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ABSTRACT Credit card fraud detection is crucial for financial security which entails identifying
unauthorized transactions that can result in significant financial losses. Detection is inherently challenging
due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes it
an anomaly detection problem. Traditional detection systems struggle with the highly imbalanced nature
of transaction datasets, where genuine transactions vastly outnumber fraudulent cases. In response to
these challenges, we propose a novel detection model utilizing Quantum AutoEncoders-based Fraud
Detection (QAE-FD). Our approach leverages quantum computing principles to enhance anomaly detection
capabilities by encoding transaction data into compressed quantum states and optimizing the model against
a loss function that evaluates the fidelity in flagging fraudulent transactions. The efficacy of the QAE-FD
model is tested on a real-world credit card transaction dataset, achieving a G-mean of 0.946 and an AUC of
0.947which demonstrates superior performance compared to existingmodels. Our results indicate that QAE-
FD has not only higher accuracy in fraud detection but also better computational efficiency. The integration
of quantum autoencoders is a promising advancement in the field of anomaly detection for credit card fraud,
addressing the limitations of imbalanced datasets and offering a scalable solution for real-time detection
systems.

INDEX TERMS Anomaly detection, credit card fraud detection, imbalanced dataset, quantum autoencoder
(QAE), quantum machine learning (QML).

I. INTRODUCTION
Credit card fraud is a growing problem with extensive
financial implications for corporations, government bodies,
and individuals. The primary method of this fraud is the
exploitation of security vulnerabilities, especially through the
misuse of stolen credit cards. This not only creates profound
challenges in thwarting such fraudulent activities but also
undermines public trust, potentially destabilizing economic
systems and impacting the broader cost of living [1]. Given
that fraud detection inherently falls within the realm of
anomaly detection, the methodologies applied in this field are
critical for effective fraud mitigation [2]. Machine learning
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algorithms are traditionally successful in anomaly detection
within classical datasets. This success has prompted inquiries
into the potential applicability of quantum machine learning
(QML) algorithms to anomaly detection within quantum
systems. Autoencoders (AEs), for instance, are increasingly
used to identify anomalies directly due to their efficacy in
feature compression and reconstruction [3]. The growing
volume of transactions, often from uncertain or unverified
sources, underscores the urgency for financial organizations
to detect fraudulent activities robustly. Unlike canonical
datasets, such as the Modified National Institute of Standards
and Technology [4] and Iris [5] datasets, financial transaction
datasets are characteristically unbalanced, posing unique
challenges for traditional data analysis [6]. The emergence
of QML has sparked interest due to its potential to expedite
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various data-driven tasks, including anomaly detection [7],
[8]. Quantum autoencoders (QAEs) in particular have shown
potential in managing high dimensional and outperforming
classical approaches using the inherent efficiencies of
quantum computation [9]. QAEs are effective in anomaly
detection, which is crucial for fraud identification. Empirical
studies across sectors, including financial fraud and medical
anomalies (e.g., breast cancer detection), have obtained
promising outcomes using QAEs [10].

Anomaly detection research has led to the development
of robust methodologies using both classical and quantum
approaches. Significant works in this area include ‘‘Quantum
Machine Learning for Quantum Anomaly Detection,’’ [7]
which explores the capabilities of deep learning and quantum
algorithms in identifying outlying data. Furthermore, QAEs
have been used to detect anomalies in various scenarios. For
instance, [11] proposed a QAE-based method for detecting
anomalous phases in the context of quantum Hamiltonian
problems. Then, [12] proposed the variational quantum
one-class classifier, which simplifies the QAE structure by
primarily utilizing its encoder component. Thismodel outper-
formed a classical autoencoder (CAE) and was comparable
with a quantum one-class support vector machine (QO-SVM)
in most cases under similar training conditions. Moreover,
a hybrid quantum model was proposed by addressing the
quantum-classical methods for fraud detection that have been
explored; this hybrid model combines classical models, such
as random forests, with quantum support vector machines
(SVMs) to harness quantum computing’s potential for feature
selection and enhance fraud detection accuracy [13]. These
studies laid the groundwork for our investigation of the
application of QAE to credit card fraud detection. We aim to
harness these advanced computational techniques to address
the critical challenge of identifying fraudulent transactions
within highly unbalanced datasets. The choice of Quantum
Autoencoders (QAEs) over classical methods is driven by
their unique ability to leverage quantum parallelism, allowing
for more efficient compression of high-dimensional data into
lower-dimensional quantum states. Unlike classical autoen-
coders, which rely on traditional computational frameworks,
QAEs exploit the inherent parallelism of quantum systems
to process and encode information simultaneously across
multiple states. This capability makes QAEs particularly
effective in handling high-noise, high-dimensional datasets,
where classical models often struggle with scalability and
performance degradation. By encoding data into compact
quantum representations, QAEs can enhance anomaly detec-
tion by isolating subtle deviations that might be obscured in
noisy environments, ultimately leading to more accurate and
robust detection of anomalies in complex datasets.

