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Abstract

The Standard Model (SM) is currently our most complete, fundamental, and
successful theory of nature. However, despite its ability to make some of
the most precise predictions in all the physical sciences, there are scenar-
ios where it has been shown to be inadequate or incomplete. This is why
SM Precision tests are very important avenues to a solution because they
can inform us where the SM is incorrect, and in a manner of speaking, by
how much. In this dissertation, we look at two major precision tests: the
weak mixing angle and the unitarity condition sum of the top row CKM
matrix elements. In order to extract either of these quantities at the level
of precision required to meaningfully test the SM, we must go beyond their
leading order calculation, and compute all of their 1 loop radiative correc-
tions. The physical process we consider acts like a host to perform both the
calculation and the experiment and must be somewhat practical. Semilep-

tonic reactions are a prime candidate as nucleons and nuclei provide practical
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iv
targets in scattering experiments as well as ideal decay parents, as opposed
to their leptonic alternatives. The cost of this experimental convenience are
additional challenges when calculating the observables in the SM theory, as
hadronic modeling becomes a necessity. This dissertation investigates some
of the most troublesome radiative corrections in an attempt to reduce their
hadronic uncertainties, using state-of-the-art dispersive techniques as well
as update some previously calculated radiative corrections in the aforemen-
tioned test quantities. Using these methods, we have found that the CKM
matrix is no longer consistent with unitarity and an updated relationship be-

tween the weak mixing angle and the weak charge of the proton is proposed.
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Chapter 1

Introduction

In this opening chapter, I will start by introducing the theoretical founda-
tions of the Electroweak sector of the Standard Model. This will hopefully
not only familiarize the reader with the particles and interactions needed for
the calculations done in chapters 3 and 4, but to also give the reader the
impression that the theory is an impressively engineered and well-oiled ma-
chine. Next, I introduce the concept of precision tests, which will ultimately
be performed in chapters 4 and 5 of the thesis. Finally, I attempt to de-
fine the two processes through which we will test the Standard Model: beta

decays of the neutron and parity violating electron proton scattering.



CHAPTER 1. INTRODUCTION 2

1.1 Electroweak Theory

The Standard Model (SM) aims to define the most fundamental particles in
nature and all of their interactions (minus gravity). It constructs its foun-
dations from all of our suspected imperative symmetries (e.g. Lorenz invari-
ance) and it adheres to the rules of quantum mechanics through the more
generalized framework of quantum field theory (QFT). In the theory, our
‘tactile’ matter of the universe is made of spin 1/2 particles called fermions,
and these particles interact with each other as well as a special particle known
as the Higgs boson. In the Electroweak sector of the SM, the weak and elec-
tromagnetic (EM) interactions are unified under a SU(2); x SU(1)y gauge
group, where the L implies that the SU(2) part is thought to only act on
left-handed fermions and Y is called the weak hypercharge. This theoretical
construct was first proposed by Glashow [I] in 1961, and has since become
our ‘standard’ picture of particle physics, together with the SU(3)¢ group
which defines the strong interaction. Before standard theory (ST) was es-
tablished, however, weak decays were first modeled by Enrico Fermi in the
1930’s in the so-called 4-Fermi model. All of the observed weak decay rates
at the time were found to have the same overall order of magnitude and so

the responsible interaction was thought to be of the form

ﬁzgeflf“j;mi - GFQ/_}pwn&eww (11)

Gr = 1.166 x 107°GeV 2, (1.2)
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for the reaction n — pe~v,. This simple 4-particle interaction was also
proposed for the other decays, such as that found in muon decay. The idea
that G could be applied to all the weak decays is known as the universality
of the weak interaction, and would not be understood until Glashow’s model.
Despite the ability of 4-Fermi theory to make reliable tree-level predictions
(no higher order quantum corrections), it is ultimately a non-renormalizable
theory (meaning we cannot systematically cancel all the ultraviolet (UV)
divergences produced by its higher order corrections). In the ST of EW
interactions, the so-called vector bosons (VBs) are spin-1 particles which
mediate the interactions themselves. In QED there is only 1 massless VB
called the photon. Yang-Mills theory aims to generalize this model to allow
for the additional VBs found in the weak sector, where they also become
non-Abelian fields (which concurrently means they are self-interacting). In

such a model, the free VBs have the following Lagrangian:

1 - - 1
cYM - —ZWMV . W’uj - ZBMVBMV, (13)
W = 0,W, —d,W, —gW, x W, (1.4)
B, = 0,B,—0,B,, (1.5)

where Wu = (Wi, Wy, Ws,,). It is the cross product in (1.4) which indicates
that the WM field is self-interacting. The free fermion fields simply obey the
standard Dirac Currents of the form ~ zmuam. However, the gradient

of these fields does not transform like the fields themselves under the local
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gauge transformations:

by = dC@THB@Y (1.6)
wR N ei,B(x)YwR, (17)
o= o (1.8)

where 7, are the standard Pauli spin matrices. We require that the SM is
invariant under this transformation, which has two historical roots. The first
was motivated by Weyl in the 1920’s where it is considered as a generalized
“phase measure” analogous to the all-too-familiar coordinate measure. The
other naive reason is purely quantum mechanical, as phase plays such a fun-
damental role in the theory. In order to restore our local (position-dependent

phase) gauge invariance, we can introduce the covariant derivatives:

Di{q.l} = (0 +igT"Wyi +ig'Y B.){q. 1}, (1.9)

Dud.ey = (9, +igVB){u.d.e) (1.10)

on our fermion fields, which are defined in Table 1.1. The non-derivative
terms of (1.9-1.10) represent interactions between the fermions and the gauge
fields, and are often called “minimal couplings”. In fact, they can be inferred
from experiment (e.g. such as in QED), but it is remarkable to see that they

naturally arise out of us imposing local gauge-invariance alone. With these
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Fermion Description
u
a =4 LH quarks
f
ug RH up-type quarks
d f RH down-type quarks
v
ly = (e) LH lepton
f
ef RH charged lepton

Table 1.1: Fermion fields in the Standard Model.

covariant derivatives defined, the fermion Lagrangian now generalizes to

Lerm = Z [qTiv“Duq + ETM“D#H + JTiv“D“JjL ZTW“DHZ

generations

+ eliytD,e (1.11)

If one expands the transformation in (1.6-1.7) to linear order in the phase
variables (i.e. an infinitesimal gauge transformation), it follows that the

gauge fields must transform according to

1

Wy — Wi-— Eaua“(:v) - e“bcab(az)Wlf, (1.12)
1

B, — B,——0,6(). (1.13)
g

At this point, our theory obeys the SU(2), x U(1)y gauge symmetry, but

all of our physical particles are massless. This is quite unsatisfactory, as for
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instance, we have known that the electron possesses a finite mass ever since
J.J. Thomson performed the e¢/m experiment in 1887. It is also the case that
our current gauge fields Wu & B,, do not correspond to any physical VBs
yet.

In order to give our particles a mass, the concept of spontaneous symmetry
breaking is used. This is realized by the so-called linear sigma model, defined

by the following Lagrangian

Litgge = (DH)(DMH) — V(H), (1.14)

V(H) = —p*H'H+ \NH'H). (1.15)

H is a complex doublet field while Lgq4s is symmetric and obeys our gauge
groups. However, the potential here is anharmonic, and its ground state
minimum is defined by a circle of radius v surrounding (H) = 0, where v is
called the vacuum expectation value (vev). It is for this reason that (1.15) is
sometimes called the “Mexican hat potential”. Choosing a vev configuration
for H is completely arbitrary, and doing so will break our gauge symmetry —
hence the aptly named “spontaneous symmetry breaking”. There are several
employed conventions for the vev configuration. For pedagogical purposes,
we will choose the simplest convention. The vev field can simply be chosen

as

H—1 ’ 1.1
<>—EU, (1.16)
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and performing a simple first derivative test on V(H) = 0 reveals that v =
/1#2/X. One can then define a small perturbative field to this configuration

h(x). Then our new Higgs field is given by

T (1.17)
V2 v+ h

From this definition, the kinetic term in (1.14) becomes

(D, HY (D*H) = %{aﬂh@h + [ (e vz ) - 2 (onp

12

g
+?Bﬁ — Qgg’B“Wj’)} (v + h)2}. (1.18)

Since (v + h)? = v* + 2vh + h?, the pure gauge-boson mass terms involve v?

terms only. This contribution, slightly re-written, is given by

22 00 0
1 2 U= 0
Egauge mass — 5 W1 W2 W3 B 2 9 /)2
: N
O 0 _gg;UQ g’22’v2
Wy
Wy
X (1.19)
Wi
B
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Which is clearly not diagonal in the (W§', B*) basis. If the 4 x 4 matrix in
(1.19) were diagonal, it would allow an unambiguous interpretation of the

VB masses ~ m}V*#V,. This can be attained by the relations

1

+ _ 1 12
Wi = S, (1.20)
Z, = cosby —sinfy B, (1.21)
A, = sinfy W)+ cosOw By, (1.22)

/
tanby = 2. (1.23)
9

Where the Wj are the charged W boson fields, Z, is the neutral Z bo-
son field, and A, is the photon field. Now, rather than using the abstract
gauge couplings (g, ¢’), we can replace them with the natural EW couplings

(e,sinfy) via

e

= 1.24
9= sin Ow’ (1.24)
, e
= ) 1.25
g cos Oy ( )

The rotation angle 6y, is known as the Weinberg angle, and it effectively
relates the strength of the weak coupling constant to the strength of the
EM coupling constant. Another consequence of (1.20-1.23) is the following

identity for the quantum numbers of fermions

Q=T°+Y. (1.26)
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Before we continue, it is worth mentioning that rather than using (1.17), in
the derivation of the EW Feynman rules used in this thesis (see Appendix
A), the following alternative choice has been made

H= a . (1.27)

\/Li(v + h+i¢")

Substituting (1.27) into (1.14) leads to new terms involving the unphysical
Goldstone bosons {¢*, ¢°} (informally known as “would-be” Higgs bosons)
which can enter calculations as virtual particles. As external particles (or
perhaps I should say: on their mass shell), they merely serve as a means to
cancel the unphysical longitudinal contribution of their physical VB coun-
terparts {W;, Z,} via the Goldstone Boson equivalence theorem [3]. Our

diagonalization exercise also reveals where our VBs get their mass, as one

will find

m, = 0, (1.28)
_ g
My = Zv, (1.29)
2 72
M, = QTJFQU, (1.30)
M,
FIZ = cosfy. (1.31)

At this point we can also get our physical fermion -VB couplings. This leads

to the neutral current (NC) which is part EM and part weak and it also leads
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to the purely weak charged current (CC). After some algebra one is left with:

7 . . g : :
Lyc = f:{ge : fiy" (au +ieQrA, + ZM(T,‘? — Qysin® Gw)Zu) f,

(1.32)

Lo = Hiy*u)v +eliy'd)e — “T=W (1= ys)e

2v2
I o (1 —
—qu e (1 — vs)v. (1.33)

Where I have moved to the traditional Dirac spinor notation in which LH &
RH fields are acquired by applying the chiral projectors Pr = (1£75)/2. 1
have also specified the flavours of the relevant fermion fields (see Table 1.2).
Equations (1.32-1.33) are quite important as they will inevitably enter into
any scattering amplitude at the tree level for any EW process. Taking the
weak VB propagators into account, which at low ¢ : Myee ~ ¢%/(¢*—M3,) —
g*/M3, ~ G, they reconcile nicely with 4-Fermi theory. Next, we still need
a way of describing the masses of our SM fermions.

In the SM one cannot construct ordinary mass terms for the fermions such
as: me(€rer + eéger) without violating gauge invariance, as the LH and RH
components of the different fermion fields have different gauge quantum num-
bers. Instead, the mechanism of spontaneous symmetry breaking must be
invoked. Let’s take our scalar Higgs field H with a known vev; then a gauge-

invariant coupling linking H to the quarks can be written by [3]:

ALy = -NQp - Hdp — M\e™QroHjug + h.c. . (1.34)
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fermion (f): Tg D Qe
(m)* 510
()" —5 | -1
(u,e,t)" | 3 | 2
(d,s,0)" | =53 | —3
(Vl)R O O
(I7)f 0 -1
(u,e,t) | 0 | 2
(d7 Sab)R 0 _%

Table 1.2: Fermion quantum numbers in the SM. Their hypercharges follow
trivially from (1.26). The 3 families of leptons are: [ = e, u, 7. The 2nd row
is the weak isospin partner to the 1st row and the 4th row is the weak isospin
partner to the 3rd row.

Since H acquires a vev of the form (H) = \%(0, v), to LO we can write (1.34)

as

1 - 1
= ——=\gvdpdr — —=A\vurug + hc +.... 1.35
\/§d LR /5 LUR (1.35)

The \’s are some new dimensionless coupling constants, and we can identify

AL,

the down and up quark masses as: mg, = Aguv/ V2. Adding additional
quark generations allows additional couplings which mixes generations. Now

let us define:

uZL = (uLacLatL)v (136)

dZL = (dL,SL,bL). (137)
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One can always change basis in the quark fields, but this will in turn, compli-
cate their gauge couplings. Let u’iL, d’z denote the basis which diagonalizes

their Higgs couplings, achieved by the unitary transformation:

uh = Ui/, (1.38)
dy = U7d",. (1.39)

Then in this new basis the W boson current takes the form:

1 . . 1 _. . 1 _. .

T — g Ak = A (UTU Ld = —u AMVid 1.40

w \/§L7L ﬁLV(ud)yL \/§L7 4L ( )
while the neutral currents are unaffected as they do not mix flavours. It
is this redundancy in the Yukawa couplings, in the form of a residual U(1)°

global symmetry, that has lead to the so-called Cabbibo-Kobayashi-Maskawa
(CKM) matrix in (1.40), which we define as:

Vud Vus Vub
V=Uls= |V Vig Vi | (1.41)
Vie Vis Vi
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The CKM matrix is a complex unitary matrix for which a standard param-

eterization exists, using 3 angles and 1 phase via:

1 0 0 cos B3 0 sinfy3e®
Vo= 0 cosfy; sinfas 0 1 0
0 —sinfy; cos by —sinf3e® 0 cosfis

cosfis sinfy, O

X | —sinf5 cosbi5 0] (1.42)
0 0 1
—id
C12C13 S512€13 S513€
—S812C23 — 012323813625 C12C23 — S12523513€" 523C13 ) (1-43>
_ ) _ _ )
512523 — C12€23513€ C12523 — S512€23513€ C23C13

where ¢;; = cosf;; and s;; = sin6,;;. The CKM matrix is unitary by con-
struction as it plays the role of a basis rotation. It is only through the
measurement of its elements that we can determine if it really is unitary. If
experiment indicates that (1.41) is non-unitary, one possible explanation for
this could be a 4th quark generation, among other possibilities discussed in
section 5. Therefore CKM unitarity tests are a new way to look for physics

beyond the SM. The general unitarity of V is realized by the condition:

Vi Vie = 6. (1.44)
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One example of (1.44) which will be tested in this thesis is the top row of V:
‘Vud‘Q + ’Vus’2 + ‘Vub‘Z = 17 (145>

in which the dominant term is |V,4[>. A precision measurement of the ud
matrix element is a strong way to test CKM unitarity as it dominates the
LHS of (1.45). However, as we will see, a precision measurement requires an
equally precise calculation which will involve a computation of the radiative
corrections predicted by perturbative QFT.

There are still actually two ingredients still missing from our EW Lagrangian
— and one of those is the need to fix a gauge. To see how this comes about,
it is helpful to look at the associated path integral of the photon (the weak

VBs are dealt with similarly), which is given by

l/[hw”“%ﬁiﬂﬂwﬂ, (1.46)

F,, = 0,4, — 0,A,. (1.47)

And recall that the action in the exponent is invariant under the general

gauge transformation:
1
A (x) = Ay(x) + Eﬁua(m) = A (x). (1.48)

It follows then that the issue is that the path integral is poorly defined as we

are integrating over a continuous family of physically redundant equivalent
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field configurations. We need a way of performing the path integral which
only counts each physical field configuration once. To do this, we start by
fixing the gauge via

G(A,) = 0"A, =0, (1.49)

which is called the Lorenz gauge (but others exist as well). We can then take

| = /Da AY)de t(“’;(A/)), (1.50)

«

the identity:

and insert it into (1.46). Doing so gives

(5@ (A" )/D /DA, i f d*a _7FWFW}5(G(A,)). (L5)

We can then make a simple shift in coordinates A — A’ in which DA = DA’
and the gauge action F),, F'*” is also already invariant under this transforma-

tion. Meanwhile, from (1.48) we have that

(P90 _ (%) w2

The final technique is to generalize (1.49) to G(A’) = 0*A,,(z) — w(z) then
take [ Dw(x)e*if d'e(w?/24) for g properly normalized distribution of func-
tions w(z). Performing this Dw integration with the -function and renaming

our dummy variable A" — A gives us [3]:

82 i [diz [—lFWFw} —i [ dizgi— (0" A,)?
N(&a)det| — Da DAe 1 e €A . (1.53)
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The prefactors of (1.53) are unimportant, as they merely wash out in our
normalized correlation functions, which are proportional to

[ DAO(A)e ¢4

OO0} ~ s

(1.54)

The effect of (1.53) then, is the addition of the new Lagrangian term

1

T (1.55)

Lor =

In fact, we will have the same gauge fixing terms for the other VBs, leaving
us with 3 new parameters: £4,&z,&w = £4+. Choosing a particular value for
these parameters amounts to fixing a Lorenz invariant gauge. In ordinary
QM, when one imposes mathematical conditions on their wave functions via
boundary conditions they arrive at the quantization condition. Analogously,
imposing condition (1.49) has lead to the quantization of our photon field.
We will be choosing the traditional Feynman gauge in this thesis, where
& = 1, which is often the simplest choice, as the gauge boson propagators
have now become [3]

i i
_qQ—M‘%—l—ie @ — M2+ ie

D! (¢?) <gw_ (1—5”%). (1.56)

There is however, one subtle complication in the non-Abelian case. The

determinant inside (1.51) is A-dependent for the gauge fields in (1.4). In
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that situation, one gets a term proportional to
0G(A 1
det <L> ~ det (—8“DM) , (1.57)
Yel g

where g is the non-Abelian coupling constant, and D, is the covariant deriva-
tive. Luckily, this determinant can be expressed as a functional integral over

a new set of Grassman fields
det(0"D,,) = / DeDget | #a5(=0"Dy)e. (1.58)

The anticommuting fields ¢, ¢ are unphysical (as they do not obey the spin-
statistics theorem) and have been named Faddeev-Popov ghosts. They are
allowed to enter loop calculations in EW theory as virtual particles, and have
their own Feynman rules which originate from (1.58). The interested reader
may find more interesting details about how these fields enter loop calcu-
lations in [57]. They will also enter the vZ self-energy calculation done in

section 4.5.
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1.2 Correlation Functions and Perturbation
Theory

Most of us have heard of “Feynman diagrams”, but some may not know
where they come from and how to generate them for a given calculation, so
it is worthwhile reviewing their origin. In principle there is no need to define
a Feynman diagram in QFT. Formalized by Julian Schwinger (but not unbe-
knownst to Feynman), there is a rather unique way of doing QFT. It involves
introducing an external fictitious field J(z) which acts on your particle field
¢(z) in the form of an interacting Lagrangian density £; = J(z)¢(z). One

SleJ1/h with respect to J(x), and

then varies their quantum amplitude f Doe
set J = 0 afterwards. This “modified quantum amplitude” is a very funda-
mental object known as the generating functional, which has found a natural

home in statistical mechanics, and it also contains all of your theory’s physics.

For a simple scalar field theory, the generating functional is:
Z[J] = (Z[J = ()])_1 /D¢e;5[¢]eéfd4aﬂ(a:)¢(x)‘ (1.59)

In the path integral formulation of ordinary quantum mechanics, the QM

amplitude in going from point 1 to point 2 is:

q(t2)=Q2

G(1,2) = G(Q2,Q1;ta, 1) = / Dq(T)e%S[q,d]‘ (1.60)
q(t1)=Q1
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G(2,1) is commonly called the 2-point correlator and if we were to take its
modulus square, we effectively find the probability that our particle propa-
gates from point 1 to 2. In QFT, we want the same quantity, as it is a link
between our system Lagrangian (residing in S[¢|) and physical observables.
At the same time we can generalize G(2,1) to an n-point correlator which
represents the QM amplitude of “(n — j) particles going from (n — j) points
to j particles at j points”. We can find such a significant correlator from the
generating functional via appropriate functional derivatives with respect to

J:
" Z[J]
0J (1) -8 (Tn) | =g

Go(z1,- -+ ,xy) = (—ih)" (1.61)

G, is the so-called n-point time-ordered correlation function, which has the

alternate notation:

G2y, an) = (0[T{p(21), -+, d(n)}0). (1.62)

Of course, when you substitute Z[J] into G,,, the §/6J(z;)’s seamlessly pass
through the functional integral in (1.59), but after the derivatives have per-
formed their task, one still must integrate over D¢. This is where QFT
becomes perturbative. For practical purposes, the only functional integral

we confidently know how to do exactly is a Gaussian one:

/ Dee i | #5(36Q06=79) — |detQy| 2 ez 47790 (1.63)
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and this is fine if in our system action: S[¢] = [ d*xL(¢) there exists only
linear and quadratic terms in ¢. For this very reason we have exact solutions
for free quantum fields, which merely have quadratic kinetic and mass terms
in the particle fields. Any interacting QFT of interest, however, contains
cubic or higher order terms in ¢, rendering the functional integral impossible
to do exactly. The solution adopted then is to expand the interaction term
into a Taylor series, keeping only the leading terms. This must be done under
the assumption that the Taylor series converges, and each consecutive term

is smaller than the previous one. i.e.

o

eﬁfd:ccmtw)zz (ﬁ) L (¢). (1.64)

n!
n=0

Each term in [ Dgen [ ##(o@)+Line(9) i then a polynomial in ¢ times a
Gaussian function in ¢, which can be functionally integrated exactly. This
constitutes a systematic procedure through which you can find your correla-
tors, which then get substituted into S-matrix elements, which then directly
goes into a cross-section (a physically measured quantity in a scattering ex-
periment, for example). As laid out in [2], the procedure is as follows: The
scattering matrix S' is the matrix which links the initial state to the final state
(before and after scattering, respectively) which has a zeroth order identity

plus a non-trivial part:

S =1+iT (1.65)
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The interesting part is, of course, T, whose matrix element is defined by:

7= (fliT)i) = (2r)*"( > )iM@i— f), (1.66)

momenta

where M(i — f) is the correlator which links the initial state particles to the
final state ones and is often called the “Feynman amplitude”. The transfer
matrix element then gets substituted into the differential cross-section along
with a Lorentz-invariant phase space factor. If our initial state was |i) =
[p1)|p2) and final state |f) = []; |p;), then the differential cross-section will
be:

1

do = 2d11 1.67
7= BB, — ) I s, (1.67)

where:

dHLIpS = (27’(’)4(54<Z> H (C;:;_p)]g 2; ', (168)

5= (1.69)

Let’s now return to how we get our correlators, but turn our attention to
QED, as a transition to EW theory is in mind. In QED, we need to introduce
3 external fields for each of the 3 physical fields: A,, v, . The resulting

generating functional is:

ZZ‘LO ;_"' f[d Audzpdzﬁ]eiso [Ap )+ [ de(Aujh+dn+ay) ( f d4x€@; A¢)"

S o = [[dA dipdip)eiSolAndl( [ dizep Aap)™ ’
(1.70)

Z[.j/u 7]7 77] =
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which leads to a general time-ordered correlator in the following compact

form:

OIT (1) - (wm)P(yr) - V(Y ) Ay (21) - - Ay (22)]0) =

S [ [dAdipdleSolAmt il (zy) - Ay (2)( [ dwed Ap)® (1.71)
S [[dA,dipdi)eiSolAnvdl( [ dized Agp)m -

In principle, evaluating the RHS of (1.71) for the first few terms is a straight-
forward exercise, but it is quite tedious. This is where Feynman diagrams
come in handy. Richard Feynman realized that there is a diagrammatic rep-
resentation for all of the terms here. If one can geometrically generate all of
the terms diagrammatically, then they could use a prescribed set of “rules”
to assign to each diagram its correct mathematical expression. This whole
technique, pioneered by Feynman, has proved to shave off calculation times
considerably. The diagrams have the added benefit of showing a picture of
what the particles are doing physically — something that is very difficult to
see by performing the algebra alone. It must also be stressed that one must
always establish which correlator they’re calculating and to what order in

perturbation theory they’re working before they commence a calculation.

