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Abstract
The absolute/relative debate on the nature of space and time is ongoing for

thousands of years. Here we attempt to investigate space and time from the
information theoretic point of view to understand spatial and temporal correlations
under the relative assumption. Correlations, as a measure of relationship between
two quantities, do not distinguish space and time in classical probability theory;
quantum correlations in space are well-studied but temporal correlations are not
well understood. The thesis investigates quantum correlations in space-time, by
treating temporal correlations equally in form as spatial correlations and unifying
quantum correlations in space and time. In particular, we follow the pseudo-
density matrix formalism in which quantum states in spacetime are properly
defined by correlations from measurements.

We first review classical correlations, quantum correlations in space and time,
to motivate the pseudo-density matrix formalism in finite dimensions. Next we
generalise the pseudo-density matrix formulation to continuous variables and
general measurements. Specifically, we define Gaussian spacetime states by the
first two statistical moments, and for general continuous variables spacetime states
are defined via the Wigner function representation. We also define spacetime
quantum states in position measurements and weak measurements for general
measurement processes. Then we compare the pseudo-density matrix formalism
with other spacetime formulations: indefinite causal structures, consistent his-
tories, generalised non-local games, out-of-time-order correlation functions, and
path integrals. We argue that in non-relativistic quantum mechanics, different
spacetime formulations are closely related and almost equivalent via quantum
correlations, except path integrals. Finally, we apply the pseudo-density matrix
formulation to time crystals. By defining time crystals as long-range order in
time, we analyse continuous and discrete time translation symmetry as well as
discuss the existence of time crystals from an algebraic point of view. Finally,
we summarise our work and provide the outlook for future directions.
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“Space and time are the pure forms thereof; sensation the matter.”

— Immanuel Kant, Critique of Pure Reason
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Abstract

The absolute/relative debate on the nature of space and time is ongoing for
thousands of years. Here we attempt to investigate space and time from the
information theoretic point of view to understand spatial and temporal correlations
under the relative assumption. Correlations, as a measure of relationship between
two quantities, do not distinguish space and time in classical probability theory;
quantum correlations in space are well-studied but temporal correlations are not
well understood. The thesis investigates quantum correlations in space-time, by
treating temporal correlations equally in form as spatial correlations and unifying
quantum correlations in space and time. In particular, we follow the pseudo-density
matrix formalism in which quantum states in spacetime are properly defined by
correlations from measurements.

We first review classical correlations, quantum correlations in space and time,
to motivate the pseudo-density matrix formalism in finite dimensions. Next we
generalise the pseudo-density matrix formulation to continuous variables and general
measurements. Specifically, we define Gaussian spacetime states by the first two
statistical moments, and for general continuous variables spacetime states are
defined via the Wigner function representation. We also define spacetime quantum
states in position measurements and weak measurements for general measurement
processes. Then we compare the pseudo-density matrix formalism with other
spacetime formulations: indefinite causal structures, consistent histories, generalised
non-local games, out-of-time-order correlation functions, and path integrals. We
argue that in non-relativistic quantum mechanics, different spacetime formulations
are closely related and almost equivalent via quantum correlations, except path
integrals. Finally, we apply the pseudo-density matrix formulation to time crystals.
By defining time crystals as long-range order in time, we analyse continuous and
discrete time translation symmetry as well as discuss the existence of time crystals
from an algebraic point of view. Finally, we summarise our work and provide
the outlook for future directions.
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What is time?

The intrinsic motivation for all the work in the thesis is to get a little bit

closer to this question.

In general, there are three schools that hold different views on time. As Page

and Wootters argue in their famous “evolution without evolution” paper [1], all the

observables which commute with the Hamiltonian are stationary and the dynamics

of a system we observe can be fully described by stationary observable dependent

upon internal clock readings. Barbour [2] also believes in the timeless universe

where time does not exist and is merely an illusion. They claim that in general

relativity, especially in the equivalent Arnowitt-Deser-Misner (ADM) formalism [3],

the dynamics is embedded in three-dimensional Riemannian spaces rather than

the four-dimensional spacetime since one dimension can be arbitrarily chosen. Not

to mention quantum cosmology [4], where quantum mechanics is applied to the

whole universe, the Wheeler-Dewitt equation [5] serves as a stationary Schrödinger

equation for the wave function of the universe.

However, Smolin and his colleagues [6, 7] hold the opposite point of view; that

is, time is fundamental in nature. They claim that in the Newtonian paradigm [8],

questions such as why the laws and why these initial conditions remain unanswered.

They believe that the reality of time is important in selecting the fundamental

laws of physics and construct an ultimate theory of the whole universe instead

of part of the universe.

Nevertheless, we have no evidence to judge the above two views on time, whether

time does not exist or time is fundamental so far. Instead in this thesis, we would

take a practical point of view from the lesson of relativity: time may be treated as

an equal footing as space. Both special relativity and general relativity treat time

as part of spacetime and gain beautiful results which have already been verified.

What’s more, treating time operationally equal as space, also provides one possible

method to study time following the methods for investigating space.

More specifically, we investigate time from the quantum information perspective

in terms of temporal correlations, as an analogue of spatial correlations. Spatial
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correlations like entanglement, nonlocality, steering, and discord, are well-studied

in quantum information. We know that physicists have been working for decades in

search for a way to quantise space-time and trying to build a theory for quantum

gravity. That is not the goal for this thesis. Here, we focus on the quantum

information side of spacetime; more precisely, our topic is restricted to quantum

correlations in non-relativistic space-time.

We start from a particular kind of space-time formulation called pseudo-density

matrix formalism which treats temporal correlations as spatial correlations, fur-

ther generalise this formulation to continuous variables and general measurement

processes, compare it with other space-time formulations via quantum correlations

and argue that these non-relativistic space-time formulations are very much related,

and apply the pseudo-density matrix formalism to time crystals to show its

practical power.

The thesis proceeds as follows. In Chapter 2, we introduce quantum correlations

in space-time. We first introduce classical correlations in probability theory and

statistical mechanics. After introducing the basics for quantum mechanics, we

review quantum correlations in space. In bipartite quantum correlations, we discuss

correlation and entanglement, the difference among Bell nonlocality, steering and

entanglement, other quantum correlations as quantum discord, and formulate

the hierarchy of quantum correlations in space based on operator algebra. We

briefly mention multipartite quantum correlations. Then we move on to quantum

correlations in time. From the correlations in field theory, we explore a further

possibility for temporal correlations and propose a unified approach for quantum

correlations in space and time to motivate pseudo-density matrices. Finally we

formally introduce the pseudo-density matrix formalism.

In Chapter 3, we fully generalise the pseudo-density matrix formalism to

continuous variables and general measurement processes. Pseudo-density matrix

formalism is based on building measurement correlations; the key for generalisation

is to choose the right measurement operators. For the Gaussian case, we simply

extend the correlations to the temporal domain by quadratures measurements and
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compare the spatial vs temporal Gaussian states. For general continuous variables,

we use the Wigner function representation and its one-to-one correspondence with

the density matrix formalism to define spacetime states, and compare the properties

of spacetime Wigner functions with the uniquely determined properties of normal

Wigner functions. We further generalise the formalism for general measurement

processes like position measurements and weak measurements. We also give an

experimental proposal for tomography in the Gaussian case. Before coming to

the end, we compare spacetime states in the generalised pseudo-density matrix

formalism and make further comments.

In Chapter 4, we compare spatial-temporal correlations in pseudo-density matrix

formalism with correlations in other spacetime formulations. In particular, we

analyse indefinite causal structures, consistent histories, generalised non-local games,

out-of-time-order correlation functions, and path integrals. We aim to argue, in

non-relativistic quantum mechanics, spacetime formulations are closely related via

quantum correlations. We also take lessons from these spacetime formulations

and further develop the pseudo-density matrix formalism. In the section of out-of-

time-order correlation functions, we discuss their possible application in the black

hole final state projection proposal, as one of possible explanations for black hole

information paradox. The path integral approach gives a different representation

of quantum correlations and suggests interesting properties for quantum measure

and relativistic quantum information.

In Chapter 5, we use time crystals as an illustration of temporal correlations, or

more specifically, long-range order in time. We first review spontaneous symmetry

breaking, time translation symmetry breaking and different mathematical definitions

for time crystals. After formally introducing long-range order, we define time

crystals as long-range order in time in the pseudo-density matrix formulation. To

illustrate what time crystals are, we consider continuous time translation symmetry

in terms of general decoherent processes and a generalised version of Mermin-

Wagner theorem, and discuss discrete time translation symmetry via a stabilisation

protocol of quantum computation, phase flip codes of quantum error correction
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and Floquet many-body localisation. We also use an algebraic point of view to

analyse the existence of time crystals.

Chapter 6 is for the conclusion and outlook.
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2.1 Classical correlations

In this section we introduce classical correlations in probability theory and statistical

mechanics. In the classical case, it is not necessary to distinguish spatial or

temporal correlations; that is, classical correlations are defined whatever the

spatio-temporal structures are.

2.1.1 Correlations in probability theory

Now we introduce correlations defined in probability theory based on Ref. [9]. For a

discrete random variable X with the probability mass function p(x) = P{X = x},

the expectation value of X is defined as E[X] = ∑
x:p(x)>0 xp(x). For a continuous

random variable X with the probability density function f(x) such that P{a ≤

X ≤ b} =
∫ b
a f(x)dx, the expectation value of X is defined as E[X] =

∫∞
−∞ xf(x)dx.

The variance of X is defined as Var(X) = E[(X − E[X])2]. This definition is

equivalent to Var(X) = E[X2] − (E[X])2.

For two random variables X and Y , the covariance is defined as Cov(X, Y ) =

E[(X −E[X])(Y −E[Y ])]. It is easy to see that Cov(X, Y ) = E[XY ]−E[X]E[Y ].

Then we define the correlation of X and Y as

Corr(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

(2.1)

It is also referred to the Pearson product-moment correlation coefficient or the

bivariate correlation, as a measure for the linear correlation between X and Y .

2.1.2 Correlations in statistical mechanics

In statistical mechanics [10], the equilibrium correlation function for two random vari-

ables S1 at position x and time t and S2 at position x+r and time t+τ is defined as

C(r, τ) = 〈S1(x, t)S2(x + r, t+ τ)〉 − 〈S1(x, t)〉〈S2(x + r, t+ τ)〉, (2.2)

where 〈O〉 is the thermal average of the random variable O; it is usually averaged

over the whole phase space of the system. That is,

〈O〉 =
∫
Oe−βH(q1,...,qm,p1,...,pn)dτ∫
e−βH(q1,...,qm,p1,...,pn)dτ , (2.3)
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where β = 1/kBT , kB is Boltzmann constant and T is the temperature, H is the

Hamiltonian of the classical system in terms of coordinates qi and their conjugate

generalised momenta pi, and dτ is the volume element of the classical phase space. In

particular, the equal-time spin-spin correlation function for two Ising spins is given as

Ct(r) = 〈S(x, t)S(x + r, t)〉 − 〈S(x, t)〉〈S(x + r, t)〉. (2.4)

It is used as a measure for spatial coherence for how much information a spin can

influence its distant neighbours. Taking the limit of r to infinity, we obtain the

long-range order for which correlations remain non-zero even in the long distance.

2.2 Quantum correlations in space

In this section, we introduce quantum correlations in space. First we review briefly

on basics of quantum mechanics. Then we introduce bipartite quantum correlations,

in terms of entanglement, steering, nonlocality and discord. We also list the

hierarchy of spatial quantum correlations in terms of operator algebra. Finally

we mention multipartite quantum correlations in brief.

2.2.1 Basics for quantum mechanics

In this subsection we briefly review the axioms of quantum mechanics and introduce

the concept of quantum states.

Axioms of quantum mechanics

We introduce the five axioms of quantum mechanics [11–13].

(1) The state in an isolated physical system is represented by a vector, for

example, |ψ〉, in the Hilbert space H which is a complex vector space with an

inner product. A system is completely described by normalised state vectors

in the Hilbert space.

(2) An observable is represented by an Hermitian operator with A† = A.
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(3) Suppose the system is measured by a collection of measurement opera-

tors {Mm} with measurement outcomes {m}. With the initial state |ψ〉, after

measurements the result m comes with the probability

p(m) = 〈ψ|M †
mMm |ψ〉 (2.5)

and the state becomes

Mm |ψ〉√
〈ψ|M †

mMm |ψ〉
(2.6)

The measurement operators satisfy ∑mM
†
mMm = 1, then the probabilities sum to 1.

According to Wigner’s theorem, for any transformation |ψ〉 → |ψ′〉 in which

the probabilities for a complete set of states collapsing into another complete

set | 〈ψ|ψn〉 |2 = | 〈ψ′|ψ′n〉 |2 hold the same, we may define an operator U such

that |ψ′〉 = U |ψ〉. Then U is either unitary and linear or else anti-unitary and

anti-linear. Thus, we have

(4) A closed quantum system evolves under unitary transformation. That is,

the state of the system at two times t1 and t2 are related by a unitary operator

U defined by U †U = UU † = 1 such that

|ψ(t2)〉 = U |ψ(t1)〉 . (2.7)

It is equivalent to

(4’) A closed quantum system evolves under Schrödinger equation:

i~
d |ψ〉
dt

= H |ψ〉 (2.8)

H is the Hamiltonian of the quantum system.

In addition, we have another postulate for composite quantum systems.

(5) The Hilbert space of the composite system AB is the tensor productHA⊗HB
of the Hilbert spaces HA and HB for systems A and B. That is, if the system

A is in the state |ψ〉A and the system B is in the state |φ〉B, then the composite

system AB is in the state |ψ〉A ⊗ |φ〉B.
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Quantum states

Here we define quantum states for discrete finite systems, and leave continuous

variables to next chapter.

The state vector is defined as before in terms of a normalised vector in the

Hilbert space: |ψ〉 ∈ H. A pure state is then given by π = |ψ〉 〈ψ| ∈ P. If a

quantum system is in the state |ψi〉 with the probability pi, we call the set {pi, |ψi〉}

as an ensemble of pure states. An arbitrary quantum state is represented by a

density matrix defined as ρ = ∑
i pi |ψi〉 〈ψi| ∈ D [12]. On the one hand, the set

of all possible states D is a convex set, that is, D = ConvP; on the other hand,

the extreme points in the state space are pure states, i.e., P = ExtrD [14]. Note

that the convex hull ConvP of the set P in the complex state space is defined

to be the intersection of all convex sets in the state space that contain P. An

extreme point x of a convex set D is a point such that for y, z ∈ D, 0 < λ < 1,

x = λy + (1 − λ)z implies that x = y = z. [15]

A simple criterion to check whether the state ρ is pure or mixed is that Tr ρ2 = 1

for pure states and Tr ρ2 < 1 for mixed states [12]. Another measure of mixedness

for quantum states is given by the von Neumann entropy S(ρ) = −Tr ρ log ρ [16].

It is non-negative and vanishes if and only if ρ is a pure state. The von Neumann

entropy is concave, subadditive and strongly subadditive. According to Schumacher’s

quantum noiseless channel coding theorem [17], it is the amount of quantum

information as the minimum compression scheme of rate.

The distinguishability of states [12] is measured by the quantum relative entropy

D(ρ||σ) = Tr ρ(log ρ−log σ) based on quantum Stein’s lemma. The quantum relative

entropy is jointly convex, non-negative, and vanishes if and only if ρ = σ. Other

distance measures for quantum states include the trace distanceD(ρ, σ) = 1
2 Tr |ρ−σ|

and the fidelity F (ρ, σ) = Tr
√
ρ1/2σρ1/2 or F (ρ, σ) = (Tr

√
ρ1/2σρ1/2)2.

2.2.2 Bipartite quantum correlations

In this subsection, we focus on bipartite quantum correlations. First we introduce

quantum correlation measures based on the distance of the states and compare cor-
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relation with entanglement. Then we compare three types of quantum correlations:

entanglement, steering and Bell nonlocality. After introducing other measures of

quantum correlations such as discord, we use the operator algebraic language to

present the hierarchy of quantum correlations in space.

Correlation and entanglement

As an analog of classical correlations in probability theory, the correlation for the

quantum state itself is defined for Γ = ρ − ρ1 ⊗ ρ2 where ρi is the reduced state

for the subsystem i(i = 1, 2). The covariance for two observables A and B on

the two subsystems separately is then given by

Cov(A,B) = Tr ΓA⊗B (2.9)

Recall that Eqn. (2.1) Corr(X, Y ) = Cov(X,Y )√
Var(X)Var(Y )

. Then we say that the state

is uncorrelated, if and only if Corr(A,B) = 0 for all observables A,B for two

subsystems. This condition is equivalent to 〈AB〉 = 〈A〉〈B〉, as well as ρ = ρ1 ⊗ ρ2.

For a pure state, if the state is correlated, we call it entanglement. For a mixed

state, the state is uncorrelated if and only if ρ = ρ1 ⊗ ρ2 ∈ Dunc, otherwise we call

it correlated. At the same time, the state is separable for a possible decomposition

ρ = ∑
i piπ1,i ⊗ π2,i ∈ Dsep; otherwise it is entangled. Note that Dsep = ConvDunc.

The correlation measure can be given by the distinguishability as the relative entropy

C(ρ) = min
σ∈Dunc

D(ρ||σ) = D(ρ||ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)− S(ρ) = I(ρ); (2.10)

it is equal to the mutual information of the state. Here we only discuss whether

the state is correlated or not; for general quantum correlations, we will introduce

entanglement, steering, Bell nonlocality and discord later.

Entanglement, steering and Bell nonlocality

Here we compare three types of quantum correlations: entanglement, steering

and Bell nonlocality [18].

Bell nonlocality is characterised by the violation of Bell inequalities [19, 20]. In

a typical Bell experiment, two spatially separated systems are measured by two
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distant observers, say Alice and Bob, respectively. Alice may select her measurement

from several possible ones and denote her choice of measurement by x, and gain

the outcome a after the measurement. Bob makes the measurement denoted by

y and gains the outcome b. If there exists a local hidden variable model, then

the probability to obtain the results a and b under the measurements x and y

can be written as

p(a, b|x, y) =
∫

dλp(λ)p(a|x, λ)p(b|y, λ), (2.11)

where the hidden variable λ gives the probability function p(λ), Alice and Bob

yield the outcome under their local probability distributions with the parameter λ.

Given the measurements x, y and the outcomes a, b, the probabilities p(a, b|x, y) in

Eqn. (2.11) satisfy certain linear inequalities which are referred to Bell inequalities.

For some experiments, for example with a pair of entangled qubits, the local hidden

variable model cannot exist and Bell inequalities are violated.

Entanglement is defined as before when a bipartite state cannot be written in

terms of a convex combination of the tensor product of pure states

ρAB =
∑
i

piρ
A
i ⊗ ρBi , (2.12)

otherwise the state is separable. General measurements are represented by positive

operator-valued measures (POVMs). A set of POVMs {Ea|x} satisfying Ea|x > 0,

E†a|x = Ea|x, and ∑
aEa|x = 1 give the probability of gaining the result a in

the state ρ as p(a) = Tr
(
ρEa|x

)
. For a separable state, the probability for the

measurements Ea|x and Eb|y is given as

p(a, b|x, y) =
∑
i

pi Tr
(
Ea|xρ

A
i

)
Tr
(
Eb|yρ

B
i

)
. (2.13)

It is easy to see that it belongs to the local hidden variable models and separable

states are a convex subset of the local hidden variable states.

Quantum steering in a sense lies in-between of entanglement and Bell nonlocality,

where Alice is described by a classical hidden variable and Bob makes a quantum

mechanical measurement. That is, the probability is given by

p(a, b|x, y) =
∫

dλp(λ)p(a|x, λ) Tr
(
Eb|yσ

B
λ

)
. (2.14)
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In the steering scenario, Alice and Bob share a bipartite quantum state ρAB. For

each measurement x and the corresponding outcome a in Alice’s lab, Bob has the

conditional state ρa|x such that ρB = ∑
a ρa|x is independent of Alice’s choice for

the measurement x. The state ρAB is said to be unsteerable or have a local hidden

state model if there is a representation from some parameter λ that

ρa|x =
∫

dλp(λ)p(a|x, λ)σλ; (2.15)

otherwise the state is steerable. In Eqn. (2.14), the probability can be rewritten as

p(a, b|x, y) = Tr
(
Eb|yρa|x

)
, ρa|x =

∫
dλp(λ)p(a|x, λ)σBλ ; (2.16)

thus, the local hidden state model exists.

We can summarise that, the states that have a local hidden variable model and do

not violate Bell inequalities form the convex set of LHV states; the states that have

a local hidden state model and are unsteerable form the convex subset of LHV states,

denoted by LHS states; the separable states form the convex subset of LHS states.

Discord and related measures

Entanglement is crucial in distinguishing quantum correlations from classical ones;

however, it cannot represent for all non-classical correlations, and even separable

states contain correlations which are not fully classical [21]. One of these non-

classical correlation measures is quantum discord [22, 23]. Suppose a POVM

measurement Ea is made on the subsystem A of the initial state ρAB. For the

outcome a, Alice observes it with the probability p(a) = Tr(EaρAB) and Bob

gains the conditional state ρB|a = TrA(EaρAB)/p(a). The conditional entropy

then has a classical-quantum version of definition as S(B|{Ea}) = ∑
a paS(ρB|a).

The quantum discord is defined as

J(B|A) = max
{Ea}

S(B)− S(B|{Ea}). (2.17)

It is non-symmetric, non-negative, invariant under local unitary transformations, and

vanishes if and only if the state is classical quantum. Other measures of quantum
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correlations include quantum deficit [24], distillable common randomness [25],

measurement-induced disturbance [26], symmetric discord [27], relative entropy

of discord and dissonance [28], and so on.

Hierarchy of spatial correlations

Now we introduce the hierarchy of quantum correlations based on Ref. [29]:

Cc ⊆ Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc. (2.18)

Here all the sets are convex, and Cc, Cqa are closed. Consider a two-player non-local

game G with finite input sets IA, IB, finite output sets OA, OB and a function

V : OA ×OB × IA × IB → {0, 1}. Suppose the two players, Alice and Bob, after

given the inputs x ∈ IA and y ∈ IB respectively, cannot communicate with each

other, and return outputs a ∈ OA and b ∈ OB respectively. The players win if

V (a, b|x, y) = 1, or lose if V (a, b|x, y) = 0. The probabilities p(a, b|x, y) that Alice

and Bob return output a ∈ OA and b ∈ OB given inputs x ∈ IA and y ∈ IB form a

collection {p(a, b|x, y)} ⊂ ROA×OB×IA×IB called a correlation matrix.

A correlation matrix {p(a, b|x, y)} is said to be classical under classical strategies

with classical shared randomness. Specifically,

p(a, b|x, y) =
k∑
i=1

λipi(a|x)qi(b|y) for all(a, b, x, y) ∈ OA ×OB × IA × IB, (2.19)

for a probability distribution {λi} on {1, . . . , k}, probability distributions {pi(a|x)}

on OA for each 1 ≤ i ≤ k and x ∈ IA, and probability distributions {qi(b|y)} on

OB for each 1 ≤ i ≤ k and y ∈ IB. Then the set of classical correlation matrices

is denoted by Cc(OA,OB, IA, IB) or Cc.

A quantum correlation matrix is constructed under

p(a, b|x, y) = 〈ψ|Mx
a ⊗N

y
b |ψ〉 for all(a, b, x, y) ∈ OA ×OB × IA × IB (2.20)

for a quantum state |ψ〉 on the finite-dimensional Hilbert spaces H = HA ⊗

HB, projective measurements {Mx
a }a∈OA on HA for every x ∈ IA, and projective

measurements {Ny
b }b∈OB on HB for every y ∈ IB. Then the set of quantum

correlation matrices is denoted by Cq(OA,OB, IA, IB) or Cq.
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If we allow Hilbert spacesHA andHB to be infinite-dimensional, we have another

set of correlation matrices denoted by Cqs. If we take finite-dimensional correlations

to the limit, then the closure of Cq constitutes a new set of correlation matrices

denoted by Cqa. It is known that Cqs ⊆ Cqa and Cqa is also the closure of Cqs [30].

It is easy to see that Cc ⊆ Cq ⊆ Cqs ⊆ Cqa. Bell’s theorem [19] states

that Cc 6= Cq. Slofstra [29] suggests that Cq and Cqs are not closed; that is,

Cq 6= Cqa and Cqs 6= Cqa.

We can even drop the restriction on tensor product structures and define

correlation matrices in terms of commuting operators. Then

p(a, b|x, y) = 〈ψ|Mx
aN

y
b |ψ〉 for all(a, b, x, y) ∈ OA ×OB × IA × IB (2.21)

for Mx
aN

y
b = Ny

bM
x
a with {Mx

a }a∈OA on H for every x ∈ IA, and projective

measurements {Ny
b }b∈OB on H for every y ∈ IB. This set of correlation matrices

is denoted by Cqc. To determine whether Cqc is equal to Cq, Cqs or Cqa is known

as Tsirelson’s problem [31, 32]. It is proven that Cqs 6= Cqc [33]. A recent result

further solves the problem and concludes that Cqa 6= Cqc [34].

2.2.3 Multipartite quantum correlations

As a direct generalisation of bipartite separability, full separability [35] is defined

as n-separability of n systems A1 . . . An: ρA1...An = ∑k
i=1 piρ

i
A1 ⊗ · · · ⊗ ρ

i
An where

k ≤ dimH2
A1...An is known as the Caratheodory bound. Multipartite quantum

correlations are also defined in terms of subsystems and partitions. Consider a

quantum state |ψ〉 of n subsystems. If it can be written as the tensor product of

m disjoint subsets |ψ〉 = ⊗m
i=1 |ψi〉, then it is said to be m-separable (2 ≤ m ≤

n). |ψ〉 is said to be k-producible if the largest subset for |ψi〉 has at most k

subsystems. For a mixed state ρ, it is m-separable or k-producible if it has a

decomposition of m-separable or k-producible pure states [36]. In particular, the

state ρA1...Am is semiseparable if and only if it is separable under all 1 − (m − 1)

partitions: {I1 = {k}, I2 = {1, . . . , k − 1, k + 1, . . . ,m}}, 1 ≤ k ≤ m. Multipartite

quantum correlations have much more rich structures and a full characterisation for

multipartite quantum correlations remains as an important open problem.
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2.3 Quantum correlations in time

In this section we introduce quantum correlations defined in quantum field theory

and explore further possibilities for correlations which are defined in an even-handed

manner for space and time. We also aim towards a unified approach for quantum

correlations in space and time.

2.3.1 Correlations in quantum field theory

In quantum field theory [37], the n-point correlation function for the field operator

φ(x) is usually defined in the ground state |Ω〉 as

Cn(x1, x2, . . . , xn) = 〈Ω| T φ(x1)φ(x2) · · ·φ(xn) |Ω〉 (2.22)

where T O1(t1)O2(t2) = θ(t1 − t2)O1(t1)O2(t2) + θ(t2 − t1)O2(t2)O1(t1) is the time-

ordering operator. For example, consider a perturbation for interacting fields

with the Hamiltonian divided by H = H0 + Hint. With the unitary operator

U(t, t0) = eiH0(t−t0)e−iH(t−t0), the Schrödinger equation is written equivalently as

i ∂
∂t
U(t, t0) = HI(t)U(t, t0) where HI(t) = eiH0(t−t0)Hinte

−iH0(t−t0). Then the two-

point correlation function is given as

〈Ω| T {φ(x)φ(y)} |Ω〉 = lim
T→∞(1−iε)

〈0| T {φI(x)φI(y) exp
[
−i
∫ T
−T dtHI(t)

]
} |0〉

〈0| T {exp
[
−i
∫ T
−T dtHI(t)

]
} |0〉

,

(2.23)

where φI(x) is defined through φ(x) = U †(t, t0)φI(x)U(t, t0).

2.3.2 Further possibility for temporal correlations

As we can see from statistical mechanics and field theory, correlations are defined

in terms of thermal states or ground states for the background on spacetime.

Here we are thinking of possibilities of generalising temporal correlations beyond

thermal states or ground states.

One possibility comes from autocorrelation functions. In statistics, the autocor-

relation of a real or complex random process {X(t)} is defined as the expectation
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value of the product of the values at two different times [38]:

rXX(t1, t2) = E[X(t1)X∗(t2)]. (2.24)

Here the complex conjugate guarantees the product to be the square of the magnitude

of the second momentum for X(t) when t1 = t2. It is possible to take the expectation

values of the product of measurement results for observables at different times to

gain the temporal correlations.

Another choice may be to define quantum states in time. Quantum states are

defined across the whole of space but at one instant of time. We associate a Hilbert

space for each spatially separated system and assign the tensor product structure;

it is possible to associate a Hilbert space for each time and define quantum states

in time. Then we may adopt the usual rule for calculating spatial correlations

to analyse temporal correlations.

2.3.3 Towards a unified approach for quantum correlations
in space and time

In the previous subsection, we have discussed further possibilities of temporal

correlations; here we are looking for a unified approach for quantum correlations in

space and time. Following the discussion on quantum states in time, we may define

quantum states across spacetime. We assume that the tensor product structure

should work for Hilbert spaces at different times. Based on the Hilbert spaces

across spacetime, we may define spacetime quantum states and unify temporal

correlations and spatial correlations in the spacetime framework. This proposal

has already been achieved in the pseudo-density matrix formalism as we are about

to introduce in the next section.

2.4 Pseudo-density matrix formalism

In this section, we introduce the pseudo-density matrix formalism [39–44] as a

unified approach for quantum correlations in space and time. We review the

definition of pseudo-density matrices for finite dimensions, present their properties,
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take bipartite correlations as an example to illustrate how the formalism unifies

correlations in space-time.

2.4.1 Definition and properties

The pseudo-density matrix formulation is a finite-dimensional quantum-mechanical

formalism which aims to treat space and time on an equal footing. In general, this

formulation defines an event via making a measurement in space-time and is built

upon correlations from measurement results; thus, it treats temporal correlations

just as spatial correlations and unifies spatio-temporal correlations. As a price to

pay, pseudo-density matrices may not be positive semi-definite.

An n-qubit density matrix can be expanded by Pauli operators in terms of Pauli

correlations which are the expectation values of these Pauli operators. In spacetime,

instead of considering n qubits, let us pick up n events, where a single-qubit Pauli

operator is measured for each. Then, the pseudo-density matrix is defined as

R̂ ≡ 1
2n

3∑
i1=0

...
3∑

in=0
〈{σij}nj=1〉

n⊗
j=1

σij , (2.25)

where 〈{σij}nj=1〉 is the expectation value of the product of these measurement

results for a particular choice of events with operators {σij}nj=1.

Similar to a density matrix, it is Hermitian and unit-trace, but not positive

semi-definite as we mentioned before. If the measurements are space-like separated

or local systems evolve independently, the pseudo-density matrix will reduce to

a standard density matrix. Otherwise, for example if measurements are made in

time, the pseudo-density matrix may have a negative eigenvalue. For example,

we take a single qubit in the state |0〉 at the initial time and assume the identity

evolution between two times. The correlations are 1 for 〈{I, I}〉, 〈{X,X}〉, 〈{Y, Y }〉,

〈{Z,Z}〉, 〈{Z, I}〉, and 〈{I, Z}〉 while all others are given as 0. Then we construct

the pseudo-density matrix for two times as

R =


1 0 0 0
0 0 1

2 0
0 1

2 0 0
0 0 0 0

 , (2.26)
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with eigenvalues {−1
2 , 0,

1
2 , 1}. Thus it is not positive semi-definite and encodes

temporal correlations as a spacetime density matrix.

Furthermore, the single-time marginal of the pseudo-density matrix is given as

the density matrix at that particular time under the partial trace. For any set of

operators Oi with eigenvalues ±1, the expectation values of the measurement

outcomes is given as

〈{Oi}mi=1〉 = Tr
[(

m⊗
i=1

Oi

)
R

]
. (2.27)

Here Oi may be an operator measured on several qubits at the same time. This

suggests that any complete basis of operators with eigenvalues ±1 has the proper

operational meaning for correlations of operators, and thus serves as a good

alternative basis for pseudo-density matrices. Note that pseudo-density matrices

are defined in an operational manner via the measurements of correlations; a

strict mathematical characterisation does not exist yet. A full investigation on

the all possible basis choices remains an open problem. In the following chapters,

we will present several generalisations of pseudo-density matrices with different

measurement basis.

To understand causal relationships, a measure for causal correlations called

causality monotone is proposed, similar to the entanglement monotone. This

causality monotone f(R) is defined when it satisfies the following criteria:

(1) f(R) ≥ 0. In particular, f(R) = 0 if R is positive semi-definite; f(R) = 1

for a single-qubit closed system at two times.

(2) f(R) is invariant under local unitary operations (thus under a local change of

basis).

(3) f(R) is non-increasing under local operations.

(4) ∑i pif(Ri) ≥ f(∑i piRi).

