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Abstract. In this work, discuss neutrino masses and mixings in the framework of a minimal
S3 symmetric extension of the Standard Model. In this model, the mass matrices of all fermions
take the same generic form with two texture zeroes. The mass matrices of the neutrinos and
charged leptons are re-parameterized in terms of their eigenvalues, then the neutrino mixing
matrix, VPMNS , is computed and exact, explicit analytical expressions for the neutrino mixing
angles as functions of the masses of neutrinos and charged leptons are obtained in excellent
agreement with the latest experimental data. We also compute the branching ratios of some
selected flavour-changing neutral current (FCNC) processes, as well as the contribution of the
exchange of neutral flavour-changing scalars to the anomaly of the magnetic moment of the
muon, as functions of the masses of charged leptons and the neutral Higgs bosons. We find that
the S3 × Z2 flavour symmetry and the strong mass hierarchy of the charged leptons strongly
suppress the FCNC processes in the leptonic sector, well below the present experimental bounds
by many orders of magnitude. The contribution of FCNC’s to the anomaly of the muon’s
magnetic moment is small, but not negligible.

1. Introduction
The observation of flavour oscillations of solar, atmospheric, reactor, and accelerator neutri-
nos established that they have non-vanishing masses and mix among themselves, much like the
quarks do [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. This discovery brought
out very forcibly the need of extending the Standard Model (SM) in order to accomodate in the
theory the new data on neutrino physics in a consistent way that would allow for a unified and
systematic treatment of the observed hierarchy of masses and mixings of all fermions. At the
same time, the number of free parameters in the extended form of the SM had to be drastically
reduced in order to give predictive power to the theory. These two seemingly contradictory de-
mands are met by a flavour symmetry under which the families transfom in a non-trivial fashion.
The observed pattern of neutrino mixing and, in particular, the non vanishing and sizeble value
of the reactor mixings angle strongly suggest a flavour permutational symmetry.

The result of a combined analysis of all available neutrino oscillation data, including the recent
results from long-baseline νµ −→ νe searches at the Tokai to Kamioka (T2K) and Main Injector
Neutrino Oscillation Search (MINOS) experiments, give the following values the difference of
the squared neutrino masses and the mixing angles in the lepton mixing matrix, UPMNS , at 1σ
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confidence level [21]:

∆m2
21 = 7.59+0.20

−0.18 × 10−5 eV2,

∆m2
31 =

 −2.40+0.08
−0.09 × 10−3 eV2, (mν2 > mν1 > mν3).

+2.50+0.09
−0.16 × 10−3 eV2, (mν3 > mν2 > mν1).

(1)

sin2 θl12 = 0.312+0.017
−0.015, sin2 θl23 =


0.52± 0.06,

0.52+0.06
−0.07,

, sin2 θl13 =

 0.016+0.008
−0.006,

0.013+0.007
−0.005,

, (2)

the upper (lower) row corresponds to inverted (normal) neutrino mass hierarchy.

In the last ten years, important theoretical advances have been made in the understanding of
the mechanisms for the mass fermion generation and flavour mixing. A phenomenologically and
theoretically meaningful approach for reducing the number of free parameters in the Standard
Model is the imposition of texture zeroes [22, 23] and/or flavour symmetries. For a recent
review of flavour symmetry models see [24]. Also, certain texture zeroes may be obtained from
a flavour symmetry [25, 26]. In the case of the Minimal S3-Invariant Extension of the Standard
Model [27, 28, 29, 30, 31, 32, 33], the concept of flavour and generations is extended to the
Higgs sector in such a way that all the matter fields – Higgs, quarks, and lepton fields, including
the right-handed neutrino fields– have three species and therefore transform under the flavour
symmetry group as the three dimensional representation 1⊕2 of the permutational group S3. A
model with more than one Higgs SU(2) doublet has tree level flavour changing neutral currents
whose exchange may give rise to lepton flavour violating processes and may also contribute to
the anomalous magnetic moment of the muon. An effective test of the phenomenological success
of the model is obtained by verifying that all flavour changing neutral current processes and the
magnetic anomaly of the muon, computed in the S3–Invariant extended form of the Standard
Model, agree with the experimental values.

2. The Minimal S3-invariant Extension of the Standard Model
In the Standard Model analogous fermions in different generations have identical couplings to
all gauge bosons of the strong, weak and electromagnetic interactions. Prior to the introduction
of the Higgs boson and mass terms, the Lagrangian is chiral and invariant with respect to per-
mutations of the left and right fermionic fields.

