P@ Prog. Theor. Exp. Phys. 2021, 093B04 (19 pages)
DOI: 10.1093/ptep/ptab104

KBc algebra and the gauge invariant overlap in
open string field theory

E. Aldo Arroyo*

Centro de Ciéncias Naturais e Humanas, Universidade Federal do ABC Santo André, 09210-170 Sdo Paulo,
SP, Brazil
*E-mail: aldo.arroyo@ufabc.edu.br

Received June 16, 2021; Revised July 27, 2021; Accepted August 4, 2021; Published August 11, 2021

We study in detail the evaluation of the gauge invariant overlap for analytic solutions constructed
out of elements in the KBc algebra in open string field theory. We compute this gauge invariant
observable using analytical and numerical techniques based on the sliver frame £ and traditional
Virasoro L, level expansions of the solutions.
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1. Introduction

It is well-known that the analytic solutions for tachyon condensation [1-7] in open bosonic string
field theory [8] can be formally given in terms of elements in the KBc algebra [9,10]. Once a solution
W is given, the next step is to evaluate relevant physical gauge invariant quantities, such as the energy
and the gauge invariant overlap (/|V(i)|¥) discovered in Refs. [11-13]. As argued by Ellwood [14],
the gauge invariant overlap represents the shift in the closed string tadpole of the solution relative to
the perturbative vacuum. Moreover, using an appropriate zero momentum vertex operator )V, defined
in Ref. [15], it has been shown that the value of the energy can be obtained from the gauge invariant
overlap.

The analytic computation of the gauge invariant overlap for Schnabl’s tachyon vacuum solution
has been performed in Ref. [ 13]. Although the evaluation of this gauge invariant appears to be simpler
than the energy, the computation presented in Ref. [ 13] was a bit cumbersome, and the reason for this
subtlety was that the authors used a representation of the solution as given in Schnabl’s original work
[1]. As we will see, the computation of the gauge invariant overlap can be enormously simplified if
we express Schnabl’s solution in terms of elements in the KBc algebra.

Concerning the numerical analysis of the gauge invariant overlap for analytic solutions within the
KBc algebra, in Ref. [13] the authors evaluated the gauge invariant overlap for the case of Schnabl’s
original solution using the traditional Virasoro Lo level truncation scheme. Regarding the case of
the so-called Erler—Schnabl’s solution, although the analytical computation of the gauge invariant
overlap for this solution has been performed in Ref. [2], up to now, using the Virasoro Ly level
truncation scheme, the analysis of the gauge invariant overlap for this type of solution was not
performed. Moreover, the analysis of the gauge invariant overlap by means of the curly Lo level
truncation scheme has not been carried out, neither for Schnabl nor for Erler—Schnabl’s solution. In
the case of the new real tachyon vacuum solution discovered in Ref. [6] (called as Jokel’s solution
[7]), neither the numerical nor the analytical computation was presented for the gauge invariant
overlap.
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Motivated by the above results and open issues, in this work, using analytical and numerical
techniques based on the curly £( and the traditional Virasoro L level truncation schemes, we show a
detailed and pedagogical way of computing the gauge invariant overlap for solutions constructed out
of elements in the KBc algebra. As explicit examples of our generic results, we present the analytical
and numerical computation of the gauge invariant overlap for Schnabl’s, Erler—Schnabl’s and Jokel’s
solutions.

By expanding the solution W in the basis of curly Lo eigenstates, we surprisingly discover that
the result for the gauge invariant overlap (/|V(i)| V) turns out to be a finite series. This result is in
contrast to the case of the energy, where the series has an infinite number of terms and diverges,
though this divergent series can be resummed numerically by means of Padé approximants to give
a good approximation to the expected value of the D-brane tension [1,2,16,17].

Regarding the numerical result of the gauge invariant overlap for Erler—Schnabl’s and Jokel’s
solution obtained by means of Virasoro Lg level truncation computations, we would like to mention
that the main reason for performing this numerical computation is to see whether or not higher-level
contributions yield to increasingly convergent results which approach the expected answer. We will
show that the series that represents the gauge invariant overlap for these solutions turns out to be a
non-convergent one, therefore we will be required to use Padé approximants.

This paper is organized as follows. In Sect. 2, we introduce the sliver frame and discuss some
conventions and definitions that will be used in the rest of the paper. In Sect. 3, we review the KBc
algebra. In Sects. 4, 5 and 6, we analytically and numerically evaluate the gauge invariant overlap
for solutions expressed in terms of elements in the KBc algebra. In Sect. 7, a summary and further
directions of exploration are given.

2. The sliver frame: conventions and definitions

Originally, the sliver frame has been defined as the Z coordinate obtained by the map [1]
z = arctanz, (1)

where z is a point on the upper half-plane (UHP). It is known that the gluing prescription entering
into the definition of the star product simplifies if one uses the Z coordinate. Under the map (1), the
UHP looks like a semi-infinite cylinder of circumference 7 denoted by Cy,.

There is another convention for the definition of the sliver frame which uses the map

2
z = —arctan z. (2)
b/

This map has been used in Ref. [2], and in this case, the UHP looks like a semi-infinite cylinder of
circumference 2 denoted by Cj.

Since the expressions written in terms of elements in the KBc algebra which are used in the
construction of analytic solutions look different depending on the convention adopted for the z
coordinate, it is always useful to mention, from the beginning, which of those conventions will be
chosen, i.e., the one given by Egs. (1) or (2).

In the literature, some authors use the convention Eq. (1) and others Eq. (2); in this work we are
going to use a rather generic definition which takes into account both of these conventions. Let us
define the z coordinate by the map

/
zZ = —arctanz, 3)
big
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so that the UHP looks like a semi-infinite cylinder of circumference / denoted by C;. Note that the
case [ = m corresponds to the convention Eq. (1) while the case / = 2 corresponds to Eq. (2).

