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A Quantum Field Theory for the interaction of pions and rhos
Preshin Moodley
Department of Physics
University of Cape Town

Abstract

We extend the Kroll-Lee-Zumino model in its particle content to include the charged rho vector
mesons and the neutral pion meson. This entailed using the larger SU(2) gauge group. The masses for
the vector mesons were generated via spontaneous symmetry breaking using the Higgs mechanism.
The Lagrangian was then quantized and gauge fixed using the generalized class of Rξ gauges. Tree
scattering lengths were calculated for pion-pion scattering and the values for the a0

0 and a2
0 scattering

lengths are found to be comparable with experiment. The one particle irreducible diagrams that
contribute to the one loop corrections to the tree scattering lengths are renormalized.
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1

Introduction

S
oon after the success of Quantum Electrodynamics (QED) as a description of the electro-
magnetic interaction, physicists turned to the investigation of the structure of nucleons
and the strong force. Yukawa’s conjecture [1] about the existence of a massive particle
responsible for mediating the strong interaction was partially successful at explaining

the low energy interactions of the nucleons. Numerous new particles were discovered during this
period with seemingly no order among them. The quark model was developed by Gell-Man [2] and
Zweig [3, 4] to tame and show some regularity in the particle zoo with hadronic multiplets. Further
investigations lead to the developement of the Parton model by Feynman [5, 6] which assumed the
nucleons were made up of essentially free particles called partons. A nagging question at the time
was where were these partons or quarks? The phenomenon of Bjorken scaling [7] incited a search for
quantum field theories which exhibited this behaviour. This ended with the discovery of asymptotic
freedom in non-Abelian gauge theories by Politzer [8], Wilczek and Gross [9] and leading to the
formulation of Quantum Chromodynamics (QCD) which is a SU(3)c non-Abelian gauge with the
new isospin degree of freedom identified as color charge. The partons were identified as the quarks
and gluons of QCD and were forever bound in colorless unions.

The property of asymptotic freedom was fortunate since it allowed for the analysis of systems of
high energy where the strong coupling has a relatively small value and conventional tools like
perturbation theory were applicable. New tools needed to be forged to explore low energy systems.
The direct approach taken in Lattice QCD has become feasible in recent years with the reduction in
the costs of the massive computing power required and the steady increase in computing power. The
alternate approach came with the development of models and effective field theories applicable in
certain energy regimes. Chiral Perturbation Theory (χPT) is the effective field theory for QCD and
has been used for applications up to ∼ 300 MeV with a failure beyond ∼ 600 MeV [10]. The onset of
Pertubative QCD has been pushed down to 1 GeV for some applications [11]. There exists this gap
of ignorance in the interval ∼ (0.6, 1) GeV for which standard analytic tools can not explore. This
energy region is dominated by the low energy scalar and vector mesons.

Nambu had suggested that the rho meson could explain the nucleon form factors [12]. Sakurai pro-
posed the idea of Vector meson dominance (VMD) where the strong interaction would be mediated
by vector mesons in a non-Abelian gauge theory [13, 14]. The idea of VMD is stated generally as:
gauge bosons transforms into the lowest energy vector mesons and interact with hadrons through
effective vertices.

1



1. Introduction

e−

e−

γ ρ

π

π

Figure 1.1: Photon transforming into a Rho which decays into pions.

The photon seems to interact with hadronic matter mainly through the rho vector meson [15, 16].
Sakurai had suggested interaction terms for VMD but this was not a field theory which could be
used for higher order loop analysis. Kroll, Lee and Zumino suggested a model [17] involving the
charged pions and neutral rho as a candidate for VMD.

1.1 The Kroll-Lee-Zumino Model

The Kroll-Lee-Zumino Model (KLZ) is a quantum field theory developed to describe the inter-
actions of charged pions and the neutral rho.

L = (∂µφ)∗∂µφ−m2φ∗φ− 1
4FµνF

µν + 1
2M

2AµA
µ + ieAµ (φ∗∂µφ− φ∂µφ∗) + e2φ∗φAµA

µ (1.1.1)

with the field strength tensor Fµν defined as

Fµν := ∂µAν − ∂νAµ (1.1.2)

Here the pions are represented by φ, with m the pion mass. The neutral rho is represented by Aµ, with
M the rho mass and e represents the strength of the rho-pion coupling which has an approximate
value of e ≈ 5.96. The KLZ is a renormalizable quantum field theory despite the breaking of U(1)
gauge symmetry with the presence of the explicit mass term for the vector rho. This is a result of the
vector field coupling only to the conserved current [18, 19] i.e.

Jµ := φ∗∂µφ− φ∂µφ∗ (1.1.3)

with

∂µJµ = 0 (1.1.4)

2



1. Introduction

This can be seen by looking at the propagator of a massive vector field

iDµν = −i
k2 −M2 + iε

(
gµν −

kµkν
M2

)
(1.1.5)

which due to the kµkν term is usually logarithmically divergent. For the case of the KLZ, the above
propagator would appear between conserved currents with

kµJµ = 0 (1.1.6)

using (1.1.4) in the momentum representation, thus allowing for renormalizability by removing the
logarithmically divergent terms. The KLZ being renormalizable makes it an attractive model for anal-
ysis, since the renomalizability allows for a systematic calculation of higher order loop corrections
without introducing additional parameters into the model. Since the pertubative series expansion
parameter is of the form

e

4π ≈ 0.47, higher order analysis can be pursued seriously. This can be seen
in the application of the KLZ in finite temperature calculations undertaken in [20]. The KLZ has also
been used to analyse the pion form factor by [21], for space-like transferred momentum, the one
loop correction to the form factor is in agreement with data with χ2

F ≈ 1.1 as shown in figure 1.2.

0 2 4 6 8 10−q2 (GeV
2
)

0.0

0.2

0.4

0.6

0.8

1.0

F

π(q2
)

One loop corrections

Naive tree level VMD

Figure 1.2: Pion form factor for q2 < 0

For time-like transferred momentum the KLZ follows the data closely below the rho peak but starts
to deviate from the data beyond the rho peak as can be seen in figure 1.3

3
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0.4 0.6 0.8 1.0 1.2 1.4�
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π|

Figure 1.3: Pion form factor for s = q2 > 0

This model has also been used to compute the electromagnetic radius of the pion with 〈r2
π〉S =

0.40 fm2 in [22].

There are limitations to the KLZ model. The KLZ only provides a partial description of the pion-rho
interactions. The particle content is only of the charged pions and neutral rho. There are more pion-
rho interactions in nature than are captured by the KLZ, which ignores the neutral pion and charged
rhos thus excluding a description of the decay of the charged rhos into pions. To address some of
these limitations in the KLZ we shall have to chart a new path forward. The new model must use a
larger gauge group to accommodate the full complement of the triplet of pions and rhos.

As an application of the new model we have chosen to calculate the pion-pion scattering lengths. The
pion-pion scattering amplitude has been studied extensively through the Roy equations and Chiral
Pertubartion theory [23, 24, 25, 26]. Experimentally, NA48/2 [27] and DIRAC [28] have collected
large data sets which allow for the precise extraction of the scattering lengths.

Outline

This document is organized in the following way. In part I, chapter 2, we develop the bare SU(2)
model. Chapter 3 is dedicated to Spontaneous symmetry breaking to generate the rho mass. In

4



1. Introduction

chapter 4, we quantize the new Lagrangian, introduce the Faddeev-Popov ghosts and fix the gauge.
Chapter 5 contains the renormalization transformation and Feynman rules. In Part II, we apply the
new model to evaluating the pion-pion scattering lengths. Chapter 6 has the calculations of the tree
scattering lengths and results. In chapter 7, we start the program of finding the one loop corrections
to the tree scattering lengths. Due to time constraints on a PhD project, the numerical evaluations
have been excluded. Finally chapter 8 summarizes with a conclusion.

5



Part I

Generalizing the KLZ
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2

Extending the KLZ

2.1 SU(2) Generalization

W
e will now proceed in generalizing the U(1) KLZ model. What are some simple expec-
tations could we have of such a model? We would like a model describing the inter-
actions of pseudoscalar pions and vector rhos which includes the full triplet of pions
{π−, π0, π+} and the triplet of rhos {ρ−, ρ0, ρ+}. We would like it to be renormalizable

since it would have some predictive power when considering higher order corrections. We shall
make some simplifying assumptions. We shall assume all the particles are point like. We shall ignore
the difference between the masses of the charged and neutral pion (mπ±−mπ0 = 4.5936±0.0005 MeV)
[29]. This small difference (small in comparison to their mass) in pion masses is due to the mass dif-
ference between the u and d quarks. This approximate flavour symmetry becomes exact in the chiral
limit and we have the isospin SU(2) symmetry group. The pions are then in the adjoint representation
of SU(2). We also ignore the difference in rho masses (mρ± −mρ0 = 0.7± 0.8 MeV) [29].

With these assumptions we can build an effective description of the interactions between the pions
and rhos. The rhos will play the role of dynamical gauge bosons [30] mediating the interactions
between the pions and the rhos themselves. We will let the principle of local gauge invariance
guide our construction under which only terms invariant under SU(2) gauge transformations are
to be admitted into our Lagrangian. We begin by writing down a SU(2) globally gauge invariant
Lagrangian for scalars representing the pions [Φ(x) := φa = {φ1, φ2, φ3}]

L = 1
2
[
(∂µΦ)†∂µΦ− b2Φ†Φ

]
(2.1.1)

where b has dimensions of mass. The Lagrangian (2.1.1) is invariant under the unitary transformation
of

U = eiT
aαa ∈ SU(2) (2.1.2)

Φ→ Φ′ = UΦ (2.1.3)

where T a are the generators of the group and are elements of the Lie algebra T a ∈ su(2) and αa ∈ R
are some constants. The repeated a’s imply a sum over a = {1, 2, 3}. When we promote the global
gauge transformation to a local one with αa → αa (x), the derivatives in the Lagrangian produce
extra terms which breaks the gauge invariance of the Lagrangian. The extra terms are proportional
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2. Extending the KLZ

to the generators T a, so to remedy the problem we will introduce an extra field into the partial
derivative as

∂µ → Dµ := ∂µ + ieT aAaµ(x) (2.1.4)

Here Dµ is the gauge covariant derivative, e the gauge coupling which is dimensionless, [e] = 1 and
Aaµ(x) are the gauge fields representing the rhos. The gauge fields are in the adjoint representation
of SU(2) so we expanded them using the generators as a basis. The covariant derivative is built to
transform such that when we make a unitary transformation on the field Φ, the gauge fields Aaµ must
also transform to keep the Lagrangian invariant. This is done by insisting that

D′µΦ′ = UDµΦ (2.1.5)

which together with (2.1.3) gives us the transformation rule for the covariant derivative as

Dµ → D′µ = UDµU
† (2.1.6)

We can infer the transformation rule for the gauge fields from the above condition as

D′µf = UDµU
†f(

∂µ + ieA′µ
)
f = U (∂µ + ieAµ)U †f

⇒ A′µ = UAµU
† + 1

ie
U∂µU

† (2.1.7)

with A′µ = A′aµT
a and f was some arbitrary function included to keep track of the derivatives. Now

when we make a unitary transformation on the fields and noting that

Φ→Φ′ = UΦ (2.1.8)

Dµ →D′µ = UDµU
† (2.1.9)

then the Lagrangian

L = 1
2
[
(DµΦ)†DµΦ− b2Φ†Φ

]
(2.1.10)

remains invariant. Under the unitary transformation of the scalar field, the gauge field was required
to maintain the gauge invariance of the Lagrangian. The gauge fields are just passive auxiliary
fields at this stage. If the gauge fields are to represent the rhos then they must have some dynamic
behaviour. So naturally we would like to make this a requirement for the gauge fields. Though since
this is a nonabelian theory, we must take care when we construct the kinetic term for the gauge
fields. For a kinetic term we require a scalar, which is Lorentz and gauge invariant, and quadratic in
the first derivatives of the field. The commutator serves as natural product so we shall construct an
operator from the commutator of the covariant derivatives,

Ôµνf = [Dµ, Dν ] f (2.1.11)

where f is some arbitrary function we included to keep track of the derivatives. Under SU(2) gauge
transformations, the operator changes as Ôµν → Ô′µν

Ô′µνf =
[
D′µ, D

′
ν

]
f

=
[
UDµU

†, UDνU
†
]
f

=
(
UDµDνU

† − UDνDµU
†
)
f

= U [Dµ, Dν ]U †f
= UÔµνU

†f (2.1.12)
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2. Extending the KLZ

So we see that the transformed operator is,

Ô′µν = UÔµνU
† (2.1.13)

We need to ensure that a kinetic term is Lorentz and gauge invariant. We can create a new operator
by squaring Oµν :

Ô′µνÔ
′µν = UÔµνU

†UÔµνU †

= UÔµνÔ
µνU † (2.1.14)

Looking at (2.1.14) we can see that this operator is Lorentz invariant but still dependent on the
SU(2) gauge transformation U . We also have to deal with (2.1.14) not being a scalar, since only
scalar functions enter into the action. We have to transform (2.1.14) into a scalar while preserving its
properties. We can remove the gauge dependence and create a scalar function by taking the trace of
(2.1.14) as

Tr
[
Ô′µνÔ

′µν
]

= Tr
[
UÔµνÔ

µνU †
]

= Tr
[
ÔµνÔ

µνUU †
]

= Tr
[
ÔµνÔ

µν
]

(2.1.15)

which is independent of the gauge transformation. Now since this operator (2.1.15) is the square
of the first derivatives of the fields and invariant under Lorentz and gauge transformations, it has
the necessary behaviour of a kinetic term of the gauge fields. We will define the nonabelian field
strength tensor as

Gµν := 1
ie
Ôµν = 1

ie
[Dµ, Dν ] (2.1.16)

We can get the explicit form of the tensor by substituting in the covariant derivatives into (2.1.16),
where f is included to keep track of the derivatives.

Gµνf = 1
ie

[Dµ, Dν ] f

= 1
ie

[∂µ + ieAµ, ∂ν + ieAν ] f

=
(
∂µAν − ∂νAµ + ie [Aµ, Aν ]

)
f (2.1.17)

So the field strength tensor is

Gµν = ∂µAν − ∂νAµ + ie [Aµ, Aν ] (2.1.18)

We can use the elements of su(2) to write Gµν as a sum over the generators. Using the Lie algebra[
T b, T c

]
= iεabcT

a (2.1.19)

where εabc is the Levi-Civita symbol representing the structure constants of the algebra, and Aµ =
AaµT

a, we get the following expression

Ga
µνT

a = ∂µA
a
νT

a − ∂νAaµT a + ie
[
AbµT

b, AcνT
c
]

=
[
∂µA

a
ν − ∂νAaµ − eεabcAbµAcν

]
T a (2.1.20)

9



2. Extending the KLZ

From (2.1.20) we can recognise the familiar abelian field strength tensor in the first two terms in
(2.1.20). We will define

F a
µν := ∂µA

a
ν − ∂νAaµ (2.1.21)

then the nonabelian field strength becomes

Ga
µν = F a

µν − eεabcAbµAcν (2.1.22)

We can now define in analogy to (2.1.15) a kinetic term for the gauge fields as (the Yang-Mills term)

LYM := −1
2Tr [GµνG

µν ]

= −1
2G

a
µνG

bµνTr
[
T aT b

]
= −1

4G
a
µνG

aµν

= −1
4F

a
µνF

aµν + 1
2eεabcA

bµAcνF a
µν −

1
4e

2εabcεadeA
b
µA

c
νA

dµAeν (2.1.23)

where −1
2 is a factor by convention and we have used the normalization condition

Tr
[
TaTb

]
= 1

2δ
ab (2.1.24)

We should pause at this stage and interpret what each term in (2.1.23) represents. After all we went
in search for a kinetic term for the gauge field, but requiring Lorentz and local gauge invariance
provided extra terms. So the first term in (2.1.23) is the pure kinetic term, the second and third terms
represent three point and four point interactions among the gauge fields. So the full nonabelian
Lagrangian is

L = 1
2
[
(DµΦ)†DµΦ− b2Φ†Φ

]
− 1

4G
a
µνG

aµν (2.1.25)

Expanding out the covariant derivatives

1
2(DµΦ)†DµΦ = 1

2
{

(∂µΦ)†∂µΦ + ie
[
(∂µΦ)†AµΦ− Φ†Aµ∂µΦ

]
+ e2Φ†AµAµΦ

}
(2.1.26)

we can write out all the terms in components of the fields using the adjoint representation of the
generators (T a)ij = −iεaij , so the terms become

(∂µΦ)†AµΦ = Aaµ(∂µΦ)†TaΦ
= Aaµ(∂µφi)†(T a)ijφj
= −iεaijAaµ (∂µφi)φj

=⇒ Φ†Aµ (∂µΦ) =
[
(∂µΦ)†AµΦ

]†
= −iεaijAaµφi (∂µφj)

with

(∂µΦ)†AµΦ− Φ†Aµ (∂µΦ) = −iAaµεaij [φj (∂µφi)− φi (∂µφj)] (2.1.27)
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2. Extending the KLZ

and

Φ†AµAµΦ = AaµA
bµφi(T a)ij

(
T b
)
jk
φk

= −εaijεbjkφiφkAaµAbµ (2.1.28)

So the Lagrangian in component form is

L = 1
2
(
∂µφa∂

µφa − b2φ2
a

)
+ 1

2eεaijA
a
µ (φj∂µφi − φi∂µφj)−

1
2e

2εaijεbjkφiφkA
a
µA

bµ − 1
4F

a
µνF

aµν+

+ 1
2eεabcA

bµAcνF a
µν −

1
4e

2εabcεadeA
b
µA

c
νA

dµAeν (2.1.29)

Now there has been an omission from the start, we claimed that under the principle of local gauge
invariance all terms which preserve the invariance of the Lagrangian are valid terms for inclusion
into the Lagrangian. This allows for the inclusion of a polynomial with an infinite number of terms
of the form

P (Φ) =
∞∑
n=1

cn(Φ†Φ)n

= b2Φ†Φ + λ4

8 (Φ†Φ)2 +
∞∑
n=3

cn(Φ†Φ)n (2.1.30)

The first term we included from the start with b having dimensions of mass, [b] = M , the second
term represents a self coupling and λ4 is dimensionless, [λ4] = 1. This quartic coupling term for
the pions was left out in the original U(1) KLZ formulation. There is no legitimate reason at this
stage to exclude this term so we shall include it in the Lagrangian. For terms greater than n = 3, the
coefficients cn have dimensions of inverse mass, [cn] = M−n. This poses a problem to our requirement
for a renormalizable theory [31]. We shall thus ignore all terms for n ≥ 3. Then finally the Lagrangian
is

LφA = 1
2
(
∂µφa∂

µφa − b2φ2
a

)
+ 1

2eεaijA
a
µ (φj∂µφi − φi∂µφj)−

1
2e

2εaijεbjkφiφkA
a
µA

bµ − λ4

8
(
φ2
aφ

2
b

)
+

− 1
4F

a
µνF

aµν + 1
2eεabcA

bµAcνF a
µν −

1
4e

2εabcεadeA
b
µA

c
νA

dµAeν (2.1.31)

Let us provide an interpretation for the remaining terms in (2.1.31). The first two terms in the
parenthesis behave like the kinetic and mass-like1 terms of a scalar field. The third and fourth terms
are the three and four point interaction terms between the scalar and vector fields. Note of course
the lack of a mass-like term for the gauge field.

1These are not the couplings nor physical mass identified from experiment. Since we have not renormalized and com-

pleted the definition of the theory as yet these terms only have the dimensions of a mass and appearance of couplings.
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3

Spontaneous Symmetry Breaking

3.1 Higgs Mechanism

A
s noted in the last chapter the Lagrangian has a mass term for the pions but none for the
rhos. For this quantum field theory to be a good description of reality, it would be wise
to endow the particles with the appropriate masses. The term b2Φ†Φ for the pion was
included by hand since the form of the term remained invariant under gauge transfor-

mations. We could attempt to do the same for the gauge field by including a term proportional to
the form AµAµ, but recalling the transformation rule for the gauge field in (2.1.7) shown here below

A′µ = UAµU
† + 1

ie
U∂µU

†

We see that the product is

A′µA
′µ = UAµA

µU † + 1
ie

[
UAµ∂

µU † + U
(
∂µU †

)
UAµU

†
]
− 1
e2U

(
∂µU †

)
U
(
∂µU †

)
(3.1.1)

This does not look very appealing, we could use the identity U †U = 1

∂µ
(
U †U

)
= 0⇒ U † (∂µU) = −

(
∂µU †

)
U (3.1.2)

∂µ
(
UU †

)
= 0⇒ U

(
∂µU †

)
= − (∂µU)U † (3.1.3)

and write the product as

A′µA
′µ = UAµA

µU † − 1
ie
U
[
AµU

†∂µU + U † (∂µU)Aµ
]
U † + 1

e2∂
µU∂µU † (3.1.4)

We could argue that this expression is not a scalar, and for the case of the Yang-Mills kinetic term it
was necessary to take the trace to yield a scalar which also removed the gauge dependence. Unfor-
tunately this does not work for a mass term as

Tr
[
A′µA

′µ
]

= Tr [AµAµ]− 2
ie

Tr
[
AµU

†∂µU
]

+ 1
e2 Tr

[
∂µU †∂µU

]
(3.1.5)

and (3.1.5) still has remnants of the gauge transformation. So we cannot put in a mass term for the
gauge field by hand without breaking gauge invariance. The mass term for the gauge field must
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3. Spontaneous Symmetry Breaking

be generated dynamically [32]. This is done by introducing a new scalar field which has rotational
symmetry with respect to some potential. A translation in the field is performed and the previous
rotational symmetry becomes hidden. This process is referred to as the Higgs mechanism or spon-
taneous symmetry breaking. We note that this is not the Higgs mechanism used in the Standard
Model to give all the elementary particles their masses. We use a Higgs-like mechanism here only
to give mass to the rhos. Generating the vector mass using the Higgs mechanism preserves the
renormalizability of the theory [33].

We introduce a new field X which is a complex doublet that has the gauge transformation

X → X ′ = UX (3.1.6)

We construct an SU(2) gauge invariant Higgs Lagrangian, with the covariant derivatives acting on
the complex doublets

L = (DµX)† (DµX)− V
(
X,X†

)
− κ

(
X†X

) (
Φ†Φ

)
(3.1.7)

where the potential V
(
X,X†

)
is

V
(
X,X†

)
= λ

8
(
X†X

)2
− µ2

2
(
X†X

)
(3.1.8)

which has been tuned for symmetry breaking. The term κ
(
X†X

) (
Φ†Φ

)
is present since it is gauge

invariant and thus allowed by the principle of local gauge invariance. κ is the coupling between
the pions and complex doublet and is dimensionless, [κ] = 1. Plotting V

(
X,X†

)
we can see the

rotational symmetry present in the potential [under rotations about an axis through (0, 0)] by the
contours which are circles.

−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.5

0

0.5

1

−1

0

1

2

3

Figure 3.1: Rotationally symmetric symmetry breaking potential.
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3. Spontaneous Symmetry Breaking

We can express the potential in terms of real fields by decomposing the complex double into a
doublet of real valued fields.

X = 1√
2

(
x2 + ix1
x0 − ix3

)
(3.1.9)

so

X†X = 1
2xαxα (3.1.10)(

X†X
)2

= 1
4xαxαxβxβ (3.1.11)

We note the usage of the repeated Greek index in the above expressions. We only resort to using the
Greek index since the sum is over {0, 1, 2, 3}. The potential in terms of the real fields is

V (xα) = λ

32xαxαxβxβ −
µ2

4 xαxα (3.1.12)

We now search for the minimum (the vacuum) of this potential.

