε+3 )(k1 · ε−2 )− (ε−2 · ε+3 )(k2 · ε−1 )

)2
, (1.9)

so we may also obtain the on-shell graviton Feynman rule at three-points as〈
δS3

δh−µνδh
−
στδh

+
ρλ

〉
on-shell

= 4(kσ1 η
µρ − kµ2 ηρσ)(kτ1η

νλ − kν2ηλτ ) (1.10)

There are two lessons we can gather from this. The first one, which we had already
seen in the Parke-Taylor example, is that using off-shell objects like Feynman diagrams
may complicate computations in intermediate stages, while the on-shell physical informa-
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tion may actually be very simple. The second one is that the scattering amplitude in
gravity is the square of that in gauge theory. This is by no means a coincidence, but one
of the simplest manifestations of the paradigm gravity=gauge2, which hints at the theories
being intimately related. This relation is far from clear when inspecting the Lagrangian
of the theories in question. While the Yang-Mills Lagrangian has three-gluon and four-
gluon vertices, the Einstein-Hilbert Lagrangian contains an infinite number of terms (that
describe the interaction of an infinite number of gravitons simultaneously). In spite of
these differences, some insight on dualities between gauge and gravity thories has been
gained from string theory. The most famous8 installment of a relation between gauge and
gravity theories is the AdS/CFT correspondence conjectured by Maldacena [35]9 in 1997.
However, more relevant for us is an older result by Kawai, Lewellen and Tye [36]. They
showed that the scattering amplitude for closed strings in a string theory can be expressed
as a sum of products of (two) scattering amplitudes of open strings. As it has been shown
that the low energy limit of scattering amplitudes for open and closed strings in string
theory yields scattering amplitudes in N = 4 super Yang Mills (sYM) and N=8 super-
gravity (Sugra) [37], a low energy limit of the KLT relations directly relates the tree-level
scattering amplitudes in (perturbative) gauge and gravity theories. These relations have
been useful in the search for a consistent theory of quantum gravity. They have even been
used (along with generalized unitarity methods) to investigate the divergences of Sugra to
three-loops [38]. Recently10, Bern, Carrasco and Johansson (BCJ) conjectured that it is
always possible to cast the kinematic information in a gauge theory in such a way that it
satisfies algebraic relations analogous to those imposed by the gauge (colour) group from a
Jacobi relation [39]. This property is referred to as “colour-kinematics duality”. By assum-
ing its validity, BCJ deduced relations between colour-ordered amplitudes in the gauge
theory, that further reduces the set of independent amplitudes. There is a most important
byproduct to colour-kinematics duality. BCJ also conjectured that by substituting the
colour information in the amplitude with a second copy of the kinematic information (the
so-called numerators), the result immediately yields a scattering amplitude in a gravity
theory [40]. This is called the BCJ double copy, or simply the double copy. We want to
make precise some of the statements that we found in the last couple of pages, in partic-
ular, those referring to KLT, colour-kinematics, and the BCJ double copy. In order to do
this, we will now review the definitions and notations of the theories we will work with.

8This is the most cited paper in hep-th, with ∼13000 citations.
9∼13000+1.

10We keep saying this, but it’s been almost ten years now.
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1.1 Gauge theory

To set some of the notation we are about to use we may start by reviewing the theory
called Yang-Mills, which describes the interaction of gluons (this is like Quantum Chro-
modynamics (QCD), which describes the strong interactions, but without quarks). We
consider the theory defined by the Lagrangian

LYM = −1

4
Tr(F µνFµν), (1.11)

where the field strength tensor is defined as

Fµν(x) = ∂µAν − ∂νAµ − i
g√
2

[Aµ, Aν ]. (1.12)

We may note that the Yang-Mills Lagrangian and the field-strength tensor look a lot
like those of Maxwell electromagnetic theory. Both the novelties, namely, the trace in
the Lagrangian and the commutator in the field strength tensor are a consequence of
considering a theory with a non-abelian symmetry group, instead of the abelian U(1) of
electromagnetism. The trace in eq. (1.11) is taken with respect to the gauge (colour)
degrees of freedom. The gauge field Aµ(x) is a traceless hermitian matrix of fields, and we
can expand it in the following way

Aµ(x) = Aaµ(x)T a. (1.13)

The matrices T a are the generator of the gauge group SU(N). There are N2−1 generators
T a, and they are hermitian and traceless. These properties follow immediately from the
special unitarity of SU(N). The generator matrices obey commutation relations of the
form

[T a, T b] = if̃abcT c, (1.14)

and the numerical factors f̃abc are called the structure constants of the group. If they do
not vanish, the group is non-Abelian. We can choose the generator matrices to obey the
normalization11

Tr(T aT b) = δab. (1.15)
11Another normalization that occurs in literature is Tr(T aT b) = 1

2δ
ab and [T a, T b] = ifabcT c, so

f̃abc =
√

2fabc but we choose instead the convention eq. (1.15) since it is more convenient for the colour
ordered amplitudes discussed in a later section.
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In a similar fashion to eq. (1.13), we can expand the field strength tensor eq. (1.12) as

Fµν = F a
µνT

a, (1.16)

in terms of the generator matrices T a. If we also consider the explicit form of eq. (1.12)
we can write an expression for the components of the field strength tensor

F c
µν = ∂µA

c
ν − ∂νAcµ +

g√
2
f̃abcAaµA

b
ν . (1.17)

Then, the trace in the Lagrangian eq. (1.11) amounts to

LYM = −1

4
F µνeF e

µν , (1.18)

and plugging eq. (1.17) we get the Lagrangian

LYM =− 1

2
∂µAµe∂µA

e
ν +

1

2
∂µAνe∂νA

e
µ

− g√
2
f̃abcAµaAνb∂µA

e
ν −

1

8
g2f̃abef̃ cdeAµaAνbAcµA

d
ν . (1.19)

In order to compute physical meaningful quantities, we need to get rid of the gauge
freedom. This process is commonly referred to as fixing the gauge, and it was proved by
Faddeev and Popov that we may do this by defining a function Ga(x) and adding to the
Lagrangian the so-called gauge fixing term12

Lgf = −1

2
ξ−1GaGa. (1.22)

One popular choice is the function

Ga = ∂µAaµ, (1.23)

12One consequence of doing this is that we need to consider the auxiliary fields called ghosts, defined
by the Lagrangian

Lgh = c̄a
∂Ga

∂Abµ
Dbc
µ c

c, (1.20)

which also needs to be added to the Lagrangian of our theory. In the last equation,

Dbc
µ = δbc∂µ + gfabcAaµ (1.21)

is the covariant derivative in the adjoint representation, and c and c̄ are the ghost and anti-ghost field.
The effect of the ghosts fields only appears when we go to loop level. However, we will restrict ourselves
to tree-level computations, so we effectively ignore this part.
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which yields the gauge-fixing term

Lgf = −1

2
ξ−1∂µAeµ∂

νAeν . (1.24)

Adding eqs. (1.19) and (1.24) and doing some integration by parts in the quadratic terms,
we find

LYM + Lgf =
1

2
Aµe(ηµν∂

2 − ∂µ∂ν)Aνe +
1

2
ξ−1Aeµ∂

µ∂νAeν

− g√
2
f̃abcAµaAνb∂µA

e
ν −

1

8
g2f̃abef̃ cdeAµaAνbAcµA

d
ν . (1.25)

This is known as the Rξ gauge. The first line of eq. (1.25) yields the gluon propagator,

∆ab
µν(k) =

iδab

k2 − iε

(
ηµν − (1− ξ)kµkν

k2

)
. (1.26)

The second line of eq. (1.25) yields three-gluon and four-gluon vertices. The three-gluon
vertex factor is

V abc
µνρ =

g√
2
f̃abc[(q − r)µηνρ + (r − p)νηρµ + (p− q)ρηµν ]. (1.27)

The four-gluon vertex factor is

V abcd
µνρσ = −ig

2

2

[
f̃abef̃ cde(ηµρηνσ − ηµσηνρ)

+f̃acef̃dbe(ηµσηρν − ηµνηρσ)

+f̃adef̃ bce(ηµνησρ − ηµρησν)
]
. (1.28)

The amplitudes constructed from these rules can be organized into different group
theory structures. For example, the colour factors for the s, t and u channel diagrams of
the four-gluon tree amplitudes are

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a1a3bf̃ ba4a2 , cu = f̃a1a4bf̃ ba2a3 , (1.29)

while the 4-point diagram will contain a sum of terms with all of the previous factors, as
it can be seen from eq. (1.28). We can express this information in terms of traces of the
generators T a by noting that

if̃abc = Tr(T aT bT c)− Tr(T bT aT c). (1.30)
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Then, we can use the Fierz identities (completeness relation)

(T a) j
i (T a) l

k = δ l
i δ

j
k −

1

N
δ j
i δ

l
k , (1.31)

to reduce a product of generator traces. For example, for the 4-gluon s-channel diagram
we have

f̃a1a2bf̃ ba3a4 ∝ (Tr(T a1T a2T a3T a4) + (2↔ 4))− (4↔ 3). (1.32)

Similarly, the other three diagrams can also be written in terms of single-trace group
theory factors. So the amplitude can be written as

Atree
4 = g2(A4(1, 2, 3, 4)Tr(T a1T a2T a3T a4) + permutations of (234)), (1.33)

where the amplitudes A4(1, 2, 3, 4) are called partial or colour ordered amplitudes and
we’ll have much more to say about them. This single-trace colour structure is a common
feature, as we see next.

1.1.1 Colour ordered amplitudes

We could repeat similar analysis for every amplitude, but instead, we take a short cut
using another, more amplitude-friendly gauge called the Gervais-Neveu gauge. To do this,
we first introduce the matrix-valued13 complex tensor

Hµν ≡ ∂µAν −
ig√

2
AµAν . (1.34)

Then, Fµν is the antisymmetric part of Hµν

Fµν = Hµν −Hνµ. (1.35)

The Yang-Mills Lagrangian can now be written as

LYM = −1

2
Tr(HµνHµν −HµνHνµ) (1.36)

To fix the gauge, we choose a matrix-valued gauge-fixing function G(x) = Hµ
µ, and add

Lgf = −1

2
Tr(Hµ

µH
ν
ν) (1.37)

13This means that we are considering the field itself (e.g. Aµ) instead of the coefficients of the field
when expanded in terms of the generators T a (e.g. Aaµ).
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to LYM. Here we have set the parameter ξ = 1 in eq. (1.22) and ignored ghost Lagrangians
(since we’ll focus on tree-level diagrams). This is called the Gervais-Neveu gauge, and it
is particularly well suited for tree-level scattering amplitudes computations because the
Lagrangian now yields directly colour-ordered Feynman rules. Combining eqs. (1.36) and
(1.37) we get the total

L = −1

2
Tr(HµνHµν −HµνHνµ +Hµ

µH
ν
ν), (1.38)

and integration by parts leads to the simple expression

L = Tr
(
−1

2
∂µAν∂µAν − i

√
2g∂µAνAνAµ +

1

4
g2AµAνAµAν

)
. (1.39)

This is the Lagrangian for SU(N) Yang-Mills theory in Gervais-Neveu gauge. Using this,
we obtain the scattering amplitude for any n-point tree-level gluon14 in the form

Atree
n = gn−2

∑
perms σ

An(1, σ(2), ..., σ(n))Tr(T a1T aσ(2) . . . T aσ(n)), (1.40)

where each An is a colour-ordered or partial amplitude, and is gauge invariant. The sum
is over the (n−1)! elements that take into account the cyclic nature of the traces. We may
note that it has a single-trace colour structure. This is an important feature of tree-level
amplitudes. For loop amplitudes we should encounter multi trace structures.

We can compute the colour ordered amplitudes appearing in eq. (1.40) directly by
considering an effective set of Feynman rules (that we call colour-ordered) for planar
diagrams (i.e. with no line crossing) with a fixed, counter-clockwise ordering i1, . . . , in of
the external lines which corresponds to the colour factor Tr(T ai1 . . . T ain ). From the first
term in eq. (1.39), we see that the gluon propagator is simply

∆µν(k) =
iηµν
k2 − iε

. (1.41)

The second and third terms in eq. (1.39) yield three- and four gluon vertices

Vµνρ(p, q, r) = −i
√

2g(pρηµν + qµηνρ + rνηρµ), (1.42)

Vµνρσ = ig2ηµρηνσ, (1.43)

respectively. Using eqs. (1.41-1.43), we can compute the colour-ordered amplitudes.
14Actually, this applies to any amplitudes involving only particles that transform in the adjoint repre-

sentation of the gauge group
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1.1.2 Relations between colour-ordered amplitudes

The (n − 1)!-dimensional basis we summed over in eq. (1.40) is actually over-complete.
This is a consequence of a series of relations obeyed by tree-level colour-ordered scattering
amplitudes. We will mention those relations now.
1. Cyclic Symmetry.

Atree
m (1, 2, . . . ,m) = Atree

m (2, . . . ,m, 1). (1.44)

2. Reflection (anti)-Symmetry.

Atree
m (1, 2, 3, . . . ,m− 1,m) = (−1)mAtree

m (1,m,m− 1, . . . , 3, 2). (1.45)

These first two relations correspond to properties of the traces that accompany the partial
amplitudes in eq. (1.40).
3. Photon Decoupling. ∑

σ∈CP(2,...,m)

Atree
m (1, σ) = 0, (1.46)

where we sum over every cyclic permutation σ of (2, . . . ,m). As an example, the five-point
case takes the form

Atree
5 (1, 2, 3, 4, 5) + Atree

5 (1, 3, 4, 5, 2) + Atree
5 (1, 4, 5, 2, 3) + Atree

5 (1, 5, 2, 3, 4) = 0. (1.47)

This relation might be understood as substituting one gluon with a photon. Since it does
not couple to the other gluons, the amplitude should vanish, thus yielding eq. (1.46) (see,
for example [10]).
4. Kleiss-Kuijf (KK) relations. These relations imply that we can express any m-point
colour-ordered amplitude as a linear combination of the (m−2)! colour-ordered scattering
amplitudes that result from fixing the position of two of the leg labels (say 1 and m). The
coefficients can actually only be {−1, 0, 1}. The relations are

Atree
m (1, {α},m, {β}) = (−1)|β|

∑
σ∈OP({α},{βR})

Atree
m (1, σ,m) (1.48)

where the sum is over ordered permutations (OP): all permutations merging the sets {α}
and {βR} that maintain the order of the individual elements belonging to each set within
the merged set. The notation {βR} represents the set {β} with inverted order, and |β|
is the number of elements of {β}. These relations were conjectured in [41] and proven
in [42].
5. Bern-Carrasco-Johansson (BCJ) relations. It is possible to further reduce the basis
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to (m − 3)! elements by means of these relations. We will then express every m-point
colour-ordered amplitude as a linear combination of the amplitudes arising from fixing
the position of three external legs (say 1,2,3). Each one of the (m − 3)! colour-ordered
tree-amplitudes will have a coefficient that is a function of external momentum Lorentz
invariants. The formula is

Atree
m (1, 2, {α}, 3, {β}) =

∑
σ∈POP({α},{β})

Atree
m (1, 2, 3, σ)

n∏
k=4

Fk(3, σ, 1)

s2,4,...,k

, (1.49)

where the momentum invariants are given by

si,j,...,l = (ki, kj, . . . , kl)
2, (1.50)

n = |{α}| + 3 is the position in the list {1, 2, {α}, 3, {β}} of k3, and the sum runs over
partially ordered permutations (POP) of the merged {α} and {β} sets. This gives all
permutations of {α} ∪ {β} consistent with the order of the {β} elements. The function
Fk associated with leg k is given by,

Fk({ρ}) =


∑m−1

l=tk
Sk,ρl if tk−1 < tk

−
∑tk

l=1 Sk,ρl if tk−1 > tk

+


s2,4,...,k if tk−1 < tk < tk+1

−s2,4,...,k if tk−1 > tk > tk+1

0 else

, (1.51)

where tk is the position of leg k in the set {ρ}, except for t3 and tn+1 which are always
defined to be,

t3 ≡ t5, tn+1 ≡ 0. (1.52)

The expression Si,j is given by,

Si,j =

si,j if i < j or j = 1 or j = 3

0 else
. (1.53)

These relations were first conjectured in ref. [39] and then proven as a low-energy limit
of string theory relations in ref. [43, 44], and then directly using BCFW relations in field
theory in refs. [45–47].

The origin of the last set of relations is closely related to the concept known as colour-
kinematics duality, that we review next.
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1.1.3 Colour-kinematics duality

An alternative way to write the full colour-dressed n-point tree amplitude of Yang-Mills
theory is as a sum over all cubic diagrams, labelled by i,

Atree
n =

∑
i∈cubic

cini∏
αi
p2
αi

(1.54)

The denominator of each term is given by the product of all propagators (labeled by αi) of
a given diagram. The numerator factorizes into a (group-theoretic) colour-part ci, and a
kinematic part ni, which is a polynomial of Lorentz-invariant contractions of polarization
vectors εi and momenta pi. Let us now consider as an example, the 4-point amplitude

Atree
4 =

csns
s

+
ctnt
t

+
cunu
u

(1.55)

where

cs ≡ f̃a1a2bf̃ ba3a4 , ct ≡ f̃a1a3bf̃ ba4a2 , cu ≡ f̃a1a4bf̃ ba2a3 . (1.56)

The numerators ni can be straightforwardly constructed using Feynman rules. The Yang-
Mills 4-point contact terms can be blown-up into s-, t- or u-channel 3-vertex pole diagrams.
There will not be a unique prescription for how to assign a given contact term into the
cubic diagrams, so the numerators are not uniquely defined. We can actually deform the
numerators ni in several ways without changing the result of the amplitude. For example,
one can trivially shift the polarization vectors as εi(pi) → εi(pi) + αipi. This changes the
numerator, but has no effect in the amplitudes, since they are gauge invariant. A more
non-trivial deformation uses the colour factor Jacobi identity

cs + ct + cu = 0. (1.57)

The transformation

ns → ns + s∆, nt → nt + t∆, nu → nu + u∆, (1.58)

where ∆ is an arbitrary function, leaves the amplitude invariant. In general, for any set
of three cubic diagrams whose colour factors are related through a Jacobi identity,

ci + cj + ck = 0, (1.59)

the following numerator-deformation leaves the amplitude invariant

ni → ni + si∆, nj → nj + sj∆, nk → nk + sk∆ (1.60)



CHAPTER 1. INTRODUCTION 14

Here 1/si, 1/sj and 1/sk are the unique propagators that are not shared among the three
diagrams. Because ∆ is arbitrary it is reminiscent of a gauge transformation, except that
it doesn’t transform the field but the numerator. Because of this, the freedom is usually
called a generalized gauge transformation. This freedom to transform the numerators
was used by Bern, Carrasco and Johansson to propose the colour-kinematics duality in
ref. [39]. They state that the scattering amplitudes of Yang-Mills theory, and its super-
symmetric extensions, can be given in a representation where the numerators ni have the
same algebraic properties as the corresponding colour factors ci. More precisely, using the
representation (1.54), the BCJ proposal is that one can always find a representation such
that the following parallel relations hold for the colour and kinematic factors

ci = −cj ⇔ ni = −nj (1.61)

ci + cj + ck = 0⇔ ni + nj + nk = 0 (1.62)

The duality does not state that the numerators need be local.
The first consequence of this colour-kinematics duality, is that by imposing it, we

deduce relations among colour ordered amplitudes. For example, using the fact that the
colour-ordered tree amplitudes can be expanded in a convenient representation in terms
of the poles that appear, we have at four points,

A4(1, 2, 3, 4) ≡ ns
s

+
nt
t
, (1.63)

A4(1, 3, 4, 2) ≡ −nu
u
− ns

s
, (1.64)

A4(1, 4, 2, 3) ≡ −nt
t

+
nu
u
. (1.65)

Then, imposing the relation nu = ns − nt, we can obtain the relations

tA4(1, 2, 3, 4) = uA4(1, 3, 4, 2), sA4(1, 2, 3, 4) = uA4(1, 4, 2, 3), (1.66)

tA4(1, 4, 2, 3) = sA4(1, 3, 4, 2), (1.67)

which can be combined and in turn imply the photon decoupling relation (c.f. eq. (1.46))

Atree
4 (1, 2, 3, 4) + Atree

4 (1, 3, 4, 2) + Atree
4 (1, 4, 2, 3) = 0, (1.68)

For 5-point amplitudes, we can get for example

Atree
5 (1, 3, 4, 2, 5) =

−s12s45A
tree
5 (1, 2, 3, 4, 5) + s14(s24 + s25)Atree

5 (1, 4, 3, 2, 5)

s13s24

. (1.69)

and three other similar relations. These are both examples of BCJ relations in the sense of
eq. (1.49). There is actually a simple type of such relations (sometimes called fundamental
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BCJ relations) that can be nicely condensed in the form

n∑
i=3

(
i∑

j=3

s2j

)
An(1, 3, . . . , i, 2, i+ 1, . . . , n) = 0 (1.70)

which is equivalent to eq. (1.49).
Now that we have understood the meaning of colour-kinematics duality, the application

of these ideas to compute gravity amplitudes will be a simple one. However, we must start
by stating what we mean by gravity theories. We will do that next.

1.2 Perturbative gravity

The idea of developing a quantum theory of gravitation is an old one, and there have
been several attempts15. Because our subject is directly linked to classical solutions, the
approach we are interested in is the quantization of a classical theory of gravity. So we will
focus first on our traditional way to study gravity, i.e. using general relativity (GR). This
relies on constructing a tensor differential equation (known as the Einstein equation) whose
solution is the metric tensor for the spacetime. Examples of this are the Schwarzschild
and Kerr metrics for black holes. There are actually several known solutions [49] to the
classical equations of motion and they will play a central role in this work. However, for
the time being, we are interested in a different approach, namely that of the scattering of
perturbative states at weak coupling. We know that scattering amplitudes are obtained
after the quantization of the field theory. We should start with the Lagrangian, extract
Feynman rules and calculate the scattering effects perturbatively. Although this approach
will be almost prohibitive (this will be clear in a couple pages), it is important to know
what we mean by perturbative gravity. The Einstein equation is

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (1.71)

The tensor Gµν is commonly referred to as the Einstein tensor, while Tµν is the stress-
energy tensor, and G is the Newton gravitational constant. The curvature scalar is given
by R = gµνRµν , and the Ricci tensor Rµν takes the form

Rµν = ∂ρΓ
ρ
µν − ∂νΓρρµ + ΓρρλΓ

λ
µν − ΓρνλΓ

λ
µρ. (1.72)

In the previous equation, the Christoffel symbol Γαβγ is given by

Γαµν = gαδ(∂µgδν + ∂νgδµ − ∂δgµν). (1.73)

15See, for example [48], for an inclusive review.
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The Einstein equation (1.71) could also have been derived from the variational principle
corresponding to the so called Einstein-Hilbert action

SEH =
1

κ2

∫
ddx
√
−gR + Smatter, (1.74)

where the gravitational coupling constant is given by κ2 = 16πG. The action is written in
d spacetime dimensions. It is worth saying that Newton’s constant G has a dependence
on the dimension of the spacetime on which we are working. Most of the work we will
perform is naturally in d = 4. However, we will also consider some extensions to spaces of
higher dimension.

The metric gµν(x) then becomes the field whose excitations we describe with the theory
defined by the action in eq. (1.74). Taking the functional derivative with respect to δgµν ,
the
√
−gR part of the action gives the Einstein tensor16, while the metric variation of the

matter action gives the energy-momentum tensor

Tµν =
δSmatter

δgµν
. (1.75)

We will now focus on applying quantum field theory on flat spacetime to the scattering of
the particles associated with the quantization of the gravitation field gµν . We will consider
the metric tensor gµν to take the form

gµν = ηµν + κhµν , (1.76)

so we have the field hµν as the fluctuation over the flat spacetime background ηµν (which
we usually refer to as Minkowski). It is this fluctuation hµν that we will usually refer to
as the graviton.

We can now insert eq. (1.76) into the EH action17 eq. (1.74) to obtain an expansion
in powers of the coupling constant κ

SEH = S
(0)
EH + κS

(1)
EH + κ2S

(2)
EH + . . . (1.78)

Where the ellipsis . . . represents a finite number of higher orders in κ. The explicit
expressions for the first terms are not given here, since they are not very illuminating, but
can be found in [34]. To obtain Feynman rules for the three-graviton interaction vertex,

16See, for example [50]
17Since gravity is invariant under diffeomorphisms, we need to add a term that breaks such invariance

in order to fix the gauge. We’ll refer to that term as Sgf. We should then consider the action

S = SEH + Sgf, (1.77)

However, since we are not pursuing this method, we will not specify this. This will be different in a later
chapter.
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we use DeWitt’s [34] method of taking functional derivatives of the action with respect to
the interacting fields. This is of course easier and more useful to express in momentum
space, where it takes the explicit form

δS3

δhµνδhστδhρλ
= sym

[
−1

4
P (p · qηµνηστηρλ)− 1

4
P (pσpτηµνηρλ) +

1

4
P (p · qηµσηντηρλ)

+
1

2
P (p · qηµνησρητλ) + P (pσpληµνητρ)− 1

2
P (pτqµηνσηρλ)− 1

2
P (pρqληµσηντ )

+
1

2
P (pρpληµσηντ ) + P (pσqλητµηνρ) + P (pσqµητρηλν)− P (p · qηνσητρηλµ)

]
,

(1.79)

where the action S3 refers to the terms in the Einstein-Hilbert action eq. (1.74) that,
when expanded in powers of the graviton hµν , contain exactly three such fields. Following
this path, we can also obtain an expression for the propagator, and for higher order
interaction vertices. Using them, it would be possible (although extremely tedious) to
compute graviton scattering amplitudes

Mn(hµ1ν1 , hµ2ν2 , . . . hµnνn). (1.80)

However, this is not the way things are usually done. Instead, some of the modern methods
to compute amplitudes, like on-shell recursion relations have been extended also to gravity
theories [51]. More along the lines of this thesis is a set of relations coming from string
theory, which are exploited to simplify the computation of graviton scattering amplitudes,
as we review now.

1.2.1 KLT relations

One important set of relations between gravity and gauge theory amplitudes was derived
in string theory by Kawai, Lewellen and Tye (so they are referred to as the KLT relations
[36]), and they state that the n-point, tree-level scattering amplitude for closed strings
is related to a sum over products of n-point tree-level open strings partial amplitudes,
with coefficients that depend on the kinematic variables, as well as on the string tension.
In the limit of infinite string tension the open-string partial scattering amplitudes with
spin 1 massless external string states become the colour-ordered gluon amplitudes An,
while in this same limit, the closed string amplitudes with massless spin-2 string external
states become the regular graviton scattering amplitudes Mn. In gauge theory, the partial
amplitude differs from the full amplitude by the colour structure, as shown in eq. (1.40),
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while the graviton scattering amplitude Mn is simply given by

Mtree
n =

(κ
2

)n−2

M tree
n . (1.81)

We may note that, since there is no colour-structure in gravity, there is no canonical sense
of ordering of the external states, unlike the case of the gauge theory amplitudes. In this
infinite string tension limit, KLT offers a relationship between tree-level Mn and An for
each n. For n = 4, 5, 6, the field theory KLT relations are

M tree
4 (1, 2, 3, 4) =− is12A

tree
4 (1, 2, 3, 4)Ãtree

4 (1, 2, 4, 3), (1.82)

M tree
5 (1, 2, 3, 4, 5) =− is12s34A

tree
5 (1, 2, 3, 4, 5)Ãtree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5)Ãtree

5 (3, 1, 4, 2, 5), (1.83)

M tree
6 (1, 2, 3, 4, 5, 6) =− is12s45A

tree
6 (1, 2, 3, 4, 5, 6)[s35Ã

tree
6 (2, 1, 5, 3, 4, 6)

+ (s34 + s35)Ãtree
6 (2, 1, 5, 4, 3, 6)]

+ P(2, 3, 4), (1.84)

where sij = (ki + kj)
2. In the n = 6 case, P(2, 3, 4) stands for the sum of all the permuta-

tions of legs 2, 3 and 4. At 7-point and higher, the KLT relations are more complicated.
Note that there is no specification of helicities of the external states in eqs. (1.82-1.84).
Furthermore, the KLT relations are valid in d-dimensions.

1.3 The double copy

While the KLT relations follow the gravity=(gauge)2 storyline, it is unsatisfactory in some
respects. First, the formula becomes tangled at higher points, as it involves nested per-
mutation sums and rather complicated kinematic invariants. Second, it involves products
of different colour-ordered amplitudes, so it is not really a squaring relation. Finally, it is
only valid at tree-level. There is, however, a more direct squaring relation that has been
proposed to be valid at both tree- and loop-level, namely the BCJ double copy, that we
review in the following section.

1.3.1 The BCJ double copy

It turns out that the colour-kinematics duality renders the squaring relation immediate.
We start with a gauge theory full amplitude expressed in the form

Atree
n =

∑
i∈cubic

cini∏
αi
p2
αi

. (1.85)
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It was proposed by Bern, Carrasco and Johansson [39] that once the colour-kinematics
duality-satisfying ni are obtained, the formula

Mtree
n =

∑
i∈cubic

n2
i∏

αi
p2
αi

(1.86)

calculates the n-point tree amplitude in the (super)gravity whose spectrum is given by
squaring the (super) Yang-Mills spectrum. That is, we take the Yang-Mills amplitude
and replace each colour factor ci with the corresponding duality satisfying numerator ni
to get gravity. This is called the BCJ double copy relation. It can be shown that KLT
relations can be derived from them. The BCJ double copy actually goes beyond this.
It has been shown that if we have two different sets of numerators where only one set
of numerators, say ni, satisfies the colour-kinematics duality while the other can be an
arbitrary representation of the Yang-Mills amplitude:

Atree
n =

∑
i∈cubic

cini∏
αi
p2
αi

, Atree
n =

∑
i∈cubic

ciñi∏
αi
p2
αi

, (1.87)

the squaring relation can be generalized to

Mtree
n =

∑
i∈cubic

niñi∏
αi
p2
αi

(1.88)

where the gravity numerators are given as the products of the two possibly distinct Yang-
Mills numerators. To understand this is so, let us assume that ni respects the duality
while ñi does not. We define the difference

∆i = ni − ñi. (1.89)

It follows from (1.87) that

∑
i∈cubic

ci∆i∏
αi
p2
αi

= 0. (1.90)

Since we haven’t specified the group, the only relation that can underlie this are the Jacobi
identities. But the set of colour-dual numerators ni satisfies the same Jacobi identities.
We are then able to substitute the colour factor with the BCJ-dual numerators and the
following equation is to hold

∑
i∈cubic

ni∆i∏
αi
p2
αi

= 0. (1.91)
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This establishes the equivalence of eqs. (1.86) and (1.88). The consequences of this
relation are far reaching, since the distinct sets of numerators may come from different
Yang-Mills theories, thus allowing us to construct scattering amplitudes for gravity theories
that contain different amounts of supersymmetry. Although such relations are themselves
remarkable, one of the most powerful features they have is that it is possible to generalise
them to loop level. We briefly describe this in the next section.

1.3.2 Loop-level double copy

To explore the generalisation of the double copy to loop level, we begin by considering the
full L-loop colour-dressed Yang-Mills amplitude. This can be written as

AL-loop
n = iLgn−2+2L

∑
i∈cubic

∫ ( L∏
l=1

dd`l
(2π)d

)
1

Si

nici∏
αi
p2
αi

, (1.92)

where Si is the symmetry factor of each diagram. It was conjectured [39] that there exist
representations where the kinematic numerators ni satisfy the same algebraic conditions as
ci. If this is actually the case (and there is mounting evidence of it), the gravity amplitude
is given by the double-copy formula

ML-loop
n = iL+1

(κ
2

)n−2+2L ∑
i∈cubic

∫ ( L∏
l=1

dd`l
(2π)d

)
1

Si

niñi∏
αi
p2
αi

(1.93)

where only one copy of the ni’s is required to be duality-satisfying. The validity of this
loop-level double copy can be justified through the generalized unitarity method [17,18]. In
this method higher loop level integrands are constructed by taking the product of lower-
loop or tree amplitudes and imposing on-shell conditions on intermediate legs. Then
assuming that gauge theory numerators ni satisfy the duality, the gravity integrand built
by taking double copies of numerators has the correct cuts in all channels and thus gives
the correct answer.

1.3.3 Zeroth copy

Similarly, one may start with eq. (1.92) and replace the kinematic numerator ni with a
second set of colour factors c̃i. This process yields the amplitude

T L-loop
n = iLyn−2+2L

∑
i∈cubic

∫ ( L∏
l=1

ddpl
(2π)d

)
1

Si

c̃ici∏
αi
p2
αi

. (1.94)

where y is the appropiate coupling constant. The particle content of this theory is a set of
scalar fields Φaa′ , which transform in the adjoint representation of two (possibly different)
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Lie algebras. This is an example of a biadjoint scalar theory [52–55]. The equation of
motion of such a theory is explicitly given by

∂2Φaa′ − yfabcfa′b′c′Φbb′Φcc′ = 0, (1.95)

where the second term arises from a cubic interaction involving both sets of structure
constants.

1.3.4 A (partial) bird’s-eye view of the double copy

The BCJ double copy was first hinted in [39] but it is more formally stated in [40]. At tree
level, it was proven by Bern et. al. in 2010 [56], assuming that colour-kinematics satisfying
numerators exist. BCJ relations were proven in string theory by monodromy [43, 57, 58]
(see also [59]) and in field theory using BCFW recursion relations [45, 47] and they can
be used with an inverted logic as a proof of the existence of the BCJ-dual numerators.
It has since been understood that at tree level, the double copy is equivalent to the KLT
relations. However, since it is formulated in terms of the numerators, the BCJ double
copy represents a great improvement with respect to KLT for the purpose of obtaining
loop level results.

The validity of the loop level double copy relies on the existence of duality-satisfying
numerators. Unlike tree level, it hasn’t been formally proved that there always exists such
a representation, nor are there ways to systematically construct one. We have explicit
duality-satisfying numerators for some theories. For example, for N = 4 SYM: up to
4-loops, 2-loops and 1-loop for 4-points, 5-points and 7-points respectively, and for pure
Yang Mills: up to 2-loops for 4-point in the all plus theory, 1-loop for 4-point in arbitrary
dimension, 1-loop for n-points in the all plus or all minus sectors. These and other examples
of numerators at loop-level for specific theories are in [40,60–79].

The formalism of the double copy has been extended to theories like Einstein-Yang-
Mills [80–83], biadjoint scalars [54, 55], the non-linear sigma model (NLSM) [84, 85], con-
formal gravity [86], QCD-like theories [87–90], and string theory [44,91–100]. Some other
works include understanding supergravities as products of Yang-Mills theories [101–110],
the application to form factors [111, 112] and looking for the corresponding kinematic
algebra [52,113–115]. (See also [116–129] for related studies).

Another field of research that bears a direct relation with this thesis is the use of the
double copy to simplify the action of gravity theories. This was pioneered by Bern and
Grant in [54], where they build an action for gravity which shows a factorization that
makes it compatible with KLT. Later Bern et. al. introduced a Lagrangian for Yang-Mills
that produces colour-kinematics duality satisfying numerators [56] up to six-points (later,
Weinzierl and Tolotti systematized the construction to any order [130]). Using this BCJ-
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compliant Lagrangian, it is straightforward to obtain a simpler Lagrangian for a gravity
theory. Other works on Lagrangian approaches include [113,131,132]. Cheung also studied
the double copy at the level of a redefined action in [133,134].

It is important to mention that there exist orthogonal approaches to study the relation
between gauge and gravity theories. For example, the scattering equations approach of
Cachazo, He and Yuan (CHY) [53,135–137] (this formalism has been extended to include
fermions [138, 139]), and the ambitwistor string [140–142] (the study of scattering ampli-
tudes from an ambitwistor point if view has been pioneered by Adamo et. al. in [143]).

Excellent reviews of double copy and related topics that have been written recently
include [144–147].