2.4.2 Characterisation of bipartite correlations in space-
time

In this subsection we introduce the work on the characterisation for bipartite

correlations in space-time [40]. Here the spatial correlations are given by all possible
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two-qubit density matrices, and compared with temporal correlations in a single-

qubit pseudo-density matrix at two times under the unitary evolution. There is a

reflection between spatial correlations and temporal correlations in the 〈XX〉−〈ZZ〉

plane of the correlation space {〈σiσi〉}3
i=1. The spatial correlations given in terms

of Pauli measurements are characterised in Ref. [45]. The two-point correlations

tmn = Tr(ρσm ⊗ σn) form a real matrix T . Up to a unitary rotation, tmn is full

characterised by its diagonal terms t11, t22, t33. For any two-qubit density matrix ρ,

the T matrix belongs to the tetrahedron Ts with vertices t = (t11, t22, t33) given as

(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1). These four vertices correspond to four

Bell states. Now we consider its temporal analog, a pseudo-density matrix for a

single qubit at two times under the unitary evolution. This T matrix is represented

in another tetrahedron Tt with vertices t = (t11, t22, t33) given as (1, 1, 1), (−1,−1, 1),

(−1, 1,−1), (1,−1,−1). Fig. 2.1 illustrates these relations. On the left, blue and red

tetrahedrons Ts and Tt show all possible bipartite spatial and temporal correlations.

The right figure view these correlations from the (−1,−1,−1)− (1, 1, 1) direction.

It is easy to see that the intersection of the spatial and temporal correlations is

given by the purple octahedron representing separable states. Similarly, temporal

corrst.pdf

Figure 2.1: Geometrical representation for bipartite correlations in space and time. The
left figure represents the spatial and temporal correlations in the blue and red tetrahedrons,
respectively, in 3D modelling of the correlation space {〈σiσi〉}3i=1. The right figure views
the correlation from the (−1,−1,−1)− (1, 1, 1) direction. The intersection of the spatial
and temporal correlations is given by the purple octahedron representing separable states.
Thanks to Zhikuan Zhao for providing his original figure in Ref. [40].

correlations of the single-qubit initial state I
2 under arbitrary CPTP maps can

also be mapped back to bipartite spatial correlations under the partial transpose

and given as Fig. 2.1. We will see the importance of partial transposition in the

continuous-variable generalisation as well. In general, for all possible quantum

channel evolution, the set of temporal correlations strictly contains Ts and is convex

on each edge; that is, in the bipartite case the set of all possible temporal correlations

is larger than the set of all possible spatial correlations (entanglement).
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3.1 Introduction

In this chapter we follow the paradigm of the pseudo-density matrix [39], which

is understood as a particular spacetime state. The pseudo-density matrix uses

only a single Hilbert space for each spacetime event defined in terms of making

measurements in spacetime; as a price to pay, it may not be positive semi-definite.

We take the view from Wigner that “the function of quantum mechanics is to give

statistical correlations between the outcomes of successive observations [46],” and

then construct the spacetime states in continuous variables from the observation of

measurements of modes and generalise the pseudo-density matrix formulation. We

give six possible definitions for spacetime density matrices in continuous variables

or spacetime Wigner functions built upon measurement correlations. The choice of

measurements to make is a major issue here. They should form a complete basis to

extract full information of states in spacetime. One natural choice is the quadratures,

which turn out to be efficient in analysing Gaussian states. Analogous to the Pauli

operators as the basis for a multi-qubit system, another option in continuous

variables would be the displacement operators; however, they are anti-Hermitian.

Instead, we apply their Fourier transform T (α), twice of displaced parity operators,

to the representation of general Wigner functions. We also initialise the discussion

of defining spacetime states from position measurements and weak measurements

based on previous work on successive measurements [47–50], motivated by linking

the pseudo-density matrix formalism to the path integral formalism. We further

show that these definitions for continuous variables satisfy natural desiderata, such

as those listed in Ref. [51] for quantum joint states over time, as well as additional

criteria for spacetime states. An experimental proposal for tomography is presented

as well to show how these definitions are operationally meaningful.

This chapter is based on Ref. [42]. It proceeds as follows. First we define

spacetime Gaussian states via the characterisation of the first two statistical moments

and show that the temporal statistics are different but related to the spatial

statistics. Next we define the spacetime Wigner function representation and the

corresponding spacetime density matrix, and desirable properties are satisfied
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analogous to the spatial case. We further discuss the possibility of defining spacetime

states via position measurements and weak measurements. A tomographical scheme

is suggested for experiments. Then we comment on the pseudo-density matrix

paradigm in terms of its properties and basic assumptions, and show its relation

with the Choi-Jamiołkowski isomorphism and the path integral formalism. We

also set up desirable properties for spacetime quantum states and check whether

all the above definitions satisfy them or not.

3.2 Gaussian generalisation of pseudo-density ma-
trix

In this section we review Gaussian representation in continuous variables, define

spacetime Gaussian states motivated from the pseudo-density matrix formalism,

analyse simple examples and the differences and similarities of spatial and temporal

Gaussian states.

3.2.1 Preliminaries

Gaussian states are continuous-variable states with a representation in terms of

Gaussian functions [52–54]. The first two statistical moments of the quantum states,

the mean value and the covariance matrix, fully characterise Gaussian states, just

as normal Gaussian functions in statistics. The mean value d, is defined as the

expectation value of the N -mode quadrature field operators {q̂k, p̂k}Nk=1 arranged

in x̂ = (q̂1, p̂1, · · · , q̂N , p̂N)T , that is,

dj = 〈x̂j〉ρ ≡ Tr(x̂j ρ̂), (3.1)

for the Gaussian state ρ̂. The elements in the covariance matrix σ are defined as

σij = 〈x̂ix̂j + x̂jx̂i〉ρ − 2〈x̂i〉ρ〈x̂j〉ρ. (3.2)

The covariance matrix σ is real and symmetric, and satisfies the uncertainty

principle [55] as (note that in this thesis we set ~ = 1)

σ + iΩ ≥ 0, (3.3)
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in which the elements of Ω is given by commutation relations as

[x̂i, x̂j] = i~Ωij, (3.4)

thus Ω is the 2N × 2N matrix

Ω ≡
N⊕
k=1
ω =


ω

. . .
ω

 and ω =
[

0 1
−1 0

]
. (3.5)

This condition also implies the positive definiteness of σ, i.e., σ > 0. Then we

introduce the Wigner representation for Gaussian states. The Wigner function

originally introduced in Ref. [56] is a quasi-probability distribution in the phase space

and the characteristic function can be given via the Fourier transform of the Wigner

function. By definition, the Wigner representation of a Gaussian state is Gaussian,

that is, the characteristic function and the Wigner function [54] are given by

χ(ξ) = exp
[
−1

4ξ
T (ΩσΩT )ξ − i(Ωd)Tξ

]
, (3.6)

W (x) =
exp

[
−(x− d)Tσ−1(x− d)

]
πN
√

detσ
, (3.7)

where ξ,x ∈ R2N .

Typical examples of Gaussian states include vacuum states, thermal states

and two-mode squeezed states. A one-mode vacuum state |0〉 has zero mean

values and the covariance matrix as the 2 × 2 identity matrix I. A one-mode

thermal state with the mean number of photons n̄ [52] or the inverse temperature

β [53] is defined equivalently as

ρ̂th(n̄) =
+∞∑
n=0

n̄n

(n̄+ 1)n+1 |n〉 〈n| , (3.8)

or

ρ̂th(β) = (1− e−β) exp
(
−βâ†â

)
, (3.9)

where â, â† are annihilation and creation operators. Note that β = − ln n̄
1+n̄ . The

thermal state has zero mean values and the covariance matrix proportional to

the identity as (2n̄ + 1)I or 1+e−β
1−e−β I, respectively to the above two definitions. A



3. Generalisation of pseudo-density matrix formulation 27

two-mode squeezed state [53] is generated from the vacuum state |0〉 by acting

with a two-mode squeezing operator which is defined as

Ŝ2(ξ) = exp
[
ξâ†b̂† − ξ∗âb̂

]
, (3.10)

where â† and b̂† (â and b̂) are creation (annihilation) operators of the two modes,

ξ is a complex number where r = |ξ| and ξ = reiψ. Then the two-mode squeezed

vacuum state is given as Ŝ2(ξ) |00〉. From here we omit the phase ψ for simplicity. A

two-mode squeezed state with a real squeezed parameter r, known as the Einstein-

Podolsky-Rosen (EPR) state ρ̂epr(r) = Ŝ2(r) |00〉 〈00| Ŝ†2(r), has zero mean values

and the covariance matrix as

σtmss =


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 . (3.11)

Taking the partial trace of the two-mode squeezed state, we get the one-mode thermal

state: Trb[ρ̂epr(r)] = ρ̂tha (n̄) = ρ̂tha (β), where n̄ = sinh2 r or β = − ln tanh2 r [53].

3.2.2 Spacetime Gaussian states

Instead of Gaussian states at a specific time as given before, now we define Gaussian

states in spacetime. Suppose that we are given data associated with single-mode

measurements labelled by some index k = 1, . . . , N . We will use the same recipe,

given the data, to create the spacetime state, whether these measurements are made

on the same mode at different times or whether they are made on separate modes,

or more generally on both different modes and different times. This follows the

pseudo-density matrix paradigm, in which one wishes to use the same quantum

density matrix formalism for all the cases.

Assume that we are given enough data to characterise a Gaussian state fully,

i.e., the mean value and the covariance matrix. The expectation values of all

quadratures are defined as before. The correlation 〈{x̂i, x̂j}〉 of two quadratures

x̂i and x̂j for two events is defined to be the expectation value for the product

of measurement results on these quadratures. Particularly for measurements or
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events at the same time, this correlation is defined via a symmetric ordering of

two quadrature operators. Then the covariance is defined to be related to this

correlation and corresponding mean values as the spatial covariance.

Definition 1. We define the Gaussian spacetime state in terms of measurement

statistics as being (i) a vector d of 2N mean values, with j-th entry

dj = 〈x̂j〉ρ = Tr(x̂jρ). (3.12)

and (ii) a covariance matrix σ with entries as

σij = 2〈{x̂i, x̂j}〉ρ − 2〈x̂i〉ρ〈x̂j〉ρ (3.13)

where 〈{x̂i, x̂j}〉ρ is the expectation value for the product of measurement results;

specifically {x̂i, x̂j} = 1
2(x̂ix̂j + x̂jx̂i) for measurements at the same time. To get the

reduced state associated with the mode k one picks out the entries in the d and σ

associated with the mode k to create the corresponding Gaussian state of that mode.

According to the above definition of reduced states, it is easy to see that the

single time marginal is identical to the spatial Gaussian state at that particular

time. This is because the mean values and covariances at one time in the spacetime

case are defined as the same as them in the spatial case.

3.2.3 Example: vacuum state at two times

For a simple example, we take a vacuum state at two times with the identity

evolution in between. A vacuum state is |0〉 at the initial time t1 and under the

identity evolution it remains |0〉 at a later time t2.

Remember that a one-mode vacuum state |0〉 is a Gaussian state with zero

means and the covariance matrix as the identity as stated before. That is, at

a single time t1 or t2,

〈q̂1〉 = 〈p̂1〉 = 〈q̂2〉 = 〈p̂2〉 = 0; (3.14)

〈q̂1q̂1〉 = 〈p̂1p̂1〉 = 〈q̂2q̂2〉 = 〈p̂2p̂2〉 = 1
2 ,

〈q̂1p̂1 + p̂1q̂1〉 = 〈q̂2p̂2 + p̂2q̂2〉 = 0. (3.15)
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For measurements at both time t1 and time t2,

〈{q̂1, q̂2}〉 = 〈{q̂2, q̂1}〉 =
∫∫

dq1dq2q1q2 Tr(|q1〉 〈q1|0〉 〈0|) Tr(|q2〉 〈q2|q1〉 〈q1|) = 〈q̂1q̂1〉 = 1
2 ,

〈{q̂1, p̂2}〉 = 〈{p̂2, q̂1}〉 =
∫∫

dq1dp2q1p2 Tr(|q1〉 〈q1|0〉 〈0|) Tr(|p2〉 〈p2|q1〉 〈q1|) = 0,

〈{p̂1, p̂2}〉 = 〈{p̂2, p̂1}〉 =
∫∫

dp1dp2p1p2 Tr(|p1〉 〈p1|0〉 〈0|) Tr(|p2〉 〈p2|p1〉 〈p1|) = 〈p̂1p̂1〉 = 1
2 ,

〈{p̂1, q̂2}〉 = 〈{q̂2, p̂1}〉 =
∫∫

dp1dq2p1q2 Tr(|p1〉 〈p1|0〉 〈0|) Tr(|q2〉 〈q2|p1〉 〈p1|) = 0.
(3.16)

According to the definition given in Eqn. (3.12, 3.13), the mean values are 0

and the covariance matrix in time is

σvs =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 . (3.17)

Note that σvs is not positive definite and violates the uncertainty principle of

Eqn. (3.3). Thus it is an invalid spatial covariance matrix. This illustrates how

the covariance statistics for spatial and temporal matrices are different, just as

bipartite Pauli correlations in spatial and temporal case are different [40, 45], which

makes the study of temporal statistics particularly interesting.

Since the determinant of the covariance matrix is 0, it is impossible to get the

inverse of the covariance matrix directly to obtain the temporal Wigner function

from Eqn. (3.7). From the mean values and the covariance matrix, we gain the

temporal characteristic function from Eqn. (3.6) as

χ(q1, p1, q2, p2) = exp
(
−p2

1 − 2p1p2 − p2
2 − q2

1 − 2q1q2 − q2
2

)
, (3.18)

Via the Fourier transform, the temporal Wigner function is given as

W(q1, p1, q2, p2) = 1
4π exp

(
−p2

1/4− q2
1/4

)
δ(−p1 + p2)δ(−q1 + q2), (3.19)

It is easy to check that the temporal Wigner function is normalised to 1:∫∫∫∫
W(q1, p1, q2, p2)dq1dp1dq2dp2 = 1. (3.20)

However, if we consider the condition that the Wigner function of a pure state

is bounded by ± 2
h
, then this temporal Wigner function is invalid. This may be

taken as the temporal signature of the Wigner function.
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3.2.4 Spatial vs temporal Gaussian states

Now compare spatial Gaussian states and temporal Gaussian states via a simple

two-mode example. In general, there is not much meaning to comparing an arbitrary

spatial state with an arbitrary temporal state. We need to pick up the spatial state

carefully and figure out its temporal analog. Remember in the preliminaries we

mentioned that taking the partial transpose of a two-mode squeezed state (or to

say, the EPR state), we gain a one-mode thermal state. Hence, the temporal analog

of the two-mode squeezed state will be the one-mode thermal state at two times.

Take the one-mode thermal state as the initial state at tA and further assume that

the evolution between tA and tB corresponds to the identity operator. The mean

values are zero. The covariance matrix in time becomes

σomts =


cosh 2r 0 cosh 2r 0

0 cosh 2r 0 cosh 2r
cosh 2r 0 cosh 2r 0

0 cosh 2r 0 cosh 2r

 . (3.21)

Note that again σomts is not positive definite and violates the uncertainty principle.

Compare σomts with its spatial analog, the covariance matrix of the two-mode

squeezed state σtmss. Under the high temperature approximation as β → 0,

tanh r ≈ 1 and sinh 2r ≈ cosh 2r. Since q̂ = 1√
2(â + â†) and p̂ = i√

2(â† − â), it

follows that q̂T = q̂ and p̂T = −p̂. If we take the partial transpose on the first

mode, only σ24 = σ42 related to measurements p̂1, p̂2 change the sign. Note that

σ23 = σ32 related to measurements p̂1, q̂2 remain 0. Then the temporal covariance

matrix is equal to the spatial covariance matrix under the partial transpose and the

high temperature approximation. This can be understood as a continuous-variable

analogue on temporal and spatial correlations of bipartite pseudo-density matrices

for the qubit case [40]. Note that taking the partial trace of a two-qubit maximally

entangled state 1
2
∑
i,j=0,1 |ii〉 〈jj| we get a one-qubit maximally mixed state I; the

temporal analog of a two-qubit maximally entangled state 1
2
∑
i,j=0,1 |ii〉 〈jj| is the

one-qubit maximally mixed state I at two times under the identity evolution, that

is represented by 1
2
∑
i,j=0,1 |ij〉 〈ji|. They are invariant under the partial transpose

as well. In the continuous variable context, the one-mode thermal state under the
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high temperature approximation is close to the maximally mixed state I. We will

come back to this partial transpose again later via Choi-Jamiołkowski isomorphism.

3.3 Pseudo-density matrix formulation for gen-
eral continuous variables

Now we move on to define spacetime states for general continuous variables. We first

define the spacetime Wigner function by generalising correlations to the spacetime

domain, following the paradigm of pseudo-density matrices. Then demanding the

one-to-one correspondence between a spacetime Wigner function and a spacetime

density matrix, we gain the spacetime density matrix in continuous variables

from the spacetime Wigner function. This spacetime density matrix in continuous

variables can be regarded as the extension of the pseudo-density matrix to continuous

variables. We further analyse the properties of this spacetime Wigner function

based on the corresponding spacetime density matrix in continuous variables and

rediscover the five properties of a uniquely-determined Wigner function.

3.3.1 Preliminaries

The Wigner function is a convenient representation of non-relativistic quantum

mechanics in continuous variables and is fully equivalent to the density matrix

formalism. The one-to-one correspondence between the Wigner function and the

density matrix [57, 58] states that,

ρ̂ =
∫
W (α)T (α)π−1d2α, (3.22)

W (α) = Tr[ρ̂T (α)]. (3.23)

Here T (α) is defined as

T (α) =
∫
D(ξ) exp(αξ∗ − α∗ξ)π−1d2ξ, (3.24)

where D(ξ) is the displacement operator defined as D(ξ) = exp
(
ξâ† − ξ∗â

)
. It

can be seen that T (α) is the complex Fourier transform of D(ξ). Besides, T (α)

can be reformulated as T (α) = 2U(α) where U(α) = D(α)(−1)â†âD†(α) is the
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displaced parity operator. T (α) is Hermitian, unitary, unit-trace, and an observable

with eigenvalues ±2.

We can also see from Eqn. (3.23) that the Wigner function is the expectation value

of T (α) [59]. For an n-mode Wigner function, a straightforward generalisation is

W (α1, ..., αn) = 〈
n⊗
i=1

T (αi)〉, (3.25)

as Ref. [60] gives the two-mode version.

3.3.2 Spacetime Wigner function

Let us start to construct the Wigner function in spacetime. It seems a bit ambitious

to merge position and momentum with time in a quasi-probability distribution at

first sight, but we will see that it is possible to treat instances of time just as how

we treat modes. Again we borrow the concept of events from the pseudo-density

matrix in finite dimensions and consider n events instead of n modes. Notice that

the only difference between a pseudo-density matrix and a standard density matrix

in construction is the correlation measure. Here we change the correlation measures

of an n-mode Wigner function given in Eqn. (3.25) in a similar way.

Definition 2. Consider a set of events {E1, E2, ..., EN}. At each event Ei, a

measurement of T (αi) operator on a single mode is made. Then for a particular

choice of events with operators {T (αi)}ni=1, the spacetime Wigner function is defined

to be

W(α1, ..., αn) = 〈{T (αi)}ni=1〉, (3.26)

where 〈{T (αi)}ni=1〉 is the expectation value of the product of the results of the

measurements on these operators.

For spatially separated events, the spacetime Wigner function reduces to the

ordinary n-mode Wigner function, for the order of product and measurement

does not matter and it remains the same after making a flip (remember that n-

mode Wigner function is the expectation value of the measurement results of the

tensor product of these operators). If the measurements are taken in time, then
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a temporal Wigner function is constructed under temporal correlations. Thus, it

is a generalisation for the Wigner function to the spacetime domain.

It is easy to check that the spacetime Wigner function is real and normalised

to 1. Since the measurement results of T (αi) = 2U(αi) is ±2 (remember that

U(αi) is the displaced parity operator), the expectation value of the product

of the measurement results is to make products of ±2 with certain probability

distribution. Thus, W(α1, ..., αn) is real.

For the normalisation, we give a proof for the bipartite case, i.e.,

∫
W (α, β)π−2d2αd2β = 1; (3.27)

for n events, it can be proven directly following the same logic.

As mentioned before, a bipartite spacetime Wigner function reduces to two-

mode Wigner function for two spatially separated events. The normalisation

obviously holds in this case.

For a spacetime Wigner function between two times t1 and t2, we assume the ini-

tial state ρ̂ is arbitrary and the evolution between t1 and t2 is an arbitrary CPTP map

from ρ̂ to E(ρ̂). At the time t1, we measure T (α). Note that T (α) = 2[Π2(α)−Π1(α)]

where Π2(α) = ∑∞
n=0 |2n, α〉 〈2n, α| and Π1(α) = ∑∞

n=0 |2n+ 1, α〉 〈2n+ 1, α|. That

is, we make projections Π1(α) and Π2(α) to the odd and even subspaces for the

eigenvalues −2 and +2. According to the measurement postulation, we get the

state ρ̂1 = Πi(α)ρ̂Πi(α)/Tr[Πi(α)ρ̂Πi(α)] with the probability Tr[Πi(α)ρ̂Πi(α)]

after making the measurement of Πi(α) (i = 1, 2). Note that projection operators

Πi(α) = Π†i(α) and Π2
i (α) = Πi(α). Then from t1 to t2, ρ̂1 evolves to E(ρ̂1). At

the time t2, we measure T (β). We make projections Π1(β) and Π2(β) for the

eigenvalues −2 and +2 again. So the temporal Wigner function, or {T (α), T (β)}
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correlation, is given by

W(α, β) = 〈{T (α), T (β)}〉

=4
∑

i,j=1,2
(−1)i+j Tr[Πi(α)ρ̂Πi(α)] Tr

{
Πj(β)E

[
Πi(α)ρ̂Πi(α)

Tr[Πi(α)ρ̂Πi(α)]

]
Πj(β)

}

=4
∑

i,j=1,2
(−1)i+j Tr{Πj(β)E [Πi(α)ρ̂Πi(α)]}

=2
∑
i=1,2

(−1)i Tr{T (β)E [Πi(α)ρ̂Πi(α)]} (3.28)

Now let us check the normalisation property. Note that
∫
T (β)π−1d2β =∫

T (α)π−1d2α = I and E is trace-preserving. Then we have∫∫
W(α, β)π−2d2αd2β

=2
∫∫ ∑

i=1,2
(−1)i Tr{T (β)E [Πi(α)ρ̂Πi(α)]}π−2d2αd2β

=2
∫ ∑

i=1,2
(−1)i Tr{E [Πi(α)ρ̂Πi(α)]}π−1d2α

=2
∫ ∑

i=1,2
(−1)i Tr[Πi(α)ρ̂Πi(α)]π−1d2α

=
∫

Tr[T (α)ρ̂]π−1d2α

=1. (3.29)

Thus, the normalisation property holds.

3.3.3 Spacetime density matrix in continuous variables

Though it is not always convenient to use the density matrix formalism in continuous

variables, we are still interested in the possible form of spacetime density matrices

as it is the basic construction for states. Remember that there is a one-to-one

correspondence between the Wigner function and the density matrix. Here we

demand that a similar one-to-one correspondence holds for the spatio-temporal

version. Then we can define a spacetime density matrix in continuous variables

from the above spacetime Wigner function.

Definition 3. A spacetime density matrix in continuous variables is defined as

R̂ =
∫
· · ·

∫
W(α1, ..., αn)

n⊗
i=1

T (αi)π−nd2α1 · · · d2αn. (3.30)
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This follows the direction from a spacetime Wigner function to a spacetime

density matrix in continuous variables just as Eqn. (3.22). Analogous to Eqn. (3.23),

the opposite direction from a spacetime density matrix in continuous variables to

a spacetime Wigner function automatically holds:

W(α1, ..., αn) = Tr{[
n⊗
i=1

T (αi)]R̂} = 〈{T (αi)}ni=1〉. (3.31)

Now we prove Eqn. (3.31) as a transform from the spacetime density matrix in

continuous variables to the spacetime Wigner function. Applying the definition of

the spacetime density matrix in continuous variables to the middle hand side

of Eqn. (3.31), we get

Tr
{[

n⊗
i=1

T (αi)
]
R̂

}
= Tr

[ ∫
· · ·

∫
W(β1, ..., βn)

n⊗
i=1

T (αi)T (βi)π−nd2β1 · · · d2βn

]
.

(3.32)

Note that

T (α)T (β) = 4 exp[2(α∗β − αβ∗)]D(2α− 2β), (3.33)

TrD(ξ) = πδ(ξI)δ(ξR) = πδ(2)(ξ), (3.34)

and δ(2)(2ξ) = 1
4δ

(2)(ξ).

Tr
{[

n⊗
i=1

T (αi)
]
R̂

}

= Tr
{∫
· · ·

∫
W(β1, ..., βn)

n⊗
i=1

4 exp[2(α∗iβi − αiβ∗i )]D(2αi − 2βi)π−nd2β1 · · · d2βn

}

=
∫
· · ·

∫
W(β1, ..., βn)

n∏
i=1

4 exp[2(α∗iβi − αiβ∗i )]δ(2)(2αi − 2βi)d2β1 · · · d2βn

=W(α1, ..., αn)

=〈{T (αi)}ni=1〉. (3.35)

Thus, Eqn. (3.31) holds as

Tr{[
n⊗
i=1

T (αi)]R̂} =W(α1, ..., αn) = 〈{T (αi)}ni=1〉.

It is also convenient to define the spacetime density matrix in continuous

variables directly from T (α) operators, without the introduction of a spacetime

Wigner function.
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Definition 4. An equivalent definition of a spacetime density matrix in continuous

variables is

R̂ =
∫
· · ·

∫
〈{T (αi)}ni=1〉

n⊗
i=1

T (αi)π−nd2α1 · · · d2αn. (3.36)

If we compare this definition with the definition of the pseudo-density matrix in

finite dimensions given as Eqn. (2.25) element by element, we will find a perfect

analogue. This may suggest the possibility for a generalised continuous-variable

version of pseudo-density matrices.

3.3.4 Properties

Now we investigate the properties of the spacetime Wigner function and the

spacetime density matrix for continuous variables.

It is easy to check the spacetime density matrix R̂ is Hermitian and unit-trace.

Since T (αi) is Hermitian and W(α1, ..., αn) is real, R̂ is Hermitian. From the

normalisation property of the spacetime Wigner function and the fact that T (αi)

has unit trace, we conclude that Tr R̂ = 1.

Analogous to the normal spatial Wigner function, we analyse the properties

for the spacetime Wigner function. For example, the spacetime Wigner function

can be used as a quasi-probability distribution in calculating the expectation value

of an operator from the spacetime density matrix. For an operator Â in the

Hilbert space H⊗n,

〈Â〉R = Tr
[
R̂Â

]
=
∫∫
W(α1, ..., αn)A(α1, ..., αn)π−nd2α1 · · · d2αn, (3.37)

where

A(α1, ..., αn) = Tr{[
n⊗
i=1

T (αi)]Â}. (3.38)

It is obvious that a spacetime Wigner function for a single event does not

discriminate between space and time; that is, for a single event the spacetime Wigner

function is the same as an ordinary one-mode Wigner function in space. From

the following we consider a bipartite spacetime Wigner function and generalisation

to arbitrary events is straightforward.
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The five properties to uniquely determine a two-mode Wigner function in

Ref. [61, 62] are: (1) that it is given by a Hermitian form of the density matrix;

(2) that the marginal distributions hold for q and p and it is normalised; (3) that

it is Galilei covariant; (4) that it has corresponding transformations under space

and time reflections; (5) that for two Wigner functions, their co-distribution is

related to the corresponding density matrices. They all hold in a similar way for

a bipartite spacetime Wigner function and the corresponding spacetime density

matrix in continuous variables. For a bipartite spacetime Wigner function, the

five properties are stated as follows:

Property 1. W(q1, p1, q2, p2) is given by a Hermitian form of the corresponding

spacetime density matrix as

W(q1, p1, q2, p2) = Tr
[
M̂(q1, p1, q2, p2)R̂

]
(3.39)

for

M̂(q1, p1, q2, p2) = M̂ †(q1, p1, q2, p2). (3.40)

Therefore, it is real.

Property 2. The marginal distributions of q and p as well as the normalisation

property hold.

∫∫
dp1dp2W(q1, p1, q2, p2) = 〈q1, q2| R̂ |q1, q2〉 ,∫∫
dq1dq2W(q1, p1, q2, p2) = 〈p1, p2| R̂ |p1, p2〉 ,∫∫∫∫
dq1dq2dp1dp2W(q1, p1, q2, p2) = Tr R̂ = 1. (3.41)

Property 3. W(q1, p1, q2, p2) is Galilei covariant 1 , that is, if

〈q1, q2| R̂ |q′1, q′2〉 → 〈q1 + a, q2 + b| R̂ |q′1 + a, q′2 + b〉

then

W(q1, p1, q2, p2)→W(q1 + a, p1, q2 + b, p2)
1The original paper [61] uses the word “Galilei invariant”.
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and if

〈q1, q2| R̂ |q′1, q′2〉 → exp{[ip′1(−q1 + q′1) + ip′2(−q2 + q′2)]/~} 〈q1, q2| R̂ |q′1, q′2〉 ,

then

W(q1, p1, q2, p2)→W(q1, p1 − p′1, q2, p2 − p′2).

Property 4. W(q1, p1, q2, p2) has the following property under space and time

reflections 2 : if

〈q1, q2| R̂ |q′1, q′2〉 → 〈−q1,−q2| R̂ |−q′1,−q′2〉

then

W(q1, p1, q2, p2)→W(−q1,−p1,−q2,−p2)

and if

〈q1, q2| R̂ |q′1, q′2〉 → 〈q′1, q′2| R̂ |q1, q2〉

then

W(q1, p1, q2, p2)→W(q1,−p1, q2,−p2).

Property 5. Two spacetime Wigner functions are related to the two corresponding

spacetime density matrices as

Tr(R1R2) = (2π~)
∫∫

dqdpWR1(q, p)WR2(q, p), (3.42)

for WR1(q, p) and WR2(q, p) are spacetime Wigner functions for spacetime density

matrices in continuous variables R̂1 and R̂2 respectively.

All these six properties (five plus the previous one for the expectation value

of an operator in this subsection) are proven in Appendix B.

2Again the original paper [61] uses the word “invariant under space and time reflections”.
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3.4 Generalised measurements for pseudo-density
matrix

Here we go beyond the pseudo-density matrix formulation, in the sense that we

generalise spatial correlations to the spacetime domain. Nevertheless, we still

follow the idea to build spacetime states upon measurements. We consider position

measurements for a special diagonal case. To reduce the additional effects caused

by measurement processes, we discuss weak measurements and construct spacetime

states from them. Here the connection with path integral is more obvious.

3.4.1 Position measurements

Besides quadratures and T (α) operators, it is also possible to expand a continuous-

variable density matrix in the position basis since it is an orthogonal and complete

basis. Here we consider a special case which is the diagonal matrix for convenience.

In principle, a density matrix in the continuous variables can be diagonalised

in the position basis as

ρ̂ =
∫ ∞
−∞

dx p(x) |x〉 〈x| , (3.43)

where

p(x) = Tr[|x〉 〈x| ρ̂]. (3.44)

In the standard theory of quantum mechanics, we assume that the measurement

results are arbitrarily precise to get the probability density p(x) with the state

updated to |x〉 〈x| after the measurement of x̂. It is hard to achieve in the actual

setting and imprecise measurements will be employed in the following discussion.

Then we define the spacetime density matrix in exactly the same way with the

probability density now in the spatio-temporal domain.

Definition 5. Consider a set of N events labelled {E1, · · · , EN}. At each event

Ei, a measurement of the position operator x̂i is made. For a particular choice of
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the event, for example, {Ei}ni=1, we can define the spacetime density matrix from

the joint probability of all these measurements as

ρ =
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx1 · · · dxnp(x1, · · · , xn) |x1〉 〈x1| ⊗ · · · ⊗ |xn〉 〈xn| . (3.45)

The remaining problem is how to calculate the joint probability p(x1, · · · , xn).

For spatially separated events, the problem reduces to results given by states in

ordinary quantum mechanics. So we only need to consider how to formulate states

in time. Successive position measurements have been discussed properly in the path

integral formalism, effect and operation formalism and multi-time formalism [47, 48].

Based on the discussion in Ref. [48], we consider n events of instantaneous

measurements of x(t) at times t1, · · · , tn (t1 < · · · < tn). In reality, such a

measurement cannot be arbitrarily precise; a conditional probability amplitude called

resolution amplitude Υ(x̄− x) is introduced for x̄ as the measurement result with

the initial position of the system at x. Denote the state of the system as |ψ(t)〉 with

the wave function ψ(x, t) = 〈x|ψ(t)〉. For a meter prepared in the state |Υ〉 with the

wave function Υ(x̄) = 〈x̄|Υ〉, the total system before the measurement will be |Ψi〉 =

|Υ〉⊗|ψ(t)〉 with the wave function 〈x̄, x|Ψi〉 = Υ(x̄)ψ(x, t). Consider the interaction

for the measurement process as x̂ ˆ̄p at some particular time. The total system after

the measurement will be |Ψf〉 = e−(i/~)x̂ ˆ̄p |Ψi〉 =
∫
dxe−(i/~)x ˆ̄p |Υ〉 ⊗ |x〉ψ(x, t), with

the wave function 〈x̄, x|Ψf〉 = Υ(x̄ − x)ψ(x, t) = 〈x|Υ(x̄ − x̂) |ψ(t)〉. Following

the calculation in Ref. [48], for the wave function of the system ψ(x(t1), t1) at

some initial time t1, the joint probability for measurement results (x̄1, · · · , x̄n)

is given by a path integral as

p(x̄1, · · · , x̄n) =
∫ tn

t1
Dx(t)

[
n∏
ν=1

Υ(x̄ν − x(tν))
]
e(i/~)S[x(t)]ψ(x(t1), t1), (3.46)

where ∫ tn

t1
Dx(t) = lim

N→∞

[
N∏
k=1

∫ ∞
−∞

dxk
]
, (3.47)

with the insertion of N − 2 times between the initial time t1 and the final time

tn = tN ; and note that all the measurement times are included in the insertion.
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This integral sums over all path x(t) from x(t1) to x(tn) with arbitrary initial values

x(t1) and arbitrary final positions x(tn). Here

S[x(t)] =
∫ tn

t1
dtL(x, ẋ, t) (3.48)

is the action for the path x(t) with the Lagrangian of the system as L(x, ẋ, t).

