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Abstract

The Standard Model (SM) is currently our most complete, fundamental, and

successful theory of nature. However, despite its ability to make some of

the most precise predictions in all the physical sciences, there are scenar-

ios where it has been shown to be inadequate or incomplete. This is why

SM Precision tests are very important avenues to a solution because they

can inform us where the SM is incorrect, and in a manner of speaking, by

how much. In this dissertation, we look at two major precision tests: the

weak mixing angle and the unitarity condition sum of the top row CKM

matrix elements. In order to extract either of these quantities at the level

of precision required to meaningfully test the SM, we must go beyond their

leading order calculation, and compute all of their 1 loop radiative correc-

tions. The physical process we consider acts like a host to perform both the

calculation and the experiment and must be somewhat practical. Semilep-

tonic reactions are a prime candidate as nucleons and nuclei provide practical

iii



iv

targets in scattering experiments as well as ideal decay parents, as opposed

to their leptonic alternatives. The cost of this experimental convenience are

additional challenges when calculating the observables in the SM theory, as

hadronic modeling becomes a necessity. This dissertation investigates some

of the most troublesome radiative corrections in an attempt to reduce their

hadronic uncertainties, using state-of-the-art dispersive techniques as well

as update some previously calculated radiative corrections in the aforemen-

tioned test quantities. Using these methods, we have found that the CKM

matrix is no longer consistent with unitarity and an updated relationship be-

tween the weak mixing angle and the weak charge of the proton is proposed.
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Chapter 1

Introduction

In this opening chapter, I will start by introducing the theoretical founda-

tions of the Electroweak sector of the Standard Model. This will hopefully

not only familiarize the reader with the particles and interactions needed for

the calculations done in chapters 3 and 4, but to also give the reader the

impression that the theory is an impressively engineered and well-oiled ma-

chine. Next, I introduce the concept of precision tests, which will ultimately

be performed in chapters 4 and 5 of the thesis. Finally, I attempt to de-

fine the two processes through which we will test the Standard Model: beta

decays of the neutron and parity violating electron proton scattering.

1



CHAPTER 1. INTRODUCTION 2

1.1 Electroweak Theory

The Standard Model (SM) aims to define the most fundamental particles in

nature and all of their interactions (minus gravity). It constructs its foun-

dations from all of our suspected imperative symmetries (e.g. Lorenz invari-

ance) and it adheres to the rules of quantum mechanics through the more

generalized framework of quantum field theory (QFT). In the theory, our

‘tactile’ matter of the universe is made of spin 1/2 particles called fermions,

and these particles interact with each other as well as a special particle known

as the Higgs boson. In the Electroweak sector of the SM, the weak and elec-

tromagnetic (EM) interactions are unified under a SU(2)L × SU(1)Y gauge

group, where the L implies that the SU(2) part is thought to only act on

left-handed fermions and Y is called the weak hypercharge. This theoretical

construct was first proposed by Glashow [1] in 1961, and has since become

our ‘standard’ picture of particle physics, together with the SU(3)C group

which defines the strong interaction. Before standard theory (ST) was es-

tablished, however, weak decays were first modeled by Enrico Fermi in the

1930’s in the so-called 4-Fermi model. All of the observed weak decay rates

at the time were found to have the same overall order of magnitude and so

the responsible interaction was thought to be of the form

Lnpeνe4−Fermi = GF ψ̄pψnψ̄eψν , (1.1)

GF = 1.166× 10−5GeV−2, (1.2)
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for the reaction n → pe−νe. This simple 4-particle interaction was also

proposed for the other decays, such as that found in muon decay. The idea

that GF could be applied to all the weak decays is known as the universality

of the weak interaction, and would not be understood until Glashow’s model.

Despite the ability of 4-Fermi theory to make reliable tree-level predictions

(no higher order quantum corrections), it is ultimately a non-renormalizable

theory (meaning we cannot systematically cancel all the ultraviolet (UV)

divergences produced by its higher order corrections). In the ST of EW

interactions, the so-called vector bosons (VBs) are spin-1 particles which

mediate the interactions themselves. In QED there is only 1 massless VB

called the photon. Yang-Mills theory aims to generalize this model to allow

for the additional VBs found in the weak sector, where they also become

non-Abelian fields (which concurrently means they are self-interacting). In

such a model, the free VBs have the following Lagrangian:

LYM = −1

4
~Wµν · ~W µν − 1

4
BµνB

µν , (1.3)

~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν , (1.4)

Bµν = ∂µBν − ∂νBµ, (1.5)

where ~Wµ = (W1µ,W2µ,W3µ). It is the cross product in (1.4) which indicates

that the ~Wµ field is self-interacting. The free fermion fields simply obey the

standard Dirac Currents of the form ∼ ψ̄iγµ∂µψ. However, the gradient

of these fields does not transform like the fields themselves under the local
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gauge transformations:

ψL → eiα
a(x)Ta+iβ(x)Y ψL, (1.6)

ψR → eiβ(x)Y ψR, (1.7)

Ta ≡ τa
2
, (1.8)

where τa are the standard Pauli spin matrices. We require that the SM is

invariant under this transformation, which has two historical roots. The first

was motivated by Weyl in the 1920’s where it is considered as a generalized

“phase measure” analogous to the all-too-familiar coordinate measure. The

other naive reason is purely quantum mechanical, as phase plays such a fun-

damental role in the theory. In order to restore our local (position-dependent

phase) gauge invariance, we can introduce the covariant derivatives:

Dµ{q, l} = (∂µ + igT aW a
µ + ig′Y Bµ){q, l}, (1.9)

Dµ{ū, d̄, e} = (∂µ + ig′Y Bµ){ū, d̄, e} (1.10)

on our fermion fields, which are defined in Table 1.1. The non-derivative

terms of (1.9-1.10) represent interactions between the fermions and the gauge

fields, and are often called “minimal couplings”. In fact, they can be inferred

from experiment (e.g. such as in QED), but it is remarkable to see that they

naturally arise out of us imposing local gauge-invariance alone. With these
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Fermion Description

qf =

(
u
d

)
f

LH quarks

ūf RH up-type quarks

d̄f RH down-type quarks

lf =

(
ν
e

)
f

LH lepton

ēf RH charged lepton

Table 1.1: Fermion fields in the Standard Model.

covariant derivatives defined, the fermion Lagrangian now generalizes to

Lferm =
∑

generations

[
q†iγµDµq + ū†iγµDµū + d̄†iγµDµd̄+ l†iγµDµl

+ ē†iγµDµe

]
(1.11)

If one expands the transformation in (1.6-1.7) to linear order in the phase

variables (i.e. an infinitesimal gauge transformation), it follows that the

gauge fields must transform according to

W a
µ → W a

µ − 1

g
∂µα

a(x)− εabcαb(x)W c
µ, (1.12)

Bµ → Bµ −
1

g′
∂µβ(x). (1.13)

At this point, our theory obeys the SU(2)L × U(1)Y gauge symmetry, but

all of our physical particles are massless. This is quite unsatisfactory, as for
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instance, we have known that the electron possesses a finite mass ever since

J.J. Thomson performed the e/m experiment in 1887. It is also the case that

our current gauge fields ~Wµ & Bµ do not correspond to any physical VBs

yet.

In order to give our particles a mass, the concept of spontaneous symmetry

breaking is used. This is realized by the so-called linear sigma model, defined

by the following Lagrangian

LHiggs = (DµH)†(DµH)− V (H), (1.14)

V (H) = −µ2H†H + λ(H†H)2. (1.15)

H is a complex doublet field while LHiggs is symmetric and obeys our gauge

groups. However, the potential here is anharmonic, and its ground state

minimum is defined by a circle of radius v surrounding 〈H〉 = 0, where v is

called the vacuum expectation value (vev). It is for this reason that (1.15) is

sometimes called the “Mexican hat potential”. Choosing a vev configuration

for H is completely arbitrary, and doing so will break our gauge symmetry –

hence the aptly named “spontaneous symmetry breaking”. There are several

employed conventions for the vev configuration. For pedagogical purposes,

we will choose the simplest convention. The vev field can simply be chosen

as

〈H〉 = 1√
2

0

v

 , (1.16)
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and performing a simple first derivative test on V (H) = 0 reveals that v =√
µ2/λ. One can then define a small perturbative field to this configuration

h(x). Then our new Higgs field is given by

H =
1√
2

 0

v + h

 . (1.17)

From this definition, the kinetic term in (1.14) becomes

(DµH)†(DµH) =
1

2

{
∂µh∂µh+

[g2
4

(
(W 1

µ)
2 + (W 2

µ)
2

)
− g2

2

(
(W 3

µ)
2

+
g′2

g2
B2
µ − 2gg′BµW 3

µ

)]
(v + h)2

}
. (1.18)

Since (v + h)2 = v2 + 2vh+ h2, the pure gauge-boson mass terms involve v2

terms only. This contribution, slightly re-written, is given by

Lgauge mass =
1

2

(
W1 W2 W3 B

)µ


g2v2

4
0 0 0

0 g2v2

4
0 0

0 0 g2v2

2
−gg′v2

2

0 0 −gg′v2

2
g′2v2

2



×



W1

W2

W3

B


µ

(1.19)
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Which is clearly not diagonal in the (W µ
3 , B

µ) basis. If the 4 × 4 matrix in

(1.19) were diagonal, it would allow an unambiguous interpretation of the

VB masses ∼ m2
V V

µVµ. This can be attained by the relations

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (1.20)

Zµ = cos θW − sin θWBµ, (1.21)

Aµ = sin θWW
3
µ + cos θWBµ, (1.22)

tan θW =
g′

g
. (1.23)

Where the W±
µ are the charged W boson fields, Zµ is the neutral Z bo-

son field, and Aµ is the photon field. Now, rather than using the abstract

gauge couplings (g, g′), we can replace them with the natural EW couplings

(e, sin θW ) via

g =
e

sin θW
, (1.24)

g′ =
e

cos θW
. (1.25)

The rotation angle θW is known as the Weinberg angle, and it effectively

relates the strength of the weak coupling constant to the strength of the

EM coupling constant. Another consequence of (1.20-1.23) is the following

identity for the quantum numbers of fermions

Q = T 3 + Y. (1.26)
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Before we continue, it is worth mentioning that rather than using (1.17), in

the derivation of the EW Feynman rules used in this thesis (see Appendix

A), the following alternative choice has been made

H =

 φ+

1√
2
(v + h+ iφ0)

 . (1.27)

Substituting (1.27) into (1.14) leads to new terms involving the unphysical

Goldstone bosons {φ±, φ0} (informally known as “would-be” Higgs bosons)

which can enter calculations as virtual particles. As external particles (or

perhaps I should say: on their mass shell), they merely serve as a means to

cancel the unphysical longitudinal contribution of their physical VB coun-

terparts {W±
µ , Zµ} via the Goldstone Boson equivalence theorem [3]. Our

diagonalization exercise also reveals where our VBs get their mass, as one

will find

mγ = 0, (1.28)

MW =
g

2
v, (1.29)

MZ =

√
g2 + g′2

2
v, (1.30)

MW

MZ

= cos θW . (1.31)

At this point we can also get our physical fermion -VB couplings. This leads

to the neutral current (NC) which is part EM and part weak and it also leads
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to the purely weak charged current (CC). After some algebra one is left with:

LNC =
∑

f={u,d,e,ν}

f̄ iγµ
(
∂µ + ieQfAµ + i

g

cos θW
(T 3

f −Qf sin
2 θW )Zµ

)
f,

(1.32)

LCC = ν̄(iγµ∂µ)ν + ē(iγµ∂µ)e−
g

2
√
2
W+
µ ν̄γ

µ(1− γ5)e

− g

2
√
2
W−
µ ēγ

µ(1− γ5)ν. (1.33)

Where I have moved to the traditional Dirac spinor notation in which LH &

RH fields are acquired by applying the chiral projectors PR,L = (1± γ5)/2. I

have also specified the flavours of the relevant fermion fields (see Table 1.2).

Equations (1.32-1.33) are quite important as they will inevitably enter into

any scattering amplitude at the tree level for any EW process. Taking the

weak VB propagators into account, which at low q2 :Mtree ∼ g2/(q2−M2
W ) →

g2/M2
W ∼ GF , they reconcile nicely with 4-Fermi theory. Next, we still need

a way of describing the masses of our SM fermions.

In the SM one cannot construct ordinary mass terms for the fermions such

as: me(ēLeR + ēReL) without violating gauge invariance, as the LH and RH

components of the different fermion fields have different gauge quantum num-

bers. Instead, the mechanism of spontaneous symmetry breaking must be

invoked. Let’s take our scalar Higgs field H with a known vev; then a gauge-

invariant coupling linking H to the quarks can be written by [3]:

∆Lq = −λdQ̄L ·HdR − λuε
abQ̄LaH

†
buR + h.c. . (1.34)
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fermion (f): T f3 : Qf :

(νl)
L 1

2
0

(l−)L −1
2

-1

(u, c, t)L 1
2

2
3

(d, s, b)L −1
2

−1
3

(νl)
R 0 0

(l−)R 0 -1

(u, c, t)R 0 2
3

(d, s, b)R 0 −1
3

Table 1.2: Fermion quantum numbers in the SM. Their hypercharges follow
trivially from (1.26). The 3 families of leptons are: l = e, µ, τ . The 2nd row
is the weak isospin partner to the 1st row and the 4th row is the weak isospin
partner to the 3rd row.

Since H acquires a vev of the form 〈H〉 = 1√
2
(0, v), to LO we can write (1.34)

as

∆Lq = − 1√
2
λdvd̄LdR − 1√

2
λuvūLuR + h.c.+ . . . . (1.35)

The λ’s are some new dimensionless coupling constants, and we can identify

the down and up quark masses as: md,u = λd,uv/
√
2. Adding additional

quark generations allows additional couplings which mixes generations. Now

let us define:

uiL = (uL, cL, tL), (1.36)

diL = (dL, sL, bL). (1.37)
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One can always change basis in the quark fields, but this will in turn, compli-

cate their gauge couplings. Let u′iL, d
′i
L denote the basis which diagonalizes

their Higgs couplings, achieved by the unitary transformation:

uiL = U ij
u u

′j
L, (1.38)

diL = U ij
d d

′j
L. (1.39)

Then in this new basis the W boson current takes the form:

Jµ†W =
1√
2
ūiLγ

µdiL =
1√
2
ū′
i
Lγ

µ(U †
uUd)ijd

′j
L =

1√
2
ū′
i
Lγ

µVijd
′j
L, (1.40)

while the neutral currents are unaffected as they do not mix flavours. It

is this redundancy in the Yukawa couplings, in the form of a residual U(1)6

global symmetry, that has lead to the so-called Cabbibo-Kobayashi-Maskawa

(CKM) matrix in (1.40), which we define as:

V = U †
uUd =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.41)
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The CKM matrix is a complex unitary matrix for which a standard param-

eterization exists, using 3 angles and 1 phase via:

V =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
iδ

0 1 0

− sin θ13e
iδ 0 cos θ13



×


cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

 , (1.42)

=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13e
iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.43)

where cij = cos θij and sij = sin θij. The CKM matrix is unitary by con-

struction as it plays the role of a basis rotation. It is only through the

measurement of its elements that we can determine if it really is unitary. If

experiment indicates that (1.41) is non-unitary, one possible explanation for

this could be a 4th quark generation, among other possibilities discussed in

section 5. Therefore CKM unitarity tests are a new way to look for physics

beyond the SM. The general unitarity of V is realized by the condition:

ΣiVijV
∗
ik = δjk. (1.44)
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One example of (1.44) which will be tested in this thesis is the top row of V:

|Vud|2 + |Vus|2 + |Vub|2 = 1, (1.45)

in which the dominant term is |Vud|2. A precision measurement of the ud

matrix element is a strong way to test CKM unitarity as it dominates the

LHS of (1.45). However, as we will see, a precision measurement requires an

equally precise calculation which will involve a computation of the radiative

corrections predicted by perturbative QFT.

There are still actually two ingredients still missing from our EW Lagrangian

– and one of those is the need to fix a gauge. To see how this comes about,

it is helpful to look at the associated path integral of the photon (the weak

VBs are dealt with similarly), which is given by

∫
DAei

∫
d4x
[
− 1

4
FµνFµν

]
, (1.46)

Fµν = ∂µAν − ∂νAµ. (1.47)

And recall that the action in the exponent is invariant under the general

gauge transformation:

Aµ(x) → Aµ(x) +
1

e
∂µα(x) = A′

µ(x). (1.48)

It follows then that the issue is that the path integral is poorly defined as we

are integrating over a continuous family of physically redundant equivalent
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field configurations. We need a way of performing the path integral which

only counts each physical field configuration once. To do this, we start by

fixing the gauge via

G(Aµ) = ∂µAµ = 0, (1.49)

which is called the Lorenz gauge (but others exist as well). We can then take

the identity:

1 =

∫
Dα(x)δ(G(A′))det

(
δG(A′)

δα

)
, (1.50)

and insert it into (1.46). Doing so gives

det

(
δG(A′)

δα

)∫
Dα

∫
DA′ei

∫
d4x
[
− 1

4
FµνFµν

]
δ(G(A′)). (1.51)

We can then make a simple shift in coordinates A→ A′ in which DA = DA′

and the gauge action FµνF
µν is also already invariant under this transforma-

tion. Meanwhile, from (1.48) we have that

det

(
δG(A′)

δα

)
= det

(
∂2

e

)
. (1.52)

The final technique is to generalize (1.49) to G(A′) = ∂µAµ(x) − ω(x) then

take
∫
Dω(x)e−i

∫
d4x(ω2/2ξA) for a properly normalized distribution of func-

tions ω(x). Performing this Dω integration with the δ-function and renaming

our dummy variable A′ → A gives us [3]:

N(ξA)det

(
∂2

e

)(∫
Dα

)∫
DAei

∫
d4x
[
− 1

4
FµνFµν

]
e
−i

∫
d4x 1

2ξA
(∂µAµ)2 . (1.53)
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The prefactors of (1.53) are unimportant, as they merely wash out in our

normalized correlation functions, which are proportional to

〈0|T{O(A)}|0〉 ∼
∫
DAO(A)ei

∫
d4xL∫

DAei
∫
d4xL . (1.54)

The effect of (1.53) then, is the addition of the new Lagrangian term

LGF =
1

2ξA
(∂µAµ)

2. (1.55)

In fact, we will have the same gauge fixing terms for the other VBs, leaving

us with 3 new parameters: ξA, ξZ , ξW = ξ±. Choosing a particular value for

these parameters amounts to fixing a Lorenz invariant gauge. In ordinary

QM, when one imposes mathematical conditions on their wave functions via

boundary conditions they arrive at the quantization condition. Analogously,

imposing condition (1.49) has lead to the quantization of our photon field.

We will be choosing the traditional Feynman gauge in this thesis, where

ξi = 1, which is often the simplest choice, as the gauge boson propagators

have now become [3]

Dµν
V (q2) =

igµν

q2 −M2
V + iε

→ i

q2 −M2
V + iε

(
gµν−(1−ξV )

qµqν

q2 −M2
V

)
. (1.56)

There is however, one subtle complication in the non-Abelian case. The

determinant inside (1.51) is A-dependent for the gauge fields in (1.4). In
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that situation, one gets a term proportional to

det

(
δG(A′)

δα

)
∼ det

(
1

g
∂µDµ

)
, (1.57)

where g is the non-Abelian coupling constant, and Dµ is the covariant deriva-

tive. Luckily, this determinant can be expressed as a functional integral over

a new set of Grassman fields

det(∂µDµ) =

∫
DcDc̄ei

∫
d4xc̄(−∂µDµ)c. (1.58)

The anticommuting fields c, c̄ are unphysical (as they do not obey the spin-

statistics theorem) and have been named Faddeev-Popov ghosts. They are

allowed to enter loop calculations in EW theory as virtual particles, and have

their own Feynman rules which originate from (1.58). The interested reader

may find more interesting details about how these fields enter loop calcu-

lations in [57]. They will also enter the γZ self-energy calculation done in

section 4.5.
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1.2 Correlation Functions and Perturbation

Theory

Most of us have heard of “Feynman diagrams”, but some may not know

where they come from and how to generate them for a given calculation, so

it is worthwhile reviewing their origin. In principle there is no need to define

a Feynman diagram in QFT. Formalized by Julian Schwinger (but not unbe-

knownst to Feynman), there is a rather unique way of doing QFT. It involves

introducing an external fictitious field J(x) which acts on your particle field

φ(x) in the form of an interacting Lagrangian density LJ = J(x)φ(x). One

then varies their quantum amplitude
∫
DφeiS[φ,J ]/~ with respect to J(x), and

set J = 0 afterwards. This “modified quantum amplitude” is a very funda-

mental object known as the generating functional, which has found a natural

home in statistical mechanics, and it also contains all of your theory’s physics.

For a simple scalar field theory, the generating functional is:

Z[J ] = (Z[J = 0])−1

∫
Dφe

i
~S[φ]e

i
~
∫
d4xJ(x)φ(x). (1.59)

In the path integral formulation of ordinary quantum mechanics, the QM

amplitude in going from point 1 to point 2 is:

G(1, 2) ≡ G(Q2, Q1; t2, t1) =

∫ q(t2)=Q2

q(t1)=Q1

Dq(τ)e
i
~S[q,q̇]. (1.60)
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G(2,1) is commonly called the 2-point correlator and if we were to take its

modulus square, we effectively find the probability that our particle propa-

gates from point 1 to 2. In QFT, we want the same quantity, as it is a link

between our system Lagrangian (residing in S[φ]) and physical observables.

At the same time we can generalize G(2,1) to an n-point correlator which

represents the QM amplitude of “(n− j) particles going from (n− j) points

to j particles at j points”. We can find such a significant correlator from the

generating functional via appropriate functional derivatives with respect to

J:

Gn(x1, · · · , xn) = (−i~)n δnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (1.61)

Gn is the so-called n-point time-ordered correlation function, which has the

alternate notation:

Gn(x1, · · · , xn) = 〈0|T{φ(x1), · · · , φ(xn)}|0〉. (1.62)

Of course, when you substitute Z[J ] into Gn, the δ/δJ(xi)’s seamlessly pass

through the functional integral in (1.59), but after the derivatives have per-

formed their task, one still must integrate over Dφ. This is where QFT

becomes perturbative. For practical purposes, the only functional integral

we confidently know how to do exactly is a Gaussian one:

∫
Dφe−

i
~
∫
d4x( 1

2
φQ0φ−Jφ) = |detQ0|−

1
2 e

i
2~

∫
d4xJQ−1

0 J , (1.63)
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and this is fine if in our system action: S[φ] =
∫
d4xL(φ) there exists only

linear and quadratic terms in φ. For this very reason we have exact solutions

for free quantum fields, which merely have quadratic kinetic and mass terms

in the particle fields. Any interacting QFT of interest, however, contains

cubic or higher order terms in φ, rendering the functional integral impossible

to do exactly. The solution adopted then is to expand the interaction term

into a Taylor series, keeping only the leading terms. This must be done under

the assumption that the Taylor series converges, and each consecutive term

is smaller than the previous one. i.e.

e
i
~
∫
d4xLint(φ) =

∞∑
n=0

1

n!

(
i

~

)n
Lnint(φ). (1.64)

Each term in
∫
Dφe

i
~
∫
d4x(L0(φ)+Lint(φ)) is then a polynomial in φ times a

Gaussian function in φ, which can be functionally integrated exactly. This

constitutes a systematic procedure through which you can find your correla-

tors, which then get substituted into S-matrix elements, which then directly

goes into a cross-section (a physically measured quantity in a scattering ex-

periment, for example). As laid out in [2], the procedure is as follows: The

scattering matrix S is the matrix which links the initial state to the final state

(before and after scattering, respectively) which has a zeroth order identity

plus a non-trivial part:

S = 1 + iT (1.65)
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The interesting part is, of course, T , whose matrix element is defined by:

τ ≡ 〈f |iT |i〉 = (2π)4δ4(
∑

momenta

)iM(i→ f), (1.66)

where M(i→ f) is the correlator which links the initial state particles to the

final state ones and is often called the “Feynman amplitude”. The transfer

matrix element then gets substituted into the differential cross-section along

with a Lorentz-invariant phase space factor. If our initial state was |i〉 =

|p1〉|p2〉 and final state |f〉 =
∏

j |pj〉, then the differential cross-section will

be:

dσ =
1

(2E1)(2E2)|~v1 − ~v2|
|M|2dΠLIPS, (1.67)

where:

dΠLIPS = (2π)4δ4
(∑

p

) ∏
final statesj

d3pj
(2π)3

1

2Epj
, (1.68)

~vi =
~pi
p0
. (1.69)

Let’s now return to how we get our correlators, but turn our attention to

QED, as a transition to EW theory is in mind. In QED, we need to introduce

3 external fields for each of the 3 physical fields: Aµ, ψ, ψ̄. The resulting

generating functional is:

Z[jµ, η, η̄] =

∑∞
n=0

in

n!

∫
[dAµdψdψ̄]e

iS0[Aµ,ψ,ψ̄]+i
∫
dx(Aµjµ+ψ̄η+η̄ψ)(

∫
d4xeψ̄ /Aψ)n∑∞

m=0
im

m!

∫
[dAµdψdψ̄]eiS0[Aµ,ψ,ψ̄](

∫
d4xeψ̄ /Aψ)m

,

(1.70)
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which leads to a general time-ordered correlator in the following compact

form:

〈0|Tψ(x1) · · ·ψ(xm)ψ̄(y1) · · · ψ̄(yr)Aµ1(z1) · · ·Aµl(zl)|0〉 =∑∞
n=0

in

n!

∫
[dAµdψdψ̄]e

iS0[Aµ,ψ,ψ̄]ψ(x1) · · ·Aµl(zl)(
∫
d4xeψ̄ /Aψ)n∑∞

m=0
im

m!

∫
[dAµdψdψ̄]eiS0[Aµ,ψ,ψ̄](

∫
d4xeψ̄ /Aψ)m

.
(1.71)

In principle, evaluating the RHS of (1.71) for the first few terms is a straight-

forward exercise, but it is quite tedious. This is where Feynman diagrams

come in handy. Richard Feynman realized that there is a diagrammatic rep-

resentation for all of the terms here. If one can geometrically generate all of

the terms diagrammatically, then they could use a prescribed set of “rules”

to assign to each diagram its correct mathematical expression. This whole

technique, pioneered by Feynman, has proved to shave off calculation times

considerably. The diagrams have the added benefit of showing a picture of

what the particles are doing physically – something that is very difficult to

see by performing the algebra alone. It must also be stressed that one must

always establish which correlator they’re calculating and to what order in

perturbation theory they’re working before they commence a calculation.

Of course to get our sought correlators in EW theory we would do exactly

the same thing as this QED case, however, due to the very large number

of terms in the Electroweak Lagrangian, doing this analytically by hand

would be too time-costly to be practical. There are many proposed and
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established sets of EW Feynman rules in the literature, each with slightly

different conventions. I will employ those of [75] for the calculations in this

dissertation, as they are very complete and given in the general Rξ gauge.

As the number of terms in the Taylor series of (1.71) increases, the field

operators form what are called “loops”. Correlation functions are custom-

arily calculated in the momentum basis, and these loops form divergent 4

dimensional momentum integrals. The systematic procedure for removing

some of these divergences is known as renormalization (see Appendix F).

However, even after renormalization, the evaluated momentum loops leads

to a small correction to the Lagrangian parameters, which depends on an

intrinsic momentum scale (e.g. the momentum transfer between interacting

particles). This is what we call a “running” parameter in QFT. For instance,

we will see how this comes about to the weak mixing angle in chapter 4.
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1.3 Precision SM Tests

It will be useful to review how precision SM tests work in a broader sense

before we look at a specific example involving CKM matrix elements. At the

Lagrangian level, the SM is defined in terms of a finite number of parameters,

including coupling constants and particle masses. Let’s denote all these La-

grangian parameters with αi for iε[1, N ]. When one first writes down a model

for the SM (or any other particle theory for that matter), these parameters

are unknown. To find them, we can choose at least N observables: Oi. Fol-

lowing a well-defined algorithm, each of these observables can be calculated

in terms of the theory constants:

Oj = Oj(αi), (1.72)

which will become a system of N equations with N unknowns, assuming one

chooses N observables. It will then follow that we could measure these N

observables and use (1.72) to numerically determine all our αi. Our theory

would then be a predictive one, as we could then calculate any new observable

numerically. If the SM was incorrect or incomplete, it could show up as a

discrepancy between a predicted observable and the measured value. One

way to implement this test is the following:

• Let Oi, {i = 1, ..., N} denote the N best-measured observables in the

SM.
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• Invert the system of equations:

Oi = Oi(αj) → αj = αj(Oi) (1.73)

it would follow that these N αj are the most precisely-known La-

grangian parameters, and the Oi used to find them are called the input

parameters.

