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Abstract: Discussing quantum theory foundations, von Neumann noted that the measurement

process should not be regarded in terms of a temporal evolution. A reason for their claim is the

insurmountability of the gap between reversible and irreversible processes. The time operator

formalism that goes beyond such a gap is an adequate framework to elaborate the measurement

problem. It considers signals to be stochastic processes, regardless of whether they correspond to

variables or distribution densities. Signal processing that utilizes statistical properties to perform tasks

is statistical signal processing. The hierarchy of the measurement process is indicated by crossing

between states and devices, which implies an evolution in the temporal domain. The concept has

been generalized to an open system by the use of duality in frame theory.
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1. Introduction

The uncertainty relation is regarded as a fundamental principle of quantum theory.
Although it has a long history, starting from Sommerfeld and Heisenberg [1,2], the problem
came into focus due to the discovery of wave mechanics by Schrödinger, which led to
its formulation in terms of mathematical physics. The concept of the wave function was
utilized by Gabor in order to establish communication theory upon decomposing signals
into elementary quanta of information [3]. In that respect, uncertainty comes down to the
commutator relation [

Q, P
]
= i (1)

concerning a pair of canonically conjugate operators.
The current paper is aimed at reformulating the measurement problem in the same

manner. It considers signals in relation to stochastic processes, whether corresponding to
variables or distribution densities. Signal processing that utilizes statistical properties to
perform its tasks is statistical signal processing. The climax of such a trail should be quantum
theory of information, in which the measurement is a fundamental conception [4].

The phrase experimental mathematics comes up a lot in the fields of chaos, fractals and
non-linear dynamics [5]. It emerged during the last century, notwithstanding that mathe-
maticians had always used some experiments in order to identify properties and patterns.
The measurement is therefore a basic concept not only of geometry, but of mathematics
overall. A link between the measurement problem and experimental mathematics has
already been elaborated [6]. Thw current paper should complement such a discussion and
revise some oversights that appeared in the previous one. The multidisciplinary framework
it has implied corresponds to the time operator formalism of complex systems physics. The
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theory originated from the Brussels School of Thermodynamics, proposing a unification of
reversible and irreversible processes. A relation to the problem appears in respect to its
definition that was postulated by von Neumann [7].

Measurement is argued to be the fundamental conception of science [8]. Elaborating
issues it raises is therefore significant for the epistemology and methodology of scientific
research. Interrelating some aspects such as states, devices, probabilities, etc., a hierarchy
which is designed in that respect should coincide to the principle of psychophysical paral-
lelism. It is indicated by crossing between states and devices, which implies an evolution
in the temporal domain [6]. A paradigmatic measurement corresponds to commensuration
of magnitudes by the Euclidean algorithm, which is an intensional procedure producing
real numbers of the unit interval. Regarding that, one comes to a general definition of the
process concerning a time series of binary digits [9].

The paradigm asserts the significance of time for elaboration of the measurement prob-
lem, which has explicated a substantial relation between signals and stochastic processes.
In that regard, a signal corresponds to the ensemble which is originated by a measure-
ment. The problem is formulated in terms of mathematical physics, notwithstanding any
interpretation of physical theories such as QBism or many worlds. A comparison to the
uncertainty relation (1) is a picturesque instance, since it appears in statistical signal pro-
cessing regardless of the interpretation imposed. The measurement problem is therefore
a predominantly mathematical issue which is related to the very foundation of geometry,
analysis, probability and other topics. It concerns intentionality that is the manner in which
mathematics has always applied [10]. This was the reason for it to be termed the reality
problem by Philip Pearle [11].

After the Introduction, Section 2 presents the time operator formalism of complex
systems. The concept of ensembles is defined, as well as a link between reversible and
irreversible processes. The measurement hierarchy is elaborated in Section 3, following a
paradigm which corresponds to commensuration of magnitudes by the Euclidean algo-
rithm. It presents a general definition of the problem in statistical signal processing, which
has related an ensemble to the distribution density of a time series. Section 4 considers
projective measurements in the hierarchical base, constituting a measurable space that
is the domain of an observable. A hierarchy that has complemented the von Neumann
definition arises from a temporality of the domain.

The main advancement concerns a consistent realization of psychophysical parallelism
that is a principle which Bohr and von Neumann have already pointed out [12]. It is
realized due to a change in representation which is the operator function of time. General
measurements are considered in Section 5, replacing self-duality of the Hilbert space by
duality in frame theory [13]. In that manner, crossing between states and devices should
generalize to an open system which is partially described by the stochastic process [14].