One iconic computation using the double copy formalism, is the investigation of the
divergences of N = 8 Sugra to four loops [70]. The difficult problem, however, gets
replaced by the task of obtaining loop level, colour-kinematics dual numerators. State of
the art results correspond to five loop numerators [77], that took more than five years
(and a great deal of new methods [78]) to compute.

Because of the difficulty of obtaining multi-loop numerators, an interesting problem
has been that of obtaining all-order results. This has been possible only in some kinematic
scenarios like the Regge limit [5, 148–152] or soft limits [153, 154]. It is in this spirit that
we will study the double copy in the context of classical solutions.

The classical double copy is studied in [1–3, 155–158] (see also [159, 160] for classical
solutions of biadjoint theories, and [161–164] for related gravity topics), and it will be
reviewed thoroughly in this thesis.

1.4 Overview

This thesis consists of two parts. We devote part I to studying a class of special solutions
in general relativity called Kerr-Schild spacetimes (or metrics), and we relate them to the
BCJ double copy. First, in chapter 2, we review the results for the double copy of the
self-dual sectors in Yang-Mills and general relativity, as they provide the simplest example
of a double copy between solutions of the equation of motion. Then, in chapter 3, we
review the double copy relation between some black hole examples in Kerr-Schild form,
and gauge theory solutions obtained from a simple ansatz. We extend this formalism in
chapter 4 to also consider solutions which exhibit multiple Kerr-Schild form. Such is the
case with the Taub-NUT metric, whose single copy is an electromagnetic dyon. In chapter
5, we extend this formalism to consider the process when gravitons are defined over curved
backgrounds, opening a possible pathway to cosmological applications. Finally, chapter 6
deals with solutions representing accelerated radiating particles, and it also relates via the
double copy the radiation emitted by the particles in both theories.
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The focus in part II moves to perturbative solutions of the equation of motion. In
chapter 7 we review a computation by Duff to obtain the Schwarzschild metric using a
quantum perturbative gravity computation at tree level. We then repeat the procedure in
chapter 8, using a gravity Lagrangian obtained as a double copy of Yang-Mills instead of
the Einstein-Hilbert one. A consequence of this is the appearance of a dilaton degree of
freedom. A formalism to extract the graviton and the dilaton information from the double
copy result is developed in chapter 9.

Finally, we present our conclusions in chapter 10. Some computations are given in the
appendix.



Part I

The Kerr-Schild Double Copy

24



Chapter 2

Invitation: Double copy and self-dual
sectors

Beside some specific examples like those mentioned in the last chapter, the existence of
BCJ duality-satisfying numerators has not been proven for any arbitrary theory. Given
that the double copy is naturally defined in a perturbative way, it is fair to say that
our lack of understanding of the origin of the double copy is in great part caused by the
technical difficulties that arise when trying to obtain multi-loop numerators that obey
colour-kinematics duality. We may then consider the possibility of the double copy being
applied away from the perturbative scattering amplitudes context. We focus our efforts in
the first part of this thesis to explore such an idea in the framework of classical field theory.

Instead of looking at scattering amplitudes, the natural object to study in classical field
theory are the solutions of the equations of motion of the fields. These two items, though,
are directly related as we will see below. In simple terms, tree-level scattering amplitudes
can be obtained by taking a limit of a series expansion of an appropriate classical solution.

2.1 Classical solution as a generating functional

To make the previous statement more precise, we can consider as starting point, the
functional path integral approach in quantum field theory. The generating functional is
given by

Z[J ] ≡
∫
Dφ ei

∫
d4x [L+Jφ] = eiW [J ], (2.1)

and the functional W [J ] generates connected correlation functions. The scattering ampli-
tudes are then computed from these connected correlators by the LSZ procedure. Since
we will focus here on the classical limit (which corresponds to tree-level graphs), we take

25
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~→ 01. In this limit, the saddle point approximation allows us to consider

Z[J ] =

∫
Dφ ei(S[φ]+

∫
d4x Jφ) ' ei(S[φcl]+

∫
d4x Jφcl), (2.2)

where φcl is the solution to the field equations in the presence of the source J . We thus
identify

W [J, φcl] ≡ S[φcl] +

∫
d4x Jφcl, (2.3)

so the functional derivative with respect to the current J yields

δW [J, φcl]

δJ(x)
=
δS[φcl]

δφcl

δφcl

δJ(x)
+ φcl + J

δφcl

δJ(x)
,

=

(
δS[φcl]

δφcl

+ J

)
δφcl

δJ(x)
+ φcl = φcl, (2.4)

where, in the last line, we have applied the equations of motion. This implies also that we
can use φcl as a generating functional, where in order to obtain an n-point Green function,
we need to differentiate n− 1 times with respect to the source. On the other hand, since
W [J ] is the generating functional for connected Green functions, the vacuum expectation
value is computed by the means of

〈0 |φ(x)| 0〉J =
δW [J, φcl]

δJ(x)
. (2.5)

Using eqns. (2.4) and (2.5), we have

〈0 |φ(x)| 0〉J = φcl. (2.6)

In conclusion, the vacuum expectation value of a field in presence of a classical source
J(x) corresponds to the solution to the classical field equation.

These ideas were exploited in ref. [113] where solutions of the self-dual sectors in gravity
and gauge theories were considered and linked via the BCJ double copy. We briefly review
this in the following section.

1This statement looks strange, since there is no ~ as we are working as usual with ~ = c = 1. The
planck constant would appear in

Z[J ] = e
i
~
∫
d4x [L+Jφ]

.
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2.2 Self-dual sectors

There are many reasons why the self-dual sector of Yang-Mills theory is very interesting.
In particular, it is known that MHV scattering amplitudes can be obtained directly using
solutions of self-dual Yang-Mills theory as a generating functional [165]. It has also been
conjectured that the simplicity of the Parke-Taylor formula, is somehow related to inte-
grability properties of the self-dual theory [166]. These ideas have been extended to loop
level [167, 168]. Thus, in the same sense that MHV represents the simplest possible set
up in scattering amplitudes, the self-dual sectors of Yang-Mills and gravity may provide
the simplest place to start studying classical solutions. Let us now review the equations
of motion and perturbative solutions to both theories. We follow mostly [167, 168] (see
also [169,170])

2.2.1 Self-dual Yang-Mills

The self-dual Yang-Mills (SDYM) equations are most commonly studied in Euclidean
space, or in (2 + 2) dimensional spacetime, so that the solutions are real. We instead
consider them directly in Minkowski spacetime, where they read

Fµν =
i

2
εµνρσF

ρσ, (2.7)

and the gauge field solving the equation is necessarily complex. Such complex self-dual
configurations have a physical interpretation as waves of positive helicity. Thus, it is useful
to use the light-cone coordinate system

u = t− z, v = t+ z, w = x+ iy, (2.8)

where the flat-space Minkowski metric is given by

ds2 = −du dv + dw dw̄. (2.9)

Choosing the light-cone gauge, where Au = 0, the self dual equation (2.7) implies

Aw = 0, Av = −1

4
∂wΦ, Aw̄ = −1

4
∂uΦ. (2.10)

The Lie-algebra valued scalar field Φ is determined by the equation

∂2Φ− ig[∂wΦ, ∂uΦ] = 0, (2.11)
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where ∂2 = −4(∂v∂u − ∂w∂w̄) is the wave operator. The double copy is most easily
understood in momentum space, so we perform a Fourier transform. This yields

Φa(x) =
1

2
g

∫
d̄p1d̄p2

F k
p1p2

fabc

k2
Φb(p1)Φc(p2), (2.12)

where we have defined

F k
p1p2

≡ δ̄(p1 + p2 − k)X(p1, p2), X(p1, p2) ≡ p1wp2u − p1up2w. (2.13)

Also, to simplify our notation, we use∫
d−dpF (p) ≡

∫
ddp

(2π)d
F (p), δ−d(p) ≡ (2π)dδ(d)(p). (2.14)

Thus, in order to obtain solutions to the self-dual sector of Yang-Mills theory, it suffices
to solve a scalar equation with cubic coupling.

2.2.2 Self-dual gravity

The equations of motion for self-dual gravity (SDG) can be written as

Rµνλδ =
i

2
εµνρσR

ρσ
λδ. (2.15)

Considering we expand the metric in the usual form

gµν = ηµν + κhµν , (2.16)

and exploiting gauge (diffeomorphism) freedom, the non-vanishing components of the
graviton can be written in terms of a single scalar field φ:

hvv = −1

4
∂2
wφ, hw̄w̄ = −1

4
∂2
uφ, hvw̄ = hw̄v = −1

4
∂w∂uφ, (2.17)

The SDG equations imply that this scalar field obeys

∂2φ− κ
(
(∂2
wφ)(∂2

uφ)− (∂w∂uφ)2
)

= 0, (2.18)

where ∂2 denotes the Minkowski wave operator. This equation was first derived by Pleban-
ski, and it gives the most general way to represent SDG. Introducing the Poisson bracket
{f, g} ≡ (∂wf)(∂ug)− (∂uf)(∂wg) we may rewrite

∂2φ− κ{∂wφ, ∂uφ} = 0, (2.19)
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so that the resemblance between SDYM eq. (2.11) and SDG becomes even more striking.

2.2.3 Perturbative solutions

We will review now a technique to recursively construct solutions to the equation of motion
in a quantum field theory. To illustrate this, let us consider the simple setting of an
interacting (cubic) scalar field theory with Lagrangian

L =
1

2
(∂φ)2 − 1

3!
gφ3 + Jφ. (2.20)

The last term in the Lagrangian correspond to a source for the field. The classical equation
of motion is given by

∂2φ+
1

2
gφ2 − J = 0. (2.21)

Performing a Fourier transform, we have the equation in momentum space2

k2φ(k)− 1

2
g

∫
d−4p1d

−4p2δ
−4(p1 + p2 − k)φ(p1)φ(p2) = −J(k). (2.22)

We will solve this equation order by order in perturbation theory. Thus, we write

φ(k) = φ(0)(k) + gφ(1)(k) + g2φ(2)(k) + . . . , (2.23)

In this expansion, the perturbative coefficients φ(i) are assumed to have no dependence on
the coupling g. Inserting the expansion eq. (2.23) in the equation of motion we obtain, at
zeroth order, the free equation

k2φ(0)(k) = −J(k). (2.24)

It is useful to solve it for the zeroth order in the expansion φ(0), thus yielding the equivalent
expression

φ(0)(k) = −J(k)

k2
. (2.25)

At next to leading order, we have the equation of motion

k2φ(1)(k) =
1

2

∫
d̄4p1d̄

4p2δ̄
4(p1 + p2 − k)φ(0)(p1)φ(0)(p2), (2.26)

2Throughout this thesis, rather than denoting Fourier coefficients with a tilde, we use the argument of
the function to make this clear.
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Figure 2.1: The second order correction φ(2)(k) consists of an interaction between two
particles, creating a disturbance which propagates before scattering against a third particle

or, inserting eq. (2.25), we have the equivalent

φ(1)(k) =
1

2

∫
d̄4p1d̄

4p2δ̄
4(p1 + p2 − k)

1

k2

J(p1)

p2
1

J(p2)

p2
2

. (2.27)

Note that we can express the results in terms of the current J(k), as well as in terms of
the zeroth order φ(0)(k). This will play an important role in chapters to come. Just for
the sake of comparison with later results, if we continue one more order in perturbation
theory, the next correction satisfies

k2φ(2)(k) =

∫
d̄4p1d̄

4p2δ̄
4(p1 + p2 − k)φ(0)(p1)φ(1)(p2) (2.28)

and inserting eqs. (2.24) and (2.27) we find

φ(2)(k) =

∫
d̄4p1d̄

4p2d̄
4p3δ̄

4(p1 + p2 + p3 − k)φ(0)(p1)φ(0)(p2)φ(0)(p3)
1

k2

1

(p2 + p3)2
.

(2.29)

The Feynman diagram corresponding to this expression is shown in Fig. 2.1. We are now
ready to apply this technology to gauge and gravity theories.

Gauge and gravity

Recall that the equation of motion for the self-dual Yang-Mills sector reduces to

∂2Φ− ig[∂wΦ, ∂uΦ] = 0, (2.30)

that we can express in the equivalent form

Φa(x) = −1

2
g

∫
d̄p1d̄p2

F k
p1p2

fabc

k2
Φb(p1)Φc(p2), (2.31)
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Then, if we consider the expansion

Φa(k) = Φ(0)a(k) + gΦ(1)a(k) + g2Φ(2)a(k) + . . . (2.32)

Repeating the procedure from last section, we can show that it has the iterative solution

Φ(0)a(k) = ja(k), (2.33)

Φ(1)a(k) = −1

2

∫
d−p1d

−p2

F k
p1p2

f b1b2a

k2
jb1(p1)jb2(p2), (2.34)

Φ(2)a(k) = −1

2

∫
d−p1d

−p2d
−p3

F k
p1q

F q
p2p3

f b1caf b2b3c

k2(p2 + p3)2
jb1(p1)jb2(p2)jb3(p3), (2.35)

where we have defined

j(k) ≡ −J(k)

k2
= φ(0)(k). (2.36)

In a similar fashion, the equation for self-dual gravity is given by

∂2φ− κ{∂wφ, ∂uφ} = 0, (2.37)

which can be brought to the form

φ(k) = −1

2
κ

∫
d−p1d

−p2

F k
p1p2

X(p1, p2)

k2
φ(p1)φ(p2). (2.38)

Again, proposing the expansion

φ(k) = φ(0)(k) + κφ(1)(k) + κ2φ(2)(k) + . . . (2.39)

This has the iterative solution

φ(0)(k) = j(k), (2.40)

φ(1)(k) = −1

2

∫
d−p1d

−p2

F k
p1p2

X(p1, p2)

k2
j(p1)j(p2) (2.41)

φ(2)(k) = −1

2

∫
d−p1d

−p2d
−p3

X(p1, q)F
k

p1q
X(p2, p3)F q

p2p3

k2(p2 + p3)2
j(p1)j(p2)j(p3) (2.42)

2.3 Relation with BCJ double copy

It is clear now that is possible to deduce solutions to SDG from SDYM by replacing
SU(Nc) structure constants fabc by appropiate factors of X(p1, p2). These factors are
related to the F k

p1p2
, but the relationship is a bit more subtle than the substitution f →
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F as this would involve squaring a delta function. Instead, the algorithm to deduce
the gravitational expression from the Yang-Mills formulae involves extracting the overall
momentum-conserving delta function, and then following the BCJ procedure of identifying
a kinematic numerator which is to be squared. We will detail this now.

2.3.1 Link with BCJ

We had already obtained the equation

φcl =
δW [J, φcl]

δJ(x)
, (2.43)

meaning that, we can use φcl as a generating functional. We will use this to obtain
scattering amplitudes from the perturbative solution to SDYM theory. Then, using a
BCJ double copy, we find the proper numerator for SDG. To fully illustrate things, let us
consider the second-order perturbation of eq. (2.35), where we substitute eq. (2.13)

Φ(2)a(k) = −1

2

∫
d−qd−p1d

−p2d
−p3δ
−(p1 + q − k)δ−(p2 + p3 − q)

X(p1, q)X(p2, p3)f b1caf b2b3c

k2(p2 + p3)2
jb1(p1)jb2(p2)jb3(p3), (2.44)

and we have used an integral Einstein convention for the contraction of indices of F k
p1p2

,
i.e. we have the relation

F q
p1p2

F p4
qp3

≡
∫
d−qδ−(p1 + q − k)X(p1, q)δ̄(p2 + p3 − q)X(p2, p3).

Now, performing the integration of the variable q, we obtain

Φ(2)a(k) = −1

2

∫
d−p1d

−p2d
−p3δ
−(p1 + p2 + p3 − k)

X(p1, p2 + p3)X(p2, p3)f b1caf b2b3c

k2(p2 + p3)2
jb1(p1)jb2(p2)jb3(p3).

(2.45)

To obtain the amplitude, we differentiate with respect to j and amputate the final leg.
The expression becomes

A(p1, p2, p3,−k) = −1

2

X(p1, p2 + p3)X(p2, p3)f b1caf b2b3c

(p2 + p3)2
δ−(p1 + p2 + p3 − k) + . . . (2.46)
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where the dots indicate other channels. The BCJ procedure now identifies the kinematic
numerator as

nt = X(p1, p2 + p3)X(p2, p3). (2.47)

This is the object we substitute in place of the colour factors. Note that this reproduces
the solution for the gravity case. This first attempt to study classical solutions, not only
provides a precedent to our work, but will be neatly related to the formalism we are about
to develop.

2.3.2 Bonus: Kinematic algebra

Some of the ideas that we have reviewed in this chapter were originally explored by Mon-
teiro and O’Connell in [113]. However, their objective was a bit different. They noticed
that the fact that the kinematic numerators satisfy Jacobi identities strongly suggests that
there is a genuine infinite dimensional kinematic Lie algebra.

To understand this, note that using the integral Einstein convention from eq. (2.45),
and using δpq = δ̄(p+q) = δpq, such that δpkδkq = δ q

p = δ̄(p−q), to raise and lower indices,
it is easy to see that F p1p2p3 = Fp1p2p3 is totally antisymmetric, and also possible to show
that they satisfy a kinematic Jacobi identity

F q
p1p2

F k
p3q

+ F q
p2p3

F k
p1q

+ F q
p3p1

F k
p2q

= 0. (2.48)

It is then clear that the coefficients F p1p2p3 have the same algebraic properties as the
structure constants fabc and are in fact structure constants for an infinite-dimensional Lie
algebra. To understand what algebra this is, we need to look at the gravity case.

For the Poisson bracket we can construct the algebra

{e−ik1·x, e−ik2·x} = −X(k1, k2)e−i(k1+k2)·x, (2.49)

which is the kinematic algebra discussed before. It is the Poisson version of the area-
preserving diffeomorphisms of w and u. The infinitesimal generators of such transforma-
tions are

Lu = eik·x(−kw∂u + ku∂w), (2.50)

and they obey the Lie algebra

[Lp1 , Lp2 ] = iX(p1, p2)Lp1+p2 = iF k
p1p2

Lk. (2.51)
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This infinite dimensional Lie algebra turns out to be the kinematic analogue of the Yang-
Mills Lie algebra. Let us remark that this result is restricted to the self-dual case, and a
kinematic algebra is not known for the full Yang-Mills theory.

This formalism was extended in ref. [52], where the construction of amplitudes that sat-
isfy BCJ relations allows to learn something about the kinematic algebra, and in ref. [114]
where the relation to scattering equations is explored. Also, quite recently, Cheung and
Shen [171] found the kinematic-algebra underlying the flavour-kinematics duality in a non-
linear sigma model (NLSM).

In this chapter, we have seen how the close relation between scattering amplitudes and
perturbative classical solutions allows us to understand the BCJ double copy in the context
of the self-dual sectors of both theories. The idea of studying solutions in a perturbative
fashion will be central in the second part of the thesis. However, in the next chapter, we
will study a family of exact solutions to the Einstein equations. This may feel like a detour
after the things we reviewed in this chapter, but we will eventually show a neat relation
between them.



Chapter 3

Stationary Kerr-Schild solutions

After seeing a double copy of classical solutions in the self-dual sectors of general relativity
and Yang-Mills, we move on to analysing a family of corresponding solutions in both
theories.

We start using an inverse approach compared to the usual in BCJ, i.e. we take the
single copy of solutions to the classical equations of motion of gravity theory. We mentioned
before that the solutions of the Einstein equation

Gµν =
κ2

2
Tµν , (3.1)

are spacetime metric tensors gµν . It turns out, that the double copy process is actually
quite transparent for solutions that can be cast into a particular choice of coordinates,
namely Kerr-Schild solutions. We will next describe such systems.

3.1 The Kerr-Schild ansatz

We will refer to Kerr-Schild solutions as those with the property that their metric tensor
can be written in the form

gµν = ηµν + κhµν ,

= ηµν + κkµkνφ, (3.2)

where φ is a scalar function and the vector field kµ is null with respect to both the flat
metric ηµν and the spacetime metric gµν . This is

kµη
µνkν = 0 = kµg

µνkν . (3.3)

35
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Also, the vector field kµ defines a geodetic congruence, i.e. it can be parallel transported
along the curves in the congruence. This statement is equivalent to the identity

kµ∂µkν = 0. (3.4)

An immediate consequence to eq. (3.3) is the fact that the inverse metric takes the simple
form

gµν = ηµν − κkµkνφ. (3.5)

Note that this implies we can raise and lower the index on the vector field k using the flat
spacetime metric η, instead of the whole metric g. Using this property of the Kerr-Schild
metrics, we can compute the Christoffel symbol (eq. (1.73))

Γρµν =
1

2
(ηρδ − kρkδφ)((kµkδφ),ν +(kνkδφ),µ−(kµkνφ),δ ),

=
1

2
((kµk

ρφ),ν +(kνk
ρφ),µ−(kµkνφ),ρ ) + kρkδφ(kµkνφ),δ ), (3.6)

as well as the Ricci tensor and the curvature scalar

Rµ
ν =

1

2

(
∂µ∂α(φkαkν) + ∂ν∂

α(φkαk
µ)− ∂2(φkµkν)

)
, (3.7)

R = ∂µ∂ν(φk
µkν), (3.8)

where ∂µ ≡ ηµν∂ν . It is a remarkable fact that the Ricci tensor with mixed indices (this is,
one index up and one down) for a metric that can be cast into Kerr-Schild form is linear
in the graviton hµν . Interestingly, the Ricci tensor only acquires this linear compact form
when the indices are in that position (note that unlike the vector kµ, we use the whole
metric gµν to raise its indices). This linear behaviour is a consequence of the multiple
identities satisfied by the vector kµ (eqs. (3.3) and (3.4)) and it will play a central role in
our study.

Thus far this section should feel like a detour of our previous discourse. However, we
will argue that this is directly related to the double-copy formalism of BCJ. To do this, we
want to show that if we start with a solution in Kerr-Schild form, eq. (3.2), and construct
the vector field

Aµ ≡ φkµ. (3.9)

the latter will be a solution to abelianised Yang-Mills equations (these are effectively
Maxwell equations). To illustrate this, let us first consider the stationary case (this means
that all time derivatives vanish). We’ll also use the fact that without loss of generality
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we may set the value of the first component in the Kerr-Schild vector to unity (k0 = 1)
by absorbing this component into the scalar function φ. Considering such conditions, the
components of the Ricci tensor eq. (3.7) and the curvature scalar eq. (3.8) take the form

R0
0 =

1

2
∂i∂

iφ, (3.10)

Ri
0 = −1

2
∂j
[
∂i(φkj)− ∂j(φki)

]
, (3.11)

Ri
j =

1

2
∂l
[
∂i(φklkj)− ∂j(φklki)− ∂l(φkikj)

]
, (3.12)

R = ∂i∂j(φk
ikj). (3.13)

Then, using the vector field Aµ we can construct the field-strength tensor

Fµν = ∂µAν − ∂νAµ. (3.14)

It is then straightforward to show that vacuum Einstein equations Rµν = 0 imply in the
stationary case

∂µF
µν = ∂µ(∂µAν − ∂νAµ) = 0. (3.15)

Actually, we only needed eqs. (3.10) and (3.11) to construct eq. (3.15). More generally,
we could consider a non-abelian gauge field of the form

Aaµ = caφkµ, (3.16)

and this would still be a solution to the Maxwell equations (note that the simple depen-
dance on the colour vector ca would cancel the nonlinear commutator in the Yang-Mills
equations). The fact that this non-abelian gauge field satisfies abelian equations seems to
be closely related to the linear character of the Ricci tensor in Kerr-Schild coordinates.

We may also interpret φ in the spirit of the zeroth copy. The Kerr-Schild ansatz for
the gauge field Aµ is obtained by removing a factor of kν from the (non-perturbative)
graviton hµν . Repeating this, we find that the Kerr-Schild scalar function φ is the field
that survives upon taking the zeroth copy. This field then satisfies the equation of motion1

∇2φ = 0. (3.17)

Thus, we see that eq. (3.17) is an abelianised version of the biadjoint field equation of
eq.(1.95). It is important to note that the scalar field φ plays a role analogous to the
propagators in the amplitudes story. It is present and unchanged, in the scalar, gauge and

1Here, the Laplacian symbol means ∇2 ≡ ∂i∂iφ.
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gravitational cases. This gives a direct physical interpretation of the scalar field φ. In the
zeroth copy theory, considering the general case in which a source term is also present, the
field φ will be the Green’s function (scalar propagator) integrated over the source. This is
the same idea as in the amplitudes double copy.

3.2 Relation to self-dual sectors

One way to extend this idea to particle scattering, is to try to apply a similar ansatz in
momentum space, which corresponds to the vector kµ becoming a differential operator in
momentum space kµ → k̂µ. To this end, let us suppose we can write the metric as

gµν = ηµν + κk̂µk̂ν(φ), (3.18)

where k̂µ is a linear differential operator. Because we want gµν to be a metric, it must be
symmetric, so we assume the operator k̂ commutes with itself i.e. [k̂µ, k̂ν ] = 0. We also
restrict our attention to double copies with no dilaton field, so we want hµν to be traceless.
This implies ηµν k̂µk̂ν(φ) = 0. We will go beyond and require k̂µ(ψ)ηµν k̂ν(φ) = 0. Using
this, it is possible to show that the inverse metric is

gµν = ηµν − κk̂µk̂ν(φ). (3.19)

The solutions that underlie the double copy in the self-dual sector are precisely of this
form. Considering the light cone coordinates of eq. (2.8), we can express the relevant
linear operator k̂µ for the self-dual theory as

k̂u = 0, k̂v =
1

4
∂w, k̂w = 0, k̂w̄ =

1

4
∂u (3.20)

Note that k̂ · ∂ ≡ 0, consistent with the geodetic condition. The Christoffel symbols
(analogous to eq. (1.73)) are

Γρµν =
κ

2
(∂µk̂

ρk̂νφ+ ∂ν k̂
ρk̂µφ− ∂ρk̂µk̂νφ+ κ(k̂ρk̂σφ)(∂σk̂µk̂νφ)). (3.21)

Using this expression we can compute the Ricci tensor (analogous to eq. (1.72) and we
find the vacuum Einstein equation to be

Rµν =
κ

2

[
−k̂µk̂ν∂2φ+ κ(k̂µk̂ν∂ρ∂σφ)(k̂ρk̂σφ)− κ(k̂µk̂ρ∂

σφ)(k̂ν k̂σ∂
ρφ)
]

= 0 (3.22)

Note that unlike the usual Kerr-Schild Ricci tensor eq. (3.7), this is no longer linear in
the graviton hµν (nor in φ).

It is then possible to show that Einstein vacuum equation (3.22) is equivalent to the
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single scalar equation

∂2φ− κ

2
(k̂µk̂νφ)(∂µ∂νφ) = 0. (3.23)

Considering the explicit form of the linear operator k̂µ (given in eq. (3.20)), one finds that
this is none other than the Plebanski equation for self-dual gravity eq. (2.19) which, as
we discussed before, provides an example of a classical double copy.

The next step is, of course, to apply an analogous procedure to the gauge field

Aaµ = k̂µφ
a, (3.24)

which has been defined in analogy with the vector field eq. (3.9). Here, φa are Lie-algebra-
valued scalars, and the linear differential operator k̂µ is that of eq. (3.20). The Yang-Mills
equation for the field (3.24) is simply

k̂ν∂
2φa + 2gfabc(k̂µφb)(k̂νφµφ

c) = 0. (3.25)

Multiplying by the SU(N) generator T a and expanding using eq. (3.20) we get the equa-
tion

k̂ν
(
∂2Φ− ig[∂wΦ, ∂uΦ]

)
= 0, (3.26)

where Φ = φaT a. This equation is equivalent to the standard self-dual Yang-Mills equation
(2.11). We therefore see the self-dual double copy from section 2 arise from a momentum
space Kerr-Schild description.

3.3 Stationary Kerr-Schild examples

We saw before that there is a class of gravitational Kerr-Schild solutions which map to
solutions of the abelian Yang-Mills equation upon a single copy procedure. We can sum
this up as follows. Let eq. (3.18) be a stationary solution of the Einstein equation with
k0 = 1. Then the gauge vector field

Aaµ = caφkµ (3.27)

is a solution of the Yang-Mills equations, for an arbitrary choice of constants ca (since
this ansatz linearises the Yang-Mills equations). This constitutes a large general class of
solutions that can be identified between gauge and gravity theories. We then refer to the
gauge theory solution as a single copy (or “square root”) of the gravity solution. In the
following parts we will analyse some examples of these, as well as a couple of extensions.
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Let us begin with the simplest one.

3.3.1 The Schwarzschild black hole

The Schwarzschild black hole is the most general spherically symmetric static solution of
the vacuum Einstein equations. The usual form in which we encounter this solution is
given by

ds2 = −f(r)dt′2 + f(r)−1dr2 + r2dΩ2, (3.28)

where f(r) = 1−ψ(r). The scalar function ψ(r) is given by ψ(r) = rs/r and the so-called
Schwarschild radius rs, which defines the position of the horizon, is given by rs = 2GM ,
where G is Newton’s constant. We may now use a transformation to cast the solution in
Kerr-Schild form. The change of basis we are looking for is simply

t′ = t− rs log

(
r

rs
− 1

)
, (3.29)

which yields the expression

ds2 = − (1− ψ(r)) dt2 + 2ψ(r)dtdr + (1 + ψ(r)) dr2 + r2dΩ2. (3.30)

We may now use this to extract the metric tensor in the form

gµν = ηµν +
2GM

r
kµkν , (3.31)

where we have used the explicit form of ψ(r), and the four-vector kµ takes the form

kµ = (1, r̂) , (3.32)

in spherical coordinates (t, r, θ, ϕ). Note that, due to the use of spherical coordinates, we
need to consider covariant differentiation, even if we remain in a flat metric. One then
finds that consistent with eq. (3.2), the graviton for the exterior Schwarzschild solution is
given by

hµν =
κ

2
φkµkν , φ =

M

4πr
. (3.33)

The field φ is exactly what we would expect it to be based on a weak field limit. The
single copy of such graviton is given by

Aµ =
gcaT

a

4πr
kµ. (3.34)
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To obtain this we take the replacements

κ

2
→ g, M → caT

a, kµkν → kµ
1

4πr
→ 1

4πr
(3.35)

These replacements make perfect sense from a double copy perspective. The first cor-
responds to the usual BCJ identification of the coupling constants in the theories. The
second one replaces a charge in the gravity theory (a mass) with a corresponding colour
charge. The final replacement corresponds to a scalar propagator that remains unchanged
on the gravity side.

Physical interpretation of the single-copy

To fully appreciate the power of this procedure, we need to physically interpret the solution
we obtained. We exploit here the freedom to perform a gauge transformation to our vector
Aaµ. Since we are working in an abelianised theory, this transformation amounts to adding
the derivative of a scalar function

Aaµ → Aaµ + ∂µχ
a(x). (3.36)

We choose the scalar function in such a way that we get rid of the spatial components of
the vector. The trick is done by the function

χa = −gca
4π

log

(
r

r0

)
. (3.37)

Note that the constant r0 is insubstantial, since we are taking its derivative. However, we
include it as an arbitrary length scale to make the argument of the logarithm dimensionless.
In this new gauge, the vector field is given by

Aµ =

(
gcaT

a

4πr
, 0, 0, 0

)
(3.38)

This is nothing but a Coulomb solution for a charge consisting of a superposition of
static colour located at the origin. This is consistent with the notion of the most general
spherically-symmetric solution in electromagnetism being Coulomb plus a radiation field.
Since we are working in a stationary limit, the radiation part cannot exist, so we would
indeed expect a Coulomb-like solution.

Another tool we have to analyse our double (or single copy) process, is the inspection
of the sources that produce the fields we are identifying. This will actually become much
more important when we consider non-stationary solutions, but to learn about it we start
applying it to the task at hand. It is well known that a Schwarzschild solution is sourced
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by a point-like mass M via the energy momentum tensor

T µν = Muµuνδ3(x̄). (3.39)

The time-like vector

uµ = (1, 0, 0, 0), (3.40)

is a common feature when working with point particles. On the other hand, substituting
the single-copy vector field into (abelian) Maxwell equation, one finds2

∂µF
µν = jν , (3.41)

where

jν = −g(caT
a)uνδ3(x̄). (3.42)

We can see that the single copy, applied to the fields, makes natural an identification
of the required sources in gravity and gauge theory. This correspondence of the energy
momentum tensor and the current will play a central role in chapter 6, where we study
radiation solutions. For now, let us recall that an important feature of the BCJ double
copy is being valid in arbitrary dimensions. We want to investigate if such a feature is
shared by this construction. To do this, we look at generalisations of the Kerr-Schild
solutions living in a higher dimensional space.

Higher-dimensional generalization

The d-dimensional generalization of the Schwarzchild black hole was first found by Tangher-
lini, and in Kerr-Schild form, the metric is given by

gµν = ηµν +
µ

rd−3
kµkν , (3.43)

where kµ is a simple generalisation of the lower dimensional vector field eq. (3.32) and the
parameter µ is related to the mass M via

M =
Ωd−2

8πG
µ, Ωd−2 =

2π
d−1
2

Γ(d−1
2

)
. (3.44)

2We started our treatment considering vacuum Einstein and Maxwell equations. However, given that
the sources include delta functions, we may consider it a vacuum “almost everywhere”. If you are to
discuss with someone a bit more pedantic, you may argue that the sources being zero-measure objects,
our analysis should hold.
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Here, Ωd−2 is the area of a unit (d− 2)-sphere. The Newtonian potential is given by

φ =
4π

Ωd−2

GM

r
. (3.45)

Taking the single copy one obtains the vector field

Aµ =
gT a

Ωd−2rd−3
kµ, (3.46)

which solves the d-dimensional Maxwell equations. It is important having found that the
corresponding solutions for higher dimension satisfy the proposed process of single copy,
since the amplitudes double copy holds in principle for any dimension. However, this
doesn’t add much insight to our analysis. We will next study a much less trivial example.

3.3.2 The Kerr black hole

In 1963 (after several attempts that had among other consequences the development of
the Kerr-Schild ansatz [172]), Kerr found a solution to describe an uncharged, rotating
black hole. In Kerr-Schild coordinates, the graviton field is

hµν =
κ

2
φ(r)kµkν , (3.47)

where the scalar function is given by

φ(r) =
M

4π

r3

r4 + a2z2
, (3.48)

while the Kerr-Schild vector takes the form

kµ =

(
1,
rx+ ay

r2 + a2
,
ry − ax
r2 + a2

,
z

r

)
, (3.49)

in cartesian coordinates (t, x, y, z). In this case r is not simply the modulus of the vector
(x, y, z). It is instead defined implicitly via the equation

x2 + y2

r2 + a2
+
z2

r2
= 1, (3.50)

except for the region x2 + y2 ≤ a2, z = 0 (i.e. a disc of radius a about the origin in the
(x, y) plane), where r = 0. We may immediately note that the limit with zero angular-
momentum a → 0 reproduces a Schwarzschild vector. In such limit, we could identify
the scalar function from eq. (3.48) with that of eq. (3.33), as well as the vectors in eqs.
(3.49) and (3.32), by noticing that we may write a radial vector as r̂ = r−1(x, y, z), for
r2 = x2 + y2 + z2. Actually, although the solution was given in this Cartesian Kerr-Schild
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system in the original paper [173], this set of coordinates will be inconvenient for our
purposes. Everything will look more natural, though, after we define a suitable coordinate
system.

