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Abstract. The symmetry-adapted Pairing-plus-Quadrupole Model (PQM) is explored in the framework of the
Elliott’s SU(3) Model with the aim to obtain the complementary and competing features of the pairing and
quadrupole interactions in the model Hamiltonian, containing both of them as limiting cases or dynamical
symmetries. The probability distribution of the SU(3) basis states within the SO(8) pairing states is obtained
through a numerical diagonalization of the PQM Hamiltonian. In an application of the model for the description
of the Ne and 2’0 spectra, we investigate systematically the relative strengths of dynamically symmetric
quadrupole-quadrupole interaction with the isoscalar, isovector and total pairing interactions. The approach
allows for an extension of the model space for two oscillator shells and introduction of more elaborate pairing
interaction. The new effects that come with this generalization will also be discussed as a future development.

1 Introduction

The algebraic realization of the dynamical symmetries
that appear in the microscopic shell model was pre-
sented in Refs. [1, 2]. In it the dynamical symmetries
of three types of pairing interactions in addition to the
quadrupole-quadrupole interaction, introduced through
Elliott’s SU(3) model were defined as different phases of
the microscopic shell model and the phase transitions be-
tween theme were investigated by means of introducing
control parameters in a generalized Hamiltonian, contain-
ing the interactions of the considered two or three limit-
ing cases. Here, we aim at exploiting the applications of
the theory in some realistic nuclear systems. In order to
evaluate the limits of application of this approach, we start
with the simplest real test case - the ds-shell, which is the
first one, where both deformation and pairing phenomena
play an important role [3, 4]. Our proof-of-case example
presents the simple but complete systems of 2 and 4 par-
ticles in the ds-shell which allows us to study the Pairing-
plus-Quadrupole Model (PQM) without any truncation of
the model space.

We first present results for the total-pairing eigenstates
with the idea to underline the importance of only a few
SU(3) irreducible representations. We also show the out-
come for the excitation spectra, as well as a study of the in-
terrelation between the pairing and the quadrupole interac-
tions. The excitation spectrum characteristics are demon-
strated to change from the very degenerated pairing-
like pattern to the rotational-like spectrum of the pure
quadrupole-quadrupole interaction. We also evaluate the

4e-mail: kdrumev2000@yahoo.com
be_mail: anageorg @issp.bas.bg

contribution from the addition of one more free parameter,
namely separating the isovector from the isoscalar pairing
mode. The results show an improvement of the description
of the low-lying collective spectra of the considered real-
istic nuclear systems. By representing the best-fit results
for these systems on the symmetry triangle of the phase
diagram, we illustrate which of the interactions are more
likely to prevail in the real nuclei.

2 Description of the calculations

In this contribution, we present the application of the dy-
namical symmetries that were established in the Micro-
scopic Shell Model in the ds-shell for the even-even nu-
clei with 2 valence particles: 18Ne and '80, and with 4 va-
lence particles: 2°Ne as well as 2°0. The following observ-
ables are evaluated for the spectra of these nuclei: the root
mean square (RMS) deviation of the model energies from
the experimental ones, the weight of each of the isoscalar,
isovector and quadrupole interactions in the correct repro-
duction of the experiment. Also, information for the struc-
ture of the wave-function and/or B(E2) transitions may be
added for best-fit values. We also aim to improve our best-
fit results for the two-parameter Hamiltonian by consid-
ering the three-parameter case. The nucleus 2°Mg is ex-
cluded from our calculation because of not enough exper-
imental states to be described.
To do our calculations, we work in the SU(3) basis

Wr) = [fle(d, kL, S5 TM,) D
labeled by the representations of the dynamical symmetry:

U@ > SU@B)> SOQ3)
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We generate it by using the rules of U(Q2) to SU(3) reduc-
tion (tabulated in the code [5]). We also rely on tools de-
veloped to calculate reduced matrix elements for any type
of physical operator between different SU(3) irreps [6].
We calculate the matrix elements of all the operators in
this basis and then perform a numerical diagonalization to
obtain the energy spectrum and the eigenstates.

