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A Quantum Field Theory for the interaction of pions and rhos
Preshin Moodley

Department of Physics

University of Cape Town

Abstract

We extend the Kroll-Lee-Zumino model in its particle content to include the charged rho vector
mesons and the neutral pion meson. This entailed using the larger SU(2) gauge group. The masses for
the vector mesons were generated via spontaneous symmetry breaking using the Higgs mechanism.
The Lagrangian was then quantized and gauge fixed using the generalized class of R, gauges. Tree
scattering lengths were calculated for pion-pion scattering and the values for the a) and a3 scattering
lengths are found to be comparable with experiment. The one particle irreducible diagrams that
contribute to the one loop corrections to the tree scattering lengths are renormalized.
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1

Introduction

2 2 /@ (f ooN after the success of Quantum Electrodynamics (QED) as a description of the electro-
‘(\ ‘2) magnetic interaction, physicists turned to the investigation of the structure of nucleons
k\\\ﬁ and the strong force. Yukawa’s conjecture [1] about the existence of a massive particle
(D @) responsible for mediating the strong interaction was partially successful at explaining
the low energy interactions of the nucleons. Numerous new particles were discovered during this
period with seemingly no order among them. The quark model was developed by Gell-Man [2] and
Zweig [3, 4] to tame and show some regularity in the particle zoo with hadronic multiplets. Further
investigations lead to the developement of the Parton model by Feynman [5, 6] which assumed the
nucleons were made up of essentially free particles called partons. A nagging question at the time
was where were these partons or quarks? The phenomenon of Bjorken scaling [7] incited a search for
quantum field theories which exhibited this behaviour. This ended with the discovery of asymptotic
freedom in non-Abelian gauge theories by Politzer [8], Wilczek and Gross [9] and leading to the
formulation of Quantum Chromodynamics (QCD) which is a SU(3). non-Abelian gauge with the
new isospin degree of freedom identified as color charge. The partons were identified as the quarks
and gluons of QCD and were forever bound in colorless unions.

The property of asymptotic freedom was fortunate since it allowed for the analysis of systems of
high energy where the strong coupling has a relatively small value and conventional tools like
perturbation theory were applicable. New tools needed to be forged to explore low energy systems.
The direct approach taken in Lattice QCD has become feasible in recent years with the reduction in
the costs of the massive computing power required and the steady increase in computing power. The
alternate approach came with the development of models and effective field theories applicable in
certain energy regimes. Chiral Perturbation Theory (xPT) is the effective field theory for QCD and
has been used for applications up to ~ 300 MeV with a failure beyond ~ 600 MeV [10]. The onset of
Pertubative QCD has been pushed down to 1 GeV for some applications [11]. There exists this gap
of ignorance in the interval ~ (0.6,1) GeV for which standard analytic tools can not explore. This
energy region is dominated by the low energy scalar and vector mesons.

Nambu had suggested that the rho meson could explain the nucleon form factors [12]. Sakurai pro-
posed the idea of Vector meson dominance (VMD) where the strong interaction would be mediated
by vector mesons in a non-Abelian gauge theory [13, 14]. The idea of VMD is stated generally as:
gauge bosons transforms into the lowest energy vector mesons and interact with hadrons through
effective vertices.
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Figure 1.1: Photon transforming into a Rho which decays into pions.

The photon seems to interact with hadronic matter mainly through the rho vector meson [15, 16].
Sakurai had suggested interaction terms for VMD but this was not a field theory which could be
used for higher order loop analysis. Kroll, Lee and Zumino suggested a model [17] involving the
charged pions and neutral rho as a candidate for VMD.

1.1 The Kroll-Lee-Zumino Model

@HE Kroll-Lee-Zumino Model (KLZ) is a quantum field theory developed to describe the inter-
actions of charged pions and the neutral rho.

L = (0,0)" 0" —m*¢*p — ZF‘“'FW + §M2A#A“ +ie A" (¢* 0,0 — $0,0%) + e*¢* A, A (1.1.1)
with the field strength tensor F),, defined as
Fu = 0,A, —0,A, (1.1.2)

Here the pions are represented by ¢, with m the pion mass. The neutral rho is represented by A,, with
M the rho mass and e represents the strength of the rho-pion coupling which has an approximate
value of e =~ 5.96. The KLZ is a renormalizable quantum field theory despite the breaking of U(1)
gauge symmetry with the presence of the explicit mass term for the vector rho. This is a result of the
vector field coupling only to the conserved current [18, 19] i.e.

Jy = 90,0 — 90,0 (1.1.3)
with

0"J, =0 (1.1.4)
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This can be seen by looking at the propagator of a massive vector field

, —1 kK,
P = i (gw - M) (1.9

which due to the k,k, term is usually logarithmically divergent. For the case of the KLZ, the above
propagator would appear between conserved currents with

EtJ, =0 (1.1.6)

using (1.1.4) in the momentum representation, thus allowing for renormalizability by removing the
logarithmically divergent terms. The KLZ being renormalizable makes it an attractive model for anal-
ysis, since the renomalizability allows for a systematic calculation of higher order loop corrections
without introducing additional parameters into the model. Since the pertubative series expansion

parameter is of the form £~ 047, higher order analysis can be pursued seriously. This can be seen

0
in the application of the KLZ in finite temperature calculations undertaken in [20]. The KLZ has also
been used to analyse the pion form factor by [21], for space-like transferred momentum, the one
loop correction to the form factor is in agreement with data with x% = 1.1 as shown in figure 1.2.

1.0

One loop corrections
- - - - Naive tree level VMD

2 2
—q (GeV )

Figure 1.2: Pion form factor for ¢* < 0

For time-like transferred momentum the KLZ follows the data closely below the rho peak but starts
to deviate from the data beyond the rho peak as can be seen in figure 1.3
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Figure 1.3: Pion form factor for s = ¢* > 0

This model has also been used to compute the electromagnetic radius of the pion with (r2), =
0.40 fm? in [22].

There are limitations to the KLZ model. The KLZ only provides a partial description of the pion-rho
interactions. The particle content is only of the charged pions and neutral rho. There are more pion-
rho interactions in nature than are captured by the KLZ, which ignores the neutral pion and charged
rhos thus excluding a description of the decay of the charged rhos into pions. To address some of
these limitations in the KLZ we shall have to chart a new path forward. The new model must use a
larger gauge group to accommodate the full complement of the triplet of pions and rhos.

As an application of the new model we have chosen to calculate the pion-pion scattering lengths. The
pion-pion scattering amplitude has been studied extensively through the Roy equations and Chiral

Pertubartion theory [23, 24, 25, 26]. Experimentally, NA48/2 [27] and DIRAC [28] have collected
large data sets which allow for the precise extraction of the scattering lengths.

Outline

This document is organized in the following way. In part I, chapter 2, we develop the bare SU(2)
model. Chapter 3 is dedicated to Spontaneous symmetry breaking to generate the rho mass. In

4



1. Introduction

chapter 4, we quantize the new Lagrangian, introduce the Faddeev-Popov ghosts and fix the gauge.
Chapter 5 contains the renormalization transformation and Feynman rules. In Part II, we apply the
new model to evaluating the pion-pion scattering lengths. Chapter 6 has the calculations of the tree
scattering lengths and results. In chapter 77, we start the program of finding the one loop corrections
to the tree scattering lengths. Due to time constraints on a PhD project, the numerical evaluations
have been excluded. Finally chapter 8 summarizes with a conclusion.



Part 1

Generalizing the KLZ



2

Extending the KLZ

2.1 SU(2) Generalization

E will now proceed in generalizing the U(1) KLZ model. What are some simple expec-
) tations could we have of such a model? We would like a model describing the inter-

actions of pseudoscalar pions and vector rhos which includes the full triplet of pions
O {m=, 7% 7"} and the triplet of rhos {p~, p°, p*}. We would like it to be renormalizable
since it would have some predictive power when considering higher order corrections. We shall
make some simplifying assumptions. We shall assume all the particles are point like. We shall ignore
the difference between the masses of the charged and neutral pion (m,+ —m,o = 4.59364+0.0005 MeV)
[29]. This small difference (small in comparison to their mass) in pion masses is due to the mass dif-
ference between the u and d quarks. This approximate flavour symmetry becomes exact in the chiral
limit and we have the isospin SU(2) symmetry group. The pions are then in the adjoint representation
of SU(2). We also ignore the difference in rho masses (m,+ —m o = 0.7 4 0.8 MeV) [29].

With these assumptions we can build an effective description of the interactions between the pions
and rhos. The rhos will play the role of dynamical gauge bosons [30] mediating the interactions
between the pions and the rhos themselves. We will let the principle of local gauge invariance
guide our construction under which only terms invariant under SU(2) gauge transformations are
to be admitted into our Lagrangian. We begin by writing down a SU(2) globally gauge invariant
Lagrangian for scalars representing the pions [®(z) := ¢ = {¢', ¢?, ¢ }]

7 ; (9,0)'0"® — 10 (2.1.1)

where b has dimensions of mass. The Lagrangian (2.1.1) is invariant under the unitary transformation
of

U =e"" € SU(2) (2.1.2)
d— ' =UP (2.1.3)
where T are the generators of the group and are elements of the Lie algebra 7* € su(2) and o* € R
are some constants. The repeated a’s imply a sum over a = {1,2,3}. When we promote the global

gauge transformation to a local one with a* — a”(z), the derivatives in the Lagrangian produce
extra terms which breaks the gauge invariance of the Lagrangian. The extra terms are proportional

7
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to the generators 7%, so to remedy the problem we will introduce an extra field into the partial
derivative as

Op — Dy = 0, +ieT" A} () (2.1.4)

Here D, is the gauge covariant derivative, e the gauge coupling which is dimensionless, [e] = 1 and
Al(z) are the gauge fields representing the rhos. The gauge fields are in the adjoint representation
of SU(2) so we expanded them using the generators as a basis. The covariant derivative is built to
transform such that when we make a unitary transformation on the field ®, the gauge fields A} must
also transform to keep the Lagrangian invariant. This is done by insisting that

D,® =UD,® (2.1.5)
which together with (2.1.3) gives us the transformation rule for the covariant derivative as
D, — D, =UD,U" (2.1.6)
We can infer the transformation rule for the gauge fields from the above condition as
D, f=UDU'f
(0, +ied,) f = U (0, +ieA,) U'f
1
= A, =UAU"+ ~U3,U" (2.1.7)
e

with A", = A"}T* and f was some arbitrary function included to keep track of the derivatives. Now
when we make a unitary transformation on the fields and noting that

O =P =UD (2.1.8)
D, =D, =UD,U" (2.1.9)
then the Lagrangian
1
£=3 [( D,®) Do — 1ot (2.1.10)

remains invariant. Under the unitary transformation of the scalar field, the gauge field was required
to maintain the gauge invariance of the Lagrangian. The gauge fields are just passive auxiliary
fields at this stage. If the gauge fields are to represent the rhos then they must have some dynamic
behaviour. So naturally we would like to make this a requirement for the gauge fields. Though since
this is a nonabelian theory, we must take care when we construct the kinetic term for the gauge
tields. For a kinetic term we require a scalar, which is Lorentz and gauge invariant, and quadratic in
the first derivatives of the field. The commutator serves as natural product so we shall construct an
operator from the commutator of the covariant derivatives,

Opuf = [D;u DI/] f (2.1.11)

where f is some arbitrary function we included to keep track of the derivatives. Under SU(2) gauge
transformations, the operator changes as O, — O,

= DL DL

= \UDU, UD, U] f

= (UD.DU -~ UD,DUY) f

= U[D,,D,JU'f

= UOA,“,UTf (2.1.12)

8
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So we see that the transformed operator is,
O;W =UO0,,U' (2.1.13)

We need to ensure that a kinetic term is Lorentz and gauge invariant. We can create a new operator
by squaring O*":
0, 0" =00, Uvo™U!
= UOA,WO‘“’UT (2.1.14)

Looking at (2.1.14) we can see that this operator is Lorentz invariant but still dependent on the
SU(2) gauge transformation U. We also have to deal with (2.1.14) not being a scalar, since only
scalar functions enter into the action. We have to transform (2.1.14) into a scalar while preserving its
properties. We can remove the gauge dependence and create a scalar function by taking the trace of
(2.1.14) as

Tx [0),,0"] = Tr [U0,,0"U']
= Tr [0, 0" UU"|
=Tr {OAWOAW} (2.1.15)

which is independent of the gauge transformation. Now since this operator (2.1.15) is the square
of the first derivatives of the fields and invariant under Lorentz and gauge transformations, it has
the necessary behaviour of a kinetic term of the gauge fields. We will define the nonabelian field
strength tensor as

1 1
—O,, = —[D,, D, (2.1.16)

1e ie

G =

We can get the explicit form of the tensor by substituting in the covariant derivatives into (2.1.16),
where f is included to keep track of the derivatives.

1
Guf =+ (DD
1
= — 1[0, +1eA,, 0, +ieA] f
e
= <8MAV —0,A, +ie[A,, A,,])f (2.1.17)
So the field strength tensor is
G = 0,A, —0,A, +ielA, A (2.1.18)
We can use the elements of su(2) to write GG, as a sum over the generators. Using the Lie algebra
[Tb, Tc] = iggpe T (2.1.19)

where ¢, is the Levi-Civita symbol representing the structure constants of the algebra, and A, =
AST?, we get the following expression

Go, T = 0, ALT" — 9, AsT" +ie [ALT®, AST|
= |0,A5 — 0, A%, — eeanc AL AS| T (2.1.20)
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From (2.1.20) we can recognise the familiar abelian field strength tensor in the first two terms in
(2.1.20). We will define

Fi, = 0,A, — 0,A (2.1.21)
then the nonabelian field strength becomes
Gh, =F;, — egabcAZAf/ (2.1.22)
We can now define in analogy to (2.1.15) a kinetic term for the gauge fields as (the Yang-Mills term)
1
.,E/ﬂYM = —iTI‘ [GW,G/W]

— oo gy o]

2 M

1 a Yapy
= — GG
_ _lFa Fom 1 AbuAcha _ 1 2 AbAcAduAeu (2 1.2 )
- 4w 265abc uv 46 Eabc€ade utiy .1.23

1
where —3 is a factor by convention and we have used the normalization condition

Tr [TaTb] = ;53'3 (2.1.24)

We should pause at this stage and interpret what each term in (2.1.23) represents. After all we went
in search for a kinetic term for the gauge field, but requiring Lorentz and local gauge invariance
provided extra terms. So the first term in (2.1.23) is the pure kinetic term, the second and third terms
represent three point and four point interactions among the gauge fields. So the full nonabelian
Lagrangian is

& == [(D,®) D'o — 1D — iG“WG“’“’ (2.1.25)

N | —

Expanding out the covariant derivatives

1 1

i(D,;ID)TD“@ =3 {(0,2)0" + ic [(9,0)T A" D — 0T 479, B + DT A" A, @} (2.1.26)
we can write out all the terms in components of the fields using the adjoint representation of the
generators (1), i = —1€aij, SO the terms become

(") 4,0 = A%(0"2)'T, @

= A2("0:) (T) ;05
= —ica; A}, (0"i) ¢
— 914, (") = [(9"2)'4,2]'
= —igai; Ap¢i (0" ;)
with
(0"®)T A, — BIA, (0"D) = —iAseq; [, (9"¢:) — 1 (0"9;)] (2.1.27)

10



2. Extending the KLZ

and

BIAMA, D = ALAY),(T°),;(T") b
J

= —€m'j€bjk¢i¢kAZAb” (2.1.28)
So the Lagrangian in component form is
1 L 2 42 1 a o a Aby 1 a a,u,z/
L = 3 (@K/ﬁaa o — b %) + 56&11’3'14” (90" i — §;0"p;) — e gamgbjqu@kA A ZF‘“’F
1 1
+ §e€abcAb“AC”Fﬁy - Ze%abcgadeAZA,ﬁAd”Ae” (2.1.29)

Now there has been an omission from the start, we claimed that under the principle of local gauge
invariance all terms which preserve the invariance of the Lagrangian are valid terms for inclusion
into the Lagrangian. This allows for the inclusion of a polynomial with an infinite number of terms
of the form

cn(®TR)"

NE

P(®) =

1

A o
L2OTD + ?(CI)T(I))2 + > e (DTD)” (2.1.30)

3
I

The first term we included from the start with b having dimensions of mass, [b] = M, the second
term represents a self coupling and ), is dimensionless, [A\s] = 1. This quartic coupling term for
the pions was left out in the original U(1) KLZ formulation. There is no legitimate reason at this
stage to exclude this term so we shall include it in the Lagrangian. For terms greater than n = 3, the
coefficients c, have dimensions of inverse mass, [c,,] = M ~". This poses a problem to our requirement
for a renormalizable theory [31]. We shall thus ignore all terms for n > 3. Then finally the Lagrangian
is

1 1
Loa =5 (&cbaa“% - 529253) + 5ecajdy, (6,00 — ¢i0" ;) — 6 2eaijeojndidn A A" — & <¢Z¢§) T

1 1 1

- ZFSVFCWV + 2eeabcAb”A”’F“ 4625abcaadeAfLA‘;Ad“A6” (2.1.31)

Let us provide an interpretation for the remaining terms in (2.1.31). The first two terms in the
parenthesis behave like the kinetic and mass-like* terms of a scalar field. The third and fourth terms
are the three and four point interaction terms between the scalar and vector fields. Note of course
the lack of a mass-like term for the gauge field.

"These are not the couplings nor physical mass identified from experiment. Since we have not renormalized and com-

pleted the definition of the theory as yet these terms only have the dimensions of a mass and appearance of couplings.
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3

Spontaneous Symmetry Breaking

3.1 Higgs Mechanism

", s noted in the last chapter the Lagrangian has a mass term for the pions but none for the
% rhos. For this quantum field theory to be a good description of reality, it would be wise
& =N ¢) to endow the particles with the appropriate masses. The term b*®1® for the pion was
@kf included by hand since the form of the term remained invariant under gauge transfor-
mations. We could attempt to do the same for the gauge field by including a term proportional to
the form A" A, but recalling the transformation rule for the gauge field in (2.1.7) shown here below

1
A, =UAU +—Ud,U"
e
We see that the product is

AL A = UA AU + Zle vA0Ut+ U (MUt UAUT] - ;U (orvt) U (0mU) (3.1.1)

This does not look very appealing, we could use the identity UU = 1

o (UlU) =0 = U (0'U) = - (o) U (3.1.2)
o (UUt) =0=U (o'U") = - (0"U) U (3.1.3)
and write the product as
. 1 1
ALAM = UAAUT — —U [AuUW“U + U (0"U) Au} Ut + 6—28“U8“UT (3.1.4)

We could argue that this expression is not a scalar, and for the case of the Yang-Mills kinetic term it
was necessary to take the trace to yield a scalar which also removed the gauge dependence. Unfor-
tunately this does not work for a mass term as

Tr [A),A™] = Tr [A,A"] - iTr (AU + 612Tr o Utory] (3.1.5)

and (3.1.5) still has remnants of the gauge transformation. So we cannot put in a mass term for the
gauge field by hand without breaking gauge invariance. The mass term for the gauge field must

12



3. Spontaneous Symmetry Breaking

be generated dynamically [32]. This is done by introducing a new scalar field which has rotational
symmetry with respect to some potential. A translation in the field is performed and the previous
rotational symmetry becomes hidden. This process is referred to as the Higgs mechanism or spon-
taneous symmetry breaking. We note that this is not the Higgs mechanism used in the Standard
Model to give all the elementary particles their masses. We use a Higgs-like mechanism here only
to give mass to the rhos. Generating the vector mass using the Higgs mechanism preserves the
renormalizability of the theory [33].

We introduce a new field X which is a complex doublet that has the gauge transformation
XX =UX (3.1.6)

We construct an SU(2) gauge invariant Higgs Lagrangian, with the covariant derivatives acting on
the complex doublets

& = (D,X) (D'X) =V (X, XT) — s (XTX) (¢'0) (3.1.7)
where the potential V/ (X , X T) is
v (X, x7) = 2 (x1X)" - ”22 (x1x) (3.1.8)

which has been tuned for symmetry breaking. The term & (X Tx ) ((IDTQ)) is present since it is gauge
invariant and thus allowed by the principle of local gauge invariance. « is the coupling between
the pions and complex doublet and is dimensionless, [x] = 1. Plotting V/ (X X T) we can see the

rotational symmetry present in the potential [under rotations about an axis through (0,0)] by the
contours which are circles.