2. Time and Complexity in Physical Science

2.1. Time in Quantum Theory

Von Neumann has indicated two fundamentally diverse types of interventions in
a system, the first of which corresponds to a temporal evolution that is reversible and
the second one to an irreversible measurement [12]. He was puzzled by the fact that
an entropy increase not representing any temporal evolution follows the measurement
process, which is totally opposite to thermodynamics, relating the increase of entropy to an
evolution in the temporal domain. The reason for such an odd situation is the fake concept
of time in quantum theory which is a classical one, considering that it is represented
by linear parameterization just like in Newtonian mechanics [7]. Von Neumann has
admitted an essential weakness of quantum theory, which concerns the fact that it is non-
relativistic, whereas spatial coordinates are represented by operators and time is a mere
parameter, making the Poincaré symmetry impossible. The time operator, which should
be a chief link between quantum and relativity theories [15], is substantially related to the
measurement problem.



Mathematics 2023, 11, 4623 3 of 13

The uncertainty between time and energy has been discussed frequently [16]. In the
classical formulation of quantum theory, however, there is no operator that satisfies the
commutator relation (1) in respect to a Hamiltonian corresponding to the energy of a system.
A reason for this is that the Hamiltonian governs evolution via the Schrödinger equation
of the wave function, which is a stationary state, like orbits in Newtonian mechanics [7].
The time operator is definable in the Liouville–von Neumann mechanics, which considers
density operators of ensembles. In that regard, T implements the commutator relation

[
T, L

]
= i (2)

wherein L governs the evolution of density operators by the Liouville equation.
An ensemble is defined by the mapping P 7→ π(P) which assigns a probability π(P)

to each projector P, such that
π(0) = 0

π(1) = 1

π

(
∑

P∈P
P

)
= ∑

P∈P
π(P)

for orthogonal constituents of the sum [17]. According to the Gleason theorem, there is a
density operator ρ that satisfies π(P) = 〈ρ|P〉, which should be positive semidefinite ρ ≥ 0,
Hermitian ρ† = ρ and unity traced Tr ρ = 1. It follows that ρ = FF†, whereby F is the root
operator which is unity normed, considering that Tr ρ = ‖F‖2.

2.2. Physics of Complex Systems

If ρ = | f 〉〈 f | for a unity normed signal f , the density is coincident to ρ = | f |2, provided
that tracing the operator corresponds to integrating the function, since Tr ρ = 〈ρ|1〉. The
projector P f = c f , which multiplies signals by a characteristic function, has the probability
π(P) = 〈ρ|c〉 that is an expected value of the variable c. The Koopman–von Neumann
mechanics, which has been postulated in that manner, considers the evolution of densities
and variables due to the action of a one-parameter group Gt onto the measurable space
that should preserve a probability measure. Variables upon the probability space evolve
by the group of unitary operators Ut : f 7→ f ◦ Gt and densities are governed by adjoints
Ut† = U−t. In that instance, there is an infinitesimal generator L such that Ut† = eiLt,
wherefrom it follows the Liouville equation

∂ρ

i∂t
= Lρ

which is governing an evolution of the density [18]. In terms of the evolutionary group, the
commutator relation (2) is equivalent to

[
T, Ut

]
= tUt, which comes down to

[
T, U

]
= U (3)

supposing the cyclic group generated by U.
If there is an operator T satisfying the commutator relation (3), such a system is

termed complex. The time operator formalism of complex systems originated from the
Brussels School of Thermodynamics, which was investigating a link between reversible
and irreversible processes [7]. It is realized due to a change in representation Λ = λ(T)
that is the operator function of time, which transfigures the Lie group Ut† into a Markov
semigroup

Wt† = ΛUt†Λ−1, t ≥ 0 (4)

The semigroup (4) indicates irreversibility, since operators Wt† for t < 0 are not
positivity-preserving and therefore not related to the evolution of density. The change in
representation should preserve the positivity ρ ≥ 0 ⇒ Λρ ≥ 0, the trace Tr ρ = Tr Λρ, and



Mathematics 2023, 11, 4623 4 of 13

the uniform density 1 = Λ1 and it should be invertible in a dense subset. Terms of the
change imply that Λ maps a density into a density without any information loss [19].

The link between reversible and irreversible processes is substantial for elucidation of the
measurement problem. The evolutionary group Ut has become the semigroup Wt for t ≥ 0
due to a change in representation (4). In that respect, irreversible evolution corresponds to an
increase of the information entropy, which is a measurement characterized by [7].

3. Wavelets and the Measurement Hierarchy

3.1. Paradigm of the Measurement Process

In book V of Elements, Euclid elaborates the doctrine of proportion concerning com-
mensuration of magnitudes. Due to the Euclidean algorithm, magnitudes a ≤ b measure
each other in terms of the continued fraction

a

b
=

1

n1 +
1

n2+
1

...