Let us define the operators ﬁ, B and Cp, which are very useful in the construction of elements in
the KBc algebra. These operators are related to the worldsheet energy-momentum tensor 7', the b
and the ¢ ghosts fields, respectively. Using the map (3), we can write the explicit definition of the
operators L, B and Cp:

dz

L=Lo+ L = f 3 (1 +z2) (arctan z + arccotz) T'(z) , 4)
i
A ¥ dz )
B=By+ B = T (1 + z°) (arctan z 4 arccotz) b(z) (5)
i
- / p dz 1 )
Cp = (;) fﬁm(arctanZ)p C(Z). (6)
In general, if we have a primary field ¢ with conformal weight %, using the map (3) we obtain
- dz - IN? [ dz 1
- spth—17 =\ _ +h—1
¢p = f %Zp ¢(Z) = (;) % %m(arctanz)p ¢(Z) (7)

Using Eq. (7), let us define the operators £_; and B_; which are useful in the computation of the
star product of string fields involving the operators £ and B:

dz -~ . T dz T

for= 55 i DT 7§ 2mi (177) 7@ = F[L+ L], ®)
dz ~ _ T dz T

Ba= b =T 452 (142 b6 = Tlo+]. ©)

To compute the star product of string fields involving the operators L, B and Cp, we will need to
know the following commutator and anti-commutator relations:

(L L,L1=[£_1,B1=0, [£_1,E]= Q2 —p)Ep1. (10)
[B,L] = [B_1,L1={B_1,By =0, (B_1,&)} = 8,_10. (11)

To represent the elements in the KBc algebra, we will need to know the operator Uj U,. This
operator can be written in terms of the operator L:

Uiy, :exp[zgrﬁ]. (12)

3. Star products and the KBc algebra

Before defining the basic elements belonging to the KBc algebra, we are going to write the star
product of string fields containing the operators £ and B. Given two string fields ¢ and ¢,, we can
show that

n o )
(Bor) * ¢y = B * ) + (—l)gn@”zm s« B_1¢2, (13)
n ~ )
o1 % (Bgn) = (—1)E"PVB(¢) x ¢) — <—1)gn<¢1>§(6_1¢1> % $2, (14)
. . I A 1\?
(Bo1) * (Bp) = —(—1)g“("’1)566_1<¢1 * ¢2) + (5) (B_1¢1) * (B_1¢2), (15)
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(L)) * ¢pp =

N . ,
5) L7 (o1 % L ¢2), (16)

2": n

2 ()

A - ! ' Ann o

¢1 % (L) =) <:,> (5) (=D)LL 1) * o), (17)
n'=0

A~ A " n l m,+n/ /oA ! / / /
L xLr¢n =Y (Z) (:) (5) (=1 2= = (£ 1) 5 (L™ 62),
m'=0n'=0
(18)

where gn(¢) takes into account the Grassmannality of the string field ¢. If we set [ = 7, the above
results match the results given in Ref. [1].

The action of the Becchi-Rouet-Stora-Tyutin (BRST), £_1, and B_; operators on the star product
of two string fields are given by

01 * $2) = (0¢1) * ¢2 + (—1)E" P x (02), (19)
L_1(p1 % ¢2) = (L_191) x P2 + ¢1 * (L_1¢2), (20)
B_1(¢1 % ¢2) = (B_1¢1) * d2 + (—1)E" Py % (B_14h2) . (21)

Given a operator # (%) defined in the Z coordinate, let us write the wedge state with insertion as
UlU,$2))0), (22)

where U, = (2/r)*0 is the scaling operator in the Z coordinate. The star product of two states
Uj U,¢(%)|0) and UST Us ¥ (7)]0) can be derived using the usual gluing prescription,

- - - / - /
UIU$@®10)  UTUF@)I0) = Uy Urisr§@E 4 36 = DTG = 0= IO, (23)

where by ¢ (%) we have denoted the local operator ¢ (z) expressed in the sliver frame. For instance,
in the case of a primary field with conformal weight /, ¢(Z) is given by

h ~ ~
3G = <%> b(2) = G)h cos 2 <$) & (tan (?)) (24)

The elements in the KBc algebra are constructed out of the basic string fields K, B and ¢. These
fields can be represented in terms of operators acting on the identity string field |/) = U IT U110):

1 .
= YL‘UITUHO), (25)
1.
B= 78U§U1|0>, (26)
¢ = Ul 1U12(0)0). 27)

Let us derive the algebra associated to the set of operators defined by Egs. (25)—(27). As a
pedagogical illustration, we explicitly compute {B, c} as

1, ; 1 X
{B,c}=Bc+cB = 7BU}“UHO) « U U12(0)]0) + 7U1TU12:(0)|0> «BUTU110);  (28)
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using Egs. (13), (14) and the anti-commutator (11), we obtain
(B,c} = U] U110) = II), (29)

therefore, we have that {B,c} = 1.
Following the same steps, using Eqgs. (13)—(18) and the commutator and anti-commutator relations
(10) and (11), we can show that

[K,B] =0, {B,c}=1, dc=I[K,cl, B>=0, ¢*=0, (30)

where the expression dc is defined as dc = UlT U,10¢(0)]0).
The action of the BRST operator O on the basic string fields K, B and c¢ is given by

OK =0, OB=K, Qc=cKec. 31

Employing the elements in the KBc algebra, we can construct a rather generic solution,

KB
U = FCWCF, (32)

which formally satisfies the string field equation of motion QW + WW = 0. For this solution to be
a well-defined string field, the function F'(K) must satisfy some holomorphicity conditions stated in
Ref. [3]. From now, we will assume that W belongs to the set of well-defined string fields.