In order to perform computations in the most natural way, we introduce here the
spheroidal coordinate system (t, r, θ, φ). This is related to Cartesian coordinates via

x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ, z = r cos θ, (3.51)

where r, θ and φ play the role of a radial, polar angular and azimuthal angular coordinate
respectively. Surfaces of constant r = R are ellipsoids, such that R → 0 converges to the
disk of radius a in the (x, y)-plane. We may use eq. (3.51) to construct a change of basis
matrix. We can then express the Minkowski metric as

ds2 = −dt2 +
ρ2

a2 + r2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdϕ2, (3.52)

where we have used the definition

ρ2 ≡ r2 + a2 cos2 θ. (3.53)

We can also express the vector kµ and the scalar function φ(r) as

kµdx
µ = dt+

ρ2

a2 + r2
dr − a sin2 θdϕ, φ(r) =

M

4π

r

ρ2
. (3.54)

We may now, follow the Kerr-Schild single copy procedure as we did for the
Schwarzschild black hole, and construct the gauge field

Aaµ =
g

4π
φ(r)cakµ. (3.55)

It is not difficult to verify that this vector field is a solution to the abelian Maxwell
equations in the vacuum region described above. The novelty with respect to the Coulomb
solution (single copy of the Schwarzschild black hole) is that the rotation associated with
the Kerr solution, introduces a magnetic component to the Maxwell field eq. (3.55). We
interpret the sources in the following section.

Physical interpretation of the single-copy

Just as in the Schwarzschild black hole case, we may interpret the gauge and gravity
solutions further by determining the sources that create them (unlike the last example,
the identification will not be as transparent and some subtleties will arise). We need to
consider the minimal source that will generate the Kerr metric. This actually is not a
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trivial problem, but it was showed by Israel [174] that the required source turns out to be
a disk whose mass distribution exhibits a ring singularity at x2 +y2 = a2 (which generates
the well known curvature singularity of the metric there). To find the corresponding source,
we used an approach different to that of Israel. Based on the fact that the Ricci tensor
can be written as a divergence (c.f. eq. (3.7)), we can compute the energy-momentum
tensor by integrating the flux of the tensor field through a Gaussian surface (this is simply
using the divergence theorem). The reason we bother doing this is that we later use an
analogous computation to find the current in the single copy case.

In the spheroidal coordinates introduced above, the energy momentum tensor we found
for the Kerr Metric is

T µν = σ(wµwν + ζµζν), σ = − M

8πa2 cos θ
δ(z)Θ(a− ρ) (3.56)

where we have introduced the radial and space-like 4-vectors (in the spheroidal coordinate
system (t, r, θ, φ))

wµ = tan θ(1, 0, 1/(a sin2 θ), 0), ζµ = (0, 1/(a cos θ), 0, 0), (3.57)

and also we defined ρ = a sin θ. This energy momentum tensor has the form of a negative
proper surface density (given by σ). This surface density is rotating about the z-axis with
superluminal velocity, as may be seen from the vector wµ, which has a spatial component
in the polar angle direction and no component in the azimutal angle direction. There is
also a balancing term which is a radial pressure (we read this from ζµ being radial).

We now turn to the problem of interpreting the source that creates the vector field
which corresponds to the single copy of the Kerr solution. Substituting the gauge field
into the abelian Maxwell equations, one finds a source current

jµ = −δ(z)Θ(a− ρ)
1

a2 cos θ
(sec2 θ, 0, (sec2 θ)/a, 0) (3.58)

where we have taken the replacements described in eq. (3.35). In order to write things in
a more convenient way, we introduce the vector

ξµ = (1, 0, a−1, 0). (3.59)

Using this, the current may be cast into the form

jµ = qξµ, q = −δ(z)Θ(a− ρ)
gcaT

a

4πa2
sec3 θ (3.60)

Note that this has the form of a colour charge (as given in eq. (3.60)) rotating about
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the z-axis3. Unlike the Schwarzschild case, it is not obvious that the (Kerr black hole
sourcing) energy momentum tensor eq. (3.56) is a double copy of the current eq. (3.58),
which corresponds to the single copy vector field. However, we can use the vector ξ to
write the tensor eq. (3.56) as

T µν = δ(z)Θ(a− ρ)

(
−M sec3 θ

8πa2

)
[ξµξν − cos2 θη̃µν ] (3.61)

where

η̃µν = diag(−1, 1, 1, 0). (3.62)

The first term indeed corresponds to a double copy of the current eq. (3.60). The ad-
ditional term acts as a pressure needed to stabilize the system, in order to maintain the
stationary behaviour. This seemingly unnatural property has been further studied in [1].

Higher-dimensional generalization

The higher-dimensional extension of the Kerr black hole is the so-called Myers-Perry black
hole [175]. A major difference is that, in d spacetime dimensions, there are (d − 1)/2

independent rotation planes if d is odd, and (d − 2)/2 if d is even; this is the dimension
of the Cartan subgroup of SO(d − 1). Multiple angular momenta are allowed, one per
rotation plane, which makes the problem challenging. It is possible to write such solutions
in Kerr-Schild form, where the scalar field is given by:

φ(r) =


µr2

ΠF
, if d is odd.

µr
ΠF
, if d is even.

(3.63)

Furthermore, the Kerr-Schild vector is

kµdx
µ =

dt+
∑(d−1)/2

i=1
r(xidxi+yidyi)+ai(x

idyi−yidxi)
r2+a2i

if d is odd,

dt+
∑(d−2)/2

i=1
r(xidxi+yidyi)+ai(x

idyi−yidxi)
r2+a2i

+ zdz
r

if d is even.
(3.64)

For each rotation plane, there is a rotation parameter ai and a pair of coordinates (xi, yi).
We have used the functions

Π =

(d−2)/2∏
i

(r2 + a2
i ), F = 1−

(d−1)/2∑
i=1

a2
i (x

i2 + yi
2
)

(r2 + a2
i )

2
. (3.65)

3Interestingly, although we have an accelerated charge, this system is rather static since the energy
flows around the disk, instead of going out to infinity. This can be understood by a direct computation
of the Poynting which circulates around the disk.
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Finally, the radial variable r is defined via

(d−1)/2∑
i=1

a2
i (x

i2 + yi
2
)

(r2 + a2
i )

2
= 0 if d is odd,

z2

r2
+

(d−2)/2∑
i=1

a2
i (x

i2 + yi
2
)

(r2 + a2
i )

2
= 0 if d is even. (3.66)

The Myers-Perry black holes provide a straightforward extension of our discussion on the
Kerr black hole. They allow for solutions to the Maxwell equation in higher dimensions
based on the Kerr-Schild ansatz, Aµ = φkµ.

3.4 Time dependent examples

Having analysed two examples of stationary solutions with a well defined double copy, we
will now briefly discuss a couple of explicitly time-dependent solutions, and analyse the
significance of their single copy.

3.4.1 Plane waves

Plane wave (pp-waves) solutions are arguably the simplest time-dependent solutions in
either gauge or gravity theories [176]. They are Kerr-Schild solutions, so they can be
written as in eq. (3.2). Using light-cone coordinates xµ = (u, v, xi), with i = 1 . . . d − 2,
we can express a pp-wave using

kµdx
µ = du = dz − dt, φ = φ(u, xi). (3.67)

Then, the Einstein equations are simply

∂i∂
iφ = 0. (3.68)

Non-abelian plane wave solutions also have the form [177]

Aaµ = kµφ
a(u, xi), (3.69)

where φa fulfils the propagator equation (3.17). As in previous cases, the Kerr-Schild
language makes the double copy explicit.

3.4.2 Shockwave solutions

The shockwave solution corresponds to an infinitely boosted particle, whose field (in both
gauge and gravity) is Lorentz contracted so that it lies in a flat plane transverse to the
particle direction. In gravity, shockwaves are described by the Aichelburg-Sexl metric. In



CHAPTER 3. STATIONARY KERR-SCHILD SOLUTIONS 48

four dimensions, the metric takes the pp-wave form from eq. (3.68) with

φ(u, xi) = Cδ(u) log |~x|. (3.70)

In their original paper, they showed explicitly how one may obtain the shockwave metric
by a coordinate transformation, namely an infinite boost, of the Schwarzschild black hole.

The perturbative relationship between the shockwave solutions in QCD and gravity
was recently discussed extensively in [148], which used Feynman diagram arguments in the
Regge limit (corresponding to the scattering of two highly boosted particles) to pertur-
batively construct the shockwave solution in both Yang-Mills theory and gravity, making
clear the double copy relationship. Note that this is entirely consistent with the results
found for a Schwarzschild metric, which is not unexpected, since the shockwave itself
should reduce to that solution in a non-boosted limit.

Closing remarks

In this chapter, we have reviewed the relation between a number of classical gauge and
gravity solutions that can be related by a double copy procedure. In particular, on the
gravity side, we considered Kerr-Schild metrics and an associated ansatz for the gauge
field. We found that for an infinite family of Kerr-Schild solutions, namely those with the
graviton (and hence the corresponding gauge field) stationary, the gauge field obtained by
the (Kerr-Schild) single copy ansatz is a solution of the linearised Yang-Mills (effectively
Maxwell) equations. The sources needed to generate these solutions also relate in a double-
copy manner, involving the replacement of colour charge by mass, as was explicitly shown
in the examples of the Schwarzschild and Kerr black holes.

Although this result is remarkable on its own the Kerr-Schild ansatz described in eq.
(3.2), along with the condition of being stationary may be, in general, too restrictive to
capture the full meaning of this double copy. In the following chapters we will study
extensions to the Kerr-Schild ansatz that will allow us to study some physical systems
with neat physical interpretations.



Chapter 4

Multiple Kerr-Schild solutions

Having understood the double copy process applied to stationary Kerr-Schild solutions,
we now consider the classical single copy of the Taub-NUT metric. Since the approach of
last section was successful, the first question to ask is if it is possible to cast a Taub-NUT
solution in Kerr-Schild form. A quick1 browse through the literature, leads us to ref. [178],
where a Kerr-Taub-NUT-de Sitter solution in higher (than four) dimensions is considered.
This can be cast in the form

gµν = ḡµν + κ (φ kµ kν + ψ lµ lν) .

We will not show yet the explicit form of the elements of this solution, but we will note
that there are two major novelties in this metric with respect to the kind of solutions
approached in the previous chapter, namely, this is cast into a double Kerr-Schild form,
i.e. there are now two Kerr-Schild vectors kµ and lµ, and they will solve a set of null and
geodetic conditions. The second one is that the background metric ḡµν is actually curved.
In this case it is de Sitter space. We will address the first aspect in the current chapter,
but most of the curved background treatment will be deferred until the following chapter.

4.1 Double Kerr-Schild ansatz

Let us explore double Kerr-Schild metrics. This is, there are two geodetic null congruences
over some background. For the sake of generality, we consider a non-flat background, so
we turn now to metrics of the form

gµν = ḡµν + κhµν

= ḡµν + κ (φ kµ kν + ψ lµ lν) , (4.1)

1Google aided.

49
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where the vectors kµ and lµ are two linearly independent, mutually orthogonal affinely
parametrised null geodesic congruences. The null conditions are the same as in the regular
Kerr-Schild form,

kµḡ
µνkν = 0 = lµḡ

µνlν , (4.2)

but we also need to add the mutual orthogonality of the congruences 2

kµḡ
µνlν = 0. (4.3)

The geodetic nature of the vectors is codified in

kµDµkν = 0 = lµDµlν ,

where Dµ is the covariant derivative compatible with the background metric ḡµν . The first
thing we notice is that, because kµ and lµ satisfy eqs. (4.2)-(4.3), we’ll have the usual form
for the inverse metric

gµν = ḡµν − κhµν . (4.4)

In a metric of single Kerr-Schild form eq. (4.1), the Ricci tensor of the full metric, is
shown in [49] to be given by

Rµ
ν = R̄µ

ν − hµρR̄ρ
ν +

1

2
Dρ (Dνh

µρ +Dµhρν −Dρhµν) .

We would like to obtain this same (or some similar) result for the double Kerr-Schild form.
However, because of the weaker conditions satisfied by kµ and lµ (e.g. (k ·D)lµ 6= 0), some
of the cancellations that led to eq. (4.5) won’t happen, so we get the former expression,
corrected by a non-linear factor, this is

Rµ
ν = R̄µ

ν − hµρR̄ρ
ν +

1

2
Dρ (Dνh

µρ +Dµhρν −Dρhµν) +Rnl
µ
ν , (4.5)

2The conditions in eqs. (4.2) and (4.3) are inconsistent with real components and a Lorentzian signa-
ture. However, throughout this (and later) chapters, we’ll find examples with either (2, 2) signatures, or
complex vectors.
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where the non-linear terms of the Ricci tensor are given by

Rnl
µ
ν = −κ

2

2

[
1

2
Dµh(k)ρδDνh(l)δρ + h(l)µδDρDνh(k)ρδ

+Dρ

(
h(l)ρδDδh(k)µν + 2h(l)ρδD(νh(k)

µ)
δ − 2h(l)µδD[ρh(k)δ]ν

)]
+ (k ↔ l),

(4.6)

and we have defined the shorthand notation

h(k)µν = φkµkν , h(l)µν = ψlµlν . (4.7)

Our first approach coming to this point was to investigate conditions for the Kerr-Schild
vectors kµ and lµ which led to Rnl

µ
ν to vanish, so we proposed as candidates the relations

(k ·D)lµ = 0 = (l ·D)kµ, (4.8)

along with

kµDνlµ = 0 = lµDνkµ. (4.9)

However, we found such conditions to be neither sufficient nor necessary, as we’ll see in
the next section. Some efforts have been made trying to determine conditions to simplify
eq. (4.6), none successful thus far.

4.2 The Taub-NUT solution

The Taub-NUT metric was first derived in ref. [179] by Taub, and was later extended to
a more general manifold by Newman, Unti and Tamburino in ref. [180]. It is a stationary,
axisymmetric vacuum solution, but unlike Schwarzschild, it is not asymptotically flat. It
can be sourced by a pointlike object at the origin, which besides its mass, has an extra
parameter that is conventionally referred to as NUT charge. The latter is associated
with the lack of spherical symmetry and asymptotic flatness. It has been shown that the
NUT charge is related to a monopole-like behaviour at spatial infinity (see e.g. [181] for
a review). We will see in this section that the Taub-NUT solution provides an interesting
example of a double Kerr-Schild double copy.

In a series of papers written during the 1970’s, of which the most important for our
purposes is ref. [182], Plebanski studied the most general solutions of Einstein-Maxwell
equations. Following his study, a formulation of the Taub-NUT-Kerr-de Sitter metric can
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be given in the form

ds2 =
q2 − p2

∆p

dp2 +
q2 − p2

∆q

dq2 − ∆p

q2 − p2
(dτ + q2dσ)2 − ∆q

q2 − p2
(dτ + p2dσ)2 (4.10)

where

∆p = γ − εp2 + λp4 − 2Np, ∆q = −γ + εq2 − λq4 − 2Mq. (4.11)

Here the parameter M represents the mass of the solution, and N the NUT charge, while
ε is a constant, and γ is related to the angular momentum. This is, actually, an analytic
continuation (in practice p → ip) removed from the original form showed in Plebanski’s
paper, so it has (2, 2) signature. The ranges of the coordinates are given by

p ∈ [−a, a], q ∈ [0,∞], σ ∈ [0, 2π/a], τ ∈ [−∞,∞]. (4.12)

The metric is a solution to the Einstein equation with non-zero cosmological constant λ.
It was shown in ref. [178] that by means of the change of coordinates

dτ̃ = dτ +
p2dp

∆p

− q2dq

∆q

, dσ̃ = dσ − dp

∆p

+
dq

∆q

, (4.13)

this metric exhibits a double Kerr-Schild form

gµν = ḡµν + κ (φ kµ kν + ψ lµ lν) .

The explicit form of the background line element is

ds̄2 = − 1

q2 − p2

[
∆̄p(dτ̃ + q2dσ̃)2 + ∆̄q(dτ̃ + p2dσ̃)2

]
− 2(dτ̃ + q2dσ̃)dp− 2(dτ̃ + p2dσ)dq,

(4.14)

where
∆̄p = γ − εp2 + λp4, ∆̄q = −γ + εq2 − λq4. (4.15)

The Kerr-Schild vectors are given in the (τ̃ , σ̃, p, q) coordinate system (which has (2,2)
signature) by

kµ = (1, q2, 0, 0), lµ = (1, p2, 0, 0), (4.16)

and satisfy the conditions stated in eqs. (4.2)-(4.4). The accompanying scalar functions
are given by

φ =
2Np

q2 − p2
, ψ =

2Mq

q2 − p2
. (4.17)

It is remarkable that the non-linear terms in the Ricci tensor, which are written in eq.
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(4.6), vanish. This means that we again have linear Einstein equations, so this system is
a natural candidate to have a single copy according to a Kerr-Schild ansatz, that satisfies
Maxwell-like equations.

Let us now obtain and interpret the single copy of this solution, where we will eventually
turn to the case of vanishing angular momentum (γ = 0), which leads to a pointlike source.
For the double Kerr-Schild case, the natural generalisation to the Kerr-Schild ansatz of
eq. (3.27) is to construct the gauge field

Aaµ = ca (φkµ + ψlµ) . (4.18)

That is, the double copy of this solution proceeds term-by-term, analogously to how the
BCJ double copy for amplitudes is applied separately to terms involving different scalar
propagators. We have verified that the gauge field of eq. (4.18) satisfies the Yang-Mills
equations (which linearise),

DµF a
µν = 0, F a

µν = DµA
a
ν −DνA

a
µ. (4.19)

Note that the Yang-Mills equations are satisfied even for a non-Minkowski background as
we discussed in the previous section. We will also make the replacements

Mκ

2
→ (caT

a)gs,
Nκ

2
→ (caT

a)g̃s. (4.20)

These are analogous to the coupling constant replacement appearing in eq. (3.35), and
will play an important role that we explain in the next section.

4.2.1 Physical interpretation of the single copy

For simplicity, we restrict ourselves now to the flat background case λ = 0, for which
ḡµν = ηµν . We have taken the single copy in Plebanski coordinates3 because it is in
this system that the double Kerr-Schild form is manifest. However, this unusual set of
coordinates make difficult any physical interpretation of the gauge theory solution we
obtained as a single copy. We will then transform to a more suitable choice of coordinates.
We will do this in two stages. First, following refs. [178, 182], we transform to spheroidal
coordinates using the transformation

τ = t+ aϕ, σ =
ϕ

a
, q = r, p = a cos θ, (4.21)

3We adopted this name for the set of coordinates where we worked. However, Plebanski himself
proposed calling them Boyer coordinates, in memory of his late friend.
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where the coordinates τ and σ were defined earlier as

dτ̃ = dτ +
p2dp

∆p

− q2dq

∆q

, dσ̃ = dσ − dp

∆p

+
dq

∆q

. (4.22)

In spheroidal coordinates, the Kerr-Schild vectors take the explicit form

kµdx
µ = dt+

ρ2

a2 + r2
dr − a sin2 θdϕ, lµdx

µ = dt+
iρ2 csc θ

a
dθ − a2 + r2

a
dϕ. (4.23)

One may note that, as expected, the first vector corresponds to that of the Kerr black
hole (c.f. eq. (3.54)). Next, one may take the parameter a2 ≡ γ (which is related to the
angular momentum) to zero, so that the spheroidal radius becomes a spherical one. This
coordinate transformation is subtle, in that the vector lµ becomes singular as a→ 0. The
prefactor ψ entering the gauge field, however, is O(a), such that gauge field Aaµ itself is
well-defined. In the spherical polar coordinate system (t, r, θ, φ), the field strength tensor
then becomes

Fµν =
(caT

a)

4π


0 − gs

r2
0 0

gs
r2

0 0 0

0 0 0 − g̃s csc θ
r4

0 0 g̃s csc θ
r4

0

 . (4.24)

We can use the language of differential forms to write this as

F =
1

2
Fµνdx

µ ∧ dxν = −(caT
a)

8π

(gs
r2
dt ∧ dr + g̃s sin θdθ ∧ dϕ

)
, (4.25)

where it is now evident that the contributions from the constants gs and g̃s split easily.
The first term on the right-hand side of eq. (4.25) gives a pure electric field, corresponding
to a Coulomb solution. Thus, the mass in the Taub-NUT metric single copies to a static
colour charge, exactly as in the Schwarzschild case of ref. [183]. This must in fact be the
case, given that the Taub-NUT metric becomes the Schwarzschild metric as N → 0. This
explains our choice of factors in eq. (4.20).

The NUT charge contribution to the field strength tensor is a pure magnetic field, and
we can interpret this in more detail by expressing eq. (4.25) as

F = −(caT
a)

8π

(
gs
r2
dt ∧ dr + ?

g̃s
r2
dt ∧ dr

)
, (4.26)

where ? denotes the Hodge dual of a 2-form, say ωµν

?ωµν ≡
1

2
εµναβω

αβ, ?2 = −1. (4.27)
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Thus, the dual tensor for the NUT-charge term contains a pure electric field corresponding
to a point charge of strength g̃s. It follows that the magnetic field in the original field
strength tensor corresponds to a magnetic monopole, where the NUT charge in the gravity
theory single copies to the monopole charge in the gauge theory. This is perhaps to be
expected, given that the NUT charge in the Taub-NUT metric is known to be associated
with monopole-like behaviour, since a requirement of the metric having a periodic time
coordinate can be interpreted as the source of the field including a semi-infinite massless
source of angular momentum (a Dirac string-like object) [181]. This analogy has now been
turned into an exact statement under the classical double copy. We have then chosen the
constant g̃s in eq. (4.20) to obey the same normalisation as gs in the (non-dual) field
strength tensor.

Note that the transformation from the Plebanski coordinate system to the spherical
coordinate system involves a change of signature (from (2,2) to (1,3)), and thus a Wick
rotation. In the Plebanski system itself, the two charges M and N appear on an equal
footing, as is clear from eqs. (4.14-4.17). In other words, in this signature one cannot tell
the difference in the gauge theory between an electric and a (dual) magnetic charge. For
the (anti-) self-dual case, the gauge and gravity solutions can be interpreted as instantons
(see also [181]). As is well known, consistency of the monopole gauge field leads to the
quantisation condition (in the present notation)

gsg̃s =
n

2
, n ∈ Z, (4.28)

relating the electric and magnetic charges. This has an analogue in the gravity theory,
as discussed in ref. [184, 185]. There, recovery of spherical symmetry demands a periodic
time coordinate. This corresponds to quantisation of the energy of the dyon, or its mass
in the non-relativistic approximation. There is then a quantisation condition relating the
mass and NUT charge, which is the equivalent of eq. (4.28) from a double copy perspective.

As in the standard Kerr-Schild case, we may take the zeroth copy, which produces a
biadjoint scalar field

Φaa′ = cac̃a
′
(φ+ ψ) . (4.29)

Similarly to the results of ref. [183], this is a solution of the linearised biadjoint eq.(1.95). In
fact, both φ and ψ satisfy that equation separately. They have the interpretation of a scalar
propagator integrated over the source charges, and are analagous to the scalar propagators
that are not modified when double-copying scattering amplitudes. As has already been
mentioned above, another property that links the generalised Kerr-Schild double copy to
the corresponding story for amplitudes is that each Kerr-Schild term (involving a different
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scalar propagator) is copied individually, with no mixing between these terms on the
gravity side.

4.2.2 Higher-dimensional generalization

One important feature of the BCJ double copy is that it works on arbitrary spacetime
dimensions. This property seems to be present also for the double copy of Kerr-Schild solu-
tions, as evidenced by the Tangherlini and Myers-Perry solutions of the previous chapter.
It is an interesting question if this is also possible for multi Kerr-Schild solutions, like
Taub-NUT. To investigate this, we consider an extension to our formalism using a higher-
dimensional Kerr-Taub-NUT-de Sitter solution. This was obtained in [186], and can be
viewed as a generalisation of the metric studied by Plebanski in [182].

This solution is parametrised by the mass, multiple NUT charges and arbitrary or-
thogonal rotations. It was later shown [187] that it is possible to cast the d-dimensional
metric into multi-Kerr-Schild form, where the mass and all of the NUT parameters enter
the metric linearly.

To do this, it is first necessary to perform a Wick-rotation of the metric to ([d/2], [(d+

1)/2]) signature, so it admits [d/2] linearly-independent, mutually-orthogonal and affinely
parametrised null geodesic congruences. It is possible then to introduce [d/2] − 1 NUT
parameters, from which (d − 5)/2 are non-trivial in odd dimensions, whilst (d − 2)/2

are non-trivial in even dimensions. This significant difference is the reason why odd-
dimensional and even-dimensional cases are usually treated separately. We will show here
the general form for even dimensions, and the explicit form for d = 6, since this is the
simplest non-trivial example, as d = 5 has no non-trivial NUT parameters.

For d = 2n, after performing Wick rotations, the Kerr-Taub-NUT-de Sitter metric
with (n, n) signature is given by

ds2 =
n∑
j=1

dx2
j

Qj

−Qj

(
n−1∑
i=0

A
(i)
j dψi

)2
 , (4.30)

where the various functions that appear are given by

Qj =
Xj

Uj
, Xj =

n∑
i=0

cix
2i
j + 2bjxj,

Uj =
′n∏
k=1

(x2
k − x2

j), A
(i)
j =

′∑
k1<k2<...<ki

x2
k1
x2
k2
. . . x2

ki
. (4.31)

The prime on the summation and product symbols in the definition of Uj and A
(i)
j indicate

that the value j is omitted on the iteration of the k index. The constants ci and bj are
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arbitrary, except for cn, which is fixed by the value of the cosmological constant. Then,
after performing the coordinate transformation

dψ̂i = dψi +
n∑
j=1

(−x2
j)
n−i−1

Xj

dxj, i = 0, . . . , n− 1, (4.32)

we can write the metric (4.30) in the form

ds2 = ds̄2 −
n∑
j=1

φ(j)

[
k(j)µdy

µ
]2
. (4.33)

This is an n-tuple Kerr-Schild form, since it possesses n linearly independent mutually
orthogonal null geodetic congruences. The corresponding vectors and scalars are given by

k(j)µdy
µ =

n−1∑
i=0

A
(i)
j dψ̂i, φ(j) =

2bjxj
Uj

. (4.34)

The fiducial metric in eq. (4.33) is given by

ds̄2 = −
n∑
j=1

X̄j

Uj

(
n−1∑
i=0

A
(i)
j dψ̂k

)2

− 2

(
n−1∑
i=0

A
(k)
j dψ̂i

)
dxj

 , (4.35)

and the X̄j function appearing there is defined as

X̄j =
n∑
i=0

ckx
2i
j . (4.36)

It is straightforward to verify that the fiducial metric corresponds to de Sitter. These
expressions are rather lengthy, and not particularly enlightening, but we can try to get to
understand them by checking one example. As we discussed earlier, the five dimensional
case is somewhat trivial, so we explore the six dimensional case in the following section.

Example: six-dimensional metric

For the case d = 6 we may use coordinates (x1, x2, x3, ψ0, ψ1, ψ2) to write the metric (4.33)
(with the value n = 3) in the form

gαβ = ḡαβ −
3∑
i=1

φik
α
i k

β
i , (4.37)
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where the scalar functions φi are given by

φi =
2bixi
Ui

, i = 1, 2, 3, (4.38)

while the vectors ki and the functions Ui take the form

k1α = (0, 0, 0, 1, x2
2 + x2

3, x
2
2x

2
3), U1 = (x2

2 − x2
1)(x2

3 − x2
1),

k2α = (0, 0, 0, 1, x2
1 + x2

3, x
2
1x

2
3), U2 = (x2

1 − x2
2)(x2

3 − x2
2),

k3α = (0, 0, 0, 1, x2
1 + x2

2, x
2
1x

2
2), U3 = (x2

2 − x2
3)(x2

1 − x2
3).

Using this, we may define the vector field

Aα6d = φ1k
α
1 + φ2k

α
2 + φ3k

α
3 , (4.39)

which is a term-by-term single copy of the graviton entering the metric (4.37). We have
explicitly verified that this metric linearises the Ricci tensor (in the sense of (3.7)), so we
expected the vector field to solve linearised Maxwell equations

DαF
αβ
6d = 0 (4.40)

where D is the covariant derivative compatible with the fiducial metric (4.35), and we
have again considered an Abelian version of the field strength tensor

Fαβ
6d = DαAβ6d −DβAα6d. (4.41)

The parameters bi (for i = 1, 2, 3) are identified with the mass, and two non-trivial NUT-
charges which, analogously to the d = 4 case, we interpret as electric and two classes of
magnetic charge in the gauge theory. Following this same procedure, we have verified the
validity of this Single Copy up to d = 8, though we expect it to hold for all dimensions.

Although it was straightforward to show that a vector field obtained as a term by term
single copy of the multiple Kerr-Schild form of eq. (4.37) satisfies Maxwell equations,
the physical interpretation of such vector field is not without subtlety. Indeed, when
interpreting the result for the field in d = 4, we took into account the specific behaviour
of the electric and magnetic fields under a Hodge dual transformation, but this does
not extend straightforwardly to arbitrary dimensions. Furthermore, when working in
Plebanski coordinates, the mass and the NUT charge appear on equal footing in the
metric. It is not until after an analytic continuation that that we are able to distinguish
the mass from the NUT charge, and we’re able to interpret the single copy counterparts
as electric and magnetic charge, respectively. In the higher dimensional case, since we
have mass and multiple NUT charges, we would be tempted to interpret them as electric
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and multiple magnetic charges in the gauge theory. However, the identification might be
delicate, and deserves further investigation.

Closing remarks

In summary, the results of this section constitute an interesting generalisation of the Kerr-
Schild double copies of ref. [183], in that a double Kerr-Schild form is used. It is highly
non-trivial that the particular double and multiple Kerr-Schild results for the solutions
we considered here linearise the Einstein equations. This allowed us to study the single
copy effectively in aMaxwell theory, so we could give a neat physical interpretation of the
system as an electromagnetic dyon.

One interesting feature of the double Kerr-Schild form of the Taub-NUT metric is
that it can be understood as a single Kerr-Schild metric, by considering a point NUT
charge over a Schwarzschild metric (In a symmetric fashion, we could consider also the
Kerr-Schild system that consists in putting a point mass over a background perturbed by
a NUT charge). This can be generalised to any multiple Kerr-Schild solution, so we can
study it as a single Kerr-Schild form over a curved background. We will further develop
these, among other ideas in the next chapter.



Chapter 5

Non-flat backgrounds

In the previous chapter, we already hinted at the possibility of obtaining the single copy
of a Kerr-Schild gravity solution when the background is not a flat metric. Our interest
in this kind of process is twofold. On the one hand, this potentially has astronomical or
cosmological applications. On the other hand, recent work by Adamo et. al. [143] has
studied an amplitudes double copy process over a curved spacetime. In this chapter we
address this issue in a thorough manner, and we will show interesting links with both fronts.

The extension of the Kerr-Schild ansatz to a non-flat background is straightforward.
It is reviewed, for example in ref. [49]. We will only go through some particular aspects
important for our treatment. Let us start by examining a metric in (non-flat) Kerr-Schild
form

gµν = ḡµν + κhµν (5.1)

= ḡµν +
κ2

2
kµkνφ,

where ḡµν (which we sometimes call the fiducial metric throughout this work) is not nec-
essarily Minkowski, φ is still a scalar function of the coordinates, and kµ is null both with
respect to the fiducial and the whole metric:

kµg
µνkν = 0 = kµḡ

µνkν . (5.2)

We will also have the Kerr-Schild vector behave as a geodetic congruence:

kµDµkν = 0, (5.3)

where Dµ is the covariant derivative associated with the fiducial metric, i.e. Dρ(ḡµν) = 0.
The null property implies that the index of the Kerr-Schild vector kµ can be raised with
either ḡµν or gµν . A consequence of eq. (5.2) is the fact that the inverse metric takes the

60
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simple form

gµν = ḡµν − κ2

2
kµkνφ. (5.4)

Substituting the ansatz of eq. (5.1) into the Einstein equations, one finds the (mixed-
index) Ricci tensor of the full metric to be given by

Rµ
ν = R̄µ

ν − κhµρR̄ρ
ν +

κ

2
Dρ (Dνh

µρ +Dµhρν −Dρhµν) . (5.5)

If we consider the case where the background metric is flat space (Minkowski) i.e. ḡµν =

ηµν , the fiducial Ricci tensor from eq. (5.5) vanishes (R̄µ
ν = 0), and the (fiducial) covariant

derivative reduces to the partial (D = ∂) so we recover the result for a flat background.
We can summarize this as

Rµ
ν

ḡµν→ηµν−−−−−→ κ

2
∂ρ (∂νh

µρ + ∂µhρν − ∂ρhµν) (5.6)

The next step in the flat case was showing that vacuum Einstein equations imply
vacuum Maxwell equations for a vector field constructed as

Aaµ = caφkµ, (5.7)

that is, as a single copy of the graviton. In that case, the two assumptions that were
used to simplify the analysis were the stationary limit (i.e. no explicit dependence on the
time coordinate ∂0 = 0) as well as setting k0 = 1, so the Maxwell equations emerge from
Einstein ones (c.f. eqs. (3.10-3.11)).

We would like to have an analogous proof for the non-flat background, but it turns out
this is not straightforward. A number of factors account for this difference. First, even
if the metric has no explicit dependence on the time coordinate, we may not have the
simplification D0 = 0. Also, even if we have k0 = 1 (which doesn’t occur naturally in the
examples we’ll give), there is a difference in the non-flat case, since covariant derivatives
behave according to the object they are acting on. Consider, for instance, the derivative
∂µ(kαkνφ). In the stationary limit, taking the component ν → 0 we loosely write

∂µ(kαk0φ) = ∂µ(kαφ),

since k0 = 1. However in the non-flat case we’ll have

Dµ(kαkνφ) = kνDµ(kαφ) + kαφDµk
ν

= kνDµ(kαφ) + kαφ(∂µk
ν + Γ̄νµβk

β).
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If we then consider the ν = 0 component we’ll have the “relation”

Dµ(kαk0φ) = Dµ(kαφ) + kαkβφΓ̄0
µβ, (5.8)

which is rather counter intuitive, and thus renders difficult an approach analogous to that
of last section.

However, these factors won’t be important for a number of examples that we will
study in the following, since cancellations occur, and the field still satisfies the Maxwell-
like equation

DµF a
µν = 0. (5.9)

In particular, we will turn our attention to black hole solutions living over non-flat back-
grounds.

5.1 Black holes over (Anti-)de Sitter background

Schwarzschild (Anti-)de Sitter black hole

The easiest possible example of a black hole over a curved background combines the
simplest black hole, i.e. the Schwarzschild metric and the simplest non-flat background,
this is, (Anti-)de Sitter which has a constant non-zero curvature. An explicit expression
for this metric in four dimensions is known (see, for example ref. [188]), and is already in
the Kerr-Schild form of eq. (5.1), where the background metric is given by

ḡµν = diag
(
−1 + λr2,

1

1− λr2
, r2, r2 sin θ

)
, (5.10)

in a usual spherical coordinate system (t, r, θ, ϕ). A straightforward computation shows
that this background is the (Anti-)de Sitter metric (whose constant curvature is 12λ).
Of course, the sign of λ determines if the metric eq. (5.10) corresponds to de Sitter or
Anti-de Sitter. Both backgrounds result of physical interest, since they are relevant for
cosmological and holography applications, respectively. The difference between them are
notorious when looking at the global structure of the spacetime, so this should be taken
into account when studying applications of this formalism.

The Kerr-Schild vector kµ is defined as

kµ =

(
1,

1

1− λr2
, 0, 0

)
, (5.11)

while the scalar function is φ = 2M
r
, same as in the flat background case. It is not difficult
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to show that the vector eq. (5.11) satisfies the null and geodetic conditions of eqs. (5.2)
and (5.3). Note that if we take the limit λ→ 0 we recover the usual Schwarzschild black
hole from section 3.3.1.

The vector gauge field Aaµ is constructed as a single copy of the graviton, so it is given
by

Aaµ = φcakµ, (5.12)

and it solves a Maxwell-like equation over a non-flat background

DµF
µν
non flat = 0. (5.13)

where, we define the field strength tensor as

F µν a
non flat ≡ DµAν a −DνAµa. (5.14)

Note that the non-abelian term that should appear in the last equation vanishes due to
the trivial dependence on the colour vector.

The zeroth copy does not work in a trivial way here, as the equation is

D2φ ≡ DµD
µφ = ∂µ∂

µφ = −2λφ. (5.15)

We will further analyse this result in terms of a biadjoint field equation coupling to back-
ground curvature. However, to draw a parallel with the previous chapter, let us analyse
first the example of the rotating black hole over a (Anti-)de Sitter background.