(5)

which should indicate a process that takes place step by step over time [6].
The Euclidean algorithm is a paradigmatic measurement. The process corresponds to

a sequence

ξ j =
1

n1 +
1

. . .+ 1
nj

whose elements ξ j =
hj

kj
are obtained by the recurrence equation

hj+1 = nj+1hj + hj−1, k j+1 = nj+1k j + k j−1

considering the initial conditions h0 = 0, h1 = 1, k0 = 1, k1 = n1. The difference between
successive elements

∆ξ j = ξ j+1 − ξ j =
hj+1

k j+1
−

hj

k j
=

(−1)j

k jk j+1

expands the continued fraction (5) to the alternating series

∆ξ0 + · · ·+ ∆ξ j + · · · = 1
k0k1

− · · · (−1)j

k jk j+1
· · · (6)

which is a sparse representation [20], composed of terms from the redundant dictionary
1
1 , 1

2 . . .
The expansion (6) corresponds to a binary code, wherein 0 is assigned to terms of

the dictionary that do not participate in the series and an alternating value ±1 is assigned
to those that do participate. Such a representation of the measurement process is highly
redundant, since the complete dictionary cannot be involved in a series. One should
therefore eliminate excess zeros, which is realized by coding the sequence n1, n2, . . . The
code is composed of alternative ±1 values at positions n1, n1 + n2, . . . , which gives rise to
the Minkowski function

? :
1

n1 +
1

n2+
1

...

7→ 1
2n1−1 − 1

2n1+n2−1 + · · ·
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that is an automorphism transfiguring the continued fraction into the binary representation.
The process is codified by a real number

x = 0.0 . . . 0︸ ︷︷ ︸
n1

1 . . . 1︸ ︷︷ ︸
n2

0 . . . 0︸ ︷︷ ︸
···

1 . . . (7)

wherein digital positions concern its temporality [9].
In that regard, the measurement is considered to be a time series of binary digits (7),

which is a general definition of the problem. Time is related to a scale j of the binary tree
whose nodes 0 <

2k−1
2j+1 < 1 correspond to both states and devices of the measurement

process. A step concerns the Rényi map

R(x) =

{
2x, 0 ≤ x <

1
2

2x − 1, 1
2 ≤ x < 1

(8)

representing a shift in terms of binary digits. It is a self-similarity of the binary tree, which
maps both left and right subtrees to the entire one [6].

3.2. Hierarchical Bases of the Signal Space

The binary structure reflects the hierarchy of the signal space representing the mea-
surement process. It concerns both states Σ and devices ∆ which should be considered in
a dual manner [6]. If the signal space Σ has identified states, the topological dual Σ̃ = ∆

corresponds to measurement devices. Starting from devices ∆ on the other hand, the
topological dual ∆̃ = Σ concerns measurement states. These options may differ in more
than a conceptual sense; taking the dual of the dual does not necessarily bring back to the
departure. Even if it does, there may be some reasons to favor one of them since an aspect
of the process has been obscured [14].

A sensible solution should consider signals to be both states and devices concurrently,
which leads to a source–detector interchangeability that is termed crossing in quantum
theory [14]. It is a reason for regarding Σ = ∆ as self-dual, which applies to the Hilbert
space L2

µ, wherein µ is the Lebesgue measure over the unit interval. A hierarchy is realized
by wavelets which correspond to orthonormal bases of the signal space [6]. The Haar
base is paradigmatically designed by translation and normalized dilatation of the mother

wavelet χ(x) =

{
−1, 0 ≤ x <

1
2

+1, 1
2 < x ≤ 1

in the manner of

χj,k(x) =

{
−2j/2, k

2j ≤ x <
k+1/2

2j

+2j/2, k+1/2
2j < x ≤ k+1

2j

(9)

implying that basic elements are zero-valued almost everywhere else.
Wavelets on the unit interval have arisen from those on the real line, which are the

orthonormal bases
Ψj,k(x) = 2j/2Ψ(2jx − k)

obtained by translation and normalized dilatation of a mother wavelet Ψ. They reappear
in the signal space L2

µ due to ψj,k(x) = ∑n Ψj,k(x + n), which gives rise to the periodiza-
tion axiom

ψj,k = ψj,k+2j (10)

and also the annihilation
j < 0 ⇒ ψj,k = 0 (11)
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In this manner, one obtains the pyramid ψj,k for j ≥ 0 and 1 ≤ k ≤ 2j which is an
orthonormal base of L2