Let us list some solutions of the form (32). As a first example, consider the analytic solution for
the tachyon vacuum [1], where F(K) = e~*K/4; Schnabl’s original solution corresponds to the case
where / = 7. Recall that in this work, we are considering the map z = (//m) arctan z, and therefore

the Schnabl’s solution looks like

—ZK/4CL06—IK/4. (33)

lI’ISCh =e€ 1 _ e—lK/Z

There is a subtlety with this solution, as shown in Refs. [1,3]; when one performs the expansion of
K/(1 - e~K/2) as the sum > Ke~!Kn/2the truncation of this sum produces a remnant which still
contributes to certain observables [4]. This is the origin of the phantom term . Taking into account
the phantom term, the solution (33) can be written as

N—1
2 . dvry
Yoy =—- 1 — 34
Sch lNl_r)réo|:WN E dn} (34)
n=0
where
Yy = o IK/4goIKn/2 Ly IK /4 (35)

As a second example, let us consider the solution discovered by Erler and Schnabl, namely, the
so-called simple tachyon vacuum solution [2]:

¢B(1 + K)c (36)

1 1
Vg §eh = —— .
Er-Sch ,—1 K ,—1 K
Note that in this case, F'(K) = 1/+/1 + K, and as shown in Refs. [2,3] there is no need for a phantom-
like term. It is possible to provide an integral representation of the solution (36); this is given by
writing the inverse square root of 1 4+ K as
1 1 /‘ * 1
=— dt —e 'Q, (37)
VI+K  Jmly Vi
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where Q! is the wedge state which can be written as [18,19]
Qf — oKt — U;HU%M |0). (38)

As a last example, we consider the so-called real tachyon vacuum solution without square roots,
or Jokel’s real solution for short [6,7]. This solution takes the form

1 1 1 B 1 1
Wik = — -exact t , 39
Jok 4<1+KC+CI+K+CI+KC+1+Kcl+K>+QexaC erms (39)

where the O-exact terms are given by

1 1 1 1 1 1
= B —0Q(B - B : 40

2[Q( Nrr T Ter C)]+41+KQ( Nk “0)
Interestingly, the solution does not take the factorized form (32), and is both real and simple, namely,
it is without square roots and phantom terms. For this real solution, the corresponding energy has
been computed and shown that the value is in agreement with the value predicted by Sen’s conjecture.

4. The gauge invariant overlap: analytical computations

In this section, we are going to study the analytic computation of the gauge invariant overlap for
solutions given in terms of elements in the KBc algebra. This gauge invariant observable has been
considered in Refs. [11-13,15,20,21]. For a given solution W of the string field equations of motion,
the gauge invariant overlap is defined as the evaluation of the quantity

(VW) = {I[V@©D)|W¥), (41)

where |/) is the identity string field, and the operator V(i) is an on-shell closed string vertex operator
V = cZV™ which is inserted at the midpoint of the string field W.! As argued by Ellwood [14], the
gauge invariant overlap represents the shift in the closed string tadpole of the solution relative to the
perturbative vacuum.

To evaluate the gauge invariant overlap for solutions given in terms of elements in the KBc algebra,
the following results are useful:

(VIQ"1eQ?) = (1 + 1)Cy, (42)
(VIQUBcQ2cQB) = 1, Cy, (43)
(VIQ1eQ2BeQB) = (1) + 13)Cy, (44)

where the coefficient Cy represents the correlator
Cy = (V(io0)e(0)) ¢y, (45)

which is the closed string tadpole evaluated on a cylinder C; of unit circumference. The proofs of
the above results (42)—(44) are based on usual scaling arguments and can be found in Refs. [2,22].
As an application of Egs. (42)—(44), we are going to compute the gauge invariant overlap for
Schnabl’s tachyon vacuum solution. We would like to mention that in Ref. [13], after performing
lengthy computations, the authors have evaluated the gauge invariant overlap for Schnabl’s solution.

L'ym is a weight (1, 1) conformal matter primary field.
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However, as we will see, this computation can be performed in a few lines if one uses Schnabl’s
solution expressed in terms of the basic string fields K, B and c,

=

2 d (Vi)
Wsa) = T lim [ (Vi) = Y- == (46)
n=0
therefore, we need to compute (V|¥,). Using Eq. (35), we can write
(VIym) = (VIe KA cpemKn2cemIKIYy — (p|QIAcBQI2 Q%) (47)
Employing Eq. (44), from Eq. (47) we get
/
(VIym) = ECV, (48)
and plugging this result (48) into Eq. (46) we obtain
(V|Wseh) = Cy = (V(ico)c(0)) ¢ (49)

This result coincides with the expected answer of closed string tadpole on the disk [14]. Note that
the result (49) does not depend on the parameter / which explicitly appears in the solution (34).

Next we would like to evaluate the gauge invariant overlap for Erler—Schnabl’s solution. In fact,
using a non-real version of the solution (36), the computation of the gauge invariant overlap has
been performed in Ref. [2]. Here we are going to present the computation for the case of the real
solution.? Let us write the real solution (36) as the following integral representation:

1 o° e 17
Wirseh = — [(1 — 9) /0 dtidn D Qfchszscszfz] Ly (50)
therefore the gauge invariant overlap for this solution (50) will be given by
1 o e 17
VIWpr-sen) = — [(1 — ) /O dtidt NG <V|Q’1chzscsz’2>] . (51)
Employing Eq. (44), from Eq. (51), we write
1 o0 e 2
W) =+ (=00 [ andn — 0+ mev] |
1 [ e 72
= ;/0 dtidt 7t (t1 +1)Cy
= Cy = (V(ic0)c(0)) ¢, - (52)

As we can see, this result (52) is exactly the same as the one obtained for Schnabl’s solution (49).
As the last example of analytical calculation, let us evaluate the gauge invariant overlap for Jokel’s
real solution. Since BRST exact terms do not contribute to the evaluation of the gauge invariant