Of course to get our sought correlators in EW theory we would do exactly
the same thing as this QED case, however, due to the very large number
of terms in the Electroweak Lagrangian, doing this analytically by hand

would be too time-costly to be practical. There are many proposed and
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established sets of EW Feynman rules in the literature, each with slightly
different conventions. I will employ those of [75] for the calculations in this
dissertation, as they are very complete and given in the general R gauge.
As the number of terms in the Taylor series of (1.71) increases, the field
operators form what are called “loops”. Correlation functions are custom-
arily calculated in the momentum basis, and these loops form divergent 4
dimensional momentum integrals. The systematic procedure for removing
some of these divergences is known as renormalization (see Appendix F).
However, even after renormalization, the evaluated momentum loops leads
to a small correction to the Lagrangian parameters, which depends on an
intrinsic momentum scale (e.g. the momentum transfer between interacting
particles). This is what we call a “running” parameter in QFT. For instance,

we will see how this comes about to the weak mixing angle in chapter 4.
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1.3 Precision SM Tests

It will be useful to review how precision SM tests work in a broader sense
before we look at a specific example involving CKM matrix elements. At the
Lagrangian level, the SM is defined in terms of a finite number of parameters,
including coupling constants and particle masses. Let’s denote all these La-
grangian parameters with «; for ie[1, N]. When one first writes down a model
for the SM (or any other particle theory for that matter), these parameters
are unknown. To find them, we can choose at least N observables: O;. Fol-
lowing a well-defined algorithm, each of these observables can be calculated

in terms of the theory constants:

Oj = Oj(ozi), (172)

which will become a system of N equations with N unknowns, assuming one
chooses N observables. It will then follow that we could measure these N
observables and use (1.72) to numerically determine all our a;. Our theory
would then be a predictive one, as we could then calculate any new observable
numerically. If the SM was incorrect or incomplete, it could show up as a
discrepancy between a predicted observable and the measured value. One

way to implement this test is the following:

o Let O;,{i = 1,..., N} denote the N best-measured observables in the

SM.
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e Invert the system of equations:

Oi = Oi((l/j) — Q= Oéj(Oi) (173)

it would follow that these NN «; are the most precisely-known La-
grangian parameters, and the O; used to find them are called the input

parameters.

e Now choose any new observable which can also be measured with a

high precision, denoted O™ («;) and substitute (1.73) to get:

omer = Omer(0,). (1.74)

e One then tests the agreement between the SM prediction of O™ in

(1.74) and a precision measurement of O™,

As we shall see, for this comparison to be meaningful, one typically needs
to consider loop corrections to the SM prediction, a feat which can inherit
undesirable challenges in semileptonic processes. Specifically in this thesis,
two SM precision tests will be performed.

The weak charge of the proton Q. (p) corresponds to the strength of the
proton’s vector coupling to the Z boson, and it is related to the weak mixing

angle sin? fy via the relation [51]:

Qu(p) — Oww — Ozz —0,2(0) AL
PNC +Ae

45%,(0) =1 — (1.75)



CHAPTER 1. INTRODUCTION 26

The test here is to determine how closely the measured quantities on
the RHS determines s%,(0) as compared to the pure SM prediction of s%,(0).
Qw(p) is determined by performing PV asymmetry measurements in ep — ep
via the equation [53]

Azp},%NLO

ep,Born
ALR

= Qu(p) + Q*B(Q*,9), (1.76)

where Apg is defined in section 1.4 and B(Q?,6) is a function which charac-
terizes the structure of the proton. A low Q? fit may be performed on the
available asymmetry data to get the non-zero intercept Q,,(p). Amongst all

terms in the RHS of (1.75), the input parameters of this test are:

S%/V(O) ~ Qw(p)7pNC'7d7§W7meaMZ;MW (177)

where & and $y are measured at the Z pole mass and py¢ will be defined in
section 4.2. The comparison of s |sur 10 s |exper Will be reviewed in section
4.10.

The other SM precision test performed in this dissertation will be the uni-
tarity of the CKM matrix. In this case, the quantity being tested is the
LHS of (1.45), for which the SM prediction is 1. |V,4|? and |V,|*> have PDG
experimental averages [70] while |V,4|* will be updated with the newly cal-
culated radiative corrections of section 3. Just to be clear, the SM doesn’t
“know” what the individual values of V;; actually are, rather they can be

found from experiment. Instead the SM merely predicts that these matrix
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elements conform to the unitarity condition. This will be tested in detail in

section 5.1.
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1.4 Probing the CKM Elements

For the purposes of a precision SM test, there are 2 significant measurements
which can directly extract the V,; matrix element: superallowed 3 decays and
neutron lifetime measurements. Both of these processes involves the charged
current (CC) interaction between up and down quarks found in (1.33) and
can be measured in the lab.

The neutron has been observed to decay into a proton and an electron
ever since early experiments at Oak Ridge National Laboratory [4] and Chalk
River [5], [6]. Later, Pauli had postulated the emission of a neutrino in the
decay products to account for the observed electron energy spectra and out
of the need to conserve angular momentum. By the 1960’s, the neutron beta
decay reaction n — p + e~ + ¥, was studied heavily by a still-developing
theory of weak interactions.

One way to understand the driving weak interaction responsible for neu-
tron beta decay is to measure either the neutron survival rate or the decay
rate through its products. The weak interaction is known to possess a V-A
structure ~ ¥(gy — gay"ys)®w. The relative A to V coupling is defined at

zero 4-momentum transfer by the parameter:

ga
A==, 1.78
av ( )

and this term will enter the neutron’s lifetime relations later in this section.

On the other hand, superallowed [ decays involve the transition between



CHAPTER 1. INTRODUCTION 29

J™ = 0% — 0%, I = 1 nuclei and currently provide the most precise extraction
of V4. There are roughly 20 accessible superallowed transitions which have
been measured in the lab for over the last 40 years [7]. The observable
quantity which characterizes the [ decay is the ft value, which depends on
3 measured quantities: the total transition energy QQgc, the half-life ¢, 5, and
the branching ratio R for the specific transition. It is convenient to define a
modified ft value which includes nuclear-dependent radiative corrections in
it:

Ft = ft(1+0p)(1 + dns — dc), (1.79)

where d¢ is known as the isospin-symmetry breaking correction, while &7
and dyg are transition-dependent corrections. % depends on the electron’s
energy F and the Z number of the daughter nucleus, while éc and d s depend
on the details of the nuclear structure at hand. F't is directly related to the
Fermi coupling constant G, of the nuclear S decay. However, GG, is not by
itself, a useful quantity. Rather, by taking its ratio with the Fermi constant
for purely leptonic u decay, Gr, we can access the up-down element of the
CKM matrix:
G? 2984.43s

Vil == = ——— 1.80
Vel = G2 = Fi(i+ AY) (1.80)

where AY contains all the universal inner radiative corrections and will be
discussed in some detail in section 2 of this thesis. Equation (1.80) acts like

a stringent numerical bridge between experimentally measured F't values in
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superallowed 8 decays and the resulting SM prediction for |V,4|?.
In the SM, the inverse of the neutron’s lifetime comes from an integration of
its differential decay rate over final state phase space, and is generally given

by [8]:
G2 |Veal?
Tl = %mi(l +3X)(1+ AR)f, (1.81)
T
where Ag are the EW radiative corrections and will be discussed in section
2 and f is a phase space factor. Many of the constants in (1.81) are known

experimentally, and the equation may be re-arranged with this information

to give a useful V4 testing formula analogous to (1.80):

5099.34s

Vil = 2 :

(1.82)

Unfortunately neutron lifetime measurements do not provide as precise an
extraction of |V,4| as superallowed decays can provide, due to the large ex-

perimental uncertainty in .
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1.5 PVES and the Weak Charge of the Pro-
ton

Parity violating electron scattering experiments provide a powerful way of
testing the SM. The weak interaction’s preference to involve left-handed
fermions can be exploited and observed when one takes the difference of
cross-sections between LH and RH beam electrons and an unpolarized pro-
ton target. The quantity which encapsulates this effect is called the left-right
asymmetry, defined as:

(1.83)

where the L(R) refers to left-(right-) handed longitudinally polarized elec-
trons. To leading order (Born level), the interaction which explains the scat-
tering between and electron and proton is the exchange of a single Z-boson

or photon(v) shown in Figure 1.1. The helicity (handedness) of the incident

Figure 1.1: Tree level amplitudes M, and M, which contribute to Az r. Their
interference term survives in the numerator of (1.70).

electron is traditionally denoted by A = £1. The purely weak exchange am-

plitude My is highly suppressed with respect to the EM exchange amplitude
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M, in the SM, simply due to the fact that the Z-boson mass is quite large
compared to all other particles present whilst the weak coupling constant is
of the same order of magnitude as the EM one.

Despite this smallness, LR asymmetries are sensitive to the vZ interference
amplitude, which is on the ppm order and can be measured in modern accel-

erators. Using the EW Feynman rules, we have for the Born amplitudes:

M) = 29° L 1.84
7T T M=l s
2
A €\
M = —q—zjwjg, (1.85)

where jz,(J!) are the leptonic(hadronic) neutral currents for Z-exchange and
G = ma/V2M%s?,c2, is the Fermi constant. The weak leptonic current has
both vector (V) and axial-vector (A) terms whereas the EM current is purely

vector:

Jre = Ue(K)vu(gs — givs)ug (), (1.86)
3o = te(K)yuud (k). (1.87)
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At the Born level, the hadronic weak current can be expressed using weak

form factors as follows:

Sz = Un(@)(z,,Un(D), (1.88)
Zy)N 10" qy (24N

F?Z,'y)h/ = 'YMFI( v) (Q2>+WF2( v) (QZ), (189)

ola = "GN Q7). (1.90)

Alternatively, one can express the Pauli and Dirac form factors in (1.89) in

terms of the Sachs EM form factors:

GEN(Q*) = FNQ*) - TFE™(QY), (1.91)

Gi(@Q*) = FINQ)+ M@, (1.92)
2

T = 46\242. (1.93)

The cross sections in (1.83) are of course the modulus squared of the sum of

amplitudes (1.84) + (1.85) which is proportional to:
o~ |M, + Mz|> = |M,|* + 2Re(M; M) + | Mg|? (1.94)

Kinematically, in a typical PVES experiment, |Mz|? can be safely neglected
while [M,[? cancels in the ratio of (1.83). Thus Apg ~ 2Re(M:Mz). Defin-

ing: QL9 (p) =297 =1 — 4sin’ Oy = Ggp(O) and taking the forward limit in
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(1.83) gives the Born prediction:

GFQ2 LO

Afg = w
dran/2

() (1.95)

which can be used to extract Qy (p) from a PVES experiment at low Q*. Un-
fortunately, the Az measured in the lab includes all higher-order processes,
which as we will see in section 4, amounts to a few percent enhancement of
the tree-level prediction. It will suffice to consider just the 1-loop corrections
to e”p — e~ p to meet the requirements of interpreting the results of such an

experiment.



Chapter 2

Radiative Corrections to (3

Decay

The major contribution of this thesis is an improved calculation of the yW
box, which acts as an input towards the extraction of the V,; matrix element.
Therefore, it will be worthwhile to give a brief summary of the history of this
radiative correction. Doing so will help the reader understand what the status
of this radiative correction is before I update the calculation in chapter 3 of

this dissertation.

2.1 Historical Survey

After the invent of the Glashow-Salam-Weinberg SU(2),, x U(1) Electroweak

Standard Theory, a seminal paper was published [9] which attempted to cal-

35
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culate the effects of all 1-loop EW RCs to semileptonic 3 decays. Since then,
some incremental improvements have been made, which will be discussed
below. The RCs to semileptonic  decays can be placed into 2 distinct cate-

gories:

V/A . )
A R/ : inner corrections

0r : outer corrections

where the former are calculated to a high precision and incorporated into
effective couplings, while the latter include energy-dependent terms and carry
some nuclear dependence. In keeping with the definitions of equations (1.80)
and (1.81), it will be more useful to keep A} and define a new radiative

correction which is the sum of the inner and outer corrections:

o _
AR = gg(Em) + A}, (2.1)

while there is no need to consider A4 as it can be absorbed into the parameter
A = ga/gv. Equation (2.1) is intended for the simplest case where the decay
is from a free neutron, but for a superallowed decay, the nuclear structure
corrections also come into play. Those nuclear corrections are omitted from
this section, as they are conveniently taken into account in the modified F't
value in the denominator of (1.80). The decay rate of 5 emission from the

neutron can generally be expressed from the following correction to the Born
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decay rate I'}:

Is=T%[1+ Ag], (2.2)
where in (2.1) we have [12]:
M, 81  4r?
G(E.) ~ 3l R I 9.
0B~ o)+ 5= (2.3
« MW
Ay = o [BIH( Mp) - 4lncw} + 200", (2.4)

(2.3) is an approximate expression for Sirlin’s universal function g(E, E,,)
integrated over the electron’s final state phase space, where: E,, = (M? —
M2+ m?)/2/M, is its maximum allowed energy. The last term of (2.4) is a
photonic correction to the leading order CC tree exchange in the form of a
1-loop box, which has both long- and short-distance contributions. In [9] it
was recognized how to isolate it’s hadronic dependence, which resides in the

W-boson’s axial-vector coupling, where this component was computed to be:

M,
o = m(S2) 20+ 4. 2.5
A At n MA + + g ( )
C = .88 is an elastic contribution to the YW box and A, = —.34 is an esti-

mation of the non-perturbative part of the hadronic QCD corrections which
occurs at long-distances. It is thanks to crossing symmetry that we may
recast the neutron 3 decay reaction: n — pe~ v, to the more tractable 2 — 2
process of Figure 2.1. In general, this will not work when it comes time to

apply Fermi’s golden rule of integrating over final state phase space to de-
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Figure 2.1: The CC tree level amplitude which solely contributes to F%.

termine the decay rate, but for the purposes of evaluating inner correction
amplitudes, it will be more convenient. In Figure 2.2, the relevant 1-Loop
diagrams are listed, and collectively determine our Ag.

Of particular interest in this thesis will be the YW boxes as they are unavoid-
ably dependent on the strong interaction. The box and crossed box can be
compactly expressed via [9]:

2,2 4 2 _
My = 23?4‘;/ / (;lﬂl;‘l%M‘?V _M(‘Z_ q)zaﬂp(l 275) - ll_ me%ve

« / d= ™ (3 | TN ) G, (0)] ),

(2.6)
of which the 2nd line is just the hadronic current expressed in terms of a
time-ordering of the field operators present in the boxes, and it implicitly
allows the presence of any QCD corrections. Sirlin showed that the vector
coupling of this hadronic current can be combined with other photonic cor-
rections such as those found in Figure 2.1. It is also true that this vector
coupling is independent of the details of the strong interaction — a conse-

quence of the conserved vector current (CVC) hypothesis. Furthermore, this
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vector part contains an ultraviolet (UV) divergence which is repeated in the
corrections to p decay and is exactly canceled in the V4 ratio [13]. We will
return to (2.6) in section 3 explicitly with the goal of calculating the axial-
vector component using modern techniques.

The first terms in both equations (2.3) and (2.4) are called “leading logs”,

Figure 2.2: 1 Loop radiative corrections to the CC Born amplitude.

which can be re-summed with the aid of renormalization group equation
(RGE) analysis. This was done in [10], where the authors suggest the re-

placement:

L+ 2Ing# — S(M,, M) = 1.02248, (2.7)
1+ 22y — L(2E,,, M,) = 1.02094 . (2.8)

Then in 2006, further improvements were made to (2.5), also known as the

Gamow-Teller piece, where the authors of [14] re-expressed the axial-vector
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part of (2.6) via:

M?2
MY = 877/ o +MJ/\42 F(Q)dQ?, (2.9)

in which F'(Q?) acted like a form factor that would model the hadronic effects
over the full Q? range. To do so, the integration domain was phenomenolog-

ically separated into 3 distinct regions:

e Short Distance: 1.5GeV? < Q% < 00

Fop(QP) = 52 - asETQZ) _02<a5(7TQ2)>2 _03<0455TQ2)>3}’ (2.10)

where the C; are constants calculated in pQCD and will be discussed in

some detail in section 3. This contribution is in the DIS regime where

the quarks in the hadron behave independently

e Intermediate Distance: 0.823GeV? < Q% < 1.5GeV?

D, D, Ds
2 5 T 3 7 T 2 2’
Q +m2 Q*+m5  Q +m2

Fip(Q%) = (2.11)

which acts as an interpolating function between the high and low (2

regions and is physically motivated by the exchange of vector mesons.

e Long Distance: 0 < Q? < 0.823GeV?

Chorm = 0.829 £ 10%, (2.12)



CHAPTER 2. RADIATIVE CORRECTIONS TO g DECAY 41

where this constant effectively replaces the C' term found in (2.5) and

represents the elastic contribution, but integrated over a lower range of
Q.

The effect of this new treatment reduced the overall error of 0% by a factor
of 2 with very little change to its central value. One of the main goals of
this thesis is to use dispersive techniques to re-evaluate (2.6), which will give
a more accurate central value to this RC, and may also reduce its hadronic
uncertainty. Doing so will, in turn, improve our extraction of V,,; through
the means of both (1.80) and (1.82). The reason such a calculation technique
will be superior to previous attempts is because an equation such as (2.9) is
rather phenomenological, and is essentially coarse-graining the explicit loop
expression. As we shall see in section 3, dispersive techniques maintain all
the details of the loop expression, while forcing experimental input from

cross-section data.



Chapter 3

Dispersive Calculation of the

vW Box

With introductions aside, is now time to dive into the primary calculations
of this dissertation. In chapter 3 I will start by explaining how dispersion
relations can be applied to evaluating radiative corrections. This is a modern
technique which reduces the hadronic uncertainty in the semileptonic box
corrections found in both neutral current and charged current processes. We
will then derive an exact expression for the axial part of the W boxes
introduced in chapter 2 using these techniques. This will lead to the need
to model a specific structure function Fy" over a 2D kinematical plane from
which I will define distinctly chosen regions. After that, the rest of this
chapter will model F;" in each region and calculate its contribution to the

box correction. The results of this work will then be compared to the results

42
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of others at the end of this chapter.

3.1 Dispersion Relations in QFT

Dispersion relations can be a powerful tool for calculating radiative correc-
tions in quantum field theory, and can even be applied to scenarios where
perturbation theory is unreliable. The general idea behind them is that they
allow one to first calculate the imaginary part of an amplitude. By the optical
theorem, this is related to the total cross section for producing the interme-
diate state, something which can be measured experimentally, as a function
of the incident CM energy (s). One well-known example of this is the esti-
mation of the light quark contributions to photon vacuum polarization using
experimental data on o(eTe™ — hadrons).

The Cauchy-Riemann integral theorem allows us to determine a function
O(s) at any point on the complex plane if we simply know what this func-

tion is everywhere on a closed contour:

O(s) = ij{f_(‘?ods, (3.1)

211

so long as the function O(s) is analytic everywhere inside the contour. Sup-
pose sy is somewhere on the real number line, then we could choose the

contour of Fig 3.1. Then integrating (3.1) along this contour gives the fol-
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Im(s)

Cr

I Py -

Figure 3.1: Infinite upper semicircle closed contour enclosing a pole on the
real number line.

lowing three terms:

1 >~ 0 1 a 1 O
O(sg) = —,P/ (5) ds + lim — (5) ds + lim — (s) ds
27 s — So =0 271 Jo. § — So R0 270 [, S — So

—00

_ j;P/w[uﬁd&+§ﬁMD@@)

2mi o S — S0 e

Then taking the real part of both sides of this equation gives us:

Rm@@:%P/m@EEM& (3.2)

o S —So

and this is our general dispersion relation for our function O(s). The O

function for us will later represent the fractional correction of a 1-loop box
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diagram to the Born prediction to an observable:

> Mo Miox
spins
0= SRR (3.3)

spins

whose natural independent kinematical variable is Mandelstam s (Mandel-
stam wu for the crossed box), which flows into the semileptonic reaction of
Figure 3.2. Physically, this diagram comes with a threshold condition where
s > (my + Mp)* must be large enough to produce the intermediate state

particles. This threshold condition is realized as a branch cut s > M? in the

m]

_I+I_

Figure 3.2: Generic box diagram for a semileptonic process wherein the in-
cident CM energy squared is given by Mandelstam s.

function O(s). Therefore a new contour must be chosen for its dispersion

relation, which is shown in Figure 3.3. Then again employing our trusty
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theorem in (3.1) gives:

o) = 5m f S La

2m J §' —s
1 0(s’ 1 Mio(s —i
R—o0 270 [, 8" — 8 211 Joo s'—s
1 o0 D / ;
L L [TEE e
27 M2 S =S
I (D(s’+ie) O(s —ie))d ,
= _— —_ S’
271 M2 s —s s'—s

and by Schwarz’ reflection principle: lim. o [O(s' + ie) — O(s' — ie)] =
2iIm0O(s"). This leads to

O(s) = L./Oods,QiImD(s')

2mi M2 s'— 5 — 1€

1 [ ImO(s
— _/ ds/m—@)

Tz 8 —s—ie

(3.4)

Although seC in the derivation of (3.4), physically we will have seR as it is
an energy squared. The concept of promoting real variables to complex ones
and back again is known as “complexification” (although in the literature it
is often improperly deemed as analytic continuation) - and has found many
exceptional applications in the physical sciences. (3.4) allows us to calculate
a box correction, given we can first determine its imaginary part as a function
of Mandelstam s.

There is a systematic procedure for calculating the imaginary part of a Feyn-

man amplitude known as the Cutkosky cutting rules [I6] which prescribes
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Im(s’)

Cr

Figure 3.3: Complex contour used for the derivation of (3.4).
one to:

e Cut the diagram in any way such that all the cut propagators can be

put on-shell without violating momentum conservation

e For each cut propagator, make the replacement:

1

e The result is the discontinuity of the diagram and:

Disc(iM) = —2ImM. (3.6)
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(3.6) will then be inserted into the RHS of (3.4), for example, where the
ImO(s") is taken from its limit above the branch cut as a matter of convention.
Inside the loop integration, the delta function employed in this second step

will have the following effect:

/(;qu)zl%ré(qz - m?)0(¢°) = /(;qu):WLqO (3.7)

The utility of dispersion relations for calculating box diagrams in the SM can
therefore be performed via the following algorithm:

e Use the Cutkosky cutting rules to find ImMypx(s)

e Construct ImO(s) from Im M, using (3.3)

e Apply the dispersion relation (3.4) to calculate O(s).

Before concluding this section, it is worthwhile to connect the dispersive
technique to the optical theorem. In any SM process, the scattering matrix
is defined as the amplitude in your system going from the initial state to the

final state:

S = (f,t— oo|S|i,t — —o0), (3.8)

S = 1+4iT. (3.9)

T is known as the transmission matrix which must encode any interactions

present during the scattering event. A strict physical requirement of the S-
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matrix is that it be unitary: STS = 1 and together with (3.9) this implies
that

—i(T—T" =T'T. (3.10)

Taking (f|(3.10)|i), inserting a complete set of states 1 = 3,,|n)(n| between

the T7T and demanding the conservation of overall 4-momentum then gives:

—i{f[(T = THi)(2m)'6"(Py — P)) = (2m)'6"(P; — )
x Y (2m)*'6"(Py — P)(fIT ) (nlT i),

—i(Ty; = T3) = Y _(2m)*6* (P, — P)Ty T, (3.11)

n

which is the generalized optical theorem. A special case of this is at forward

scattering when ¢ = f and

2AmM, ;= Y _(2m)*6* (P — P)| Tl (3.12)

n

On the other hand, the cross section for a 1 4+ 2 — {j} process is given by

[2:

‘ﬁl—ﬁzyéEl)@Ez)/‘M|2<2ﬁ)454@p) H (6;757)]321*17 - (3.13)

final states Pj

gror =

Thus we see that ImM ~ o, and from (3.7) we can also see that the Cutkosky
rules will naturally generate the Lorentz invariant phase space integration

measure. This is why dispersion relations are so useful: because their cal-
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culation input is directly proportional to a total cross section — and cross

sections are potentially experimentally accessible.
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3.2 Deriving a New Expression for O

Now that we have discussed the machinery, it is time to apply it. The ampli-
tude of interest is the v box below. The inherent challenge to calculating
this diagram is that we have one massive and one massless vector boson be-
ing exchanged in the loop. This means that all possible momentum scales
contributes to this integral. As a result, all possible excited states of the in-
termediate state hadron can be produced and contribute to this amplitude.