The six possible permutations of three objects (f1, f2, f3) are elements of the permutational
group S3. This is the discrete, non-Abelian group with the smallest number of elements.
The three-dimensional real representation is not an irreducible representation of S3. It can
be decomposed into the direct sum of a doublet fD and a singlet fs, where

fs = 1√
3
(f1 + f2 + f3), f

T

D =
(

1√
2
(f1 − f2) , 1√

6
(f1 + f2 − 2f3)

)
. (3)

The direct product of two doublets pD
T = (pD1, pD2) and qD

T = (qD1, qD2) may be decomposed
into the direct sum of two singlets rs and rs′ , and one doublet rD

T where

rs = pD1qD1 + pD2qD2, rs′ = pD1qD2 − pD2qD1, (4)

rD
T = (rD1, rD2) = (pD1qD2 + pD2qD1, pD1qD1 − pD2qD2). (5)

The antisymmetric singlet rs′ is not invariant under S3.
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Since the Standard Model has only one Higgs SU(2)L doublet, which can only be an S3
singlet, it can only give mass to the quark or charged lepton in the S3 singlet representation,
one in each family, without breaking the S3 symmetry.

Hence, in order to impose S3 as a fundamental symmetry, unbroken at the Fermi scale, we
are led to extend the Higgs sector of the theory. The quark, lepton and Higgs fields are

QT = (uL, dL) , uR , dR , LT = (νL, eL) , eR , νR and H, (6)

in an obvious notation. All of these fields have three species, and we assume that each one forms
a reducible representation 1S ⊕ 2. The doublets carry capital indices I and J , which run from
1 to 2, and the singlets are denoted by Q3, u3R, d3R, L3, e3R, ν3R and HS . Note that the
subscript 3 denotes the singlet representation and not the third generation. The most general
renormalizable Yukawa interactions of this model are given by

LY = LYD + LYU + LYE + LYν , (7)

where

LYD = −Y d
1 QIHSdIR − Y d

3 Q3HSd3R − Y d
2 [ QIκIJH1dJR +QIηIJH2dJR ]

−Y d
4 Q3HIdIR − Y d

5 QIHId3R + h.c.,
(8)

LYU = −Y u
1 QI(iσ2)H

∗
SuIR − Y u

3 Q3(iσ2)H
∗
Su3R − Y u

4 Q3(iσ2)H
∗
I uIR

−Y u
2 [ QIκIJ(iσ2)H

∗
1uJR + ηQIηIJ(iσ2)H

∗
2uJR ]− Y u

5 QI(iσ2)H
∗
I u3R + h.c.,

(9)

LYE = −Y e
1 LIHSeIR − Y e

3 L3HSe3R − Y e
2 [ LIκIJH1eJR + LIηIJH2eJR ]

−Y e
4 L3HIeIR − Y e

5 LIHIe3R + h.c.,
(10)

LYν = −Y ν
1 LI(iσ2)H

∗
SνIR − Y ν

3 L3(iσ2)H
∗
Sν3R − Y ν

4 L3(iσ2)H
∗
I νIR

−Y ν
2 [ LIκIJ(iσ2)H

∗
1νJR + LIηIJ(iσ2)H

∗
2νJR ]− Y ν

5 LI(iσ2)H
∗
I ν3R + h.c.,

(11)

and

κ =

(
0 1
1 0

)
and η =

(
1 0
0 −1

)
. (12)

Furthermore, we add to the Lagrangian the Majorana mass terms for the right-handed neutrinos

LM = −M1ν
T
IRCνIR −M2ν

T
3RCν3R −M3ν

T
3RCν3R. (13)

Due to the presence of three Higgs fields, the Higgs potential VH(HS , HD) is more complicated
than that of the Standard Model. This potential was analyzed by Pakvasa and Sugawara [34]
who found that in addition to the S3 symmetry, it has a permutational symmetry S′2: H1 ↔ H2,
which is not a subgroup of the flavour group S3. In this communication, we will assume that the
vacuum respects the accidental S′2 symmetry of the Higgs potential and that 〈H1〉 = 〈H2〉. With
these assumptions, the Yukawa interactions, eqs. (8)-(11) yield mass matrices, for all fermions
in the theory, of the general form [27]

M =

 µ1 + µ2 µ2 µ5
µ2 µ1 − µ2 µ5
µ4 µ4 µ3

 . (14)

The left-handed Majorana neutrinos νL naturally acquire their small masses through the see-saw
mechanism type I of the form

Mν = MνDM̃−1
R (MνD)T , (15)
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− +
HS , ν3R HI , L3, LI , e3R, eIR, νIR

Table 1. Z2 assignment in the leptonic sector.

where MνD and M̃R denote the Dirac and right handed Majorana neutrino mass matrices, re-
spectively.

In principle, all entries in the mass matrices can be complex since there is no restriction coming
from the flavour symmetry S3. The mass matrices are diagonalized by bi-unitary transformations
as

U †d(u,e)LMd(u,e)Ud(u,e)R = diag(md(u,e),ms(c,µ),mb(t,τ)),

UTν MνUν = diag(mν1 ,mν2 ,mν3).