∂V

∂xκ
= λ

32
(
2xαδακx2

β + x2
α · 2xβδβκ

)
− µ2

4 · 2xαδακ

= λ

32
(
4xκx2

α

)
− µ2

2 xκ

= xκ

(
λ

8x
2
α −

µ2

2

)
= 0

which has solutions

xκ = 0 OR x2
α = 4µ

2

λ
(3.1.13)

Computing the second derivative to test the above solutions

∂2V

∂xπ∂xκ
= δκπ

(
λ

8x
2
α −

µ2

2

)
+ λ

8xκxπ

with the results along the axes κ = π

∂2V

∂xπ∂xκ

∣∣∣∣∣
xα=0

= −µ
2

2 ≤ 0, ∂2V

∂xπ∂xκ

∣∣∣∣∣
x2
α=4µ2

λ

= µ2 ≥ 0

The xκ = 0 yields a local maximum for the potential and the x2
α = 4µ

2

λ
solution results in the local

minimum. We can see these solutions from the plot in figure 3.1. There is a circle of solutions which
are the minima of the potential. We define

ν2 := µ2

λ
χ2
α = 4ν2 (3.1.14)

We shall pick one of the possible minima with

x1 = x2 = x3 = 0 AND x0 = 2ν (3.1.15)
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3. Spontaneous Symmetry Breaking

The X field has acquired its vacuum expectation value with the above choice of a minimum. The
vacuum is located at

XM = 1√
2

(
0

2ν

)
(3.1.16)

Defining a new field χ

χ := 1√
2

(
χ2 + iχ1
χ0 − iχ3

)
(3.1.17)

we now consider fluctuations about the minimum XM by defining

X := χ+XM (3.1.18)

This is just translating the vacuum to the origin. Now we rewrite the Lagrangian in terms of this
new translated field. Starting with the potential

X†X = 1
2
(
χαχα + 4νχ0 + 4ν2

)
(3.1.19)(

X†X
)2

= 1
4
[
χαχαχβχβ + 8νχ0χαχα + 16ν2χ2

0 + 8ν2χαχα + 32ν3χ0 + 16ν4
]

= 1
4χ

2
αχ

2
β + 2νχ0χ

2
α + 4ν2χ2

0 + 2ν2χ2
α + 8ν3χ0 + 4ν4 (3.1.20)

So the potential is given by

V (χα) = λ

8
(
X†X

)2
− µ2

2 X
†X

= λ

32χ
2
αχ

2
β + νλ

4 χ0χ
2
β + µ2

2 χ
2
0 −

1
2µ

2ν2 (3.1.21)

The pion-chi interaction becomes(
X†X

) (
Φ†Φ

)
= 2ν2φ2

a + 2νχ0φ
2
a + 1

2χ
2
αφ

2
a

The covariant derivatives expanded out is

(DµX)†DµX = ∂µX
†∂µX + ie

(
∂µX†AµX −X†Aµ∂µX

)
+ e2X†AµAµX (3.1.22)

The kinetic term of the Lagrangian is then

∂µX
†∂µX = ∂µχ

†∂µχ

= 1√
2

(
∂µχ2 − i∂µχ1 ∂µχ0 + i∂µχ3

) 1√
2

(
∂µχ2 + i∂µχ1
∂µχ0 − i∂µχ3

)

= 1
2∂µχα∂

µχα (3.1.23)

We note that the gauge field expanded over the generators are

Aµ = AaµT
a

= 1
2

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)
(3.1.24)

=⇒ AµA
µ = 1

4

(
AaµA

aµ 0
0 AaµA

aµ

)

= 1
4A

a
µA

aµ12×2 (3.1.25)
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The four field coupling term of (3.1.22) can be expressed using the above expression as

X†AµAµX = X†
1
4A

a
µA

aµ12×2X

= 1
2ν

2AaµA
aµ + 1

2νχ0A
a
µA

aµ + 1
8χ

2
αA

a
µA

aµ (3.1.26)

The process of picking a vacuum and translating it to the origin, thus hiding the rotational symmetry
has generated a mass. The first term in the above equation represents a mass for the gauge field.
Lastly we have to deal with the three field coupling term of (3.1.22).

∂µX†AµX = ∂µχ†AµXM + ∂µχ†Aµχ

= −χ†∂µAµXM + ∂µχ†Aµχ (3.1.27)

We have integrated by parts (using the integral over the Lagrangian) and discarded the surface term
for the first term of the above expression. Substituting the above expression into the three field
coupling term

∂µX†AµX −X†Aµ∂µX = X†M∂
µAµχ− χ†∂µAµXM + ∂µχ†Aµχ− χ†Aµ∂µχ

= ∂µAaµ
[
X†MT

aχ− χ†T aXM
]

+ ∂µχ†Aµχ− χ†Aµ∂µχ (3.1.28)

we see a separation into two types of interaction terms. The last two terms are three field interaction
terms but the term in the square brackets seems to have two field interaction terms i.e. mixing terms.
Let us check

χ†∂µAµXM = 1√
2

(
χ2 − iχ1 χ0 + iχ3

) 1
2∂

µ

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)(
0
1

)

= 1
2
√

2

[(
χ2∂

µA1
µ − χ1∂

µA2
µ − χ0∂

µA3
µ

)
− i

(
χ2∂

µA2
µ + χ1∂

µA1
µ + χ3∂

µA3
µ

)]
= 1

2
√

2

[
−iχa∂µAaµ +

(
χ2∂

µA1
µ − χ1∂

µA2
µ − χ0∂

µA3
µ

)]
(3.1.29)

Taking the hermitian conjugate of (3.1.29) and substituting into the two field interaction terms of
(3.1.28) we get

X†M∂
µAµχ− χ†∂µAµXM = i√

2
χa∂

µAaµ (3.1.30)

which indeed has only two fields interacting a point. These pesky terms are hard to interpret so we
will leave them alone for now and come back to them when we discuss gauge fixing. The remaining
term to work on is the three field interaction terms of (3.1.28). First the Aµχ product

Aµχ = 1
2

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)
1√
2

(
χ2 + iχ1
χ0 − iχ3

)

= 1
2
√

2

A3
µχ2 + A1

µχ0 − A2
µχ3 + i

(
A3
µχ1 − A1

µχ3 − A2
µχ0

)
A1
µχ2 + A2

µχ1 − A3
µχ0 + i

(
A1
µχ1 + A2

µχ2 + A3
µχ3

) (3.1.31)
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3. Spontaneous Symmetry Breaking

then the three field interaction term is

∂µχ†Aµχ

= 1√
2

(
∂µχ2 − i∂µχ1 ∂µχ0 + i∂µχ3

) 1
2
√

2

A3
µχ2 + A1

µχ0 − A2
µχ3 + i

(
A3
µχ1 − A1

µχ3 − A2
µχ0

)
A1
µχ2 + A2

µχ1 − A3
µχ0 + i

(
A1
µχ1 + A2

µχ2 + A3
µχ3

)
= 1

4

{(
A3
µχ2 + A1

µχ0 − A2
µχ3

)
∂µχ2 +

(
A3
µχ1 − A1

µχ3 − A2
µχ0

)
∂µχ1+

+ i
[
∂µχ2

(
A3
µχ1 − A1

µχ3 − A2
µχ0

)
−
(
A3
µχ2 + A1

µχ0 − A2
µχ3

)
∂µχ1

]
+

+
(
A1
µχ2 + A2

µχ1 − A3
µχ0

)
∂µχ0 −

(
A1
µχ1 + A2

µχ2 + A3
µχ3

)
∂µχ3+

+ i
[
∂µχ0

(
A1
µχ1 + A2

µχ2 + A3
µχ3

)
+
(
A1
µχ2 + A2

µχ1 − A3
µχ0

)
∂µχ3

] }
(3.1.32)

The appearance of the individual χα fields interacting differently is troubling. Taking the hermitian
conjugate of the above and substituting into the three field interaction terms of (3.1.28)

∂µχ†Aµχ− χ†Aµ∂µχ = i

2

[
(χ1∂

µχ2 − χ2∂
µχ1)A3

µ + (χ3∂
µχ0 − χ0∂

µχ3)A3
µ+

+ (χ2∂
µχ3 − χ3∂

µχ2)A1
µ + (χ1∂

µχ0 − χ0∂
µχ1)A1

µ+

+ (χ2∂
µχ0 − χ0∂

µχ2)A2
µ + (χ3∂

µχ1 − χ1∂
µχ3)A2

µ

]
(3.1.33)

A pattern emerges in the way the individual χα fields interact with the gauge fields. To clarify we
define the operator

A
←→
∂µB := A∂µB −B∂µA (3.1.34)

Rewriting (3.1.33) in terms of the above operator

∂µχ†Aµχ− χ†Aµ∂µχ = i

2

[ (
χ1
←→
∂µχ2

)
A3
µ +

(
χ3
←→
∂µχ0

)
A3
µ+

+
(
χ2
←→
∂µχ3

)
A1
µ +

(
χ1
←→
∂µχ0

)
A1
µ+

+
(
χ2
←→
∂µχ0

)
A2
µ +

(
χ3
←→
∂µχ1

)
A2
µ

]

= i

2

[1
2εabc

(
χa
←→
∂µχb

)
Acµ +

(
χa
←→
∂µχ0

)
Aaµ

]
(3.1.35)

The pattern for the χα fields interacting allowed us to write the three field interactions compactly
in terms of the Levi-Civita symbol, with the χ1, χ2, χ3 interacting among themselves with the gauge
fields and the separate interaction term with the χ0 field. We have all the needed pieces, substituting
(3.1.30) and (3.1.35) into (3.1.28)

∂µX†AµX −X†Aµ∂µX = ∂µAaµ
[
X†MT

aχ− χ†T aXM
]

+ ∂µχ†Aµχ− χ†Aµ∂µχ

= ∂µAaµ
[
X†MT

aχ− χ†T aXM
]

+ i

2

[1
2εabc

(
χa
←→
∂µχb

)
Acµ +

(
χa
←→
∂µχ0

)
Aaµ

]
(3.1.36)
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3. Spontaneous Symmetry Breaking

The covariant derivative in terms of the real χα fields are

(DµX)†DµX = ∂µχ
†∂µχ+ ie

(
∂µχ†Aµχ− χ†Aµ∂µχ

)
+ e2χ†AµAµχ

= 1
2∂µχα∂

µχα + ie∂µAaµ
[
X†MT

aχ− χ†T aXM
]
− 1

4eεabc
(
χa
←→
∂µχb

)
Acµ −

1
2e
(
χa
←→
∂µχ0

)
Aaµ+

+ 1
2e

2ν2AaµA
aµ + 1

2e
2νχ0A

a
µA

aµ + 1
8e

2χ2
αA

a
µA

aµ (3.1.37)

Substituting in the covariant derivative, the potential and the X†XΦ†Φ interaction terms into the
Lagrangian after symmetry breaking

LH = (DµX)†DµX − V
(
X,X†

)
− κ

(
X†X

) (
Φ†Φ

)
= 1

2
(
∂µχ0∂

µχ0 − µ2χ2
0

)
+ 1

2∂µχa∂
µχa + ie∂µAaµ

[
X†MT

aχ− χ†T aXM
]
− 1

4eεabc
(
χa
←→
∂µχb

)
Acµ+

− 1
2e
(
χa
←→
∂µχ0

)
Aaµ + 1

2e
2ν2AaµA

aµ + 1
2e

2νχ0A
a
µA

aµ + 1
8e

2χ2
αA

a
µA

aµ − λ

32χ
2
αχ

2
β −

νλ

4 χ0χ
2
α −

1
2
(
4κν2

)
φ2
a+

− 2κνχ0φ
2
a −

1
2κχ

2
αφ

2
a + 1

2µ
2ν2 (3.1.38)

Due to our choice of the vacuum along the χ0 direction, the χ0 field behaves differently from the
χ1, χ2, χ3 terms. We will separate the χ0 component out with

χ2
α = χ2

0 + χ2
a

χ2
αχ

2
β = χ4

0 + 2χ2
0χ

2
a + χ2

aχ
2
b

(3.1.39)

and make a cosmetic change in relabeling the χ0 component with χ0 := H which we shall refer to
for convenience as the Higgs field. A reminder again, this is not the Standard Model Higgs field.

LH = 1
2
(
∂µH∂

µH − µ2H2
)

+ 1
2∂µχa∂

µχa + ie∂µAaµ
[
X†MT

aχ− χ†T aXM
]
− 1

4eεabc
(
χa
←→
∂µχb

)
Acµ+

− 1
2e
(
χa
←→
∂µH

)
Aaµ + 1

2e
2ν2AaµA

aµ + 1
2e

2νHAaµA
aµ + 1

8e
2H2AaµA

aµ + 1
8e

2χ2
bA

a
µA

aµ − λ

32H
4 − λ

16H
2χ2

a+

− λ

32χ
2
aχ

2
b −

νλ

4 H3 − νλ

4 Hχ2
a −

1
2
(
4κν2

)
φ2
a − 2κνHφ2

a −
1
2κH

2φ2
a −

1
2κχ

2
aφ

2
a + 1

2µ
2ν2 (3.1.40)

Some terms of (3.1.40) require some special attention, we point out the entire process of spontaneous
symmetry breaking was to generate a mass for the gauge field. This was achieved with the generation
of the term 1

2e
2ν2AaµA

aµ. A contribution to the mass of the pion was generated during the symmetry
breaking process, this depended on the coupling κ as 1

2 (4κν2)φ2
a. A mass term for the Higgs field

was also generated during this process with the mass term being 1
2µ

2H2. The χa are massless and are
the three Goldstone fields. The rotational symmetry is still present in the Lagrangian, it is hidden
from casual inspection. We could reverse the process and translate the potential back to its original
configuration. The rotational symmetry would be made explicit again. We noted the appearance of
the pesky mixing terms which are present in the above Lagrangian.

18



4

Quantization

4.1 Faddeev-Popov Ghosts

T
he classical Lagrangian is ready for quantization. There is an obvious problem at the
start. Since this is a gauge theory, there are infinitely many field configurations which
are related to each other via a gauge transformation which led to equivalent states. This
leads to an over-counting of the physical states and must be dealt with as it leads to

an overall multiplicative divergence. We can extract out the contribution from the physically distinct
states via a suitable gauge fixing process. This means that the gauge transformation partitions the
configuration space of gauge fields and sets up an equivalence class for sets of physically equivalent
gauge fields. This leads to a problem when summing over all field contributions as there are infinitely
many physically equivalent field configurations leading to a divergence. So we need to count only
one member from each partition once and this is done with a gauge fixing function which is designed
to traverse the configuration space and intersect the set of all physically equivalent gauge fields
only once. This is the method pioneered by Feynman and formalized by Faddeev and Popov [34].
Consider a function g(x) and some w ∈ R with

g(x) = w (4.1.1)

which has roots at xk which can be ordered as x1 < x2 < · · · < xN and g′ (xi) 6= 0, then

∫
dxδ [g (x)− w] =

N∑
k=1

1
|g′ (xk)|

(4.1.2)

we have the one dimensional identity

[
N∑
k=1

1
|g′ (xk)|

]−1 ∫
dxδ [g (x)− w] = 1 (4.1.3)

We restrict the class of functions g(x) to those which yield only a single root and this simplifies to∣∣∣∣∣ ddxg (x)
∣∣∣∣∣
x=a

∫
dxδ [g (x)− w] = 1 (4.1.4)
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4. Quantization

This can be generalized to the field theoretic version

∆ [A]
∫
Dµ[U ]δ

[
Ga

(
AU

)
− wa

]
= 1 (4.1.5)

where ∆ [A] is a generalization of the derivative of the function g(x), and will later turn out to be
a Jacobian matrix. AU indicates the dependence of the gauge field on the transformation U . Dµ[U ]
is the Haar measure [31]. The condition placed on g(x) earlier was to select injective mappings as
candidates for gauge fixing functions Ga

(
AU

)
. This is the problem of the Gribov Ambiguity [35, 36].

For perturbative considerations we will stay within one horizon.

Consider now the path integral for the gauge field

Z ′ =
∫
DAeiS[A]

=
∫
DAUeiS[AU ] · 1

=
∫
DAUeiS[AU ]∆

[
AU

] ∫
Dµ[U ]δ

[
Ga

(
AU

)
− wa

]
(4.1.6)

We have inserted a 1 using the identity (4.1.5). We can now make a gauge transformation where
AU → A and noting the Haar measure is invariant under gauge transformations

Z ′ =
∫
DAeiS[A]∆ [A]

∫
Dµ[U ]δ [Ga (A)− wa]

=
∫
Dµ[U ]

∫
DAeiS[A]∆ [A] δ [Ga (A)− wa (x)]

We can insert a 1 in the form of a ratio of Gaussian functionals and absorb the denominator into the
measure.

Z ′ =
∫
DAeiS[A]∆ [A]

∫
Dµ[U ]δ [Ga (A)− wa]

=
∫
Dµ[U ]

∫
Dwe−

i
2ξ

∫
d4xw2

a(x)∫
Dwe−

i
2ξ

∫
d4xw2

a(x)

∫
DAeiS[A]∆ [A] δ [Ga (A)− wa (x)]

=
∫
Dµ̃[U ]

∫
Dwe−

i
2ξ

∫
d4xw2

a(x)
∫
DAeiS[A]∆ [A] δ [Ga (A)− wa (x)] (4.1.7)

Since all the fields are independent of the gauge transformation we can factor out the integral over
the measure which contributes an overall multiplicative divergence. Note also that Z ′ can not depend
on the parameter ξ, since only a 1 was inserted.

Z ′∫
Dµ̃[U ] =

∫
DADweiS[A]e−

i
2ξ

∫
d4xw2

a(x)∆ [A] δ [Ga (A)− wa (x)] (4.1.8)

We can now define the path integral which does not suffer from the over-counting

Z := Z ′∫
Dµ̃[U ]

=
∫
DADweiS[A]e−

i
2ξ

∫
d4xw2

a(x)∆ [A] δ [Ga (A)− wa (x)]

=
∫
DAeiS[A]e−

i
2ξ

∫
d4xG2

a(A)∆ [A] (4.1.9)
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4. Quantization

where we have integrated over the w using the delta functional. We are left with the task of evaluating
∆[A]. Recall the identity in (4.1.5)

∆ [A]
∫
Dµ[U ]δ

[
Ga

(
AU

)
− wa

]
= 1

with the transformation U = eiα
aTa , we see that the invariant Haar measure Dµ[U ] ∝ Dα. We can

rewrite the identity as

∆ [A]
∫
Dαδ [Ga (αA)− wa] = 1 (4.1.10)

We note the change in notation from Aα(which looks like the components of a Lorentz vector) to
αA(which serves to indicate the dependence of the gauge field on the group parameters α). We can
make a change of variables

DG = det
[
δGb [αA;x]
δαc (y)

]
Dα

=⇒ Dα = DG · 1
det

[
δGb[αA;x]
δαc(y)

] (4.1.11)

Substituting in the new measure

∆ [A]
∫
DG · 1

det
[
δGb[αA;x]
δαc(y)

]δ [Gb (αA)− wb
]

= 1

∆ [A] 1

det
[
δGb [αA;x]
δαc (y)

]
∣∣∣∣∣∣∣∣∣∣
Gb(αA)=wb

= 1

∆ [A] = det
[
δGb [αA;x]
δαc (y)

]∣∣∣∣∣
Gb(αA)=wb

= detM bc (x, y) (4.1.12)

We observe that ∆[A] is the determinant of a matrix of variational derivatives of the gauge fixing
function with respect to the group parameters and we defined

M bc (x, y) := δGb [αA;x]
δαc (y) (4.1.13)

We can choose a class of gauge fixing functions [37, 38]

Gb [αA;x] = ∂µAbµ + ξie
(
X†MT

bχ− χ†T bXM
)

(4.1.14)

We shall justify the choice of (4.1.14) in the next section. The derivative of the gauge fixing function
with respect to the group parameters is

δGb [αA;x]
δαc (y) =

∫
d4z

[
δ

δAdν (z)∂
µAbµ (x)

]
δAdν (z)
δαc (y) + δ

δαc (y)ξie
(
X†MT

bχ− χ†T bXM
)

=
∫
d4z∂µxδbdδ (x− z) gνµ

δAdν (z)
δαc (y) + δ

δαc (y)ξie
(
X†MT

bχ− χ†T bXM
)

(4.1.15)
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4. Quantization

We now turn to finding the variation of the gauge field with respect to the group parameters. Recall
that the gauge field transforms as

A′µ = 1
ie
U∂µU

† + UAµU
†

U = eiα
aTa (4.1.16)

Since we are looking for the variational derivative we need only concern ourselves with working
with the infinitesimal transformation, so for δαa � 1

U ' 1 + iδαaT a +O
(
δα2

a

)
(4.1.17)

The gauge field transforms as

A′µ '
1
ie

(1 + iδαaT a) ∂µ
(
1− iδαbT b

)
+ (1 + iδαaT a)Aµ

(
1− iδαbT b

)
+O

(
δα2

a

)
= −1

e
(1 + iδαaT a) ∂µδαbT b + (1 + iδαaT a)

(
Aµ − iδαbAµT b

)
+O

(
δα2

a

)
= Aµ −

1
e
∂µδα

aT a − iδαaAbµT bT a + iδαaT aAbµT
b +O

(
δα2

a

)
= Aµ −

1
e
∂µδα

aδacT c + iδαaAbµ
[
T a, T b

]
+O

(
δα2

a

)
(4.1.18)

Using the algebra of the group
[
T a, T b

]
= iεabcT

c.

A′µ = Aµ −
1
e
∂µδα

aδacT c − εabcT cδαaAbµ +O
(
δα2

a

)
= Aµ −

1
e

[
δac∂µ + eεabcA

b
µ

]
δαaT c +O

(
δα2

a

)
= Aµ −

1
e
Dac
µ δα

aT c +O
(
δα2

a

)
(4.1.19)

We recognise the covariant derivative Dac
µ in the adjoint representation. Expanding the gauge field

over the generators

A′cµT
c = AcµT

c − 1
e
Dac
µ δα

aT c +O
(
δα2

a

)
(4.1.20)

Extracting only the components

A′cµ = Acµ −
1
e
Dac
µ δα

a +O
(
δα2

a

)
(4.1.21)

δAdν (z) := A′dν (z)− Adν (z)

= −1
e
Dad
ν δα

a (z) +O
(
δα2

ν

)
(4.1.22)

We can now construct the variational derivative,

δAdν (z)
δαc (y) = −1

e
Dad
ν

δαa (z)
δαc (y)

= −1
e
Dad
ν δ

acδ (z − y)

= −1
e
Dcd
ν δ (z − y) (4.1.23)
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4. Quantization

Next is the variation of the Higgs and Goldstone fields. Recall the definition of the translated field
in (3.1.18) from symmetry breaking shown below

X := χ+XM

Under a gauge transformation this transforms [39, 40] as

X ′ = χ′ +XM (4.1.24)

with X ′ = UX . So we can deduce the transformation rule for the translated field χ′

χ′ = UX −XM

= Uχ+ (U − 1)XM (4.1.25)

For infinitesimal transformations

δχ := χ′ − χ
= iδαcT c (χ+XM) (4.1.26)

The variation of the Higgs and Goldstone fields are

δ
(
X†MT

bχ− χ†T bXM
)

= X†MT
bδχ− δχ†T bXM

= iδαc
[
X†MT

bT c (χ+XM) +
(
χ† +X†M

)
T cT bXM

]
= iδαc

[
X†MT

bT cXM +X†MT
cT bXM +X†MT

bT cχ+ χ†T cT bXM
]

= iδαc
[
X†M

{
T b, T c

}
XM +X†MT

bT cχ+ χ†T cT bXM
]

(4.1.27)

We can use T b = 1
2σ

b and the anti-commutation relations

{
T b, T c

}
= 1

4
{
σb, σc

}
= 1

2δ
bc (4.1.28)

and recalling the location of the vacuum from (3.1.16) shown below

XM = 1√
2

(
0

2ν

)
=⇒ X†MXM = 2ν2

the first term of (4.1.27) can be simplified to

X†M
{
T b, T c

}
XM = ν2δbc (4.1.29)

We now turn to evaluating the last two terms of (4.1.27). We show two ways to calculate this which
serves also as an algebraic check. First, the brute force way is to note the sigma matrices can be
parameterized as

σb =
(

δb3 δb1 − iδb2
δb1 + iδb2 −δb3

)
(4.1.30)
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4. Quantization

and the product of the sigma matrices is

σcσb =
(

δciδbi + i (δc1δb2 − δc2δb1) δc3δb1 − δc1δb3 + i (δc2δb3 − δc3δb2)
δc1δb3 − δc3δb1 + i (δc2δb3 − δc3δb2) δciδbi + i (δc2δb1 − δc1δb2)

)
(4.1.31)

This product of generators acting on the vacuum

T cT bXM = 2ν
4
√

2
σcσb

(
0
1

)

= ν

2
√

2

(
δciδbi + i (δc1δb2 − δc2δb1) δc3δb1 − δc1δb3 + i (δc2δb3 − δc3δb2)

δc1δb3 − δc3δb1 + i (δc2δb3 − δc3δb2) δciδbi + i (δc2δb1 − δc1δb2)

)(
0
1

)

= ν

2
√

2

(
δc3δb1 − δc1δb3 + i (δc2δb3 − δc3δb2)

δciδbi + i (δc2δb1 − δc1δb2)

)
(4.1.32)

Recalling the translated field χ

χ = 1√
2

(
χ2 + iχ1
χ0 − iχ3

)

then

χ†T cT bXM = 1√
2

(
χ2 − iχ1 χ0 + iχ3

) ν

2
√

2

(
δc3δb1 − δc1δb3 + i (δc2δb3 − δc3δb2)

δciδbi + i (δc2δb1 − δc1δb2)

)

= ν

4

{
χ2 (δc3δb1 − δc1δb3) + χ1 (δc2δb3 − δc3δb2) + i [χ2 (δc2δb3 − δc3δb2)− χ1 (δc3δb1 − δc1δb3)] +

+ χ0 (δciδbi)− χ3 (δc2δb1 − δc1δb2) + i [χ0 (δc2δb1 − δc1δb2) + χ3 (δciδbi)]
}

(4.1.33)

Taking the hermitian conjugate of the above expression and substituting into the last two terms of
(4.1.27) we obtain

χ†T cT bXM +X†MT
bT cχ = 1

2ν {χ2 (δc3δb1 − δc1δb3) + χ1 (δc2δb3 − δc3δb2)− χ3 (δc2δb1 − δc1δb2) + χ0 (δciδbi)}
(4.1.34)

A closer observation of the above expression and we can see the anti-symmetric pattern present in
the first three terns. This can be made clearer by using the Levi-Civita symbol

χ†T cT bXM +X†MT
bT cχ = 1

2ν (χaεalmδclδbm + χ0δbc)

= 1
2ν (χ0δbc − χaεabc) (4.1.35)

Secondly, a more elegant way to see this result is to make use of the commutation and anti-commutation
relation between the sigma matrices,[

σb, σc
]

= 2iεabcσa,
{
σb, σc

}
= 2δbc (4.1.36)

which when summed give an expression for the product of the sigma matrices in terms of the Levi-
Civita symbol

σbσc = δbc + iεabcσ
a

=⇒ T bT c = 1
4δbc + 1

4iεabcσ
a (4.1.37)
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4. Quantization

So

X†MT
bT cχ = 1

4δ
bcX†Mχ+ 1

4iεabcX
†
Mσ

aχ (4.1.38)

and the pieces (can be obtain using parameterized sigma matrices), are given by

X†Mχ = 1√
2

(
0 2ν

) 1√
2

(
χ2 + iχ1
χ0 − iχ3

)
(4.1.39)

= (χ0 − iχ3) ν

X†Mσ
aχ = 1√

2

(
0 2ν

)( δa3 δa1 − iδa2
δa1 + iδa2 −δa3

)
1√
2

(
χ2 + iχ1
χ0 − iχ3

)
= ν [i (χmδam) + χ2δa1 − χ1δa2 − χ0δa3] (4.1.40)

The result for the X†MT bT cχ product is given by

X†MT
bT cχ = 1

4δ
bc (χ0 − iχ3) ν + 1

4ν [−χaεabc + i (χ2ε1bc − χ1ε2bc − χ0ε3bc)]

Summing the above with its hermitian conjugate yields

χ†T cT bXM +X†MT
bT cχ = 1

2ν
(
χ0δ

bc − χaεabc
)

(4.1.41)

which is the same result from the brute force computations. Substituting (4.1.29) and (4.1.41) into
(4.1.27)

δ
(
X†MT

bχ− χ†T bXM
)

= iδαc
[
X†M

{
T b, T c

}
XM +X†MT

bT cχ+ χ†T cT bXM
]

= iδαc
[
ν2δbc + 1

2ν
(
χ0δ

bc − χaεabc
)]

(4.1.42)

We have gathered all the ingredients to compute the matrix M bc, substituting (4.1.23) and (4.1.42)
into (4.1.15)

M bc = δGb [αA;x]
δαc (y)

=
∫
d4z

[
∂µxδbdδ (x− z) gνµ

δAdν (z)
δαc (y)

]
+ ξie

δ

δαc (y)
(
X†MT

bχ− χ†T bXM
)

= −1
e
∂µx

∫
d4z

[
δ (x− z)Dbc

µ δ (z − y)
]
− ξe

[
ν2δbc + 1

2ν
(
χ0δ

bc − χaεabc
)] δαc (x)
δαc (y)

= −1
e
∂µxD

bc
µ δ (x− y)− ξe

[
ν2δbc + 1

2ν
(
χ0δ

bc − χaεabc
)]
δ (x− y)

= 1
e

[
−∂µxDbc

µ − ξe2ν2δbc − 1
2ξe

2νχ0δ
bc + 1

2ξe
2νχaεabc

]
δ (x− y) (4.1.43)

Note that in the third line we have moved the ∂µx out of the integral since it acts only on the δ(x− z).
The derivative of the covariant derivative in the adjoint representation is

∂µxD
bc
µ = ∂µx

[
δbc∂xµ + eεbacA

a
µ

]
(4.1.44)
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4. Quantization

where the ∂µx is understood to act on everything to its right. We are still left with the problem of
constructing determinant of matrix M bc. In its current form the usefulness of the path integral,

Z =
∫
DAeiS[A]e−

i
2ξ

∫
d4xG2

a(A)∆ [A] (4.1.45)

is limited since functional techniques are limited to functionals of Gaussian form and the determi-
nant spoils this form. This can be remedied by noting that Berezin-type functional integrals [41] over
Grassmann variables results in a determinant in the numerator i.e.