2 The reality condition of a string field is defined as W* = W, where the operation § means the composition
of BPZ and Hermitian conjugation. Since the basic string fields K, B and c are real string fields in this sense,
the reality condition requires that the string field reads the same way from the left as from the right.
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overlap, we just need to consider the non-BRST exact terms of the solution. These terms are given
on the right-hand side of Eq. (39) and they can be written as

W L4 v B 1
= — C C C C C
k=4 \11k 1+K 14K " 1+K 14K

1 [ 1 [
=7 fo dte”™ (Q'c+ Q' + ¢Q'Bc) + 1 /0 dtidtr e 172 QN Q2. (53)
Therefore the gauge invariant overlap for Jokel’s real solution is given by

. 1 [ 1 [
V|Wjex) = 2 /0 dte™ (V|Q ¢+ cQ + cQ'Be) + 2 /0 dtidt e 172 (V|Q1eQ2).  (54)

Using Egs. (42) and (44), from Eq. (54) we obtain

~ 1 oo 1 oo
(VIWiok) = |:—/ dt te”" + —/ dtidty (t + tz)e_tl_’2i| Cy
2 Jo 4 Jo

= Cy = (V(ic0)c(0)) ¢ - (55)

Note that this result (55) is the same as the ones obtained in the case of Schnabl’s (49) and Erler—
Schnabl’s solutions (52).

It should be nice to obtain the above analytic results by numerical means. For instance, using the
traditional Virasoro Lg level truncation scheme, in Ref. [13], the authors have evaluated the gauge
invariant overlap for Schnabl’s solution. However, up to now, using the Virasoro L level truncation
scheme, the analysis of the gauge invariant overlap for Erler—Schnabl’s and Jokel’s real solution was
not performed. Moreover, the analysis of the gauge invariant overlap by means of the curly £ level
truncation scheme has not been carried out for neither Schnabl’s, Erler—Schnabl’s nor Jokel’s real
solution.

In the next two sections, using the curly Lo and the Virasoro Lg level truncation scheme, we
are going to present the evaluation of the gauge invariant overlap for solutions constructed out of
elements in the KBc algebra.

5. The gauge invariant overlap: £, level truncation computations

Since from the beginning we do not know if the result for the gauge invariant overlap obtained by
analytical computations will match the result obtained by numerical means (either by using the £ or
the Ly level truncation scheme), it is important for the consistency of the solutions to check explicitly
if these different schemes provide the same answer. In this section, using the £ level expansion of
a rather generic solution W, we will present the evaluation of the gauge invariant overlap.

As we know, the solution is given in terms of elements in the KBc algebra (which involves the
operators ﬁ, B and ¢); in general, we can write the following £ level expansion

U =" fupL8p10) + D fupa L' BEpegl0), (56)
np n,p,q

where n = 0,1,2,---,and p,q = 1,0, —1, -2, - - - . The coefficients of the expansion f,, and f, ;4
can be regarded as generic ones, and obviously these coefficients depend on the solution we choose.
For instance, for the case of Schnabl’s solution (33), these coefficients are given by

l—(=1y 7 1
fn,p = P 2n—2p+1 ;(_l)an—p-Fla (57)
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1 —(=1Pte  [7P4 n—g
Jnpg = 2 n— 2@+q}+3n!( D™ Bap—g+2, (58)

where B,, are the Bernoulli’s numbers.

To compute the gauge invariant overlap for solutions expanded in terms of Ly eigenstates, we
start by replacing the string field W with z£0W, so that states in the £ level expansion will acquire
different integer powers of z at different levels. As usual, at the end, we will simply set z = 1.

Let us start with the evaluation of the gauge invariant overlap as a formal power series expansion
in z. Plugging the expansion (56) into the definition of the gauge invariant overlap (41), we obtain

VIE0w) =Y 2P, (VILE 00 + Y 2P L (VILBELE|0). (59)
n.p n.p.qg

As we can see, we need to compute (Vlﬁ”ép |0) and (Vlﬁ”35p5q|0). To evaluate these quantities, we
need to express ﬁ”EplO) and ﬁ”éZquIO) in terms of elements in the KBc algebra; for this purpose,
the following relations will be useful

Q1eQ2 = *LE(x)|0), (60)
1 1 1A =
BQ! QP eQl — 59f1+f2cs2’3 + EQ’lch2+ = YBe”‘E(x)E(y)IOL (61)
where

) lu [ lu n ©2)

S]l=————X, S =—-— —+X

R T 7 T

I lu I lu

H=———— . h=x— , h =— — — . 63
1=7-7 7% b=x-y Bh=g-5 +y (63)

Employing the above relations, we can write /j”Ep|0) and ﬁ”l”;’&péqw) in terms of elements in the
KBc algebra

du dx

£12,]0) = n! o Zmu—”—‘xp—zsz%sz”, (64)
du dx dy / /
Cpiql0) = L2072 BQN QR eQ — —QNTReQB 4 Z QN eQRY |
£ Bcpcql ) =nl 2nz2n12mu vy e 2 ¢ +2 ¢

(65)

Now we are in a position to evaluate the quantities (V|2”5p|0) and (V|ﬁ"l§épéq|0). For instance,
using Egs. (42) and (64), let us compute

du d
(VIL",10) = nt p ! 2x WP 2 (V100 Q)
Ti2mwi
du dx /
— ! —n—1_p=2(1°>
Y owmiomit (2 lu) Cv
181,0
=1 ( P 2” — p,lam)cv. (66)

Performing similar calculations as above, using Eqs. (42), (43) and (65), we obtain

(VIBL"¢)2q10) = 1 (82,08p,084,1 — 81,084,00p.1) Cy-. (67)
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Finally, plugging the results (66) and (67) into the definition of the gauge invariant overlap (59),
and setting z = 1, we get

_ o (fou
V) =1 <7 —

fin— 2f0,1,0) Cy. (68)
To compute the gauge invariant overlap for a solution expanded in terms of £ eigenstates (56), we
only need to know the value of the first three coefficients appearing at levels z~! and z°. Remarkably,
this result (68) is simpler than the one obtained for the case of the energy. Evaluating the energy
in the Ly level expansion gives a very complicated non-convergent series, though the series can be
resummed numerically by means of the so-called Padé approximants to give a good approximation
to the brane tension [1,2,16].