µ ⊖ ✶ representing the orthocomplement of constants ✶ [21]. Signals
are decomposed in a hierarchical base due to the resolution of identity

1 = |1〉〈1|+ ∑
j≥0

2j

∑
k=1

∣∣∣ψj,k

〉〈
ψj,k

∣∣∣

wherein 〈·| corresponds to a state and |·〉 to a device of the measurement process. The
translation axiom

ψj,k
(
x − m

2j

)
= ψj,k+m(x) (12)

is satisfied as well, which means that variables are equally distributed within each scale.
The evolution of wavelets concerns the operator U : f 7→ f ◦ R which is induced by

the Rényi map (8). The evolutionary axiom holds in terms of its adjoint

U†ψj,k =
1√
2

ψj−1,k (13)

which comes down to

Uψj,k =
1√
2

ψj+1,k +
1√
2

ψj+1,k+2j

Since R is a measure preserving transformation of the unit interval, the operator U pre-
serves distribution of a variable. The orthogonality implies that variables are decorrelated,

considering that E ψj,k =
〈

1|ψj,k

〉
= 0 = E ψj,k and

(j, k) 6= (l, m) ⇒ E ψj,kψl,m =
〈

ψj,k|ψl,m

〉
= 0 = E ψj,k E ψl,m

The absolute square |ψj,k|2 is a density function as well, which makes the base generate
both states and devices concurrently.

Time of the measurement hierarchy corresponds to a scale, which implies the operator

T = ∑
j≥0

2j

∑
k=1

j
∣∣∣ψj,k

〉〈
ψj,k

∣∣∣ (14)

that is defined on a dense subset of L2
µ ⊖ ✶ [22]. The commutator relation (3) follows immedi-

ately from the evolutionary axiom, considering that

[
U†, T

]
ψj,k = U† jψj,k − (j − 1)U†ψj,k = U†ψj,k

3.3. Space of Ensembles

A problem might occur concerning the generation of an evolutionary group, since
the operator U is not invertible. However, it extends naturally to an invertible operator
Uχ : F 7→ F ◦ B which is induced by the baker map

B(x, y) =

{ (
2x, y

2

)
, 0 ≤ x <

1
2(

2x − 1, y+1
2

)
, 1

2 ≤ x < 1
(15)

that is a measure preserving transformation of the unit square [23]. This is a reason to
embed the signal space L2

µ into an extended one L2
µ2 = L2

µ ⊗ L2
µ, wherein µ2 = µ ⊗ µ is the

product measure [6].
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The space of ensembles L2
µ2 = ∆ ⊗ Σ is a tensor product of devices and states. The

resolution of identity gives rise to the decomposition

F = |1〉〈A|+ ∑
j≥0

2j

∑
k=1

∣∣∣ψj,k

〉〈
Dj,k

∣∣∣

wherein 〈A| = 〈1|F is the approximation coefficient and
〈

Dj,k

∣∣∣ =
〈

ψj,k|F are detail coeffi-

cients at a certain scale of the measurement hierarchy, implying the matrix multiplication

F1F2(x, y) =
∫

F1(x, t)F2(t, y)dt

The time operator Tχ of the system evolving by Uχ has been explicitly constructed [17].
Its projection onto the signal space L2

µ concerns the hierarchy of the Haar base (9). The

time operator of any wavelet (14) is obtained through conjugation T = CTχC† by C :∣∣∣χj,k

〉〈
χl,m

∣∣ 7→
∣∣∣ψj,k

〉〈
ψl,m

∣∣, which transforms the Haar base to the other one. It corresponds

to a system whose evolution is governed by U = CUχC†, which is also an extension of the
evolutionary operator U, which is a reason for it to be denoted in the same manner.

One defines the density operator of an ensemble to be ρ = FF†, wherein the root
F is unity normed. The density evolves by an adjoint of Uρ = (UF)(UF)†, which is the
superoperator U†ρ = U†ρU. The time operator T that concerns the evolution of U is
relevant to U as well, considering that the commutator relation (3) is satisfied

[
T,U

]
ρ =

[
T, U

]
ρU† = Uρ

It induces a change in representation Λ = λ(T), which should transfigure the evolu-
tionary group generated by U† to a semigroup (4) generated by

W† = ΛU†Λ−1 (16)