Kerr (Anti-)de Sitter black hole

In the same way that it is possible to generalize the Kerr black hole over a flat background
to higher dimensions, one can write the general Kerr-(Anti-)de Sitter metric in arbitrary
spacetime dimension [188]. In particular, in four spacetime dimensions, the metric has the
Kerr-Schild structure from eq. (5.1) with the background metric

ds̄2 = −(1− λr2)∆θ

1− λa2
dt2 +

ρ2

(1− λr2)(r2 + a2)
dr2 +

ρ2

∆θ

dθ2 +
(r2 + a2) sin2 θ

1 + λa2
dϕ2. (5.16)

The functions entering the metric are defined as

ρ2 ≡ r2 + a2 cos θ, ∆θ ≡ 1 + λa2 cos2 θ. (5.17)
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Despite the formidable look of the fiducial metric eq. (5.16), this is nothing but (Anti-)de
Sitter space in spheroidal coordinates (as defined in eq. (3.51)). Note that if we take
a→ 0, this is the metric eq. (5.10). The scalar function is

φ =
2Mr

ρ2
. (5.18)

The vector kµ is defined by

kµdx
µ =

∆θ

1 + λa2
dt+

ρ2dr

(1− λr2)(r2 + a2)
− a sin2 θdϕ

1 + λa2
. (5.19)

The vector eq. (5.19) is indeed null with respect to both the fiducial and the full metric,
and we have also verified that it satisfies the geodetic condition. If we now construct a
gauge field as a single copy of the graviton, this is again a solution to the non-flat Maxwell
equation (5.13), and considering the zeroth copy, we get an equation identical to eq. (5.15).
Having verified that this procedure works let us focus now on (Anti-)de Sitter space.

5.1.1 Zeroth copy over (Anti-)de Sitter background

There is one very interesting aspect of the zeroth copy over a (Anti-)de Sitter background.
For the Schwarzschild (Anti-)de Sitter and Kerr (Anti-)de Sitter metrics, we found that
the scalar field of eq. (5.1) satisfies

D2φ = −2λφ. (5.20)

Actually, should we have considered instead the biadjoint field Φaa′ = cac̃a
′
φ, we would

have found that it satisfies the equation of motion

D2Φaa′ = −2λΦaa′ . (5.21)

It is interesting that there appears a new term in the right-hand side, and that it is actually
proportional to the curvature scalar. Although we are not sure about the physical meaning
of this term, we may note that eq. (5.21) can be effectively obtained from the Lagrangian:

L =
1

2
(DµΦaa′)(DµΦaa′)− y

6
fabcf̃a

′b′c′Φaa′Φbb′Φcc′ − R

12
Φaa′Φaa′ , (5.22)

and this corresponds to a non-minimal coupling of the biadjoint scalar to the gravity
background. What is remarkable is that the coefficient of the extra term coincides with a
conformally coupled scalar in four spacetime dimensions. This perhaps can be explained as
a consequence of classical Yang-Mills theory being conformally invariant in four spacetime
dimensions, and that the zeroth copy somehow preserves this invariance in the free scalar



CHAPTER 5. NON-FLAT BACKGROUNDS 65

theory. We have however found that in higher dimensions, where the Yang-Mills theory is
not conformally invariant, the relevant coefficient of the RΦaa′Φaa′ term does not coincide
with the conformal coupling.

5.1.2 (Anti-)De Sitter as a Kerr-Schild metric

A different way to approach a double copy over a (Anti-)de Sitter background is to note
that its metric can also be cast into the Kerr-Schild form [187]

gdSµν = ηµν + λ r2kµkν , kµ = (1, r̂). (5.23)

We may then construct a gauge field via the Kerr-Schild single copy. This yields

Aµ = ρ r2kµ, (5.24)

where we have replaced λ→ ρ. We can interpret the latter parameter by noting that the
electrostatic potential in the Kerr-Schild gauge satisfies

∇2A0 =
1

r2

∂

∂r

(
r2∂A0

∂r

)
= 6ρ. (5.25)

Thus, ρ plays the role of a uniform charge density, filling all space. This is exactly what
one expects from the single copy of the cosmological constant, given that the latter is a
uniform energy density. If one chooses the fiducial metric to be Minkowski rather than
(Anti-)de Sitter space, the conformal coupling in the biadjoint scalar theory would be
absent (due to the vanishing Ricci scalar), but one must then include the uniform charge
density explicitly.

5.2 Kerr-Schild solutions in curved space

A motivation to extend our study to non de Sitter backgrounds comes from the recent
work in ref. [143], which considered generalising the double copy for amplitudes to include
a non-trivial background metric in the gravity theory. In particular, it considered the
case of so-called sandwich plane waves, namely plane wave solutions whose deviation from
Minkowski space has a finite extent in space and time1. One may consider such waves in
either gauge theory or gravity, and the authors demonstrate explicitly that a three-point
amplitude for a graviton defined as the deviation from a gravitational sandwich wave can
be obtained as the double copy of a gauge theory three-point function, where the gauge field

1More precisely, such waves are confined to a finite region of the lightcone coordinate u = z − t, for a
wave travelling in the +z direction.
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Figure 5.1: Two possible interpretations of a double copy in curved space: in type A, a
gauge field has a non-trivial background field Āaµ in Minkowski space, and copies to a
graviton defined on a curved background ḡµν , where ḡµν and Āaµ are themselves related by
a double copy relationship. In type B, a gauge field on a non-dynamical curved background
ḡµν double copies to a graviton defined around the same background.

is defined around a gauge theory sandwich wave. They further note that this procedure
is obtainable from ambitwistor string theory, which would in principle provide a general
framework for formulating a similar procedure for different types of background [140,189].

The results of ref. [143] suggest that some analogue of the curved space amplitude
double copy should also be possible for classical solutions. The aim of the following sec-
tions is to study this issue, and we will present a number of examples. Firstly, we will
construct Kerr-Schild solutions on a curved background by trivially rewriting single Kerr-
Schild solutions. We will be able to interpret such solutions as double copies of gauge
fields with non-trivial backgrounds, and we will call this relationship a type A curved
space double copy. We will also find an alternative interpretation, namely that one may
regard the graviton as being the double copy of a gauge field living on a non-dynamical
curved spacetime background, which we will refer to as type B. The difference between
these two double copies is shown schematically in figure 5.1, and the second of these is
perhaps at odds with what one normally means by the double copy, which relates entire
gravity solutions to gauge theory counterparts in flat space. It is then presumably the
case that the type B map is not fully general, but exists only in special cases. That does
not however, reduce its usefulness, where it applies.

After examining simple Kerr-Schild examples, we will generalise our findings to multiple
Kerr-Schild solutions, including a re-examination of the Taub-NUT spacetime considered
in the previous chapter. Finally, we will show a family of non-trivial examples of the type
B double copy map, in which the background spacetime is conformally flat, without a
Kerr-Schild form. This illustrates that this second type of double copy map may be more
applicable than naïvely thought, and can also provide a double copy in cases in which it
is not known how to construct a double copy of type A.
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As stated before, our examination of curved space instances of the classical double copy
is motivated by the results of ref. [143], which are a double copy of type A. This associates
a gauge theory amplitude in the presence of a non-trivial background field, with a gravity
amplitude defined with respect to a non-Minkowski background metric, where the gauge
and gravity background fields should be related. In this section, we will see that Kerr-
Schild solutions indeed provide a natural framework for constructing such double copies
for exact field solutions, rather than perturbative amplitudes.

5.2.1 Single Kerr-Schild solutions

The simplest such examples can be constructed, albeit rather artificially, by starting with
single Kerr-Schild metrics around Minkowski space. We may split up such solutions ac-
cording to

gµν = ηµν + φkµkν

= ηµν + φ1kµkν + φ2kµkν , (5.26)

where we have introduced

φ1 = ξφ, φ2 = (1− ξ)φ, 0 ≤ ξ ≤ 1. (5.27)

Thus, any given single Kerr-Schild metric can always be thought of as a double Kerr-Schild
metric. It is straightforward to single copy eq. (5.26) term-by-term, resulting in the gauge
field

Aaµ = ca
[
φ1kµ + φ2kµ

]
. (5.28)

This is itself a rewriting of the regular single copy, that is ultimately possible due to the
linearity of the field equations in the Kerr-Schild double copy. However, we can reinterpret
eqs. (5.26) and (5.28) as follows. By defining

ḡµν = ηµν + φ1kµkν , (5.29)

we may rewrite eq. (5.26) as

gµν = ḡµν + h̃µν , h̃µν = φ2kµkν , (5.30)

so that the solution of eq. (5.26) may be regarded as containing a graviton field involving
only the field φ2, defined with respect to the non-Minkowski background ḡµν . On the
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gauge theory side, we can define
Āaµ = caφ1kµ, (5.31)

so that the solution of eq. (5.28) becomes

Aaµ = Āaµ + Ãaµ, Ãaµ = caφ2kµ. (5.32)

This is thus our first example of a type A curved space double copy, for classical solutions
rather than amplitudes. A gauge field defined with respect to a non-trivial background
field copies to a graviton field with a non-trivial background, where the two backgrounds
are themselves related (i.e. they are themselves Kerr-Schild, so we know how to double
copy them).

As indicated in figure 5.1, there is another way to consider double copies in curved
space (type B). Namely, it may be possible to single copy a graviton defined with respect
to a non-Minkowski background, to a gauge field living on the same background. To this
end, one may consider the graviton field h̃µν of eq. (5.30), which single copies to the field
Ãaµ of eq. (5.32). On the gauge theory side, one may impose the same background ḡµν ,
and examine the curved space Maxwell equations

DµF̃ a
µν = jν , (5.33)

where F̃ a
µν is the field strength tensor formed from the gauge field Ãaµ. For a consistent

double copy of type B, one requires that the source current is somehow related to the
energy-momentum tensor in a recognisable way, so that the two solutions are related. Let
us give two examples. Firstly, one may consider the Schwarzschild metric, for which

φ =
2M

r
, kµ = (1, 1, 0, 0), (5.34)

where we adopt spherical polar coordinates (t, r, θ, ϕ). Writing the graviton as

hµν =
2M1

r
kµkν +

2M2

r
kµkν , M1 +M2 = M, (5.35)

we may define the background field

ḡµν = ηµν + h̄µν , h̄µν =
2M1

r
kµkν , (5.36)

and then single copy the graviton

h̃µν =
2M2

r
kµkν (5.37)
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to get a gauge field

Ãaµ =
ca

r
kµ. (5.38)

The curved space Maxwell equations of eq. (5.33) then yield2

jaµ = 0, (5.39)

which is indeed consistent: the Schwarzschild metric is a vacuum solution in General Rel-
ativity. Here we find that its curved space single copy is also a (gauge theory) vacuum
solution, on the curved space defined by ḡµν .

A second example is given by de Sitter spacetime, which has the Kerr-Schild form

φ = λr2, kµ = (−1, 1, 0, 0), (5.40)

where λ is the cosmological constant. Splitting this similarly to eq. (5.35) gives

hµν = λ1r
2kµkν + λ2r

2kµkν , λ1 + λ2 = λ. (5.41)

We can then define the graviton

h̃µν = λ2r
2kµkν , (5.42)

whose single copy gauge field
Ãaµ = caλ2r

2kµ (5.43)

satisfies the curved space Maxwell equation with

jaν = (6λ2, 0, 0, 0). (5.44)

Again this makes sense: the graviton is sourced by a constant energy density filling all
space which, in the gauge theory, becomes a constant charge density. The single copy has
thus turned momentum degrees of freedom into colour degrees of freedom, precisely as in
the flat space case examined in previous chapters.

We have not been able to prove in general that the curved space Maxwell equations
are satisfied for arbitrary single Kerr-Schild solutions that are rewritten in the form of
eq. (5.30). However, we have at least shown for some special – and, indeed, astrophys-
ically relevant – cases, a type B double copy map is possible. The question then arises

2Here, we do not include the delta function source at the origin, corresponding to the point charge
(mass) sourcing the field Ãaµ (hµν).
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of how general this map is. The conventional double copy, in its simplest form, relates a
gauge theory to a gravity theory. A gauge theory on a curved background (even if this is
non-dynamical) would appear to involve gravity, and thus this type of double copy map
seems to relate a coupled Einstein-gauge theory system to itself. One does not then expect
this map to be fully general, or to apply to arbitrary supersymmetric generalisations of
gauge and gravity theories.

Evidence towards this viewpoint can be obtained by examining the zeroth copy. As
discussed in section 3.1, the Kerr-Schild field φ is found to satisfy the linearised biadjoint
scalar field equation, and can be interpreted as a scalar propagator. In the type B double
copy, we can take the zeroth copy of the gauge field Ãaµ to generate a scalar field

Φ̃aa′ = cac̃a
′
φ2, (5.45)

and consider the curved space linearised biadjoint equation

DµDµΦaa′ = cac̃a
′
ξ, (5.46)

which defines ξ. For the Schwarzschild and de Sitter examples, we find

ξSWC = −4M1M2

r4
, ξdS = 6λ2 − 10r2λ1λ2 (5.47)

respectively, which we can not straightforwardly interpret as being related to the source
current in the gauge theory. It thus seems that the type B double copy can indeed associate
a gauge theory solution in curved space with a gravity counterpart, at the expense of not
having a consistent zeroth copy. This also sheds light on our previous speculation that the
zeroth copy for a curved background may result in a biadjoint scalar theory conformally
coupled to gravity (eq. (5.22)). The results of eq. (5.47) provide a simple counter-example
to this conjecture, showing that the situation is more complex than previously thought.

5.2.2 Multiple Kerr-Schild solutions

In the previous section, we used single Kerr-Schild solutions to provide some first examples
of curved space double copies, of both type A and type B. Here, we study whether such
conclusions also apply to more complicated solutions. As a first generalisation, we may
consider multiple Kerr-Schild solutions in Minkowski space, namely those of form

gµν = ηµν +
∑
i

φik
(i)
µ k

(i)
ν , (5.48)
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where each vector k(i)
µ is null and geodetic with respect to both the Minkowski and full

metric, and the set of Kerr-Schild vectors obeys the mutual orthogonality relations

ηµνk(i)
µ k

(j)
ν = gµνk(i)

µ k
(j)
ν = 0, ∀i, j. (5.49)

In certain cases, as seen in the previous chapter, this ansatz linearises the mixed Ricci
tensor Rµ

ν , and thus provides an exact solution of the Einstein equations. We further
consider the general class of multi-Kerr-Schild solutions in which each term in the graviton
is itself a solution of the linearised Einstein equations. In the static case, we may then
single copy eq. (5.48) to produce a gauge field

Aaµ = ca
∑
i

φik
(i)
µ . (5.50)

Given that each term in the graviton constitutes a static Kerr-Schild solution, the results of
ref. [183] immediately imply that each term in eq. (5.50) satisfies the linearised Yang-Mills
equations. Linearity then implies that the complete field of eq. (5.50) is also a solution,
and thus a well-defined single copy of the gravity result.

As for the solution of eq. (5.26), we can use any multi-Kerr-Schild solution of the form
of eqs. (5.48, 5.50) to construct a type A curved space double copy. To do this, one may
partition the terms in eq. (5.48) into two sets Γ1 and Γ2, before defining

ḡµν = ηµν +
∑
i∈Γ1

φik
(i)
µ k

(i)
ν , Āaµ = ca

∑
i∈Γ1

φik
(i)
µ , (5.51)

and
h̃µν = ηµν +

∑
i∈Γ2

φik
(i)
µ k

(i)
ν , Ãaµ = ca

∑
i∈Γ2

φik
(i)
µ . (5.52)

The full gravity and gauge fields may now be written as

gµν = ḡµν + h̃µν , Aaµ = Āaµ + Ãaµ. (5.53)

This is indeed an example of the type A double copy shown in figure 5.1: the gauge field
Ãaµ defined with respect to the background field Āaµ double copies to the graviton h̃µν ,
defined with respect to the background metric ḡµν .

Furthermore, the zeroth copy is also well-defined, as for the flat space classical double
copy: from eq. (5.50), we may define the biadjoint field

Φaa′ = cac̃a
′∑

i

φi. (5.54)



CHAPTER 5. NON-FLAT BACKGROUNDS 72

Curved

hA
a

A
a

_
+aa’aa’

_
+

MinkowskiMinkowski

Zeroth Copy Double Copy

g
_

Figure 5.2: Generalisation of the type A double copy of figure 5.1 to include the zeroth copy,
which relates the gauge field defined with a non-trivial background to similar solutions in
a biadjoint scalar theory.

The fact that each term in the gauge field satisfies the linearised Yang-Mills equations
implies, again from ref. [183], that each term in eq. (5.54) satisfies the linearised biadjoint
scalar equation. Similarly to eq. (5.51), we may then define

Φ̄aa′ = cac̃a
′∑
i∈Γ1

φi, Φ̃aa′ = cac̃a
′∑
i∈Γ2

φi, (5.55)

so that the full biadjoint field can be written

Φaa′ = Φ̄aa′ + Φ̃aa′ . (5.56)

This is a direct analogue of the type A double copy between gauge theory and gravity:
a classical field defined with respect to a background copies between biadjoint scalar and
gauge theory. The relationship between the three theories is shown in figure 5.2. Given
that we will always be talking about solutions of the linearised Yang-Mills equations from
now on, we will omit colour indices and vectors in what follows.

We may also examine whether or not it is possible to construct a type B double copy
for multi-Kerr-Schild solutions, by considering specific examples. In section 5.2.1, we saw
that this was indeed possible for the Schwarzschild and de Sitter solutions, split according
to eqs. (5.26, 5.27). More generally, we can take either of these gravitons as part of the
background metric ḡµν , and allow either of them to be the perturbation h̃µν . The full
list of possibilities is enumerated in table 5.1, where the full metric is given by eq. (5.26),
with kµ = (1, 1, 0, 0) in spherical polar coordinates. The first two rows contain the pure
Schwarzschild (denoted as SWC in the table) and de Sitter (dS) metrics, while the third
and fourth rows the cases already considered in the previous section. Finally, the fifth
and sixth rows contain the metric formed by perturbing the Schwarzschild solution with a
de Sitter Kerr-Schild graviton, and vice versa. For each metric, we give an expression for
the timelike component jt of the source current that appears in the curved space Maxwell
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Metric φ1 φ2 jt ξ
SWC 0 2m2/r 0 0
dS 0 λ2r

2 6λ2 6λ2

SWC+SWC 2m1/r 2m2/r 0 −4m1m2/r
4

dS+dS λ1r
2 λ2r

2 6λ2 6λ2 − 10r2λ1λ2

SWC+dS 2m1/r λ2r
2 6λ2 6λ2 − 8m1λ2/r

dS+SWC λ1r
2 2m2/r 0 4λ1m2/r

Table 5.1: Table of type B single and zeroth copies of Kerr-Schild metrics of the form of
eq. (5.26), where φ1 and φ2 are allowed to be different. Here X+Y denotes a Kerr-Schild
graviton for metric Y considered as a perturbation on background metric X, where SWC
and dS represent the Schwarzschild and de Sitter gravitons respectively.

equation of eq. (5.33) (the spacelike components are found to vanish in all cases), as well as
the quantity ξ that appears on the right-hand side of the curved space linearised biadjoint
equation (eq. (5.46)).

In all cases, the type B single copy indeed holds. That is, the gauge theory contains
a source current consistent with the perturbation term in the gauge field: zero in the
Schwarzschild case3, and a uniform charge density in the de Sitter case, whose counter-
part in gravity is the cosmological constant. There are no terms in the source current
which are sensitive to the field φ1, which would invalidate the picture of figure 5.1. The
zeroth copy holds only in the cases of a pure single Kerr-Schild solution (i.e. the cases
considered in the original classical double copy of refs. [1,183]). For all of the double Kerr-
Schild solutions, the source includes a position-dependent term that has no immediately
evident counterpart in the gauge or gravity theory.

In the above examples, the full metric contains two Kerr-Schild terms, each of which
has the same vector kµ, corresponding to a spherically symmetric system. We can then
ask what the most general results for jt and ξ are, for unspecified functions φ1(r) and
φ2(r). The results are

jt =
2φ′2(r)

r
+ φ′′2(r) = ∇2

Mφ2, ξ = ∇2φ2 = jt(1− φ1(r))− φ′1(r)φ′2(r). (5.57)

Here ∇2 is the Laplacian operator associated with the full background metric, and ∇2
M the

corresponding operator in Minkowski space. We thus conclude that if φ2 is associated with
a vacuum solution in Minkowski space, the type B single copy is well-defined, in that it is
also a vacuum solution. However, the source for the zeroth copy involves the background
field φ1 and thus does not seem to have a meaningful interpretation. Of course, the fields

3As earlier, we do not bother showing the delta function source at the origin.
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φ1 and φ2 in eq. (5.57) are not arbitrary, but must be fixed by the Einstein equations. For
the case of spherically symmetric (and stationary) vacuum solutions up to the presence
of a cosmological constant, the only possible solutions are the Schwarzschild and de Sit-
ter cases examined already in table 5.1. Nevertheless, the general form of the current in
eq. (5.57) does not rule out that there may be non-trivial solutions with extended sources,
such that one may still find a consistent single copy interpretation. It is not known even
in the flat space case how to construct such maps (see e.g. refs. [2, 156] for discussions of
source terms in various contexts).

Above we have discussed cases in which the background scalar field φ1 is spherically
symmetric. Our results are more general than this, however. We have explicitly checked
that our conclusion that the type B single copy is a vacuum solution if φ2 is associated
with a vacuum solution in Minkowski space, holds true even if φ1 has an arbitrary spatial
and temporal dependence.

It is furthermore useful to note that, as in the flat space cases considered in ref. [183],
one may transform the type B single copy gauge field into a more recognisable form.
Starting with the gauge field in spherical polar coordinates,

Aµ = φ2(−1, 1, 0, 0),

one may perform a gauge transformation

Aµ → A′µ = Aµ +Dµχ(r) = Aµ + ∂µχ(r), (5.58)

where
χ(r) = −

∫ r

dr′ φ2(r′), (5.59)

so that eq. (5.58) implies
A′µ = (−φ2, 0, 0, 0). (5.60)

Thus, φ2 indeed has the interpretation of an electrostatic potential.

As implied above by the above results, the type B double copy is not necessarily
expected to be a fully general map between exact solutions in gauge and gravity theories in
curved space. However, it is interesting to examine whether or not it shares the property of
the type A (and amplitude) double copies, in being independent of the number of spacetime
dimensions d. Indeed, one may show that for a d-dimensional background metric ḡµν of
the form of eq. (5.29), the gauge field Ãµ of eq. (5.32) satisfies the Maxwell equations,
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with a current density given by 4

jµ = (∇2
Mφ2, 0, 0 . . . , 0), (5.61)

where the Minkowski-space Laplacian on the right-hand side is in (d−1) space dimensions.
Thus, our above discussion generalises for any d.

Having examined multiple Kerr-Schild solutions where each term contains the same
Kerr-Schild vector kµ, it is instructive to instead consider an example in which these
vectors can be different. One such example is the Taub-NUT solution, for which the
metric takes the form

gµν = ηµν + φkµkν + ψlµlν . (5.62)

The Minkowski line element can be written as

ds2 = −dt2 +
ρ2

a2 + r2
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdϕ2 (5.63)

in spheroidal coordinates, where

ρ2 ≡ r2 + a2 cos2 θ. (5.64)

The vectors kµ and lµ are defined by

lµdx
µ = dt+

ρ2

a2 + r2
dr − a sin2 θdϕ (5.65)

kµdx
µ = dt− iρ2

a sin θ
dθ +

r2 + a2

a
dϕ, (5.66)

while the scalar functions φ and ψ are given by

ψ =
2mr

ρ2
, φ =

2la cos θ

ρ2
. (5.67)

As for the various metrics considered in table 5.1, in considering the type B single copy,
we can take either of the Kerr-Schild terms to be part of the background metric, resulting
in two possibilities:

Case 1: gµν = ḡµν + φkµkν , ḡµν = ηµν + ψlµlν ,

Case 2: gµν = ḡµν + ψlµlν , ḡµν = ηµν + φkµkν .

4Equation (5.61) also turns out to be true when the field φ1 depends on time and the non-radial spatial
coordinates.
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The gauge fields obtained from the single copy of the perturbation term in both cases
satisfy homogeneous Maxwell equations

jν = 0, (5.68)

so that the single copy is indeed consistent (n.b. the Taub-NUT solution is a vacuum
solution). The zeroth copy factor is given in both cases by

ξ =
4φψ(ρ2 − 2r2)

ρ4
, (5.69)

so that, consistently with our previous results, the type B single copy does not appear to
be meaningful.

We have thus found a procedure, based on Kerr-Schild solutions, to construct a double
copy for classical solutions that mimics the result found for amplitudes in ref. [143]. In
this picture, a gauge field defined with respect to a non-trivial background field copies
to a graviton defined with respect to a background metric, where the background fields
in the two theories are related, since they obey the original Kerr-Schild double copy by
themselves. We call this procedure a type A curved space double copy, to distinguish it
from the type B in which the gauge field lives on a non-dynamical curved spacetime, and
copies to a graviton field defined with respect to the same spacetime.

In the above cases, we knew how to construct a type A double copy due to the fact
that we could relate the background gauge field with its gravitational counterpart. The
type B double copy, however, does not require such a relationship, as the same curved
metric appears in both the gauge and gravity theories. It is then interesting to look for
examples of this relationship in which the background metric is not of Kerr-Schild form,
and thus cannot be single-copied according to the procedure of refs. [1, 2, 183]. We have
indeed found such examples, which we describe in the following section.

5.3 Conformally flat background metrics

In this section, we consider conformally flat spacetimes. More specifically, we consider
spacetimes whose metrics can be written (in some coordinate system) as a conformal
transformation of Minkowski space:

ḡµν = Ω2(xµ)ηµν . (5.70)

As the bar notation on the left-hand side already suggests, we will use such metrics as
background metrics for Kerr-Schild solutions. This will work for any conformally flat



CHAPTER 5. NON-FLAT BACKGROUNDS 77

metric, given that if kµ is null and geodetic with respect to the Minkowski metric, it is
straightforward to show that it is also null and geodetic with respect to ḡµν .

As a warm-up, let us examine the case where the background is the well-known Ein-
stein static universe. For convenience, we will adopt the coordinates and conventions of
ref. [190], such that the line element is

ds̄2 = −dt2 + dr2 − 2a sin2 θdϕdr +
|β|2

D2
dθ2 + (|β|2 + a2 sin2 θ) sin2 θdϕ2, (5.71)

where

D = 1− (a2/R2
0) sin2 θ,

β = (R2
0 − a2)1/2 sin

r

R0

+ ia cos θ.

The Ricci tensor and scalar for this metric take the particularly simple forms

R̄µν =
2

R2
0

(ḡµν + ūµūν), R̄ =
6

R2
0

, (5.72)

respectively, where uµ is the unit timelike vector given by

ūµ = (1, 0, 0, 0), ūµ = (−1, 0, 0, 0). (5.73)

We can construct a solution

gµν = ḡµν + 2Hkµkν (5.74)

of single Kerr-Schild form, where for the Kerr-Schild term we adopt the notation of
ref. [190] for ease of comparison. The Kerr-Schild vector kµ is defined by

√
2kµ = (−1,−1, 0, a sin2 θ), (5.75)

while the scalar function

H = mDµk
µ, (5.76)

with Dµ the covariant derivative associated with ḡµν . The solution defined by eqs. (5.74-
5.76) corresponds to a rotating black hole over the Einstein static universe. In order to
further examine the effect of this perturbation, we note that the mixed-index Ricci tensor
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of the full metric takes the form

Rµ
ν = − 2

R2
0

(1−H)(δµν + uµuν), (5.77)

where we have introduced the vectors

uµ =
ũµ√

1−H
, uµ =

1√
1−H

(ũµ +
√

2Hkµ). (5.78)

The Einstein equations become

Rµ
ν −

1

2
δµνR = −8π((ρ+ p)uµuν + pδµν ) + Λδµν . (5.79)

That is, the matter content of the theory is that of a perfect fluid, whose energy density
ρ and pressure p are given in this case by

8πρ =
3

R2
0

(1−H)− Λ, (5.80)

8πp = − 1

R2
0

(1−H) + Λ. (5.81)

We see that the presence of the Kerr-Schild term acts to redefine the parameters associated
with the background metric, reminiscent of the split Kerr-Schild metrics we considered in
section 5.2.1. A number of other such solutions are presented in ref. [190].

We may single copy the graviton appearing in eq. (5.74) by defining the gauge field

Aaµ = caHkµ, (5.82)

which we find satisfies the homogeneous linearised Yang-Mills equation

DµF
µν = 0, (5.83)

where Dµ, as above, is the covariant derivative for the Einstein static universe. This pro-
vides an example of the type B double copy of figure 5.1: on the gravity side, a fluid is
needed to source the background metric. There is no corresponding source current in the
gauge theory, as there is no background gauge field, unlike in the type A double copy.

In the previous examples of the type B double copy, we saw that the zeroth copy did
not appear to have a meaningful interpretation. Interestingly, in the present example the
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field H satisfies the homogeneous linearised biadjoint scalar equation

D2H = 0, (5.84)

which indeed leads to a well-defined zeroth copy for this case.

Having seen a particular example of the type B single copy for non-Kerr-Schild back-
grounds, let us now consider the general case of background metrics of the form of
eq. (5.70), where the Minkowski metric is given in spherical polar coordinates (t, r, θ, ϕ),
so that the conformally transformed metric takes the form

ḡµν = Ω2(xµ)diag(−1, 1, r2, r2 sin2 θ), (5.85)

Upon constructing the gauge field

Aµ = kµφ2(r), kµ = (−1, 1, 0, 0), (5.86)

we find that this satisfies the curved space Maxwell equation (in the spacetime whose
metric is ḡµν)

DµF
µν = jν , jν =

(
∇2

Mφ2

Ω4(xµ)
, 0, 0, 0).

)
, (5.87)

where ∇2
M is the Minkowski space Laplacian operator. Note that this result does not

require the conformal factor Ω to have spherical symmetry - it may be a general function
of (t, r, θ, ϕ). From eq. (5.87), we see that if the gauge field of eq. (5.86) satisfies a vacuum
Maxwell equation in Minkowski space, it also does so in the conformally transformed
metric. Thus, the Minkowski space single copy extends to a type B curved space double
copy, even though the background metric ḡµν does not have a Kerr-Schild form, and thus
is not amenable to a type A single copy. We may also examine the type B zeroth copy,
and one finds the curved space linearised biadjoint equation

DµDµφ2 =
∇2

Mφ2

Ω2(xµ)
+

2φ′2(r)∂rΩ(xµ)

Ω3(xµ)
. (5.88)

The second term on the right-hand side involves a spatial derivative of the conformal fac-
tor, which is not present in the gauge theory source. Thus, it does not seem possible to
interpret the zeroth copy in general, in line with our previous conclusions for the type B
procedure.
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Closing remarks

Let us briefly summarise the results of this chapter. We started by studying Kerr-Schild
solutions where the background is given by the (Anti-)de Sitter metric, since this was
our first encounter with curved backgrounds. We found that by considering a graviton
field defined with respect to the (Anti-)de Sitter metric, its single copy interpreted as a
gauge field living over (Anti-)de Sitter satisfies Maxwell equations in such a background.
The zeroth copy does not satisfy a propagator equation directly, but we saw that its
equation of motion was compatible with that of a scalar conformally coupled to the gravity
background. This result does not seem to be a general feature, as we have observed that
for other backgrounds (or in different numbers of dimensions), this is no longer the case,
and it might relate to the fact that Yang-Mills has conformal symmetry in d = 4, or to
one of several special features of (Anti-)de Sitter. One of these interesting properties is
that the (Anti-)de Sitter metric can itself be expressed in Kerr-Schild form.

After that, we found a double copy procedure for classical solutions that mimics the
result found for amplitudes in ref. [143], based on the Kerr-Schild solutions that worked on
a flat space. In this picture, a gauge field defined with respect to a non-trivial background
field copies to a graviton defined with respect to a background metric, where the back-
ground fields in the two theories are related, due to the fact that they obeyed the original
Kerr-Schild double copy by themselves. Furthermore, there is a well-defined zeroth copy,
in which the resulting biadjoint field is also defined with respect to a background, where
the latter is the zeroth copy of the background gauge field. We call this procedure a type
A curved space double copy, to distinguish it from the alternative procedure (type B) in
which the gauge field lives on a non-dynamical curved spacetime, and copies to a graviton
field defined with respect to the same spacetime. In this picture, the zeroth copy does not
appear to be meaningful, in that the biadjoint field appears not to be physically related
to its gauge theory counterpart, due to the presence of unwanted source terms. Note that
the process described for (Anti-)de Sitter backgrounds in section 5.2 is a type B double
copy, while the treatment in section 5.3 shows how to single copy the background in a
type A process.

We considered a number of cases where we knew how to construct a type A double
copy due to the fact that we could relate the background gauge field with its gravitational
counterpart. The type B double copy, however, does not require such a relationship, as
the same curved metric appears in both the gauge and gravity theories. We then looked at
examples of this relationship in which the background metric is not of Kerr-Schild form,
and thus cannot be single-copied according to the usual procedure. In particular, we fo-
cused on conformally flat metrics.
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Thus far, all of our efforts have focused on working with a family of gravity solutions
whose single copies solve Abelian Maxwell equations. Although we have argued that this
process is analogous to the BCJ double copy from amplitudes, we would like to have a
link between them beyond the heuristic level. As we’ll see next, one strong candidate to
give us that link comes from a neat geometrical interpretation of the Kerr-Schild ansatz,
which results in a set of solutions for accelerated point particles.



Chapter 6

Kerr-Schild double copy and radiation

This chapter was motivated by a neat geometrical interpretation of the Kerr-Schild ansatz.
In an attempt to study the asymptotic behaviour of the metric and Riemann tensors at
spatial infinity, in spaces which are asymptotically flat, Newman and Unti [191] intro-
duced a coordinate system, intrinsically attached to an arbitrary time-like world-line. Our
interest in gravity solutions describing accelerated particles is twofold. First, this consti-
tutes a probe into non-trivial time-dependent effects, unlike most of the examples studied
in the previous chapter, where the stationary condition of the metric is essential for the
Kerr-Schild double copy to hold. A second, and related, point comes from the realization
that in electromagnetism, accelerated particles can be described by the Liénard-Wiechert
potential, which encodes the radiation emitted by the particle. Since we expect the solu-
tions to behave according to the double copy, we are in principle interested in the mapping
between the radiation in both theories. To develop these ideas, let us start looking at the
solution for accelerated particles in the gravity theory.

6.1 Gravity solution

Instead of using the metric given by Newman and Unti, we will follow a somewhat dif-
ferent approach which leads more directly to a Kerr-Schild like solution, namely that of
Kinnersley [192–195]. We consider an arbitrary smooth world-line L in Minkowski space
that is everywhere time-like. Let τ be the proper time along the curve and λµ(τ) denotes
the unit tangent vector at any point, directed toward the future i.e.