• Now choose any new observable which can also be measured with a

high precision, denoted Onew(αi) and substitute (1.73) to get:

Onew = Onew(Oi). (1.74)

• One then tests the agreement between the SM prediction of Onew in

(1.74) and a precision measurement of Onew.

As we shall see, for this comparison to be meaningful, one typically needs

to consider loop corrections to the SM prediction, a feat which can inherit

undesirable challenges in semileptonic processes. Specifically in this thesis,

two SM precision tests will be performed.

The weak charge of the proton Qw(p) corresponds to the strength of the

proton’s vector coupling to the Z boson, and it is related to the weak mixing

angle sin2 θW via the relation [51]:

4s2W (0) = 1− Qw(p)−2WW −2ZZ −2γZ(0)

ρNC +∆e

+∆′
e. (1.75)
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The test here is to determine how closely the measured quantities on

the RHS determines s2W (0) as compared to the pure SM prediction of s2W (0).

Qw(p) is determined by performing PV asymmetry measurements in ep→ ep

via the equation [53]

Aep,NLOLR

Aep,BornLR

= Qw(p) +Q2B(Q2, θ), (1.76)

where ALR is defined in section 1.4 and B(Q2, θ) is a function which charac-

terizes the structure of the proton. A low Q2 fit may be performed on the

available asymmetry data to get the non-zero intercept Qw(p). Amongst all

terms in the RHS of (1.75), the input parameters of this test are:

s2W (0) ∼ Qw(p), ρNC , α̂, ŝW ,me,MZ ,MW (1.77)

where α̂ and ŝW are measured at the Z pole mass and ρNC will be defined in

section 4.2. The comparison of s2W |SM to s2W |exper will be reviewed in section

4.10.

The other SM precision test performed in this dissertation will be the uni-

tarity of the CKM matrix. In this case, the quantity being tested is the

LHS of (1.45), for which the SM prediction is 1. |Vus|2 and |Vub|2 have PDG

experimental averages [70] while |Vud|2 will be updated with the newly cal-

culated radiative corrections of section 3. Just to be clear, the SM doesn’t

“know” what the individual values of Vij actually are, rather they can be

found from experiment. Instead the SM merely predicts that these matrix
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elements conform to the unitarity condition. This will be tested in detail in

section 5.1.
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1.4 Probing the CKM Elements

For the purposes of a precision SM test, there are 2 significant measurements

which can directly extract the Vud matrix element: superallowed β decays and

neutron lifetime measurements. Both of these processes involves the charged

current (CC) interaction between up and down quarks found in (1.33) and

can be measured in the lab.

The neutron has been observed to decay into a proton and an electron

ever since early experiments at Oak Ridge National Laboratory [4] and Chalk

River [5], [6]. Later, Pauli had postulated the emission of a neutrino in the

decay products to account for the observed electron energy spectra and out

of the need to conserve angular momentum. By the 1960’s, the neutron beta

decay reaction n → p + e− + ν̄e was studied heavily by a still-developing

theory of weak interactions.

One way to understand the driving weak interaction responsible for neu-

tron beta decay is to measure either the neutron survival rate or the decay

rate through its products. The weak interaction is known to possess a V-A

structure ∼ ψ̄(gV − gAγ
µγ5)ψ. The relative A to V coupling is defined at

zero 4-momentum transfer by the parameter:

λ =
gA
gV
, (1.78)

and this term will enter the neutron’s lifetime relations later in this section.

On the other hand, superallowed β decays involve the transition between
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Jπ = 0+ → 0+, I = 1 nuclei and currently provide the most precise extraction

of Vud. There are roughly 20 accessible superallowed transitions which have

been measured in the lab for over the last 40 years [7]. The observable

quantity which characterizes the β decay is the ft value, which depends on

3 measured quantities: the total transition energy QEC , the half-life t1/2 and

the branching ratio R for the specific transition. It is convenient to define a

modified ft value which includes nuclear-dependent radiative corrections in

it:

Ft = ft(1 + δ′R)(1 + δNS − δC), (1.79)

where δC is known as the isospin-symmetry breaking correction, while δ′R

and δNS are transition-dependent corrections. δ′R depends on the electron’s

energy E and the Z number of the daughter nucleus, while δC and δNS depend

on the details of the nuclear structure at hand. Ft is directly related to the

Fermi coupling constant Gv of the nuclear β decay. However, Gv is not by

itself, a useful quantity. Rather, by taking its ratio with the Fermi constant

for purely leptonic µ decay, GF , we can access the up-down element of the

CKM matrix:

|Vud|2 =
G2
v

G2
F

=
2984.43s

F t(1 + ∆V
R)
, (1.80)

where ∆V
R contains all the universal inner radiative corrections and will be

discussed in some detail in section 2 of this thesis. Equation (1.80) acts like

a stringent numerical bridge between experimentally measured Ft values in
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superallowed β decays and the resulting SM prediction for |Vud|2.

In the SM, the inverse of the neutron’s lifetime comes from an integration of

its differential decay rate over final state phase space, and is generally given

by [8]:

τ−1
n =

G2
V |Vud|2

2π3
m5
e(1 + 3λ2)(1 + ∆R)f, (1.81)

where ∆R are the EW radiative corrections and will be discussed in section

2 and f is a phase space factor. Many of the constants in (1.81) are known

experimentally, and the equation may be re-arranged with this information

to give a useful Vud testing formula analogous to (1.80):

|Vud|2 =
5099.34s

τn(1 + 3λ2)(1 + ∆R)
. (1.82)

Unfortunately neutron lifetime measurements do not provide as precise an

extraction of |Vud| as superallowed decays can provide, due to the large ex-

perimental uncertainty in λ.
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1.5 PVES and the Weak Charge of the Pro-

ton

Parity violating electron scattering experiments provide a powerful way of

testing the SM. The weak interaction’s preference to involve left-handed

fermions can be exploited and observed when one takes the difference of

cross-sections between LH and RH beam electrons and an unpolarized pro-

ton target. The quantity which encapsulates this effect is called the left-right

asymmetry, defined as:

ALR =
σL − σR
σL + σR

, (1.83)

where the L(R) refers to left-(right-) handed longitudinally polarized elec-

trons. To leading order (Born level), the interaction which explains the scat-

tering between and electron and proton is the exchange of a single Z-boson

or photon(γ) shown in Figure 1.1. The helicity (handedness) of the incident

Figure 1.1: Tree level amplitudesMγ andMZ which contribute to ALR. Their
interference term survives in the numerator of (1.70).

electron is traditionally denoted by λ = ±1. The purely weak exchange am-

plitude MZ is highly suppressed with respect to the EM exchange amplitude
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Mγ in the SM, simply due to the fact that the Z-boson mass is quite large

compared to all other particles present whilst the weak coupling constant is

of the same order of magnitude as the EM one.

Despite this smallness, LR asymmetries are sensitive to the γZ interference

amplitude, which is on the ppm order and can be measured in modern accel-

erators. Using the EW Feynman rules, we have for the Born amplitudes:

Mλ
Z = − 2g2

(4cW )2
1

M2
Z − q2

jλZµJ
µ
Z , (1.84)

Mλ
γ = −e

2

q2
jλγµJ

µ
γ , (1.85)

where jZµ(J
µ
γ ) are the leptonic(hadronic) neutral currents for Z-exchange and

GF = πα/
√
2M2

Zs
2
W c

2
W is the Fermi constant. The weak leptonic current has

both vector (V) and axial-vector (A) terms whereas the EM current is purely

vector:

jλZµ = ūe(k
′)γµ(g

e
v − geAγ5)u

λ
e (k), (1.86)

jλγµ = ūe(k
′)γµu

λ
e (k). (1.87)
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At the Born level, the hadronic weak current can be expressed using weak

form factors as follows:

Jµ(Z,γ) = ŪN(p
′)Γµ(Z,γ)UN(p), (1.88)

Γµ(Z,γ)|V = γµF
(Z,γ)N
1 (Q2) +

iσµνqν
2M

F
(Z,γ)N
2 (Q2), (1.89)

ΓµZ |A = γµγ5G
ZN
A (Q2). (1.90)

Alternatively, one can express the Pauli and Dirac form factors in (1.89) in

terms of the Sachs EM form factors:

GZN
E (Q2) = FZN

1 (Q2)− τFZN
2 (Q2), (1.91)

GZN
M (Q2) = FZN

1 (Q2) + FZN
2 (Q2), (1.92)

τ =
Q2

4M2
. (1.93)

The cross sections in (1.83) are of course the modulus squared of the sum of

amplitudes (1.84) + (1.85) which is proportional to:

σ ∼ |Mγ +MZ |2 = |Mγ|2 + 2Re(M∗
γMZ) + |MZ |2 (1.94)

Kinematically, in a typical PVES experiment, |MZ |2 can be safely neglected

while |Mγ|2 cancels in the ratio of (1.83). Thus ALR ≈ 2Re(M∗
γMZ). Defin-

ing: QLO
W (p) = 2gpv = 1− 4 sin2 θW = GZp

E (0) and taking the forward limit in
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(1.83) gives the Born prediction:

ALOLR =
GFQ

2

4πα
√
2
QLO
W (p) (1.95)

which can be used to extract QW (p) from a PVES experiment at low Q2. Un-

fortunately, the ALR measured in the lab includes all higher-order processes,

which as we will see in section 4, amounts to a few percent enhancement of

the tree-level prediction. It will suffice to consider just the 1-loop corrections

to e−p→ e−p to meet the requirements of interpreting the results of such an

experiment.



Chapter 2

Radiative Corrections to β

Decay

The major contribution of this thesis is an improved calculation of the γW

box, which acts as an input towards the extraction of the Vud matrix element.

Therefore, it will be worthwhile to give a brief summary of the history of this

radiative correction. Doing so will help the reader understand what the status

of this radiative correction is before I update the calculation in chapter 3 of

this dissertation.

2.1 Historical Survey

After the invent of the Glashow-Salam-Weinberg SU(2)L×U(1) Electroweak

Standard Theory, a seminal paper was published [9] which attempted to cal-

35
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culate the effects of all 1-loop EW RCs to semileptonic β decays. Since then,

some incremental improvements have been made, which will be discussed

below. The RCs to semileptonic β decays can be placed into 2 distinct cate-

gories:

∆
V/A
R : inner corrections

δR : outer corrections

where the former are calculated to a high precision and incorporated into

effective couplings, while the latter include energy-dependent terms and carry

some nuclear dependence. In keeping with the definitions of equations (1.80)

and (1.81), it will be more useful to keep ∆V
R and define a new radiative

correction which is the sum of the inner and outer corrections:

∆R =
α

2π
ḡ(Em) + ∆V

R, (2.1)

while there is no need to consider ∆A
R as it can be absorbed into the parameter

λ = gA/gV . Equation (2.1) is intended for the simplest case where the decay

is from a free neutron, but for a superallowed decay, the nuclear structure

corrections also come into play. Those nuclear corrections are omitted from

this section, as they are conveniently taken into account in the modified Ft

value in the denominator of (1.80). The decay rate of β emission from the

neutron can generally be expressed from the following correction to the Born
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decay rate Γ0
β:

Γβ = Γ0
β

[
1 + ∆R

]
, (2.2)

where in (2.1) we have [12]:

ḡ(Em) ≈ 3ln

(
Mp

2Em

)
+

81

10
− 4π2

3
, (2.3)

∆V
R =

α

2π

[
3ln

(
MW

Mp

)
− 4lncW

]
+ 22γW

A . (2.4)

(2.3) is an approximate expression for Sirlin’s universal function g(E,Em)

integrated over the electron’s final state phase space, where: Em = (M2
n −

M2
p +m2

e)/2/Mn is its maximum allowed energy. The last term of (2.4) is a

photonic correction to the leading order CC tree exchange in the form of a

1-loop box, which has both long- and short-distance contributions. In [9] it

was recognized how to isolate it’s hadronic dependence, which resides in the

W-boson’s axial-vector coupling, where this component was computed to be:

2
γW
A =

α

4π

[
ln
(MW

MA

)
+ 2C + Ag

]
. (2.5)

C = .88 is an elastic contribution to the γW box and Ag = −.34 is an esti-

mation of the non-perturbative part of the hadronic QCD corrections which

occurs at long-distances. It is thanks to crossing symmetry that we may

recast the neutron β decay reaction: n→ pe−νe to the more tractable 2 → 2

process of Figure 2.1. In general, this will not work when it comes time to

apply Fermi’s golden rule of integrating over final state phase space to de-
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Figure 2.1: The CC tree level amplitude which solely contributes to Γ0
β.

termine the decay rate, but for the purposes of evaluating inner correction

amplitudes, it will be more convenient. In Figure 2.2, the relevant 1-Loop

diagrams are listed, and collectively determine our ∆R.

Of particular interest in this thesis will be the γW boxes as they are unavoid-

ably dependent on the strong interaction. The box and crossed box can be

compactly expressed via [9]:

MγW =
−ig2e2

2M2
W

∫
d4k

(2π)4
1

k2
M2

W

M2
W − (k − q)2

ūνγρ
(1− γ5)

2

1

/k − /l −me

γλve

×
∫
dxeik·x〈p′|T [Jλγ (x)J

ρ
W (0)]|p〉,

(2.6)

of which the 2nd line is just the hadronic current expressed in terms of a

time-ordering of the field operators present in the boxes, and it implicitly

allows the presence of any QCD corrections. Sirlin showed that the vector

coupling of this hadronic current can be combined with other photonic cor-

rections such as those found in Figure 2.1. It is also true that this vector

coupling is independent of the details of the strong interaction – a conse-

quence of the conserved vector current (CVC) hypothesis. Furthermore, this
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vector part contains an ultraviolet (UV) divergence which is repeated in the

corrections to µ decay and is exactly canceled in the Vud ratio [13]. We will

return to (2.6) in section 3 explicitly with the goal of calculating the axial-

vector component using modern techniques.

The first terms in both equations (2.3) and (2.4) are called “leading logs”,

Figure 2.2: 1 Loop radiative corrections to the CC Born amplitude.

which can be re-summed with the aid of renormalization group equation

(RGE) analysis. This was done in [10], where the authors suggest the re-

placement:

1 + 2α
π
lnMZ

Mp
→ S(Mp,MZ) = 1.02248, (2.7)

1 + 3α
2π
ln Mp

2Em
→ L(2Em,Mp) = 1.02094 . (2.8)

Then in 2006, further improvements were made to (2.5), also known as the

Gamow-Teller piece, where the authors of [14] re-expressed the axial-vector
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part of (2.6) via:

MγW
Axial =

α

8π

∫ ∞

0

M2
W

Q2 +M2
W

F (Q2)dQ2, (2.9)

in which F (Q2) acted like a form factor that would model the hadronic effects

over the full Q2 range. To do so, the integration domain was phenomenolog-

ically separated into 3 distinct regions:

• Short Distance: 1.5GeV2 ≤ Q2 <∞

FSD(Q
2) =

1

Q2

[
1− αS(Q

2)

π
−C2

(αS(Q2)

π

)2
−C3

(αS(Q2)

π

)3]
, (2.10)

where the Ci are constants calculated in pQCD and will be discussed in

some detail in section 3. This contribution is in the DIS regime where

the quarks in the hadron behave independently

• Intermediate Distance: 0.823GeV2 ≤ Q2 ≤ 1.5GeV2

FID(Q
2) =

D1

Q2 +m2
ρ

+
D2

Q2 +m2
A

+
D3

Q2 +m2
ρ1

, (2.11)

which acts as an interpolating function between the high and low Q2

regions and is physically motivated by the exchange of vector mesons.

• Long Distance: 0 ≤ Q2 ≤ 0.823GeV2

CBorn = 0.829± 10%, (2.12)
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where this constant effectively replaces the C term found in (2.5) and

represents the elastic contribution, but integrated over a lower range of

Q2.

The effect of this new treatment reduced the overall error of 2γW
A by a factor

of 2 with very little change to its central value. One of the main goals of

this thesis is to use dispersive techniques to re-evaluate (2.6), which will give

a more accurate central value to this RC, and may also reduce its hadronic

uncertainty. Doing so will, in turn, improve our extraction of Vud through

the means of both (1.80) and (1.82). The reason such a calculation technique

will be superior to previous attempts is because an equation such as (2.9) is

rather phenomenological, and is essentially coarse-graining the explicit loop

expression. As we shall see in section 3, dispersive techniques maintain all

the details of the loop expression, while forcing experimental input from

cross-section data.



Chapter 3

Dispersive Calculation of the

γW Box

With introductions aside, is now time to dive into the primary calculations

of this dissertation. In chapter 3 I will start by explaining how dispersion

relations can be applied to evaluating radiative corrections. This is a modern

technique which reduces the hadronic uncertainty in the semileptonic box

corrections found in both neutral current and charged current processes. We

will then derive an exact expression for the axial part of the γW boxes

introduced in chapter 2 using these techniques. This will lead to the need

to model a specific structure function F γW
3 over a 2D kinematical plane from

which I will define distinctly chosen regions. After that, the rest of this

chapter will model F γW
3 in each region and calculate its contribution to the

box correction. The results of this work will then be compared to the results

42
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of others at the end of this chapter.

3.1 Dispersion Relations in QFT

Dispersion relations can be a powerful tool for calculating radiative correc-

tions in quantum field theory, and can even be applied to scenarios where

perturbation theory is unreliable. The general idea behind them is that they

allow one to first calculate the imaginary part of an amplitude. By the optical

theorem, this is related to the total cross section for producing the interme-

diate state, something which can be measured experimentally, as a function

of the incident CM energy (s). One well-known example of this is the esti-

mation of the light quark contributions to photon vacuum polarization using

experimental data on σ(e+e− → hadrons).

The Cauchy-Riemann integral theorem allows us to determine a function

2(s) at any point on the complex plane if we simply know what this func-

tion is everywhere on a closed contour:

2(s0) =
1

2πi

∮
2(s)

s− s0
ds, (3.1)

so long as the function 2(s) is analytic everywhere inside the contour. Sup-

pose s0 is somewhere on the real number line, then we could choose the

contour of Fig 3.1. Then integrating (3.1) along this contour gives the fol-
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Figure 3.1: Infinite upper semicircle closed contour enclosing a pole on the
real number line.

lowing three terms:

2(s0) =
1

2πi
P

∫ ∞

−∞

2(s)

s− s0
ds+ lim

ε→0

1

2πi

∫
Cε

2(s)

s− s0
ds+ lim

R→∞

1

2πi

∫
CR

2(s)

s− s0
ds

=
1

2πi
P

∫ ∞

−∞

2(s)

s− s0
ds+

1

2πi
(iπ2(s0)).

Then taking the real part of both sides of this equation gives us:

Re2(s0) =
1

π
P

∫ ∞

−∞

Im2(s)

s− s0
ds, (3.2)

and this is our general dispersion relation for our function 2(s). The 2

function for us will later represent the fractional correction of a 1-loop box
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diagram to the Born prediction to an observable:

2 =

∑
spins

M∗
BornMBox∑

spins

|MBorn|2
, (3.3)

whose natural independent kinematical variable is Mandelstam s (Mandel-

stam u for the crossed box), which flows into the semileptonic reaction of

Figure 3.2. Physically, this diagram comes with a threshold condition where

s ≥ (ml + Mh)
2 must be large enough to produce the intermediate state

particles. This threshold condition is realized as a branch cut s ≥M2
h in the

Figure 3.2: Generic box diagram for a semileptonic process wherein the in-
cident CM energy squared is given by Mandelstam s.

function 2(s). Therefore a new contour must be chosen for its dispersion

relation, which is shown in Figure 3.3. Then again employing our trusty
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theorem in (3.1) gives:

2(s) =
1

2πi

∮
2(s′)

s′ − s
ds′

= lim
R→∞

1

2πi

∫
CR

2(s′)

s′ − s
ds′ +

1

2πi

∫ M2
h

∞

2(s′ − iε)

s′ − s
ds′

+
1

2πi

∫ ∞

M2
h

2(s′ + iε)

s′ − s
ds′

=
1

2πi

∫ ∞

M2
h

(2(s′ + iε)

s′ − s
− 2(s′ − iε)

s′ − s

)
ds′,

and by Schwarz’ reflection principle: limε→0

[
2(s′ + iε) − 2(s′ − iε)

]
=

2iIm2(s′). This leads to

2(s) =
1

2πi

∫ ∞

M2
h

ds′
2iIm2(s′)

s′ − s− iε

=
1

π

∫ ∞

M2
h

ds′
Im2(s′)

s′ − s− iε
.

(3.4)

Although sεC in the derivation of (3.4), physically we will have sεR as it is

an energy squared. The concept of promoting real variables to complex ones

and back again is known as “complexification” (although in the literature it

is often improperly deemed as analytic continuation) - and has found many

exceptional applications in the physical sciences. (3.4) allows us to calculate

a box correction, given we can first determine its imaginary part as a function

of Mandelstam s.

There is a systematic procedure for calculating the imaginary part of a Feyn-

man amplitude known as the Cutkosky cutting rules [16] which prescribes
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Figure 3.3: Complex contour used for the derivation of (3.4).

one to:

• Cut the diagram in any way such that all the cut propagators can be

put on-shell without violating momentum conservation

• For each cut propagator, make the replacement:

1

p2 −m2 + iε
→ −2πiδ(p2 −m2)Θ(p0). (3.5)

• The result is the discontinuity of the diagram and:

Disc(iM) = −2ImM. (3.6)



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 48

(3.6) will then be inserted into the RHS of (3.4), for example, where the

Im2(s′) is taken from its limit above the branch cut as a matter of convention.

Inside the loop integration, the delta function employed in this second step

will have the following effect:

∫
d4q

(2π)4
2πδ(q2 −m2)Θ(q0) =

∫
d3q

(2π)3
1

2q0
. (3.7)

The utility of dispersion relations for calculating box diagrams in the SM can

therefore be performed via the following algorithm:

• Use the Cutkosky cutting rules to find ImMbox(s)

• Construct Im2(s) from ImMbox using (3.3)

• Apply the dispersion relation (3.4) to calculate 2(s).

Before concluding this section, it is worthwhile to connect the dispersive

technique to the optical theorem. In any SM process, the scattering matrix

is defined as the amplitude in your system going from the initial state to the

final state:

S = 〈f, t→ ∞|S|i, t→ −∞〉, (3.8)

S = 1 + iT. (3.9)

T is known as the transmission matrix which must encode any interactions

present during the scattering event. A strict physical requirement of the S-
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matrix is that it be unitary: S†S = 1 and together with (3.9) this implies

that

− i(T − T †) = T †T. (3.10)

Taking 〈f |(3.10)|i〉, inserting a complete set of states 1 = Σn|n〉〈n| between

the T †T and demanding the conservation of overall 4-momentum then gives:

−i〈f |(T − T †)|i〉(2π)4δ4(Pf − Pi) = (2π)4δ4(Pf − Pi)

×
∑
n

(2π)4δ4(Pn − Pi)〈f |T †|n〉〈n|T |i〉,

−i(Tfi − T ∗
if ) =

∑
n

(2π)4δ4(Pn − Pi)T
∗
nfTni, (3.11)

which is the generalized optical theorem. A special case of this is at forward

scattering when i = f and

2ImMi→i =
∑
n

(2π)4δ4(Pn − Pi)|Tni|2. (3.12)

On the other hand, the cross section for a 1 + 2 → {j} process is given by

[2]:

σTOT =
1

|~v1 − ~v2|(2E1)(2E2)

∫
|M |2(2π)4δ4(Σp)

∏
final states

d3pj
(2π)3

1

2Epj
. (3.13)

Thus we see that ImM ∼ σ, and from (3.7) we can also see that the Cutkosky

rules will naturally generate the Lorentz invariant phase space integration

measure. This is why dispersion relations are so useful: because their cal-
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culation input is directly proportional to a total cross section – and cross

sections are potentially experimentally accessible.
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3.2 Deriving a New Expression for 2
γW
A

Now that we have discussed the machinery, it is time to apply it. The ampli-

tude of interest is the γW box below. The inherent challenge to calculating

this diagram is that we have one massive and one massless vector boson be-

ing exchanged in the loop. This means that all possible momentum scales

contributes to this integral. As a result, all possible excited states of the in-

termediate state hadron can be produced and contribute to this amplitude.

Using the EW Feynman rules in Appendix A, this diagram has the following

Figure 3.4: Labeled Feynman diagram for the γW box with the loop mo-
mentum represented by k.

explicit expression:

MγW
Box =

−ig2e2

2M2
W

∫
d4k

(2π)4
1

k2
M2

W

M2
W − (k + q)2

T λρ(γ)(k)ūνγρPL
1

/k − /l −me

γλve,

(3.14)
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where PL = (1 − γ5)/2 is the left-handed projector and the hadronic tensor

is defined as:

T λρ(γ)(k) =

∫
d4xeik·x〈p|T [Jλγ (x)J

ρ
W (0)]|n〉 (3.15)

As we will be working in the forward limit, we can simplify the integrand of

(3.14) somewhat. The W-boson propagator is approximately independent of

q:

M2
W

M2
W − (k + q)2

≈ M2
W

M2
W − k2

=
1

1− k2/M2
W

, (3.16)

and our forward limit amplitude is:

MγW
Box|fwd =

−ig2e2

2M2
W

∫
d4k

(2π)4
1

k2(1− k2/M2
W )

ūe(l)γλ
/k − /l +me

(l − k)2 −m2
e

γρ

×PLuν(l)T λρ(γ)(k). (3.17)

From this point on we will simply suppress the fwd subscript. Next we can

use the Cutkosky rules to acquire the imaginary part of this amplitude:

ImMγW
Box =(−2iπ)

(−ig2e2)
2M2

W

∫
d4k

(2π)4

DiscT λρ(γ)(k)

k2(1− k2/M2
W )

× ūe(l)γλ(/l − /k +me)δ((l − k)2 −m2
e)γρPLuν(l),

(3.18)

where it is implicitly understood now that the intermediate state present in

DiscT λρ(γ)(k) is on its mass shell. Before we proceed, it will be convenient to

change our integration variable to the 4-momentum of the intermediate state
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electron:

k′ = l − k. (3.19)

We are allowed to do this because 4-momentum integrals are translation-

invariant: d4k′ = d4k. Given this choice, let’s see what happens to our delta

function:

δ((l − k)2 −m2
e) = δ(k′

2 −m2
e)

≈ δ(k′
2
)

≈ δ(k′
2
0 − |~k′|2)

≈ δ[(k′0 + |~k′|)(k′0 − |~k′|)],

(3.20)

and since k0 is the energy of the intermediate electron and it is put on its

mass shell, it follows that we should be taking the positive energy root in

(3.20). This will leave us with

δ((l − k)2 −m2
e) =

δ(k′0 − |~k′|)
2k′0

. (3.21)

Substituting this back into (3.18) gives

ImMγW
Box = (−2iπ)

(−ig2e2)
2M2

W

∫
d3k′dk′0
(2π)4

DiscT λρ(γ)(k)

k2(1− k2/M2
W )

×ūe(l)γλ /k′
δ(k′0 − |~k′|)

2k′0
γρPLuν(l)

=
g2e2

2M2
W

∫
d3k′

(2π)32k′0

DiscT λρ(γ)(k)

k2(1− k2/M2
W )

ūe(l)γλ /k
′γρPLuν(l).

(3.22)
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It is customary to express a 1 Loop CC correction in terms of αGF , and we

will follow suit to acquire:

ImMγW
Box = −8

√
2GFπα

∫
d3k′

(2π)32k′0

DiscT λρ(γ)(k)

k2(1− k2/M2
W )

ūe(l)γλ /k
′γρPLuν(l).