(16)

The entries in the diagonal matrices may be complex, so the physical masses are their absolute
values.

The quark and lepton flavor mixing matrices, VPMNS and VCKM , arise from the mismatch
between diagonalization of the mass matrices of u and d type quarks and the diagonalization of
the mass matrices of charged leptons and left-handed neutrinos, respectively,

VCKM = U †uLUdL, VPMNS = U †eLUνK, (17)

where K is the diagonal matrix of the Majorana phase factors. Therefore, in order to obtain
the unitary matrices appearing in eq. (17) and get predictions for the flavor mixing angles and
CP violating phases, we should specify the mass matrices.

3. The mass matrices in the leptonic sector and Z2 symmetry
A further reduction of the number of parameters in the leptonic sector may be achieved by
means of an Abelian Z2 symmetry. A possible set of charge assignments of Z2, compatible with
the experimental data on masses and mixings in the leptonic sector is given in Table 1.

These Z2 assignments forbid the following Yukawa couplings

Y e
1 = Y e

3 = Y ν
1 = Y ν

5 = 0. (18)

Therefore, the corresponding entries in the mass matrices vanish, i.e., µe1 = µe3 = 0 and
µν1 = µν5 = 0.

3.1. The mass matrix of the charged leptons
The mass matrix of the charged leptons takes the form

Me = mτ

 µ̃2 µ̃2 µ̃5
µ̃2 −µ̃2 µ̃5
µ̃4 µ̃4 0

 . (19)

The unitary matrix UeL that enters in the definition of the mixing matrix, VPMNS , is calculated
from

U †eLMeM
†
eUeL = diag

(
m2
e,m

2
µ,m

2
τ

)
, (20)
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where me, mµ and mτ are the masses of the charged leptons, and

MeM
†
e

m2
τ

=


2|µ̃2|2 + |µ̃5|2 |µ̃5|2 2|µ̃2||µ̃4|e−iδe

|µ̃5|2 2|µ̃2|2 + |µ̃5|2 0

2|µ̃2||µ̃4|eiδe 0 2 |µ̃4|2

 . (21)

Notice that this matrix has only one non-ignorable phase factor [29].

Once MeM
†
e has been reparametrized in terms of the charged lepton masses, it is

straightforward to compute Me and UeL also as functions of the charged lepton masses [29].

The resulting expression for Me, written to order
(
mµme/m

2
τ

)2
and x4 = (me/mµ)4 is

Me ≈ mτ



1√
2

m̃µ√
1+x2

1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

1√
2

m̃µ√
1+x2

− 1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

m̃e(1+x2)√
1+x2−m̃2

µ

eiδe m̃e(1+x2)√
1+x2−m̃2

µ

eiδe 0


. (22)

This approximation is numerically exact up to order 10−9 in units of the τ mass. Notice that
this matrix has no free parameters other than the Dirac phase δe.

The unitary matrix UeL that diagonalizes MeM
†
e and enters in the definition of the neutrino

mixing matrix VPMNS may be written as

UeL =

 1 0 0
0 1 0
0 0 eiδe

 O11 −O12 O13

−O21 O22 O23

−O31 −O32 O33

 , (23)

where the orthogonal matrix OeL in the right hand side of eq. (23), written to the same order
of magnitude as Me, is

OeL ≈



1√
2
x

(1+2m̃2
µ+4x2+m̃4

µ+2m̃2
e)√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃

2
e+12x4

− 1√
2

(1−2m̃2
µ+m̃

4
µ−2m̃2

e)√
1−4m̃2

µ+x
2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

− 1√
2
x

(1+4x2−m̃4
µ−2m̃2

e)√
1+m̃2

µ+5x2−m̃4
µ−m̃6

µ+m̃
2
e+12x4

1√
2

(1−2m̃2
µ+m̃

4
µ)√

1−4m̃2
µ+x

2+6m̃4
µ−4m̃6

µ−5m̃2
e

1√
2

−
√

1+2x2−m̃2
µ−m̃2

e(1+m̃
2
µ+x

2−2m̃2
e)√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃

2
e+12x4

−x (1+x2−m̃2
µ−2m̃2

e)
√

1+2x2−m̃2
µ−m̃2

e√
1−4m̃2

µ+x
2+6m̃4

µ−4m̃6
µ−5m̃2

e

√
1+x2m̃em̃µ√
1+x2−m̃2

µ


,

(24)
where, as before, m̃µ = mµ/mτ , m̃e = me/mτ and x = me/mµ.

The the mass values of the charged lepton masses [35]:

me = 0.51099891 MeV, mµ = 105.658367 MeV, and mτ = 1776.82 MeV, (25)

we obtain

OeL ≈


1√
2
m̃e
m̃µ

− 1√
2

1√
2

− 1√
2
m̃e
m̃µ

1√
2

1√
2

−1 − m̃e
m̃µ

0

+O
(
10−5

)
, (26)
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which can be written in following form:

OeL ≈


1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0




m̃e
m̃µ

−1 0

1 − m̃e
m̃µ

0

0 0 1

 . (27)

The second matrix on the right side is a numerically exact up to order O
(
10−7

)
in units of the

τ mass.

