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Abstract. The symmetry-adapted Pairing-plus-Quadrupole Model (PQM) is explored in the framework of the

Elliott’s SU(3) Model with the aim to obtain the complementary and competing features of the pairing and

quadrupole interactions in the model Hamiltonian, containing both of them as limiting cases or dynamical

symmetries. The probability distribution of the SU(3) basis states within the SO(8) pairing states is obtained

through a numerical diagonalization of the PQM Hamiltonian. In an application of the model for the description

of the 20Ne and 20O spectra, we investigate systematically the relative strengths of dynamically symmetric

quadrupole-quadrupole interaction with the isoscalar, isovector and total pairing interactions. The approach

allows for an extension of the model space for two oscillator shells and introduction of more elaborate pairing

interaction. The new effects that come with this generalization will also be discussed as a future development.

1 Introduction

The algebraic realization of the dynamical symmetries

that appear in the microscopic shell model was pre-

sented in Refs. [1, 2]. In it the dynamical symmetries

of three types of pairing interactions in addition to the

quadrupole-quadrupole interaction, introduced through

Elliott’s SU(3) model were defined as different phases of

the microscopic shell model and the phase transitions be-

tween theme were investigated by means of introducing

control parameters in a generalized Hamiltonian, contain-

ing the interactions of the considered two or three limit-

ing cases. Here, we aim at exploiting the applications of

the theory in some realistic nuclear systems. In order to

evaluate the limits of application of this approach, we start

with the simplest real test case - the ds-shell, which is the

first one, where both deformation and pairing phenomena

play an important role [3, 4]. Our proof-of-case example

presents the simple but complete systems of 2 and 4 par-

ticles in the ds-shell which allows us to study the Pairing-

plus-Quadrupole Model (PQM) without any truncation of

the model space.

We first present results for the total-pairing eigenstates

with the idea to underline the importance of only a few

SU(3) irreducible representations. We also show the out-

come for the excitation spectra, as well as a study of the in-

terrelation between the pairing and the quadrupole interac-

tions. The excitation spectrum characteristics are demon-

strated to change from the very degenerated pairing-

like pattern to the rotational-like spectrum of the pure

quadrupole-quadrupole interaction. We also evaluate the
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contribution from the addition of one more free parameter,

namely separating the isovector from the isoscalar pairing

mode. The results show an improvement of the description

of the low-lying collective spectra of the considered real-

istic nuclear systems. By representing the best-fit results

for these systems on the symmetry triangle of the phase

diagram, we illustrate which of the interactions are more

likely to prevail in the real nuclei.

2 Description of the calculations
In this contribution, we present the application of the dy-

namical symmetries that were established in the Micro-

scopic Shell Model in the ds-shell for the even-even nu-

clei with 2 valence particles: 18Ne and 18O, and with 4 va-

lence particles: 20Ne as well as 20O. The following observ-

ables are evaluated for the spectra of these nuclei: the root

mean square (RMS) deviation of the model energies from

the experimental ones, the weight of each of the isoscalar,

isovector and quadrupole interactions in the correct repro-

duction of the experiment. Also, information for the struc-

ture of the wave-function and/or B(E2) transitions may be

added for best-fit values. We also aim to improve our best-

fit results for the two-parameter Hamiltonian by consid-

ering the three-parameter case. The nucleus 20Mg is ex-

cluded from our calculation because of not enough exper-

imental states to be described.

To do our calculations, we work in the SU(3) basis

|ΨR〉 ≡ |{ f }α(λ, μ)κL, S ; JMJ〉 (1)

labeled by the representations of the dynamical symmetry:

U(Ω) ⊃ SU(3) ⊃ SO(3)

{ f } α (λ, μ) κ L (2)
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We generate it by using the rules of U(Ω) to SU(3) reduc-

tion (tabulated in the code [5]). We also rely on tools de-

veloped to calculate reduced matrix elements for any type

of physical operator between different SU(3) irreps [6].

We calculate the matrix elements of all the operators in

this basis and then perform a numerical diagonalization to

obtain the energy spectrum and the eigenstates.

The Hamiltonian we use for studying the phase transi-

tions consists of pairing and quadrupole terms. In the case

of two parameters, it has the form

Vres =
1

2
(1 − x)V1 +

1

2
(1 + x)V2 , (3)

where at x=−1 we have pure V1 interaction and at x=1 the

limiting case of pure V2 interaction is realized. Compared

to the earlier SU(3) one-shell realization [4, 7] of the PQM,

we use a more general pairing Hamiltonian which includes

proton-neutron pairing terms as well.