Let us apply the general result (68) for some particular solutions such as the Schnabl’s solution
Wgp. Using the explicit expressions of the coefficients (57) and (58)

2 1 1
_Z - — - —— 69
for=7. fur=5 fore =g (69)
which appear in the £y level expansion of Schnabl’s solution, from Eq. (68) we obtain
(V|Wsch) = Cy. (70)

This result does not depend on the parameter / and is the same result as the one obtained from analytic
computations.

In the case of Erler—Schnabl’s solution Wg,.gch, using its integral representation (50), we can
compute the first three coefficients appearing in the Lo level expansion of the solution

1 1
Jor=1, fia ok J0.1,0 5 (71)
Therefore, plugging these results (71) into Eq. (68), we obtain
(VIWErsch) = Cy. (72)

This result also does not depend on the parameter / and is the same result as the one obtained for the
case of Schnabl’s solution.

In the case of Jokel’s real solution, we can also calculate the curly Lo level expansion of the
non-BRST exact terms of the solution (53). The first three coefficients of this £y level expansion are

given by
2 1 1
Jo,1 T S 2 Jo.1.0 T (73)
Substituting these results (73) into Eq. (68), we get
(VI¥ok) = C. (74)

As we can see, the result (74) is the same as the ones obtained in the case of Schnabl’s and Erler—
Schnabl’s solutions.

So far, we have computed the gauge invariant overlap by two means: analytically and using the
curly £y level expansion of the solutions. In what follows, we are going to evaluate the gauge invariant
overlap by a third method, namely, using the traditional Virasoro L level expansion of the solutions.
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6. The gauge invariant overlap: Virasoro L, level truncation computations

In this section, using the Lg level truncation scheme, the evaluation of the gauge invariant overlap
will be shown. Since the solution W involves the operators £, B and ¢, we can write its Lg level
expansion as follows:

v = Zgnlnznmananz e 'Lnicpl()) + ng1m2~~-m,-quLm1Lm2 e 'Lmjbscpcql())a (75)

where n;,mj,s < —2andp,q = 1,0,—1,-2,---. The L, terms are the ordinary Virasoro generators
with zero central charge ¢ = 0 of the total (i.e. matter and ghost) conformal field theory. For instance,
Schnabl’s solution (34), with / = m, expanded up to level two states is given by

Wseh = 0.553465 ¢1|0) + 0.043671 c_1|0) + 0.137646 L_5c1]0) + 0.131082 b_cpc10). (76)

To compute the gauge invariant overlap by means of the L level truncation scheme, it is clear that
if we insert the expansion (75) into the definition of the gauge invariant overlap (41), we will need
to evaluate the quantities

(VILn Lpy - - - Lnicpl0), (VILmy Ly - - - Lm;bscpcql0). (77)

We are going to calculate these quantities by means of a recursive method based on the evaluation
of the following commutation and anti-commutation relations

[Lm, Ln] = (m — 1)Ly 1p, (78)
(L, bn] = (m — n)byyn, (79)
[Ln, cpl = (=21 — p)Cnip, (80)
{bm, cn} = Smtn0- (81)

As an illustration, suppose we need to calculate (V|L,c,|0). Since for n < —2 the operator L, does
not annihilate the vacuum |0), and in order to apply the commutator (80), we must first express the
operator L, in terms of annihilation operators. This can be achieved if we use the fact that the on-shell
closed string state ) = c¢ V™ is invariant by the transformation generated by K,, = L,, — (—1)"L_,,
namely, we have [13]

(VILn = (VI(=D)"L_p. (82)
Now, since L_,|0) = 0 for n < —2, we are able to compute (V|L,c,|0) using the commutator (80)
(VILncpl0) = (=1)"(VI[L-n, cpl10) = (=1)"(2n — p)(VIcp—nl0). (83)

Let us comment that for the case of the operator b,,, which corresponds to the modes of the ghost
field b, we have a similar result as the one given by Eq. (82) [11-13,23]:

(VIby = (VI(=D)"b_p. (84)

As we have seen, after the use of the commutation and anti-commutation relations (78)—(81), we
can express the quantities (77) as linear combinations of terms like

(Vlcpl0). (85)
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To evaluate (85), first let us express the mode ¢, in the Z-coordinate. Using the conformal
transformation of the c(z) ghost, under the map (3), we get

p = f —zp 2e(z) = ( ) ﬁ sec? (nf) tan? 2 ( >c(z) (86)

If we substitute Eq. (86) into Eq. (85), it is clear that we will need to evaluate the quantity (V|c(2)|0).
Using Eqgs. (42) and (60), we can compute this quantity

3 . /
(VIEE)|0) = <V|Q_Z+l/4c Qz+’/4> =30, (87)

Therefore, employing Egs. (86) and (87), we obtain

(N2 (] dz 4 (7nz s (TZ\_ T
(Vle|O> = (7) <5) CV %SCC ( ] )tan (T) = E (Sp,—l +8p,1) Cv. (88)

As a first example, let us compute the gauge invariant overlap for Schnabl’s solution expanded up
to level two states:

Wseh = 1/ ¢1]0) + ' c—110) + V' L_p¢1|0) +w' b_scoc1]0), (89)

where the values of the coefficients ¢, /, v/ and w’ are given in Eq. (76). Using the property that
(VIL_2 = (V|L; and (V|b_ = (V|b2, the evaluation of the gauge invariant overlap reads as