3.2. The mass matrix of the neutrinos
In the minimal S3-invariant extension of Standard Model, the Yukawa interactions and the
S3 × Z2 flavour symmetry yield a mass matrix for the Dirac neutrinos of the form

MνD =

 µν2 µν2 0
µν2 −µν2 0
µν4 µν4 µν3

 . (28)

In principle, all entries in the mass matrix MνD can be complex, since there is no restriction
coming from the S3 × Z2 flavour symmetry.

The mass of the left-handed Majorana neutrinos, Mν , are generated by the see-saw
mechanism type I,

Mν = MνDM̃−1
R (MνD)T , (29)

where M̃R is the mass matrix of the right-handed neutrinos, which we take to be real and
diagonal but non-degenerate

M̃R = diag(M1,M2,M3). (30)

Then, the mass matrix Mν takes the form

Mν =



2(µν2)
2

M

2λ(µν2)
2

M

2µν2µ
ν
4

M

2λ(µν2)
2

M

2(µν2)
2

M

2µν2µ
ν
4λ

M

2µν2µ
ν
4

M

2µν2µ
ν
4λ

M

2(µν4)
2

M
+

(µν3)
2

M3


(31)

where

λ =
1

2

(
M2 −M1

M1 +M2

)
and M = 2

M1M2

M2 +M1
(32)

When the first two right-handed neutrino masses are equal, the parameter λ vanishes and we
recover the expresion for Mν given in Kubo et al [27].

As we have assumed the the right-handed neutrino mass matrix M̃R to be real, the complex
symetric neutrino mass matrix Mν has only three independent phase factor that come from
the parameters µ2, µ3 and µ4. Here, to simplify the analysis we will consider the case when

arg {µν2} = arg {µν3} o 2 arg {µν4} = arg

{
2

(µν4)
2

M
+

(µν3)
2

M3

}
. The general case, with three inde-

pendent phase factors, will be considered in detail elsewhere.
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In the case considered here, the phase factors may be taken out of Mν as

Mν = QMνQ (33)

where

Q =

 eiφ2 0 0
0 eiφ2 0
0 0 eiφ4

 and Mν =

 a d b
d a e
b e c

 (34)

with φ2 = arg {µν2}, φ4 = arg {µν4}, a =
2|µν2 |

2

|M| , b =
2|µν4 ||µν2 |
|M| , c =

2|µν4 |
2

M
+
|µν3 |

2

M3
, d =

2|λ||µν2 |
2

|M|
and e =

2|µν2 ||µν4 ||λ|
|M| .

The real symetric matrix Mν may be brought to diagonal form by means of a similarity
transformation with an orthogonal matrix Oν as

Mν = Oνdiag {mν1 ,mν2 ,mν3}OT
ν , (35)

the columns in Oν are the normalized eigenvectors of Mν .

In order to compute Oν we notice that the diagonalization of Mν is equivalent to the

diagonalization of a mass matrix M̂ with two texture zeroes.

First define a new mass matrix Mν
′

obtained from Mν by a π
4 rotation

Uπ
4

=


1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0

 , (36)

through the similarity transformation Mν
′

= U†π
4

Mν Uπ
4

.Then, the matrix Mν
′

can be written

in the following form:

Mν
′
= µ0I3×3 + M̂ (37)

where I3×3 is the identity matrix,

µ0 = a− d =
2 |µν2 |

2∣∣M ∣∣ (1− |λ|) and M̂ =

 0 A 0
A B C
0 C D

 (38)

with A = b−e√
2

, B = c+ d− a, C = b+e√
2

and D = 2d. As mentioned before the diagonalization of

Mν is reduced to diagonalization of the real symmetric matrix M̂, which is a matrix with two
texture zeroes of class I [25].

In fact, we can obtain a more general result by means of the similarity transformation,
M′ = R†π

4

MRπ
4

, to applied to the general form of the mass matrices given in eq. (14), i. e.,

M′ = R†π
4

MRπ
4

= µ̃I3×3 + M̃ (39)

where µ̃ = µ2 − µ1,

Rπ
4

=


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 and M̃ =

 0 µ2 0

µ2 2µ1
√

2µ5
0
√

2µ4 µ3 + µ1 − µ2

 . (40)
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The basis in which the neutrino mass matrix takes the form (40) is a basis in the space of fermion
flavors in which the mass matrices have the same form with two texture zeros for all fermions
in the theory. However, this property does not imply special relations among mass eigenvalues
and flavor mixing parameters. [36].