Figure 3.1: Rotationally symmetric symmetry breaking potential.

13



3. Spontaneous Symmetry Breaking

We can express the potential in terms of real fields by decomposing the complex double into a
doublet of real valued fields.

1 (xy+ixy
X =— . 1.
7 <m0 _ zx3> (3.1.9)
SO
1
XX = 5% (3.1.10)
1
(XTX>2 = ;Talalpls (3.1.11)

We note the usage of the repeated Greek index in the above expressions. We only resort to using the
Greek index since the sum is over {0, 1,2, 3}. The potential in terms of the real fields is
12
V(z,) = 35 %alalsls = " Tala (3.1.12)

We now search for the minimum (the vacuum) of this potential.

oV A 2 2 p
oz, =133 (Zxa&mxﬁ + s - 2x555,€) - 22 0,00k
A 2 s
=3 (4%:17&) 5
Ay 1
=, | =22 — —
8 ¢ 2
=0
which has solutions
12
z, =0 OR R 47 (3.1.13)

Computing the second derivative to test the above solutions

2 2
ad = 557r (;\‘Ti - Iu) + ﬁxnﬂjﬂ

01,0, 2 8
with the results along the axes k = 7

0*v
01,0,

2 2
0o o°V
01,0,

2
2 gL
To=0 zg=4%

2
The z,, = 0 yields a local maximum for the potential and the 22 = 45~ solution results in the local

minimum. We can see these solutions from the plot in figure 3.1. There is a circle of solutions which
are the minima of the potential. We define

vei=— X2 =4 (3.1.14)
We shall pick one of the possible minima with

Ty =29 =23=0 AND To =2V (3.1.15)

14



3. Spontaneous Symmetry Breaking

The X field has acquired its vacuum expectation value with the above choice of a minimum. The
vacuum is located at

1 [0
Xm = 7 (21/) (3.1.16)
Defining a new field x
_ L [(xatixa
NG <XO —iX3> (3.1.17)

we now consider fluctuations about the minimum Xy, by defining
X =x+Xuy (3.1.18)

This is just translating the vacuum to the origin. Now we rewrite the Lagrangian in terms of this
new translated field. Starting with the potential

1
Xtx = 5 (XaXa + 4vxo + 4y2) (3.1.19)

2 1
(X7X)" = [xaxaxsxs +8xoXaxe +160°xG + 87 xaxa + 320" + 161']
1

— ZXiX% + 2ux0x2 + 48 + 2022 + 81y + 4t (3.1.20)

So the potential is given by

V (xa) = i(XTX)2 . fXTX

8
Ao oo VA s s 1oy
— 3*2XQX5+ZXOX¢3+ X0 GH Y (3.1.21)

The pion-chi interaction becomes
1
(XTX) (91®) = 20202 + 2vx00? + Xadi
The covariant derivatives expanded out is
(D,X)'D'X = 9, X" X +ie (" XTA,X — XTA,0/X) + 2 XTAA, X (3.1.22)
The kinetic term of the Lagrangian is then
0, XT0"X = 9, o"x

1 : , L (Oux2 +1i0uxa
= ﬁ (8MX2 — z@uxl 0,»(0 + Za,uX3) ﬁ <8MX0 . iauX3
1
= 50uXa0"Xa (3-1.23)
We note that the gauge field expanded over the generators are
A, = AT
1 A3 Al —iA?
— u 7 w
=3 (A; 1Az A ) (-1.24)
1 (A2 A 0
O
- AA" = 1 ( 0 AZA‘W>
1
= JALA Ly (3.1.25)
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3. Spontaneous Symmetry Breaking

The four field coupling term of (3.1.22) can be expressed using the above expression as
1
XTAMALX = XTLATAM 150X
1 1
= 51/214214““ + §VX0AZA"““ + § X0 AL A (3.1.26)

The process of picking a vacuum and translating it to the origin, thus hiding the rotational symmetry
has generated a mass. The first term in the above equation represents a mass for the gauge field.
Lastly we have to deal with the three field coupling term of (3.1.22).

MXTAX = 0" 1A, Xy + "X A, x

= —x10"A, Xn + "X A, x (3.1.27)

We have integrated by parts (using the integral over the Lagrangian) and discarded the surface term

for the first term of the above expression. Substituting the above expression into the three field
coupling term

XA X — XTA,00X = X[[0" A — xTo" A X + 0"xT Ay — xTA,0m
= 0" A [ X[Tx — X'T"Xu| + 0"y A,x — xTA,0"x (3.1.28)
we see a separation into two types of interaction terms. The last two terms are three field interaction

terms but the term in the square brackets seems to have two field interaction terms i.e. mixing terms.
Let us check

1 , 1 A3 AL —iA2) (0
i = (g —
XW&XM—Vﬁ@QZMﬁm+W928<NAZAZ tAiﬂ(J

- 2\1/§ [(X28#AAIL - XlauAi - XﬂﬁﬂAi) — 1 (XQa#Ai + xlc?“AL + nguAi)}
= 3 [ AL+ (004, — 4, 00 A} (3:1.29

Taking the hermitian conjugate of (3.1.29) and substituting into the two field interaction terms of
(3.1.28) we get

i
EXQO“AZ (3.1.30)

which indeed has only two fields interacting a point. These pesky terms are hard to interpret so we
will leave them alone for now and come back to them when we discuss gauge fixing. The remaining
term to work on is the three field interaction terms of (3.1.28). First the A, x product

“Xz.N+M2 =A% ] /2 \xo—ixs
1 [Alxa+ Ajxo — Aoxs + i (Adx1 — Al xs — A% xo (3.1.31)
T 2v2 (Al + A2y — ﬁm+zﬁm+Am+&m o

X&@”AMX — XTBMANXM =

16



3. Spontaneous Symmetry Breaking

then the three field interaction term is

O"x"Aux
1 1 A3 o+ Al _ A2 + A3 Al _ AQ
= — (3“)(2 —i0tx1 OPxo + i@”Xs) 1 pX0 3X3 : 1 uX3
V2 2v2 \Alxe + A2x1 — Axo +i (Alxa + A2x2 + Auxg
1 )
4{ (AS X2 + Ay xo — A, XS) X2 + (Aj — Ay xs — Al Xo) Mxa+
+Z {8”)(2 ( Al X3 — AZXO) — (A3 —+ Al XO — NX3) aﬂxl}
(A1X2 + A#X1 A#XO) X0 — <A1X1 + A2 X2+ AHX3) oM xs+
+i [0"x0 (Apxa + A2xa + Adxs) + (Apxe + A2xa — Alxo) 0 X3 } (3.1.32)

The appearance of the individual x, fields interacting differently is troubling. Taking the hermitian
conjugate of the above and substituting into the three field interaction terms of (3.1.28)

1
"' A — xTA 0" = 3 l(XlaHXQ — x20"x1) A% + (x30" X0 — X00"x3) A%+
+  (20"xs — x30"x2) A, + (19" X0 — x00"x1) A+

+ (x20"x0 — x00"x2) A% + (x30"x1 — x10"x3) AL, (3.1.33)

A pattern emerges in the way the individual y, fields interact with the gauge fields. To clarify we
define the operator

AV B = AO"B — Bo*A (3.1.34)

Rewriting (3.1.33) in terms of the above operator

_ ! {1&:@1)6 (X0 x5) A5 + (a0 x0) AZ} (3.1.35)

The pattern for the yx, fields interacting allowed us to write the three field interactions compactly
in terms of the Levi-Civita symbol, with the x1, x2, x3 interacting among themselves with the gauge
fields and the separate interaction term with the x, field. We have all the needed pieces, substituting

(3.1.30) and (3.1.35) into (3.1.28)
' XTAX = XTA,00 X = 0 Ag [ XL T x — x'T"Xu| + 0" Aux — xTA,0"x

= oy [T T ] + 5 [ (xP0) A5+ (Fo) 42 G.1.36)
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3. Spontaneous Symmetry Breaking

The covariant derivative in terms of the real Y, fields are

(DMX)TD“X = 00"\ + e (EWXTA“X - XTAuﬁ“X) +e2x A" A, x
1 , “ " “ 1 Vi1 . 1 Vi1 “
= 5 0uXad" Xa + ied" A5, [XUTx = X'T*Xar] = ecane (Xa®xs) A5 = ¢ (xa 0 x0) At

1 1 1
+ 562u2AZA““ + §e2VX0AZA““ + g@QXiAZAa“ (3.1.37)

Substituting in the covariant derivative, the potential and the XTX®'® interaction terms into the
Lagrangian after symmetry breaking

Ly = (D,X) D'X =V (X, XT) - s (XTX) (')

1 1 1
= 5 (8% X0 — BXE) + S0uxaD X + 00" A [XLTx = XIT"Xr] = Jezare (xa 0 1) 4G+
VA

A 1 ,
SZXQX/B - ZXOX& - 5 (4/4”/ ) ¢a+

1 1
— 26VX00; — RXaba + GV (3.1.38)

1 S a 1 2 fa Aa 1 a Aa 1 a Aa
—ie(xaa“XO)Au §€I/AA“—|—2€ vxoA, A" + 3¢ XQAA“

Due to our choice of the vacuum along the y, direction, the y, field behaves differently from the
X1, X2, X3 terms. We will separate the x, component out with

ﬁ—%+ﬁ
2 (3.1.39)
XaXh = X0+ 2XoX2 + Xoxs

and make a cosmetic change in relabeling the y, component with x, := H which we shall refer to
for convenience as the Higgs field. A reminder again, this is not the Standard Model Higgs field.

Py = ; (0,HO"H — p? H?) + ;aﬂxaaf‘xa +ied" A [ XL T — X'T" X — leegabc (XaWXb) AL+

1 S a122aa ]'2 a pa 122aa 122aa /\4)\22
—§e(Xa8“H)A —|—§€ v AMA“+§e I/HAuA“—l—ge H AMA“—l—ge Xp ApA “—3—2[{ —EH Xo+

A VA VA 1 1 1

—gpXaXs = H® = TP HXG = o (4607) 65 — 260 HO, — SRHPG, — Srxad, + u V2 (3.1.40)

Some terms of (3.1.40) require some special attention, we point out the entire process of spontaneous
symmetry breaking was to generate a mass for the gauge field. This was achieved with the generation
of the term Je?v?A%A%. A contribution to the mass of the pion was generated during the symmetry
breaking process thls depended on the coupling « as 3 (4r1/? )ng A mass term for the Higgs field
was also generated during this process with the mass terrn being £ 42 H?. The x, are massless and are
the three Goldstone fields. The rotational symmetry is still present in the Lagrangian, it is hidden
from casual inspection. We could reverse the process and translate the potential back to its original
configuration. The rotational symmetry would be made explicit again. We noted the appearance of
the pesky mixing terms which are present in the above Lagrangian.
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4

Quantization

4.1 Faddeev-Popov Ghosts

(;F/ HE classical Lagrangian is ready for quantization. There is an obvious problem at the
“ B @ start. Since this is a gauge theory, there are infinitely many field configurations which
¢ @( are related to each other via a gauge transformation which led to equivalent states. This
Q/ @70 leads to an over-counting of the physical states and must be dealt with as it leads to
an overall multiplicative divergence. We can extract out the contribution from the physically distinct
states via a suitable gauge fixing process. This means that the gauge transformation partitions the
configuration space of gauge fields and sets up an equivalence class for sets of physically equivalent
gauge fields. This leads to a problem when summing over all field contributions as there are infinitely
many physically equivalent field configurations leading to a divergence. So we need to count only
one member from each partition once and this is done with a gauge fixing function which is designed
to traverse the configuration space and intersect the set of all physically equivalent gauge fields
only once. This is the method pioneered by Feynman and formalized by Faddeev and Popov [34].
Consider a function g(x) and some w € R with

g(x) = w (4.1.1)
which has roots at x; which can be ordered as =1 < z3 < -+ < zy and ¢’ (z;) # 0, then

1

N
dzd (g (z) —w| = - (4.1.2)
faolo -l =2y ¢
we have the one dimensional identity
N 1 -1
dxd —w| =1 1.
S | St - (413

We restrict the class of functions g(z) to those which yield only a single root and this simplifies to

(ch (z)

[ dadlg () - w] =1 (41.4)
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4. Quantization

This can be generalized to the field theoretic version

A[A] / DulU)5 [G* (AV) —w] =1 (4.1.5)

where A [A] is a generalization of the derivative of the function g(z), and will later turn out to be
a Jacobian matrix. AV indicates the dependence of the gauge field on the transformation U. Du[U]
is the Haar measure [31]. The condition placed on g(x) earlier was to select injective mappings as

candidates for gauge fixing functions G* (AU ) This is the problem of the Gribov Ambiguity [35, 36].
For perturbative considerations we will stay within one horizon.

Consider now the path integral for the gauge field
7' = [ DacsH
— /DAUeiS[AU] 1
_ / DAY IA [AY] / DulU)5 [G* (AV) — w] (4.1.6)

We have inserted a 1 using the identity (4.1.5). We can now make a gauge transformation where
AY — A and noting the Haar measure is invariant under gauge transformations

7' = [ DACSIALA] [ DulU]s (6" (4) - w
— [ Dult] [ PASSIA [A]5 ]G (4) - v (2)]

We can insert a 1 in the form of a ratio of Gaussian functionals and absorb the denominator into the
measure.

7 = / DASAIA 4] / Du[U]5[G* (A) — w]

[ Due J i
= /DM[U] _ [ qArw?
[ Dwe % | dtovd ()

= [ Dilv) [ Dwe [ 5@ [DASSIA (4] (G (4) - w0 (@) (4.17)

/ DASAA [A]5[G (A) — w (2)]

Since all the fields are independent of the gauge transformation we can factor out the integral over
the measure which contributes an overall multiplicative divergence. Note also that Z’ can not depend
on the parameter ¢, since only a 1 was inserted.

fpi:[[]] — /DA'DweiS[A]e*ifd%wg(w)A [A] 6 (G (A) — w* (z)] (4.1.8)

We can now define the path integral which does not suffer from the over-counting
Zl
Z = —
/ DalU]
= /DADweiS[A}e_i J dtawi(@) A [A] 0 [G* (A) — w® ()]

B / DAl 3e [ "7 G A [ 4] (4.1.9)
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4. Quantization

where we have integrated over the w using the delta functional. We are left with the task of evaluating
A[A]. Recall the identity in (4.1.5)

/Du sl (AY) —w] =1

with the transformation U = ¢™**T*

rewrite the identity as

, we see that the invariant Haar measure Du[U]| « Da. We can

Al / Dad [G° (“A) — w?] = 1 (4.1.10)

We note the change in notation from A®(which looks like the components of a Lorentz vector) to
“A(which serves to indicate the dependence of the gauge field on the group parameters a)). We can
make a change of variables

bla A.
DC — det [W] D
oo (y)
1
= Da =DG - W (4.1.11)
© [ 5a°(y) }

Substituting in the new measure

A4 [ PG ‘5"”’[““1] 8 |G (CA) — ] =1

dac(y)

1

Al [5(}’) [ A; x]] =1
det | —————
00 (Y) [l n—ur
bla A.
A[A] = det [5@ 4 “ﬂ]
5aC (y) Gb(aA):wb
= det M (z,7) (4.1.12)

We observe that A[A] is the determinant of a matrix of variational derivatives of the gauge fixing
function with respect to the group parameters and we defined

b [a c
M (z,y) := w (4.1.13)

We can choose a class of gauge fixing functions [37, 38]
G [*A; 2] = 8”14/(1 + ie (XI]\L/ITI’X - XTTI’XM> (4.1.14)

We shall justify the choice of (4.1.14) in the next section. The derivative of the gauge fixing function
with respect to the group parameters is

b [a d
M / d4[ 0 a“Aj;(g;)] oA, () 9 gie (XLT"x = x'T" Xy)

dac (y) JA% (2) dac (y) 5ac( )
d(z
= /d4za§5bd5 (x —2) 9;§§Z£y; + 5o ( )&fze (XT Thx — XTTI’XM) (4.1.15)
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4. Quantization

We now turn to finding the variation of the gauge field with respect to the group parameters. Recall
that the gauge field transforms as

1
A, = %U@UT +UAUT
U=¢'T" (4.1.16)

Since we are looking for the variational derivative we need only concern ourselves with working
with the infinitesimal transformation, so for do, < 1

Ux~14i0aT*+ O (5043) (4.1.17)
The gauge field transforms as
Al ~ 216 (1+i60°T*) 8, (1 - i6a"T") + (1+i6a"T?) A, (1 - i6a"T") + O (6a2)
= —i (1 +i0a"T") 0,00"T" + (1 + i60"T*) (A, — i6a’ A, T") + O (3a2)
— A, — iaudoﬂT“ — 00" ALTT + i6a" T ALT" + O (3a2)
= A, - i@udoﬂéacTC +ida” AL, [T, T*] + O (5a2) (4.1.18)
Using the algebra of the group [T“, Tb] = ieape 1.
A=A, — iauaaa(saCTc — eare 760" Al, + O (5a2)
= A, — i (090, + ezape AL | 00T + O (02)
= A, - iDZCcSa“TC +0 (6a2) (4.1.19)

We recognise the covariant derivative D¢ in the adjoint representation. Expanding the gauge field
over the generators

1
AT = AT — D60 T* + O (baf) (4.1.20)

Extracting only the components

Ic C 1 ac a
A = A, — —Dirda” + 0 (dag) (4.1.21)
0AY (2) = Al (2) — A} (2)
= —lDﬁdéoﬂ (2)+0 (50412,) (4.1.22)
(&

We can now construct the variational derivative,

SALGE) 14000 (2)
dac (y) e " dac(y)
= DS (2 )
e
— _ipgd(s (z —y) (4.1.23)
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4. Quantization

Next is the variation of the Higgs and Goldstone fields. Recall the definition of the translated field
in (3.1.18) from symmetry breaking shown below

X :=x+ Xu
Under a gauge transformation this transforms [39, 40] as
X' ="+ Xy (4.1.24)

with X' = UX. So we can deduce the transformation rule for the translated field y’

X/ = UX — XM
=Ux+ (U—-1)Xu (4.1.25)
For infinitesimal transformations
ox =X —x
= 100T° (x + Xnm) (4.1.26)

The variation of the Higgs and Goldstone fields are
5 (XUT = X' X ) = X{TP0x — ox'T* X
= o [XLTPT° (x + Xar) + (X' + X{;) T°T" X
= ida [X&TchXM + XITT X + XTI TPTox + TCTbXM]
= oo’ | X[ {T°, T} Xy + X{TPTX + X T°T X (4.1.27)
We can use 7% = 10" and the anti-commutation relations
fr1} = Lo o)
Y 4 Y
1
- §5bc (4.1.28)

and recalling the location of the vacuum from (3.1.16) shown below

1
Xp=—= <0> — X Xy = 22
2v
the first term of (4.1.27) can be simplified to

X, {Tb, TC} Xy = 26" (4.1.29)
We now turn to evaluating the last two terms of (4.1.27). We show two ways to calculate this which

serves also as an algebraic check. First, the brute force way is to note the sigma matrices can be
parameterized as

0 Op1 — 10,
b_ b3 b1 b2
7= <5b1 + 10 —Op3 ) (4-1.30)
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4. Quantization

and the product of the sigma matrices is

b ( 0ciObi + 7 (0102 — 0c20p1) 03061 — 0c10p3 + 1 (Op20p3 — 5c35b2)>

77T 1 — Sesd1 + 1 (8203 — Oesdi2) 8ui0pi + i (82041 — O,1012) (4.1.31)

This product of generators acting on the vacuum
2v 0
crb _ c b
TUT° X\ = 1 \/§O' o ( 1)

v 0ciObi + 7 (01062 — 0c20p1) 0e3061 — 0c10p3 + 1 (Oc20p3 — de3p2) ) (O
2\/_ 0c10p3 — 03061 + @ (0c20p3 — Oe30p2) 0ciObi + 1 (0c20p1 — Oc10p2) 1

_ V(0301 — 0e1bbs + 1 (0c2003 — Oedn2)
2V/2 0ciObi + 1 (0c20p1 — Oc10p2)

Recalling the translated field x

(4.1.32)

X:L X2 +1x1
V2 \Xo —ix3

then
1 . . v 0e30p1 — 01063 + 7 (0e20p3 — 0c30p2)
TTCTbX - o 7 c30Ub1 cl 12.3 c29b3 c39b2
X M = NG ( X2 —tX1 Xot1X3 ) 2v/2 ( 0eiOpi + 1 (02051 — 0e10p2)
v .
= 4{X (03061 — 0c1083) + X1 (0c20p3 — Oc3db2) + 7 [X2 (0c20b3 — 0e30p2) — X1 (0c30p1 — Oc10p3)] +
+ X0 (6ci08i) — X3 (0c20p1 — 6c10p2) + 7 [ X0 (0c20p1 — 6c10p2) + X3 (0ciOpi )] } (4.1.33)

Taking the hermitian conjugate of the above expression and substituting into the last two terms of
(4.1.277) we obtain

1
X TT Xy + X{ TPy = i {x2 (03061 — 0c1083) + X1 (0c2063 — Oc3b2) — X3 (0c20p1 — 0c10b2) + X0 (0cidpi) }
(4.1.34)

A closer observation of the above expression and we can see the anti-symmetric pattern present in
the first three terns. This can be made clearer by using the Levi-Civita symbol

1
XTTCTbXM + XIJ{/[TchX = 51/ (Xagalm(sclabm + XU(SbC)

1
SV (XOébc - Xagabc) (4135)

Secondly, a more elegant way to see this result is to make use of the commutation and anti-commutation
relation between the sigma matrices,

[ab, UC] = 2040, {ab, UC} = 20pc (4.1.36)

which when summed give an expression for the product of the sigma matrices in terms of the Levi-
Civita symbol

00 = Sy + i€ape0”

1 1
— T'T° = Zébc + Ziaabca“ (4.1.37)
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4. Quantization

So

1 1. .
X{T'Tox = 70" X + Jicane XX (4.1.38)

and the pieces (can be obtain using parameterized sigma matrices), are given by

1 1 X2 + X1
Xiyv=—"(0 20 ) —= . 1.
Mx ﬁ< V>\/§<X0—ZX3 (4-1.39)
:(Xo—iX:z)V

1 0, dq1 — 10, 1 +1
T oa., - a3 al a2 L X2 X1
XMUX_\/§<O 2y><5a1+i5a2 —0a3 )ﬂ(XO—iX?))