∆ [A] = det
[
M bc

]
=
∫
DūDue−ie

∫
d4xd4yūb(x)Mbc(x,y)uc(y) (4.1.46)

Where ūa, ua are anti-commuting Grassmann fields with{
ua, ub

}
=
{
ūa, ub

}
=
{
ūa, ūb

}
= 0 (4.1.47)

Since the expressions are long we shall write down the pieces separately

−ie
∫
d4xd4yūb (x)M bc (x, y)uc (y) = −ie

∫
d4xd4yūb (x) 1

e

−∂µxDbc
µ − ξe2ν2δbc − 1

2ξe
2νχ0δ

bc+

+ 1
2ξe

2νχaεabc

δ (x− y)uc (y)

= i
∫
d4xūb (x)

[
∂µxD

bc
µ + ξe2ν2δbc + 1

2ξe
2νχ0δ

bc − 1
2ξe

2νχaεabc

]
uc (x)

(4.1.48)

Substituting in the covariant derivative in the adjoint representation for

ūb
[
∂µxD

bc
µ + ξe2ν2δbc

]
uc = ūb

[
∂µ
(
δbc∂µ + eεbacA

a
µ

)
+ ξe2ν2δbc

]
uc

= ūa
(
∂µ∂µ + ξe2ν2

)
ua + eεbacū

b∂µ
(
Aaµu

c
)

= ūa
(
∂µ∂µ + ξe2ν2

)
ua + eεabcA

a
µ

(
∂µūb

)
uc (4.1.49)

Putting all the pieces together for the exponent

−ie
∫
d4xd4yūb (x)M bc (x, y)uc (y) = i

∫
d4x

ūa (∂µ∂µ + ξe2ν2
)
ua + eεabcA

a
µ

(
∂µūb

)
uc + 1

2ξe
2νχ0ū

aua+

− 1
2ξe

2νεabcχaū
buc

 (4.1.50)

The determinant can now be expressed as

∆ [A] =
∫
DūDue−ie

∫
d4xd4yūb(x)Mbc(x,y)uc(y)

=
∫
DūDuei

∫
d4x[ūa(∂µ∂µ+ξe2ν2)ua+eεabcAaµ(∂µūb)uc+ 1

2 ξe
2νχ0ūaua− 1

2 ξe
2νεabcχaū

buc] (4.1.51)
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4. Quantization

Substituting the determinant into the path integral

Z =
∫
DAeiS[A]e−

i
2ξ

∫
d4xG2

a(A)∆ [A]

=
∫
DūDuDAeiS[A]− i

2ξ

∫
d4xG2

a(A)+i
∫
d4x[ūa(∂µ∂µ+ξe2ν2)ua+eεabcAaµ(∂µūb)uc+ 1

2 ξe
2νχ0ūaua− 1

2 ξe
2νεabcχaū

buc]

=
∫
DūDuDAei

∫
d4x[L− 1

2ξG
2
a(A)+ūa(∂µ∂µ+ξe2ν2)ua+eεabcAaµ(∂µūb)uc+ 1

2 ξe
2νχ0ūaua− 1

2 ξe
2νεabcχaū

buc]

=
∫
DūDuDAei

∫
d4xLeff (4.1.52)

Where we have defined the effective Lagrangian

Leff := L − 1
2ξG

2
a (A) + ūa

(
∂µ∂µ + ξe2ν2

)
ua + eεabcA

a
µ

(
∂µūb

)
uc + 1

2ξe
2νχ0ū

aua − 1
2ξe

2νεabcχaū
buc

(4.1.53)

4.2 Gauge Fixing Term

We give a justification of the choice of the gauge fixing function in (4.1.14) shown here:

Gb [αA;x] = ∂µAbµ + ξie
(
X†MT

bχ− χ†T bXM
)

After spontaneous symmetry breaking, some pesky two point mixing terms (3.1.30)

X†M∂
µAµχ− χ†∂µAµXM = i√

2
χa∂

µAaµ

were generated which were hard to interpret. These terms survived and were present in the Higgs
lagrangian shown below:

LH = 1
2
(
∂µH∂

µH − µ2H2
)

+ 1
2∂µχa∂

µχa + ie∂µAaµ
[
X†MT

aχ− χ†T aXM
]
− 1

4eεabc
(
χa
←→
∂µχb

)
Acµ+

− 1
2e
(
χa
←→
∂µH

)
Aaµ + 1

2e
2ν2AaµA

aµ + 1
2e

2νHAaµA
aµ + 1

8e
2H2AaµA

aµ + 1
8e

2χ2
bA

a
µA

aµ − λ

32H
4 − λ

16H
2χ2

a+

− λ

32χ
2
aχ

2
b −

νλ

4 H3 − νλ

4 Hχ2
a −

1
2
(
4κν2

)
φ2
a − 2κνHφ2

a −
1
2κH

2φ2
a −

1
2κχ

2
aφ

2
a + 1

2µ
2ν2 (4.2.1)

We see that the gauge fixing term,

LGF = − 1
2ξG

2
a (A)

= − 1
2ξ
[
∂µAaµ + ξie

(
X†MT

aχ− χ†T aXM
)]2

= − 1
2ξ
(
∂µAaµ

)2
− ie∂µAaµ

[
X†MT

aχ− χ†T aXM
]

+ 1
2ξe

2
(
X†MT

aχ− χ†T aXM
)2

(4.2.2)
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4. Quantization

in the effective Lagrangian has been designed specifically to remove the pesky two point mixing
terms from symmetry breaking. We now are left to the task of evaluating the last term of (4.2.2).
Recall the earlier result of (4.1.40) of

X†Mσ
aχ = ν [i (χmδam) + χ2δa1 − χ1δa2 − χ0δa3]

Taking the hermitian conjugate and finding the difference

X†Mσ
aχ− χσaXM = 2iνχa

=⇒ X†MT
aχ− χT aXM = iνχa (4.2.3)

The gauge fixing terms final form is given by

LGF = − 1
2ξ
(
∂µAaµ

)2
− ie∂µAaµ

[
X†MT

aχ− χ†T aXM
]
− 1

2ξe
2ν2χ2

a (4.2.4)
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4. Quantization

4.3 Complete Lagrangian

We make the cosmetic change of relabeling χ0 → H then list the complete Lagrangian

Leff := L + LGF + ūa
(
∂µ∂µ + ξe2ν2

)
ua + eεabcA

a
µ

(
∂µūb

)
uc + 1

2ξe
2νHūaua − 1

2ξe
2νεabcχaū

buc (4.3.1)

with

L := LφA + LH (4.3.2)

the pion-rho Lagrangian

LφA = 1
2
(
∂µφa∂

µφa − b2φ2
a

)
+ 1

2eεaijA
a
µ (φj∂µφi − φi∂µφj)−

1
2e

2εaijεbjkφiφkA
a
µA

bµ − λ4

8
(
φ2
aφ

2
b

)
+

− 1
4F

a
µνF

aµν + 1
2eεabcA

bµAcνF a
µν −

1
4e

2εabcεadeA
b
µA

c
νA

dµAeν (4.3.3)

the Higgs-rho-pion Lagrangian

LH = 1
2
(
∂µH∂

µH − µ2H2
)

+ 1
2∂µχa∂

µχa + ie∂µAaµ
[
X†MT

aχ− χ†T aXM
]
− 1

4eεabc
(
χa
←→
∂µχb

)
Acµ+

− 1
2e
(
χa
←→
∂µH

)
Aaµ + 1

2e
2ν2AaµA

aµ + 1
2e

2νHAaµA
aµ + 1

8e
2H2AaµA

aµ + 1
8e

2χ2
bA

a
µA

aµ − λ

32H
4 − λ

16H
2χ2

a+

− λ

32χ
2
aχ

2
b −

νλ

4 H3 − νλ

4 Hχ2
a −

1
2
(
4κν2

)
φ2
a − 2κνHφ2

a −
1
2κH

2φ2
a −

1
2κχ

2
aφ

2
a + 1

2µ
2ν2 (4.3.4)

and the gauge fixing Lagrangian

LGF = − 1
2ξ
(
∂µAaµ

)2
− ie∂µAaµ

[
X†MT

aχ− χ†T aXM
]
− 1

2ξe
2ν2χ2

a (4.3.5)
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5

Path to Calculations

5.1 Renormalization Transformation

T
hus far we have constructed a Lagrangian which contains bare fields and couplings.
Bare in the sense that they are not directly related to experiment. To complete the
definition of the theory, we must show how these bare couplings and fields are related
to the experimentally measured coupling and give meaning to the fields and couplings.

This is done by renormalization [42, 43, 44]. Since the complete bare Lagrangian has many terms in
it, we shall split up the calculation and deal with the self contained pieces. We begin with the bare
pion-rho Lagrangian:

Lφ0A0 = 1
2
(
∂µφ0a∂

µφ0a −m2
0φ

2
0a

)
+ 1

2e0εaijA
a
0µ (φ0j∂

µφ0i − φ0i∂
µφ0j)−

1
2e0

2εaijεbjkφ0iφ0kA
a
0µA

bµ
0 +

− λ40

8
(
φ2

0aφ
2
0b

)
− 1

4F
a
0µνF

aµν
0 + 1

2M
2
0A

a
0µA

aµ
0 −

1
2ξ0

(
∂µAa0µ

)2
+ 1

2e0εabcA
bµ
0 A

cν
0 F

a
0µν+

− 1
4e

2
0εabcεadeA

b
0µA

c
0νA

dµ
0 A

eν
0 (5.1.1)

The subscript 0 is used to indicate bare quantities. We make a redefinition of the fields and couplings
in terms of the renormalized fields and couplings:

φ0a := φa
√
Zφ m0 := m

√
Zm e0 := e

√
Ze

M0 := M
√
ZM

1
ξ0

:=

√
Zξ

ξ
λ40 := λ4

√
Zλ4

(5.1.2)

Substituting (5.1.2) into (5.1.1)

Lφ0A0 = 1
2
(
Zφ∂µφa∂

µφa − ZφZmm2φ2
a

)
+ 1

2eZφ
√
ZeZAεaijA

a
µ (φj∂µφi − φi∂µφj) +

− 1
2e

2ZeZφZAεaijεbjkφiφkA
a
µA

bµ −
Z2
φ

√
Zλ4λ4

8
(
φ2
aφ

2
b

)
− 1

4ZAF
a
µνF

aµν + 1
2ZMZAM

2AaµA
aµ+

−
ZA
√
Zξ

2ξ
(
∂µAaµ

)2
+ 1

2e
√
ZeZ3

AεabcA
bµAcνF a

µν −
1
4e

2ZeZ
2
AεabcεadeA

b
µA

c
νA

dµAeν (5.1.3)
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5. Path to Calculations

The definition of the Zi factors are given by:

Zφ := 1 + δZφ ZφZmm
2 := m2 + δm2 eZφ

√
ZeZA := e+ δZAφ2

e2ZeZφZA := e2 + δZφ2A2 Z2
φ

√
Zλ4λ4 := λ4 + δZφ4 ZA := 1 + δZA

ZMZAM
2 := M2 + δM2

ZA
√
Zξ

ξ
:= 1

ξ
+ δξ e

√
ZeZ3

A := e+ δZA2∂A

e2ZeZ
2
A := e2 + δZA4

(5.1.4)

and substituting (5.1.4) into (5.1.3), the Lagrangian will split into two pieces

Lφ0A0 = LφA + L CT
φA (5.1.5)

where LφA is of a form that resembles the bare Lagrangian Lφ0A0

LφA = 1
2
(
∂µφa∂

µφa −m2φ2
a

)
+ 1

2eεaijA
a
µ (φj∂µφi − φi∂µφj)−

1
2e

2εaijεbjkφiφkA
a
µA

bµ − λ4

8
(
φ2
aφ

2
b

)
+

− 1
4F

a
µνF

aµν + 1
2M

2AaµA
aµ − 1

2ξ
(
∂µAaµ

)2
+ 1

2eεabcA
bµAcνF a

µν −
1
4e

2εabcεadeA
b
µA

c
νA

dµAeν (5.1.6)

and the new piece L φA
CT is the counter term Lagrangian

L CT
φA = 1

2
(
δZφ∂µφa∂

µφa − δm2φ2
a

)
+ 1

2δZeεaijA
a
µ (φj∂µφi − φi∂µφj)−

1
2δZAφ

2εaijεbjkφiφkA
a
µA

bµ+

− δZφ4

8
(
φ2
aφ

2
b

)
− 1

4δZAF
a
µνF

aµν + 1
2δM

2AaµA
aµ − 1

2δξ
(
∂µAaµ

)2
+ 1

2δZA
2∂AεabcA

bµAcνF a
µν+

− 1
4δZA

4εabcεadeA
b
µA

c
νA

dµAeν (5.1.7)

which contains all the δZi factors. The bare Lagrangian from symmetry breaking is

LH0 = 1
2
(
∂µH0∂

µH0 −m2
H0H0

2
)

+ 1
2
(
∂µχ0a∂

µχ0a − ξ0M0
2χ2

a

)
− 1

4e0εabc
(
χ0a
←→
∂µχ0b

)
Ac0µ+

− 1
2e0

(
χ0a
←→
∂µH0

)
Aa0µ + 1

2e0
2ν0H0A

a
0µA0

aµ + 1
8e0

2H0
2Aa0µA0

aµ + 1
8e0

2χ2
0bA

a
0µA0

aµ − λ0

32H0
4+

− λ0

16H0
2χ2

0a −
λ0

32χ
2
0aχ

2
0b −

ν0λ0

4 H0
3 − ν0λ0

4 H0χ
2
0a − 2κ0ν0H0φ

2
0a −

1
2κ0H0

2φ2
0a −

1
2κ0χ

2
0aφ

2
0b (5.1.8)

Redefining the bare fields and couplings in term of the renormalized fields and couplings

H0 := H
√
ZH mH0 := mH

√
ZmH χ0a := χa

√
Zχ

M0 := M
√
ZM ν0 := ν

√
Zν λ0 := λ

√
Zλ

κ0 := κ
√
Zκ

(5.1.9)

Reusing some definitions in (5.1.2) and (5.1.9), and substituting into (5.1.10) gives us

LH0 = 1
2
(
ZH∂µH∂

µH − ZHZmHm2
HH

2
)

+ 1
2
(
Zχ∂µχa∂

µχa − ξ0ZχZMM
2χ2

a

)
+

− 1
4eZχ

√
ZeZAεabc

(
χa
←→
∂µχb

)
Acµ −

1
2e
√
ZeZχZHZA

(
χa
←→
∂µH

)
Aaµ + 1

2e
2νZAZe

√
ZHZνHA

a
µA

aµ+

+ 1
8e

2ZeZHZAH
2AaµA

aµ + 1
8e

2ZeZχZAχ
2
bA

a
µA

aµ − λ

32Z
2
H

√
ZλH

4 − λ

16ZHZχ
√
ZλH

2χ2
a+

− λ

32Z
2
χ

√
Zλχ

2
aχ

2
b −

νλ

4

√
ZνZλZ3

HH
3 − νλ

4 Zχ
√
ZνZλZHHχ

2
a − 2κνZφ

√
ZκZνZHHφ

2
a+

− 1
2κZHZφ

√
ZκH

2φ2
a −

1
2κZχZφ

√
Zκχ

2
aφ

2
b (5.1.10)
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5. Path to Calculations

The definition for the Zi factors are

ZH := 1 + δZH ZHZmHm
2
H := m2

H + δm2
H Zχ := 1 + δZχ

ξ0ZχZMM
2 := ξM2 + δM2

χξ eZχ
√
ZeZA := e+ δZAχ2 e

√
ZeZχZHZA := e+ δZχHA

e2νZAZe
√
ZHZν := e2ν + δZHA2 e2ZeZHZA := e2 + δZH2A2 e2ZeZχZA := e2 + δZχ2A2

λZ2
H

√
Zλ := λ+ δZH4 λZHZχ

√
Zλ := λ+ δZH2χ2 λZ2

χ

√
Zλ := λ+ δZχ4

νλ
√
ZνZλZ3

H := νλ+ δZH3 νλZχ
√
ZνZλZH := νλ+ δZHχ2 κνZφ

√
ZκZνZH := κν + δZHφ2

κZHZφ
√
Zκ := κ+ δZH2φ2 κZχZφ

√
Zκ := κ+ δZχ2φ2

(5.1.11)
Substituting (5.1.11) into (5.1.10), the Lagrangian will split into two pieces

LH0 = LH + L CT
H (5.1.12)

where LH is

LH = 1
2
(
∂µH∂

µH −m2
HH

2
)

+ 1
2
(
∂µχa∂

µχa − ξM2χ2
a

)
− 1

4eεabc
(
χa
←→
∂µχb

)
Acµ −

1
2e
(
χa
←→
∂µH

)
Aaµ+

+ 1
2e

2νHAaµA
aµ + 1

8e
2H2AaµA

aµ + 1
8e

2χ2
bA

a
µA

aµ − λ

32H
4 − λ

16H
2χ2

a −
λ

32χ
2
aχ

2
b −

νλ

4 H3+

− νλ

4 Hχ2
a − 2κνHφ2

a −
1
2κH

2φ2
a −

1
2κχ

2
aφ

2
b (5.1.13)

and L CT
H is the counter term Lagrangian:

L CT
H = 1

2
(
δZH∂µH∂

µH − δm2
HH

2
)

+ 1
2
(
δZχ∂µχa∂

µχa − δM2
χξχ

2
a

)
− 1

4δZAχ
2εabc

(
χa
←→
∂µχb

)
Acµ+

− 1
2δZχHA

(
χa
←→
∂µH

)
Aaµ + 1

2δZHA
2HAaµA

aµ + 1
8δZH

2A2H2AaµA
aµ + 1

8δZχ
2A2χ2

bA
a
µA

aµ+

− 1
32δZH

4H4 − 1
16δZH

2χ2H2χ2
a −

1
32δZχ

4χ2
aχ

2
b −

1
4δZH

3H3 − 1
4δZHχ

2Hχ2
a − 2δZHφ2Hφ2

a+

− 1
2δZH

2φ2H2φ2
a −

1
2δZχ

2φ2χ2
aφ

2
b (5.1.14)

Finally the bare Faddeev-Popov ghost Lagrangian is

L0FPG = ūa0
(
∂µ∂µ + ξ0M

2
0

)
ua0 + e0εabcA

a
0µ

(
∂µūb0

)
uc0 + 1

2ξ0e
2
0ν0H0ū

a
0u

a
0+

− 1
2ξ0e

2
0ν0εabcχ0aū

b
0u

c
0 (5.1.15)

Only a single field redefinition is required for the bare ghost field:

ua0 := ua
√
Zu (5.1.16)

Substituting the appropriate definitions from (5.1.2) and (5.1.9), and (5.1.16) into (5.1.15)

LFPG = ūa
(
Zu∂

µ∂µ + ξ0M
2ZuZM

)
ua + eZu

√
ZeZAεabcA

a
µ

(
∂µūb

)
uc + 1

2ξ0e
2νZeZu

√
ZνZχHū

aua+

− 1
2ξ0e

2νZeZu
√
ZνZχεabcχaū

buc (5.1.17)
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5. Path to Calculations

We define the Zi factors as

Zu := 1 + δZu ξ0ZuZMM
2 := ξM2 + δM2

uξ eZu
√
ZeZA := e+ δZAu2

ξ0e
2νZeZu

√
ZνZχ := ξe2ν + δZHu2 ξ0e

2νZeZu
√
ZνZχ := ξe2ν + δZχu2

(5.1.18)
Substituting (5.1.18) into (5.1.17), the Lagrangian will split into two pieces

L0FPG = LFPG + L CT
FPG (5.1.19)

where LFPG is

LFPG = ūa
(
∂µ∂µ + ξM2

)
ua + eεabcA

a
µ

(
∂µūb

)
uc + 1

2ξe
2νHūaua − 1

2ξe
2νεabcχaū

buc (5.1.20)

and L CT
FPG is the counter term Lagrangian:

L CT
FPG = ūa

(
δZu∂

µ∂µ + δM2
uξ

)
ua + δZAu2εabcA

a
µ

(
∂µūb

)
uc + 1

2δZHu
2Hūaua − 1

2δZχu
2εabcχaū

buc

(5.1.21)

The bare field and coupling redefinitions (5.1.2), (5.1.9), (5.1.16) together with the Zi definitions in
(5.1.4), (5.1.11) and (5.1.18) is the Renormalization Transformation.