(VIWsen) = ' (V]c110) + o' (V]e_1]0) + V' (VI[La, c1110) + w'(V|[b2, coc11]0)
=1 (V|c1|0) + ' (V]|c_1]0) — 5V (V|c3]0) = %(r’ +u') Cy. (90)

We would like to compare this result (90) with the one obtained in Ref. [13], where Schnabl’s
solution has been expanded from a slightly different basis. Instead of considering the Virasoro
generators L,, with zero central charge, the authors have used the «,’s oscillators; for instance, up to
level two states, they have written the expansion

Wseh = £¢1]0) +uc—1]0) +v (-1 - a—1)c1]|0) +wb_zcoc10), o1
where the coefficients have the following values?
t = 0.553465, u=0.456611, v =0.068823, w = —0.144210. (92)

Then, by using an explicit oscillator representation for the on-shell closed string state which can
be found in Refs. [13,24], the gauge invariant overlap for the expanded Schnabl’s solution (91) turns
out to be [13]

13 1
(VIWseh) = 31 = Sv -+ Ju = 0.149284, (93)

3 We have noted that if we use Eq. (3.36) of reference [13], the value of the coefficient v turns out to be twice
the value presented here (92). This means that if the authors want to use the definition of v as given in their
Egs. (3.31) and (3.32), their Eq. (3.36) should be replaced by a half of it. We have communicated this issue to
one of the authors, and he has confirmed this little mistake which nevertheless does not change the main result
presented in Ref. [13].
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Let us compare this result (93) with the one obtained by us (90). To get the same answer, we should
choose the normalization where Cyy = 1/(27), and in fact with this normalization from Eq. (90), we
obtain

1
(V|Wseh) = Z(/ +u') = 0.149284. (94)

Taking into account higher-level states, we have performed the computation of the gauge invariant
overlap for Schnabl’s solution, and the results we have obtained with the normalization Cyy = 1/(27)
are in agreement with the ones presented in Ref. [13]. We can consider this agreement as a test for
the method of computing the gauge invariant overlap based on the use of Egs. (82), (84) and the
commutation and anti-commutation relations (78)—(81).

The advantage of this method compared to the one presented in Ref. [13] is that we do not need to
use an explicit oscillator representation for the on-shell closed string state. The implication of this
observation will be reflected in the simplification of the evaluation of the gauge invariant overlap.
Recall that the L level expansion of analytic solutions constructed out of elements in the KBc algebra,
as presented in (75), is naively given in terms of the total (matter+ghost) Virasoro generators L, and
the b, and ¢, modes, and since we do not need to use an explicit oscillator representation for the
on-shell closed string state, using the expansion (75) we can directly evaluate the gauge invariant
overlap without the necessity of re-expressing the expansion in terms of the «;,,’s oscillators (which
will require an additional work).

Before studying the numerical evaluation of the gauge invariant overlap for the case of Erler—
Schnabl’s and Jokel’s solutions, we would like to mention some motivations for doing this
computation. First, using the Lg level truncation scheme, the numerical analysis of the gauge invari-
ant overlap for Erler—Schnabl’s and Jokel’s solutions has not been carried out. This analysis should
be crucial if we want to confirm the analytic result. However, the main motivation for performing
such numerical computations is to see whether or not higher-level contributions yield to increasingly
convergent results which approach to the expected answer. In the case of Schnabl’s solution, it has
been shown that every time we increase the level of the truncated solution, the gauge invariant overlap
converges to the expected analytical result without the necessity of using any regularization scheme
such as Padé approximants [13].

Let us start with the Ly level truncation analysis of the gauge invariant overlap for Erler—Schnabl’s
solution. To simplify the computations, it will be useful to write the solution (36) in the following
way:

1 1 1 1
L c + { Bc } 95
Brseh = 2 i T iR JI+K ©3)

Inserting the solution (95) into the definition of the gauge invariant overlap, the BRST exact term
does not contribute, and so we only need to consider the first term appearing on the right-hand side
of Eq. (95); let us denote this term as

1 1
v = c . 96
VI+K JI+K ©6)

To compare the Ly level expansion of the string field (96) with the one presented in Ref. [2], we
choose the value of the parameter /, which appears in the definition of the map (3), as / = 2. The L

13/19

1202 189000 €2 Uo Jasn yauyjol|qiqienusz-AS3a Aq 081 87€9/+09€60/6/ | 20Z/e0e/de)d/wod dno-olwapede//:sdyy woij papeojumo(



PTEP 2021, 093B04 E. A. Arroyo

level expansion of the string field (96) can be obtained from the following result [2,25]

1 o 1 ~ 2 tan
WO = | dsdt —=e7 7 cos? (22) T (M> 10), (97)
272 J st r r
where » and x are given by
—t

r=s+1t+1, x:ST. (98)

The operator U, is defined as
fj’r = ... eM0rL—10pu8,L—8 Ju6rL—6 puarLl—a 2, L2 (99)

To find the coefficients u, , appearing in the exponentials, we use

r 2 .
5 tan (_ arctanz> = lim [fZ,Mzr 0 fauq, ©f6us, ©S8us, ©S10u10, © " OfN,uNr(Z)]
2 r N—o0 ? ? ’ ’ ? ?

ngnoo [f‘Z,uz,r (ﬂl-,lm, (f6,u6,r (f&ug,r (flo,u]()J ( o (fN,uN,r (Z)) cee )))))]7 (100)
where the function f, ,, . () is given by

z

= 101
fn,un,r (Z) (1 _ un’rnzn)l/n ( )
By performing the change of variables
1 1 u
s — E(u —un), t— E(u 4+ un), dsdt — Edudn, (102)

where u € [0,00) and n € (—1, 1), we are going to evaluate the double integrals coming from Eq.
(97) numerically.
Employing the above results, let us write the string field (96), expanded up to level four states:

WD = 4 0.509038 ¢1]0) + 0.13231 c_1]0) — 0.001576 L_sc1|0) + 0.0893356 c¢_3|0)
—0.0135795 L_4c1]0) — 0.00694698 L_sc_1|0) + 0.0231579 L_»L_»c1]0).  (103)

To evaluate the gauge invariant overlap using the Lg level truncation scheme, first we perform the
replacement W) — zLow (D) and then, using the resulting string field z/0 W) we define

VI (2) = (viow D), (104)

The value of the gauge invariant overlap is obtained just by setting z = 1. As we can see, our problem
has been reduced to the computation of quantities like (V|Ly, Ly, - - - Ly,cp|0), which can be evaluated
using Egs. (78)—(81), (82) and (88).

As an example, plugging the level expansion (103) into the definition (104), we obtain

0.79959514

z

WMy (z) = [ +0.20783242z — 0.1 127686823] Cy. (105)

If we set z = 1, from Eq. (105) we get about 89% of the expected result for the gauge invariant

overlap (52). This result may appear good; however, considering the string field (96) expanded up
to level twenty-four, we obtain about 116% of the expected result. This behavior is in contrast with
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the case of Schnabl’s solution, where it has been shown that every time we increase the level of
the truncated solution, the gauge invariant overlap converges to the expected analytical result [13].
Therefore, as we suspect, for the case of Erler—Schnabl’s solution, by naively setting z = 1, we
are obtaining a non-convergent result. Recall that in numerical Lg level truncation computations a
regularization procedure based on Padé approximants produces desired results for gauge invariant
quantities like the energy [2]. Let us see if, after applying Padé approximants, we can obtain the
expected answer for the case of the gauge invariant overlap.

For the numerical evaluation, we have considered the string field W(! expanded up to level twenty-
four, so that we obtain a series expansion for (104) truncated up to the order z23. The explicit
expression for the gauge invariant overlap, truncated up to this order, is given by

+0.20783242z — 0.11276868z> + 0.03183002z°

0.79959514
Ve (z) = [—
VA

+0.1105491863z7 + 0.003197445654z° — 0.14509620056z"1
+0.00407084152"3 + 0.1939886423z" + 0.002321956902z'7

— 0.2468785966z'° + 0.0009635172z%' + 0.3 13942988469223}@. (106)

As an illustration of the numerical method based on Padé¢ approximants, let us compute the value of
the gauge invariant overlap using a Padé approximant of order Pﬁ; (z). First, we express (V¥ (D) (2)

as the rational function Pij:; (2)

ao + a1z + a2 + a3z + asz* + asz’

z 4+ byz? 4 b3z3 + bgz* + bs5zd + bez®

Vv () =Pt =

+ Cy. (107)

Expanding the right-hand side of Eq. (107) around z = 0 up to the seventh order in z and equating
the coefficients of z !, 20, z!, 22, 23, 2%, 23, 26 and z7 with the expansion (106), we get a system of
algebraic equations for the unknown coefficients ag, a1, a2, az, aa, as, by, b3, b4, bs and bg. Solving

those equations, we get

ap = 0.799595, a1 =0, a» =3.68919, a3 =0, a4 =2.55861, as=0, (108)
by =0, b3 =4.35389, by =0, bs=2.20925 be=0. (109)

Replacing the value of these coefficients inside the definition of Pii% (z) (107), and evaluating this

at z = 1, we get the following value of the gauge invariant overlap:
Pyl (z = 1) = 0.931807965 Cy. (110)

The results of our calculations are summarized in table 1. As we can see from the last column,
the naive evaluation of the gauge invariant overlap produces non-convergent values that oscillate
around the expected analytic result; nevertheless, the value of the gauge invariant overlap evaluated
using Padé approximants confirms the expected analytic result (52). Although the convergence to
the expected answer gets quite slow, by considering higher-level contributions, we will eventually
reach the correct value of the gauge invariant overlap (V|¥()) — 1Cy.

Finally, let us show the Lo level truncation analysis of the gauge invariant overlap for Jokel’s
solution. In order to expand the string field (53) in the state space of Virasoro L eigenstates, we
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Table 1. The Padé approximation for the value of the gauge invariant overlap (V|zf0w®) divided by C,, and
evaluated at z = 1. The third column shows the PZI; Padé approximation. In the last column, P?" represents a
trivial approximation, a naively summed series. At each line, we have considered the string field expanded up
to level 2n states. The value Pgizl appears to be a bit anomalous due to an accidental position of a zero and a
pole of the Padé¢ approximant close to the value z = 1.

Level Pt P
n=0 0 0.7995951404  0.7995951404
n=1 2 1.0074275622  1.0074275622
n=2 4 09343242915  0.8946588687
n=>3 6 0.9234761474  0.9264888970
n=4 8 0.9318079653  1.0370380866
n=>5 10 1.2045451257  1.0402355322
n=6 12 0.9644587833  0.8951393273
n=17 14 0.9673353296  0.8992101689
n=38 16 0.9815354429  1.0931988113
n=9 18 0.9814639822  1.0955207682
n=10 20 0.9728969059  0.8486421716
n=11 22 09730134315  0.8496056888
n=12 24 0.9757472737  1.1635486772

need to write this string field as follows [7]:

00 —t.inl (T an (T ~ nt xt
\i’JokZ/ & rsin (%) 27r —rsin(Z) + ) 7, (C (_M) +C<2tan(2r)>)
0

1672

r r
. /Oodti ! (= )k+122h=3 (1273 g4 (37, (_2an(E)) (2tan(3)
o = 72 (4k% — 1) ook r r
= / a / i TR+ ) eos? () & 2tan (5E1) (111)
c s
0 1 0 2 87 1+t1+10 I+6+0

where r = 1 4 ¢.