Using the EW Feynman rules in Appendix A, this diagram has the following

Il
|
Q

e
+
=]
>
)

Ve e
\q
| p+k+q
p - > / +q

n S, SRR

—— = — = = — ]

Figure 3.4: Labeled Feynman diagram for the yW box with the loop mo-
mentum represented by k.

explicit expression:

- 2.2 4 2
o TigTe dk’i My, T (Vg . P 1
ol B3 e LG sy e 0
(3.14)
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where P, = (1 — 75)/2 is the left-handed projector and the hadronic tensor

is defined as:

150 = [ dtac= GITLEN @) G ) (315)

As we will be working in the forward limit, we can simplify the integrand of

(3.14) somewhat. The W-boson propagator is approximately independent of

q:
M M 1
— N = R (3.16)

and our forward limit amplitude is:

- 2.2 4
W  —igPe d*k 1 0 f—14+m.
Mposlwa = G372 / ey e =) P T =
X P, ()T (k). (3.17)

From this point on we will simply suppress the fwd subscript. Next we can

use the Cutkosky rules to acquire the imaginary part of this amplitude:

Im MY =(—2in)

(—ig?e?) / d'k  DiscT ¥ (k)
2My, ) (2m)* k(1 — k2 /M) (3.18)

X (DAl = K +me)d((l = k)* = mZ)y,Pru, (1),
where it is implicitly understood now that the intermediate state present in

DiscT(’}/’;(k;) is on its mass shell. Before we proceed, it will be convenient to

change our integration variable to the 4-momentum of the intermediate state
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electron:

K o=1—k (3.19)

We are allowed to do this because 4-momentum integrals are translation-

invariant: d*k’ = d*k. Given this choice, let’s see what happens to our delta

function:
5((1—k)> —m?2) = 3K —m?)
~ 5(K')
(3.20)
/2 W
~ O(k's — E')

o S[(Ko+ (K1) (Ko — [K])],
and since kg is the energy of the intermediate electron and it is put on its

mass shell, it follows that we should be taking the positive energy root in

(3.20). This will leave us with

5(Ko — |F])
L= k) =mg) = = 21
d(( )" —m;) o (3.21)
Substituting this back into (3.18) gives
—ig?e? 31k DiscT) ¥ (k
h 2M3, ) (2m)t (1 - K2 /M)
Y
xae(l)w%’M%PLuy(z) (3.22)
2K/
2e2 3L/ DiscT ™ (k)
ge d’k oW :
2]\/[5[, / (2m)32k/g k2(1 — kQ/MI%V) ue(l)%\% Yo Ly (1)
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It is customary to express a 1 Loop CC correction in terms of aGp, and we

will follow suit to acquire:

B3 DiscT ¥ (k)
W ()
ImMg, = —8\/§G’F7ra/ )52k K21 k2 /M2

e (DK, Pru,(1).
(3.23)
Before we continue performing operations with this expression, at some point
we will need the Born amplitude to acquire an expression for DXW. So let’s
take the time to now get an expression for Mp,.,. The diagram is exactly
that found in Figure 2.1. Upon applying the EW Feynman rules, it is simply

given by
2

MBorn = fwae(l>7uPLuV(l>ﬂp(p>7“PLun(p)7 (324>
w

where we’ve made the somewhat harsh simplification of treating the nucleon
like a simple fermion. This won’t affect our final D}W correction because the
leading-order cross section aég ~ |MBorm|* will have a proper treatment of

the nucleon in it, while what we’re eventually after will be of the form:

oNEC ~ oLO(1 + O + other corrections). (3.25)
At this point one would normally substitute (3.23) and (3.24) into (3.3) to
get an expression for ImOd"" and finally use (3.4). However, since we are
working in the forward limit, it will suffice to simply take a ratio of the
amplitudes. A nice demonstration of this trick can be found in [I5]. With

this in mind we can take traces to put our two amplitudes into a useable
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form without spinors, starting with the Born amplitude:

Mporn = 2\/§GF Z UV<l)ae(l)7uPL Z un(p)ap(p)'YMPL

spins spins

= 2V/2Gp Z 17, P Z PP

spins spins

= 2v2GF T[], Py Te[py" Pr) (3.26)
= 2v2G(21,)(2p")
= 8V2G k(1 - p)

= 8vV2GrME,

which is a rather compact expression. Next we’ll need to apply this trace
technology to (3.23). Traditionally, box diagrams such as this are expressed
as a product contraction between a leptonic and a hadronic tensor — which

we will also do here. Defining:

LZLZV = ﬂePYuk[/fYVPLuua)a (3.27)
= [ e L) g o), (3.9
then (3.23) can be written as:

Bk L)) DiscHy,
(2m)32k" k2(1 — k2 /M3,)’

ImM" = —8v2G pra / (3.29)
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Now let’s perform the trace algebra to the leptonic tensor:

L = u, (D), P

spins

= %Tr[l%/x"%(l — )] (3.30)

= 2L,k = 1 K g + LK) + 200K eq g,

where the antisymmetric levi-civita tensor term originates from the ~; term
inside the trace. Had we taken a difference between a LH neutrino and a RH
one, it is the same levi-civita term which survives and thus it is responsible
for parity-violation. The hadronic tensor in (3.28) cannot receive the same
explicit manipulation, but instead can be expressed in terms of 3 general

structure functions as follows:

DiscH"Y, = 4™, (3.31)
v v KRN e P w8 paks
Wiy = (=o e T ) B S DR T
(3.32)

The FFW and F;W terms are associated with the total vector coupling of
W to the hadron while the FQW term is associated with the axial-vector
coupling. Since we are only interested in doing a dispersive calculation to
the axial part, we'll only insert the axial part of (3.32) into (3.29). With
that decision, we can contract our leptonic and hadronic tensors. As e#? is

completely antisymmetric in its indices, it follows that contracting the first
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3 terms of (3.30) with it will give zero. Therefore our contraction reduces to
the single term:

BYAP Y o
LW ", = 2ilak’ﬁeaﬁuyi%F§W(k), (3.33)

where select Lorenz indices were renamed to avoid miss-using the Einstein

summation notation. We can then use the identity: e*¢,g,, = —2(g2gg —

g395) to get

, laklﬂ
LYV HY, = a0 (9295 — 9390) F5 " ok,
2
= ﬂ(m;’p — KNPV EY pak, (3.34)

zgﬁwmw+m—@ﬂmwmwwﬂ

We can simplify the term in the square brackets into a more useful form:

(-p)(K k)= (K -p)(L- k) = (L-p) (I = K) - K =1 (1= K)(p- k)
~(Lp)(L-K) + (LK) (p- k) (3.35)
~{-KYl-p+p-K).

Also:
B=(—K)?=0P=2-K+k ~=2F, (3.36)
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and therefore (3.29) is:

BE p- (14 K)EY
w 3
hnM@m::(&ﬂ8v§G¥moc/(2ﬂp2kb(p_kxl__k%m4%). (3.37)

w

o> but we're not quite there

We are getting close to a final form for ImMg
yet. The integration measure d®k’ is unfortunately not a useful one for our
structure function, whose conventional variables includes the 4-momentum
transfer squared to the hadron Q* = —k? and the invariant mass squared
of the intermediate state hadron: W?2. So let’s change to this new set of

variables. If 0y is the scattered angle of the intermediate electron w.r.t. the

direction of the incident neutrino, chosen along the +2 axis, then

Pk = 27|k [d(cos Oy )d|K|

(3.38)
~ 21k od(cos Oy )dk o
Meanwhile in the CM frame, this intermediate electron energy is
— W2 dW?
R SN ¥/ (3.39)

2/s NG

where s = (I + p)? is the incident CM energy squared. Also in this frame we

have:

_ 4@
2lok’o

Q2 =2k = 2[0]{3/0(1 — COS Hk’) = d(COS Qk’) = (340)
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Putting this all together means that:

k',
2./l

PE o dW2dQ?
2m)32k'y  32m2p -1’

B = dQ2dW?,

(3.41)

T

We will also need everything in the integrand of ImMggz to be expressed in

terms of our new integration measure. In the rest frame of the initial neutron

we have:

-l =ME, (3.42)
p-k = My, (3.43)
p-k' =ME-v), (3.44)

where v is the energy transfer from the lepton to the hadron. The above

relations substituted into our (3.37) gives us:

2G OME 1 J ok
_ V2Gra )i (3.45)

MY | = /dW%l ?( -

B Becd = g © W2 —M+@Q* 2/1+Q*/M3,’
where the A subscript is thrown in to remind us that this is purely the axial-
vector part. Finally, we can divide (3.45) by (3.26) for the imaginary part
of the box correction, but must multiply the ratio by an additional factor of

1/2, as the we are taking 2 spin sum averages in the box amplitude but only
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one in the Born amplitude. The simplified result is:

: Qmaa 2ME B
gl oo [ [ e B
TS VTN APRLLN AN T Vs Eia) S para ey Ve
(3.46)
where Q% . = (s — M?)(s — W?)/s is associated with the extreme case of
cosf = 1 and W2 is the single pion threshold, as that is the minimum

mass allowed above the elastic case. Although it is difficult to tell by looking
at (3.46), ImDVBZ(, A 1s an odd function of the incident neutrino’s energy E
— a well known fact about the vZ box as well [6I]. This has consequences
on the dispersion relation (3.4). In fact we’re better off taking a step back
and starting with the general relation of (3.2) with this knowledge about
ImD”BZ[; A- We can simply replace Mandelstam s with E in these dispersion

relations. Starting with the statement
Im0} (—E) = —ImO%}" (E). (3.47)

From (3.2) alone, it follows that
ImO}" (E)
. E—E

1[0 V(e 1_ [~ 1m0}V (E)
——pP | dB—A 7 —P/ dE——A 7.
s / E—F * T Jo E—F

ReO W (E) = 1p / dE’
m
(3.48)

—00
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Introducing a new dummy variable for the 1st integral: E” = —E’ gives
1~ Im0W(-E") 1 ImO}Y (E)
ReOW(E) = ——P/ dp'—A ~ — —P/ dEp/—A "~
ey ( ) T 0 E"+ E + T 0 E — F
L o (WO E) o)y
T Jo E—E E+E )
(3.49)

and now we can substitute (3.47) into the 2nd term of (3.49) to finally con-
clude:
Re W (B) = 2 [~ ap— L e () (3.50)

™

This is our dispersion relation applicable to the axial YW box. The utility
of (3.50) is twofold: not only does it calculate the real part of the box,
but by analytically continuing to the negative energy axis, we are implicitly
adding the crossed box! The uncrossed box does not allow negative energy.
However, the crossed box can be thought of crossing the external lepton lines
between initial and final states - which by crossing symmetry is related to
their antiparticles which are effectively representing the particle with negative
energy. See Figure 3.5. Next we need to substitute (3.46) into (3.50). Once
we do this it will be possible to slide the energy integral through the Q? and

W? integrals by using [17]:

/ dE’/WZdWQ/ = /W dWQ/ dQQ/ E,  (3.51)

— M? +Q? 1
Eppin = W2 — M2 + Q)2 +4M2Q%.  (3.52
min otV + Q) +AMQ?. (3.52)
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Mgy, (E) =

= My (-

E)

Figure 3.5: One way to represent a crossed box is by crossing the lepton lines.
Due to crossing symmetry, this can be thought of as the box at negative

energy.

Substituting this into (3.46) then leads to:

Y
oV (E dW? / d
Re " & /W2 W <’ 1+ QM2

1 OME'
ARl -
M2 Jp O E(E?—E?)\W?2 - M2+ Q?

1
2

(3.53)
_>],
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and now the integral inside the square brackets can be evaluated analytically.

Letting x = W2 — M? + @2, it is:

o0 /
L/ JE 21 <2ME _1)
M2 Jp E(E™” — E?)\ X 2

2 1 ./ E 1 E?
= W~ B b (Emn> + 4M2E21n<1 - E2—>

min

(3.54)

Using this expression would allow us to truly know the energy-dependence of
ReDle(E), were we to properly integrate over W? and Q? in the remaining
expression of (3.53). However, for the purposes of 5 decay in the processes

discussed in section 1.2 we can take the E — 0 limit where we find:

b L 1 <2ME’ 1> B 2 1]
B M2y T EETZEYN x 2) T MxBp  4MP E50 B2
E2
xln(l—EQ—'>,
y 1 . (1 E? > B 1
Elg%) E2 ! E?mn B E?mn,
1 [ 1 QME 1 1 /2 1
= lim ~— dE’ < __> _ _<__—).
550 M? [Em E(E*—EH\ x 2 M Epin \X  4MEppip

(3.55)
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At last, substituting (3.55) into (3.53) gives us our final result of this section:

Qw2 1 /2 1
D’yW 2 2 <__ )
fe /W dW/ T 0ME, By \x ~ A0 By

X:WQ_M2+Q27

g Xxt VX2 A+ AM2Q?
min T 4M .

(3.56)
This is our “master formula” for evaluating the fractional correction of the
axial part of the YW boxes to the Born cross section. It is an exact expres-
sion whose remaining physics input resides in the Fy' W interference structure
function. Knowledge of this function over the positive {W?2, Q?} quadrant is

necessary to now reliably calculate this radiative correction.
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3.3 Kinematical Regions of F) W

We will next need to model our Fy W over the integration domain of (3.56).
Since Q? is the 4-momentum transfer of one vector boson (v or W), it can
physically assume any value. Low Q* 5 (1— 2)GeV? corresponds to the long-
distance limit, where the vector bosons see a non-trivial hadron structure.
On the other hand, at high @Q* 2 2GeV?, very short distances are probed
and here the vector bosons begin to see individual quarks/partons. This lat-
ter region is known as the deep inelastic scattering (DIS) region, and allows
one to use the parton model to describe Fy". It is also valid to treat any
QCD interactions perturbatively (pQCD) for this high Q?, where the strong
coupling constant is sufficiently small.

The other integration variable W2 is the invariant mass squared of the inter-
mediate state hadron. A special case of the v,n — e~ p process is when the
nucleon stays a ground state nucleon depicted in Figure 3.6. This is called

(& _
Ve

Jw _ 3
A'[Box |elastic = w+

Figure 3.6: The elastic YW box wherein the W-boson changes neutron to
proton.

the elastic contribution which corresponds to W2 = M? where M is the mass
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of the proton for the box or the neutron in the crossed box. This elastic pro-
cess corresponds to adding a discrete pole to the contour of Figure 3.3 at the
nucleon mass, and rather than re-implement a new contour, its contribution
to the box correction will be isolated. In general the intermediate hadron can
assume various nucleonic resonances: W? = m% > (M +m,)?. For very large
W2 > 4GeV? and low Q2 < 2GeV?, FJ" enters the so-called Regge region
where QCD becomes non-perturbative due to asymptotic freedom and some
other effective picture of the hadron constituents must be adopted. All of
the details of each region will be discussed in detail in the sections following

this one. For visual aid purposes, the shaded colours in Figure 3.7 will be

Q2

A

elastic

2GeV2)—

M? 4GeV?
(M +my,)?

Figure 3.7: The kinematical regions by which Fy " will be modeled from.
The dashed lines represent the fact that the boundaries are not unique, and
that the total radiative correction should not depend on their choice.
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maintained throughout the thesis to represent that particular region. In the
calculation of (3.56) in the following sections, Fy " is modeled differently in

the 4 shown regions. Namely:
o FJU: W?=M?0<Q?< o0,
o FYV hoat W2 S W2 <4GeV?,0 < Q? < o0,
o F;gfeg: 4GeV? < W? < 00, Q% < 2GeV?,

o FJ}s 4GeV? < W2 < 00, Q* > 2GeV”.

Although the structure function will have a different functional form in each
region, the rest of the integrand in (3.56) is fixed, and can tell us how the
box correction is weighted across the plane. To see this, look at Figure 3.8

which gives a 2D surface plot of the weighting function:

1 1 2 1
W@ =17 Q2 M2, M E i (Q2, W?) (X(QQ, W2) AM E,pin(Q%, W?)
(3.57)

This function w of course gets multiplied by Fy" (Q2, W?) which has the

general behaviour:

F7" = const, Q* =0, (3.58)
V=0, Q*— oo, (3.59)
FJV = 00, W2 = 00, (3.60)

Y =0, W2 — W2, (3.61)
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100 0

Figure 3.8: The weighting function w(Q? W?) plotted over the plane. It
essentially approaches zero as either of its variables gets above the scale of
the W boson mass.
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3.4 Elastic Contribution

To calculate the elastic contribution to D}W, we simply need to derive the
expression for F; Z‘Z/ This means we can just focus on the hadronic tensor.
In the elastic limit, the vertex couplings for the Wnp and ~vpp of Figure 3.6

are simply written in terms of form factors defined as follows:

R =5 (F = F), (3.63)
=T"%(q) = F{7" + 55,070 F, (3.64)

P p : ptq »
o"? = §[v", 47, (3.65)

where F} and Fy are called the Dirac and Pauli form factors respectively.

With the above definitions we can now construct the hadronic trace as fol-
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lows:

=
=2

= STPhC(R)(p -+ K+ MYT () (p+ )]

o~
-—

sessssmEsmm ]
—
o~

-
E

3

P

]

(3.66)
Since we are interested in the axial-vector part of the hadronic tensor, we
can just take all the terms proportional to ¢**{P%}, Substituting (3.62)-(3.69)

into (3.66) generates one such term, and it is:
H!Y o (Box) = 2iG A (k) [FP (k) + F§(k)]e 1, (3.67)

Furthermore, we may express this in terms of the EM Sachs form factors
which were defined in (1.28-1.29). Doing so reveals that the electric form
factor drops out, and we are left with an isoscalar combination of magnetic

form factors:

H%, A(Box) = 2iGa(k)[Ghy (k)] teh, (3.68)

It is in fact the sum of Box + Xbox that we would like to represent in the

F3; structure function, and so we simply get:
H!3, A(Box + Xbox) = 2iGA(k)[Gr (k) + Gh (k)] (o), (3.69)

Then looking back at (3.31) and (3.32) we can equate levi-cevita terms with

the understanding that we must multiply (3.69) by 276 (W?2— M?) as we need
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the discontinuity:

Pz
ol W 9iGA(GM” + GB ) p k28 (W2 — M?),
2(p - k) (3.70)

= By = —2MvG 4G5 0(W? — M?),

where we have replaced the superscript of our structure function with a (0)
which means it is the isoscalar (S = p 4+ n) component of the EM current.
As the reader should be convinced by the end of section 3, this is always
the case for the v boxes, and so we will be using that notation for all
the regions as well. @Q? and W? are independent variables, but the variable
Bjorken x = Q?/2Mv is constructed from both. Nonetheless, we can replace
the factor in (3.70) with 2Mv = @Q?/x and put the elastic structure function

into (3.56) to get

2GAGS (W2 —M?) 1 2 1
Ael—_/dW2/dQ2Q A (2 2 ) _
(3.71)

We can then apply the delta function to perform the W?2 integral at which

x = 1 and after simplifying completely, one obtains the expression:

- [ A@)GH(QY) + Gip(@)] 1+2y/T+ NG

T~ o Q*(1+ Q2/Mg) (1+ /1 +4M2/Q%)?
(3.72)

and this is our elastic formula for the correction we seek expressed in terms of
EM form factors. Notice that the photon coupling is a purely isoscalar com-

bination, a fact we will return to throughout this dissertation. The axial form
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factor can be empirically represented by a simple dipole parameterization:

Ga(@?) = — (3.73)
(1+%)
A

which is a choice which is supported by data spanning both electroproduction
and neutrino experiments alike. We use the PDG 2018 values for both g4 and
m4 given in Appendix C. Although the axial coupling is well-constrained,
the axial mass parameter spans quite a range in the literature: ~ 0.85 —
1.35GeV? [I8],[19]. The magnetic form factors are not well-described by
a simple monopole or dipole, so instead we use the explicit data for them
appended to reference [20]. Substituting these form factors as well as the
experimental uncertainties they carry yields the following result for our elastic

contribution:
L% = (08967 & .0607) 5= = (1.04 £.07) x 107 (3:74)
9 7r

Which is roughly a 2% increase to Sirlin’s .88 result for Cz,,,,. It should be
remarked that the dispersive analysis of (3.56) does nothing to improve the
elastic contribution computation, as this is a special case where the full loop
calculation can be done exactly in terms of form factors. Rather it perhaps
just makes the numerical computation of the raw data of G3,(Q?) a more
straightforward exercise. A nice demonstration of the loop calculation of

0% can be found in [I2]. As a last comment on the elastic contribution, I
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have observed that this correction is somewhat sensitive to the m 4 parameter,

and this has been plotted in Figure 3.9.

y-W box vs. Axial Mass [GeV]
L B e L |

® mp points

— Quadratic Interpolation

T S S S S Y N S A AR |
0.8 0.9 1.0 11 12 1.3 14

Figure 3.9: The dependence of the box correction on the axial mass parameter
in units of /27 for the broad range of m4 found in the literature.
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3.5 Resonance Region

Above the pion threshold W? > (M + m;)? the exchanged vector bosons
in the vyWW box can excite the initial state neutron into a resonance parti-
cle. There are many 1/2-integer spin N and A resonances which have been
studied using 7N and vV scattering experiments. The tabulated resonance
states range in mass from 1.232 — 2.95GeV, each with known J? numbers
[21]. However, only the first few low-mass resonances in this range have ac-
curate vector and axial form factors or helicity amplitudes [22]-[25].

Since the exchanged photon here is isoscalar, it cannot change the isospin
of the hadron it interacts with. On the other hand, the W-boson is purely
isovector and must cause an isospin I3 change of 1 quanta to the hadron. The
QM rules of the addition of angular momenta then forces the isospin of the
resonance to be I = 1/2. This then excludes the A resonances with I = 3/2

0 .
from our £\’ model. As a consequence, the only resonances we may insert

3res
into our structure function are: P;1(1440), D13(1520) and Sy;(1535).

According to [23], the isoscalar combination of EM form factors for the
Py; and S7; resonances is zero. On the other hand, we can potentially ex-
pect a non-negligible resonance contribution to DZW from the D;3 resonance.
Taking conventional differences into account, I find that:

FO =yl (3.75)

3,res
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where W2l is the axial structure function used by Lalakulich for neutrino
scattering. With this established all that is left is to take the isoscalar com-

bination of EM form factors — doing so for the D;3 contribution gives us:

4v

F{y . = =5 o (W) | = CHQA(@QF = vd) + C5(QYvM .
HCH(Q) = (2m,, — 2Mmp, + QM| CAQY,

which has been plotted in Figure 3.10 and the Breit-Wigner resonance func-

tion is defined as:

T 1
(W) _ Mpy3L Dy

. 3.77
™ (W2 - 7/,7’[)13)2 + m2D13F2D13 ( )

I_‘D13

All of the parameters of (3.76) and (3.77) are given in Appendix C, including

ng’gn

— @2=0.5 GeV?
Q?=2 GeV?
Q?=10 GeV?