The Hamiltonian we use for studying the phase transi-
tions consists of pairing and quadrupole terms. In the case
of two parameters, it has the form

1 1
Vies = 5(1 - X)V] + 5(1 +X)V2, (3)

where at x=— 1 we have pure V| interaction and at x=1 the
limiting case of pure V, interaction is realized. Compared
to the earlier SU(3) one-shell realization [4, 7] of the PQM,
we use a more general pairing Hamiltonian which includes
proton-neutron pairing terms as well.

3 Relation between the pairing and
the SU(3) basis states

The decomposition of the total pairing ba-
sis states over the SU(3) basis states [¥p); =
Y vIp1, p2. p3IBL, S IMyTMy); = {f}. 0, L, S5 IMy) =
2iCillfh i L, S5 Mgy = % Cij[¥R); can be done by
calculating the matrix elements of the pairing terms which
enter the equation

<lPP|Hpair|LPP> = Epair(m, L,[Pl,(ST)) = 4)
Z C:iCij-O1j ik (YRIH pair YR) -
ik

from [2]. Example of this decomposition of the first few
low-lying pairing states into SU(3) basis states is given in
Table 1. From this decomposition one can extract infor-
mation on the intrinsic deformation of the pairing states
through the content in percentage of the SU(3) states,
which are clearly associated with the (8y) variables of the
Geometric Collective Model [8]. As could be seen from
Table 1 and Fig. 1, for the yrast states the prolate compo-
nents (8,0) and (4,2) play a dominant role, although for
the ground state they are strongly mixed with the oblate
(0,4) state.

The energy of the pairing states is given by Eq. (20)
in Ref. [9] where a complete classification of the states in
the SO(8) proton-neutron pairing model has been done.

4 Two-parameter estimate

We start with the two parameter interaction:

H = a ;x) [GoPisc + G1Pyy] — )5((1 +00.0 ()
with Gy = Gy,
H= - x)GoPisc _ )ﬁ(l +x)0.0 (6)
2 2
o = a ;)C)Glpiv - %((1 +x)0.0 O
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Figure 1. (Color online) The structure of the pairing states for
the system of 2 protons and 2 neutrons in the ds-shell.

for the cases when both pairing modes are present with
the same strength or when we have just the isoscalar or the
isovector mode involved, respectively.

Now, let us use the energies of the low-lying states of
200, which has 4 neutrons in the ds valence shell. In Fig. 2,
we present the results of a minimization procedure for the

S By, ~ By ) /d (per
degree of freedom d ) with respect to the two parameters
G and y of the residual interaction (5). The darker spots
in the middle of the figure present the intervals of change
of the parameters for which we have the minimal values
of o or the values of the parameters fitted to a set of the
12 lowest-lying positive-parity experimental energies E fgxp
from the observed spectra [10] of a real nuclear system.
The red dashed line in Fig. 2(a) connects the values of
each of the parameters G and y at their respective limit-
ing cases of pure pairing or pure quadrupole-quadrupole
interactions. This line could be assigned as the axis of
change of the parameter —1<x<1 as is used in Fig. 2(b).
The regions of the optimal values for the parameters lie
on this line and their position in respect to its center could

root-mean-squared value o =
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Table 1. Decomposition of the total pairing states ['¥'p) for the nuclear system of 2 protons and 2 neutrons in the ds-shell in terms of
SU(3) basis states [\Vr). In the first column, the J™ value of the pairing state is given.