In this study, we propose a novel Quantum AutoEncoders-
based Fraud Detection (QAE-FD). This framework is
specifically designed to address the challenges posed by
the highly unbalanced datasets (credit card fraud problem)
prevalent in financial transaction data. At the core of our
approach, we use a quantum circuit that functions as an

encoder to compress transactional data into a quantum
state of a lower dimension. This state is then used to
identify fraud by assessing deviations from the expected
quantum state of legitimate transactions. The novelty of
our method lies in its dual-phase operational structure.
Initially, the quantum encoder maps classical transaction data
into a quantum Hilbert space. Then, it deploys a quantum
classifier that evaluates the fidelity of the encoded state
against predefined thresholds to detect potential fraud. This
approach enhances detection sensitivity and significantly
accelerates computation, leveraging the parallel processing
capabilities of quantum computing. By integrating classical
data preprocessing with quantum-based anomaly detection,
our model offers a robust solution to the complexities of
fraud detection in large-scale financial datasets. This method
redefines the standards for accuracy and efficiency in the
field, promising a significant advancement in the fight
against credit card fraud. The contributions of this paper are
summarized as follows:

• We propose a model for detecting fraudulent transac-
tions that adapts the QAE model by using the quantum
encoder part only.

• We evaluate our proposed model using a real, highly
imbalanced financial (credit card) dataset with the
adaption to real-world application scenarios.

• We perform sensitivity analysis on the hyperparameters
of our proposed model, including circuit layers and the
number of thresholds.

• We enhance the interpretability of our proposed model
by demonstrating the necessary metrics, achieving a
geometricmean (G-mean) of 0.946 and an area under the
curve (AUC) of 0.974 in the most sensitive case, where
the threshold is set to 0.7.

The remainder of this paper is organized as follows.
In Section II, we explain the background. Section III about
related existing studies. Section IV shows the details of our
proposed method. In Section V, we present the experimental
setup and results. Section VI covers the sensitivity analysis of
the study. Finally, the conclusion of our study is in VII.

II. BACKGROUND
In this section, we explain the credit card fraud detection
problem, classical, and quantum autoencoder (CAE&QAE).

A. CREDIT CARD FRAUD DETECTION
Legitimate and fraudulent credit card transactions often
have similar profiles. Fraudsters constantly adapt to mimic
legitimate spending behavior, increasing the difficulty of
distinguishing between normal and fraudulent transactions.
This results in a highly imbalanced distribution toward legiti-
mate transactions, complicating fraud detection [1]. Machine
learning techniques, including supervised, unsupervised, and
semi-supervised methods, are the primary approaches to
fraud identification [14], [15]. Scalable machine learning
algorithms include association rules, fuzzy systems, decision
trees, genetic algorithms, neural networks (NNs), SVMs,
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artificial immune systems, K-nearest neighbor algorithms,
and AEs [16] are being used in this manner.

B. CLASSICAL AUTOENCODER (CAE)
The classical autoencoder (CAE) is a pivotal architecture for
nearly lossless compression inmachine learning. As shown in
Figure 1, the autoencoder comprises the primary components
including the high-dimensional input data X , an encoder-
decoder mechanism, and the reconstructed output data X̂ .
In the encoder-decoder mechanism, the encoder reduces the
data to a compact latent space z (the bottleneck), representing
the data in its most essential form. This process involves
a series of neural network layers mirrored by the decoder,
which reconstructs the input data from its compressed state.
Suppose that given dataset χ = xi | xi ∈ Rn, i = 1, . . . ,N ,
the encoder: Rn

−→ Rk with k ≤ n, compresses each data
point into k-dimensional space z. The decoder: Rk

−→ Rn

maps z back to the reconstructed X̂ . The effectiveness of this
architecture is measured by how closely the reconstructed
data resembles the original. The objective is to minimize
loss, which is typically expressed by mean squared error
loss functions or binary cross-entropy. These loss functions
can be optimized using methods such as gradient descent or
stochastic algorithms [17], [18], [19]. This framework is fun-
damental in applications such as information retrieval [20],
feature extraction [21], and anomaly detection [3].