= v [i (XmOam) + X20a1 — X10a2 — X00a3] (4-1.40)
The result for the X, 7°Tx product is given by

1

. 1 .
Xg/[TbTCX = Zsbc (xo —ix3) VvV + ZV [—XaEabe + 1 (X2E1be — X126 — X0E30e)]

Summing the above with its hermitian conjugate yields
1
XITT" Xog + X[ T T x = Y (Xoébc - Xa€abc) (4.1.41)

which is the same result from the brute force computations. Substituting (4.1.29) and (4.1.41) into
(4.1.27)

0 (XUT = X" Xar) = b0 [ X[ {10, T} Xy + XUTTox + X TT? Xy

1
= i0a° {1/251’0 + §y (Xoébc — Xaeabz:)} (4.1.42)

We have gathered all the ingredients to compute the matrix M, substituting (4.1.23) and (4.1.42)
into (4.1.15)

e _ G [ A
dac (y)
§AY (2)
_ 4 1 . v v : XT Tb _ TTbX
1 1 dac ()
— Ak 4 o be . o 2 sbe - bc
6(‘31 /d z {5 (x—2)D,0 (2 y)} e [V 0" + 5V <X05 xaaabc)} 507 (3)
1 1
= _gamMch(S (l’ - y) - 56 [Vz(sbc + 57/ (Xofsbc - Xagabc):| 0 ("L‘ - y)
= = [-orDl — 0 — g™ + JeP v 02— ) (4.1.43)

Note that in the third line we have moved the 0% out of the integral since it acts only on the §(z — 2).
The derivative of the covariant derivative in the adjoint representation is

Qﬁfo _ 83;; 5bcaxu + egbacAZ} (4144)
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4. Quantization

where the 0 is understood to act on everything to its right. We are still left with the problem of
constructing determinant of matrix M". In its current form the usefulness of the path integral,

z - / DASAle3e [ 2GR A [ 4] (4.1.45)
is limited since functional techniques are limited to functionals of Gaussian form and the determi-

nant spoils this form. This can be remedied by noting that Berezin-type functional integrals [41] over
Grassmann variables results in a determinant in the numerator i.e.

A[A] = det | M"]
— /Dﬂpue—iefd4$d4yﬁb(z)Mbc(m,y)uc(y) (4146)

Where ©?, u* are anti-commuting Grassmann fields with

{u“,ub} = {ﬁa,ub} = {a“,ﬂb} =0 (4.1.47)

Since the expressions are long we shall write down the pieces separately
1 1
—ie/d4xd4yab (z) M (x,y) u’ (y) = —z’e/d4xd4yﬂb (x) - [—Qﬁfo — getrote — §£€2VX0(5bC+
e

1
+ zgeZVXagabc] 6 (I - y) UC (y)

= z’/d‘lx’ﬁb (x) 8;‘DZC + e + ;562VX05bC - ;ﬁe%xaaabc u’ ()
(4.1.48)
Substituting in the covariant derivative in the adjoint representation for
Tk [@;‘DZC + 562V25bc} ut =ab {8“ (51”8“ + €€bacAZ) + 5621/2566] u’
=y (6“(% + 562y2) Ut + e’ (AZuC>
=u® (8“@ + 562u2) Ut + egqpe A, (8“#) u’ (4.1.49)

Putting all the pieces together for the exponent
1
—ie / dzd*yu® (z) M (2, y) u® (y) = i/d4x [ua (0“8M + feQVQ) u® + ecapc A}, (ﬁ“ﬁb) u® + 56621/X0ﬂau“+

1 —b, c
— 55621/5abcxaubu ] (4.1.50)

The determinant can now be expressed as

A [A] _ /Dﬂpue—iefd4md4yﬁb(m)Mbc(x,y)uc(y)

— /DarDueifd4x[ﬂ“(8“8u+562u2)ua+eaabcAz (8”ﬂb)uc+%{eQVXQﬂ“ua—%Ee2uaabcxaﬂbuc] (4151)
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4. Quantization

Substituting the determinant into the path integral
z /,DAeiS[A]e—ifd%Gg(A)A (4]
_ /,DI_LDUIDAGZS[A]_i fd4xG3(A)+ifd4m[ﬂa (6”8,L+§e21/2)u“+esabcz4/‘i(8*‘ﬂb)uc+%ﬁeguxoﬂau“—%geQstachaﬂbuC]
_ /DQ—LDUDAeifd‘lx[ffiGg(A)Jrﬂa (8“8u+£ezu2)ua+e€abcz4z(8“ﬁb)uc+5562uxoﬁ“ua7%geQVEchXaﬁbuC]

= / DiuDuDAe' | #'v%en (4.1.52)

Where we have defined the effective Lagrangian
1

9%53:':?_25

1 1
G2 (A) +u” (8"@ + 562u2) u® + egape Ay (G“Qb) u® + 55621/)(017%“ — EgeQV&?abcxaabuc

(4.1.53)

4.2 Gauge Fixing Term

CZ’@IQE)E give a justification of the choice of the gauge fixing function in (4.1.14) shown here:
G [*Asx) = Al + Gie (X[ Ty — X' T Xy)
After spontaneous symmetry breaking, some pesky two point mixing terms (3.1.30)

V2

were generated which were hard to interpret. These terms survived and were present in the Higgs
lagrangian shown below:

X10M A — X0 A X = —=xa0" AL

1 27172 1 . a 1 ra a 1 St c
Ly = 5 (@LH@“H — u H ) + §auxaa“xa + 268“1‘1” [XMT X — XTT XM} — Eeaabc (Xaﬁ“xg,) Au—i—

1 < 1 1 1 1 A A
= ¢ (a0 H) Aj 4 P AGA™ & SV HAGAY  SPHPALA™ 4 S GALA™ — S 1 = L PG
A 122 1) 1 1 1 1
- 3*2X2X§ - ZH?) - ZHX?L 5 (4’W2) ¢ — 26 H, — §’€H2¢i - 5’@(2(253 + §M2V2 (4.2.1)
We see that the gauge fixing term,
Lor = ! G2 (A)
or = ~5¢Ca
1 a - a a 2
= —%[8“14# + e (X&T x—X'T XM)}
1 2 - a a a 1 a a 2
= —i(a“AZ) — ied" Al [ XL T — X' Xu | + 5562 (XLT"x = X" X) (4.2.2)
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4. Quantization

in the effective Lagrangian has been designed specifically to remove the pesky two point mixing
terms from symmetry breaking. We now are left to the task of evaluating the last term of (4.2.2).
Recall the earlier result of (4.1.40) of

X{i0x = v [i (Xm0am) + X20a1 — X16a2 — X00a3]
Taking the hermitian conjugate and finding the difference

Xl&aax — xo Xy = 2ivy,
= Xf{/[TaX —XT*" Xy = 1vX, (4.2.3)

The gauge fixing terms final form is given by

1 2 - a a a 1
Lor = —E(G“AZ) —ied" A% | X[ T*x — X'T XM} — §§e2u2><§ (4.2.4)
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4. Quantization

4.3 Complete Lagrangian

&I@{%E make the cosmetic change of relabeling xo — H then list the complete Lagrangian
Lg =L+ Lor +u’ (8“@ + 5621/2> u® + egapc Ay, (8“711’) u + ;geQVHﬂ“u“ — ;fe%aabcxaabuc (4.3.1)
with
L= Lya+ Ln (4-3.2)
the pion-tho Lagrangian

1 1
Loa = 5 (0u0ad" 60 — V'0%) + Secaij Ay (6;0" 61 — 6:0"0) — eewsbjmmA“Ab“ 4(¢Z¢>§)+

1 a apy 1 b cv a 1 2 b pc Ad ev
- EFWF HY 2€€abcz4 HATEY, 46 EabeCadeA) A A A (4-3-3)

the Higgs-rho-pion Lagrangian

Ly = ; (0, HO"H — ji*H?) + lauxaaﬂxa +ied" A [ XL T — X" Xu — iesabc (xab_“)Xb) A+

1 1 1 1
—5e (Xa<8_“>H) Al + *62 2A“Aa“ + 3¢ VHA“A““ geQHZAZA““ 3¢ XQA“A‘W - ;\2]{4 — %HQ o+
A VA y)\ , 1 ) S R
32XaXb - a5 (4/'?” )¢ 2kvH @, — SKH ¢, — 2/‘€Xa¢ + N v (4.3-4)
and the gauge fixing Lagrangian
N a a a 1
Zor = ——g(a“A“> —ied" A}, {XK/IT X—X'T XM} - 55621/2)(2 (4-3.5)
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5

Path to Calculations

5.1 Renormalization Transformation

(;F/ HUs far we have constructed a Lagrangian which contains bare fields and couplings.
(\f) @ Bare in the sense that they are not directly related to experiment. To complete the
¢ —x\ ( definition of the theory, we must show how these bare couplings and fields are related
Q/ @70 to the experimentally measured coupling and give meaning to the fields and couplings.
This is done by renormalization [42, 43, 44]. Since the complete bare Lagrangian has many terms in
it, we shall split up the calculation and deal with the self contained pieces. We begin with the bare
pion-tho Lagrangian:

1 1 1
LAy = B (5;@0@@“%@ - m?)qb%a) + ieOgaijA&u (ﬁboya“%i - ¢Oiau¢0j) - 5602€aij5bjk¢0¢¢0kAgﬂAg“+

>\4 2 42 1 a apy 1 2 qa pop 1 s qa \2 1 by pcv rra
- ?O (gbOa Ob) - ZFO,U,VFOH + §MO AO;LAOI - Tg()(al AO/J,) + ieogabcAOMAO FO,LLV+
1
— ZeggabcgadeAguAguAg“Ag” (5.1.1)

The subscript 0 is used to indicate bare quantities. We make a redefinition of the fields and couplings
in terms of the renormalized fields and couplings:

(b()a = ¢a\/Z my = m\/z €0 ‘= e\/Z

1 [7 (5.1.2)
My = M\/Zns R e Ay = Auy/Zn,

€o §
Substituting (5.1.2) into (5.1.1)
Lpoay = ; (Z¢au¢aa“¢a - Z¢me2¢§) + ;equ\/EeaijAZ (¢;0" ¢y — ;0" ;) +
— ;62ZeZ¢ZA€aij€bjk¢i¢kAZAb” — Z;gm (¢3¢§> - iZAFSVFaW + ;ZMZAM2AZAQM+
- ZAQZZ (0r12)" + ;e\/@aabcAbﬂAWng - iezZeZigabcsadeAZA,ﬁAd“Ae” (5.1.3)
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5. Path to Calculations

The definition of the Z; factors are given by:

Z¢ = 1 + 5Z¢ Z¢me2 = m2 + 577’1,2 €Z¢\/ ZeZA =e -+ 5ZA¢2
€°Z.ZyZn = € + 0 2y a2 Zi ZagAa = Ay 4 0 Zga Zy=1406Z4
AN 1 (5.1.4)
T ZaM? = M2 + 5 M2 : £ =T /275 = e + 6 Z sz

22,73 = € 4+ 67 pa
and substituting (5.1.4) into (5.1.3), the Lagrangian will split into two pieces
$¢0A0 = $¢A + $¢>CAT (5.1.5)

where 7,4 is of a form that resembles the bare Lagrangian $¢O Ao

1
gqb == (a,u¢aa'u¢a m ¢ ) eéasza (¢Jau¢z ¢za (b]) 6 galjgbjk¢l¢kAaAbu 4 (¢§¢g) +
1 a rrapy a Aa a 1 bu Acv ra 1 2 b pc pdp pev
— FE 2M2A Aot — 5(am )+ S CancAM AV Ey, — S Peacan A ATAM AT (5.1.6)

and the new piece .Z%; is the counter term Lagrangian

1 1 1
$¢CT =5 (5Z¢au¢a3“¢a - (5m2¢>2) + §5Ze€m‘jAZ (¢j8ﬂ¢z‘ - ¢z‘3“¢j) - §5ZA¢2€a¢j€bjk¢i¢kAZAb“+
5Z¢4

152 Fi Fo 15M2A“A““ 16 orAe)” 15Z AP A e
(¢ ¢b) — 10%at + B WA TG 5( ﬂ) + 504 a20AEabe uwt
— ZéZAwabcgadeAZAf,Ad“Ae” (5.1.7)
which contains all the §7; factors. The bare Lagrangian from symmetry breaking is
1
+ 3 (auXOaa“XOa — foMOQX?l)

1 1 o
Lo = 5 (QJ‘[O@“HO - m%{oHoz) — €0Cabe (XOC‘ 3”)(0(,) Aot

2 4
1 < a 1 0 A a 1 0 A a 1 “ Ao
— 560 (XOaa“HQ) A + 5602V0H0A0 A() t -+ §€02H02A A(] # -+ geo XObA Ao — 3*2H0 -+
Ao Ao Z%0 2% 1 1
= 160" X060 = 33X0aX0 — = Ho” = == HoXga = 2kovoHodf, — 5r0Ho’ @, — SRoxa.dp (518)
Redefining the bare fields and couplings in term of the renormalized fields and couplings
Ho:= H\/Zn mpo = Mu\/ Zmy Xoa = Xa\/ Zx
My = M/ Zy, vo i= /7, No = M/ 2, (5.1.9)

Ko = m\/Z

Reusing some definitions in (5.1.2) and (5.1.9), and substituting into (5.1.10) gives us
1 1
Lo = (Zno,HO"H — ZHZmHmfgm) + = (Z 0, Xa0"Xa — E07Zy ZMM2 X2)+
1
— 102\ ZeZacane (Xaa Xb) Af — e,/Z 7\ ZyZs (Xaa H) A + 26 207 a2\ 2 2, HAS A%+
1 a a, 1 a a
+ ge2Z ZyZsH?Aj A + §e2z ZnZaxjALA™ — —Z?{\/Z,\H‘l - —ZHZ NIAN: B

A
— ﬁzfc ACXG — —\/Z Z\Z3H? — —Z 2y Z\ZuHX2 — 26024\ 2o 7, Z iy H P2+

— ERZHZM/ZHH?% — §/<;ZXZ¢\/ZHXCL¢5, (5.1.10)
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5. Path to Calculations

The definition for the Z; factors are

Zy =1+62Zy 211 Doy = My + My Z,=1+067,
02y ZnuM? := EM? + 5M?, L ZZn = e+ 0Zue |2 D ZyZa = e+ 6 Zyma
EvZaZ\ T2, = eV + 0 Zy a2 € ZZnuZa =€+ 02y p2 € Z. 2y Za = €+ 6 Z\2 2
N3 2y = A+ 62y AZuZ 70 = A+ 6 Zyz e NZ2\Zy = A+ 62y
V)\\/m = UAN+ 0Ly V/\ZX\/m = U+ 022 /iVZ¢\/m = KV + 042
EZHZ¢\/Z =K+ 024 HZXZ¢\/Z =K+ 02,0242
(5.1.11)

Substituting (5.1.11) into (5.1.10), the Lagrangian will split into two pieces
Lo = Ly + L5 (5.1.12)

where %y is

1 1 1 v J| v “
L= (0,HO"H — m3 H?) + 5 (Duxadxa — EM?X2) — JCCane (xa0"xs) AL — 5¢ (xa0"H) A+
1, 1 1 A A A VA
- H A® A%+ 72H2AaAa,u -2 2AaAa,u,_7H4_7H2 2 2 2—7H3
TR vHAAT F g T AAT A RN A 32 161 Xe T gpXaXo T A
A 1 1
— HXE — 20 H, — SRH?G) — Sr(d) (5.1.13)

and £ is the counter term Lagrangian:
cr _ 1 2 72y, 1 2 2 1 St c
Li" = 5 (0Zn0,HO"H — 6miy H? ) + 2 (02,0,xa0" Xa = OMex?) = 70 Znecane (Xa0 ) Apt
— 5 7ma (XD H) A 070 HAGA™ ééZHaAszAZA““ + ;MXQAQ NZAT A4
- 312(52H4H4 - 11652HQXQH2X§ - 31252x4x2x2 — i(szmﬂ?’ — iéZszHxi — 267 Hp2+

1 1
- §5ZH2¢2H2¢3 - §5Zx2¢2><3¢§ (5.1.14)

Finally the bare Faddeev-Popov ghost Lagrangian is

¢ a a L= c 1 —a .. .a
Lorpc = ug (6“8” + EOMO?) Uy + €ofabcAg, (8‘ uS) ug + §§OG§V0H0u0u0+
1 ~b, c
- §§o€§V05ach0aU8Uo (5.1.15)
Only a single field redefinition is required for the bare ghost field:

ug = u\/ 2, (5.1.16)
Substituting the appropriate definitions from (5.1.2) and (5.1.9), and (5.1.16) into (5.1.15)

1
Lypg = @ (Zué)“f),t + gOMQZuZM) U+ eZy\| Ze Zag ape A (aﬂab) u + §§oe2yZeZu Z, 7, Huu'+

1
- ifoezyzezu\/ Zl/ngachaabuc (5117)
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5. Path to Calculations

We define the Z; factors as

Zy:=1+067, §0ZuZyM? := EM? + 0M7,  eZy\|ZeZa = e+ 02,2
£0€2UZ6Z’LL \/ ZZ/ZX = €€2V + (5ZHu2 5062VZeZu\/ ZI/ZX = £e2y + 6qu2

(5.1.18)

Substituting (5.1.18) into (5.1.17), the Lagrangian will split into two pieces
Zorrc = ZLrpra + XFCPTG (5.1.19)

where Zpq is
1 1

Lrpa = u” (8"8# + §M2) u® + egapc A}, (8“ﬂb> u + §§ezyHﬁ“u“ - 55621/5(11,0)(@@%6 (5.1.20)

and £, is the counter term Lagrangian:

1 1
RS (6Zu8“6u + 5M35) U + 6 Z a2 Eape AL (aﬂab) u+ 502 Hutu — iazxuwabcxaabuc
(5.1.21)

The bare field and coupling redefinitions (5.1.2), (5.1.9), (5.1.16) together with the Z; definitions in
(5.1.4), (5.1.11) and (5.1.18) is the Renormalization Transformation.