It is well know [37, 38] that in the hadronic sector the masses of quarks may be obtained from
a matrix with two texture zeroes which succesfully reproduces the strong mass hierarchy of up
and down type quarks. Also, the numerical values of the quark mixing angles determined in this
framework are in good agreement with the experimental data [26]. Additionally, in a unified
treatment in which the mass matrices of all fermions have a similar form with two texture ze-
roes class I and a normal hierarchy, the numerical values obtained for masses and mixing of the
neutrinos are in very good agreement with all available experimental data [26, 23]. Therefore,
we it is to be expected that the mixing matrix PMNS that will be obtained from the mass
matrices Mν and Me could reproduce the current experimental data of the masses and mixings
in the leptonic sector of the theory.

As in the case of the charged leptons, the matrices Mν and Uν can be reparametrized in
terms of the neutrino masses. For this we use the information that we already have about the
diagonalization of a matrix with two texture zeroes of class I [25, 26, 37, 38]. Then, the mass
matrix Mν for a Normal [Inverted] hierarchy in the mass spectrum takes the form

M
N[I]

ν =



µ0 + d d 1√
2

(
C
N [I]

+A
N [I]
)

d µ0 + d 1√
2

(
C
N [I] −AN [I]

)
1√
2

(
C
N [I]

+A
N [I]
)

1√
2

(
C
N [I] −AN [I]

)
mν1 +mν2 +mν3 − 2 (µ0 + d)


(41)

where

A
N [I]

=

√√√√(mν2 − µ0)
(
mν3[1] − µ0

)(
µ0 −mν1[3]

)
2d

, (42)

C
N [I]

=

√√√√(2d+ µ0 −mν1)
(

2d+ µ0 −mν2[3]

)(
mν3[2] − µ0 − 2d

)
2d

. (43)

Also, the values allowed for the parameters µ0 and 2d+ µ0 are in the following ranges

mν2[1] > µ0 > mν1[3] and mν3[2] > 2d+ µ0 > mν2[1] . (44)

Now, the unitary matrix Uν takes the following form:

Uν =

 1 0 0
0 1 0
0 0 eiδν




1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0




O
N [I]

11 O
N [I]

12 O
N [I]

13

O
N [I]

21 O
N [I]

22 O
N [I]

23

O
N [I]

31 O
N [I]

32 O
N [I]

33

 (45)

where δν = φ2 − φ4 and ON [I]
is the matriz that diagonalizes M̂. Explicit expresions for the

elements of the orthogonal matrix ON [I]
reparametrized in terms of the neutrino masses are
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given in table 2, but in order to avoid a confused notation the dependence of O
N [I]

ij on neutrinos
masses is given in terms of the expresions:

DN [I]

1 = 2d (mν2 −mν1)
(
mν3[1] −mν1[3]

)
, DN [I]

2 = 2d (mν2 −mν1)
(
mν3[2] −mν2[3]

)
,

DN [I]

3 = 2d
(
mν3[1] −mν1[3]

)(
mν3[2] −mν2[3]

)
, f1 = (2d+ µ0 −mν1) ,

f
N [I]

2 = [−1] (2d+ µ0 −mν2) , f
N [I]

3 = [−1] (mν3 − µ0 − 2d) .
(46)

see table 2. The superscripts N and I denote the normal and inverted hierarchy respectively.

4. The neutrino mixing matrix

The neutrino mixing matrix VPMNS , is the product U †eLUνK, where K is the diagonal matrix
of the Majorana phase factors, defined by K = diag(1, eiα, eiβ). Now, with the help of eqs. (23),
(27) and (45), we obtain the theoretical expression of the elements of the lepton mixing matrix,

V
th

PMNS . This expression has the following form:

V
th

PMNS
=

 V
th

e1 V
th

e2 e
iα V

th

e3 e
iβ

V
th

µ1 V
th

µ2e
iα V

th

µ3e
iβ

V
th

τ1 V
th

τ2 e
iα V

th

τ3 e
iβ

 (47)

where
V
th

e1 = m̃e
m̃µ
O
N [I]

11 −O
N [I]

21 eiδl , V
th

e2 = m̃e
m̃µ
O
N [I]

12 −O
N [I]

22 eiδl ,

V
th

e3 = m̃e
m̃µ
O
N [I]

13 −O
N [I]

23 eiδl , V
th

µ1 = −ON [I]

11 − m̃e
m̃µ
O
N [I]

21 eiδl ,

V
th

µ2 = −ON [I]

12 − m̃e
m̃µ
O
N [I]

22 eiδl , V
th

µ3 = −ON [I]

13 − m̃e
m̃µ
O
N [I]

23 eiδl ,

V
th

τ1 = O
N [I]

31 , V
th

τ2 = O
N [I]

32 , V
th

τ3 = O
N [I]

33

(48)

with δl = δν − δe, the elements O
e

and O
N [I]

in the eqs. (48) are given in the eq. (24) and the
table 2, respectively.