W2[GeV?]
0

4 6 8

Figure 3.10: Lalakulich plots of Fz,fo) vs W? for the D3 resonance at several
Q? values.

the form factors. Inserting (3.76) into (3.56) gives the numerical contribution
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of this single resonance to the box correction:
0y, lLal, = .08 x 107, (3.78)

An alternative to (3.75) is to strictly work in the helicity amplitude formal-
ism. The benefits of this are that these amplitudes have a rich library of
parameterizations amongst several major collaborations [25], [26]. We will
be using the MAID amplitudes from [25] and find that there is actually a non-
zero contribution from the other 2 resonances. In this model the amplitudes

take the form:
Aa(@%) = Aa(0) (1 + @1Q* + a2Q" + a3Q%) e ¥’ (3.79)

Again, after taking conventional differences into account, the results of the
MAID parameterization are shown in Table 3.1. which will form a pre-
ferred result, as they are more recent and they do not assume the other

resonances are zero. This is a significant difference from (3.78) as the new

Resonance DZ‘VXGS (x1073)
Dqs 0.054
Py -0.009
St -0.002
total .04

Table 3.1: vW box corrections from 3 resonances using the MAID helicity
amplitudes
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total resonance contribution has effectively been reduced by 1/2. We can
then use the difference between the MAID prediction and the Lalakulich
prediction to assign a rough error estimate to this resonance correction via
5DZXI,/K6$ ~ |D1%13(Lal.) - DXIL/)B(MAIDH ~ .02 x 1073, Then our final

resonance contribution will stand as:

0V = (044 .02) x 1075 (3.80)

A,res

Physically, in the region W2 < W2 < 4GeV?, F\”)

3.5 18 not the only contri-

bution to the full structure function however. There is also a non-resonant
background which we will denote by Fé?b)gd. To estimate this contribution,
we can relate it to the purely EM structure function Fy”" which is known
from inelastic e”p cross sections. In order to find this subtle relationship,

it is very helpful to consider these structure functions in the parton model,

where:

FY = ; : (3.81)
F7., =u, +d,. (3.82)

The kinematical region of the nonresonant background we need to consider
is approximately .4 < z < .88, and the valence distribution normalizations

are: [ dru, = 2 [ dxd, = 2. Consequently, one finds that in the resonance



CHAPTER 3. DISPERSIVE CALCULATION OF THE ~vW BOX 78

region we have:
£
F ~ %‘i, (3.83)

where we've simply replaced p +n — d for the deuteron on the RHS. We
next need to estimate the nonresonant background for Fg dZ. To do this, we

can start by considering the following general parton expressions:

1 _
F = §qu§(q +q), (3.84)

F7 =2%.e,9% (0 — ). (3.85)

In the resonance region the quark PDFs dominate over the antiquark ones,
while as hinted before: u(x) ~ 2d(x). With these crude assumptions one can
use (3.84) and (3.85) to show that:

FJ7 18

— . 3.86

In the low z limit, the ratio in (3.86) goes to zero and one could imagine
replacing the RHS with some sort of average over all x. However, we only
need to know this ratio for high x and so we shall assume the ratio of 18/5
and apply it to our sought background structure function. Combining (3.83)

and (3.86) reveals the simple re-scaling result:

2

0
Fg,gg LR gpgg, (3.87)
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where we have use the known fact that F}) is only marginally different
than zero. Although it is not guaranteed to describe our background, (3.87)
can offer an educated first guess. The non-resonant background for F}” is
related to the nonresonant cross section for e”p scattering which has been
parameterized in [27]. Let us assume this same parameterization can apply to
Fé’ob)gd and rather than use (3.87) explicitly, we can relax the proportionality

constant to a free parameter ng:

(0) 2 2
F ( ) W — —
3’bgd( W) = 8m2a  f, Q? + Q3

2 ’L i
(S IO = (M + mpl01
i=1

-1
W2 — M2 1 <1+W2—(M—I—m7r)2>
3.88

Q2 + a (bT+CTQ2+dTQ4) ?

and all of the parameters contained in (3.88) are provided in Appendix C
while f, = 389.39 is the conversion factor for ub — GeV 2. We are left
now with the task of determining a value of ng. Although the parton model
expression of (3.81) isn’t well-trusted below W? = 4GeV?, it IS well-trusted
above that boundary. Therefore we may impose the boundary condition that
the background of (3.88) nicely match (3.81) there. Doing so for a large range

of Q% values consistently indicates that:
9 » 2
s~ 157 Q° > 2GeV~. (3.89)

For Q? < GeVQ, 3.88) needs to be matched to the Regge model of F(O),
g 3

which we will not arrive at until section 3.7. At this lower Q? range I find
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that ng ~ 18/25. It is then the sum of (3.88) and say, (3.76) which represents
the full F3(0) structure function in the region W? < W? < 4GeV?. Since we
have already computed the pure resonance part which considered the area

under it’s high W? tail, we simply need to compute the sole contribution of

(3.88) for W? < 4GeV? to find:
00q = 0.16 x 1075, (3.90)

As can be seen in Figure 3.11, the rescaled Christy-Bosted background agrees

A

05f
— Q2=2GeV"2
Q2=3GeV"2
Q2=4GeV"2
— Q2=6GeV"2
— Q2=8GeV"2

04+

0.3

0.2+

0.1F

—4 1 1 1 1 WZGVz
10 [GeV7]

Figure 3.11: Comparing plots of F?f,%)gd between the prediction from (3.88-
3.89) and the DIS prediction of (3.81) at several Q* values.

rather well with the extrapolated parton model. We cannot use the parton
model below this boundary, but we can compare it’s prediction towards DZ‘W
with that of (3.88) for Q* > 2GeV? and W? < 4GeV?. We will call this

contribution the high Q?, low W? background contribution, and the difference
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1s:

O oplhigngz = 017 x 107, (3.91)

O lhighg? = 019 x 1073, (3.92)

Since we only need the correction to the 1075 level, the difference between
(3.91) and (3.92) is negligible and is graphically represented in Figure 3.11.
The last thing we should try to do is assign a reasonable uncertainty estimate
to the background prediction in (3.90). This can be deduced from quantifying
the inexactness of 7g. Doing so reveals a 10% uncertainty. We can combine
this with (3.80) to get the total resonance + background contribution:

O s ihga = (-20 £.03) x 1072, (3.93)

The DIS model of (3.81) has a very small uncertainty < 1% and is plotted
along with our total background plus resonance structure function around the
boundary W? = 4GeV? in Figure 3.12. From the figure, one can see that we
have some flexibility to change the boundary somewhat without appreciably

changing the net area under F?fo).
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)

0.4

o3 s e e Q2=2GeV"2

----- Q2=3GeVA2

02 — — Q2=4GeVA2

0.1

. é W2[GeV?]

Figure 3.12: Lot W2 plot of F\" at several high Q? values. Blue curves
are from the rescaled Bosted-Christy background plus Lalakulich resonance
contribution while green curves are from the parton model.

3.6 DIS Contribution

When (Q? is high the vector bosons probe very short distances in the hadron.
To leading order in the strong interaction, the quarks are considered as just
free particles, but one can systematically introduce higher orders of quark-
quark interactions via pQCD. This is because the strong coupling constant
gs is small in the DIS region where perturbation theory is valid. We will deal
with the non-perturbative situation in section 3.7.

In the DIS region F 350) can be modeled in terms of partons (quarks, gluons,
etc.), which each carry a certain fraction x of the hadron’s total momentum.
In this model, each parton, such as a quark ¢ = ¢(x, Q) is considered a func-
tion of Bjorken x and the 4-momentum transfer () and is called a parton
distribution function (PDF). PDFs are not observables, but rather, observ-

ables can be constructed from them. Using DIS data, the PDFs can be
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constrained and computed/estimated. This has been done by many research
groups around the globe, and for instance, the LHA PDF sets are publicly
available [28] at the time of writing this thesis.

To pursue the goal of calculating our observable D:f‘% 15, we need to first
find an expression for Fé% ;s in terms of PDFs. This was actually given in
(3.81) of the previous section when it was needed for less lofty reasons, so
now a proof of that expression will be given here. I must note that one must
be cautious in deriving an expression for Fg(% ;s in the parton model as it
is unique. So far every other structure function found in the other semilep-
tonic boxes has been flavour-diagonal, whereas this one is not. This poses
a challenge, as it means a different quark is leaving the process as the one
which had entered (temporally). Being an interference structure function,
that makes it somewhat difficult to book-keep the differences between the
various quark diagrams which are to represent (p|T[.J2(x).J,(0)]|n).

One possible solution to sort this out is to use the machinery of isospin ro-
tations described in [77]. There the authors defined the timelike quark-quark
operator:

0% = 1p,0|0, 2]ty | 2. (3.94)

We will also need to know some of the quantum numbers of the quarks we
will be considering, and these are given in Table 3.2. The isospin rotations

in general isospin space allow us to write non-diagonal matrix elements of
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the operator in (3.94) in terms of diagonal ones and are [77]:

(HOT"|=) = (HOTH+) — (+]0771+) (3.95)
(HO*|=) = (107" |=) = (=|0**]-) (3.96)
(~1O7H+) = (0T [+) — (+]O~ |+) (3.97)
(~107*+) = (107" |=) = (=|0**]-) (3.98)

where =+ refers to Is = :I:% in the above relations. Next we need to consider
the quark diagrams of the vWW boxes and crossed boxes. Starting with the

boxes we can have:

1 1
1 1
1 1
1 1
w+ | !
BOX = ! !
1 1
1 1
' 1
n P P
1 1 1 1
1 1 1 1
1 1 1 1
o ' i '
= Wl 0 7 + wt | 7
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
dy, U U U d d

Figure 3.13: Allowed quark diagrams which can participate in the nv — pe~
W box, neglecting strange and charm flavours.

= BOX = e,(p|0""|n) — ez(p|O% |n). (3.99)
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This expression makes the assumption that the process is elastic, which it in
general is not forced to be. So now we may generalize this to isospin space
and write:

= BOX = e, (+|077|=) — eg(+]07|-). (3.100)

Now the goal here is to express this in terms of diagonal matrix elements in
isospin(flavour) space. In that regard it’s the flavour of the ‘¢’ in e, for each

term. Applying (3.95) reveals that:

BOX = e, ({(+|07T]+) = (+|077[+)) — eg({(+|OTT|+) = (+|O0~7|+))

= e.((p|0™Ip) — (p|O[p)) — ea((pIO™|p) — (p|O™|p))

=eyu(u—d) —eg(d—u)

= e, (u—d) +eq(d —u).
(3.101)
For reference, see Table 3.2 which gives us the relevant quantum numbers of

the quarks considered here. We can repeat this same process for the crossed

box as well, starting with Figure 3.14.

q| e | I3

2 1
u +§ +§
_ 2 1
wl=3| 2

1 1
d|—3|—3
7 1 1
d|+3|+3

Table 3.2: Quark charge numbers and isospin projections in the SM.
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S

XBOX = Y w+
n n P
1 1 1 1
1 1 1 1
1 1 1 1
y! Ve vt Y wt
= | i + | i
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
dp, dn, U Up Up d

Figure 3.14: Allowed quark diagrams which can participate in the nv — pe™
~W crossed box, neglecting strange and charm flavours.

= XBOX = e4(p|0™|n) — eq(p|O™|n)
= ea(+|0%7|-) — ea(+10*7|-)
= ea({(—|077|=) = (=|07F|=)) — ea((—|O~7| =) = (~|O*F]-))
= ea((n]O¥[n) — (n]0™[n)) — ea((n]O™[n) — (n|O™|n))

= eq(dy, — up) — ea(n, — dy)

= eq(u—d) + e,(d —u),
(3.102)
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as we want the PDFs in the proton as a matter of convention. Finally we

can take the sum of (3.101) and (3.102) for the total structure function:

Fy)78 = BOX + XBOX
= e, (u—d) + eg(d — @) + eq(u — d) + e, (d — u)

=elu—u—d+d)+e)u—u—d+d) (3.103)
= (eu + ea)[uy — di]
wkO _ gLo

_ U . v

I have attached the “leading order” superscript here as this expression strictly
assumes that there is no strong interaction present — in which case we need
the LO PDFs on the RHS of (3.103). Now the natural variables of our
structure function are (z, Q%) where z = Q*/2Mv, and it will be convenient
to stick with these natural DIS variables so let us re-express (3.56) with the

appropriate integration measure [61]:

& 1 Tmer (2p — 1)
oW =2 02 / A2l RO (3104
ADIS = 5 o Q Q2(1+ Q2/M2) J, T s p1ss ( )

r=1++/1+4M222/Q?, (3.105)

Tmax = QZ/(Wrznn — M + Q2) (3106>

Our nominal choice of boundaries shown in Figure 3.7 means that Q% =

2GeV? and W2

min

= 4GeV%  As we will see later, (3.104) is the largest

contribution to D}W, and since it is so important we should really be replacing
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F?E%%O with at least its O(ag) correction. One observation made by the

authors of [29] is that in the high Q? limit: (M?/Q* < 1):
w 3 o

1 1
oW o~ 22 [ dO? dzFO . 3.107
ADIS & oo o Q Q2(1+Q2/M§V)/o TL'3 prs ( )

This expression applies to the case of using the parton model over the full
interval 0 < 2 < 1. The major benefit however, is that since our F?E?[)) g 18
exclusively constructed from valence quark distributions, the z-integration

can simply use the following exact sum rules [32]:

1
/dmuv(x,QZ):Z (3.108)
0
1
/dxdv(x,QQ)zl, (3.109)
T o 1
= / dr P =3 (3.110)
0

The remaining QQ? integration then simply generates a leading logarithm and
we get:

_ln_

W,LO a . My
DZx,Dzs:47T 0, (3.111)
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The pQCD corrections to the GLS sum rule have been computed in [31] and
for the RHS of (3.107) they can be included to give:

3 o 1 (0% (Q2)
WNGLO _ @ 2 _ 28
IS5 Joy @O ) ™
(3.112)

™ ™

oy (@ 03<043(Q2)>3] |

where Cy = 4.583 — .333Np, C5 = 41.440 — 7.607Ny + 0.177TN2 and Ng is
the effective number of quark flavours at Q2. Following this prescription and
choosing « at the Thomson limit Q2 = 0 gives: DZ‘%JIV;LO = 2.17 x 1073 just
as quoted in [29].

One advantage of using (3.112) is that since it uses sum rules, there are no
PDF uncertainties to be found. Furthermore, since the higher order pQCD
corrections are completely negligible to the box correction, the expression can
essentially be considered “exact”. The alternative is to return to (3.104) and
to only integrate up to ,,,, which forces us to include the ag corrections in
a different way. A concise way of doing this is outlined in [32], which states
that the NLO structure function can be computed from the convolution of
the PDFs with the O(ag) Wilson coefficient in function space. Applying this

technique to our particular structure function gives:

FONEO( @) = /1 %C’él)(z) [ ()2, Q%) ; a9 (z/z, Q2)]7 (3.113)
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and now we must insert the NLO PDFs (i.e. PDFs calculated to O(ag)).
C'?El)(z) is the NLO Wilson coefficient, given by [33]:

s |
C’él)(z) =0(1l—2)+ Z—{Q(l +z)ln<1 j z) _41rizz

™

+2(z+2) — <¥+9)5(1—z) (3.114)

(=) )

which is often represented in moment space in the literature. The terms in
(3.114) with a ‘+’ subscript are distributions defined in Appendix D and
are designed to be finite inside [ " dz. We will be using (3.113) as the input
to (3.104) whilst isolating its small differences from using (3.107). To help

accomplish this, the 2nd integral in (3.104) can be exactly replaced by:

Fmaz 3 (! ! 2r—1 3 ! 2r — 1
/ drFy” =2 / drF" + / deF (== - / A g
0 0 0 r Tmaz r

(3.115)
The first term of (3.115) gives precisely (3.107). The 2nd term considers the
effect of finite @2, and the 3rd term quantifies the difference between taking
Tmaz — 1 versus any value below 1. We have actually already calculated
the LO effect of this 3rd term on O} in (3.92); in fact it’s presence here
represents our will not to double-count this piece. Let us declare the sum of
these last 2 terms as the “higher power” corrections, while we truly expect
the 1st term to be the dominant contribution.

One convenience here is that (3.115) can be equally applied to LO or NLO in
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the strong interaction, which is simply facilitated by inserting either (3.103)
or (3.113) respectively. It was found that the 2 terms of the higher power
contribution secretly conspire to largely cancel each other out and their sum
is ~ 107% which is negligible and we will indeed recover (3.107).

There is a convolution theorem stated in [34] which allows one to decouple
the Wilson coefficient from the PDF distribution when the RHS of (3.113)
is integrated over all x as will be our case in (3.107). For any quark valence

distribution, it states that:

[ = [ [ o
— /O dzCV () /0 drqy(z).

The Wilson coefficients have the nice property that they can be analytically

(3.116)

integrated over all z to a simple number. In the case of (3.114) we get:

e as
/ Cy/(x)dr =1— —=. (3.117)
0

™

This of course leads to the first 2 terms in (3.112). Unfortunately (3.116) can-
not be used to evaluate the higher power terms, and the general convolution
integration must be performed numerically with the NLO PDFs. This has
been done and the results are indeed negligible. The LHA sets used for PDF
input in the DIS correction includes those of [28]: CJ15 [35], MMHT14 [36],
HERA20 [38], CT14 [37] and ABKMO09 [39]. Each set has multiple PDFs
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for each light quark flavour, from which the central set is used to calculate
the central value. The uncertainty of the higher power correction can be
calculated using a prescription suggested in [35]. It involves considering a

quadrature sum of differences between neighbouring PDF sets via:

S0 = % ;[a%_l — 09]?, (3.118)
where o is the observable of interest we have constructed from the PDFs.
The uncertainty of the higher power correction has been computed via this
means and is found negligible. This is not surprising as the central value is
already 1076 while the valence quark distributions are very well constrained
to begin with. The dominant sum rule contribution does not require this
uncertainty analysis for reasons discussed earlier. The numerical stability
of the normalizations in (3.108-3.109) were tested for all the LHA sets and
deviations from those sum rules were found negligible and independent of Q2.
Another necessity in computing the DIS correction is to input the running
strong constant ag(Q?), which is also provided by the LHA sets. On one
“edge” of the DIS region we have ag ~ .366, while at the Z-pole we have
ag & .118. The weighted average is determined from integrating (3.112) over
2GeV? < Q% < oo. It is insightful to know the average value of this constant
which yields the same box correction as the explicit running would. It is
found to be:

as = 0.1927, (3.119)
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0.10 -

— LO

— NLO

X

-5 -4
10 10 0.001 0.010 0.100 1

Figure 3.15: CJ15 plot of the LO and NLO F:s(,%zs structure functions. Tra-
ditionally they are multiplied by z to tame their large behaviour at low x.

which corresponds to Q% ~ 55GeV?. It is found that the NLO correction in

the strong constant leads to a roughly 6.1% suppression to the LO value of

D}% 1s- The last effect we need to consider to the DIS contribution is the
as(Q)
0.30

0.25

0.20

015

0.10

: : : : Q[GeV
10 100 1000 104 105 ACeV!

Figure 3.16: The CJ15 running of the strong fine structure constant.

running of the EM fine structure constant a = a gy (Q?) inside the integral

of (3.104). We can also confine ourselves to the NLO version as the higher
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order corrections beyond that are negligible to Dzl% ISt

YW.NLO _ 1

- OOdQQ apu(Q®) |, as(@)
ADIS g @2 Q*(1+ Q?/M3E,) T '

(3.120)

The function @ = agy(Q?) comes from evaluating the photon’s 1 loop cor-

rected self energy (SE) via:

o 0
apn(Q?) = % (3.121)
1 _ T
QQ
where:
030 = o)t = IF(Q) (90— 25 ) +TI7(@1) 25, (3122)
q q

1177 (Q?) is considered the transverse component of the photon’s self energy
and the 1-loop corrections that goes into (3.122) can be split into fermionic

and bosonic loops. The fermionic loops are of the form:

2
=__27 - [me _ L +2A0(my) + (¢* + Qm?c)Bo(qz; mf,mf)},
(3.123)

which is expressed in terms of Passarino Veltman functions which are defined
in Appendix F. In the case where f is a lepton, (3.123) is sufficient to use
as their masses are well-known. On the other hand if f is a quark then this

result must be applied with caution as the true free quark masses are not
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exactly known, but rather, their “effective” masses inside the hadron would
be the input. For the contribution from the quark loops we can instead use
the same dispersive techniques discussed in section 3.1 to calculate H%?had by

relating it to a total cross section (see Figure 3.17). Formally, we can split

Figure 3.17: The hadronic loop contribution to the photonic SE can be
delegated to the total cross section for the process o(ete™ — v* — hadrons)

the total photon corrections into the following parts:
5
H%'Y = H%’,ylep + H;?igaZl + H%?top + H:IY:,YBOS' (3124>

The bosonic contributions only set in for ¢*> > M3, and so they will not be
necessary to consider in our agyr(Q?) in the box correction, whose integrand
quickly goes to zero above the W-boson scale anyways. In [40], the following
definitions are made:
HW’Y(5) s) — H77(5) 0
Aagy(s) = - hail®) ~ Uineal®), (3.125)

s
0@ (ete” — 4* — hadrons)
dra?/3s

R (s) = (3.126)
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Then using the optical theorem, the author claims that:

EZ,, Rdata( g 0o RPQCD( gl
P/ ds’”—(S)+P/ ”—(S)> (3.127)

A (5) _ _%
W (8) 31 - s'(s' — s) w2 S(s —s)

2t
and this equation allows one to systematically (albeit numerically) compute
the light quark contribution to the photon vacuum polarization from available
cross section data. As the top quark is quite massive (~ 173GeV), we cannot
use the light fermion mass approximation. Nonetheless, it’s contribution has
been computed to leading order in M%/m? [40] and it is:

a 4 M3

3715 m? — “negligible”. (3.128)

AatOp ~

The results of the above expressions (3.121-3.128) has been nicely summa-
rized into data files by F. Jegerlehner and is publicly available [41]. This
data was used directly to evaluate agy(Q?) inside (3.120). The net effect
of the running EM constant leads to a 4% enhancement to 574% ;s from the
Thomson limit prediction. Thus the average value of agys in the DIS region

weighted by the 07" integrand is:

Ay — . 12
OEM = 13175 (3.129)
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With all of the aforementioned techniques and input choices outlined in this

section, the final DIS contribution using (3.120) was found to be:
O prg = 2.27 x 107° (3.130)

Should the precision requirements of the V4 tighten in the future, a robust
calculation of this contribution to NNLO in the strong interaction using even
(157) is well understood, and can be systematically achieved. For the time-
being (3.130) will aptly apply to our situation. An important remark is that

the Féo) structure function generally increases as x goes to zero via:
F9~ 2705 250 (3.131)
3 ) ) .

which is known from both the DIS and Regge models. This means that
the observable DLW depends on the PDFs at low x to some extent. The
divergent behaviour of (3.131) is nonetheless integrable in (3.104), rendering

our correction finite as it should be.



CHAPTER 3. DISPERSIVE CALCULATION OF THE ~vW BOX 98

3.7 Regge Region

At large W2 and low Q?, we can no longer describe our F:,EO) structure func-
tion with the parton model. This region also enters the deep continuum
of unknown possible resonance states. Regge theory aims to explain: the
hadron spectrum, the forces between these particles, and the high energy
behaviour of scattering amplitudes [42]. The Regge phenomenology states

that cross sections at high energy are given in the form:
Otot — As® — Bsin, (3132)

where s =CM energy squared and A, B, €, n are all found from fitting o4, to
data. The first term originates from pomeron exchange which goes to zero for
a valence-like distribution as we have. The second term is called the Reggeon
term, which for our case has s ~ v, and n corresponds to the p trajectory

intercept: —n — af = .477 [45], giving:

Fg~ () (3.133)

To finish constructing our structure function, we will follow a very similar
model used by Seng et al. in [29], which combines VMD theory [46] with a
phenomenological background function of order unity which smoothly goes to
zero at the pion threshold. In this model, the physical process which describes

0
FBR

_Reg 1s one in which the vector bosons (v, W) fluctuate into appropriate
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vector mesons. In particular, as shown in Figure 3.18(a), the W-boson must
fluctuate into a charged axial a; meson while the isoscalar photon fluctuates
into a neutral w meson. The a; & w mesons then connect via an isovector
p meson exchange with the hadron. This amplitude in fact, ensures we end

up with a purely axial-vector coupling to the hadron. Pure VMD theory is

S al - \\(lhp
N\\ ‘w N\\

-
-

P

-
1
1
1
1
1
1
1

(a) (b)

Figure 3.18: Vector meson exchange diagrams for (a) F\” and (b) Fv7")
which can occur in the Regge region. The two possible combinations in (b)
are topologically equivalent, resulting in a symmetry factor of 2 while the
process in (a) is unique.

known to miss a fraction of the full cross section it aims to model, and so one

can then consider extensions to it, such as the generalized vector dominance

(GVDM) model [47]-[48]. The difference between VDM and GVDM structure
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functions is:

2

B~ Yo’ .