FIGURE 1. CAE architecture. Its primary components are as follows: the
high-dimensional input data X ; an encoder-decoder mechanism, which
compresses the input data into a latent space z , and then reconstructs
the data from this compressed form; and the reconstructed output data
X̂ . This process minimizes reconstruction error, making CAEs useful for
tasks such as feature extraction, image denoising, and anomaly detection,
where such error is represented by the mean squared error loss function
or binary cross-entropy.

C. QUANTUM AUTOENCODER (QAE)
QAEs are the quantum analog of CAEs, but the data
and operations are quantum mechanical [22]. In a QAE,
the quantum encoder (or decoder) is established from a
variational quantum circuit [23], [24]. Similar to a CAE,
a QAE reduces dimensionality by compressing quantum data
into a smaller number of qubits than the input qubits. Thus,
the trainable unitary of the quantum encoder part E(θ ) is
defined as E(θ ) =

∏L
l=1 El(θ ), where El(θ ) represents a

circuit layer composed of a sequence of parameterized single-
and two-qubit gates. The parameter θ is tunable to compress
the data into the latent space. In a QAE, the set of qubits

where data are compressed is called latent qubits, and the
qubits that are traced out after this compression are called
trash qubits. As depicted in Figure 2, a QAE circuit consists
of two trash qubits and the two remaining qubits for latent
space preparation. The decoder D(θ ) applies E(θ )† to the
latent and reference qubits to reconstruct the quantum state.
Remarkably, the variational quantum circuit in a QAE is
trained by minimizing a cost function based on the fidelity or
Hamming distance between the trash qubits and the reference
state where all reference qubits are in the |0⟩ state [12].

FIGURE 2. QAE architecture. A QAE prepares an initial state of qubits in
the |0⟩ state. This is processed through an encoder E(θ) and a decoder
D(θ). The encoder compresses the qubit state into a lower-dimensional
quantum space (latent space), and the unused (trash) qubits are traced
out. The decoder attempts to reconstruct the original quantum state using
both the compressed state and additional (reference) qubits, highlighting
the QAE’s capability to reduce quantum data dimensions while preserving
essential information.

III. RELATED WORK
Fraud detection involves monitoring the behavior of users
to estimate, detect, or avoid undesirable behavior [25],
[26]. To counter credit card fraud effectively, we begin by
shifting our inquiry from the domain of conventional fraud
detection to quantum techniques. In classical computing,
CAE methods are used to detect credit card fraud. A previous
study presented the handling of a highly unbalanced dataset
consisting of only 492 fraud transactions and 284,315
genuine transactions [27]. ACAEwas comparedwith logistic
regression based on various settings with several thresholds
in scenarios involving balanced and unbalanced datasets.
The result verified that the CAE was more compatible with
the unbalanced dataset. Nevertheless, the advent of quantum
computing brings forth quantum machine learning (QML)
which provides a computational advantage over the classical
approach [28], [29]. QML can significantly transform the
paradigm of and approach to classical machine learning
by enabling the discovery of novel algorithms that are
more efficient than their classical equivalents, especially
in fraud detection [30]. For instance, [31] proposed a
fraud detection model based on a kernel-based approach
with an unsupervised learning model (OC-SVM). An OC-
SVM was trained using a subsample dataset to make it
manageable for near-term quantum simulations. The model
required 20 qubits to reach an average precision of 15%.
However, in the current noisy intermediate-scale quantum
(NISQ) era, overall systems are more prone to error at larger
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numbers of qubits [32]. Another quantum credit card fraud
detection model was proposed using quantum graph NNs
(QGNNs) [33]. In this work, the original transaction features
were transformed into graph features through extraction in
each batch and epoch. Afterward, a variational quantum
classifier was used to help classify graph features. The
QGNN model demonstrated a roughly 3% improvement
over classical graph NNs across various metrics. However,
its recall, a model-sensitive metric used to demonstrate the
ability of a model to correctly identify all actual instances
as fraudulent transactions, was lower by 10% compared with
that of the classical model proposed in [27]. By addressing the
challenges of current quantum NN models and capitalizing
on the opportunities in the NISQ era, we introduce a novel
model that outperforms existing ones. As credit card fraud
detection is an anomaly detection problem, we propose
a more effective, resource-efficient model. The developed
model is based on a QAE, where a parameterized quantum
circuit uses only the encoder E(θ ) component, as depicted
in Figure 2, for credit fraud detection. The construction of
the model and an in-depth analysis of its performance are
thoroughly detailed in the following section.