4. Orthonormal Wavelets and Projective Measurements

4.1. Measurements in the Hierarchical Base

The von Neumann measurement corresponds to a complete set of orthogonal projec-
tors in the Hilbert space. Considering a paradigmatic measurement, one should assume a
hierarchy that is realized by the time series of binary digits. This is a reason to represent

orthonormal wavelets ψj,k in terms of projectors Pj,k =
∣∣∣ψj,k

〉〈
ψj,k

∣∣∣, which concerns an

embedment of L2
µ ⊖ ✶ into (L2

µ ⊖ ✶)2.
Projectors constitute the Boolean algebra, which is isomorphic to an algebra of sets due

to the Stone representation theorem. It is the measurable space corresponding to devices,
which an observable has been defined on [9,10]. A measurement state on the other hand
corresponds to a density ρ = FF† which is defined upon the same domain. One concludes
that it should commute with each of projectors, which comes down to the requirement
ρ = ∑j,k Pj,kρPj,k. In that respect, the density is reduced to the subspace of commutative
operators

Mρ = ∑
j,k

Pj,kρPj,k = ∑
j,k

‖Dj,k‖2Pj,k

and the measurement problem concerns the issue of how such a reduction has taken place.
It is obvious that the problem occurs only if the measurable space does not fit to the

state. If one measures the density itself, there is no reduction, since devices are generated
by eigenprojectors Po

j,k of the density operator. Such a measurement

Moρ = ∑
j,k

Po
j,kρPo

j,k = ∑
j,k

‖Do
j,k‖2Po

j,k
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is termed optimal, considering that the density operator ρ = Moρ is an invariance of
the process.

Starting from the decomposition F = ∑j,k

∣∣∣ψo
j,k

〉〈
Do

j,k

∣∣∣ of an ensemble from (L2
µ ⊖ ✶)2,

one obtains ρ = ∑j,k,l,m

∣∣∣ψo
j,k

〉〈
Do

j,k|Do
l,m

〉〈
ψo

l,m

∣∣∣ as well as Moρ = ∑j,k ‖Do
j,k‖2

∣∣∣ψo
j,k

〉〈
ψo

j,k

∣∣∣.

It follows that (j, k) 6= (l.m) ⇒
〈

Do
j,k|Do

l,m

〉
= 0, meaning that detail coefficients are

decorrelated in the optimal base. In regard to another base ψl,m that is suboptimal, the
same ensemble is composed of coefficients

〈
Dl,m

∣∣ = ∑
j,k

〈
ψl,m

∣∣ψo
j,k

〉〈
Do

j,k

∣∣∣

Since the basic elements ψo
j,k and ψl,m are almost entirely supported by segments [ k−1

2j , k
2j ]

and [ l−1
2m , l

2m ], respectively, values
〈

ψl,m

∣∣∣∣ψo
j,k

〉
are negligible if supports do not intersect.

This implies an approximate decorrelation of the ensemble, which should mean that
correlation between detail coefficients is predominantly concerned by inheritance along
branches of the binary tree [9,10].

The wavelet-domain hidden Markov model, which is obtained in that manner, has
been proven as tremendously useful in a variety of applications, including speech recog-

nition and artificial intelligence [24]. Correlation between detail coefficients D =
(

Dj,k

)

is transmitted only through the Markovian tree of hidden variables S =
(

Sj,k

)
, with one

attributed to each node, and out of such an interrelation, the ensemble is considered decor-
related. The conditional distribution D|S is supposed to be normal, which implies that
Dj,k|Sj,k are independent variables [9].

4.2. Psychophysical Parallelism

The projective measurement M = ∑j Mj temporally decomposes into the sum of
superprojectors Mj = ∑k Pj,k, whereby each Pj,kρ = Pj,kρPj,k is a superprojection onto the

orthogonal projector Pj,k =
∣∣∣ψj,k

〉〈
ψj,k

∣∣∣. If one defines UP = UPU†,

U †Pj,kρ =





2
∣∣∣ψj−1,k

〉〈
ψj−1,k(x)

∣∣∣
∫ 1/2

0 F(x, t)F†(t, y)dt
∣∣∣ψj−1,k(y)

〉〈
ψj−1,k

∣∣∣, k ≤ 2j−1

2
∣∣∣ψj−1,k−2j−1

〉〈
ψj−1,k−2j−1(x)

∣∣∣
∫ 1

1/2 F(x, t)F†(t, y)dt
∣∣∣ψj−1,k−2j−1(y)

〉〈
ψj−1,k−2j−1

∣∣∣, k > 2j−1

holds for j ≥ 1. In that respect,

U †Mj = U † ∑
k≤2j−1

Pj,k + U † ∑
k>2j−1

Pj,k = ∑
k

2Pj−1,k = 2Mj−1

and since U is unitary,

Mj = 2UMj−1 = 2jU jM0 = 2jUjM0U
j† (17)

which relates all superprojectors to the primary measurement M0ρ = P0ρP0.
The evolutionary operator U that maps a scale of the measurement hierarchy into

the next one is extended onto the space of ensembles ∆ ⊗ Σ due to the baker map (15).
It crosses information between coordinates of the domain in such a manner that the first
digit of one, which has been lost by the Rényi map, becomes the first digit of another.
The induced operator should cross spatial components, which is evident in the relation
Uχ|χ〉〈1| = |1〉〈χ|, and likewise for other wavelets. Considering identifications |·〉 →֒ |·〉〈1|
and 〈·| →֒ |1〉〈·|, the operator has crossed a measurement device into a state [6].