1%
m2 Q2
) ~ Tt o %)
2 2
e [(1 5(’)@2 ;s +ée len(1 n %)],(3.135)
rce = 1—27’\/. (3136>

|4

The generalized model introduces 3 more fitting parameters beyond the VMD
model. As we will see later, the full parameter space of GVDM applied to
Fé%eg will be much more than necessary to fit to the available data. As the
data which constrains this structure function is rather poor, we will choose
only a slight extension to the VMD model by simply setting ro = 0, while

letting (ry,&y) remain free parameters to finalize our model:

FOL+gQHOW? = W3) - My e
TrQ@maromylt ¢ () 33D

W3 = (M + m,)*(3.138)

FS(,OIZBeg(W27 QQ) -

One of the key differences between the above model and that used in [29]
is that Seng’s W-threshold is at 2 pions while his single pion production
amplitude is calculated separately using heavy-baryon chiral perturbation
theory (xPT) — a small contribution ~ 1074 to 07", One immediate issue

with using (3.137) is that there is no direct data which constrains FB(,ORzeg'
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) structure

In order to find the free parameters (f, g), we can relate the Fg(0
function to another one which does have data: Fy?™". It is defined as the
average of the PDG’s (FJ¥~ + F}V")/2 which are depicted in Figure 3.19.

Next, note that in the parton model we have:

s
T

|
- -

— g
X

D —_—

:

Figure 3.19: Neutrino and antineutrino structure function diagrams. The
lepton current (not shown) involves the interaction between a lepton and its
neutrino partner.

uv_dv

FY = T (3.139)

FYPTP =y + d,. (3.140)

If we make the rough assumption then that u, ~ 2d, we find the simple

relationship in the DIS region:

3 ~ 9. (3.141)

In fact, it was found by the authors of [29] that this ratio is approximately
satisfied in the VMD framework as well (except that rather than a 9, their
factor is 36 due to a different normalization convention of F: 350)). Hence we can

use (3.141) as a link between our sought F.") and available data on FYP™™ at
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low Q? to determine our free parameters (f, g). This data will come from the
1st Nachtmann moment of the neutrino(+antineutrino) structure function,

which is defined as:

_ 2 (V¢ 13 _
vp+up 2y _ = S S vp+Up 2
B 2x
1+ +/1+4M222/Q?

3 (3.143)

Note that as M?/Q?* — 0 we have £ — x and the 1st Nachtmann moment just
reduces to the traditional Cornwall-Norton moment: fol drFs(x,Q?). The
most recent data on MiP7P(1,Q?) at low Q? can be found in [50]; which we
will use to constrain the moment. Utilizing (3.142) at low Q?* forces one to
know F37*" for all z and for our purposes we will decompose this structure

function into 3 distinct parts:

vp+v vp+i vp+u 0
F3p+ p(f7 g9,, Q2)|10WQ2 = F3,Ie)l+ p(xv Q2)+F3,I:Zs p($7 Q2)+9F3(7}%eg(fa 9,7, Qz)a
(3.144)
where (3.141) has been deliberately applied to give the last term. The elastic
structure function can be derived in terms of nucleon form factors just as

Féoe)l was to get:

By (2, Q%) = %[GMQQ) — G (@)GA(@QDzd(1—2),  (3.145)
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where we will use the same form factor parameterizations as those which
entered the D;’Kl calculation, only with an isovector combination this time.
The dominant resonance which enters F3?. " is the A(1232). We use the
form factor parameterization of Lalakulich [22] once again to model this new
structure function. Considering addition of isospin within the subprocesses:
v:pW- — AYand v : pW*T — A*T one can show that the latter is an
example of a stretched state |, m;) = %, —|—%>, while the former has final state
12, —1). Since the Clebsch-Gordon coefficient C'(2,1,4;—1,1,4) =1//3 we
have that:

FyA = 2 F, (3.146)

and we find that F37.77 = 2F3'\, as the two structure functions differ by
a minus sign. We have also assumed that the other higher mass resonances
are negligible compared to the A. Since we have kept agreement with PDG
convention, we can once again use (3.75), which is even more obvious now as

both sides of the equation are applied to neutrino scattering. This allows us

to find our sought structure function, which is:

vp+op _ _leAFAé 1

sres M m 3(W?2—m3)>+mil}

x{ [—0304 (mv—QQ)—CXC?M](2m2A+2MmA+Q2_MV)
ma M

Ci i
-

(M=) (Mv - Q) —CXCé]}.

(3.147)
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With this now, (3.144) can then be inserted into (3.142) and a least-squares fit
can be performed on the 2 parameters (f, g). At very high Q?, the Nachtmann

moment in (3.142) is dominated by the GLS sum rule where:

M:I’:erDp(lan)‘highQ? _ fol dngl,ijer(Jf, Q2>

~ 3(1 _ M)) (3.148)

™

to NLO in ag. As Q* — 2GeV?, (3.148) no longer accurately predicts the
moment and it must be computed explicitly via (3.142). At Q> = 2GeV?,

this moment 1is:

MEPTP(1,2GeV?) = %/1 dx% (Qm—g)(uiVL0+diVLO)|Q2QGQVQ = 2.494.01,

’ (3.149)
where we have used the CJ15 PDFs. Since the valence distributions are glob-
ally well-constrained by DIS data, there is no need to compute this moment
with other PDF sets. (3.149) is chosen as another data point with which
the My?"?(1,Q?, f, 9) fit should include as this moment is well-described by
PDFs for Q> > 2GeV?. The fit itself is plotted along with its uncertainty

band in Figure 3.20. The result of that fit is:

f=0.80+.03, (3.150)

g =0.63 4+ .10GeV 2 (3.151)
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Finally, one can then insert these fit parameters and integrate Fs(g)zeg over the

whole Regge region to find the contribution to the yWW box. Doing so yields:
O heg = (:37£.10) x 107° (3.152)

A few remarks worth mentioning here are the following:

M5(1,Q%)

_____ N.Mom (Regge)
N.Mom (DIS)

CN Mom

................... ; QZ[GGVZ]

Figure 3.20: Fitting the Regge model (red) of (3.137) to the data (black)

provided in [50] for the neutrino scattering Nachtmann moment M;?*",

which has been matched to the DIS moment (green) at the boundary. At
high Q? both the CN and Nachtmann moments are compared.

e Although the DIS prediction of M;?""(1,2GeV?) has a very large
weight, it cannot decrease the large uncertainty of the fit (f £ Af, g+
Ag). This is because the poor low ? data (in both statistics and

weights) limits the certainty of the 2-parameter fit.

e Secondly, the Cornwall-Norton moment clearly over predicts Mz? (1, Q?)
around 2GeV? < Q% < 3GeV?. This difference may indicate the pres-

ence of higher-twist effects which have not been considered.
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Also, shown in Figures 3.21 & 3.22 is the Fé%eg structure function at the

boundaries of the Regge Region as compared to the neighbouring models.
The matching to the DIS model has “washed” out a precise matching at
every W? value, as only the Nachtmann moments have been equated at the

boundary, rather than the structure functions themselves.

A
0.7
0.6 g - //:/
== T — — Q"2=5GeVA2
0.5 - 7/,/
o e Qr2=1GeV*2
04 =
QN2=2GeV"2
0.3
0 Fi0gq(15=.8+9/10)
0.1
S T T

Figure 3.21: Comparison of the Regge and background + resonance Féo)
structure functions at W? = 4GeV?.

W2=4 GeV?
W2=50 GeV?
W2=100 GeV?

—— Fikeq(f=.8,9=.63)

repepepepebopepopoy é Qz[GeVZ]

Figure 3.22: Comparison of the Regge and DIS Fgfo) structure functions at
Q? = 2GeV2.
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3.8 Total 0"

The sum of all the 0% contributions computed in section 3 (SBM) is sum-
marized into Table 3.8.1 where it is also compared to the results of Seng et

al. (SGRM). It is this total box correction which will then effectively replace

(2.5).

07V (x1072) SBM SGRM MS
elastic 1.04(7) 1.06(6) —
resonance 0.04(2) 0.00(0) -
DIS + high-Q2 bgd | 2.27(0)  *2.17(0) -
mN 0.00 0.12 -
Regge 0.37(10)  0.31(8) -
low-Q? bgd 0.16(2) 0.13 -
total 3.88(13)  3.79(10) 3.26(19)

Table 3.3: YW box corrections from 3 separate groups. SBM represents this
work, SGRM is taken from [29]-[30], and MS is from [14]. *The SGRM DIS
contribution has been calculated at ag,s fixed at the Thomson limit.

As can be seen from the table, the consequence of applying these “state-of-
the-art” dispersive techniques to the semileptonic v box tends to increase
the central value of this radiative correction by at least 16%. The conse-
quences of this jump in value will be discussed in detail in section 5. It’s
also interesting to note that the absolute uncertainty of DZXW has improved
by nearly a factor of 2. Scanning through the various contributions of Table

3.3, I make the following comments:



CHAPTER 3. DISPERSIVE CALCULATION OF THE ~vW BOX 108

e The elastic contributions are highly complementary as this portion is
highly unambiguous. What differences are present are essentially due

to a particular choice of slightly different calculation input.

e The resonance region is small, but not completely negligible. We put

our number in to the nearest 10~° for the record.

e Both authors essentially agree for the DIS contribution, as once one
inserts the running EM fine structure constant into the SGRM predic-

tion, the result is a 4% enhancement — recovering our number.

e The 7y contribution is absent from our model, however, the sum (7y +

Regge + bgd,,,,2) should ideally agree, which they essentially do:

(mn + Regge + bgdjpyo2)|spm = .53(10) x 107° (3.153)

(mn + Regge 4 bgdpy2)|saru = 56(8) x 1072 (3.154)

Taking the differences into account, the two separate computations do agree
with each other within their uncertainties. Together, they provide strong

support for replacing the Marciano and Sirlin Result from 2006.



Chapter 4

Radiative Corrections to Qyy (p)

Let us now turn our attention to the other observable of interest in this
dissertation: the weak charge of the proton. The process and its Born level
treatment was discussed in chapter 1.4 and now we will be looking at its 1 loop
corrections. Once all of the Feynman diagrams are defined, we will proceed
and calculate each one’s effect on Qu (p). Much of this work has already
been done, but we will be re-evaluating all of these corrections in two limits:
the Thomson limit (Q* = 0) and the scattering limit (Q* > m?). I have also
decided to use a process-independent and gauge-invariant definition of the
weak mixing angle, which will be computed in explicit detail. The results
of this work will be compared to a recent measurement of the proton’s weak

charge [53] at the end of the chapter.

109
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4.1 The 1 Loop Formula

At the tree level, e"p — e p scattering is mediated by the exchange of a
single photon or Z-boson as shown in Figure 1.1 and leads to the relation

(1.32), where the LO prediction of the proton’s weak charge is:
L (p) = 1 — 4sin® Oy = 0.0688, (4.1)

which is customarily taken in the Thomson limit Q% — 0. Our goal now is to
modify (4.1) to include all 1 loop RCs. This was done in [51] (EKR), which

has since become the standard parameterization adopted:
2 (P)lexr = [pnve + A1 —4sin® Oy (0) + ALl + Oww +Ozz+ 0,2, (4.2)

where A., A’ denote lepton vertex corrections, sin® @y, originates from SE
corrections to the mixed v — Z boson, pyc contains SE corrections to the
Z & W —bosons, and the O’s denote their respective box corrections. The
classes of diagrams for all of these corrections are summarized in Figure 4.1.
In the pages that follow, we will be taking a close re-examination of all the
corrections in (4.2) and in doing so, we will resort to modifying the EKR

expression slightly.
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. v Z
Ao e

O ViVa - Vi Vs

Figure 4.1: 1 Loop Feynman diagrams which correct the LO prediction to
Qw (p) in the e~ p — e~ p process.

4.2 pyc Correction

At the tree level, the ratio of the neutral to charged current is pkQ =
M3E, /(M2 cos®0y) = 1. However, at the 1 loop level the masses of the

heavy vector bosons get corrected by the SE diagrams in Figure 4.1. For the
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W-boson, the dominant fermion loop is from the top and bottom quarks:

I (4°) = v 4
b, t
= <_Zg> D [ @ ¥
Tr[y#(1 = v5) (K + ¢ + me)y" (1 — 75)(% +my)]

i (g ) + T 2

q27

(4.3)

= (%) = ffgjfw 4{ 24+mi - L + Ag(my) + Ag(my)

2

_mt_;nb [Ao(mt) —Ao(mb)]+ 2¢* —q*(mi —mj)—(mi—m7) BO(QQ;mt,mb)}-

2q 2¢2

(4.4)

We would actually like to know our correction at ¢ = 0, thus we can take

that limit here to find:

\/_G M2 2( fln% —méln%)

1672 mi —m;

Iy (0) = — (mi +my). (4.5)

Repeating this analysis for the Z-boson case, we get:

V2G - M2 m? m?
5,0) = ——"— 2 melnﬂ—;t +2miIn—2 |. (4.6)

1672 cos? Oy w2
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Since (4.5) and (4.6) corrects the masses of their respective vector bosons,

their effect on py¢ is exactly:

M 0%, (0 1Z,(0

PNEC = Mtos k2 (1 T - D) (4)
M? cos? Oy <1 + —Zz; ) W z
= pie(1+ Apne), (4.8)
and the O(Gp) correction can be simplified to:

5, (0)  TI5,(0)  V2Gr 2mZmg  m?
Aprpr — 2vwlV) - HzzU) 2 2 AU UL B
pNe M, M2 1672 \ M mi —m3 an (4.9)

pnc is the ratio of neutral to charged currents in EW theory and it is a
gauge-invariant quantity. The RHS of (4.9) is zero if m; = my,, and the term
inside the round brackets is sensitive to the mass splitting m? — m? ~ m?,

thus the contribution from the other quark doublets is highly suppressed.
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4.3 A, Correction

The bare eeZ vertex is given in Appendix A in terms of the standard neutral
current V' — A coupling ~ 7" (g5, — g%75). Qe is the correction to this vertex
when a massless photon is exchanged between the electron lines. To begin
calculating this effect, we start by applying the same Feynman rules with

this virtual photon added in:

Zee _
Au =

stk

i

T 1=p-p
Z,

"

i
_ iBe2g d4k @(p3)ya (P +E+m) (95 Y0 —957u75) (P HE+m) vau(p1)
" 2cosfy f (2n ;1+k)2 m‘Q/](kQ )\2)[(p3+kl) 2] . (410)
Let’s first look at the vector coupling ~ g7,. We will also suppress the pref-
actor ig/2 cos By in front of the integral sign, as this will be common to the
bare vertex. Then one will find that:

Afee|v —

«
Eﬂ(m){%[(‘lm2 —2¢*)Co(m?, m?, ¢*;m, A\, m)

+4By(m*;m, \) — 3Boy(q*;m,m) — 1]
(4.11)

+2m(p} + p§)[Bo(0;m, A) — 2Bo(m?;m, \)

+By(q*m,m) + 1]}96.
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This vertex is traditionally decomposed into the following form:

W0,
ALy = alps) [WFi(0?) + S0 Fal?) upy). (4.12)

whilst our expression in (4.11) is of the form u[y,G(¢*) + (p1 + p3) . H (¢*)]u.
To help us get something resembling (4.12) we can use the Gordon identity,

which states that:

u(p)(p' + p)uulp) = u(p')[2my, — iowq Tu(p), (4.13)

and apply it to the 2nd term in (4.11). This reveals that we really do have

(4.12), where:

Fi(¢®) =G(¢®) +2mH(q), (4.14)

Fy(q?) = —2mH(¢%). (4.15)

Let’s look first at our F3 term which is the origin of the so-called anomalous

magnetic moment. From (4.11), it is predicted to be:
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@) = —2m<%>(4m§—nzq2>[30(0;m,)\)—QBo(mQ;m,)\)

+By(¢*; m,m) + 1]g,
B g( Am?
4
+Bo(q*m,m) + g5,
« Am?
e <4m2 — q2>
PR
6m?2
« (24m2 — 2q2)
4m \12m? — 3¢

(6%
= FQ(O) = —%

m) [Bo(0;m, 0) — 2Bo(m*;m, 0)

2 2

2A, — 2(AE - ln% + 2) _om”t
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Q

9y

e
gV7

9v (4.16)

which is nothing more than the famous Schwinger moment which is found
in an analogous correction in pure QED [43]. As it stands, F;(¢?) is UV and
IR divergent, and we must renormalize the Zee vertex in order to attain a
physical result for it. We can use the results of Appendix G on renormalized
perturbation theory to rid ourselves of this UV divergence. Doing so leads

to our renormalized vertex:
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. - 10 ,
ATl = ps) | Fr () + 5220 Fala®) u(pa), (4.17)
Fy(¢?) = G(q*) + 2mH (¢%) + 02y, (4.18)
Zy=1- A;(;n) +4m?B)(m?*;m, \), (4.19)

and F3 is unaffected in the renormalization process. Next, we should take
the ¢2 — 0 limit and confirm that F}(0) = 0. We've already evaluated the

middle term in (4.18) — putting the other 2 terms in gives us:

FL(0) = = {4m2[By(m? m, ) — Co(m?, m2, 0;m, A\, m)]

7y

—3By(0; m, m) + 2Bo(m?,m,0) + By(0;m,0) — 1}g5
[0 m2 m2 m2 e
—z{-a-s(ac-mz) 4 2(A+ 2B £ A+ 1-mZ — 1)

7/

— 0, (4.20)

as expected by the renormalization procedure. Next let’s turn our attention

to the axial part of (4.10) which is:
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A566|A - 4&“@'}/“’)/51%{(47)12 - QQ)CO(mQa m27 q2a m, )‘a m) -2
v

(2m? — ¢?)
4m? — ¢

(3¢ — 4m?)

Bo(m?:m, \
O(m m )+ 4m2_q2

+4 Bo(qg;m,m)}gi

2

m2 _ q2 BO<m2; m, )‘)

o 1
+Eue%(P1 - p3),uue{?30(0; m,\) — 1
(3¢ — 4m?)

1
2. e
MBO(Q ;m,m) — ?}QA'
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(4.21)

The @ysu. correction which is proportional to (p1 — ps), is inconsequential

to us as this current disappears in the PV amplitude. Now let’s look at the

v,75 term at ¢* — 0, where it reduces to:

Afee|A(7u75 term) — 42667”75u6[4m200(m2, m?,0;m, \,m) — 2
T

+2By(m?;m, \) — By(0;m,m)]g5.

(4.22)

Just like the 7, term in A7°|y required the addition of the counterterm

+ZyYy, s0 too will this term, as it is the net (gf v, + 957.75) vertex which

is getting renormalized. Thus, after renormalization we will get:
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AgeelA(7u75 term)|q?:0 = 4&@67“75u6[4m200(m2, m2> 0;m, A, m) -2
T

+2By(m?;m, \) — By(0;m, m) — By(0;m, m)

+4m* By(m*;m, \)g4

= - l4m?(Co+ BY) + 2By(m* m. 0)
~2Bo(0;m, m) — 2]g4
o e
= —5-0% (4.23)

which is exactly equal and opposite to the correction to the vector correction
in (4.16). This is actually no coincidence, as the CVC hypothesis states that
the V' — A structure of the vertex must be preserved, even after the inclusion
of radiative corrections. (4.23) will actually change sign in the PV correction

Apr as follows:
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MPV_ oo
0Qw(p) ~ 0Arr~ — T, (4.24)
Z
e |- o _ a
ng—loop ~ ga [ue’y//}%( - %) PLue - ue’Y,u’VS( - %)PRue

(07 _ _
= —g% (—) [y, vs Prive — ey ys Prtte)

27
= —9,641(%) Tr(,’?’m%(l;%)) —Tr(}Z?’Yu%(l—;%))
= D) Tr(py) — Trlp)
= gi(5=) (n). (4.25)
Mz~ g5 (4p,). (4.26)

Therefore, our correction to the proton’s weak charge in the Thomson

limit is:

0Qw(p) =

% A.. (4.27)
This expression was first calculated by Marciano & Sirlin [7§] as an atomic
parity violation correction - valid in the Thomson limit. However, it will be
important to look at all of these corrections in the scattering limit at which

q* > m?2. This is technically the limit in which experiments such as Qweak

[54] are done, where (Q?) =~ 0.025GeV?. Recall that
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a Am?
FQ(QQ) = E <47ng—_q2> [30(07 m, 0) - QBO(mQ; m, )‘) + BO(q2; m, m) + 1]7

(4.28)

and from this general expression, we can take the scattering limit:

2 2 2
9 a 4m m m

Y Y
2 2
+A€—lnﬂ2+2—|—ln( ﬂ;)—i—l
1Y q
«Q 4m? —m?
T 4r 4m? — ¢ ln( q> )
— 4m2£ 1 ln(—mQ/t)

A7 t—oo 4m2 — 1t

= 0. (4.29)

Next, recall the v,gy correction which was:

a
Fl(q2) = E[—(2q2 — 4m2)Co(m2, m2, ¢%:m, \, m) + 4Bo(m2; m, \)

—3Bo(q2; m,m) — 2 — By(0;m, m) + 4m236(m2; m, \)|gy. (4.30)

This expression is somewhat complicated in the scattering limit, and the
details are not terribly illuminating. Unlike the Thomson limit, its IR diver-

gence is quite present now, and is of the form:
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F (2 2 a QN
Fi(¢g° > m*) ~ Egvlnﬁlnﬁ-

(4.31)

This IR divergence gets canceled when combined with the other IR-divergent

amplitudes and the result is simply:
Fi(¢? > m?) = 0. (4.32)

Finally, let’s compare this to the ,7y5 correction in the axial vertex. Ear-

lier we had:
~ 2m2 - q2
2y _ 2 2 2.
Gild') = U = a0 =2+ A Bolm’sm, )
3¢° — 4m?
(fm2——7;)30(q2; m,m) — By(0;m, m) + 4m? By(m* m, A),

—  ¢*Cy — 2 +4By(m?*;m,0) — 3By(q*; m, m) — By(0;m, m)
+4m? B (m?*;m, \)

= Fi(¢>>m?) —=0. (4.33)

Just as in the Thomson limit, we see that the V — A vertex gets a common
correction, which in this case, gets canceled by other diagrams. We can
always count on the cancellation of IR divergences such as those in (4.31)
as is guaranteed by the Bloch-Nordsieck theorem [44], which states that all
IR divergences get cancelled in any observable in QED. To summarize our

findings, the net effect of the vertex diagram shown in (4.10) leads to the
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following correction to Qw (p):

s =0
A, = . (4.34)
0, ¢>m?

Technically this is quite a difference between the scattering and atomic limits,
but in practice, the quantity 5=~ ~ .00116 is a 0.1% correction to the already
small Qw (p) =~ .0708. Hence it is hardly worth putting the finite Thomson

limit into (4.2), and one can simply take this correction to be negligible:

A, ~0. (4.35)
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4.4 Al Correction

There is another leptonic vertex correction wherein the vee vertex has a Z-
boson loop formed across the electron lines. The associated amplitude is

given by:

(4.36)

In this case the photon only has a pure vector coupling. As we know, this
bare vertex cannot form a PV amplitude alone. However, due to the axial-
vector couplings between the Z-boson and electron, which occurs twice here,
a PV effect is possible, and as we shall see this indeed happens. Employing

the EW Feynman rules gives us:

ree _ g [ d'k 1
A | G e
X Ue(p3)” (95 — 95975) (P, — B+ m)u(p, — K+ m)vs(gh — g547s)ulpr).

(4.37)
After expanding the numerator via the contraction of the £’s one will
get 3 types of terms: ¢¢2, ¢%¢9, 952 It is only the V x A terms which can

generate a PV amplitude. This part of the numerator is given by:
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vee . Ag* [ d'k 1
Au,pv - 40%,[, / (2m)* [(ps — k)2 — m?][(p1 — k)% — m2](k? — M%)
X (p3) [~ 2k + 75 (K2 — m?) + p yublys (438)
+k%¢375 — PVl Vs ue(P1) gy 9 -

We can then perform the loop integration explicitly followed by the PaVe

reduction to obtain the somewhat lengthy expression:

A'yee . _9_2 e e — B 1
WPV = 501 94 Te(P1 — P3)uYsle
Cw
{l¢*(2m?* + M3) — 2m* M| Bo(m?;m, M)

me (A — )

+m*(4 = 3¢> — 2M3) By(q*;m, m) + (¢° — 4m®) Ag(m)
+(4m? — ¢*) Ao(My)
+2m?(q? + M2)(4m? — M2 — ¢*)Co(m?, m?, ¢*;m, Mz,m)}
2
9 e e 1 .
_Egngu67M75uem2——q2{<4q2 _ 8m2 —+ QM%)BO(mQ’ m, Mz)
+(4m? — 3¢ — 2M32) Bo(q*; m, m) (4.39)

+2(q* + MZ)(4m* — M7 — ¢*)Co } .