(3.23)

Before we continue performing operations with this expression, at some point

we will need the Born amplitude to acquire an expression for 2γW
A . So let’s

take the time to now get an expression for MBorn. The diagram is exactly

that found in Figure 2.1. Upon applying the EW Feynman rules, it is simply

given by

MBorn =
g2

2M2
W

ūe(l)γµPLuν(l)ūp(p)γ
µPLun(p), (3.24)

where we’ve made the somewhat harsh simplification of treating the nucleon

like a simple fermion. This won’t affect our final 2γW
A correction because the

leading-order cross section σLOCC ∼ |MBorn|2 will have a proper treatment of

the nucleon in it, while what we’re eventually after will be of the form:

σNLOCC ∼ σLOCC(1 +2
γW
A + other corrections). (3.25)

At this point one would normally substitute (3.23) and (3.24) into (3.3) to

get an expression for Im2γW and finally use (3.4). However, since we are

working in the forward limit, it will suffice to simply take a ratio of the

amplitudes. A nice demonstration of this trick can be found in [15]. With

this in mind we can take traces to put our two amplitudes into a useable
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form without spinors, starting with the Born amplitude:

MBorn = 2
√
2GF

∑
spins

uν(l)ūe(l)γµPL
∑
spins

un(p)ūp(p)γ
µPL

= 2
√
2GF

∑
spins

/lγµPL
∑
spins

/pγ
µPL

= 2
√
2GFTr[/lγµPL]Tr[/pγ

µPL]

= 2
√
2GF (2lµ)(2p

µ)

= 8
√
2GF (l · p)

= 8
√
2GFME,

(3.26)

which is a rather compact expression. Next we’ll need to apply this trace

technology to (3.23). Traditionally, box diagrams such as this are expressed

as a product contraction between a leptonic and a hadronic tensor – which

we will also do here. Defining:

LγWµν = ūeγµ /k
′γνPLuν(l), (3.27)

Hµν
γW =

∫
d4xeik·x〈p|T [Jµγ (x)JνW (0)]|n〉, (3.28)

then (3.23) can be written as:

ImMγW
Box = −8

√
2GFπα

∫
d3k′

(2π)32k′0

LγWµν DiscHµν
γW

k2(1− k2/M2
W )

. (3.29)
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Now let’s perform the trace algebra to the leptonic tensor:

LγWµν =
∑
spins

uν(l)ūe(l)γµ /k
′γνPL

=
1

2
Tr[/lγµ /k

′γν(1− γ5)]

= 2(lµk
′
ν − l · k′gµν + lνk

′
µ) + 2ilαk′

β
εαβµν ,

(3.30)

where the antisymmetric levi-civita tensor term originates from the γ5 term

inside the trace. Had we taken a difference between a LH neutrino and a RH

one, it is the same levi-civita term which survives and thus it is responsible

for parity-violation. The hadronic tensor in (3.28) cannot receive the same

explicit manipulation, but instead can be expressed in terms of 3 general

structure functions as follows:

DiscHµν
γW = 4πW µν

γW , (3.31)

W µν
γW =

(
− gµν +

kµkν

k2

)
F γW
1 +

pµpν

p · k
F γW
2 +

iεµναβpαkβ
2p · k

F γW
3 .

(3.32)

The F γW
1 and F γW

2 terms are associated with the total vector coupling of

W to the hadron while the F γW
3 term is associated with the axial-vector

coupling. Since we are only interested in doing a dispersive calculation to

the axial part, we’ll only insert the axial part of (3.32) into (3.29). With

that decision, we can contract our leptonic and hadronic tensors. As εµναβ is

completely antisymmetric in its indices, it follows that contracting the first
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3 terms of (3.30) with it will give zero. Therefore our contraction reduces to

the single term:

LγWµν H
µν
γW = 2ilαk′

β
εαβµνi

εµνλρpλkρ
2p · k

F γW
3 (k), (3.33)

where select Lorenz indices were renamed to avoid miss-using the Einstein

summation notation. We can then use the identity: εµνλρεαβµν = −2(gλαg
ρ
β −

gλβg
ρ
α) to get

LγWµν H
µν
γW = 4

lαk′β

2p · k
(gλαg

ρ
β − gλβg

ρ
α)F

γW
3 pλkρ

=
2

p · k
(lλk′ρ − k′

λ
lρ)F γW

3 pλkρ

=
2

p · k
[(l · p)(k′ · k)− (k′ · p)(l · k)]F γW

3 .

(3.34)

We can simplify the term in the square brackets into a more useful form:

(l · p)(k′ · k)− (k′ · p)(l · k) = (l · p)(l − k′) · k′ − l · (l − k′)(p · k′)

≈ (l · p)(l · k′) + (l · k′)(p · k′)

≈ (l · k′)(l · p+ p · k′).

(3.35)

Also:

k2 = (l − k′)2 = l2 − 2l · k′ + k′
2 ≈ −2l · k′, (3.36)
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and therefore (3.29) is:

ImMγW
Box = (4π)8

√
2GFπα

∫
d3k′

(2π)32k′0

p · (l + k′)F γW
3

(p · k)(1− k2/M2
W )

. (3.37)

We are getting close to a final form for ImMγW
Box , but we’re not quite there

yet. The integration measure d3k′ is unfortunately not a useful one for our

structure function, whose conventional variables includes the 4-momentum

transfer squared to the hadron Q2 = −k2 and the invariant mass squared

of the intermediate state hadron: W 2. So let’s change to this new set of

variables. If θk′ is the scattered angle of the intermediate electron w.r.t. the

direction of the incident neutrino, chosen along the +ẑ axis, then

d3k′ = 2π|~k′|2d(cos θk′)d|~k′|

≈ 2πk′
2
0d(cos θk′)dk

′
0.

(3.38)

Meanwhile in the CM frame, this intermediate electron energy is

k′
CM
0 =

s−W 2

2
√
s

⇒ dk′
CM
0 = −dW

2

2
√
s
, (3.39)

where s = (l+ p)2 is the incident CM energy squared. Also in this frame we

have:

Q2 = 2l · k′ = 2l0k
′
0(1− cos θk′) ⇒ d(cos θk′) = − dQ2

2l0k′0
. (3.40)



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 59

Putting this all together means that:

d3k′ =
πk′0
2
√
sl0
dQ2dW 2,

⇒ d3k′

(2π)32k′0
=
dW 2dQ2

32π2p · l
.

(3.41)

We will also need everything in the integrand of ImMγW
Box to be expressed in

terms of our new integration measure. In the rest frame of the initial neutron

we have:

p · l =ME, (3.42)

p · k =Mν, (3.43)

p · k′ =M(E − ν), (3.44)

where ν is the energy transfer from the lepton to the hadron. The above

relations substituted into our (3.37) gives us:

ImMγW
Box,A =

√
2GFα

ME

∫
dW 2dQ2

( 2ME

W 2 −M2 +Q2
− 1

2

) F γW
3

1 +Q2/M2
W

, (3.45)

where the A subscript is thrown in to remind us that this is purely the axial-

vector part. Finally, we can divide (3.45) by (3.26) for the imaginary part

of the box correction, but must multiply the ratio by an additional factor of

1/2, as the we are taking 2 spin sum averages in the box amplitude but only



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 60

one in the Born amplitude. The simplified result is:

Im2
γW
Box,A =

α

8(ME)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2
( 2ME

W 2 −M2 +Q2
−1

2

) F γW
3

1 +Q2/M2
W

,

(3.46)

where Q2
max = (s −M2)(s −W 2)/s is associated with the extreme case of

cos θk′ = 1 and W 2
π is the single pion threshold, as that is the minimum

mass allowed above the elastic case. Although it is difficult to tell by looking

at (3.46), Im2
γW
Box,A is an odd function of the incident neutrino’s energy E

– a well known fact about the γZ box as well [61]. This has consequences

on the dispersion relation (3.4). In fact we’re better off taking a step back

and starting with the general relation of (3.2) with this knowledge about

Im2
γW
Box,A. We can simply replace Mandelstam s with E in these dispersion

relations. Starting with the statement

Im2
γW
A (−E) = −Im2

γW
A (E). (3.47)

From (3.2) alone, it follows that

Re2γW
A (E) =

1

π
P

∫ ∞

−∞
dE ′ Im2

γW
A (E ′)

E ′ − E

=
1

π
P

∫ 0

−∞
dE ′ Im2

γW
A (E ′)

E ′ − E
+

1

π
P

∫ ∞

0

dE ′ Im2
γW
A (E ′)

E ′ − E
.

(3.48)
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Introducing a new dummy variable for the 1st integral: E ′′ = −E ′ gives

Re2γW
A (E) = − 1

π
P

∫ ∞

0

dE ′′ Im2
γW
A (−E ′′)

E ′′ + E
+

1

π
P

∫ ∞

0

dE ′ Im2
γW
A (E ′)

E ′ − E

=
1

π

∫ ∞

0

dE ′
(Im2

γW
A (E ′)

E ′ − E
− Im2

γW
A (−E ′)

E ′ + E

)
,

(3.49)

and now we can substitute (3.47) into the 2nd term of (3.49) to finally con-

clude:

Re2γW
A (E) =

2

π

∫ ∞

0

dE ′ E ′

E ′2 − E2
Im2

γW
A (E ′). (3.50)

This is our dispersion relation applicable to the axial γW box. The utility

of (3.50) is twofold: not only does it calculate the real part of the box,

but by analytically continuing to the negative energy axis, we are implicitly

adding the crossed box! The uncrossed box does not allow negative energy.

However, the crossed box can be thought of crossing the external lepton lines

between initial and final states - which by crossing symmetry is related to

their antiparticles which are effectively representing the particle with negative

energy. See Figure 3.5. Next we need to substitute (3.46) into (3.50). Once

we do this it will be possible to slide the energy integral through the Q2 and

W 2 integrals by using [17]:

∫ ∞

νπ

dE ′
∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2 =

∫ ∞

W 2
π

dW 2

∫ ∞

0

dQ2

∫ ∞

Emin

dE ′, (3.51)

Emin =
W 2 −M2 +Q2

4M
+

1

4M

√
(W 2 −M2 +Q2)2 + 4M2Q2. (3.52)
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Figure 3.5: One way to represent a crossed box is by crossing the lepton lines.
Due to crossing symmetry, this can be thought of as the box at negative
energy.

Substituting this into (3.46) then leads to:

Re2γW
A (E) =

α

8π

∫ ∞

W 2
π

dW 2

∫ ∞

0

dQ2 F γW
3

1 +Q2/M2
W

×

[
1

M2

∫ ∞

Emin

dE ′ 1

E ′(E ′2 − E2)

( 2ME ′

W 2 −M2 +Q2
− 1

2

)]
,

(3.53)
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and now the integral inside the square brackets can be evaluated analytically.

Letting χ = W 2 −M2 +Q2, it is:

1

M2

∫ ∞

Emin

dE ′ 1

E ′(E ′2 − E2)

(2ME ′

χ
− 1

2

)
=

2

Mχ

1

E
tanh−1

( E

Emin

)
+

1

4M2E2
ln
(
1− E2

E2
min

)
.

(3.54)

Using this expression would allow us to truly know the energy-dependence of

Re2γW
A (E), were we to properly integrate over W 2 and Q2 in the remaining

expression of (3.53). However, for the purposes of β decay in the processes

discussed in section 1.2 we can take the E → 0 limit where we find:

lim
E→0

1

M2

∫ ∞

Emin

dE ′ 1

E ′(E ′2 − E2)

(2ME ′

χ
− 1

2

)
=

2

MχEmin
+

1

4M2
lim
E→0

1

E2

×ln
(
1− E2

E2
min

)
,

lim
E→0

1

E2
ln
(
1− E2

E2
min

)
= − 1

E2
min

,

⇒ lim
E→0

1

M2

∫ ∞

Emin

dE ′ 1

E ′(E ′2 − E2)

(2ME ′

χ
− 1

2

)
=

1

MEmin

( 2
χ
− 1

4MEmin

)
.

(3.55)
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At last, substituting (3.55) into (3.53) gives us our final result of this section:

Re2γW
A (0) =

α

8π

∫ ∞

W 2
π

dW 2

∫ ∞

0

dQ2F
γW
3 (Q2,W 2)

1 +Q2/M2
W

1

MEmin

( 2
χ
− 1

4MEmin

)
,

χ = W 2 −M2 +Q2,

Emin =
χ+

√
χ2 + 4M2Q2

4M
.

(3.56)

This is our “master formula” for evaluating the fractional correction of the

axial part of the γW boxes to the Born cross section. It is an exact expres-

sion whose remaining physics input resides in the F γW
3 interference structure

function. Knowledge of this function over the positive {W 2, Q2} quadrant is

necessary to now reliably calculate this radiative correction.
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3.3 Kinematical Regions of F γW
3

We will next need to model our F γW
3 over the integration domain of (3.56).

Since Q2 is the 4-momentum transfer of one vector boson (γ or W ), it can

physically assume any value. Low Q2 / (1−2)GeV2 corresponds to the long-

distance limit, where the vector bosons see a non-trivial hadron structure.

On the other hand, at high Q2 ' 2GeV2, very short distances are probed

and here the vector bosons begin to see individual quarks/partons. This lat-

ter region is known as the deep inelastic scattering (DIS) region, and allows

one to use the parton model to describe F γW
3 . It is also valid to treat any

QCD interactions perturbatively (pQCD) for this high Q2, where the strong

coupling constant is sufficiently small.

The other integration variable W 2 is the invariant mass squared of the inter-

mediate state hadron. A special case of the νen → e−p process is when the

nucleon stays a ground state nucleon depicted in Figure 3.6. This is called

Figure 3.6: The elastic γW box wherein the W-boson changes neutron to
proton.

the elastic contribution which corresponds toW 2 =M2 whereM is the mass
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of the proton for the box or the neutron in the crossed box. This elastic pro-

cess corresponds to adding a discrete pole to the contour of Figure 3.3 at the

nucleon mass, and rather than re-implement a new contour, its contribution

to the box correction will be isolated. In general the intermediate hadron can

assume various nucleonic resonances: W 2 = m2
R > (M+mπ)

2. For very large

W 2 ≥ 4GeV2 and low Q2 ≤ 2GeV2, F γW
3 enters the so-called Regge region

where QCD becomes non-perturbative due to asymptotic freedom and some

other effective picture of the hadron constituents must be adopted. All of

the details of each region will be discussed in detail in the sections following

this one. For visual aid purposes, the shaded colours in Figure 3.7 will be

el
as

ti
c

DIS

res

Regge

res+ 
bgd

Figure 3.7: The kinematical regions by which F γW
3 will be modeled from.

The dashed lines represent the fact that the boundaries are not unique, and
that the total radiative correction should not depend on their choice.
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maintained throughout the thesis to represent that particular region. In the

calculation of (3.56) in the following sections, F γW
3 is modeled differently in

the 4 shown regions. Namely:

• F γW
3,el : W

2 =M2, 0 ≤ Q2 <∞,

• F γW
3,res+bgd: W

2
π ≤ W 2 ≤ 4GeV2, 0 ≤ Q2 <∞,

• F γW
3,Reg: 4GeV2 ≤ W 2 <∞, Q2 ≤ 2GeV2,

• F γW
3,DIS: 4GeV2 ≤ W 2 <∞, Q2 ≥ 2GeV2.

Although the structure function will have a different functional form in each

region, the rest of the integrand in (3.56) is fixed, and can tell us how the

box correction is weighted across the plane. To see this, look at Figure 3.8

which gives a 2D surface plot of the weighting function:

ω(Q2,W 2) =
1

1 +Q2/M2
W

1

MEmin(Q2,W 2)

(
2

χ(Q2,W 2)
− 1

4MEmin(Q2,W 2)

)
.

(3.57)

This function ω of course gets multiplied by F γW
3 (Q2,W 2) which has the

general behaviour:

F γW
3 → const, Q2 → 0 , (3.58)

F γW
3 → 0, Q2 → ∞ , (3.59)

F γW
3 → ∞, W 2 → ∞ , (3.60)

F γW
3 → 0, W 2 → W 2

π . (3.61)
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Figure 3.8: The weighting function ω(Q2,W 2) plotted over the plane. It
essentially approaches zero as either of its variables gets above the scale of
the W boson mass.
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3.4 Elastic Contribution

To calculate the elastic contribution to 2
γW
A , we simply need to derive the

expression for F γW
3,el . This means we can just focus on the hadronic tensor.

In the elastic limit, the vertex couplings for the Wnp and γpp of Figure 3.6

are simply written in terms of form factors defined as follows:

= ΓµCC(q) = γµF V
1 + i

2M
σνβqβF

V
2 − γµγ5GA, (3.62)

F V
1 = 1

2
(F p

i − F n
i ), (3.63)

= Γνγ(q) = F p
1 γ

ν + i
2M
σναqαF

p
2 , (3.64)

σνβ = i
2
[γν , γβ], (3.65)

where F1 and F2 are called the Dirac and Pauli form factors respectively.

With the above definitions we can now construct the hadronic trace as fol-



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 70

lows:

=
1

2
Tr[ΓµCC(k)(/p+ /k +M)Γνγ(k)(/p+M)].

(3.66)

Since we are interested in the axial-vector part of the hadronic tensor, we

can just take all the terms proportional to εµν{pk}. Substituting (3.62)-(3.69)

into (3.66) generates one such term, and it is:

Hµν
γW,A(Box) = 2iGA(k)[F

p
1 (k) + F p

2 (k)]ε
µν{kp}. (3.67)

Furthermore, we may express this in terms of the EM Sachs form factors

which were defined in (1.28-1.29). Doing so reveals that the electric form

factor drops out, and we are left with an isoscalar combination of magnetic

form factors:

Hµν
γW,A(Box) = 2iGA(k)[G

n
M(k)]εµν{kp}. (3.68)

It is in fact the sum of Box + Xbox that we would like to represent in the

F3 structure function, and so we simply get:

Hµν
γW,A(Box + Xbox) = 2iGA(k)[G

n
M(k) +Gp

M(k)]εµν{kp}. (3.69)

Then looking back at (3.31) and (3.32) we can equate levi-cevita terms with

the understanding that we must multiply (3.69) by 2πδ(W 2−M2) as we need
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the discontinuity:

4π
iεµναβkαpβ
2(p · k)

F γW
3,el = 2iGA(GM

n +Gp
M)εµναβpαkβ2πδ(W

2 −M2),

⇒ F
(0)
3,el = −2MνGAG

S
Mδ(W

2 −M2),

(3.70)

where we have replaced the superscript of our structure function with a (0)

which means it is the isoscalar (S = p + n) component of the EM current.

As the reader should be convinced by the end of section 3, this is always

the case for the γW boxes, and so we will be using that notation for all

the regions as well. Q2 and W 2 are independent variables, but the variable

Bjorken x = Q2/2Mν is constructed from both. Nonetheless, we can replace

the factor in (3.70) with 2Mν = Q2/x and put the elastic structure function

into (3.56) to get

2
γW
A,el =

α

8π

∫
dW 2

∫
dQ2Q

2GAG
S
Mδ(W

2 −M2)

x(1 +Q2/M2
W )

1

MEmin

(
2

χ
− 1

4MEmin

)
.

(3.71)

We can then apply the delta function to perform the W 2 integral at which

x = 1 and after simplifying completely, one obtains the expression:

2
γW
A,el =

α

2π

∫ ∞

0

dQ2GA(Q
2)[Gp

M(Q2) +Gn
M(Q2)]

Q2(1 +Q2/M2
W )

1 + 2
√
1 + 4M2/Q2

(1 +
√
1 + 4M2/Q2)2

,

(3.72)

and this is our elastic formula for the correction we seek expressed in terms of

EM form factors. Notice that the photon coupling is a purely isoscalar com-

bination, a fact we will return to throughout this dissertation. The axial form
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factor can be empirically represented by a simple dipole parameterization:

GA(Q
2) =

gA(
1 + Q2

m2
A

)2 , (3.73)

which is a choice which is supported by data spanning both electroproduction

and neutrino experiments alike. We use the PDG 2018 values for both gA and

mA given in Appendix C. Although the axial coupling is well-constrained,

the axial mass parameter spans quite a range in the literature: ∼ 0.85 −

1.35GeV2 [18],[19]. The magnetic form factors are not well-described by

a simple monopole or dipole, so instead we use the explicit data for them

appended to reference [20]. Substituting these form factors as well as the

experimental uncertainties they carry yields the following result for our elastic

contribution:

2
γW
A,el = (0.8967± .0607)

α

2π
= (1.04± .07)× 10−3 (3.74)

Which is roughly a 2% increase to Sirlin’s .88 result for CBorn. It should be

remarked that the dispersive analysis of (3.56) does nothing to improve the

elastic contribution computation, as this is a special case where the full loop

calculation can be done exactly in terms of form factors. Rather it perhaps

just makes the numerical computation of the raw data of GS
M(Q2) a more

straightforward exercise. A nice demonstration of the loop calculation of

2
γW
A,el can be found in [12]. As a last comment on the elastic contribution, I
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have observed that this correction is somewhat sensitive to themA parameter,

and this has been plotted in Figure 3.9.

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.80

0.85

0.90

0.95

γ-W box vs. Axial Mass [GeV]

mA points

Quadratic Interpolation

Figure 3.9: The dependence of the box correction on the axial mass parameter
in units of α/2π for the broad range of mA found in the literature.
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3.5 Resonance Region

Above the pion threshold W 2 ≥ (M + mπ)
2 the exchanged vector bosons

in the γW box can excite the initial state neutron into a resonance parti-

cle. There are many 1/2-integer spin N and ∆ resonances which have been

studied using πN and γN scattering experiments. The tabulated resonance

states range in mass from 1.232 − 2.95GeV, each with known JP numbers

[21]. However, only the first few low-mass resonances in this range have ac-

curate vector and axial form factors or helicity amplitudes [22]-[25].

Since the exchanged photon here is isoscalar, it cannot change the isospin

of the hadron it interacts with. On the other hand, the W-boson is purely

isovector and must cause an isospin I3 change of 1 quanta to the hadron. The

QM rules of the addition of angular momenta then forces the isospin of the

resonance to be I = 1/2. This then excludes the ∆ resonances with I = 3/2

from our F
(0)
3,res model. As a consequence, the only resonances we may insert

into our structure function are: P11(1440), D13(1520) and S11(1535).

According to [23], the isoscalar combination of EM form factors for the

P11 and S11 resonances is zero. On the other hand, we can potentially ex-

pect a non-negligible resonance contribution to 2
γW
A from the D13 resonance.

Taking conventional differences into account, I find that:

F
(0)
3,res = −νWLal.

3 , (3.75)
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where WLal.
3 is the axial structure function used by Lalakulich for neutrino

scattering. With this established all that is left is to take the isoscalar com-

bination of EM form factors – doing so for the D13 contribution gives us:

F
(0)
3,D13

|Lal. = − 4ν

3M
ΓD13(W )

[
− CS

4 (Q
2)(Q2 − νM) + CS

5 (Q
2)νM

+CS
3 (Q

2)
M

mD13

(2m2
D13

− 2MmD13 +Q2 − νM)
]
CA

5 (Q
2),

(3.76)

which has been plotted in Figure 3.10 and the Breit-Wigner resonance func-

tion is defined as:

ΓD13(W ) =
mD13ΓD13

π

1

(W 2 −mD13)
2 +m2

D13
Γ2
D13

. (3.77)

All of the parameters of (3.76) and (3.77) are given in Appendix C, including

2 4 6 8 10
W2[GeV2]

0.1

0.2

0.3

F3,D13
0

Q2=0.5 GeV2

Q2=2 GeV2

Q2=10 GeV2

Figure 3.10: Lalakulich plots of F
(0)
3 vs W 2 for the D13 resonance at several

Q2 values.

the form factors. Inserting (3.76) into (3.56) gives the numerical contribution



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 76

of this single resonance to the box correction:

2
γW
A,D13

|Lal. = .08× 10−3. (3.78)

An alternative to (3.75) is to strictly work in the helicity amplitude formal-

ism. The benefits of this are that these amplitudes have a rich library of

parameterizations amongst several major collaborations [25], [26]. We will

be using the MAID amplitudes from [25] and find that there is actually a non-

zero contribution from the other 2 resonances. In this model the amplitudes

take the form:

Āα(Q
2) = Āα(0)

(
1 + a1Q

2 + a2Q
4 + a3Q

8
)
e−b1Q

2

(3.79)

Again, after taking conventional differences into account, the results of the

MAID parameterization are shown in Table 3.1. which will form a pre-

ferred result, as they are more recent and they do not assume the other

resonances are zero. This is a significant difference from (3.78) as the new

Resonance 2
γW
A,res(×10−3)

D13 0.054

P11 -0.009

S11 -0.002

total .04

Table 3.1: γW box corrections from 3 resonances using the MAID helicity
amplitudes
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total resonance contribution has effectively been reduced by 1/2. We can

then use the difference between the MAID prediction and the Lalakulich

prediction to assign a rough error estimate to this resonance correction via

δ2γW
A,res ∼ |2γW

A,D13
(Lal.) − 2

γW
A,D13

(MAID)| ≈ .02 × 10−3. Then our final

resonance contribution will stand as:

2
γW
A,res = (.04± .02)× 10−3. (3.80)

Physically, in the region W 2
π ≤ W 2 ≤ 4GeV2, F

(0)
3,res is not the only contri-

bution to the full structure function however. There is also a non-resonant

background which we will denote by F
(0)
3,bgd. To estimate this contribution,

we can relate it to the purely EM structure function F γγ
1 which is known

from inelastic e−p cross sections. In order to find this subtle relationship,

it is very helpful to consider these structure functions in the parton model,

where:

F
(0)
3 =

uv − dv
3

, (3.81)

F γZ
3,p+n = uv + dv. (3.82)

The kinematical region of the nonresonant background we need to consider

is approximately .4 ≤ x ≤ .88, and the valence distribution normalizations

are:
∫
dxuv = 2

∫
dxdv = 2. Consequently, one finds that in the resonance
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region we have:

F
(0)
3 ≈

F γZ
3,d

9
, (3.83)

where we’ve simply replaced p + n → d for the deuteron on the RHS. We

next need to estimate the nonresonant background for F γZ
3,d . To do this, we

can start by considering the following general parton expressions:

F γγ
1 =

1

2
Σqe

2
q(q + q̄), (3.84)

F γZ
3 = 2Σqeqg

q
A(q − q̄). (3.85)

In the resonance region the quark PDFs dominate over the antiquark ones,

while as hinted before: u(x) ≈ 2d(x). With these crude assumptions one can

use (3.84) and (3.85) to show that:

F γZ
3,d

F γγ
1,d

≈ 18

5
. (3.86)

In the low x limit, the ratio in (3.86) goes to zero and one could imagine

replacing the RHS with some sort of average over all x. However, we only

need to know this ratio for high x and so we shall assume the ratio of 18/5

and apply it to our sought background structure function. Combining (3.83)

and (3.86) reveals the simple re-scaling result:

F
(0)
3,bgd ≈ 2

5
F γγ
1,p, (3.87)
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where we have use the known fact that F γγ
1,n is only marginally different

than zero. Although it is not guaranteed to describe our background, (3.87)

can offer an educated first guess. The non-resonant background for F γγ
1 is

related to the nonresonant cross section for e−p scattering which has been

parameterized in [27]. Let us assume this same parameterization can apply to

F
(0)
3,bgd and rather than use (3.87) explicitly, we can relax the proportionality

constant to a free parameter ηS:

F
(0)
3,bgd(Q

2,W 2) = ηS
W 2 −M2

8π2α

1

fc

(
1 +

W 2 − (M +mπ)
2

Q2 +Q2
0

)−1

×
2∑
i=1

σNR,iT (0)[W − (M +mπ)]
(i+1/2)

(Q2 + aTi )
(bTi +cTi Q

2+dTi Q
4)

,

(3.88)

and all of the parameters contained in (3.88) are provided in Appendix C

while fc = 389.39 is the conversion factor for µb → GeV−2. We are left

now with the task of determining a value of ηS. Although the parton model

expression of (3.81) isn’t well-trusted below W 2 = 4GeV2, it IS well-trusted

above that boundary. Therefore we may impose the boundary condition that

the background of (3.88) nicely match (3.81) there. Doing so for a large range

of Q2 values consistently indicates that:

ηS ≈ 9

10
, Q2 ≥ 2GeV2. (3.89)

For Q2 ≤ GeV2, (3.88) needs to be matched to the Regge model of F
(0)
3 ,

which we will not arrive at until section 3.7. At this lower Q2 range I find
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that ηS ≈ 18/25. It is then the sum of (3.88) and say, (3.76) which represents

the full F
(0)
3 structure function in the region W 2

π ≤ W 2 ≤ 4GeV2. Since we

have already computed the pure resonance part which considered the area

under it’s high W 2 tail, we simply need to compute the sole contribution of

(3.88) for W 2 ≤ 4GeV2 to find:

2
γW
A,bgd = 0.16× 10−3. (3.90)

As can be seen in Figure 3.11, the rescaled Christy-Bosted background agrees

2 4 6 8 10
W2[GeV2]

0.1

0.2

0.3

0.4

0.5

F3
0

Q2=2GeV^2

Q2=3GeV^2

Q2=4GeV^2

Q2=6GeV^2

Q2=8GeV^2

Figure 3.11: Comparing plots of F
(0)
3,bgd between the prediction from (3.88-

3.89) and the DIS prediction of (3.81) at several Q2 values.

rather well with the extrapolated parton model. We cannot use the parton

model below this boundary, but we can compare it’s prediction towards 2γW
A

with that of (3.88) for Q2 ≥ 2GeV2 and W 2 ≤ 4GeV2. We will call this

contribution the highQ2, lowW 2 background contribution, and the difference
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is:

2
γW
A,CB|highQ2 = .017× 10−3, (3.91)

2
γW
A,DIS|highQ2 = .019× 10−3. (3.92)

Since we only need the correction to the 10−5 level, the difference between

(3.91) and (3.92) is negligible and is graphically represented in Figure 3.11.