i) = {Iv[pl[PIL,S;J)} Energy[MeV] [{j} = {(LwL.S; N} IC;I[%]
0{ -16 (8,0)0,0;0 56.25
|0[0][0]0, 0; 0) (4,2)0,0;0 6.94
(0,4)0,0;0 34.03
(2,0)0,0;0 2.78
2f -10 (8,0)2,0;2 83.45
[2[1][0]2, 0; 2) 4,2)2,0;2 5.68
0,4)2,0;2 6.71
(2,0)2,0;2 4.16
4T -10 (8,0)4,0;4 40.86
[2[1][0]4,0;4) 4,2)4,0;4 53.81
0,4)4,0;4 5.33
O; -10 4,2)0,0;0 77.78
[2[1][0]0, 0; 0) (0,4)0,0;0 11.11
(2,0)0,0;0 11.11
O;r -10 (8,0)0,0;0 1.13
[2[1][0]0, 0; 0) 4,2)0,0;0 77.92
0,4)0,0;0 10.54
(2,0)0,0;0 10.41
07 -10 (8,0)0,0;0 16.87
[2[1][0]0, 0; 0) 4,2)0,0;0 79.86
(0,4)0,0;0 2.57
(2,0)0,0;0 0.70
2;’ -10 (8,0)2,0;2 1.41
[2[1][0]2,0;2) 4,2)2,0;2 72.57
0,4)2,0;2 15.74
(2,0)2,0;2 10.28
2; -10 4,2)0,2;2 77.78
[2[1][0]0, 2;2) 0,4)0,2;2 11.11
(2,0)0,2;2 11.11
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Figure 2. (Color online) Result for 2’0 with the Hamiltonian (7). (a) The absolute RMS deviation o~ in MeV for the excitation spectrum
in the ds-shell, calculated in full SU(3) basis. The white circle denotes the position where o is minimal. (b) Excitation spectrum of the
lowest-lying energies with the control parameter x varying from —1 to 1 along the red line in part (a).

serve as a measure of the influence of each of the terms
from the residual interactions on the energy spectra of the
considered nucleus. An interesting conclusion from these
two-parameter figures is that similar results for o can be
obtained by using various pairs of values (y, G). This cor-

responds to somewhat different spectra in all these cases
— from purely rotational to somewhat more pairing-like

modes.

At the pairing limit (x= — 1), a non-degenerate v=0,
J=0 state is separated by the degenerated rest of v=2,

03011-p.3
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Figure 3. (Color online) Similar to Fig. 2 but for the nucleus *°Ne. Calculations are performed when (a) the total pairing or just (c)
the isoscalar or (d) the isovector part of the pairing is included in the Hamiltonian. Part (b): the excitation energies obtained with the
Hamiltonian (5) with the control parameter x varying from —1 to 1 along the red line in part (a).

J=07,27,27,4] states by the pairing gap 2A=GQ. Very
soon after the pairing limit, for non-vanishing values of
x first the lowest J=27 is separated from the rest of the
degenerated excited states, then around x=0 all the states
degeneracy is removed and the triplet of v=2, J =2f, 0; s 4f
is clearly observed, which reproduces the spectra typical
for the quadrupole phonon model [11] as well as in the In-
teracting Boson Model [12]. In the pure SU(3) limit (x=1),
the rotational sequence of v=2, J=07,27,4] states in the
ground band is recovered, based on the leading SU(3) irrep
(8,0) (see Table 1). As a result, a degeneracy of the two
v=2, J=2% appears, which is lifted for nonvanishing val-
ues of G. The second v=2, J:O;r , based on leading SU(3)
irrep (4, 2), is the band head of the excited 0;. It is obvious
that the complicated spectra observed in real nuclear sys-
tems are best reproduced by taking into account both the
pairing and quadrupole-quadrupole interactions.

In the case of ’Ne (see Fig. 3), the RMS estimate
is performed over the 21 lowest-lying positive-parity ex-
perimental energies Efgxp. The results are given for the
three choices of the pairing interaction - the isoscalar, the
isovector and the total pairing with a common strength pa-
rameter value. For this nucleus we obtain a more rotational
spectrum but again observe a flat area of minima with sim-
ilar RMS values of 0. Compared to the 200 case, here the

region of values suggesting good description of the exper-
iment do not reach the pure-pairing side. Also the slope
of change is smaller and the point of the best description
shifts to the right towards a more rotational spectrum (see
the position of the blue arrow in Fig. 2(b) compared to the
Fig. 3(b)).