5.2 Feynman Rules

The Feynman rule will be computed for the specific example of the rho Green’s function/prop-
agator to demonstrate the ideas required to extract out the Feynman rules for this Lagrangian. The
Lagrangian for the rho is

LA = −1
4F

c
αβF

cαβ + 1
2M

2AcαA
cα − 1

2ξ (∂αAcα)2 (5.2.1)

with the anti-symmetric property of the field strength tensor

F c
αβ = ∂αA

c
β − ∂βAcα

= −F c
βα (5.2.2)

We can manipulate the form of the Lagrangian as follows

LA = −1
4
(
∂αA

c
β − ∂βAcα

)
F cαβ + 1

2M
2AcαA

cα − 1
2ξ (∂αAcα)2

= −1
4
(
F cαβ∂αA

c
β − F cβα∂αA

c
β

)
+ 1

2M
2AcαA

cα − 1
2ξ (∂αAcα)2

= −1
2F

cαβ∂αA
c
β + 1

2M
2AcαA

cα − 1
2ξ (∂αAcα)2

= −1
2

[
∂αAcβ∂αA

c
β − ∂βAcα∂αAcβ −M2AcαA

cα + 1
ξ
∂αAcα∂

βAcβ

]
(5.2.3)
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5. Path to Calculations

where we have used the anti-symmetric property of the field strength tensor. The action for this
Lagrangian is:

S =
∫
d4zLA

= −1
2

∫
d4z

[
∂αAcβ∂αA

c
β − ∂βAcα∂αAcβ −M2AcαA

cα + 1
ξ
∂αAcα∂

βAcβ

]

= −1
2

∫
d4z

[
−Aaν

(
∂2
z +M2

)
Aaν + Aaν∂

µ∂νAaµ −
1
ξ
Aaν∂

ν∂µAaµ

]

= 1
2

∫
d4zAcα (z)

[(
∂2
z +M2

)
gαβ −

(
1− 1

ξ

)
∂αz ∂

β
z

]
Acβ (z) (5.2.4)

where we have performed integration by parts with the surface terms contributing zero. The two-
point function in configuration space is defined as

Γ(2) (x, y) := δ2

δAaµ (x) δAbν (y)iS

= iδab
[(
∂2
y +M2

)
gµν −

(
1− 1

ξ

)
∂µy ∂

ν
y

]
δ (y − x) (5.2.5)

and the Fourier transform of the two-point function is

Γ̃(2) (p, q) =
∫
d4xd4ye−i(px+qy)Γ(2) (x, y)

= iδab
[(
−q2 +M2

)
gµν +

(
1− 1

ξ

)
qµqν

]
(2π)4δ4 (p+ q) (5.2.6)

We are now left to the task of finding the Green’s function which is the reciprocal of

Γµνab (k) = −iδab
[(
−k2 +M2

)
gµν +

(
1− 1

ξ

)
kµkν

]
(5.2.7)

where

Γαβab (k)Dµ
βbc (k) = δacg

αµ (5.2.8)

and Dµ
βbc (k) the Green’s function. We can extract out the isospin indices Dµ

βbc (k) = δbcD
µ
β (k) and

substituting into (5.2.8)

−iδab
[(
−k2 +M2

)
gαβ +

(
1− 1

ξ

)
kαkβ

]
· δbcDµ

β (k) = δacg
αµ

=⇒
[(
−k2 +M2

)
gαβ +

(
1− 1

ξ

)
kαkβ

]
Dµ
β (k) = igαµ (5.2.9)

We need to find a Dµ
β (k) which satisfies (5.2.9). The most general tensor we can construct is a linear

combination of gµβ and kµkβ with

Dµ
β (k) := Agµβ +Bkµkβ (5.2.10)
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5. Path to Calculations

with A,B ∈ C. Substituting (5.2.10) into (5.2.9)[(
−k2 +M2

)
gαβ +

(
1− 1

ξ

)
kαkβ

] (
Agµβ +Bkµkβ

)
= igαµ

=⇒ A
(
−k2 +M2

)
gαµ +

[
B

(
M2 − k2

ξ

)
+ A

(
1− 1

ξ

)]
kαkµ = igαµ (5.2.11)

Since gµβ and kµkβ are linearly independent we just have to match coefficients with

A
(
−k2 +M2

)
= i and B

(
M2 − k2

ξ

)
+ A

(
1− 1

ξ

)
= 0 (5.2.12)

which has solutions:

B = A (ξ − 1)
k2 − ξM2 (5.2.13)

A = − i

k2 −M2 (5.2.14)

The rho Green’s function/propagator is then given by

Dµν
ab = δabD

µν

= − iδab
k2 −M2 + iε

[
gµν + ξ − 1

k2 − ξM2k
µkν

]
(5.2.15)

The counter term Lagrangian for the rho propagator is

L CT
A = −1

4δZAF
a
µνF

aµν + 1
2δM

2AaµA
aµ − 1

2δξ
(
∂µAaµ

)2
(5.2.16)

Going through the above procedure again for the counter term Lagrangian but stopping at (5.2.7),
we get the counter term for the rho two point function

ΓµνabCT = iδab
[(
−k2δZA + δM2

)
gµν − (δξ − δZA) kµkν

]
(5.2.17)

Table 5.1: Feynman rules for this QFT. All momenta are incoming with
∑
i

pi = 0

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

P.1 L = 1
2 (∂µφa∂µφa −m2φ2

a) Γ̄2ab = iδab

k2 −m2 + iε

ka b

P.2 L = −
(F aµν)2

4 +
M2(Aaµ)2

2 −
(∂µAaµ)2

2ξ Γ2µν
ab = −iδab

k2 −M2 + iε

[
gµν + (ξ − 1) kµkν

k2 − ξM2

]
ka, µ b, ν

P.3 L = 1
2 (∂µH∂µH −m2

HH
2) Γ̄2 = i

k2 −m2
H + iε

k
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5. Path to Calculations

Table 5.1 – continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

P.4 L = 1
2 (∂µχa∂µχa − ξM2χaχa) Γ̄2ab = iδab

k2 − ξM2 + iε
ka b

P.5 L = −ūa (∂µ∂µ + ξM2)ua Γ̄2ab = iδab

k2 − ξM2 + iε
ka b

I.1. L = 1
2eεaijA

a
µ (φi∂µφj − φj∂µφi)

p1
m

p2
n

p3
b, ν Γ̄νbmn = eεbmn(p1 − p2)ν

I.2. L = −1
2e

2εaijεbjkφiφkA
a
µA

bµ

p1
m

p2
n

p3
c, ν

p4
d, α

Γ̄ανcdmn = ie2gαν (εjdnεjcm + εjdmεjcn)

I.3. L = − λ
32H

4

p1

p2

p3

p4

Γ̄ = −3
4iλ

I.4. L = − λ
16H

2χ2
a

p1
a

p2
b

p3
b

p4
c

Γ̄bc = −1
4iλδ

bc
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5. Path to Calculations

Table 5.1 – continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

I.5. L = − λ
32χ

2
aχ

2
b

p1
b

p2
c

p3
d

p4
e

Γ̄bcde = −1
4iλ

(
δcdδbe + δbdδce + δbcδde

)

I.6. L = −1
4λνH

3

p1

p2

p3

Γ̄ = −3
2iλν

I.7. L = −1
4λνHχ

2
a

p1
b

p2
c

p3

Γ̄bc = −1
2iλνδ

bc

I.8. L = −1
4eεabc (χa∂µχb − χb∂µχa)Acµ

p1
a

p2
b

p3
c, µ

Γ̄νcab = −1
2eεcab(p1 − p2)µ

I.9. L = −1
2e (χa∂µH −H∂µχa)Aaµ

p1
b

p2

p3
c, ν

Γ̄νbc = 1
2eδ

bc(p1 − p2)ν
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5. Path to Calculations

Table 5.1 – continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

I.10. L = 1
2e

2νHAaµA
aµ

p1

p2
b, ν

p3
c, α

Γ̄ανbc = ie2νδbcgαν

I.11. L = 1
8e

2H2AaµA
aµ

p1

p2

p3
b, ν

p4
c, α

Γ̄ανbc = 1
2ie

2δbcgαν

I.12. L = 1
8e

2χ2
bA

a
µA

aµ

p1
c

p2
d

p3
e, ν

p4
f, α

Γ̄ανcdef = 1
2ie

2δcdδefgαν

I.13. L = −1
2κH

2φ2
n

p1

p2

p3
a

p4
b

Γ̄ab = −2iκδab
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Table 5.1 – continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

I.14. L = −1
2κχ

2
aφ

2
n

p1
b

p2
c

p3
e

p4
f

Γ̄abef = −2iκδabδef

I.15. L = −2κνHφ2
n

p1

p2
a

p3
b Γ̄ab = −4iκνδab

I.16. L = −eεabc (∂µūa)ubAcµ

p1
f

p2
g

p3
h, ν Γ̄νfgh = −eεfgh(p2 + p3)ν

I.17. L = 1
2eεabcF

a
µνA

bµAcν

p1
a, α

p2
b, β

p3
c, γ

Γ̄abcαβγ = eεabc
[
(p3 − p2)α gβγ + (p1 − p3)β gγα + (p2 − p1)γ gβα

]
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Table 5.1 – continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

I.18. L = 1
2ξe

2νHūbub

p1
a

p2
c

p3

Γ̄ac = 1
2iξe

2νδac

I.19. L = −1
2ξe

2νεabcχaū
buc

p1
d

p2
e

p3
f Γ̄fed = −1

2iξe
2νεfed

I.20. L = −1
8λ4φ

2
aφ

2
b

p1
a

p2
b

p3
c

p4
d

Γ̄abcd = −iλ4 (δabδcd + δbcδda + δbdδac)

I.21. L = −1
4e

2εabcεaefA
b
µA

c
νA

eµAfν

p1
a, µ

p2
b, ν

p3
c, ρ

p4
d, σ

Γabcdµνπσ = −ie2
[
εfabεfcd (gµρgνσ − gµσgνρ) +

+εfacεfdb (gµσgρν − gµνgρσ) +

+εfadεfbc (gµνgρσ − gµρgνσ)
]

C.1.
L = −1

4δZAF
a
µνF

aµν + 1
2δM

2AaµA
aµ

−1
2δξ

(
∂µAaµ

)2

ΓµνabCT = iδab
[
(k2δZA − δM2) gµν

+ (δξ − δZA) kµkν
]

ka, µ b, ν

C.2. L = 1
2 (δZH∂µH∂µH − ZHZmHm2

HH
2) ΓCT = i (k2δZH − δm2

H)
k
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5. Path to Calculations

Table 5.1 – continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

C.3. L = 1
2δZeεaijA

a
µ (φj∂µφi − φi∂µφj)

p1
a

p2
b

p3
c, µ

ΓµabCT = δZeεcab(p1 − p2)µ

C.4. L = −2δZHφ2Hφ2
a

p1
a

p2
b

p3

ΓabCT = −4iδZHφ2δab

C.5. L = −1
8δZφ

4 (φ2
aφ

2
b)

p1
a

p2
b

p3
c

p4
d

ΓabcdCT = −iδZφ4 (δabδcd + δbcδda + δbdδac)
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6

Scattering Lengths at Tree Level

6.1 Useful Formulae

Consider an on-shell scattering process of

φa (p1) + φb (p2)→ φc (p3) + φd (p4)

with the 4-momentum conservation equation

pµ1 + pµ2 = pµ3 + pµ4

Since these particle are on-shell p2
i = m2. We can define the Mandlestam invariants:

s := (p1 + p2)2 = (p3 + p4)2

t := (p1 − p3)2 = (p4 − p2)2

u := (p1 − p4)2 = (p3 − p2)2

(6.1.1)

We can rewrite the dot products p1 · p2 and p3 · p4 using the s Mandlestam variable,

s = p2
1 + 2p1 · p2 + p2

2

= 2m2 + 2p1 · p2

⇒ p1 · p2 = s− 2m2

2 (6.1.2)

s = p2
3 + 2p3 · p4 + p2

4

⇒ p3 · p4 = p1 · p2 = s− 2m2

2 (6.1.3)

A summary of all the dot products are listed below

p3 · p4 = p1 · p2 = s− 2m2

2

p2 · p4 = p1 · p3 = 2m2 − t
2

p2 · p3 = p1 · p4 = 2m2 − u
2

(6.1.4)
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6. Scattering Lengths at Tree Level

Consider now the case of the elastic pion scattering process in the center of mass frame, with the
incoming three momentum q and the outgoing three momentum q′ with

q 6= q′ (6.1.5)
q := |q| = |q′| (6.1.6)

where q is defined as the magnitude q. For the t channel process,

φa (p1)

φb (p2)
?

φc (p3)

φd (p4)

pµ1 =
(
Eq, q

)
pµ2 =

(
Eq,−q

)

pµ3 =
(
Eq′ , q

′
)

pµ4 =
(
Eq′ ,−q′

)

θ

Figure 6.1: t channel scattering process

Let the 3-momenta for φa and φc be q and q′ respectively, such that

pµ1 =
(
Eq, q

)
=
(√

m2 + |q|2, q
)

(6.1.7)

pµ3 =
(
Eq′ , q

′
)

=
(√

m2 + |q′|2, q′
)

=
(√

m2 + |q|2, q′
)

(6.1.8)

The product of p1 · p3 is

p1 · p3 =
(√

m2 + |q|2
)2
− q · q′

= m2 + |q|2 − |q||q′| cos θ
= m2 + q2 (1− cos θ) (6.1.9)

Substituting p1 · p3 from (6.1.4) into (6.1.9) the t Mandlestam variable is now given by

t = 2m2 − 2p1 · p3

= 2m2 − 2
[
m2 + q2 (1− cos θ)

]
= −2q2 (1− cos θ) (6.1.10)
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6. Scattering Lengths at Tree Level

Consider the u channel scattering process.

φa (p1)

φb (p2)
?

φc (p3)

φd (p4)

pµ1 =
(
Eq, q

)
pµ2 =

(
Eq,−q

)

pµ4 =
(
Eq′ , q

′
)

pµ3 =
(
Eq′ ,−q′

)

π − θ

Figure 6.2: u channel scattering process

Let the 3-momenta for φa and φd be q and q′ respectively, such that

p1 =
(
Eq, q

)
=
(√

m2 + |q|2, q
)

(6.1.11)

p4 =
(
Eq′ , q

′
)

=
(√

m2 + |q′|2, q′
)

=
(√

m2 + |q|2, q′
)

(6.1.12)

The product of p1 · p4 is

p1 · p4 = m2 + q2 (1 + cos θ) (6.1.13)

Substituting p1 · p4 from (6.1.4) into (6.1.13) the u Mandlestam variable is now given by

u = −2q2 (1 + cos θ) (6.1.14)

The three Mandlestam variables are related to each with

s+ t+ u =
4∑
j=1

p2
j = 4m2 (6.1.15)

We can use (6.1.15) to find the s Mandlestam variable from t and u.

s = 4m2 − t− u
= 4m2 + 2q2 (1− cos θ) + 2q2 (1 + cos θ)
= 4m2 + 4q2 (6.1.16)
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6. Scattering Lengths at Tree Level

We shall define the cosine of the scattering angle and the ratio R

z := cos θ (6.1.17)

R := q2

m2 (6.1.18)

Then the necessary formulae for the following calculations in terms of z and R are

s = 4m2 (1 +R) (6.1.19)
t = −2m2 (1− z)R (6.1.20)
u = −2m2 (1 + z)R (6.1.21)

s− t = 2m2 [2 + (3− z)R] (6.1.22)
s− u = 2m2 [2 + (3 + z)R] (6.1.23)
t− u = 4m2Rz (6.1.24)

6.2 Tree Scattering Amplitudes

We have now reached the stage to calculate the pion scattering lengths. A list of the required tree
diagrams are generated from the Feynman rules for pion-pion scattering and are shown below.
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6. Scattering Lengths at Tree Level

p1
a

p2
b

c
p3

d
p4

+

p1

a

p3

c

p2

b

p4

d

+

p1

a

p4

d

p2

b

p3

c

+

p1
a

p2
b

c
p3

d
p4

+

p1

a

p3

c

p2

b

p4

d

+

p1

a

p4

d

p2

b

p3

c

+

b

ca

d

p4

p3

p2

p1

For the s channel scattering process mediated by the rho:

p1
a

p2
b

c
p3

d
p4
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6. Scattering Lengths at Tree Level

With the definitions for the verticies

Γ1 = eεfab(p1 − p2)α Γ2 = eεhdc(p3 − p4)β Dfh
αβ (p) = − iδfhgαβ

p2 −M2

The amplitude is given by:

MA
s = Γ2 ·Dfh

αβ (p) · Γ1

= −i e2

p2 −M2 εfabεfdc (p1 − p2) · (p3 − p4)

= SA (δadδbc − δacδbd) (6.2.1)

with

SA := −i e2

s−M2 (p1 − p2) · (p3 − p4)

= −i e2

s−M2 (t− u)

= −4ie2m2 zR

4m2 (1 +R)−M2 (6.2.2)

For the t channel scattering process mediated by the rho:

p1

a

p3

c

p2

b

p4

d

With the definitions for the verticies

Γ1 = −eεfca(p1 + p3)α Γ2 = eεhbd(p2 + p4)β Dfh
αβ (p) = − iδfhgαβ

p2 −M2

The amplitude is given by:

MA
t = Γ2 ·Dfh

αβ (p) · Γ1

= i
e2

p2 −M2 (p1 + p3) · (p2 + p4) (δbcδad − δabδcd)

= TA (δabδcd − δbcδad) (6.2.3)
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6. Scattering Lengths at Tree Level

with

TA := −i e2

t−M2 (p1 + p3) · (p2 + p4)

= −i e2

t−M2 (s− u)

= 2ie2m2 2 + (3 + z)R
2m2 (1− z)R +M2 (6.2.4)

For the u channel scattering process mediated by the rho:

p1

a

p4

d

p2

b

p3

c

With the definitions for the verticies

Γ1 = −eεfda(p1 + p4)α Γ2 = eεhbc(p2 + p3)β Dfh
αβ (p) = − iδfhgαβ

p2 −M2

The amplitude is given by:

MA
u = Γ2 ·Dfh

αβ (p) · Γ1

= i
e2

p2 −M2 εfdaεfbc (p1 + p4) · (p2 + p3)

= i
e2

p2 −M2 (p1 + p4) · (p2 + p3) (δacδbd − δabδcd)

= UA (δabδcd − δacδbd) (6.2.5)

with

UA := −i e2

u−M2 (p1 + p4) · (p2 + p3)

= −i e2

u−M2 (s− t)

= 2ie2m2 2 + (3− z)R
2m2 (1 + z)R +M2 (6.2.6)
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6. Scattering Lengths at Tree Level

The sum of the amplitudes due to the rho mediator

T ab,cdA = SA (δadδbc − δacδbd) + TA (δabδcd − δbcδad) + UA (δabδcd − δacδbd)
= (TA + UA) δabδcd − (SA + UA) δacδbd + (SA − TA) δadδbc (6.2.7)

For the s channel scattering process mediated by the Higgs:

p1
a

p2
b

c
p3

d
p4

With the definitions for the verticies

Γ1 = −4iκνδab Γ2 = −4iκνδcd D (p) = i

p2 −m2
H

The amplitude is given by:

MH
s = Γ2 ·D (p) · Γ1

= −i 16κ2ν2

p2 −m2
H

δabδcd

= SHδabδcd (6.2.8)

with

SH := −i 16κ2ν2

s−m2
H

(6.2.9)

For the t channel scattering process mediated by the Higgs:

p1

a

p3

c

p2

b

p4

d
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6. Scattering Lengths at Tree Level

With the definitions for the verticies

Γ1 = −4iκνδac Γ2 = −4iκνδbd D (p) = i

p2 −m2
H

The amplitude is given by:

MH
t = Γ2 ·D (p) · Γ1

= −i 16κ2ν2

p2 −m2
H

δacδbd

= THδacδbd (6.2.10)

with

TH := −i 16κ2ν2

t−m2
H

(6.2.11)

For the u channel scattering process mediated by the Higgs:

p1

a

p4

d

p2

b

p3

c

With the definitions for the verticies

Γ1 = −4iκνδad Γ2 = −4iκνδbc D (p) = i

p2 −m2
H

The amplitude is given by:

MH
u = Γ2 ·D (p) · Γ1

= −i 16κ2ν2

p2 −m2
H

δadδbc

= UHδadδbc (6.2.12)

with

UH := −i 16κ2ν2

u−m2
H

(6.2.13)
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6. Scattering Lengths at Tree Level

The sum of the amplitudes due to the Higgs mediator

T ab,cdH = SHδabδcd + THδacδbd + UHδadδbc (6.2.14)

For the four pion scattering process:

b

ca

d

p4

p3

p2

p1

With the definitions for the verticies

Sλ := −iλ4 Γ = Sλ (δabδcd + δadδbc + δacδbd)
=⇒ Mφ = Γ

T ab,cdλ = Sλ (δabδcd + δadδbc + δacδbd) (6.2.15)

6.3 Isospin Amplitudes

The most general form of the scattering amplitude is

Mab,cd = F (s, t, u) δabδcd +G (s, t, u) δacδbd +H (s, t, u) δadδbc (6.3.1)

The amplitude can be decomposed over an isospin invariant basis

Mab,cd =
2∑

m=0
TmP abcd

m (6.3.2)

where Tm are the isospin amplitudes and the basis vectors [45] are

P abcd
0 := 1

3δabδcd (6.3.3)

P abcd
1 := 1

2 (δacδbd − δadδbc) (6.3.4)

P abcd
2 := 1

2 (δacδbd + δadδbc)−
1
3δabδcd (6.3.5)
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6. Scattering Lengths at Tree Level

Expanding the amplitude (6.3.2)

Mab,cd = 1
3
(
T 0 − T 2

)
δabδcd + 1

2
(
T 1 + T 2

)
δacδbd −

1
2
(
T 1 − T 2

)
δadδbc (6.3.6)

and identifying coefficients between (6.3.1) and (6.3.6), we obtain a system of linear equations

1
3
(
T 0 − T 2

)
= F (s, t, u) (6.3.7)

1
2
(
T 1 + T 2

)
= G (s, t, u) (6.3.8)

−1
2
(
T 1 − T 2

)
= H (s, t, u) (6.3.9)

which has the solution,

T 0 = 3F (s, t, u) +G (s, t, u) +H (s, t, u) (6.3.10)
T1 = G (s, t, u)−H (s, t, u) (6.3.11)
T2 = G (s, t, u) +H (s, t, u) (6.3.12)

The isospin amplitudes for rho mediation are given by:

T 0
A := 3 (TA + UA)− (SA + UA) + (SA − TA)

= 2 (TA + UA)

= 4ie2m2
[

2 + (3 + z)R
2m2 (1− z)R +M2 + 2 + (3− z)R

2m2 (1 + z)R +M2

]
(6.3.13)

T 1
A := − (SA + UA)− (SA − TA)

= −2SA + TA − UA

= 2ie2m2
[

4zR
4m2 (1 +R)−M2 + 2 + (3 + z)R

2m2 (1− z)R +M2 −
2 + (3− z)R

2m2 (1 + z)R +M2

]
(6.3.14)

T 2
A := − (SA + UA) + (SA − TA)

= − (TA + UA)

= −1
2T

0
A (6.3.15)

The isospin amplitudes for Higgs mediator are given by:

T 0
H := 3SH + TH + UH

= −3i 16κ2ν2

s−m2
H

− i 16κ2ν2

t−m2
H

− i 16κ2ν2

u−m2
H

= 16iκ2ν2
[
− 3

4m2 (1 +R)−m2
H

+ 1
2m2 (1− z)R +m2

H

+ 1
2m2 (1 + z)R +m2

H

]
(6.3.16)

T 1
H := TH − UH

= −i 16κ2ν2

t−m2
H

+ i
16κ2ν2

u−m2
H

= 16iκ2ν2
[

1
2m2 (1− z)R +m2

H

− 1
2m2 (1 + z)R +m2

H

]
(6.3.17)
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6. Scattering Lengths at Tree Level

T 2
H := TH + UH

= −i 16κ2ν2

t−m2
H

− i 16κ2ν2

u−m2
H

= 16iκ2ν2
[

1
2m2 (1− z)R +m2

H

+ 1
2m2 (1 + z)R +m2

H

]
(6.3.18)

The isospin amplitudes for the four pion vertex are given by:

T 0
λ := −5iλ4 T 1

λ := 0 T 2
λ := −2iλ4 (6.3.19)

The sum of the amplitudes of the Higgs and 4 pion tree diagrams are:

T 0
Hλ = T 0

H + T 0
λ

= 16iκ2ν2
[
− 3

4m2 (1 +R)−m2
H

+ 1
2m2 (1− z)R +m2

H

+ 1
2m2 (1 + z)R +m2

H

]
− 5iλ4 (6.3.20)

T 1
Hλ = T 1

H + T 1
λ

= 16iκ2ν2
[

1
2m2 (1− z)R +m2

H

− 1
2m2 (1 + z)R +m2

H

]
(6.3.21)

T 2
Hλ = T 2

H + T 2
λ

= 16iκ2ν2
[

1
2m2 (1− z)R +m2

H

+ 1
2m2 (1 + z)R +m2

H

]
− 2iλ4 (6.3.22)

6.4 Scattering Lengths

Scattering lengths are computed from the coefficients of the partial wave scattering amplitude
with the partial wave scattering amplitude obtained from the projection of the isospin amplitudes
over the Legendre polynomials. We begin with the isospin amplitude T I (q2, z) expressed as a sum
over partial scattering amplitudes T Im (q2)

T I
(
q2, z

)
= 32π

∞∑
m=0

(2m+ 1)Pm (z)T Im
(
q2
)

(6.4.1)

where Pm (z) is the Legendre polynomials indexed by m with z = cos θ as defined in (6.1.17). Using
the orthogonality of the Legendre polynomials on the inner product:

1∫
−1

Pm (z)Pn (z) dz = 2
2m+ 1δmn (6.4.2)

54



6. Scattering Lengths at Tree Level

the partial scattering amplitudes can be extracted by multiplying T I (q2, z) by the Legendre polyno-
mials and integrating:

1∫
−1

Pn (z)T I
(
q2, z

)
dz = 32π

∞∑
m=0

(2m+ 1)
1∫
−1

Pm (z)Pn (z) dz · T Im
(
q2
)

= 32π
∞∑
m=0

(2m+ 1) 2
2m+ 1δmn · T

I
m

(
q2
)

= 64πT In
(
q2
)

=⇒ T In
(
q2
)

= 1
64π

1∫
−1

Pn (z)T I
(
q2, z

)
dz (6.4.3)

A Maclaurin series expansion can be made in terms of q2 [46] as

T In = i

(
q2

m2
π

)n [
aIn + bIn

(
q2

m2
π

)
+ . . .

]
= iRn

[
aIn + bInR + . . .