As we know, the matrix element @.(p; — ps),Vsu. cannot lead to a PV effect,
and so we may neglect that term from now on. The 7,75 term does indeed
lead to a Qw (p) correction, and our goal is to evaluate it in both the Thomson
and scattering limits. In doing so, we must be careful not to forget the

additional factor of D(¢*) = q% which comes from the photon propagator, as
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it will be a crucial ingredient to attain the correct final limit. Continuing

then, the 7,75 term in (4.39) is:

2
ee 9 e e~ 1
Npy = 33 gnguew%uem{(—SW + 2M3 + 4t) By(m* m, M)

+(4m® — 2M} — 3t) Bo(t; m,m) + 2(M3 + t)(4m* — M3 — t)Co},

(4.40)

where ¢t = ¢?. We can then use the results of Appendix G and take the
Thomson limit t — 0. In a somewhat pragmatic fashion, we can impose the
renormalization condition A7¢¢(t = 0) = 0 by simply subtracting it at the

t = 0 limit:

AT = NJFe(t) — AJ(0), (4.41)

and from (4.40) we have:

2 M2 4M2 M4 9
AZ?;V(O):2<4+A6+IH%—_Z>+< z _ Z)lm

n
m2 m?2 m4 M2

2\ 2 > (M2 4TI
+2< —%>% 1-1‘\?@( 21+ m?/ Z)>. (4.42)
Z

m?2 | m2 2mM 5
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While for small ¢, a Taylor series reveals that:

t
3(4m® — mbM2)

Aoy () = A5 (0) + { —28m® — m* M3 + 2m* M2

M4_4 2M2 M4
+ 2(M§—12m4)\/M§—4m2M§1n<‘/ z— MG Z)

QmMZ

2
+(24m® — 14m*MZ — 2m* M} + MS)n (%) } (4.43)
z
It’s here now that the photon propagator saves us after invoking (4.41),
allowing us to get a non-zero result in the Thomson limit. Then taking the
ratio with the Born amplitude gives us:
Mia

AL = —=ZEDOA )]0

! 1 2
— Em{@lz — D[(62° — 22 — 1)lnz — 2(7z + 2)]

+2(1 — 122%)y/1 — 4zIn <—V1;j§“> } (4.44)

where we have defined the dimensionless quantity z = m?/M3%. Since z < 1

we can then take a Taylor series around z = 0 to find:

I~ o _ 1_ 2
AL~ (1 61nz)(2)<2 25W>,
a1 M2 )
= A/e = _3_71' (6 + 1DW> (]_ — 4SW) (445)

This is our official Thomson limit result, and it is the same result used by
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EKR. Next, let’s evaluate this correction in the scattering limit. To do so,
we can start with the general expressions for the PV functions inside (4.40)

and apply our renormalization condition to find:

A vee 1
Aipv() = —5 e 7 {6m2t(2m2 — M2)(4m?* —t)

— 6Mgty/ M2 — am? [sz(Mg ) - Mgt]
VMZ —4m? + M
xln( z— o Z) +2m* (M + t)(4m* — M3 —t)

2m

X <6Li2(1 + Mz /t) + 31112(

Vit —4m2) +2m? —t
><(4m2—2M§—3t)1n< ( ”;);r m )
m

M2
- Z) +7r2> + 6m*\/t(t — 4m?)

2
+ 3MZt(8m* — 2m2M32 + M%t)ln%}. (4.46)
Z

To help us systematically proceed with the scattering limit, it will be very

helpful to express this in terms of the 2 dimensionless quantities:

t
2
m
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This leaves us with the equivalent expression:

1

ANy (1) m{ — 20z — 1)22(x + 42 — 1) [6L12<1 —1/z)

+3In’z + 7r2] +62°\/z(x + 42)(3x + 42 — 2)

xln( /ol +4222 e 22) —62(2z — 1)z(x + 42)

v1—4 1
+6xv1 — 42(222 + x + 22)In (TZ—'—>
z

+3zr +2(1 — 4z)z]lnz}. (4.49)

From here, we can perform a Taylor series about z = 0, which to LO evaluates

to:

~

1
Nipy(t) = 3.2 [12(33 — 1)’Li(1 — 1/z) + 27°2® + 212° — An’x

—12z + 6(2 — 1)%In’*z — 62(3z — 2)lnz + 272 |.  (4.50)

Finally, we can take the Taylor series (again) about x = 0 up to O(z),

multiply by D(t), then take the limit x — 0 to find:

e MZ 11
Al = _3_7r(1 — 4s3) (111@—22 + E), (4.51)

which is a distinctly different expression than the Thomson limit in (4.45).
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However, the two are related via:

AL(Q*) = AL(0) + %(1 — 4s3) (mw - §>. (4.52)

This relation has a rather interesting connection to the running of the weak
mixing angle. As we shall see in the following section, the difference AL (Q?)—
A’(0) is equal to the electron’s contribution to the running of sinfy,. The
numerical difference between the scattering and Thomson limits evaluates

to:

AL(.025GeV?) — AL(0) = +.0006, (4.53)

which is a +0.8% increase to the Thomson limit correction, and a —1.9%
correction to Qw (p). One noteable difference between A, and A is that A/
is suppressed by (1 — 4s%,) while A, is not. Despite this, A, is negligible,
while the large logarithm in (4.51) makes Al a more dominant correction to
the proton’s weak charge. This concludes our vertex corrections for now. It
should be remarked that vertex corrections are generally process-dependent,
and mathematically they may contain both IR and UV divergences — both

of which must be systematically removed for a physical result to ensue.
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4.5 The Weak Mixing Angle

At low Q?, AR receives contributions from amplitudes which involve a single
Z-boson coupling to the electron together with a single photon coupling to
the proton. These two neutral vector bosons can interact through the loops
depicted in Figure 4.1. There are a number of fermionic and bosonic SE
corrections which correct the v — Z propagator and they are shown in Figure
4.2. In addition to these traditional SE diagrams, there is also a subtle
contribution which comes from the “pinch” part of the two vertex diagrams

at the end of Figure 4.2. Before continuing forth and calculating all of these

Figure 4.2: 1 Loop Feynman diagrams which contribute to the running of
") 2
sin® Oy (¢%)
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diagrams, let’s take the time to clearly relate them to sin? 6. We use a form

factor approach suggested by Sirlin and Ferroglia [55)], in which:

sin? Oy (¢%) = K(q®) sin” Oy (M), (4.54)

where the form factor x(q¢?) is related to the v — Z self energy correction via:

: (4.55)

and I1"Z here denotes the MS renormalized SE evaluated at the t’'Hooft scale
i = Myz. In our goal to acquire the total vZ SE, we will start by finding the
lone fermion (f) contribution in Figure 4.2, which is customarily separated

from all the bosonic contributions. In terms of PaVe functions, it is given

by:

() = 1o g; QNI (T3 — 252,Q;) %
t
[— (¢° +2m3)Bo(q*; my, my) + 2m3 Bo(0;my, my) + %]

(4.56)

This fermion sum, which excludes the heavy top quark, contains all leptons
and quarks which possess an EM charge. Although the lepton masses are
well-known, the quark masses are not. Therefore, rather than use the above

formula for H}Z, we replace both the leptonic and hadronic corrections by a
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dispersive approach used by Jegerlehner [40]. At the tree level, the mixing
angle is just the ratio of EM to weak coupling constants: sin®fy = e/g.

Thus:

a(Q)
042(@)'

Furthermore, the loop corrections to a & as can be put into the general form

SiIl2 ew(QQ) =

(4.57)

(by a geometric series):

o

a(Q?) = 1= Aa(Q) (4.58)

It follows to O(a) then, that the shift in sin®fy due to these running con-

stants can be written as:
sin? gy (Q2) = (Aa(Q) - AQQ(Q)) sin? Oy (0). (4.59)

The same formula may also be applied for the choice of renormalizing from
the Z-pole as well. Regardless of renormalization choices, the LHS is the
same function (a running EW parameter). Both Aa(Q) and Aas(Q) are

available from [40], and have been separated into 3 parts:
Aa = Aoqep + Aahad + AOétop. (460)

As shown in Figure 4.3 below, the Jegerlehner parameterization agrees very

well with a recent Lattice calculation [56]; and thus it appears to be much
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more reliable than simply putting the effective quark masses into H}Z(cf).

The total shift (Scattering-Thomson) in the weak mixing angle due to the

0.0000}- — dispersive -
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Figure 4.3: Comparison of the difference to the running of sin® fy(¢?) from
the fermionic loops between the perturbative result of (254) and two non-
perturbative calculations.

fermionic and hadronic loops using the dispersive analysis of Jegerlehner is:
§sin? Oy (Q* = .025GeV?) = —.0002 . (4.61)

Next, we turn our attention to the bosonic contributions (1 — 6), which

we will each evaluate separately. Starting with diagram 1:
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Z4lq

w w

v
14

5-6 2¢€ ddk
(—1) v edCw 9upGuwr 9ragyi W
x[g7"(q — 2k)" + g (k —2q)" + g""(q + k)]
(9% (q — 2k)” + g*“(k + q)' + g*'(k — 2¢)°]
(k2 — M3)[(q + k)? — My,]
2 2e ddk T w 0773 T
9 5WCW Gragrill (%Vw (¢ —2k)" + g™ (k —2q)" +
[9*(q — 2k)" + g°“(k + q)' + g"'(k — 2¢)*]
(k% — M7)[(qg+ k)2 — My/]

X

9" (q+ k)] %

2
%{ 9" [(19¢% + 32M2) Bo(q%; My, M) + 22A0( Myy)

q"q”
q2

+10(—2M7, + p°/3)] + [(—22¢ — 20M3,) Bo(q*; My, M)

+20A40(Mw) + 10(—2M3, + p*/3)] } (4.62)
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17" (¢%)

s
(27)

= 2%(=1)°egMw Mzt 909" 9" Gar Gypht™ /
1
(k2 — Mg)[(q — k)* — Mg

M2 dk 1
— 9 2.3 w . 25/
IOy I | @m) R = M) — R)? — M3

SH

2 2M2 3 uv
= ZTEWIWI B2 My, Myy). (4.63)
cw

6, 14 Ccos(20w) o [ d% (Qk— VP (q — 2k)
R e | (2m)? (K2 = M )[(a — )2 — M|
923W 2 2\, 2 d’k (Qk_Q) (Q_Qk?)
Gt = [ G M) [(q — B — M)

Q»Q

g*swcly — siy)
6CW

{9’“’ [(4Mv2v — ¢*)Bo(q%; My, M) + 2A0(My,)

q“q

+2(=2Mf, +/3)| + T | (62 — 40 Bo(® My, Myy)

+4Ag(My) + 2(=2M3, + p? /3)} } (4.64)
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Qv DA
770 = i e

ik (k — q)Pke

(2m)? (k? — M) [(q — k)* — M|
ik (k — q)"k”

(2m)® (k2 — M) [(q — k)* — M|

= 2(—1)2i6egcwgugga,, /

= _2923WCWM26/

CwS 2
_ —WTWQ{Q“V [(4Mv2v — ¢*)Bo(q*s My, M) + 240(Mw)

v
+2(—2M32, +p2/3)] + % [ — (2¢° + 4My ) Bo(¢%; My, Myy)
+440(Miy) + 220, +97/3)] } (4.65)
7
ngw(qg) = W
N

ddk (2g7"yg(5a o gTég'ya o gTag’)«S)
2m)d k% — M‘%V
% 12979 — 919, — 9,939+
_ 2 2¢ H pIv __ IpIBlITy
- g ewewht / (2m)1 K2 — M3,
= —6ewswgig" Ao(My). (4.66)

= —i*egew guagon Gro it / (
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yZHY
15

_ ecos(?QW) S 25/ dk 1
g Cw uBGavg M (27T)d L2 _ M{%V

2 2 d
2 (v — Sw) 2 d'k 1
= g SWg/.Ll/ i H / (27T)d ]{72 _ M‘%V

sw(cd — s
_ —QZMQWAO(MW)- (4.67)

We now need the sum of these 6 amplitudes for the total unrenormalized

bosonic vZ self energy, which we will decompose into transverse (T) and

longitudinal (L) parts:

where:

Z
HEOS,T(QQ)

Z
HEOS7L(q2)

v HaV .7
HE%SM - (glw - qqg >HEZS,T + %H;Z,Ly (468)
g2SW 2 2 9 9 9
" 6o {[(186‘” +1)¢" + 8(3cyy + 1) My | Bo(g™; My, M)
+4(1 = 6y ) [Ao(Myw) — My ] + 2(]2/3}7 (4.69)
292MI%[/5W 9 o )
= ————Bo(q"; Mw, Mw) = 5—— My, By. 4.70
cw O(q y AW W) 27TSWCW w Do ( )

It is a well-known fact that only the transverse component of a self-energy

contributes to S-matrix elements, since the longitudinal part vanishes when
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contracted with a polarization vector: €,¢* = 0. The first term of (4.68) then
obeys the Ward identity quﬂygisw = 0. Therefore, at some point, the longi-
tudinal component must cancel or else this condition will not be obeyed. Our
unrenormalized SE in (4.68-4.70) agrees with that attained in [57]. However,
rather than renormalize it now, we can form a gauge-invariant self-energy us-
ing a method known as the Pinch Technique [58]-[59]. The technique states
that the non-Abelian vertices WW~ & WW Z of diagrams 7 & 8 in Figure 4.2
each contain a term which effectively “pinches out” the intermediate fermion
line in the loop. The remaining diagram resembles a 7Z mixing contribution
which can then be folded into (4.68). See Figure 4.4 for an illustration of the

effect. We can start by writing the full expression of diagram 7, which is:

% pinch

Figure 4.4: The pinch technique applied to the electron’s anapole moment
vertex diagram reveals a hidden vZ mixing piece after removing the inter-
mediate fermion line.
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g\ oA i -k —igy,
— (E) /Wue<p3)’)/ PLm’Y PLue(pl) (m)

" ((k e M3V> <q§i_96§2> (~ie)lg™ (g — 20)°
+g7(k+q)" + ¢ (k — 29)"). (4.71)

The non-Abelian YW W vertex, which is in square brackets, contains two
terms which generate a pinching effect: k7 and k7. So let’s isolate them for

now, denoting |, for the pinch part they constitute:

2 4
M|, = —% %Ue(mWaPLﬁWZPLUe(Pl)
GivGar 958 (g k™ + ¢°TkY)

(k% — ME)[(k — q)* — ME](¢* — N?)

. 2 4
- s | <jw]§4“e(pWPLpl Pl
% (glﬁka + gaﬁkl)
(k2 — M) [(k — q)* — Mg

L ig’e d4kﬂ
- 2((]2—)\2)/(27T>4 e(p3)

l_kka

X

mﬁm

te(p1) !
VR M) (k= 9)? — ME)

L (4.72)

+75 P

Py
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We can then us the simple identities:

kP, = —Prk, (4.73)

—f= (pl —F) - P (4.74)
in which case the terms inside the square brackets reduces to:

B b o D b,

= PL <1 — plpi %>’)/gPL — ’)/BPL (1 - plpi k)PL (475)

In the forward limit one has P, = P,, and we are also “sandwiching” this

Pr

expression between the external spinors in (4.72). Thus we have:

PL (1 — plpi k)fm,PL — ”yﬁPL (1 — plpi %) PL- Ue(p1>

Ue (p1>

~ —20Ue(p1)YsPrue(p1),  (4.76)

where we have used the massless fermion limit: p u.(p1) ~ 0 and Pf = Pp.

(4.72) then reduces to:

dgte [k !
Maly = 52 /(%)4 e(P1)v8PL e(pl)(k2_MV2V)[(k_q)2_MV2V]. (4.77)

The remaining leptonic current Jg’ = Uc(p1)ysPruc(p1) is an unphysical one



CHAPTER 4. RADIATIVE CORRECTIONS TO Qw(P) 142

for the electron. Nonetheless, we may express it in terms of physical ones:
Jj = 2(J7 + s J3), (4.78)

where JMZ and J] are the neutral and EM currents without their coupling
constants. Since it is a photon (purely vector) which couples to the pro-

ton here, in order to attain a PV effect, we need the J/g term from (4.78).

Therefore:
2ig%e [ d*k 1
Ml = / TeJZ u,
O N LA V) [ e R

ige [ 21 -

- ?(@) Bo(q2;MW7MW)ueJ6Zue

e Q ) o,
- _? g2 B()(q ;MW7MW> ueJﬁuea (479)
w

which gets multiplied by the proton’s photon current ﬂpJgup in the full scat-
tering amplitude. This implicitly means that this is a contribution to the v2

SE. We next need to evaluate the pinch part of the proton vertex in diagram
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d*k —ighe '\ |
= 2m)*\ g2 — M2 igew [gs-(2k + @) p — Grp(k +2q)5s + gps(q — k)7]
Z

—igod —ig™ ~ ig (P, kM) g
’ (kQ - Mv2v> <(’f +q)? - Mﬁv)up(pzl)ﬁyﬁpm(pz —k)? = M2./2

X Yo Pruy(p2)- (4.80)

This expression assumes that the nucleons are pure spin-1/2 Dirac fermions,
while in fact, nothing forces this to be true. Fortunately this loop expression

involves:

numerator

Vi [ 'k (R~ 3E)[(k + 9)2 — M3][(pa — )2 — M7

(4.81)

The two W-boson propagators implies that this integral is dominated at high

k? momentum scales — a limit in which the nucleon behaves like free quarks.
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Therefore, our vertex approximately behaves as (taking ag = 0):

% z
Mg(proton) = . . ~

p p

I . (4.82)

So let us proceed with the up quark contribution:

_ 7.3 4
My(u) = zgcw/dk

1
7u Pp— aP U
g g) | (P e i)

P
y g"°g*° g™ g5+ (2k + q)p — Grp(k + 29)s + gps(q — k)]
(k? — M3) (g + k)? — M| ‘

(4.83)

The pinch terms originate from ks and k, here, and so the pinch part of this

diagram will be:

. 3 4
19°Cwy d*k 1
Ms(u = — / Uy (Pa) V8 Pr———Va Pruu(p
8( )’p 2(q2—M§) (271')4 ( 4) B L]bz_'% L ( 2)
9"°9*° 4P [groks + Gk
(k2 — My)[(q + k)? — M|

.3 4
19°Cywy / d*k 1

= - Uy (P4) V8 P —;Ya Prtu(p2)

2(¢2 — M3) ) (2 Y Lz@—% e

VIS VER (PRESay veRk (4.84)

X

This expression is identical to that of Mz[,, but with a slightly different
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prefactor outside the integral. They are related by:

e gcw
Ms(u)l, = M|, (? - ¢ — ]\/[2)’ (4.85)
z

ig3cw d'k " 1
= Ms(u)|, = -2 (Qw)wu(m)’y PLuu(p2)(k2 — M2)[(q+ k)2 — MZ]’

and in this case we now need the EM part of the J{' current for a PV con-

tribution:
Me(w)|PV = 22’3%,[,93014// d*k Uy SNty
? ¢ — Mz ) (2m)* (B — M)[(q + k)* — M]
2igcwe2 3 7
= g e o Mw M)
o  glw
= —gmuuﬂfuuBo(qQ;Mw,Mw). (4.86)

The full EM currents of the up and down quarks are:

2
Uy JHuy, = +§eﬁu7“uu, (4.87)
ﬂngud = —gﬂd'y“ud, (488)
= 2y Sy, + Ug S ug = +euy'u = upJHu,. (4.89)
Therefore:
Ms(proton)|”V = — J acyy yJ u, Bo(q?; My, Mys), (4.90)
8 p CW(QQ_M%) o pd~ UpDolq ) ) .

and this expression will get multiplied by the electron’s neutral current



CHAPTER 4. RADIATIVE CORRECTIONS TO Qw(P)

146

ﬁeJMZue in the scattering amplitude to also contribute to the vZ SE. To

recap our PT results, we now have the two expressions:

(& (0% B
MY = gy, Bola’ M M)
PV _ 9 acw 2, _
Msl,” = T(# - M2) 2n Bo(q”; My, My )ty Jy .

However, in order to make sense of these results, we should consider the full

scattering amplitudes, and make sure that the currents present include their

respective coupling constants: Jg ~ g/ew, J¥ ~ e. Doing so gives for the

S-matrix elements:

Py scattering 1 (0763774 1
py s, Lfoon L
2wsw q* — M,

q2

M. |PV scattering\ 1 acCy 1
8lp T2 2 2
q* — M3 \ 2msw q

Bo(qz; MW7 MW)) faejﬁzueﬂpz],gup,

Bo(qz; MW7 MW)) aeJMZ’ueﬂpJ#up,

and their contribution to the vZ SE comes from the quantities in round

parenthesis once the common mixing propagator has been factored out. Thus

our total PT part of the vZ self energy is:

acy 9 1 1
A, = Bo(q”; My, M, — + =
D 27T8W 0(q ) W, W) <q2 — M% + q2>

o g+ (P — M3)

= Bo(q%; My, Myy)

27 Sy Cw *(q> — M32)

e}
= m[QQQC% — M3 Bo(q%; My, Myy).

(4.91)
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Note that the M3, term of A, has exactly equal and opposite sign to Hg& L

in (4.70). This renders the sum H%ZOSW + g" A, gauge invariant. This total
forms now our unrenormalized transverse vZ PT self energy. The resulting
function, which we'll call 1), Lprr(q?), is UV-divergent and it must be
renormalized before it is inserted into an observable quantity. In order to

understand how it is renormalized, the vZ mixing propagator is defined as:

D'yZ(QQ) ~ q;{ql;p—_(q]\é = %---f--_, (4.92)

and its renormalization conditions require that:

I4(0) = 0, (4.93)

Rell’?(M3%) = 0. (4.94)

Therefore, in the on-shell (OS) renormalization scheme, the renormalized vZ

SE is constructed as follows:

(D%(¢?) = I%(g?) ~ I04(0) — L [ReTZ(03) - ID%(0)). (495)

Z

and so the counter terms are effectively functions of 1% (0) and Rell"Z(M3).
Rather than employing the OS scheme, we choose to use the MS scheme
which begins with the OS counterterms, but only keeps their A, = % —
veg + Indm terms in the renormalization subtraction. This renormalization

process equally applies to the fermionic expression as it does the bosonic,
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and so I include both below for completeness reasons. Inserting H%Z =

H}QT + HZOZ&T + A, into the MS scheme gives one:
- Q 1
0o, = m{ngNng(I? — 2s53Qy) [ — (¢* 4+ 2m3)Bo(¢*; my, my)

2
—|—2mffBO(O; my,my) + €

5 } (4.96)

~z o 7c? 1 1
HZos+PT = 271'3ch{[< 2W+E>q2+<2612/l/_§ MI%V

1 2
- <203V — §> M3, Bo(0; My, My,) + q—}. (4.97)

Bo(qg; My, MW)

18

Finally, we can insert both these expressions into the formula for x(Q?), as

well as insert the analytical expressions for the PaVe functions to get:

KN = Mz) = kp(q°) + k' (0F) — 1. (4.98)

The —1 term simply ensures we don’t double-count 1’s in k; & k}'7, as each

is given by:
2 o 1 f 3 2 m?” )
Iif(q ) = 1- 271‘3‘2/1/ ngNch(If—QSWQf) IH@—g—ZlZf
+1
+(1+ 227)psln [ 22 , (4.99)

py—1
2
— My

pr = /1—4z, (4.101)
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a 42¢2, + 1 1
PT(QZ) - 1 {_ 1% 1 2

T 2rsy, 12 W g

p, p+1 9 1
—| =l -1 4 —(1—-4 4.102
(2 np_1 > (7+ z)cW—|—6( 2)| ¢, (4.102)
M
z = —q;v <0, (4.103)

p = V1-—4z (4.104)

It then follows that we predict the running parameter: sin 057 (¢?) = k7 (q?)s?,,

where 5%, = sin® Oy (M2). The contributions from the fermionic, bosonic+PT,
and total are all plotted in Figure 4.5.
sin26yy

0.245 -

Total
—— Fermions

0.240 &

L —— Bosons + PT
0.235

0.230
0.001 0.010 0.100 1 10 100 1000

Q[GeV]

Figure 4.5: The fermionic contribution to sin®fy, (Q?) is relevant at low Q,
while the bosonic part sets in above the Z-pole mass.