IV. PROPOSED METHOD
In this section, we provide insights into our proposed
hybrid quantum-classical model as QAE-FD. We discuss the
overall architecture of QAE-FD, followed by its three main
procedures, from data preprocessing to threshold assessment.

A. OVERALL ARCHITECTURE
As depicted in Figure 3, we examine the potential of the
QAE algorithm in detecting fraudulent cases from a vast
amount of transaction records. We target a highly imbalanced
dataset to mirror real-world scenarios [34]. In our approach,
the dataset is initially preprocessed to optimize the QML
model performance. After the relevant data are preprocessed
and normalized, we leverage all classical data in the QAE-FD
process for training. In the QAE-FD circuit, the architecture
consists of two primary blocks: angle encoding, where we
adapt classical datasets into a quantum state, followed by
the L layers of the trainable circuit. Each trainable layer
comprises a sequence of Rx ,Ry, and Rz gates applied on
all qubits, followed by a series of Controlled-NOT (CNOT)
gates connecting neighboring qubits. Upon completion of
the final layer, a designated trash qubit is measured on a
computational basis. A loss function of C(θ ) is computed
from the measurement outcome of the trash qubits, reflecting
how well the quantum circuit has compressed the input data.
Alternatively, because one trash qubit is always |0⟩ with
a high probability, the minimization of the loss function
C(θ ) can be described as the compression of the input
from four to three qubits. The trained model is expected to
compress genuine data, not fraud data, efficiently. A threshold
assessment is performed to determine whether the transaction
data whether of high or low loss. The transactions that result

in higher fidelity values are classified as fraudulent, whereas
those with lower fidelity are flagged as potentially genuine
transaction data.

B. DATA PREPROCESSING
As we aim to reflect real-world scenarios, handling a highly
imbalanced dataset is a crucial step in this work. This
process involves finding, filling, and/or removing null values,
standardizing the columns for analysis convenience, and
removing duplicate entries in the dataset; this is achieved
through principal component analysis (PCA) [35]. Next,
we sample the credit card dataset by using a random
under-sampling method which is discussed [36], where D
is a dataset with K instances. Given its simplicity D =

{(xi, yi)}Ki=1 where xi represents the features of the ith

instance and yi represents the class label. Thus, two main
categories are considered where the majority of transactions
are genuine where Ngenuine and Nfraud are the numbers
of instances of genuine and fraudulent transaction data,
respectively. The goal is to reduce Ngenuine to N ′

genuine,
where typically N ′

genuine ≈ Nfraud, to balance the class
distribution. Additionally, N ′

genuine are randomly selected
from the numerous amounts of genuine transactions without
replacement.

C. QUANTUM AUTOENCODER-BASED FRAUD DETECTION
In this section, we describe our hybrid quantum-classical
ansatz circuit, which offers significant advantages for the
QAE. As the loss function is determined by the expected
measurement values of the qubits, a training circuit that uses
only the encoder part is necessary. In this phase, the process
begins with the design of an invertible unitary circuit acting
upon the initial state |0⟩.

1) ANGLE ENCODING WITHIN QUANTUM CIRCUIT
The normalized transaction data are encoded into a quantum
state through angle encoding. In the angle encoding scheme,
a feature vector of length n requires O(n) gates with an n
number of qubits [37]. As shown in Figure 3, we set up
the state by encoding real-value observable |ϕ⟩i as rotation
angles along the x axis of the Bloch sphere which can be
mathematically represented as

|ϕ⟩ =

n⊗
i=1

Rx (xi) |ϕ0⟩ =

n⊗
i=1

(
cos

ϕi

2
|0⟩ − i sin

ϕi

2
|1⟩

)
,

(1)

where Rx = e−iψiσ̂ /2 is the rotation matrix of each qubit.