The superprojector (17) is factorized into measurement operators Mjρ = MjρM†
j , in

which MjF = 2j/2U jP0U j†F. First of all, it concerns the evolution by U† crossing states into
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devices. Thereafter, P0 projects the ensemble onto a primary device, which annihilates all
devices out of the measurement display. Finally, the evolution by U crosses devices back
into states. Supposing the measurement hierarchy that is realized by the Haar base (9), the
primary device has corresponded to the ensemble χ0 = |χ〉〈1| which produces the base of

ensembles ∏j∈(j1<···<jn) χj by the evolution χj = U
j
χχ0 [17]. Each element χ~j is specified

by an increasing sequence of integers~j = (j1 < · · · < jn) and it evolves by Uχχ~j = χ~j+1,

wherein~j + 1 = (j1 + 1 < · · · < jn + 1). The measurement operator Mj = 2j/2U
j
χP0U

j†
χ

implies the process U
j†
χ χ~j = χ~j−j

, due to which some states have become devices. The
projector P0 should fix an element χ~j = χj1 · · · χjn if it is started by the primary device
χj1 = χ0 and annihilate it if not, which means that all devices out of the measurement

display come to be annihilated. The terminal step concerns the evolution U
j
χχ~j = χ~j+j

,
wherein some devices have become states. In that respect, crossing between them due to
an evolution in the temporal domain is substantial for a hierarchy [6].

The measurement display defines a boundary between states and devices, which is
arbitrary to a very large extent. Self-duality of the signal space representing both states
and devices concerns the principle of psychophysical parallelism, as has been noted by
von Neumann [12]. A problem occurs in that the principle is violated so long as it is not
demonstrated that the display has been placed in an arbitrary manner, which is achieved
by crossing due to the evolutionary operator. In that regard, the evolution of measurement
operators corresponds to its displacement by designating another χj to be a primary device.
Crossing devices into states elucidates the term psychophysics that is used in order to
transcend any separation between the two [6].

Von Neumann made a reference to Bohr, who “was the first to have pointed out that
the dual description of quantum theory relates to the principle of psychophysical paral-
lelism [25]”. Although he has never mentioned it, Bohr adopted Fechner’s psychophysics
as he had been taught by Høffding [26]. The most significant source for psychophysical
parallelism by Fechner is the foreword and the introduction from the Elements of Psy-
chophysics [27]. His attitude is termed the identity view, since the observer is not considered
to be a conglomeration of two substances but one single entity. Fechner primarily discerns
the outer psychophysics, which is a link between sensation and stimulation. It is realized
through the neuroesthetical computation that relates sensation to neural activity, which is
termed inner psychophysics [28].

A significant repercussion of von Neumann’s solution to the measurement problem
is that irreversibility takes place in the presence of the observer’s mind, which seems to
play an active role in the process. The only manner to make such an insight compatible
to psychophysical parallelism concerns switching to inner psychophysics by a change in
representation [6]. In that regard, inner psychophysics should correspond to a Markovian
tree of the wavelet-domain hidden Markov model [28].

The irreversibility is actually manifested by the fact that a state before the measurement
process results in the sum of diverse states thereafter. The primary measurement designed
by an operator M0 = P0 is not irreversible in that respect, since it corresponds to the
projector onto a single state. A problem occurs considering that the measurement operator
Mj = 2j/2UjP0 = ∑k 2j/2Pj,k evolves into a combination of diverse projectors. It concerns
the evolution represented by U, whose irreversibility comes to prominence due to a change
in representation (16). The evolution Mj+1 =

√
2UMj in terms of the Markov process

W becomes Mj+1 =
√

2U∑k 2j/2Pj,k =
√

2 ∑k Λ†WΛ−1†2j/2Pj,k and one denotes Sj,k =

Λ−1†2j/2Pj,kF = 2j/2Λ−1†
∣∣∣ψj,k

〉〈
Dj,k

∣∣∣ which indicates an irreversible evolution of hidden

variables
√

2W∑k Sj,k = ∑k Sj+1,k. In that manner, the change in representation should
transfigure detail coefficients D = (Dj,k) into a Markovian tree S = (Sj,k).