Note that p(x̄1, · · · , x̄n) is normalised, i.e.,
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx̄1 · · · dx̄np(x̄1, · · · , x̄n) = 1; (3.49)

thus, the spacetime density matrix defined above has unit trace.

Here the diagonalised spacetime density matrix in the position basis is fully

equivalent to the path integral formalism. Or we can take this definition as the

transition from the path integral. Thus, this definition suggests a possible link

between the pseudo-density matrix formulation and the path integral formalism.

3.4.2 Weak measurements

Weak measurements are the measurements that only slightly disturb the state, with

POVM elements close to the identity. They are often continuous. It is particularly

interesting here as weak measurements minimise the influence of measurements and

maximally preserve the information of the original states. Via weak measurements,

we do not need to worry about the change of marginal states at each time. There

are several slightly different mathematical definitions for weak measurements. Here

we follow the convention in the formulation of effects and operations [63].

Recall that an effect F̂ is defined as an operator which satisfies F̂ † = F̂ and

0 < F̂ < 1. Similar to a projection, the probability of obtaining the result in the

interval I = (a, a + ∆a) at time t is writen as

P (ρ|I, t) = Tr{F̂ 1/2
H (I, t)ρ̂F̂ 1/2

H (I, t)}, (3.50)

And the state evolves to

ρ′ = F̂
1/2
H (I, t)ρ̂F̂ 1/2

H (I, t)
Tr
{
F̂

1/2
H (I, t)ρ̂F̂ 1/2

H (I, t)
} (3.51)
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Assume that the disturbance at time t does not affect the discrimination for I out

of the whole range and the reduction postulate holds. At a later time t′, we have

P (ρ′|I ′, t′) = Tr
{
F̂

1/2
H (I ′, t′)ρ̂′F̂ 1/2

H (I ′, t′)
}
. (3.52)

We have the joint probability as

P (ρ|I, t; I ′, t′) = Tr
{
F̂

1/2
H (I ′, t′)F̂ 1/2

H (I, t)ρ̂F̂ 1/2
H (I, t)F̂ 1/2

H (I ′, t′)
}
. (3.53)

Consider the densities of effects

dF̂ (a) = f̂(a)dµ(a),
∫ +∞

−∞
dµ(a)f̂(a) = 1, (3.54)

where dµ(a) is a measure for the function f̂(a). Then we have

F̂ (dI, t; dI ′, t′) = f̂(a, t; a′, t′)dµ(a)dµ(a′) = f̂
1/2
H (a, t)f̂H(a′, t′)f̂ 1/2

H (a, t)dµ(a)dµ(a′),

(3.55)

P (ρ|dI, t; dI ′, t′) = p(ρ|a, t; a′, t′)dµ(a)dµ(a′) = Tr
{
f̂(a, t; a′, t′)ρ̂

}
dµ(a)dµ(a′).

(3.56)

In general,

P (ρ|dI1, t1; · · · ; dIn, tn) = Tr
{
f̂(a1, t1; · · · ; an, tn)ρ̂

}
dµ(a1) · · · dµ(an), (3.57)

where

f̂(a1, t1; · · · ; an−1, tn−1; an, tn) = f̂
1/2
H (a1, t1) · · · f̂ 1/2

H (an−1, tn−1)f̂H(an, tn)

× f̂ 1/2
H (an−1, tn−1) · · · f̂ 1/2

H (a1, t1). (3.58)

Now following the calculation in Ref. [50], we can define a generalised observable

corresponding to a simultaneous inaccurate measurement of position and momentum

for a density matrix ρ̂:

F̂ (T ) =
∫
T

dxdp
2π~ exp

[
i

~
(pq̂ − xp̂)

]
ρ̂ exp

[
− i
~

(pq̂ − xp̂)
]
. (3.59)

Take

ρ̂ = C exp
[
−α(q̂2 + λp̂2)

]
, α, λ > 0, (3.60)
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where C is some normalisation factor. We get the density of this generalised

effect-valued measure as

f̂(q, p) = C exp
[
−α[(q̂ − q)2 + λ(p̂− p)2]

]
, (3.61)

where dF̂ (q, p) = f̂(q, p)dµ(q, p). We set

α = γτ, (3.62)

where τ is the time interval between two subsequent measurements. When α→ 0,

the measurement is continuous and we call it weak. For an initial density matrix ρ̂

at time t = 0, we make continuous measurements in time and find the probability

density of obtaining measurement results q, p at time t = τ is given by

p(q, p, τ |ρ̂) = TrF(q, p; τ)ρ̂, (3.63)

where

F(q, p; τ)ρ̂ =
∫

dµG[q(t), p(t)]δ
(
q − 1

τ

∫ τ

0
dtq(t)

)
δ
(
p− 1

τ

∫ τ

0
dtp(t)

)
exp

[
− i
~
Ĥτ

]
T exp

[
−γ2

∫ τ

0
dt[(q̂H(t)− q(t))2 + λ(p̂H(t)− p(t))2]

]
ρ̂

T ∗ exp
[
−γ2

∫ τ

0
dt[(q̂H(t)− q(t))2 + λ(p̂H(t)− p(t))2]

]
exp

[
i

~
Ĥτ

]
,

(3.64)
here

dµG[q(t), p(t)] = lim
N→∞

(
γτ
√
λ

πN

N∏
s=1

dq(ts)dp(ts)
)
, (3.65)

and

q̂H(t) = exp
[
i

~
Ĥt
]
q̂ exp

[
− i
~
Ĥt
]
,

p̂H(t) = exp
[
i

~
Ĥt
]
p̂ exp

[
− i
~
Ĥt
]
. (3.66)

Definition 6. A possible form for the temporal Wigner functionW (x̄1, p̄1, t̄1; . . . ; x̄ν , p̄ν , t̄ν)

is given by the probability density of simultaneous measurement results x̄i, p̄i at the

time t̄i for i = 1, . . . , ν with ρ̂ as the initial density matrix at the initial time t̄1 in

Ref. [50]:

W (x̄1, p̄1, t̄1; · · · ; x̄ν , p̄ν , t̄ν)

= TrF(x̄ν , p̄ν ; t̄ν − t̄ν−1)F(x̄ν−1, p̄ν−1; t̄ν−1 − t̄ν−2) · · · F(x̄2, p̄2; t̄2 − t̄1)F(x̄1, p̄1; 0)ρ̂.
(3.67)
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Here we employ the probability density in weak measurements to define a

temporal Wigner function. This generalises the form of measurements to take.

As shown in the next section, this temporal Wigner function turns out to be a

desirable spacetime quantum state and expand the possibility for relating generalised

measurement theory with spacetime. In general, a unified spacetime Wigner function

defined from weak measurements is possible as well. For n-mode spatial Wigner

function from weak measurements, it is defined as

W (q1, p1, · · · , qn, pn) = TrF(q1, p1; 0)⊗ · · · ⊗ F(qn, pn; 0)ρ̂. (3.68)

Thus spacetime Wigner function is a mixture of product and tensor product of F .

We obtain the spacetime states from weak measurements. It follows the paradigm

of pseudo-density matrix formalism that spacetime Wigner function is defined via

measurement correlations. Specifically, we make simultaneous measurements of

position and momentum; as a price to pay, we fixed the average positions and the

average momentums for certain time periods. It is not the usual Wigner function

but a generalised version in the average sense.

3.5 Experimental proposal for tomography

Here we propose an experimental tomography for spacetime Gaussian states in

quantum optics. Especially, we construct the temporal Gaussian states, in terms

of measuring mean values and the temporal covariance matrix for two events in

time. The covariance of quadratures are defined in terms of the correlation of

quadratures and mean values. Thus, all we need to measure are mean values

and correlations of quadratures.

With the balanced homodyne detection, we can measure the mean values of

single quadratures di = 〈xi〉, the correlation of the same quadrature 〈xixi〉 (the

diagonal terms of the covariance matrix), and the correlation of both position

operators or both momentum operators at two times 〈qjqk〉 or 〈pjpk〉 (j 6= k for

this section). Mean values of single quadratures are measured by the balanced

homodyne detection as usual. For 〈xixi〉, we can measure by almost the same
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method, only do an additional square for each measurement outcome of x̂i. For

〈qjqk〉 or 〈pjpk〉, we record the homodyne results for a long time with small time

steps and calculate the expectation values of the product the measurement results

at two times to get the correlation.

It is a bit difficult to measure the correlation for a mixture of position and

momentum operators. For such correlations at the same time tj, the measurement

of qj and pj cannot be precise due to the uncertainty principle. An eight-port

homodyne detector may be a suggestion; that is, we split the light into half and

half by a 50/50 beam splitter, and measure each quadrature separately with a

local oscillator which is split into two as well for homodyne detection. However,

we cannot avoid the vacuum noise when we split the light and the local oscillator.

A better method for measuring qj and pj at time tj will be resort to quantum-

dense metrology in Ref. [64]. For the correlation 〈qjpk〉, we use the same protocol

as before. As the two-time correlation for the same quadrature, we record the

homodyne results for a long time with small time steps and calculate the expectation

values of the product of the measurement results at two times with a fixed time

interval in between to get the correlation.

Then we gain all the correlations to construct the temporal covariance matrix.

The corresponding temporal density matrix or temporal Wigner function is easily

built with mean values and the temporal covariance matrix; thus, we achieve

the experimental tomography.

3.6 Comparison and comments

The pseudo-density matrix for n qubits is neatly defined and satisfies the properties

listed in Ref. [51]. These properties are: (1) that it is Hermitian; (2) that it

represents probabilistic mixing; (3) that it has the right classical limit; (4) that it

has the right single-time marginals; (5) for a single qubit evolving in time, composing

different time steps is associative. For Gaussian spacetime states, the first four

properties easily hold; for the fifth one, it remains true for the Gaussian evolution.

For general continuous variables, except the one for single-time marginals, all the
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others hold. This property for single-time marginals is non-trivial. The correlation

of a single Pauli operator for each single-time marginal is preserved after making

the measurement of that Pauli operator. As each single-time marginal is just the

spatial state at that time, the total correlation for all Pauli operators is independent

of the measurement collapse. It is a perfect coincide.

The relation with the Choi-Jamiołkowski isomorphism is important in deriving

the above properties. Consider a single qubit or mode evolving under a chan-

nel EB|A from tA to tB. Then define an operator EB|A as the Jamiołkowski

isomorphism of EB|A:

EB|A = (EB|A ⊗ I)(
∣∣∣Φ+

〉 〈
Φ+
∣∣∣Γ) (3.69)

where |Φ+〉 is the unnormalised maximally entangled state on the double Hilbert

space HA ⊗ HA at tA and Γ denotes partial transpose. |Φ+〉 = ∑
i=0,1 |i〉 ⊗ |i〉

for the qubit case. |Φ+〉 = ∑∞
n=0 |n, α〉 ⊗ |n, α〉 for continuous variables; in which

|n, α〉 = D(α) |n〉 with the displacement operator D(α) and the number eigenstates

|n〉. Then the spacetime state in terms of pseudo-density matrix formulation is

given as the Jordan product

RAB = 1
2
[
EB|A(ρA ⊗ IB) + (ρA ⊗ IB)EB|A

]
. (3.70)

The qubit version is proved in Ref. [51] and we can follow its argument for the

continuous-variable version we defined above. It is particularly interesting when we

consider temporal correlations for two times. The orders between EB|A and ρA⊗ IB
automatically suggest a symmetrised order of operators in two-time correlations.

For a special case that ρA is maximally mixed as proportional to the identity I,

RAB = EB|A. Consider the identity evolution EB|A as I, then EB|A = |Φ+〉 〈Φ+|Γ.

The spatial and temporal analogue discussed in the Gaussian section is recovered

by partial transpose again.

One thing of particular interest to look at in continuous variables is the

relation between with the pseudo-density matrix formulation and the path integral

formulation. In Ref. [43], we establish the connection between pseudo-density matrix
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and decoherence functional in consistent histories. The only thing left unrelated

in different spacetime approaches listed in the introduction is the path integral

formulation. Here consider the propagator 〈y2, t2| Û |y1, t1〉, or more specifically, the

absolute square of this propagator as the probability for transforming |y1〉 at t1 to

|y2〉 at t2. The initial state evolves under the unitary Û = exp
(
−T

∫ t2
t1
iĤdt/~

)
. For

the Gaussian case, |y1〉 at the time t1 and |y2〉 at t2 may be two eigenstates of x̂ or

p̂ or a mixture of them over a period. For general continuous variables, they should

be two eigenstates of T (α) and T (β), that is, a mixture of |n, α〉 and |m,β〉.Via this

propagator, we can calculate the two-time correlation. It gives the same results as the

pseudo-density matrix does, which suggests the two formulations may be equivalent.

Ref. [51] suggests five criteria for a quantum state over time to satisfy as the

analog of a quantum state over spatial separated systems. Here we also set up

desirable properties of quantum states in the whole spacetime. The basic principle

is that the statistics calculated using the spacetime state should be identical to

those calculated using standard quantum theory. Note that Criterion 1, 2, 3,

and 6 are adapted from Ref. [51].

Criterion 1. A spacetime quantum state has a Hermitian form, that is, the

spacetime density matrix is self-adjoint and the spacetime Wigner function is given

by the expectation value of a Hermitian operator.

Criterion 2. The probability related to all the measurements at different spacetime

events is normalised to one, that is, the spacetime density matrix is unit-trace and

the spacetime Wigner function is normalised to one.

Criterion 3. A spacetime quantum state represents probabilistic mixing appropri-

ately, that is, a spacetime state of different systems with a mixture of initial states

is the corresponding mixture of spacetime states for each system, as well as the

mixture of channel evolutions.

Criterion 4. A spacetime quantum state provides the right expectation values

of operators. In particular, it gives the same expectation values of time-evolving

operators as the Heisenberg picture does.
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Criterion 5. A spacetime quantum state provides the right propagator/kernel which

is the probability amplitude evolving from one time to another.

Criterion 6. A spacetime quantum state has the appropriate classical limit.

It is easy to check that the Gaussian characterisation satisfies Criterion 1, 2, 3,

5, 6 and the second half of Criterion 3; the first half of Criterion 3 does not hold

since the mixture of Gaussian states is not necessarily Gaussian.

For the Wigner function and corresponding density matrix representation,

Criterion 1, 2, 3, 4, 6 hold. Criterion 5 remains to be further analysed.

All of the Criteria 1-6 hold for position measurements and weak measurements,

though the spacetime density matrix for position measurements assumes diagonal-

isation. It seems that the spacetime Wigner function from weak measurements

is best-defined under these criteria.

Note that we have considered whether the single time marginals of a spacetime

quantum state reduce to the spatial state at that particular time. It unfortunately

fails for Definition 2- 6 in general due to a property in the measurement theory which

suggests the irreversibility of the time evolution in the repeated observations [50];

only the initial time marginal is reduced to the initial state. Thus, we prefer

not to list it as one of the criteria.
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4.1 Introduction

Now we have already generalised the pseudo-density matrix formalism to continuous

variables and general measurement processes. There are several other approaches

which also tends to treat space and time more equally but different from the pseudo-

density matrix formalism. In this chapter, we identify the relationship among these

spacetime approaches via quantum correlation in time [65].

The problem of time [66] is especially notorious in quantum theory as time

cannot be treated as an operator in contrast with space. Several attempts have been

proposed to incorporate time into the quantum world in a more even-handed way

to space, including: indefinite causal structures [67–72], consistent histories [73–77],

generalised quantum games [78, 79], spatio-temporal correlation approches [80,

81], path integrals [82, 83], and pseudo-density matrices [39, 40, 84, 85]. Different

approaches have their own advantages. Of particular interest here is the pseudo-

density matrix approach for which one advantage is that quantum correlations in

space and time are treated on an equal footing. The present work is motivated

by the need to understand how the different approaches connect via temporal

correlations, so that ideas and results can be transferred more readily.

We accordingly aim to identify mappings between these approaches and pseudo-

density matrices. We ask what kind of relationship these space-time approaches

hold in terms of temporal correlations. Are the allowed temporal correlations

the same or different from each other? If the same, are they equal, or do they

map with each other and what kind of mapping? If different, how different are

they? More specifically, we take temporal correlations represented in different

approaches and find that they are consistent with each other expect in the path

integral formalism. Quantum correlations in time in these approaches are either

exactly equal or operationally equivalent expect those used in the path integral

formalism. By operational equivalence of two formalisms, we mean the correlations

or the probabilities of possible measurement outcomes with given inputs in these

two formalisms are equal. We find several mappings and relations between these

approaches, including (i) we map process matrices with indefinite causal order
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directly to pseudo-density matrices in three different ways; (ii) we show the

diagonal terms of decoherence functionals in consistent histories are exactly the

probabilities in temporal correlations of corresponding pseudo-density matrices; (iii)

we show quantum-classical signalling games give the same probabilities as temporal

correlations measured in pseudo-density matrices; (iv) the calculation of OTOCs

reduces half numbers of steps by pseudo-density matrices; and (v) correlations

in path integrals are defined as expectation values in terms of the amplitude

measure rather than the probability measure as in pseudo-density matrices and

are different from correlations in all the other approaches. A particular example

via a tripartite pseudo-density matrix is presented to illustrate the unified picture

of different approaches except path integrals. This applies to more complicated

cases and provides a unified picture of these approaches. It also supports the

further development of space-time formalisms in non-relativistic quantum theory.

Difference in correlations between path integrals and other approaches also suggests

the importance of measure choice in quantum theory.

This chapter is based on Ref. [65] and proceeds as follows. We introduce

indefinite causal structures and compare the process matrix formalism with the

pseudo-density matrix formalism in terms of correlation analysis, causality violation,

and postselection in Section 4.2. In Section 4.3, we establish the relation between

pseudo-density matrix and decoherence functional in consistent histories. We

further explore generalised non-local games and build pseudo-density matrices

from generalised signalling games in Section 4.4. In Section 4.5, we simplify the

calculation of out-of-time-order correlations via pseudo-density matrices. We further

argue that the path integral formalism defines correlations in a different way. Finally

we provide a unified picture under a tripartite pseudo-density matrix except the path

integral formalism and summarise our work and provide an outlook in Section 4.7.

4.2 Indefinite causal structures

The concept of indefinite causal structures was proposed as probabilistic theories

with non-fixed causal structures as a possible approach to quantum gravity [86,
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87]. There are different indefinite causal order approaches: quantum combs [67,

68], operator tensors [69, 88], process matrices [70, 89], process tensors [71, 90],

and super-density operators [72, 91]. Also, Several of the approaches are closely

related [92], for example, quantum channels with memories [93], general quantum

strategies [94], multiple-time states [95–97], general boundary formalism [98], and

quantum causal models [99, 100]. General quantum strategies can be taken as a

game theory representation; multiple-time states are a particular subclass of process

matrices; quantum causal models just use the process matrix formalism. Since there

are clear maps among quantum combs, operator tensors, process tensors, and process

matrices, we just take the process matrix formalism in order to learn from causality

inequalities and postselection. We will investigate its relation with the pseudo-

density matrix and show what lessons we shall learn for pseudo-density matrices.

4.2.1 Preliminaries for process matrix formalism

The process matrix formalism was originally proposed in Ref. [70] as one of the

indefinite causal structures assuming local quantum mechanics and well-defined

probabilities. The process matrix was defined to take completely positive(CP) maps

to linear probabilities. It is redefined in Ref. [101] in a more general way as high

order transformations, where the definition is extended to take CP maps to other

CP maps. Here we follow as Ref. [101]. We define bipartite processes first; the

multipartite case is obtained directly or from Ref. [89].

For the bipartite case, consider a global past P and a global future F . Quantum

states in the past are transformed to quantum states in the future through a causally

indefinite structure. A process is defined as a linear transformation take two CPTP

maps A : AI ⊗ A′I → AO ⊗ A′O and B : BI ⊗ B′I → BO ⊗ B′O to a CPTP map

GA,B : A′I ⊗ B′I ⊗ P → A′O ⊗ B′O ⊗ F without acting on the systems A′I , A′O, B′I ,

B′O. Specifically, it is a transformation that act on P ⊗ AI ⊗ AO ⊗BI ⊗BO ⊗ F .

We introduce the Choi-Jamiołkowski isomorphism [102, 103] to represent the

process in the matrix formalism. Recall that for a CP map MA : AI → AO, its

corresponding Choi-Jamiołkowski matrix is given as C(M) ≡ [I ⊗MA(|1〉〉〈〈1|)] ∈
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AI ⊗ AO with I as the identity map and |1〉〉 = |1〉〉AIAI ≡ ∑
j |j〉

AI ⊗ |j〉AI ∈

HAI ⊗HAI is the non-normalised maximally entangled state. The inverse is given

asM(ρAI ) = Tr
[
(ρAI ⊗ 1

AO)MAIAO
]
where 1AO is the identity matrix on HAO .

Then A = C(A), B = C(B), and GA,B = C(GA,B) are the corresponding CJ

representations. We have

GA,B = TrAIAOBIBO [W TAIAOBIBO (A⊗B)] (4.1)

where the process matrix is defined as W ∈ P ⊗AI⊗AO⊗BI⊗BO⊗F , TAIAOBIBO
is the partial transposition on the subsystems AI , AO, BI , BO, and we leave identity

matrices on the rest subsystems implicit. Note that we require that GA,B is a CPTP

map for any CPTP maps A, B. This condition is equivalent to the followings:

W ≥ 0, (4.2)

TrW = dAOdBOdP , (4.3)

W = LV (W ), (4.4)

where LV is defined as a projector

LV (W ) = W −F W+AOFW +BOF W −AOBOF W −AIAOF W +AIAOBOF W

−BIBOF W +AIAOBOF W −AIAOBIBOF W +PAIAOBIBOF W.
(4.5)

Terms that can exist in a process matrix include states, channels, channels with

memory; nevertheless, local loops, channels with local loops and global loops are not

allowed [70]. A bipartite process matrix can be fully characterised in the Hilbert-

Schmidt basis [70]. Define the signalling directions� and� as follows: A � B means

A is in the causal past of B, A � B means it is not; similarly for � and �. Any valid

bipartite process matrix WAIAOBIBO can be given in the Hilbert-Schmidt basis as

WAIAOBIBO = 1
dAIdBI

(1 + σA�B + σA�B + σA��B) (4.6)
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where the matrices σA�B, σA�B, and σA��B are defined by

σA�B ≡
∑
ij>0

cijσ
AO
i σBIj +

∑
ijk>0

dijkσ
AI
i σAOj σBIk (4.7)

σA�B ≡
∑
ij>0

eijσ
AI
i σBOj +

∑
ijk>0

fijkσ
AI
i σBIj σBOk (4.8)

σA��B ≡
∑
i>0

giσ
AI
i +

∑
i>0

hiσ
BI
i +

∑
ij>0

lijσ
AI
i σBIj (4.9)

(4.10)

Here cij, dijk, eij, fijk, gi, hi, lij ∈ R. That is, a bipartite process matrix of the system

AB is a combination of an identity matrix, the matrices where A signals to B,

where B signals to A, and where A and B are causally separated. It is thus a

linear combination of three possible causal structures.

4.2.2 Correlation analysis and causality inequalities

In this subsection, we analyse correlations in both the process matrix formalism

and the pseudo-density matrix formalism. We first take a special case with causal

order and map correlations in two formalisms to each other. Then we consider

the set of all possible causal correlations forms a causal polytope. The facets of

the causal polytope are defined as causal inequalities and they are violated in the

two formalisms with indefinite causal structures.

Correlation analysis

Now we analyse the relation between a process matrix and a pseudo-density matrix

in the causal order. The basic elements in a process matrix are different laboratories,

and the basic elements in a pseudo-density matrix are different events. We map a

process matrix to a pseudo-density matrix in a way that each lab corresponds

to each event.

A process matrix with a single-qubit Pauli measurement taken at each laboratory

is mapped to a finite-dimensional pseudo-density matrix. Compare them in the

bipartite case as an illustration. In the simplest temporal case, a maximally mixed
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qubit evolves under the identity evolution between two times. The process matrix

for this scenario is given as

W = 1
AI

2 ⊗ [[1]]AOBI , (4.11)

where [[1]]XY = ∑
ij |i〉 〈j|

X ⊗ |i〉 〈j|Y = 1
2(1⊗ 1 +X ⊗X − Y ⊗ Y + Z ⊗ Z). At

the same time, the corresponding pseudo-density matrix is

R = 1
4(I ⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z) = 1

2[[1]]PT = 1
2S, (4.12)

where the swap operator S = 1
2(1⊗ 1 +X ⊗X + Y ⊗ Y + Z ⊗ Z) = [[1]]PT , here

PT is the partial transpose. For an arbitrary state ρ evolving under the unitary

evolution U , the process matrix is given as

W = ρAI ⊗ [[U ]]AOBI , (4.13)

where [[U ]] = (1⊗U)[[1]](1⊗U †). The pseudo-density matrix is given from Ref. [40]

as

R = 1
2(1⊗U)(ρA⊗1

B

2 S+SρA⊗1
B

2 )(1⊗U †) = 1
2(ρA⊗1

B

2 [[U ]]PT+[[U ]]PTρA⊗1
B

2 ),

(4.14)

where the partial transpose is taken on the subsystem A. Now we compare the

correlations in the two formalisms and check whether they hold the same information.

The single-qubit Pauli measurement σi for each event in the pseudo-density

matrix has the Choi-Jamiołkowski representation as

ΣAIAO
i = P+AI

i ⊗ P+AO
i − P−AIi ⊗ P−AOi (4.15)

where P±i = 1
2(1±σi); that is, to make a measurement Pα

i (α = ±1) to the input state

and project the corresponding eigenstate to the output system. It is equivalent to

ΣAIAO
i = 1

2(1AI ⊗ σAOi + σAIi ⊗ 1
AO). (4.16)

In the example of a single qubit ρ evolving under U , the correlations from the

process matrix are given by

p(ΣAIAO
i ,ΣBIBO

j ) = Tr
[
(ΣAIAO

i ⊗ ΣBIBO
j )W

]
= 1

2 Tr
[
σjUσiU

†
]
; (4.17)
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while the correlations from the pseudo-density matrix are given as

〈{σi, σj}〉 = 1
2
(
Tr
[
σjUσiρU

†
]

+ Tr
[
σjUρσiU

†
])

= 1
2 Tr

[
σjUσiU

†
]
. (4.18)

The last equality holds as a single-qubit ρ is decomposed into ρ = 1

2 +∑
k=1,2,3 ckσk.

The allowed spatio-temporal correlations given by the two formalisms are the same;

thus, pseudo-density matrices and process matrices are equivalent in terms of

encoded correlations. In a general case of bipartite systems on AB, this equivalence

holds for each case with causal order as A � B, A � B, A �� B. In principle, their

superpositions for arbitrary process matrices will satisfy the correlation equivalence

as well. The only condition here is that A and B make Pauli measurements in

their local laboratories. Therefore, a process matrix where a single-qubit Pauli

measurement is made at each laboratory corresponds to a finite-dimensional pseudo-

density matrix since the correlations are equal.

For generalised measurements, for example, arbitrary POVMs, a process matrix

is fully mapped to the corresponding generalised pseudo-density matrix; thus, a

process matrix can be always mapped to a generalised pseudo-density matrix in

principle. The process matrix and the corresponding generalised pseudo-density

matrix just take the same measurement process in each laboratory or at each

event. The analysis for correlations is similar.

For a given set of measurements, a process matrix where the measurement is

made in each laboratory hold the same correlations as a generalised pseudo-density

matrix with the measurement made at each event. Thus, a universal mapping from

a process matrix to a pseudo-density matrix for general measurements is established.

However, a pseudo-density matrix in finite dimensions is not necessarily mapped

back to a valid process matrix. As mentioned before, a valid process matrix excludes

the possibilities for post-selection, local loops, channels with local loops and global

loops. Pseudo-density matrices are defined operationally in terms of measurement

correlations and may allow these possibilities. We will come back to this point in

the discussion for postselection and out-of-time-order correlation functions.
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Causal inequalities

In the subsubsection, we introduce the causal polytope formed by the set of correla-

tions with a definite causal order. Its facets are defined as causal inequalities [104].

We show that the characterisation of bipartite correlations is consistent with the

previous analysis in the pseudo-density matrix formalism. We show that causal

inequalities can be violated in both of the process matrix formalism and the

pseudo-density matrix formalism.

We follow as Ref. [104]. Recall that we denote Alice in the causal past of Bob

as A � B. Now for simplicity, we do not consider relativistic causality but normal

Newton causality. We denote A ≺ B for events in Alice’s system precedes those in

Bob’s system. Then Bob cannot signal to Alice, and the correlations satisfy that

∀x, y, y′, a, pA≺B(a|x, y) = pA≺B(a|x, y′), (4.19)

where pA≺B(a|x, y(′)) = ∑
b p

A≺B(a, b|x, y(′)). Similarly, for B ≺ A, Alice cannot

signal to Bob that

∀x, x′, y, b, pA≺B(b|x, y) = pA≺B(b|x′, y), (4.20)

where pA≺B(b|x(′), y) = ∑
a p

A≺B(a, b|x(′), y).

Correlations of the order A ≺ B satisfy the properties of non-negativity and

normalisation, and the no-signaling-to-Alice condition:

pA≺B(a, b|x, y) ≥0, ∀x, y, a, b; (4.21)∑
a,b

pA≺B(a, b|x, y) =1, ∀x, y; (4.22)

pA≺B(a|x, y) = pA≺B(a|x, y′), ∀x, y, y′, a. (4.23)

Via these linear conditions, the set of correlations pA≺B forms a convex polytope.

Similarly for the set of correlations pB≺A. The correlations are defined as causal

if it is compatible with A ≺ B with probability q and B ≺ A with probability

1 − q, that is, for q ∈ [0, 1],

p(a, b|x, y) = qpA≺B(a, b|x, y) + (1− q)pB≺A(a, b|x, y), (4.24)
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where pA≺B and pB≺A are non-negative and normalised to 1. Then the set of

causal correlations is the convex hull of the sets of correlations pA≺B and pB≺A

and constitutes a causal polytope.

Suppose that Alice and Bob’s inputs have mA and mB possible values, their

outputs have kA and kB values respectively. The polytope of pA≺B has kmAA kmAmBB

vertices, of dimension mAmB(kAkB − 1)−mA(mB − 1)(kA − 1). The polytope of

pB≺A has kmAmBA kmBB vertices, of dimension mAmB(kAkB−1)− (mA−1)mB(kA−1).

The causal polytope has kmAA kmAmBB + kmAmBA kmBB − kmAA kmBB vertices, of dimension

mAmB(kAkB−1). Consider the bipartite correlations where a qubit evolves between

two times tA and tB. We make a Pauli measurement at each time to record

correlations. Given an initial state of the qubit, we havemA = mB = 1, kA = kB = 2.

The polytope of pA≺B has 4 vertices in 3 dimensions. The same as pB≺A and the

causal polytope. This result is consistent with the characterisation by the pseudo-

density matrix formalism in Ref. [40].

Now we characterise the causal polytope with mA = mB = kA = kB = 2. It has

112 vertices and 48 facets. 16 of the facets are trivial, which imply the non-negativity

of the correlations p(a, b|x, y) ≥ 0. If we relabel the inputs and outputs of the

systems, the rest of facets are divided into two groups, each with 16 facets:

1
4
∑
x,y,a,b

δa,yδb,xp(a, b|x, y) ≤ 1
2 , (4.25)

and
1
4
∑
x,y,a,b

δx(a⊕y),0δy(b⊕x),0p(a, b|x, y) ≤ 3
4 , (4.26)

where δi,j is the Kronecker delta function and ⊕ is the addition modulo 2. They

are interpreted into the bipartite "guess your neighbour’s input" (GYNI) games

and "lazy GYNI" (LGYNI) games [104].

Then we show the violation of causal inequalities via process matrix formalism

and pseudo-density matrix formalism. In the process matrix formalism, we take the

global past P , the global future F , Alice’s ancilla systems A′I , A′O and Bob’s ancilla

systems B′I , B′O trivial. Then the process matrix correlations are given as

p(a, b|x, y) = Tr
[
W TAIAOBIBOAa|x ⊗Bb|y

]
. (4.27)
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Consider the process matrix

W = 1
4

[
1
⊗4 + ZAIZAOZBI1

BO + ZAI1
AOXBIXBO

√
2

]
. (4.28)

We choose the operations as (here slightly different from Ref. [104]):

A0|0 = B0|0 = 0, (4.29)

A1|0 = B1|0 = (|00〉+ |11〉)(〈00|+ 〈11|), (4.30)

A0|1 = B0|1 = 1
2 |0〉 〈0| ⊗ |0〉 〈0|+

1
2 |0〉 〈0| ⊗ |1〉 〈1| , (4.31)

A1|1 = B1|1 = 1
2 |1〉 〈1| ⊗ |0〉 〈0|+

1
2 |1〉 〈1| ⊗ |1〉 〈1| . (4.32)

Then

pGY NI = 5
16(1 + 1√

2
) ≈ 0.5335 > 1

2 , (4.33)

pLGY NI = 5
16(1 + 1√

2
) + 1

4 ≈ 0.7835 > 3
4 . (4.34)

For a pseudo-density matrix, we consider a similar strategy. Alice has two

systems X and A, where X is the ancillary system prepare with |x〉 〈x|. Bob

has two systems Y and B, where Y is the ancillary system prepare with |y〉 〈y|.