4.1. The Mixing Angles
In the standard PDG parametrization, the entries in the lepton mixing matrix are parametrized
in terms of the mixing angles and phases. Thus, the mixing angles are related to the observable
moduli of lepton VPMNS through the relations:

sin2 θl12 = |Ve2|2

1−|Ve3|2
, sin2 θl23 =

|Vµ3|2

1−|Ve3|2
, sin2 θl13 = |Ve3|2 . (49)

Then, theoretical expression for the lepton mixing angles as functions of the lepton mass ratios
are readily obtained when the theoretical expressions for the modulii of the entries in the PMNS
mixing matrix, given in eqs. (48), are substituted for |Vij | in the right hand side of eqs. (49).

sin2 θl12 =

(
m̃e
m̃µ

)2 (
O
N [I]

12

)2
+
(
O
N [I]

22

)2
− 2 m̃em̃µO

N [I]

12 O
N [I]

22 cos δl

1−
(
m̃e
m̃µ

)2 (
O
N [I]

13

)2
−
(
O
N [I]

23

)2
+ 2 m̃em̃µO

N [I]

13 O
N [I]

23 cos δl

(50)
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Set Elements Oij

I

O
N[I]

11 = −
√

[−1](mν3−µ0)(mν2−µ0)f1
DN[I]

1

O
N[I]

12 =

√(
mν3[1]−µ0

)(
µ
0
−mν1[3]

)
f
N[I]

2

DN[I]

2

O
N[I]

13 =

√
[−1](µ0−mν1)(mν2−µ0)fN[I]

3

DN[I]

3

O
N[I]

21 =

√
[−1]2d(µ0−mν1)f1

DN[I]

1

O
N[I]

22 =

√
2d(mν2−µ0)fN[I]

2

DN[I]

2

O
N[I]

23 =

√
[−1]2d(mν3−µ0)fN[I]

3

DN[I]

3

O
N[I]

31 = −
√

[−1](µ0
−mν1)fN[I]

2 f
N[I]

3

DN[I]

1

O
N[I]

32 = −1[+1]

√
(mν2−µ0)f1f

N[I]

3

DN[I]

1

O
N[I]

33 = [−1]

√
(mν3−µ0)f1f

N[I]

2

DN[I]

1

II

O
N[I]

11 =

√
[−1](mν3−µ0)(mν2−µ0)f1

DN[I]

1

O
N[I]

12 = −

√(
mν3[1]−µ0

)(
µ
0
−mν1[3]

)
f
N[I]

2

DN[I]

2

O
N[I]

13 =

√
[−1](µ0−mν1)(mν2−µ0)fN[I]

3

DN[I]

3

O
N[I]

21 =

√
[−1]2d(µ0−mν1)f1

DN[I]

1

O
N[I]

22 =

√
2d(mν2−µ0)fN[I]

2

DN[I]

2

O
N[I]

23 =

√
[−1]2d(mν3−µ0)fN[I]

3

DN[I]

3

O
N[I]

31 = −1[+1]

√
[−1](µ0

−mν1)fN[I]

2 f
N[I]

3

DN[I]

1

O
N[I]

32 = −
√

(mν2−µ0)f1f
N[I]

3

DN[I]

1

O
N[I]

33 = [−1]

√
(mν3−µ0)f1f

N[I]

2

DN[I]

1

III

O
N[I]

11 =

√
[−1](mν3−µ0)(mν2−µ0)f1

DN[I]

1

O
N[I]

12 =

√(
mν3[1]−µ0

)(
µ
0
−mν1[3]

)
f
N[I]

2

DN[I]

2

O
N[I]

13 = −
√

[−1](µ0−mν1)(mν2−µ0)fN[I]

3

DN[I]

3

O
N[I]

21 =

√
[−1]2d(µ0−mν1)f1

DN[I]

1

O
N[I]

22 =

√
2d(mν2−µ0)fN[I]

2

DN[I]

2

O
N[I]

23 =

√
[−1]2d(mν3−µ0)fN[I]

3

DN[I]

3

O
N[I]

31 = −
√

[−1](µ0
−mν1)fN[I]

2 f
N[I]

3

DN[I]

1

O
N[I]

32 =

√
(mν2−µ0)f1f

N[I]

3

DN[I]

1

O
N[I]

33 = −
√

(mν3−µ0)f1f
N[I]

2

DN[I]

1

Table 2. Sets of O
N [I]

ij . The superscripts N and I denote the normal and inverted hierarchy
respectively.

sin2 θl23 =

(
O
N [I]

13

)2
+
(
m̃e
m̃µ

)2 (
O
N [I]

23

)2
+ 2 m̃em̃µO

N [I]

13 O
N [I]

23 cos δl

1−
(
m̃e
m̃µ

)2 (
O
N [I]