The outer psychophysical information of an ensemble is independent of orthonor-
mal wavelets, considering that H(CD) = H(D) + log |det C| = H(D) for any operator C
which should be unitary since it represents a base substitution [28]. The canonical relation
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H(D) = H(S) + H(D|S) separates the inner psychophysical information H(S) from irre-
ducible randomness H(D|S). The global entropy H(S) is related to an increase of the local
entropy H(Sj,k) in the temporal domain, corresponding to the scale of the measurement
hierarchy [29]. The optimal decomposition concerns the most significant increase of the
information entropy, which is the measurement process characterized by [12].

An innate component of the wavelet-domain hidden Markov model is a denoising
procedure that has proven to be advantageous over other methods [24]. It is performed in a
superior manner using the optimal base [29], which presents an active strategy to cope with the
measurement problem. In that respect, the optimal measurement is related to maximization
of the inner psychophysical information which remains unaltered by the procedure [28].

5. Frame Wavelets and General Measurements

5.1. Duality in Frame Theory

The concept of frame refers to elements ψj,k such that

A ≤ ∑
j≥0

2j

∑
k=1

∣∣∣ψj,k

〉〈
ψj,k

∣∣∣ ≤ B

for positive numbers A and B which are termed frame bounds [13]. If A = B = 1, i.e., 1 =

∑j,k

∣∣∣ψj,k

〉〈
ψj,k

∣∣∣, such a frame is the Parseval one. It is termed frame wavelets on the unit interval

if axioms (10)–(13) hold.
ψ̃j,k is a dual frame of ψj,k if the resolution of identity applies in the manner

1 = ∑
j,k

∣∣∣ψ̃j,k

〉〈
ψj,k

∣∣∣

If there is an operator [] such that ψ̃j,k = []ψj,k, the frame is canonical dual. Let ] be an
invertible operator such that ]ψj,k is the Parseval frame and [ is its ajoint. In that regard,

1 =
[]

ψj,k

〉〈
ψj,k

∣∣∣ = []∑
j,k

]−1
]
ψj,k

〉〈
ψj,k

[
[−1= []]−1 ∑

j,k

]
ψj,k

〉〈
ψj,k

[
[−1= []]−1[−1

wherefrom it follows that [] is factorized into the product of [ and ].
The general measurement Mρ = ∑j,k Mj,kρM†

j,k is characterized by operators Mj,k

satisfying 1 = ∑j,k M†
j,k Mj,k, which means that a density is mapped into a density

TrMρ = ∑
j,k

‖Mj,kF‖2 =

〈
F

∣∣∣∣∑
j,k

M†
j,k Mj,kF

〉
= ‖F‖2 = Tr ρ

In order to elucidate how it relates to the frame concept, one should consider operators

Qj,k =
∣∣∣ψ̃j,k

〉〈
ψj,k

∣∣∣ that meet the resolution of identity 1 = ∑j,k Qj,k. Under the term

‖ψ̃j,k‖ = 1, it follows that 1 = ∑j,k

]
ψj,k

〉〈
ψj,k

[
= ∑j,k]Q

†
j,kQj,k[ which implies that Qj,k[=∣∣∣ψ̃j,k

〉〈
ψj,k

[
is the measurement operator Mj,k. Its evolution requires the Parseval frame

]ψj,k and the dual one ψ̃j,k to be wavelets satisfying (10)–(13).
The evolutionary operator U = CUχC† on the space of ensembles is obtained through

conjugation of the natural extension Uχ by C :
∣∣∣χj,k

〉〈
χj,k

∣∣∣ 7→
∣∣∣ψ̃j,k

〉〈
ψj,k

[
, which trans-

forms the Haar base to the Parseval frame and the dual one. Crossing devices into states
due to the evolution by U concerns a duality relation Σ = ∆̃ [14]. The signal space of the
general measurement might not be self-dual, but it separates into dual spaces generated by
ψj,k and ψ̃j,k, respectively, of which the first one should correspond to states and the second
one to devices [13].
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5.2. Measuring an Open System

According to the Naimark theorem, states of the measurement extend to a direct

sum Σ∗ = Σ ⊕ Σ′, wherein the Parseval frame
〈

ψj,k

[
corresponds to the projection of

an orthonormal base
{

ψj,k

[
onto the subspace Σ. Likewise, the dual frame concerns

measurement devices which are extended to ∆∗ = ∆ ⊕ ∆′. The measurement operator Mj,k

is a restriction of the projector M∗
j,k = [−1 ψ̃j,k

}{
ψj,k

[
onto ∆ ⊗ Σ, and, in that manner, the

projective measurement M∗ restricts to the general one M by neglecting an environment
which has remained out of scope [30]. The general measurement is therefore related
to an open system that has been partially described by the stochastic process. Devices
and states might be some subspaces of signals, respecting the duality between them. In

that regard, frames
〈

ψj,k

∣∣∣ and
∣∣∣ψ̃j,k

〉
are projections of the Riesz base

{
ψj,k

∣∣∣ and its dual
∣∣∣ψ̃j,k

}
=

[]
ψj,k

}
, which are biorthonormal [13].