3 Relation between the pairing and
the SU(3) basis states

The decomposition of the total pairing ba-

sis states over the SU(3) basis states |ΨP〉i ≡
|{ f }, ν[p1, p2, p3]βL, S ; JMJT MT 〉i ≡ |{ f }, i, L, S ; JMJ〉 =∑

j Ci j|{ f }, j, L, S ; JMJ〉 = ∑ j Ci j|ΨR〉 j can be done by

calculating the matrix elements of the pairing terms which

enter the equation

〈ΨP|Hpair |ΨP〉 = Epair(m, i, [P], (S T )) = (4)∑
jk

C∗
kiCi j.δk j.k〈ΨR|Hpair |ΨR〉 j.

from [2]. Example of this decomposition of the first few

low-lying pairing states into SU(3) basis states is given in

Table 1. From this decomposition one can extract infor-

mation on the intrinsic deformation of the pairing states

through the content in percentage of the SU(3) states,

which are clearly associated with the (βγ) variables of the

Geometric Collective Model [8]. As could be seen from

Table 1 and Fig. 1, for the yrast states the prolate compo-

nents (8, 0) and (4, 2) play a dominant role, although for

the ground state they are strongly mixed with the oblate

(0, 4) state.

The energy of the pairing states is given by Eq. (20)

in Ref. [9] where a complete classification of the states in

the SO(8) proton-neutron pairing model has been done.

4 Two-parameter estimate

We start with the two parameter interaction:

H =
(1 − x)

2
[G0Pisc +G1Piv] − χ

2
(1 + x)Q.Q (5)

with G0 = G1,

H =
(1 − x)

2
G0Pisc − χ

2
(1 + x)Q.Q (6)

H =
(1 − x)

2
G1Piv − χ

2
(1 + x)Q.Q (7)

Figure 1. (Color online) The structure of the pairing states for

the system of 2 protons and 2 neutrons in the ds-shell.

for the cases when both pairing modes are present with

the same strength or when we have just the isoscalar or the

isovector mode involved, respectively.

Now, let us use the energies of the low-lying states of
20O, which has 4 neutrons in the ds valence shell. In Fig. 2,

we present the results of a minimization procedure for the

root-mean-squared value σ =
√∑

i (Ei
Th − Ei

Exp)
2
/d ( per

degree of freedom d ) with respect to the two parameters

G and χ of the residual interaction (5). The darker spots

in the middle of the figure present the intervals of change

of the parameters for which we have the minimal values

of σ or the values of the parameters fitted to a set of the

12 lowest-lying positive-parity experimental energies Ei
Exp

from the observed spectra [10] of a real nuclear system.

The red dashed line in Fig. 2(a) connects the values of

each of the parameters G and χ at their respective limit-

ing cases of pure pairing or pure quadrupole-quadrupole

interactions. This line could be assigned as the axis of

change of the parameter −1�x�1 as is used in Fig. 2(b).

The regions of the optimal values for the parameters lie

on this line and their position in respect to its center could
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Table 1. Decomposition of the total pairing states |ΨP〉 for the nuclear system of 2 protons and 2 neutrons in the ds-shell in terms of

SU(3) basis states |ΨR〉. In the first column, the Jπ value of the pairing state is given.

|i〉 ≡ {|ν[p][P]L, S ; J〉} Energy[MeV] |{ j} ≡ {(λ, μ)L, S ; J〉}〉 |Ci j|2[%]