5 Three-parameter estimate and the phase
transitions

Further, we can separate the two pairing modes — the
isoscalar and the isovector one — and use a Hamiltonian
of the form

H=GoVp_ +GVp, - %(Q.Q. )

In this case, one has to introduce two control pa-
rameters y and z, described in Sec. 3.2 of Ref. [2] (see
also [13]). These are defined as having the following rela-
tion with the three strengths Gy, G| and y: y = x/(x + G)),
z = (x + G1)/(x + Gy + G) and the scaling parameter
¢ = x + Gy + Gy. Using them, the Hamiltonian becomes

H=c(l-2)Vp, +c(l—paVe, - cyz0.0.  (9)

03011-p.4
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Figure 4. (Color online) A symmetry triangle that illustrates the
dominance of one of the interactions: quadrupole-quadrupole,
isoscalar pairing or isovector pairing. The coordinates of a point
of interest are y and z. The four circles locate the results for the
nuclei '®Ne, 30, Ne, and 2°0.

The ratio between the best-fit values for the parame-
ters y, Go and G can be plot on a diagram resembling the
Casten symmetry triangle, where each vertex represents
one of the modes in pure form. The two control parame-
ters y and z have the following meaning: an angle and a
distance from the point of interest to one of the vertices,
respectively.

The corresponding three-parameter outcome is shown
in Figs. 4 and 5. The best three-parameter results in the
case of ?’Ne are obtained for the values y=0.11 MeV,
Go=0.28 MeV, and G1=0.28 MeV. The other three nu-
clei in the study ('®0, '®Ne, and 2°0) have only one type
of valence particles (protons or neutrons), so the three-
parameter investigation is not applicable to them. We see
that the best results are obtained for G values close to the
ones of Gy.

In Fig. 4, the results obtained for all 4 nuclei in our
study are presented. The outcome for the nuclei 0 and
18Ne has been obtained as the best two-parameter estimate
using the Hamiltonian (7). One can see that only the 2°Ne
result for the parameters lies inside the triangle. The cases
of no isoscalar pairing allowed (which is when only one
type of valence particles is present in the system) lie along
the SO1(5)-SU(3) line. Moreover, the more collective 2°0
nucleus is positioned closer to the SU(3) vertex.

Finally, in Fig. 5, a comparison between excitation
spectra calculated for 2’Ne has been done. It can be seen
that the deviation from the experimental energy spectrum
is reduced once one goes from two-parameter to three-
parameter description. Also, the degeneracy of the states
O; s O;, 2; and 2; is removed as is in the experiment.

6 Conclusion

The relation between the pairing and the quadrupole inter-
action established [1, 2] on the basis of their complemen-
tarity to the Wigner’s spin-isospin Ugr(4) symmetry was

used to elucidate the algebraic structure of an extended
Pairing-plus-Quadrupole Model, realized in the frame-
work of the Elliott’s SU(3) scheme [3]. The pairing part of
the Hamiltonian consists of pp-, nn- and pn-pairing terms.
The relationship between the basis states classified in each
of the dynamical symmetries is obtained, which allows for
the evaluation of the matrix elements of the operators rep-
resenting each algebra in the reductions. This approach
is used to study the combined effects of the quadrupole-
quadrupole and pairing interactions on the energy spectra
of the nuclear systems. In a forthcoming article [14], we
will describe all these effects in a sequence of N=Z nu-
clei with A=2 and 4 nucleons. There, results for B(M1)
and B(E?2) transition strengths will also be displayed and
probably included in the best fit estimate.

The phases as dynamical symmetries of an extended
Pairing-plus-Quadrupole Model are investigated in the
framework of the Elliott’s SU(3) scheme. The phase tran-
sitions between all three limits are studied by evaluating
the weights of the different interactions in the PQM Hamil-
tonian for several nuclear systems with 2 and 4 particles in
the ds-shell. The probability distributions |C; j|2 (transfor-
mation brackets) with which the states of the SU(3) ba-
sis enter into the expansion of the pairing basis are ob-
tained numerically. In this way, the importance (weight)
of the different SU(3) - states can be used, when we need
to impose restrictions on the basis because of computa-
tional difficulties. The parameter adjustment for realistic
nuclear systems gives the influence of each of the consid-
ered pairing and quadrupole modes on the reproduction of
the nuclear spectra. This evaluation is achieved and clari-
fied by the introduction of two or three control parameters.
The comparison of the results for different numbers and
types of particles that constitute the valence shell for the
nuclear system could be compared to evaluate the onset of
deformation.
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