The last thing we should try to do is assign a reasonable uncertainty estimate

to the background prediction in (3.90). This can be deduced from quantifying

the inexactness of ηS. Doing so reveals a 10% uncertainty. We can combine

this with (3.80) to get the total resonance + background contribution:

2
γW
A,res+bgd = (.20± .03)× 10−3. (3.93)

The DIS model of (3.81) has a very small uncertainty < 1% and is plotted

along with our total background plus resonance structure function around the

boundary W 2 = 4GeV 2 in Figure 3.12. From the figure, one can see that we

have some flexibility to change the boundary somewhat without appreciably

changing the net area under F
(0)
3 .
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2 3 4 5 6
W2[GeV2]
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0.2

0.3
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Q2=4GeV^2

Figure 3.12: Lot W 2 plot of F
(0)
3 at several high Q2 values. Blue curves

are from the rescaled Bosted-Christy background plus Lalakulich resonance
contribution while green curves are from the parton model.

3.6 DIS Contribution

When Q2 is high the vector bosons probe very short distances in the hadron.

To leading order in the strong interaction, the quarks are considered as just

free particles, but one can systematically introduce higher orders of quark-

quark interactions via pQCD. This is because the strong coupling constant

gs is small in the DIS region where perturbation theory is valid. We will deal

with the non-perturbative situation in section 3.7.

In the DIS region F
(0)
3 can be modeled in terms of partons (quarks, gluons,

etc.), which each carry a certain fraction x of the hadron’s total momentum.

In this model, each parton, such as a quark q = q(x,Q) is considered a func-

tion of Bjorken x and the 4-momentum transfer Q and is called a parton

distribution function (PDF). PDFs are not observables, but rather, observ-

ables can be constructed from them. Using DIS data, the PDFs can be
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constrained and computed/estimated. This has been done by many research

groups around the globe, and for instance, the LHA PDF sets are publicly

available [28] at the time of writing this thesis.

To pursue the goal of calculating our observable 2
γW
A,DIS, we need to first

find an expression for F
(0)
3,DIS in terms of PDFs. This was actually given in

(3.81) of the previous section when it was needed for less lofty reasons, so

now a proof of that expression will be given here. I must note that one must

be cautious in deriving an expression for F
(0)
3,DIS in the parton model as it

is unique. So far every other structure function found in the other semilep-

tonic boxes has been flavour-diagonal, whereas this one is not. This poses

a challenge, as it means a different quark is leaving the process as the one

which had entered (temporally). Being an interference structure function,

that makes it somewhat difficult to book-keep the differences between the

various quark diagrams which are to represent 〈p|T [Jλγ (x)J
ρ
W (0)]|n〉.

One possible solution to sort this out is to use the machinery of isospin ro-

tations described in [77]. There the authors defined the timelike quark-quark

operator:

Ôqq′ = ψ̄qn̂[0, z]ψq′|z2=0. (3.94)

We will also need to know some of the quantum numbers of the quarks we

will be considering, and these are given in Table 3.2. The isospin rotations

in general isospin space allow us to write non-diagonal matrix elements of
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the operator in (3.94) in terms of diagonal ones and are [77]:

〈+|Ô+−|−〉 = 〈+|Ô++|+〉 − 〈+|Ô−−|+〉 (3.95)

〈+|Ô+−|−〉 = 〈−|Ô−−|−〉 − 〈−|Ô++|−〉 (3.96)

〈−|Ô−+|+〉 = 〈+|Ô++|+〉 − 〈+|Ô−−|+〉 (3.97)

〈−|Ô−+|+〉 = 〈−|Ô−−|−〉 − 〈−|Ô++|−〉 (3.98)

where ± refers to I3 = ±1
2
in the above relations. Next we need to consider

the quark diagrams of the γW boxes and crossed boxes. Starting with the

boxes we can have:

Figure 3.13: Allowed quark diagrams which can participate in the nν → pe−

γW box, neglecting strange and charm flavours.

⇒ BOX = eu〈p|Ôudn|n〉 − ed̄〈p|Ôd̄ūn|n〉. (3.99)
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This expression makes the assumption that the process is elastic, which it in

general is not forced to be. So now we may generalize this to isospin space

and write:

⇒ BOX = eu〈+|Ô+−|−〉 − ed̄〈+|Ô+−|−〉. (3.100)

Now the goal here is to express this in terms of diagonal matrix elements in

isospin(flavour) space. In that regard it’s the flavour of the ‘q’ in eq for each

term. Applying (3.95) reveals that:

BOX = eu(〈+|Ô++|+〉 − 〈+|Ô−−|+〉)− ed̄(〈+|Ô++|+〉 − 〈+|Ô−−|+〉)

= eu(〈p|Ôuu|p〉 − 〈p|Ôdd|p〉)− ed̄(〈p|Ôd̄d̄|p〉 − 〈p|Ôūū|p〉)

= eu(u− d)− ed̄(d̄− ū)

= eu(u− d) + ed(d̄− ū).

(3.101)

For reference, see Table 3.2 which gives us the relevant quantum numbers of

the quarks considered here. We can repeat this same process for the crossed

box as well, starting with Figure 3.14.

q eq Iq3

u +2
3

+1
2

ū −2
3

−1
2

d −1
3

−1
2

d̄ +1
3

+1
2

Table 3.2: Quark charge numbers and isospin projections in the SM.
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Figure 3.14: Allowed quark diagrams which can participate in the nν → pe−

γW crossed box, neglecting strange and charm flavours.

⇒ XBOX = ed〈p|Ôud|n〉 − eū〈p|Ôd̄ū|n〉

= ed〈+|Ô+−|−〉 − eū〈+|Ô+−|−〉

= ed(〈−|Ô−−|−〉 − 〈−|Ô++|−〉)− eū(〈−|Ô−−|−〉 − 〈−|Ô++|−〉)

= ed(〈n|Ôdd|n〉 − 〈n|Ôuu|n〉)− eū(〈n|Ôūū|n〉 − 〈n|Ôd̄d̄|n〉)

= ed(dn − un)− eū(n̄n − d̄n)

= ed(u− d) + eu(d̄− ū),

(3.102)
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as we want the PDFs in the proton as a matter of convention. Finally we

can take the sum of (3.101) and (3.102) for the total structure function:

F
(0),LO
3,DIS = BOX +XBOX

= eu(u− d) + ed(d̄− ū) + ed(u− d) + eu(d̄− ū)

= eu(u− ū− d+ d̄) + ed(u− ū− d+ d̄)

= (eu + ed)[uv − dv]

=
uLOv − dLOv

3
.

(3.103)

I have attached the “leading order” superscript here as this expression strictly

assumes that there is no strong interaction present – in which case we need

the LO PDFs on the RHS of (3.103). Now the natural variables of our

structure function are (x,Q2) where x = Q2/2Mν, and it will be convenient

to stick with these natural DIS variables so let us re-express (3.56) with the

appropriate integration measure [61]:

2
γW
A,DIS =

α

2π

∫ ∞

Q2
0

dQ2 1

Q2(1 +Q2/M2
W )

∫ xmax

0

dx
(2r − 1)

r2
F

(0)
3,DIS, (3.104)

r = 1 +
√

1 + 4M2x2/Q2, (3.105)

xmax = Q2/(W 2
min −M2 +Q2). (3.106)

Our nominal choice of boundaries shown in Figure 3.7 means that Q2
0 =

2GeV2 and W 2
min = 4GeV2. As we will see later, (3.104) is the largest

contribution to2γW
A , and since it is so important we should really be replacing
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F
(0),LO
3,DIS with at least its O(αS) correction. One observation made by the

authors of [29] is that in the high Q2 limit: (M2/Q2 � 1):

2
γW
A,DIS ≈ 3α

8π

∫ ∞

Q2
0

dQ2 1

Q2(1 +Q2/M2
W )

∫ 1

0

dxF
(0)
3,DIS. (3.107)

This expression applies to the case of using the parton model over the full

interval 0 ≤ x ≤ 1. The major benefit however, is that since our F
(0)
3,DIS is

exclusively constructed from valence quark distributions, the x-integration

can simply use the following exact sum rules [32]:

∫ 1

0

dxuv(x,Q
2) = 2, (3.108)∫ 1

0

dxdv(x,Q
2) = 1, (3.109)

⇒
∫ 1

0

dxF
(0),LO
3,DIS =

1

3
. (3.110)

The remaining Q2 integration then simply generates a leading logarithm and

we get:

2
γW,LO
A,DIS =

α

4π
ln
MW

Q0

(3.111)
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The pQCD corrections to the GLS sum rule have been computed in [31] and

for the RHS of (3.107) they can be included to give:

2
γW,N3LO
A,DIS =

α

8π

∫ ∞

Q2
0

dQ2 1

Q2(1 +Q2/M2
W )

[
1− αS(Q

2)

π

−C2

(αS(Q2)

π

)2
− C3

(αS(Q2)

π

)3]
,

(3.112)

where C2 = 4.583 − .333NF , C3 = 41.440 − 7.607NF + 0.177N2
F and NF is

the effective number of quark flavours at Q2. Following this prescription and

choosing α at the Thomson limit Q2 = 0 gives: 2γW,N3LO
A,DIS = 2.17× 10−3 just

as quoted in [29].

One advantage of using (3.112) is that since it uses sum rules, there are no

PDF uncertainties to be found. Furthermore, since the higher order pQCD

corrections are completely negligible to the box correction, the expression can

essentially be considered “exact”. The alternative is to return to (3.104) and

to only integrate up to xmax which forces us to include the αS corrections in

a different way. A concise way of doing this is outlined in [32], which states

that the NLO structure function can be computed from the convolution of

the PDFs with the O(αS) Wilson coefficient in function space. Applying this

technique to our particular structure function gives:

F
(0),NLO
3,DIS (x,Q2) =

∫ 1

x

dz

z
C

(1)
3 (z)

[uNLOv (x/z,Q2)− dNLOv (x/z,Q2)]

3
, (3.113)



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 90

and now we must insert the NLO PDFs (i.e. PDFs calculated to O(αS)).

C
(1)
3 (z) is the NLO Wilson coefficient, given by [33]:

C
(1)
3 (z) = δ(1− z) +

αs
4π

[
2(1 + z)ln

(
z

1− z

)
− 4

lnz

1− z

+ 2(z + 2)−
(
2π2

3
+ 9

)
δ(1− z)

+ 4

(
ln(1− z)

1− z

)
+

− 3

(1− z)+

]
,

(3.114)

which is often represented in moment space in the literature. The terms in

(3.114) with a ‘+’ subscript are distributions defined in Appendix D and

are designed to be finite inside
∫ 1
dx. We will be using (3.113) as the input

to (3.104) whilst isolating its small differences from using (3.107). To help

accomplish this, the 2nd integral in (3.104) can be exactly replaced by:

∫ xmax

0

dxF
(0)
3 =

3

4

∫ 1

0

dxF
(0)
3 +

∫ 1

0

dxF
(0)
3

(2r − 1

r2
− 3

4

)
−
∫ 1

xmax

dxF
(0)
3

2r − 1

r2
.

(3.115)

The first term of (3.115) gives precisely (3.107). The 2nd term considers the

effect of finite Q2, and the 3rd term quantifies the difference between taking

xmax → 1 versus any value below 1. We have actually already calculated

the LO effect of this 3rd term on 2
γW
A in (3.92); in fact it’s presence here

represents our will not to double-count this piece. Let us declare the sum of

these last 2 terms as the “higher power” corrections, while we truly expect

the 1st term to be the dominant contribution.

One convenience here is that (3.115) can be equally applied to LO or NLO in
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the strong interaction, which is simply facilitated by inserting either (3.103)

or (3.113) respectively. It was found that the 2 terms of the higher power

contribution secretly conspire to largely cancel each other out and their sum

is ∼ 10−6 which is negligible and we will indeed recover (3.107).

There is a convolution theorem stated in [34] which allows one to decouple

the Wilson coefficient from the PDF distribution when the RHS of (3.113)

is integrated over all x as will be our case in (3.107). For any quark valence

distribution, it states that:

∫ 1

0

dxqNLOv (x) =

∫ 1

0

dx

∫ 1

x

dz

z
C

(1)
3 (z)qv(x/z)

=

∫ 1

0

dxC
(1)
3 (x)

∫ 1

0

dxqv(x).

(3.116)

The Wilson coefficients have the nice property that they can be analytically

integrated over all x to a simple number. In the case of (3.114) we get:

∫ 1

0

C
(1)
3 (x)dx = 1− αS

π
. (3.117)

This of course leads to the first 2 terms in (3.112). Unfortunately (3.116) can-

not be used to evaluate the higher power terms, and the general convolution

integration must be performed numerically with the NLO PDFs. This has

been done and the results are indeed negligible. The LHA sets used for PDF

input in the DIS correction includes those of [28]: CJ15 [35], MMHT14 [36],

HERA20 [38], CT14 [37] and ABKM09 [39]. Each set has multiple PDFs
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for each light quark flavour, from which the central set is used to calculate

the central value. The uncertainty of the higher power correction can be

calculated using a prescription suggested in [35]. It involves considering a

quadrature sum of differences between neighbouring PDF sets via:

δσ =
T

2

√√√√imax∑
i=1

[σ2i−1 − σ2i]2, (3.118)

where σ is the observable of interest we have constructed from the PDFs.

The uncertainty of the higher power correction has been computed via this

means and is found negligible. This is not surprising as the central value is

already 10−6 while the valence quark distributions are very well constrained

to begin with. The dominant sum rule contribution does not require this

uncertainty analysis for reasons discussed earlier. The numerical stability

of the normalizations in (3.108-3.109) were tested for all the LHA sets and

deviations from those sum rules were found negligible and independent of Q2.

Another necessity in computing the DIS correction is to input the running

strong constant αS(Q
2), which is also provided by the LHA sets. On one

“edge” of the DIS region we have αS ≈ .366, while at the Z-pole we have

αS ≈ .118. The weighted average is determined from integrating (3.112) over

2GeV2 ≤ Q2 <∞. It is insightful to know the average value of this constant

which yields the same box correction as the explicit running would. It is

found to be:

ᾱS = 0.1927, (3.119)
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Figure 3.15: CJ15 plot of the LO and NLO F
(0)
3,DIS structure functions. Tra-

ditionally they are multiplied by x to tame their large behaviour at low x.

which corresponds to Q2 ≈ 55GeV2. It is found that the NLO correction in

the strong constant leads to a roughly 6.1% suppression to the LO value of

2
γW
A,DIS. The last effect we need to consider to the DIS contribution is the

10 100 1000 104 105
Q[GeV]

0.10

0.15
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0.25

0.30
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Figure 3.16: The CJ15 running of the strong fine structure constant.

running of the EM fine structure constant α = αEM(Q2) inside the integral

of (3.104). We can also confine ourselves to the NLO version as the higher
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order corrections beyond that are negligible to 2
γW
A,DIS:

2
γW,NLO
A,DIS =

1

8π

∫ ∞

Q2
0

dQ2 αEM(Q2)

Q2(1 +Q2/M2
W )

[
1− αS(Q

2)

π

]
. (3.120)

The function α = αEM(Q2) comes from evaluating the photon’s 1 loop cor-

rected self energy (SE) via:

αEM(Q2) =
αEM(0)

1− Πγγ
T (Q2)

Q2

, (3.121)

where:

Πγγ
µν(Q

2) = = Πγγ
T (Q2)

(
gµν−

qµqν
q2

)
+Πγγ

L (Q2)
qµqν
q2

. (3.122)

Πγγ
T (Q2) is considered the transverse component of the photon’s self energy

and the 1-loop corrections that goes into (3.122) can be split into fermionic

and bosonic loops. The fermionic loops are of the form:

Πγγ
T,fer(Q

2) =

=
e2Q2

f

16π2

4

3

[
2m2

f −
q2

3
+ 2A0(mf ) + (q2 + 2m2

f )B0(q
2;mf ,mf )

]
,

(3.123)

which is expressed in terms of Passarino Veltman functions which are defined

in Appendix F. In the case where f is a lepton, (3.123) is sufficient to use

as their masses are well-known. On the other hand if f is a quark then this

result must be applied with caution as the true free quark masses are not
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exactly known, but rather, their “effective” masses inside the hadron would

be the input. For the contribution from the quark loops we can instead use

the same dispersive techniques discussed in section 3.1 to calculate Πγγ
T,had by

relating it to a total cross section (see Figure 3.17). Formally, we can split

Figure 3.17: The hadronic loop contribution to the photonic SE can be
delegated to the total cross section for the process σ(e+e− → γ∗ → hadrons)

the total photon corrections into the following parts:

Πγγ
T = Πγγ

T,lep +Π
γγ(5)
T,had +Πγγ

T,top +Πγγ
T,Bos. (3.124)

The bosonic contributions only set in for q2 ≥ M2
W , and so they will not be

necessary to consider in our αEM(Q2) in the box correction, whose integrand

quickly goes to zero above the W-boson scale anyways. In [40], the following

definitions are made:

∆α
(5)
had(s) = −

Π
γγ(5)
T,had(s)− Π

γγ(5)
T,had(0)

s
, (3.125)

Rγ(s) =
σ(0)(e+e− → γ∗ → hadrons)

4πα2/3s
. (3.126)
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Then using the optical theorem, the author claims that:

∆α
(5)
had(s) = −αs

3π

(
P

∫ E2
cut

m2
π

ds′
Rdata
γ (s′)

s′(s′ − s)
+ P

∫ ∞

E2
cut

RpQCD
γ (s′)

s′(s′ − s)

)
, (3.127)

and this equation allows one to systematically (albeit numerically) compute

the light quark contribution to the photon vacuum polarization from available

cross section data. As the top quark is quite massive (∼ 173GeV), we cannot

use the light fermion mass approximation. Nonetheless, it’s contribution has

been computed to leading order in M2
Z/m

2
t [40] and it is:

∆αtop ≈ − α

3π

4

15

M2
Z

m2
t

→ “negligible′′. (3.128)

The results of the above expressions (3.121-3.128) has been nicely summa-

rized into data files by F. Jegerlehner and is publicly available [41]. This

data was used directly to evaluate αEM(Q2) inside (3.120). The net effect

of the running EM constant leads to a 4% enhancement to 2
γW
A,DIS from the

Thomson limit prediction. Thus the average value of αEM in the DIS region

weighted by the 2
γW
A integrand is:

ᾱEM =
1

131.75
. (3.129)
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With all of the aforementioned techniques and input choices outlined in this

section, the final DIS contribution using (3.120) was found to be:

2
γW
A,DIS = 2.27× 10−3 (3.130)

Should the precision requirements of the Vud tighten in the future, a robust

calculation of this contribution to NNLO in the strong interaction using even

(157) is well understood, and can be systematically achieved. For the time-

being (3.130) will aptly apply to our situation. An important remark is that

the F
(0)
3 structure function generally increases as x goes to zero via:

F
(0)
3 ∼ x−0.5, x→ 0, (3.131)

which is known from both the DIS and Regge models. This means that

the observable 2
γW
A depends on the PDFs at low x to some extent. The

divergent behaviour of (3.131) is nonetheless integrable in (3.104), rendering

our correction finite as it should be.
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3.7 Regge Region

At large W 2 and low Q2, we can no longer describe our F
(0)
3 structure func-

tion with the parton model. This region also enters the deep continuum

of unknown possible resonance states. Regge theory aims to explain: the

hadron spectrum, the forces between these particles, and the high energy

behaviour of scattering amplitudes [42]. The Regge phenomenology states

that cross sections at high energy are given in the form:

σtot = Asε −Bs−η, (3.132)

where s =CM energy squared and A,B, ε, η are all found from fitting σtot to

data. The first term originates from pomeron exchange which goes to zero for

a valence-like distribution as we have. The second term is called the Reggeon

term, which for our case has s ∼ ν, and η corresponds to the ρ trajectory

intercept: −η → αρ0 = .477 [45], giving:

F
(0)
3,Reg ∼

( ν
ν0

)αρ
0

. (3.133)

To finish constructing our structure function, we will follow a very similar

model used by Seng et al. in [29], which combines VMD theory [46] with a

phenomenological background function of order unity which smoothly goes to

zero at the pion threshold. In this model, the physical process which describes

F
(0)
3,Reg is one in which the vector bosons (γ,W ) fluctuate into appropriate
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vector mesons. In particular, as shown in Figure 3.18(a), the W-boson must

fluctuate into a charged axial a1 meson while the isoscalar photon fluctuates

into a neutral ω meson. The a1 & ω mesons then connect via an isovector

ρ meson exchange with the hadron. This amplitude in fact, ensures we end

up with a purely axial-vector coupling to the hadron. Pure VMD theory is

Figure 3.18: Vector meson exchange diagrams for (a) F
(0)
3 and (b) F

νp(ν̄p)
3

which can occur in the Regge region. The two possible combinations in (b)
are topologically equivalent, resulting in a symmetry factor of 2 while the
process in (a) is unique.

known to miss a fraction of the full cross section it aims to model, and so one

can then consider extensions to it, such as the generalized vector dominance

(GVDM) model [47]-[48]. The difference between VDM and GVDM structure
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functions is:

F VMD
i (Q2) ∼

∑
V

rV

( m2
V

Q2 +m2
V

)2
, (3.134)

FGVMD
i (Q2) ∼

∑
V

rV

( m2
V

Q2 +m2
V

)2(
1 + ξV

Q2

m2
V

)
+rC

[
(1− ξC)

m2
0

Q2 +m2
0

+ ξC
m2

0

Q2
ln
(
1 +

Q2

m2
0

)]
,(3.135)

rC = 1−
∑
V

rV . (3.136)

The generalized model introduces 3 more fitting parameters beyond the VMD

model. As we will see later, the full parameter space of GVDM applied to

F
(0)
3,Reg will be much more than necessary to fit to the available data. As the

data which constrains this structure function is rather poor, we will choose

only a slight extension to the VMD model by simply setting rC = 0, while

letting (rV , ξV ) remain free parameters to finalize our model:

F
(0)
3,Reg(W

2, Q2) =
f(1 + gQ2)Θ(W 2 −W 2

th)

(1 +Q2/m2
ρ)(1 +Q2/m2

a1
)

[
1− e

W2
th−W2

Λ2
th

]( ν
ν0

)αρ
0

,(3.137)

W 2
th = (M +mπ)

2.(3.138)

One of the key differences between the above model and that used in [29]

is that Seng’s W-threshold is at 2 pions while his single pion production

amplitude is calculated separately using heavy-baryon chiral perturbation

theory (χPT ) – a small contribution ∼ 10−4 to 2
γW
A . One immediate issue

with using (3.137) is that there is no direct data which constrains F
(0)
3,Reg.
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In order to find the free parameters (f, g), we can relate the F
(0)
3 structure

function to another one which does have data: F νp+ν̄p
3 . It is defined as the

average of the PDG’s (FW−
3 + FW+

3 )/2 which are depicted in Figure 3.19.

Next, note that in the parton model we have:

Figure 3.19: Neutrino and antineutrino structure function diagrams. The
lepton current (not shown) involves the interaction between a lepton and its
neutrino partner.

F
(0)
3 =

uv − dv
3

, (3.139)

F νp+ν̄p
3 = uv + dv. (3.140)

If we make the rough assumption then that uv ≈ 2dv we find the simple

relationship in the DIS region:

F νp+ν̄p
3

F
(0)
3

≈ 9. (3.141)

In fact, it was found by the authors of [29] that this ratio is approximately

satisfied in the VMD framework as well (except that rather than a 9, their

factor is 36 due to a different normalization convention of F
(0)
3 ). Hence we can

use (3.141) as a link between our sought F
(0)
3 and available data on F νp+ν̄p

3 at
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low Q2 to determine our free parameters (f, g). This data will come from the

1st Nachtmann moment of the neutrino(+antineutrino) structure function,

which is defined as:

Mνp+ν̄p
3 (1, Q2) =

2

3

∫ 1

0

dx
ξ

x2

(
2x− ξ

2

)
F νp+ν̄p
3 (x,Q2), (3.142)

ξ =
2x

1 +
√

1 + 4M2x2/Q2
. (3.143)

Note that asM2/Q2 → 0 we have ξ → x and the 1st Nachtmann moment just

reduces to the traditional Cornwall-Norton moment:
∫ 1

0
dxF3(x,Q

2). The

most recent data on Mνp+ν̄p
3 (1, Q2) at low Q2 can be found in [50]; which we

will use to constrain the moment. Utilizing (3.142) at low Q2 forces one to

know F νp+ν̄p
3 for all x and for our purposes we will decompose this structure

function into 3 distinct parts:

F νp+ν̄p
3 (f, g, x,Q2)|lowQ2 = F νp+ν̄p

3,el (x,Q2)+F νp+ν̄p
3,res (x,Q2)+9F

(0)
3,Reg(f, g, x,Q

2),

(3.144)

where (3.141) has been deliberately applied to give the last term. The elastic

structure function can be derived in terms of nucleon form factors just as

F
(0)
3,el was to get:

F νp+ν̄p
3,el (x,Q2) =

1

2
[Gp

M(Q2)−Gn
M(Q2)]GA(Q

2)xδ(1− x), (3.145)
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where we will use the same form factor parameterizations as those which

entered the 2
γW
A,el calculation, only with an isovector combination this time.

The dominant resonance which enters F νp+ν̄p
3,res is the ∆(1232). We use the

form factor parameterization of Lalakulich [22] once again to model this new

structure function. Considering addition of isospin within the subprocesses:

ν̄ : pW− → ∆0 and ν : pW+ → ∆++ one can show that the latter is an

example of a stretched state |I,mI〉 = |3
2
,+3

2
〉, while the former has final state

|3
2
,−1

2
〉. Since the Clebsch-Gordon coefficient C(3

2
, 1, 1

2
;−1

2
, 1, 1

2
) = 1/

√
3 we

have that:

F ν̄p
3,∆ =

1

3
F νp
3,∆, (3.146)

and we find that F νp+ν̄p
3,res = 2

3
F νp
3,∆, as the two structure functions differ by

a minus sign. We have also assumed that the other higher mass resonances

are negligible compared to the ∆. Since we have kept agreement with PDG

convention, we can once again use (3.75), which is even more obvious now as

both sides of the equation are applied to neutrino scattering. This allows us

to find our sought structure function, which is:

F νp+ν̄p
3,res = −2ν

M

m∆Γ∆

π

4

3

1

(W 2 −m2
∆)

2 +m2
∆Γ

2
∆

×

{
1

m∆

[
− CV

3 C
A
4

M
(mν −Q2)− CV

3 C
A
5 M

]
(2m2

∆ + 2Mm∆ +Q2 −Mν)

+ (Mν −Q2)
[
− CV

4 C
A
4

M2
(Mν −Q2)− CV

4 C
A
5

]}
.

(3.147)
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With this now, (3.144) can then be inserted into (3.142) and a least-squares fit

can be performed on the 2 parameters (f, g). At very highQ2, the Nachtmann

moment in (3.142) is dominated by the GLS sum rule where:

Mνp+ν̄p
3 (1, Q2)|highQ2 =

∫ 1

0
dxF νp+ν̄p

3 (x,Q2)

≈ 3
(
1− αS(Q

2)
π

)
, (3.148)

to NLO in αS. As Q2 → 2GeV2, (3.148) no longer accurately predicts the

moment and it must be computed explicitly via (3.142). At Q2 = 2GeV2,

this moment is:

M νp+ν̄p
3 (1, 2GeV2) =

2

3

∫ 1

0

dx
ξ

x2

(
2x−ξ

2

)
(uNLOv +dNLOv )|Q2=2GeV2 = 2.49±.01,

(3.149)

where we have used the CJ15 PDFs. Since the valence distributions are glob-

ally well-constrained by DIS data, there is no need to compute this moment

with other PDF sets. (3.149) is chosen as another data point with which

the M νp+ν̄p
3 (1, Q2, f, g) fit should include as this moment is well-described by

PDFs for Q2 ≥ 2GeV2. The fit itself is plotted along with its uncertainty

band in Figure 3.20. The result of that fit is:

f = 0.80± .03, (3.150)

g = 0.63± .10GeV−2. (3.151)
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Finally, one can then insert these fit parameters and integrate F
(0)
3,Reg over the

whole Regge region to find the contribution to the γW box. Doing so yields:

2
γW
A,Reg = (.37± .10)× 10−3 (3.152)

A few remarks worth mentioning here are the following:

0 1 2 3 4
Q2[GeV2]

1

2

3

4

M3
ν(1,Q2)

N.Mom (Regge)

N.Mom (DIS)

CN Mom

Figure 3.20: Fitting the Regge model (red) of (3.137) to the data (black)
provided in [50] for the neutrino scattering Nachtmann moment M νp+ν̄p

3 ,
which has been matched to the DIS moment (green) at the boundary. At
high Q2 both the CN and Nachtmann moments are compared.