]
(6.4.4)

where R = q2

m2 which was defined in (6.1.18) and aIn and bIn are the scattering lengths. We shall
project the isospin amplitudes using the first three Legendre polynomials which are

P0 (z) = 1 P1 (z) = z P2 (z) = 1
2
(
3z2 − 1

)
(6.4.5)

The first two scattering lengths are calculated below. For T 0

T 0 (R) = T 0
A + T 0

Hλ

= 4ie2m2
[

2 + (3 + z)R
2m2 (1− z)R +M2 + 2 + (3− z)R

2m2 (1 + z)R +M2

]
+

+ 16iκ2ν2
[
− 3

4m2 (1 +R)−m2
H

+ 1
2m2 (1− z)R +m2

H

+ 1
2m2 (1 + z)R +m2

H

]
(6.4.6)

The partial wave amplitude T 0
0 is

T 0
0 (R) = 1

64π

1∫
−1

P0 (z)T 0 (R, z) dz

= a0
0 + b0

0R (6.4.7)

Setting R = 0 gives us

a0
0 = T 0

0 (R)
∣∣∣
R=0

= e2

2π
m2

M2 + κ2ν2

π

[
1
m2
H

− 3
2 (4m2 −m2

H)

]
− 5λ4

32π (6.4.8)
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and differentiating with respect to R and then setting to zero

b0
0 = dT 0

0 (R)
dR

∣∣∣∣∣
R=0

= e2

4π
m2

M2

(
3− 4m

2

M2

)
+ 2m2κ2ν2

π

[
3

(4m2 −m2
H)2 −

1
m4
H

]
(6.4.9)

The above calculations can be repeated for T 1, T 2 and the three Legendre polynomials P0(z), P1(z)
and P2(z).
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6. Scattering Lengths at Tree Level

6.5 Tree Scattering Lengths Results

A summary of the results for the scattering lengths are listed below:

a0
0 = e2

2π
m2

M2 + κ2ν2

π

[
1
m2
H

− 3
2 (4m2 −m2

H)

]
− 5λ4

32π

b0
0 = e2

4π
m2

M2

(
3− 4m

2

M2

)
+ 2m2κ2ν2

π

[
3

(4m2 −m2
H)2 −

1
m4
H

]
a0

1 = 0
b0

1 = 0

a0
2 = 2e2

15π
m4

M4

(
1 + 4m

2

M2

)
+ 16

15π
m4κ2ν2

m6
H

b0
2 = 4e2

5π
m6

M6

(
1− 12m

2

M2

)
− 96

5π
m8κ2ν2

m8
H

a1
0 = 0
b1

0 = 0

a1
1 = e2

24π
16m6 − 3m2M4

4m2M4 −M6 + 2
3π

m2κ2ν2

m4
H

b1
1 = e2

6π

m4
(
−64

3
m6

M6 + 16m
4

M4 − 4m
2

M2 + 1
)

M4

(
1− 4m

2

M2

)2 − 8
3π

m4κ2ν2

m6
H

a1
2 = 0
b1

2 = 0

a2
0 = − e

2

8π
m2

M2 + κ2ν2

2πm2
H

− λ4

32π

b2
0 = − e2

48π
m2

M2

(
3− 4m

2

M2

)
− 1

3π
m2κ2ν2

m4
H

a2
1 = 0
b2

1 = 0

a2
2 = − e2

30π
m4

M4

(
1 + 4m

2

M2

)
+ 8

15π
m4κ2ν2

m6
H

b2
2 = − e2

15π
m6

M6

(
1− 12m

2

M2

)
− 16

5π
m6κ2ν2

m8
H

For the experimental input we shall use the average masses of the charged and uncharged pions and
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6. Scattering Lengths at Tree Level

rhos:

m = 0.1372734± 0.0000007 GeV M = 0.77649± 0.00034 GeV (6.5.1)

which are taken from [29]. The rho-pion-pion coupling,

e = 5.96± 0.20 (6.5.2)

is taken from [47]. The value of the vacuum expectation value can be inferred from the definition of
the mass of the rho

M := eν

=⇒ ν = M

e
= 0.130± 0.004 GeV (6.5.3)

The pion decay constant and its ratio in the chiral limit,

Fπ ≈ 0.093 GeV Fπ
F

= 1.0627± 0.0028

is taken from [48]. The four pion coupling is taken from [49]:

λ4 :=
(
m

F

)2

= 2.45074± 0.1568 (6.5.4)

The mass of the symmetry breaking field mH is taken to be the mass of the f0(500):

mH := mf0 = 0.450± 0.016 GeV (6.5.5)

This value is taken from [50]. Using the above values and a0
0 and b0

0 we can infer an average value for
κ of:

κ = 1.31± 0.03 (6.5.6)

The values for the scattering lengths are tabulated below with NABKLZ referring to the model
developed in this thesis.:
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Lengths Weinbergd χPT(1stO)a χPT(2ndO)a NABKLZ† Colangelob Bijnensc Expabc

a0
0 0.20 0.16 0.20 0.21 0.220 0.219 0.220± 0.005
b0

0 0.18 0.26 0.30 0.276 0.279 0.25± 0.03
a0

1 0
b0

1 0
a0

2 × 103 0 2 2.06 1.75 2.2 1.7± 3
b0

2 × 104 −5.23 −3.55 −3.2

a1
0 0
b1

0 0
a1

1 0.030 0.036 0.0528 0.0379 0.0378 0.038± 0.002
b1

1 0 0.043 0.0053 0.0057 0.0059
a1

2 0
b1

2 0

a2
0 −0.06 −0.045 −0.041 −0.0456 −0.0444 −0.0420 −0.044± 0.001
b2

0 −0.0225 −0.0803 −0.0756 −0.082± 0.008
a2

1 0
b2

1 0
a2

2 × 104 0 3.5 −2.03 1.70 2.90 1.3± 3
b2

2 × 104 −8.9 −7 −0.53 −3.26 −3.60 −8.2
† Tree results
a Results taken from [51]
b Results taken from [46]
c Results taken from [52]
d Results taken from [53]

Table 6.1: Summary of predicted values and experimental data of the scattering length.

A parity plot can be made to show the predicted versus experimental values for the scattering lengths.
The dashed line in figure 6.3 is the reference line of predicted values equal to experimental values.
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Figure 6.3: Predicted vs Experimental values
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7

One Loop Corrections

T
he tree results for the scattering lengths can be improved upon by including in the next
order correction terms from the pertubative series. This can be done systematically by
first computing the one particle irreducible (1PI) diagrams for the self energies and
verticies. These 1PI diagrams then serve as the building blocks for the higher order

analysis [54]. We shall list the topologies that contribute to the self energies and verticies. In total
there are ∼ 85 diagrams.

7.1 One Loop Topologies

Diagrams that contribute to the self energy of the rho.

Diagrams that contribute to the self energy of the Higgs.

61



7. One Loop Corrections

The lollipop diagrams for the rho and Higgs self energies will be included separately later dur-
ing the analysis. Diagrams that contribute to the vertex of the φφρ.

62



7. One Loop Corrections

Diagrams that contribute to the vertex of the φφH .

Diagrams that contribute to the φφ scattering via a loop.
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7. One Loop Corrections

7.2 Dimensional Regularization

To parameterize the divergences that result in higher order loop calculations, we shall use di-
mensional regularization [55]. This is done by analytically continuing the spacetime dimension from
n = 4 dimensions to n = 4 − 2ε dimensions [56]. Making this change in the spacetime dimension

will capture the divergences in terms of the form
1
ε

and
p2

ε
which can be appropriately absorbed by

the counter terms. A further consequence of changing the spacetime dimension to n = 4− 2ε is that
the couplings are not dimensionless. This can be remedied by explicitly taking out the extra mass
dimension. The action in n dimensions is

S =
∫
dnxL (7.2.1)

Since the action is dimensionless

[S] = 1 =⇒ [dnx] = [dx]n = M−n and [L ] = Mn (7.2.2)

Using the dimension of the Lagrangian we can determine the dimensions of the fields:

[A] = [φ] = [χ] = [H] = M
n−2

2 (7.2.3)

The dimensionful couplings can now be worked out to be

[e] = M
4−n

2 , [λ4] = M4−n, [ν] = M
n−4

2 , [λ] = M4−n, [κ] = M4−n (7.2.4)

We shall define a parameter µ which is referred to as the renormalization scale with dimensions of
mass, [µ] = M and define dimensionless couplings in terms of the renormalization scale as

e ∼ µ
4−n

2 e, λ4 ∼ µ4−nλ4, ν ∼ µ
n−4

2 ν, λ ∼ µ4−nλ, κ ∼ µ4−nκ (7.2.5)

We will suppress the explicit appearance of the scale during the calculations but absorb it into the
definition of the Passarino-Veltman scalar functions.
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7.3 Passarino-Veltman Reduction

An efficient way to compute the one loop diagrams is to use the Passarino-Veltman reduction
technique [57]. This technique allows us to compute a Feynman diagram in terms of a few master
scalar integrals [58, 59], which in principle only have to be computed once. The Passarino-Veltman
reduction technique is implemented by using the denominators of the propagators to write all the
scalar products between external momenta and the loop momentum. Practically this means express-
ing the numerators of the Feynman amplitude in terms of the denominator, leaving only scalar
integrals to be evaluated. This is demonstrated below for the case of a vector self energy diagram.

The Feynman verticies are:

Γ1 = eεadc(2k + p)µ Γ2 = eεbef (2k + p)ν

with the self energy contribution due the pion bubble:

−iπµνab1 =
∫ dnk

(2π)nΓ1 ·Ddf (k) · Γ2 ·Dce (k + p)

=
∫ dnk

(2π)n
eεadc(2k + p)µ · δdf · eεbef (2k + p)νδce

(k2 −m2)
[
(k + p)2 −m2

]
= e2εcdaεcdb

∫ dnk

(2π)n
(2k + p)µ(2k + p)ν

(k2 −m2)
[
(k + p)2 −m2

]
= e2εcdaεcdbI

µν
1 (7.3.1)

Using εcdaεcdb = 2δab

−iπµνab1 = 2e2δabI
µν
1 (7.3.2)

We can make some definitions for aiding in the calculation:

Nµν
1 := (2k + p)µ(2k + p)ν

= 4kµkν + 2 (kµpν + pµkν) + pµpν (7.3.3)
D1 := k2 −m2 (7.3.4)

D2 := (k + p)2 −m2

= k2 + 2k · p+ p2 −m2

= D1 + 2k · p+ p2 (7.3.5)

So we have the relations

k2 = D1 +m2 (7.3.6)
2k · p = D2 −D1 − p2 (7.3.7)
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The scalar product have now been expressed in terms of the denominators. We can split the integral
over the transverse and longitudinal parts

Iµν1 :=
∫ dnk

(2π)n
Nµν

1
D1D2

= fT1P
µν
T + fL1P

µν
L (7.3.8)

where the projectors are defined as

P µν
L := pµpν

p2 (7.3.9)

P µν
T := gµν − pµpν

p2 (7.3.10)

The coefficients can be extracted using the transverse and longitudinal projectors.

PLµνI
µν
1 = fL1 (7.3.11)

PTµνI
µν
1 = (n− 1) fT1 (7.3.12)

The projectors acting on the numerator Nµν
1 yield

PLµνN
µν
1 = 1

p2

(
2k · p+ p2

)2

= 1
p2

(
D2

2 − 2D1D2 +D2
1

)
(7.3.13)

and

PTµνN
µν
1 = gµνN

µν
1 − PLµνN

µν
1

gµνN
µν
1 = 4k2 + 2k · p+ p2

= 2D1 + 2D2 + 4m2 − p2 (7.3.14)

The necessary ingredients have been assembled to extract the longitudinal coefficient

fL1 =
∫ dnk

(2π)n
PLµνN

µν
1

D1D2

= 1
p2

∫ dnk

(2π)n
D2

2 − 2D1D2 +D2
1

D1D2

= 1
p2

∫ dnk

(2π)n
(
D2

D1
+ D1

D2
− 2

)
= 1
p2

∫ dnk

(2π)n
(
D2

D1
+ D1

D2

)
(7.3.15)

Since there are no massless particles in this field theory, we can safely make use of the Veltman
conjecture by setting all dimensionless integrals to zero i.e.

∫ dnk

(2π)n k
2α = 0 (7.3.16)
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for α ∈ C. We are left with the task of evaluating∫ dnk

(2π)n
D1

D2
=
∫ dnk

(2π)n
k2 −m2

(k + p)2 −m2
(7.3.17)

Making a change of variables lµ = −(k + p)µ ⇒ kµ = −(l + p)µ ⇒
∫ dnk

(2π)n =
∫ dnl

(2π)n . Substituting

in the new measure ∫ dnk

(2π)n
D1

D2
=
∫ dnl

(2π)n
(l + p)2 −m2

l2 −m2

=
∫ dnk

(2π)n
D2

D1

=
∫ dnk

(2π)n
(

1 + 2k · p
k2 −m2 + p2

k2 −m2

)
= p2A0 (m) (7.3.18)

where we have used the Passarino-Veltman scalar function A0(m) (see Appendix A). So the longitu-
dinal coefficient is

fL1 = 1
p2

∫ dnk

(2π)n
(
D2

D1
+ D1

D2

)
= 2A0 (m) (7.3.19)

The transverse coefficient can be evaluated as

(n− 1) fT1 = PTµνI
µν
1

=
∫ dnk

(2π)n
PTµνN

µν
1

D1D2

=
∫ dnk

(2π)n
(
gµνN

µν
1

D1D2
− PLµνN

µν
1

D1D2

)

=
∫ dnk

(2π)n
2D1 + 2D2 + 4m2 − p2

D1D2
−
∫ dnk

(2π)n
PLµνN

µν
1

D1D2

=
∫ dnk

(2π)n
[

2
D1

+ 2
D2

+ 4m2 − p2

D1D2

]
− fL1

= 4A0 (m) +
(
4m2 − p2

)
B0 (m; p,m)− 2A0 (m)

= 2A0 (m) +
(
4m2 − p2

)
B0 (m; p,m)

=⇒ fT1 = 1
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
(7.3.20)

So the integral Iµν1 is

Iµν1 = 1
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
P µν
T + 2A0 (m)P µν

L (7.3.21)

with the self energy due to a pion bubble.

−iπµνab1 = 2e2δabI
µν
1

= 2e2δab
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
P µν
T + 4e2δabA0 (m)P µν

L (7.3.22)
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7.4 Summary of one loop self energies

Appendix B contains the details for the complete one loop corrections for the self energies. We
shall summarize the results below:

7.4.1 Rho Self Energy

−iπµνab1 = 2e2δab
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
P µν
T + 4e2δabA0 (m)P µν

L (7.4.1)

−iπµνab2 = −4e2δabA0 (m)P µν
T − 4e2δabA0 (m)P µν

L (7.4.2)

−iπµνab3 = −e2M2δabB0 (M ; p,mH)P µν
T − e2M2δabB0 (M ; p,mH)P µν

L (7.4.3)

−iπµνab4 = −1
2e

2δabA0 (mH)P µν
T −

1
2e

2δabA0 (mH)P µν
L (7.4.4)
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−iπµνab5 = − e2δab
4 (n− 1)

{
A0 (M) + A0 (mH) +

(
2m2

H + 2M2 − p2
)
B0 (M ; p,mH) +

− m2
H −M2

p2

[
A0 (M)− A0 (mH) +

(
m2
H −M2

)
B0 (M ; p,mH)

] }
P µν
T +

− 1
4e

2δab

{
A0 (M) + A0 (mH) + m2

H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]}
P µν
L

(7.4.5)

−iπµνab8 = e2δab
2 (n− 1)

[
2A0 (M) +

(
4M2 − p2

)
B0 (M ; p,M)

]
P µν
T + e2δabA0 (M)P µν

L (7.4.6)

−iπµνab6 = −3
2e

2δabA0 (M)P µν
T −

3
2e

2δabA0 (M)P µν
L (7.4.7)

−iπµνab7 = 2e2δab
n− 1

[1
2A0 (M) +

(
M2 − 1

4p
2
)
B0 (M ; p,M)

]
P µν
T + 2e2δab

[1
2A0 (M) + 1

4p
2B0 (M ; p,M)

]
P µν
L

(7.4.8)

−iπµνab9 = 2e2δab

{
4n− 5
n− 1 A0 (M) + 1

2 (n− 1)
[
4(3n− 4)M2 + (6n− 5) p2

]
B (M ; p,M)

}
P µν
T +

+ 2e2δab

[
(2n− 1)A0 (M) + 1

2
(
4M2 − p2

)
B (M ; p,M)

]
P µν
L (7.4.9)
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7. One Loop Corrections

−iπµνab10 = −4e2δab (n− 1)A0 (M)P µν
T − 4e2δab (n− 1)A0 (M)P µν

L (7.4.10)

−iπµνab11 = 3
2M

2δab

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
P µν
T +

+ 3
2M

2δab

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
P µν
L (7.4.11)

7.4.2 Higgs Self Energy

−iπH1 = 48κ2ν2B0 (m; p,m) (7.4.12)

−iπH2 = 6κA0 (m) (7.4.13)

−iπH3 = 3e4ν2nB0 (M ; p,M) (7.4.14)
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7. One Loop Corrections

−iπH4 = 3
2e

2nA0 (M) (7.4.15)

−iπH5 = 3
4λ

2ν2B0 (M ; p,M) (7.4.16)

−iπH6 = 3
4λA0 (M) (7.4.17)

−iπH7 = 9
4λ

2ν2B0 (mH ; p,mH) (7.4.18)

−iπH8 = 3
2λA0 (mH) (7.4.19)

−iπH9 = −3
4e

2
[
A0 (M) +

(
M2 + 2p2

)
B0 (M ; p,M)

]
(7.4.20)
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7. One Loop Corrections

−iπH10 = 3
4e

2M2B0 (M ; p,M) (7.4.21)

−iπH11 = −9
4λν

2
{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
(7.4.22)

7.5 Summary of one loop vertices

We shall use these definitions for the calculations of the one loop corrections to the three point
vertices:

pµ = pµ1 + pµ2
p · (p1 − p2) = (p1 + p2) · (p1 − p2)

= 0

p1 · p2 = 1
2
[
(p1 + p2)2 − p2

1 − p2
2

]
= 1

2p
2 −m2

p · p1 = (p1 + p2) · p1

= 1
2p

2

p · p2 = (p1 + p2) · p2

= 1
2p

2

p · p1 = (p1 + p2) · p1 p · p2 = (p1 + p2) · p2
= 1

2p
2 = 1

2p
2

where {a, p1}, {b, p2} are incoming momenta of the pions and {c, pµ} is the momentum of the outgo-
ing rho.
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7. One Loop Corrections

7.5.1 Pion-Pion-Rho Vertex

V µ
1 = −ie3εcab

(p1 − p2)µ

4m2 − p2

 1
m2

(
4m2 − p2

)
[A0 (M)− A0 (m)]

+ 1
m2

[
16m4 − 6m2

(
M2 + p2

)
+M2p2

]
B0 (m,m,M)− 2

(
4m2 −M2 − 2p2

)
B0 (m, p,m) +

+
(
4m2 −M2 − 2p2

) (
4m2 − 2M2 − p2

)
C0 (m; p2,M ; p,m)

 (7.5.1)

V µ
2 = 2ie3εcab

(p1 − p2)µ

4m2 − p2

(1− p2

4m2

)
[A0 (m)− A0 (M)] +

(
−4m2 + 2M2 + 3p2

2 −
M2p2

4m2

)
B0 (m;m,M) +

−
(
M2 + p2

2

)
B0 (M ; p,M) +

(
−4m2M2 +M4 − 2m2p2 +M2p2 + 1

4p
4
)
C0 (m; p1,M ;−p2,M)


(7.5.2)

V µ
3 = 32iκ2ν2eεcab(p1 − p2)µ

4m2 − p2

[
B0 (m;m,mH)−B0 (m; p,m) + 1

2
(
4m2 − p2 − 2m2

H

)
C0 (mH ; p1,m;−p2,m)

]
(7.5.3)
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7. One Loop Corrections

V µ
4 = −2iκν2e3εcab

(p1 − p2)µ

4m2 − p2

B0 (m,m,M) +B0 (m,m,mH)− 2B0 (M, p,mH) +

+
(
−8m2 +M2 +m2

H + p2
)
C0 (m; p1,M ;−p2,mH)

+

− 2iκν2e3εcab
(p1 + p2)µ

p2

B0 (m,m,mH)−B0 (m,m,M) +

+
(
M2 −m2

H − p2
)
C0 (m; p1,M ;−p2,mH)

 (7.5.4)

V µ
5 = −2iκν2e3εcab

(p1 − p2)µ

4m2 − p2

B0 (m,m,M) +B0 (m,m,mH)− 2B0 (M, p,mH) +

+
(
−8m2 +M2 +m2

H + p2
)
C0 (m; p1,M ;−p2,mH)

+

− 2iκν2e3εcab
(p1 + p2)µ

p2

−B0 (m,m,mH) +B0 (m,m,M) +

+
(
−M2 +m2

H + p2
)
C0 (m; p1,M ;−p2,mH)

 (7.5.5)
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7. One Loop Corrections

V6 = 0 (7.5.6)

V7 = 0 (7.5.7)

V8 = 0 (7.5.8)

V9 = −3ie3εcab
pµ1

2m2

[
A0 (m)− A0 (M) +

(
M2 − 3m2

)
B0 (m;m,M)

]
(7.5.9)
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7. One Loop Corrections

V10 = 3ie3εcab
pµ2

2m2

[
A0 (m)− A0 (M) +

(
M2 − 3m2

)
B0 (m;m,M)

]
(7.5.10)

V9 + V10 = −3ie3εcab
1

2m2

[
A0 (m)− A0 (M) +

(
M2 − 3m2

)
B0 (m;m,M)

]
(pµ1 − p

µ
2) (7.5.11)

7.5.2 Pion-Pion-Higgs Vertex

V H
1 = −8κνe2δab

[
2B0 (m;m,M)−B0 (m; p,m) +

(
4m2 −M2 − 2p2

)
C0 (M ; p1,m;−p2,m)

]
(7.5.12)

V H
2 = −2e4νδab

[
2B0 (M ; p,M)−B0 (m;m,M) +

(
4m2 −M2 − 1

2p
2
)
C0 (m; p1,M ;−p2,M)

]
(7.5.13)
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7. One Loop Corrections

V H
3 = 64κ3ν3δabC0 (m; p2,mH ; p,m) (7.5.14)

V H
4 = 24κ2ν3λδabC0 (m; p1,mH ;−p2,mH) (7.5.15)

V H
5 = 4ne4νδabB0 (M ; p,M) (7.5.16)

V H
6 = 20κνλ4δabB0 (m; p,m) (7.5.17)
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7. One Loop Corrections

V H
7 = 3κλνδabB0 (mH ; p,mH) (7.5.18)

V H
8 = 3κλνδabB0 (M ; p,M) (7.5.19)

V H
9 = 8κ2νδabB0 (m;m,mH) (7.5.20)

V H
10 = 8κ2νδabB0 (m;m,mH) (7.5.21)
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7. One Loop Corrections

7.5.3 Pion-Pion-Pion-Pion Vertex

V φ
1 (s) = 2ne4 (2δabδcd + δacδbd + δadδbc)B0

(
M ;
√
s,M

)
Including the Mandlestam t and u channels

V 1φ
abcd (s, t, u) = 2ne4

(2δabδcd + δacδbd + δadδbc)B0
(
M ;
√
s,M

)
+

+ (δabδcd + 2δacδbd + δadδbc)B0
(
M ;
√
t,M

)
+ (δabδcd + δacδbd + 2δadδbc)B0

(
M ;
√
u,M

)
(7.5.22)

V φ
2 (s) = 4κ2δabδcdB0

(
mH ;
√
s,mH

)
Including the t and u Mandlestam channels

V 2φ
abcd (s, t, u) = 4κ2

[
δabδcdB0

(
mH ;
√
s,mH

)
+ δacδbdB0

(
mH ;
√
t,mH

)
+ δadδbcB0

(
mH ;
√
u,mH

)]
(7.5.23)

V φ
3 (s) = 12κ2δabδcdB0

(
M ;
√
s,M

)
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7. One Loop Corrections

with

V 3φ
abcd (s, t, u) = 12κ2

[
δabδcdB0

(
M ;
√
s,M

)
+ δacδbdB0

(
M ;
√
t,M

)
+ δadδbcB0

(
M ;
√
u,M

)]
(7.5.24)

V φ
4 (s) = λ2

4 (7δabδcd + 2δacδbd + 2δadδbc)B0
(
m;
√
s,m

)
with

V 4φ
abcd (s, t, u) = λ2

4

(7δabδcd + 2δacδbd + 2δadδbc)B0
(
m;
√
s,m

)
+

+ (2δabδcd + 7δacδbd + 2δadδbc)B0
(
m;
√
t,m

)
+ (2δabδcd + 2δacδbd + 7δadδbc)B0

(
m;
√
u,m

)
(7.5.25)

V φ
5 (s) = −e2λ4 (−4δabδcd + δacδbd + δadδbc)

2B0 (m;m,M)−B0
(
m;
√
s,m

)
+

+
(
4m2 −M2 − 2s

)
C0
(
m; p2,M ;

√
s,m

)
with

V 5φ
abcd (s, t, u) = −e2λ4


(−4δabδcd + δacδbd + δadδbc)

[
2B0 (m;m,M)−B0

(
m;
√
s,m

)
+
(
4m2 −M2 − 2s

)
C0
(
m; p2,M ;

√
s,m

)]
+

(δabδcd − 4δacδbd + δadδbc)
[
2B0 (m;m,M)−B0

(
m;
√
t,m

)
+
(
4m2 −M2 − 2t

)
C0
(
m;−p3,M ;

√
t,m

)]
+

(δabδcd + δacδbd − 4δadδbc)
[
2B0 (m;m,M)−B0

(
m;
√
u,m

)
+
(
4m2 −M2 − 2u

)
C0
(
m;−p4,M ;