λµ(τ) =
dyµ(τ)

dτ
(6.1)

For an arbitrary point xµ outside the curve, there are two null lines intersecting the
worldline L. As we show in figure 6.1, the past null cone of x intersects L exactly once.
Hence there exists a unique retarded null vector connecting xµ with the curve. Let the

82
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x

y

k

Figure 6.1: Geometric interpretation of the Kerr-Schild solution for an accelerated particle.

null vector be kµ(x) and let y be the point of contact. Now, the definitions of τ and λµ(τ)

may be extended off the world line by setting

τ(x) = τ(y) (6.2)

Thus the fields τ , kµ and λµ are well defined everywhere and may be differentiated. With
this in mind, we may consider the proper time τ to be a function of xµ if we consider the
relation

ηµν(x
µ − yµ(τ))(xν − yν(τ)) = 0. (6.3)

Then, taking the derivative with respect to xρ, we have

2ηµν(x
µ − yµ(τ))(δνρ −

dyν

dτ
τ,ρ ) = 0. (6.4)

Solving this for τ,ρ we get

τ,ρ =
xρ − yρ(τ)

r
, (6.5)

where we have defined the retarded distance

r ≡ (xµ − yµ(τ))λµ. (6.6)

We use this to define the vector kµ as

kµ ≡ τ,µ =
∂τ

∂xµ
. (6.7)
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This vector will play a major role, as we will show it is indeed the Kerr-Schild vector for
this metric. We may immediately note that since it is proportional to xµ − yµ(τ), eq.
(6.3) implies kµ is a null vector. We may also note that from eqs. (6.5)-(6.7), it follows
immediately that k · λ = 1, with λµ defined as in (6.1). Another quantity it is convenient
to define is the vector

Rµ ≡ xµ − yµ(τ). (6.8)

so using eqs. (6.5)-(6.7), we have the relation

Rµ = rkµ. (6.9)

6.1.1 Kinnersley’s photon rocket

We will now consider a point-particle following an arbitrary timelike worldline, and sourc-
ing a gravitational field. There exists an exact solution corresponding to this situation,
known as Kinnersley’s photon rocket [192–195]. This contains an additional pure radiation
field stress-energy tensor, hence the name. The solution is presented in Kerr-Schild form1

gµν = ηµν + κhµν

= ηµν −
κ2

2
φkµkν , (6.10)

with the scalar function

φ =
M(τ)

4πr
. (6.11)

The null vector kµ has the same geometric interpretation we described before. Then, in
order to perform any computation for this metric, we use the identities

∂αr = kα∆ + λα, ∆ ≡ (−1 + rk · λ̇),

∂αkβ = r−1[ηαβ − kβλα − kαλβ − kαkβ∆], (6.12)

∂αλβ = kαλ̇β, ∂αλ̇β = kαλ̈β,

1Unlike the rest of the thesis, in this chapter the Minkowski metric is given by η = diag(1,−1,−1,−1),
to make ease of comparison with ref. [2].
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which we prove in appendix A. We can compute the energy-momentum tensor using the
expression 2

Gµ
ν ≡ Rµ

ν −
R

2
δµν =

κ2

2
TKS

µ
ν (6.13)

We can use eqs. (6.12) to compute the energy momentum tensor. This yields

T µνKS = −kµkνM
′(τ)− 3M(τ)k · λ̇

4πr2
. (6.14)

We will only be concerned with solutions for constant mass, such that eq. (6.14) reduces
to

T µνKS = kµkν
3Mk · λ̇

4πr2
. (6.15)

Thus, the use of Kerr-Schild coordinates for the accelerating particle leads to the presence
of a non-trivial energy-momentum tensor on the RHS of the Einstein equations, in addition
to the delta function source corresponding to the particle worldline itself. We can already
see that this extra term vanishes in the stationary case (λ̇ = 0), consistent with the results
of ref. [183]. More generally, this stress-energy tensor TKS describes a pure radiation field
present in the spacetime. The physical interpretation of this source is particularly clear in
the electromagnetic “single copy” of this system, to which we now turn.

6.2 Single copy

Having examined the radiating particle in Kerr-Schild language, we may apply the classical
single copy of eq. (3.27), in order to try and construct a gauge theory analogue. This
procedure is not necessarily guaranteed to work, given that the single copy of refs. [1,183]
only applies for stationary fields. However, we will see that we can indeed make sense of
the single copy in the present context.

The Kerr-Schild approach to the double copy that we have studied so far consists of
starting with a Kerr-Schild metric and constructing the gauge theory solution via the
substitution kµkν → kµ. Thus, the single copy of the graviton field

hµν =
κ

2

M

4πr
kµkν , (6.16)

2In practice, the expression we used is

κT δβ =
1

2
ηγβ(ηαεgγδ − ηγαgδε − ηδαgγε + ηγδgαε),αε .

This is equivalent to eq. (6.13) for Kerr-Schild solutions, and has the advantage of being much less time
consuming when using software to evaluate it.
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is the gauge vector field

Aµ =
g

4πr
kµ, (6.17)

where g is the coupling constant. One may then find that non-linear terms in the Yang-
Mills equations vanish, leaving the Maxwell-like equations

∂µFµν = jKS ν , (6.18)

where we have used the usual electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ. (6.19)

The additional current density appearing on the RHS of eq. (6.18) turns out to be given
by

jKS ν = 2
g

4π

k · λ̇
r2

kν

∣∣∣∣∣
τ=τret

. (6.20)

This current corresponds to points x 6= y(τ), and we will ignore a delta function term
corresponding to the world-line of the particle, since we have already seen in a previous
chapter how the sources for point particles map to each other. It is interesting already to
note that the current density in eq. (6.20) seems to be related to the energy-momentum
tensor of eq. (6.15) in a double copy-like way in the sense that it involves a single factor
of the Kerr-Schild vector kµ, with similar prefactors, up to numerical constants. We will
return to this in the following section.

The presence of the current density can be understood by interpreting the gauge field
of eq. (6.17) in more detail. Computing the electromagnetic field strength tensor of this
system yields

Fµν = ∂µAν − ∂νAµ =
g

4πr2
(kµλν − λµkν). (6.21)

First of all, this field strength tensor goes as r−2, and it is independent of the acceleration
of the particle. Thus, it cannot describe the radiation of the accelerated point particle.
Secondly, since this tensor is manifestly covariant under Lorentz transformation, we can
choose any reference frame to explicitly evaluate it. We choose the instantaneous rest
frame of the particle (this is, a frame where the particle velocity is zero in one given
moment). Then, we have

λµ = (1, 0, 0, 0), kµ = (1, ~̂r). (6.22)

Substituting these values into eq. (6.21), we obtain the field strength tensor of the point
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charge, i.e. a Coulomb field. Therefore, if we take the inverse Lorentz transformation
to get back to a general frame, we would simply obtain the boosted Coulomb field of a
point charge. This absence of radiation field in the field-strength tensor makes obvious
the interpretation of the current density eq. (6.20), as a source that contains all the
information of the radiation field of the point particle.

To see this in an explicit way we can subtract the Kerr-Schild gauge field from the stan-
dard Liénard-Wiechert solution, which describes a point particle moving in an arbitrary
manner in empty space (see e.g. [196]), and we’ll show that the corresponding gauge field,
indeed encodes the radiative effects. The Liénard-Wiechert potential takes the explicit
form

AµLW =
g

4πr
λµ, (6.23)

so we construct the “radiative gauge field”

Aµrad = AµLW − Aµ

=
g

4πr
(λµ − kµ). (6.24)

Using its explicit form, one may show that this vector field has the corresponding field-
strength tensor

F µν
rad ≡ ∂µAνrad − ∂νA

µ
rad =

g

4πr
(kµβν − βµkν) , (6.25)

where
βµ = λ̇µ − λµk · λ̇. (6.26)

Thus, we may interpret F µν
rad as the radiative field strength tensor of the point particle.

We may notice that, as expected, this field depends linearly on the acceleration λ̇ and it
goes as r−1 for large distances. One may then show that

∂µF
µν
rad = −jνKS, (6.27)

and hence (from eq. (6.18)) that

∂µ (F µν + F µν
rad) = 0, (6.28)

as was expected from the fact that Liénard-Wiechert is a solution of the vacuum Maxwell
equation. We can thus interpret the charge density as the divergence of the radiative
field-strength tensor. This corresponds to having put the radiative part of the gauge field
on the RHS on the Maxwell equations, rather than the left.

Let us now summarise what has happened. By choosing Kerr-Schild coordinates for
the accelerating particle in gravity, radiation appears in the energy-momentum tensor, on
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the RHS of the Einstein equations, due to the fact that the LHS is forced to be linear.
The single copy turns an energy density into a charge density (as in refs. [1, 156, 183]).
Thus, the energy-momentum tensor in the gravity theory becomes a charge current in
the gauge theory. We have seen that this current corresponds to the radiation effects
of the accelerating charged particle. This allows us to interpret the gravitational energy
momentum tensor as representing the same physical effect, namely that the gravitational
radiation of an accelerating point mass.

Indeed, our use of Kerr-Schild coordinates forced the radiation to appear in this form.
The vector kµ which is so crucial for our approach is twist-free: ∂µkν = ∂νkµ. It is known
that Petrov type D metrics have no no gravitational radiation (see ref. [49] for a review).
Then, since twist-free, vacuum, Kerr-Schild metrics are of Petrov type D, we see that there
is no gravitational radiation in the metric. Correspondingly, the radiation is described by
the Kerr-Schild sources.

One important question is how can we be sure that the Kerr-Schild double copy is
indeed related to the BCJ procedure for scattering amplitudes? This is addressed in
the following section, in which we interpret the radiative sources in terms of scattering
amplitudes.

6.3 From Kerr-Schild sources to amplitudes

In the previous section, we saw that the Kerr-Schild double copy can indeed describe radi-
ating particles, where the radiation appears as a source term on the RHS of the field equa-
tions. In this section, we consider a special case of this radiation, namely Bremsstrahlung
associated with a sudden rapid change in direction. We will then show, by Fourier trans-
forming the source terms in the gauge and gravity theory to momentum space, that they
correspond to known scattering amplitudes, thus firmly establishing a relationship between
the classical double copy and the BCJ amplitude result.

More specifically, we will consider a particle following the trajectory

yµ(τ) = τ [uµ(τ) + f(τ)(u′
µ − uµ(τ))], (6.29)

where

f(τ) =

{
0, τ ≤ −ε
1, τ ≥ ε

, (6.30)

and in the interval (−ε, ε), f(τ) is smooth but is otherwise arbitrary . This corresponds
to a particle with constant velocity λµ = uµ (u′µ), for τ < −ε (> ε) respectively i.e. with
a rapid change of direction around τ = 0, assuming ε to be small. The form of f(τ)

acts as a regulator needed to avoid pathologies in the calculation that follows. However,
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dependence on this regulator cancels out, so that an explicit form for f(τ) will not be
needed. Owing to the constant nature of u and u′, the acceleration is given by

λ̇µ = f ′(τ)
(
u′
µ − uµ

)
, (6.31)

and according to eq. (6.30) is zero for τ < −ε and τ > ε, but potentially large in the
interval (−ε, ε). Without loss of generality, we may choose the spatial origin to be the
place at which the particle changes direction, so that yµ(0) = 0.

6.3.1 Gauge theory

We first consider the gauge theory case, and start by writing the current density of eq.
(6.20) as

jKS ν =
2g

4π

∫
dτ
k · λ̇
r2

kνδ(τ − τret). (6.32)

Now, recalling the expressions

kρ =
xρ − yρ(τ)

r
, r = (xµ − yµ(τ))λµ, (6.33)

we can write eq. (6.32) in the form

jνKS =
2g

4π

∫
dτ

λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]4
(x− y(τ))νδ(τ − τret), (6.34)

where we have introduced a delta function to impose the retarded time constraint. Using
the identity (cf. eq. (A.10))

δ(τ − τret)

λ · (x− y(τ))
= 2θ(x0 − y0(τ))δ

(
(x− y(τ))2

)
, (6.35)

one may rewrite eq. (6.34) as

jνKS =
4g

4π

∫
dτ

λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]3
(x− y(τ))νθ(x0 − y0(τ))δ

(
(x− y(τ))2

)
. (6.36)

Any radiation field will be associated only with the non-zero acceleration for |τ | < ε, where
yµ(τ) is small. We may thus neglect this with respect to xµ in eq. (6.36), yielding

jνKS =
4g

4π

∫
dτ

λ̇(τ) · x
(λ(τ) · x)3

xνθ(x0)δ
(
x2
)
. (6.37)
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Substituting eq. (6.31) then gives

jνKS =
4g

4π
xνθ(x0)δ(x2)

∫ ε

−ε
dτ

bf ′(τ)

(a+ bf(τ))3
, (6.38)

where
a = x · u, b = x · u′ − x · u. (6.39)

The integral is straightforwardly carried out, since

d

dτ
(a+ bf(τ))−2 =

−2bf ′(τ)

(a+ bf(τ))3
, (6.40)

so inserting this into eq. (6.40), we have

jνKS = −2g

4π
xνθ(x0)δ(x2)

[
1

(a+ bf(τ))2

]ε
−ε

= −2g

4π
xνθ(x0)δ(x2)

[
1

(x · u′)2
− 1

(x · u)2

]
, (6.41)

where we have used eqs. (6.30) and (6.39). This current can be expressed as a derivative
in the form

jνKS =
2g

4π
θ(x0)δ(x2)

[
∂

∂u′ν

(
1

x · u′

)
− (u↔ u′)

]
. (6.42)

This form is useful since we will now Fourier transform this expression to momentum
space. We start by considering the transform of (u ·x)−1, where we work explicitly in four
spacetime dimensions:

F
{

1

u · x

}
=

∫
d4x

eiq·x

u · x

=
1

u0

∫
d3xe−i~q·~x

∫
dx0 eiq

0x0

x0 − ~x·~u
u0

. (6.43)

Closing the x0 contour in the upper half plane to obtain a positive frequency solution
q0 > 0:

F
{

1

u · x

}
=

2πi

u0

∫
d3xe

−i~x·
[
~q− q

0

u0
~u

]

=
i(2π)4

u0
δ(3)

(
~q − q0

u0
~u

)
. (6.44)
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It is possible to regain a covariant form for this expression by introducing a mass variable
m, such that

F
{

1

u · x

}
=
i(2π)4

u0

∫ ∞
0

dmδ

(
m− q0

u0

)
δ(3)(~q −m~u)

= i(2π)4

∫ ∞
0

dmδ(4)(q −mu), (6.45)

where the integral is over non-negative values of m only, given that q0 > 0. Given that
θ(x0)δ(x2) is a retarded propagator3, one may also note the transform

F
{
θ(x0)δ(x2)

}
= −2π

q2
. (6.46)

We may now use the convolution theorem to perform the transform. This states that the
Fourier transform of a product is equal to the convolution of the transforms of each term.
This is

F{f · g} = F{f} ∗ F{g}, (6.47)

where the convolution operation is defined as4

(F ∗G)(k) =
1

2π

∫ ∞
−∞

dqF (q)G(k − q). (6.48)

Then we can compute the Fourier transform of the current

j̃ν(k) = F{jνKS(x)}

=
2g

4π

∂

∂u′ν

[
F{θ(x0)δ(x2)} ∗ F

{
1

x · u′

}]
− (u′ → u), (6.49)

so inserting eqs. (6.46) and (6.45), and using the convolution definition of eq. (6.48)

j̃ν(k) =
2g

4π

∂

∂u′ν

[
1

(2π)4

∫
d4q

(
−2π

q2

)(
i(2π)4

∫ ∞
0

dmδ(4)(k − q −mu′)
)]
− (u′ → u)

= −ig
∫ ∞

0

dm

(
∂

∂u′ν

[
1

(k −mu′)2

]
− (u↔ u′)

)
. (6.50)

3The retarded nature of the propagator is implemented by the implicit Feynman prescription
1

(p0−iε)2−~p2 , where ε ensures convergence of the integrals in what follows.
4This normalisation differs from the literature by 2π. This is because of the way we have normalised

our Fourier transform.
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The derivative in the m integral can be carried out to give∫ ∞
0

dm
2m(k −mu′)ν

(k −mu′)4
= −

∫ ∞
0

dm
2m2u′ν

(m2 − 2mu′ · k)2
. (6.51)

On the RHS, we have used the on-shell condition k2 = 0, and also neglected terms ∼ kµ,
which vanish upon contraction with a physical polarisation vector for the graviton. The
remaining integral over m is easily carried out, and leads directly to the result

j̃νKS = −ig
(
u′ν

u′ · k
− uν

u · k

)
. (6.52)

We may now interpret this as follows. First, we note that the current results upon
acting on the radiative gauge field with an inverse propagator. This is, we can write

j̃νKS(k) = F{jνKS(x)} = F{∂µF µν(x)} = ∆−1 ν
µ A

µ(k),

where ∆µν is the gauge field propagator. We may now compare this with the LSZ procedure
for amputating external legs, and interpret it as an amplitude

j̃νKS(k) ∼ Aν .

Being precise, the contraction of j̃νKS with a polarisation vector gives the scattering ampli-
tude for emission of a gluon. Upon doing this, one obtains the amplitude

Agauge ≡ −iεν(k)j̃νKS = −g
(
ε · u′

u′ · k
− ε · u
u · k

)
. (6.53)

This corresponds to the well-known eikonal scattering amplitude for Bremsstrahlung (see
e.g. [9]). We thus see once again that the additional current density in the Kerr-Schild
approach corresponds to the radiative part of the gauge field.

6.3.2 Gravity

Following similar steps to the previous section, one may show that the energy-momentum
tensor of eq. (6.15), for the present case of Bremsstrahlung

T µνKS = kµkν
3mk · λ̇

4πr2
,
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can be rewritten as

T µνKS =
6m

4π

∫
dτ

λ̇(τ) · (x− y(τ)

[λ(τ) · (x− y(τ))]4
(x− y(τ))µ(x− y(τ))νθ(x0 − y0(τ))δ

(
(x− y(τ))2

)
.

(6.54)
Any radiation field will be associated only with the non-zero acceleration for |τ | < ε, where
yµ(τ) is small. We may thus neglect this with respect to xµ in eq. (6.54), yielding

T µνKS =
6m

4π

∫
dτ

λ̇(τ) · x
(λ(τ) · x)4

xµxνθ(x0)δ
(
x2
)
. (6.55)

Substituting eq. (6.31) then gives

T µνKS =
6m

4π
xµxνθ(x0)δ(x2)

∫ ε

−ε
dτ

bf ′(τ)

(a+ bf(τ))4
, (6.56)

where
a = x · u, b = x · u′ − x · u.

The integral is straightforwardly carried out, since

d

dτ
(a+ bf(τ))−3 =

−3bḟ(τ)

(a+ bf(τ))4
, (6.57)

so inserting this into eq. (6.40), we have

T µνKS = −2m

4π
xµxνθ(x0)δ(x2)

[
1

(a+ bf(τ))3

]ε
−ε

= −2m

4π
xµxνθ(x0)δ(x2)

[
1

(x · u′)3
− 1

(x · u)3

]
, (6.58)

where we have used eqs. (6.30) and (6.39). This stress-energy tensor can be expressed as
a derivative in the form

T µνKS = −m
4π
θ(x0)δ(x2)

[
∂

∂u′µ

∂

∂u′ν

(
1

x · u′

)
− (u↔ u′)

]
. (6.59)

Similar steps to those leading to eq. (6.50) can be used to rewrite eq. (6.59) in the form

T µνKS =
im

2

∫ ∞
0

dn

(
∂

∂u′µ

∂

∂u′ν

[
1

(k − nu′)2

]
− (u↔ u′)

)
. (6.60)
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Carrying out the double derivative gives

∂

∂u′µ

∂

∂u′ν

[
1

(k − nu′)2

]
= − 2n2ηµν

(n2 − 2nu′ · k)4
+

8n2(k − nu′)µ(k − nu′)ν

(n2 − 2nu′ · k)3

' 8n4u′µu′ν

(n2 − 2nu′ · k)
, (6.61)

where in the second line we have again used onshellness (k2 = 0), and ignored terms which
vanish when contracted with the graviton polarisation tensor. Substituting eq. (6.61) into
eq. (6.60), the n integral is straightforward, and one obtains the result

T̃ µνKS (k) = −im
(
u′µu′ν

u′ · k
− uµuν

u · k

)
. (6.62)

Again, one may interpret this as a scattering amplitude, after contraction with a polari-
sation tensor. Following the usual double copy procedure, the latter may be written as an
outer product of two gauge theory polarisation vectors:

εµν(k) = εµ(k)εν(k). (6.63)

The scattering amplitude is then given by

Agrav. ≡ −iεµ(k)εν(k)T̃ µνKS (k) = −m
(
ε · u′ ε · u′

u′ · k
− ε · u ε · u

u · k

)
. (6.64)

corresponding to the known eikonal amplitude for gravitational Bremsstrahlung [197].
Again we see that the additional source term in the Kerr-Schild approach corresponds to
the radiative part of the field. Furthermore, it is in this form that the double copy is made
manifest: numerical factors agree between eqs. (6.52) and (6.62), such that the mass in
the gravity theory is replaced with the colour charge in the gauge theory, as expected from
the usual operation of the classical single copy [1, 1, 183]. The more unusual numerical
coefficients appearing in the position space sources of eqs. (6.15) and (6.20) turn out to be
red herrings - it is in momentum space that the double copy looks more natural, consistent
with the fact that the BCJ double copy for amplitudes is also set up in momentum space.

Let us summarise the results of this section. We have examined the particular case of
a particle which undergoes a rapid change in direction, and confirmed that the additional
source terms appearing in the Kerr-Schild description (in both gauge and gravity theory)
are exactly given by known radiative scattering amplitudes. This strongly ties the classical
double copy to the BCJ procedure for amplitudes. Furthermore, we see that the double
copy for these sources is expressed more naturally in momentum rather than position
space, as expected given that the BCJ procedure is also set up in momentum space.
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Kerr-Schild coordinates are particularly useful for the classical double copy, in that
they correspond to exact solutions of the resulting field equations. However, it is more
conventional to calculate scattering amplitudes in e.g. the de Donder gauge in gravity.
Given the above correspondence between the classical double copy and amplitudes, this
begs the question as to whether one may set up a copy for the radiating particle directly
in such gauges. The answer to this is yes, provided one pays the price of only being able
to work order-by-order in perturbation theory. Nevertheless, it is instructive to do so, and
we explore this further in the following chapters.

6.4 Gravitational energy conditions

In this section, we consider null, weak and strong energy conditions of General Relativity,
and we will show that they are sensible for the case of the point particle. The null energy
condition on a given energy-momentum tensor can be expressed by

Tµν`
µ`ν ≥ 0, (6.65)

where `µ is any future-pointing null vector. The weak energy condition is similarly given
by

Tµνt
µtν ≥ 0, (6.66)

for any future-pointing timelike vector tµ. The interpretation of this condition is that
observers see a non-negative matter density. The null energy condition is implied by the
weak energy condition (despite the names, the former is the weakest condition). One
may also stipulate that the trace of the tidal tensor measured by such an observer is
non-negative, which leads to the strong energy condition

Tµνt
µtν ≥ T

2
gµνt

µtν , T ≡ Tαα . (6.67)

Let us now examine whether these conditions are satisfied by the Kerr-Schild energy-
momentum tensor of eq. (6.15). First, the null property of the vector kµ implies that the
trace vanishes, so that the weak and strong energy conditions are equivalent. We may
further unify these with the null energy condition, by noting that eq. (6.15) implies

T µνKS VµVν = −(k · λ̇)

[
3M(k · V )2

r2

]
. (6.68)

for any vector V µ. The quantity in the square brackets is positive definite, so that whether
or not the energy conditions are satisfied is purely determined by the sign of k·λ̇. A physical
interpretation of the latter has been given in e.g. ref. [49], namely that this represents
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n

Figure 6.2: Physical interpretation of (k · λ̇), where this denotes the component of accel-
eration in the direction nµ.

the component of acceleration in the direction given by the vector nµ shown here in figure
6.2. If this quantity is positive (negative), the worldline curves to the right (left) at the
retarded time associated with the given field point xµ, and hence the particle is speeding up
(slowing down). In the former case, the particle must absorb rather than emit radiation,
and this is seen as a violation of the energy conditions.

The energy conditions were recently examined in the context of the Kerr-Schild double
copy in ref. [156], where it was shown that extended charge distributions double copy to
matter distributions that cannot simultaneously obey the weak and strong energy condi-
tions, if there are no spacetime singularities or horizons. However, the result in the present
section has no contradiction with ref. [156] due to the fact that there would be a horizon
for an accelerating particle, so it is not one of the cases they discuss.

Closing remarks

In summary, in this chapter we studied Kerr-Schild solutions describing point-particles
moving in arbitrary (timelike) worldlines, i.e. accelerated particles which, in general,
include the stress energy tensor of a null fluid. We built the single copy as in the stationary
case, and the Maxwell-like equations yield a null source current. This current and the null-
fluid stress energy tensor of the gravity solution are related in a double copy-like way, in
the sense that we can obtain the source term on the gravity side by taking a second copy
of the vector appearing in the current, while we leave untouched the scalar part.

We noted that the current obtained from the single copy encodes the radiation from
the particle, and this behaviour also occurs on the gravity side, so both sources contain
the radiation effects and also satisfy a double copy relation. To further understand this,
we studied the case of a particle that suffers a sudden acceleration during an infinitesimal
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time, and found that the Fourier transform of the current in gauge theory corresponds to
the scattering amplitude for Bremsstrahlung. The same result is then obtained in gravity,
as the Fourier transform of the null fluid energy-momentum tensor is also the scattering
amplitude for the emission of gravitons in the soft limit. We interpret this as strong evi-
dence of the classical double copy being the same as the BCJ double copy.

This point marks the end of the first part of the thesis, which dealt with Kerr-Schild
solutions of the Einstein equations, and their corresponding single copy gauge fields built
using a simple ansatz. We aimed to relate this process, that we sometimes refer as the
Kerr-Schild double copy with the well-stablished BCJ double copy. Our philosophy in the
second part of the thesis will no longer rely on the solutions themselves, but in establishing
the double copy at a Lagrangian level, and then building tree-level (classical) solutions in
a perturbative manner. Although the approach is very different to our previous work, we
will shortly see that its motivation is closely related with the study of the radiation that
we have performed in this chapter.



Part II

Perturbative spacetimes
from the double copy
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Preface

In the previous chapter we studied a double copy relation between the electromagnetic
radiation emitted by an accelerated point particle and the gravitational radiation emitted
by the corresponding point mass in general relativity, effectively an accelerated black hole5.

Although we considered a very specific set up (instantaneous acceleration producing
soft radiation), this result has pointed us towards the prospect of studying the important
problem of describing the motion (scattering) and predicting the classical gravitational
radiation generated by a system of merging black holes under their gravitational inter-
actions, using the analogous solution in gauge theories coupled to (colour) sources via a
double copy procedure.

This problem in general relativity, usually referred to as the binary black hole problem,
persists as a key challenge of classical gravitational physics, being both of theoretical
interest and pressingly relevant for astrophysical applications. Its study is crucial to the
burgeoning field of gravitational wave astronomy, with the first three gravitational wave
signals confidently detected by earth bound observatories each having originated from the
final inspirals and mergers of black holes.

Then, in a similar manner to how the exacting program of collider physics required a
revolution in the way that scattering amplitudes were computed, the recent experiment
LIGO, signaling the dawn of gravitational waves measurements, will require novel and
powerful methods of computation. We ultimately aim to explore the application of the
double copy, to exploit the relative simplicity of gauge theory compared to perturbative
gravity. This would provide an excellent avenue in the search for simplicity and efficiency
in black hole scattering, and the efficient calculation of precision gravitational wave tem-
plates directly from Yang-Mills Feynman rules could play a role in comparisons between
numerical and perturbative methods.

Several analytic approximation schemes have been used to study relativistic binary
dynamics. One that has received much attention in recent years is the post-Newtonian
approximation, which assumes weak fields and low speeds, and perturbs about the limit of
Newtonian gravity (an expansion in 1/c). This approximation is useful to describe bound

5Here, we do not refer to solutions like the Aichelburg-Sexl metric, which describes a boosted black hole,
but to our treatment of metrics for point-particles moving in timelike, but otherwise arbitrary worldlines
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systems of objects like black holes or neutron stars, which are the most likely sources for
gravitational wave detection.

However, much closer to our purposes is the post-Minkowskian approximation, which
does not assume low speeds, and perturbs about the limit of special relativity. Formally,
this is equivalent to an expansion in G, which is the reason why it is suitable to be
compatible with a double copy approach.

We had already encountered a construction of solutions to the equation of motion in
a perturbative expansion in powers of the coupling constant in chapter 2, and we also
briefly mentioned their relation to scattering amplitudes (they can be understood as the
generating functional). In the next chapter, we will review a method developed by Duff to
obtain spacetime metrics using Feynman graphs. This part of the thesis will rely heavily
on similar ideas, to try and apply the double copy formalism to perturbative gravity
solutions.



Chapter 7

Invitation: Schwarzschild from graphs
(à la Duff)

A relation between a tree approximation to quantum field theory and classical solutions of
the field equations was pointed out by Boulware and Brown in a paper [198] in 1968. This
can be expressed in a few words as the classical field produced by an external source being
the generating functional for the connected Green functions in the tree approximation.

Aiming to compute radiative corrections to solutions of the Einstein equation, Duff
used this connection to first reproduce the classical result [199], by computing the vacuum
expectation value (VEV) of the gravitational field in the presence of spherically symmetric
sources and verified, to second order in perturbation theory, that the result corresponds
to the classical Schwarzschild solution of the Einstein equations. In that same paper, Duff
writes “No attempt is made to compute the four-point graph or higher order contributions
because of the labor involved”.1

We have seen, however, that we have come a long way since Duff’s paper in terms
of available techniques to compute scattering amplitudes in gravity. We are thus aiming
to use double copy inspired methods to simplify computations in perturbative classical
gravity. We will start by reviewing the example of a Schwarzschild black hole.

7.1 Tree graphs and classical fields relation

In chapter 2, we encountered the expression

δW [J, φcl]

δJ(x)
= φcl, (7.1)

1Or, as put by Sheldon Cooper “Oh gravity, thou art a heartless bitch”.
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where the functional W [J ], defined by

eiW [J ] ≡ Z[J ] =

∫
Dφ ei

∫
d4x [L+Jφ], (7.2)

is the generating functional for connected Green functions. The scattering amplitudes are
then computed from these connected correlators by the LSZ procedure. In particular, the
vacuum expectation value is computed by the means of

〈0 |φ(x)| 0〉J =
δW [J, φcl]

δJ(x)
. (7.3)

Using eqns. (7.1) and (7.3), we have

〈0 |φ(x)| 0〉J = φcl. (7.4)

In conclusion, the vacuum expectation value of a field in presence of a classical source J(x)

corresponds to the solution of the classical field equation. In some sense, this is an inverse
approach to the one we mentioned back in chapter 2, which uses φcl as a generating
functional. We will now exploit this relation between vacuum expectation values and
classical solutions to obtain the Schwarzschild spacetime metric using Feynman diagrams,
but before diving into computations of greater difficulty, we may build some intuition
looking at a simpler scalar example.

7.1.1 A scalar field example

We will now obtain the Yukawa potential in two ways. First, we will explicitly (and
exactly) solve the equation of motion in the presence of a source. Then, we will show that
we can obtain the same result by computing a VEV of tree graphs. As a starting point,
we consider the action for a free Klein-Gordon field

SKG =

∫
d4x

1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 + Jφ. (7.5)

We assume a source term corresponding to a point particle located at the origin. This is
given by

J(x) = δ(~x). (7.6)

The classical field equation then takes the form

−∂2φ(x)−m2φ(x) = J(x) = δ(~x). (7.7)
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J

k

D

Figure 7.1: Diagram contributing to the Yukawa potential

We can find an exact solution for this equation by transforming into Fourier space. First,
we note that the Fourier transform of the source is simply

F [J(x)] = F [δ(~x)] = δ̄(k0). (7.8)

Transforming eq. (7.7) to momentum space yields

k2φ(k)−m2φ(k) = δ̄(k0), (7.9)

and we can solve for φ(k) to get the solution

φ(k) =
δ̄(k0)

k2 −m2
. (7.10)

Finally, Fourier transforming back into position space yields the result

φ(x) =

∫
d4k

(2π)4
eik·x

δ̄(k0)

k2 −m2

=
e−mr

4πr
. (7.11)

This is the well known Yukawa potential [200], commonly associated with particle inter-
action through a massive mediator.

Although we were able to solve this exactly, this will not always be possible. In the
examples we will encounter in this and later chapters, we will instead have non-linear
theories, that we will need to approach using expansions in perturbation theory (encoded
in Feynman diagrams). Let us now compute the VEV in presence of the source using such
a method. Since this is a non-interacting theory, the only contributing diagram is shown
in fig 7.1. The Feynman rules are then

D(k) =
1

k2 −m2
(7.12)

for the propagator, and

J(k) = δ̄(k0) (7.13)
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for every source. Applying these Feynman rules we compute the VEV in momentum space

〈0 |φ(k)| 0〉J =
δ̄(k0)

k2 −m2
. (7.14)

Finally, we need to transform back into position space. This is the same Fourier transform
that we encountered in the exact computation in eq. (7.11). Actually, we can note that
the computation was pretty much identical both times. This lets us see that the Feynman
diagram approach is to a certain extent just a handy way of bookkeeping the perturbative
solution of the equation in momentum space.

After this warm up, we are ready to tackle the problem of computing the VEV of the
gravitational field hµν , in the presence of a stationary point source.

7.2 The Schwarzschild metric from tree graphs

We will now compute the VEV for a stationary point source to O(G2M2) in the tree-
graph limit, following Duff [199]. We will see that this computation leads directly to a
Schwarzschild black hole solution. The first step is to derive a set of Feynman rules for
this theory. We deal with that in the following section.

7.2.1 Einstein-Hilbert Lagrangian (à la Goldberg)

Let us start by considering the Einstein-Hilbert Lagrangian

LEH =
1

κ2

√
−gR, (7.15)

as in eq. (1.74). We had seen that, since this theory is invariant under diffeomorphisms,
we need to add a term that breaks such invariance in order to fix the gauge. We’ll refer to
that term as Lgf. Finally, we need the term LJ , which couples the field with the external
source. We should then consider the action

S =

∫
d4x [LEH(x) + Lgf(x) + LJ(x)] = SEH + Sgf + SJ , (7.16)

We can choose here to express this action in terms of the tensor densities

gµν =
√
−ggµν , gµν =

gµν√
−g

. (7.17)

This form was used by Goldberg [201] (see also Capper [202]). In terms of these, it is
possible to write the Einstein-Hilbert Lagrangian in the form

LEH =
1

8κ2
[2gρσgλµgκτ − gρσgµκgλτ − δσκδ

ρ
λgµτ ] (∂ρg

µκ) (∂σg
λτ ). (7.18)
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Note that this Lagrangian contains only first order derivatives. To obtain it, we needed
to perform integration by parts, and neglect the boundary terms. The reason to work
with this form of the Lagrangian is that it has a relatively simple form, compared to the
Lagrangian in terms of gµν , and thus the Feynman rules will be simpler to work with. We
choose to work in de Donder gauge. In terms of the tensor densities, this is defined by the
condition

∂νg
µν = 0. (7.19)

In practice, we fix the gauge by adding the term

Lgf =
1

2κ2
ηµν(∂αg

µα)(∂βg
νβ), (7.20)

in accordance with Fradkin and Tyutin [203]. In the same way that we usually consider the
graviton to be a perturbation over a flat background, we can have an analogous definition
of the graviton for the density, given by

gµν = ηµν + κhµν . (7.21)

We can now insert eq. (7.21) into the EH Lagrangian of eq. (7.18) to obtain an expansion
in powers of the coupling constant κ

LEH = L(0)
EH + κL(1)

EH + κ2L(2)
EH + . . . , (7.22)

where the ellipsis . . . represents a finite number of higher orders in κ. The explicit expres-
sions for the first terms are given by

L(0)
EH =

1

8
[2ηρσηλµηκτ − ηρσηµκηλτ − 4δσκδ

ρ
ληµτ ](∂ρh

µκ)(∂σh
λτ ), (7.23)

L(1)
EH =

1

8

[
−4ηρσηλµηκαητβ + 2ηρσηµκηλαητβ + δραδ

σ
βηκτηλµ

−δραδσβηµκηλτ + 4δρλδ
σ
κηµαητβ

]
hαβ(∂ρh

µκ)(∂σh
λτ ). (7.24)

Then, using eqs. (7.23) and (7.20), we can read off the propagator in de Donder gauge,
which takes the form

Dα1β1α2β2(k) = −dα1β1α2β2
1

k2
, (7.25)

where the tensor structure is given by

dα1β1α2β2 ≡ ηα1α2ηβ1β2 + ηα1β2ηβ1α2 − ηα1β1ηα2β2 . (7.26)
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To obtain Feynman rules for the three-graviton interaction vertex, we use DeWitt’s [34]
method of taking functional derivatives of the action with respect to the interacting fields.
This is of course easier and more useful to express in momentum space, where it takes the
explicit form

Υα1β1α2β2α3β3(k1, k2, k3) = −sym P6
1

8

[
− 4ηα3α2ηβ2α1ηβ3β1k2 · k3 + 2ηα2β2ηα3α1ηβ3β1k2 · k3

− ηα2β2ηα3β3k2α1
k3β1 + 2ηα3α2ηβ2β3k2α1

k3β1

+ 4ηα2α1ηβ3β1k2α3
k3β2

]
. (7.27)

In the last equation, “sym” stands for symmetrisation over every pair of indices, and “P6"
denotes summation over all six permutations of α1β1k1, α2β2k2 and α3β3k3.