2) INTEGRATION OF UNITARY GATE AND LOSS
CALCULATION
After the transaction data are encoded into a quantum state,
we design the ansatz circuit by applying multivariational
ansatz layers. Figure 3 depicts the ansatz, which is utilized
as the calibration of transaction dataset exploits on gates
Rx ,Ry,Rz, and CNOT operation while adopting Rx rotation

169674 VOLUME 12, 2024



C. Huot et al.: QAE for Enhanced Fraud Detection in Imbalanced Credit Card Dataset

FIGURE 3. Overall workflow of QAE-FD. The workflow commences with the extraction of features from the highly unbalanced credit card dataset,
which is then encoded into a quantum Hilbert space to prepare for quantum model training. Subsequently, QAE-FD uses the trash qubits to
compute the loss. During training, the parameters of the variational layers are adjusted such that the trash qubits are disentangled from the
remaining qubits and kept at |0⟩ while the training information on the unmeasured qubits is preserved simultaneously. Afterward, fraudulent
transactions are detected by evaluating the fidelity of the quantum state against a preset threshold in the threshold assessment step. Transactions
whose probabilities are greater than or equal to this threshold are classified as genuine, and those with probabilities below the threshold are
considered fraudulent.

for angle encoding, as described in the Section IV-C1.
Following the final layer, a specified number of nt trash qubits
are measured on a computational basis. This procedure is
designed to decouple the trash qubits from the rest of the
system effectively by compressing the original ground state
into a smaller qubit number. Similarly, we aim to bypass this
method as a QAE-based composite quantum system AB as

E(θ ) |ψAB⟩ = |ψA⟩ ⊗ |trash⟩B, (2)

where |ψAB⟩ denotes the composite system AB. As we
concentrate solely on the encoder part, the encoder function
compresses the state |ψ⟩AB of the composite system AB
into |ψA⟩, exclusively involving subsystem A. Concurrently,
it maps subsystem B to a predetermined reference state,
referred to as the trash state. The initial quantum state
|ψAB⟩ is obtained using the angle encoding, as described
in the previous step. Furthermore, for a given input data,
the variational parameters θ of the encoder part are then
optimized in order to rotate the trash qubits as closely as
possible to the target trash state, where we set |trash⟩B =

|0⟩⊗|B|. For a set of the classical transaction data which is
used to be analyzed D = {xi|xi ∈ RN , i = 1, . . .K },
the QAE is trained using the quantum state obtains as

C = {|ψx⟩ | ∀x ∈ D}, where |ψx⟩ is the encoding state using
angle encoding. Hence, the loss function C(θ ) that measures
the reconstruction error is achieved by mean of the training
procedure whose aims to find the optimal parameter θ∗ as

C(θ ) =
1
K

K∑
i=1

|1 − ⟨Zi⟩| (3)

where Zi is the expectation value of the Pauli-Z operator
on the trash qubit corresponding to the ith transaction. The
loss function is faithful, which means that it reaches the
global minimum C(θ∗) = 0 only when ⟨Zi⟩ = 1,∀i =

1, . . . ,K , which is when the trash qubit is always and
perfectly disentangled from the other qubits and mapped to
the target trash state |0⟩.

D. THRESHOLD ASSESSMENT
After the QAE is trained to learn the compressed represen-
tation of the original information, the compressed quantum
state is used as input for classification. Label assignment
is conducted based on a majority vote on multiple shots of
the same quantum circuit: input of the transaction dataset
is set to ‘‘genuine’’ if most measurements give |0⟩ as
an outcome, and ‘‘fraudulent’’ otherwise. Formally, let be
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ρGx = TrF
[
E(θ )(|ψx⟩⟨ψx |)E(θ )†

]
and T be a predefined

threshold. Then, the label is assigned according to the
following decision rule:

ŷi =

{
0, if p0 = Tr(|0⟩ ⟨0|UG

ρxi
U†) ≥ T ,

1, otherwise
(4)

where ρ0 denotes the probability that the measurement yields
|0⟩ as an outcome andU represents for the variational unitary
results from the U (α, γ ). More than that, the loss function
used to classify the transaction is the cross-entropy, which
can be optimized using the classical optimizer in [38].