5.2 Feynman Rules

T
&iue Feynman rule will be computed for the specific example of the rho Green’s function/prop-
agator to demonstrate the ideas required to extract out the Feynman rules for this Lagrangian. The

Lagrangian for the rho is

1 1

1
— _ e peap TAf2 pc pca T (aa gcN2
Ly 4FaﬂF + 2M AP A 25(8 A%) (5.2.1)
with the anti-symmetric property of the field strength tensor
Fgs = 0.A5 — 0sA;,
= —Fpa (5.2.2)
We can manipulate the form of the Lagrangian as follows
1 1 1
_ c _ c ca | T A2 AC pAco _ — (Aaa pc\2
La=—7 (0aAf — 95A%) F + GMPALA — 5(a AS)
1 1 1
_ - caf ¢ pcba c TAf2 pc pca T (aa pc\2
- (Ff0,A5 — FP0,A5) + S MPALA 25(0 A°)
1 1 1
— caf3 c - 2ACACO(—7 aACQ
2F 8aA5—|—2M . 25(8 )
1 1
=3 laaAcﬁaaAg — JTACOAG — MPALA™ + EaaA;aﬁA; (5.2.3)
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5. Path to Calculations

where we have used the anti-symmetric property of the field strength tensor. The action for this
Lagrangian is:

S=[d=2
14acﬂc B pcaq Ac ZCca]'ach
:—f/dz 0 A0 A — 0P A OLAG — MPACA™ + 2O° 407 A
— / d'z [ AL (97 + M) A“”+A“8“8”A“—§A$8”8“AZ]

=3 / d*2AC (2) l(a’;’ + M?) g (1 - g) aaaﬁ] A (2) (5.2.4)
where we have performed integration by parts with the surface terms contributing zero. The two-
point function in configuration space is defined as

52

M@ = i waa )

= g [(aj + M?) g — (1 - 5) aﬂaﬂ §(y—x) (5.2.5)

and the Fourier transform of the two-point function is
I (p,q) = / d*zd'ye” PHIITE) (1, y)

= s [(—ff £ 02) g + (1 - 2) q“q”] (20)'5" (p + ) (526)

We are now left to the task of finding the Green’s function which is the reciprocal of

T,y (k) = —i6® [(—lf +M?) g + (1 - 2) kﬂk”] (5.2.7)

where

Fab (k) ngc (k) = 5acgau (528)

and Dj,. (k) the Green’s function. We can extract out the isospin indices D, (k) = 0D} (k) and
substituting into (5.2.8)

—i6 [(—kQ + M2) of 4 ( 5) ko‘kﬁl ocDfg (k) = dacg™
— l(—kQ + MQ) g°? + (1 - 2) kakﬁl Djy (k) = ig™ (5.2.9)

We need to find a Dj; (k) which satisfies (5.2.9). The most general tensor we can construct is a linear
combination of g and k*ks with

Dy (k) := Ags + Bk"kg (5.2.10)
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5. Path to Calculations

with A, B € C. Substituting (5.2.10) into (5.2.9)

[(—If +M?) g% + (1 - 2) kakﬁ] (Ags + Bk'kg) = ig™"
k’2

— A (—k:2 + M2) g+ [B <M2 — §> +A (1 — 2)] kYK = ig™ (5.2.11)

Since gj; and k*kg are linearly independent we just have to match coefficients with

2 1
A (—k:2 + M2) =i and B <M2 - Z) + A (1 - 5) =0 (5.2.12)
which has solutions:
A

B = W el (5.2.13)

l
A - —m (5214)

The rho Green’s function/propagator is then given by

DY = 64 DM
_ i0ab v -1 7

Pt ! TE_ar " (5:215)

The counter term Lagrangian for the rho propagator is

1 a apuv 1 a a, 1 a 2

LY =~ OZAF F 4 SOMEAG AT — Sog(0" Ay (5.2.16)

Going through the above procedure again for the counter term Lagrangian but stopping at (5.2.7),
we get the counter term for the rho two point function

Tovor = i0a | (=K 24 + 6M?) g — (66 — 0Z4) k'K (5.2.17)

Table 5.1: Feynman rules for this QFT. All momenta are incoming with Z p; =0

Kinetic(P) /Interaction(I) /Counter(C) term Feynman Rule

P1.% = L (0F¢abuda —m22) ool [2ab _

_(ER)P MP(AR)? (0mA)? ap ko by oo  —i0® o, (€= D) R
Paf =t —— % L'y Ry el U K2 — EM?
P3. % =L ("HO,H — m% H?) ok - !
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5. Path to Calculations

Table 5.1 — continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

B '5ab
Pg L = L (0,0, v0 — EM2YaXa a k b oab _ v
4 2 (0"XaOuXa = EMXaXa) RS yE
P5 & — —® (9, + EM2) ue o kb e 07
a k2 — EM? + e
m
\%
AN D3
\\ b

, V v v
Fbmn = egbmn(pl - p2)

L1. L = jecqi; A% (:0; — ;0" ;)

’A
m (2
\\%\ y

2 av

1.2 b . r _
L2. & = —5eeujepndipn Aj A ) Lo = 1€°9% (€janEjem + €jdmEjen)

N

n d, o

NN\P1 D3 s
N g
N
N
RPN

7 P2 paNO N\

a b

NA\PL Ps
\s
\

Ly & = -2 H*2 > The = —Lixgte

,/
7 /P2 P4

b c

13. ¢ =—-4H*

=i
I
|
INES

P
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5. Path to Calculations

Table 5.1 — continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

b d

N

15 K- _§X(21XZ fbcde — _iy)\ (6cd6be + ybd §ee + 6bc§de>

EN
>

D2

@)
@

s

p3
— == =3\
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c
a
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1 c C’/J'_V 1 1%
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Table 5.1 — continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule
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b,v
NP D3
\s
\\
Li1. & = (e H? Aj A% > T = Lie2gbego
t/l
/P2 P4
c,
c e, v
%i\ y
L12. ¥ = ée2XgAZAa“ f‘g‘c’éf = 51'6250d5efgw

ZAN
fa

d
a
NA\P1 p3ov
N4
N 7
>
/' .
P2 PaNC .
b

L13. ¢ = —1kH?¢? [ = —2ik§®
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5. Path to Calculations

Table 5.1 — continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

b e
N4

L14. £ = —L1ex2e? ’ [abef — _9jxebgef

L15. ¢ = —2kvH@? - % = —4ikps®

[.L16. & = —ecype (a”ﬂa) ubAZ f?gh = —6€fgh(p2 +p3)y

Y@\
Ps3

G

1
Li7. ¥ = iegabCFﬁyAb“ACV

Tabe = ecabe | (s — D2)o 95y + (D1 = P3) s Gva + (P2 = P1), G5
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5. Path to Calculations

Table 5.1 — continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

a

Yi

L18. & = L¢e*vHuub e [, = S

[19. & = —3EevepeXa U’ Tjeq = —3i€e*vefeq

a C

\\%‘ y’/
o«
4‘ % .
b d

a, ¢, p

Y/

1
[.20. ¥ = _g)\4¢2¢g Fabcd = _Z/\4 (5ab60d + 5b05da + 5bd5ac)

FZIL)/C;IU = _i€2 {gfabefcd (gp,pglla - gp,ogyp) +

+¢ tacE fab (GuoGpv — Guwlpo) +

1
[21. ¥ = —162€ab08aefAZA§Ae”AfV

b,v d, o +E€ fad€ foc (gul/gpo' — gupgw)}
1 1 2 -
B R - DY Dy = (K252 — 5M?) g
o 1 2
k
_ 1 R -
C2 2= 2 (5ZH8#H8MH - ZHZmHmHH ) ***** ®*’ - FCT =7 (k2(5ZH — 5m12q)



5. Path to Calculations

Table 5.1 — continued from previous page

Kinetic(P)/Interaction(I)/Counter(C) term Feynman Rule

a
N %
AN Ps3
1 a ) SHE = "
C.3. 2 = 50Zccaij A, (00" s — 90V ;) ®= Lover = 0Zcecan(pr — p2)
Rz
b
a
N Yl‘
AN p3
C4 L = _252H¢2H¢¢21 ®— ‘‘‘‘‘‘‘ - fabCT = —4i(52H¢2(5ab
Rz
b
a c

" %‘ y y
®/ Lapeact = —i0Zps (8apdea + ObeOda + Obdlac)

’4 ‘%\
d

1
C5. & = —£07, (60)
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Quantum Corrections
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6

Scattering Lengths at Tree Level
6.1 Useful Formulae

¢ (1) + ¢" (p2) = ¢° (ps) + ¢ (pa)
with the 4-momentum conservation equation
pr+ e = P51y
Since these particle are on-shell p? = m?. We can define the Mandlestam invariants:
= (p1+p2)" = (p3 +pa)’

—-( pi—3)? = (ps — p2)°
U= (p1 —p4) = (p3 —p2)2

~

We can rewrite the dot products p; - p» and ps - ps using the s Mandlestam variable,

SIP%+2P1']02+]93
= 2m” + 2p; - P
s — 2m?
2
2 2
S—p3—|—2p3-p4+p4
s — 2m?
2

= P1-P2 =

= D3 Ps=Dp1-P2=
A summary of all the dot products are listed below

s — 2m?
2
om? —t

P3-Pas=DP1-P2=

P2 -Ps=DP1-P3 =
om? —u
2

P2 -P3 =P1-Ps=
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6. Scattering Lengths at Tree Level

Consider now the case of the elastic pion scattering process in the center of mass frame, with the
incoming three momentum ¢ and the outgoing three momentum ¢’ with

q#q (6.1.5)

q:=|q| = Iq| (6.1.6)

where ¢ is defined as the magnitude ¢. For the ¢ channel process,

Py = (Eg,g) ph = (Ega —g)
o (p1) o= (Bya)  ph=(Es—d)

Figure 6.1: ¢ channel scattering process

Let the 3-momenta for ¢* and ¢° be g and ¢’ respectively, such that

i = (Bua) = (m? + g, q) (6.1.7)
i = (Bgrd) = (Ym? + a7, d) = (m? + 1a?.4) (6.1.8)

The product of p; - ps is

pops= (Y +1a?) —q-d

=m?+ \glz — |q|l¢| cos @

=m?+¢* (1 — cosf) (6.1.9)
Substituting p; - p; from (6.1.4) into (6.1.9) the ¢ Mandlestam variable is now given by
t =2m® — 2p; - ps
=2m? -2 [mQ +¢* (1 - 0059)}
(6.1.10)

= —2¢*(1 — cosf)
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6. Scattering Lengths at Tree Level

Consider the v channel scattering process.

¢d (p4) pZ = (E2/7g/) pg e (Eq/, —(q

Figure 6.2: u channel scattering process

Let the 3-momenta for ¢ and ¢ be ¢ and ¢’ respectively, such that

p= (Eg,c_]) = (\/m2 + |g|2,g)
pi=(Bpd) = (Y2 +1gd) = (Vm? +lal% ¢
The product of p; - ps is

p1-ps=m>+q¢* (1 +cosb)

Substituting p; - ps from (6.1.4) into (6.1.13) the u Mandlestam variable is now given by

u = —2¢° (1 + cos )

The three Mandlestam variables are related to each with

4
s+t+u= ij2 = 4m?
j=1
We can use (6.1.15) to find the s Mandlestam variable from ¢ and w.
s=4m*—t—u
= 4m? 4 2¢* (1 — cos ) + 2¢° (1 + cos 6)
= 4m? + 4¢*
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(6.1.12)

(6.1.13)

(6.1.14)

(6.1.15)
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6. Scattering Lengths at Tree Level

We shall define the cosine of the scattering angle and the ratio R

z :=cos0
2
9
R=1n

Then the necessary formulae for the following calculations in terms of z and R are

s =4m?(1+ R)

t=-2m*(1-2)R

u=—-2m*(1+2)R
s—t=2m*[2+ (3—2)R)
s—u=2m*[2+ (3+2)R)]
t—u=4m’Rz

6.2 Tree Scattering Amplitudes

o~

C

7

(6.1.17)
(6.1.18)

(6.1.19)
(6.1.20)

(6.1.21)
(6.1.22)

(6.1.23)
(6.1.24)

W E have now reached the stage to calculate the pion scattering lengths. A list of the required tree

diagrams are generated from the Feynman rules for pion-pion scattering and are shown below.



6. Scattering Lengths at Tree Level

a C

N ’
N s

N

a c
NNy b3
+
’ P2 P4 R A
’ D2 . N D4
b d / , .
b d
a c
" . \ ,
N 1 N 4
A\ 1 ps ~ - P “o’ bs
> I
N ’ ’ |
/. T —« + |
, 4 N |
K ’ Do I . s X s
b d / , \
b d

a C
\%‘ py’/’
o«

,’A %«\
b d

For the s channel scattering process mediated by the rho:

a
NN %1
Lo/ D2
b
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6. Scattering Lengths at Tree Level

With the definitions for the verticies

«a i0 for
[y = egfap(p1 — p2) [y = eenae(ps — ]94)5 DiZ (p) = —QLgi
pt =M
The amplitude is given by:
M} =T, - DI (p) - Ty
o2
= —imc’fabf?fdc (p1—p2) - (3 — pa)
= SA (5ad5bc — 5a05bd) (6.2.1)
with
G
Sa = _ZS—W (p1 — p2) - (p3 — pa)
2
NG
=t
R
= —4ije*m? i 6.2.
M A (1 R) = M? (6.22)
For the ¢ channel scattering process mediated by the rho:
a c
pl\i < '4
p2/4 / 7N R %
b d
With the definitions for the verticies
o 10 fhGa
'y = —eggea(pr + ps) Ty = echua(ps + pa)’ DL (p) = _#
The amplitude is given by:
M =T5- DI (p) - Ty
2
. e
= Zm (p1 + p3) - (P2 + Pa) (Gbedad — Gapded)
= T4 (6av0cd — OvcOad) (6.2.3)
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6. Scattering Lengths at Tree Level

with
e
Ty = Y (P1+ps) - (P2 + p4)
2
. e
T
. 2+(3+2)R
= 2ie*m? 6.2.
M (1= 2) R+ M? (6:2.4)
For the u channel scattering process mediated by the rho:
a d
pl\«\ < '4:
pQ/( / 7o\ R %
b ¢
With the definitions for the verticies
« Z5 o
Iy = —eepaa(p1 + pa) Ty = ecpe(p2 + ps)” DI (p) = —pQTgM/BQ
The amplitude is given by:
M =T D[ (p) - T
G
= mefda€fbc (P14 p4) - (P2 + p3)
2
. e
= Zm (p1 + pa) - (P2 + p3) (GacOba — dapded)
= UA <5ab56d - 5ac(5bd) (625)
with
62
Us = —1 :
A M (p1+pa) - (P2 + p3)
2
=i (s —1)
2+(3-2)R
= 2ie*m? nll 2) (6.2.6)

2m? (1 + 2z) R+ M?
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6. Scattering Lengths at Tree Level

The sum of the amplitudes due to the rho mediator

T = S (6adbbe — GacOpa) + Ta (0apOed — OpeOad) + Ua (3apGed — OacOba)
= (TA + UA) 6ab50d - (SA + UA) (Sacébd + (SA - TA) 5ad(5bc (627)

For the s channel scattering process mediated by the Higgs:

a C
N
N .

4 Q\
b d

With the definitions for the verticies

' = —4ikvi,, I'y = —4ikvd.y D (p) = -5
pT—myg
The amplitude is given by:
M =Ty-D(p)-Th
C16K20?
= _Zm(sab(scd
= SHéabécd (628)
with
16K
Spi=—i——5 (6.2.9)
5 —miy

For the ¢ channel scattering process mediated by the Higgs:

a Cc

p\\\,/%

i

|

|

|

/*\
2N
b d
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6. Scattering Lengths at Tree Level

With the definitions for the verticies

T, = —4ikvS,. Ty = —4ikvép D(p)=5—+

The amplitude is given by:

M =T5-D(p)-Ty
_16K%02
= —@m(sacfsbd

= TH 5a66bd
with

16K202
TH = —1 5
t - mH

For the u channel scattering process mediated by the Higgs:

a d

N

|
I
I
|
/L\
2N
b p
With the definitions for the verticies
1
Fl = —4i/iV5ad FQ = _4Z‘K'I/5bc D (p) = S 3
pT—my

The amplitude is given by:

Mq?:FQD(p)Fl
C16K%02
= —Zm(sad(sbc

= UH 5ad5bc
with

C16K202
u - mH
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(6.2.11)
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6. Scattering Lengths at Tree Level

The sum of the amplitudes due to the Higgs mediator

TIC_LIb’Cd = SH0up0cd + T04c0pa + Urr04d0pe

For the four pion scattering process:

a C
\X@‘ V/’
o«

,’% %\\
b d

With the definitions for the verticies

Sy = =i\ I' = S) (8abOcd + 0adObe + dacOba)
= M?=T

T)(\zb,cd — S)\ (5ab(scd + 5ad6bc + 5a05bd)

6.3 Isospin Amplitudes

G
QD HE most general form of the scattering amplitude is

Mab’Cd =F (S, t, U) 5ab60d + G (8, t, u) 5a05bd + H (S, t, u) 5ad5bc
The amplitude can be decomposed over an isospin invariant basis

2
ab,ed __ m pabed
Mebed — 5 pat

m=0
where 7™ are the isospin amplitudes and the basis vectors [45] are

1

pabed . — §5ab5cd

1
Plade = 5 (5ac(5bd - 5ad6bc)

1 1
P2abcd = 5 (5ac(sbd + (Saddbc) — géabécd
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(6.2.14)

(6.2.15)

(6.3.1)

(6.3.2)

(6.3.3)
(6.3.4)

(6.3.5)



6. Scattering Lengths at Tree Level

Expanding the amplitude (6.3.2)

Mabed — ; (T° — T?) Supbea + ; (7" + T?) Gacoa — ; (T = T7) duabie

(6.3.6)

and identifying coefficients between (6.3.1) and (6.3.6), we obtain a system of linear equations

;(TO—T2) = F(s,t,u)
;(Tl—i-TQ) =G (s, t,u)
—; (Tl—Tz) = H (s,t,u)

which has the solution,
T = 3F (s,t,u) + G (s, t,u) + H (s,t,u)
T, =G (s, t,u) — H (s, t,u)
Ty =G (s, t,u)+ H (s, t,u)

The isospin amplitudes for rho mediation are given by:

Tg ::3(TA—|—UA)—(SA+UA)+(SA—TA)
=2(Ta+Ua)

o g 2+(3+2)R 24+ (3—-2)R
_4wm[ ]

2m?2 (1 —z) R+ M?  2m?(1+ z) R+ M?

le = —(SA—l-UA)—(SA—TA)

=—=254+Ta—Ux
 oie?m? 4zR N 2+(B+2) R 2+(3-2)R
B 4m2(1+ R) — M2 2m2(1—2)R+ M2  2m2(1+ 2) R+ M2

Ti = —(SA—l-UA)—I—(SA—TA)
= —(Ta+Ua)
:—;Tg

The isospin amplitudes for Higgs mediator are given by:

J16k%0% 16K%0% | 16K%2
:_3Zs—m2 P Ry ——
H H H
3 1 1
= 16ix"1* |— + +
i [ 4m?(1+ R) —m3,  2m?2(1—2)R+m% 2m?(1+2) R+m}
Ty =Ty — Uy
16x%2  16K%02
=t 2 Tt 2
1 1
= 16ik*V? —
" [2m2(1—z)R+m§{ 2m2(1+z)R+m%{]
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(6.3.8)

(6.3.9)

(6.3.10)
(6.3.11)
(6.3.12)

(6.3.13)

(6.3.14)

(6.3.15)

(6.3.16)

(6.3.17)



6. Scattering Lengths at Tree Level

T} =Ty + Uy

16k%2 16Kk

= 2 ! 2

t—my U — My
= 16ix°1° : + ! (6.3.18)

2m2 (1 —2)R+m%  2m2(1+2) R+m% e
The isospin amplitudes for the four pion vertex are given by:

Ty := —5i)\y Ty :==0 T == —2i)\, (6.3.19)

The sum of the amplitudes of the Higgs and 4 pion tree diagrams are:

ng,\ - Tlg + Tf\)

3 1 1
_l’_

= 16ix*0% | —
e A4m?2 (1 + R) — m? 2m2 (1 — z R—i—mQ—i_2m2 14 2) R+ m?
H H H

] —5iNy  (6.3.20)

Th = Th+ 1}

= 16ix*v? ! — L (6.3.21)
2m?2 (1 —2)R+m% 2m2?2(1+z2) R+ m3

Thy, =Th + 1%
1 n 1
2m? (1 —z)R+m%  2m?(1+z) R+ m¥%

= 16ix*1? [ ] — 2i)y (6.3.22)

6.4 Scattering Lengths

K a5l

%g%CATTERING lengths are computed from the coefficients of the partial wave scattering amplitude
with the partial wave scattering amplitude obtained from the projection of the isospin amplitudes
over the Legendre polynomials. We begin with the isospin amplitude 77 (¢2, z) expressed as a sum
over partial scattering amplitudes T7, (¢?)

o0

T! (q2, z) =327 Y (2m+1) B, (2) T}, (q2) (6.4.1)

m=0

where P, () is the Legendre polynomials indexed by m with z = cos as defined in (6.1.17). Using
the orthogonality of the Legendre polynomials on the inner product:

2

/Pm () P () de = 37—

-1

Ormn (6.4.2)
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6. Scattering Lengths at Tree Level

the partial scattering amplitudes can be extracted by multiplying 77 (¢2, z) by the Legendre polyno-
mials and integrating;:

1 1

/Pn (2)T* (q2, z) dz = 32w i (2m+1) / P, (2) P, (2)dz - T% (q2>
1 m=0 1
> 2
= 321 mz::o (2m+1) 5= b 7! (¢)
= 647! (q2)
I( 2 1 (2
= T, (q ) = 647/]3” ()T (q ,z) dz (6.4.3)

-1

A Maclaurin series expansion can be made in terms of ¢* [46] as

2\" 2
! :z<;22> [a,ﬂ+b£ (%) +]
=iR" [afl + bR+ .. } (6.4.4)

2

where R = q—Q which was defined in (6.1.18) and «! and b}, are the scattering lengths. We shall
m

project the isospin amplitudes using the first three Legendre polynomials which are

1
Py(z) =1 P(z) ==z guy:§@f—g (6.4.5)
The first two scattering lengths are calculated below. For T

T°(R) = T4 + T,

9 9 2+(3+2)R 2+(3—-2)R
= die"m +
2m?2 (1 —z) R+ M?  2m2 (14 z) R+ M?
3 1 1
16ik%0? | — 6.4.6
oy [ 4m2(1+R)—m%{+2m2(1—z)R+m§{+2m2(1+z)R+m%{ (6.4.6)
The partial wave amplitude 77 is
;L
0 - 0
70 (R) = 647T/1P0 (2)T° (R, 2) dz
_ 0 70
=ag + bR (6.4.7)
Setting R = 0 gives us
@ =15 (R,
2,2 2,21 A
_emt @il 3 |5\ (6.48)
21 M? T |m3  2(4m? —m3) 327
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6. Scattering Lengths at Tree Level

and differentiating with respect to i and then setting to zero

o — dT9 (R)
dR R0
ez m? m? 2m2 k21?2 3 1
_ S (g4 — 4.
4 M? (3 M?> R— [(4m2_m§{)2 my (6.4.9)

The above calculations can be repeated for 7", 7% and the three Legendre polynomials Py(z), P(z)
and P,(z2).



6. Scattering Lengths at Tree Level

6.5 Tree Scattering Lengths Results

) = *)
(=
e Q(’L) summary of the results for the scattering lengths are listed below:
o et m? N K221 3 54
ay = ——— — -
0 2w M2 m%  2(4m2 —m%)| 327
2 2 2 9222 3 1
bgze—m— g4 ) 2EEY 2 1
4 M? M? T (4m2 — m%{) myy
ad =0
b =0
o 2¢2m? m? 16 m*k??
A= 1)+
157 M* M? 15 myy,
PR AN
5m MS M? Sm miy
ap =0
o

e? 16mS — 3m2M* 2 m?k2u?

1_ il
U Dur AmEMI— M 37 mi,
64 m® m! m?

L e I ' R L |
bl_e2m< ER VR VE M2+> 8 mtk?v?
17 oo 2 T 6

6m 2 3m m
M4<1 —4m> H
M2
ay =
bl =0
ez m? K212 A4
Q= —— e — ——
8t M?  2mm3 327
o () L
481 M? M? 3m my
a? =0
by
go_cemf o my 8 mi
2 30m M* M?2) " 15w mb
b§ = _imiﬁ 1 — 12&2 — EmGﬂZVQ
15 M M? St mb;

For the experimental input we shall use the average masses of the charged and uncharged pions and
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6. Scattering Lengths at Tree Level

rhos:
m = 0.1372734 £ 0.0000007 GeV M = 0.77649 £ 0.00034 GeV (6.5.1)
which are taken from [29]. The rho-pion-pion coupling,
e =15.961+0.20 (6.5.2)

is taken from [47]. The value of the vacuum expectation value can be inferred from the definition of
the mass of the rho

M = ev

M
— =" =0.130 £ 0.004 GeV (6.5.3)
€

The pion decay constant and its ratio in the chiral limit,

Fr

F; =~ 0.093 GeV 7= 1.0627 £ 0.0028

is taken from [48]. The four pion coupling is taken from [49]:
m 2
vi= ()
= 2.45074 + 0.1568 (6.5.4)
The mass of the symmetry breaking field my is taken to be the mass of the f;(500):
mpy = myg, = 0.450 £ 0.016 GeV (6.5.5)

This value is taken from [50]. Using the above values and af) and b we can infer an average value for
K of:

k= 1.31 £ 0.03 (6.5.6)

The values for the scattering lengths are tabulated below with NABKLZ referring to the model
developed in this thesis.:



6. Scattering Lengths at Tree Level

Lengths Weinberg? \PT(1%0)* yPT(2"¢0)* NABKLZ' Colangelo’ Bijnens® Exp®*
ag 0.20 0.16 0.20 0.21 0.220 0.219 0.220 £ 0.005
b 0.18 0.26 0.30 0.276 0.279 0.25£0.03
a? 0
B 0

a9 x 103 0 2 2.06 1.75 2.2 1.7+3

0 x 10* ~5.23 355 3.2
a 0
b 0
aj 0.030 0.036 0.0528 0.0379 0.0378 0.038 £ 0.002
b 0 0.043 0.0053 0.0057 0.0059
aj 0
bl 0
a? —0.06 —0.045 —0.041 —0.0456 —0.0444 —0.0420 —0.044 £+ 0.001
b2 —0.0225 —0.0803 —0.0756  —0.082 %+ 0.008
a? 0
b 0

az x 10* 0 3.5 —2.03 1.70 2.90 1.3+3

b2 x 104 —-8.9 -7 —0.53 —3.26 —3.60 —8.2

T Tree results

@ Results taken from [51]
b Results taken from [46]
¢ Results taken from [52]
4 Results taken from [53]

Table 6.1: Summary of predicted values and experimental data of the scattering length.

A parity plot can be made to show the predicted versus experimental values for the scattering lengths.
The dashed line in figure 6.3 is the reference line of predicted values equal to experimental values.
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6. Scattering Lengths at Tree Level

S =
N o

NABKLZ
o
—_

—0.1

0+
%
// a8
b 40 Eli
| | | | |
—0.1 0 0.1 0.2 0.3

Experiment

Figure 6.3: Predicted vs Experimental values
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One Loop Corrections

order correction terms from the pertubative series. This can be done systematically by

( first computing the one particle irreducible (1PI) diagrams for the self energies and

,,@ verticies. These 1PI diagrams then serve as the building blocks for the higher order

ana1y51s [54]. We shall list the topologies that contribute to the self energies and verticies. In total
there are ~ 85 diagrams.

< ( \J ” HE tree results for the scattering lengths can be improved upon by including in the next

7.1 One Loop Topologies

W
-
RELTAGRAMS that contribute to the self energy of the rho.

Diagrams that contribute to the self energy of the Higgs.
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7. One Loop Corrections

;T N
o [ \
/ ~.
_ o f,ﬂ\ /+f . e
~ ./

The lollipop diagrams for the rho and Higgs self energies will be included separately later dur-
ing the analysis. Diagrams that contribute to the vertex of the ¢¢p.
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Diagrams that contribute to the vertex of the ¢¢pH.
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7. One Loop Corrections

7.2 Dimensional Regularization

=
(3@0 parameterize the divergences that result in higher order loop calculations, we shall use di-
mensional regularization [55]. This is done by analytically continuing the spacetime dimension from

n = 4 dimensions to n = 4 — 2¢ dimensions [56]. Making this change in the spacetime dimension
2

will capture the divergences in terms of the form 1 and p— which can be appropriately absorbed by

the counter terms. A further consequence of changmg the spacetime dimension to n = 4 — 2¢ is that
the couplings are not dimensionless. This can be remedied by explicitly taking out the extra mass

dimension. The action in n dimensions is

5= / &'z (7.2.1)
Since the action is dimensionless |
[S]=1 = [d"z] =[dz]" =M™ and [£]=M" (7.2.2)
Using the dimension of the Lagrangian we can determine the dimensions of the fields:
[A] =[] = [ = [H] = M5 (7:23)
The dimensionful couplings can now be worked out to be
[ =ML =M = ML D= M ] = M (7:2.4)

We shall define a parameter ;¢ which is referred to as the renormalization scale with dimensions of

mass, [¢] = M and define dimensionless couplings in terms of the renormalization scale as
4—

e~pze, M~ptTA, v~ /LnT_LLI/, AN, K~ TR (7.2.5)

We will suppress the explicit appearance of the scale during the calculations but absorb it into the
definition of the Passarino-Veltman scalar functions.
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7. One Loop Corrections

7.3 Passarino-Veltman Reduction

T

‘,FQIQN efficient way to compute the one loop diagrams is to use the Passarino-Veltman reduction
technique [57]. This technique allows us to compute a Feynman diagram in terms of a few master
scalar integrals [58, 59], which in principle only have to be computed once. The Passarino-Veltman
reduction technique is implemented by using the denominators of the propagators to write all the
scalar products between external momenta and the loop momentum. Practically this means express-
ing the numerators of the Feynman amplitude in terms of the denominator, leaving only scalar
integrals to be evaluated. This is demonstrated below for the case of a vector self energy diagram.

The Feynman verticies are:
I'y = ecqac(2k + p)* Ty = ecpes(2k + p)”

with the self energy contribution due the pion bubble:

. v d"k ce
_Zﬂ-gbl = /er . Ddf (l{?) . FQ -D (k +p)

_/ A"k ecage(2k + )" - 0 - ey (2k + p)~ o
)" (k2= m2) [(k+p) -]

EN db/ d"k (2k + p)*(2k + p)”
e (2m)" (k2 — m2) [(k +p)? - mﬂ

= e%coaateanll” (7.3.1)

USil’lg Eeda€edb = 25ab

—imh = 2e*6 4, 11" (7.3.2)

We can make some definitions for aiding in the calculation:

NI = (2k + p)"(2k + p)”
= 4k"k" + 2 (K"p” + p'k") + p"p” (7-33)
Dy = k* —m? (7.3-4)
Dy = (k+p)* —m?
=k*+2k-p+p® —m?

=D +2k-p+p2 (7.3.5)

So we have the relations
k* = Dy +m? (7.3.6)
2k -p= Dy — Dy — p? (7.3.7)

65



7. One Loop Corrections

The scalar product have now been expressed in terms of the denominators. We can split the integral
over the transverse and longitudinal parts

(27T)n DlDQ
= fr P+ fuaPy” (7.3.8)

Hw ::/ "k Ni”

where the projectors are defined as

Y L
P = o (7.3.9)

JTPNY
Pj}_‘tl/::g‘uy_pp

= (7.3.10)

The coefficients can be extracted using the transverse and longitudinal projectors.

Pro It = f1 (7.3.11)
Pr, It = (n—1) fr (7.3.12)

The projectors acting on the numerator N{* yield
, 1 ’
Pp NI = E(Zk -p+1?)

1
=3 (Dg — 2D D, + Df) (7.3.13)

and

PT,uzzN{W = QWN{W - PL;WN{W
Gu N1 = 4k* 4+ 2k - p + p°
=2D; + 2Dy + 4m? — p? (7.3.14)

The necessary ingredients have been assembled to extract the longitudinal coefficient

d"k Py, NI
le _/ n
(271') DlDQ
_1/ d"k D2 — 2D, D, + D?
N p2 (27T)n DlDQ

L (e Dy
—p2 (27_‘_)71 D1 D2

1 [ dk (D, D

Since there are no massless particles in this field theory, we can safely make use of the Veltman
conjecture by setting all dimensionless integrals to zero i.e.

/ (j:)“n k2 — (7.3.16)
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7. One Loop Corrections

for a € C. We are left with the task of evaluating

d"k Dy d"k k2 — m?
/ (2r)" D> / 2m)" (k +p)® —m? (7.3.17)

Making a change of variables I = —(k +p)" = k' = —(I+p)' = / (;iwl;n = / (;lﬁ; Substituting

in the new measure

/(d”k D, _/(d”l (1 +p)* —m?

27)" Dy 2m)" 12— m?

—/ (an; gi

d"k 2k - p p?
_/ <1+ m2+k:2—m2>
= p*Ay ( ) (7.3.18)

where we have used the Passarino-Veltman scalar function Aq(m) (see Appendix A). So the longitu-

dinal coefficient is
1 d"k /Dy Dy
Jo= P2 / (2m)" (D1 i Dz)
=24, (m) (7.3-19)
The transverse coefficient can be evaluated as
(TL - 1) le - PTHVI{W

B / A"k Py, N™"™
N (27T)n DlDQ

B / A"k (guwN"  PruN{”
N (27T)n D1D2 D1D2

B / d”k 2D; + 2Dy + 4m? — p? / A"k Py, NI™
D1D2 (27T)n D1D2

_ /i 2,2 i)

n (27’(’)” D1 D2 D1D2 L
=44y (m) + (47”2 - P2) By (m; p,m) — 24, (m)
= 24 (m) + (4m® — p*) By (m; p,m)

_ 1 2_ 2 :
= fr1 = n_1 {2140 (m) + (4m —p ) By (m; p, m)} (7.3.20)
So the integral 11" is
v 1 17 17
"= n_1 [2140 (m) + (47”2 - p2) By (m; p, m)} P +2A0 (m) Py (7-3-21)
with the self energy due to a pion bubble.
—imh = 2e*6 4, 11"
. 2625ab
T n-—1

(240 (m) + (4m? — p?) By (m; p,m)| Ph* + 4e*64,Ag (m) P} (7.3.22)
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7. One Loop Corrections

7.4 Summary of one loop self energies

2

shall summarize the results below:

7.4.1 Rho Self Energy

2625ab
-1

i
(S

—imh, = —4e*0p Ao (M) PpY — 45, Ag (m) PLY

—imhyy = —€*M?64,Bo (M;p, my) Ph" — € M?6,4Bo (M; p, my) P

/ N,
\
( |
\ /
N 7
. pv 1 2 g 1 2 v
—imhy, = —56 dapAo (mpg) Pr” — 56 dapAo (mpy) Pr

68

(240 (m) + (4m? = p*) By (m; p,m)] P + 4e%6a, Ao (m) Pf

< QA), PPENDIX B contains the details for the complete one loop corrections for the self energies. We

(7-4.1)

(7-4.2)

(7.4-3)
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7. One Loop Corrections

625@1)
4(n—1)

m2, — M?

it = {40000+ g ) + (20 -+ 2007 = ) B (5, 0) +

p2
1 2 m%{ B M2 2 2 iy
— 16 5ab AO (M) + AO (mH) + T {—Ao (mH) +A0 (M) + (mH - M ) BO (M,p,mH)] PL
(7-4.5)
2
—imlhs = 2(6715;“”1) {QAO (M) + (4M2 _ p2) By (M; p, M)} PR+ %5, Ag (M) P (7.4.6)
. v 3 a 4 3 al 4

—ih = —5625 PAyg (M) PR — 5625 YAy (M) P} (7.4.7)

|

226, 11 1 3} 1 1 )
— Mgy = 711) {2140 (M) + (M2 - 4172) By (M;p, M) | Pf” + 2€*0a 5140 (M) + szBo (M;p, M)| Py
(7-4.8)
o dn — 5 1 y
—imhy = 2625ab{ — Ay (M) + =1 {4(371 —4) M* + (6n — 5)p2} B (M;p, M)} P+
1 v
12626, [(271 — 1) A (M) + 5 (4M2 = 1) B (M3, M)} pr (7.4.9)
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7.4.2

—imh o = —4€%04 (n — 1) Ag (M) PR — 4e*6,4, (n — 1) Ag (M) P}

3 Ao (my) Ao (M) Ay (m)
—imhy = §M2(5ab {)\ m, + {)\ +e*(n— 1)] m, +8 m
+ 2ar,, {AAO ) A+ e (n—1)] A M) | g o (1)
H my m

—imah = 6KAg (M)

—imal = 3e*v*nBy (M;p, M)
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9
—ind = 1/\2V2BO (mu;p, mp)

71

H _262 [Ao (M) + (M2 + 2p2> By (M;p, M)}

(7.4.15)

(7-4.16)

(7-4-17)

(7-4.18)

(7-4.19)
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, 3
—imi = Z€2MQBO (M;p, M) (7.4.21)
9 A Ay (M A
—ir = —ZAI/Q {)\OTE;:;{) + P\ +e*(n— 1)] (;n(%[ ) + 8k '(r])gj)} (7.4.22)

7.5 Summary of one loop vertices

aet
CIC»IQH)E shall use these definitions for the calculations of the one loop corrections to the three point
vertices:

=i +ph
p-(p1—p2) = (p1 +p2) - (p1 — p2)
=0
1 2 9 o
p1-DP2 = B [(Pl +p2)” — pi —pg}
_ ;pz —m2

p-p1 =P +p2) -1 p-p2=(p1+D2) Do
_ 1.2 _ 1.2
=3D =35p

where {a,p;},{b,p2} are incoming momenta of the pions and {c, p#} is the momentum of the outgo-
ing rho.
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7. One Loop Corrections

7.5.1 Pion-Pion-Rho Vertex

m ;2 (4m® —p?) [Ao (M) — Ag (m)]

Vl“ = —iegscab

+ iz [lﬁm4 — 6m? (M2 +p2) —|—M2p2} By (m,m, M) — 2 (4m2 — M? — 2p2> By (m,p,m) +

+ (4m2 - M?*— 2p2) <4m2 —2M?* — p2> Co (m;pe, M;p,m) (7.5.1)

32 M2 2

Vi = gigte,, PP (P [Ag (m) — Ao (M)] + | —4m? + 22 + 2L —
2 ““am?2 — p2 2 4m?