• Although the DIS prediction of Mνp+ν̄p
3 (1, 2GeV2) has a very large

weight, it cannot decrease the large uncertainty of the fit (f ±∆f, g ±

∆g). This is because the poor low Q2 data (in both statistics and

weights) limits the certainty of the 2-parameter fit.

• Secondly, the Cornwall-Norton moment clearly over predictsM νp+ν̄p
3 (1, Q2)

around 2GeV2 ≤ Q2 ≤ 3GeV2. This difference may indicate the pres-

ence of higher-twist effects which have not been considered.
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Also, shown in Figures 3.21 & 3.22 is the F
(0)
3,Reg structure function at the

boundaries of the Regge Region as compared to the neighbouring models.

The matching to the DIS model has “washed” out a precise matching at

every W 2 value, as only the Nachtmann moments have been equated at the

boundary, rather than the structure functions themselves.

2 3 4 5 6
W2[GeV2]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F3
0

Q^2=.5GeV^2

Q^2=1GeV^2

Q^2=2GeV^2

F3,bgd
(0) (ηs=.8*9/10)

Figure 3.21: Comparison of the Regge and background + resonance F
(0)
3

structure functions at W 2 = 4GeV2.

1 2 3 4 5 6
Q2[GeV2]

1

2

3

4

5

F3
0

W2=4 GeV2

W2=50 GeV2

W2=100 GeV2

F3,Reg
(0) (f=.8,g=.63)

Figure 3.22: Comparison of the Regge and DIS F
(0)
3 structure functions at

Q2 = 2GeV2.



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 107

3.8 Total 2γW
A

The sum of all the 2
γW
A contributions computed in section 3 (SBM) is sum-

marized into Table 3.8.1 where it is also compared to the results of Seng et

al. (SGRM). It is this total box correction which will then effectively replace

(2.5).

2
γW
A (×10−3) SBM SGRM MS

elastic 1.04(7) 1.06(6) –
resonance 0.04(2) 0.00(0) –
DIS + high-Q2 bgd 2.27(0) ∗2.17(0) –
πN 0.00 0.12 –
Regge 0.37(10) 0.31(8) –
low-Q2 bgd 0.16(2) 0.13 –
total 3.88(13) 3.79(10) 3.26(19)

Table 3.3: γW box corrections from 3 separate groups. SBM represents this
work, SGRM is taken from [29]-[30], and MS is from [14]. ∗The SGRM DIS
contribution has been calculated at αEM fixed at the Thomson limit.

As can be seen from the table, the consequence of applying these “state-of-

the-art” dispersive techniques to the semileptonic γW box tends to increase

the central value of this radiative correction by at least 16%. The conse-

quences of this jump in value will be discussed in detail in section 5. It’s

also interesting to note that the absolute uncertainty of 2γW
A has improved

by nearly a factor of 2. Scanning through the various contributions of Table

3.3, I make the following comments:



CHAPTER 3. DISPERSIVE CALCULATION OF THE γW BOX 108

• The elastic contributions are highly complementary as this portion is

highly unambiguous. What differences are present are essentially due

to a particular choice of slightly different calculation input.

• The resonance region is small, but not completely negligible. We put

our number in to the nearest 10−5 for the record.

• Both authors essentially agree for the DIS contribution, as once one

inserts the running EM fine structure constant into the SGRM predic-

tion, the result is a 4% enhancement – recovering our number.

• The πN contribution is absent from our model, however, the sum (πN+

Regge + bgdlowQ2) should ideally agree, which they essentially do:

(πN +Regge + bgdlowQ2)|SBM = .53(10)× 10−3 (3.153)

(πN +Regge + bgdlowQ2)|SGRM = .56(8)× 10−3 (3.154)

Taking the differences into account, the two separate computations do agree

with each other within their uncertainties. Together, they provide strong

support for replacing the Marciano and Sirlin Result from 2006.



Chapter 4

Radiative Corrections to QW (p)

Let us now turn our attention to the other observable of interest in this

dissertation: the weak charge of the proton. The process and its Born level

treatment was discussed in chapter 1.4 and now we will be looking at its 1 loop

corrections. Once all of the Feynman diagrams are defined, we will proceed

and calculate each one’s effect on QW (p). Much of this work has already

been done, but we will be re-evaluating all of these corrections in two limits:

the Thomson limit (Q2 = 0) and the scattering limit (Q2 � m2
e). I have also

decided to use a process-independent and gauge-invariant definition of the

weak mixing angle, which will be computed in explicit detail. The results

of this work will be compared to a recent measurement of the proton’s weak

charge [53] at the end of the chapter.

109
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4.1 The 1 Loop Formula

At the tree level, e−p → e−p scattering is mediated by the exchange of a

single photon or Z-boson as shown in Figure 1.1 and leads to the relation

(1.32), where the LO prediction of the proton’s weak charge is:

QLO
W (p) = 1− 4 sin2 θW = 0.0688, (4.1)

which is customarily taken in the Thomson limit Q2 → 0. Our goal now is to

modify (4.1) to include all 1 loop RCs. This was done in [51] (EKR), which

has since become the standard parameterization adopted:

QNLO
W (p)|EKR = [ρNC+∆e][1−4 sin2 θW (0)+∆′

e]+2WW +2ZZ+2γZ , (4.2)

where ∆e,∆
′
e denote lepton vertex corrections, sin2 θW originates from SE

corrections to the mixed γ − Z boson, ρNC contains SE corrections to the

Z & W−bosons, and the 2’s denote their respective box corrections. The

classes of diagrams for all of these corrections are summarized in Figure 4.1.

In the pages that follow, we will be taking a close re-examination of all the

corrections in (4.2) and in doing so, we will resort to modifying the EKR

expression slightly.
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Figure 4.1: 1 Loop Feynman diagrams which correct the LO prediction to
QW (p) in the e−p→ e−p process.

4.2 ρNC Correction

At the tree level, the ratio of the neutral to charged current is ρLONC =

M2
W/(M

2
Z cos

2 θW ) = 1. However, at the 1 loop level the masses of the

heavy vector bosons get corrected by the SE diagrams in Figure 4.1. For the



CHAPTER 4. RADIATIVE CORRECTIONS TO QW (P ) 112

W-boson, the dominant fermion loop is from the top and bottom quarks:

Πµν
WW (q2) =

=
(

−ig
2
√
2

)
(−1)

∫
d4k
(2π)4

i
(q+k)2−m2

t

i
k2−m2

b
×

Tr[γµ(1− γ5)(/k + /q +mt)γ
ν(1− γ5)(/k +mb)]

= ΠT
WW

(
gµν − qµqν

q2

)
+ΠL

WW
qµqν

q2
, (4.3)

⇒ ΠT
WW (q2) =

√
2GFM

2
W

16π2
4
3

{
m2
t +m2

b −
q2

3
+ A0(mb) + A0(mt)

−m2
t−m2

b

2q2
[A0(mt)− A0(mb)] +

2q4−q2(m2
t−m2

b)−(m2
t−m2

b)
2

2q2
B0(q

2;mt,mb)

}
.

(4.4)

We would actually like to know our correction at q2 = 0, thus we can take

that limit here to find:

ΠT
WW (0) =

√
2GFM

2
W

16π2

2
(
m4
t ln

m2
t

µ2
−m4

b ln
m2

b

µ2

)
m2
t −m2

b

− (m2
t +m2

b). (4.5)

Repeating this analysis for the Z-boson case, we get:

ΠT
ZZ(0) =

√
2GFM

2
Z

16π2 cos2 θW

(
2m2

t ln
m2
t

µ2
+ 2m2

b ln
m2
b

µ2

)
. (4.6)
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Since (4.5) and (4.6) corrects the masses of their respective vector bosons,

their effect on ρNC is exactly:

ρNLONC =
M2

W

(
1 +

ΠT
WW (0)

M2
W

)
M2

Z cos
2 θW

(
1 +

ΠT
ZZ(0)

M2
Z

) ≈ ρLONC

(
1 +

ΠT
WW (0)

M2
W

− ΠT
ZZ(0)

M2
Z

)
, (4.7)

= ρLONC(1 + ∆ρNC), (4.8)

and the O(GF ) correction can be simplified to:

∆ρNC =
ΠT
WW (0)

M2
W

− ΠT
ZZ(0)

M2
Z

=

√
2GF

16π2

(
m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

ln
m2
t

m2
b

)
. (4.9)

ρNC is the ratio of neutral to charged currents in EW theory and it is a

gauge-invariant quantity. The RHS of (4.9) is zero if mt = mb, and the term

inside the round brackets is sensitive to the mass splitting m2
t −m2

b ≈ m2
t ,

thus the contribution from the other quark doublets is highly suppressed.
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4.3 ∆e Correction

The bare eeZ vertex is given in Appendix A in terms of the standard neutral

current V −A coupling ∼ γµ(geV − geAγ5). ∆e is the correction to this vertex

when a massless photon is exchanged between the electron lines. To begin

calculating this effect, we start by applying the same Feynman rules with

this virtual photon added in:

ΛZeeµ =

= i5e2g
2 cos θW

∫
d4k
(2π)4

ū(p3)γα(/p3+/k+m)(geV γµ−g
e
Aγµγ5)(/p1+/k+m)γαu(p1)

[(p1+k)2−m2](k2−λ2)[(p3+k)2−m2]
. (4.10)

Let’s first look at the vector coupling ∼ geV . We will also suppress the pref-

actor ig/2 cos θW in front of the integral sign, as this will be common to the

bare vertex. Then one will find that:

ΛZeeµ |V =
α

4π
ū(p3)

{
γµ[(4m

2 − 2q2)C0(m
2,m2, q2;m,λ,m)

+4B0(m
2;m,λ)− 3B0(q

2;m,m)− 1]

+2m(pµ1 + pµ3)[B0(0;m,λ)− 2B0(m
2;m,λ)

+B0(q
2;m,m) + 1]

}
geV .

(4.11)
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This vertex is traditionally decomposed into the following form:

ΛZeeµ |V = ū(p3)

[
γµF1(q

2) +
iσµν
2m

qνF2(q
2)

]
u(p1), (4.12)

whilst our expression in (4.11) is of the form ū[γµG(q
2) + (p1 + p3)µH(q2)]u.

To help us get something resembling (4.12) we can use the Gordon identity,

which states that:

ū(p)(p′ + p)µu(p) = ū(p′)[2mγµ − iσµνq
ν ]u(p), (4.13)

and apply it to the 2nd term in (4.11). This reveals that we really do have

(4.12), where:

F1(q
2) = G(q2) + 2mH(q2), (4.14)

F2(q
2) = −2mH(q2). (4.15)

Let’s look first at our F2 term which is the origin of the so-called anomalous

magnetic moment. From (4.11), it is predicted to be:
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F2(q
2) = −2m

( α
4π

)( 2m

4m2 − q2

)
[B0(0;m,λ)− 2B0(m

2;m,λ)

+B0(q
2;m,m) + 1]geV

= − α

4π

( 4m2

4m2 − q2

)
[B0(0;m, 0)− 2B0(m

2;m, 0)

+B0(q
2;m,m) + 1]geV

≈ − α

4π

( 4m2

4m2 − q2

)[
2∆ε − 2

(
∆ε − ln

m2

µ2
+ 2
)
− 2ln

m2

µ2

+
t

6m2
+ 2

]
geV

= − α

4π

(24m2 − 2q2

12m2 − 3q2

)
geV ,

⇒ F2(0) = − α

2π
geV , (4.16)

which is nothing more than the famous Schwinger moment which is found

in an analogous correction in pure QED [43]. As it stands, F1(q
2) is UV and

IR divergent, and we must renormalize the Zee vertex in order to attain a

physical result for it. We can use the results of Appendix G on renormalized

perturbation theory to rid ourselves of this UV divergence. Doing so leads

to our renormalized vertex:
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Λ̂Zeeµ |V = ū(p3)

[
γµF̂1(q

2) +
iσµν
2m

qνF2(q
2)

]
u(p1), (4.17)

F̂1(q
2) = G(q2) + 2mH(q2) + δZψ, (4.18)

Zψ = 1− A0(m)

m2
+ 4m2B′

0(m
2;m,λ), (4.19)

and F2 is unaffected in the renormalization process. Next, we should take

the q2 → 0 limit and confirm that F̂1(0) = 0. We’ve already evaluated the

middle term in (4.18) – putting the other 2 terms in gives us:

F̂1(0) =
α
4π
{4m2[B′

0(m
2;m,λ)− C0(m

2,m2, 0;m,λ,m)]

−3B0(0;m,m) + 2B0(m
2,m, 0) +B0(0;m, 0)− 1}geV

= α
4π

{
− 4− 3

(
∆ε − lnm

2

µ2

)
+ 2
(
∆ε + 2− lnm

2

µ2

)
+∆ε + 1− lnm

2

µ2
− 1
}
geV

= 0, (4.20)

as expected by the renormalization procedure. Next let’s turn our attention

to the axial part of (4.10) which is:
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ΛZeeµ |A =
α

4π
ūeγµγ5ue

{
(4m2 − q2)C0(m

2,m2, q2;m,λ,m)− 2

+4
(2m2 − q2)

4m2 − q2
B0(m

2;m,λ) +
(3q2 − 4m2)

4m2 − q2
B0(q

2;m,m)

}
geA

+
α

4π
ūeγ5(p1 − p3)µue

{
1

q2
B0(0;m,λ)−

2

4m2 − q2
B0(m

2;m,λ)

+
(3q2 − 4m2)

q2(4m2 − q2)
B0(q

2;m,m)− 1

q2

}
geA.

(4.21)

The ūeγ5ue correction which is proportional to (p1 − p3)µ is inconsequential

to us as this current disappears in the PV amplitude. Now let’s look at the

γµγ5 term at q2 → 0, where it reduces to:

ΛZeeµ |A(γµγ5 term) → α

4π
ūeγµγ5ue[4m

2C0(m
2,m2, 0;m,λ,m)− 2

+2B0(m
2;m,λ)−B0(0;m,m)]geA.

(4.22)

Just like the γµ term in ΛZeeµ |V required the addition of the counterterm

+Zψγµ, so too will this term, as it is the net (geV γµ + geAγµγ5) vertex which

is getting renormalized. Thus, after renormalization we will get:
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ΛZeeµ |A(γµγ5 term)|q2=0 =
α

4π
ūeγµγ5ue[4m

2C0(m
2,m2, 0;m,λ,m)− 2

+2B0(m
2;m,λ)−B0(0;m,m)−B0(0;m,m)

+4m2B′
0(m

2;m,λ)]geA

=
α

4π
[4m2(C0 +B′

0) + 2B0(m
2;m, 0)

−2B0(0;m,m)− 2]geA

= − α

2π
geA, (4.23)

which is exactly equal and opposite to the correction to the vector correction

in (4.16). This is actually no coincidence, as the CVC hypothesis states that

the V −A structure of the vertex must be preserved, even after the inclusion

of radiative corrections. (4.23) will actually change sign in the PV correction

ALR as follows:
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δQW (p) ∼ δALR ∼
MPV

Z,γ−loop

MPV
Z

, (4.24)

MPV
Z,γ−loop ∼ geA

[
ūeγµγ5

(
− α

2π

)
PLue − ūeγµγ5

(
− α

2π

)
PRue

]
= −geA

( α
2π

)
[ūeγµγ5PLue − ūeγµγ5PRue]

= −geA
( α
2π

)[
Tr
(
/pγµγ5

(1− γ5)

2

)
− Tr

(
/pγµγ5

(1 + γ5)

2

)]
= −g

e
A

2

( α
2π

)
[−Tr(/pγµ1)− Tr(/pγµ1)]

= geA

( α
2π

)
(4pµ), (4.25)

MPV
Z ∼ geA(4pµ). (4.26)

Therefore, our correction to the proton’s weak charge in the Thomson

limit is:

δQW (p) =
α

2π
≡ ∆e. (4.27)

This expression was first calculated by Marciano & Sirlin [78] as an atomic

parity violation correction - valid in the Thomson limit. However, it will be

important to look at all of these corrections in the scattering limit at which

q2 � m2
e. This is technically the limit in which experiments such as Qweak

[54] are done, where 〈Q2〉 ≈ 0.025GeV2. Recall that
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F2(q
2) =

α

4π

(
4m2

4m2 − q2

)
[B0(0;m, 0)− 2B0(m

2;m,λ) +B0(q
2;m,m) + 1],

(4.28)

and from this general expression, we can take the scattering limit:

F2(q
2) → α

4π

(
4m2

4m2 − q2

)[
∆ε + 1− ln

m2

µ2
− 2

(
∆ε + 2− ln

m2

µ2

)

+∆ε − ln
m2

µ2
+ 2 + ln

(−m2

q2

)
+ 1

]

=
α

4π

(
4m2

4m2 − q2

)
ln
(−m2

q2

)
= 4m2 α

4π
lim
t→∞

ln(−m2/t)

4m2 − t

= 0. (4.29)

Next, recall the γµg
e
V correction which was:

F̂1(q
2) =

α

4π
[−(2q2 − 4m2)C0(m

2,m2, q2;m,λ,m) + 4B0(m
2;m,λ)

−3B0(q
2;m,m)− 2−B0(0;m,m) + 4m2B′

0(m
2;m,λ)]geV . (4.30)

This expression is somewhat complicated in the scattering limit, and the

details are not terribly illuminating. Unlike the Thomson limit, its IR diver-

gence is quite present now, and is of the form:
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F̂1(q
2 � m2) ∼ α

4π
geV ln

Q2

m2
ln
λ2

m2
. (4.31)

This IR divergence gets canceled when combined with the other IR-divergent

amplitudes and the result is simply:

F̂1(q
2 � m2) → 0. (4.32)

Finally, let’s compare this to the γµγ5 correction in the axial vertex. Ear-

lier we had:

Ĝ1(q
2) = (4m2 − q2)C0 − 2 + 4

2m2 − q2

4m2 − q2
B0(m

2;m, 0)

+
(3q2 − 4m2)

4m2 − q2
B0(q

2;m,m)−B0(0;m,m) + 4m2B′
0(m

2;m,λ),

→ q2C0 − 2 + 4B0(m
2;m, 0)− 3B0(q

2;m,m)−B0(0;m,m)

+4m2B′
0(m

2;m,λ)

= F̂1(q
2 � m2) → 0. (4.33)

Just as in the Thomson limit, we see that the V −A vertex gets a common

correction, which in this case, gets canceled by other diagrams. We can

always count on the cancellation of IR divergences such as those in (4.31)

as is guaranteed by the Bloch-Nordsieck theorem [44], which states that all

IR divergences get cancelled in any observable in QED. To summarize our

findings, the net effect of the vertex diagram shown in (4.10) leads to the
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following correction to QW (p):

∆e =


α
2π
, q2 = 0

0, q2 � m2
e

. (4.34)

Technically this is quite a difference between the scattering and atomic limits,

but in practice, the quantity α
2π

≈ .00116 is a 0.1% correction to the already

small QW (p) ≈ .0708. Hence it is hardly worth putting the finite Thomson

limit into (4.2), and one can simply take this correction to be negligible:

∆e ≈ 0. (4.35)
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4.4 ∆′
e Correction

There is another leptonic vertex correction wherein the γee vertex has a Z-

boson loop formed across the electron lines. The associated amplitude is

given by:

Λγeeµ = . (4.36)

In this case the photon only has a pure vector coupling. As we know, this

bare vertex cannot form a PV amplitude alone. However, due to the axial-

vector couplings between the Z-boson and electron, which occurs twice here,

a PV effect is possible, and as we shall see this indeed happens. Employing

the EW Feynman rules gives us:

Λγeeµ =
g2

4c2W

∫
d4k

(2π)4
1

[(p3 − k)2 −m2][(p1 − k)2 −m2](k2 −M2
Z)

× ūe(p3)γ
β(geV − geAγ5)(/p3 − /k +m)γµ(/p1 − /k +m)γβ(g

e
V − geAγ5)u(p1).

(4.37)

After expanding the numerator via the contraction of the β’s one will

get 3 types of terms: geV
2, geV g

e
A, g

e
A
2. It is only the V × A terms which can

generate a PV amplitude. This part of the numerator is given by:
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Λγeeµ,PV = − 4g2

4c2W

∫
d4k

(2π)4
1

[(p3 − k)2 −m2][(p1 − k)2 −m2](k2 −M2
Z)

×ūe(p3)[−2kµ/kγ5 + γµγ5(k
2 −m2) + /p1γµ/kγ5

+/kγµ/p3γ5 − /p1γµ/p3γ5]ue(p1)g
e
V g

e
A.

(4.38)

We can then perform the loop integration explicitly followed by the PaVe

reduction to obtain the somewhat lengthy expression:

Λγeeµ,PV = − g2

c2W
geV g

e
Aūe(p1 − p3)µγ5ue

1

mq2(4m2 − q2){
[q2(2m2 +M2

Z)− 2m2M2
Z ]B0(m

2;m,MZ)

+m2(4− 3q2 − 2M2
Z)B0(q

2;m,m) + (q2 − 4m2)A0(m)

+(4m2 − q2)A0(MZ)

+2m2(q2 +M2
Z)(4m

2 −M2
Z − q2)C0(m

2,m2, q2;m,MZ ,m)
}

− g2

2c2W
geV g

e
Aūeγµγ5ue

1

4m2 − q2
{
(4q2 − 8m2 + 2M2

Z)B0(m
2;m,MZ)

+(4m2 − 3q2 − 2M2
Z)B0(q

2;m,m) (4.39)

+2(q2 +M2
Z)(4m

2 −M2
Z − q2)C0

}
.

As we know, the matrix element ūe(p1− p3)µγ5ue cannot lead to a PV effect,

and so we may neglect that term from now on. The γµγ5 term does indeed

lead to aQW (p) correction, and our goal is to evaluate it in both the Thomson

and scattering limits. In doing so, we must be careful not to forget the

additional factor of D(q2) = 1
q2

which comes from the photon propagator, as
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it will be a crucial ingredient to attain the correct final limit. Continuing

then, the γµγ5 term in (4.39) is:

Λγeeµ,PV = − g2

2c2W
geV g

e
Aūeγµγ5ue

1

4m2 − t

{
(−8m2 + 2M2

Z + 4t)B0(m
2;m,MZ)

+(4m2 − 2M2
Z − 3t)B0(t;m,m) + 2(M2

Z + t)(4m2 −M2
Z − t)C0

}
,

(4.40)

where t ≡ q2. We can then use the results of Appendix G and take the

Thomson limit t→ 0. In a somewhat pragmatic fashion, we can impose the

renormalization condition Λγeeµ (t = 0) = 0 by simply subtracting it at the

t = 0 limit:

Λ̂γeeµ = Λγeeµ (t)− Λγeeµ (0), (4.41)

and from (4.40) we have:

Λγeeµ,PV (0) = 2

(
4 + ∆e + ln

µ2

m2
− M2

Z

m2

)
+

(
4M2

Z

m2
− M4

Z

m4

)
ln
m2

M2
Z

+2

(
2− M2

Z

m2

)
M2

Z

m2

√
1− 4m2

M2
Z

ln

(
M2

Z(1 +
√
1− 4m2/M2

Z)

2mMZ

)
. (4.42)
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While for small t, a Taylor series reveals that:

Λγeeµ,PV (t) ≈ Λγeeµ,PV (0) +
t

3(4m8 −m6M2
Z)

{
− 28m6 −m4M2

Z + 2m2M2
Z

+ 2(M4
Z − 12m4)

√
M4

Z − 4m2M2
Z ln

(√
M4

Z − 4m2M2
Z +M4

Z

2mMZ

)

+ (24m6 − 14m4M2
Z − 2m2M4

Z +M6
Z)ln

(
m2

M2
Z

)}
. (4.43)

It’s here now that the photon propagator saves us after invoking (4.41),

allowing us to get a non-zero result in the Thomson limit. Then taking the

ratio with the Born amplitude gives us:

∆′
e = −M

2
Zα

4π
D(t)Λ̂γeeµ (t)|t→0

=
α

4π

1

3z3(4z − 1)

{
(4z − 1)[(6z2 − 2z − 1)lnz − z(7z + 2)]

+2(1− 12z2)
√
1− 4zln

(√
1− 4z + 1

2
√
z

)}
, (4.44)

where we have defined the dimensionless quantity z ≡ m2/M2
Z . Since z � 1

we can then take a Taylor series around z = 0 to find:

∆′
e ≈ − α

18π
(1− 6lnz)(2)

(1
2
− 2s2W

)
,

⇒ ∆′
e = − α

3π

(
1

6
+ ln

M2
Z

m2

)
(1− 4s2W ). (4.45)

This is our official Thomson limit result, and it is the same result used by
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EKR. Next, let’s evaluate this correction in the scattering limit. To do so,

we can start with the general expressions for the PV functions inside (4.40)

and apply our renormalization condition to find:

Λ̂γeeµ,PV (t) = − 1

3m4t(4m2 − t)

{
6m2t(2m2 −M2

Z)(4m
2 − t)

− 6MZt
√
M2

Z − 4m2
[
2m2(M2

Z − t)−M2
Zt
]

×ln

(√
M2

Z − 4m2 +MZ

2m

)
+ 2m4(M2

Z + t)(4m2 −M2
Z − t)

×

(
6Li2(1 +M2

Z/t) + 3ln2
(−M2

Z

t

)
+ π2

)
+ 6m4

√
t(t− 4m2)

×(4m2 − 2M2
Z − 3t)ln

(√
t(t− 4m2) + 2m2 − t

2m2

)

+ 3M2
Zt(8m

4 − 2m2M2
Z +M2

Zt)ln
m2

M2
Z

}
. (4.46)

To help us systematically proceed with the scattering limit, it will be very

helpful to express this in terms of the 2 dimensionless quantities:

x ≡ − t

M2
Z

, (4.47)

z ≡ m2

M2
Z

. (4.48)
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This leaves us with the equivalent expression:

Λ̂γeeµ,PV (t) =
1

3xz2(x+ 4z)

{
− 2(x− 1)z2(x+ 4z − 1)

[
6Li2(1− 1/x)

+3ln2x+ π2
]
+ 6z2

√
x(x+ 4z)(3x+ 4z − 2)

×ln

(√
x(x+ 4z) + x+ 2z

2z

)
− 6x(2z − 1)z(x+ 4z)

+6x
√
1− 4z(2xz + x+ 2z)ln

(√
1− 4z + 1

2
√
z

)

+3x[x+ 2(1− 4z)z]lnz

}
. (4.49)

From here, we can perform a Taylor series about z = 0, which to LO evaluates

to:

Λ̂γeeµ,PV (t) ≈ − 1

3x2

[
12(x− 1)2Li(1− 1/x) + 2π2x2 + 21x2 − 4π2x

−12x+ 6(x− 1)2ln2x− 6x(3x− 2)lnx+ 2π2

]
. (4.50)

Finally, we can take the Taylor series (again) about x = 0 up to O(x),

multiply by D(t), then take the limit x→ 0 to find:

∆′
e = − α

3π
(1− 4s2W )

(
ln
M2

Z

Q2
+

11

6

)
, (4.51)

which is a distinctly different expression than the Thomson limit in (4.45).
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However, the two are related via:

∆′
e(Q

2) = ∆′
e(0) +

α

3π
(1− 4s2W )

(
ln
Q2

m2
− 5

3

)
. (4.52)

This relation has a rather interesting connection to the running of the weak

mixing angle. As we shall see in the following section, the difference ∆′
e(Q

2)−

∆′
e(0) is equal to the electron’s contribution to the running of sin2 θW . The

numerical difference between the scattering and Thomson limits evaluates

to:

∆′
e(.025GeV2)−∆′

e(0) = +.0006, (4.53)

which is a +0.8% increase to the Thomson limit correction, and a −1.9%

correction to QW (p). One noteable difference between ∆e and ∆′
e is that ∆

′
e

is suppressed by (1 − 4s2W ) while ∆e is not. Despite this, ∆e is negligible,

while the large logarithm in (4.51) makes ∆′
e a more dominant correction to

the proton’s weak charge. This concludes our vertex corrections for now. It

should be remarked that vertex corrections are generally process-dependent,

and mathematically they may contain both IR and UV divergences – both

of which must be systematically removed for a physical result to ensue.
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4.5 The Weak Mixing Angle

At low Q2, ALR receives contributions from amplitudes which involve a single

Z-boson coupling to the electron together with a single photon coupling to

the proton. These two neutral vector bosons can interact through the loops

depicted in Figure 4.1. There are a number of fermionic and bosonic SE

corrections which correct the γ−Z propagator and they are shown in Figure

4.2. In addition to these traditional SE diagrams, there is also a subtle

contribution which comes from the “pinch” part of the two vertex diagrams

at the end of Figure 4.2. Before continuing forth and calculating all of these

pinch pinch

Figure 4.2: 1 Loop Feynman diagrams which contribute to the running of
sin2 θW (q2)
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diagrams, let’s take the time to clearly relate them to sin2 θW . We use a form

factor approach suggested by Sirlin and Ferroglia [55], in which:

sin2 θW (q2) = κ(q2) sin2 θW (M2
Z), (4.54)

where the form factor κ(q2) is related to the γ−Z self energy correction via:

κ(q2) = 1− cW
sW

Π̂γZ(q2)

q2
, (4.55)

and Π̂γZ here denotes the M̄S renormalized SE evaluated at the t’Hooft scale

µ =MZ . In our goal to acquire the total γZ SE, we will start by finding the

lone fermion (f) contribution in Figure 4.2, which is customarily separated

from all the bosonic contributions. In terms of PaVe functions, it is given

by:

ΠγZ
f (q2) = 1

3
α

2cW sW π

∑
f 6=t

QfN
f
c (T

3
f − 2s2WQf )×[

− (q2 + 2m2
f )B0(q

2;mf ,mf ) + 2m2
fB0(0;mf ,mf ) +

q2

3

]
.