As one can see in the figure, the fermionic part is large at low @ only,
while the bosonic is large at high Q only. This is easily understood as the (2

flowing into the loop must be large enough to produce the paired W-bosons
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around their mass scale, whereas the light fermions require a much lower *
in order to be produced in the loop. Another observation of these results is
seen by evaluating £ 7(q” > m7)|m;=m,. which is the contribution to the weak

mixing angle by the electron/positron pair at the scattering limit, where:

a 1 1
K’f(q2 > m?)'mfzme =1 _(—1) (5 — 25%)

2782, 3 M2 3 Q?
1 « m? Q* 5
= 14— (1—-4s%) [ In—% +In-< — =
T gL bw) ( "z T M 3)’

which is remarkably similar to A’ (Q?), and the connection isn’t exactly obvi-
ous. In fact, I find that their relative shift between the Thomson and scatter-
ing limits is equal: K% —r "™ = A Seatt_ 1 Thom 2 (1-4s3y) In(Q*/m2)—
5/3]. The main advantage of defining sin® 947 is that not only is it a gauge-
invariant quantity (which EW Lagrangian parameters aren’t necessarily), but
it’s also process-independent. Therefore, if all SM precision tests adopt this
definition, they are all in fact extracting/using the same quantity, regardless

of what experiment is involved.



CHAPTER 4. RADIATIVE CORRECTIONS TO Qw(P) 151

4.6 Apnp Correction:

The remaining terms in M; also contributes to a PV effect and it must be
calculated. This will be called the non-pinch (NP) vertex correction, which

is given by:

;2 4 —
1g-e d*k _ o (p k)
Milve = === [ gyateleshy PL—(pll_k)ﬂlPLue(pl)gmgmg(sg

<197 — 2K + 70— 297
ae (FS%(QQ) - FZ%(0)> (4.106)

lim 5
27r5W 2—0 q

—  —

which is the renormalized PV part of the vertex, and the embedded vertex

function is defined as:

ee 2M2
FQI/IW/(q2) = ( ) (0;0, My) — < q2W +3> Bo(q%; My, M)
2
+M2 | =X+ 2 )Cy(0,0,¢% My, 0, My). (4.107)
¢

This expression is well-behaved in the limit above, and it simplifies consid-

erably to give:

TS (q%) — T57(0) 4
li 2 2W = 4.108
#30 ( 7 OMZ, (4.108)

The Mg|yp amplitude is equivalent, and with the two, now we just need to

take the ratio with the M, PV amplitude to find the corresponding correction
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to Qw (p):

_ @ (4.109)

This expression represents a process-dependent correction to the weak charge

of the proton, which must effectively be added to the RHS of (4.2).
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4.7 Oy, Correction

We are now left with the task of evaluating the Box corrections to Qw (p).
The same technical difficulties which plagued the yIW box in the CC process
also affect the vZ box. Before looking at that case, however, we will calculate
the somewhat simpler “doubly-massive” two boson exchange (TBE) ampli-

tudes: Ozz, Oyw. The general amplitude for the ZZ box in the forward

limit is:

e~ . . o=

l 1 l—k 1 l
oxr 1 1

MgZ ‘f’LUd - Z Y k kT Z
: p+k : )

*@*1)

ig* d4k . ) )
B 166W (27T) gV’YV - gA%’,%)(l - k)(gv% - gA'YM’75)uél)
p(P) 907" = g 1s) P+ K+ M )(gvv“ — 947"5)up(p)
(= k)[(p + k)% — M?)(k? — M2)> )

(4.110)

which is a daunting expression indeed. The proton has been idealized here
to the level of a Dirac fermion. However, just as in Ms|,, this is justified,
as the high k% which probes the hadron means we can calculate My, for
free quarks and the combination 2u + d yields the proton result once again.
There are also many terms which this numerator will generate, and among
them all, only contributions of the form: (V or A). x (V? or A?%);.4 and

(V2 or A?), x (V or A)paq can generate a PV effect.
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Unlike vertex corrections, it is often simpler to work with cross sections when
dealing with box diagrams. Defining the box correction as the ratio of cross

sections (3.3), gives for the PV ZZ box:

% 2 rbox, PV
> MMy
OBy = 2 . (4.111)
22z > MrMEY

spins

Where the denominator here is given by:

(4.112)

Until now, we have been essentially using (4.111) to evaluate our Qw (p)
corrections, as in the forward limit, the M}’s essentially cancel. We will not
do this here, as (4.111) allows one to write their box expression as a product
of leptonic and hadronic tensors as was done in (3.29). I have found that

this correction has the following general crossing symmetry:
OYE" s, g5, g, = D55 (5). (4.113)

A direct loop calculation of (4.110) and its crossed box can also be done
exactly in the forward limit, but the PaVe expression is excessively large to

include here. In the massless quark limit, and omitting coupling constants
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and integration prefactors reveals that:

6g¢ e 2 e2

9ga

Let us see if we can use dispersive techniques to reproduce this result. To do

so, it will be helpful to split the box correction into 2 terms:
0%% = 0%% 142) + 0%%.3), (4.115)

where (1+2) denotes the total V' coupling to the hadron while (3) denotes the

A coupling to the hadron. Each of these terms has the following imaginary

part:
2mg% (947 + g%%) [2(1 + 7)%In(1 + 7) — (2 + 3r + 2r?)]
ImBOzz142)(r) ~ 97 r2(1+ 1) )
(4.116)
2mg% (5% + 982 [2(1 +7)2In(1 + 1) — r(2 + 37)]
ImDZZv(:‘})(T) ~ 4 ;eA = ,',.2(1 _'_7,,) )
(4.117)
s
ro= Mz (4.118)

Then we can use the following intermediate result of section 3.2:

ReO(s) = — /Ooo ds’<ImD(S/) - ImD(_SI)) (4.119)

T s'—s s'+s
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The first term corresponds to the box while the second term corresponds to
the crossed box where u ~ —s in the forward limit. Then using the crossing

relation of (4.113) gives us:

ImD(Zli2)(—s’) = ImD(ZIiQ)(S’), (4.120)

- (e <o o ey
ImD(Z3)Z(—s’) = —ImD(Zg)Z(s’), (4.122)

N (mifzi(s/) B Imms(zi(ssf)> _ 23’%. (4.123)

Therefore only the axial-vector part of the ZZ boxes contributes and the real

DZZ

part of at the zero energy limit is:

9 oo ImO%4(s
ReDZ7(0) = = / ds'+()
0
2 952 +g5%) [ [2(1+7)In(l+7r)—r(24+3r
o 2 g [ PO ) 2 )
T 95 0 MZr3(1+71)
6q e 2 e 2

e

ga

This result now includes the crossed ZZ box also — a subtle convenience for
analytically continuing to negative energies in the dispersion relation. Then

we can insert the appropriate prefactors to get the official correction:

3 (95° + 97°)
0%2(0) = — 24~ IV /4 44 4.125
tot( ) o o Sw dv9a ( )
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Finally, we can take the proton sum: > to get the sought proton re-
sult. It was also stated by the authors qngTgi] that this box amplitude can
be perturbatively corrected by QCD interactions (we will see how this gets
determined, but for the WW box in the following section), which leads to an

additional factor of 1 — ag(My)/7:

a 2 2 4 as(Mz)
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4.8 Oyw Correction

The WW box amplitude M52, can be attained from M%% under the substi-

tution:

Mg ~ MYS|g,-1/2, gu—1y2; (4.127)

with the understanding that there is also a different overall prefactor due
to slightly different coupling constants. The axial and the vector couplings
apply to both the electron and proton in (4.127) - hence their lack of su-
perscripts. Despite this simple translation, there is a subtle difference be-
tween the greater O, & Oy quantities which must be accounted for. To
demonstrate this, we begin by writing down the diagrams for the WW box

amplitudes:

: e T e
1 1
M&%V - w —\;, ,;\w - ) (4'128>
| |
U d U
- Ve e~
\\ ,l
zbox \\ /,
MWW — ,x\ . (4129)
W*/ \W*
d “ U > d

Since we need the combination 2u + d, this means that for the proton:

Oww = 2000, + Ofsr, (4.130)
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due to the flavour constraints of the diagrams above. For Oz,, both the
up and down quarks have a box and crossed box. This weighted expression
in (4.130) means that in the dispersion integrand for Oy we will have a

contribution proportional to Imlj?ﬁfg), of which the very last term reads:

1 [ 1
Oww ~ —/ dr — 00. (4.131)
T Jo 1+7r

Of course, we don’t really need to calculate Oy y dispersively, as the direct

loop calculation is already known, giving:

8 S —S 16
pos I P | ( ) = 4.132
wiv (3) cgvl (M2, +s) \MZ, ] 2, (4132
Dbox 4
Daﬁ%(s) = — WW—)—T (4133>
4 Ciy

However, it will be re-assuring to demonstrate the fact that the dispersive
technique can be adapted to compute Oy, just as well here. This adaption
is known as a subtracted dispersion relation. Applying Cauchy’s integral

theorem to the closed contour of Figure 4.6 gives us the relation:

F(s2) = Fls0) + = ; i /OO ds— /) (4.134)

(s —s0)(s—8z)

where s is called the subtraction point, s, is the point of interest and f(sg)
is the subtraction constant. One glaring limitation of this equation is that

we are now required to know the full function f at an arbitrary point in order
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to get it everywhere else, where as the unsubtracted relation only asks that

we know the imaginary part as input.

Tm(s)

S0

Sth

Figure 4.6: The contour chosen to derive (332) where s, is any point inside

the infinite circle.

We will apply the subtracted relation in the extreme case of sqg & 0 = syy,.

From (4.116-4.118) we have that Im0%%2,, = 87 /c%, (M3, + s) and we get:

D%%(Sw)

as we already know.

se [, ImO%% (s)
— [gboz 0 e d wWw
WW( ) + T /0 S S(S . Sa:)

_ 82, s / " ds —8ms
o T ey s(Ma, + s)(s — sz)
8(2) 85, [InM32, — In(—s,)]

Cly ciy (Miy + s2)
8 oIn(—s, /M2 16

_ 8|y snCe/My) ) 16 (4.135)
Ciy My, + s, Ciy

Now let’s add the crossed box and officially compute
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the correction to Q. (p). The prefactor for each is:

Miw  gt/(2v2)'(1/7%) oy

O ~ ~ = 4.136
ww MEY (g9/cw)? 167s%,’ ( )
«
= O =—- 4.137
ww 775%/{/, ( )
o
Dmbom - 41
= Sww dnst, (4.138)
Then (4.130) finally leads to the known result:
To
O = . 4.139
ww 4rsy, ( )

There is a further improvement that can be made to this result, and one that
somewhat honours the fact that the quarks inside the proton can interact
via the strong interaction. To begin, let us look closely at the expressions of

MEex, & Mpex found from (4.128-4.129). The former being given by:

o 1°g d'k | (p, — k)
My, = 56 / 2y [Ue(p:a)%(l — 75)@%(1 - 75)%(1?1)]
X [uu(m)’y”(l - 75)%’7“(1 - 75)%(]72)]
X ! (4.140)

(k? = My)[(q — k)* = My |
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Inside the leptonic current we have:

Ue(P3) V(1 = 75) (P, — K)vu(1 — v5)ue(pr)
—F

= 2ue(p3) 7w (P, )Yu(L = 75)ue(p1)
~ —20e (p3) Yk, (1 — v5)ue(p1)- (4.141)
= Mgff/(v ~ —% / %%(m)%%%kﬁﬂ - 75)ue(p1)k2(k2 _1 M2,)?

xaumw;m — ) tta(p2).

(4.142)

We can then use the Chisolm identity inside our lepton current, which states

that:

Yk = Yk kL) — Guuk +i€suay Ysk?

= P, +(NP),,. (4.143)

The first & second terms refer to “pinch” & “non-pinch” respectively for
their effect on the intermediate quark propagator in M2%,. In the literature
[58]-[59] the so-called “pinch technique” refers to the same mathematical
effect as P,, above. However, here it will not be used to form a gauge-

invariant SE — and so I will call this the “superficial pinch technique” (SPT)
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to distinguish the two. Keeping only the pinch term gives the pinch part of

the box:
4 4
box _ g d’k U !
MWW py = _1_6 W{@(}%)('M’% + 'VVku)(l - 75)u6<p1)k,2(k2 _ MI%I/)z
1
Xitu(pa)y” " (1= 75 ) (p2)
4 4
gt [ dk 1
= ) / W%(Ps)%t(l - 75)u€(p1)k2(k2 _ ]\/[gv)2
Xty (pa)y” (1 — ¥5)tu(p2)
= e(ps) (1 = 75)ue(p1)tu(pa)y” (1 = ¥5) 1t (p2)
4 4
g d*k 1
_Z ) 4.144
’ [ | oy M5v>2] o
Then using:
/ d'k 1 M Bo(0; My, M) — Ao(Mw)
m)* k2(k2 — M2,)2 N M3, M
(4.145)

with 7 = —1/7%, our pinched box is fully reduced as:

MYy = (83 (L= )te (1) (pa)y (1= )t (2) (ﬁ) . (4.146)
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We will also need to calculate the non-pinch part of (4.142) and it is:

Mbox | _ _9_4/ d4k ﬂe(pii)(_guuk + iEuﬁua7a75kﬁ)(1 - 75)”6(171)
WW INP 16 (2ﬂ.>4 kz(kz _ MI%V>2
1
Xﬂu(mh”%v“uu(pz)
4 d*k
= %6 / —(27r)4 [ﬂe(p3)76(1 — Y5 ) Ue(P1) Uy (Pa) Y YV (1 — v5) Uy (p2)
guukéka _ @
X k‘22(k:2 _ MI%V)Q - ue<p3)’7 75(1 - 75)%(291)
_ v i€y suak’ k-
XUy (pa)7" "M (1 = 75)uu(pz)k22(kf;u_ 7 )2] . (4.147)
W
Then using:

/ d*k Ktk 1 / d*k g (4.148)
2m)* k22 (k2 — M2)2 4] (2m)* k2 (k2 — M3,)? '
1

= m 4.149
47r2M5Vg ’ ( )

allows us to get our reduced non-pinched box:

4
oxr g — — vV_ o
My Inp = ARIVER (e (P3) a1 = 75 )te(P1) T (P2)7 Y0 (1 — ¥5) U (p2)

—ilie(ps) "5 (1 = 75 )tte (p1) e (Pa) 7" 7" (1 = 75t (D2) Evpua] -

(4.150)

We could further simplify the first term using v*v%*v, = —2~%, but the

term ~ y/vPyte, 5,4 is irreducible. So far, we have been using a ratio of
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amplitudes to derive our Qw (p) corrections, but it will be instructional to
use a ratio of cross sections here, just as (3.3) suggests. For the tree-level

amplitudes, we have:

2

MI(A) = %ﬁu(pzmuu(m)ﬁi(pl)vaue(ps) (4.151)
Mz(A) = _mue(m)'}’u(%@/_9275)%\(?1)
Xt (Pa) V" (97 — ga5)uu(P2). (4.152)

With these two expressions, we can evaluate the Born cross section:

4

Oporm(\) = Y MIMy,~ 55 L Tr[p,vap, " (90 — 947%5)]

spins

XTr[(1 + Ays)p, v Py (95 — 94s)]
16e* .
= g (e plob (Gh +ab) — (e + )
SWCW

+(p1 - p2)(ps - pa)lga(ghy — 90 N) + g0 (gy — gAN)]. ) (4.153)

Then we will take the PV combination: (A = —1) — (A = +1) as well as use:

u
P1opa™ =5 R P2 P, (4.154)
s
P1-pP2 = 5 ~ P3 - Pa, (4.155)
to get:
8e? .
Thon = 5555 W (9590 — ghah) + $*(gagh + ghat)].  (4.156)

2 172
siyciyMzq
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At forward scattering s ~ u?, so we simply get:

16¢e*s .
Thorn ~ —M2 949 (4.157)

Sww

Meanwhile, in the numerator of our correction, we must compute:

oWty = D MMy, (4.158)

spins

- 2 - 4
boa B 1€ —19” \ 1
= Owwlp = <?> (m) 5 Trlpyvap 7" (1 = 5)]

XTr[(1 4+ Ays)p, v Py vu(l = 75)]

e
- [64(A—1)(p: - -
167T2M5V5%/Vq2[ ( )(P1 pz)(pg p4)],
26852
box |PV
= = p a3 4.159
S T (4150
Thus the correction due to M{%, |, will be:
5bo | Oa(/)}‘jﬂpv o 26652 SIQ,VC%VM%QQ
e bV m2MZstq? 16ets2gS gt
o2
8m2s?,
a
= . 4.160
2ms%, ( )

We can repeat this process for the non-pinch part. The first & second terms
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of (4.150) respectively yields:

box |PV  _ e’s” 3¢%s”
WWINE = om2q2 M2 st 2m2q2 M2, s%
2¢552
S — 4.161
w2q2 ME, sy, ( )
oxr «
= ovr N = TR (4.162)
W

Indeed this entire analysis can be repeated for the crossed box and the final

results are nicely organized into Table 4.1 below.

oww X =% | Pinch | Non-pinch | Sum

52,
BOX 3 3 1

XBOX —3 : -2
Proton sum 2 2 I

Table 4.1: Oy corrections decomposed between box and crossed box as
well as pinch and non-pinch components.

The total proton sum is consistent with (4.139) as we require. The inter-
esting physics here is that the total pinch sum is independent of the details
of the strong interaction, as it corresponds to a WW box with the intermedi-
ate hadron propagator pinched out. The non-pinch sum, however, is at the
mercy of pQCD corrections in ag. Therefore, we may use these results to

generalize (4.139) to:

D”rnl =
4 52”7

2+5<1—M)]. (4.163)
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4.9 0O,z Correction

The vZ box correction has been calculated dispersively by a number of groups
[60]-[66]. Rather than give a detailed explanation of the computation of this
correction, I will simply give a quick summary, as the work of this disser-
tation did not focus on this particular RC. In the case of e™p scattering,
both the V' coupling and A coupling to the hadron makes a contribution to
Qw (p). Furthermore, their energy dependence is of interest unlike the O7W
correction, which only matters at zero energy. Concerning the dispersion
relations, the vector and axial-vector corrections have the following general

relations [64]:

2F > 1
ReD,(E) = —r /0 dE’mImDKZ(E’), (4.164)
A 2 > / El A /
ReDvZ(E) = ;P ; dEmImD’YZ(E) (4165)

Due to the factor of E in (4.164), the vector correction goes to 0 as E — 0,
while the axial correction remains finite in this limit — as we have seen from

(3.56). The imaginary parts of DXZ and D:;‘Z have been calculated, and in
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terms of structure functions, they are given by [65]:

_ RER(0)
w8 = i L[ g
N2
7 L (V(VmeMfi)Q?) 771 (4.166)
A _ mes o 0e(Q*)a(Q)
mBa7(E) = &= M2 /W2 dW2/ W onE
[W2 . yEwerhe 5] F7, (4.167)

where v.(Q?) = 1 —4s%,(Q?%), s = M?>+2MF and Q?,,, = 2ME(1—W?/s).

The FY f 5 interference structure functions have been modeled with various
parameterizations from SBMTH [61] - [63], GHRM [64] - [65], CR [66] and

their results for the vector part are given in Table 4.2.

Authors | OY,(E = 1.165GeV) x 107°

SBMTH 5.57 £ 0.36
GHRM 5.46 2.0
CR 5.7£0.9

Table 4.2: D‘W/Z corrections computed by 3 separate research groups.

The axial box has been computed as well. (4.167) can be substituted into
(4.165) and the [dE’ integration evaluated. The details of this procedure

have already been described for DYL‘W in section 3.2. This time we can keep
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the energy dependence in, and the result is [61]:

D?Z(E) _ / Q2 Ue Q2 (QQ) )/ d$F;Z(x,Q2)f($,Q),

+Q2/M2
(4.168)
1 t? t
flz,Q) = = In{1— ) + 2t tanh ™" i (4.169)
t = 4]\55:5, (4.170)
ro= 141 +4M222/Q2, (4.171)

which simply reduces to (3.104) when {v. — 1, My — My, E — 0}.
In 2011, the authors of [6I] found this contribution at zero energy to be:
02,(0) = (4.4 .4) x 107? and to have a rather mild energy dependence. At
the Qweak beam energy the axial corrections are shown in Table 4.3, which

are again, all very complementary to one another.

Authors | 02, (E = 1.165GeV) x 1072

SBMTH 3.7+ 4
EGRM* 3.97 £ .22
CR 4.0+ .5

Table 4.3: D:;‘Z corrections computed by 3 separate research groups. *EGRM
is a recently updated value [67].
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4.10 Updating Qy(p)

Putting together the results of sections 4.2 - 4.9 we can state the following

expression for the 1-loop corrected weak charge of the proton:

QW@ = (NE + A0 [L— 4sin® B7(Q) + ALQ) + Anr]

+0ww + Ozz + 0,2(E). (4.172)

- is only defined at Q* = 0, in accordance to equation (1.76). How-

ever, both sin? 057 and A’ were found to have a Q*-dependence between the
Thomson and scattering limits. Since no e”p — e~ p PVES experiment can
be done at Q? = 0, we keep the full Q? dependence where it is due here.
The catch being that any explicit Q*-dependence in the RHS of (4.172) must
be placed into the 2nd term on the RHS of (1.76) when Qw (p) is extracted
from a fit to PVES cross section data. In Table 4.4, I have included all of the
terms of the RHS of (4.172), to summarize my findings. For the parameter

PpNEC T use an updated value of from the Particle Data Group [68].
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Correction Expression Q*=0 | Q%= .025GeV?
pNEC (206-207) 1.00066 1.00066
sin? 057 | (252),(296),(297-302) | 0.23867 0.23847
JAVS (243),(249) 0.00116 0
Al (243),(249) -0.00141 -0.00084
Apnp (307) 00221 00221
Oww (361) 01831 01831
mpy (324) .00183 .00183
0, 2|g—o (362-363) .0044 .0044
MO (p) (370) .07069 undefined

Table 4.4: Radiative corrections to Qyw (p) considered at both the Thomson
and Scattering limits.

A meaningful goal from this analysis is to extract the weak mixing angle
from a measurement of Qy (p) as suggested by (1.75). We will use an updated
version of (1.75) which comes from our (4.172), as we would like to use the
gauge-invariant pinch technique definition of sin® fy, py. This was done by
the authors of [53], who quote their experimental value of the weak charge
of the proton as:

Qw (1) qweak = 0.0719 £ .0045 . (4.173)

Using this experimental value together with the results of Table 4.4 at Q% = 0,
I find consistent results with [53] for the weak mixing angle at the Thomson
limit:

sin® Oy pr(0) = 0.2384 + 0011 . (4.174)
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This result is in agreement with the SM prediction of [52]: sin® 0y (0) =
0.23867 +.00016, which is claimed to be commensurate with the pinch tech-
nique definition. It is recommended to those with available data on A%, to
re-extract Qw (p) with the newly-determined Q*-dependent RCs provided in

this dissertation, and repeat this test of sin” Ay .



Chapter 5

Conclusion and Remarks

Now that all of the important radiative corrections have been calculated,
it is time to understand what conclusions they lead to. We have already
discussed the effect of the RCs to the proton’s weak charge in chapter 4, and
so in chapter 5 we will now study our results for DZ‘W, which was computed
in chapter 3. First I will revise the CKM matrix element V,; and its effect
on the unitarity condition. Next, I discuss a relationship between the CC
valence structure function to the NC ones, which allows a comparison of this
work to previous work on the vZ box. Finally, I will detail new constraints

which can be placed on a few SM extensions (BSM physics).

174
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5.1 Revising V,,

Our job now is to take the computed radiative corrections of section 3 and

apply them to update V,4. The A}, inside (1.80) is given by:

(0% MZ
AE = % 3lnﬁ — IHCW + QDZXW
= 0.017007 + 207", (5.1)

where the .017007 also includes the re-summed logarithm analysis of Mar-
ciano & Sirlin [I1]. Inserting our new, dispersively computed DZ‘W from Table
3.3 then gives:

A}, = 024767 & .000184 . (5.2)

Then this will be inserted into (1.80) with F't = 3072.07 £ .63 to give:

’VUdEuperallowed = 94799(26) . (53>

The 2018 PDG gives us the other matrix elements of the top CKM row. They
are [70]: |Vys|? = .05031(16) and |V,5|* = .00002(0). We can then define the

following convenient CKM unitarity test quantity:

S = WVadl* + Vi + Vs, (5.4)
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and with our values above, the experimental value of this quantity becomes:

Yndy = .99832(42), (5.5)

which falls short of 1 by ~ 4¢. Although this is not compelling evidence that
the SM is incorrect, indeed tension has been raised with the CKM unitarity
condition. Before this dispersive analysis was performed on D'AW, the latest
consensus from [14] gave |V,q|> = .94907(29) which had Y¢x s in agreement
with 1. A comparison is shown in Table 5.1 for this unitarity result between

3 research groups, as extracted from the totals in Table 3.3.