Given a pseudo-density matrix

R = 1
4

[
|x〉 〈x|X ⊗ 1

A ⊗ |y〉 〈y|Y ⊗ 1
B + ZXZAZY

1
B + ZX

1
AXYXB

√
2

]
, (4.35)

we choose the operations as before and gain the success probabilities as

pGY NI = 5
16(1 + 1√

2
) ≈ 0.5335 > 1

2 , (4.36)

pLGY NI = 5
16(1 + 1√

2
) + 1

4 ≈ 0.7835 > 3
4 . (4.37)

Again the causal inequalities are violated. This example also highlights another

relationship for the mapping between a process matrix and a pseudo-density

matrix. Instead of an input system and an output system in a process matrix, the

corresponding pseudo-density matrix has an additional ancillary system for each

event. Thus, a process matrix which makes a measurement and reprepares the

state in one laboratory describes the same probabilities as a pseudo-density matrix
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with ancillary systems which makes a measurement and reprepares the state at

each event. Another mapping from a process matrix to a pseudo-density matrix

is established by introducing ancillary systems.

4.2.3 Postselection and closed timelike curves

Postselection is conditioning on the occurrence of certain event in probability theory,

or conditioning upon certain measurement outcome in quantum mechanics. It

allows a quantum computer to choose the outcomes of certain measurements and

increases its computational power significantly. In this subsection, we take the

view from postselection and show that a particular subset of postselected two-time

states correspond to process matrices in indefinite causal order. Postselected closed

timelike curves are presented as a special case.

Two-time quantum states

In this subsubsection, we review the two-time quantum states approach [97] which

fixes initial states and final states independent at two times. The two-time quantum

state takes its operational meaning from postselection. Consider that Alice prepares

a state |ψ〉 at the initial time t1. Between the initial time t1 and the final time t2,

she performs arbitrary operations in her lab. Then she measures an observable O

at the final time t2. The observable O has a non-degenerate eigenstate |φ〉. Taking

|φ〉 as the final state, Alice discards the experiment if the measurement of O does

not give the eigenvalue corresponding to the eigenstate |φ〉.

Consider that Alice makes a measurement by the set of Kraus operators

{Êa = ∑
k,l βa,kl |k〉 〈l|} between t1 and t2. Note that {Êa} are normalised as∑

a Ê
†
aÊa = 1. The probability for Alice to gain the outcome a under the pre-

and post-selection is given as

p(a) = | 〈φ| Êa |ψ〉 |2∑
a′ | 〈φ| Êa′ |ψ〉 |2

. (4.38)
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Now define the two-time state and the two-time version of Kraus operator as

Φ =A2 〈φ| ⊗ |ψ〉
A1 ∈ HA2 ⊗HA1 ,

Ea =
∑
kl

βa,kl |k〉A2 ⊗A1 〈l| ∈ HA2 ⊗HA1 , (4.39)

where the two-time version of Kraus operator is denoted by Ea without the hat.

An arbitrary pure two-time state takes the form

Φ =
∑

αij A2 〈i| ⊗ |j〉
A1 ∈ HA2 ⊗HA1 . (4.40)

Then the probability to obtain a as the outcome is given as

p(a) = |Φ · Ea|2∑
a′ |Φ · Ea′|2

. (4.41)

A two-time density operator η is given as

η =
∑
r

prΦr ⊗ Φ†r ∈ HA2 ⊗HA1 ⊗HA†1 ⊗H
A†2 . (4.42)

Consider a coarse-grained measurement

Ja =
∑
µ

Eµ
a ⊗ Eµ†

a ∈ HA2 ⊗HA1 ⊗HA
†
1 ⊗HA†2 (4.43)

where the outcome a corresponds to a set of Kraus operators {Êµ
a }. Then the

probability to obtain a as the outcome is given as

p(a) = η · Ja∑
a′ η · Ja′

. (4.44)

Connection between process matrix and pseudo-density matrix under
post-selection

Now consider postselection applied to ordinary quantum theory. It is known that a

particular subset of postselected two-time states in quantum mechanics give the

form of process matrices within indefinite causal structures [97]. Here we first give

a simple explanation for this fact and further analyse the relation between a process

matrix and a pseudo-density matrix from the view of postselection.
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For an arbitrary bipartite process matrix W ∈ HAI ⊗HAO ⊗HBI ⊗HBO , we

can expand it in some basis:

WAIAOBIBO =
∑

ijkl,pqrs

wijkl,pqrs |ijkl〉 〈pqrs| . (4.45)

For the elements in each Hilbert space, we map them to the corresponding parts

in a bipartite two-time state. For example, we map the input Hilbert space of

Alice to the bra and ket space of Alice at time t1, and similarly for the output

Hilbert space for t2. That is,

|i〉 〈p| ∈ L(HAI )→ 〈p| ⊗ |i〉 ∈ HA†1
⊗HA1 (4.46)

|j〉 〈q| ∈ L(HAO)→ 〈q| ⊗ |j〉 ∈ HA2 ⊗HA†2 (4.47)

Thus, a two-time state ηWA1A2 ∈ HA2 ⊗HA1 ⊗HA†2 ⊗HA†1
is equivalent to a process

matrix for a single laboratory WAIAO .

The connection with pre- and post-selection suggests one more interesting

relationship between a process matrix and a pseudo-density matrix. For a process

matrix, if we consider the input and output Hilbert spaces at two times, we can

map it to a two-time state. That is, we connect a process matrix with single

laboratory to a two-time state. A pseudo-density matrix needs two Hilbert spaces

to represent two times. For a two-time state η12, the corresponding pseudo-density

matrix R12 has the same marginal single-time states, i.e., Tr1 η12 = Tr1R12 and

Tr2 η12 = Tr2R12. Then we find a map between a process matrix for a single event

and a pseudo-density matrix for two events. Note that in the previous subsections,

we have mapped a process matrix for two events to a pseudo-density matrix with

half Hilbert space for two events, and mapped a process matrix for two events to a

pseudo-density matrix with two Hilbert spaces at each of two events. This suggests

that the relationship between a process matrix and a pseudo-density matrix is

non-trivial with a few possible mappings.

One question arising naturally here concerns the pseudo-density matrices with

postselection. The definitions for finite-dimensional and Gaussian pseudo-density

matrices guarantee that under the partial trace, the marginal states at any single
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time will give the state at that time. In particular, tracing out all other times in a

pseudo-density matrix, we get the final state at the final time. On the one hand,

we may think that pseudo-density matrix formulation is kind of time-symmetric.

On the other hand, the final state is fixed by evolution; that implies that we cannot

assign an arbitrary final state, making it difficult for the pseudo-density matrix

to be fully time-symmetric. For other generalisation of pseudo-density matrices

like position measurements and weak measurements, the property for fixed final

states does not hold. Nevertheless, we may define a new type of pseudo-density

matrices with postselection. We assign the final measurement to be the projection

to the final state and renormalise the probability. For example, a qubit in the

initial state ρ evolves under a CPTP map E : ρ→ E(ρ) and then is projected on

the state η. We may construct the correlations 〈{σi, σj, η}〉 as

〈{σi, σj, η}〉 =
∑

α,β=±1
αβ Tr

[
ηP β

j E(Pα
i ρP

α
i )P β

j

]
/pij(η), (4.48)

where Pα
i = 1

2(1 + ασi) and pij(η) = ∑
α,β=±1 Tr

[
ηP β

j E(Pα
i ρP

α
i )P β

j

]
. Then the

pseudo-density matrix with postselection is given as

R = 1
4

3∑
i,j=0
〈{σi, σj, η}〉σi ⊗ σj ⊗ η. (4.49)

We further conclude the relation between a process matrix and a pseudo-density

matrices with postselection. A process matrix with postselection for a laboratory is

operationally equivalent to a tripartite postselected pseudo-density matrix.

Post-selected closed timelike curves

We briefly discuss postselected closed timelike curves before we move on to a sum-

mary. Closed timelike curves (CTCs), after being pointed out by Gödel to be allowed

in general relativity [105], have always been arising great interests. Deutsch [106]

proposed a circuit method to study them and started an information theoretic point

of view. Deustch’s CTCs are shown to have many abnormal properties violated by

ordinary quantum mechanics. For example, they are nonunitary, nonlinear, and

allow quantum cloning [107, 108]. Several authors [109–112] later proposed a model
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for closed timelike curves based on postselected teleportation. It is studied that

process matrices correspond to a particular linear version of postselected closed

timelike curves [113]. In pseudo-density matrices we can consider a system evolves

in time and back; that is the case for calculating out-of-time-order correlation

functions we will introduce later, and different from closed timelike curves as there

is no loop. However, the black hole final state proposal in later section is very

much related. Now we briefly introduce postselected closed timelike curves and

its representation in pseudo-density matrices.

Postselected closed timelike curves can be seen as a “chronology-respecting”

system S and a CTC system A evolving under a unitary USA. Consider the CTC

system A is part of the maximally entangled state |Φ〉AB = ∑d−1
i=0

1√
d
|i〉 |i〉. More

specifically, the system S and A evolve under the unitary U and then we project the

two systems AB onto the state |Φ〉 and renormalise the probability. One assumes

that this projection is certain with probability 1. Then for the system S, ρS goes

in to the state CρSC
†

Tr[CρSC†] where C = TrA USA. In this way, we create a quantum

channel from the future to the past and the CTC qubit goes back in time.

Here we illustrate post-selected closed timelike curves by the pseudo-density

matrices with postselection. It is a two-time process with a postselection. We

assume that at the initial time systems S and AB are prepared. We make a

measurement Pi. After the unitary evolution USA, we make another measurement

Pj. Then we project the state to |Φ〉AB. The correlations are represented by

〈{Pi, Pj, |Φ〉 〈Φ|AB}〉 =
∑
α,β αβp

αβ
ij∑

α,β p
αβ
ij

, (4.50)

where

pαβij = Tr
[
1S ⊗ |Φ〉 〈Φ|AB P

β
j (USA ⊗ 1B)Pα

i (ρS ⊗ |Φ〉 〈Φ|AB)Pα†
i (U †SA ⊗ 1B)P β†

j

]
.

(4.51)

Here Pα
i is denoted for the measurement Pi with the outcome α and P β

j for the

measurement Pj with the outcome β. For simplicity, we consider Pi = Pj = 1. Then

p = Tr
[
1S ⊗ |Φ〉 〈Φ|AB (USA ⊗ 1B)(ρS ⊗ |Φ〉 〈Φ|AB)(U †SA ⊗ 1B)

]
= 1
d2 Tr

[
CρSC

†
]

(4.52)
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where C = TrA USA. The result is consistent with Ref. [108]. However, the role of

quantum correlations plays in the closed timelike curves is still an open problem.

4.2.4 Summary of the relation between pseudo-density ma-
trix and indefinite causal structures

In this subsection, we have introduced the relation between pseudo-density matrices

and indefinite causal structures. We argue that the pseudo-density matrix formalism

belongs to indefinite causal structures. So far, all other indefinite causal structures

to our knowledge use a tensor product of both input and output Hilbert spaces,

while a pseudo-density matrix only assumes a single Hilbert space. For a simple

example of a qudit at two times, the dimension used in other indefinite causal

structures is d4 but for pseudo-density matrix it is 2d2. Though other indefinite

causal structures assume a much larger Hilbert space, pseudo-density matrix should

not be taken as a subclass of any indefinite causal structures which already exist.

There are certain non-trivial relation between pseudo-density matrices and other

indefinite causal structures. As we can see from the previous subsections, it is

possible to map a process matrix to a corresponding pseudo-density matrix in three

different ways: one-lab to one-event direct map, one-lab to one-event with double

Hilbert spaces map, and one-lab to two-event map.

Claim 1. A process matrix and the corresponding pseudo-density matrix allow the

same correlations or probabilities in three different mappings.

One obvious difference between a process matrix and a pseudo-density matrix is

that, for each laboratory, a process matrix measures and reprepares a state while

a pseudo-density matrix usually only makes a measurement and the state evolves

into its eigenstate for each eigenvalue with the corresponding probability. The

correlations given by process matrices and pseudo-density matrices are also the

same. Examples in postselection and closed time curves suggest further similarities.

In general, we can understand that the pseudo-density matrix is defined in an

operational way which does not specify the causal order, thus belongs to indefinite

causal structures. We borrow the lessons from process matrices here to investigate
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pseudo-density matrices further. Maybe it will be interesting to derive a unified

indefinite causal structure which takes the advantage of all existing ones.

Nevertheless, the ultimate goal of indefinite causal order towards quantum gravity

is still far reaching. So far, all indefinite causal structures are linear superpositions of

causal structures; will that be enough for quantising gravity? It is generally believed

among indefinite causal structure community that what is lacking in quantum

gravity is the quantum uncertainty for dynamical causal structures suggested by

general relativity. The usual causal order may be changed under this quantum

uncertainty and there is certain possibility for a superposition of causal orders

and even beyond. Generalisation to relativistic quantum field theory and quantum

gravity remains to be a very exciting open problem.

4.3 Consistent histories

In this section we first review consistent histories and then explore the relation

between pseudo-density matrices and consistent histories.

4.3.1 Preliminaries for consistent histories

Consistent histories, or decoherent histories, is an interpretation for quantum theory,

proposed by Griffiths [73, 74], Gell-Mann and Hartle [75, 76], and Omnes [77].

The main idea is that a history, understood as a sequence of events at successive

times, has a consistent probability with other histories in a closed system. The

probabilities assigned to histories satisfy the consistency condition to avoid the

interference between different histories and that set of histories are called consistent

histories [114, 115].

Consider a set of projection operators {Pα} which are exhaustive and mu-

tually exclusive:

∑
α

Pα = 1, PαPβ = δαβPβ, (4.53)

where the range of α may be finite, infinite or even continuous. For each Pα and a

system in the state ρ, the event α is said to occur if PαρPα = ρ and not to occur if
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PαρPα = 0. The probability of the occurrence of the event α is given by

p(α) = Tr[PαρPα]. (4.54)

A projection of the form Pα = |α〉 〈α| ({|α〉} is complete) is called completely

fine-grained, which corresponds to the precise measurement of a complete set of

commuting observables. Otherwise, for imprecise measurements or incomplete

sets, the projection operator is called coarse-grained. Generally it takes the

form P̄ᾱ = ∑
α∈ᾱ Pα.

In the Heisenberg picture, the operators for the same observables P at different

times are related by

P (t) = exp(iHt/~)P (0) exp(−iHt/~), (4.55)

with H as the Hamiltonian of the system. Then the probability of the occurrence

of the event α at time t is

p(α) = Tr[Pα(t)ρPα(t)]. (4.56)

Now we consider how to assign probabilities to histories, that is, to a sequence

of events at successive times. Suppose that the system is in the state ρ at the initial

time t0. Consider a set of histories [α] = [α1, α2, · · · , αn] consisting of n projections

{P k
αk

(tk)}nk=1 at times t1 < t2 < · · · < tn. Here the subscript αk allows for different

types of projections, for example, a position projection at t1 and a momentum

projection at t2. Then the decoherence functional is defined as

D([α], [α′]) = Tr
[
P n
αn(tn) · · ·P 1

α1(t1)ρP 1
α′1

(t1) · · ·P n
α′n

(tn)
]
, (4.57)

where

P k
αk

(tk) = ei(tk−t0)HP k
αk
e−i(tk−t0)H . (4.58)

It is important in consistent histories because probabilities can be assigned to

histories when the decoherence functional is diagonal. It is easy to check that

D([α], [α′]) = D([α′], [α])∗, (4.59)∑
[α]

∑
[α′]

D([α], [α′]) = Tr ρ = 1. (4.60)
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The diagonal elements are the probabilities for the histories (ρ, t0) → (α1, t1) →

· · · → (αn, tn):

p(α1, α2, . . . , αn) = D(α1, α2, . . . , αn|α1, α2, . . . , αn) = D([α], [α]) (4.61)

Until now, we considered fine-grained projections P k
αk

for fine-grained histories.

The coarse-grained histories are characterised by the coarse-grained projections P̄ k
ᾱk
.

To satisfy the probability sum rules, the probability for a coarse-grained history

is the sum of the probabilities for its fine-grained histories. That is,

p(ᾱ1, ᾱ2, . . . , ᾱn) =
∑

[α]∈[ᾱ]
p(α1, α2, . . . , αn), (4.62)

where ∑
[α]∈[ᾱ]

=
∑
α1∈ᾱ1

∑
α2∈ᾱ2

· · ·
∑

αn∈ᾱn
. (4.63)

On the other hand, we gain the decoherence functional for coarse-grained histories

by directly summing over the fine-grained projections as

D([ᾱ], [ᾱ′]) =
∑

[α]∈[ᾱ]

∑
[α′]∈[ᾱ′]

D([α], [α′]). (4.64)

For the diagonal terms,

D([ᾱ], [ᾱ]) =
∑

[α]∈[ᾱ]
D([α], [α]) +

∑
[α] 6=[α′],[α]∈[ᾱ]

∑
[α′]∈[ᾱ′]

D([α], [α′]), (4.65)

where [α] 6= [α′] means αk 6= α′k for at least one k.

To obey the probability sum rules that all probabilities are non-negative and

summed to 1, the sufficient and necessary condition is

Re[D(α1, α2, . . . , αn|α′1, α′2, . . . , α′n)] = p(α1, α2, . . . , αn)δα1α′1
· · · δαnα′n . (4.66)

Eqn. (4.66) is called the consistency condition or decoherence condition. Sets of

histories obeying the condition are referred to consistent histories or decoherent

histories. A stronger version of consistency condition is

D(α1, α2, . . . , αn|α′1, α′2, . . . , α′n) = p(α1, α2, . . . , αn)δα1α′1
· · · δαnα′n . (4.67)
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The decoherence functional has a path integral representation. With config-

uration space variables qi(t) and the action S[qi],

D([α], [α′]) =
∫

[α]
Dqi

∫
[α′]
Dqi′ exp

(
iS[qi]− iS[qi′ ]

)
δ(qif − qi

′

f )ρ(qi0, qi
′

0 ), (4.68)

where the two paths qi(t), qi′(t) begin at qi0, qi
′

0 respectively at t0 and end at qif = qi
′
f

at tf , and correspond to the projections P k
αk
, P k

α′
k
made at time tk (k = 1, 2, . . . n).

4.3.2 Temporal correlations in terms of decoherence func-
tional

The relation with the n-qubit pseudo-density matrix is arguably obvious. For

example, consider an n-qubit pseudo-density matrix as a single qubit evolving

at n times. For each event, we make a single-qubit Pauli measurement σik at

the time tk. We can separate the measurement σik into two projection operators

P+1
ik

= 1
2(I +σik) and P−1

ik
= 1

2(I−σik) with its outcomes ±1. Corresponding to the

history picture, each pseudo-density event with the measurement σik corresponds

to two history events with projections Pαk
ik

(αk = ±1). A pseudo-density matrix

is built upon measurement correlations 〈{σik}nk=1〉. Theses correlations can be

given in terms of decoherence functionals as

〈{σik}nk=1〉 =
∑

α1,...,αn

α1 · · ·αn Tr
[
Pαn
in Un−1 · · ·U1P

α1
i1 ρP

α1
i1 U

†
1 · · ·U

†
n−1P

αn
in

]
=

∑
α1,...,αn

α1 · · ·αnp(α1, . . . , αn)

=
∑

α1,...,αn

α1 · · ·αnD([α], [α]), (4.69)

where D([α], [α]) is the diagonal terms of decoherence functional with [α] =

[α1, . . . , αn]. Note that here only diagonal decoherence functionals are taken into

account, which coincides with the consistency condition.

Similar relations hold for the Gaussian spacetime states. For each event, we

make a single-mode quadrature measurement q̂k or p̂k at time tk. We can separate

the measurement x̂k =
∫
xk |xk〉 〈xk| dxk into projection operators |xk〉 〈xk| with
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outcomes xk. Then each Gaussian event with the measurement x̂k corresponds to

infinite and continuous history events with projections |xk〉 〈xk|.

〈{xk}nk=1〉 =
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx1 · · · dxnx1 · · · xn

Tr
[
|xn〉 〈xn|Un−1 · · ·U1 |x1〉 〈x1| ρ |x1〉 〈x1|U †1 · · ·U

†
n−1 |xn〉 〈xn|

]
=
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx1 · · · dxnx1 · · ·xnp(x1, . . . , xn)

=
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx1 · · · dxnx1 · · ·xnD([x], [x]), (4.70)

where D([x], [x]) is the diagonal terms of decoherence functional with [x] =

[x1, . . . , xn].

For general spacetime states for continuous variables, we make a single-mode

measurement T (αk) at time tk for each event. It separates into two projection

operators P+1(αk) and P−1(αk), then it follows as the n-qubit case.

The interesting part is to apply the lessons from consistent histories to the

generalised pseudo-density matrix formulation with general measurements. We

have argued that the spacetime density matrix can be expanded diagonally in

terms of position measurements as

ρ =
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx1 · · · dxnp(x1, · · · , xn) |x1〉 〈x1| ⊗ · · · ⊗ |xn〉 〈xn| . (4.71)

It reminds us of the diagonal terms of the decoherence functional. It is possible to

build a spacetime density matrix from all possible decoherence functionals as

ρ =
∫ ∞
−∞
· · ·

∫ ∞
−∞

dx1dx′1 · · · dxndx′nD(x1, . . . , xn|x′1, . . . x′n) |x1〉 〈x′1|⊗· · ·⊗|xn〉 〈x′n| .

(4.72)

Applying the strong consistency condition to the above equation, we gain Eqn. (4.71)

again. This argues why it is effective to only consider diagonal terms in position

measurements. which is originally taken for convenience.

Similarly, the spacetime Wigner function from weak measurements is easily

taken as a generalisation for the diagonal terms of the decoherence functional

allowing for general measurements. Recall that a generalised effect-valued measure

is represented by

f̂(q, p) = C exp
[
−α[(q̂ − q)2 + λ(p̂− p)2]

]
. (4.73)
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The generalised decoherence functional for weak measurements is then given by

D(q, p, q′, p′, τ |ρ̂) = Tr [F(q, p, q′, p′; τ)ρ̂] , (4.74)

where

F(q, p, q′, p′; τ)ρ̂ =
∫

dµG[q(t), p(t)]
∫

dµG[q′(t), p′(t)]δ
(
q − 1

τ

∫ τ

0
dtq(t)

)
δ
(
p− 1

τ

∫ τ

0
dtp(t)

)
δ
(
q′ − 1

τ

∫ τ

0
dtq′(t)

)
δ
(
p′ − 1

τ

∫ τ

0
dtp′(t)

)
exp

[
− i
~
Ĥτ

]
T exp

[
−γ2

∫ τ

0
dt[(q̂H(t)− q(t))2 + λ(p̂H(t)− p(t))2]

]
ρ̂

T ∗ exp
[
−γ2

∫ τ

0
dt[(q̂′H(t)− q′(t))2 + λ(p̂′H(t)− p′(t))2]

]
exp

[
i

~
Ĥτ

]
,

(4.75)

here

dµG[q(t), p(t)] = lim
N→∞

(
γτ
√
λ

πN

N∏
s=1

dq(ts)dp(ts)
)
, (4.76)

dµG[q′(t), p′(t)] = lim
N→∞

(
γτ
√
λ

πN

N∏
s=1

dq′(ts)dp′(ts)
)
, (4.77)

and

q̂H(t) = exp
[
i

~
Ĥt
]
q̂ exp

[
− i
~
Ĥt
]
, q̂′H(t) = exp

[
i

~
Ĥt
]
q̂′ exp

[
− i
~
Ĥt
]
,

p̂H(t) = exp
[
i

~
Ĥt
]
p̂ exp

[
− i
~
Ĥt
]
, p̂′H(t) = exp

[
i

~
Ĥt
]
p̂′ exp

[
− i
~
Ĥt
]
.

(4.78)

The diagonal terms under the strong consistency condition reduce to the form

in the previous chapter:

p(q, p, τ |ρ̂) = TrF(q, p; τ)ρ̂, (4.79)

where

F(q, p; τ)ρ̂ =
∫

dµG[q(t), p(t)]δ
(
q − 1

τ

∫ τ

0
dtq(t)

)
δ
(
p− 1

τ

∫ τ

0
dtp(t)

)
exp

[
− i
~
Ĥτ

]
T exp

[
−γ2

∫ τ

0
dt[(q̂H(t)− q(t))2 + λ(p̂H(t)− p(t))2]

]
ρ̂

T ∗ exp
[
−γ2

∫ τ

0
dt[(q̂H(t)− q(t))2 + λ(p̂H(t)− p(t))2]

]
exp

[
i

~
Ĥτ

]
.

(4.80)

Now we conclude the relation between decoherence functionals in consistent

histories and temporal correlations in pseudo-density matrices.
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Claim 2. The decoherence functional in consistent histories is the probabilities in

temporal correlations of pseudo-density matrices.

Thus, we establish the relationship between consistent histories and all possible

forms of pseudo-density matrix. From the consistency condition, we also have a

better argument for why spacetime states for general measurements are defined

in the diagonal form. It is not a coincide.

4.4 Generalised non-local games

Game theory studies mathematical models of competition and cooperation under

strategies among rational decision-makers [116]. Here we give an introduction to

nonlocal games, quantum-classical nonlocal games, and quantum-classical signalling

games. Then we show the relation between quantum-classical signalling games and

pseudo-density matrices, and comment on the relation between general quantum

games and indefinite causal order.

4.4.1 Introduction to non-local games

The interests for investigating non-local games start from interactive proof systems

with two parties, the provers and the verifiers. They exchange information to verify

a mathematical statement. A nonlocal game is a special kind of interactive proof

system with only one round and at least two provers who play in cooperation against

the verifier. In nonlocal games, we refer to the provers as Alice, Bob, . . . , and

the verifier as the referee. In Ref. [117], nonlocal games were formally introduced

with shared entanglement and used to formulate the CHSH inequality [118]. Here

we introduce the CHSH game as an example and then give the general form

of a non-local game.

The CHSH game has two cooperating players, Alice and Bob, and a referee

who asks questions and collects answers from the players. The basic rules of the

CHSH game are as the following:

1) There are two possible questions x ∈ {0, 1} for Alice and two possible questions

y ∈ {0, 1} for Bob. Each question has an equal probability as p(x, y) = 1
4 ,∀x,∀y.
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2) Alice answers a ∈ {0, 1} and Bob b ∈ {0, 1}.

3) Alice and Bob cannot communicate with each other after the game begins.

4) If a ⊕ b = x · y, then they win the game, otherwise they lose.

For a classical strategy, that is, Alice and Bob use classical resources, they win

with the probability at most 3
4 . Alice and Bob can also adopt a quantum strategy.

If they prepare and share a joint quantum state |Φ+〉 = 1√
2(|00〉+ |11〉) and make

local measurements based on the questions they receive separately, then they can

achieve a higher winning probability cos2(π/8) ≈ 0.854.

In general, a non-local game G is formulated by (π, l) on
−→
nl = 〈X ,Y ;A,B; l〉, (4.81)

where X , Y are question spaces of Alice and Bob and A, B are answer spaces of

Alice and Bob. Here π(x, y) is a probability distribution of the question spaces

for Alice and Bob in the form π : X × Y → [0, 1]. l(a, b|x, y) is a function of

question and answer spaces for Alice and Bob to decide whether they win or lose

in the form l : X × Y ×A× B → [0, 1]; for example, if they win, l = 1; otherwise

lose with l = 0. For any strategy, the probability distribution for answers a, b of

Alice and Bob given questions x, y, respectively, is referred to as the correlation

function p(a, b|x, y) of the form

p : X × Y ×A× B → [0, 1]. (4.82)

with the condition ∑a,b p(a, b|x, y) = 1. With a classical source,

pc(a, b|x, y) =
∑
λ

π(λ)dA(a|x, λ)dB(b|y, λ), (4.83)

where dA(a|x, λ) is the probability of answering a given the parameter λ and the

question b and similar for dB(b|y, λ); with a quantum source,

pq(a, b|x, y) = Tr
[
ρAB(P a|x

A ⊗Qb|y
B )
]
, (4.84)

where ρAB is the quantum state shared by Alice and Bob, P a|x
A is the measurement

made by Alice with the outcome a given x, Qb|y
B is the measurement made by Bob

with the outcome b given y. Then the optimal winning probability is given by

E−→
nl

[∗] ≡ max
∑
x,y

π(x, y)
∑
a,b

l(a, b|x, y)pc/q(a, b|x, y). (4.85)
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4.4.2 Quantum-classical non-local & signalling games

First we introduce a generalised version of non-local games where the referee asks

quantum questions instead of classical questions (therefore this type of non-local

games are refereed to quantum-classical) [78]. Then we give the temporal version of

these quantum-classical non-local games as quantum-classical signalling games [79].

Quantum-classical non-local games

We now recap the model of quantum-classical non-local games [78], in which the

questions are quantum rather than classical. More specifically, the referee sends

quantum registers to Alice and Bob instead of classical information.

For a non-local game, with the question spaces X = {x} and Y = {y}, the

referee associates two quantum ancillary systems X and Y such that dimHX ≥ |X |,

dimHY ≥ |Y|, the systems are in the states τxX = |x〉 〈x| and τ yY = |y〉 〈y| with

the questions x ∈ X and y ∈ Y. Assume that Alice and Bob share a quantum

state ρAB. Given the answer sets A = {a} and B = {b} and quantum systems XA

and Y B, Alice and Bob can make the corresponding POVMs P a
XA and Qb

Y B in the

linear operators on the Hilbert space HXA and HY B, such that ∑a P
a
XA = 1XA and∑

bQ
b
Y B = 1Y B. Then the probability distribution for the questions and answers

of Alice and Bob, that is, the correlation function P (a, b|x, y), is given by

P (a, b|x, y) = Tr
[
(P a

XA ⊗Qb
Y B)(τxX ⊗ ρAB ⊗ τ

y
Y )
]
. (4.86)

Quantum-classical non-local games replace classical inputs with quantum ones,

formulated by (π(x, y), l(a, b|x, y)) on

−−→
qcnl = 〈{τx}, {ωy};A,B; l〉. (4.87)

The referee picks x ∈ X and y ∈ Y with the probability distribution π(x, y) as the

classical-classical non-local game. With a classical source,

pc(a, b|x, y) =
∑
λ

π(λ) Tr
[
(τxX ⊗ ω

y
Y )(P a|λ

X ⊗Qb|λ
Y )

]
; (4.88)
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with a quantum source,

pq(a, b|x, y) = Tr
[
(τxX ⊗ ρAB ⊗ ω

y
Y )(P a

XA ⊗Qb
BY )

]
. (4.89)

The optimal winning probability is, again, given by

E−−→
qcnl

[∗] ≡ max
∑
x,y

π(x, y)
∑
a,b

l(a, b|x, y)pc/q(a, b|x, y). (4.90)

Quantum-classical signalling games

In quantum-classical signalling games [79], instead of two players Alice and Bob, we

consider only one player Abby at two successive instants in time. Then quantum-

classical signalling games change the Alice-Bob duo to a timelike structures of

single player Abby with

−−→qcsg = 〈{τx}, {ωy};A,B; l〉. (4.91)

With unlimited classical memory,

pc(a, b|x, y) =
∑
λ

π(λ) Tr
[
τxXP

a|λ
X

]
Tr
[
ωyYQ

b|a,λ
Y

]
. (4.92)

For admissible quantum strategies, suppose Abby at t1 receives τxX and makes a

measurement of instruments {Φa|λ
X→A}, and gains the outcome a. Then the quantum

output goes through the quantum memory N : A → B. The output of the

memory and ωyY received by Abby at t2 are fed into a measurement {Ψb|a,λ
BY },

with outcome b. Then

pq(a, b|x, y) =
∑
λ

π(λ) Tr
[
({(NA→B ◦ Φa|λ

X→A)(τxX)} ⊗ ωyY )Ψb|a,λ
BY

]
. (4.93)

The optimal payoff function is, again, given by

E−−→qcsg[∗] ≡ max
∑
x,y

π(x, y)
∑
a,b

l(a, b|x, y)pc/q(a, b|x, y). (4.94)
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4.4.3 Temporal correlations from signalling games

To compare quantum-classical signalling games with pseudo-density matrices, first

we generalise the finite-dimensional pseudo-density matrices from Pauli measure-

ments to general positive-operator valued measures(POVMs). Recall that a POVM

is a set of Hermitian positive semi-definite operator {Ei} on a Hilbert space H

which sum up to the identity ∑
iEi = 1H. Instead of making a single-qubit

Pauli measurement at each event, we make a measurement Ei = Ma†
i M

a
i with the

outcome a. For each event, there is a measurementMi : L(HX)→ L(HA), τxX 7→∑
iM

a
i τ

x
XM

a†
i with ∑

Ma†
i M

a
i = 1HX .