(4.56)

This fermion sum, which excludes the heavy top quark, contains all leptons

and quarks which possess an EM charge. Although the lepton masses are

well-known, the quark masses are not. Therefore, rather than use the above

formula for ΠγZ
f , we replace both the leptonic and hadronic corrections by a
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dispersive approach used by Jegerlehner [40]. At the tree level, the mixing

angle is just the ratio of EM to weak coupling constants: sin2 θW = e/g.

Thus:

sin2 θW (Q2) =
α(Q)

α2(Q)
. (4.57)

Furthermore, the loop corrections to α & α2 can be put into the general form

(by a geometric series):

α(Q2) =
α

1−∆α(Q)
. (4.58)

It follows to O(α) then, that the shift in sin2 θW due to these running con-

stants can be written as:

sin2 θW (Q2) =
(
∆α(Q)−∆α2(Q)

)
sin2 θW (0). (4.59)

The same formula may also be applied for the choice of renormalizing from

the Z-pole as well. Regardless of renormalization choices, the LHS is the

same function (a running EW parameter). Both ∆α(Q) and ∆α2(Q) are

available from [40], and have been separated into 3 parts:

∆α = ∆αlep +∆αhad +∆αtop. (4.60)

As shown in Figure 4.3 below, the Jegerlehner parameterization agrees very

well with a recent Lattice calculation [56]; and thus it appears to be much
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more reliable than simply putting the effective quark masses into ΠγZ
f (q2).

The total shift (Scattering-Thomson) in the weak mixing angle due to the

Figure 4.3: Comparison of the difference to the running of sin2 θW (q2) from
the fermionic loops between the perturbative result of (254) and two non-
perturbative calculations.

fermionic and hadronic loops using the dispersive analysis of Jegerlehner is:

δ sin2 θW (Q2 = .025GeV2) = −.0002 . (4.61)

Next, we turn our attention to the bosonic contributions (1 − 6), which

we will each evaluate separately. Starting with diagram 1:
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ΠγZ
1

µν
(q2) =

= (−1)5i6egcWgµρgωνgταgγlµ
2ε

∫
ddk

(2π)d

×[gτγ(q − 2k)ρ + gγρ(k − 2q)τ + gρτ (q + k)γ]

× [gαl(q − 2k)ω + gαω(k + q)l + gωl(k − 2q)α]

(k2 −M2
W )[(q + k)2 −M2

W ]

= g2sW cWgταgγlµ
2ε

∫
ddk

(2π)d
[gτγ(q − 2k)µ + gγµ(k − 2q)τ +

gµτ (q + k)γ]× [gαl(q − 2k)ν + gαν(k + q)l + gνl(k − 2q)α]

(k2 −M2
W )[(q + k)2 −M2

W ]

=
cW sWg

2

6

{
gµν
[
(19q2 + 32M2

W )B0(q
2;MW ,MW ) + 22A0(MW )

+10(−2M2
W + p2/3)

]
+
qµqν

q2
[
(−22q2 − 20M2

W )B0(q
2;MW ,MW )

+20A0(MW ) + 10(−2M2
W + p2/3)

]}
. (4.62)
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ΠγZ
2

µν
(q2) =

= 2i6(−1)5egMWMZs
2
Wgµνg

αγgρτgατgγρµ
2ε

∫
ddk

(2π)d

1

(k2 −M2
W )[(q − k)2 −M2

W ]

= 2g2s3W
M2

W

cW
gµνu

2ε

∫
ddk

(2π)d
1

(k2 −M2
W )[(q − k)2 −M2

W ]

=
2g2M2

W s
3
Wg

µν

cW
B0(q

2;MW ,MW ). (4.63)

ΠγZ
3

µν
(q2) =

= i6(−1)4eg
cos(2θW )

2cW
gµβgανµ

2ε

∫
ddk

(2π)d
(2k − q)β(q − 2k)α

(k2 −M2
W )[(q − k)2 −M2

W ]

=
g2sW
2cW

(c2W − s2W )µ2ε

∫
ddk

(2π)d
(2k − q)µ(q − 2k)β

(k2 −M2
W )[(q − k)2 −M2

W ]

=
g2sW (c2W − s2W )

6cW

{
gµν
[
(4M2

W − q2)B0(q
2;MW ,MW ) + 2A0(M

2
W )

+2(−2M2
W + p2/3)

]
+
qµqν

q2

[
(q2 − 4M2

W )B0(q
2;MW ,MW )

+4A0(MW ) + 2(−2M2
W + p2/3)

]}
. (4.64)
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ΠγZ
4

µν
(q2) =

= 2(−1)2i6egcWgµβgαν

∫
ddk

(2π)d
(k − q)βkα

(k2 −M2
W )[(q − k)2 −M2

W ]

= −2g2sW cWµ
2ε

∫
ddk

(2π)d
(k − q)µkν

(k2 −M2
W )[(q − k)2 −M2

W ]

= −cW sWg
2

6

{
gµν
[
(4M2

W − q2)B0(q
2;MW ,MW ) + 2A0(MW )

+2(−2M2
W + p2/3)

]
+
qµqν

q2

[
− (2q2 + 4M2

W )B0(q
2;MW ,MW )

+4A0(MW ) + 2(−2M2
W + p2/3)

]}
. (4.65)

ΠγZ
5

µν
(q2) =

= −i4egcWgµαgδνgτγµ2ε

∫
ddk

(2π)d
(2gτγgδα − gτδgγα − gταgγδ)

k2 −M2
W

= −g2sW cWµ2ε

∫
ddk

(2π)d
[2gτγgµν − gγµg

τ
ν − gτµg

γ
β ]gτγ

k2 −M2
W

= −6cW sWg
2gµνA0(MW ). (4.66)
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ΠγZ
5

µν
(q2) =

= −i4gecos(2θW )

cW
gµβgανg

βαµ2ε

∫
ddk

(2π)d
1

k2 −M2
W

= −g2sWgµν
(c2W − s2W )

cW
µ2ε

∫
ddk

(2π)d
1

k2 −M2
W

= −g2 sW (c2W − s2W )

cW
gµνA0(MW ). (4.67)

We now need the sum of these 6 amplitudes for the total unrenormalized

bosonic γZ self energy, which we will decompose into transverse (T) and

longitudinal (L) parts:

ΠγZ
Bos

µν
=

(
gµν − qµqν

q2

)
ΠγZ
Bos,T +

qµqν

q2
ΠγW
Bos,L, (4.68)

where:

ΠγZ
Bos,T (q

2) =
g2sW
6cW

{
[(18c2W + 1)q2 + 8(3c2W + 1)M2

W ]B0(q
2;MW ,MW )

+4(1− 6c2W )[A0(MW )−M2
W ] + 2q2/3

}
, (4.69)

ΠγZ
Bos,L(q

2) =
2g2M2

W sW
cW

B0(q
2;MW ,MW ) =

α

2πsW cW
M2

WB0. (4.70)

It is a well-known fact that only the transverse component of a self-energy

contributes to S-matrix elements, since the longitudinal part vanishes when
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contracted with a polarization vector: εµq
µ = 0. The first term of (4.68) then

obeys the Ward identity qµΠ
γZ
Bos

µν
= 0. Therefore, at some point, the longi-

tudinal component must cancel or else this condition will not be obeyed. Our

unrenormalized SE in (4.68-4.70) agrees with that attained in [57]. However,

rather than renormalize it now, we can form a gauge-invariant self-energy us-

ing a method known as the Pinch Technique [58]-[59]. The technique states

that the non-Abelian verticesWWγ &WWZ of diagrams 7 & 8 in Figure 4.2

each contain a term which effectively “pinches out” the intermediate fermion

line in the loop. The remaining diagram resembles a γZ mixing contribution

which can then be folded into (4.68). See Figure 4.4 for an illustration of the

effect. We can start by writing the full expression of diagram 7, which is:

Figure 4.4: The pinch technique applied to the electron’s anapole moment
vertex diagram reveals a hidden γZ mixing piece after removing the inter-
mediate fermion line.
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M7 =

=

(
ig√
2

)2 ∫
d4

(2π)4
ūe(p3)γ

αPL
i(/p1 − /k)

(p1 − k)2
γlPLue(p1)

(
−iglγ

k2 −M2
W

)

×

(
−igατ

(k − q)2 −M2
W

)(
−igδβ
q2 − λ2

)
(−ie)[gτγ(q − 2k)δ

+gγδ(k + q)τ + gδτ (k − 2q)γ]. (4.71)

The non-Abelian γWW vertex, which is in square brackets, contains two

terms which generate a pinching effect: kτ and kγ. So let’s isolate them for

now, denoting |p for the pinch part they constitute:

M7|p = −g
2e

2

∫
d4k

(2π)4
ūe(p3)γ

αPL
1

/p1 − /k
γlPLue(p1)

× glγgατgδβ(g
γδkτ + gδτkγ)

(k2 −M2
W )[(k − q)2 −M2

W ](q2 − λ2)

=
ig2e

2(q2 − λ2)

∫
d4k

(2π)4
ūe(p3)γ

αPL
1

/p1 − /k
γlPLue(p1)

× (glβkα + gαβkl)

(k2 −M2
W )[(k − q)2 −M2

W

= − ig2e

2(q2 − λ2)

∫
d4k

(2π)4
ūe(p3)

[
/kPL

1

/p1 − /k
γβPL

+γβPL
1

/p1 − /k
/kPL

]
ue(p1)

1

(k2 −M2
W )[(k − q)2 −M2

W ]
. (4.72)
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We can then us the simple identities:

/kPL = −PL/k, (4.73)

−/k = (/p1 − /k)− /p1, (4.74)

in which case the terms inside the square brackets reduces to:

PL
[(/p1 − /k)− /p1]

/p1 − /k
γβPL − γβPL

[(/p1 − /k)− /p1]

/p1 − /k
PL

= PL

(
1− /p1

/p1 − /k

)
γβPL − γβPL

(
1− /p1

/p1 − /k

)
PL. (4.75)

In the forward limit one has /p1 ≈ /p3, and we are also “sandwiching” this

expression between the external spinors in (4.72). Thus we have:

ūe(p3)

[
PL

(
1− /p1

/p1 − /k

)
γβPL − γβPL

(
1− /p1

/p1 − /k

)
PL

]
ue(p1)

= ūe(p3)

[
− γβP

2
L +

/p1PLγβPL

/p1 − /k
− γβP

2
L −

γβP
2
L/p1

/p1 − /k

]
ue(p1)

≈ −2ūe(p1)γβPLue(p1), (4.76)

where we have used the massless fermion limit: /p1ue(p1) ≈ 0 and P 2
L = PL.

(4.72) then reduces to:

M7|p =
2ig2e

2q2

∫
d4k

(2π)4
ūe(p1)γβPLue(p1)

1

(k2 −M2
W )[(k − q)2 −M2

W ]
. (4.77)

The remaining leptonic current J3
β = ūe(p1)γβPLue(p1) is an unphysical one
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for the electron. Nonetheless, we may express it in terms of physical ones:

J3
β = 2(JZβ + s2WJ

γ
β ), (4.78)

where JZµ and Jγµ are the neutral and EM currents without their coupling

constants. Since it is a photon (purely vector) which couples to the pro-

ton here, in order to attain a PV effect, we need the JZβ term from (4.78).

Therefore:

M7|PVp =
2ig2e

q2

∫
d4k

(2π)4
1

(k2 −M2
W )[(k − q)2 −M2

W ]
ūeJ

Z
β ue

=
ig2e

q2

(
2i

16π2

)
B0(q

2;MW ,MW )ūeJ
Z
β ue

= − e

q2

(
α

2πs2W
B0(q

2;MW ,MW )

)
ūeJ

Z
β ue, (4.79)

which gets multiplied by the proton’s photon current ūpJ
γ
βup in the full scat-

tering amplitude. This implicitly means that this is a contribution to the γZ

SE. We next need to evaluate the pinch part of the proton vertex in diagram
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8:

M8 =

=

∫
d4k

(2π)4

(
−igµρ

q2 −M2
Z

)
igcW [gδτ (2k + q)ρ − gτρ(k + 2q)δ + gρδ(q − k)τ ]

×

(
−igαδ

k2 −M2
W

)(
−igτβ

(k + q)2 −M2
W

)
ūp(p4)

ig√
2
γβPLi

(/p2 − /k +M)

(p2 − k)2 −M2

ig√
2

×γαPLup(p2). (4.80)

This expression assumes that the nucleons are pure spin-1/2 Dirac fermions,

while in fact, nothing forces this to be true. Fortunately this loop expression

involves:

M8 ∼
∫
d4k

numerator

(k2 −M2
W )[(k + q)2 −M2

W ][(p2 − k)2 −M2]
. (4.81)

The two W-boson propagators implies that this integral is dominated at high

k2 momentum scales – a limit in which the nucleon behaves like free quarks.
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Therefore, our vertex approximately behaves as (taking αS = 0):

. (4.82)

So let us proceed with the up quark contribution:

M8(u) =
−i7g3cW

2(q2 −M2
Z)

∫
d4k

(2π)4
ūu(p4)γβPL

1

/p2 − /k
γαPLuu(p2)

×g
µρgαδgτβ[gδτ (2k + q)ρ − gτρ(k + 2q)δ + gρδ(q − k)τ ]

(k2 −M2
W )[(q + k)2 −M2

W ]
.

(4.83)

The pinch terms originate from kδ and kτ here, and so the pinch part of this

diagram will be:

M8(u)|p = − ig3cW
2(q2 −M2

Z)

∫
d4k

(2π)4
ūu(p4)γβPL

1

/p2 − /k
γαPLuu(p2)

× gµρgαδgτβ[gτρkδ + gρδkτ ]

(k2 −M2
W )[(q + k)2 −M2

W ]

= − ig3cW
2(q2 −M2

Z)

∫
d4k

(2π)4
ūu(p4)γβPL

1

/p2 − /k
γαPLuu(p2)

× [gβµkα + gαµkβ]

(k2 −M2
W )[(q + k)2 −M2

W ]
. (4.84)

This expression is identical to that of M7|p, but with a slightly different
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prefactor outside the integral. They are related by:

M8(u)|p = M7|p

(
e

q2
→ gcW

q2 −M2
Z

)
, (4.85)

⇒M8(u)|p =
ig3cW
q2 −M2

Z

∫
d4k

(2π)4
ūu(p4)γ

µPLuu(p2)
1

(k2 −M2
W )[(q + k)2 −M2

W ]
,

and in this case we now need the EM part of the Jµ3 current for a PV con-

tribution:

M8(u)|PVp =
2is2Wg

3cW
q2 −M2

Z

∫
d4k

(2π)4
ūuJ

µ
γ uu

(k2 −M2
W )[(q + k)2 −M2

W ]

=
2igcW e

2

q2 −M2
Z

ūuJ
µ
γ uu

i

16π2
B0(q

2;MW ,MW )

= − α

2π

gcW
q2 −M2

Z

ūuJ
µ
γ uuB0(q

2;MW ,MW ). (4.86)

The full EM currents of the up and down quarks are:

ūuJ
µ
γ uu = +

2e

3
ūuγ

µuu, (4.87)

ūdJ
µ
γ ud = −e

3
ūdγ

µud, (4.88)

⇒ 2ūuJ
µ
γ uu + ūdJ

µ
γ ud = +eūγµu = ūpJ

µ
γ up. (4.89)

Therefore:

M8(proton)|PVp = − g

cW (q2 −M2
Z)

(
αc2W
2π

)
ūpJ

µ
γ upB0(q

2;MW ,MW ), (4.90)

and this expression will get multiplied by the electron’s neutral current
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ūeJ
Z
µ ue in the scattering amplitude to also contribute to the γZ SE. To

recap our PT results, we now have the two expressions:

M7|PVp = − e

q2
α

2πs2W
B0(q

2;MW ,MW )ūeJ
Z
β ue,

M8|PVp = − g

(q2 −M2
Z)

αcW
2π

B0(q
2;MW ,MW )ūpJ

µ
γ up.

However, in order to make sense of these results, we should consider the full

scattering amplitudes, and make sure that the currents present include their

respective coupling constants: JZβ ∼ g/cW , Jµγ ∼ e. Doing so gives for the

S-matrix elements:

M7|PVp
scattering−−−−−→ − 1

q2

(
αcW
2πsW

1

q2 −M2
Z

B0(q
2;MW ,MW )

)
ūeJ

Z
β ueūpJ

β
γ up,

M8|PVp
scattering−−−−−→ − 1

q2 −M2
Z

(
αcW
2πsW

1

q2
B0(q

2;MW ,MW )

)
ūeJ

Z
µ ueūpJ

µ
γ up,

and their contribution to the γZ SE comes from the quantities in round

parenthesis once the common mixing propagator has been factored out. Thus

our total PT part of the γZ self energy is:

∆p =
αcW
2πsW

B0(q
2;MW ,MW )

(
1

q2 −M2
Z

+
1

q2

)

=
α

2πsW cW

c2W q
2 + c2W (q2 −M2

Z)

q2(q2 −M2
Z)

B0(q
2;MW ,MW )

=
α

2πsW cW
[2q2c2W −M2

W ]B0(q
2;MW ,MW ). (4.91)
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Note that the M2
W term of ∆p has exactly equal and opposite sign to ΠγZ

Bos,L

in (4.70). This renders the sum ΠγZ
Bos

µν
+ gµν∆p gauge invariant. This total

forms now our unrenormalized transverse γZ PT self energy. The resulting

function, which we’ll call ΠγZ
Bos+PT,T (q

2), is UV-divergent and it must be

renormalized before it is inserted into an observable quantity. In order to

understand how it is renormalized, the γZ mixing propagator is defined as:

DγZ(q
2) ≈ −iΠγZ(q2)

q2(q2 −M2
Z)

= , (4.92)

and its renormalization conditions require that:

ΠγZ(0) = 0, (4.93)

ReΠγZ(M2
Z) = 0. (4.94)

Therefore, in the on-shell (OS) renormalization scheme, the renormalized γZ

SE is constructed as follows:

Π̂γZ(q2) = ΠγZ(q2)− ΠγZ(0)− q2

M2
Z

[ReΠγZ(M2
Z)− ΠγZ(0)], (4.95)

and so the counter terms are effectively functions of ΠγZ(0) and ReΠγZ(M2
Z).

Rather than employing the OS scheme, we choose to use the M̄S scheme

which begins with the OS counterterms, but only keeps their ∆ε = 2
ε
−

γE + ln4π terms in the renormalization subtraction. This renormalization

process equally applies to the fermionic expression as it does the bosonic,



CHAPTER 4. RADIATIVE CORRECTIONS TO QW (P ) 148

and so I include both below for completeness reasons. Inserting ΠγZ
T =

ΠγZ
fer,T +ΠγZ

bos,T +∆p into the M̄S scheme gives one:

Π̂γZ
ferm =

α

2πsW cW

{
1

3
ΣfN

f
c Qf (I

3
f − 2s2WQf )

[
− (q2 + 2m2

f )B0(q
2;mf ,mf )

+2m2
fB0(0;mf ,mf ) +

q2

3

]}
, (4.96)

Π̂γZ
bos+PT =

α

2πsW cW

{[(
7c2W
2

+
1

12

)
q2 +

(
2c2W − 1

3

)
M2

W

]
B0(q

2;MW ,MW )

−

(
2c2W − 1

3

)
M2

WB0(0;MW ,MW ) +
q2

18

}
. (4.97)

Finally, we can insert both these expressions into the formula for κ(Q2), as

well as insert the analytical expressions for the PaVe functions to get:

κPT (q2;µ =MZ) ≡ κf (q
2) + κPTb (q2)− 1. (4.98)

The −1 term simply ensures we don’t double-count 1’s in κf & κPTb , as each

is given by:

κf (q
2) = 1− α

2πs2W

{
1

3
ΣfN

f
c Qf (I

3
f − 2s2WQf )

[
ln
m2
f

M2
Z

− 5

3
− 4zf

+(1 + 2zf )pf ln

(
pf + 1

pf − 1

)]}
, (4.99)

zf ≡
m2
f

q2
< 0, (4.100)

pf =
√

1− 4zf , (4.101)
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κPTb (q2) = 1− α

2πs2W

{
− 42c2W + 1

12
lnc2W +

1

18

−

(
p

2
ln
p+ 1

p− 1
− 1

)[
(7 + 4z)c2W +

1

6
(1− 4z)

]}
, (4.102)

z ≡ M2
W

q2
< 0, (4.103)

p =
√
1− 4z. (4.104)

It then follows that we predict the running parameter: sin2 θPTW (q2) = κPT (q2)s2W ,

where s2W ≡ sin2 θW (M2
Z). The contributions from the fermionic, bosonic+PT,

and total are all plotted in Figure 4.5.

0.001 0.010 0.100 1 10 100 1000
Q[GeV]

0.230

0.235

0.240

0.245

sin2θW

Total

Fermions

Bosons + PT

Figure 4.5: The fermionic contribution to sin2 θW (Q2) is relevant at low Q,
while the bosonic part sets in above the Z-pole mass.

As one can see in the figure, the fermionic part is large at low Q only,

while the bosonic is large at high Q only. This is easily understood as the Q2

flowing into the loop must be large enough to produce the paired W -bosons
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around their mass scale, whereas the light fermions require a much lower Q2

in order to be produced in the loop. Another observation of these results is

seen by evaluating κf (q
2 � m2

f )|mf=me . which is the contribution to the weak

mixing angle by the electron/positron pair at the scattering limit, where:

κf (q
2 � m2

f )|mf=me = 1− α

2πs2W

1

3
(−1)

(
1

2
− 2s2W

)[
ln
m2
e

M2
Z

− 5

3
− ln

m2
e

Q2

]

= 1 +
1

4s2W

α

3π
(1− 4s2W )

(
ln
m2
e

M2
Z

+ ln
Q2

m2
e

− 5

3

)
,

(4.105)

which is remarkably similar to ∆′
e(Q

2), and the connection isn’t exactly obvi-

ous. In fact, I find that their relative shift between the Thomson and scatter-

ing limits is equal: κscatf −κThom
f = ∆′

e
Scatt−∆′

e
Thom = α

3π
(1−4s2W )[ln(Q2/m2

e)−

5/3]. The main advantage of defining sin2 θPTW is that not only is it a gauge-

invariant quantity (which EW Lagrangian parameters aren’t necessarily), but

it’s also process-independent. Therefore, if all SM precision tests adopt this

definition, they are all in fact extracting/using the same quantity, regardless

of what experiment is involved.
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4.6 ∆NP Correction:

The remaining terms in M7 also contributes to a PV effect and it must be

calculated. This will be called the non-pinch (NP) vertex correction, which

is given by:

M7|NP = −ig
2e

2

∫
d4k

(2π)4
ūe(p3)γ

αPL
(/p1 − /k)

(p1 − k)2
γlPLue(p1)glγgατgδβ

×[gτγ(q − 2k)δ + gγδqτ − 2gδτqγ]

→ − αe

2πs2W
lim
q2→0

(
Γeeγ2W (q2)− Γeeγ2W (0)

q2

)
, (4.106)

which is the renormalized PV part of the vertex, and the embedded vertex

function is defined as:

Γeeγ2W (q2) =

(
M2

W

q2
+ 2

)
B0(0; 0,MW )−

(
2M2

W

q2
+ 3

)
B0(q

2;MW ,MW )

+M2
W

(
M2

W

q2
+ 2

)
C0(0, 0, q

2;MW , 0,MW ). (4.107)

This expression is well-behaved in the limit above, and it simplifies consid-

erably to give:

lim
q2→0

(
Γeeγ2W (q2)− Γeeγ2W (0)

q2

)
= − 4

9M2
W

. (4.108)

The M8|NP amplitude is equivalent, and with the two, now we just need to

take the ratio with theMZ PV amplitude to find the corresponding correction
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to QW (p):

∆NP =

(
−αe
2πs2W

)
(e)
(

−4(2)

9M2
W

)
e2

c2W s2W

geA
M2

Z

=
8α

9π
. (4.109)

This expression represents a process-dependent correction to the weak charge

of the proton, which must effectively be added to the RHS of (4.2).
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4.7 2ZZ Correction

We are now left with the task of evaluating the Box corrections to QW (p).

The same technical difficulties which plagued the γW box in the CC process

also affect the γZ box. Before looking at that case, however, we will calculate

the somewhat simpler “doubly-massive” two boson exchange (TBE) ampli-

tudes: 2ZZ , 2WW . The general amplitude for the ZZ box in the forward

limit is:

M box
ZZ |fwd =

=
ig4

16c4W

∫
d4k

(2π)4
ūe(l)(g

e
V γν − geAγνγ5)(/l − /k)(geV γµ − geAγµγ5)u

(
el)

×
ūp(p)(g

p
V γ

ν − gpAγ
νγ5)(/p+ /k +M)(gpV γ

µ − gpAγ
µγ5)up(p)

(l − k)2[(p+ k)2 −M2](k2 −M2
Z)

2
,

(4.110)

which is a daunting expression indeed. The proton has been idealized here

to the level of a Dirac fermion. However, just as in M8|p, this is justified,

as the high k2 which probes the hadron means we can calculate MZZ for

free quarks and the combination 2u+ d yields the proton result once again.