√
u,m

)]
(7.5.26)
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7. One Loop Corrections

V φ
7 (s) = e4 (2δabδcd + δacδbd + δadδbc)

[
2B0

(
M ;
√
s,M

)
−B0 (m,m,M)

+ 1
2
(
8m2 − 2M2 − s

)
C0
(
m, p2,M,

√
s,M

)]

with

1
e4V

7φ
abcd (s, t, u) = (2δabδcd + δacδbd + δadδbc)

[
2B0

(
M ;
√
s,M

)
−B0 (m,m,M) +

+ 1
2
(
8m2 − 2M2 − s

)
C0
(
m, p2,M,

√
s,M

)]
+

+ (δabδcd + 2δacδbd + δadδbc)
[
2B0

(
M ;
√
t,M

)
−B0 (m,m,M) +

+ 1
2
(
8m2 − 2M2 − t

)
C0
(
m,−p1,M,

√
t,M

)]
+

+ (δabδcd + δacδbd + 2δadδbc)
[
2B0

(
M ;
√
u,M

)
−B0 (m,m,M) +

+ 1
2
(
8m2 − 2M2 − u

)
C0
(
m,−p1,M,

√
u,M

)]
(7.5.27)

V φ
6 (s) = 32κ3ν2δabδcdC0

(
mH ; p2,m;

√
s,mH

)
with

V 6φ
abcd (s, t, u) = 32κ3ν2

[
δabδcdC0

(
mH , p2,m,

√
s,mH

)
+ δacδbdC0

(
mH ,−p3,m,

√
t,mH

)
+

+ δadδbcC0
(
mH ,−p4,m,

√
u,mH

)]
(7.5.28)
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V φ
8 (s) = 16κ2ν2λ4 (δabδcd + δacδbd + δadδbc)C0

(
m; p2,mH ;

√
s,m

)
with

V 8φ
abcd (s, t, u) = 16κ2ν2λ4 (δabδcd + δacδbd + δadδbc)

[
C0
(
m; p2,mH ;

√
s,m

)
+

+ C0
(
m;−p3,mH ;

√
t,m

)
+ C0

(
m;−p4,mH ;

√
u,m

)]
(7.5.29)

V φ
9 = e4 (δabδcd + δacδbd)

B0
(
m,
√
s,m

)
+ 4 (s+ t− 4m2)

t− 4m2 [B0 (M, t,M)−B0 (m,m,M)] +

+ 2
4m2 − t

(
32m4 − 8m2

(
M2 + 2s+ t

)
+ 2M2 (s+ t) + 3st

)
C0 (m, p1,M, p3,M) +

+2
(
−4m2 +M2 + 2s

)
C0
(
m2, p1,M, p3,M

)
+
(
−4m2 +M2 + 2s

)2
D0

(
m, p2,M,

√
s,m, p4,M

)
with
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1
e4V

9φ
abcd (s, t, u) = (δabδcd + δacδbd)

B0
(
m,
√
s,m

)
+ 4 (s+ t− 4m2)

t− 4m2

[
B0
(
M,
√
t,M

)
−B0 (m,m,M)

]
+

+ 2
4m2 − t

(
32m4 − 8m2

(
M2 + 2s+ t

)
+ 2M2 (s+ t) + 3st

)
C0 (m, p1,M, p3,M) +

+ 2
(
2s− 4m2 +M2

)
C0
(
m2, p1,M, p3,M

)
+
(
2s− 4m2 +M2

)2
D0

(
m, p2,M,

√
s,m, p4,M

)+

+ (δacδbd + δadδbc)
B0

(
m,
√
u,m

)
+ 4 (u+ t− 4m2)

t− 4m2

[
B0
(
M,
√
t,M

)
−B0 (m,m,M)

]
+

+ 2
4m2 − t

(
32m4 − 8m2

(
M2 + 2u+ t

)
+ 2M2 (u+ t) + 3ut

)
C0 (m,−p3,M,−p1,M) +

+ 2
(
2u− 4m2 +M2

)
C0
(
m2,−p3,M,−p1,M

)
+
(
2u− 4m2 +M2

)2
D0

(
m, p2,M,

√
u,m, p4,M

)+

+ (δabδcd + δadδbc)
B0

(
m,
√
u,m

)
+ 4 (u+ s− 4m2)

s− 4m2

[
B0
(
M,
√
s,M

)
−B0 (m,m,M)

]
+

+ 2
4m2 − s

(
32m4 − 8m2

(
M2 + 2u+ s

)
+ 2M2 (u+ s) + 3us

)
C0 (m, p2,M,−p1,M) +

+ 2
(
2u− 4m2 +M2

)
C0
(
m2, p2,M,−p1,M

)
+
(
2u− 4m2 +M2

)2
D0

(
m,−p3,M,

√
u,m, p4,M

)
(7.5.30)

V φ
10 = e4 (δabδcd + δacδbd)

B0
(
m,
√
s,m

)
+ 4 (s+ t− 4m2)

t− 4m2

[
B0
(
M,
√
t,M

)
−B0 (m,m,M)

]
+

+ 2
4m2 − t

(
32m4 − 8m2

(
M2 + 2s+ t

)
+ 2M2 (s+ t) + 3st

)
C0 (m, p1,M, p3,M) +

+2
(
−4m2 +M2 + 2s

)
C0
(
m2, p1,M, p3,M

)
+
(
−4m2 +M2 + 2s

)2
D0

(
m, p2,M,

√
s,m, p4,M

)
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with

1
e4V

10φ
abcd (s, t, u) = (δabδcd + δacδbd)

B0
(
m,
√
t,m

)
+ 4 (s+ t− 4m2)

s− 4m2

[
B0
(
M,
√
t,M

)
−B0 (m,m,M)

]
+

− 2
(
2t− 4m2 +M2

)
C0
(
M,
√
s,M, p2,m

)
+
(
2t− 4m2 +M2

)2
D
(
M, p2,m,

√
s,M, p4,m

)
+

+ 2
4m2 − s

(
32m4 − 8m2

(
M2 + s+ 2t

)
+ 2M2 (s+ t) + 3st

)
C0
(
M,
√
s,M, p2,m

)+

+ (δacδbd + δadδbc)
B0

(
m,
√
t,m

)
+ 4 (u+ t− 4m2)

u− 4m2

[
B0
(
M,
√
t,M

)
−B0 (m,m,M)

]
+

− 2
(
2t− 4m2 +M2

)
C0
(
M,
√
u,M, p2,m

)
+
(
2t− 4m2 +M2

)2
D
(
M, p2,m,

√
u,M, p4,m

)
+

+ 2
4m2 − u

(
32m4 − 8m2

(
M2 + u+ 2t

)
+ 2M2 (u+ t) + 3ut

)
C0
(
M,
√
t,M, p2,m

)]+

+ (δabδcd + δadδbc)
B0

(
m,
√
s,m

)
+ 4 (s+ u− 4m2)

u− 4m2

[
B0
(
M,
√
s,M

)
−B0 (m,m,M)

]
+

− 2
(
2s− 4m2 +M2

)
C0
(
M,
√
u,M,−p3,m

)
+
(
2s− 4m2 +M2

)2
D
(
M,−p3,m,

√
u,M, p4,m

)
+

+ 2
4m2 − s

(
32m4 − 8m2

(
M2 + u+ 2s

)
+ 2M2 (u+ s) + 3us

)
C0
(
M,
√
t,M,−p3,m

) (7.5.31)

V φ
11 = (4κν)4δabδcdD0 (mH ; p2,m; p,mH ; p4,m)

with

1
(4κν)4V

11φ
abcd (s, t, u) = δabδcdD0

(
mH ; p2,m;

√
s,mH ; p4,m

)
+ δacδbdD0

(
mH ;−p3,m;

√
t,mH ; p4,m

)
+

+ δadδbcD0
(
mH ; p2,m;

√
u,mH ; p4,m

)
(7.5.32)
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V φ
12 = (4κν)4δacδbdD0

(
m; p2,mH ;

√
s,m; p4,mH

)
with

1
(4κν)4V

12φ
abcd (s, t, u) = δabδcdD0

(
m;−p3,mH ;

√
t,m; p4,mH

)
+ δacδbdD0

(
m; p2,mH ;

√
s,m; p4,mH

)
+

+ δadδbcD0
(
m;−p4,mH ;

√
u,m;−p2,mH

)
(7.5.33)

7.6 Renormalization

We shall use the On Shell Renormalization conditions to define the mass and residue of the pole
which will fix the renormalization constants. The conditions are

Π
(
p2
)∣∣∣
p2=m2

= 0 (7.6.1)

d

dp2 Π
(
p2
)∣∣∣∣∣
p2=m2

= 0 (7.6.2)

where Π (p2) represents the self energy, with the mass being set by condition (7.6.1) and the residue
set with (7.6.2).

7.6.1 Rho Self Energy Renormalization

The counter term for the rho propagator can be written in terms of the projectors as

Γ̄µνabCT = iδab
[(
p2δZ̄A − δM̄2

)
gµν +

(
δξ̄ − δZ̄A

)
kµkν

]
= iδab

[(
p2δZ̄A − δM̄2

)
P µν
T +

(
p2δξ̄ − δM̄2

)
P µν
L

]
(7.6.3)

The rho self energy is the sum of contributions including the symmetry factors from (7.4.1)-(7.4.11)
and the counter term:

−iπµνab =
11∑
j=1

[
−iπµνabj

]
+ iδab

[(
p2δZ̄A − δM̄2

)
P µν
T +

(
p2δξ̄ − δM̄2

)
P µν
L

]
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= i

(4π)2 δabπ
µν + i

(4π)2 δ
ab
[(
p2δZA − δM2

)
P µν
T +

(
p2δξ − δM2

)
P µν
L

]
(7.6.4)

:= i

(4π)2 δab (πTP µν
T + πLP

µν
L ) + i

(4π)2 δ
ab
[(
p2δZA − δM2

)
P µν
T +

(
p2δξ − δM2

)
P µν
L

]
(7.6.5)

with

πT := 65e2p2

12ε + 1
ε

[
e2
(

2m2 + 9M4

2m2
H

+ 11M2 − m2
H

2

)
+ 12κm2M2

m2
H

+ 3λM4

2m2
H

+ 3λM2

2

]
+

+
(
−2e2

3 + 12M2κ

m2
H

)
AF [m] +

[
e2
(

7
6 + 9M2

2m2
H

)
+ 3M2λ

2m2
H

]
AF [M ] +

(
−e

2

3 + 3M2λ

2m2
H

)
AF [mH ] +

+ 8
3e

2m2BF [m, p,m] + 12e2M2BF [M, p,M ] + e2
(
−13M2

6 − m2
H

6

)
BF [M, p,mH ] +

+ e2

p2

(
1
12
(
M2 −m2

H

)
(AF [mH ]− AF [M ]) +

(
M4

12 −
M2m2

H

6 + m4
H

12

)
BF [M, p,mH ]

)
+

+ 12m2M2κγe
m2
H

+ 3
2M

2λγe + 3M4λγe
2m2

H

+

+ e2
(

8m2

3 + 23M2

6 − 3M4

m2
H

− m2
H

6 + 2m2γe + 11M2γe + 9M4γe
2m2

H

− m2
Hγe
2

)
+

+ e2p2
(
−2

3BF [m, p,m] + 6BF [M, p,M ] + 1
12BF [M, p,mH ]− 7

18 + 65γe
12

)
(7.6.6)

and

πL := −e
2p2

2ε + 1
ε

[
e2
(

2m2 + 9M4

2m2
H

+ 11M2 − m2
H

2

)
+ 12κm2M2

m2
H

+ 3λM4

2m2
H

+ 3λM2

2

]
+

+
(

2e2 + 12M2κ

m2
H

)
AF [m] +

(
e2
(

9 + 9M2

2m2
H

)
+ 3M2λ

2m2
H

)
AF [M ] +

(
−e

2

2 + 3M2λ

2m2
H

)
AF [mH ] +

+ 4e2M2BF [M, p,M ]− 2e2M2BF [M, p,mH ] +

+ e2

p2

(
1
4
(
M2 −m2

H

)
(AF [M ]− AF [mH ]) +

(
−M

4

4 + M2m2
H

2 − m4
H

4

)
BF [M, p,mH ]

)
+

+ e2p2
(
−1

2BF [M, p,M ]− γe
2

)
+ 12m2M2κγe

m2
H

+ 3
2M

2λγe + 3M4λγe
2m2

H

+

+ e2
(
−4M2 − 3M4

m2
H

+ 2m2γe + 11M2γe + 9M4γe
2m2

H

− m2
Hγe
2

)
(7.6.7)

where πµν will in general have the form

πµν = i (AP µν
T +BP µν

L ) (7.6.8)

with

A := 1
(4π)2

(
πT + p2δZA − δM2

)
(7.6.9)

B := 1
(4π)2

(
πL + p2δξ − δM2

)
(7.6.10)

Applying the On Shell Renormalization conditions (7.6.1) and (7.6.2) to (7.6.9) and (7.6.10) we obtain
the renormalization constants:

−δZA = 65e2

12ε −
2
3e

2BF [m,M,m] + 6e2BF [M,M,M ] + 1
12e

2BF [M,M,mH ] +
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− e2

M4

[
1
12
(
M2 −m2

H

)
(AF [mH ]− AF [M ]) +

(
M4

12 −
M2m2

H

6 + m4
H

12

)
BF [M,M,mH ]

]
+

+
(

8e2m2

3 − 2e2M2

3

)
∂

∂p
BF [m, p,m]

∣∣∣∣∣
p=M

+ 18e2M2 ∂

∂p
BF [M, p,M ]

∣∣∣∣∣
p=M

+

+
(
e2M2

12 + e2
(
−13M2

6 − m2
H

6

)
+ e2

M2

(
M4

12 −
M2m2

H

6 + m4
H

12

))
∂

∂p
BF [M, p,mH ]

∣∣∣∣∣
p=M

+

+ e2
(
− 7

18 + 65γe
12

)
(7.6.11)

δM2 = 1
ε

[
e2
(

2m2 + 9M4

2m2
H

+ 11M2 − m2
H

2

)
+ 12κm2M2

m2
H

+ 3λM4

2m2
H

+ 3λM2

2

]
+

+
(
−2e2

3 + 12M2κ

m2
H

)
AF [m] +

(
e2
(

7
6 + 9M2

2m2
H

)
+ 3M2λ

2m2
H

)
AF [M ] +

+
(
−e

2

3 + 3M2λ4

2m2
H

)
AF [mH ] + 8

3e
2m2BF [m,M,m] + 2

3e
2M2BF [m,M,m] +

+ 6e2M2BF [M,M,M ]− 1
12e

2M2BF [M,M,mH ] + e2
(
−13M2

6 − m2
H

6

)
BF [M,M,mH ] +

+ 2e2

M2

[
1
12
(
M2 −m2

H

)
(AF [mH ]− AF [M ]) +

(
M4

12 −
M2m2

H

6 + m4
H

12

)
BF

[
M,M2,mH

]]
+

+
(
−8

3e
2m2M2 + 2e2M4

3

)
∂

∂p
BF [m, p,m]

∣∣∣∣∣
p=M
− 18e2M4 ∂

∂p
BF [M, p,M ]

∣∣∣∣∣
p=M

+

+
(
− 1

12e
2M4 − e2M2

(
−13M2

6 − mh2

6

)
− e2

(
M4

12 −
M2m2

H

6 + m4
H

12

))
∂

∂p
BF [M, p,mH ]

∣∣∣∣∣
p=M

+

+M2
(
−2

3e
2BF [m,M,m] + 6e2BF [M,M,M ] + 1

12e
2BF [M,M,mH ]

)
+ e2M2

(
− 7

18 + 65γe
12

)
+ 12m2M2κγe

m2
H

+ 3
2M

2λγe + 3M4λγe
2m2

H

− e2M2
(
− 7

18 + 65γe
12

)
+

+ e2
(

8m2

3 + 23M2

6 − 3M4

m2
H

− m2
H

6 + 2m2γe + 11M2γe + 9M4γe
2m2

H

− m2
Hγe
2

)
(7.6.12)

−δξ = − e
2

2ε −
2
3e

2BF [m,M,m] + 6e2BF [M,M,M ] + 1
12e

2BF [M,M,mH ] +

− e2

M4

(
1
12
(
M2 −m2

H

)
(AF [mH ]− AF [M ]) +

(
M4

12 −
M2m2

H

6 + m4
H

12

)
BF [M,M,mH ]

)
+

+
(

8e2m2

3 − 2e2M2

3

)
∂

∂p
BF [m, p,m]

∣∣∣∣∣
p=M

+ 18e2M2 ∂

∂p
BF [M, p,M ]

∣∣∣∣∣
p=M

+

+
[
e2M2

12 + e2
(
−13M2

6 − m2
H

6

)
+ e2

M2

(
M4

12 −
M2m2

H

6 + m4
H

12

)]
∂

∂p
BF [M, p,mH ]

∣∣∣∣∣
p=M

+

+ e2
(
− 7

18 + 65γe
12

)
(7.6.13)

The contributions from infinitely many self energy insertions leads to a geometric series which can
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be summed with D := p2 −M2 + iε,

iD
(1)µν
ab = −i

D
δab (P µν

T + P µν
L )

+
∞∑
n=1

−i
D
δab (P µα1

T + P µα1
L )

n∏
k=1

[
iπα2k
α2k−1

−i
D

(
P
α2k+1
Tα2k

+ P
α2k+1
Lα2k

)] [
iπα2n+2
α2n+1

−i
D

(
P ν
Tα2n+2 + P ν

Lα2n+2

)]

= −i
D
δab (P µν

T + P µν
L ) + −i

D
δab (P µα1

T + P µα1
L ) · i

(
APα2

Tα1 +BP α2
Lα1

)
· −i
D

(
P ν
Tα2 + P ν

Lα2

)
+ · · ·

= −i
D
δab (P µν

T + P µν
L ) + −i

D2 δab (AP µν
T +BP µν

L ) + −i
D3 δab

(
A2P µν

T +B2P µν
L

)
+ · · ·

= −iδab
D

{[
1 + A

D
+
(
A

D

)2
+ · · ·

]
P µν
T +

[
1 + B

D
+
(
B

D

)2
+ · · ·

]
P µν
L

}

= −iδab
D

[
1

1− A
D

P µν
T + 1

1− B
D

P µν
L

]

= −iδab
D − A

[
P µν
T + D − A

D −B
P µν
L

]
= −iδab
D − A

[
gµν + B − A

D −B
P µν
L

]
∼=
−iδab
D − A

gµν (7.6.14)

Since the longitudinal projector is made up of on shell momenta which will always encounter the on
shell momentum from the Feynman vertices, the longitudinal piece of the one loop propagator will
not contribute to scattering amplitudes.

7.6.2 Higgs Self Energy Renormalization

The counter term for the Higgs propagator is

ΓCT = i
(
k2δZ̄H − δm̄2

H

)
(7.6.15)

The of Higgs self energy diagrams from (7.4.12) to (7.4.22) including the symmetry factors and the
counter term is

−iΠH =
11∑
j=1

[
−iπHj

]
+ i

(
p2δZ̄H − δm̄2

H

)
= i

(4π)2

[
πH + k2δZH − δm2

H

]
(7.6.16)

with

πH := −3e2p2

4ε + 1
ε

27e2M2

2 + 3m2κ+ 3M2λ

8 − 27M4λ

4m2
H

+ 3m2
Hλ

4 +

+ M2

e2

(
48κ2 − 18m2κλ

m2
H

+ 3λ2

4 −
9M2λ2

4m2
H

)+ 9M4λ

2m2
H

+ 3m2κγe + 3
8M

2λγe+
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− 27M4λγe
4m2

H

+ 3
4m

2
Hλγe + 3κAF [m] + 3

8λAF [M ]− 27M2λAF [M ]
4m2

H

+ 3
4λAF [mh] +

+ e2p2
(
−3γe

4 −
3
4BF [M, p,M ]

)
+

+ e2
(
−15M2

2 + 27M2γe
2 + 21AF [M ]

8 + 87
8 M

2BF [M, p,M ]
)

+

+ 1
e2

48M2κ2γe −
18m2M2κλγe

m2
H

+ 3
4M

2λ2γe −
9M4λ2γe

4m2
H

− 18M2κλAF [m]
m2
H

+

− 9M2λ2

4m2
H

(AF [M ] + AF [mH ]) + 48M2κ2BF [m, p,m] + 3
4M

2λ2BF [M, p,M ] +

+ 9
4M

2λ2BF [mH , p,mH ]
 (7.6.17)

Applying the On Shell Renormalization conditions (7.6.1) and (7.6.2) to (7.6.17) we obtain the renor-
malization constants:

−δZH = −3e2

4ε + 87
8 e

2M2 ∂

∂p
BF [M, p,M ]

∣∣∣∣∣
p=mH

− 3
4e

2m2
H

∂

∂p
BF [M, p,M ]

∣∣∣∣∣
p=mH

+

+ 1
e2

∂

∂p

[
48M2κ2BF [m, p,m] + 3

4M
2λ2BF [M, p,M ] + 9

4M
2λ2BF [mH , p,mH ]

]∣∣∣∣
p=mH

+

+ e2
(
−3

4BF [M,mH ,M ]− 3γe
4

)
(7.6.18)

δm2
H =

27e2M2

2 + 3m2κ+ 3M2λ

8 − 27M4λ

4m2
H

+ 3m2
Hλ

4 +

+ M2
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48κ2 − 18m2κλ

m2
H

+ 3λ2

4 −
9M2λ2

4m2
H

)1
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2m2
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H
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H
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AF [mH ] + 48M2κ2
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+
(
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− 48M2mHκ
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+

+
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2
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)
∂

∂p
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∣∣∣∣∣
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+

− 9M2m2
Hλ

2

4e2
∂

∂p
BF [mH , p,mH ]

∣∣∣∣∣
p=mH

+ 27
2 e

2M2γe + 3m2κγe + 48M2κ2γe
e2 + 3

8M
2λγe+

− 27M4λγe
4m2

H

+ 3
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2
Hλγe −
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H
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(7.6.19)
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7.6.3 Pion-Pion-Rho Vertex Renormalization

For the vertex renormalization, we shall resort to using the Minimal Subtraction scheme. A conven-
tional condition is to define the coupling at zero transferred three momentum. This is difficult to
impose since the three point scalar function C0 is difficult to manipulate. Summing up the vertex
corrections (7.5.1) to (7.5.10)

10∑
k=1

V µ
k = i

(4π)2 εcab(p1 − p2)µ (iVe) (7.6.20)

where Ve is defined as

Ve := e3

2ε + e3
(
−3AF [m]

2m2 + 3AF [M ]
2m2 +

(
9
2 −

3M2

2m2

)
BF [m,m,M ] + 3γe

)
+ 1

4m2 − p2 ×


eκ2ν2

(
32BF [m,m,mH ]− 32BF [m, p,m] +

(
64m2 − 32m2

H − 16p2
)
C0 [mH , p1,m,−p2,m]

)
+

+ e3
[(

6− 3p2

2m2

)
(AF [m]− AF [M ]) +

(
−24m2 + 10M2 + 9p2 − 3M2p2

2m2

)
BF [m,m,M ] +

+
(
8m2 − 2M2 − 4p2

)
BF [m, p,m] +

(
−2M2 − p2

)
BF [M, p,M ] +

+
(
−8m2M2 + 2M4 − 4m2p2 + 2M2p2 + p4

2

)
C0 [m, p1,M,−p2,M ] + κν2

(
− 4BF [m,m,M ] +

− 4BF [m,m,mH ] + 8BF [M, p,mH ] +
(
32m2 − 4M2 − 4m2

H − 4p2
)
C0 [m, p1,M,−p2,mH ]

)
+

(
−16m4 + 12m2M2 − 2M4 + 12m2p2 − 5M2p2 − 2p4

)
C0 [m, p2,M, p,m]− 10m2γe + 5p2γe

2

]
(7.6.21)

The one loop vertex correction including the counter term for the pion-pion-rho vertex correction is

e(1)εcab(p1 − p2)µ =
10∑
k=1

V µ
k + δZeεcab(p1 − p2)µ

=
10∑
k=1

V µ
k + 1

(4π)2 δZeεcab(p1 − p2)µ

=⇒ −(4π)2e(1) = Ve − δZe (7.6.22)

with e(1) the finite one loop correction to the coupling. Comparing (7.6.22) with (7.6.21) we can read
off the renormalization constant:

δZe := e3

2ε (7.6.23)

7.6.4 Pion-Pion-Higgs Vertex Renormalization

The one loop vertex corrections (7.5.12) to (7.5.21) to the pion-pion-Higgs vertex is summed to be
10∑
k=1

V H
k = i

(4π)2 δabVH (7.6.24)
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where VH is defined to be

VH = 1
ε

(
16e4ν − 16e2κν + 16κ2ν + 6κλν + 20κνλ4

)
− 8e4ν + 16κ2νBF [m,m,mH ] +

+
(
16e4ν + 3κλν

)
BF [M, p,M ] + 3κλνBF [mH , p,mH ] + 24κ2λν3C0 [m, p1,mH ,−p2,mH ]

+ 64κ3ν3C0 [m, p2,mH , p,m] + 16e4νγe + 16κ2νγe + 6κλνγe + 20κνBF [m, p,m]λ4 + 20κνγeλ4+

e2κν

−16γe − 8BF [m,m,M ] + 8BF [m, p,m]− 16BF [M, p,M ] +

(
−32m2 + 8M2 + 4p2

)
C0 [m, p1,M,−p2,M ] +

(
−32m2 + 8M2 + 16p2

)
C0 [M, p1,m,−p2,m]


(7.6.25)

The one loop correction to the pion-pion-Higgs verterx with the counter term is

iV
(1)
H δab =

10∑
k=1

V µ
k − iδZHδab

= i

(4π)2 δabVH −
i

(4π)2 δZHδab

⇒ (4π)2V
(1)
H = VH − δZH (7.6.26)

Comparing the expressions (7.6.25) with (7.6.26) we can read off the renormalization constant

δZH = 1
ε

(
16e4ν − 16e2κν + 16κ2ν + 6κλν + 20κνλ4

)
(7.6.27)

where V (1)
H is the finite one loop correction to the pio-pion-Higgs coupling.