Now we map the generalised pseudo-density matrices to quantum-classical

signalling games. Assume ωyY to be trivial. For Abby at the initial time and the later

time, we consider Φa
X→A : τxX →

∑
iM

a
i τ

x
XM

a†
i , where ∑Ma†

i M
a
i = 1HA . Between

two times, the transformation from A to B is given by N : ρA →
∑
j NjρAN

†
j

with ∑
j N

†
jNj = 1HA . Then

pq(a, b|x, y) = Tr
[
{(NA→B ◦ Φa

X→A)(τxX)}Ψb|a
B

]
=
∑
ik

Tr
[
N{Ma

i τ
x
XM

a†
i }Ψ

b|a
B

]
=
∑
ijk

Tr
[
NjM

a
i τ

x
XM

a†
i N

†
jΨb|a

B

]
(4.95)

〈{Φ,Ψ}〉 =
∑
a,b

abpq(a, b|x, y) (4.96)

It is the temporal correlation given by pseudo-density matrices. That is, a quantum-

classical signalling game with a trivial input at later time corresponds to a pseudo-

density matrix with quantum channels replacing measurements for events.

Claim 3. The probability in a quantum-classical signalling game with a trivial input

at later time corresponds to the probability in a pseudo-density matrix where the

state goes through quantum channels instead of measurements.

It is also convenient to establish the relation between generalised games in time

and indefinite causal structures with double Hilbert spaces for each event. For

completeness, we also mention that Gutoski and Watrous [94] proposed a general
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theory of quantum games in terms of the Choi-Jamiołkowski representation, which

is an equivalent formulation of indefinite causal order.

4.5 Out-of-time-order correlations (OTOCs)

In this section we introduce out-of-time-order correlation functions, find a simple

method to calculation these temporal correlations via the pseudo-density matrix for-

malism, and apply the out-of-time-order correlation functions into the black hole final

state projection proposal as one of the proposals for black hole information paradox.

4.5.1 Brief introduction to OTOCs

Consider local operators W and V . With a Hamiltonian H of the system, the

Heisenberg representation of the operator W is given as W (t) = eiHtWe−iHt. Out-

of-time-order correlation functions (OTOCs) [80, 81] are usually defined as

〈VW (t)V †W †(t)〉 = 〈V U(t)†WU(t)V †U †(t)W †U(t)〉, (4.97)

where U(t) = e−iHt is the unitary evolution operator and the correlation is evaluated

on the thermal state 〈·〉 = Tr
[
e−βH ·

]
/Tr

[
e−βH

]
. Note that OTOC is usually defined

for the maximally mixed state ρ = 1

d
. Consider a correlated qubit chain. Measure

V at the first qubit and W at the last qubit. Since the chain is correlated in the

beginning, we have OTOC as 1 at the early time. As time evolves and the operator

growth happens, OTOC will approximate to 0 at the later time.

4.5.2 Calculating OTOCs via pseudo-density matrices

In this subsection we make a connection between OTOCs and the pseudo-density

matrix formalism. Consider a qubit evolving in time and backward, we can get

a tripartite pseudo-density matrix. In particular, we consider measuring A at t1,

B at t2 and A again at t3 and assume the evolution forwards is described by U

and backwards U †. Then the probability is given by

Tr
[
AU †BUAρA†U †B†UA†

]
= Tr

[
AB(t)AρA†B†(t)A†

]
(4.98)
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If we assume that AA† = A, ρ = 1

d
, then Eqn. (4.98) will reduce to the OTOC

〈AB(t)AB(t)〉.

Claim 4. OTOCs can be represented as temporal correlations in pseudo-density

matrices with half numbers of steps for calculation; for example, a four-point OTOC,

usually calculated by evolving forwards and backwards twice, is represented by a

tripartite pseudo-density matrix with only once evolving forwards and backwards.

4.5.3 Black hole final state proposal

In this subsection, we briefly review black hole information paradox and final

state projection proposal, and use the relation between OTOCs and pseudo-density

matrices to analyse OTOC in the final state proposal.

Review of black hole information paradox

Hawking showed that black holes emit exactly thermal radiations [119]. Consider

that a black hole initially in a pure state evolves unitarily. The fact that the radiation

emitted outside the black hole is in a mixed state is not surprising when we take

the black hole interior and the outside radiation as the whole system. However, the

problem appears when the black hole fully evaporates and only thermal radiation

is left. The final state is a mixed state. We find that a pure state evolves into a

mixed state in the black hole evaporation; that is, in a closed system the unitarity

is violated. This is the black hole information paradox [120, 121].

A few possible solutions have been proposed for the information paradox. For

example, some people believe that there is fundamental non-unitarity in the universe

and the information is just lost. Another possibility might be that information

is stored in a Planck-sized remnant [122] and we need to apply an unknown

quantum gravity theory to solve it. Also, information might be stored in a

baby universe [123, 124] which carries away the collapsing matter as well as the

information. Or, information is encoded in the correlations between the early

and late radiation [125, 126].
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Final state projection proposal

To solve the black hole information paradox, one possible proposal is the black

hole final state projection proposal [127–130]. The matter that forms the black

hole lives in the Hilbert space HM with the dimension N = eSBH where SBH is

the black hole entropy. The evaporation of the black hole, usually formulated by

a semiclassical approximation to field fluctuations, divides the fluctuation fields

into Hin and Hout, inside and outside the event horizon respectively. Each of

them has dimension N = eSBH as well. The (Unruh) state |Φ〉in⊗out on Hin ⊗Hout

is the maximally entangled state

|Φ〉in⊗out = 1√
N

N∑
i=1
|i〉in |i〉out (4.99)

where |i〉in, |i〉out are orthonormal bases inHin andHout. In the final state projection

proposal, Horowitz and Maldacena attempt to construct the unitary evaporation

|m〉M → Sjm |j〉out , (4.100)

to solve the problem of information paradox. In particular, they impose a final

state boundary condition at the singularity and project the state in HM ⊗ Hin

to a super-normalised maximally entangled state

〈BH| = N1/2∑
m,i

Sim 〈m|M |i〉in = N 〈Φ|M⊗in (S ⊗ 1). (4.101)

The whole process is formulated as

|m〉 → |m〉M |Φ〉in⊗out

→ 〈BH|M,in

(
|m〉M |Φ〉in⊗out

)
= Sjm |j〉 . (4.102)

Thus, a unitary process for evaporation is achieved with this final state projection.
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OTOC analysis for final state proposal

Now we apply the above OTOC analysis to the final state proposal. First, we

write the initial state as

ρ = |ψ〉 〈ψ|M ⊗ |Φ〉 〈Φ|in⊗out , (4.103)

and the final state as

σ = |Φ〉 〈Φ|M⊗in ⊗ S |ψ〉 〈ψ|S
†
out. (4.104)

From the initial state to the final state, there is an evolution described by U =

SM ⊗ 1in ⊗ 1out, and a projection P = |BH〉 〈BH|M,in ⊗ 1out. Suppose S is a

Haar random unitary, we have

Tr
[
PUρU †P †

]
= 1. (4.105)

Here we assume SM = S†. Now we consider the OTOC between the initial time

and the final time. It can be computed in the pseudo-density matrix formulation by

assuming the evolution forwards and backwards. Thus we measure A at t1, let the

state evolve under U , after that we make the final state projection P at t2, then

the state evolves under U †, and we measure A at t3. That is,

OTOC = 〈AP (t)A†P †(t)〉 = Tr
[
AU †PUAρA†U †P †U

]
. (4.106)

For simplicity, we take A as the identity operator. Then again we have

OTOC = Tr
[
PUρU †P †

]
= 1. (4.107)

Consider the measurement A is acted on the outside radiation part as A =

1M⊗in ⊗ |ψ〉 〈ψ|out, then

OTOC = Tr
[
APUAρA†U †P †

]
= 1. (4.108)

Note that [A,P ] = 0. P is acted on the matter and inside radiation while A is acted

on the outside radiation. The out-of-time-order correlation remains unchanged.

This suggests there is no operator growth from the interior of the black hole to

outside. This is consistent with the preservation of the information and unitarity.

However, we notice that the projection is onto a supernormalised state; it remains

doubt whether this is physical enough to be achieved.
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4.6 Path integrals

The path integral approach [82] is a representation of quantum theory, not only useful

in quantum mechanics but also quantum statistical mechanics and quantum field

theory. It generalises the action principle of classical mechanics and one computes

a quantum amplitude by replacing a single classical trajectory with a functional

integral of infinite numbers of possible quantum trajectories. Here we argue that

the path integral approach of quantum mechanics use amplitude as the measure in

correlation functions rather than probability measure in the above formalisms.

4.6.1 Introduction to path integrals

Now we briefly introduce path integrals and correlation functions in this formal-

ism [83]. Consider a bound operator in a Hilbert space U(t2, t1)(t2 ≥ t1) as the

evolution from time t1 to t2, which satisfies the Markov property in time as

U(t3, t2)U(t2, t1) = U(t3, t1),∀ t3 ≥ t2 ≥ t1 U(t, t) = 1. (4.109)

We further assume that U(t, t′) is differentiable and the derivative is continuous:

∂U(t, t′)
∂t

∣∣∣∣∣
t=t′

= −H(t)/~ (4.110)

where ~ is a real parameter, and later identified with Planck’s constant; H = iH̃

where H̃ is the quantum Hamiltonian. Then

U(t′′, t′) =
n∏

m=1
U [t′ +mε, t′ + (m− 1)ε], nε = t”− t′. (4.111)

The position basis for q̂ |q〉 = q |q〉 is orthogonal 〈q′ |q〉 = δ(q − q′), and complete∫
dq |q〉 〈q| = 1. We have

〈q′′|U(t′′, t′) |q′〉 =
∫ n−1∏

k=1
dqk

n∏
k=1
〈qk|U(tk, tk−1) |qk−1〉 (4.112)

with tk = t′ + kε, q0 = q′, qn = q′′. Suppose that the operator H is identified

with a quantum Hamiltonian of the form

H = p̂2/2m+ V (q̂, t) (4.113)
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where p, q ∈ Rd. We have

〈q|U(t, t′) |q′〉 =
(

m

2π~(t− t′)

)d/2
exp[−S(q)/~] (4.114)

where

S(q) =
∫ t

t′
dτ [12mq̇

2(τ) + V (q(τ), τ)] +O((t− t′)2), (4.115)

and

q(τ) = q′ + τ − t′

t− t′
(q − q′). (4.116)

We consider short time slices, then

〈q′′|U(t′′, t′) |q′〉 = lim
n→∞

(
m

2π~ε

)dn/2 ∫ n−1∏
k=1

ddqk exp[−S(q, ε)/~], (4.117)

with

S(q, ε) =
n−1∑
k=0

∫ tk+1

tk

dt[12mq̇
2(t) + V (q(t), t)] +O(ε2). (4.118)

Introducing a linear and continuous trajectory

q(t) = qk + t− tk
tk+1 − tk

(qk+1 − qk) for tk ≤ t ≤ tk+1, (4.119)

we can rewrite Eqn. (4.118) as

S(q, ε) =
∫ t′′

t′
dt[12mq̇

2(t) + V (q(t), t)] +O(nε2). (4.120)

Taking n → ∞ and ε → 0 with nε = t′′ − t′ fixed, we have

S(q) =
∫ t′′

t′
dt[12mq̇

2(t) + V (q(t), t)] (4.121)

as the Euclidean action. The path integral is thus defined as

〈q′′|U(t′′, t′) |q′〉 =
∫ q(t′′)=q′′

q(t′)=q′
[dq(t)] exp(−S(q)/~), (4.122)

where a normalisation of N = ( m
2π~ε)

dn/2 is hidden in [dq(t)].

The quantum partition function Z(β) = Tr e−βH (β is the inverse temperature)

can be written in terms of path integrals as

Z(β) = Tr e−βH = TrU(~β, 0) =
∫

dq′′dq′δ(q′′ − q′) 〈q′′|U(~β, 0) |q′〉

=
∫
q(0)=q(~β)

[dq(t)] exp[−S(q)/~]. (4.123)
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The integrand e−S(q)/~ is a positive measure and defines the corresponding ex-

pectation value as

〈F(q)〉 = N
∫

[dq(t)]F(q) exp[−S(q)/~], (4.124)

where N is chosen for 〈1〉 = 1. Moments of the measure in the form as

〈q(t1)q(t2) · · · q(tn)〉 = N
∫

[dq(t)]q(t1)q(t2) · · · q(tn) exp[−S(q)/~] (4.125)

are the n-point correlation function. Suppose for the finite time interval β periodic

boundary conditions hold as q(β/2) = q(−β/2). The normalisation is given as

N = Z−1(β). Then we define

Z(n)(t1, · · · , tn) = 〈q(t1) · · · q(tn)〉. (4.126)

The generating functional of correlation functions is

Z(f) =
∑
n=0

1
n!

∫
dt1 · · · dtnZ(n)(t1, · · · , tn)f(t1) · · · f(tn)

=
∑
n=0

1
n!

∫
dt1 · · · dtn〈q(t1) · · · q(tn)〉f(t1) · · · f(tn)

=
〈

exp
[∫

dtq(t)f(t)
]〉

(4.127)

Note that the n-point quantum correlation functions in time also appear as

continuum limits of the correlation functions of 1D lattice in classical statistical

models. The path integral formalism represents a mathematical relation between

classical statistical physics on a line and quantum statistical physics of a point-like

particle at thermal equilibrium. This is the first example of the quantum-classical

correspondence which maps between quantum statistical physics in D dimensions

and classical statistical physics in D + 1 dimensions [83].

4.6.2 Temporal correlations in path integrals are different

Here we take two-point correlations functions:

〈q(t1)q(t2)〉 =
∫

[dq(t)]q(t1)q(t2) exp[−S(q)/~]∫
[dq(t)] exp[−S(q)/~] (4.128)
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In the Gaussian representation of pseudo-density matrices, temporal correlation for

q1 at t1 and q2 at t2 with the evolution U and the initial state |q1〉 is given as

〈{q1, q2}〉 =
∫

dq1dq2q1q2| 〈q2|U |q1〉 |2

=
∫
dq1dq2q1q2

∣∣∣∫ q(t2)=q2
q(t1)=q1

[dq(t)] exp[−S(q)/~]
∣∣∣2

|
∫

[dq(t)] exp[−S(q)/~]|2
(4.129)

Correlations are defined as the expectation values of measurement outcomes.

However, path integrals and pseudo-density matrices use different positive measure

to calculate the expectation values. The correlations in path integrals use the

amplitude as the measure, while in pseudo-density matrices the measure is the

absolute square of the integrated amplitudes, or we say the probability.

To see the difference, we consider a quantum harmonic oscillator. The Hamil-

tonian is given as H = p̂2/2m + mω2q̂2/2. Note that the quantum amplitude of

a quantum harmonic oscillator is given as

〈q2|U(t2, t1) |q1〉 =
(

mω

2π~ sinhωτ

)1/2
exp

{
− mω

2~ sinhωτ [(q2
1 + q2

2) coshωτ − 2q1q2]
}
,

(4.130)

where τ = t2 − t1. In the Gaussian representation of pseudo-density matrices,

temporal correlations are represented as

〈{q1, q2}〉 =
∫

dq1dq2q1q2| 〈q2|U |q1〉 |2 = ~
8mω sinh2 ωτ

. (4.131)

However, in the path integral formalism, we consider

TrUG(τ/2,−τ/2; b) =
∫

[dq(t)] exp[−SG(q, b)/~] (4.132)

with

SG(q, b) =
∫ τ/2

−τ/2
dt[12mq̇

2(t) + 1
2mω

2q2(t)− b(t)q(t)] (4.133)

and periodic boundary conditions q(τ/2) = q(−τ/2). We have

ZG(β, b) = TrUG(~β/2,−~β/2; b) = Z0(β)
〈

exp
[

1
~

∫ ~β/2

−~β/2
dtb(t)q(t)

]〉
0

(4.134)
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where 〈·〉0 denotes the Gaussian expectation value in terms of the distribution

e−S′/~/Z0(β) and periodic boundary conditions. Here Z0(β) is the partition function

of the harmonic oscillator as

Z0(β) = 1
2 sinh(βω/2) = e−β~ω/2

1− e−β~ω . (4.135)

Then two-point correlations functions are given as

〈q(t1)q(t2)〉 = Z−1
0 (β)~2 δ2

δb(t)δb(u)ZG(β, b)
∣∣∣∣∣
b=0

= ~
2ω tanh(ωτ/2) . (4.136)

It is no surprise that the temporal correlations are different in path integrals

and in pseudo-density matrices.

Claim 5. In general, temporal correlations in path integrals do not have the same

operational meaning as those in pseudo-density matrices since they use different

measures, with exception of path-integral representation for spacetime states and

decoherence functionals.

This indicates a fundamental difference of temporal correlations in path in-

tegrals and other spacetime approaches, and raises again the question whether

the probability or the amplitude serves as the measure in quantum theory. It is

natural that amplitudes interferes with each other in field theory and expectation

values of operators are defined with the amplitude interference. Thus temporal

correlations in path integrals cannot be operationally represented as pseudo-density

matrices. However, spacetime states defined via position measurements and weak

measurements in pseudo-density matrix formulation [85] are motivated by the

path integral formalism and have a path-integral representation naturally. In

addition, consistent histories also have a path-integral representation of decoherence

functionals as we mentioned earlier.

4.7 Conclusion and discussion

In this section, we unify these spacetime approaches in non-relativistic quantum

mechanics and summarise all the claims.
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We consider a unified picture in which temporal correlations serve as a connection

for indefinite causal structures, consistent histories, generalised quantum games

and OTOCs. Given a tripartite pseudo-density matrix, a qubit in the state ρ

evolves in time under the unitary evolution U and then back in time under U †.

The correlations in the pseudo-density matrix are given as

〈σi, σj, σk〉 =
∑

α,β,γ=±1
αβγ Tr

[
P γ
k U
†P β

j UP
α
i ρP

α
i U
†P β

j U
]

(4.137)

where Pα
i = 1

2(1+ασi), P β
j = 1

2(1+βσj) and P γ
k = 1

2(1+γσk). As the pseudo-density

matrix belongs to indefinite causal structures, we won’t discuss the transformation

for other formalisms of indefinite causal structures.

For consistent histories, we assume the state in ρ at the initial time and construct

a set of histories [χ] = [α → β → γ] with projections {Pα
i , P

β
j , P

γ
k }. Then the

decoherence functional is given as

D([ξ], [ξ′]) = Tr
[
P γ
k U
†P β

j UP
α
i ρP

α′

i U
†P β′

j UP
γ′

k

]
(4.138)

When we apply the consistency conditions, it is part of Eqn. (4.137) as

D([ξ], [ξ]) = Tr
[
P γ
k U
†P β

j UP
α
i ρP

α
i U
†P β

j UP
γ
k

]
, (4.139)

〈σi, σj, σk〉 =
∑

α,β,γ=±1
αβγD([ξ], [ξ]). (4.140)

A quantum-classical signalling game is described in terms of one player Abby at

two times in a loop, or one player Abby at three times with evolution U and U †.

The quantum-classical signalling game is formulated by (π(x, y), l(a, b|x, y)) on

−−→qcsg = 〈{τx}, {ωy}, {ηz};A,B, C; l〉. (4.141)

The referee associates three quantum systems in the states τx, ωy and ηz with the

questions chosen from the question spaces x ∈ X , y ∈ Y, and z ∈ Z. Suppose

Abby at t1 receives τxX and makes a measurement of instruments {Ma
i }i with the

outcome a. From t1 to t2, the quantum output evolves under the unitary quantum

memory U : A→ B. After that, Abby receives the output of the channel and ωy,

and makes a measurement of instruments {N b
j }j with the outcome b. Then, we can
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consider that either the quantum memory goes backwards to t1 or evolves under

U † : B → C to t3. Abby receives the output of the channel again and ηz, and makes

a measurement of instruments {Oc
k}k with the outcome c. Then we have

pq(a, b, c|x, y, z) =
∑
λ,i,j,k

π(λ) Tr
[
Oc
kU
†N b

jUM
a
i ρM

a
i U
†N b

jUO
c
k

]
. (4.142)

If we properly choose the measurements, we will have the decoherence functionals

and the probabilities in the correlations of pseudo-density matrix.

What is more, the tripartite pseudo-density matrix we describe is just the

one we used to construct OTOC. Thus, through this tripartite pseudo-density

matrix, we gain a unified picture for indefinite causal order, consistent histories,

generalised quantum games and OTOCs in which temporal correlations are the

same or operationally equivalent. Thus all these approaches are mapping into each

other directly in this particular case via temporal correlations. Generalisation to

more complicated scenarios are straightforward.

Now we conclude that there is not much difference in different spacetime

approaches for non-relativistic quantum mechanics under this comparison of tem-

poral correlations except path integrals. They are closely related compared with

pseudo-density matrices and formulate temporal correlations in the same way

or operationally equivalent. However, the path integral approach of quantum

mechanics give temporal correlation in a different way. Via the pseudo-density

matrix formalism, we establish the relations among different spacetime formulations

like indefinite causal structures, consistent histories, generalised nonlocal games,

out-of-time-order correlation functions, and path integrals. As we can see, all these

relations are rather simple. The big surprise we learn from these relations is that

almost everything we know about space-time in non-relativistic quantum mechanics

so far is connected with each other but path integrals are not. Thus, it shows the

possibility of a unified picture of non-relativistic quantum mechanics in spacetime

and a gap to relativistic quantum field theory. We claim:

(1) A process matrix and the corresponding pseudo-density matrix allow the same

correlations or probabilities in three different mappings.
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(2) The decoherence functional in consistent histories is the probabilities in temporal

correlations of pseudo-density matrices.

(3) The probability in a quantum-classical signalling game with a trivial input at

later time corresponds to the probability in a pseudo-density matrix with quantum

channels as measurements.

(4) OTOCs can be represented as temporal correlations in pseudo-density matrices

with half numbers of steps for calculation; for example, a four-point OTOC, usually

calculated by evolving forwards and backwards twice, is represented by a tripartite

pseudo-density matrix with only once evolving forwards and backwards.

(5) In general, temporal correlations in path integrals do not have the operational

meaning as those in pseudo-density matrices since they use different measures,

with exception of path-integral representation for spacetime states and decoherence

functionals.

A unified theory for non-relativistic quantum mechanics is suggested; nevertheless,

how to move on to relativistic quantum information, or further to quantum gravity,

is still a big gap worth exploring.
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5.1 Literature review for time crystals

In this section we review spontaneous symmetry breaking, time translation symmetry

breaking, and a few mathematical definitions for time crystals.

5.1.1 Spontaneous symmetry breaking

Spontaneous symmetry breaking [131] occurs when the ground state does not hold

the symmetry which the equation of motion or the Lagrangian holds. Phases

of matter are described by spontaneous symmetry breaking. For example, the

spontaneous breaking of continuous space translation symmetry gives a normal

spatial crystal with periodic structures; spin rotational symmetry is spontaneously

broken with a net magnetisation along certain direction in ferromagnets, in contrast

that spins are uncorrelated in a paramagnetic phase without a net magnetisation.

There are two diagnostics for spontaneous symmetry breaking [132]. Note that in

equilibrium the expectation values of the order parameter are zero and cannot serve

as a measure for spontaneous symmetry breaking. However, we can use two-point

correlation functions, when taken the long distance range, to be long-range order.

lim
|r−r′|→∞

lim
V→∞
〈C(r, r′)〉 = lim

|r−r′|→∞
lim
V→∞
〈O(r)O(r′)〉 − 〈O(r)〉〈O(r′)〉 6= 0, (5.1)

where O(r) is a local order parameter and 〈·〉 is the expectation value in the

equilibrium Gibbs states (or eigenstates). This is the standard diagnostic for

spontaneous symmetry breaking. Another diagnostic is to add a small symmetry

breaking field with strength h and compute the expectation value of the global

order parameter 〈O〉h which turns into non-zero.

lim
h→0

lim
V→∞

1
V
〈O〉h 6= 0. (5.2)

One variant is to apply a small symmetry breaking field at the boundaries and

evaluate how the expectation value of order parameter have influence on the bulk.

The Goldstone theorem [133–135] states that at least one massless bosonic

state exists in the spectrum when the theory allows a universal symmetry to

be spontaneously broken. The Mermin-Wagner theorem [136–138] concludes
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that, in one or two dimensions, continuous symmetries cannot be spontaneously

broken at finite temperature in systems with sufficiently short-range interaction.

Hohenberg [137] shows no phase transition at finite temperature for one- and

two-dimensional superfluid systems; Mermin and Wagner [136] further exclude the

possibility for spontaneous magnetisation in the Heisenberg model.

5.1.2 Time translation symmetry breaking

Time translation symmetry breaking is associated with the emergence of time

crystals, as an analogue to ordinary spatial crystals. In the following context, we

only focus on quantum time crystals. We know that time-independent systems

preserve the continuous time translation symmetry, and when the continuous

time translation symmetry is broken, the system displays certain time-dependent

properties. For an operator O without the intrinsic time dependence, we have

〈Ψ| Ȯ |Ψ〉 = i 〈Ψ| [H,O] |Ψ〉 = 0 for Ψ = ΨE (5.3)

where ΨE is the eigenstate of the Hamiltonian H of the system. It seems impossible

for the breaking of even an infinitesimal time translation symmetry. However,

in the spatial analogue, one-point expectation values do not serve as a proper

diagnostic for spontaneous symmetry breaking as well. Wilczek initially proposes

a model with periodic motion in the ground state [139]. Later it is pointed out

that periodic motion are exhibited in some excites state instead and the actual

ground state does not show any time crystallinity [140]. Further the possibilities

of any spontaneous rotating time crystals are excluded [141].

In general, continuous time crystals are proved to be impossible in the ground

state and in the equilibrium [142]. More specifically from Ref. [142], two-point

temporal correlation functions do not have a period to break the continuous time

translation symmetry but tend to be time independent under the large volume limit

for the system. Note that Ref. [132] pointed out some errors in the original proofs.

Instead of continuous time translation symmetry, we may also consider whether

discrete time translation symmetry can be broken down in periodically driven
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systems. These are referred to Floquet time crystals [143], or discrete time

crystals [144]. In many-body localised Floquet systems with a period-T driving,

the temporal correlations exhibit a period of nT (n > 1) or a Fourier peak at k/n-

frequency (k = 1, 2, . . . , n) and show robustness of the perturbation. Experimental

verification for discrete time crystals has been conducted in trapped ions [145],

nitrogen-vacancy centres in diamond [146], and NMR [147, 148].

There are also other variants of time crystals, like prethermal continuous time

crystals [149], boundary time crystals [150], cosmological time crystals [151, 152],

time quasi-crystals [153], and so on.

5.1.3 Mathematical definitions of time crystals

There are a few mathematical definitions for time crystals. They are consistent

with each other but exhibit in different forms. As the temporal analogue of

crystals, time crystals are expected to break time translation symmetry and exhibit

long-range correlations in time.

These definition use two-point correlations functions in space and time, take

the large volume limit and show symmetry-breaking properties in time. We

introduce Watanabe and Oshikawa’s definitions first via local and integrated order

parameters respectively for continuous time translation symmetry. Then we offer

the corresponding definitions for discrete time translation symmetry. We also give

a practical definition for experimental use. We further illustrate the definitions

in the representation theory.

The mathematical definition of time crystals is firstly given by Watanabe and

Oshikawa [142] via time-dependent long-range order. In this way, they argue that

time crystals cannot exist in the ground state or in the equilibrium. Long-range order

exists if the spatial correlation of a local order parameter φ̂(~x, t) has a non-zero limit

lim
V→∞
〈φ̂(~x, 0)φ̂(~x′, 0)〉 → c 6= 0, (5.4)

for |~x− ~x′| very large compared to microscopic scales we are considering. In the

representation of integrated order parameter Φ̂ ≡
∫
V ddxφ̂(~x, 0), the long-range order
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is defined to exist when limV→∞〈Φ̂2〉/V 2 = c 6= 0. As crystals are characterised by

long-range order, time crystals are defined analogously in terms of the temporal

version of long-range correlations; that is,

lim
V→∞
〈φ̂(~x, t)φ̂(0, 0)〉 → f(t), (5.5)

f(t) is a non-vanishing periodic function for large |~x|, or,

lim
V→∞
〈eiĤtΦ̂e−iĤtΦ̂〉/V 2 → f(t). (5.6)

In the above we consider continuous time translation symmetry. For discrete

time translation breaking [154], we denote the local operator Oi with the subscript

i for the position. Then we have the long-range order in time as

lim
|i−j|→∞

lim
L→∞
〈Oi(t)Oj〉 = f(t), (5.7)

where L is the system size. Or consider the superposition of local operators

O = 1
L

∑
i ciOi, then long-range order in time can be written as

lim
L→∞
〈O†(t)O〉 = f(t). (5.8)

With a Floquet unitary U(T ), the system exhibits the temporal correlations in

the limit of large system size when f(t) has a period t = nT , n ∈ Z; this is a

special case for the so-called discrete time crystals. In particular, time translation

symmetry breaking is defined in Ref. [143] when the expectation values of a local

operator are different in a period of the Floquet system for every state with

short-range correlations. The short-range correlations exist in a state |ψ〉 when

〈ψ|φ(x)φ(x′) |ψ〉 − 〈ψ|φ(x) |ψ〉 〈ψ|φ(x′) |ψ〉 → 0 for any local operator φ(x).

However, in practice, it is hard to measure this long-range order in time for

experiments. Thus, a adapted definition frequently used in experiments is given by

lim
t→∞

lim
V→∞

〈ψ0|Oi(t) |ψ0〉 = f(t) (5.9)

with |ψ0〉 as a generic short-range correlated initial state.

Another definition uses the representation theory [154]. Suppose that a family

of local order parameters Φi,α, labeled by the position i and the irreducible
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representation α of the time translation symmetry (either continuous R or discrete Z),

transform under nontrivial irreducible representations as U †(t)Φi,αU(t) = ei∆αtΦi,α.

By α nontrivial, we mean that 〈n|Φi,α |n〉 = 0 for all eigenstates |n〉 of either the

Hamiltonian H or the Floquet unitary U(T ). Then continuous or discrete symmetry

R or Z is spontaneously broken into a discrete subgroup H, if (1)

lim
|i−j|→∞

lim
L→∞

| 〈n|Φi,αΦj,ᾱ |n〉 − 〈n|Φi,α |n〉 〈n|Φj,ᾱ |n〉 | = c0 6= 0 (5.10)

for Φi,α transforming trivially under H but nontrivially under R or Z; and (2)

lim
|i−j|→∞

lim
L→∞

| 〈n|Φi,αΦj,ᾱ |n〉 − 〈n|Φi,α |n〉 〈n|Φj,ᾱ |n〉 | = 0 (5.11)

for Φi,α transforming nontrivially under H.

5.2 Definition: time crystals as long-range order
in time

In this section, we propose a definition for time crystals in the pseudo-density

matrix formalism. It is consistent with all other definitions proposed so far. Before

that, we add a bit more discussion for long-range order.

5.2.1 Long-range order

A crystal or crystalline solid is defined as a solid material whose constituents

are arranged in a periodic array on the microscopic level. Specifically, in a unit

cell, the arrangement of atoms or other constituents is repeated again and again

under the translation invariance. This lattice periodicity as the defining property

of a crystal, implies long-range order: the orderliness over long distances can

be predicted with the knowledge of one cell and the translation symmetry. In

Ref. [155], it is explained that the solid phase is characterised by the existence

of a long-range correlation. In other words, it is known that a solid is crystalline

if it has long-range order. Thus a crystal is characterised by the existence of

long-range order. A crystal has long-range order in space; a time crystal, however

it is defined, should have long-range order in time.
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To define a time crystal, the off-diagonal long-range order might be interesting

as well. The long-range order in the solid is exhibited in the quantum mechanics in

the diagonal element of the reduced density matrix ρ2 in the coordinate space [155].

For a density matrix ρ with Tr ρ = 1, reduced density matrices ρ1, ρ2, · · · are

defined as 〈j| ρ1 |i〉 = Tr
(
ajρa

†
i

)
, 〈kl| ρ2 |ij〉 = Tr

(
akalρa

†
ja
†
i

)
, etc., where ai, aj

represent annihilation operators for the one-particle states |i〉, |j〉. Then the off-

diagonal long-range order exists if 〈x′| ρ1 |x〉 does not vanish as |x − x′| → ∞.

Yang [155] also defines the off-diagonal long-range order in a many-body system

of bosons or fermions with annihilation operators on different particles; the order

characterises the existence of a Bose-Einstein condensation in the phases He II

and superconductors. Thus, we expect that a time crystal is characterised by the

existence of long-range order in time and take it as the definition of a time crystal.

5.2.2 Time crystals in terms of temporal correlations

In the pseudo-density matrix formulation, the measure of long-range order in

time [44] is expressed as the two-point temporal correlation at times t1 and tN :

〈σ(1), σ(N)〉 = Tr{(σ(1) ⊗ σ(N))R1,N [ρ,Φ]}, (5.12)

where R1,N is the pseudo-density matrix between t1 and tN , ρ is the initial state

and Φ is the channel evolution between different times. σ(1) and σ(N), for example,

can be chosen as Pauli operators measured at t1 and tN in the spin chains. For

ρ with multiple qubits, σ(1) and σ(N) are usually acted on different qubits with

a large separation in space.