A practical realization of the Naimark theorem implies a method that is analogous to
heterodyne detection in communication engineering: the ensemble to be observed combines
with another one, which is termed ancilla [31]. Thereafter, the von Neumann measurement
corresponding to projectors M∗

j,k has been performed on the combined space ∆∗ ⊗ Σ∗ that
is the tensor product of states and devices which are extended by the environment. The
amount of information which is obtained in that manner might be larger than if the observer
is restricted to the von Neumann measurements without ancilla. Optimal measurements
are therefore not even close to being just projective ones which correspond to orthonormal
wavelets in statistical signal processing [30].

A frame ψj,k should be optimal for the ensemble from ∆ ⊗ Σ if the orthonormal

base
]
ψj,k

}
is optimal for an ensemble in the combined space ∆∗ ⊗ Σ∗. One assumes

F = ∑j,k

∣∣∣ψ̃o
j,k

〉〈
Do

j,k

∣∣∣, wherein ψo
j,k is the optimal frame. Detail coefficients correspond

to those of F∗ = ∑j,k

[
−1ψ̃o

j,k

}〈
Do

j,k

∣∣∣ in the base
[
−1ψ̃o

j,k

}
=

]
ψo

j,k

}
which is orthonormal,

though it might not imply any hierarchy (10)–(13). In that respect, general measurements
spread the optimal decomposition to some ensembles which cannot be decorrelated in
a hierarchical base but which has been restricted to the frame providing a hierarchy of
devices and states.

6. Conclusions

The measurement problem is formulated in terms of mathematical physics, notwith-
standing any interpretation of physical theories. The significance of time for its elaboration
has explicated a substantial relation between signals and stochastic processes, which is
the definition of statistical signal processing. A paradigmatic measurement concerns com-
mensuration of magnitudes by the Euclidean algorithm, producing a time series of binary
digits. It constitutes the hierarchy of the binary tree whose nodes correspond to both states
and devices of the measurement process.

The time operator formalism of complex systems, which has proposed a unification
of reversible and irreversible processes, relates the problem respecting its definition that
was postulated by von Neumann. He indicated two fundamentally diverse types of
interventions in a system, the first of which corresponds to a temporal evolution that is
reversible and the second one to an irreversible measurement. The main advancement
concerns a formulation of the measurement process in terms of a temporal evolution,
wherein irreversibility has occurred due to the change in representation switching from
outer to inner psychophysics. The principle of psychophysical parallelism that was pointed
out by Bohr and von Neumann should be consistently realized in such a manner.
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The optimal measurement corresponds to the most significant increase of the informa-
tion entropy in the temporal domain. This implies a decorrelation of the ensemble, which
is a consequence of its invariance under the process. Generalization to an open system
is performed by the use of duality in frame theory, spreading the optimal decomposition
to some ensembles which cannot be decorrelated in a hierarchical base. The denoising
procedure, which is an innate component of the model, presents an active strategy to cope
with the measurement problem in statistical signal processing.
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28. Milovanović, M.; Medić-Simić, G. Aesthetical criterion in art and science. Neural Comput. Appl. 2021, 33, 2137–2156. [CrossRef]

http://doi.org/10.1002/andp.19143491002
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1049/ji-1.1947.0015
http://dx.doi.org/10.1016/0960-0779(93)E0017-6
http://dx.doi.org/10.3390/math9121452
http://dx.doi.org/10.1086/349468
http://dx.doi.org/10.1016/j.chaos.2023.113724
http://dx.doi.org/10.3390/math10224294
http://dx.doi.org/10.1007/BF00674346
http://dx.doi.org/10.1073/pnas.17.5.315
http://www.ncbi.nlm.nih.gov/pubmed/16577368
http://dx.doi.org/10.1016/0378-4371(79)90163-8
http://dx.doi.org/10.1016/S0960-0779(98)00312-9
http://dx.doi.org/10.1016/S0378-4754(99)00009-9
http://dx.doi.org/10.1109/78.668544
http://dx.doi.org/10.1007/BF01505680
http://dx.doi.org/10.1007/s00521-020-05065-5


Mathematics 2023, 11, 4623 13 of 13
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