7.6.5 Pion-Pion-Pion-Pion Vertex Renormalization

The one loop vertex corrections (7.5.22) to (7.5.33) to the pion-pion-pion-pion vertex is summed to
be

iV λ
abcd :=

12∑
k=1

V k,φ
abcd = i

(4π)2V
φ
abcd

= i

(4π)2

[(
40e4 + 16κ2 + 2e2λ4 + 11λ44

)
(δabδcd + δacδbd + δadδbc)

]
1
ε

+ UV finite terms (7.6.28)

The counter term for this vertex is

ΓabcdCT = −iδZ̄φ4 (δabδcd + δbcδda + δbdδac)

= − i

(4π)2 δZφ4 (δabδcd + δbcδda + δbdδac) (7.6.29)

Matching coefficients between (7.6.28) and (7.6.29), we see the value of the counter term is

δZφ4 :=
(
40e4 + 16κ2 + 2e2λ4 + 11λ44

) 1
ε

(7.6.30)

We have completed the renormalization of all the 1PI diagrams that can contribute to pion-pion
scattering processes.
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Conclusion and Outlook

W
e set off on a journey to extend the Kroll-Lee-Zumino model which only had as its
particle content the charged pions and neutral rho. This was done by using the larger
gauge group SU(2). This group allowed for the inclusion of a larger particle content
with the charged and neutral pions and rhos. Though there was a price to be paid

in the form of simplicity. Whereas for the Kroll-Lee-Zumino model, the neutral rho mass could be
included externally by hand without breaking the U(1) gauge invariance, such a procedure in the
SU(2) extension was not possible as it breaks the gauge invariance of the theory. The predictive
power of gauge theories were too alluring to sacrifice and this forced us to generate the mass for the
rho via Spontaneous Symmetry breaking using the Higgs mechanism while preserving the gauge
invariance.

We went on to calculate the pion-pion scattering amplitudes. The scattering lengths a and b were
then computed with values summarized in the table 6.1, listed below for convenience:

Lengths Weinbergd χPT(1stO)a χPT(2ndO)a NABKLZ† Colangelob Bijnensc Expabc

a0
0 0.20 0.16 0.20 0.21 0.220 0.219 0.220± 0.005
b0

0 0.18 0.26 0.30 0.276 0.279 0.25± 0.03
a0

2 × 103 0 2 2.06 1.75 2.2 1.7± 3
b0

2 × 104 −5.23 −3.55 −3.2

a1
1 0.030 0.036 0.0528 0.0379 0.0378 0.038± 0.002
b1

1 0 0.043 0.0053 0.0057 0.0059

a2
0 −0.06 −0.045 −0.041 −0.0456 −0.0444 −0.0420 −0.044± 0.001
b2

0 −0.0225 −0.0803 −0.0756 −0.082± 0.008
a2

2 × 104 0 3.5 −2.03 1.70 2.90 1.3± 3
b2

2 × 104 −8.9 −7 −0.53 −3.26 −3.60 −8.2

Table 8.1: Summary of predicted values and experimental data of the scattering length.
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8. Conclusion and Outlook

We sought to increase the precision with the inclusion of the one loop corrections to the tree scat-
tering lengths. This entailed computing the ∼ 85 one-particle-irreducible diagrams. The calculations
were done using dimensional regularization to parameterize the divergences. These divergences
were absorbed into the counter terms using the On Shell renormalization conditions for the self
energies and Minimal Subtraction for the vertices. All the pieces required to compute the one loop
correction to the tree scattering lengths have been calculated but due to time constraints we could
not complete the program of computing the one loop correction to the scattering lengths.

For the future, one possible path lies ahead with:

• Completing the program with the inclusion of the one loop corrections to the scattering lengths.
At this stage we cannot estimate the size of the corrections, since the expansion parameter

for the perturbative series is of the form
(
e

4π

)2
= 0.2 < 1, this could lead to a reasonable

perturbative series, though the size of the coefficients to the expansion parameter cannot be
commented on without further analysis.

• Changing from the isospin basis to the physical basis gives direct access to the rho decay rates.
• Computing the pion form factor using this quantum field theory as this has been a fruitful

path of investigation for the U(1) Kroll-Lee-Zumino model.

For further development of the model, one could consider if the ω(782) could be included to this
model? One could follow the path taken in the standard electroweak model and introduce an addi-
tional vector field and mix one component of the rho triplet with the new vector field to give the ρ0

and ω. This requires investigation whether this is possible.
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A
Scalar Functions

The scalar functions used in these calculations are defined below. In n = 4− 2ε dimensions

∆ := 1
ε

+ γe (A.1)

γe := −γE + ln (4π) (A.2)

The one point scalar function:

A0 (m) =
∫ dnk

(2π)n
1

k2 −m2

= i

(4π)2

[
m2∆ + AF (m) +O (ε)

]
(A.3)

with the finite part defined as

AF (m) := m2
(

ln m
2

µ2 + 1
)

(A.4)

The two point scalar function:

B0 (m0; p,m1) :=
∫ dnk

(2π)n
1

(k2 −m2
0)
[
(k + p)2 −m2

1

]
= i

(4π)2 [∆ +BF (m0; p,m1) +O (ε)] (A.5)

with the finite part

BF (m0; p,m1) := 2− ln m0m1

µ2 + m2
0 −m2

1
p2 ln m1

m0
− m0m1

p2

(1
r
− r

)
ln (r) (A.6)

the value of r is found from the roots of the polynomial equation

x2 + m2
0 +m2

1 − p2 − iε
m0m1

x+ 1 = (x+ r)
(
x+ 1

r

)
(A.7)
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A. Scalar Functions

with

r = 1
2m0m1

(
m2

0 +m2
1 − p2 − iε±

√
(m2

0 +m2
1 − p2 − iε)2 − 4m2

0m
2
1

)
(A.8)

1
r
− r = ∓ 1

m0m1

√
(m2

0 +m2
1 − p2 − iε)2 − 4m2

0m
2
1 (A.9)

The three and four point scalar functions are finite in 4 dimensions and are defined as

C0 (m0, p1,m1, p2,m2) :=
∫ dnk

(2π)n
1

(k2 −m2
0)
[
(k + p1)2 −m2

1

] [
(k + p2)2 −m2

2

] (A.10)

and

D0 (m0, p1,m1, p2,m2, p3,m3) :=
∫ dnk

(2π)n
1

(k2 −m2
0)
[
(k + p1)2 −m2

1

] [
(k + p2)2 −m2

2

] [
(k + p3)2 −m2

3

]
(A.11)
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B
Self Energy

For completeness, the reduction for the self energies are presented below.

B.1 Vector Self Energy

B.1.1 φ bubble

Γ1 = eεadc(2k + p)µ Γ2 = eεbef (2k + p)ν

−iπµνab1 =
∫ dnk

(2π)nΓ1 ·Ddf (k) · Γ2 ·Dce (k + p)

=
∫ dnk

(2π)n
eεadc(2k + p)µ · δdf · eεbef (2k + p)νδce

(k2 −m2)
[
(k + p)2 −m2

]
= e2εcdaεcdb

∫ dnk

(2π)n
(2k + p)µ(2k + p)ν

(k2 −m2)
[
(k + p)2 −m2

]
= e2εcdaεcdbI

µν
1

Using εcdaεcdb = 2δab

−iπµνab1 = 2e2δabI
µν
1

Making some definitions

Nµν
1 := (2k + p)µ(2k + p)ν
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B. Self Energy

= 4kµkν + 2 (kµpν + pµkν) + pµpν

D1 := k2 −m2

D2 := (k + p)2 −m2

= k2 + 2k · p+ p2 −m2

= D1 + 2k · p+ p2

So we have the relations

k2 = D1 +m2

2k · p = D2 −D1 − p2

Splitting the integral over the transverse and longitudinal parts

Iµν1 :=
∫ dnk

(2π)n
Nµν

1
D1D2

= fT1P
µν
T + fL1P

µν
L

and we can extract the coefficients using the transverse and longitudinal projectors.

PLµνI
µν
1 = fL1

PTµνI
µν
1 = (n− 1) fT1

PLµνN
µν
1 = 1

p2

(
2k · p+ p2

)2

= 1
p2

(
D2

2 − 2D1D2 +D2
1

)

PTµνN
µν
1 = gµνN

µν
1 − PLµνN

µν
1

gµνN
µν
1 = 4k2 + 2k · p+ p2

= 2D1 + 2D2 + 4m2 − p2

fL1 =
∫ dnk

(2π)n
PLµνN

µν
1

D1D2

= 1
p2

∫ dnk

(2π)n
D2

2 − 2D1D2 +D2
1

D1D2

= 1
p2

∫ dnk

(2π)n
(
D2

D1
+ D1

D2
− 2

)
= 1
p2

∫ dnk

(2π)n
(
D2

D1
+ D1

D2

)

∫ dnk

(2π)n
D1

D2
=
∫ dnk

(2π)n
k2 −m2

(k + p)2 −m2
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B. Self Energy

Making a change of variables lµ = −(k + p)µ ⇒ kµ = −(l + p)µ ⇒
∫ dnk

(2π)n =
∫ dnl

(2π)n

∫ dnk

(2π)n
D1

D2
=
∫ dnl

(2π)n
(l + p)2 −m2

l2 −m2

=
∫ dnk

(2π)n
D2

D1

=
∫ dnk

(2π)n
(

1 + 2k · p
k2 −m2 + p2

k2 −m2

)
= p2A0 (m)

fL1 = 1
p2

∫ dnk

(2π)n
(
D2

D1
+ D1

D2

)
= 2A0 (m)

(n− 1) fT1 = PTµνI
µν
1

=
∫ dnk

(2π)n
PTµνN

µν
1

D1D2

=
∫ dnk

(2π)n
(
gµνN

µν
1

D1D2
− PLµνN

µν
1

D1D2

)

=
∫ dnk

(2π)n
2D1 + 2D2 + 4m2 − p2

D1D2
−
∫ dnk

(2π)n
PLµνN

µν
1

D1D2

=
∫ dnk

(2π)n
[

2
D1

+ 2
D2

+ 4m2 − p2

D1D2

]
− fL1

= 4A0 (m) +
(
4m2 − p2

)
B0 (m; p,m)− 2A0 (m)

= 2A0 (m) +
(
4m2 − p2

)
B0 (m; p,m)

=⇒ fT1 = 1
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]

Iµν1 = 1
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
P µν
T + 2A0 (m)P µν

L

−iπµνab1 = 2e2δabI
µν
1

= 2e2δab
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
P µν
T + 4e2δabA0 (m)P µν

L
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B. Self Energy

B.1.2 φ tadpole

Γ = ie2gµν (εjacεjbd + εjadεjbc)

−iπµνab2 =
∫ dnk

(2π)nΓ ·Dcd (k)

=
∫ dnk

(2π)n ie
2gµν (εjacεjbd + εjadεjbc) ·

iδcd

k2 −m2

= −e2gµν (εjacεjbc + εjacεjbc)
∫ dnk

(2π)n
1

k2 −m2

= −2e2gµνεjacεjbcA0 (m)
= −4e2δabg

µνA0 (m)
= −4e2δab (P µν

T + P µν
L )A0 (m)

= −4e2δabA0 (m)P µν
T − 4e2δabA0 (m)P µν

L

B.1.3 H-ρ bubble

Γ1 = ie2νδacgαµ Γ2 = ie2νδbdgβν

Dcd
αβ (k) = −iδcdgαβ

k2 −M2 D (k + p) = i

(k + p)2 −m2
H

−iπµνab3 =
∫ dnk

(2π)nΓ1 ·Dcd
αβ (k) · Γ2 ·D (k + p)

= −
(
e2ν

)2
δabg

µν
∫ dnk

(2π)n
1

(k2 −M2)
[
(k + p)2 −m2

H

]
= −e2(eν)2δab (P µν

T + P µν
L )B0 (M ; p,mH)

= −e2(eν)2δabB0 (M ; p,mH)P µν
T − e2(eν)2δabB0 (M ; p,mH)P µν

L

Recall the definition M := eν

−iπµνab3 = −e2M2δabB0 (M ; p,mH)P µν
T − e2M2δabB0 (M ; p,mH)P µν

L
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B. Self Energy

B.1.4 H tadpole

Γ = 1
2ie

2δabg
µν D (k) = i

k2 −m2
H

−iπµνab4 =
∫ dnk

(2π)nΓ ·D (k)

= −1
2e

2δabg
µν
∫ dnk

(2π)n
1

k2 −m2
H

= −1
2e

2δab (P µν
T + P µν

L )A0 (mH)

= −1
2e

2δabA0 (mH)P µν
T −

1
2e

2δabA0 (mH)P µν
L

B.1.5 H-Goldstone bubble

Γ1 = 1
2eδac(2k + p)µ Γ2 = 1

2eδbd(2k + p)ν

Dcd (k) = iδcd

k2 −M2 D (k + p) = i

(k + p)2 −m2
H

−iπµνab5 =
∫ dnk

(2π)nΓ1 ·Dcd (k) · Γ2 ·D (k + p)

= −1
4e

2δab

∫ dnk

(2π)n
(2k + p)µ(2k + p)ν

(k2 −M2)
[
(k + p)2 −m2

H

]
= −1

4e
2δabI

µν
5

Some definitions

Nµν
5 := (2k + p)µ(2k + p)ν

= 4kµkν + 2 (kµpν + pµkν) + pµpν

D1 := k2 −M2
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B. Self Energy

D2 := (k + p)2 −m2
H

= D1 + 2k · p+M2 + p2 −m2
H

Now we have the relations

k2 = D1 +M2

2k · p = D2 −D1 +m2
H −M2 − p2

Iµν5 :=
∫ dnk

(2π)n
Nµν

5
D1D2

= fT5P
µν
T + fL5P

µν
L

PLµνN
µν
5 = 1

p2

(
2k · p+ p2

)2

= 1
p2

[
D2

2 − 2D1D2 +D2
1 + 2M2 (D1 −D2) + 2m2

H (D2 −D1) +
(
m2
H −M2

)2
]

= 1
p2

[
D2

2 − 2D1D2 +D2
1 + 2

(
m2
H −M2

)
(D2 −D1) +

(
m2
H −M2

)2
]

PTµνN
µν
5 = gµνN

µν
5 − PLµνN

µν
5

gµνN
µν
5 = 4k2 + 2k · p+ p2

= 2D1 + 2D2 + 2m2
H + 2M2 − p2

fL5 =
∫ dnk

(2π)n
PLµνN

µν
5

D1D2

= 1
p2

∫ dnk

(2π)n
D2

2 − 2D1D2 +D2
1 + 2 (m2

H −M2) (D2 −D1) + (m2
H −M2)2

D1D2

= 1
p2

∫ dnk

(2π)n
[
D2

D1
+ D1

D2
− 2 + 2

(
m2
H −M2

)( 1
D1
− 1
D2

)
+ (m2

H −M2)2

D1D2

]

= 1
p2

∫ dnk

(2π)n
[
D2

D1
+ D1

D2
+ 2

(
m2
H −M2

) ( 1
D1
− 1
D2

)
+ (m2

H −M2)2

D1D2

]

∫ dnk

(2π)n
D1

D2
=
∫ dnk

(2π)n
k2 −M2

(k + p)2 −m2
H

We make a change of variables lµ = −(k + p)µ ⇒ kµ = −(l + p)µ ⇒
∫ dnk

(2π)n =
∫ dnl

(2π)n∫ dnk

(2π)n
D1

D2
=
∫ dnl

(2π)n
(l + p)2 −M2

l2 −m2
H
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B. Self Energy

=
∫ dnk

(2π)n
k2 + 2k · p+ p2 −M2

k2 −m2
H

=
∫ dnk

(2π)n
k2 −m2

H + 2k · p+m2
H −M2 + p2

k2 −m2
H

=
∫ dnk

(2π)n
[
1 + 2k · p

k2 −m2
H

+ m2
H −M2 + p2

k2 −m2
H

]
=
(
m2
H −M2 + p2

)
A0 (mH)

∫ dnk

(2π)n
D2

D1
=
∫ dnk

(2π)n
(k + p)2 −m2

H

k2 −M2

=
∫ dnk

(2π)n
k2 + 2k · p+ p2 −m2

H

k2 −M2

=
∫ dnk

(2π)n
k2 −M2 + 2k · p−m2

H +M2 + p2

k2 −M2

=
∫ dnk

(2π)n
[
1 + 2k · p

k2 −M2 + −m
2
H +M2 + p2

k2 −M2

]
=
(
−m2

H +M2 + p2
)
A0 (M)

fL5 = 1
p2

∫ dnk

(2π)n
[
D2

D1
+ D1

D2
+ 2

(
m2
H −M2

)( 1
D1
− 1
D2

)
+ (m2

H −M2)2

D1D2

]

= 1
p2

 (−m2
H +M2 + p2

)
A0 (M) +

(
m2
H −M2 + p2

)
A0 (mH) + 2

(
m2
H −M2

)
(A0 (M)− A0 (mH)) +

+
(
m2
H −M2

)2
B0 (M ; p,mH)


= 1
p2

 (m2
H −M2

)
(A0 (mH)− A0 (M)) + p2 (A0 (M) + A0 (mH)) + 2

(
m2
H −M2

)
(A0 (M)− A0 (mH)) +

+
(
m2
H −M2

)2
B0 (M ; p,mH)


= 1
p2

[
−
(
m2
H −M2

)
(A0 (mH)− A0 (M)) + p2 (A0 (M) + A0 (mH)) +

(
m2
H −M2

)2
B0 (M ; p,mH)

]

= A0 (M) + A0 (mH) + m2
H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]

(n− 1) fT5 = PTµνI
µν
5

=
∫ dnk

(2π)n
PTµνN

µν
5

D1D2
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B. Self Energy

=
∫ dnk

(2π)n
(
gµνN

µν
5

D1D2
− PLµνN

µν
5

D1D2

)

=
∫ dnk

(2π)n
2D1 + 2D2 + 2m2

H + 2M2 − p2

D1D2
−
∫ dnk

(2π)n
PLµνN

µν
5

D1D2

=
∫ dnk

(2π)n
[

2
D1

+ 2
D2

+ 2m2
H + 2M2 − p2

D1D2

]
− fL5

= 2A0 (M) + 2A0 (mH) +
(
2m2

H + 2M2 − p2
)
B0 (M ; p,mH)− A0 (M)− A0 (mH) +

− m2
H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]
= A0 (M) + A0 (mH) +

(
2m2

H + 2M2 − p2
)
B0 (M ; p,mH) +

− m2
H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]

Iµν5 = fT5P
µν
T + fL5P

µν
L

= 1
n− 1

A0 (M) + A0 (mH) +
(
2m2

H + 2M2 − p2
)
B0 (M ; p,mH) +

− m2
H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]P µν
T +

+
{
A0 (M) + A0 (mH) + m2

H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]}
P µν
L

−iπµνab5 = −1
4e

2δabI
µν
5

= − e2δab
4 (n− 1)

{
A0 (M) + A0 (mH) +

(
2m2

H + 2M2 − p2
)
B0 (M ; p,mH) +

− m2
H −M2

p2

[
A0 (M)− A0 (mH) +

(
m2
H −M2

)
B0 (M ; p,mH)

] }
P µν
T +

− 1
4e

2δab

{
A0 (M) + A0 (mH) + m2

H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]}
P µν
L

B.1.6 Goldstone bubble

Γ1 = 1
2eεadc(2k + p)µ Γ2 = 1

2eεbfg(2k + p)ν
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B. Self Energy

Ddg (k) = iδdg

k2 −M2 Dcf (k + p) = iδcf

(k + p)2 −M2

−iπµνab8 =
∫ dnk

(2π)nΓ1 ·Ddg (k) · Γ2 ·Dcf (k + p)

= −1
4e

2εadcεbcd

∫ dnk

(2π)n
(2k + p)µ(2k + p)ν

(k2 −M2)
[
(k + p)2 −M2

]
= 1

2e
2δab

∫ dnk

(2π)n
(k + p)µ(k + p)ν

(k2 −M2)
[
(k + p)2 −M2

]
= 1

2e
2δabI

µν
8

Making some definitions

Nµν
8 := (2k + p)µ(2k + p)ν

= 4kµkν + 2 (kµpν + pµkν) + pµpν

D1 := k2 −M2

D2 := (k + p)2 −M2

= k2 + 2k · p+ p2 −M2

= D1 + 2k · p+ p2

We have the relations

k2 = D1 +M2

2k · p = D2 −D1 − p2

Iµν8 :=
∫ dnk

(2π)n
Nµν

8
D1D2

= fT8P
µν
T + fL8P

µν
L

Looking at Nµν
8 , D1, D2 we see the this is the same integral as in the case of the Iµν1 but with the

replacement of m→M .

fT8 = fT1

fL8 = fL1

Iµν8 = 1
n− 1

[
2A0 (M) +

(
4M2 − p2

)
B0 (M ; p,M)

]
P µν
T + 2A0 (M)P µν

L

−iπµνab8 = 1
2e

2δabI
µν
8

= e2δab
2 (n− 1)

[
2A0 (M) +

(
4M2 − p2

)
B0 (M ; p,M)

]
P µν
T + e2δabA0 (M)P µν

L
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B. Self Energy

B.1.7 Goldstone tadpole

Γ = 1
2ie

2δabδcdgµν Dcd (k) = iδcd

k2 −M2

−iπµνab6 =
∫ dnk

(2π)nΓ ·Dcd (k)

= −1
2e

2δabδccgµν
∫ dnk

(2π)n
1

k2 −M2

= −3
2e

2δab (P µν
T + P µν

L )A0 (M)

= −3
2e

2δabA0 (M)P µν
T −

3
2e

2δabA0 (M)P µν
L

B.1.8 Ghost bubble

Γ1 = −eεadc(k + p)µ Γ2 = eεbfg(k + p)ν

Ddg (k) = iδdg

k2 −M2 Dcf (k + p) = iδcf

(k + p)2 −M2

−iπµνab7 = (−1)
∫ dnk

(2π)nΓ1 ·Ddg (k) · Γ2 ·Dcf (k + p)

= −e2εadcεbcd

∫ dnk

(2π)n
(k + p)µ(k + p)ν

(k2 −M2)
[
(k + p)2 −M2

]
= 2e2δab

∫ dnk

(2π)n
(k + p)µ(k + p)ν

(k2 −M2)
[
(k + p)2 −M2

]
= 2e2δabI

µν
7

Some definitions

Nµν
7 := (k + p)µ(k + p)ν
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= kµkν + (kµpν + pµkν) + pµpν

D1 := k2 −M2

D2 := (k + p)2 −M2

= k2 + 2k · p+ p2 −M2

= D1 + 2k · p+ p2

We have the relations

k2 = D1 +M2

2k · p = D2 −D1 − p2

Iµν7 :=
∫ dnk

(2π)n
Nµν

7
D1D2

= fT7P
µν
T + fL7P

µν
L

PLµνN
µν
7 = 1

p2

[
(k · p)2 + p2 (2k · p) + p4

]
= 1

4p2

[
D2

1 +D2
2 − 2D1D2 + 2p2 (D2 −D1) + p4

]

PTµνN
µν
7 = gµνN

µν
7 − PLµνN

µν
7

gµνN
µν
7 = k2 + 2k · p+ p2

= D2 +M2

fL7 =
∫ dnk

(2π)n
PLµνN

µν
7

D1D2

= 1
4p2

∫ dnk

(2π)n
D2

1 +D2
2 − 2D1D2 + 2p2 (D2 −D1) + p4

D1D2

= 1
4p2

∫ dnk

(2π)n
[
D1

D2
+ D2

D1
− 2 + 2p2

( 1
D1
− 1
D2

)
+ p4

D1D2

]

∫ dnk

(2π)n
D1

D2
=
∫ dnk

(2π)n
k2 −M2

(k + p)2 −M2

Making a change of variables lµ = −(k + p)µ ⇒ kµ = −(l + p)µ ⇒
∫ dnk

(2π)n =
∫ dnl

(2π)n

∫ dnk

(2π)n
D1

D2
=
∫ dnl

(2π)n
(l + p)2 −M2

l2 −M2
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=
∫ dnk

(2π)n
D2

D1

=
∫ dnk

(2π)n
(

1 + 2k · p
k2 −M2 + p2

k2 −M2

)
= p2A0 (M)

fL7 = 1
4p2

[
2p2A0 (M) + p4B0 (M ; p,M)

]
= 1

2A0 (M) + 1
4p

2B0 (M ; p,M)

(n− 1) fT7 = PTµνI
µν
7

=
∫ dnk

(2π)n
PTµνN

µν
7

D1D2

=
∫ dnk

(2π)n
(
gµνN

µν
7

D1D2
− PLµνN

µν
7

D1D2

)