As a simple example, we consider the long-range order in time for a single

spin under the unitary evolution. The temporal correlation is always preserved

and no symmetry is broken here. Consider a qubit evolving unitarily in time.

Suppose the qubit is in an arbitrary state ρ = 1
21 + ∑

i=1,2,3 ciσi. From the time

tk to tk+1, k = 1, 2, . . . , the qubit evolves under the same unitary evolution U .
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Consider the temporal correlation from t1 to tn,

〈σi, σj〉 = Tr[σi ⊗ σjR1n]

=
∑

α,β=±1
Tr
[
P β
j U

n−1Pα
i ρP

α
i (U †)n−1

]
= 1

2(Tr
[
σjU

n−1ρσi(U †)n−1
]

+ Tr
[
σjU

n−1σiρ(U †)n−1
]
)

= 1
2 Tr

[
σjU

n−1σi(U †)n−1
]
. (5.13)

Here Pα
i = 1

2(1 + ασi). For the last equality, we use ρσi + σiρ = 2ciI + σi with

ρ = 1
2I + ∑

i=1,2,3 ciσi. Take i = j, Eqn. (5.13) is equivalent to

〈σi, (U †)n−1σiU
n−1〉 = 1. (5.14)

We conclude that long-range order in time is preserved for the unitary evolution.

5.3 Continuous time translation symmetry

In this section, we discuss continuous time translation symmetry in terms of general

decoherent processes and the Mermin-Wagner theorem.

5.3.1 General decoherent process

We have considered a single spin under the unitary evolution in the previous section.

In practice, interaction with the environment is unavoidable and noise is always

present. For a qubit evolving under a generic decohering channel evolution, Φ,

we prove that there is no long-range order in time for whatever strength of the

decoherence. Specifically, there exists an effective rate γ < 1 from one time to the

next 1, for which the long-range order in time is bounded by

Tr{(X(1) ⊗X(N))R1,N [ρ,Φ]} ≤ γN−1, (5.15)

which tends to 0 exponentially as N → ∞.
1Note that in the case where only (Z) dephasing noise is present in the system, the (unrealistic)

exact initial state preparation of ρ = (I + rZ)/2, could lead to long-range order in time.



5. Time crystals as long-range order in time 99

For the depolarising noise [12], suppose the evolution between two times tk
and tk+1 (k = 1, 2, ... , N-1) is

Φ : ρ→ (1− p)ρ+ p
I

2 . (5.16)

For an arbitrary initial state, the two-time correlation function 〈XX〉 between t1 and

tN is

〈X(1), X(N)〉 = Tr[(X ⊗X)R1N ] = (1− p)N−1. (5.17)

It goes down exponentially with N, which suggests that the temporal long-range

order vanishes and no possible existence for time crystals.

Dephasing corresponds to the Bloch vector transformation

Φ : ~r = (rx, ry, rz)→ (rx
√

1− λ, ry
√

1− λ, rz), (5.18)

where ~r is a three component real vector and the state of a single qubit is written

in the Bloch representation ρ = I+~r·~σ
2 , ~σ = (X, Y, Z); e−t/2T2 =

√
1− λ with the

dephasing as a ‘T2’ (or ‘spin-spin’) relaxation process [12]. For an arbitrary initial

state, suppose the evolution between two times tk and tk+1 (k = 1, 2, ... , N-1) is

Φ, the two-time correlation function 〈XX〉 between t1 and tN is

〈X(1), X(N)〉 = Tr[(X ⊗X)R1N ] = (
√

1− λ)N−1. (5.19)

It also goes down exponentially with N, so that the temporal long-range order

vanishes and no time-crystalline phase can exist.

Another example may be a spin-echo unitary in an open system. Suppose

the Hamiltonian is given by H = 1
2ωσz. Putting it into the Lindblad master

equation, we have
∂ρ

∂t
= iω

2 [σz, ρ] + γ

2 (σzρσz − ρ) (5.20)

The solution Φ : ρ(0) → ρ(t) is given in terms of the matrix elements

ρ00(t) = ρ00(0)

ρ01(t) = ρ01(0)e−iωt−γt

ρ10(t) = ρ10(0)eiωt−γt

ρ11(t) = ρ11(0)

(5.21)
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For ρ = 1
2(I + X), So

〈σi, σj〉 =
∑

α,β=±1
αβ Tr

(
1 + βσj

2 Φ(1 + ασi
2 )

)
Tr
(1 + ασi

2 ρ
)

= cos(ωt)e−γt.

(5.22)

Similarly, long-range order in time vanishes under the dephasing noise.

Now we consider a general decohering evolution. Instead of a particular kind of

noise, we assume the evolution under a completely positive trace-preserving map

E : ρ→ ∑
k EkρE

†
k with ∑k EkE

†
k = I. For every Ek, Ek < I in the decohering case;

then there exists γ < 1 such that Ek ≤ γI for all k. Then, for one round of evolution,

Tr[(σi ⊗ σj)R] =
∑
k

Tr
[
σjEkσiE

†
k

]
(5.23)

For n rounds of evolution,

Tr[(σ(1)
i ⊗ σ

(n+1)
i )R] =

∑
k1,...,kn

Tr
[
σiEkn · · ·Ek1σiE

†
k1 · · ·E

†
kn

]
=

∑
k1,...,kn

Tr
[
Ekn · · ·Ek1σi(Ekn · · ·Ek1σi)†

]
≤ γ2n. (5.24)

The long-range temporal correlations decay exponentially in time, suggesting that

the order vanishes. Thus under arbitrary decoherent evolutions in terms of CPTP

maps, a single spin has no long-range order in time. This result and the discussion

on unitary evolutions, exclude the possibility of time crystals in 0+1 dimension

unless we take the definition too trivial.

5.3.2 Generalised Mermin-Wagner theorem

We mentioned the Goldstone theorem and the Mermin-Wagner theorem in the

literature review part. Here we discuss how to apply them to continuous time

translation symmetry breaking and time crystals.

In one of the early papers on the Goldstone theorem, it states that if the

Lagrangian of the system is invariant under the continuous symmetry transforma-

tion, then either spinless particles with zero mass exist, or the vacuum state is

invariant [135]. That is, for a local scalar field φ and a local conserved vector
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current jν with ∂νjν = 0, either Goldstone bosons exist, or the expectation

value of δφ vanishes in the vacuum state, where the scalar field δφ is defined

by δφ(y) = i
∫
d3x[j0(x0,x), φ(y)]. In Ref. [156], it is argued that the vacuum

expectation value of δφ always vanishes for two-dimensional spacetime:

〈0| δφ(0) |0〉 = i 〈0|
∫

dx1[j0(x0, x1), φ(0)] |0〉 = 0. (5.25)

This suggests continuous symmetry cannot be broken in 1+1 dimensions for the

ground state. The proof is straightforward for continuous time translation symmetry

as the Hamiltonian H is conserved. In 1+1 dimensions, Hδt =
∫
dxj0(t, x); thus, the

expectation value of δφ vanishes in the vacuum state. For a general continuous sym-

metry, consider the integrals Fν(k0, k1) =
∫∫

dx0dx1e
i(k0x0+k1x1) 〈0| jν(x0, x1)φ(0) |0〉

in the momentum space. After solving the integrals from conservation conditions,

we find the only contribution to 〈0| δφ(0) |0〉 vanishes to avoid a singularity. The

proof is given similarly as in Ref. [156].

Further, we apply the Mermin-Wagner theorem [136, 137] to 1+1 dimensional

spacetime and argue that no continuous time translation symmetry breaking

occurs for finite temperature due to lack of long-range temporal order. More

specifically, consider a system in the equilibrium, that is, in the thermal state

ρ = e−βH/Tr
(
e−βH

)
. The expectation value of an operator A is given by 〈A〉 =

limV→∞Tr
(
e−βHA

)
/Tr

(
e−βH

)
. Under the continuous time translation symmetry,

the Hamiltonian H serves as the generator and is invariant. From statistical

mechanics, we learn that even for an operator B that does not commute with

the generator H ([B,H] = C 6= 0), the expectation value of [B,H] = C is still 0.

However, in the spontaneous symmetry breaking, when we add a small perturbation

to the Hamiltonian, the expectation value of [B,H] = C does not vanish anymore.

Here we use the long-range temporal correlations as the indicator and argue that

they vanish as the perturbation parameter goes smaller to exclude the possibility

of spontaneous continuous time translation symmetry breaking. We take the

experimental definition of time crystals and investigate the temporal correlations

in the Heisenberg model. We prove that under the finite temperature, when we
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add a small perturbation to the Hamiltonian, the long-range temporal correlation

vanishes for the perturbation goes smaller and smaller. Thus, we conclude that

there can be no spontaneous breaking for continuous time translation symmetry in

1+1 dimensions for finite temperature. The proof is given via the Bogoliubov

inequality in Appendix C.

In this subsection, we apply the Goldstone theorem and the Mermin-Wagner

theorem to 1+1 dimensional spacetime, and argue that there is no continuous time

translation symmetry breaking for the ground states and the equilibrium. This

result is consistent with general absence of continuous time crystals and provides

a different understanding which might be useful to discuss space-time crystals in

relativistic field theory. We leave it for the future work.

So far, we investigate the possibilities of continuous time translation symmetry

breaking in 0+1 and 1+1 dimensions. As a result of the lack of long-range

order in time, continuous time translation symmetry cannot be spontaneously

broken in these cases.

5.4 Discrete time translation symmetry

In this section, we investigate discrete time translation symmetry. One possible

suggestion from quantum information is to apply periodic stabilisation of quantum

computation and quantum error correction to counteract the decoherence to preserve

long-range order in time. In this case, discrete time translation symmetry is preserved

for the single-qubit case. We further turn on to one-dimensional spin chains under

many-body localisation and Floquet driving. That is the usual model considered for

discrete time crystals. We apply the pseudo-density matrix formulation to simplify

the calculation for temporal correlations and use group theory to gain a better

understanding of how the subharmonic periodicity emerges.

5.4.1 Stabilisation of quantum computation

In this subsection we discuss temporal correlations under the stabilisation of quantum

computation. For simplicity, only single-qubit error is considered here.
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Figure 5.1: Quantum circuit for symmetrisation error correction as a time crystal. If
the auxiliary qubit is found in state |0〉, the symmetrisation has been successful.

Let us recall the principle of stabilisation of quantum computation via the

projection onto the symmetric subspace [157]. The key idea is that a pure state

|φ〉 can be protected against decoherence by encoding it redundantly in N qubits

and projecting their overall state onto the symmetric subspace (i.e., the minimal

subspace containing all the states |φ〉⊗N). For the sake of simplicity, let us use two

qubits (see Fig. 5.1). This can be generalised to N qubits easily. Suppose the two

qubits, initialised in an arbitrary pure state |ψ〉 ⊗ |ψ〉, undergo the noisy channel

evolution Φ ⊗ Φ, where Φ is the depolarising noise [12]. Suppose the evolution

between two times tk and tk+1 (k = 1, 2, ... , N-1) is

Φ : ρ→ ρp(1− p)ρ+ p
I

2 , (5.26)

so that the two qubits evolve into some mixed state ρp. Now, project each of

them onto the symmetric subspace by measuring the auxiliary qubit and discarding

outcomes of 1. This is represented by the operator:

Σ12 = 1
2(I12 + S12), (5.27)

where S12 is the SWAP operator acting on the two qubits. It completes the effective

evolution caused by the error correction protocol (which is a probabilistic procedure).

The action of the projection on a single qubit starting in the state ρp is

Σ : ρp → Tr2

 Σ12(ρp ⊗ ρp)Σ†12

Tr
(
Σ12(ρp ⊗ ρp)Σ†12

)
 =

ρp + ρ2
p

Tr
(
ρp + ρ2

p

) ≡ ρ′, (5.28)

where

Tr
(
ρ′2
)
> Tr

(
ρ2
p

)
. (5.29)

Thus, error correction by symmetrisation makes the state purer. The convergence

to a pure state is improved by acting on a larger number of qubits.
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We can apply the pseudo-density matrix description to the evolution outlined

above. For an arbitrary initial state, only with depolarising noise Φ and without

symmetrisation error correction Σ, recall that the two-time correlation function

〈XX〉 between t1 and tN is

〈X(1), X(N)〉 = Tr[(X ⊗X)R1N ] = (1− p)N−1. (5.30)

With both of depolarising noise Φ and symmetrisation error correction Σ,

〈X(1), X(N)〉 = Tr[(X ⊗X)R1N ] = aN ,

where an+1 = 4an(1− p)
3 + a2

n(1− p)2 , a1 = 1. (5.31)

For p ≤ 1/4, 〈X(1)X(N)〉 converges to a constant
√

1−4p
1−p as N becomes large. For

1/4 < p < 1, it decays to 0 with a smaller rate than in the case of uncorrected

noise (cf. Fig. 5.2).

timecc.pdf

Figure 5.2: 〈X(1)X(N)〉 vs. N for depolarising noise with and without error correction
(solid and dashed lines, resp.).

The analysis is similar for dephasing noise mentioned before. For an arbitrary

initial state, suppose the evolution between two times tk and tk+1 (k = 1, 2, ... ,

N-1) is Φ, the two-time correlation function 〈X,X〉 between t1 and tN is

〈X(1), X(N)〉 = Tr[(X ⊗X)R1N ] = (
√

1− λ)N−1. (5.32)

With the full protocol applied, the two-time correlation function for the first qubit

reads2

〈X(1), X(N)〉 = Tr[(X ⊗X)R1N ] = bN ,

where bn+1 = 4bn
√

1− λ
3 + b2

n(1− λ) , b1 = 1. (5.33)

2As mentioned in footnote 1, initial states of form ρ = (I + rZ)/2 already exhibit long-range
order in time and do not require the protocol for dephasing noise only.
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Comparing the two results with and without error correction, we find that

the two-time correlation function with error correction converges to a finite value

for p < 1/4 or λ < 7/16 and decays at a slower rate otherwise; this implies that

(finite) long-range order can in principle be restored. Furthermore, if we keep

applying the error correction scheme on a larger number N of qubits, the long-range

order in time will be fully restored.

5.4.2 Quantum error correction of phase flip codes

phaseflip.pdf

Figure 5.3: Quantum circuit of the phase flip code. The noise Ephase flips |+〉 to |−〉 for
one qubit and vice versa. In the error model, a qubit is left alone with probability 1− p,
and with probability p the relative phase of the |0〉 and |1〉 states is flipped. That is, the
initial state α |0〉+ β |1〉 goes to the state α |0〉 − β |1〉 after the phase flip Z.

Now we consider the quantum error correction of phase flip codes. Let |ψ〉 =

α |0〉 + β |1〉 be an arbitrary qubit. Suppose the only noise is one single phase

flip Z on one of the three qubits in Figure 5.3. This occurs with probability

(1 − p)3 + 3p(1 − p)2 = 1 − 3p2 + 2p3.

For single flip and no flip, after the error correction, the state remain unchanged

as |ψ〉 = α |0〉+ β |1〉 with probability 1− 3p2 + 2p3 = 1− q. For two or three flips,

after the error correction, the state becomes |ψ′〉 = α |1〉+ β |0〉 with probability

3p2 − 2p3 = q. Now apply the protocol for N times. Consider the two-time

correlation functions for the first qubit at the initial time t1 and the final time tN 3:

〈X(1), X(N)〉 = 1,

〈Z(1), Z(N)〉 = 1− 2N(3p2 − 2p3) +O(p4). (5.34)

In this case, the 〈XX〉 correlation is always 1 and long-range correlation in time

along the X direction is preserved. For small p and finite N , long-range correlation
3Consider small p. For N odd, the probability pc to change the state is C0

Nq
N + C2

Nq
N−2(1−

p)2 + · · ·+CN−1
N q(1− q)N−1 = Nq+O(q2); for N even, pc = C1

Nq
N−1(1− q) +C3

Nq
N−3(1− q)3 +

· · ·+ CN−1
N q(1− q)N−1 = Nq +O(q2). 〈Z(1)Z(N)〉 = 1− 2pc.
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in time along the X direction remains close to 1 and is almost preserved. We will

not discuss a full quantum error correction scheme here as it is very similar with

the X direction here, or the Z direction with p = 0. In principle, long-range order

in time can be fully restored under a full error correction scheme.

5.4.3 Floquet many-body localisation

In this subsection, we consider many-body localised systems with Floquet driving.

Discrete time translation symmetry is broken and thus the model constitutes a

discrete time crystal. We formulate these discrete time crystals in the language

of pseudo-density matrices and group theory.

Temporal correlations in pseudo-density matrix formulation

Here we calculate temporal correlations from the pseudo-density matrix formulation.

In such a particular Floquet many-body localised system, discrete time translation

symmetry of a period T is broken to discrete time translation symmetry of a period

nT (n ∈ Z, n > 1). In particular, we consider a one-dimensional spin-1
2 chain under

the binary stroboscopic Floquet Hamiltonian for a period T = T1 + T2.

Hf (t) =
{
H1 = (g − ε)∑i σ

x
i 0 < t < T1

H2 = ∑
i Jiσ

z
i σ

z
i+1 + hziσ

z
i + hxi σ

x
i T1 < t < T

(5.35)

Without the loss of generality, we assume that T1 = T2 = 1. Then the Floquet

unitary is given by

Uf = U2U1 = e−iH2e−iH1 (5.36)

Take g = π/2. For small perturbations with ε > 0, the periodicity does not hold.

The simplest case takes ε = Ji = hxi = 0. We take an arbitrary state in z-

basis |ψ0〉 = |{si}〉 with si = ±1 and σzk |{si}〉 = sk |{si}〉. After the spin-echo

unitary U1 = eiπ/2
∑

i
σxi = ∏

i iσ
x
i , the state evolves to |ψ1〉 = |{−si}〉. Then

U2 = ∑
i h

z
iσ

z
i gives a global phase that |ψ2〉 = eiφ |{−si}〉. In the pseudo-density

matrix formulation, the temporal correlation for odd periods is −eiφ. For even

periods, temporal correlation remains equal to 1. However, decoupled spins under
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spin echos cannot be taken as a discrete time crystal. The reason is that for small

ε > 0, the ω/2 Fourier peak is split and 2T -periodicity is broken down.

Now we turn on the interaction Ji > 0. Take hxi = 0. Eigenstates of H2 are

eigenstates of σzi in the form of |{si}〉 as before:

H |{si}〉 = [E+({si}) + E−({si})] |{si}〉 (5.37)

with E+({si}) = ∑
i Jisisi+1 and E−({si}) = ∑

i h
z
i si. Consider ε = 0 first.

Again U1 = eiπ/2
∑

i
σxi = ∏

i iσ
x
i . Then the Floquet eigenstates of the Floquet

unitary Uf are eiE−({si})/2 |{si}〉± e−iE
−({si})/2 |{−si}〉. The Floquet eigenvalues are

± exp[iE+({si})]. In the pseudo-density matrix formulation, for the arbitrary

initial state |{si}〉, the temporal correlation on σkz of a particular spin sk is

−eiE+({si})−iE−({si}) in one period. For double periods, it will be e2iE+({si}) with the

absolute value 1. For all even periods, the absolute value of the temporal correlation

remains equal to 1. Note here we consider for temporal correlations for a single

spin instead of a superposition of all spins. An arbitrary superposition will give no

correlations; for certain particular superpositions, the temporal correlations are the

same as single-spin temporal correlations. When ε > 0, U1 = ei(π/2−ε)
∑

i
σxi =∏

i I sin ε + iσxi cos ε. In the pseudo-density matrix formulation, the temporal

correlation is a bit complicated but the absolute value still converges to 1 for

even periods without the half-frequency peak splitting. The robustness guarantees

the model to be taken as a discrete time crystal.

Consider hxi 6= 0. For simplicity, assume that hzi = 0. In this particular case,

the model exhibits a hidden emergent Ising symmetry S̃ = U †FD
∏
i σ

x
i UFD = ∏

i σ
x
i .

Here a finite depth unitary transformation UFD satisfies

UFDU(T )U †FD = e−iH̃T
∏
i

σxi , (5.38)

with H̃ = ∑
i J̃

z
i σ

z
i σ

z
i+1 + h̃xi σ

x
i . Then we have

U(2T ) = U †FDe
−2iH̃TUFD = e−2iU†FDH̃UFDT = e−2iHeffT . (5.39)

Referring back to the results in unitary evolution part, this suggests the 2T -

periodicity of temporal correlations in the model. Noisy perturbations won’t split
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the half-frequency peak. Thus, the model constitutes a discrete time crystal. With

hzi 6= 0, the results are similar but with a different hidden Ising symmetry S̃.

Group representation

Here we consider discrete time translation symmetry breaking in terms of group

representation. It is more clear how multiple periods come into existence in the

Floquet many-body localisation.

Consider the Hamiltonians H(t) have an onsite symmetry group G and a discrete

time translation symmetry Z that H(t + T ) = H(t). Based on the discussion in

Ref. [158], the Floquet phases are characterised by a central element of the group,

that is, Floquet unitary takes the form

Uf = u{B}(z0)V (z0), (5.40)

where z0 is an element of the centre of the group denoted Z(G). The onsite

symmetry group G has, for example, an irreducible representation χ with operators

gξij . An initial state in a singlet evolves under the global symmetry in this irreducible

representation χ. Remember that in any irreducible representation of a finite group

G, all the elements of Z(G) are represented by λI where λ is a constant and I

is unit matrix [159]. Then we have

Ufg
χ
ijU
†
f = χ(z)

χ(1)g
χ
ij (5.41)

where χ(z) is the shifted constant at z ∈ Z(G) under the irreducible representation

χ. Apply Uf for n times. For z 6= 1,

gχij(nT ) =
[
χ(z)
χ(1)

]n
gχij(0). (5.42)

For a one-dimensional spin chain under Floquet many-body localisation as in

the previous subsection, Z(nT ) = (−1)nZ(0) shows a period of 2T for the order

parameter. Thus, it constitutes a discrete time crystal.
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5.4.4 Possible sufficient conditions for general open systems

A straightforward generalisation to time crystals in open systems is to formulate the

Hamiltonian in terms of annihilation and creation operators and solve the Lindblad

equation. The difficulty lies in the exact solution of Lindblad equations. Here, we

attempt to reformulate the evolution into Kraus operators. In general, it is hard to

see what kind of Kraus operators will work for arbitrary initial states and arbitrary

periods, as it is unknown what kind of physical evolution a general Kraus operator

is represented for and its physical meaning. We only give a simple illustration on

the mathematical conditions for the initial state |{si}〉 and 2T -periodicity in the

pseudo-density matrix formulation. The general cases work in the similar way.

For an initial state |{sj}〉, we measure σzi to gain the eigenvalue si with probability

1 and leave the state unchanged. Assume the evolution is given by a set of Kraus

operators {Ek}, then the state evolves to ∑k Ek |{sj}〉 〈{sj}|E†k. We measure for σzi
again. The temporal correlation given by the pseudo-density matrix formulation is

〈σzi , σzi 〉 = Tr[σzi ⊗ σziR] = si Tr
[
σzi
∑
k

Ek |{sj}〉 〈{sj}|E†k

]
(5.43)

For 〈σzi , σzi 〉 to have 2T -periodicity, a sufficient condition might be

∑
k

Ek |{sj}〉 〈{sj}|E†k = − |{−sj}〉 〈{−sj}| . (5.44)

For k = 1, it reduces to the temporal correlation which is the same as in one-

dimensional spin chain under Floquet many-body localisation.

5.5 An algebraic point of view

In this section, we apply the algebraic tools to analyse spontaneous time trans-

lation symmetry breaking. The algebraic approach of symmetry breaking offer a

representation with clear mathematics. Note that spontaneous time translation

symmetry breaking can only be exhibited in the thermodynamic limit where the

number of particles N → ∞, the volume of the system V → ∞ and the ratio

n = N/V fixed. For infinite degrees of freedom, the algebraic approach does not



5. Time crystals as long-range order in time 110

distinguish relativistic quantum field theory and quantum mechanics for continuous

variables and will naturally offer a relativistic treatment. Here we attempt to

treat space and time more equally in the pseudo-density matrix formalism, and

it is interesting to investigate the algebraic approach of symmetry breaking for

further generalisation to the relativistic context.

In the following context, we review the algebraic criterion on spontaneous

symmetry breaking and later apply them to explore time crystals. We further

discuss the possibility to classify and understand temporal correlations from

operator algebra.

5.5.1 Preliminaries

In this subsection we review the preliminaries for the algebraic approach. Specifi-

cally, we introduce the Weyl algebra, the concept of states, the Gelfand-Naimark-

Segal(GNS) construction, and the algebraic symmetry of an algebra. This part

is based on Ref. [131].

Instead of the canonical variables q, p and the Heisenberg algebra AH , we

construct the Weyl operators U(α) ≡ eiαq, V (β) ≡ eiβp, where αq ≡ ∑
i αiqi,

βp ≡ ∑i βipi, αi, βi ∈ R, and the corresponding Weyl algebra AW . The Heisenberg

commutation relations (~ = 1) given as [qi, pj] = iδij, [qi.qj] = 0 = [pi, pj],

i, j = 1, 2, · · · , N, turns into

U(α)U(α′) = U(α + α′), V (β)V (β′) = V (β + β′)

U(α)V (β) =e−iαβV (β)U(α). (5.45)

The conditions of q = q† and p = p† give U(α)∗ = U(−α), V (β)∗ = V (−β). We

introduce a norm ‖·‖ for elements in AW that ‖A∗A‖ = ‖A‖2, ∀A ∈ AW , then

the Weyl algebra AW becomes a C∗-algebra.

A state Ω of the system is characterised by the set of expectation values

{Ω(A), A ∈ A} where Ω(A) ≡ 〈A〉Ω. That is, Ω is a functional Ω : A → C satisfying

the linearity Ω(αA+βB) = αΩ(A)+βΩ(B), the positivity Ω(A∗A) ≥ 0,∀A ∈ A, and

the normalisation Ω(1) = 1. In C∗-algebra, any state which cannot be decomposed
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into any other two states as Ω = λΩ1 + (1 − λ)Ω2, 0 < λ < 1 is a pure state;

otherwise, it is mixed. In a Hilbert space H, a representation π of a C∗-algebra is a
∗-homomorphism π of A preserving all the algebraic operations, into the C∗-algebra

of bounded linear operators in H . The Gelfand-Naimark-Segal(GNS) construction

uses a representation πΩ of A(A ∈ A) which is uniquely determined by the state

Ω in terms of its expectations on A up to isometries:

(ΨΩ, πΩ(A)ΨΩ) = Ω(A),∀A ∈ A, (5.46)

where ΨΩ is a reference vector in the Hilbert space HΩ.

The algebraic symmetry of an algebra A is then defined by an invertible mapping

β of the algebra into itself, preserving all the algebraic relations including the ∗-

automorphism of A. For a state ω on A,

(β∗ω)(A) ≡ ω(β(A)) (5.47)

is a state on A as well. The algebraic symmetry β, under a representation πω of

A, has a Wigner symmetry in Hω under a unitary operator Uβ such that

Uβπω(A)U †β = πω(β(A)) = πβ∗ω(A). (5.48)

This is, πβ∗ω is unitarily equivalent to πω. We will say {πω,Hω} is β-symmetric.

However, when πβ∗ω is not unitarily equivalent to πω, the symmetry β is spon-

taneously broken.

5.5.2 Existence of time crystals

In this subsection we review the criteria on spontaneous symmetry breaking and

apply them to time crystals.

Criteria on spontaneous symmetry breaking

Here we review the criteria on spontaneous symmetry breaking for the ground

state [131] and the equilibrium [160].

Given the following conditions for a representation π of the algebra A:
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(1) The space and time translations, represented by different continuous groups

for unitary operators, guarantee the existence of energy and momentum in the

representation space Hπ;

(2) The energy remains nonnegative; that is, all the possible values for the

Hamiltonian are bounded;

(3) The ground state ω is uniquely invariant under translations in Hπ, and

it is represented by a cyclic vector locally.

For an algebraic symmetry β which commutes with space translations and

time translations, β is unbroken in π if and only if correlation functions for all

the ground states are invariant under β:

ω(β(A)) ≡ 〈β(A)〉0 = 〈A〉0 = ω(A),∀A ∈ A, (5.49)

where ω is the ground state. Conditions (1)-(3) imply the cluster property: the

correlations of two operators factorise when one of them goes to the spacial infinity

lim
|x→∞|

[〈ABx〉0 − 〈A〉0〈B〉0] = 0. (5.50)

Similar for the equilibrium. If we change the condition (3) into

(3’) The state ω is invariant under a subgroup T of spatial translations in Hπ,

and it satisfies T -asymptotic abelianess:

lim
n→∞

[T n(A), B] = 0,∀A,B ∈ A, T ∈ T , (5.51)

and calculate correlation functions for the thermal states, then we have the

criteria for the equilibrium as Ref. [160]. These criteria for spontaneous symmetry

breaking are equivalent to the existence of long-range order in infinitely extended

systems with local structures and asymptotic abelianess; that is,

lim
n→∞

ω(T n(∆A)B) = ω(∆A)ω(B) 6= 0 (5.52)

where ∆A ≡ β(A) − A.



5. Time crystals as long-range order in time 113

Example: time translation symmetry breaking

Now we apply the above criteria to time translation symmetry breaking. First we

consider the continuous time translation symmetry group denoted by U(t), t ∈ R.

Then β(A) = U(t)AU †(t). And the continuous time translation symmetry group is

denoted by U(a), a ∈ Rs. It is easy to see that the long-range order does not exist:

lim
n→∞

ω(T n(∆A)B) = lim
n→∞

ω(T n(U(t)AU †(t)− A)B)

= lim
n→∞

ω(T n(U(t)AU †(t)− A)ω(B)

= lim
n→∞

ω(U(an) · · ·U(a1)U(t)AU †(t)U †(a1) · · ·U †(an)− A)ω(B)

= 0 (5.53)

The limit goes to 0 as we can always choose infinite runs of space translations to

mimic a time evolution such that after time translations and space translation the

operator goes back to itself under the average of the ground state or the thermal state.

For discrete time translation symmetry, we consider a one-dimensional Floquet

many-body localised spin chain again. Recall that the Floquet evolution is given

by Uf = U2U1, where U1 = exp[it1
∑
i σ

x
i ] and U2 = exp[−iHMBLt2] where HMBL =∑

i Jiσ
z
i σ

z
i+1 + hziσ

z
i for simplicity here. For t1 ≈ π/2, U1 = ∏

i iσ
x
i . Take A = σzi

and B = σzj . After a period of T , β1(A) = Ufσ
z
iU
†
f = U2U1σ

z
iU
†
1U
†
2 = −σzi , then

lim
n→∞

ω(T n(∆A)B) = lim
n→∞

ω(T n(−2σzi )σzj ) = 0, (5.54)

where n and |i− j| go to infinity. The long-range order does not exist for a single

period. After two periods of T , β2(A) = UfUfσ
z
iU
†
fU
†
f = σzi

lim
n→∞

ω(T n(∆A)B) = lim
n→∞

ω(T n(σzi − σzi )σzj ) = lim
n→∞

ω(T n(0)σzj ) 6= 0, (5.55)

here T n(0) gives a constant when n goes to infinity. This suggests the existence

of long-range order after 2T , showing the 2T -periodicity of discrete time crystals.

For a general case, we may choose an arbitrary rotational invariant HMBL but with

the same U1. Since β(A) = Ufσ
z
iU
†
f = U2U1σ

z
iU
†
1U
†
2 = −U2σ

z
iU
†
2 , any rotational

invariant U2 will give the expectation values under T n for T ∈ T . This result

is similar as in Ref. [160].
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5.5.3 Temporal correlations

In the previous sections the long-range order in time has different representations

in terms of the mixture of spatial and temporal correlations. For time translation

symmetry breaking, these representations do not make much difference in the

algebraic language as algebraic symmetries are already assumed to commute with

both of space translations and time translations. Here we discuss the possibility

of a measure of temporal correlations based on operator algebra in which the

study of spatial correlations is nicely formulated in terms of the hierarchy in

the Tsirelson’s problem.

One possibility is to use generalised non-local games in the time domain. As

we already discussed in the last chapter, quantum-classical signalling games give

temporal correlations formulated by pseudo-density matrices. We may consider

other variants of signalling games as an analogue of finite input-output games and

synchronous games. What is more, even for a particular kind of signalling games,

we may discuss different possibilities for strategies.

Another possibility is to generalise the pseudo-density matrix beyond the

tensor product structure and projective measurements. It is known that, for

spatial correlations, the hierarchy from the smallest set to the largest set is

classical correlations, correlations of tensor product structures in finite dimensional

Hilbert spaces, correlations of tensor product structures in infinite dimensional

Hilbert spaces, the closure of correlations of tensor product structures in infinite

dimensional Hilbert spaces, correlations of commutative structures in arbitrary

dimensional Hilbert spaces. We may have generalised temporal correlations in

terms of commutative structures. Indefinite causal structures may be involved

in such representation.

We will leave the formal establishment as a future work. It is interesting to

ask what kind of temporal correlations current time crystals hold in the hierarchy

and whether generalised temporal correlations may lead to different understanding

for time crystals. And it might be possible to generalise all these discussion to

the relativistic setting via algebraic quantum field theory.
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We conclude this thesis with the summary of results in the main chapters and

provide the outlook for future possible work.