V. EVALUATION
In this section, we assess our proposed model’s performance.
We start with the preparation of our experimental setup and
then evaluate the performance of our proposed method.

A. EXPERIMENTAL SETUP
We present the experimental setup for evaluation, specifically
the datasets, hyperparameter, model configuration, and
evaluation metrics used to assess our proposed model.

1) DATASET PREPARATION
We use the publicly available credit card transaction dataset
of European cardholders from [34] in our experiment. This
dataset includes 30 features along with the output feature,
which labels transactions as genuine (0) or fraudulent (1).
The original feature labels except ‘‘Time’’ and ‘‘Amount’’
are omitted. The retained labels are named from V1 to
V28 due to privacy concerns, corresponding to the output of
the PCA transformation output. The ‘‘Time’’ feature records
the number of seconds between each transaction and the
dataset’s first transaction. The ‘‘Amount’’ feature represents
the amount of money involved, we visualized the presentation
in Figure 4, which represents the correlation matrix used to
show the strength of interaction and influence between the
features. A positive correlation indicates that an increase in
one feature’s value leads to an increase in another feature’s
value, while a negative correlation indicates the opposite.
No correlation suggests the features are independent of each
other. This process is implemented alongside random under-
sampling using the Python library called Scikit-learn and
Imbalanced-learn [39], [40].

2) HYPERPARAMETER AND MODEL CONFIGURATION
The quantum circuit configuration for the QAE-FD model
consists of a variational quantum circuit designed to compress
input data into a lower-dimensional quantum state. The
circuit employs four qubits, with a variational depth of four
layers, each comprising parameterized single-qubit rotation
gates Rx ,Ry, and Rz followed by two-qubit Controlled-NOT
(CNOT) gates for entanglement. Threshold values, set empir-
ically at 0.5, 0.6, and 0.7, are used for anomaly detection,
where each threshold reflects varying levels of sensitivity in
distinguishing between genuine and fraudulent transactions.

These thresholds were chosen through validation experi-
ments, balancing false positives and false negatives while
maximizing detection accuracy. The circuit configuration
ensures efficient data compression and anomaly detection by
leveraging quantum principles.

Table 1 shows the hyperparameter configuration used to
optimize the QAE for accurate, efficient fraud detection.
Setting the number of epochs to 50, the batch size to 16,
and the learning rate to 0.001 ensures thorough, balanced
training. The Adam optimizer helps in dealing with the
complexities of transaction data while using 4 ansatz layers
with 4 qubits to exploit quantum advantages for better pattern
recognition. There are three threshold parameters that fine-
tune the model’s sensitivity to fraud detection, and the
Pennylane framework [41] facilitates the seamless integration
of quantum and classical machine learning techniques.

TABLE 1. Hyperparameter and model configuration. The table lists the
critical values for various hyperparameters which include the number of
epochs, batch size, learning rate, optimizer, number of ansatz layers,
thresholds, number of qubits, and the framework that is employed for
architecture implementation.

3) EVALUATION METRIC
To demonstrate the effectiveness of our proposed method,
we present the evaluation metric needed to evaluate our
method in quantum machine learning.

a: CONFUSION MATRIX
It is used to describe the performance of the proposed model
for selecting a dataset and is in the form of four different sets
of expected real values, where the confusion matrix provides
the number of transactions per set.

• True Positive (TP): denotes as the number of fraudulent
transactions that the model correctly identified as
fraudulent transactions.

• False Positive (FP): denotes as the number of genuine
transactions that the model incorrectly identified as
fraudulent transactions.

• False Negative (FN): denotes as the number of fraudu-
lent transactions that the model incorrectly identified as
genuine transactions.

• True Negative (TN): denotes as the number of genuine
transactions that the model correctly identified as
genuine transactions.

b: OTHER CRITICAL METRICS
These are standard metrics for unbalanced datasets.
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FIGURE 4. Correlation matrix of the credit card dataset [34]. This dataset encompasses encrypted features V 1 through V 28 with Time and Amount. The
correlation matrix is utilized to analyze the relationship between each feature. A positive correlation indicates that an increase in one feature’s value
corresponds to an increase in another feature’s value, whereas a negative correlation suggests the opposite. When there is no correlation, it means the
features are independent of each other.