=
∫ dnk

(2π)n
D2 +M2

D1D2
−
∫ dnk

(2π)n
PLµνN

µν
7

D1D2

= A0 (M) +M2B0 (M ; p,M)− fL7

= A0 (M) +M2B0 (M ; p,M)− 1
2A0 (M)− 1

4p
2B0 (M ; p,M)

= 1
2A0 (M) +

(
M2 − 1

4p
2
)
B0 (M ; p,M)

Iµν7 = fT7P
µν
T + fL7P

µν
L

= 1
n− 1

[1
2A0 (M) +

(
M2 − 1

4p
2
)
B0 (M ; p,M)

]
P µν
T +

[1
2A0 (M) + 1

4p
2B0 (M ; p,M)

]
P µν
L

−iπµνab7 = 2e2δabI
µν
7

= 2e2δab
n− 1

[1
2A0 (M) +

(
M2 − 1

4p
2
)
B0 (M ; p,M)

]
P µν
T + 2e2δab

[1
2A0 (M) + 1

4p
2B0 (M ; p,M)

]
P µν
L

B.1.9 ρ bubble

Γ1 = eεadc
[
−(2k + p)µgαβ + (k + 2p)βgµα + (k − p)αgµβ

]
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B. Self Energy

Γ2 = eεfgb
[
−(2k + p)νgκλ + (k + 2p)λgκν + (k − p)κgλν

]
Ddg
βλ (k) = −iδdggβλ

k2 −M2 Dcf
ακ (k + p) = −iδcfgακ

(k + p)2 −M2

− iπµνab9 =
∫ dnk

(2π)nΓ1 ·Ddg
βλ (k) · Γ2 ·Dcf

ακ (k + p)

= −e2εadcεbcd

∫ dnk

(2π)n×

×

[
−(2k + p)µgαβ + (k + 2p)βgµα + (k − p)αgµβ

]
· gβλgακ ·

[
−(2k + p)νgκλ + (k + 2p)λgκν + (k − p)κgλν

]
(k2 −M2)

[
(k + p)2 −M2

]
= 2e2δab×∫ dnk

(2π)n

[
−(2k + p)µgαβ + (k + 2p)βgµα + (k − p)αgµβ

] [
−(2k + p)νgαβ + (k + 2p)βgνα + (k − p)αgνβ

]
(k2 −M2)

[
(k + p)2 −M2

]
= 2e2δabI

µν
9

Some definitions

Nµν
9 :=

[
−(2k + p)µgαβ + (k + 2p)βgµα + (k − p)αgµβ

] [
−(2k + p)νgαβ + (k + 2p)βg

ν
α + (k − p)αg

ν
β

]
= (4n− 6) kµkν + (2n− 3) (kµpν + pµkν) + (n− 6) pµpν +

(
2k2 + 2k · p+ 5p2

)
gµν

D1 := k2 −M2

D2 := (k + p)2 −M2

= k2 + 2k · p+ p2 −M2

= D1 + 2k · p+ p2

We have the relations

k2 = D1 +M2

2k · p = D2 −D1 − p2

We can simplify Nµν
9 with the above relations

Nµν
9 = (4n− 6) kµkν + (2n− 3) (kµpν + pµkν) + (n− 6) pµpν +

(
D1 +D2 + 2M2 + 4p2

)
gµν

Iµν9 :=
∫ dnk

(2π)n
Nµν

9
D1D2

= fT9P
µν
T + fL9P

µν
L

PLµνN
µν
9 = 1

p2

[
(4n− 6) (k · p)2 + (2n− 3) p2 (2k · p) + (n− 6) p4 +

(
D1 +D2 + 2M2 + 4p2

)
p2
]

= 1
p2

[(
n− 3

2

) (
D2

1 +D2
2

)
+ (3− 2n)D1D2 + p2 (D1 +D2) + 1

2p
2
(
4M2 − p2

)]
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PTµνN
µν
9 = gµνN

µν
9 − PLµνN

µν
9

gµνN
µν
9 = (4n− 6) k2 + (2n− 3) (2k · p) + (n− 6) p2 + n

(
D1 +D2 + 2M2 + 4p2

)
= 3 (n− 1) (D1 +D2) + 2 · 3 (n− 1)m2 + 3 (n− 1) p2

= 3 (n− 1)
[
(D1 +D2) + 2m2 + p2

]

fL9 =
∫ dnk

(2π)n
PLµνN

µν
9

D1D2

= 1
p2

∫ dnk

(2π)n
1

D1D2

[(
n− 3

2

) (
D2

1 +D2
2

)
+ (3− 2n)D1D2 + p2 (D1 +D2) + 1

2p
2
(
4M2 − p2

)]
= 1
p2

∫ dnk

(2π)n
[(
n− 3

2

)(
D1

D2
+ D2

D1

)
+ (3− 2n) + p2

( 1
D1

+ 1
D2

)
+ 1

2p
2
(
4M2 − p2

) 1
D1D2

]
= 1
p2

∫ dnk

(2π)n
[(
n− 3

2

)(
D1

D2
+ D2

D1

)
+ p2

( 1
D1

+ 1
D2

)
+ 1

2p
2
(
4M2 − p2

) 1
D1D2

]

∫ dnk

(2π)n
D1

D2
=
∫ dnk

(2π)n
k2 −M2

(k + p)2 −M2

Making a change of variables lµ = −(k + p)µ ⇒ kµ = −(l + p)µ ⇒
∫ dnk

(2π)n =
∫ dnl

(2π)n

∫ dnk

(2π)n
D1

D2
=
∫ dnl

(2π)n
(l + p)2 −M2

l2 −M2

=
∫ dnk

(2π)n
D2

D1

=
∫ dnk

(2π)n
(

1 + 2k · p
k2 −M2 + p2

k2 −M2

)
= p2A0 (M)

fL9 = 1
p2

∫ dnk

(2π)n
[(
n− 3

2

)(
D1

D2
+ D2

D1

)
+ p2

( 1
D1

+ 1
D2

)
+ 1

2p
2
(
4M2 − p2

) 1
D1D2

]
= 1
p2

[
2
(
n− 3

2

)
p2A0 (M) + 2p2A0 (M) + 1

2p
2
(
4M2 − p2

)
B (M ; p,M)

]
= (2n− 1)A0 (M) + 1

2
(
4M2 − p2

)
B (M ; p,M)

(n− 1) fT9 = PTµνI
µν
9

110



B. Self Energy

=
∫ dnk

(2π)n
PTµνN

µν
9

D1D2

=
∫ dnk

(2π)n
(
gµνN

µν
9

D1D2
− PLµνN

µν
9

D1D2

)

=
∫ dnk

(2π)n
3 (n− 1) [(D1 +D2) + 2M2 + p2]

D1D2
−
∫ dnk

(2π)n
PLµνN

µν
9

D1D2

= 3 (n− 1)
∫ dnk

(2π)n
[

1
D1

+ 1
D2

+ 2M2 + p2

D1D2

]
− fL9

= 3 (n− 1)
[
2A0 (M) +

(
2M2 + p2

)
B (M ; p,M)

]
− (2n− 1)A0 (M) +

− 1
2
(
4M2 − p2

)
B (M ; p,M)

=⇒ (n− 1) fT9 = (4n− 5)A0 (M) + 1
2
[
4(3n− 4)M2 + (6n− 5) p2

]
B (M ; p,M)

Iµν9 = fT9P
µν
T + fL9P

µν
L

=
{

4n− 5
n− 1 A0 (M) + 1

2 (n− 1)
[
4(3n− 4)M2 + (6n− 5) p2

]
B (M ; p,M)

}
P µν
T +

+
[
(2n− 1)A0 (M) + 1

2
(
4M2 − p2

)
B (M ; p,M)

]
P µν
L

−iπµνab9 = 2e2δabI
µν
9

= 2e2δab

{
4n− 5
n− 1 A0 (M) + 1

2 (n− 1)
[
4(3n− 4)M2 + (6n− 5) p2

]
B (M ; p,M)

}
P µν
T +

+ 2e2δab

[
(2n− 1)A0 (M) + 1

2
(
4M2 − p2

)
B (M ; p,M)

]
P µν
L

B.1.10 ρ tadpole

Γ = −ie2
[
εabeεcde

(
gµλgνσ − gµσgνλ

)
+ εaceεbde

(
gµνgσλ − gµσgνλ

)
+ εadeεbce

(
gµνgσλ − gµλgνσ

)]
Dcd
σλ (k) = −iδcdgσλ

k2 −M2

−iπµνab10 =
∫ dnk

(2π)nΓ ·Dcd
σλ (k)
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= −e2
[
εabeεcde

(
gµλgνσ − gµσgνλ

)
+ εaceεbde

(
gµνgσλ − gµσgνλ

)
+ εadeεbce

(
gµνgσλ − gµλgνσ

)]
δcdgσλ×

×
∫ dnk

(2π)n
1

k2 −M2

= −e2
[
εabeεcce

(
gµλgνσ − gµσgνλ

)
gσλ + εaceεbce (ngµν − gµν) + εaceεbce (ngµν − gµν)

]
A0 (M)

= −2e2 (n− 1) εaceεbcegµνA0 (M)
= −4e2 (n− 1) δab (P µν

T + P µν
L )A0 (M)

= −4e2δab (n− 1)A0 (M)P µν
T − 4e2δab (n− 1)A0 (M)P µν

L

B.1.11 lollipops

B.1.11.1 φ

Γ2 = 2eεdabkγ Dab (k) = iδab

k2 −m2

tdγA1 =
∫ dnk

(2π)nΓ2 ·Dab (k)

= 2ieεdaa
∫ dnk

(2π)n
kγ

k2 −m2

= 0

B.1.11.2 Goldstone

Γ2 = −eεdabkγ Dab (k) = iδab

k2 −M2

tdγA2 =
∫ dnk

(2π)nΓ2 ·Dab (k)
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B. Self Energy

= −ieεdaa
∫ dnk

(2π)n
kγ

k2 −m2

= 0

B.1.11.3 ghost

Γ2 = eεdabk
γ Dab (k) = iδab

k2 −M2

tdγA3 =
∫ dnk

(2π)nΓ2 ·Dab (k)

= ieεdaa

∫ dnk

(2π)n
kγ

k2 −m2

= 0

B.1.11.4 ρ

Γ2 = eεdab
[
kαgβγ + kβgαγ − 2kγgαβ

]
Dab
αβ (k) = −iδ

abgαβ
k2 −M2

tdγA4 =
∫ dnk

(2π)nΓ2 ·Dab (k)

= −ieεdaa
∫ dnk

(2π)n
kαgβγ + kβgαγ − 2kγgαβ

k2 −m2

= 0

113
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B.1.11.5 Higgs

Γ2 = −3
2iλν D (k) = i

k2 −m2
H

tH1 =
∫ dnk

(2π)nΓ2 ·D (k)

= 3
2λν

∫ dnk

(2π)n
1

k2 −m2
H

= 3
2λνA0 (mH)

B.1.11.6 Goldstone

Γ2 = −1
2iλνδab Dab (k) = iδab

k2 −M2

tH2 =
∫ dnk

(2π)nΓ2 ·Dab (k)

= 1
2λνδaa

∫ dnk

(2π)n
1

k2 −M2

= 3
2λνA0 (M)

B.1.11.7 ρ

Γ2 = 1
2ie

2νδabg
αβ Dab

αβ (k) = −iδ
abgαβ

k2 −M2
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tH3 =
∫ dnk

(2π)nΓ2 ·Dab
αβ (k)

= 1
2e

2νnδaa
∫ dnk

(2π)n
1

k2 −M2

= 3
2e

2νnA0 (M)

B.1.11.8 φ

Γ2 = −4iκνδab Dab (k) = iδab

k2 −m2

tH4 =
∫ dnk

(2π)nΓ2 ·Dab (k)

= 4κνδaa
∫ dnk

(2π)n
1

k2 −m2

= 12κνA0 (m)

B.1.11.9 ghost

Γ2 = 1
2ie

2νδab Dab (k) = iδab

k2 −M2

tH5 =
∫ dnk

(2π)nΓ2 ·Dab (k)

= −1
2e

2νδaa
∫ dnk

(2π)n
1

k2 −M2

= −3
2e

2νA0 (M)
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TH =
5∑

k=1
tHk

= 3
2ν
{
λA0 (mH) +

[
λ+ e2 (n− 1)

]
A0 (M) + 8κA0 (m)

}

Γ = ie2νδabg
µν D (0) = −i

m2
H

= ie2νδab (P µν
T + P µν

L )

−iπµνab11 = Γ ·D (0) · TH

= ie2νδab (P µν
T + P µν

L ) · −i
m2
H

· 3
2ν
{
λA0 (mH) +

[
λ+ e2 (n− 1)

]
A0 (M) + 8κA0 (m)

}
= 3

2e
2ν2δab (P µν

T + P µν
L )

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}

= 3
2M

2δab

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
P µν
T +

+ 3
2M

2δab

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
P µν
L

B.1.12 Summary

−iπµνab1 = 2e2δabI
µν
1

= 2e2δab
n− 1

[
2A0 (m) +

(
4m2 − p2

)
B0 (m; p,m)

]
P µν
T + 4e2δabA0 (m)P µν

L
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−iπµνab2 = −4e2δabA0 (m)P µν
T − 4e2δabA0 (m)P µν

L

−iπµνab3 = −e2M2δabB0 (M ; p,mH)P µν
T − e2M2δabB0 (M ; p,mH)P µν

L

−iπµνab4 = −1
2e

2δabA0 (mH)P µν
T −

1
2e

2δabA0 (mH)P µν
L

−iπµνab5 = − e2δab
4 (n− 1)

{
A0 (M) + A0 (mH) +

(
2m2

H + 2M2 − p2
)
B0 (M ; p,mH) +

− m2
H −M2

p2

[
A0 (M)− A0 (mH) +

(
m2
H −M2

)
B0 (M ; p,mH)

] }
P µν
T +

− 1
4e

2δab

{
A0 (M) + A0 (mH) + m2

H −M2

p2

[
−A0 (mH) + A0 (M) +

(
m2
H −M2

)
B0 (M ; p,mH)

]}
P µν
L

−iπµνab8 = e2δab
2 (n− 1)

[
2A0 (M) +

(
4M2 − p2

)
B0 (M ; p,M)

]
P µν
T + e2δabA0 (M)P µν

L

−iπµνab6 = −3
2e

2δabA0 (M)P µν
T −

3
2e

2δabA0 (M)P µν
L
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−iπµνab7 = 2e2δab
n− 1

[1
2A0 (M) +

(
M2 − 1

4p
2
)
B0 (M ; p,M)

]
P µν
T + 2e2δab

[1
2A0 (M) + 1

4p
2B0 (M ; p,M)

]
P µν
L

−iπµνab9 = 2e2δab

{
4n− 5
n− 1 A0 (M) + 1

2 (n− 1)
[
4(3n− 4)M2 + (6n− 5) p2

]
B (M ; p,M)

}
P µν
T +

+ 2e2δab

[
(2n− 1)A0 (M) + 1

2
(
4M2 − p2

)
B (M ; p,M)

]
P µν
L

−iπµνab10 = −4e2δab (n− 1)A0 (M)P µν
T − 4e2δab (n− 1)A0 (M)P µν

L

−iπµνab11 = 3
2M

2δab

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
P µν
T +

+ 3
2M

2δab

{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}
P µν
L

B.2 Higgs Self Energy

B.2.1 φ bubble
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Γ1 = −4iκνδab Γ2 = −4iκνδcd

Dbd (k) = iδbd
k2 −m2 Dac (k + p) = iδac

(k + p)2 −m2

−iπH1 =
∫ dnk

(2π)nΓ2 ·Dbd (k) · Γ1 ·Dac (k + p)

= (4κν)2δaa

∫ dnk

(2π)n
1

(k2 −m2)
[
(k + p)2 −m2

]
= 3(4κν)2B0 (m; p,m)
= 48κ2ν2B0 (m; p,m)

B.2.2 φ tadpole

Γ = −2iκδab Dab (k) = iδab
k2 −m2

−iπH2 =
∫ dnk

(2π)nΓ ·Dab (k)

= 2κδaa
∫ dnk

(2π)n
1

k2 −m2

= 6κA0 (m)

B.2.3 ρ bubble

Γ1 = ie2νδabg
αβ Γ2 = ie2νδcdg

γδ

Dbd
βδ (k) = −iδbdgβδ

k2 −M2 Dac
αγ (k + p) = −iδacgαγ

(k + p)2 −M2
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−iπH3 =
∫ dnk

(2π)nΓ2 ·Dbd (k) · Γ1 ·Dac (k + p)

= e4ν2nδaa

∫ dnk

(2π)n
1

(k2 −M2)
[
(k + p)2 −M2

]
= 3e4ν2nB0 (M ; p,M)

B.2.4 ρ tadpole

Γ = 1
2ie

2δabg
αβ Dab

αβ (k) = −iδabgαβ
k2 −M2

−iπH4 =
∫ dnk

(2π)nΓ ·Dab
αβ (k)

= 1
2e

2nδaa

∫ dnk

(2π)n
1

k2 −M2

= 3
2e

2nA0 (M)

B.2.5 Goldstone bubble

Γ1 = −1
2iλνδab Γ2 = −1

2iλνδcd

Dbd (k) = iδbd
k2 −M2 Dac (k + p) = iδac

(k + p)2 −M2

−iπH5 =
∫ dnk

(2π)nΓ2 ·Dbd (k) · Γ1 ·Dac (k + p)

=
(1

2λν
)2
δaa

∫ dnk

(2π)n
1

(k2 −M2)
[
(k + p)2 −M2

]
= 3

4λ
2ν2B0 (M ; p,M)
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B.2.6 Goldstone tadpole

Γ = −1
4iλδab Dab (k) = iδab

k2 −M2

−iπH6 =
∫ dnk

(2π)nΓ ·Dab (k)

= 1
4λδaa

∫ dnk

(2π)n
1

k2 −M2

= 3
4λA0 (M)

B.2.7 Higgs bubble

Γ1 = −3
2iλν Γ2 = −3

2iλν

D (k) = i

k2 −m2
H

D (k + p) = i

(k + p)2 −m2
H

−iπH7 =
∫ dnk

(2π)nΓ2 ·D (k) · Γ1 ·D (k + p)

=
(3

2λν
)2 ∫ dnk

(2π)n
1

(k2 −m2
H)
[
(k + p)2 −m2

H

]
= 9

4λ
2ν2B0 (mH ; p,mH)

B.2.8 Higgs tadpole
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Γ = −3
2iλ D (k) = i

k2 −m2
H

−iπH8 =
∫ dnk

(2π)nΓ ·D (k)

= 3
2λ

∫ dnk

(2π)n
1

k2 −m2
H

= 3
2λA0 (mH)

B.2.9 Goldstone-ρ bubble

Γ1 = −1
2eδac(k + 2p)α Γ2 = 1

2eδbd(k + 2p)β

Dac
αβ (k) = −iδacgαβ

k2 −M2 Dcd (k + p) = iδcd

(k + p)2 −M2

−iπH9 =
∫ dnk

(2π)nΓ2 ·Dac
αβ (k) · Γ1 ·Dcd (k + p)

= −1
4e

2δaa

∫ dnk

(2π)n
(k + 2p)2

(k2 −M2)
[
(k + p)2 −M2

]
= −3

4e
2I9

We make some definitions

D1 = k2 −M2

D2 = (k + p)2 −M2

= k2 + 2k · p+ p2 −M2

= D1 + 2k · p+ p2

Which gives us the relations

k2 = D1 +M2

2k · p = D2 −D1 − p2
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We can write the numerator as

N9 = (k + 2p)2

= k2 + 2 (2k · p) + 4p2

= 2D2 −D1 +M2 + 2p2

I9 =
∫ dnk

(2π)n
N9

D1D2

=
∫ dnk

(2π)n
2D2 −D1 +M2 + 2p2

D1D2

= 2A0 (M)− A0 (M) +
(
M2 + 2p2

)
B0 (M ; p,M)

= A0 (M) +
(
M2 + 2p2

)
B0 (M ; p,M)

−iπH9 = −3
4e

2I9

= −3
4e

2
[
A0 (M) +

(
M2 + 2p2

)
B0 (M ; p,M)

]

B.2.10 Ghost bubble

Γ1 = 1
2ie

2νδab; Γ2 = 1
2ie

2νδcd

Dbd (k) = iδbd
k2 −M2 Dac (k + p) = iδac

(k + p)2 −M2

−iπH10 =
∫ dnk

(2π)nΓ2 ·Dbd (k) · Γ1 ·Dac (k + p)

=
(1

2e
2ν
)2
δaa

∫ dnk

(2π)n
1

(k2 −M2)
[
(k + p)2 −M2

]
= 3

4e
4ν2B0 (M ; p,M)

= 3
4e

2M2B0 (M ; p,M)
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B.2.11 Lollipops

TH = 3
2ν
{
λA0 (mH) +

[
λ+ e2 (n− 1)

]
A0 (M) + 8κA0 (m)

}

Γ = −3
2iλν D (0) = −i

m2
H

−πH11 = Γ ·D (0) · TH

= −3
2iλν ·

−i
m2
H

· 3
2ν
{
λA0 (mH) +

[
λ+ e2 (n− 1)

]
A0 (M) + 8κA0 (m)

}
= −9

4λν
2
{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}

B.2.12 Summary

−iπH1 = 48κ2ν2B0 (m; p,m)

−iπH2 = 6κA0 (m)
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−iπH3 = 3e4ν2nB0 (M ; p,M)

−iπH4 = 3
2e

2nA0 (M)

−iπH5 = 3
4λ

2ν2B0 (M ; p,M)

−iπH6 = 3
4λA0 (M)

−iπH7 = 9
4λ

2ν2B0 (mH ; p,mH)

−iπH8 = 3
2λA0 (mH)
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B. Self Energy

−iπH9 = −3
4e

2
[
A0 (M) +

(
M2 + 2p2

)
B0 (M ; p,M)

]

−iπH10 = 3
4e

2M2B0 (M ; p,M)

−iπH11 = −9
4λν

2
{
λ
A0 (mH)
m2
H

+
[
λ+ e2 (n− 1)

] A0 (M)
m2
H

+ 8κA0 (m)
m2
H

}

126



Bibliography

[1] Yukawa H. On the interaction of elementary particles. Proc.Phys.Math.Soc.Jap. 17 (1935) 48;,
1935.

[2] M. Gell-Mann. A schematic model of baryons and mesons. Physics Letters, 8(3):214 – 215, 1964.

[3] G. Zweig. An su(3) model for strong interaction symmetry and its breaking. Technical Report
CERN Report No.8182/TH.401, CERN, 1964.

[4] G. Zweig. An su(3) model for strong interaction symmetry and its breaking:II. Technical Report
CERN Report No.8419/TH.412, CERN, 1964.

[5] Feynman R. P. The behavior of hadron collisions at extreme energies. In High Energy Collisions:
Third International Conference at Stony Brook, N.Y., 1969.

[6] Feynman R. P. Very high-energy collisions of hadrons. Phys. Rev. Lett., 23:1415–1417, Dec 1969.

[7] J. D. Bjorken and E. A. Paschos. Inelastic electron-proton and γ-proton scattering and the
structure of the nucleon. Phys. Rev., 185:1975–1982, Sep 1969.

[8] H. David Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett., 30:1346–
1349, Jun 1973.

[9] David J. Gross and Frank Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys.
Rev. Lett., 30:1343–1346, Jun 1973.

[10] Boyle P.A. Kaon physics from lattice. In PoS(KAON09)002, 2009.

[11] Tsung-Wen Yeh. Applicability of perturbative qcd and nlo power corrections for the pion form
factor. Phys. Rev. D, 65:074016, Mar 2002.

[12] Yoichiro Nambu. Possible existence of a heavy neutral meson. Phys. Rev., 106:1366–1367, Jun
1957.

[13] J.J Sakurai. Theory of strong interactions. Annals of Physics, 11(1):1 – 48, 1960.

127



Bibliography

[14] Jun John Sakurai. Currents and mesons. University of Chicago press, 1969.

[15] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin. The hadronic properties of the photon
in high-energy interactions. Rev. Mod. Phys., 50:261–436, Apr 1978.

[16] R. Engel and J. Ranft. Hadronic photon-photon interactions at high energies. Phys. Rev. D,
54:4244–4262, Oct 1996.

[17] Norman M. Kroll, T. D. Lee, and Bruno Zumino. Neutral vector mesons and the hadronic
electromagnetic current. Phys. Rev., 157:1376–1399, May 1967.

[18] Ling-Fong Li. Introduction to Renormalization in Field Theory. In 100 Years of Subatomic Physics,
pages 465–491. WORLD SCIENTIFIC, 2013.

[19] P. Ghose and A. Das. A variant of the stuckelberg formalism for massive gauge fields and
applications. Nuclear Physics B, 41(1):299 – 316, 1972.

[20] Charles Gale and Joseph I. Kapusta. Vector dominance model at finite temperature. Nuclear
Physics B, 357(1):65 – 89, 1991.

[21] Cesareo A. Dominguez, Juan I. Jottar, Marcelo Loewe, and Bernard Willers. Pion form factor in
the Kroll-Lee-Zumino model. Phys. Rev. D, 76:095002, Nov 2007.

[22] C. A. Dominguez, M. Loewe, and B. Willers. Scalar radius of the pion in the Kroll-Lee-Zumino
renormalizable theory. Phys. Rev. D, 78:057901, Sep 2008.

[23] J. R. Peláez and F. J. Ynduráin. Pion-pion scattering amplitude. Phys. Rev. D, 71:074016, Apr
2005.
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