The results are summarised as follows.

• In Chapter 3, we generalise the pseudo-density matrix formalism to continuous

variables and general measurement processes. First we define spacetime

Gaussian states from the first two statistical moments which fully characterise

Gaussian states, and compare temporal Gaussian states with spatial Gaussian

state to show a similar correlation relationship as the qubit case. Via the

Wigner function representation, we define spacetime density matrices in

continuous variables in general, and show that spacetime Wigner functions

hold the similar properties which uniquely determine spatial Wigner functions.

We further discuss the possibilities of defining spacetime states via position

measurements and weak measurements, and generalise the pseudo-density

matrix formulation to more general measurement processes. An experimental

tomography based on quantum optics is proposed to verify the operational

meaning for the generalised pseudo-density matrix formalism from measure-

ment correlations.

• In Chapter 4, we use quantum correlation in time to compare the pseudo-

density matrix formalism with indefinite causal structures, consistent histories,

generalised non-local games, and out-of-time-order correlation functions, and

path integrals. We aim to argue that spacetime formulations in non-relativistic

quantum mechanics are remarkably similar. In the section of indefinite causal

structures, we use the process matrix formalism in particular, compare it

with the pseudo-density matrix formalism via correlations, formulate causal

inequalities, and discuss the role of post-selection in indefinite causal structures.

In consistent histories, the consistency conditions give the generalised pseudo-

density matrix a better argument for its existence. Pseudo-density matrices

can be formulated in terms of quantum-classical signalling games as well. We

also provide a simple calculation for out-of-time-order correlation functions
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and apply it to black hole information paradox. Nevertheless, the path integral

formalism has a different representation of quantum correlations from the

pseudo-density matrix approach, suggesting interesting directions for quantum

measure and relativistic quantum theory.

• In Chapter 5, we apply the temporal correlations in the pseudo-density matrix

formalism to time crystals. We define time crystals as long-range order in time,

a particular kind of temporal correlations which do not vanish after a long time.

Then we analyse continuous time translation symmetry in terms of general

decoherent processes and a generalised version of Mermin-Wagner theorem.

We also discuss discrete time translation symmetry via a stabilisation protocol

of quantum computation, phase flip codes of quantum error correction and

Floquet many-body localisation. Finally we explore the possibility of time

crystals from the algebraic point of view.

Some of the possible future directions for work are listed as below.

• Mutual information in time. Mutual information of two random variables

X and Y measures how much information X and Y have in common [12].

It is also a measure of the total correlations between two subsystems of a

bipartite quantum system [161]. Classically, the mutual information for two

systems at different times is defined as the same as two systems at different

positions. However, quantifying the mutual information for two quantum

systems evolving in time is still a difficult open problem. Note that a basic

fact of quantum mutual information between two entangled systems of a pure

state is that, it is equal to twice the von Neumann entropy of a reduced

subsystem, while it can only be at most the same as the Shannon entropy

of a single subsystem in the classical case. On the one hand, it shows that

quantum correlations are stronger than classical ones; on the other hand,

the quantum mutual information in time is supposed to show its quantum

advantages over the classical mutual information. So far, we investigate

different proposals for quantum mutual information in time but none of them
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could be called quantum. Difficulties of defining mutual information in time

in the pseudo-density matrix formalism come from the negativity of temporal

pseudo-density matrices. One possible solution is to purify pseudo-density

matrices and make them to be positive semi-definite, then we may define the

mutual information in time for subsystems at different times.

• Tripartite correlations in spacetime. Bipartite quantum correlations in space-

time are well-studied in the pseudo-density matrix formalism [40]. A symmetric

structure has been shown in two-point quantum correlations in space and time.

Specifically, two-point spatial correlations in arbitrary bipartite quantum

states and two-point temporal correlations for a single qubit evolving under a

unitary quantum channel are mapped to each other under the operation of

partial transposition. This suggests an interesting relationship between spatial

and temporal correlations in the bipartite case. We further analyse tripartite

correlations. One question remaining unknown is that given a tripartite

correlation, how can we distinguish it from a qubit at three times, one qubit at

one time and another at two time, or three qubits at a single time? Another

interesting question may be the spatial-temporal analogue of monogamy of

entanglement. As we know that the subsystem of a maximally entangled state

cannot be entangled with a third system, a maximally temporally correlated

system, that is a system under the identity evolution, may still be maximally

temporally correlated with the system under the identity evolution at a later

time. What will be the temporal analogue of monogamy of entanglement? Or

is it a fundamental difference between spatial and temporal correlations?

• Spacetime from spatial-temporal correlations rather than entanglement. It

is claimed among AdS/CFT community that it will be possible to build up

spacetime with quantum entanglement [162]. However, quantum entanglement

is only a particular kind of spatial correlation. A better argument may be to

build spacetime from spatial-temporal correlations rather than entanglement.

We are discussing the possibilities of deriving the Einstein field equation from
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a spacetime area law of quantum correlations. The Einstein field equation can

be derived through the area law for entanglement entropy [163] as well as the

quantum geometrical limit for the energy density of clocks and signals [164].

We want to argue that quantum correlations are much more than entanglement,

and temporal correlations in quantum mechanics may provide better insights

for understanding spacetime or gravity in the quantum sense.

• Application in black hole information paradox. In Chapter 4, we already ap-

plied the pseudo-density matrix formalism to the out-of-time-order correlation

functions in the black hole final state proposal. We are looking for further

applications in black hole information paradox. One possibility still lies in

the out-of-time-order correlation functions. We may use the out-of-time-order

correlation functions as a tool to analyse the behaviours in the black hole

formation and evaporation. We may also understand the information loss

via temporal correlations. Spatial correlations like entanglement have been

discussed in the black hole scenarios. Will temporal correlations between early

radiation and late radiation help to understand the information loss? These

questions are worth exploring.

As we have asked in the introductory chapter, “what is time”, we briefly report

on our little lessons from quantum correlations.

The thesis is based on the assumption that space and time should be treated

on an equal footing. The pseudo-density matrix formulation treats temporal

correlations equally in form as spatial correlations. We are a bit concerned about

this assumption under a simple argument on monogamy. As we mentioned before,

monogamy of entanglement cannot find a temporal analogue. Entanglement is

a kind of spatial correlation; nevertheless, we cannot observe the monogamy of

any temporal correlation. The maximally temporal correlated states are under the

identity evolution and we can make as many copies as we want. Thus temporal

correlations have no monogamy constraint; this suggests intrinsic difference between

spatial correlations and temporal correlations. Another example is from time crystals.
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We have continuous space translation symmetry breaking but no continuous time

translation symmetry breaking. One deep concern from Ref. [132] is that “causality

distinguishes between spacelike and timelike separations”. While generators of space

translations are the momenta, generators of time translations are the Hamiltonians

which is much more system dependent. We suspect the assumption on the equal

treatment of space and time to be too strong. It is a possible route to learn about

temporal correlations by taking them operationally equal as spatial correlations;

but we would carefully keep in mind that, space is space, time is time.

One possible link between spatial and temporal correlations is the partial

transpose. We cannot see exactly why this operation is so important in space-time

inversion; a simple understanding might be that for two systems in space converting

to two systems in time, one evolves forwards under normal evolution while the other

evolves backwards under the transpose. Path integrals are important to understand

spacetime. They have shown the difference in the operational meaning of quantum

correlations. Further investigation in terms of quantum measure and relativistic

quantum information are ongoing. We are also concerned about indefinite causal

structures, as it might not be enough to quantising gravity as a linear superposition

of causal structures. It is interesting to explore further on algebraic field theory in

search for the relativistic version for quantum correlations in space and time.

Anyway, the long long journey towards time just started.
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A
Choi-Jamiołkowski isomorphism

Here we introduce the Choi-Jamiołkowski isomorphism based on Ref. [68].

The set of linear operators on the finite dimensional Hilbert space H is denoted

as L(H). The set of linear operators from H0 to H1 is denoted as L(H0,H1).

An operator X ∈ L(H0,H1) has a one-to-one correspondence with a vector

|X〉〉 ∈ H1 ⊗ H0 as

|X〉〉 = (X ⊗ IH0)|IH0〉〉 = (IH1 ⊗XT )|IH1〉〉 (A.1)

where IH is the identity operator in H, |IH〉〉 ∈ H ⊗H is the maximally entangled

vector |IH〉〉 = ∑
n |n〉 |n〉 (|n〉 is the orthonormal basis in H), XT ∈ L(H1,H0) is

the transpose of X with respect to two given bases in H0 and H1.

The set of linear maps from L(H0) to L(H1) is denoted by L(L(H0),L(H1)). A

linear mapM ∈ L(L(H0),L(H1)) has a one-to-one correspondence with a linear

operator M ∈ L(H1 ⊗ H0) as

M =M⊗IL(H0)(|IH0〉〉〈〈IH0 |) (A.2)

where IL(H0) is the identity map on L(H0). This is called Choi-Jamiołkowski

isomorphism. The operator M is called Choi-Jamiołkowski operator of M. Its

inverse transforms M ∈ L(H1 ⊗ H0) to a map M ∈ L(L(H0),L(H1)) that acts
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on an operator X ∈ L(H0) as

M(X) = TrH0 [(IH1 ⊗XT )M ] (A.3)

A linear map M is trace preserving if and only if its Choi-Jamiołkowski

operator M satisfies

TrH1 [M ] = IH0 . (A.4)

A linear map M is Hermitian preserving if and only if its Choi-Jamiołkowski

operator M is Hermitian. A linear map M is completely positive if and only if

its Choi-Jamiołkowski operator M is positive semi-definite.



B
Proofs for the properties for spacetime

Wigner functions

Contents
B.1 Wigner Representation in Liouville Space . . . . . . . . 124
B.2 Proofs for the properties . . . . . . . . . . . . . . . . . . 126

Here we provide the proof for six properties for spacetime Wigner functions.

The additional one is listed before the five properties in the main text, about

the expectation value of an arbitrary operator Â. Before that, we introduce the

Wigner representation in Liouville Space [165].

B.1 Wigner Representation in Liouville Space

Ref. [165] gives an introduction to the Wigner representation in Liouville Space.

In Liouville space, operators are treated as vectors in a superspace. For a bra-

ket notation, we call |A} a L-ket and {A| a L-bra for an operator A, with the

scalar product as

{B|A} = Tr{B†A}. (B.1)
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Different from Ref. [165], we take ~ = 1. Define a Liouville basis

|qp} =
( 2
π

)1/2
|Πqp}, (B.2)

where Πqp is given by

Πqp = 1
2

∫ ∞
−∞

dseisp
∣∣∣∣∣q + ~

2s
〉〈

x− ~2s
∣∣∣∣∣

= 1
2

∫ ∞
−∞

dke−ikq
∣∣∣∣∣p+ ~

2k
〉〈

p− ~2k
∣∣∣∣∣

= 1
4π

∫ ∞
−∞

dk
∫ ∞
−∞

dseik(q̂−q)−is(p̂−p). (B.3)

In fact Πqp is the parity operator about the phase point (x, p):

Πqp(q̂ − q)Πqp = −(q̂ − q), Πqp(p̂− p)Πqp = −(p̂− p). (B.4)

It is the same as the displaced parity operator U(α) with the mapping α = 1√
2(q+ip).

|qp} forms an orthogonal and complete basis:

{q′p′|qp} = δ(q′ − q)δ(p′ − p) (B.5)∫ ∞
−∞

∫ ∞
−∞

dqdp|qp}{qp| = ˆ̂1, (B.6)

where ˆ̂1 is a unit L-operator. However, we need to remember that |qp} is not a

valid quantum state because Πqp is not positive definite.

The Weyl form of an operator Â is defined as

A(q, p) ≡ (2π)1/2{qp|A} = 2 Tr
[
ΠqpÂ

]
. (B.7)

Then the Wigner function of a state ρ̂ is given by

W (q, p) ≡ (2π)−1/2{qp|ρ} = (2π)−1
∫

dse−isp
〈
q + 1

2~s
∣∣∣∣ ρ ∣∣∣∣q − 1

2~s
〉
, (B.8)

where the normalisation holds for
∫∫

dqdpW (q, p) = 1. For an operator Â measured

in the state ρ̂, its expectation value is given as

〈Â〉ρ = {A|ρ} =
∫∫

dqdp{A|qp}{qp|ρ} =
∫∫

dqdpA∗(q, p)W (q, p). (B.9)
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B.2 Proofs for the properties

We prove all the six properties listed as (0) to (5) in this subsection. Following the

notation in the previous subsection, we have the bipartite spacetime Wigner function

W(q1, p1, q2, p2) = (2π)−1{q1p1, q2p2|R} = 4 Tr
[
(Πq1p1 ⊗ Πq2p2)R̂

]
, (B.10)

for a bipartite spacetime density matrix in continuous variables R̂.

(0) For bipartite case,

〈Â〉R = Tr
[
ÂR̂

]
=
∫∫∫∫

dq1dq2dp1dp2A
∗(q1, p1, q2, p2)W(q1, p1, q2, p2), (B.11)

where

A(q1, p1, q2, p2) = (2π){qp|A} = 4 Tr
[
(Πq1p1 ⊗ Πq2p2)Â

]
. (B.12)

Note that T (α) = 2U(α) = 2Π(q1, p1) and T (β) = 2U(β) = 2Π(q2, p2). The

above statement is equivalent to

〈Â〉R = Tr
[
ÂR̂

]
=
∫∫

d2αd2βA∗(α, β)W(α, β), (B.13)

where

A(α, β) = Tr{[T (α)⊗ T (β)]Â}. (B.14)

Proof. Compared to Eqn. (B.9),

〈Â〉R ={A|R}

=
∫∫∫∫

dq1dq2dp1dp2{A|q1p1, q2p2}{q1p1, q2p2|R}

=
∫∫∫∫

dq1dq2dp1dp2A
∗(q1, p1, q2, p2)W(q1, p1, q2, p2). (B.15)

Generalisation to n events is straightforward.

(1)W(q1, p1, q2, p2) is given byW(q1, p1, q2, p2) = Tr[M(q1, p1, q2, p2)R] forM(q1, p1, q2, p2)

= M †(q1, p1, q2, p2). Therefore, it is real.
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Proof. Compared to Eqn. (3.31),M(q1, p1, q2, p2) = 4Πq1p1⊗Πq2p2 , thus it is obvious

that M(q1, p1, q2, p2) = M †(q1, p1, q2, p2).

Because a spacetime density matrix is Hermitian, the spacetime Wigner function

is real.

Note that we prove the Hermicity of a spacetime density matrix from the

property that spacetime Wigner function is real.

(2)
∫∫

dp1dp2W(q1, p1, q2, p2) = 〈q1, q2| R̂ |q1, q2〉 ,∫∫
dq1dq2W(q1, p1, q2, p2) = 〈p1, p2| R̂ |p1, p2〉 ,∫∫∫∫
dq1dq2dp1dp2W(q1, p1, q2, p2) = Tr R̂ = 1. (B.16)

Proof. Taking Â in the property (0) to be

Â = δ(q̂1 − q1)δ(q̂2 − q2), (B.17)

then

A∗(q1, p1, q2, p2) = δ(q̂1 − q1)δ(q̂2 − q2). (B.18)

Thus

Tr
[
ÂR̂

]
= 〈q1, q2| R̂ |q1, q2〉 , (B.19)

and
∫∫∫∫

dq1dq2dp1dp2A
∗(q1, p1, q2, p2)W(q1, p1, q2, p2) =

∫∫
dp1dp2W(q1, p1, q2, p2).

(B.20)

Via Eqn. (B.11), the first equality holds.

Similar for the second equality. The normalisation property is already proven

before.

(3)W(q1, p1, q2, p2) is Galilei covariant, that is, if 〈q1, q2|R |q′1, q′2〉 → 〈q1 + a, q2 + b|R |q′1 + a, q′2 + b〉,

thenW(q1, p1, q2, p2)→W(q1+a, p1, q2+b, p2) and if 〈q1, q2|R |q′1, q′2〉 → exp{[ip′1(−q1+
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q′1)+ip′2(−q2+q′2)]/~} 〈q1, q2|R |q′1, q′2〉, thenW(q1, p1, q2, p2)→W(q1, p1−p′1, q2, p2−

p′2).

Proof. If

〈q1, q2| R̂ |q′1, q′2〉 → 〈q1 + a, q2 + b| R̂ |q′1 + a, q′2 + b〉 ,

that is,

R̂→ D†a0 ⊗D
†
b0R̂Da0 ⊗Db0,

then

W(q1, p1,q2, p2) = 4 Tr
[
(Πq1p1 ⊗ Πq2p2)R̂

]
→

4 Tr
[
(Πq1p1 ⊗ Πq2p2)(D†a0 ⊗D

†
b0R̂Da0 ⊗Db0)

]
=W(q1 + a, p1, q2 + b, p2).

If

〈q1, q2| R̂ |q′1, q′2〉 → exp{[ip′1(−q1 + q′1) + ip′2(−q2 + q′2)]/~} 〈q1, q2| R̂ |q′1, q′2〉 ,

that is,

R̂→ D†0,−p′1
⊗D†0,−p′2R̂D0,−p′1 ⊗D0,−p′2 ,

then

W(q1, p1, q2, p2) = 4 Tr
[
(Πq1p1 ⊗ Πq2p2)R̂

]
→

4 Tr
[
(Πq1p1 ⊗ Πq2p2)(D†0,−p′1 ⊗D

†
0,−p′2

R̂D0,−p′1 ⊗D0,−p′2)
]

=W(q1, p1 − p′1, q2, p2 − p′2).

(4) W(q1, p1, q2, p2) has the following property under space and time reflections: if

〈q1, q2| R̂ |q′1, q′2〉 → 〈−q1,−q2| R̂ |−q′1,−q′2〉, thenW(q1, p1, q2, p2)→W(−q1,−p1,−q2,−p2)

and if 〈q1, q2| R̂ |q′1, q′2〉 → 〈q′1, q′2| R̂ |q1, q2〉, thenW(q1, p1, q2, p2)→W(q1,−p1, q2,−p2).

Proof. If 〈q1, q2| R̂ |q′1, q′2〉 → 〈−q1,−q2| R̂ |−q′1,−q′2〉, that is,

R̂→ Π00R̂Π00,
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then

W(q1, p1,q2, p2) = 4 Tr
[
(Πq1p1 ⊗ Πq2p2)R̂

]
→

4 Tr
[
(Πq1p1 ⊗ Πq2p2)(Π00R̂Π00)

]
W(−q1,−p1,−q2,−p2).

For 〈q1, q2| R̂ |q′1, q′2〉 → 〈q′1, q′2| R̂ |q1, q2〉, it is similar to transpose. Consider q̂T = q

and p̂T = −p,

W(q1, p1,q2, p2)→W(q1,−p1, q2,−p2).

(5) Take ~ = 1.

Tr
(
R̂1R̂2

)
= (2π)

∫∫
dqdpWR1(q, p)WR2(q, p), (B.21)

forWR1(q, p) andWR2(q, p) are pseudo-Wigner functions for pseudo-density matrices

R̂1 and R̂2 respectively.

Proof.

Tr
(
R̂1R̂2

)
= {R1|R2} =

∫∫
dqdp{R1|qp}{qp|R2} = (2π)

∫∫
dqdpWR1(q, p)WR2(q, p).

(B.22)



C
Proof for continuous time translation

symmetry in 1+1 dimensions

Now we prove that there is no continuous time translation symmetry breaking in

the Heisenberg model at finite temperature in 1+1 dimensions. As the original

Mermin-Wagner theorem, we use the Bogoliubov inequality:
1
2β〈[A,A

†]+〉〈[[C,H]−, C†]−〉 ≥ |〈[C,A]−〉|2 (C.1)

where β = 1/kBT is the inverse temperature, A and C are arbitrary operators and

H is the Hamiltonian of the system. 〈· · · 〉 gives the expectation value in the thermal

state. In the one-dimensional Heisenberg model, the Hamiltonian is given as

H = −
∑
ij

JijS
z
i S

z
j − b

∑
i

Szi (C.2)

where Szi is the spin i along the z-direction and b is the parameter for a small

perturbation. We assume that Q = 1
N

∑
i,j |Ri − Rj|2|Jij| remains finite where Ri

denotes the position of spin i. We assign A and C to be

A = eiHtS−(−k)e−iHt (C.3)

C = eiHtS+(k)e−iHt (C.4)

where Sα(k) = ∑
i S

α
i e
−ikRi and S± = Sx ± iSy. Then

〈[C,A]−〉 = 2~
∑
i

〈eiHtSzi e−iHt〉 = 2~NZ(t), (C.5)
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where Z(t) = 〈eiHtSzi e−iHt〉 is the temporal correlation in the model.

∑
k

〈[A,A†]+〉 ≤ 2~2N2S(S + 1), (C.6)

and

〈[[C,H]−, C†]−〉 ≤ 4~2bNZ(t) + 4N~2k2QS(S + 1) (C.7)

Substituting the above inequalities into the Bogoliubov inequality and summing

over all the wavevectors, we have

S(S + 1) ≥ C(t)2v

2πβ~2

∫ k0

0

dk
bZ(t) + k2QS(S + 1) = Z(t)2v

2πβ~2

arctan
(
k0

√
QS(S+1)
bZ(t)

)
√
QS(S + 1)bZ(t)

.

(C.8)

Thus

Z(t) ≤ const · b
1/3

T 2/3 as b→ 0. (C.9)

The temporal correlation vanishes as the perturbation parameter goes to 0 under

finite temperature; thus, there is no spontaneous continuous time translation

symmetry breaking in this case.



References

[1] Don N. Page and William K. Wootters. “Evolution without evolution: Dynamics
described by stationary observables”. In: Phys. Rev. D 27 (12 1983),
pp. 2885–2892. url: https://link.aps.org/doi/10.1103/PhysRevD.27.2885.

[2] Julian Barbour. The end of time: The next revolution in physics. Oxford
University Press, 2001.

[3] R. Arnowitt, S. Deser, and C. W. Misner. “Dynamical Structure and Definition of
Energy in General Relativity”. In: Phys. Rev. 116 (5 1959), pp. 1322–1330. url:
https://link.aps.org/doi/10.1103/PhysRev.116.1322.

[4] J. B. Hartle and S. W. Hawking. “Wave function of the Universe”. In: Phys. Rev.
D 28 (12 1983), pp. 2960–2975. url:
https://link.aps.org/doi/10.1103/PhysRevD.28.2960.

[5] Bryce S. DeWitt. “Quantum Theory of Gravity. I. The Canonical Theory”. In:
Phys. Rev. 160 (5 1967), pp. 1113–1148. url:
https://link.aps.org/doi/10.1103/PhysRev.160.1113.

[6] Lee Smolin. Time reborn: From the crisis in physics to the future of the universe.
HMH, 2013.

[7] Marina Cortês and Lee Smolin. “Quantum energetic causal sets”. In: Phys. Rev.
D 90 (4 2014), p. 044035. url:
https://link.aps.org/doi/10.1103/PhysRevD.90.044035.

[8] Lee Smolin. “Temporal naturalism”. In: Studies in History and Philosophy of
Science Part B: Studies in History and Philosophy of Modern Physics 52 (2015).
Cosmology and Time: Philosophers and Scientists in Dialogue, pp. 86 –102. url:
http://www.sciencedirect.com/science/article/pii/S1355219815000271.

[9] Ross Sheldon et al. A first course in probability. Pearson Education India, 2002.
[10] James Sethna. Statistical mechanics: entropy, order parameters, and complexity.

Vol. 14. Oxford University Press, 2006.
[11] Steven Weinberg. The Quantum theory of fields. Vol. 1: Foundations. Cambridge

University Press, 2005.
[12] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information. 2002.
[13] John Preskill. “Lecture notes for physics 229: Quantum information and

computation”. In: California Institute of Technology 16 (1998).
[14] Masanori Ohya and Dénes Petz. Quantum entropy and its use. Springer Science &

Business Media, 2004.
[15] Branko Grünbaum et al. “Convex polytopes”. In: (1967).

132

https://link.aps.org/doi/10.1103/PhysRevD.27.2885
https://link.aps.org/doi/10.1103/PhysRev.116.1322
https://link.aps.org/doi/10.1103/PhysRevD.28.2960
https://link.aps.org/doi/10.1103/PhysRev.160.1113
https://link.aps.org/doi/10.1103/PhysRevD.90.044035
http://www.sciencedirect.com/science/article/pii/S1355219815000271


References 133

[16] John Von Neumann. Mathematical Foundations of Quantum Mechanics: New
Edition. Princeton university press, 2018.

[17] Benjamin Schumacher. “Quantum coding”. In: Phys. Rev. A 51 (4 1995),
pp. 2738–2747. url: https://link.aps.org/doi/10.1103/PhysRevA.51.2738.

[18] Roope Uola et al. “Quantum Steering”. In: arXiv preprint arXiv:1903.06663
(2019).

[19] John S Bell. “On the Einstein-Podolsky-Rosen paradox”. In: Physics Physique
Fizika 1.3 (1964), p. 195.

[20] Nicolas Brunner et al. “Bell nonlocality”. In: Rev. Mod. Phys. 86 (2 2014),
pp. 419–478. url: https://link.aps.org/doi/10.1103/RevModPhys.86.419.

[21] Kavan Modi et al. “The classical-quantum boundary for correlations: Discord and
related measures”. In: Rev. Mod. Phys. 84 (4 2012), pp. 1655–1707. url:
https://link.aps.org/doi/10.1103/RevModPhys.84.1655.

[22] L Henderson and V Vedral. “Classical, quantum and total correlations”. In:
Journal of Physics A: Mathematical and General 34.35 (2001), pp. 6899–6905.
url: https://doi.org/10.1088%2F0305-4470%2F34%2F35%2F315.

[23] Harold Ollivier and Wojciech H. Zurek. “Quantum Discord: A Measure of the
Quantumness of Correlations”. In: Phys. Rev. Lett. 88 (1 2001), p. 017901. url:
https://link.aps.org/doi/10.1103/PhysRevLett.88.017901.

[24] Michał Horodecki et al. “Local Information as a Resource in Distributed
Quantum Systems”. In: Phys. Rev. Lett. 90 (10 2003), p. 100402. url:
https://link.aps.org/doi/10.1103/PhysRevLett.90.100402.

[25] Igor Devetak and Andreas Winter. “Distilling common randomness from bipartite
quantum states”. In: IEEE Transactions on Information Theory 50.12 (2004),
pp. 3183–3196.

[26] Shunlong Luo. “Using measurement-induced disturbance to characterize
correlations as classical or quantum”. In: Phys. Rev. A 77 (2 2008), p. 022301.
url: https://link.aps.org/doi/10.1103/PhysRevA.77.022301.

[27] Shengjun Wu, Uffe V. Poulsen, and Klaus Mølmer. “Correlations in local
measurements on a quantum state, and complementarity as an explanation of
nonclassicality”. In: Phys. Rev. A 80 (3 2009), p. 032319. url:
https://link.aps.org/doi/10.1103/PhysRevA.80.032319.

[28] Kavan Modi et al. “Unified View of Quantum and Classical Correlations”. In:
Phys. Rev. Lett. 104 (8 2010), p. 080501. url:
https://link.aps.org/doi/10.1103/PhysRevLett.104.080501.

[29] William Slofstra. “The set of quantum correlations is not closed”. In: Forum of
Mathematics, Pi 7 (2019), e1.

[30] Volkher B Scholz and Reinhard F Werner. “Tsirelson’s problem”. In: arXiv
preprint arXiv:0812.4305 (2008).

[31] Boris Tsirelson. “Bell inequalities and operator algebras”. In: (2006).
[32] Kenneth J Dykema and Vern Paulsen. “Synchronous correlation matrices and

Connes’ embedding conjecture”. In: Journal of Mathematical Physics 57.1 (2016),
p. 015214.

https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/RevModPhys.86.419
https://link.aps.org/doi/10.1103/RevModPhys.84.1655
https://doi.org/10.1088%2F0305-4470%2F34%2F35%2F315
https://link.aps.org/doi/10.1103/PhysRevLett.88.017901
https://link.aps.org/doi/10.1103/PhysRevLett.90.100402
https://link.aps.org/doi/10.1103/PhysRevA.77.022301
https://link.aps.org/doi/10.1103/PhysRevA.80.032319
https://link.aps.org/doi/10.1103/PhysRevLett.104.080501


References 134

[33] William Slofstra. “Tsirelson’s problem and an embedding theorem for groups
arising from non-local games”. In: Journal of the American Mathematical Society
(2019).

[34] Zhengfeng Ji et al. “MIP*=RE”. In: (Jan. 2020). arXiv: 2001.04383 [quant-ph].
[35] Ryszard Horodecki et al. “Quantum entanglement”. In: Rev. Mod. Phys. 81 (2

2009), pp. 865–942. url:
https://link.aps.org/doi/10.1103/RevModPhys.81.865.

[36] He Lu et al. “Entanglement Structure: Entanglement Partitioning in Multipartite
Systems and Its Experimental Detection Using Optimizable Witnesses”. In: Phys.
Rev. X 8 (2 2018), p. 021072. url:
https://link.aps.org/doi/10.1103/PhysRevX.8.021072.

[37] Michael E Peskin. An introduction to quantum field theory. CRC Press, 2018.
[38] Kun Il Park and Park. Fundamentals of Probability and Stochastic Processes with

Applications to Communications. Springer, 2018.
[39] Joseph F Fitzsimons, Jonathan A Jones, and Vlatko Vedral. “Quantum

correlations which imply causation”. In: Scientific reports 5 (2015), p. 18281.
[40] Zhikuan Zhao et al. “Geometry of quantum correlations in space-time”. In: Phys.

Rev. A 98 (5 2018), p. 052312. url:
https://link.aps.org/doi/10.1103/PhysRevA.98.052312.

[41] Robert Pisarczyk et al. “Causal limit on quantum communication”. In: arXiv
preprint arXiv:1804.02594 (2018).

[42] Tian Zhang, Oscar Dahlsten, and Vlatko Vedral. “Constructing
continuous-variable spacetime quantum states from measurement correlations”. In:
arXiv preprint arXiv:1903.06312 (2019).

[43] Tian Zhang. “Pseudo-density matrix: the relation with indefinite causal
structures, consistent histories and generalised non-local games and
out-of-time-order correlations”. In: In Preparation (2019).

[44] Tian Zhang et al. “Long-range temporal correlations in quantum error correction
and time crystals”. In: In Preparation (2019).

[45] Ryszard Horodecki and Michal/ Horodecki. “Information-theoretic aspects of
inseparability of mixed states”. In: Phys. Rev. A 54 (3 1996), pp. 1838–1843. url:
https://link.aps.org/doi/10.1103/PhysRevA.54.1838.

[46] E. P. Wigner. “Epistemological Perspective on Quantum Theory”. In:
Philosophical Reflections and Syntheses. Ed. by Jagdish Mehra. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, pp. 55–71. url:
https://doi.org/10.1007/978-3-642-78374-6_5.

[47] Carlton M. Caves. “Quantum mechanics of measurements distributed in time. A
path-integral formulation”. In: Phys. Rev. D 33 (6 1986), pp. 1643–1665. url:
https://link.aps.org/doi/10.1103/PhysRevD.33.1643.

[48] Carlton M. Caves. “Quantum mechanics of measurements distributed in time. II.
Connections among formulations”. In: Phys. Rev. D 35 (6 1987), pp. 1815–1830.
url: https://link.aps.org/doi/10.1103/PhysRevD.35.1815.

https://arxiv.org/abs/2001.04383
https://link.aps.org/doi/10.1103/RevModPhys.81.865
https://link.aps.org/doi/10.1103/PhysRevX.8.021072
https://link.aps.org/doi/10.1103/PhysRevA.98.052312
https://link.aps.org/doi/10.1103/PhysRevA.54.1838
https://doi.org/10.1007/978-3-642-78374-6_5
https://link.aps.org/doi/10.1103/PhysRevD.33.1643
https://link.aps.org/doi/10.1103/PhysRevD.35.1815


References 135

[49] Carlton M. Caves and G. J. Milburn. “Quantum-mechanical model for continuous
position measurements”. In: Phys. Rev. A 36 (12 1987), pp. 5543–5555. url:
https://link.aps.org/doi/10.1103/PhysRevA.36.5543.

[50] A. Barchielli, L. Lanz, and G. M. Prosperi. “A model for the macroscopic
description and continual observations in quantum mechanics”. In: Il Nuovo
Cimento B (1971-1996) 72.1 (1982), pp. 79–121. url:
https://doi.org/10.1007/BF02894935.

[51] Dominic Horsman et al. “Can a quantum state over time resemble a quantum
state at a single time?” In: Proc. R. Soc. A 473.2205 (2017), p. 20170395.

[52] Christian Weedbrook et al. “Gaussian quantum information”. In: Rev. Mod. Phys.
84 (2 2012), pp. 621–669. url:
https://link.aps.org/doi/10.1103/RevModPhys.84.621.

[53] Xiang-Bin Wang et al. “Quantum information with Gaussian states”. In: Physics
Reports 448.1 (2007), pp. 1 –111. url:
http://www.sciencedirect.com/science/article/pii/S0370157307001822.

[54] Gerardo Adesso, Sammy Ragy, and Antony R Lee. “Continuous variable quantum
information: Gaussian states and beyond”. In: Open Systems & Information
Dynamics 21.01n02 (2014), p. 1440001.