2 1
p> By (M;p, M) + <—4m2M2 + M* —2m*p* + M?p® + 4p4) Co (m; p1, M; —pz,M)]

- <M2 +3
(7.5.2)

7/
AN e
o ———
N 7
N 7/

32ik%1V2ec,, — po)¥ 1
Vi = P b_(l;lz P2) By (m;m, mpg) — By (m;p,m) + 3 (4 P-pt - 2771%1) Co (mr; p1,m; —pa, m)
(7.5-3)
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(Pl - p2)“

p— By (m,m, M) + By (m,m,mg) — 2By (M, p, mg) +

VI = —2ikve ecap

+ (=8m? + M? + m3; + p*) Co (m; pr, M; —pa, mu) | +

(p1 + p2)*

— 2ik2e3e - By (m,m,mpg) — By (m,m, M)+

+ (M? = m}; = p?) Co (m; pr, M; —ps, mH)] (7.5.4)

(p1 — p2)“

Am? — p? By (m,m, M) + By (m,m,mu) — 2By (M, p, mp) +

VF = —2ikve ey

+ (—8m2 + M? +m3, +p2) Co (m; p1, M5 —p2,mp) |+

(p1 + p2)*

— ik’ e e e —By (m,m,mp) + By (m,m, M) +

+ (—M2 +m? p2) Co (m; py, M; —pa, mir) (7.5.5)
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Ve =0 (7.5.6)
\,/ \‘:

Vi=0 (7.5.7)

Vs =0 (7.5.8)

o
Vo = —3@'635%% [AO (m) — Ag (M) + (M2 — 3m2) By (m;m, M)} (7.5.9)
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. ph .
Vio = 3@63@@(,% [AO (m) — Ao (M) + (M2 - 3m2) By (m; m, M)} (7.5.10)
, 1
Vo + Vi = —3i€caan 5 [Ao (m) — Ao (M) + (M* = 3m®) By (msm, M)] (5} — ph) (7.5.11)

7.5.2 Pion-Pion-Higgs Vertex

VlH = —8kre2dy, [230 (m;m, M) — By (m;p,m) + <4m2 — M? - 2p2> Co (M; p1,m; —pa, m)} (7.5.12)

1
Vit = —2e*6 4 [2By (M;p, M) — By (m;m, M) + (4m2 - M?* - 2192) Co (m;p1, M —pa, M)|  (7.5.13)
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7/
AN e
o ———
N 7/
AN 7/

V3H = 64K3136,4,Co (m; pa, mp; p,m)

V6H = 20k A404, By (m; p,m)
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VQH = 8KV By (m;m, mpy)

Vfg = 8k 16, By (m;m,mg)
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7.5.3 Pion-Pion-Pion-Pion Vertex

Ve (s) = 2ne* (26a40ca + SacOba + daddve) Bo (M; Vs, M)

Including the Mandlestam ¢ and u channels

Valbdc)d (37 ta U') = 277/64 (25abécd + 5ac(5bd + 6ad5bc) BO (Ma \/gv M) +

+ (Babed + 20000 + 0aadhe) Bo (M V/t, M) + (Sasbea + GacOba + 20aadse) Bo (M; v/u, M)
(7.5.22)

V5 (s) = 4k20u0caBo (mar; /5, m )

Including the ¢t and v Mandlestam channels

Vfb(ﬁd (s,t,u) = 457 {5ab(schO (mH; Vs, mH) + 0acObaBo (mH; \/Z, mH) + 0ad0veBo (mH; Vau, mH)]
(7.5.23)

Vi (s) = 126200000 Bo (M; /5, M)
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with
Vi (5,8, u) = 1262 [0u0caBo (M; /5, M) + bachaBo (M;VE M) + 8aa0eBo (M Vu, M)| - (7.5.24)

VP (5) = A2 (T0up0cd + 200c0ba + 204a00c) Bo (m; Vs, m)

with

V’ﬁ;ﬁd (Sa ty u) = >\421 (751166061 + 26ac(sbd + 26ad560) BO <m7 \/57 m) +

+ (20a0ed + Toacdha + 20aa0c) Bo (m; V&, m) + (20as0ea + 20ac0pa + T0aadue) Bo (m; v/u, m)

(7.5.25)

Ve (5) = —€2M\4 (= 40040 + Gacpd + aale) | 2Bo (m;m, M) — By (m; Vs, m) +

+ <4m2 — M? — 23) Co (m;pg,M; Vs, m)]
with

‘Cz%?:d (87 t7 U) = _62)\4{

(7.5.26)
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7. One Loop Corrections

VY (5) = € (20ap0cd + GacOba + Gaadbe) [QBO (M; Vs, M) — By (m, m, M)

+ (Sm2 —2M? — s) Co (m,pg,M, Vs, M)]

N | —

with
1
gVJbﬁd (Sv t7 u) = (25ab60d + 5ac(5bd + 5ad5bc) [230 (M, \/ga M) - BO (m7 m, M) +
1 2 2
+ 3 (8m —2M~* — s) Co (m,pg,M, Vs, M)}—i—
+ (0gb0ca + 204c0pa + Oaadve) lQBo (M; Vt, M) — By (m,m, M)+
1 2 2
L2 1) (m,_pl,M,ﬂ,M)]+
+ (5ab5¢:d + 5a05bd + 26ad5bc) [QBO (Ma \/a7 M) - BO (mv m, M) +

+ ; (8m? = 2M? — u) Cy (m, —p1, M, V/u, M)] (7.5-27)

V6¢ (5) = 32H3V25ab5cd00 (mH;p27 m, \/57 mH)

with
Vased (5,8, u) = 326%0 [5ab56d00 (m, 20, /5, M) + Bac0aCo (mat, —ps, m, VE, ) +

+ 04d06:Co (mH; —pa, m, \u, mH)] (7.5.28)
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7/
AN e
o ———
N 7/
AN 7/

‘/'8(}S (3) - 16/{2V2/\4 <5abécd + 5acfsbd + 5ad5bc) C(0 (m;p27 mpygs; \/57 m)

with
Vils (s, t,u) = 16670° Mt (8apOea + ucOba + aadbe) [C'o (m;p2, mu: /s, m) +

+ Co (m; —ps, muz; VE,m) + Co (m; —pa, mus Vu, m)] (7.529)

4(s+t—4m?
Vs’ = €* (8ay0ca + Oaclba) | Bo (TT% Vs, m) + (St+_ 4m2m ) [Bo (M, t, M) — By (m, m, M)] +

+ 4m22_ . (32m* — 8m* (M? + 25 + t) + 2M? (s + t) + 3st) Co (m, p1, M, ps, M) +
+2 (—4m2 + M? + 23) Co <m2,p1,M,p3, M) + (—4m2 + M? + 23)2D0 (m,p%Ma Vs, m, pa, M)

with
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7. One Loop Corrections

4 (s+t—4m?)
t —4m?

1
gva%qcﬁd (S’ t u) = (5ab50d + 5ac5bd)

Bo (m, /5, m) + [Bo (M, Vt, M) — By (m,m, M)| +

2
+ (32m" — 8m? (M2 + 25 +t) + 2M? (s +t) + 3st) Co (m, py, M, ps, M) +

+2 (23 — 4m? —|—M2) Co (mQ,pl,M,pg,M> + (23—4m2 —I—M2>2Do (m,pQ,M, \/E,m,p4,M) +

4 (u+t —4m?)
t — 4m?

+ (3acbd + Gaadye) | Bo (m, v/u,m) + [Bo (M, Vt, M) = By (m,m, M)| +

+ <32m4 — 8m? (M2 +2u+t) +2M? (u +t) +3ut> Co (m, —p3, M, —p1, M) +

4m?2 —t

+

+2 <2u —4m? + M2) C (mz, —p3, M, —pl,M) + (2u —dm? + M2>2Do (m,pmM, \/avm7p4,M>

4 (u+ s —4m?)

s —4m? [BO (M’\/E’M)_Bo(mam,M)}—l—

B, (m, Vu, m) +

+ (5abécd + 5ad5bc)

+

g R (32m" — 8m? (M? + 2u+ 5) + 2M? (u + 5) + Bus) Co (m, pa, M, —py, M) +

+2 (2u —dm? + Mz) Co (mz,pg,M, —pl,M) + <2u —4m? + MQ)ZDO (m, —p3, M, \/aam7p47M>]

(7.5.30)

4(s+t—4m?)
t — 4m?

Vio = €* (6ap0ed + acOpa) | Bo (m, Vs, m) + [Bo (M, Vt, M) — By (m,m, M)} +

2

yTc— (32m" — 8m? (M + 25+ t) + 2M (s + ) + 3st) Co (m, py, M, pa, M) +

+

+2 (—4m2 + M? + 28) Cy (mQ,pl, M, ps, M) + (—4m2 + M? + 25)2D0 (m,p2, M, /s, m,pa, M)
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with
1 106 4(s+t—4m?)
674‘/:1de (87 t? U) = (5ab50d + 5a05bd) BO (m7 \/¥7 m) + s — 4m?2 {BO (Ma \/Z, M) - BO (m7 m, M)} +

-2 <2t—4m2 +M2) C (M, \/E,M,pg,m) + (2t—4m2~|—M2)2D (M,P%m, \/§7M7p4,m) +

2

T (32m" — 8m? (M? + 5+ 2t) + 2M° (s + 1) + 3st) Co (M, /5, M, pz,m)

+ -

By (m, Vi, m) + 2O [ (g V7 AE) = By (m,m, M) +

+ (04e0pd + daadpe) u — 4m?

— 2 (2t — d4m?® + M2) Cy (M, /i, M, ps,m) + (2t — 4m? + M2)"D (M, pa,m, /i, M, pi, m) +
2

+ o (32m* — 8m? (M + u+2t) + 2M? (u + t) + 3ut) Co (M, vV, M, py,m) ||+
+ (dapOed + daadne) | Bo (m, Vs, m) + 4 (SJ_uLl—mlimQ) [Bo (M, Vs, M) — By (m,m, M)} +

-2 (25 —4m2+M2> C (M, Vu, M, —pg,m) + (25—4m2 —|—M2)2D (M, —p3, M, VU, M7p4,m) +

2
+ s (32m* — 8m? (M2 + u+25) + 2M> (u + ) + Bus) Co (M, Vi, M, —ps, m)] (7.5.31)
»—-—-—- o ’
—— —a
Vil = (46v) 60caDo (M pa, ms p, mug; pa, m)
with
1
(4/<cy)4 V;lblcfz (s,t,u) = dapbeaDo (mH;p27m§ Vs, M pa, m) + 0ac0pa Do (mH; —D3, M \/Z, M P4, m) +

+ 0ad0bc Do (mH;pm m; u, m; pa, m) (7.5.32)
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Vi = (450)"0ac0paDo (15 p2, s v/s, m; pa, mp )

with
1
W‘/;llbi(g (57 t7 U) = 5ab5cdDO (m7 —P3,Mmmg; \/Ea m; Py, mH) + 5ac(sbdD() <m;p2, my; \/57 ™m; Pyg, mH) +
+ 0aadheDo (m; —pa, Mz v/, m; —pa, ) (7.5.33)

7.6 Renormalization

Vi (of
CI@{)BE shall use the On Shell Renormalization conditions to define the mass and residue of the pole

which will fix the renormalization constants. The conditions are
II (p2) P 0 (7.6.1)
d 2
— =0 .6.
() o (7:6.2)

where II (p?) represents the self energy, with the mass being set by condition (7.6.1) and the residue

set with (7.6.2).

7.6.1 Rho Self Energy Renormalization

The counter term for the rho propagator can be written in terms of the projectors as
Thior = 10" [(p*624 — 6M?) g™ + (06 — 6Z4) Kk
= i0" [(p?0Z24 — 6M?) Pp + (p*06 — 6M?) P} | (7.6.3)

The rho self energy is the sum of contributions including the symmetry factors from (7.4.1)-(7.4.11)

and the counter term:
it =S [t ] 6% [(P07 — 63%) PR 4 (25E — 501%) P
j=1
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i i v v
_ Waabww + Waab (p?0Z4 — 0M?) P + (p*0¢ — 5M?) P} (7.6.4)
/l: v 17 Z a v v
= Wa‘“’ (mr P + mp PE) + (4@25 P[(p%6Za — M) P + (p*0¢ — 5M?) PIY|  (7.6.5)
with
65e?p* 1, 5  9M* ,  my 126m?M?  3AM*  3\M?
T e +€[€ et o T > )T T e, > |t
2e?  12M%k 7 9M? 3M?2)\ e 3M3\
B 7} 2 (2 Ap M)+ (- +2221)4
+< 3t ) ) Fm] + [e <6+2m%>+ zm%] Fl ]+< g T 2m%}> Flmul+
8 13M? 2
+ 562m2BF [m, p,m] + 12> M*Bp [M, p, M] + ¢* <— . Tr?) Br [M,p,my| +
e? (1 M*  M?m? mi
+= (12 (M2 - mH) (Ar [mu] — Ap [M]) + (12 T TG Ty 15) Bp [M,p7mH]> +
12 M?%ky, 3 3MAN\,
mi 2 2m3,
8m? 23M? 3M* 2 IM*~, 2 Ve
+62<T; + 6 2 —TrgH+2m2%+11M2%+ 2m27 —m§ﬂ>+
H H
2 1 7 657
+ e*p? <—BF [(m, p,m] + 6B [M, p, M] + — By [M, p,mp] — — + ——a ) (7.6.6)
3 12 18 12
and
1 9M* 2 126m2M?  3XM*  3MM?
L= — e +le2<2m2+ - +11M2—mH>+ HmZ . ]Jr
2¢ € i mi 2my 2
12M3%k 9M? 3M?>)\ e 3M3\
<2€ -+ m )Ap[m]+<62 <9+2m2>+ 2m2 )AF[M]+<—2+ 2m2 )AF[mH]—l—
H o H H
+ 4’ M*By [M,p, M| — 2¢2M?Br [M, p, my| +
e? (1 M*  M?m? mi
# 5 (3 0 =) (A V] = e+ (=2 + 255 - ) B 3 ) +
1 . 12m*M?ky, 3 3M*\y,
et (= Br (Mop, M) = ) 4 e g S 4 200
2 2 m, 2 2m?,
3M* IMYy,  m3.
e? (—4M2 - 2o + 11M?y, + 57 g (7.6.7)
H H
where 7 will in general have the form
™ =i (AP + BP!") (7.6.8)
with
1
A= = (WT + 02074 — 5M2) (7.6.9)
1
B = 7(47T)2 <7TL + p?6€ — 5M2) (7.6.10)

Applying the On Shell Renormalization conditions (7.6.1) and (7.6.2) to (7.6.9) and (7.6.10) we obtain
the renormalization constants:

2 2 1
615265 — 5 Br [m, M,m] + 6e* B [M, M, M] + € By [M, M, my) +

57, =
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7. One Loop Corrections

2 M* MQm%{ mj%{

- “2 (M2 = m2,) (A [y — Ap [M]) + <12 - S ) By M, M,mH]l 4

N (86237712 - 2623]\42> ngF . ] + 18@2M2§ Bp [M, p, M] p:M+

+ (621]\242 L (_136]\42 m% ) ( M2mH + nf)) é?pBF (M, p,myl] p:M—l—

o)
172 — 1 [62 <2m2 N 9]\/[24 1IM? - m%,) N 12/-@7715]\42 3)\J\§4 3)\M2]

& H miy 2m3, 2

(T e (125258 e

+ (—632 3;\:24> Ap [my] + ie m?Bp [m, M, m] + 262]\/[281:[ M, m]+

+ 6e2M2By [M, M, M) — 112@2M23F (M, M, mu] + & (- 13(]5” - ”?) Bu [M, M, my] +

L2 [1 (M2 = m2,) (Ap [mu] — Ap [M]) + (M _ My mH) By (31,22 mH}] N

M2 12 12 6 12
8 2e2M*
+ ( e2m?M? + =5 ) QBF [m, p,m] - 18€2M4QBF [M,p, M]|  +
3 op . dp p=M
L orra 21 13M?  mh? o (MY MPmy | my 0
— M MR — -] = — - — || =Br M
+ ( 15¢ € G 6 “\12 6 " 12))ap r M p, p:M+
2 1
+ M2 (—3628F [m7M7 m] + 6623}7 {M7 M7 M] + EGZBF [M M’ mH])
T 65\ . 12m*M2ky, 3 3M* Xy 7T 65
2M2( e) e M2/\ e 2M2 (_ e)
+e ITREEC m, + + om3 8T 12 )"
8m?  23M%  3M*  m2 My, mipy
9 H 2 2 e H Je
N _ 9m2~, + 11 M2, - 6.
+e<3 EE A R " A 7612
62 2 2 2 1 2
—0¢ = oo T 56 Bp [m, M, m] + 6e“Bp [M, M, M] + Ee Bp [M, M, mu]+
2 (1 , MY M?*m3%  m}
_]\/[4<12 (M —mH) (Ap [mp] — AF[M])+(12_ 6 12 Br [M, M, my] | +
8e2 2e2M?\ 9 9
( em? _ 2e ) 5 Br lm,p,m] +1862M28*BF [(M,p,M]|  +
3 3 P p=M p p=M
M2, 13M2 m%\ 2 (MY Mm% mi\] 0
B _my\ e (M " Lpaiv
7 657,
+ €? (_18 + B ) (7.6.13)

The contributions from infinitely many self energy insertions leads to a geometric series which can
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7. One Loop Corrections

be summed with D := p? — M? + ie,
iD= 8w (PR + PL)

- Z e o “ «a — fe? o e —1 v v
- Z e e i 5 (i 725 i (P )
=1

_52 (P + Play) +

;2% (AP + BP"™) + ﬁ(sab (A*Pf + B2PP) + -

__i(;ab A A 2 122 B B 2 HY
= — {[1+D+(D> +---1PT + 1+D+(D> 4| P

Z 12 174 L 6} . QL 6]
Daab(P“ "’P#)‘F*‘Sab(Pl ‘P 1)'Z<APT§1+BPL§1)'
—i
— 0 (PR + P
— s P+ P +

= _ga” ll_lgpﬁw 1_15135”]
b [ o]
-5+ 55
S (7.6.14)

Since the longitudinal projector is made up of on shell momenta which will always encounter the on
shell momentum from the Feynman vertices, the longitudinal piece of the one loop propagator will
not contribute to scattering amplitudes.

7.6.2 Higgs Self Energy Renormalization

The counter term for the Higgs propagator is
TCT =1 (/{Z2(SZH — 5771%1) (7615)

The of Higgs self energy diagrams from (7.4.12) to (7.4.22) including the symmetry factors and the
counter term is

11

—illy =Y [=inf!| +i (p*62n — om)

j=1
i
= Ty + k0 Zg — dm3 6.16
5 [mu i — om3| (7.6.16)
with
3e*p? N 1|27e*M? am2 4 3M2N 2TM*\ Bm%{)\_l_
TH = — - m°k —
H FER 8 Am2, 4
M? 18m2kA  3A2 OM2)2 OMAN 3
= 48k — - - 3m*kye + < M? My
—{—e2</’€ m% 4 4m§{>+2mH+mK7+8 Ve
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2TM Ny, 3 3 TMNAR[M] 3
_ W‘f—im%)\’}/e“—BI{AF [m] +§)\AF [M] — 4m12q +Z)\AF [mh]+
3V 3
+ e?p? <—Z — 3 Br[M.p, M]) +
15M? 27M? e 21Ar | M 87
+e |- + te , 214r | ]+—MQBF[M,p,M] +
2 2 8 8
18m* M2k M*N? 18M2kAA
+l 48M2H276_M—|—§M2)\276—9 2’76_ 8 Iiz F|m]
e? m2 4 4m?, m%
9M2)\? 5 o 3 .
— 4m2 (AF[M]+AF[TRH])+48M /in[m,p,m]%—iM A BF [M,p,M]—i—
H
9
+ 1M2>\2BF [mH,p, mH]] (7617)

Applying the On Shell Renormalization conditions (7.6.1) and (7.6.2) to (7.6.17) we obtain the renor-
malization constants:

3e? 87 0 3 0
_6ZH:_L+762M27BF‘ [MapaM] _762miliBF [M7p7M] +
4e 8 op p=mp 4 Op p=mpy
10 2 2 3 r2y2 9 r2y2
+ 2op {48]\4 K" Bp [m, p,m] + ZM A Bp [M,p, M| + ZM A°Br [mu, p, mH]] +
p=mp
3 3Ve
+é2 (—4BF (Mg, M] - = ) (7.6.18)
27e2M? 3M2\  2TM*X\  3mZ A\
5 2 — 3 2 o H
miy { 5 + 3m K + 3 a2, 1 +
M? 18m2kX  3X2  9MZNZ\|1 15 OM*\
[ 48k2 — A A I Iy /o
+62< " m? 4 4qu>]£ 2 ° +2m%[+
18 M2k 21e? 3N 2TM?2X\  9M2)\?
_ 20MTEAN A - Ap (M
* (3/{ e2m?, ) rlml + < 8 * 8 4m3, 462m§{> r[M]+
3N 9M3)\? 48 M2 K2
Z—m F[mH]+ 62 BF [m,mH,m]—l-
87e2M?  3M2\? OM?>\?
< 3 + 462 ) BF [M,mH,M]+ 462 BF [mH,mH,mH]—i-
48M*myrK? 0
- D B m,p,m]| +
e Op —
87 3e2my  3MZ*m2 N2\ 0
i <_8€2M2m% T T e > g Mp M
p=mu
IM?*m3 N\ O 27 5 ) 48M* K>y, 3.,
— ————— =-Br[mu,p,mu] + e M e + 3m kY. + ——5—— + M A+
de dp pmmy 2 e 8
2TM* Ny, 3 18m2M2kNy.  3M?*X2y,  9M*\?~,
2 e 2 e — - 6.
4m3, T e2m?, * 4e? 4e2m?, (7.6.19)
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7. One Loop Corrections

7.6.3 Pion-Pion-Rho Vertex Renormalization

For the vertex renormalization, we shall resort to using the Minimal Subtraction scheme. A conven-
tional condition is to define the coupling at zero transferred three momentum. This is difficult to
impose since the three point scalar function Cj is difficult to manipulate. Summing up the vertex
corrections (7.5.1) to (7.5.10)

10 i

Z -‘/;gu == 7250(117(1)1 - pZ)H (Z‘/e) (7620)

k=1 (4m)

where V, is defined as

3 2
3 . 3Ap[m] B3Ap[M] (9 3M 1
= - . B M S [ —
Ve 2e e ( 2m? + 2m? + 2 om2) " [, m, M]+ 37 | + 4m? — p? %

er2y (323F [m, m, my] — 32Bp [m, p,m] + (64m* — 32m3; — 16p*) Co [mur, pr,m, —pa, m]) +
3 3M2p?

e (6= 2 ) (g m] — Ap M)+ [ —24m? + 10002 4 0 — By [m, m, M] +
2m? 2m?