We mentioned before that the reason to work with a Lagrangian in terms of the den-
sities from eq. (7.17) is that this set of Feynman rules turns out to be a lot simpler than
the rules corresponding to the standard graviton field2

gµν = ηµν + κhµν . (7.28)

However, it is the latter definition of the graviton that holds physical significance in our
analysis. We could have used the last equation to perform an analogous expansions in
terms of κ, and deduce the proper Feynman rules, but none of that will be necessary. Duff
noticed that one can instead repeatedly use the relation

δgαβ(x)

δgµν(x′)
=

1

2
√
−g
(
δαµδ

β
ν + δανδ

β
µ − gµνg

αβ
)
δ(x− x′), (7.29)

to prove the identity

1

8
dµ1ν1α1β1dµ2ν2α2β2dµ3ν3α3β3Γα1β1α2β2α3β3 = Υµ1ν1µ2ν2µ3ν3 + Υ̃µ1ν1µ2ν2µ3ν3 ,

where Γ is the three graviton vertex corresponding to the graviton as defined in eq. (7.28),
and Υ̃ is a correction to the new vertex, given by

Υ̃µ1ν1µ2ν2µ3ν3 ≡ −1

4
P3[(δµ1ν1µ2ν2ηµ3ν3 − δµ3ν3µ1ν1ηµ2ν2

− δµ2ν2µ3ν3ηµ1ν1 +
1

2
ηµ1ν1ηµ2ν2ηµ3ν3)k2

3]. (7.30)

Here, “P3” means a sum over the three cyclic permutations of (µ1, ν1, k1), (µ2, ν2, k2) and
2Note that this convention is different from the usual gµν = ηµν + κhµν , used throughout the thesis.

We stick with this one to make ease of comparison with ref. [199]. Care is needed when interpreting the
results.
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(µ3, ν3, k3). We have also used the tensor

δµναβ ≡ 1

2
(ηµαηνβ + ηµβηνα). (7.31)

Thus, the set of Feynman rules in terms of densities will be sufficient for the computations
we are about to perform.

7.2.2 VEV of the point source

In order to compute the VEV of the graviton field

〈0 |hµν(x)| 0〉J , (7.32)

we need to specify the definition of the source for the black hole. We choose a stationary
point mass situated at the origin. This can be described by the stress-energy tensor

Tµν(x) = Muµuνδ
(3)(~x), (7.33)

where uµ is the timelike unit vector,

uµ = (1, 0, 0, 0). (7.34)

Then, the only non-vanishing component of the stress-energy tensor is T00. We should
then consider the source term in the action

SJ =
1

2

∫
d4xgµνTµν =

1

2

∫
d4x
√
−ggµνTµν . (7.35)

It is interesting to take the Fourier transform of such a tensor. We find

T00(k) = Mδ̄(k0). (7.36)

Note that in terms of this stress-energy tensor, we can define the potential function

V (x) ≡ κ2

4

∫
d̄4k

eikx

k2
T00(k). (7.37)

Inserting the explicit value of eq. (7.36) we may write

V (x) =
κ2

4

∫
d̄4k

eikx

k2
Mδ̄(k0) =

κ2M

16πr
. (7.38)
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Dµ1ν1α1β1

k1

Tα1β1 Dµ1ν1α1β1

k1

Dµ3ν3α3β3
k3

Tα3β3

Dµ2ν2α2β2
k2

Tα2β2

Figure 7.2: Diagrams contributing to O(G2) in gravity

Using the relation κ2 = 16πG, this reduces to

V (x) =
MG

r
, (7.39)

so we can see that this function is indeed the Newtonian potential. This will play an
important role shortly. We can now proceed to sum over the contributing diagrams, as
seen in fig. 7.2. In momentum space, we have the expression

κ〈hµ1ν1(k1)〉 =
1

2
κ2Dµ1ν1α1β1Tα1β1(k1)

+
1

8
κ4

∫
d̄4k2d̄

4k3D
µ1ν1α1β1(k2

1)Dµ2ν2α2β2(k2
2)Dµ3ν3α3β3(k2

3)

× δ(4)(k1 + k2 + k3)Γα1β1α2β2α3β3Tµ2ν2(k2)Tµ3ν3(k3).

(7.40)

It is easy to show that since T00(k) is the only non-zero term in the source, at O(GM),
the graviton VEV in position space is given by

κ〈hµ1ν1(~x)〉 = −2dµ1ν100V (x) = −2GM

r
dµ1ν100 +O(G2M2). (7.41)

The next order correction can be expressed in position space in the form

κ〈h00(~x)〉 = −2V − 4ηklp
kl(~x)− 8ηklf

kl(~x) +O(G3M3), (7.42)

κ〈hij(~x)〉 =
(
−2V + 4ηklp

kl(~x)
)
ηij + 4pij(~x) +O(G3M3). (7.43)
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Here, the Latin letters i, j, k, l, . . . are purely spatial indices, unlike Greek letters µ, ν . . .
which are spacetime indices. The appearing functions are defined as

pij(~x) ≡ κ4

16

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~x1 δ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
3

~k2
1
~k2

2
~k2

3

T00(~k2)T00(~k3), (7.44)

f ij(~x) ≡ κ4

16

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~x1 δ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
2

~k2
1
~k2

2
~k2

3

T00(~k2)T00(~k3). (7.45)

In appendix B.1, we show a simple way to deal with these integrals. They yield the simple
results

f ij = −G
2M2

4

(
3xixj − r2ηij

r4

)
, (7.46)

pij = −G
2M2

4

(
xixj − r2ηij

r4

)
. (7.47)

Using the expressions from eqs. (7.46) and (7.47), it is easy to show the relations

ηklf
kl = 0, 4ηklp

kl =
2G2M2

r2
. (7.48)

Inserting eq. (7.48) into our expressions for the VEV of the graviton, eq. (7.43), we obtain
the result

κ〈h00(~x)〉 = −2GM

r
− 2G2M2

r2
+O(G3), (7.49)

κ〈hij(~x)〉 =

(
−2GM

r
+

3G2M2

r2

)
ηij − G2M2

r2

xixj

r2
+O(G3). (7.50)

Finally, recalling the definition gµν = ηµν + κhµν (and omitting the angle brackets), we
can write the VEV for the gravitational field as

g00 = −1− 2GM

r
− 2G2M2

r2
+O(G3), (7.51)

gij =

(
1− 2GM

r
+

3G2M2

r2

)
ηij − G2M2

r2

xixj

r2
+O(G3). (7.52)

We finally have obtained an expression for the metric, up to O(G3). However, in order to
compare it with the already existing classical solution to the Einstein equation, we’ll need
to use a slight change of coordinates. To understand why that is, let us recall that, since
we considered a localized, spherically symmetric, stationary source, Birkhoff’s theorem
implies we should expect it to correspond to the Schwarzschild metric, which is given in
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its most usual form as

ds2 = −
(

1− 2GM

r′

)
dt2 +

(
1− 2GM

r′

)−1

dr′2 + r′2dΩ2, (7.53)

in the polar coordinate system (t, r′, θ, ϕ). However, this metric fails to satisfy the de
Donder condition, eq. (7.19). Actually, a form of the Schwarzschild metric that satisfies
such a gauge condition has been used, for example, by Nakanishi in ref. [204]. This can
be written in the form

ds2 = −r −GM
r +GM

dt2 +
r +GM

r −GM
dr2 −

(
1 +

GM

r

)2

r2dΩ2, (7.54)

in the polar coordinate system (t, r, θ, φ). It may be noted that the metric (7.54) is obtained
from (7.53) by the simple transformation

r′ = r +GM. (7.55)

It is now not difficult to show that in the Cartesian coordinate system (t, x, y, z) we can
express the (inverse) metric as

g00 = −r +GM

r −GM
, (7.56)

gij =
r2

(r +GM)2
ηij − G2M2

r2(r +GM)2
xixj. (7.57)

A Taylor expansion to O(G2M2) of this last expression yields

g00 = −1− 2GM

r
− 2G2M2

r2
+O(G3), (7.58)

gij =

(
1− 2GM

r
+

3G2M2

r2

)
ηij − G2M2

r2

xixj

r2
+O(G3), (7.59)

which shows a perfect agreement with the expressions from eqs. (7.51) and (7.52).

Closing remarks

Let us summarise the results of this chapter. We have used the connection between classical
solutions of the field equation and the tree level of a quantum field theory approximation
to explicitly compute a classical solution for gravity as the vacuum expectation value of
quantum tree graphs in the presence of a static spherically symmetric source.

Given the conditions imposed on the source, along with Birkhoff’s theorem, we ex-
pected the solution obtained to correspond to the Schwarzschild metric. However, due to
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the fact that this was deduced using a quantum theory of gravity where the de Donder
gauge condition was imposed, the form obtained for the metric is not immediately the
usual one. The equivalence of both metrics is easily understood by explicitly showing the
coordinate transformation connecting them.

The main difficulty with this example was dealing with the complexity of the Feynman
rules obtained directly from the Einstein-Hilbert Lagrangian. This renders a next order
computation rather difficult, as we would need to consider the four-graviton vertex (which
in principle may contain thousands of individual terms). We won’t deal with this issue,
since in the next chapter, we repeat this procedure, using a gravity Lagrangian obtained as
the double copy of Yang-Mills, which simplifies considerably these kinds of computations.



Chapter 8

Spacetimes from graphs through the
double copy

In a paper published in 2010 (pretty much at the same time as the first double copy
paper), Bern, Dennen, Huang and Kiermaier (BDHK) [56] proved that if it is possible
to construct a set of numerators that satisfy BCJ duality, the double copy procedure
would yield a gravity scattering amplitude. In general, the numerators obtained from a
conventional Yang-Mills Lagrangian do not satisfy colour-kinematics duality. Nonetheless
BDHK give an explicit expression for a Lagrangian that produces BCJ dual numerators
to up to five-point scattering.

Such a BCJ-compliant Lagrangian can only differ from a regular Yang-Mills Lagrangian,
by terms that don’t affect amplitudes. This condition is satisfied, since the difference con-
sists only of terms which vanish as a consequence of the Jacobi identity. However, the
added terms cause the necessary rearrangements so that the colour-kinematics duality
holds.

The construction of a Lagrangian whose numerators are BCJ dual has since been
systematized by [130], to construct such a Lagrangian to arbitrary order in perturbation
theory. This Lagrangian is non-local and contains Feynman vertices with an infinite
number of fields. If desired, it is possible to obtain a local Lagrangian containing only
three point vertices at the expense of introducing auxiliary fields.

To illustrate this ideas, let us start with the usual Yang-Mills Lagrangian

L =
1

2
Aaµ∂

2Aaµ − gfa1a2a3Aa1ν Aa2µAa3ν −
1

4
g2fa1a2bf ba3a4Aa1µ A

a2
ν A

a3µAa4ν . (8.1)

Now, at four points, the BCJ duality is satisfied in any gauge, so the Yang-Mills Lagrangian
will generate diagrams whose numerators are colour-kinematics dual. This property will
not hold if computing higher points amplitudes. In the case of five points, it is possible to

112
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keep the property of producing BCJ-dual numerators by adding the Lagrangian

L5 = −1

2
g3fa1a2bf ba3cf ca4a5

×
(
∂[µA

a1
ν]A

a2
ρ A

a3µ + ∂[µA
a2
ν]A

a3
ρ A

a1µ + ∂[µA
a3
ν]A

a1
ρ A

a2µ
) 1

∂2
(Aa4νAa5ρ). (8.2)

Then, the contributions from the four and five-points interactions are assigned to the
various diagrams with only three-point vertices according to their colour factors. It is
easy to show that L5 is identically zero. Indeed, relabelling the colour indices yields

L5 = −1

2
g3(fa1a2bf ba3c + fa2a3bf ba1c + fa3a1bf ba2c)f ca4a5

× ∂[µA
a1
ν]A

a2
ρ A

a3µ
1

∂2
(Aa4νAa5ρ), (8.3)

and the Jacobi identity ensures the terms identically vanish. We may also note that the
terms have different colour factors, and thus appear in different diagrams, so they alter
the numerators in such a way that BCJ duality is preserved.

Even though we now have a Lagrangian that will generate colour-kinematics duality
satisfying numerators, another requirement to construct a tree level gravity Lagrangian is
that the theory is strictly cubic. This can be done by introducing auxiliary fields.

For example, to four-point order, which is everything we’ll need to consider in this and
the following chapters, Bern, Dennen, Huang and Kiermaier (BDHK) introduced [56] an
auxiliary field Ba

µνρ so as to write a cubic version of the Yang-Mills Lagrangian,

LBDHK =
1

2
Aaµ∂2Aaµ +Baµνρ∂2Ba

µνρ − gfabc
(
∂µA

a
ν − ∂ρBa

ρµν

)
AbµAcν , (8.4)

where the equation of motion for the auxiliary field becomes

∂2Ba
µνρ =

g

2
fabc∂µ(AbνA

c
ρ). (8.5)

It is not difficult to show that integrating out the auxiliary field, we recover the Yang-Mills
Lagrangian in its usual form. This procedure to render the action cubic by introducing
auxiliary fields can be repeated for arbitrary higher order terms in the Lagrangian, as
explained in [56, 130]. Being a statement about scattering amplitudes, the BCJ double
copy is better understood in momentum space. Thus it will be useful to Fourier transform
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the BDHK action. This takes the form

SBDHK =

∫
d4k1d

4k2δ
4(k1 + k2)k2

2[Aµ(k1)Aµ(k2)− 2Bµνρ(k1)Bµνρ(k2)]

+

∫
d4k1d

4k2d
4k3δ

4(k1 + k2 + k3)P6

(
[k1µAν(k1) + kρ1Bρµν(k1)]Aµ(k2)Aν(k3)

)
.

(8.6)

Now, with a cubic and BCJ duality satisfying action at hand, the process of squaring to
obtain a gravity action is rather trivial. First, we note that, since the gravity Lagrangian
has no colour structure, we need to encode the algebraic properties by introducing the
operator P6 to account for the antisymmetric behaviour1. The operator then sums over
all permutations of {1, 2, 3} with antisymmetrization signs included, i.e.

P6{k1α2
ηα1α3} ≡ ηα1α3(k1α2

− k3α2
) + ηα1α2(k2α3

− k1α3
) + ηα2α3(k3α1

− k2α1
). (8.7)

Using the BDHK Lagrangian as starting point, we can implement the identification

Hµν(k) = Aµ(k)Ãν(k). (8.8)

Note that, since this is composed from two vector fields which contain two degrees of
freedom each, this field should in principle contain four degrees of freedom. We call this
field the “fat” graviton, as we expect it to contain the information of the usual (or “skinny")
graviton hµν , the antisymmetric tensor Bµν , and the dilaton φ.

We will now build a gravity Lagrangian in the following way

Sgravity = Skin + Sint, (8.9)

where the kinetic terms are given by

Skin =
1

4

∫
d̄4k1d̄

4k2δ̄
4(k1 + k2)k2

2[Aµ(k1)Aµ(k2)− 2Bµνρ(k1)Bµνρ(k2)]

× [Ãσ(k1)Ãσ(k2)− 2B̃στλ(k1)B̃στλ(k2)],

(8.10)

1Not to be confused with the operator P6 from section 7.2. The main difference being the antisymmetric
behaviour of P6.
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while the interaction part of the Lagrangian is

Sint =

∫
d̄4k1d̄

4k2d̄
4k3δ̄

4(k1 + k2 + k3)P6

(
[k1µAν(k1) + kρ1Bρµν(k1)]Aµ(k2)Aν(k3)

)
× P6

(
[k1σÃτ (k1) + kλ1 B̃λστ (k1)]Ãσ(k2)Ãτ (k3)

)
.

(8.11)

In a way similar to how we implemented the identification in eq. (8.8), we also need to
consider a number of fields that are obtained as a product involving the auxiliary field
Bµνρ. Explicitly, we have the fields

gµνρσ ≡ AµB̃νρσ,

g̃µρσν ≡ BµρσÃν ,

fµρσντλ ≡ BµρσB̃ντλ. (8.12)

However, as it will be shown later, they will not be significant for the purpose of this thesis.
Using an explicit expression for the Lagrangian, it is possible to obtain a set of Feynman
rules by taking functional derivatives of the Lagrangian with respect to the different fields.
Instead of showing directly a set of Feynman rules, let us first study an example of how
we want to use them. This is our subject in the next section, where we’ll obtain a solution
of the gauge theory, and then show how we can obtain a solution for gravity by the means
of a double copy procedure.

8.1 Gauge theory solution

We will now use a procedure analogous to the one in the last chapter, to perturbatively
obtain a solution to Yang-Mills equations by computing the VEV of the gauge field using
Feynman diagrams. We start by considering the simplest possible configurations, which
has static colour charges (note that this implies they are constant in time). Such a source
has the Feynman rule in position space

Jaµ(x) = −iuµcaδ(~x). (8.13)

Of course, it is more useful to instead give the Feynman rule in momentum space. The
Fourier transform of eq. (8.13) immediately yields

Jaµ(k) = −iuµcaδ̄(k0). (8.14)
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Dµ1α1aa′

k1

Ja
′

α1
Dµ1α1aa′

k1

Dµ3α3cc′

k3

J c
′
α3

Dµ2α2bb′
k2

J b
′
α2

Figure 8.1: Diagrams contributing to O(g) in Yang-Mills

Now, since any second order (or higher) diagram will attach a structure constant (which
is antisymmetric) to a couple of charges, this should vanish, i.e.

fabccbcc ∼ 0 (8.15)

Thus, the calculation terminates at O(g). We will ignore this for now, in order to explore
some of the methods we will use. We now need to read Feynman rules directly from the
momentum space Lagrangian eq. (8.6). The propagator for gluons is given by

Dµ1α1a1b1(k2
1) =

iηµ1α1δa1b1

k2
1

, (8.16)

while the three-gluon interaction vertex is given by

V a1a2a3
α1α2α3

(k1, k2, k3) =
g√
2
f̃a1a2a3P6{k1α2

ηα1α3}. (8.17)

Here, we have reinstated the colour factor by hand.
The first two terms contributing to the VEV of the vector field are those coming from

the diagrams in fig. 8.1. Inserting our Feynman rules, we get

Aaµ1(k1) = Dµ1α1aa′(k1)Ja
′

α1
(k1) + i

∫
d̄4k2d̄

4k3D
µ1α1aa′(k1)Dµ2α2bb′(k2)Dµ3α3cc′(k3)

× δ̄4(k1 + k2 + k3)V abc
α1α2α3

(k1, k2, k3)J b
′

µ2
(k2)J c

′

µ3
(k3)

+O(g2), (8.18)
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which, substituting the Feynman rules of eqs. (8.16) and (8.17) yields

Aaµ1(k1) =ca
ηµ1α1

k2
1

δ̄(k0
1)uα1

+ i
g√
2
f̃abccbcc

∫
d̄4k2d̄

4k3
ηµ1α1ηµ2α2ηµ3α3

k2
1k

2
2k

2
3

δ̄4(k1 + k2 + k3)

× P6{k1α2
ηα1α3}δ̄(k0

2)δ̄(k0
3)uµ2uµ3 +O(g2).

(8.19)

Now that we have used the Feynman rules to obtain an expression for the VEV of the
gauge field, we use a Fourier transform to express this in position space, since it is there
that we can interpret our results. It is straightforward to perform the integrals over k0

i

using the delta functions. This then yields

Aaµ1(x) =ca
∫
d̄3k1

e−i
~k1·~x

~k2
1

uµ1

+ i
g√
2
f̃abccbcc

∫
d̄3k1d̄

3k2d̄
3k3

e−i
~k1·~x

~k2
1
~k2

2
~k2

3

δ̄3(~k1 + ~k2 + ~k3)

× ηµ1α1P6{~k1α2
ηα1α3}uα2uα3 +O(g2).

(8.20)

we may now note that since the spatial part of the uµ vector vanishes, its product with
any ~kµ will be null. Thus, we have the result

P6{~k1α2
ηα1α3}uα2uα3 = u2(~k3α1

− ~k2α1
). (8.21)

Furthermore, we can note that this integration is symmetric under the interchange {2↔
3}. Thus, the result of the integral is zero, and the VEV simply yields

Aaµ1(x) =
ca

4πr
uµ1 +O(g2)

which is the Coulomb field for an Abelian theory. This should not be that surprising, since
our choice of a constant colour charge leads to a linearised theory.

8.2 Gravity solution

Let us compute now the first two orders of a perturbative expansion for the fat graviton
as the VEV of the field in the presence of the source. The two contributing Feynman
diagrams can be seen in figure 8.2. In order to evaluate such diagrams, we need Feynman
rules. We will use a set that comes directly from the double copy. The graviton propagator



CHAPTER 8. SPACETIMES FROM GRAPHS THROUGH THE DOUBLE COPY118

Dµ1ν1α1β1

k1

Jα1β1 Dµ1ν1α1β1

k1

Dµ3ν3α3β3
k3

Jµ3ν3

Dµ2ν2α2β2
k2

Jµ2ν2

Figure 8.2: Diagrams contributing to O(G2) in gravity

will be given by

Dµ1ν1α1β1(k2
1) =

iηµ1α1ην1β1

k2
1

, (8.22)

and the three-graviton interaction vertex is

Γα1α2α3β1β2β3(k1, k2, k3) =
iκ

2
V3α1,α2,α3

(k1, k2, k3)V3β1,β2,β3(k1, k2, k3), (8.23)

where κ2 = 32πG defines the gravitational coupling constant2, and V3 is the colour-stripped
three-gluon vertex of the last section. It takes the precise form

V3α1,α2,α3
(k1, k2, k3) =

i√
2
P6{k1α1

ηα2α3}, (8.24)

where the P6 operator is defined as in eq. (8.7). Finally, for every source we get the term

Jµν = −iκ
2
Tµν , (8.25)

where the stress-energy tensor is that of a point mass located at the origin, i.e.

Tµν = Muµuνδ
(3)(~x), (8.26)

where uµ = (1, 0, 0, 0). As before, we will need this expression in momentum space. After
taking the Fourier transform, the source takes the value

Jµν(k) = −iκ
2
Muµuνδ(k

0). (8.27)

We now have all the necessary Feynman rules to compute diagrams in this field theory.
2The convention here and in subsequent chapters is different from the one we found previously (κ2 =

16πG). We maintain this to make ease of comparison with ref. [3]
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8.2.1 Double copy solution to second order

Let us obtain the vacuum expectation value for the double copy solution. To do this, we
have to compute the diagrams in fig. 8.2. They are evaluated as

〈Hµ1ν1(k1)〉 =Dµ1ν1α1β1Jα1β1(k1)

+
1

2

∫
d̄4k2d̄

4k3D
µ1ν1α1β1(k2

1)Dµ2ν2α2β2(k2
2)Dµ3ν3α3β3(k2

3)

× δ(4)(k1 + k2 + k3)Γα1β1α2β2α3β3Jµ2ν2(k2)Jµ3ν3(k3).

We now substitute the Feynman rules for the double copied Lagrangian (eqs. (8.22) and
(8.23)). The expression takes the explicit form

κ〈Hµ1ν1(k1)〉 =κ
iηµ1α1ην1β1

k2
1

(
−iκ

2

)
δ̄(k0

1)Muα1uβ1

+
1

2
κ

∫
d̄4k2d̄

4k3
iηµ1α1ην1β1iηµ2α2ην2β2iηµ3α3ην3β3

k2
1k

2
2k

2
3

δ(4)(k1 + k2 + k3)

× iκ

2

i√
2
P6{k1α2

ηα1α3}
i√
2
P6{k1β2ηβ1β3}

×
(
−iκ

2

)
δ̄(k0

2)Muµ2uν2

(
−iκ

2

)
δ̄(k0

3)Muµ3uν3 .

(8.28)

Transforming to position space and performing the k0
i integrals we obtain the result

κ〈Hµ1ν1(x)〉 =
1

2
κ2

∫
d̄3k1

e−i
~k1·~x

~k2
1

Muµ1uν1

+
1

32
κ4

∫
ηµ1α1ην1β1d̄3k1d̄

3k2d̄
3k3

e−i
~k1·~x

~k2
1
~k2

2
~k2

3

δ(3)(~k1 + ~k2 + ~k3)

× P6{~k1α2
ηα1α3}P6{~k1β2ηβ1β3}Muα2uβ2Muα3uβ3 .

(8.29)

The vertex structure is solved in a rather trivial way by noting the relation

P6{k1α2
ηα1α3}uα2uα3 = u2(~k2α1

− ~k3α1
), (8.30)

thus yielding

P6{k1α2
ηα1α3}uα2uα3P6{k1β2ηβ1β3}u

β2uβ3 = u4(~k2α1
− ~k3α1

)(~k2β1 − ~k3β1), (8.31)
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Moreover, we can also use the symmetry under the interchange {2 ↔ 3} to obtain the
expression

κ〈Hµ1ν1(x)〉 =4uµ1uν1
1

8
κ2

∫
d̄3k1

e−i
~k1·~x

~k2
1

M

+ δµ1i δ
ν1
j

1

32
κ4

∫
d̄3k1d̄

3k2d̄
3k3

e−i
~k1·~x

~k2
1
~k2

2
~k2

3

δ(3)(~k1 + ~k2 + ~k3)2(ki2k
j
2 − ki2k

j
3)M2,

(8.32)

It is useful here to recall the definition of the function V from eq. (7.37). This is3

V =
1

8
κ2

∫
d̄4k

e−ik·x

k2
Mδ̄(k0). (8.33)

This was shown in chapter 7 to satisfy the relation V = MG/r. Also from that chapter,
we recall the definition of the integrals

pij(~x) ≡ κ4

64

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~x1 δ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
3

~k2
1
~k2

2
~k2

3

M2, (8.34)

f ij(~x) ≡ κ4

64

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~x1 δ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
2

~k2
1
~k2

2
~k2

3

M2. (8.35)

Using eqs (8.33-8.35), we can express the second order VEV of the gravity solution eq.
(8.32) as

κ〈Hµ1ν1(x)〉 =4uµ1uν1V (x) + 4δµ1i δ
ν1
j

(
f ij(x)− pij(x)

)
, (8.36)

Finally inserting the values for f ij and pij (given in eqs. (7.46) and (7.47) in the previous
chapter) we get

κ〈Hµ1ν1(x)〉 =
4MG

r
uµ1uν1 − 2M2G2

r2
kµ1kν1 . (8.37)

where kµ = (0, ~x/r). We will explore the physical interpretation of this result, and how it
compares to those of the previous chapter in a later section. However, now we turn our
attention to extending our computation one order higher.

8.2.2 Double copy solution to third Order

It is possible to extend this formalism to go to the next order. To do this, it is useful to
work in position space, since there we can take advantage of having computed the VEV

3The different coefficient with respect to eq. (7.37) comes from the different convention for κ.
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〈H(3)µ1ν1(x)〉

Jµ2ν2(y)

Dµ2ν2α2β2(y − z)

Γα1β1α2β2α3β3(z)

Dµ1ν1α1β1(x− z)

〈H(2)
α3β3

(z)〉

Figure 8.3: One diagram contributing to O(G3)

to second order previously. Hence, we need to consider the corresponding Feynman rules.
The graviton propagator is given by

Dµ1ν1α1β1(x− z) =
iηµ1α1ην1β1

4π|~x− ~z|
, (8.38)

while the three-graviton interaction vertex takes almost the same form as its position-space
counterpart

Γα1α2α3β1β2β3(z) =
iκ

2
V3α1α2α3

(z)V3β1β2β3(z), (8.39)

where the three-vertex in position space takes the form

V3α1α2α3
(z) =

i√
2
P6{i∂1α1

ηα2α3}, (8.40)

and the P6 operator now reads

P6{i∂1α2
ηα1α3} ≡ ηα1α3(i∂1α2

− i∂3α2
) + ηα1α2(i∂2α3

− i∂1α3
) + ηα2α3(i∂3α1

− i∂2α1
).

(8.41)

Finally, for every source we get the term

Jµν(z) = −iκ
2
Muµuνδ

(3)(~z). (8.42)

Now, in order to evaluate the third order term of the vacuum expectation value, we need
to evaluate the diagram in fig. 8.3. This is

〈H(3)µ1ν1(x)〉 =

∫
d3y d3zΓα1β1α2β2α3β3(z)Dµ1ν1α1β1(x− z)

×Dµ2ν2α2β2(y − z)Jµ2ν2(y)〈H(2)α3β3

(z)〉. (8.43)



CHAPTER 8. SPACETIMES FROM GRAPHS THROUGH THE DOUBLE COPY122

recalling the second order expression from eq. (8.37)

κ〈H(2)µ1ν1(z)〉 = −2M2G2

r2
kµ1kν1 , (8.44)

where kµ = (0, ~z/r), and inserting our Feynman rules we get

κ〈H(3)µ1ν1(x)〉 =

∫
d3y d3z

iκ

2

i√
2
P6{i∂1α1

ηα2α3}
i√
2
P6{i∂1β1ηβ2β3}

× iηµ1α1ην1β1

4π|~x− ~z|
iηµ2α2ην2β2

4π|~y − ~z|

(
−iκ

2

)
Muµ2uν2δ

(3)(~y)

(
−2M2G2

|~z|2

)
kα3kβ3 .

(8.45)

Tidying up the last equation yields

κ〈H(3)µ1ν1(x)〉 =
κ2G2M3

16π
uµ2uν2

∫
d3y d3zP6{∂1α1

ηα2α3}P6{∂1β1ηβ2β3}

× ηµ1α1ην1β1

4π|~x− ~z|
ηµ2α2ην2β2

|~y − ~z|
δ(3)(~y)

1

|~z|2
kα3kβ3 .

(8.46)

After performing the trivial integration over y, and substituting the relation κ2 = 32πG,
this yields the result

κ〈H(3)µ1ν1(x)〉 = 2G3M3uα2uβ2
∫
d3zP6{∂1α1

ηα2α3}P6{∂1β1ηβ2β3}
ηµ1α1ην1β1

4π|~x− ~z|
1

|~z|
1

|~z|2
kα3kβ3 .

(8.47)

Now we can simplify the contraction uα2P6{∂1α1
ηα2α3}kα3 , by noting that

u · k = 0 = u · ∂. (8.48)

Using this, the product simplifies notably to yield

uα2P6{∂1α1
ηα2α3}kα3 = uα2ηα1α2(∂2α3

− ∂1α3
)kα3 ,

= uα1(∂2α3
− ∂1α3

)kα3 . (8.49)

Inserting this into eq. (8.47), we get

κ〈H(3)µ1ν1(x)〉 = 2G3M3uµ1uν1
∫
d3z(∂2α3

− ∂1α3
)(∂2β3 − ∂1β3)

1

4π|~x− ~z|
1

|~z|3
kα3kβ3 .

(8.50)
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We can write this in the compact form

κ〈H(3)µ1ν1(x)〉 = 2G3M3uµ1uν1g(x), (8.51)

where we have defined the function

g(x) ≡
∫
d3z(∂2α3

− ∂1α3
)(∂2β3 − ∂1β3)

1

4π|~x− ~z|
1

|~z|3
kα3kβ3 . (8.52)

Recalling the explicit form for kα = (0, ~z/|~z|), the function g(x) takes the form,

g(x) ≡
∫
d3z(∂2i − ∂1i)(∂2j − ∂1j)

1

4π|~x− ~z|
1

|~z|5
zizj. (8.53)

This can be shown to yield the simple result

g(x) = − 4

3|~x|3
, (8.54)

which, being inserted in eq. (8.51) results in

κ〈H(3)µ1ν1(x)〉 = − 8

3|~x|3
G3M3uµ1uν1 . (8.55)

8.2.3 Auxiliary fields contribution

Before going any further, we have to address the issue of the auxiliary fields appearing in
the Yang-Mills Lagrangian. This is

SYM =

∫
d4k1d

4k2δ
4(k1 + k2)k2

2[Aµ(k1)Aµ(k2)− 2Bµνρ(k1)Bµνρ(k2)]

+

∫
d4k1d

4k2d
4k3δ

4(k1 + k2 + k3)P6

(
[k1µAν(k1) + kρ1Bρµν(k1)]Aµ(k2)Aν(k3)

)
.

From it, we can directly read the Feynman rules for a “BB” propagator, for example. This
is

Dµ1ν1ρ1α1β1γ1
BB (k1) = −η

µ1α1ην1β1ηρ1γ1

k2
1

, (8.56)

while the B-gluon-gluon vertex is given by

Γµ1ν1ρ1α2α3ijk
AAB (p1, p2, p3) = f ijkpµ11 (δν1α2δρ1α3 − δν1α3δρ1α2). (8.57)

The computation of the contribution of this auxiliary field is then trivial: to use a B-field
at four points there must be a vertex connecting the B-field propagator with two sources.
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This expression will always give zero due to the antisymmetry of the vertex

Γµ1ν1ρ1α2α3

AAB (p1, p2, p3)Jα2(p2)Jα3(p3) = g2δ̄(p0
2)δ̄(p0

3)pµ11 (δν1α2δρ1α3 − δν1α3δρ1α2)uα2uα3 = 0.

(8.58)

Therefore, there is no contribution at four points from the B-field in the single copy. In
the gravity Lagrangian that we obtained as a double copy of the Yang-Mills one, there
will be three additional propagators, for the fields gµνρσ, g̃µρσν and fµρσντλ, along with
several interaction vertices. However, the fact that to use an auxiliary field at four points
there must be a vertex connecting its propagator with two sources guarantees that this
expression will always give zero due to the antisymmetry of the vertex. This will apply to
every different vertex, so we will also have no auxiliary field contributions in the gravity
theory.

Closing remarks

Just for the sake of comparison, we note that the expression for the graviton obtained using
the Einstein-Hilbert Lagrangian in the previous chapters (c.f. eqs. (7.51) and (7.52)) takes
the form

κh00 = −2GM

r
− 2G2M2

r2
+O(G3),

κhij =

(
−2GM

r
+

3G2M2

r2

)
ηij − G2M2

r2

xixj

r2
+O(G3),

whereas collecting the results from the previous sections, we can see that the computation
using the double copied Lagrangian can be written as

κH µν(x) =
4MG

r
uµuν − 2M2G2

r2
kµkν − 8M3G3

3r3
uµuν +O(G3). (8.59)

While it is remarkable that we were able to compute the O(G3) terms, meaning that as a
computational tool this is much more efficient than a brute force approach, the interpreta-
tion of our result is not totally clear. Indeed, for the Einstein-Hilbert calculation, it is easy
tu understand that it corresponds to the graviton for a Schwarzschild metric in de Donder
gauge. However, for the double copy inspired Lagrangian, such an interpretation is not
straightforward. We can understand the reason for this by recalling that the fat graviton
Hµν was built as a double copy of Aµ, so we expect it to contain, in principle, four degrees
of freedom. We expect those degrees of freedom to correspond to the original (or skinny)
graviton hµν , the dilaton φ and the antisymmetric 2-form Bµν (which in four dimensions
is equivalent to a scalar axion field χ). The procedure to extract the information of the
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component (or skinny) fields from the fat graviton is rather involved. We devote the next
chapter to such a task.