Precision is the ratio of fraudulent transactions (TP) to
the total predicted fraudulent transactions (TP and FP).
It indicates the accuracy of fraud predictions among those
labeled as fraudulent.

Precision =
TP

TP+ FP
(5)

Recall (sensitivity) is the ratio of fraudulent transactions
(TP) to all actual fraudulent transactions (TP and FN).
It measures the model’s ability to identify all instances of
fraud, capturing the effectiveness of the model in detecting
frauds that actually occurred.

Recall =
TP

TP+ FN
(6)

Accuracy is the ratio of correctly predicted fraudulent and
genuine transactions to the total transactions. It measures the

overall correctness of the model.

Accuracy =
TN + TP

TN + TP+ FN + FP
(7)

F1-score is the harmonic mean of Precision and Recall.
It provides a single metric that balances both the concerns
of false positives and false negatives. It is particularly useful
when the class distribution is imbalanced.

F1-score = 2 ×
Precision × Recall
Precision + Recall

(8)

Specificity evaluates how well a classification model is at
identifying negative examples. It is particularly important in
scenarios where the cost of FP is high.

Specificity =
TN

TN + FP
(9)
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G-mean is a metric that balances recall and specificity. It is
particularly useful when you want to assess a model’s ability
to perform well across both classes (positive and negative) in
datasets where there might be a class imbalance.

G-mean =
√
Sensitivity × Specificity (10)

AUC is the area under the receiver operating characteristic
curve. It is a single scalar value that measures the overall
performance of a model across all threshold values. The
AUC helps quantify how well a model distinguishes between
classes (e.g., fraudulent versus genuine).

B. MODEL PERFORMANCE
In quantum computing, we illustrate both noise-free and
noisy environments with various performance matrices that
are crucial for evaluating the effectiveness of our algorithm
and model.

1) NOISE-FREE ENVIRONMENT
To present the model performance, we first illustrate a noise-
free environment on the simulator with no noise from the
confusion matrix and other critical matrices.

• Confusion matrix: Confusion matrices are essential for
evaluating the performance of our proposed model, par-
ticularly in classification tasks, such as distinguishing
between genuine and fraudulent transactions. Table 2
provides a detailed breakdown of the performance
metrics of our model by displaying the counts of TN,
FP, FN, and TP at three different threshold levels
(T = 0.5, T = 0.6, and T = 0.7). At T = 0.5,
the model correctly identified 55,953 transactions as
genuine (TN) but misclassified 911 as fraudulent (FP).
It also successfully detected 91 instances of fraudulent
cases (TP) but missed 7 fraudulent transactions (FN).
When the threshold was increased to T = 0.6, there was a
notable improvement in identifying genuine transactions
where the TN count increased to 56,430, and the FP
count decreased significantly to 434. However, this
adjustment also led to a slight increase in missed fraud
cases, with the FN count rising to 13, and the TP
count decreased in correctly identified fraud cases to
85. At T = 0.7, the TN increases to 56,701 due to
the reduction in FP count to 163. Interestingly, this
higher threshold setting also resulted in a marginal
decrease in missed fraud cases, with FN dropping to
10, and a slight increase in accurate fraud detection,
with TP rising to 88. This progression illustrates a
trade-off between detecting fraud more accurately and
increasing the chance of missing fraudulent transactions
(higher FN). Each threshold adjustment shows a balance
between minimizing false alarms and capturing true
fraudulent cases. This accurate measurement is crucial
in quantum computing, where the inherent advantages of
quantum algorithms such as faster processing compared
to classical algorithms can be leveraged to significantly

enhance the detection mechanisms in scenarios such as
real-time financial fraud detection.

TABLE 2. Confusion matrix on a noise-free environment on the different
threshold number. The table demonstrates the obtained results including
TN, FN, FP, and TP respectively from various threshold T ranging from
0.5 to 0.7.