By writing the ¢ ghost in terms of its modes ¢(z) = ) _,, cm /z"~1 and employing Egs. (99) and
(111), the string field Wyox can be readily expanded and the individual coefficients can be numerically
integrated. For instance, let us write the expansion of WUyox up to level four states

Uyo = + 0.45457753¢1]0) + 0.17214438¢_1]0) — 0.03070678L_zc_1]0) — 0.01400692b_5coc1|0)
— 0.00605891L_4c1]0) + 0.02033379L_»L_»c110) + 0.16194599¢_310)
— 0.00976204b_2c_»c1]0) — 0.01053192L_c_1]0) 4 0.00976204H_>c_1¢0|0)
+ 0.00465417b_4c0c110) — 0.00308797L_2b_2c0c110). (112)

In order to compute the gauge invariant overlap using the Lg level truncation scheme, we perform
the replacement \iJJok — zko \iJJok and then, using the resulting string field z%0 \iJJok, we define

(VI¥io) () = (VIzH0 Wi (113)
It turns out that if we naively set z = 1 in (113), we obtain a non-convergent result, therefore in the

case of Jokel’s solution we are also required to use Padé approximants.
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Table 2. The Padé approximation for the value of the gauge invariant overlap (V|z0 Wy, ) divided by Cy and
evaluated at z = 1. The third column shows the P)1, Padé approximation. In the last column, P;" represents a
trivial approximation, a naively summed series. At each line, we have considered the string field expanded up

+

to level 2n states. The value P; +§ appears to be a bit anomalous due to an accidental position of a zero and a

1

pole of the Padé approximant close to the value z = 1.

Level P P
n=20 0 0.7140487176 0.7140487176
n=1 2 0.9844524899 0.9844524899
n=2 4 0.9048229924 0.8715855076
n=3 6 0.9010464675 0.9057032252
n=4 8 0.9042818456 1.0387366169
n=>5 10 1.2106757561 1.0438779002
n==6 12 0.9506363141 0.8658994735
n="7 14 0.9547341261 0.8689244179
n=2_, 16 0.9699784236 1.1105628220
n=29 18 0.9698405361 1.1162899369
n=10 20 0.9642533690 0.8089606332
n=11 22 0.9646503269 0.8080979232
n=12 24 0.9715134811 1.1962242655

We have considered the string field \ilJOk expanded up to level twenty-four, so that we obtain a series
expansion for (113) truncated up to the order z23. The explicit expression for the gauge invariant
overlap, truncated up to this order, is given by

+0.27040377z — 0.11286698z° 4 0.034117712°

. 0.71404871
(V[Wok) (2) = [—

+0.133033393978z + 0.0051412823z° — 0.17797842572z !
+0.00302494385z13 + 0.24163840461z' + 0.0057271144z"7

—0.307329303262"° — 0.00086271048z>! + 0.3881263427223}&;, (114)

Starting from this expression (114), we have computed the value of the gauge invariant overlap using
Padé approximants of order PZ:[; (z). Since these computations are similar to the ones developed in
the case of Erler—Schnabl’s solution, at this point we only present the results which are shown in
table 2. We observed that the value of the gauge invariant overlap evaluated using Padé approximants
confirms the expected analytic result.

7. Summary and discussion

Through analytical and numerical techniques, we have evaluated the gauge invariant overlap for
solutions within the KBc algebra. In order to analyze the gauge invariant overlap numerically, we
have used two types of expansions for the truncated solutions, namely, the curly £ and the Virasoro
Lg level expansions.

We have shown that when we expand a solution W in the basis of curly £ eigenstates, the resulting
expression for the gauge invariant overlap (/|V(i)|¥) is given in terms of a finite series and so the
use of Padé approximants was not necessary. This is quite a generic result provided that the solution
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belongs to the state space constructed out of elements in the KBc algebra. As explicit examples, we
have presented the results for the case of Schnabl’s, Erler—Schnabl’s and Jokel’s solutions.

Regarding the Virasoro Lg level truncation analysis of the gauge invariant overlap for Erler—
Schnabl’s and Jokel’s solutions, we have shown that the resulting expressions are given in terms of
non-convergent series which nevertheless can be numerically evaluated using Padé approximants.
These results are in contrast to the case of Schnabl’s original solution, where the expression of
the gauge invariant overlap obtained from Virasoro Lo level truncation computations becomes a
convergent series; therefore, in that case [13], there was no need for using Padé approximants.

Our original motivation for studying the level truncation analysis of the gauge invariant overlap
has been to prepare a numerical background to analyze more cumbersome solutions, such as the
multibrane solutions [22]; however, there are problems that can arise when using the KBc algebra to
construct such solutions, for instance, depending on the regularization used to define the solutions,
the analytic computation of the energy and the gauge invariant overlap becomes ambiguous [26,
27]. Moreover, these solutions are not well defined when expanded in the basis of Virasoro Lg
eigenstates [28].

With the hope of constructing well-behaved solutions other than the tachyon vacuum, the KBc
algebra has recently been extended to a larger algebra given as a string field representation of the
Virasoro algebra [29]. Since the evaluation of the gauge invariant overlap is simpler than the energy,
it should be nice to extend the results presented in our work in order to compute the gauge invariant
overlap for solutions constructed within the proposed Mertes—Schnabl’s algebra.

Finally, we would like to comment that the evaluation of the gauge invariant overlap can be
generalized for solutions in the context of superstring field theory [30—32]. For instance, we should
analyze the gauge invariant overlap for solutions constructed out of elements in the so-called GKBcy
algebra introduced in Refs. [33—37]. The analytic computation of this gauge invariant quantity has
already been presented for some particular solutions [38—40]; however, it remains to carry out the
numerical analysis.
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