0+1 −16 (8, 0)0, 0; 0 56.25

|0[0][0]0, 0; 0〉 (4, 2)0, 0; 0 6.94

(0, 4)0, 0; 0 34.03

(2, 0)0, 0; 0 2.78

2+1 −10 (8, 0)2, 0; 2 83.45

|2[1][0]2, 0; 2〉 (4, 2)2, 0; 2 5.68

(0, 4)2, 0; 2 6.71

(2, 0)2, 0; 2 4.16

4+
1

−10 (8, 0)4, 0; 4 40.86

|2[1][0]4, 0; 4〉 (4, 2)4, 0; 4 53.81

(0, 4)4, 0; 4 5.33

0+2 −10 (4, 2)0, 0; 0 77.78

|2[1][0]0, 0; 0〉 (0, 4)0, 0; 0 11.11

(2, 0)0, 0; 0 11.11

0+3 −10 (8, 0)0, 0; 0 1.13

|2[1][0]0, 0; 0〉 (4, 2)0, 0; 0 77.92

(0, 4)0, 0; 0 10.54

(2, 0)0, 0; 0 10.41

0+4 −10 (8, 0)0, 0; 0 16.87

|2[1][0]0, 0; 0〉 (4, 2)0, 0; 0 79.86

(0, 4)0, 0; 0 2.57

(2, 0)0, 0; 0 0.70

2+2 −10 (8, 0)2, 0; 2 1.41

|2[1][0]2, 0; 2〉 (4, 2)2, 0; 2 72.57

(0, 4)2, 0; 2 15.74

(2, 0)2, 0; 2 10.28

2+3 −10 (4, 2)0, 2; 2 77.78

|2[1][0]0, 2; 2〉 (0, 4)0, 2; 2 11.11

(2, 0)0, 2; 2 11.11

Figure 2. (Color online) Result for 20O with the Hamiltonian (7). (a) The absolute RMS deviation σ in MeV for the excitation spectrum

in the ds-shell, calculated in full SU(3) basis. The white circle denotes the position where σ is minimal. (b) Excitation spectrum of the

lowest-lying energies with the control parameter x varying from −1 to 1 along the red line in part (a).

serve as a measure of the influence of each of the terms

from the residual interactions on the energy spectra of the

considered nucleus. An interesting conclusion from these

two-parameter figures is that similar results for σ can be

obtained by using various pairs of values (χ,G). This cor-

responds to somewhat different spectra in all these cases

— from purely rotational to somewhat more pairing-like

modes.

At the pairing limit (x= − 1), a non-degenerate ν=0,

J=0 state is separated by the degenerated rest of ν=2,
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Figure 3. (Color online) Similar to Fig. 2 but for the nucleus 20Ne. Calculations are performed when (a) the total pairing or just (c)

the isoscalar or (d) the isovector part of the pairing is included in the Hamiltonian. Part (b): the excitation energies obtained with the

Hamiltonian (5) with the control parameter x varying from −1 to 1 along the red line in part (a).

J=0+1 , 2
+
1 , 2

+
2 , 4

+
1 states by the pairing gap 2Δ=GΩ. Very

soon after the pairing limit, for non-vanishing values of

χ first the lowest J=2+1 is separated from the rest of the

degenerated excited states, then around x=0 all the states

degeneracy is removed and the triplet of ν=2, J=2+1 , 0
+
2 , 4

+
1

is clearly observed, which reproduces the spectra typical

for the quadrupole phonon model [11] as well as in the In-

teracting Boson Model [12]. In the pure SU(3) limit (x=1),

the rotational sequence of ν=2, J=0+1 , 2
+
1 , 4

+
1 states in the

ground band is recovered, based on the leading SU(3) irrep

(8, 0) (see Table 1). As a result, a degeneracy of the two

ν=2, J=2+ appears, which is lifted for nonvanishing val-

ues of G. The second ν=2, J=0+2 , based on leading SU(3)

irrep (4, 2), is the band head of the excited 0+
2
. It is obvious

that the complicated spectra observed in real nuclear sys-

tems are best reproduced by taking into account both the

pairing and quadrupole-quadrupole interactions.

In the case of 20Ne (see Fig. 3), the RMS estimate

is performed over the 21 lowest-lying positive-parity ex-

perimental energies Ei
Exp. The results are given for the

three choices of the pairing interaction - the isoscalar, the

isovector and the total pairing with a common strength pa-

rameter value. For this nucleus we obtain a more rotational

spectrum but again observe a flat area of minima with sim-

ilar RMS values of σ. Compared to the 20O case, here the

region of values suggesting good description of the exper-

iment do not reach the pure-pairing side. Also the slope

of change is smaller and the point of the best description

shifts to the right towards a more rotational spectrum (see

the position of the blue arrow in Fig. 2(b) compared to the

Fig. 3(b)).