Authors DfW x 1073 | B33,
MS 06 | 3.26(19) | .9994(5)
SGRM ‘18 | 3.79(10) | .9984(4)
SBM ‘19 3.88(13) .9983(4)

Table 5.1: DﬁW corrections computed by 3 separate research groups and their
effect on the SM CKM unitarity prediction.

The dispersive analysis is one which aims to improve DZ‘W in both the ac-
curacy of its central value and by reducing the hadronic uncertainty. Looking
at Table 5.1, we see that this has essentially been accomplished. Our final
uncertainty is largely due to the Regge region, and to a lesser extent, the
elastic region. The poor data shown in Figure 3.20 should really be updated,
should new low Q? data allow it.

Although not as precise as the superallowed 5 decay case of (1.80), V,,4 may
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also be extracted from neutron lifetime measurements via (1.82). Here we
need to know the correction Ag, which contains both inner and outer radia-

tive corrections. Combining (2.1) & (2.3) gives us:

+ AY. (5.6)

o M 81 472
= o) 3
R 27r[3n 25, ) T10 7 3

We already have our AY, and the terms inside the square brackets are:

3 M.
—1( ”) — 02094 5.7
or \2E ’ (5.7)
a (81 Ar?
%<1—0——3> —  — 005876, (5.8)
[0
QB = .015064, 5.9
=>27T9( ) (5.9)

and this means we will get:

Ag = 0.03983(18) . (5.10)

Meanwhile PDG (2018) gives us for the neutron: 7, = 879.3(9)s and A =

—1.2723(23). Substituting all of these numbers into (1.82) then gives one:

IV, — .9524(12), (5.11)

|2
d|neutron

which easily agrees with E%XI?M = 1 within uncertainty, but it clearly has an

absolute uncertainty nearly 3 times greater than that estimated from super-



CHAPTER 5. CONCLUSION AND REMARKS 178

allowed [ decays. Perhaps with improved future A measurements, |Vq|neutron

can be competitive with (5.3).
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5.2 Relating FS( ) to F;Z

There is a strong connection between the structure function F?fo) found in
CC processes and the function Fy' Z which is found in NC processes. This was
pointed out by the authors of [30], and a detailed proof will be given below.
Understanding this connection will allow us to freely compare previous results
for 077 to our new results for %", To begin establishing this relationship,

consider the axial current of the W-bosons:
Al = ¢y ys7ig, (5.12)

which is a rank 1 tensor in isospin space. This is traditionally decomposed

into ladder operators and a z-component via:

At = (A% £ i AY), (5.13)

1
s
AV = Ak (5.14)

The axial charged and axial weak currents are defined as:

1
(Ji)a = EA}’“, (5.15)

1
(4 = —5AM. (5.16)

Meanwhile, the Wigner-Eckart theorem states that a spherical tensor’s ma-

trix element in angular momentum space is related to a product of a Clebsch-
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Gordon coefficient and its “reduced” matrix element which is independent of

the z-component substates:

, , (j'm'kq|jm) , . ,
(Gm|T® |j'm’) = W(J'HT(MHJ% (5.17)

which can perfectly apply to the case of |jm) in isospin space. The hadronic
tensor in our vyW box is proportional to the interference matrix elements of

the isoscalar EM current and the axial weak current:
0 0 y
E® ~ (ol T () alm), (5.18)

whilst (5.15) implies that:

11>
T2

Bl(T)aln) = <% %‘ % 4l

- Gl %\A” b
< b = e(ihbr e DL e

where C(jkj';mgm’) = (j’m’kq|jm> are the traditional C-G coefficients, and

in particular C' (% l —= ) v/2/3. Thus:

olCRam = (5|4 5)- (5.20)
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Meanwhile let’s consider the isovector combination of (J%)4 currents:

I ale) — (al(Tpaln) = —2 {5 42 ]| +2)
%<%’1_%1A%V ;7_1%> 1 1

- —go(? g;ﬁf §Z<§u ?'52
0515739 —3)GlIA5)

- 5~ Gl
3+ 25) Gl )

B 13<2HA0V %>

_ 13<2HA1” %> (5.21)

Equating (5.20) to (5.21) means that:
(Pl T (i) aln) = (Pl TGN (J5) alp) = (] T s (J%)aln), (5.22)

since Jgﬁf plays a superfluous role as an isospin operator here. Next, we
can think of Ji,, as the sum of its isoscalar and isovector parts: Jp,, =

JOm L J@ from which it follows from (5.22):

(DTt (T aln) = (o) Tieas (J5) alp) — (0] Thers (J5) aln)

—(p| IS (TG) alp) + (n| T (TG aln). (5.23)
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Since (J4)a € (I =1) and Jo € (I = 1) we can either have Jrt(J4) 4 e(I =
0) or (I = 2). The (I = 2) case vanishes under (3, +3|...|5,%+3) and the

(I = 0) case cancels in the combination (p|...|p) — (n|...|n), leaving us with

(plTons (i) aln) = (plTirs (J5) alp) — (0] Jirs () aln). (5.24)

The RHS of (5.24) is directly proportional to the interference structure func-
tion found in the yvZ box between proton and neutron. Taking the other
time ordering of this equation into account (which is trivially satisfied in the

same way ), we recover the following relation between structure functions:
(0) z z
Fy7 = F)D — FJ,. (5.25)

The most precarious region from which we model Fz,fo) is the Regge region.
The fact that we still have no direct data on FJ 7 in this region means that
this relationship has very little chance of improving our model constraints
on FB(’O%@Q. Instead, in a recent work [67], the axial part of the vZ box was
re-computed with the help of the relation:

1 _
7 = S5+ 7O (5.26)

where Fy 7 is the small isosinglet component of F377. Both terms on the

RHS can be modeled analogously to F. 350) and fitted to the same neutrino data
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[50]. Thus, the practical role of (5.25) for us is more of a consistency check
at this point until tighter constraints can be put on our Regge region input
data. As an exercise, we can see if our prediction for DXII/% , 18 consistent
with previously used FY ieg.

In [61] a relatively simple model was used for F;” in the Regge region which

merely requires it to match the DIS prediction at the Regge-DIS boundary,

but one that also forces FyZ(z, Q% — 0) — 0:

NZ 1+A2/Q3F7Z

2
3,Reg — HA—W 3,D[S(xa Q0): (5.27)

which, in turn, has an identical z-dependence as the DIS model. A? is a free
parameter which is in the range (0.4 — 1.0)GeV?. (5.27) can be separately
applied to either the proton or neutron [62]. The difference is defined by

Fgg ¢ Which is given by:

7 _
Fibrs = Y42e094(0 —q)

%uv + %dv, proton
= ) (5.28)
1

Uy + %dw neutron
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Applying (5.25) to the RHS of (5.27) gives us:

0),To 14+ A%/Q3 Z, Zn
F?E,szeg i 1+ A2/Qg (F?:Y,D?S - F?;Y,DIS)
1+ A?/Q3 (uv — dv)
14+ A2/Q2\ 3
1 +A2/Q§F(0)
1—|—A2/Q2 3,DIS"

(5.29)

This is a toy model, as it is not rooted/supported by data or fundamental
theory. Nonetheless, we can then attempt to compute Dl%eg from (5.29) for

various values of A. The results of this exercise are given in Table 5.2.

AlGeV] | O}, x 1073
4 42
D A1
.6 .39
7 38
.8 37
9 .36
1.0 .35

Table 5.2: DﬁW contributions from the Regge region using the toy model in
(5.29)

These values are certainly quite comparable to our D}%e g = (.37£.10) x

1073, and the central value of .37 corresponds to A? ~ .64GeV?2. One possible
problem with (5.29) is in its Q*-dependence. At low 7?2, the Christy-Bosted

)

parameterization of F?)(O is physically motivated by cross section data and

it is a monotonically increasing function as Q? — 0, where it approaches a
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constant at Q? = 0. F;%eg as predicted by (3.137) also behaves this way
at W2 = 4GeV2 On the other hand, Fé%;oy does not have this feature as
Q? — 0. However, it is greater than Fég;eg at intermediate Q? values. The
end result is that on average, it has a similar area under it over the Regge

range 0 < Q? < 2GeV?. As a result, their predictions when integrated inside

oW

A Reg T€ 1N VETry good agreement! In any event, it is reassuring to see that

. Z . . 0
a previous /). model can be reconciled with our new Fg( 1%1@ , extracted from

neutrino scattering data and Regge phenomenology.
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5.3 BSM Constraints

One of the big questions we can ask ourselves with discovering a non-unitary
CKM matrix is what new BSM physics can explain this. In principle, the
total number of allowed fermion generations is not restricted to be 3. If our
3x3 CKM matrix in (1.41) isn’t unitary as hinted by the result in (5.5), one
possible remedy would be the existence of a 4th quark generation: (¢',V).

Then the new CKM matrix would take the form:

Vud Vus Vub Vub’

Vea Ves Vo Ve
vaa = R (5.30)
Vie Vis Vi Vi

Via Ves Vo Viw

and first row unitarity would then give:

Yoy =1— |Vl (5.31)

(5.5) then places a constraint on this new matrix element:

|V | < .04095 . (5.32)

Furthermore, using global EW precision measurements, additional constraints
on both the new matrix elements of (5.30) can be made, as well as minimum

allowed masses of the 4th quark generation members. For instance, in [69],
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the lower limits of the new quark masses are expected to be:

my > 256GeV, (5.33)

my > 128GeV. (5.34)

Global EW analyses are very useful, as introducing a SM extension such as
that of a new quark generation will have consequences for many observables.
Just as we saw how the heavy (¢,b) quark pair affects pyc in (4.9), a similar
analysis would apply to (¢/,V'), giving a similar contribution which would

involve their masses. We would also have a CKM angle 65, defined by:

Vil Viw| cos B34 sin fsy
_ . (5.35)

Vs [V sin 34 cos B34
The new mixing angle 34 has been shown to be of the same order as the
Cabbibo mixing 65 between the first two quark generations [69]. There are
yet other possible ways Vi can lose its unitarity as well — other candidates
being the existence of RH currents or the existence of extra Z-bosons [71]. I
will update the constraints on these two possibilities based on our new |V,,4|?
value.

Parity violation is considered to be maximal in the SM, but the general form

of the weak interaction could be somewhat relaxed to include RH currents.
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In [72]-[73] the semileptonic Hamiltonian made such a generalization, where:

Hsl = GLL<V — A)Z(V — A)h + CLLR(V — A)Z<V + A)h

+CLRL(V+A>I(V—A)h+aRR<V+A)l(V+A)h, (536)

in which (I, h) denotes (lepton,hadron). In the current SM, ar;, = 1 and
arr = arrp = agr = 0 and hence the 3 extra terms in (5.36) will be presum-
ably very small with respect to the first. In Fermi § decay, the decay rate is
given by [71]:
s~ |ars|? (1 + 2Re“L—R> . (5.37)
arr
We can also define an analogous Hamiltonian for the purely leptonic weak in-

teractions, where the leptonic coupling constants are instead ¢, ¢Lr, CrRL, CRR-

They are also related to the semileptonic constants via:

ar, = cnVih, (5.38)
arr, = criVh, (5.39)
arr = CLReiaVu];, (540)

ARrr = cRRemei. (541)
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Since V4 is proportional to the ratio of semileptonic to leptonic decay rates,

it follows that:

r
Vidlopes = 7 = ViaP(1 + 2Re azr). (5.42)
17

exper

In fact, if this applies to the other 2 quark generations, we have:
ZC’KM =1 + 2Re ELLR, (543)
and our (5.5) imposes the following constraint on apg:

9983(4) = 1+ 2Re arp, (5.44)

= Re Gz = —.0008 + .0002, (5.45)

which is no longer consistent with being zero. At last, our unitarity result
(5.5) can be used to place a lower mass limit on a new Z-boson particle. Were
anew Z-boson (Z,) to exist, it will have a W Z,, box diagram correction to the
Fermi 3 decays analogous to the ZW box which enters A¥. As the authors

of [71] explain, the first row unitarity condition can be then modified to:

N3 = (19983 +.0004) + A =1, (5.46)
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where A can be computed from the Z, W box and is:

270 4
A= Lo ey
10752, 3

XX
X, -1’

(5.47)

|C\ | = 1/2is the Z, f f coupling constant at low energies and X, = M3 _/Mj;.

We can then combine (5.46) and (5.47) to place a constraint on X,:

(.9983 +.0004) + A = 1,

= .0013 < A < .0021,

InX
= —.4339 < X
Sy -

X

- < —.2686 . (5.48)

Since Mz, must be greater than My it simply follows that InX, /(X — 1)
is strictly a positive number. Therefore, (5.48) can never be satisfied, which
is evidence that a new heavy Z,-boson cannot exist.

Besides the obvious improvements to the input parameters of F; 7 & F3(0),
in a recent paper [74], a proposed new approach using the Feynman-Hellmann
theorem together with Lattice techniques could be used to reduce the hadronic
uncertainty of 0"W & 07% even further. This proves that 1 loop semileptonic
corrections are still an exciting and active field, and one of great relevance to
EW precision tests. As experimental precision tests improve in the future,
the need will likely arise to reduce the hadronic uncertainties even further,
which could in turn, help our very understanding of the nucleon itself — in

fact, we are counting on it.



Appendices

A EW Feynman Rules

The EW Feynman rules can be derived from the full EW Lagrangian. Once
this is done in the momentum basis, any future Feynman diagram calculation
can start with applying the rules for any arrangement of propagators and
interaction vertices. We choose to work exclusively in the Feynman Gauge,
where the gauge-fixing parameter is set to 1. Also, for brevity sakes, I will
only include the rules which we will actually need in this thesis. For the full

set, the reader may find in [75].
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A.1 Propagators

v _ 9w
B NNANNNN Y k2 — A2 + e
w _ igul/
B NNANNNAN Y k2 — MI%V + de
z _ Yuv
BNNANNNNV k2 — M% + je
f i tmy)
B — k? —m7 + e
?
+ = —
S A k? — M2, + ie
B l
........ e = o MI%V e

W Wy
\ »/ = iegcw[angg,w — Gapdpry — gal/gﬁu]
\
A, Z,
(A Zy
_cos(20y
\: = —zegﬁguu
/‘j, \ Cw
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A.3 Triple interactions

we 9 (1=7%)
22

We
Z}N%VA“ = —iel[gap(p — k)u + Q,Bu<k7 — @)+ gua(q —p)s]
Wy

We
:;}/\/%VZ# = igcw[gaﬁ(p — k))u + gﬁﬂ(k - C])g + guoc(q - p)ﬁ]
W
o™,
\\\‘P+
S = —ie(py — p_)u
7
o
o,
\\‘}P#— 2 Zg COS(QQW) ( )
. v = — - P-
/WWW 2 P+ —D-)u
/P
o
7
‘\\\ A}‘ = _ZGMWg/I/V
738

p . )
. o= —igMysyy gu
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A.4 Ghost interactions

.\P
o Ay = :Fiepu
e = Figewpy
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B Deep Inelastic Scattering Definitions

Figure 1: The DIS semileptonic scattering amplitude wherein the exchanged
vector boson is potentially v, W or Z.
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C Physical Constants Used

C.1 EW Parameters

apy(0) = 1/137.036
My = 91.1876CeV
My, = 80.376GeV
M = 0.93827GeV

sy(Mz) = 0.23129

Mg, /M2 = 0.77693

me = 0.511MeV

m, = 0.10566GeV

m,; = 1.7768GeV

my = 173.34GeV

my, = 4.199GeV

Grp = 1.1663787 x 107°GeV 2
ga = 1.2723

My = 1.05+0.1GeV
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C.2 Resonance & Background Parameters

D13(1535) Resonance:

mp,, = 1.52GeV

I'p, = 0.125GeV
1.82/ Dy (Q?)

G Q) = 1+ Q2/(8.9M2)
b —0.59/Dy(Q?)
CHQ) = T/ sonnd)
C5(Q?) = %
C?(QQ) _ _2‘1/DA<Q2)

14+ @Q*/(3M3)
Dv(Q?) = (14Q*M2), My =084GeV

DA(QY) = (1+Q*/M?)? My =1.05GeV
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A(1232) Resonance:

ma = 1.232GeV

F'r = 0.12GeV

1.95/ Dy (Q?)

G = )
14 2 \%4 M
Ci(Q) = -C; NE
i@y = =

Christy-Bosted Parameters

o (0)

05GeV?

246.1GeV =2, oN™2(0) = —89.4CeV 2

0675, a

1+ @Q*/(3M3)

T =.2098

1.3501, bl =1.5715
1205, ¢k =.0907

—.0038, di =.0104

199
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C.3 Regge Region Parameters

Vg = 1GeV
af = 0477
Ay = 1GeV

m, = .775GeV

me, = 1GeV
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D Plus Prescription

The plus prescription is a recipe for taming the poles of coefficient functions
at x = 1. For the simple case of integrating these terms with an arbitrary

(well-behaved) function we have:

1dzM = 1dzM
/0 (1—2)y /0 1—2

/0 dzh(z)<%> _ /0 dz(h(z)—hu))%

However, when one computes the convolution such as that found in

(3.113), these relations need to be somewhat generalized where they become:

/dzh(z,x)(liz> = /dz[h(z,x)—h(l,x)]liz

+h(1, z)n(1-x)
/dzh(z,x)(%) = /dz[h(z,x)—h(l,x)]%

—|——h(12’ ?) In*(1 — )
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E Passarino Veltman Functions

All loop diagrams in the SM can be decomposed into a basis of 4 fundamental
scalar loops through a process known as the Passarino Veltman reduction
[76]. The evaluation of many of the Feynman diagrams in this thesis have
been aided by 2 significant software packages: FeynCalc(©)[79], and Package

X(@©)I[80]. The basis of 4 fundamental scalar loops are defined as:

Ao(m - z7r2 fd4k m2+ze

. 4
BO(ph my, ml) mz f d*k (k2— m0+25)[(k+p1)2_m1+w]

CO(p%7 (pl - p2)27p%; Mo, My, m2) mz f d4 (k;2 2+Ze)[(k+p1) —'rlrL%—‘rieM(k—l—pQ)Q—mQ—i-ie]

Do(p% (p1 —p2)2, (P2 —p3)2,p§,p2, (p1 —p3) Mo, M1, Mg, M3) m2 fd4

1

X =m0 [(k+p1)?—m3 el [(k-+p2)? —mE+iel [(k+ps) —m3+ie]

When going from 1 point (Ap) up to 4 point (Dy) integrals, their evaluation
rapidly becomes more difficult in the general case, and it is beneficial to just
evaluate the 2-4 point functions for special cases, which are given below.
There is also a very useful technique for regulating their UV divergences

known as Dimensional Regularization, where the following extension is made:

d*k . d°k
/(27?)4_>’u/—(27r)d’ e=4—d
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where p is an arbitrary mass scale called the t"Hooft mass, and we recover
our reality in the limit ¢ — 0. Defining the UV-divergent quantity A, =

2/e — v + Indm, some useful PaVe functions used in this thesis are:

E.1 1 point

2

Ag(m) =m? | A, — ln% +1

E.2 2 point

2 .2 2 .2
By(p*;0,m) = Ae—lnﬁ+2+m pln(m p)
1
By(0;0,m) = A, —In"= +1

By(m?*0,m) = A,—In— +2

—p2
By(p*0,0) = Ac—In| — | +2

L
2 ’ P’ 2 2
Bo(p*;m,m) = Ae—ln—2+W, %], < m
d 1 A
2. — 2. ~
Bi(m*A\,m) = d_p?BO(p ;A m) P <1n5 + 1)
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E.3 3 point
2 2 1
Co(m*,m*,0;m, \,m) = —h—, A<m
m
1 A2 1 —)\2 2
2, _ : 2
Oo(O,O,C] aoa)‘a()) - ?LIQ (?) —+ 2—(]21n <?> —+ 6—q2
1
2 002 ¢ ~ 2 2 2
Co(m=,m*,t;m, Mz, m) = _12m4(M§ — 4m2>2{4m t(M7; — 4m=)

2
F(M2 — 4m2)2(6m? + t)ln%
Z

+2Myy/ M2 — 4m?2[ — 24m* + 6m* (M} — t)
VMZ —4m? + M
+M§t]1n< il Z)}
2m

, small ¢
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F Renormalized Perturbation Theory

When one computes correlation functions (Feynman amplitudes) at the 1
loop level or beyond, they will inevitably find UV divergences from using
the initial (bare) Lagrangian, which we’ll denote with a 0 subscript. Renor-
malized perturbation theory prescribes that we rescale all our Lagrangian
parameters to fix this dilemma. In our case, we can restrict this to the

following parameters:

Al = \/Z4A", photon field (49)
Yo = \/Z_ 1, electron field (50)
mo = Zpum, electron mass (51)
ep = Z.e, electron charge (52)

We then expand the renormalization constants to O(a):

Zi=1+07Z =1+ 0(a) (53)

After substituting (49-53) into the bare Lagrangian, one finds new terms
called counterterms. These counterterms are then found from the renor-
malization conditions, which act like physical boundary conditions on our

correlation functions. In particular for the Zee vertex of (4.10) the addition
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of the counterterm gives:

s Y, (54

and the renormalization condition we must invoke is:

Afee(p17p3)|P1:P3 =0 (55>

The vertex counterterm is simply found by finding the net counterterm ver-

sion of the yee coupling in the renormalized Lagrangian, and its vector part

) 1
\/ = gV ig7, (5Z¢ +67, + 552,4) (56)

V%

1s:

Then we have:
; 1
AZee = Nee 4, <5Z¢ +67, + §5ZA> (57)

Without proving it here, it is a rudimentary property of QED that Z, = Z;/ 2
to all orders in perturbation theory, due to the Ward identity AZ‘@E (p,p) =

d;%Zée(p) and thus 6Z, = —16Z4. Therefore (57) reduces to:

Afee = Ne© 44,62, (58)
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We will next turn our attention to a derivation of 4 Z,, so that we may proceed.
Before we can do that, we need to take a close look at the electron’s SE

correction:

_ e [ A Vg +m)y®
=i [ (59)

2m)* (¢* —m?)[(q — p)? — N

The Dirac algebra is simply: 7a(¢ +m)y* = —2¢ + 4m, thus

ée _ ’i€2 d4q _2% + 4m)
2w = / @) (@ —m)[(q—p)? — 2]
- (

= ——{p[QBl p*;m, A) + 1] 4+ m[4By(p*; m, A) — 2]}

a g [Ao(m) = (p* + m?)Bo(p* m, A) + p?]
_ {p .

+m[4By(p*;m, \) — 2]}

(60)

To finish our task, we now can derive our counterterm §Z,. To find it, we

invoke the renormalization condition which requires the wave function of the
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electron propagator to be unity when it is on shell:

) —0 (61)
L SN

=
p2—m?2 ? —m

lim Li“(p)]ue(p) =0

im0 + S GP) + 07— ) o) = 0

p2—m? p —m

) 1 _ _ )
Y (m?) + 0Zy+m lim —— (Z?ﬁ(ﬁ) + X% (p?) — %)] ue(p) = 0

where dm is found by demanding that the electron’s corrected propagator
coincides with its physical, renormalized mass = 4, = X% (m?) + X% (m?).

Then we get:
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P [st0?) — i)

p2—m? p? —m?

{Eff( 3+ 5Z¢+mhm

+35 (%) - Zése(mz)} }ue(P)
{521/, + X5+ 2m? (S5 (m?) + 2% (m?)) }ue(p) =0
= 7, = —zée(m2) —2m’ (S (m?) + 25 (m?))

87, = [Ao( ) — 2m*By(m?*;m, \) + m?]

47Tm

~2m [ e (;[Aoom — (o ) ol ) +p2>1>

p2=m2

a d

B m ) = 2 ]

This expression exactly reduces fully to:

Ag(m)

m?2

(e

1—

+4m 2B[’)(m2;m,)\)]
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