+ (8m? — 2M? — 4p*) Br [m, p,m] + (—2M* — p*) By [M,p, M] +

4
+ (—8m2M2 + 2M* — Am?p® + 2M3p* + g) Co [m, p1, M, —pa, M| + /w2< — 4Bp [m,m, M| +

— 4Bp [m,m, myg| + 8Bp [M,p, my| + (32m2 — 4M? — 4m3, — 4p2) Co [m,p1, M, —pa, my] )—i—

5%
(—16m" + 12m> M? — 2M* + 12m®p* — 5M°p* — 2p*) Co [m, pa, M, p,m] — 10m™y, + pQ’y ] }

(7.6.21)

The one loop vertex correction including the counter term for the pion-pion-rho vertex correction is
10

( )gcab(pl Z Vﬂ + 5Zegcab(p1 p2)H
k 1
— Z Vi + ¥ ) ———0ZcEcap(p1 — p2)"
— —(4m)%eM) = Ve —0Z. (7.6.22)

with e the finite one loop correction to the coupling. Comparing (7.6.22) with (7.6.21) we can read
off the renormalization constant:

0L = — (7.6.23)

7.6.4 Pion-Pion-Higgs Vertex Renormalization

The one loop vertex corrections (7.5.12) to (7.5.21) to the pion-pion-Higgs vertex is summed to be

10 -
i
> Vi = WéabVH (7.6.24)
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where Vy is defined to be
1
Vg =— (16@4y — 16€*kv + 16K%V + 6rAV + 20/<W)\4) — 8e*v + 16K*v By [m, m, my] +
€

+ (16641/ + 3I<AU) B [M,p, M] + 3c \vBp [my, p,mg] + 24x*Av*Cy [m, p1, mp, —pa, my]
+ 64r°0°Cy [m, pa, mp, p, m] + 16e* v, + 166207, + 6KAVY, + 20kvBr [m, p, m] Ay + 20507 A4+

e*kv | 167, — 8Bp [m, m, M| + 8Bp [m,p,m] — 16 Bg [M,p, M] +

(—32m* + 8M? + 4p®) Co [m, p1, M, —pa, M] + (—32m” + 8M? + 16p*) Co [M, p1, m, —ps, m]

(7.6.25)
The one loop correction to the pion-pion-Higgs verterx with the counter term is
10
Vi o =S VI — i6Zdu
k=1
= Lé Vi — LéZ J
- (47’(’)2 abVH (47’(’)2 HY%b
= (4n)* V) = Vy — 67y (7.6.26)

Comparing the expressions (7.6.25) with (7.6.26) we can read off the renormalization constant
1
6Zn = — (16€*y — 16¢? kv + 1657w + 6rAv + 20K0A, ) (7.6.27)

where V" is the finite one loop correction to the pio-pion-Higgs coupling.

7.6.5 Pion-Pion-Pion-Pion Vertex Renormalization

The one loop vertex corrections (7.5.22) to (7.5.33) to the pion-pion-pion-pion vertex is summed to
be

abcd : Z bcd ) ‘/abcd

1
S [(406 + 1657 + 26 M + 1IM*) (8a0ed + OacObd + Gaadbe) ~ + UV finite terms  (7.6.28)

(4m)
The counter term for this vertex is

Capeacr = —16Z st (SapOed + Obeda + Opadac)

- 50241 (0ab0ed + Obeda + Obddac) (7.6.29)
(4m)
Matching coefficients between (7.6.28) and (7.6.29), we see the value of the counter term is
1
0Zg = (40" + 1652 + 2¢°M + 1104%) - (7.6.30)

We have completed the renormalization of all the 1PI diagrams that can contribute to pion-pion
scattering processes.
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3

Conclusion and Outlook

E set off on a journey to extend the Kroll-Lee-Zumino model which only had as its
)\ ) particle content the charged pions and neutral rho. This was done by using the larger

7a K. gauge group SU(2). This group allowed for the inclusion of a larger particle content

»@ . Q with the charged and neutral pions and rhos. Though there was a price to be paid
in the form of simplicity. Whereas for the Kroll-Lee-Zumino model, the neutral rho mass could be
included externally by hand without breaking the U(1) gauge invariance, such a procedure in the
SU(2) extension was not possible as it breaks the gauge invariance of the theory. The predictive
power of gauge theories were too alluring to sacrifice and this forced us to generate the mass for the
rho via Spontaneous Symmetry breaking using the Higgs mechanism while preserving the gauge
invariance.

We went on to calculate the pion-pion scattering amplitudes. The scattering lengths a and b were
then computed with values summarized in the table 6.1, listed below for convenience:

Lengths Weinberg? YPT(150)* yPT(2"¢0)* NABKLZ' Colangelo® Bijnens® Exp®*
ad 0.20 0.16 0.20 0.21 0.220 0.219 0.220 £ 0.005
b3 0.18 0.26 0.30 0.276 0.279 0.25 +0.03
ay x 10? 0 2 2.06 1.75 2.2 1.7+£3
b9 x 10% —5.23 —3.55 —3.2
al 0.030 0.036 0.0528 0.0379 0.0378 0.038 £ 0.002
b 0 0.043 0.0053 0.0057 0.0059
a? —0.06 —0.045 —0.041 —0.0456 —0.0444 —0.0420 —0.044 + 0.001
b2 —0.0225 —0.0803 —0.0756 —0.082 £ 0.008
a3 x 10* 0 3.5 —2.03 1.70 2.90 1.3£3
b2 x 104 —8.9 —7 —0.53 —3.26 —3.60 —8.2

Table 8.1: Summary of predicted values and experimental data of the scattering length.
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8. Conclusion and Outlook

We sought to increase the precision with the inclusion of the one loop corrections to the tree scat-
tering lengths. This entailed computing the ~ 85 one-particle-irreducible diagrams. The calculations
were done using dimensional regularization to parameterize the divergences. These divergences
were absorbed into the counter terms using the On Shell renormalization conditions for the self
energies and Minimal Subtraction for the vertices. All the pieces required to compute the one loop
correction to the tree scattering lengths have been calculated but due to time constraints we could
not complete the program of computing the one loop correction to the scattering lengths.

For the future, one possible path lies ahead with:

¢ Completing the program with the inclusion of the one loop corrections to the scattering lengths.

At this stage we cannot estimate the size of the corrections, since the expansion parameter
2

for the perturbative series is of the form (f) = 0.2 < 1, this could lead to a reasonable

perturbative series, though the size of the cogfficients to the expansion parameter cannot be
commented on without further analysis.
* Changing from the isospin basis to the physical basis gives direct access to the rho decay rates.
¢ Computing the pion form factor using this quantum field theory as this has been a fruitful
path of investigation for the U(1) Kroll-Lee-Zumino model.

For further development of the model, one could consider if the w(782) could be included to this
model? One could follow the path taken in the standard electroweak model and introduce an addi-
tional vector field and mix one component of the rho triplet with the new vector field to give the p"
and w. This requires investigation whether this is possible.
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A

Scalar Functions

The scalar functions used in these calculations are defined below. In n = 4 — 2¢ dimensions

1

A = g + Ye (Al)
Ye := —7vg + In (47) (A.2)

The one point scalar function:

d"k 1
Ao (m) = / (2m)" k? — m?
l

= G AT A (m) 0 (@) (A3)

with the finite part defined as

2

Ap (m) :==m? (ln 7;; + 1) (A.4)

The two point scalar function:

d"k 1

By (mo;p, ml) = / (27T)n (/{2 _ m%) {(/{ +p)2 B mﬂ
- (42)2 [A + Bp (mo; p,m1) + O (¢)] (A.5)

with the finite part

2 _ 2 1
Bp (mo;p,m1) :=2—1In m072nl + 0 5 T mO;nl ( — r) In (r) (A.6)
I P mo  p* o\r
the value of r is found from the roots of the polynomial equation
2 2_ .2 1
2+m0—|—m1 p Zex—klz(a:—l—r)(x—l—) (A7)
mom; r
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with
7“—71 m2 +m? — p* —i \/ 2 2 _ 2 i\ _ Am2m2
= o 1—p° —ie £\ (m§+ mi —p? —ic)” — dmgms (A.8)
2momq
1 S p— \/ 2 2 _ .2 i\2 4 2,12 A
r=F (m3 +m? — p? — i) mgms (A.9)
r mom,

The three and four point scalar functions are finite in 4 dimensions and are defined as

d"k 1

Co (mo, p1, M1, P2, ma) = / @) (52— md) [(k TP m%] [(k R mg] (A.10)
and
d"k 1
Do 0 i s s) = | @m)" (k2 = md) [k + p1)® — m3] [k + po)® — m3] [(k + ps)? — m3]
(A.11)



B

Self Energy

For completeness, the reduction for the self energies are presented below.

B.1 Vector Self Energy

B.1.1 ¢ bubble

[y = ecaqe(2k + p)* Ty = eeper(2k + p)”

. v d"k ce
_Zﬂ-gbl = /er . Ddf (l{?) . FQ - D (k +p)

_/ A"k e€age(2k + )" - U - ey (2k + p)~ o
@m)" (k2= m?) [(k+p) — m?]

ET db/ d'k (2k + p)“(2k + p)”
e 2m)" (k2 — m?) [(k +p)? — mQ}

_ 2 224
=€ €cda50db[1
Usmg Ecdaedb = 25(11,

L py o2 B

Making some definitions

NI = (2k + p)"(2k + p)”
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= 4k"K" + 2 (E'p” + p'k”) + pMp”
D, =k —m?
Dy = (l<:—|—p)2—m2

= k> 4+ 2k -p+p® —m?

=Dy +2k-p+p’

So we have the relations
kz = D1 —|— m2
Qk'p:DQ—Dl—p2

Splitting the integral over the transverse and longitudinal parts

e ‘_/ A"k N{”
Y ) (2n)" DD,

= P + fuPr”
and we can extract the coefficients using the transverse and longitudinal projectors.

PL;UJI{“/ = le
PT,UJ/I{W - (TL - 1) le

I

2| = |

(D} —2D,D, + DY)

PT[U/N{LV = guVNfV - PLMVN{W
9 N = 4k* + 2k - p + p?
= 2D, + 2Dy + 4m? — p?

d"k Py, N
le :/ n
(27T) DlDQ
p2 (27T)n D1D2

1 d"k Dy Dy
HETR.
p2 (2’7'(') D1 DQ

_ Lk Dy, Dy
a p2 (27T)n D1 D2

/ d"k D, / Ak k?—m?

@0 D: ] (20 (k + p)? — m?
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d"k d"l

Making a change of variables I* = —(k + p)" = k* = —(L + p)"

/ dnk Dl_/ d"l (14 p)* —m?
(2m)" Dy 2m)" 12 —m?

-/ <dnl>€ gf

d"k 2k - p p?
_/ <1+ _m2+k:2—m2>

=D Ao( )

(n—1) fr1 = Pru 11"
—/ d"k_Pry, N{”
D1D,

()

(2m)" \ D1Ds Dy D
B d"k 2D, + 2Dy + 4m? — p? d"k Pr,,N{"
N / (2m)" D1D, N / (2m)"  D1Dy

Lz ),

2m)" | Dy Dy Dy D,
=24y (m) + (4m? — p*) By (m; p, m)

1

— le:j

(240 (m) + (4m? — p*) By (m;p,m)]

v 1 174 174
1" = —— [24 (m) + (4m® — p”) By (m: p,m)| P + 240 (m) P

gy o2 v
—imhy = 2€0qp 11

220, v '
== 1b (240 (m) + (4m® = p*) By (m; p,m)| P + 464, Ao (m) P

n —
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B.1.2 ¢ tadpole

- 2 v
I' = ieg"" (€jacEjbd + €jadEjbe)

o d"k .
—iMay = /WF'D * (k)
k5 . 10
= / (27T)n7/€29“ (€jacEjbd + €jadEjbe) - e
d"k 1
(2m)" k2 — m?

2 _uv
= —€ g# (5jacgjbc + 6jacgjlw)/

= —2629W€jac5jbc140 (m)

= —4e*649" A (M)

= —4€*0qy (P + PI) Ag (m)

= —4e205 A0 (M) Pp¥ — 454 Ag (m) PLY

B.1.3 H-p bubble

[y = ie*vd* g™ Ty = ie’vé*g?”
_iécdgaﬁ 1
D (k)= - D(k+p) =
it — ﬁp D (k) -Ty- D (k+p)
ab3 (271')” 1 aB 2

= —(621/)25ab9W/ d”kn !
(2m)" (k2 — M?) [(k + p)* — m}]
= —c*(ev)*du (P + P) By (M; p,myy)
= —e*(ev)?6,By (M p,mp) P — €2(ev)* 0 Bo (M p, my) P

Recall the definition M = ev
_mgz;/za = _62M25abBO (M;p,mg) Pp" — 62M25abBO (M;p,mp) P
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B. Self Energy

B.1.4 H tadpole

1
P=ic*bug™ D)= 15—

o d"k
— Mgy :/WF'D(k)
1, okl
e
9 ¢ Oabd (2m)" k2 — m%

1 v v
= —5625(1(7 (Pjtf +P£L )A() (TTLH)

1 1
= —5625@140 (mH) P%W — 562(5(11,140 (mH) Piw

B.1.5 H-Goldstone bubble

1 1
I = §€5ac(2]€ —i—p)“ Iy = ieébd@k’ —l—p)y

D (k) = ot (k+p) = !
k2 — M? (k+p)? —m%

ad’k
—intyy = [ LR D k) Ty D (k)

(2m)"

_ _1625 d"k (2k + p)"(2k + p)”
£ (2 = a2 [kt p)” — it
1 y

= —162(5(157]5/:‘

Some definitions

NE” .= (2k + p)"(2k + p)”
= 4k EY + 2 (kMp” + pHE”) + pt'p”

Dy = k> — M?
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B. Self Energy

Dy = (k +p)* — m
=Dy +2k-p+ M*+p* —m3
Now we have the relations

k* = Dy + M?
2k -p= Dy — Dy +m2 — M? —p?

= ._/ "k Ng”
> (27T)nD1D2

= frsPr” + frsPr”

PLuNe = = (2k-p+p7)

| = | =)

{Dg — 2D, Dy + D} +2M* (D — Dy) +2m% (Dy — Dy) + (m3 — M2)2]

{Dg —2D\D, + D} + 2 (m3y — M?) (Dy — Dy) + (my — M2>2]

PT;WN;W = g;wNéW - PL;U/NEéW

G NE” = 4k* + 2k -p + p°
= 2D + 2Dy + 2m3; + 2M?* — p?

dk P, N
fis=[ ¢

27T)n D1D2
B 1/ d"k D2 —2DyDy + D? +2(m2 — M?) (Dy — Dy) + (m% — M?)?
p2 (27T)n DlDQ
1 dk [Dy Dy ) ) (1 1) (m%, — M?)°
= [ |2 g (mE M) ([ — - — ) )
p? / (2m)" [Dl * Dy * (mH ) Dy D, * DDy
1 [ dk [Dy D ) ) (1 1) (m2, — M?)?
= [ EE N2 o (g ) (e - ) )
7] G lDl #p, 20 =) (5 - 5, b,
/d”k Dl_/d"k k* — M?
(2m)" Dy S (2m)" (k4 p)* —m}
We make a change of variables I* = —(k +p) = k* = —(I+p)' = [ @k / @l
& - P ST em” @)

/ A"k 171_/ d"l (1 +p)* — M?
27)" Dy J (2m)"  12—m%
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B. Self Energy

/ d"k D2 o
(27'(') D1

_ pv
— PT[J,V]5

d"k k? +

2k - p + p? — M?

2 2
k? —my

m%—l—Zkz-p—Fm%{—MQ—I—pz

k2 —m?,
2k - p +m§{—M2+p2

/ A"k (k+p)* —m%
2m)"  k?— M?

d”k: k2+2k5 p+p —m%
_/ — M2
_/d"k: k2 — M2+2k.p—m%,+M2+p2
) (@) k2 — M?2
_/ d"k - 2k-p  —mi 4+ M2 +p
@) k2 — M?> k2 — M>

1> (my — M?)”
Dy D, Dy D,

_/ d"k PT‘LWNgW
R

27T)n D1D2
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B. Self Energy

B / &'k (G N Pr,N
N (27T)n DlDQ D1D2
B / d"k 2Dy + 2Dy + 2m3, + 2M? — p? _/ d"k Pr,, N
N (27T)n D1D2 (27'(')” D1D2
&k [2 2 2md+2M?—p?
N / (2m) lDl * D, * D1 D i
= 240 (M) + 24 (my) + (2m3; + 2M* = p*) By (M; p,mu) — Ag (M) — Ag (my) +
m? — M?
= A [ Ao ) + Aa (M) + (my = M) By (Mip. )|
= Ao (M) + Ao (mp) + (2mi1 +2M* —p2) By (M;p,my) +
m? — M?

- (= Ao (mar) + Ao (M) + (m3; — M?) By (M;p,mp)]

I8 = frsPp” + frsPr”

1
= — 1{A0 (M) + Ao (mp) + (2m%,—l—2]\/[2 —p2) By (M;p,mpy) +

m2, — M? 2 2 s
- p {_Ao(mH)—i-Ao(M)"" (mH_M )BO(M;p’mH)} Pr+

2 2
my — M

+ {Ao (M) + Ao (mp) + pe

= Ao (mar) + Ao (M) + (m3; — M?) By (M;p,my)] } P’

1
— Ty = —1625@[5“/
_ N |
= -1 AO(M)+A0(mH)+(2mH+2M p)Bo(M7p7mH)+
m?2, — M? )
= (Ao () Ao () + (i = M) Bo (M p, )| } vy

1

2 _M2
—162(5@ {Ao(M)—i-Ao(mH)‘i‘mH

> (= Ao (mar) + Ag (M) + (m3; — M?) By (M;p,my)] } P

B.1.6 Goldstone bubble

1 1 v
Fl = ieaadc(Qk —l—p)“ FQ = §€5bfg<2k +p)
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B. Self Energy

ioel
(k+p)* — M?

dg iédg cf

o dnk )
i = /er DY (k) -Ty- D (k + p)

1 "k (2k+p)"(2k + p)”
_ / (

_ _Ze €adcbed o )" (k2 — M?) [(k —I—p)2 - Mz}
Y S L (k+p)"(k +p)"
5 ab (271.)” <k2 _ M2> |:(l€ +p)2 - M2:|

1,
= —e O lt”
g€ Oabls
Making some definitions

N = (2k + p)"(2k + p)”
= 4k*EY + 2 (kMp” + pHE”) + p'p”
Dy = k> — M?
Dy = (k+p)* — M?
= k2 +2k-p+p* — M>
= Dy + 2k -p+p?