There are also many terms which this numerator will generate, and among

them all, only contributions of the form: (V or A)e × (V 2 or A2)had and

(V 2 or A2)e × (V or A)had can generate a PV effect.
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Unlike vertex corrections, it is often simpler to work with cross sections when

dealing with box diagrams. Defining the box correction as the ratio of cross

sections (3.3), gives for the PV ZZ box:

2Box
ZZ ≡

∑
spins

M∗
γM

box,PV
ZZ∑

spins

M∗
γM

PV
Z

. (4.111)

Where the denominator here is given by:

∑
spins

M∗
γM

PV
Z = −2gpV s

2

M2
Zq

2
. (4.112)

Until now, we have been essentially using (4.111) to evaluate our QW (p)

corrections, as in the forward limit, the M∗
γ ’s essentially cancel. We will not

do this here, as (4.111) allows one to write their box expression as a product

of leptonic and hadronic tensors as was done in (3.29). I have found that

this correction has the following general crossing symmetry:

2xbox
ZZ |u→s, geA→−geA = 2box

ZZ(s). (4.113)

A direct loop calculation of (4.110) and its crossed box can also be done

exactly in the forward limit, but the PaVe expression is excessively large to

include here. In the massless quark limit, and omitting coupling constants
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and integration prefactors reveals that:

2box
ZZ +2xbox

ZZ ∼ −6geA(g
e
A
2 + geV

2)

geA
. (4.114)

Let us see if we can use dispersive techniques to reproduce this result. To do

so, it will be helpful to split the box correction into 2 terms:

2box
ZZ = 2box

ZZ,(1+2) +2box
ZZ,(3), (4.115)

where (1+2) denotes the total V coupling to the hadron while (3) denotes the

A coupling to the hadron. Each of these terms has the following imaginary

part:

Im2ZZ,(1+2)(r) ∼ 2πgeV (g
q
A
2 + gqV

2)

gqV

[2(1 + r)2ln(1 + r)− r(2 + 3r + 2r2)]

r2(1 + r)
,

(4.116)

Im2ZZ,(3)(r) ∼ 2πgqA(g
e
A
2 + geV

2)

geA

[2(1 + r)2ln(1 + r)− r(2 + 3r)]

r2(1 + r)
,

(4.117)

r =
s

M2
Z

. (4.118)

Then we can use the following intermediate result of section 3.2:

Re2(s) =
1

π

∫ ∞

0

ds′

(
Im2(s′)

s′ − s
− Im2(−s′)

s′ + s

)
. (4.119)
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The first term corresponds to the box while the second term corresponds to

the crossed box where u ≈ −s in the forward limit. Then using the crossing

relation of (4.113) gives us:

Im2ZZ
(1+2)(−s′) = Im2ZZ

(1+2)(s
′), (4.120)

⇒

(
Im2ZZ

(1+2)
(s′)

s′−s −
Im2ZZ

(1+2)
(−s′)

s′+s

)
= 2s

Im2ZZ
(1+2)

(s′)

s′2−s2 → 0, (4.121)

Im2ZZ
(3) (−s′) = −Im2ZZ

(3) (s
′), (4.122)

⇒

(
Im2ZZ

(3)
(s′)

s′−s −
Im2ZZ

(3)
(−s′)

s′+s

)
= 2s′

Im2ZZ
(3)

(s′)

s′2−s2 . (4.123)

Therefore only the axial-vector part of the ZZ boxes contributes and the real

part of 2ZZ at the zero energy limit is:

Re2ZZ
tot (0) =

2

π

∫ ∞

0

ds′
Im2ZZ

(3) (s
′)

s′

∼ 2

π
M2

Z(−2πgqA)
(geA

2 + geV
2)

geA

∫ ∞

0

dr
[2(1 + r)2ln(1 + r)− r(2 + 3r)]

M2
Zr

3(1 + r)

= −6gqA(g
e
A
2 + geV

2)

geA
. (4.124)

This result now includes the crossed ZZ box also – a subtle convenience for

analytically continuing to negative energies in the dispersion relation. Then

we can insert the appropriate prefactors to get the official correction:

2ZZ
tot (0) =

3α

2π

(geA
2 + geV

2)

cW sW
gqV g

q
A. (4.125)
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Finally, we can take the proton sum:
∑

q=2u+d

to get the sought proton re-

sult. It was also stated by the authors of [51] that this box amplitude can

be perturbatively corrected by QCD interactions (we will see how this gets

determined, but for the WW box in the following section), which leads to an

additional factor of 1− αS(MZ)/π:

2ZZ =
α

16πc2W s
2
W

(9− 20s2W )(1− 4s2W + 8s4W )

(
1− αS(MZ)

π

)
. (4.126)
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4.8 2WW Correction

The WW box amplitude M box
WW can be attained from M box

ZZ under the substi-

tution:

M box
WW ∼M box

ZZ |gA→1/2, gV →1/2, (4.127)

with the understanding that there is also a different overall prefactor due

to slightly different coupling constants. The axial and the vector couplings

apply to both the electron and proton in (4.127) - hence their lack of su-

perscripts. Despite this simple translation, there is a subtle difference be-

tween the greater 2ZZ & 2WW quantities which must be accounted for. To

demonstrate this, we begin by writing down the diagrams for the WW box

amplitudes:

M box
WW = , (4.128)

Mxbox
WW = . (4.129)

Since we need the combination 2u+ d, this means that for the proton:

2WW = 22box
WW +2xbox

WW , (4.130)
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due to the flavour constraints of the diagrams above. For 2ZZ , both the

up and down quarks have a box and crossed box. This weighted expression

in (4.130) means that in the dispersion integrand for 2WW we will have a

contribution proportional to Im2WW
(1+2), of which the very last term reads:

2WW ∼ 1

π

∫ ∞

0

dr
1

1 + r
→ ∞. (4.131)

Of course, we don’t really need to calculate 2WW dispersively, as the direct

loop calculation is already known, giving:

2box
WW (s) ∼ 8

c2W

[
2− s

(M2
W + s)

ln
( −s
M2

W

)]
→ 16

c2W
, (4.132)

2xbox
WW (s) = −2box

WW

4
→ − 4

c2W
. (4.133)

However, it will be re-assuring to demonstrate the fact that the dispersive

technique can be adapted to compute 2WW just as well here. This adaption

is known as a subtracted dispersion relation. Applying Cauchy’s integral

theorem to the closed contour of Figure 4.6 gives us the relation:

f(sx) = f(s0) +
sx − s0
π

∫ ∞

sth

ds
Imf(s)

(s− s0)(s− sx)
, (4.134)

where s0 is called the subtraction point, sx is the point of interest and f(s0)

is the subtraction constant. One glaring limitation of this equation is that

we are now required to know the full function f at an arbitrary point in order
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to get it everywhere else, where as the unsubtracted relation only asks that

we know the imaginary part as input.

Figure 4.6: The contour chosen to derive (332) where sx is any point inside
the infinite circle.

We will apply the subtracted relation in the extreme case of s0 ≈ 0 = sth.

From (4.116-4.118) we have that Im2box
WW = 8π/c2W (M2

W + s) and we get:

2box
WW (sx) = 2box

WW (0) +
sx
π

∫ ∞

0

ds
Im2box

WW (s)

s(s− sx)

=
8(2)

c2W
+
sx
π

∫ ∞

0

ds
−8πs

c2W s(M
2
W + s)(s− sx)

=
8(2)

c2W
− 8sx[lnM

2
W − ln(−sx)]

c2W (M2
W + sx)

=
8

c2W

[
2− sxln(−sx/M2

W )

M2
W + sx

]
→ 16

c2W
, (4.135)

as we already know. Now let’s add the crossed box and officially compute
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the correction to Qw(p). The prefactor for each is:

2WW ∼ MPV
WW

MPV
Z

∼ g4/(2
√
2)4(1/π2)

(g/cW )2
=

αc2W
16πs2W

, (4.136)

⇒ 2box
WW =

α

πs2W
, (4.137)

⇒ 2xbox
WW = − α

4πs2W
. (4.138)

Then (4.130) finally leads to the known result:

2WW =
7α

4πs2W
. (4.139)

There is a further improvement that can be made to this result, and one that

somewhat honours the fact that the quarks inside the proton can interact

via the strong interaction. To begin, let us look closely at the expressions of

Mbox
WW & Mxbox

WW found from (4.128-4.129). The former being given by:

M box
WW =

i8g4

26

∫
d4k

(2π)4

[
ūe(p3)γν(1− γ5)

(/p1 − /k)

(p1 − k)2
γµ(1− γ5)ue(p1)

]

×

[
ūu(p4)γ

ν(1− γ5)
(/p2 + /k)

(p2 + k)2
γµ(1− γ5)uu(p2)

]
× 1

(k2 −M2
W )[(q − k)2 −M2

W ]
. (4.140)
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Inside the leptonic current we have:

ūe(p3)γν(1− γ5)(/p1 − /k)γµ(1− γ5)ue(p1)

= 2ūe(p3)γν(/p1 − /k)γµ(1− γ5)ue(p1)

≈ −2ūe(p3)γν/kγµ(1− γ5)ue(p1). (4.141)

⇒Mbox
WW ≈ −g

4

16

∫
d4k

(2π)4
ūe(p3)γνγβγµk

β(1− γ5)ue(p1)
1

k2(k2 −M2
W )2

×ūu(p4)γν
1

/k
γµ(1− γ5)uu(p2).

(4.142)

We can then use the Chisolm identity inside our lepton current, which states

that:

γνγβγµk
β = (γµkν + γνkµ)− gνµ/k + iενβµαγ

αγ5k
β

≡ Pµν + (NP )µν . (4.143)

The first & second terms refer to “pinch” & “non-pinch” respectively for

their effect on the intermediate quark propagator in Mbox
WW . In the literature

[58]-[59] the so-called “pinch technique” refers to the same mathematical

effect as Pµν above. However, here it will not be used to form a gauge-

invariant SE – and so I will call this the “superficial pinch technique” (SPT)
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to distinguish the two. Keeping only the pinch term gives the pinch part of

the box:

Mbox
WW |p = −g

4

16

∫
d4k

(2π)4
ūe(p3)(γµkν + γνkµ)(1− γ5)ue(p1)

1

k2(k2 −M2
W )2

×ūu(p4)γν
1

/k
γµ(1− γ5)uu(p2)

= −g
4

8

∫
d4k

(2π)4
ūe(p3)γµ(1− γ5)ue(p1)

1

k2(k2 −M2
W )2

×ūu(p4)γν(1− γ5)uu(p2)

= ūe(p3)γµ(1− γ5)ue(p1)ūu(p4)γ
ν(1− γ5)uu(p2)

×

[
− g4

8

∫
d4k

(2π)4
1

k2(k2 −M2
W )2

]
. (4.144)

Then using:

∫
d4k

(2π)4
1

k2(k2 −M2
W )2

= η
M2

WB0(0;MW ,MW )− A0(MW )

M4
W

= − η

M2
W

,

(4.145)

with η = −1/π2, our pinched box is fully reduced as:

Mbox
WW |p = ūe(p3)γµ(1−γ5)ue(p1)ūu(p4)γν(1−γ5)uu(p2)

(
−g4

8π2M2
W

)
. (4.146)
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We will also need to calculate the non-pinch part of (4.142) and it is:

M box
WW |NP = −g

4

16

∫
d4k

(2π)4
ūe(p3)(−gνµ/k + iενβµαγ

αγ5k
β)(1− γ5)ue(p1)

k2(k2 −M2
W )2

×ūu(p4)γν
1

/k
γµuu(p2)

=
g4

16

∫
d4k

(2π)4

[
ūe(p3)γ

δ(1− γ5)ue(p1)ūu(p4)γ
νγαγµ(1− γ5)uu(p2)

× gνµkδkα

k22(k2 −M2
W )2

− ūe(p3)γ
αγ5(1− γ5)ue(p1)

×ūu(p4)γνγτγµ(1− γ5)uu(p2)
iενβµαk

βkτ

k22(k2 −M2
W )2

]
. (4.147)

Then using:

∫
d4k

(2π)4
kµkν

k22(k2 −M2
W )2

=
1

4

∫
d4k

(2π)4
gµν

k2(k2 −M2
W )2

(4.148)

=
1

4π2M2
W

gµν , (4.149)

allows us to get our reduced non-pinched box:

M box
WW |NP =

g4

64π2M2
W

[
ūe(p3)γα(1− γ5)ue(p1)ūu(p4)γ

νγαγν(1− γ5)uu(p2)

−iūe(p3)γαγ5(1− γ5)ue(p1)ūe(p4)γ
νγβγµ(1− γ5)uu(p2)ενβµα

]
.

(4.150)

We could further simplify the first term using γνγαγν = −2γα, but the

term ∼ γνγβγµενβµα is irreducible. So far, we have been using a ratio of
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amplitudes to derive our QW (p) corrections, but it will be instructional to

use a ratio of cross sections here, just as (3.3) suggests. For the tree-level

amplitudes, we have:

M∗
γ (λ) =

ie2

q2
ūu(p2)γαuu(p4)ū

λ
e (p1)γ

αue(p3) (4.151)

MZ(λ) = − ig2

c2W (q2 −M2
Z)
ūe(p3)γµ(g

e
V − geAγ5)u

λ
e (p1)

×ūu(p4)γµ(gpV − gpAγ5)uu(p2). (4.152)

With these two expressions, we can evaluate the Born cross section:

σBorn(λ) =
∑
spins

M∗
γMZ ≈ e4

2s2W c
2
W q

2M2
Z

Tr[/p2γα/p4γ
µ(gpV − gpAγ5)]

×Tr[(1 + λγ5)/p1γ
α
/p3γµ(g

e
V − geAγ5)]

=
16e4

s2W c
2
WM

2
Zq

2

{
(p1 · p4)(p2 · p3)[geV (g

p
Aλ+ gpV )− geA(g

p
A + gpV λ)]

+(p1 · p2)(p3 · p4)[geA(g
p
A − gpV λ) + geV (g

p
V − gpAλ)].

}
(4.153)

Then we will take the PV combination: (λ = −1)− (λ = +1) as well as use:

p1 · p4 ≈ −u
2
≈ p2 · p3, (4.154)

p1 · p2 ≈
s

2
≈ p3 · p4, (4.155)

to get:

σPVBorn =
8e4

s2W c
2
WM

2
Zq

2
[u2(geAg

p
V − gpAg

p
V ) + s2(geAg

p
V + gpAg

e
V )]. (4.156)
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At forward scattering s2 ≈ u2, so we simply get:

σPVBorn ≈ 16e4s2

s2W c
2
WM

2
Zq

2
geAg

p
V . (4.157)

Meanwhile, in the numerator of our correction, we must compute:

σboxWW |p =
∑
spins

M∗
γM

box
WW |p, (4.158)

⇒ σboxWW |p =

(
ie2

q2

)(
−ig4

8M2
W

)
1

2
Tr[/p2γα/p4γ

µ(1− γ5)]

×Tr[(1 + λγ5)/p1γ
α
/p3γµ(1− γ5)]

=
e6

16π2M2
W s

4
W q

2
[−64(λ− 1)(p1 · p2)(p3 · p4)],

⇒ σboxWW |PVp =
2e6s2

π2M2
W s

4
W q

2
. (4.159)

Thus the correction due to Mbox
WW |p will be:

δboxWW |p =
σbox
WW |PVp
σPVBorn

=
2e6s2

π2M2
W s

4
W q

2

s2W c
2
WM

2
Zq

2

16e4s2geAg
p
V

=
e2

8π2s2W

=
α

2πs2W
. (4.160)

We can repeat this process for the non-pinch part. The first & second terms
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of (4.150) respectively yields:

σboxWW |PVNP =
e6s2

2π2q2M2
W s

4
W

+
3e6s2

2π2q2M2
W s

4
W

=
2e6s2

π2q2M2
W s

4
W

, (4.161)

⇒ δboxWW |PVNP =
α

2πs2W
. (4.162)

Indeed this entire analysis can be repeated for the crossed box and the final

results are nicely organized into Table 4.1 below.

δWW × α
πs2W

Pinch Non-pinch Sum

BOX 1
2

1
2

1

XBOX −1
2

1
4

−1
4

Proton sum 2
4

5
4

7
4

Table 4.1: 2WW corrections decomposed between box and crossed box as
well as pinch and non-pinch components.

The total proton sum is consistent with (4.139) as we require. The inter-

esting physics here is that the total pinch sum is independent of the details

of the strong interaction, as it corresponds to a WW box with the intermedi-

ate hadron propagator pinched out. The non-pinch sum, however, is at the

mercy of pQCD corrections in αS. Therefore, we may use these results to

generalize (4.139) to:

2WW =
α

4πs2W

[
2 + 5

(
1− αS(MW )

π

)]
. (4.163)
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4.9 2γZ Correction

The γZ box correction has been calculated dispersively by a number of groups

[60]-[66]. Rather than give a detailed explanation of the computation of this

correction, I will simply give a quick summary, as the work of this disser-

tation did not focus on this particular RC. In the case of e−p scattering,

both the V coupling and A coupling to the hadron makes a contribution to

QW (p). Furthermore, their energy dependence is of interest unlike the 2γW

correction, which only matters at zero energy. Concerning the dispersion

relations, the vector and axial-vector corrections have the following general

relations [64]:

Re2V
γZ(E) =

2E

π
P

∫ ∞

0

dE ′ 1

E ′2 − E2
Im2V

γZ(E
′), (4.164)

Re2A
γZ(E) =

2

π
P

∫ ∞

0

dE ′ E ′

E ′2 − E2
Im2A

γZ(E
′). (4.165)

Due to the factor of E in (4.164), the vector correction goes to 0 as E → 0,

while the axial correction remains finite in this limit – as we have seen from

(3.56). The imaginary parts of 2V
γZ and 2A

γZ have been calculated, and in
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terms of structure functions, they are given by [65]:

Im2V
γZ(E) =

1

(s−M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2 α(Q2)

1 +Q2/M2
Z

×

[
F γZ
1 +

s(Q2
max −Q2)

Q2(W 2 −M2 +Q2)
F γZ
2

]
, (4.166)

Im2A
γZ(E) =

1

(s−M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2ve(Q
2)α(Q2)

1 +Q2/M2
Z

×

[
2ME

W 2 −M2 +Q2
− 1

2

]
F γZ
3 , (4.167)

where ve(Q
2) = 1− 4s2W (Q2), s =M2 +2ME and Q2

max = 2ME(1−W 2/s).

The F γZ
1,2,3 interference structure functions have been modeled with various

parameterizations from SBMTH [61] - [63], GHRM [64] - [65], CR [66] and

their results for the vector part are given in Table 4.2.

Authors 2V
γZ(E = 1.165GeV)× 10−3

SBMTH 5.57± 0.36

GHRM 5.46± 2.0

CR 5.7± 0.9

Table 4.2: 2V
γZ corrections computed by 3 separate research groups.

The axial box has been computed as well. (4.167) can be substituted into

(4.165) and the
∫
dE ′ integration evaluated. The details of this procedure

have already been described for 2γW
A in section 3.2. This time we can keep
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the energy dependence in, and the result is [61]:

2A
γZ(E) =

2

π

∫ ∞

0

dQ2 ve(Q
2)α(Q2)

Q2(1 +Q2/M2
Z)

∫ 1

0

dxF γZ
3 (x,Q2)f(x,Q),

(4.168)

f(x,Q) =
1

t2

[
ln

(
1− t2

r2

)
+ 2t tanh−1

(
t

r

)]
, (4.169)

t ≡ 4MEx

Q2
, (4.170)

r ≡ 1 +
√

1 + 4M2x2/Q2, (4.171)

which simply reduces to (3.104) when {ve → 1, MZ → MW , E → 0}.

In 2011, the authors of [61] found this contribution at zero energy to be:

2A
γZ(0) = (4.4± .4)× 10−3 and to have a rather mild energy dependence. At

the Qweak beam energy the axial corrections are shown in Table 4.3, which

are again, all very complementary to one another.

Authors 2A
γZ(E = 1.165GeV)× 10−3

SBMTH 3.7± .4

EGRM* 3.97± .22

CR 4.0± .5

Table 4.3: 2A
γZ corrections computed by 3 separate research groups. *EGRM

is a recently updated value [67].
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4.10 Updating QW (p)

Putting together the results of sections 4.2 - 4.9 we can state the following

expression for the 1-loop corrected weak charge of the proton:

Qp,NLO
W (Q2) = (ρNLONC +∆e)

[
1− 4 sin2 θPTW (Q2) + ∆′

e(Q
2) + ∆NP

]
+2WW +2ZZ +2γZ(E). (4.172)

Qp
W is only defined at Q2 = 0, in accordance to equation (1.76). How-

ever, both sin2 θPTW and ∆′
e were found to have a Q2-dependence between the

Thomson and scattering limits. Since no e−p → e−p PVES experiment can

be done at Q2 = 0, we keep the full Q2 dependence where it is due here.

The catch being that any explicit Q2-dependence in the RHS of (4.172) must

be placed into the 2nd term on the RHS of (1.76) when QW (p) is extracted

from a fit to PVES cross section data. In Table 4.4, I have included all of the

terms of the RHS of (4.172), to summarize my findings. For the parameter

ρNLONC , I use an updated value of from the Particle Data Group [68].
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Correction Expression Q2 = 0 Q2 = .025GeV2

ρNLONC (206-207) 1.00066 1.00066

sin2 θPTW (252),(296),(297-302) 0.23867 0.23847

∆e (243),(249) 0.00116 0

∆′
e (243),(249) -0.00141 -0.00084

∆NP (307) .00221 .00221

2WW (361) .01831 .01831

2ZZ (324) .00183 .00183

2γZ |E=0 (362-363) .0044 .0044

QNLO
W (p) (370) .07069 undefined

Table 4.4: Radiative corrections to QW (p) considered at both the Thomson
and Scattering limits.

A meaningful goal from this analysis is to extract the weak mixing angle

from a measurement of QW (p) as suggested by (1.75). We will use an updated

version of (1.75) which comes from our (4.172), as we would like to use the

gauge-invariant pinch technique definition of sin2 θW,PT . This was done by

the authors of [53], who quote their experimental value of the weak charge

of the proton as:

QW (p)|Qweak = 0.0719± .0045 . (4.173)

Using this experimental value together with the results of Table 4.4 atQ2 = 0,

I find consistent results with [53] for the weak mixing angle at the Thomson

limit:

sin2 θW,PT (0) = 0.2384± .0011 . (4.174)
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This result is in agreement with the SM prediction of [52]: sin2 θW (0) =

0.23867± .00016, which is claimed to be commensurate with the pinch tech-

nique definition. It is recommended to those with available data on AepLR to

re-extract QW (p) with the newly-determined Q2-dependent RCs provided in

this dissertation, and repeat this test of sin2 θW .



Chapter 5

Conclusion and Remarks

Now that all of the important radiative corrections have been calculated,

it is time to understand what conclusions they lead to. We have already

discussed the effect of the RCs to the proton’s weak charge in chapter 4, and

so in chapter 5 we will now study our results for 2γW
A , which was computed

in chapter 3. First I will revise the CKM matrix element Vud and its effect

on the unitarity condition. Next, I discuss a relationship between the CC

valence structure function to the NC ones, which allows a comparison of this

work to previous work on the γZ box. Finally, I will detail new constraints

which can be placed on a few SM extensions (BSM physics).

174
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5.1 Revising Vud

Our job now is to take the computed radiative corrections of section 3 and

apply them to update Vud. The ∆V
R inside (1.80) is given by:

∆V
R =

α

2π

[
3ln

MZ

M
− lncW

]
+ 22γW

A

= 0.017007 + 22γW
A , (5.1)

where the .017007 also includes the re-summed logarithm analysis of Mar-

ciano & Sirlin [11]. Inserting our new, dispersively computed 2
γW
A from Table

3.3 then gives:

∆V
R = .024767± .000184 . (5.2)

Then this will be inserted into (1.80) with Ft = 3072.07± .63 to give:

|Vud|2superallowed = .94799(26) . (5.3)

The 2018 PDG gives us the other matrix elements of the top CKM row. They

are [70]: |Vus|2 = .05031(16) and |Vub|2 = .00002(0). We can then define the

following convenient CKM unitarity test quantity:

Σ3×3
CKM ≡ |Vud|2 + |Vus|2 + |Vub|2, (5.4)
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and with our values above, the experimental value of this quantity becomes:

Σ3×3
CKM = .99832(42), (5.5)

which falls short of 1 by ∼ 4σ. Although this is not compelling evidence that

the SM is incorrect, indeed tension has been raised with the CKM unitarity

condition. Before this dispersive analysis was performed on 2
γW
A , the latest

consensus from [14] gave |Vud|2 = .94907(29) which had ΣCKM in agreement

with 1. A comparison is shown in Table 5.1 for this unitarity result between

3 research groups, as extracted from the totals in Table 3.3.

Authors 2A
γW × 10−3 Σ3×3

CKM

MS ‘06 3.26(19) .9994(5)

SGRM ‘18 3.79(10) .9984(4)

SBM ‘19 3.88(13) .9983(4)

Table 5.1: 2A
γW corrections computed by 3 separate research groups and their

effect on the SM CKM unitarity prediction.

The dispersive analysis is one which aims to improve 2γW
A in both the ac-

curacy of its central value and by reducing the hadronic uncertainty. Looking

at Table 5.1, we see that this has essentially been accomplished. Our final

uncertainty is largely due to the Regge region, and to a lesser extent, the

elastic region. The poor data shown in Figure 3.20 should really be updated,

should new low Q2 data allow it.

Although not as precise as the superallowed β decay case of (1.80), Vud may
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also be extracted from neutron lifetime measurements via (1.82). Here we

need to know the correction ∆R, which contains both inner and outer radia-

tive corrections. Combining (2.1) & (2.3) gives us:

∆R =
α

2π

[
3ln
( Mp

2Em

)
+

81

10
− 4π2

3

]
+∆V

R. (5.6)

We already have our ∆V
R, and the terms inside the square brackets are:

3α

2π
ln
( Mp

2Em

)
= .02094, (5.7)

α

2π

(
81

10
− 4π2

3

)
= −.005876, (5.8)

⇒ α

2π
ḡ(Em) = .015064, (5.9)

and this means we will get:

∆R = 0.03983(18) . (5.10)

Meanwhile PDG (2018) gives us for the neutron: τn = 879.3(9)s and λ =

−1.2723(23). Substituting all of these numbers into (1.82) then gives one:

|Vud|2neutron = .9524(12), (5.11)

which easily agrees with Σ3×3
CKM = 1 within uncertainty, but it clearly has an

absolute uncertainty nearly 3 times greater than that estimated from super-
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allowed β decays. Perhaps with improved future λ measurements, |Vud|neutron

can be competitive with (5.3).
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5.2 Relating F
(0)
3 to F γZ

3

There is a strong connection between the structure function F
(0)
3 found in

CC processes and the function F γZ
3 which is found in NC processes. This was

pointed out by the authors of [30], and a detailed proof will be given below.

Understanding this connection will allow us to freely compare previous results

for 2γZ
A to our new results for 2γW

A . To begin establishing this relationship,

consider the axial current of the W -bosons:

Aµi = q̄γµγ5τiq, (5.12)

which is a rank 1 tensor in isospin space. This is traditionally decomposed

into ladder operators and a z-component via:

A±1,µ
1 = ∓ 1√

2
(Aµ1 ± iAµ2), (5.13)

A0,µ
1 = Aµ3 . (5.14)

The axial charged and axial weak currents are defined as:

(JµW )A =
1√
2
A1,µ

1 , (5.15)

(JµZ)A = −1

2
A0,µ

1 . (5.16)

Meanwhile, the Wigner-Eckart theorem states that a spherical tensor’s ma-

trix element in angular momentum space is related to a product of a Clebsch-
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Gordon coefficient and its “reduced” matrix element which is independent of

the z-component substates:

〈jm|T (k)
q |j′m′〉 = 〈j′m′kq|jm〉√

2j′ + 1
〈j′||T (k)||j〉, (5.17)

which can perfectly apply to the case of |jm〉 in isospin space. The hadronic

tensor in our γW box is proportional to the interference matrix elements of

the isoscalar EM current and the axial weak current:

F
(0)
3 ∼ 〈p|J (0)µ

EM (JνW )A|n〉, (5.18)

whilst (5.15) implies that:

〈p|(JνW )A|n〉 =
〈1
2
,+

1

2

∣∣∣ 1√
2
A1,ν

1

∣∣∣1
2
,−1

2

〉
=

1√
2

〈1
2
,+

1

2

∣∣∣A1,ν
1

∣∣∣1
2
,−1

2

〉
,

⇒ 〈p|(JνW )A|n〉 =
1√
2
C
(1
2
1
1

2
;−1

2
1 +

1

2

)〈1
2

∣∣∣∣∣∣A1,ν
1

∣∣∣∣∣∣1
2

〉
, (5.19)

where C(jkj′;mqm′) ≡ 〈j′m′kq|jm〉 are the traditional C-G coefficients, and

in particular C
(

1
2
1 1

2
;−1

2
1 + 1

2

)
=
√

2/3. Thus:

〈p|(JνW )A|n〉 =
1√
3

〈1
2

∣∣∣∣∣∣A1,ν
1

∣∣∣∣∣∣1
2

〉
. (5.20)
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Meanwhile let’s consider the isovector combination of (JνZ)A currents:

〈p|(JνZ)A|p〉 − 〈n|(JνZ)A|n〉 = −1

2

〈1
2
,+

1

2

∣∣∣A0,ν
1

∣∣∣1
2
,+

1

2

〉
+
1

2

〈1
2
,−1

2

∣∣∣A0,ν
1

∣∣∣1
2
,−1

2

〉
= −1

2
C
(1
2
1
1

2
;
1

2
0 +

1

2

)〈1
2

∣∣∣∣∣∣A0,ν
1

∣∣∣∣∣∣1
2

〉
+
1

2
C
(1
2
1
1

2
;−1

2
0 − 1

2

)〈1
2

∣∣∣∣∣∣A0,ν
1

∣∣∣∣∣∣1
2

〉
= −1

2

(
− 1√

3

)〈1
2

∣∣∣∣∣∣A0,ν
1

∣∣∣∣∣∣1
2

〉
+
1

2

(
+

1√
3

)〈1
2

∣∣∣∣∣∣A0,ν
1

∣∣∣∣∣∣1
2

〉
=

1√
3

〈1
2

∣∣∣∣∣∣A0,ν
1

∣∣∣∣∣∣1
2

〉
=

1√
3

〈1
2

∣∣∣∣∣∣A1,ν
1

∣∣∣∣∣∣1
2

〉
. (5.21)

Equating (5.20) to (5.21) means that:

〈p|J (0)µ
EM (JνW )A|n〉 = 〈p|J (0)µ

EM (JνZ)A|p〉 − 〈n|J (0)µ
EM (JνZ)A|n〉, (5.22)

since J
(0)µ
EM plays a superfluous role as an isospin operator here. Next, we

can think of JµEM as the sum of its isoscalar and isovector parts: JµEM =

J
(0)µ
EM + J

(3)µ
EM , from which it follows from (5.22):

〈p|J (0)µ
EM (JνW )A|n〉 = 〈p|JµEM(JνZ)A|p〉 − 〈n|JµEM(JνZ)A|n〉

−〈p|J (3)µ
EM (JνZ)A|p〉+ 〈n|J (3)µ

EM (JνZ)A|n〉. (5.23)
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Since (JνZ)A ε (I = 1) and J
(3)µ
EM ε (I = 1) we can either have J

(3)µ
EM (JνZ)A ε(I =

0) or (I = 2). The (I = 2) case vanishes under 〈1
2
,±1

2
|...|1

2
,±1

2
〉 and the

(I = 0) case cancels in the combination 〈p|...|p〉 − 〈n|...|n〉, leaving us with

just:

〈p|J (0)µ
EM (JνW )A|n〉 = 〈p|JµEM(JνZ)A|p〉 − 〈n|JµEM(JνZ)A|n〉. (5.24)

The RHS of (5.24) is directly proportional to the interference structure func-

tion found in the γZ box between proton and neutron. Taking the other

time ordering of this equation into account (which is trivially satisfied in the

same way), we recover the following relation between structure functions:

F
(0)
3 = F γZ

3,p − F γZ
3,n . (5.25)

The most precarious region from which we model F
(0)
3 is the Regge region.