13

)2
−
(
O
N [I]

23

)2
+ 2 m̃em̃µO

N [I]

13 O
N [I]

23 cos δl

(51)

sin2 θl13 =

(
m̃e

m̃µ

)2 (
O
N [I]

13

)2
+
(
O
N [I]

23

)2
− 2

m̃e

m̃µ
O
N [I]

13 O
N [I]

23 cos δl (52)

where, as before, m̃µ = mµ/mτ and m̃e = me/mτ .
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In a first, preliminary analysis for the mixing angle θl13 and for an inverted neutrino mass
hierarchy (mν2 > mν1 > mν3) the eq. (52) takes the form:

sin2 θl13 ≈
(µ0 + 2d−mν3) (µ0 −mν3)

(mν1 −mν3) (mν2 −mν3)
. (53)

Now, with the following values for neutrino masses mν2 = 0.056eV , mν1 = 0.053eV and
mν3 = 0.048eV , and the parameters values δl = π/2, µ0 = 0.049 and d = 8 × 10−5 we get
sin2 θl13 ≈ 0.029 −→ θl13 ≈ 9.8◦. In a more complete analysis, where will be make a χ2 fit
of the exact theoretical expressions for the modulii of the entries of the lepton mixing matrix

|(V th

PMNS
)ij | to the experimental values (for example the values given by Gonzalez-Garcia [14])

will be considered in detail elsewhere.

5. Flavour Changing Neutral Currents (FCNC)
Models with more than one Higgs SU(2) doublet have tree level flavour changing neutral
currents. In the Minimal S3-invariant Extension of the Standard Model considered here, there is
one Higgs SU(2) doublet per generation coupling to all fermions. The flavour changing Yukawa
couplings may be written in a flavour labelled, symmetry adapted weak basis as

LFCNC
Y =

(
EaLY

ES
ab EbR + UaLY

US
ab UbR +DaLY

DS
ab DbR

)
H0
S

+
(
EaLY

E1
ab EbR + UaLY

U1
ab UbR +DaLY

D1
ab DbR

)
H0

1+(
EaLY

E2
ab EbR + UaLY

U2
ab UbR +DaLY

D2
ab DbR

)
H0

2 + h.c.

(54)

The Yukawa couplings of immediate physical interest in the computation of the flavour

changing neutral currents are those defined in the mass basis, according to Ỹ EI
m = U †eLY

EI
w UeR,

where UeL and UeR are the matrices that diagonalize the charged lepton mass matrix defined in
eqs. (16). We obtain [30]

Ỹ E1
m ≈ mτ

v1


2m̃e −1

2m̃e
1
2x

−m̃µ
1
2m̃µ −1

2

1
2m̃µx

2 −1
2m̃µ

1
2


m

and Ỹ E2
m ≈ mτ

v2


−m̃e

1
2m̃e −1

2x

m̃µ
1
2m̃µ

1
2

−1
2m̃µx

2 1
2m̃µ

1
2


m

,

(55)
where m̃µ = 5.94×10−2, m̃e = 2.876×10−4 and x = me/mµ = 4.84×10−3. All the non-diagonal
elements are responsible for tree-level FCNC processes. If the S′2 symmetry in the Higgs sector
is preserved [34], 〈H0

1 〉 = 〈H0
2 〉 = v.

The amplitude of the flavour violating process µ→ 3e, is proportional to Ỹ E
µeỸ

E
ee [39]. Then,

the leptonic branching ratio,

Br(µ→ 3e) =
Γ(µ→ 3e)

Γ(µ→ eνν̄)
and Γ(µ→ 3e) ≈

m5
µ

3× 210π3

(
Y 1,2
µe Y

1,2
ee

)2
M4
H1,2

, (56)

which is the dominant term, and the well known expression for Γ(µ→ eνν̄) [40], give

Br(µ→ 3e) ≈ 2(2 + tan2 β)2
(
memµ

m2
τ

)2( mτ

MH

)4

, (57)
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Table 3. Leptonic FCNC processes, calculated with MH1,2 ∼ 120 GeV .

FCNC processes Theoretical BR Experimental References
upper bound BR

τ → 3µ 8.43× 10−14 2× 10−7 B. Aubert et. al. [42]
τ → µe+e− 3.15× 10−17 2.7× 10−7 B. Aubert et. al. [42]
τ → µγ 9.24× 10−15 6.8× 10−8 B. Aubert et. al. [43]
τ → eγ 5.22× 10−16 1.1× 10−11 B. Aubert et. al. [44]
µ→ 3e 2.53× 10−16 1× 10−12 U. Bellgardt et al. [41]
µ→ eγ 2.42× 10−20 1.2× 10−11 M. L. Brooks et al. [45]

taking for MH ≈ 120 GeV and tanβ = 1 we obtain Br(µ→ 3e) = 2.53× 10−16, well below the
experimental upper bound for this process, which is 1× 10−12 [41].