We have the relations

k* = D, + M?
2k -p =Dy — Dy —p’

v __/ d"k N§¥
& (27T)nD1D2

= frsPp” + frsPr”

Looking at N§“, Dy, D, we see the this is the same integral as in the case of the /{" but with the
replacement of m — M.

Jrs = fr1
frs = f
1
I = ——— [240 (M) + (40 — p*) By (M p, M)] P + 24, (M) Ff”

1
STy N (4
—iMaps = 5€ Oan 1

€20, ) ) ‘ » ) »
“2m-1) (240 (M) + (4M? — p*) By (M; p, M)| P + €60y Ao (M) P
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B. Self Energy

B.1.7 Goldstone tadpole

= 1 25abacd N Dcd k’ _ i(;Cd
— 2 g W) ==
o d"k .
~imtis = [ Gy D ®)
_ 1 2 sab cce , pv d"k 1
= 0NN | e e
3
— _5625“ (PR + PM) Ag (M)
3 3

= —5625%0 (M) P} — 5625%0 (M) P

B.1.8 Ghost bubble

Iy = —ecqae(k + p)* Ty = eepsy(k +p)”

D gy 19 P i

o dnk .
i = (—1) / Wn DY (k) - Ty - DY (k + p)

d"k (k + p)"(k + p)”

= —¢ €adc5bcd/ (27T)” (k.Q _ MQ) [(k’ +p)2 - Mﬂ

d"k (k + p)*(k + p)”
(2m)" (k2 — M?) [(k + p)* — M?]

= 2625&&)
= 2625(11,[#”
Some definitions
N o= (k4 p)*(k 4+ p)”
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B. Self Energy

= k'k” + (k"p” + p"KkY) + ptp”
Dy == k* — M?
Dy = (k+p)* — M?

= k2 + 2k - p+p:— M2

=D, +2k-p+p°

We have the relations

k* = Dy + M?
Qkp:Dg—Dl—

v __/ d“k NE
[ (27'(')” DlDQ
= friPr" + fuoPr”

, 1
PrwNi" = -5 (k- p)* +p” (2K - p) + p']
1
— [D? + D3 — 2Dy Dy + 2 (D — D) + p']
4p2
Py, NE = g, N — Py, N&”

g;wNéw :k2+2k'p+p2
= Dy + M?

A"k Pp,, N
fu=

27T)n DlDQ
C4p? ) (2n)" DD,
1 d"k D1 DQ ( 1 1 ) p4
= [ 2 oo — - )4
4})2 / (271') [DQ + D1 + D1 D2 D1D2

/d”k: Dl_/d"k k2 — M?
(2m)" Dy (

Making a change of variables I* = —(k + p)" = k* =

U+ = =

/ Ak Dl_/ d"l (1 +p)* — M?
(27)" Dy J (2m)" 12— M?
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B. Self Energy

-/ @y gf

d” 2k;~p p?
_/ BN VRN TR YT

—pQAo( )

1
fur = 17 {2172140 (M) + p*Bo (M; p, M)}
1 1
= 5140 (M) + ZPQBO (M;p, M)
(n - 1) frr= PT;WI#V

o / d"™ k‘ PT“,/N7

Dng
_/ g;w PL,U,VN#V

DlDQ DD,

_/ dnk D2+M2 / d"k PLW,N#V
N (27T)n D1D2 (2’/T)n D1D2

:Ao(M
= Ao (M) + M?By (M;p, M) —

= ;AO (M) + (M2 -

I = frP” + fraP”
1

_ 1 2_12> :
= [540 (0 + (M2 = ) Bo (i, M)

—imhy = 226, I8
26 5ab
n—1

B.1.9 p bubble

)+ M?By (M;p, M) — frz

1 1
5140 (M) - EPQBO (M;pa M)

p2) By (M;p, M)

v, [1 1 v
PR+ [ 340 (M) + 79°By (M:p.20)| P

1 1 1
A0 () + (M2 = 252) Bo (M p, M) PR+ 26260 [ Ao (M) + 507 B0 (Mip, M) P

4

Iy = ecoue [—(2k: + )"+ (k+2p)° 9" + (k- p)”g”ﬁ]
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B. Self Energy

FQ = egfgb [—(2]{3 —|—p)”g“’\ + (k? + 2]7)/\9'% + (k - p)’{g)\y}
_i(scfgom
(k+p)* — M?

_Zéd gsgx c
Dgg\ (k>: L2 _%\52 Da]’; (k—l—p):

o Ak .
~imlin = [ Gyt DR) Ta DEL (k4 )

= —€e¢& £ /k X
adcbed (2 )’I’L
KR )\V:|

(—(2k + )" g°% + (k+20)° 9" + (k= D) 9""| - grgan - |[—(2k +0)"g™ + (k+20) g™ + (k — p)"g

X
(k2 = M2) [(k +p)* = M?]
= 2628, ¥
/ &k [—(2k+p)'g°? + (k + 2p) 9" + (k — p)"g"°| |[=(2k + ) Gas + (k + 2p) 9% + (k — ) 5]
(2m)" (k2 = M2) [(k +p)?* = M2
= 2e20,, 15"

Some definitions
NE” o= [=(2k +p)"g® + (k+2p)°g" + (k — p)*g""] [~ (2K + D) as + (k + 2p) 595 + (k — ) 5]
= (4n — 6) K"k + (2n — 3) (K"p" + p'kY) + (n — 6) p"p” + (2k* + 2k - p + 5p) g™
Dy = k* — M?
Dy = (k+p)* — M?
=k*+2k-p+p* — M>
= Dy + 2k -p+p?

We have the relations

k* = D, + M?
2k'p:D2—D1—p2

We can simplify N§* with the above relations

N = (4n — 6) k"E” + (2n — 3) (k'p” + p"k”) + (n — 6) p"p” + (D1 + Dy + 2M? + 4p2) g

e ‘_/ A"k N§”
> ) (2n)" DD,

= froPr” + froPr”

, 1
Pp, N = = [(4n = 6) (k- p)* + (2n — 3) p* (2K - p) + (n — 6) p" + (D1 + Do + 2M? + 4p*) p’]
1 3 1
== Kn - 2) (D} + D3) + (3 = 2n) D1Dy + p* (D1 + Ds) + 5p? (40 — pQ)}
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B. Self Energy

PT;WNEQW = gpréw - PL;WNEQW

N = (4n — 6) k> + (2n — 3) (2k - p) + (n — 6) p* + n Dy + Dy + 2M + 4p?)
=3(n—1)(D1+Dy)+2-3(n—1)m*+3(n—1)p?
3(n—1)[(Dy+ Ds) +2m* +p’|

Ak Pp,, NJ”
fL9 :/ n
(27'(') D1D2

1o dk 1 3\ ) 1, 0
_p?/(zw)"DlDz Kn—) (D} + D3) + (3= 2n) DiDy +p (D1 + Da) + 5p (4Mm —p)]

2
1 odk 3\ /Dy Dy 2<1 1)12 221}
Y L A 9 RN B T

p2/(27r)" K” 2) <D2+D1)+(3 n 40 (5t ;) P ( ") 51,

1 odvk 3\ /Dy Dy 2(1 1) 1L, a1 }
7 / 27)" K” 2) <D2 * D1> (5 ;) v ( ") 5p;

/d”k Dl_/d”k: k%2 — M?
Gy D: ] G -
d"k dnl

Making a change of variables I = —(k + p)" = k* = —(I + p)"' = [ ) =/ 2"

/ dnk Dl_/ d"l (1 +p)* — M?
(27)" Dy J (2m)" 12— M?

-/ d"k Dy
N (27T)n D1
2

d"k 2k - p P
= —= (1
e O )

= p2A0 (M)

3\ /Dy Do\ (1 1N 1., . 1}
_2) (=2, =2 =) w2 (4 —
" 2) <D2+D1>+p <D1+D2>+2p( p>D1D2

) 20 (M) + 207240 (M) + 552 (4M? = ) B (M;p, M)
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B. Self Energy

B / d"k PTMVN“V
DD,y
:/ gul/NéW . PLMVNSI)W
)"\ Di1D;, D1 Dy
/ d"k 3(n—1)[(D1+ D) + 20M? —i—pQ] B / d"k PLH,,Néw
DlDQ (271')” D1D2
d"k 1 1 2M? + p?
(n ) (27T> [Dl + DQ + D1D2 ng

=3(n—1) 24 (M) + (2M? + p*) B (M;p, M)| — (2n — 1) Ag (M) +

- ; (4M? — p?) B(M;p, M)

= (n—1) fro = (4n—5)A0(M)+; {4(3n—4)M2+(6n—5)p2]B(M;p,M)

I = froPr + froPl”

_ {4:__15 Ao (M) + ———— [4(3n — 4) M? + (6n — 5) 5| B (M; M)} P

+ 2o =140 (M) + (307 =) B(M:p, )| Py

Vo 28 T
—iThg = 2€”0ap 1

dn — 5 1
= 2¢” Ag (M) + ——
eéab{n A+ 50—

+ 262, {(Qn 1) Ao (M) + ; (402 — ) B (M M)} P

{4(3n—4) M? + (6n—5)p2} B(M;p,M)}Pc’ﬁ”jL

B.1.10 p tadpole

[ = —ie? [gabegcde (g“Ag"U - g’wg”’\) + EaceCode (gwggA - gwgy/\) + Eade€bee (glwgg)‘ - g“)‘gw)}
DEL (k) = —oetd

o &k
_”Tgbw:/(Zﬂ_) r- Daczl\ (k)
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B. Self Energy

U Vo

= —62 [€abeecde (9 g - gua‘guk> + Eace€bde <gp,1/ga/\ - guagu)\) + €ade€bee (.g

y / d"k 1
(2m)" k2 — M?

py oX

9

9

U\ vo

9

)] 5cdga>\ X

- _62 [5abegcce (guAgVU - guagvk> Jox + Eace€bee (ngm/ - g”l’) + €ace€bee (ng‘“’ — g#l’)} AO (M)

= —2¢? (n — 1) €aeelieeg™ Ao (M)
= —4e* (n — 1) 64 (PR + PI) Ay (M)
= —4e%64 (n — 1) Ag (M) PR — 4€*64, (n — 1) Ag (M) P

B.1.11 lollipops

B.1.11.1 ¢

Z'(;ab
kQ _ m2

Ty = 2ecupk” D (k) =

dk .
n Y

I

(27)" k2 — m2

=0

B.1.11.2 Goldstone

'5ab
Ty = —ecqmk’ D™ (k) = —

d"k
t% = | =—nla- D (k)
(2r)
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B. Self Energy

v [ R
= daa (27T)n k2 — m?2

=0

B.1.11.3 ghost

Z'(;ab

[y = ecgapk” D (k) = k2 — M2

d"k
tfl& = | —5l%- D (k)
(2m)

, kK
= Zegdaa/(

27 R —m?

B.1.114 p

_Z'(Sab o
Ty = ecqa [K°g" + kg = 2k79™| DI (k) = ng\ﬁ
d"k
Ad (27T)n 2 ( )
‘ d"k kP + kPger — 2k goP
= _Zegdaa/ (27T)n k2 _ m2

=0
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B. Self Energy

B.1.11.5 Higgs

B.1.11.6 Goldstone

B.1.a1y p

3. i
Iy —52/\1/ D (k) = E——")
d"k
t = [T D (k
1 (27'()” 2 ( )
3 / k1
2 (2m)" k2?2 — m%
3
= §AI/A0 (mH)
1 b 6%
FQ = —§Z>\I/5ab D (k) = m
d"k
H _ T, - Dab
t2 / (271')” 2 (k)
1 d"k 1
)
2% | ony k2 — M2
3
= 5)\1/140 (M)
1. a ab _i(sabgaﬂ
Tp = 5ie*vdag™  Dgh (k) = 15—

114



B. Self Energy

d"k
a = 71—‘ M Dab
t3 / (27T)n 2 aB (k)

_ 1621/”5(1(1/ d"k 1
=3 @2m)" k2 — M2

3
= §€2VTLA0 (M)

' o Z-(Sab
[y = —4ikvdy, D (k) = 2 _m2
—m

d"k
H —_ 71—\ . Dab
aa dnk 1
= 4Kkvo /(277)"1@2—m2

= 12k Ay (m)

B.1.11.9 ghost
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B. Self Energy

Ty = itkH
_ gy [NAq (mag) + [+ (n — 1)] Ay (M) + 8x4, (m)}

—i
mi

I' = ie*vd 9" D (0) =

= ie*vl,y, (PF 4 P

—im, =T D(0) - Ty

— 3
= ie2u6a (P + PI) - — - S {Mo (m) + [A+ € (n = 1)] Ao (M) + 8k Ag (m) |
my 2

_ 322 v v Ao (ma) 2 Ao (M) Ag (m)
= 5 € 0u (P + P) ) e +[A+e(n—1) S + 8k ~y
3. Ao (mp) 9 Ao (M) Ap (m) "
= 5]\4 dab {)\ m, + {)\ + e (n— 1)} ) + 8k o PR+

32 Ao (ma) 2 Ao (M) Ao (m) |
+ §M dab {/\ ) + [/\ +e“(n— 1)} m, + 8k m, Py

B.1.12 Summary
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B. Self Energy

—imthy, = —4e*5p Ao (M) PR — 45, Ag (m) P

—iﬂ(ﬁ% = _@2M25abBo (M;p,my) wa - 62M25abBO (M;p,mp) Pfy

625ab

C4(n—1)
m2 — M?
—|

p2
— *626(1[, {AO

ng

—UTMaps =

o 1 , 1 v
— 1Ty = _5625@140 (mu) Pr” — 5625@/10 (mg) P

{Ao (M) + Ao (mp) + (2m%+2M2 —Pz) By (M;p,mp) +

Ay (M) — Ag (mpy) + (qu — Mz) By (M;p, mH)} }P:’F“’—i—

m%{—MQ{

(M) + Ag (mu) + o

— Ay (mp) + Ag (M) + (m3; — M?) By (M;p,mp)] } P

626ab

2 2 . uv 2 v
1) (240 (M) + (4M? — p*) By (M; p, M)| P + €260y Ao (M) P}

—imhys = —2625“’,40 (M) P — 2625@,40 (M) Py
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B. Self Energy

o 2e%, (1 1 ) 1 1 )
— Ty = rlb [2140 (M) + (M2 - 4]92) By (M;p, M)} Pr¥ + 2€%0q, 5140 (M) + ZPQBO (M;p, M)| P

=1 {4(3n—4) M? 4+ (6n — 5)p2} B (M;p, M)}P}W+

1
+ 2620, [(gn — 1) Ay (M) + 5 (4M° = p*) B (M:p, M )} P’

—imhy o = —4€%0, (n — 1) Ag (M) PpY — 4€204y (n — 1) Ag (M) P}

. uv 3 AO (mH) AO (M) AQ (m) v
—imh = = M3y, {)\ ) + {)\ +e*(n— 1)] m +8 m P+
S, {)\AO (TH) + A+ e (n—1) Ao <;”> Tl (zm) } P
My my my

B.2 Higgs Self Energy

B.2.1 ¢ bubble
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B. Self Energy

B.2.2 ¢ tadpole

B.2.3 p bubble

D" (k) =

—1T

bd
‘D,B(;

I'y = —4ikvdg 'y = —4iKkv0.q

i0pq 10qc
D*(k+p)= o
k? —m? (k +) (k+p)> —m?

. d"k ac
{{:/WFQ'DM(@'H‘D (k +p)

9 d"k 1

= (4kv) 5aa/ 2n)" (k2 — m2) [(k: +p)2 . mz}
= 3(4kv)? By (m; p, m)

= 48x%1° By (m; p, m)

10ap
2 _ 2

' = —2ikdy D™ (k)=

— 1T, —/ d"k I D% (k)

d"k 1
=2 5aa T 5
" ©2m)" k2 —m?
= 6kAp (m)
Iy = iezy5abg°‘5 ry,= ie21/5cdg”5
—10ba985 —10acGary
k) = ——— D (k =
T TS TE
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B. Self Energy

d"k
o H v . nbd . . ac
1Ty / (27T)nr2 D> (k) -TI'y- D* (k + p)
d"k 1
(2m)" (k2 = M2) |(k + p)* = M?]
= 3e'v*nBy (M;p, M)

= e*vnd,,

B.2.4 p tadpole

1. 2 af ab _iéabgaﬁ
F = §Z€ 5abg ‘Daﬁ (k) = m
d"k
- _H ab
—iTmy = /(27‘(‘)”F . Daﬁ (]{])
1, k1
— s
2 "0 | on) k2 — M2
= 2e2nAo (M)

B.2.5 Goldstone bubble

1. 1.
Iy = —§z)w(5ab Iy = —52)\1/5051

0 @0,
DY (1) — L0bd Dae (k _ ac
(k) k2 — M2 (k +p) (k+p)2—]\/[2
_Z'WH:/dnkp D" (k) -T'y- D*(k +p)
5 (271_)71 2 1
1. \? " 1
— (Ay) 5%/ d kn 5
2 (2m)" (k2 — M?) [(k + p)* — M?]
= SN2 By (M:p, M)
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B.2.6 Goldstone tadpole

Z.(Sab
k2 — M2

1
I'= —Ew\éab Dab (k) =

Z'/TG _/ F Dab )

d"k 1
ZM‘“‘ (2m)" k2 — M?
3
— 22, (M)
B.2.7 Higgs bubble
e - \‘\
_ b
\ ,
~ ./
I, = _EMV Iy = —52)\V
i 7
D (k) = D (k+p) =
(k) k2 —m2, (k+p) (k+p)* —m¥

_iﬁfz/(;l;l;Lrg'D(k)'Fl'D(k‘i‘p)

3 N2 [ vk 1

= (2/\1/) / 2m)" (k2 — m¥) {(k +p)° - m%}
9
4

*)\2VQBO (mH7p7 mH)

B.2.8 Higgs tadpole
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B.2.9 Goldstone-p bubble

1 1
Iy = —gedoc(k+2p)"  Ta= gedlk +2p)”

_iéacgaﬁ d i(SCd
D% (k) = ——— D (k =
a,@( ) k2 — M2 ( +p) (k+p)2—M2
. H dnk ac k’ cd k’
— 1Ty :/WFQ'D(XM )-T1- D (k +p)
L [ (k + 2)°
47 @2m)" (k2 — M2) [(k+ p) — M2
3
= —162[9
We make some definitions
Dy, = k? — M?

Dy = (k +p)* — M?
=k*+2k-p+p* — M?
= Dy +2k-p+p?

Which gives us the relations

k* = Dy + M°
2k -p=Dy— Dy —p*
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We can write the numerator as

Ny = (k +2p)°
= k*+2(2k - p) + 4p?
= 2D, — Dy + M? + 2p*

[gz/dk: Ny

(27T)n D1D2
_/ d"k 2D2—D1+M2+2p2
n (2’71')” D1D2

= 2A¢ (M) — Ao (M) + (M? + 2p*) By (M; p, M)
= Ay (M) + (M? + 2p*) By (M; p, M)

3
—imgl = —16219
3 9

= Ao (M) + (M? +2p”) By (M;p, M)

B.2.10 Ghost bubble

1. 1.
Iy = 526%5@},; Iy = 52621/(5@[
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1, \? drk 1
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3

= 1641/230 (M;p, M)
3
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B.2.11 Lollipops

Ty = 21/ {)\Ao (mm) + P\ +e?(n— 1)} Ao (M) 4 8k Ay (m)}

—mH =T-D(0) Ty
_ :ZW - ‘;’y (Mo (mur) + [A+ €2 (n = 1)] Ag (M) + 864, (m))}

miy

= _iw {)\AO ) A+ (n—1)] Ao (M) 4 g, Aolm) }

2 2 2
myy My My

B.2.12 Summary

—imil = 48k*1* By (m; p, m)

—ims = 6KAg (m)
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—imsl = 3e*v*nBy (M;p, M)

3
—imh = §e2nA0 (M)

3
—img = 1)\%230 (M;p, M)

e N
/ \
_ 4\ }f _
N ./
w99 9
—iTy = 1/\ V- By (mH;pu mH)
;7 B N,
’ \
( I
\ /
I



B. Self Energy

—img = —262 {Ao (M) + <M2 + 2p2) By (M p, M)}

3
—iwf{) = 162M2BO (M;p, M)

2
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H H H
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