Chapter 9

Skinny fields from fat gravitons

We concluded the previous chapter by stating that the fat graviton Hµν contains the
degrees of freedom of the skinny fields, namely the graviton hµν , the dilaton φ and the
antisymmetric 2-form Bµν . We will devote this chapter to making such a statement more
accurate, meaning that we want to give explicit relations between the fat graviton, and
his component fields, i.e. we want a map

Hµν = Hµν(hµν , Bµν , φ), (9.1)

but more importantly, we are interested in extracting the information for the component
fields in terms of the fat graviton. That is, we wish to find relations of the form

hµν = hµν(Hαβ), Bµν = Bµν(Hαβ), φ = φ(Hαβ). (9.2)

In order to gain some intuition, we will first work out the map for a linear approxima-
tion of the theory. Later, we will show how to consider higher order approximations by
perturbatively constructing solutions to the equations of motion.

9.1 Linearised level

Let us start by considering the leading order of an expansion in powers of the coupling
constant κ. We refer to this as the linearised level, since it will not include interactions
between the fields.

To do this, we have to specify what theory of gravity we’ll be working with. We note
that the gravity theory associated with a double copy of non-supersymmetric Yang-Mills
is the so-called N = 0 supergravity. This theory is defined by the action

S =

∫
ddx
√
−g
[

2

κ2
R− 1

2(d− 2)
∂µφ∂µφ−

1

6
e−2κφ/d−2HλµνHλµν

]
, (9.3)

126
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where Hλµν is the field strength of Bµν . Performing the expansion in powers of the gravity
coupling constant κ, the equations of motion for the linearised approximation are

∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ∂µ∂νh+ ηµν
[
∂ρ∂σhρσ − ∂2h

]
= 0,

∂2Bµν − ∂µ∂ρBρν + ∂ν∂
ρBρµ = 0,

∂2φ = 0. (9.4)

It will be useful again to work with the tensor density

gµν =
√
−g gµν = ηµν − κ hµν , (9.5)

as it is common in perturbation theory [205]. We will sometimes refer to the perturbation
field hµν as the gothic graviton. In terms of it, the de Donder gauge condition is simply
∂µh

µν = 0 to all orders, as we have seen previously. At the linear order, the two metric
perturbations are related by the simple equation

hµν = hµν −
1

2
ηµνh, (9.6)

and the linear gauge transformation generated by xµ → xµ − κ ξµ is

hµν → h′µν = hµν + ∂µξν + ∂νξµ − ηµν∂ · ξ. (9.7)

This transformation is more convenient in what follows than the standard gauge transfor-
mation for hµν (where the last term is missing), since it will also represent a transformation
between skinny and fat gravitons. Finally, the linearised equation of motion is

∂2hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ + ηµν∂
ρ∂σhρσ = 0. (9.8)

In de Donder gauge, we have simply

∂2hµν = 0. (9.9)

Finally, we also have the freedom to gauge transform the antisymmetric form Bµν to satisfy
a Lorentz-like condition ∂µBµν = 0, so that the equation of motion is given by

∂2Bµν = 0. (9.10)

In summary, we have the equations of motion

∂2φ = 0, ∂2hµν = 0, ∂2Bµν = 0, (9.11)
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which means that our skinny fields obey wave equations at the linearised level, so we
will be able to determine the relations between them beginning with the simplest case:
linearised waves.

9.1.1 Linear waves

We have seen that to a first approximation, our fields should behave as linear waves.
These are well-known to double copy between gauge and gravity theories (see e.g. [176]).
This property is crucial for the double copy description of scattering amplitudes, whose
incoming and outgoing states are plane waves. Here, we use linear waves to motivate a
prescribed relationship between fat and skinny fields, which will be generalised in later
sections.

Let us start by considering a gravitational plane wave in the de Donder gauge. The
free equation of motion for the graviton is simply ∂2hµν = 0. Plane wave solutions take
the form

hµν = aµνe
ip·x, pµaµν = 0, p2 = 0, (9.12)

where aµν is a constant tensor, and the last condition follows from the equation of motion.
Symmetry of the graviton implies aµν = aνµ, and one may also fix a residual gauge freedom
by setting a ≡ aµµ = 0, so that hµν becomes a traceless, symmetric matrix. It is useful to
further characterise the matrix aµν by introducing a set of (d− 2) polarisation vectors εiµ
satisfying the orthogonality conditions

p · εi = 0, q · εi = 0, (9.13)

where qµ (q2 = 0, p · q 6= 0) is an auxiliary null vector used to project out physical degrees
of freedom for an on-shell massless vector boson. These polarisation vectors are a complete
set, so they satisfy a completeness relation

εiµε
i
ν = ηµν −

pµqν + pνqµ
p · q

. (9.14)

Then the equation of motion for hµν ,together with the symmetry and gauge conditions on
aµν , imply that one may write

aµν = f
/t
ijε

i
µε
j
ν , (9.15)

where f /tij is a traceless symmetric matrix. Thus, the linearised gravitational waves have
polarisation states which can be constructed from outer products of vector waves, times
traceless symmetric matrices.
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Similarly, one may consider linear plane wave solutions for a two-form and φ field.
Imposing Lorenz gauge ∂µBµν = 0 for the antisymmetric tensor, its free equation of
motion becomes simply ∂2Bµν = 0. Thus plane wave solutions are

Bµν = f̃ijε
i
µε
j
νe
ip·x, (9.16)

where f̃ij is a constant antisymmetric matrix. Meanwhile the free equation of motion for
the scalar field is ∂2φ = 0, with plane wave solution

φ = fφe
ip·x. (9.17)

The double copy associates these skinny waves with a single fat graviton fieldHµν satisfying
the field equation

∂2Hµν = 0. (9.18)

Thus, we can express the fat graviton as

Hµν = fijε
i
µε
j
νe
ip·x, (9.19)

where now fij is a general d− 2 matrix and we have chosen a Lorentz-like gauge condition

∂µHµν = 0 = ∂µHνµ. (9.20)

One may write the decomposition of the fij matrix as

fij = f
/t
ij + f̃ij + δij

fφ
d− 2

, (9.21)

and comparing with eqs. (9.15-9.19), we have

Hµν = hµν +Bµν +

(
ηµν −

pµqν + pνqµ
p · q

)
φ

d− 2
, (9.22)

which explicitly constructs the fat graviton from skinny fields. Working in position space
for constant q, this becomes

Hµν(x) = hµν(x) +Bµν(x) + P q
µνφ, (9.23)

where we have defined the projection operator

P q
µν =

1

d− 2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
, (9.24)
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which will be important throughout this chapter. Notice that

P̂ q
µν ≡ (d− 2)P q

µν , (9.25)

satisfies the (properly normalised) projection equation

P̂ q λ
µ P̂ q ν

λ = P̂ q ν
µ . (9.26)

However, its trace is given by

P̂ q µ
µ = d− 2, (9.27)

unlike the other version, whose trace is unity.
As stated before, our goal rather than to construct fat gravitons from skinny fields

is to determine skinny fields using a perturbative expansion based on the double copy
and the fat graviton, so we will decompose the matrix field Hµν into its antisymmetric,
traceless symmetric, and trace parts. To that end, recall that we have been able to choose
a gauge so that the trace, h, of the metric perturbation vanishes. Therefore the trace
of the fat graviton determines the dilaton, while we may use symmetry to determine the
skinny graviton and antisymmetric tensor from the fat graviton:

φ = Hµ
µ ≡ H, (9.28)

Bµν =
1

2
(Hµν −Hνµ) , (9.29)

hµν =
1

2
(Hµν +Hνµ)− P q

µνH. (9.30)

These relations are in some way inverse to eq. (9.23), and are the map that we were
after, to linearised level. We will refer to them as the guts equations. We will eventually
extend them to higher order in perturbation theory. However, before that, let us explore
a generalisation to the process we just considered.

9.1.2 General linearised vacuum solutions

For plane waves, the fat graviton is given in terms of skinny fields in eq. (9.23), and at first
glance this equation is not surprising: one may always choose to decompose an arbitrary
rank two tensor into its symmetric traceless, antisymmetric and trace parts, but there is
potentially a problem in that the relationship becomes ambiguous: the trace of the skinny
graviton may be nonzero (as is indeed the case in general gauges), and one must then
resolve how the trace degree of freedom in Hµν enters the trace of the skinny graviton,
and the scalar field φ. Here we will restrict ourselves to skinny gravitons that are in de
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Donder gauge. However, we will relax the traceless condition on the skinny graviton which
was natural in the previous section. To account for the trace, we postulate that eq. (9.23)
should be replaced by

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ− h). (9.31)

To be useful, this definition of the fat graviton must be invertible. First, note that since

P q µ
µ = 1, (9.32)

the trace of Hµν determines φ as before, while the antisymmetric part of Hµν determines
Bµν , i.e.

φ = Hµ
µ, (9.33)

Bµν =
1

2
(Hµν −Hνµ) , (9.34)

Finally, the traceless symmetric part of the fat graviton is

1

2
(Hµν +Hνµ)− P q

µνH = hµν(x)− P q
µνh. (9.35)

Recalling the nature of P q
µν in relation to eq. (9.7), we can understand

h′µν(x) ≡ hµν(x)− P q
µνh (9.36)

as a gauge transformation of hµν(x). In practice, though, we find it useful to work with
hµν(x) rather than h′µν(x), because at higher orders the gauge transformation to h′µν(x)

leads to more cumbersome formulae. We therefore construct the traceless skinny metric
hµν − P q

µνh directly from Hµν , and recover the trace h by inspection of the coefficient of
P q
µν in Hµν when φ is known. To this end, it is very convenient to restrict the use of q

so that it only appears in P q
µν , and not, for example, in a gauge choice: this simple trick

ensures that it is straightforward to identify the full metric at higher orders, as we will
see. It is also worth noticing that both hµν and h′µν are in de Donder gauge, since

∂µP q
µνh =

1

d− 2

(
∂ν −

qν∂
2 + q · ∂ ∂ν
q · ∂

)
h (9.37)

= − 1

d− 2

qν
q · ∂

∂2h = 0. (9.38)

Our relationship between skinny and fat fields still holds only for linearised fields; we
will explicitly find corrections to eq. (9.31) at higher orders in perturbation theory in the
following section.
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9.2 Perturbative Corrections

Now let us construct non-linear perturbative corrections to spacetime metrics and dilatons
using the double copy. Thus, we will map the problem of finding perturbative corrections
to a simple calculation in gauge theory.

9.2.1 Perturbative metrics from gauge theory

Since the basis of our calculations is the perturbative expansion of gauge theory, we begin
with the the Yang-Mills Lagrangian

LYM = −1

4
F a
µνF

aµν , (9.39)

where the field strength tensor is given by

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (9.40)

The vacuum Yang-Mills equation is then given by

∂µF a
µν + gfabcAbµF c

µν = 0, (9.41)

where g is the coupling constant. We are interested in a perturbative solution of these
equations, so that the gauge field Aaµ can be written as a power series in the coupling:

Aaµ = A(0)a
µ + gA(1)a

µ + g2A(2)a
µ + · · · . (9.42)

Again, the perturbative coefficients A(i)a
µ have no dependence on g. To zeroth order in the

coupling, the Yang-Mills equation in Lorenz gauge ∂µAaµ = 0 is simply

∂2A(0)a
µ = 0. (9.43)

For our present purposes, two basic solutions of this equation will be of interest: wave
solutions, and Coulomb-like solutions with isolated singularities.

Given a solution A(0)a
µ of the linearised Yang-Mills equation, it is easy to write down

an expression for the first order correction A(1)a
µ by expanding the Yang-Mills equation to

first order in g:
∂2A(1)a

ν = −2fabcA(0)bµ∂µA
(0)c
ν + fabcA(0)bµ∂νA

(0)c
µ . (9.44)

A Fourier transformation yields the solution for the first perturbative correction in Fourier
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space in the familiar form

A(1) a
ν (k) =

igfabc

k2

∫
d̄dp1d̄

dp2δ̄(p1 + p2 − k)

×
(
2kµA

(0) b µ(p1)A(0) c
ν (p2)− p2 νA

(0) b µ(p1)A(0) c
µ (p2)

)
. (9.45)

We note that this may also be written in the form

A(1)aµ(−p1) =
i

2p2
1

fabc
∫
d−dp2d

−dp3δ
−d(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
A

(0)b
β (p2)A(0)c

γ (p3). (9.46)

Notice that the factor in square brackets in this equation obeys the same antisymmetry
properties as the colour factor, fabc, appearing in the equation. This is a requirement of
colour-kinematics duality. Before using the double copy, it is necessary to ensure that this
duality holds. Also, we neglect here the effect of auxiliary fields, since they come from the
four-gluon vertex, and it contributes to the next order. We will, however, deal with them
when considering higher order contributions.

Perturbative solution to Gravity

Now that we have computed perturbative solutions to Yang-Mills, we will use them to
construct an analogous solution for the fat graviton. To that end we use a similar notation
for its perturbation series:

Hµν = H(0)µν +
κ

2
H(1)µν +

(κ
2

)2

H(2)µν + · · · . (9.47)

The power of the double copy is that it is now completely trivial to compute the per-
turbative correction H

(1)
µν to a linearised fat graviton H

(0)
µν . All we need to do, follow-

ing [39, 40, 56], is to square the numerator in eq. (9.46), ignore the colour structure, and
assemble fat gravitons by the rule that A(0)a

µ (p)A
(0)b
ν (p) → H

(0)
µν (p). This straightforward

procedure leads to

H(1)µµ′(−p1) =
1

4p2
1

∫
d−dp2d

−dp3δ
−d(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
H

(0)
ββ′(p2)

×
[
(p1 − p2)γ

′
ηµ
′β′ + (p2 − p3)µ

′
ηβ
′γ′ + (p3 − p1)β

′
ηγ
′µ′
]
H

(0)
γγ′(p3).

(9.48)

Notice that the basic structure of the perturbative calculation is that of gauge theory. The
double copy upgrades the gauge-theoretic perturbation into a calculation appropriate for
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gravity, coupled to a dilaton and an antisymmetric tensor.

Now, by analogy with eqs. (9.28-9.30), we could now straightforwardly extract the
trace and the symmetric fields:

φ̃(1) ≡ H(1), (9.49)

h̃(1)
µν ≡

1

2

(
H(1)
µν +H(1)

νµ

)
, (9.50)

but, we cannot directly state that this φ̃(1) is the usual dilaton and that h̃(1)
µν is the first order

correction to the metric in some well-known gauge, as there is freedom for field redefinitions
and gauge transformations. We address in depth this topic in the next section.

9.2.2 Relating fat and skinny fields

In section 9.1, we argued that the relationship between the fat and skinny fields in linear
theory is1

H(0)
µν (x) = h(0)

µν (x) +B(0)
µν (x) + P q

µν(φ
(0)(x)− h(0)(x)). (9.51)

Beyond linear theory, we can expect perturbative corrections to this formula, so that

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ(x)− h(x)) +O(κ). (9.52)

We define a quantity Tµν , which we call the transformation function to make this equation
exact:

H(1)
µν (x) = h(1)

µν (x) +B(1)
µν (x) + P q

µν(φ
(1)(x)− h(1)(x)) + T (1)

µν . (9.53)

Because of the way that T (1)
µν , appears in eq. (9.53) it can only be constructed from

linearised fields, so that T (1)
µν = T (1)

µν (h
(0)
αβ , B

(0)
αβ , φ

(0)). More generally, at the nth order of
perturbation theory

H(n)
µν (x) = h(n)

µν (x) +B(n)
µν (x) + P q

µν(φ
(n)(x)− h(n)(x)) + T (n)

µν (h
(m)
αβ , B

(m)
αβ , φ

(m)), (9.54)

where m < n. We can therefore determine T (n)
µν iteratively in perturbation theory.

Before going further, let us pause for a moment to discuss the physical significance
of T (n)

µν . Our understanding of it rests on two facts. Firstly, the double copy is known
to work to all orders in perturbation theory for tree amplitudes. Secondly, the classical
background field which we have been discussing is a generating function for tree scat-

1This is eq. (9.31), but we have added the decoration (0) to emphasize that such result only holds to
linearised level.
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tering amplitudes. Therefore it must be the case that scattering amplitudes computed
from the classical fat graviton background fields equal their known expressions. So con-
sider computing H

(n)
µν via the double copy, and computing h

(n)
µν , B

(n)
µν and φ(n) using a

standard perturbative solution of their coupled equations of motion. Then the difference
H

(n)
µν − h

(n)
µν − B(n)

µν (x) − P q
µν(φ

(n)(x) − h(n)(x)) ≡ T (n)
µν must vanish upon use of the LSZ

procedure. We conclude that Tµν parameterises redundancies of the physical fields which
are irrelevant for computing scattering amplitudes: gauge transformations and field re-
definitions. Indeed, the very definition of Tµν requires choices of gauge: for example, the
choice of de Donder gauge for the skinny graviton.

While the information in the transformation function contains little content of phys-
ical interest, it may be of some interest from the point of view of the mathematics of
colour-kinematics duality. Indeed, in the special case of the self-dual theory, it is known
how to choose an explicit parameterisation of the metric perturbation so that the double
copy is manifest [113]. Choosing these variables therefore sets Tµν = 0 to all orders, for
self-dual spacetimes. Once the relevant variables have been chosen, then the kinematic
algebra in the self-dual case was manifest at the level of the equation of motion of self-dual
gravity: the algebra is one of area-preserving diffeomorphisms. Perhaps it is the case that
an understanding of the transformation function in the general case will open the way
towards a simple understanding of the full kinematic algebra.

Since Tµν parameterises choices which can be made during a calculation, such as the
choice of gauge, we do not expect a particularly simple form for it. Nevertheless, to
compare explicit skinny gravitons computed via the double copy with standard metrics,
it may be useful to have an explicit form of T (n)

µν . It is always possible to compute such
function directly through its definition, at the expense of perturbatively solving the coupled
Einstein, scalar and antisymmetric tensor equations of motion. To understand this, let us
look directly to the first order example. Rearranging eq. (9.53), we obtain the explicit
expression for the first order transformation function

T (1)
µν = H(1)

µν (x)− h(1)
µν (x)−B(1)

µν (x)− P q
µν(φ

(1)(x)− h(1)(x)). (9.55)

Thus, we need explicit expressions not only for the first order fat graviton H(1)
µν , but also

for the skinny fields h(1)
µν , φ(1) and B(1)

µν . We will obtain them now. First, for the graviton
hµν , we propose a perturbative expansion analogous to that of the fat graviton

hµν = h(0)µν +
κ

2
h(1)µν +

(κ
2

)2

h(2)µν + · · · , (9.56)

and an analogous one for the dilaton field φ. In terms of them, the equations of motion
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[205,206] to first order are

∂2hµν =− κ

2

{
∂µhαβ ∂

νhαβ − 1

d− 2
∂µh∂νh− 2hαβ∂α∂βh

µν

+ 2∂αh
µβ ∂βh

αν + 2∂αh
µβ ∂αhνβ − 2∂αh

µβ ∂νhαβ − 2∂αh
νβ ∂µhαβ

+
1

2
ηµν
(

2∂αh
βγ ∂βh

α
γ − ∂αhβγ ∂αhβγ +

1

d− 2
∂αh∂

αh
)}

− κ

2(d− 2)

(
∂µφ∂νφ− 1

2
ηµν∂αφ∂

αφ
)

+O(κ2), (9.57)

while the dilaton satisfies the equation

∂2φ = κhαβ∂α∂βφ. (9.58)

Note that the fields are already coupled to this order, so we need to solve the equations
simultaneously. As we have seen in previous chapters, in order to solve the equations it
is convenient to perform a Fourier transform. The dilaton equation gives in momentum
space

φ(1)(−p1) =
2

p2
1

∫
d−dp2d

−dp3δ
−(d)(p1 + p2 + p3)h

(0)αβ
2 p3αp3βφ

(0)
3 , (9.59)

while the equation for the graviton yields

h(1)µν(−p1) = − 1

p2
1

∫
d−dp2d

−dp3δ
−(d)(p1 + p2 + p3)

×

{
− 2h

(0)αβ
2 p3αp3βh

(0)µν
3 + 2p3αh

(0)µβ
2 p3βh

(0)αν
3 + 2(p2 · p3)h

(0)µα
3 h

(0)ν
3 α

− 2p2αh
(0)µβ
2 pν3h

(0)β
3 α − 2p2αh

(0)νβ
2 pµ3h

(0)β
3 α + ηµνp2αh

(0)βγ
2 p3βh

(0)α
3 γ

+

(
pµ2p

ν
3 −

1

2
ηµν(p2 · p3)

)
h

(0)
2αβh

(0)αβ
3 − h

(0)
2 h

(0)
3 − φ

(0)
2 φ

(0)
3

d− 2

}
,

(9.60)

where we have used a convenient short-hand notation

hµνi ≡ hµν(pi), φµνi ≡ φµν(pi). (9.61)
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The trace of the gothic graviton yields

h(1)(−p1) = − 1

2p2
1

∫
d−dp2d

−dp3δ
−(d)(p1 + p2 + p3)

{
−4p3αh

(0)αβ
2 p3βh

(0)
3 + 4p2αh

(0)αβ
3 h

(0)γ
3 βp3γ

+ 4(p2 · p3)h
(0)
2αβh

(0)αβ
3 − 8p2αh

(0)β
3 αh

(0)γβ
2 pγ3 + 2dp3αh

(0)αβ
2 h

(0)γ
3 βp2γ

−(p2 · p3)
[
(d− 2)h

(0)
2αβh

(0)αβ
3 − h

(0)
2 h

(0)
3 + φ

(0)
2 φ

(0)
3

]}
,

(9.62)

which can be further simplified to

h(1)(−p1) =
1

2p2
1

∫
d−dp2d

−dp3δ
−(d)(p1 + p2 + p3)

{
4p3αh

(0)αβ
2 p3βh

(0)
3 − 2(d− 2)pα3h

(0)
2αβh

(0)βγ
3 p2γ

+(p2 · p3)
[
(d− 6)h

(0)
2αβh

(0)αβ
3 − h

(0)
2 h

(0)
3 + φ

(0)
2 φ

(0)
3

]}
.

(9.63)

If we consider now, for example, a fat gravitonH(1)
µν (x), where there is no antisymmetric

tensor2, we have all the terms entering eq. (9.55), so we can compute T (1)
µν under the

simplifying assumption that Bµν = 0 so that Hµν is symmetric. We find that when
∂µh

(0)µν = ∂µH
(0)µν = 0, then the transformation function is

T (1)µν(−p1) =

∫
d−dp2d

−dp3δ
−d(p1 + p2 + p3)

1

4p2
1

{
H

(0)
2αβH

(0)αβ
3 pµ1p

ν
1 + 8pα2H

(0)
3αβH

(0)β(µ
2 pν)

+ 8p2 · p3H
(0)µα
2 H

(0)ν
3 α − 2ηµνp2 · p3H

(0)
2αβH

(0)αβ
3 + 4ηµνpα2H

(0)
3αβH

(0)βγ
2 p3γ

+ P µν
q

[
2(d− 6)p2 · p3H

(0)
2αβH

(0)αβ
3 − 4(d− 2)pα2H

(0)
3αβH

(0)βγ
2 p3γ

]}
,

(9.64)

where we have again used the convenient short-hand notations

Hµν
i ≡ Hµν(pi), p(µqν) ≡ 1

2
(pµqν + pνqµ) . (9.65)

This expression is valid for any symmetric H(0)
µν , and the extension to general H(0)

µν is
straightforward. Now that we have obtained a somewhat general result for the transfor-
mation function, it will be enlightening to show a specific example of it. We do this now
in the following section, considering the simplest solution possible.

2We will encounter an example of this form in the next section.
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9.3 One dilaton gravity example

Since the fat graviton equation of motion is simply ∂2H
(0)
µν = 0, it is natural to consider

the solution
H(0)
µν =

κ

2

M

4πr
uµuν , with uµ = (1, 0, 0, 0), (9.66)

which corresponds to inserting a delta function source at the origin. We can see that this
solution has the physical interpretation of a point mass which is also a source for the scalar
dilaton. Indeed, the dilaton contained in the fat graviton is given by its trace:

φ(0) = −κ
2

M

4πr
. (9.67)

Since the fat graviton is symmetric, Bµν = 0. Meanwhile the skinny graviton is

h(0)
µν − P q

µνh
(0) =

(
uµuν + P q

µν

) κ
2

M

4πr
. (9.68)

We can thus interpret the skinny graviton as having the same form as the fat graviton.
We have then established a map between skinny and fat fields that is invertible and valid
to linearised level. In order to extend it to non-linear fields, we need to develop some
technology first.

As a simple example of this formalism at work, let us compute the first order correction
to the simple fat graviton eq. (9.66) corresponding to a metric and scalar field. To begin,
we need to write H(0)

µν (p) in momentum space. This is simply

H(0)µν(p) =
κ

2
Muµuν

δ−1(p0)

p2
. (9.69)

Inserting this into our expression for H(1), eq. (9.48), we quickly find

H(1)µµ′(−p1) =
(κ

2

)2 M2

4p2
1

∫
d−3p2d

−3p3δ
−4(p1 + p2 + p3)

(p2 − p3)µ(p2 − p3)µ
′

p2
2 p

2
3

, (9.70)

where p0
2 = 0 = p0

3, and consequently p0
1 = 0. For future use, we note that p1µH

(1)µµ′(−p1) =

0. Since all of the components of H(1) in the time direction vanish, we need only calculate
the spatial components H(1)ij. To do so, it is convenient to Fourier transform back to
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position space and compute firstly the Laplacian of ∇2H(1)ij(x); we find

∇2H(1)ij = −
(κ

2

)2 M2

4

∫
d−3p2d

−3p3
e−ip2·xe−ip3·x

p2
2p

2
3

(p2 − p3)i(p2 − p3)j

=
(κ

2

)2 M2

4

∫
d3yδ(3)(x− y)(∇i

x −∇i
y)(∇j

x −∇j
y)

1

4π|x|
1

4π|y|

= −
(κ

2

)2 M2

4(4π)2

(
2δij

r4
− 4xixj

r6

)
. (9.71)

It is now straightforward to integrate this expression using spherical symmetry and the
known boundary conditions to find

H(1)
µν (x) = −

(κ
2

)2 M2

4(4πr)2
kµkν , (9.72)

where kµ = (0,x/r).

It is interesting to pause for a moment to contrast this calculation with its analogue
in Yang-Mills theory. The simplest gauge counterpart of the linearised fat graviton eq.
(9.66) is

A(0)a
µ (x) = gcauµ

1

4πr
⇒ A(0)a

µ (p) = gcauµ
δ−1(p0)

p2
. (9.73)

To what extent is the first non-linear correction to the Yang-Mills equation similar to
the equivalent in our double-copy theory? The answer to this question is clear: they are
distinctly different. Indeed, the colour structure of A(1)a

µ is fabccbcc = 0, so A(1)a
µ = 0.

However, the kinematic numerator of A(1)a
µ identified by colour-kinematics duality is non-

zero, so there is no reason for H(1)
µν to vanish. How the double copy propagates physical

information from one theory to the other is unclear, but as a mathematical statement
there is no issue with using the double copy to simplify gravitational calculations.

Back to the task of obtaining skinny fields, given our expression, eq. (9.72), for the fat
graviton, it is now straightforward to extract the trace and the symmetric fields. In view
of the fact that there is no projector dependence in this fat graviton, these are

φ̃(1) ≡ H(1) = −
(κ

2

)2 M2

4(4πr)2
, (9.74)

h̃(1)
µν ≡

1

2

(
H(1)
µν +H(1)

νµ

)
= −

(κ
2

)2 M2

4(4πr)2
kµkν . (9.75)

However, we cannot directly state that this φ̃(1) is the usual dilaton and that h̃
(1)
µν is the

first order correction to the metric in some well-known gauge. Instead, as stated in the
previous section, we need to consider the transformation function in order to account for
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the gauge and field redefinition freedom.

9.3.1 Transformation function

We are now in a position to convert our fat graviton H(1)
µν (x), eq. (9.72) into skinny fields.

The simple form of the H(0)
µν (x) leads to a simplification in the gauge transformation/field

redefinition, since p · u = 0 for a stationary source. Thus T (1)µν is simply

T (1)µν(−p1) = −
(κ

2

)2

M2

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)

1

4p2
1

δ−1(p0
2)

p2
2

δ−1(p0
3)

p2
3

×
{

8p2 · p3u
µuν − pµ1pν1 + 2ηµνp2 · p3 + P µν

q [4p2 · p3]

}
,

(9.76)

in d = 4. Performing the Fourier transform, we find

T (1)µν(x) = −
(κ

2

)2 [
3uµuν + 2kµkν + 2P µν

q

] M2

4(4πr)2
. (9.77)

Let us now extract the skinny fields in de Donder gauge from our fat graviton, eq. (9.72).
The relation between the fat and skinny fields is now given by

h(1)
µν (x) + P q

µν

[
φ(1)(x)− h(1)(x)

]
= H(1)(x)− T (1)

µν (x) (9.78)

= −
(κ

2

)2

kµkν
M2

4(4πr)2
+
(κ

2

)2 [
3uµuν + 2kµkν + 2P µν

q

] M2

4(4πr)2
.

Thus, the dilaton vanishes, since

φ(1)(x) = H(1)(x)− T (1)(x) = 0. (9.79)

Consequently, the negative of the trace of the metric is the only term on which P µν
q acts,

so we find
h(1)(x) = −

(κ
2

)2 M2

2(4πr)2
. (9.80)

The metric is easily seen to be

h(1)
µν (x) =

(κ
2

)2

(3uµuν + kµkν)
M2

4(4πr)2
, (9.81)

consistent with the anticipated trace.

It is natural to ask what is the non-perturbative static spherically-symmetric solution
for which we are finding the fields. Exact solutions of the Einstein equations minimally
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coupled to a scalar field of this form were discussed by Janis, Newman and Winicour
(JNW) [207] and have been extensively studied in the literature [207–213]. The complete
solution is, in fact, a naked singularity, consistent with the no-hair theorem. The general
JNW metric and dilaton can be expressed as

ds2 = −
(

1− ρ0

ρ

)γ
dt2 +

(
1− ρ0

ρ

)−γ
dρ2 +

(
1− ρ0

ρ

)1−γ

ρ2dΩ2, (9.82)

φ =
κ

2

Y

4πρ0

log

(
1− ρ0

ρ

)
. (9.83)

where the two parameters ρ0 and γ can be given in terms of the mass M and the scalar
coupling Y as

ρ0 = 2G
√
M2 + Y 2 =

(κ
2

)2
√
M2 + Y 2

4π
, γ =

M√
M2 + Y 2

. (9.84)

For Y = 0 and M > 0, we recover the Schwarzschild black hole. For |Y | > 0 and M > 0,
the solution also decays for large ρ, but there is a naked singularity at ρ = ρ0. We can
write the JNW solution in de Donder gauge by applying the coordinate transformation
ρ = r+ ρ0/2, where r is the Cartesian radius in the de Donder coordinates. Expanding in
κ, the result is

hµν =
κ

2

M

4πr
uµuν +

(κ
2

)3 1

8(4πr)2

(
(7M2 − Y 2)uµuν + (M2 + Y 2)kµkν

)
+O(κ5), (9.85)

φ = −κ
2

Y

4πr
+O(κ5). (9.86)

Note that for Y = M , the expansions become

hµν =
κ

2

M

4πr
uµuν +

(κ
2

)3 M2

4(4πr)2

(
3uµuν + kµkν

)
+O(κ5), (9.87)

φ = −κ
2

M

4πr
+O(κ5), (9.88)

reproducing the skinny fields obtained above. We conclude that the JNW solution with
Y = M is the exact solution associated to the linearised fat graviton (9.66). Thus, in some
sense, we understand the JNW naked singularities as the (non-rotating) objects naturally
living in N = 0 supergravity, instead of black holes. It might be the case that if there is
angular momentum in the system there would also be a non-vanishing axion (Bµν), but
this question requires further investigation.

As a further check to this correspondence, we will compute the next order in pertur-
bation theory in the following section.
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9.3.2 Higher orders

In section 9.2.1, we saw how fat graviton fields can be obtained straightforwardly from
perturbative solutions of the Yang-Mills equations. These can then be translated to skinny
fields, if necessary, after obtaining the relevant transformation functions T µν . Now let us
briefly describe how this procedure generalises to higher orders.

To illustrate the procedure in a non-trivial example, let us compute the second order
correction to the JNW fat graviton, H(2)

µν (x). In fact, a number of simplifications make this
calculation remarkably straightforward. Firstly, the momentum space equation of motion
for the auxiliary field appearing in the BDHK Lagrangrian, eq. (8.4), is

p2
1B

(1)a
µνρ (−p1) =

i

4
fabc

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)p1µ [ηνβηργ − ηνγηρβ]A(0)bβ(p2)A(0)cγ(p3).

(9.89)
Notice that the term in square brackets is antisymmetric under interchange of β and
γ; imposing this symmetry is a requirement of colour-kinematics duality because the
associated colour structure is antisymmetric under interchange of b and c. A consequence
of this simple fact is that, in the double copy, the auxiliary field vanishes in the JNW case
(to this order of perturbation theory). In fact, two auxiliary fields appear in the double
copy: one can take two copies of the field B, or one copy of B times one copy of the
gauge boson A. In either case, the expression for an auxiliary field in the double copy in
momentum space will contain a factor

p1µ [ηνβηργ − ηνγηρβ]H(0)ββ′(p2)H(0)γγ′(p3)

= p1µ [ηνβηργ − ηνγηρβ]
δ(p0

2)δ(p0
3)

p2
2p

2
3

uβuβ
′
uγuγ

′
= 0, (9.90)

because of the antisymmetry of the vertex in square brackets, and the factorisability of
the tensor structure of the zeroth order JNW expression.

Consequently, the Yang-Mills four-point vertex plays no role in the the double copy
for JNW at second order. Thus the Yang-Mills equation to be solved is simply

p2
1A

(2)aµ(−p1) = ifabc
∫
d−4p2d

−p3δ
−4(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
A

(0)b
β (p2)A(1)c

γ (p3), (9.91)

using the symmetry of the expression under interchange of p2 and p3. Thus, H(2) is the
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solution of

p2
1H

(2)µµ′(−p1) =
1

2

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)

×
[
(p1 − p2)γηµβ + (p2 − p3)µηβγ + (p3 − p1)βηγµ

]
×
[
(p1 − p2)γ

′
ηµ
′β′ + (p2 − p3)µ

′
ηβ
′γ′ + (p3 − p1)β

′
ηγ
′µ′
]
H

(0)
ββ′(p2)H

(1)
γγ′(p3).

(9.92)

This expression simplifies dramatically when we recall that H(0)
ββ′(p2) and H

(1)
γγ′(p3) both

have vanishing components of momentum in the time direction, so that p0
2 = 0 = p0

3 = p0
1.

Meanwhile H(0)
ββ′(p2) ∝ uβuβ′ . Thus,

p2
1H

(2)
µµ′(−p1) = 2

∫
d−4p2d

−4p3δ
−4(p1 + p2 + p3)H

(0)
µµ′(p2) pα2H

(1)
αβ (p3)pβ2 . (9.93)

We find it convenient to Fourier transform back to position space, where we must solve
the simple differential equation

∂2H
(2)
µµ′(x) = 2H

(1)
αα′∂

α∂α
′
H

(0)
µµ′ . (9.94)

Inserting explicit expressions for H(0), eq. (9.66) and H(1), eq. (9.72), and bearing in mind
that the situation is static, the differential equation simplifies to

∇2H
(2)
µµ′(x) = −

(κ
2

)3 M3

(4πr)3

uµuµ′

r2
, (9.95)

with solution
H

(2)
µµ′(x) = −

(κ
2

)3 M3

6(4πr)3
uµuµ′ . (9.96)

We could now, if we wished, extract the metric perturbation and scalar field corresponding
to this expression. Indeed, it is always possible to convert fat gravitons into ordinary metric
perturbations in a specified gauge. This conversion may be cumbersome, but it may
also be unnecessary since an alternative possibility exists, namely to calculate physical
observables, which must be manifestly invariant under gauge transformations and field
redefinitions, directly from fat graviton fields, without referring to skinny fields at all.
However, work in this front is still in progress.