Similar computations give the numerical estimates of the branching ratios for some others
flavour violating processes in the leptonic sector. These results, and the corresponding
experimental upper bounds are shown in Table 3. In all cases considered, the theoretical
estimations made in the framework of the minimal S3-invariant extension of the SM are well
below the experimental upper bounds [30].

6. Muon anomalous magnetic moment
In the minimal S3-invariant extension of the Standard Model we are considering here, we have
three Higgs SU(2) doublets, one in the singlet and the other two in the doublet representations
of the S3 flavour group. The Z2 symmetry decouples the charged leptons from the Higgs boson
in the S3 singlet representation. Therefore, in the leading order of perturbation theory there
are two neutral scalars and two neutral pseudoscalars whose exchange will contribute to the
anomalous magnetic moment of the muon. Since the heavier generations have larger flavour-
changing couplings, the largest contribution comes from the heaviest charged leptons coupled
to the lightest of the neutral Higgs bosons.

A straightforward computation gives

δa(H)
µ =

YµτYτµ
16π2

mµmτ

M2
H

(
log

(
M2
H

m2
τ

)
− 3

2

)
. (58)

With the help of (55) we may write δa
(H)
µ as

δa(H)
µ =

m2
τ

(246 GeV )2
(2 + tan2 β)

32π2
m2
µ

M2
H

(
log

(
M2
H

m2
τ

)
− 3

2

)
, (59)

Taking again MH = 120 GeV and the upper bound for tanβ = 14 gives an estimate of the
largest possible contribution of the FCNC to the anomaly of the muon’s magnetic moment

δa
(H)
µ ≈ 1.7 × 10−10. This number has to be compared with the difference between the

experimental value and the Standard Model prediction for the anomaly of the muon’s magnetic
moment [46]

∆aµ = aexpµ − aSMµ = (28.7± 9.1)× 10−10, (60)

which means
δa

(H)
µ

∆aµ
≈ 0.06. (61)

XIII Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 378 (2012) 012014 doi:10.1088/1742-6596/378/1/012014

12



Hence, the contribution of the flavour changing neutral currents to the anomaly of the magnetic
moment of the muon is smaller than or of the order of 6% of the discrepancy between the
experimental value and the Standard Model prediction.

7. Conclusions
A well defined structure of the Yukawa couplings is obtained, which permits the calculations
of mass and mixings matrices for quark and leptons in a unified way. A further reduction
of redundant parameters is achieved in the leptonic sector by introducing a Z2 symmetry. The
flavour symmetry group S3×Z2 relates the nuetrino mass spectrum and mixings. This allowed us
to compute the neutrino mixing matrix, VPMNS , explicitly in terms of the masses of the charged
leptons and neutrinos and one phase δl. In this model, we obtained a general result for mass
matrices of all femions in the theory. This result is that through of a similarity transformation
we can written all mass matrices of fermions in the same generic form with two texture zeros.
We also found that VPMNS has three CP-violating phases, namely, one Dirac phase δl = δν − δe
and two Majorana phases, α and β, which are functions of the neutrino and lepton masses. The
numerical values of the reactor, θ13, mixing angle is determined by the masses of the neutirnos
which have an inverted hierarchy, with the values |mν2 | = 0.056 eV , |mν1 | = 0.053 eV and
|mν3 | = 0.048 eV , obtained θl13 ≈ 9.8◦ in agreement with the latest analysis of the experimental
data on neutrino oscillations and mixings. We also obtained explicit expressions for the matrices
of the Yukawa couplings of the lepton sector parametrized in terms of the charged lepton masses
and the VEV’s of the neutral Higgs bosons in the S3-doublet representation. These Yukawa
matrices are closely related to the fermion mass matrices and have a structure of small and very
small entries reflecting the observed charged lepton mass hierarchy. With the help of the Yukawa
matrices, we computed the branching ratios of a number of FCNC processes and found that the
branching ratios of all FCNC processes considered here are strongly suppressed by powers of

the small mass ratios me/mτ and mµ/mτ , and by the ratio
(
mτ/MH1,2

)4
, where MH1,2 is the

mass of the neutral Higgs bosons in the S3-doublet. Taking for MH1,2 a very conservative value
(MH1,2 ≈ 120 GeV ), we found that the numerical values of the branching ratios of the FCNC in
the leptonic sector are well below the corresponding experimental upper bounds by many orders
of magnitude. It has already been argued that small FCNC processes mediating non-standard
quark-neutrino interactions could be important in the theoretical description of the gravitational
core collapse and shock generation in the explosion stage of a supernova [50, 51, 52]. Finally,
the contribution of the flavour changing neutral currents to the anomalous magnetic moment
of the muon is small but non-negligible, and it is compatible with the best, state of the art
measurements and theoretical computations.
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