5 Three-parameter estimate and the phase
transitions

Further, we can separate the two pairing modes – the

isoscalar and the isovector one – and use a Hamiltonian

of the form

H = G0VPisc
+G1VPiv

− χ
2

Q.Q. (8)

In this case, one has to introduce two control pa-

rameters y and z, described in Sec. 3.2 of Ref. [2] (see

also [13]). These are defined as having the following rela-

tion with the three strengths G0, G1 and χ: y = χ/(χ+G1),

z = (χ + G1)/(χ + G0 + G1) and the scaling parameter

c = χ +G0 +G1. Using them, the Hamiltonian becomes

H = c(1 − z)VPisc
+ c(1 − y)zVPiv

− cyzQ.Q. (9)
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Figure 4. (Color online) A symmetry triangle that illustrates the

dominance of one of the interactions: quadrupole-quadrupole,

isoscalar pairing or isovector pairing. The coordinates of a point

of interest are y and z. The four circles locate the results for the

nuclei 18Ne, 18O, 20Ne, and 20O.

The ratio between the best-fit values for the parame-

ters χ, G0 and G1 can be plot on a diagram resembling the

Casten symmetry triangle, where each vertex represents

one of the modes in pure form. The two control parame-

ters y and z have the following meaning: an angle and a

distance from the point of interest to one of the vertices,

respectively.

The corresponding three-parameter outcome is shown

in Figs. 4 and 5. The best three-parameter results in the

case of 20Ne are obtained for the values χ=0.11 MeV,

G0=0.28 MeV, and G1=0.28 MeV. The other three nu-

clei in the study (18O, 18Ne, and 20O) have only one type

of valence particles (protons or neutrons), so the three-

parameter investigation is not applicable to them. We see

that the best results are obtained for G0 values close to the

ones of G1.

In Fig. 4, the results obtained for all 4 nuclei in our

study are presented. The outcome for the nuclei 18O and
18Ne has been obtained as the best two-parameter estimate

using the Hamiltonian (7). One can see that only the 20Ne

result for the parameters lies inside the triangle. The cases

of no isoscalar pairing allowed (which is when only one

type of valence particles is present in the system) lie along

the SOT(5)-SU(3) line. Moreover, the more collective 20O

nucleus is positioned closer to the SU(3) vertex.

Finally, in Fig. 5, a comparison between excitation

spectra calculated for 20Ne has been done. It can be seen

that the deviation from the experimental energy spectrum

is reduced once one goes from two-parameter to three-

parameter description. Also, the degeneracy of the states

0+2 , 0+3 , 2+2 and 2+3 is removed as is in the experiment.

6 Conclusion

The relation between the pairing and the quadrupole inter-

action established [1, 2] on the basis of their complemen-

tarity to the Wigner’s spin-isospin UST(4) symmetry was

used to elucidate the algebraic structure of an extended

Pairing-plus-Quadrupole Model, realized in the frame-

work of the Elliott’s SU(3) scheme [3]. The pairing part of

the Hamiltonian consists of pp-, nn- and pn-pairing terms.

The relationship between the basis states classified in each

of the dynamical symmetries is obtained, which allows for

the evaluation of the matrix elements of the operators rep-

resenting each algebra in the reductions. This approach

is used to study the combined effects of the quadrupole-

quadrupole and pairing interactions on the energy spectra

of the nuclear systems. In a forthcoming article [14], we

will describe all these effects in a sequence of N=Z nu-

clei with A=2 and 4 nucleons. There, results for B(M1)

and B(E2) transition strengths will also be displayed and

probably included in the best fit estimate.

The phases as dynamical symmetries of an extended

Pairing-plus-Quadrupole Model are investigated in the

framework of the Elliott’s SU(3) scheme. The phase tran-

sitions between all three limits are studied by evaluating

the weights of the different interactions in the PQM Hamil-

tonian for several nuclear systems with 2 and 4 particles in

the ds-shell. The probability distributions |Ci j|2 (transfor-

mation brackets) with which the states of the SU(3) ba-

sis enter into the expansion of the pairing basis are ob-

tained numerically. In this way, the importance (weight)

of the different SU(3) - states can be used, when we need

to impose restrictions on the basis because of computa-

tional difficulties. The parameter adjustment for realistic

nuclear systems gives the influence of each of the consid-

ered pairing and quadrupole modes on the reproduction of

the nuclear spectra. This evaluation is achieved and clari-

fied by the introduction of two or three control parameters.

The comparison of the results for different numbers and

types of particles that constitute the valence shell for the

nuclear system could be compared to evaluate the onset of

deformation.
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