9.3.3 Comparing with the diagrams result

The astute reader will have noted by now that this computation is exactly the same as the
one performed using Feynman diagrams in the previous chapter. Back there, we obtained
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results for the expansion

〈H µ1ν1(x)〉 = 〈H(1)µ1ν1(x)〉+ 〈H(2)µ1ν1(x)〉+ 〈H(3)µ1ν1(x)〉+ . . . (9.97)

with the values

κ〈H(1)µ1ν1(x)〉 =
4MG

r
uµ1uν1 , (9.98)

κ〈H(2)µ1ν1(x)〉 = −2M2G2

r2
kµ1kν1 , (9.99)

κ〈H(3)µ1ν1(x)〉 = −8M3G3

3r3
uµ1uν1 . (9.100)

However, in order to compare with the expansion from the present chapter

Hµν = H(0)µν +
(κ

2

)
H(1)µν +

(κ
2

)2

H(2)µν + . . . (9.101)

we need to insert back the relation G = κ2

32π
, so we obtain the expressions

H(0)µν =
(κ

2

) M

4πr
uµuν , (9.102)

H(1)µν = −
(κ

2

)2 M2

4

1

(4πr)2
kµkν , (9.103)

H(2)µν = −
(κ

2

)3 M3

6

1

(4πr)3
uµuν , (9.104)

which match the coefficients obtained for the expansion directly solving the equations of
motion.

9.4 Towards Schwarzschild

The ultimate objective of our program is to be able to describe the scattering of black
holes. However, the solution we found in the last section is stationary, and is not a black
hole, but a naked singularity, due to the effect of the dilaton. Let us briefly comment on
the second issue. An extension of our treatment to black holes is not difficult conceptually,
but it would be technically cumbersome. Indeed, it is easy to construct a fat graviton for
the linearised Schwarzschild metric: we begin by noticing that, in the case of Schwarzschild
(d = 4), we have

hµν(r) =
κ

2

M

4πr
uµuν +O(κ2), Bµν(x) = 0, φ(x) = 0, with uµ = (1, 0, 0, 0).

(9.105)
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Now, the equation that relates skinny and fat fields is

Hµν(x) = hµν(x) +Bµν(x) + P q
µν(φ− h), (9.106)

which, taking into account eq. (9.105), reduces to

Hµν(x) = hµν(x)− P q
µνh,

=
κ

2

M

4πr
uµuν + P q

µν

(
κ

2

M

4πr

)
(9.107)

The fat graviton depends on an arbitrary constant null vector qµ. In this section, for
illustration, we will make an explicit choice of qµ = (−1, 0, 0, 1), and evaluate the action
of the projector (9.24) in position space. Let us compute now P q

µν(1/r). Recalling the
explicit form of the projector (for d = 4)

P q
µν =

1

2

(
ηµν −

qµ∂ν + qν∂µ
q · ∂

)
, (9.108)

we can see that we need to deal with the operator 1/q · ∂. This is where our choice of the
vector qµ comes handy. Working explicitly in the coordinates (u, v, w, w̄), where u = t−z,
the product q · ∂ = −2∂u, and so, we can interpret

1

∂ · q
= −1

2
∂−1
u = −1

2

∫
du (9.109)

Now, let us compute the action of this operator on 1/r. This is

1

∂ · q

(
1

r

)
= −

∫
du

1

2r(u, v, w, w̄)
= −

∫
du

1√
(v − u)2 + 4ww̄

= ln(2(r + z)) + f(v, w, w̄), (9.110)

where f(v, w, w̄) is an integration “constant” that we choose to be zero. Using this, it is
easy to show that

P q
µν

(
κ

2

M

4πr

)
=
κ

2

M

4πr

(
1

2
(ηµν − qµlν − qνlµ)

)
, (9.111)

where lµ = (0, x, y, r+ z)/(r+ z), such that q · l = 1. Then, substituting this back into eq.
(9.107), we obtain the fat graviton

Hµν =
κ

2

M

4πr

(
uµuν +

1

2
(ηµν − qµlν − qνlµ)

)
. (9.112)

It is easy to check that this fat graviton satisfies the gauge requirement ∂µHµν = 0, and
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the equation of motion ∂2Hµν = 0.

Going in the other direction, it is easy to compute the skinny fields given this fat
graviton. Since Hµν is traceless, the dilaton vanishes. Similarly Hµν is symmetric, and
therefore Bµν = 0. The skinny graviton can therefore be taken to be equal to the fat
graviton. While this result seems to be at odds with (9.105), recall that they differ only
by a gauge transformation (which leaves φ and Bµν unaffected at this order) and that the
skinny graviton we recover is traceless, as we would expect from eq. (9.35). However, try-
ing to repeat the higher order procedure would be very difficult, since there is an explicit
dependence of the linearised fat graviton in qµ, and thus the transformation function eq.
(9.64) becomes cumbersome.

We can also ask what fat graviton would be associated to the general JNW family
of solutions, with M and Y generic. Since we are dealing with linearised fields, we can
superpose contributions, and so we arrive at

Hµν =
κ

2

1

4πr

(
M uµuν + (M − Y )

1

2
(ηµν − qµlν − qνlµ)

)
. (9.113)

Note that both the fat gravitons for our “simplest” dilaton-gravity example eq. (9.66),
and the Schwarzschild fat graviton eq. (9.112) are specific cases (for Y = M and Y = 0,
respectively) of this JNW fat graviton.

The gauge theory “single copy” associated to this field is simply the Coulomb solution,
which presents an apparent puzzle: ref. [183] argued that the double copy of the Coulomb
solution is a pure Schwarzschild black hole, with no dilaton field, as discussed also in
chapter 3. In this chapter, however, the double copy produces a JNW solution. The latter
was also found in ref. [157], which thus concluded that the Schwarzschild solution is not
generally obtained by the double copy, but can only be true in certain limits (such as the
limit of an infinite number of dimensions). The resolution of this apparent contradiction is
simply that one can choose whether or not the dilaton is sourced upon taking the double
copy. It is well-known in amplitude calculations, for example, that gluon amplitudes can
double copy to arbitrary combinations of amplitudes for gravitons, dilatons and/or B-
fields. A simple example are amplitudes for linearly polarised gauge bosons: the double
copied “amplitude” involves mixed waves of gravitons and dilatons. Thus, the result in
the gravity theory straightforwardly depends on the linear combinations of the pairs of
gluon polarisations involved in the double copy. Here, we may say that the Schwarzschild
solution is a double copy of the Coulomb potential, as given by the Kerr-Schild double
copy [183], just as one may say that appropriate combinations of amplitudes of gluons
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lead to amplitudes of pure gravitons. The analogue of more general gravity amplitudes
with both gravitons and dilatons, also obtained as a double copy, is the JNW solution.
Therefore the double copy of the Coulomb solution is somewhat ambiguous: in fact, it is
any member of the JNW family of singularities, including the Schwarzschild metric. Note
that the Kerr-Schild double copy is applicable only in the Schwarzschild case since the
other members of the JNW family of spacetimes do not admit Kerr-Schild coordinates.

For the vacuum Kerr-Schild solutions studied in [183], in particular for the Schwarzschild
black hole, it was possible to give an exact map between the gauge theory solution and the
exact graviton field, making use of Kerr-Schild coordinates (as opposed to the de Donder
gauge used here). For the general JNW solution, the double copy correspondence was
inferred above from the symmetries of the problem and from the perturbative results. A
more general double copy map would also be able to deal with the exact JNW solution.
This remains an important goal, but one which is not addressed in this thesis.

Closing remarks

To summarise this chapter, we have developed the means to extract the component (or
skinny) fields from the fat graviton. To do this, we perturbatively solved the Yang-Mills
equation for the gauge field Aµa, and the solution for the fat graviton was obtained as a
double copy in a BCJ sense. That is, leave the propagators unchanged, substitute coupling
constants, and replace colour factors with a second copy of the kinematic information (in-
teraction vertices). The method to extract the skinny fields is based on the guts equation.
This is exact in the linearised level, but to higher orders in perturbation theory, needs to
be corrected by the transformation function T µν , which encodes the remaining freedom.
To determine the transformation function we had to obtain perturbative solutions of the
N = 0 equations, and we tested this approach with one example fat graviton that satisfies
the equation of motion. We start with a stationary point source in Yang-Mills, and double
copy it to the simplest possible fat graviton, which we interpreted to be the JNW metric.

Although we have developed a formalism to separate the contributions from the (un-
wanted) dilaton field, i.e. the transformation function, it is possible that this is not
necessary. Indeed, it might be possible to calculate physical observables, which must be
invariant under gauge transformations and field redefinitions directly from fat graviton
fields, without referring to skinny fields at all. Research on this front is currently being
undertaken.



Chapter 10

Conclusions

In this thesis, we study how a number of solutions to classical equations of motion in Gen-
eral Relativity and Yang-Mills theory are related by a procedure analogous to the double
copy of Bern, Carrasco and Johansson. We refer to our procedure as the double copy of
classical solutions or classical double copy.

We start by considering a certain type of General Relativity solutions known as Kerr-
Schild solutions or metrics. These are such that a deviation from the background metric
(that we call the graviton, even though we are working in a classical framework) may be
factorised as the product of a scalar function φ and two copies of a vector kµ which is null
with respect to both the background and the full metric, and is also a geodetic congruence.

Drawing an analogy with the BCJ double copy, where the tensor structure in the gravity
side consists of two copies of the structure for the gauge theory, with the denominator
remaining untouched, we propose a Kerr-Schild like ansatz for the gauge theory vector
field as the product of the same scalar function that entered the graviton, and (just one
copy of) the vector kµ. We refer to this vector field as the single copy of the graviton. It is
worth noting that unlike the BCJ double copy that is expressed naturally in momentum
space, the classical double copy is expressed in position space.

We consider first the set of Kerr-Schild solutions that are also stationary, this is, they
have no explicit depedence on time. We have shown that the single copy of such metrics
are also solutions to Abelian (or linearised) Yang-Mills equations, which can be effectively
treated as Maxwell equations. This yields an infinite class of solutions that satisfy the
classical double copy process.

We showed a number of examples, starting with the Schwarzschild black hole, which
single copies to a Coulomb solution. We further showed that the point-like sources for
these systems also obey a double copy relation, with the mass being substituted with
an electric charge. Higher dimensional generalisations of these solutions also exhibit a
classical double copy behaviour.
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The next example we considered was the Kerr-Black hole, along with the higher
dimensional generalisation known as the Myers-Perry black hole. Although the single
copy was again a solution to Maxwell-like equations, the relation was a bit less transpar-
ent. This is a consequence of the extended sources, unlike the point-like sources of the
Schwarzschild/Coulomb case, needing an extra pressure term in the stress-energy tensor
to keep the system stationary.

It is remarkable that the single copy of the Kerr-Schild metrics we have considered turn
out to be solutions of Abelian gauge theories. However, this does not exactly come as a
surprise. The fact that the Kerr-Schild ansatz linearise the Einstein tensor suggests that a
single copy of this solution may be unable to capture non-linear effects. One related result
states that for a static solution (which would apply to the Schwarzchild/Coulomb case),
it is possible to perform a gauge transformation whose effect gets rid of the non-Abelian
character [214].

However, it is also possible that there exists a solution to a non-Abelian gauge theory
that double copies to the same Kerr-Schild metric. In favour of this scenario, there exist a
couple examples (for infrared singularities and for compton scattering), where the gravity
case may be obtained as a double copy of either QED or QCD.

There is a number of ways we can consider extensions or generalisations of the classical
double copy. The first one we explored was the application of this technology to the Taub-
NUT black hole. This solution may be cast into a double Kerr-Schild form, where we have
two different scalar functions and null vectors. Unlike the original Kerr-Schild ansatz, a
double Kerr-Schild form does not, in general, linearise the Einstein tensor.

However, in the case of the Taub-NUT solution we considered, all the non-linear terms
appearing in this tensor vanished, thus rendering the Einstein equation linear. We then
found that the Taub-NUT black hole single copies to a gauge theory dyon, an object that
bears both electric and magnetic monopole charges, with the mass and the NUT param-
eter being replaced with electric and magnetic charge, respectively. We also showed that
higher dimensional generalisations of this metric also obey the classical double copy, with
every extra NUT parameter mapping into another magnetic charge.

A second possible extension to the original Kerr-Schild ansatz is the substitution
of the background metric with a non-flat space. We consider the specific examples of
Schwarzschild, Kerr and Taub-NUT black holes over a (Anti)de Sitter background. The
single copy of these solutions takes the exact same form as in the flat case, since we are
not modifying the graviton.

In the three cases, we found that a single copy of these metrics are indeed solutions of
Maxwell-like equations over the non-flat de Sitter background. The generalisation of the
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equations of motion is immediate, by considering covariant derivatives compatible with the
background metric. However, a new feature appears for the zeroth copy. Unlike the flat
background case, where the scalar function acted as a propagator by solving the equation
of motion for the D’Alembertian operator, in the de Sitter background case a new term
emerges. Due to the numeric factors accompanying it, this term suggests having its origin
in a biadjoint theory that contains a conformal mass.

Thus far this is just a tentative interpretation, since we have not been able to study
the double copy over less trivial non-flat backgrounds. It is also worth noting here that
it is also possible to cast the de Sitter metric into a Kerr-Schild form, so the black holes
over de Sitter space fit into a double Kerr-Schild scheme.

Further motivation for the study of the Kerr-Schild double copy over non-flat back-
grounds comes from the recent paper by Adamo et.al. [143], which studies a double copy
for amplitudes in curved space. Their work studies gauge fields which are perturbations
around plane-wave solutions, whose amplitudes double copy corresponds to an amplitude
for gravitons defined with respect to a gravitational plane wave background. This process
belongs to a class of double copies that we call type A, where a gauge field over a non-trivial
background is related to a graviton living on a non-Minkowski metric, with both metrics
having a double copy-like relation. We have found that this is also possible in the context
of the classical solutions of Kerr-Schild form, and this process also yields a consistent ze-
roth copy. We have also seen an alternative way to interpret the classical double copy, that
we call type B, and it works by associating a graviton defined with respect to a non-flat
background with a gauge field living on the same curved spacetime. One caveat here is
that, unlike the previous case, we don’t have a well defined interpretation for the zeroth
copy, which suggests this is not a general feature, but a map that applies in certain cases.
We have worked out a few examples that could have meaningful application, for example,
performing this process over a de Sitter background is potentially relevant for cosmological
purposes. Furthermore, we consider other examples where a type A double copy is not
possible (due to not being a Kerr-Schild solution), but a type B double copy still works. A
family of examples we have considered is that of conformally flat backgrounds (including,
for example, the Kerr metric over an Einstein static universe background). In this con-
text, we have found that for spherically symmetric gauge fields over such conformally flat
metrics, a vacuum Maxwell equation over Minkowski implies a vacuum equation over the
curved background, and this is a well defined type B double copy. Open questions include
whether the type A double copy is valid when the background is not of Kerr-Schild form,
as well as determining the extent of the type B double copy.

Although we started the treatment of the classical double copy by studying its sta-
tionary limit, it is most interesting to study time dependent situations. We first showed
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two examples with rather trivial explicit time dependence, namely plane-waves and shock-
waves.

However, the study of time dependent solutions becomes more involved when we con-
sider the case of solutions in General Relativity and gauge theory that describe accelerating
particles, and thus include radiation. This study was motivated by the fact that there ex-
ist a class of GR solutions in Kerr-Schild form to describe accelerated particles. However,
unlike the past examples where we had vacuum solutions, in this case there exists an
additional stress energy tensor, corresponding to a null fluid. This source term has a nice
physical interpretation that we describe below.

The procedure to construct the single copy is the same as for the stationary case, with
the novelty that the Maxwell-like equations also yield a source term in the form of a null
current. This null current and the null-fluid stress energy tensor in the gravity solution
are related in a classical double copy-like fashion. Indeed, we can obtain the source term
in the gravity side by taking a second copy of the vector appearing in the current, while
we leave untouched the scalar part. There is a discrepancy in the numerical factors of the
sources, but this fits a larger picture involving scattering amplitudes.

We noted that the current obtained from the single copy encodes the radiation from the
particle. Indeed, we found that the Kerr-Schild-like vector field corresponds to a boosted
Coulomb solution. Therefore, all the radiation effects need to be contained in the right
hand side of the equation. This behaviour also occurs in the gravity side. Indeed, the
linearisation of the Einstein tensor hints that it should be unable to encode the non-linear
effects of radiation. We can go beyond this and note that the Kerr-Schild vector is twist-
free. This implies the solution has Petrov type D, so it cannot contain radiation. Thus,
all the radiation effects must be included in the energy momentum tensor.

It is an interesting fact that both sources contain the radiation effects and also satisfy
a double copy relation. To further understand this, we studied the case of a particle that
suffers a sudden acceleration during an infinitesimal time. We found that the Fourier
transform of the current in gauge theory corresponds to the scattering amplitude for
Bremsstrahlung. This led us to interpret the Fourier transform of the null fluid energy-
momentum tensor on the gravity side as the scattering amplitude for the emission of
gravitons.

Working in momentum space (after taking the Fourier transform), this is, with scat-
tering amplitudes instead of solutions, the numerical factors between the two theories
perfectly match, and the double copy becomes evident. We interpret this as strong evi-
dence of the classical double copy being the same as the BCJ double copy.

We found, however, that the gravity solution we considered fails to satisfy the energy
conditions (which are considered the test of physicality for a system). It should have,
perhaps, been expected that this would happen, because we are not taking into account
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what accelerates the particle under study. In the gauge theory this poses no problem,
since the agent responsible for this effect may be an external background field. However,
because of the equivalence principle, any field that accelerates the particle contains energy
and should then modify the metric.

The second part of the thesis focuses on applying the double copy formalism to perform
computations in classical gravity by exploiting the relative simplicity of gauge theories.
This is, in some sense, closer to the approach used by BCJ to compute integrands in su-
pergravity. Unlike the results in the first part, where the Kerr-Schild condition linearises
the Ricci tensor, and thus restricts the traetment to solutions of a linear (or linearised)
gauge theory, in this case, we start with a (full) non-abelian theory. Of course, this comes
at the cost of needing to treat the problem in a perturbative manner, since we are no
longer working with exact solutions.

The idea of obtaining classical solutions order by order from a perturbation theory
was first exploited by Duff, who showed that the Schwarzschild metric can be obtained
by computing tree-graphs of a quantum gravity theory. In the original paper, he obtained
results up to second order in the gravitational constant G. The results should be straight-
forwardly generalized to higher orders in G, but the complexity of the computation is
prohibitive. (Actually, in a related front, he went on to compute quantum corrections to
the metric).

We repeated this exercise using, instead of the Einstein-Hilbert Lagrangian, one ob-
tained as a “double copy” of a Yang-Mills Lagrangian that was tailored to satisfy colour
kinematics duality. Such a Lagrangian requires the introduction of auxiliary fields. We
identified a double copy of the gluon field Aµ with the field Hµν , that we call the fat
graviton, and using the double copy-inspired Lagrangian it is easy to compute its value
up to third order in G by using the Duff approach . However, unlike Duff’s computation,
where the interpretation of the result is straightforward (the VEV of the graviton gives
the classical perturbation of the Minkowski metric) we need further work to interpret our
results.

This is because, in particular, we considered solutions that correspond to double copies
of a non-supersymmetric Yang-Mills theory. Such a theory is (somewhat jokingly) referred
to as N = 0 supergravity, and in principle contains the degrees of freedom of a graviton
hµν (although in practice we use hµν), a dilaton φ and the antisymmetric 2-form Bµν (in 4
dimensions, this is equivalent to the axion χ). All the information of our component fields
is contained in the fat graviton. The means to extract the component (or skinny) fields
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from the fat graviton are central to our story. Before going into detail, let us comment on
the method to obtain the solutions (we use this instead of Feynman diagrams).

For a distribution of charges, one perturbatively solves the Yang-Mills equation for the
gauge field Aµa, and the solution for the fat graviton is given by double copying the gauge
theory expression according to BCJ rules. That is, leave the propagators unchanged, sub-
stitute coupling constants, and replace colour factors with a second copy of the kinematic
information (interaction vertices). Once we have a fat graviton, the method to extract
the skinny information from it is based on the so-called guts equation. This is exact in
the linearised level, and it comes simply from the fact that all the fields behave as plane
waves. To higher order in perturbation theory, the guts equation needs a correction T µν ,
that we call a transformation function as, being supposed to vanish on shell we interpret it
as encoding the possible gauge transformation and field redefinition freedom. In practice,
to obtain it we have matched our fat graviton solution to a conventional perturbative
solution of the N = 0 equations. Once obtained, however, it can be used for arbitrary
distributions. In order to test the approach, we developed the example of the simplest
possible fat graviton that satisfies the linear (wave) equation of motion for the fat graviton.
We start with a stationary point source in Yang-Mills, and double copy it to the simplest
possible fat graviton. This results in the JNW metric, which has a naked singularity with
a non-zero scalar field φ, where the mass and the dilaton charge are the same.

However, it was also noted that choosing carefully the fat graviton is equivalent to
choosing whether or not to source the dilaton. This is similar to an aspect in amplitudes
that it is possible to choose polarization states in the gauge theory such that the dilaton
and the 2-form are sourced or not. As mentioned earlier, the ultimate goal of this program
is to apply it to astrophysical problems, namely, to calculate gravitational observables for
relevant physical sources. Related ideas are considered in ref. [157], where solutions of
(radiating) dilaton gravity are obtained as a double copy of the solutions of classical
Yang-Mills equations coupled to dynamical point particles carrying colour charge. This
formalism has been extended to obtain radiating classical solutions to a biadjoint scalar
theory from the Yang-Mills solution. This is similar to what we call the zeroth copy. As
we have seen, it is possible to extend the transformation function formalism to higher
orders, in order to extract the skinny fields from a fat graviton. However, it might be the
case that we are able to extract physical information from the double copy without the
need of explicitly computing the skinny fields, by calculating physical observables, which
must be manifestly invariant under gauge transformations and field redefinitions, like the
radiated energy-momentum as computed in [157].

These are very exciting times for physics, as the recent discoveries by the LIGO and
VIRGO collaborations signal the dawn of gravitational wave astronomy. As the field moves
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towards a precision measurements era, we believe new methods, like those reviewed in this
thesis, will be useful to help revolutionise science and achieve ground breaking discoveries.



Appendix A

Derivatives of retarded quantities

In chapter 6, in order to establish a geometric interpretation of the Kerr-Schild ansatz, we
used the expressions.

∂αr = kα∆ + λα, ∆ ≡ (−1 + rk · λ̇),

∂αkβ = r−1[ηαβ − kβλα − kαλβ − kαkβ∆], (A.1)

∂αλβ = kαλ̇β, ∂αλ̇β = kαλ̈β.

These are derivatives with respect to xν . In this appendix, we show how to compute
derivatives of these and other quantities. In order to do so we’ll take a detour, and
analyse the solution in classical electrodynamics that describes the fields generated by
an accelerated particle. It is called the Liénard-Wiechert potential and we will now go
through its derivation.

A.1 The Liénard-Wiechert potential

We want to solve the Maxwell equation (over a flat background),

∂µF
µν = jν , (A.2)

where the field-strength tensor F µν is defined as usual by F µν = ∂µAν − ∂νAµ. Then,
considering Lorenz gauge ∂µAµ = 0, the Maxwell equations reduce to the wave equation

∂2Aν = jν , (A.3)

and we consider jν to be the current vector for a point particle,

jν(x) = e

∫
dτλνδ4(x− y(τ)), (A.4)
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where yµ(τ) describes the world line of the particle, and λ(τ) is its proper time derivative.
The solution for eq. (A.3) takes the form

Aµ = k

∫
d4x′G(x− x′)jµ(x′), (A.5)

where G(x− x′) is called a Green function of the d’Alembertian operator, and is defined
by

∂2G(x− x′) = δ(x− x′). (A.6)

One such Green function, known as “retarded” can be written in the manifestly covariant
form

GR(x) =
1

2π
Θ(x0)δ(x2). (A.7)

Note that this is truly covariant, since proper Lorentz transformations can’t change the sign
of x0, thus keeping the Heaviside function invariant. With this retarded Green function
in hand, we may now insert the tensor (A.4) into the perturbation (A.5), we get the
expression,

Aµ = k

∫
d4x′dτ

1

2π
Θ(x0 − x′ 0)δ((x− x′)2)eλµδ

4(x′ − y(τ)). (A.8)

We can now perform the integration over x′ using δ4(x′ − y(τ)). This yields

Aµ =
ke

2π

∫
dτΘ(x0 − y(τ) 0)δ((x− y(τ))2)λµ. (A.9)

One relation that will be very important from now on is1

Θ(x0 − y(τ) 0)δ((x− y(τ))2) =
δ(τ − τ∗)

2(x− y(τ)) · λ
. (A.10)

Inserting this result into eq. (A.9), we get

Aµ =
ke

2π

∫
dτ

δ(τ − τ∗)
2(x− y(τ)) · λ

λµ

=
ke

2π

λµ
2(x− y(τ)) · λ

∣∣∣∣
ret
. (A.11)

1This is derived, for example, in Jackson [196].
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In the last equation, the label “ret" means we evaluate the expression in the retarded time
τ = τ∗.

A.2 Derivatives

We will now apply the ideas of the last section to compute spacetime derivatives of the
retarded distance r, and the null vector kµ. The most important piece of information now
is the relation eq. (A.10). Recalling the definition for the vector Rµ of eq. (6.8), that
equation can be cast into the form

Θ(R0)δ(R2) =
δ(τ − τ∗)

2R · λ
. (A.12)

Using eq. (A.12), we get∫
dτΘ(R0)δ(R2)f =

∫
dτ
δ(τ − τ∗)

2R · λ
f. (A.13)

Finally, we use the definition of the retarded distance eq. (6.6) to write

f

2r

∣∣∣∣
ret.

=

∫
dτΘ(R0)δ(R2)f. (A.14)

We are now ready to obtain a spacetime derivative of the retarded distance r with the aid
of eq. (A.14). Considering the case f = 1, we have

1

2r

∣∣∣∣
ret.

=

∫
dτΘ(R0)δ(R2), (A.15)

and the derivative of this is2

∂µ

(
1

2r

)
= ∂µ

∫
dτΘ(R0)δ(R2)

− 1

2r2
∂µr =

∫
dτΘ(R0)∂µδ(R

2). (A.16)

In principle, the spatial derivative should also act over Θ(R0) and this yields a Dirac delta
function, which results in t heo evaluation of the function at the point yµ(τ). However,
since we are working with point charges, we are interested in computing things away from
that point, so we ignore that part. The last important relation we need (but are not

2From now on we drop the "ret" label. Quantities inside integrals are non-retarded, though.
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proving now) is

∂µδ(R
2) = − Rµ

R · λ
d

dτ
δ(R2). (A.17)

Now, inserting eq. (A.17) in eq. (A.16) we obtain

− 1

2r2
∂µr = −

∫
dτΘ(R0)

Rµ

R · λ
d

dτ
δ(R2)

=

∫
dτΘ(R0)δ(R2)

d

dτ

(
Rµ

r

)
. (A.18)

In the last line, we integrated by parts. In principle, the operator d
dτ

should also act
over Θ(R0), but we’ll ignore this, since it would yield a term evaluated on the particle
world-line. Using again (although in an inverse way) eq. (A.14), we get

− 1

2r2
∂µr =

1

2r

d

dτ

(
Rµ

r

)
. (A.19)

To evaluate the derivative appearing in eq (A.24),

d

dτ

(
Rµ

r

)
=

d
dτ
Rµ

r
−
Rµ

d
dτ
r

r2
, (A.20)

we need an expression for the derivative in τ of the retarded distance. This is

d

dτ
r =

d

dτ
(R · λ)

= −λ · λ+R · λ̇

= 1 + rk · λ̇. (A.21)

We put everything together to obtain the expression

− 1

2r2
∂µr =

1

2r2
[−λµ − kµ(1 + rk · λ̇)], (A.22)

which finally yields the result

∂µr = λµ + kµ(1 + rk · λ̇). (A.23)

We may now obtain an expression for the spacetime derivative of the vector kµ. To do
this, we start by noting that, from eqs. (6.9) and (A.14), we can write

kµ
2

=
Rµ

2r
=

∫
dτΘ(R0)δ(R2)Rµ. (A.24)
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With this expression in hand, we can differentiate to get

1

2
∂νkµ =

∫
dτΘ(R0)δ(R2)∂νRµ +

∫
dτΘ(R0)∂νδ(R

2)Rµ.

From the definition eq. (6.8) it is straightforward to find ∂νRµ = ηµν . Using also eq.
(A.17), we have

1

2
∂νkµ =

∫
dτΘ(R0)δ(R2)ηνµ +

∫
dτΘ(R0)δ(R2)

d

dτ

(
RνRµ

r

)
,

=

∫
dτΘ(R0)δ(R2)

[
ηνµ +

d

dτ

(
RνRµ

r

)]
,

and using eq. (A.14) we may write

1

2
∂νkµ =

1

2r

[
ηνµ +

d

dτ

(
RνRµ

r

)]
. (A.25)

We need now to evaluate the proper time derivative

d

dτ

(
RνRµ

r

)
=

1

r

(
Rµ

d

dτ
Rν +Rν

d

dτ
Rµ

)
− 1

r2
RµRν

d

dτ
r

= −kµλν − kνλµ − kµkν(1 + rk · λ̇). (A.26)

In the last line we used the result from eq. (A.21). Inserting eq. (A.26) in eq. (A.25) we
get our result:

∂µkν = r−1[ηµν − kµλν − kνλµ − kµkν(1 + rk · λ̇)]. (A.27)

A.3 Direct techniques

Although we have obtained the identities eqs. (A.23) and (A.27) for the spacetime deriva-
tives of kµ and r, the method of the last section is rather slow. We will show that this can
be done in a more immediate (though less thorough) way. We start with the derivative of
r by differentiating its definition (eq. (6.6))

r = λµ(xµ − yµ), (A.28)

to get

∂r

∂xν
= λµ

∂

∂xν
(xµ − yµ) +

∂λµ
∂xν

(xµ − yµ)

= λµδ
µ
ν − λµ

∂yµ

∂xν
+
∂λµ
∂xν

rkµ.
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In the last line, we’ve used eq. (6.9), to substitute (xµ − yµ) with rkµ. Now, using the
chain rule

∂r

∂xν
= λν −

∂τ

∂xν
∂yµ

∂τ
λµ +

∂τ

∂xν
∂λµ
∂τ

rkµ

= λν −
∂τ

∂xν
λµλµ +

∂τ

∂xν
λ̇µrk

µ.

Finally we can write

∂r

∂xν
= λν +

∂τ

∂xν
+

∂τ

∂xν
λ̇µrk

µ

= λν + kν(1 + rλ̇µk
µ),

using the relation (eq. (6.5))

∂τ

∂xν
= kν . (A.29)

We turn now our attention to the derivative of kµ. We start with its definition (eq.
(6.7))

kµ = r−1(xµ − yµ). (A.30)

We then differentiate that expression and obtain

∂νkµ = − 1

r2
(xµ − yµ)∂νr + r−1(ηµν − ∂νyµ)

= −r−1kµ∂νr + r−1(ηµν − kνλµ). (A.31)

In the last line, we again used eq. (6.9) to substitute (xµ − yµ) with rkµ as well as the
relation

∂νyµ =
∂τ

∂xν
∂yµ
∂τ

= kνλµ. (A.32)

Regrouping the terms in eq. (A.31), we have

∂νkµ = r−1(−kµ∂νr + ηµν − kνλµ)

= r−1(−kµ(kν(1 + rkαλ̇
α) + λν) + ηµν − kνλµ),

where, in the last line, we have inserted eq. (A.23). Finally, a rewrite of this gives

∂νkµ = r−1(−kµkν(1 + rkαλ̇
α)− kµλν + ηµν − kνλµ)

= r−1(ηµν − kµλν − kνλµ − kµkν(1 + rkαλ̇
α)), (A.33)
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which is the same as eq. (A.27). Finally, the use of the chain rule, along with eq. (A.29),
renders straightforward the proof of the identities

∂αλβ = kαλ̇β, ∂αλ̇β = kαλ̈β. (A.34)



Appendix B

Some Fourier computations

B.1 Computing integrals

In chapter 7 we encountered the Fourier transform integrals

pij(~x) ≡ κ4

16

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~x1 δ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
3

~k2
1
~k2

2
~k2

3

T00(~k2)T00(~k3), (B.1)

f ij(~x) ≡ κ4

16

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~x1 δ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
2

~k2
1
~k2

2
~k2

3

T00(~k2)T00(~k3), (B.2)

where T00(k) = Mδ̄(k0). In this appendix we show explicitly how to solve them. The first
step is to show that they satisfy the simple relations

f ij(~x) =
1

∇2
(V ∂i∂jV ), (B.3)

pij(~x) =
1

∇2
(∂iV ∂jV ). (B.4)

To do so, we can note that using the explicit form of T00 and the definition

V (x) ≡ κ2

4

∫
d̄4k

eikx

k2
T00(k), (B.5)

we can perform the trivial integration in the k0 component to obtain the expression

V (~x) =
κ2

4

∫
d̄3k

ei
~k·~x

~k2
T00(~k), (B.6)

and thus

∂iV (~x)∂jV (~x) = −κ
4

16

∫
d̄3k2d̄

3k3
ki2k

j
3

~k2
2
~k2

3

ei(
~k2+~k3)·~xT00(~k2)T00(~k3). (B.7)
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Now, defining ρ(~x) ≡ ∂iV (~x)∂jV (~x), we can take its Fourier transform

ρ(~k1) =

∫
d̄3xe−i

~k1·~x∂iV (~x)∂jV (~x), (B.8)

and inserting here eq. (B.7), we have

ρ(~k1) =
κ4

16

∫
d̄3xd̄3k2d̄

3k3e
i(~k1+~k2+~k3)·~x k

i
2k

j
3

~k2
2
~k2

3

T00(~k2)T00(~k3). (B.9)

Performing the integration over x yields the expression

ρ(~k1) =
κ4

16

∫
d̄3k2d̄

3k3δ̄
(3)(~k1 + ~k2 + ~k3)

ki2k
j
3

~k2
2
~k2

3

T00(~k2)T00(~k3). (B.10)

Finally, transforming back to position space, we have

1

∇2
(∂iV ∂jV )(~x) =

κ4

16

∫
d̄3k1d̄

3k2d̄
3k3e

i~k1·~xδ̄(3)(~k1 + ~k2 + ~k3)
ki2k

j
3

~k2
1
~k2

2
~k2

3

T00(~k2)T00(~k3),(B.11)

and comparing with the definition eq. (B.1), we have proven

pij(~x) =
1

∇2
(∂iV ∂jV ). (B.12)

Using an analogous process we can show the equality

f ij(~x) =
1

∇2
(V ∂i∂jV ). (B.13)

A second step now is to look for particular solutions of

∇2pij(~x) = ∂iV (~x)∂jV (~x), (B.14)

∇2f ij(~x) = V (~x)∂i∂jV (~x). (B.15)

We will use the singularity as a boundary condition, which greatly simplifies the computa-
tion, since we circumvent the fact of the integrals being divergent1. This may be achieved
by inspection. Indeed

∇2fxx(~x) = V (~x)(∂x∂xV (~x)),

=
G2M2

r
∂x∂x

1

r
,

= −G2M2

(
−2x2 + y2 + z2

r6

)
. (B.16)

1Credit is due to Niclas Westerberg, who developed such techniques in [215].
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It is easy to show that this equation is solved by

fxx(~x) = −G
2M2

2

(
x2 − 1

2
(y2 + z2)

r4

)
. (B.17)

Actually, we can extend this logic to obtain the relations

∇2f ij = −G2M2

(
r2ηij − 3xixj

r6

)
, (B.18)

∇2pij = −G2M2

(
xixj

r6

)
, (B.19)

that will be equivalent to

f ij = −G
2M2

4

(
3xixj − r2ηij

r4

)
, (B.20)

pij = −G
2M2

4

(
xixj − r2ηij

r4

)
. (B.21)
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