The fact that we still have no direct data on F γZ
3 in this region means that

this relationship has very little chance of improving our model constraints

on F
(0)
3,Reg. Instead, in a recent work [67], the axial part of the γZ box was

re-computed with the help of the relation:

F γZ
3 =

1

2
F νp+ν̄p
3 + F

γZ(0)
3 , (5.26)

where F
γZ(0)
3 is the small isosinglet component of F γZ

3 . Both terms on the

RHS can be modeled analogously to F
(0)
3 and fitted to the same neutrino data
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[50]. Thus, the practical role of (5.25) for us is more of a consistency check

at this point until tighter constraints can be put on our Regge region input

data. As an exercise, we can see if our prediction for 2
γW
A,Reg is consistent

with previously used F γZ
3,Reg.

In [61] a relatively simple model was used for F γZ
3 in the Regge region which

merely requires it to match the DIS prediction at the Regge-DIS boundary,

but one that also forces F γZ
3 (x,Q2 → 0) → 0:

F γZ
3,Reg =

1 + Λ2/Q2
0

1 + Λ2/Q2
F γZ
3,DIS(x,Q

2
0), (5.27)

which, in turn, has an identical x-dependence as the DIS model. Λ2 is a free

parameter which is in the range (0.4 − 1.0)GeV2. (5.27) can be separately

applied to either the proton or neutron [62]. The difference is defined by

F γZ
3,DIS which is given by:

F γZ
3,DIS = Σq2eqg

q
A(q − q̄)

=


2
3
uv +

1
3
dv, proton

1
3
uv +

2
3
dv, neutron

. (5.28)
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Applying (5.25) to the RHS of (5.27) gives us:

F
(0),T oy
3,Reg =

1 + Λ2/Q2
0

1 + Λ2/Q2

(
F γZ,p
3,DIS − F γZ,n

3,DIS

)
=

1 + Λ2/Q2
0

1 + Λ2/Q2

(uv − dv
3

)
=

1 + Λ2/Q2
0

1 + Λ2/Q2
F

(0)
3,DIS. (5.29)

This is a toy model, as it is not rooted/supported by data or fundamental

theory. Nonetheless, we can then attempt to compute 2γW
A,Reg from (5.29) for

various values of Λ. The results of this exercise are given in Table 5.2.

Λ[GeV] 2
γW
A,Reg × 10−3

.4 .42

.5 .41

.6 .39

.7 .38

.8 .37

.9 .36

1.0 .35

Table 5.2: 2A
γW contributions from the Regge region using the toy model in

(5.29)

These values are certainly quite comparable to our 2γW
A,Reg = (.37± .10)×

10−3, and the central value of .37 corresponds to Λ2 ≈ .64GeV2. One possible

problem with (5.29) is in its Q2-dependence. At low W 2, the Christy-Bosted

parameterization of F
(0)
3 is physically motivated by cross section data and

it is a monotonically increasing function as Q2 → 0, where it approaches a
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constant at Q2 = 0. F
(0)
3,Reg as predicted by (3.137) also behaves this way

at W 2 = 4GeV2. On the other hand, F
(0),T oy
3,Reg does not have this feature as

Q2 → 0. However, it is greater than F
(0)
3,Reg at intermediate Q2 values. The

end result is that on average, it has a similar area under it over the Regge

range 0 ≤ Q2 ≤ 2GeV2. As a result, their predictions when integrated inside

2
γW
A,Reg are in very good agreement! In any event, it is reassuring to see that

a previous F γZ
3,Reg model can be reconciled with our new F

(0)
3,Reg extracted from

neutrino scattering data and Regge phenomenology.
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5.3 BSM Constraints

One of the big questions we can ask ourselves with discovering a non-unitary

CKM matrix is what new BSM physics can explain this. In principle, the

total number of allowed fermion generations is not restricted to be 3. If our

3×3 CKM matrix in (1.41) isn’t unitary as hinted by the result in (5.5), one

possible remedy would be the existence of a 4th quark generation: (t′, b′).

Then the new CKM matrix would take the form:

V 4×4
CKM =



Vud Vus Vub Vub′

Vcd Vcs Vcb Vcb′

Vtd Vts Vtb Vtb′

Vt′d Vt′s Vt′b Vt′b′


, (5.30)

and first row unitarity would then give:

Σ3×3
CKM = 1− |Vub′|2. (5.31)

(5.5) then places a constraint on this new matrix element:

|Vub′| ≤ .04095 . (5.32)

Furthermore, using global EW precision measurements, additional constraints

on both the new matrix elements of (5.30) can be made, as well as minimum

allowed masses of the 4th quark generation members. For instance, in [69],
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the lower limits of the new quark masses are expected to be:

mt′ > 256GeV, (5.33)

mb′ > 128GeV. (5.34)

Global EW analyses are very useful, as introducing a SM extension such as

that of a new quark generation will have consequences for many observables.

Just as we saw how the heavy (t, b) quark pair affects ρNC in (4.9), a similar

analysis would apply to (t′, b′), giving a similar contribution which would

involve their masses. We would also have a CKM angle θ34 defined by:

 |Vtb| |Vtb′|

|Vt′b| |Vt′b′|

 =

cos θ34 sin θ34

sin θ34 cos θ34

 . (5.35)

The new mixing angle θ34 has been shown to be of the same order as the

Cabbibo mixing θ12 between the first two quark generations [69]. There are

yet other possible ways VCKM can lose its unitarity as well – other candidates

being the existence of RH currents or the existence of extra Z-bosons [71]. I

will update the constraints on these two possibilities based on our new |Vud|2

value.

Parity violation is considered to be maximal in the SM, but the general form

of the weak interaction could be somewhat relaxed to include RH currents.
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In [72]-[73] the semileptonic Hamiltonian made such a generalization, where:

Hsl = aLL(V − A)l(V − A)h + aLR(V − A)l(V + A)h

+aRL(V + A)l(V − A)h + aRR(V + A)l(V + A)h, (5.36)

in which (l, h) denotes (lepton,hadron). In the current SM, aLL = 1 and

aLR = aRL = aRR = 0 and hence the 3 extra terms in (5.36) will be presum-

ably very small with respect to the first. In Fermi β decay, the decay rate is

given by [71]:

Γβ ≈ |aLL|2
(
1 + 2Re

aLR
aLL

)
. (5.37)

We can also define an analogous Hamiltonian for the purely leptonic weak in-

teractions, where the leptonic coupling constants are instead cLL, cLR, cRL, cRR.

They are also related to the semileptonic constants via:

aLL = cLLV
L
ud, (5.38)

aRL = cRLV
L
ud, (5.39)

aLR = cLRe
iαV R

ud, (5.40)

aRR = cRRe
iαV R

ud. (5.41)
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Since Vud is proportional to the ratio of semileptonic to leptonic decay rates,

it follows that:

|Vud|2exper =
Γβ
Γµ

≈ |V L
ud|2(1 + 2Re āLR). (5.42)

In fact, if this applies to the other 2 quark generations, we have:

ΣCKM = 1 + 2Re āLR, (5.43)

and our (5.5) imposes the following constraint on aLR:

.9983(4) = 1 + 2Re āLR, (5.44)

⇒ Re āLR = −.0008± .0002, (5.45)

which is no longer consistent with being zero. At last, our unitarity result

(5.5) can be used to place a lower mass limit on a new Z-boson particle. Were

a new Z-boson (Zχ) to exist, it will have aWZχ box diagram correction to the

Fermi β decays analogous to the ZW box which enters ∆V
R. As the authors

of [71] explain, the first row unitarity condition can be then modified to:

Σ3×3
CKM = (.9983± .0004) + ∆ = 1, (5.46)
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where ∆ can be computed from the ZχW box and is:

∆ = − 27α

40πs2W

4

3
|Cχ|2ln

Xχ

Xχ − 1
. (5.47)

|Cχ|2 = 1/2 is the Zχff coupling constant at low energies andXχ ≡M2
Zχ
/M2

W .

We can then combine (5.46) and (5.47) to place a constraint on Xχ:

(.9983± .0004) + ∆ = 1,

⇒ .0013 ≤ ∆ ≤ .0021,

⇒ −.4339 ≤ lnXχ

Xχ − 1
≤ −.2686 . (5.48)

Since MZχ must be greater than MW it simply follows that lnXχ/(Xχ − 1)

is strictly a positive number. Therefore, (5.48) can never be satisfied, which

is evidence that a new heavy Zχ-boson cannot exist.

Besides the obvious improvements to the input parameters of F γZ
3 & F

(0)
3 ,

in a recent paper [74], a proposed new approach using the Feynman-Hellmann

theorem together with Lattice techniques could be used to reduce the hadronic

uncertainty of 2γW & 2γZ even further. This proves that 1 loop semileptonic

corrections are still an exciting and active field, and one of great relevance to

EW precision tests. As experimental precision tests improve in the future,

the need will likely arise to reduce the hadronic uncertainties even further,

which could in turn, help our very understanding of the nucleon itself – in

fact, we are counting on it.



Appendices

A EW Feynman Rules

The EW Feynman rules can be derived from the full EW Lagrangian. Once

this is done in the momentum basis, any future Feynman diagram calculation

can start with applying the rules for any arrangement of propagators and

interaction vertices. We choose to work exclusively in the Feynman Gauge,

where the gauge-fixing parameter is set to 1. Also, for brevity sakes, I will

only include the rules which we will actually need in this thesis. For the full

set, the reader may find in [75].

191
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A.1 Propagators

= − igµν
k2 − λ2 + iε

= − igµν
k2 −M2

W + iε

= − igµν
k2 −M2

Z + iε

= − i(/k +mf )

k2 −m2
f + iε

= − i

k2 −M2
W + iε

= − i

k2 −M2
W + iε

A.2 Quartic interactions

= iegcW [2gαβgµν − gαµgβν − gανgβµ]

= −ieg cos(2θW )

cW
gµν
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A.3 Triple interactions

=
ig√
2
γµ

(1− γ5)

2

=
ig

2cW
γµ(g

f
V − gfAγ5)

gfV ≡ T 3
f − 2Qfs

2
W

gfA ≡ T 3
f

= −ieQfγµ

= −ie[gαβ(p− k)µ + gβµ(k − q)α + gµα(q − p)β]

= igcW [gαβ(p− k)µ + gβµ(k − q)α + gµα(q − p)β]

= −ie(p+ − p−)µ

=
ig cos(2θW )

2cW
(p+ − p−)µ

= −ieMWgµν

= −igMZs
2
Wgµν
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A.4 Ghost interactions

= ∓iepµ

= ±igcWpµ
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B Deep Inelastic Scattering Definitions

Figure 1: The DIS semileptonic scattering amplitude wherein the exchanged
vector boson is potentially γ,W or Z.

Q2 = −q2 = (l − l′)2

ν =
q · p
M

=
W 2 +Q2 −M2

2M

x =
Q2

2Mν

W 2 = (p+ q)2 =M2 + 2Mν −Q2

s = (l + p)2
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C Physical Constants Used

C.1 EW Parameters

αEM(0) = 1/137.036

MZ = 91.1876GeV

MW = 80.376GeV

M = 0.93827GeV

s2W (MZ) = 0.23129

c2W ≡ M2
W/M

2
Z = 0.77693

me = 0.511MeV

mµ = 0.10566GeV

mτ = 1.7768GeV

mt = 173.34GeV

mb = 4.199GeV

GF = 1.1663787× 10−5GeV−2

gA = 1.2723

MA = 1.05± 0.1GeV
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C.2 Resonance & Background Parameters

D13(1535) Resonance:

mD13 = 1.52GeV

ΓD13 = 0.125GeV

CS
3 (Q

2) =
1.82/DV (Q

2)

1 +Q2/(8.9M2
V )

CS
4 (Q

2) =
−0.59/DV (Q

2)

1 +Q2/(8.9M2
V )

CS
5 (Q

2) =
−0.65

DV (Q2)

CA
5 (Q

2) =
−2.1/DA(Q

2)

1 +Q2/(3M2
A)

DV (Q
2) = (1 +Q2/M2

V )
2, MV = 0.84GeV

DA(Q
2) = (1 +Q2/M2

A)
2, MA = 1.05GeV
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∆(1232) Resonance:

m∆ = 1.232GeV

Γ∆ = 0.12GeV

CV
3 (Q

2) =
1.95/DV (Q

2)

1 +Q2/(4M2
V )

CV
4 (Q

2) = −CV
3

M√
W 2

CA
4 (Q

2) = −C
A
5

4

CA
5 (Q

2) =
1.2/DA(Q

2)

1 +Q2/(3M2
A)

Christy-Bosted Parameters

Q2
0 = .05GeV2

σNR,1T (0) = 246.1GeV−2, σNR,2T (0) = −89.4GeV−2

aT1 = .0675, aT2 = .2098

bT1 = 1.3501, bT2 = 1.5715

cT1 = .1205, cT2 = .0907

dT1 = −.0038, dT2 = .0104
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C.3 Regge Region Parameters

ν0 = 1GeV

αρ0 = 0.477

Λth = 1GeV

mρ = .775GeV

ma1 = 1GeV
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D Plus Prescription

The plus prescription is a recipe for taming the poles of coefficient functions

at x = 1. For the simple case of integrating these terms with an arbitrary

(well-behaved) function we have:

∫ 1

0

dz
h(z)

(1− z)+
=

∫ 1

0

dz
h(z)− h(1)

1− z∫ 1

0

dzh(z)

(
ln(1− z)

1− z

)
+

=

∫ 1

0

dz
(
h(z)− h(1)

) ln(1− z)

1− z

However, when one computes the convolution such as that found in

(3.113), these relations need to be somewhat generalized where they become:

∫ 1

x

dzh(z, x)

(
1

1− z

)
+

=

∫ 1

x

dz[h(z, x)− h(1, x)]
1

1− z

+h(1, x)ln(1-x)∫ 1

x

dzh(z, x)

(
ln(1− z)

1− z

)
+

=

∫ 1

x

dz[h(z, x)− h(1, x)]
ln(1− z)

1− z

+
h(1, x)

2
ln2(1− x)
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E Passarino Veltman Functions

All loop diagrams in the SM can be decomposed into a basis of 4 fundamental

scalar loops through a process known as the Passarino Veltman reduction

[76]. The evaluation of many of the Feynman diagrams in this thesis have

been aided by 2 significant software packages: FeynCalc©[79], and Package

X©[80]. The basis of 4 fundamental scalar loops are defined as:

A0(m) = 1
iπ2

∫
d4k 1

k2−m2+iε

B0(p1;m0,m1) =
1
iπ2

∫
d4k 1

(k2−m2
0+iε)[(k+p1)

2−m2
1+iε]

C0(p
2
1, (p1 − p2)

2, p22;m0,m1,m2) =
1
iπ2

∫
d4k 1

(k2−m2
0+iε)[(k+p1)

2−m2
1+iε][(k+p2)

2−m2
2+iε]

D0(p
2
1, (p1 − p2)

2, (p2 − p3)
2, p23, p

2
2, (p1 − p3)

2;m0,m1,m2,m3) =
1
iπ2

∫
d4k

× 1
(k2−m2

0+iε)[(k+p1)
2−m2

1+iε][(k+p2)
2−m2

2+iε][(k+p3)
2−m2

3+iε]

When going from 1 point (A0) up to 4 point (D0) integrals, their evaluation

rapidly becomes more difficult in the general case, and it is beneficial to just

evaluate the 2-4 point functions for special cases, which are given below.

There is also a very useful technique for regulating their UV divergences

known as Dimensional Regularization, where the following extension is made:

∫
d4k

(2π)4
→ µε

∫
ddk

(2π)d
, ε = 4− d
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where µ is an arbitrary mass scale called the t’Hooft mass, and we recover

our reality in the limit ε → 0. Defining the UV-divergent quantity ∆ε =

2/ε− γE + ln4π, some useful PaVe functions used in this thesis are:

E.1 1 point

A0(m) = m2

[
∆ε − ln

m2

µ2
+ 1

]

E.2 2 point

B0(p
2; 0,m) = ∆ε − ln

m2

µ2
+ 2 +

m2 − p2

p2
ln

(
m2 − p2

m2

)

B0(0; 0,m) = ∆ε − ln
m2

µ2
+ 1

B0(m
2; 0,m) = ∆ε − ln

m2

µ2
+ 2

B0(p
2; 0, 0) = ∆ε − ln

(
−p2

µ2

)
+ 2

B0(p
2;m,m) ≈ ∆ε − ln

m2

µ2
+

p2

6m2
, |p2|,� m2

B′
0(m

2;λ,m) ≡ d

dp2
B0(p

2;λ,m)
∣∣∣
p2=m2

≈ − 1

m2

(
ln
λ

m
+ 1

)
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E.3 3 point

C0(m
2,m2, 0;m,λ,m) ≈ 1

m2
ln
λ

m
, λ� m

C0(0, 0, q
2; 0, λ, 0) =

1

q2
Li2

(
λ2

q2

)
+

1

2q2
ln2

(
−λ2

q2

)
+
π2

6q2

C0(m
2,m2, t;m,MZ ,m) ≈ − 1

12m4(M2
Z − 4m2)2

{
4m2t(M2

Z − 4m2)

+(M2
Z − 4m2)2(6m2 + t)ln

m2

M2
Z

+2MZ

√
M2

Z − 4m2
[
− 24m4 + 6m2(M2

Z − t)

+M2
Zt
]
ln

(√
M2

Z − 4m2 +MZ

2m

)}
, small t
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F Renormalized Perturbation Theory

When one computes correlation functions (Feynman amplitudes) at the 1

loop level or beyond, they will inevitably find UV divergences from using

the initial (bare) Lagrangian, which we’ll denote with a 0 subscript. Renor-

malized perturbation theory prescribes that we rescale all our Lagrangian

parameters to fix this dilemma. In our case, we can restrict this to the

following parameters:

Aµ0 =
√
ZAA

µ, photon field (49)

ψ0 =
√
Zψψ, electron field (50)

m0 = Zmm, electron mass (51)

e0 = Zee, electron charge (52)

We then expand the renormalization constants to O(α):

Zi = 1 + δZi = 1 +O(α) (53)

After substituting (49-53) into the bare Lagrangian, one finds new terms

called counterterms. These counterterms are then found from the renor-

malization conditions, which act like physical boundary conditions on our

correlation functions. In particular for the Zee vertex of (4.10) the addition
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of the counterterm gives:

Λ̂Zeeµ = (54)

and the renormalization condition we must invoke is:

Λ̂Zeeµ (p1, p3)|p1=p3 = 0 (55)

The vertex counterterm is simply found by finding the net counterterm ver-

sion of the γee coupling in the renormalized Lagrangian, and its vector part

is:

= geV igγµ

(
δZψ + δZe +

1

2
δZA

)
(56)

Then we have:

Λ̂Zeeµ = ΛZeeµ + γµ

(
δZψ + δZe +

1

2
δZA

)
(57)

Without proving it here, it is a rudimentary property of QED that Ze = Z
−1/2
A

to all orders in perturbation theory, due to the Ward identity ΛAeeµ (p, p) =

d
dpµ

Σēe(p) and thus δZe = −1
2
δZA. Therefore (57) reduces to:

Λ̂Zeeµ = ΛZeeµ + γµδZψ (58)
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We will next turn our attention to a derivation of δZψ so that we may proceed.

Before we can do that, we need to take a close look at the electron’s SE

correction:

Σēe(p) =

= ie2
∫

d4q

(2π)4
γα(/q +m)γα

(q2 −m2)[(q − p)2 − λ2]
(59)

The Dirac algebra is simply: γα(/q +m)γα = −2/q + 4m, thus

Σēe(p) = ie2
∫

d4q

(2π)4
(−2/q + 4m)

(q2 −m2)[(q − p)2 − λ2]

= − α

4π

{
/p[2B1(p

2;m,λ) + 1] +m[4B0(p
2;m,λ)− 2]

}
= − α

4π

{
/p
[A0(m)− (p2 +m2)B0(p

2;m,λ) + p2]

p2

+m[4B0(p
2;m,λ)− 2]

}
(60)

To finish our task, we now can derive our counterterm δZψ. To find it, we

invoke the renormalization condition which requires the wave function of the
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electron propagator to be unity when it is on shell:

= 0 (61)

⇒

[
lim

p2→m2

i

/p−m
Σ̂ēe(p)

]
ue(p) = 0

lim
p2→m2

i

/p−m
[/pΣ

ēe
V (p

2) +mΣēe
S (p

2) + δZψ(/p−m)− δm]ue(p) = 0[
Σēe
V (m

2) + δZψ +m lim
p2→m2

1

/p−m

(
Σēe
V (p

2) + Σēe
S (p

2)− δm

m

)]
ue(p) = 0

where δm is found by demanding that the electron’s corrected propagator

coincides with its physical, renormalized mass ⇒ δm = Σēe
V (m

2) + Σēe
S (m

2).

Then we get:
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{
Σēe
V (m

2) + δZψ +m lim
p2→m2

(/p+m)

p2 −m2

[
Σēe
V (p

2)− Σēe
V (m

2)

+Σēe
S (p

2)− Σēe
S (m

2)
]}

ue(p) = 0{
δZψ + Σēe

V + 2m2
(
Σēe
V

′
(m2) + Σēe

S
′
(m2)

)}
ue(p) = 0

⇒ δZψ = −Σēe
V (m

2)− 2m2
(
Σēe
V

′
(m2) + Σēe

S
′
(m2)

)
δZψ =

α

4π

1

m2
[A0(m)− 2m2B0(m

2;m,λ) +m2]

−2m2

[
− α

4π

d

dp2

(
1

p2
[A0(m)− (p2 +m2)B0(p

2;m,λ+ p2)]

)∣∣∣∣∣
p2=m2

− α

4π

d

dp2
[4B0(p

2;m,λ)− 2]|p2=m2

]

This expression exactly reduces fully to:

δZψ =
α

4π

[
1− A0(m)

m2
+ 4m2B′

0(m
2;m,λ)

]
(62)



Bibliography

[1] S.Glashow, Nucl. Phys. 22, 579 (1961).

[2] M.D. Schwartz, “Quantum Field Theory and the Standard Model”, Cam-

bridge University Press (2014).

[3] M.E. Peskin and D.V. Schroeder, “An Introduction to Quantum Field

Theory”, Perseus Books (1995).

[4] A. H. Snell, F. Pleasonton and R.V. McCord, Phys. Rev. 78, 310 (1950).

[5] J.M. Robson, Phys. Rev. 78, 311, (1950).

[6] J.M. Robson, Phys. Rev. 83, 349, (1951).

[7] J.C. Hardy and I.S. Towner, Phys. Rev. C 91, 025501 (2015).

[8] A.Czarnecki, W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 120, 202002

(2018).

[9] A. Sirlin, Rev. Mod. Phys. 50, 3 (1978).

[10] A. Sirlin and A. Ferroglia, Rev. Mod. Phys. 85, 263 (2013).

210



BIBLIOGRAPHY 211

[11] A. Czarnecki, W.J. Marciano and A. Sirlin, Phys. Rev. D70, 093006

(2004).

[12] I.S. Towner, Nuc. Phys. A. 540, 478 (1992).

[13] A. Sirlin, Phys. Rev. Lett. 19, 15 (1967).

[14] W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006).

[15] A. Sibirtsev, P.G. Blunden, W. Melnitchouk and A.W. Thomas, Phys.

Rev. D 82, 013011 (2010).

[16] R. E. Cutkosky, Phys. Rev. 112, 1027 (1958).

[17] B. Rislow (2013), Low Energy Tests of the Standard Model (Doctoral

dissertation), College of William and Mary.

[18] B. Bhattacharya, R.J. Hill and G. Paz, Phys. Rev. D 84, 073006 (2011).

[19] R. Gupta, Y. Jang, H. Lin, B. Yoon and T. Bhattacharya, Phys. Rev.

D 96, 114503 (2017).

[20] Z. Ye, J. Arrington, R.J. Hill and G. Lee, Phys. Lett. B 777, 8 (2018).

[21] M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018).

[22] O. Lalakulich and E.A. Paschos, Phys. Rev. D 71, 074003 (2005).

[23] O. Lalakulich, E.A. Paschos and G. Piranishvili, Phys. Rev. D 74,

014009 (2006).



BIBLIOGRAPHY 212

[24] D. Dreschel, S.S. Kamalov and L. Tiator, Eur. Phys. J A34, 69 (2007).

[25] L. Tiator et al., Chinese Phys. C 33, 1069 (2009).

[26] T. Leitner et al., Phys. Rev. C 79, 034601 (2009).

[27] M.E. Christy and P.E. Bosted, Phys. Rev. C 81, 055212 (2010).

[28] LHA PDF sets, https://lhapdf.hepforce.org

[29] C. Seng, M. Gorchtein, H. Patel and M.J. Ramsey-Musolf, Phys. Rev.

Lett. 121, 241804 (2018).

[30] C. Seng, M. Gorchtein and M.J. Ramsey-Musolf, Phys. Rev. D 100,

013001 (2019).

[31] S.A. Larin and J.A. Vermaseren, Phys. Lett. B 259, 345 (1991).

[32] R.K. Ellis, W.J. Stirling and B.R. Webber, “QCD and Collider Physics”,

Cambridge University Press (1996).

[33] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. Rev. D 18,

11 (1978).

[34] G. Altarelli, R.K. Ellis and G. Martinelli, Nuc. Phys. B 157, 461 (1979).

[35] J.F. Owens, A. Accardi and W. Melnitchouk, Phys. Rev. D 87, 094012

(2013).

[36] MMHT14 PDFs, L.A. Harland-Lang, A.D. Martin, P. Motylinski and

R.S. Thorne, arXiv:1412.3989.



BIBLIOGRAPHY 213

[37] CT14 NNLO PDFs, S. Dulat et al., arXiv:1506.07443.

[38] HERA 20 PDFs, H. Abramowicz et al., arXiv:1506.06042.

[39] S.Alekhin, J. Blumlein, Phys. Rev. D 81, 014032 (2010).

[40] F. Jegerlehner, arxXiv:1905.05078v1 (2017).

[41] F. Jegerlehner software, www-com.physic.hu berlin.de/ fjeger/software.html

[42] P.D.B. Collins, “An Introduction to Regge Theory and High Energy

Physics”, Cambridge University Press (1977).

[43] J. Schwinger, Phys. Rev. 73, 416L (1948).

[44] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

[45] V.L. Kashevarov, M. Ostrick and L. Tiator, Phys. Rev. C 86, 035207

(2017).

[46] C.A. Piketty and L. Stodolsky, Nucl. Phys. B 15, 571 (1970).

[47] J.J. Sakurai and D. Schildknecht, Phys. Lett. B 40, 121 (1972).

[48] J. Alwall and G. Ingelman, Phys. Lett. B 596, 77 (2004).

[49] P. Lichard, Phys. Rev. D 55, 5385 (1997).

[50] T. Bolognese, P. Fritze, J. Morfin, D.H. Perkins, K. Powell and W.G.

Scott, Phys. Rev. Lett. 50, 224 (1983).



BIBLIOGRAPHY 214

[51] J. Erler, A. Kurylov and M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006

(2003).

[52] J. Erler and M. J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005).
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