[55] R. Simon, N. Mukunda, and Biswadeb Dutta. “Quantum-noise matrix for
multimode systems: U(n) invariance, squeezing, and normal forms”. In: Phys. Rev.
A 49 (3 1994), pp. 1567–1583. url:
https://link.aps.org/doi/10.1103/PhysRevA.49.1567.

[56] E. Wigner. “On the Quantum Correction For Thermodynamic Equilibrium”. In:
Phys. Rev. 40 (5 1932), pp. 749–759. url:
https://link.aps.org/doi/10.1103/PhysRev.40.749.

[57] K. E. Cahill and R. J. Glauber. “Ordered Expansions in Boson Amplitude
Operators”. In: Phys. Rev. 177 (5 1969), pp. 1857–1881. url:
https://link.aps.org/doi/10.1103/PhysRev.177.1857.

[58] K. E. Cahill and R. J. Glauber. “Density Operators and Quasiprobability
Distributions”. In: Phys. Rev. 177 (5 1969), pp. 1882–1902. url:
https://link.aps.org/doi/10.1103/PhysRev.177.1882.

[59] Antoine Royer. “Wigner function as the expectation value of a parity operator”.
In: Phys. Rev. A 15 (2 1977), pp. 449–450. url:
https://link.aps.org/doi/10.1103/PhysRevA.15.449.

[60] Konrad Banaszek and Krzysztof Wódkiewicz. “Nonlocality of the
Einstein-Podolsky-Rosen state in the Wigner representation”. In: Phys. Rev. A 58
(6 1998), pp. 4345–4347. url:
https://link.aps.org/doi/10.1103/PhysRevA.58.4345.

[61] M. Hillery et al. “Distribution functions in physics: Fundamentals”. In: Physics
Reports 106.3 (1984), pp. 121 –167. url:
http://www.sciencedirect.com/science/article/pii/0370157384901601.

https://link.aps.org/doi/10.1103/PhysRevA.36.5543
https://doi.org/10.1007/BF02894935
https://link.aps.org/doi/10.1103/RevModPhys.84.621
http://www.sciencedirect.com/science/article/pii/S0370157307001822
https://link.aps.org/doi/10.1103/PhysRevA.49.1567
https://link.aps.org/doi/10.1103/PhysRev.40.749
https://link.aps.org/doi/10.1103/PhysRev.177.1857
https://link.aps.org/doi/10.1103/PhysRev.177.1882
https://link.aps.org/doi/10.1103/PhysRevA.15.449
https://link.aps.org/doi/10.1103/PhysRevA.58.4345
http://www.sciencedirect.com/science/article/pii/0370157384901601


References 136

[62] R. F. O’Connell and E. P. Wigner. “Quantum-Mechanical Distribution Functions:
Conditions for Uniqueness”. In: Part I: Physical Chemistry. Part II: Solid State
Physics. Ed. by Arthur S. Wightman. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 263–266. url:
https://doi.org/10.1007/978-3-642-59033-7_26.

[63] Karl Kraus. States, effects and operations: fundamental notions of quantum
theory. Springer, 1983.

[64] Sebastian Steinlechner et al. “Quantum-dense metrology”. In: Nature Photonics
7.8 (2013), p. 626.

[65] Tian Zhang, Oscar Dahlsten, and Vlatko Vedral. “Quantum correlations in time”.
In: (Feb. 2020). arXiv: 2002.10448 [quant-ph].

[66] Edward Anderson. “The Problem of Time in Quantum Gravity”. In: (Sept. 2010).
arXiv: 1009.2157 [gr-qc].

[67] G. Chiribella, G. M. D’Ariano, and P. Perinotti. “Quantum Circuit Architecture”.
In: Phys. Rev. Lett. 101 (6 2008), p. 060401. url:
https://link.aps.org/doi/10.1103/PhysRevLett.101.060401.

[68] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. “Theoretical
framework for quantum networks”. In: Phys. Rev. A 80 (2 2009), p. 022339. url:
https://link.aps.org/doi/10.1103/PhysRevA.80.022339.

[69] Lucien Hardy. “The operator tensor formulation of quantum theory”. In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 370.1971 (2012), pp. 3385–3417.

[70] Ognyan Oreshkov, Fabio Costa, and Časlav Brukner. “Quantum correlations with
no causal order”. In: Nature communications 3 (2012), p. 1092.

[71] Felix A. Pollock et al. “Non-Markovian quantum processes: Complete framework
and efficient characterization”. In: Phys. Rev. A 97 (1 2018), p. 012127. url:
https://link.aps.org/doi/10.1103/PhysRevA.97.012127.

[72] Jordan Cotler et al. “Superdensity operators for spacetime quantum mechanics”.
In: Journal of High Energy Physics 2018.9 (2018), p. 93. url:
https://doi.org/10.1007/JHEP09(2018)093.

[73] Robert B. Griffiths. “Consistent histories and the interpretation of quantum
mechanics”. In: Journal of Statistical Physics 36.1 (1984), pp. 219–272. url:
https://doi.org/10.1007/BF01015734.

[74] Robert B Griffiths. Consistent quantum theory. Cambridge University Press, 2003.
[75] Murray Gell-Mann and James B. Hartle. “Quantum Mechanics in the Light of

Quantum Cosmology”. In: (1989). arXiv: 1803.04605 [gr-qc].
[76] Murray Gell-Mann and James B. Hartle. “Classical equations for quantum

systems”. In: Phys. Rev. D 47 (8 1993), pp. 3345–3382. url:
https://link.aps.org/doi/10.1103/PhysRevD.47.3345.

[77] Roland Omnés. “From Hilbert space to common sense: A synthesis of recent
progress in the interpretation of quantum mechanics”. In: Annals of Physics 201.2
(1990), pp. 354–447. url:
https://www.sciencedirect.com/science/article/pii/000349169090045P.

https://doi.org/10.1007/978-3-642-59033-7_26
https://arxiv.org/abs/2002.10448
https://arxiv.org/abs/1009.2157
https://link.aps.org/doi/10.1103/PhysRevLett.101.060401
https://link.aps.org/doi/10.1103/PhysRevA.80.022339
https://link.aps.org/doi/10.1103/PhysRevA.97.012127
https://doi.org/10.1007/JHEP09(2018)093
https://doi.org/10.1007/BF01015734
https://arxiv.org/abs/1803.04605
https://link.aps.org/doi/10.1103/PhysRevD.47.3345
https://www.sciencedirect.com/science/article/pii/000349169090045P


References 137

[78] Francesco Buscemi. “All Entangled Quantum States Are Nonlocal”. In: Phys. Rev.
Lett. 108 (20 2012), p. 200401. url:
https://link.aps.org/doi/10.1103/PhysRevLett.108.200401.

[79] Denis Rosset, Francesco Buscemi, and Yeong-Cherng Liang. “Resource Theory of
Quantum Memories and Their Faithful Verification with Minimal Assumptions”.
In: Phys. Rev. X 8 (2 2018), p. 021033. url:
https://link.aps.org/doi/10.1103/PhysRevX.8.021033.

[80] Juan Maldacena, Stephen H. Shenker, and Douglas Stanford. “A bound on chaos”.
In: JHEP 08 (2016), p. 106. arXiv: 1503.01409 [hep-th].

[81] Daniel A. Roberts and Beni Yoshida. “Chaos and complexity by design”. In:
JHEP 04 (2017), p. 121. arXiv: 1610.04903 [quant-ph].

[82] Richard P Feynman, Albert R Hibbs, and Daniel F Styer. Quantum mechanics
and path integrals. Courier Corporation, 2010.

[83] Jean Zinn-Justin. Path integrals in quantum mechanics. Oxford University Press,
2010.

[84] Robert Pisarczyk et al. “Causal Limit on Quantum Communication”. In: Phys.
Rev. Lett. 123 (15 2019), p. 150502. url:
https://link.aps.org/doi/10.1103/PhysRevLett.123.150502.

[85] Tian Zhang, Oscar Dahlsten, and Vlatko Vedral. “Different instances of time as
different quantum modes: quantum states across space-time for continuous
variables”. In: New Journal of Physics 22.2 (2020), p. 023029. url:
https://doi.org/10.1088%2F1367-2630%2Fab6b9f.

[86] Lucien Hardy. “Towards quantum gravity: a framework for probabilistic theories
with non-fixed causal structure”. In: Journal of Physics A: Mathematical and
Theoretical 40.12 (2007), pp. 3081–3099. url:
https://doi.org/10.1088%2F1751-8113%2F40%2F12%2Fs12.

[87] Lucien Hardy. “Quantum Gravity Computers: On the Theory of Computation
with Indefinite Causal Structure”. In: Quantum Reality, Relativistic Causality,
and Closing the Epistemic Circle: Essays in Honour of Abner Shimony. Dordrecht:
Springer Netherlands, 2009, pp. 379–401. url:
https://doi.org/10.1007/978-1-4020-9107-0_21.

[88] Lucien Hardy. “The construction interpretation: a conceptual road to quantum
gravity”. In: arXiv preprint arXiv:1807.10980 (2018).

[89] Mateus Araújo et al. “Witnessing causal nonseparability”. In: New Journal of
Physics 17.10 (2015), p. 102001. url:
https://doi.org/10.1088%2F1367-2630%2F17%2F10%2F102001.

[90] Simon Milz, Felix A Pollock, and Kavan Modi. “An introduction to operational
quantum dynamics”. In: Open Systems & Information Dynamics 24.04 (2017),
p. 1740016.

[91] Jordan Cotler et al. “Quantum causal influence”. In: Journal of High Energy
Physics 2019.7 (2019), p. 42. url:
https://doi.org/10.1007/JHEP07(2019)042.

https://link.aps.org/doi/10.1103/PhysRevLett.108.200401
https://link.aps.org/doi/10.1103/PhysRevX.8.021033
https://arxiv.org/abs/1503.01409
https://arxiv.org/abs/1610.04903
https://link.aps.org/doi/10.1103/PhysRevLett.123.150502
https://doi.org/10.1088%2F1367-2630%2Fab6b9f
https://doi.org/10.1088%2F1751-8113%2F40%2F12%2Fs12
https://doi.org/10.1007/978-1-4020-9107-0_21
https://doi.org/10.1088%2F1367-2630%2F17%2F10%2F102001
https://doi.org/10.1007/JHEP07(2019)042


References 138

[92] Fabio Costa et al. “Unifying framework for spatial and temporal quantum
correlations”. In: Phys. Rev. A 98 (1 2018), p. 012328. url:
https://link.aps.org/doi/10.1103/PhysRevA.98.012328.

[93] Dennis Kretschmann and Reinhard F. Werner. “Quantum channels with memory”.
In: Phys. Rev. A 72 (6 2005), p. 062323. url:
https://link.aps.org/doi/10.1103/PhysRevA.72.062323.

[94] Gus Gutoski and John Watrous. “Toward a general theory of quantum games”. In:
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing.
ACM. 2007, pp. 565–574.

[95] Yakir Aharonov, Peter G. Bergmann, and Joel L. Lebowitz. “Time Symmetry in
the Quantum Process of Measurement”. In: Phys. Rev. 134 (6B 1964),
B1410–B1416. url: https://link.aps.org/doi/10.1103/PhysRev.134.B1410.

[96] Yakir Aharonov et al. “Multiple-time states and multiple-time measurements in
quantum mechanics”. In: Phys. Rev. A 79 (5 2009), p. 052110. url:
https://link.aps.org/doi/10.1103/PhysRevA.79.052110.

[97] Ralph Silva et al. “Connecting processes with indefinite causal order and
multi-time quantum states”. In: New Journal of Physics 19.10 (2017), p. 103022.
url: https://doi.org/10.1088%2F1367-2630%2Faa84fe.

[98] Robert Oeckl. “A “general boundary” formulation for quantum mechanics and
quantum gravity”. In: Physics Letters B 575.3 (2003), pp. 318 –324. url:
http://www.sciencedirect.com/science/article/pii/S0370269303013066.

[99] Fabio Costa and Sally Shrapnel. “Quantum causal modelling”. In: New Journal of
Physics 18.6 (2016), p. 063032. url:
https://doi.org/10.1088%2F1367-2630%2F18%2F6%2F063032.

[100] John-Mark A. Allen et al. “Quantum Common Causes and Quantum Causal
Models”. In: Phys. Rev. X 7 (3 2017), p. 031021. url:
https://link.aps.org/doi/10.1103/PhysRevX.7.031021.

[101] Mateus Araújo et al. “A purification postulate for quantum mechanics with
indefinite causal order”. In: Quantum 1 (2017), p. 10.

[102] A. Jamiołkowski. “Linear transformations which preserve trace and positive
semidefiniteness of operators”. In: Reports on Mathematical Physics 3.4 (1972),
pp. 275 –278. url:
http://www.sciencedirect.com/science/article/pii/0034487772900110.

[103] Man-Duen Choi. “Completely positive linear maps on complex matrices”. In:
Linear Algebra and its Applications 10.3 (1975), pp. 285 –290. url:
http://www.sciencedirect.com/science/article/pii/0024379575900750.

[104] Cyril Branciard et al. “The simplest causal inequalities and their violation”. In:
New Journal of Physics 18.1 (2015), p. 013008. url:
https://doi.org/10.1088%2F1367-2630%2F18%2F1%2F013008.

[105] Kurt Gödel. “An Example of a New Type of Cosmological Solutions of Einstein’s
Field Equations of Gravitation”. In: Rev. Mod. Phys. 21 (3 1949), pp. 447–450.
url: https://link.aps.org/doi/10.1103/RevModPhys.21.447.

https://link.aps.org/doi/10.1103/PhysRevA.98.012328
https://link.aps.org/doi/10.1103/PhysRevA.72.062323
https://link.aps.org/doi/10.1103/PhysRev.134.B1410
https://link.aps.org/doi/10.1103/PhysRevA.79.052110
https://doi.org/10.1088%2F1367-2630%2Faa84fe
http://www.sciencedirect.com/science/article/pii/S0370269303013066
https://doi.org/10.1088%2F1367-2630%2F18%2F6%2F063032
https://link.aps.org/doi/10.1103/PhysRevX.7.031021
http://www.sciencedirect.com/science/article/pii/0034487772900110
http://www.sciencedirect.com/science/article/pii/0024379575900750
https://doi.org/10.1088%2F1367-2630%2F18%2F1%2F013008
https://link.aps.org/doi/10.1103/RevModPhys.21.447


References 139

[106] David Deutsch. “Quantum mechanics near closed timelike lines”. In: Phys. Rev. D
44 (10 1991), pp. 3197–3217. url:
https://link.aps.org/doi/10.1103/PhysRevD.44.3197.

[107] D. Ahn et al. “Quantum-state cloning in the presence of a closed timelike curve”.
In: Phys. Rev. A 88 (2 2013), p. 022332. url:
https://link.aps.org/doi/10.1103/PhysRevA.88.022332.

[108] Todd A. Brun, Mark M. Wilde, and Andreas Winter. “Quantum State Cloning
Using Deutschian Closed Timelike Curves”. In: Phys. Rev. Lett. 111 (19 2013),
p. 190401. url:
https://link.aps.org/doi/10.1103/PhysRevLett.111.190401.

[109] CH Bennett and B Schumacher. “Teleportation, Simulated Time Travel, and How
to Flirt with Someone Who Has Fallen into a Black Hole”. In: QUPON, Wien
(2005).

[110] George Svetlichny. “Time Travel: Deutsch vs. Teleportation”. In: International
Journal of Theoretical Physics 50.12 (2011), pp. 3903–3914. url:
https://doi.org/10.1007/s10773-011-0973-x.

[111] Todd A. Brun and Mark M. Wilde. “Perfect State Distinguishability and
Computational Speedups with Postselected Closed Timelike Curves”. In:
Foundations of Physics 42.3 (2012), pp. 341–361. url:
https://doi.org/10.1007/s10701-011-9601-0.

[112] Seth Lloyd et al. “Closed Timelike Curves via Postselection: Theory and
Experimental Test of Consistency”. In: Phys. Rev. Lett. 106 (4 2011), p. 040403.
url: https://link.aps.org/doi/10.1103/PhysRevLett.106.040403.

[113] Mateus Araújo, Philippe Allard Guérin, and Ämin Baumeler. “Quantum
computation with indefinite causal structures”. In: Phys. Rev. A 96 (5 2017),
p. 052315. url: https://link.aps.org/doi/10.1103/PhysRevA.96.052315.

[114] H. F. Dowker and J. J. Halliwell. “Quantum mechanics of history: The
decoherence functional in quantum mechanics”. In: Phys. Rev. D 46 (4 1992),
pp. 1580–1609. url: https://link.aps.org/doi/10.1103/PhysRevD.46.1580.

[115] Fay Dowker and Adrian Kent. “On the consistent histories approach to quantum
mechanics”. In: Journal of Statistical Physics 82.5-6 (1996), pp. 1575–1646. url:
https://link.springer.com/article/10.1007/BF02183396.

[116] Roger B Myerson. Game theory. Harvard University Press, 2013.
[117] R. Cleve et al. “Consequences and limits of nonlocal strategies”. In: Proceedings.

19th IEEE Annual Conference on Computational Complexity, 2004. 2004,
pp. 236–249.

[118] John F. Clauser et al. “Proposed Experiment to Test Local Hidden-Variable
Theories”. In: Phys. Rev. Lett. 23 (15 1969), pp. 880–884. url:
https://link.aps.org/doi/10.1103/PhysRevLett.23.880.

[119] S. W. Hawking. “Particle creation by black holes”. In: Communications in
Mathematical Physics 43.3 (1975), pp. 199–220. url:
https://doi.org/10.1007/BF02345020.

https://link.aps.org/doi/10.1103/PhysRevD.44.3197
https://link.aps.org/doi/10.1103/PhysRevA.88.022332
https://link.aps.org/doi/10.1103/PhysRevLett.111.190401
https://doi.org/10.1007/s10773-011-0973-x
https://doi.org/10.1007/s10701-011-9601-0
https://link.aps.org/doi/10.1103/PhysRevLett.106.040403
https://link.aps.org/doi/10.1103/PhysRevA.96.052315
https://link.aps.org/doi/10.1103/PhysRevD.46.1580
https://link.springer.com/article/10.1007/BF02183396
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/BF02345020


References 140

[120] S. W. Hawking. “Breakdown of predictability in gravitational collapse”. In: Phys.
Rev. D 14 (10 1976), pp. 2460–2473. url:
https://link.aps.org/doi/10.1103/PhysRevD.14.2460.

[121] John Preskill. “Do black holes destroy information”. In: Proceedings of the
International Symposium on Black Holes, Membranes, Wormholes and
Superstrings, S. Kalara and DV Nanopoulos, eds.(World Scientific, Singapore,
1993) pp. World Scientific. 1992, pp. 22–39.

[122] T. Banks et al. “Are horned particles the end point of Hawking evaporation?” In:
Phys. Rev. D 45 (10 1992), pp. 3607–3616. url:
https://link.aps.org/doi/10.1103/PhysRevD.45.3607.

[123] S. W. Hawking. “Wormholes in spacetime”. In: Phys. Rev. D 37 (4 1988),
pp. 904–910. url: https://link.aps.org/doi/10.1103/PhysRevD.37.904.

[124] Stephen W Hawking. “Baby Universes II”. In: Mod. Phys. Lett. A 5 (1990),
pp. 453–466.

[125] Don N. Page. “Average entropy of a subsystem”. In: Phys. Rev. Lett. 71 (9 1993),
pp. 1291–1294. url:
https://link.aps.org/doi/10.1103/PhysRevLett.71.1291.

[126] Don N. Page. “Information in black hole radiation”. In: Phys. Rev. Lett. 71 (23
1993), pp. 3743–3746. url:
https://link.aps.org/doi/10.1103/PhysRevLett.71.3743.

[127] Gary T. Horowitz and Juan Martin Maldacena. “The Black hole final state”. In:
JHEP 02 (2004), p. 008. arXiv: hep-th/0310281 [hep-th].

[128] Daniel Gottesman and John Preskill. “Comment on ‘The Black hole final state’”.
In: JHEP 03 (2004), p. 026. arXiv: hep-th/0311269 [hep-th].

[129] Seth Lloyd and John Preskill. “Unitarity of black hole evaporation in final-state
projection models”. In: JHEP 08 (2014), p. 126. arXiv: 1308.4209 [hep-th].

[130] Raphael Bousso and Douglas Stanford. “Measurements without probabilities in
the final state proposal”. In: Phys. Rev. D 89 (4 2014), p. 044038. url:
https://link.aps.org/doi/10.1103/PhysRevD.89.044038.

[131] Franco Strocchi. Symmetry breaking. Vol. 643. Springer, 2005.
[132] Vedika Khemani, Roderich Moessner, and S.L. Sondhi. “A Brief History of Time

Crystals”. In: (Oct. 2019). arXiv: 1910.10745 [cond-mat.str-el].
[133] Yoichiro Nambu. “Quasi-Particles and Gauge Invariance in the Theory of

Superconductivity”. In: Phys. Rev. 117 (3 1960), pp. 648–663. url:
https://link.aps.org/doi/10.1103/PhysRev.117.648.

[134] J. Goldstone. “Field theories with « Superconductor » solutions”. In: Il Nuovo
Cimento (1955-1965) 19.1 (1961), pp. 154–164. url:
https://doi.org/10.1007/BF02812722.

[135] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. “Broken Symmetries”. In:
Phys. Rev. 127 (3 1962), pp. 965–970. url:
https://link.aps.org/doi/10.1103/PhysRev.127.965.

https://link.aps.org/doi/10.1103/PhysRevD.14.2460
https://link.aps.org/doi/10.1103/PhysRevD.45.3607
https://link.aps.org/doi/10.1103/PhysRevD.37.904
https://link.aps.org/doi/10.1103/PhysRevLett.71.1291
https://link.aps.org/doi/10.1103/PhysRevLett.71.3743
https://arxiv.org/abs/hep-th/0310281
https://arxiv.org/abs/hep-th/0311269
https://arxiv.org/abs/1308.4209
https://link.aps.org/doi/10.1103/PhysRevD.89.044038
https://arxiv.org/abs/1910.10745
https://link.aps.org/doi/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02812722
https://link.aps.org/doi/10.1103/PhysRev.127.965


References 141

[136] N. D. Mermin and H. Wagner. “Absence of Ferromagnetism or
Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models”.
In: Phys. Rev. Lett. 17 (22 1966), pp. 1133–1136. url:
https://link.aps.org/doi/10.1103/PhysRevLett.17.1133.

[137] P. C. Hohenberg. “Existence of Long-Range Order in One and Two Dimensions”.
In: Phys. Rev. 158 (2 1967), pp. 383–386. url:
https://link.aps.org/doi/10.1103/PhysRev.158.383.

[138] Axel Gelfert and Wolfgang Nolting. “The absence of finite-temperature phase
transitions in low-dimensional many-body models: a survey and new results”. In:
Journal of Physics: Condensed Matter 13.27 (2001), R505–R524. url:
https://doi.org/10.1088%2F0953-8984%2F13%2F27%2F201.

[139] Frank Wilczek. “Quantum Time Crystals”. In: Phys. Rev. Lett. 109 (16 2012),
p. 160401. url:
https://link.aps.org/doi/10.1103/PhysRevLett.109.160401.

[140] Patrick Bruno. “Comment on “Quantum Time Crystals””. In: Phys. Rev. Lett.
110 (11 2013), p. 118901. url:
https://link.aps.org/doi/10.1103/PhysRevLett.110.118901.

[141] Patrick Bruno. “Impossibility of Spontaneously Rotating Time Crystals: A No-Go
Theorem”. In: Phys. Rev. Lett. 111 (7 2013), p. 070402. url:
https://link.aps.org/doi/10.1103/PhysRevLett.111.070402.

[142] Haruki Watanabe and Masaki Oshikawa. “Absence of Quantum Time Crystals”.
In: Phys. Rev. Lett. 114 (25 2015), p. 251603. url:
https://link.aps.org/doi/10.1103/PhysRevLett.114.251603.

[143] Dominic V. Else, Bela Bauer, and Chetan Nayak. “Floquet Time Crystals”. In:
Phys. Rev. Lett. 117 (9 2016), p. 090402. url:
https://link.aps.org/doi/10.1103/PhysRevLett.117.090402.

[144] N. Y. Yao et al. “Discrete Time Crystals: Rigidity, Criticality, and Realizations”.
In: Phys. Rev. Lett. 118 (3 2017), p. 030401. url:
https://link.aps.org/doi/10.1103/PhysRevLett.118.030401.

[145] J Zhang et al. “Observation of a discrete time crystal”. In: Nature 543.7644
(2017), p. 217.

[146] Soonwon Choi et al. “Observation of discrete time-crystalline order in a
disordered dipolar many-body system”. In: Nature 543.7644 (2017), p. 221.

[147] Jared Rovny, Robert L. Blum, and Sean E. Barrett. “Observation of
Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System”. In:
Phys. Rev. Lett. 120 (18 2018), p. 180603. url:
https://link.aps.org/doi/10.1103/PhysRevLett.120.180603.

[148] Jared Rovny, Robert L. Blum, and Sean E. Barrett. “31P NMR study of discrete
time-crystalline signatures in an ordered crystal of ammonium dihydrogen
phosphate”. In: Phys. Rev. B 97 (18 2018), p. 184301. url:
https://link.aps.org/doi/10.1103/PhysRevB.97.184301.

[149] Dominic V. Else, Bela Bauer, and Chetan Nayak. “Prethermal Phases of Matter
Protected by Time-Translation Symmetry”. In: Phys. Rev. X 7 (1 2017),
p. 011026. url: https://link.aps.org/doi/10.1103/PhysRevX.7.011026.

https://link.aps.org/doi/10.1103/PhysRevLett.17.1133
https://link.aps.org/doi/10.1103/PhysRev.158.383
https://doi.org/10.1088%2F0953-8984%2F13%2F27%2F201
https://link.aps.org/doi/10.1103/PhysRevLett.109.160401
https://link.aps.org/doi/10.1103/PhysRevLett.110.118901
https://link.aps.org/doi/10.1103/PhysRevLett.111.070402
https://link.aps.org/doi/10.1103/PhysRevLett.114.251603
https://link.aps.org/doi/10.1103/PhysRevLett.117.090402
https://link.aps.org/doi/10.1103/PhysRevLett.118.030401
https://link.aps.org/doi/10.1103/PhysRevLett.120.180603
https://link.aps.org/doi/10.1103/PhysRevB.97.184301
https://link.aps.org/doi/10.1103/PhysRevX.7.011026


References 142

[150] F. Iemini et al. “Boundary Time Crystals”. In: Phys. Rev. Lett. 121 (3 2018),
p. 035301. url:
https://link.aps.org/doi/10.1103/PhysRevLett.121.035301.

[151] Praloy Das et al. “Cosmological time crystal: Cyclic universe with a small
cosmological constant in a toy model approach”. In: Phys. Rev. D 98 (2 2018),
p. 024004. url: https://link.aps.org/doi/10.1103/PhysRevD.98.024004.

[152] Xing-Hui Feng et al. “Cosmological time crystals from Einstein-cubic gravities”.
In: arXiv preprint arXiv:1807.01720 (2018).

[153] S. Autti, V. B. Eltsov, and G. E. Volovik. “Observation of a Time Quasicrystal
and Its Transition to a Superfluid Time Crystal”. In: Phys. Rev. Lett. 120 (21
2018), p. 215301. url:
https://link.aps.org/doi/10.1103/PhysRevLett.120.215301.

[154] Vedika Khemani, C. W. von Keyserlingk, and S. L. Sondhi. “Defining time
crystals via representation theory”. In: Phys. Rev. B 96 (11 2017), p. 115127. url:
https://link.aps.org/doi/10.1103/PhysRevB.96.115127.

[155] C. N. Yang. “Concept of Off-Diagonal Long-Range Order and the Quantum
Phases of Liquid He and of Superconductors”. In: Rev. Mod. Phys. 34 (4 1962),
pp. 694–704. url: https://link.aps.org/doi/10.1103/RevModPhys.34.694.

[156] Sidney Coleman. “There are no Goldstone bosons in two dimensions”. In:
Communications in Mathematical Physics 31.4 (1973), pp. 259–264. url:
https://doi.org/10.1007/BF01646487.

[157] Adriano Barenco et al. “Stabilization of quantum computations by
symmetrization”. In: SIAM Journal on Computing 26.5 (1997), pp. 1541–1557.

[158] C. W. von Keyserlingk and S. L. Sondhi. “Phase structure of one-dimensional
interacting Floquet systems. II. Symmetry-broken phases”. In: Phys. Rev. B 93
(24 2016), p. 245146. url:
https://link.aps.org/doi/10.1103/PhysRevB.93.245146.

[159] Derek JS Robinson. A Course in the Theory of Groups. Vol. 80. Springer Science
& Business Media, 2012.

[160] Carlo Heissenberg and Franco Strocchi. “Generalized criteria of symmetry
breaking. A strategy for quantum time crystals”. In: (2019). arXiv: 1906.12293
[cond-mat.stat-mech].

[161] Vlatko Vedral. Introduction to quantum information science. Oxford University
Press on Demand, 2006.

[162] Mark Van Raamsdonk. “Building up spacetime with quantum entanglement”. In:
General Relativity and Gravitation 42.10 (2010), pp. 2323–2329. url:
https://doi.org/10.1007/s10714-010-1034-0.

[163] Ted Jacobson. “Thermodynamics of Spacetime: The Einstein Equation of State”.
In: Phys. Rev. Lett. 75 (7 1995), pp. 1260–1263. url:
https://link.aps.org/doi/10.1103/PhysRevLett.75.1260.

[164] Seth Lloyd. “The quantum geometric limit”. In: arXiv preprint arXiv:1206.6559
(2012).

https://link.aps.org/doi/10.1103/PhysRevLett.121.035301
https://link.aps.org/doi/10.1103/PhysRevD.98.024004
https://link.aps.org/doi/10.1103/PhysRevLett.120.215301
https://link.aps.org/doi/10.1103/PhysRevB.96.115127
https://link.aps.org/doi/10.1103/RevModPhys.34.694
https://doi.org/10.1007/BF01646487
https://link.aps.org/doi/10.1103/PhysRevB.93.245146
https://arxiv.org/abs/1906.12293
https://arxiv.org/abs/1906.12293
https://doi.org/10.1007/s10714-010-1034-0
https://link.aps.org/doi/10.1103/PhysRevLett.75.1260


References 143

[165] Antoine Royer. “Measurement of quantum states and the Wigner function”. In:
Foundations of Physics 19.1 (1989), pp. 3–32. url:
https://doi.org/10.1007/BF00737764.

https://doi.org/10.1007/BF00737764

	Introduction
	Quantum correlations in space-time
	Classical correlations
	Correlations in probability theory
	Correlations in statistical mechanics

	Quantum correlations in space
	Basics for quantum mechanics
	Bipartite quantum correlations
	Multipartite quantum correlations

	Quantum correlations in time
	Correlations in quantum field theory
	Further possibility for temporal correlations
	Towards a unified approach for quantum correlations in space and time

	Pseudo-density matrix formalism
	Definition and properties
	Characterisation of bipartite correlations in space-time


	Generalisation of pseudo-density matrix formulation
	Introduction
	Gaussian generalisation of pseudo-density matrix
	Preliminaries
	Spacetime Gaussian states
	Example: vacuum state at two times
	Spatial vs temporal Gaussian states

	Pseudo-density matrix formulation for general continuous variables
	Preliminaries
	Spacetime Wigner function
	Spacetime density matrix in continuous variables
	Properties

	Generalised measurements for pseudo-density matrix
	Position measurements
	Weak measurements

	Experimental proposal for tomography
	Comparison and comments

	Correlations from other spacetime formulations: relation and lesson
	Introduction
	Indefinite causal structures
	Preliminaries for process matrix formalism
	Correlation analysis and causality inequalities
	Postselection and closed timelike curves
	Summary of the relation between pseudo-density matrix and indefinite causal structures

	Consistent histories
	Preliminaries for consistent histories
	Temporal correlations in terms of decoherence functional

	Generalised non-local games
	Introduction to non-local games
	Quantum-classical non-local & signalling games
	Temporal correlations from signalling games

	Out-of-time-order correlations (OTOCs)
	Brief introduction to OTOCs
	Calculating OTOCs via pseudo-density matrices
	Black hole final state proposal

	Path integrals
	Introduction to path integrals
	Temporal correlations in path integrals are different

	Conclusion and discussion

	Time crystals as long-range order in time
	Literature review for time crystals
	Spontaneous symmetry breaking
	Time translation symmetry breaking
	Mathematical definitions of time crystals

	Definition: time crystals as long-range order in time
	Long-range order
	Time crystals in terms of temporal correlations

	Continuous time translation symmetry
	General decoherent process
	Generalised Mermin-Wagner theorem

	Discrete time translation symmetry
	Stabilisation of quantum computation
	Quantum error correction of phase flip codes
	Floquet many-body localisation
	Possible sufficient conditions for general open systems

	An algebraic point of view
	Preliminaries
	Existence of time crystals
	Temporal correlations


	Conclusion and outlook
	Choi-Jamiolkowski isomorphism
	Proofs for the properties for spacetime Wigner functions
	Wigner Representation in Liouville Space
	Proofs for the properties

	Proof for continuous time translation symmetry in 1+1 dimensions
	References