• Other critical metrics: Table 3 provides a detailed
assessment of various performance metrics for the fraud
detection model in the noise-free quantum computing
environment across the three thresholds (T = 0.5, T =
0.6, and T = 0.7). These metrics are precision, recall,
accuracy, F1-score, specificity, G-mean, and AUC.
At the lowest threshold of T = 0.5, the model achieves
high recall (0.928), indicating effective identification of
fraudulent transactions, but has low precision (0.090),
resulting in a significant number of FPs. The F1-score at
this threshold is 0.170, reflecting the imbalance between
precision and recall. As the threshold increases to T =
0.6, both precision and recall improve slightly, leading
to a better F1-score of 0.275. The highest threshold,
T = 0.7, shows a marked improvement in precision
(0.379) and a robust recall (0.897), yielding the highest
F1-score of 0.533. This indicates a balanced trade-off
between detecting fraud and minimizing false alarms.
Specificity is high across all thresholds, showing that
the model proficiently identifies genuine transactions.
Along with accuracy is performing better in every
threshold which indicates the correctness of the overall
model. The G-mean and AUC metrics illustrate the
model’s overall effectiveness and its capability to
distinguish between fraudulent and genuine transactions
at different operational thresholds.

2) NOISY ENVIRONMENT
To study the actual performance of the model, we experiment
using a noisy environment of the 27-qubit fake backend
FakeCairo (IBM) with the same confusion matrix and other
critical metrics.

• Confusion matrix: The confusion matrix in Table 4
offers insights into the model’s performance in dis-
tinguishing between genuine and fraudulent cases at
the threshold setting of 0.7 in the noisy environ-
ment. The matrix showcases the true negatives (TN =
56,783) and false positives (FP = 81) for genuine
transactions, alongside the true positives (TP = 75) and
false negatives (FN = 23) for fraudulent transactions.
These results highlight the model’s high accuracy in
correctly identifying genuine cases, as evidenced by
the substantial number of TNs. However, the presence
of FPs (instances where genuine cases are incorrectly
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TABLE 3. Other critical metrics on the noise-free environment at different threshold levels. The table depicts the various performance metrics which
include precision, recall, accuracy, F1-score, specificity, G-mean, and AUC respectively from various threshold T ranging from 0.5 to 0.7.

flagged as fraudulent) is a common challenge in noisy
environments where data imperfections can lead to
misclassifications. Nonetheless, the relatively low num-
ber of FNs demonstrates the model’s effectiveness in
detecting actual fraudulent activities, though the number
of TPs suggests it still has room for improvement in
sensitivity. Overall, the confusion matrix underscores
the model’s robustness in handling noise, with a strong
emphasis on minimizing FNs to ensure that true fraud
cases are not overlooked, and reducing FPs to maintain
precision.

TABLE 4. Confusion matrix on noisy environment. The table presents the
obtained result from model training under the error-prone noisy
environment by detailing TN, FN, FP, and TP at the most sensitive
threshold level T = 0.7.

• Other critical metrics: The performance of the
proposed QAE-FD should be evaluated using other
critical metrics in a noisy environment to understand
its robustness and efficacy. Table 5 demonstrates the
performance of our proposed model at the threshold
value of 0.7. The precision of 0.480, while lower
than the recall, reflects the model’s ability to correctly
identify fraud cases out of all cases flagged as fraud.
The recall rate of 0.765 suggests that our QAE is
effective at identifying a significant portion of actual
fraud cases, which is crucial in minimizing undetected
fraudulent activities. The model achieves an impressive
accuracy of 99%, indicating its high capability to
classify both fraudulent and genuine cases correctly. Its
F1-score of 0.590 suggests a balanced measure of the
model’s precision and recall, emphasizing its overall
performance in handling noisy data. Its specificity is
0.881, confirming its strength in correctly identifying
genuine transactions. The G-mean, which is a geometric
mean of recall and specificity and provides an overall
measure of the model’s performance across both classes,
is 0.874. Lastly, the AUC is 0.881, illustrating the
strong discriminative ability of our model to distinguish
between different classes. The high values of recall,
F1-score, and other metrics highlight the model’s effec-
tiveness in ensuring that fraudulent activities are not
overlooked, even amidst noise and data imperfections.

C. MODEL COMPARISON
Table 6 highlights the superior performance of our proposed
QAE-FD compared with a CAE [27], Quantum One-Class

Support Vector Machine (QO-SVM) [31], and Quantum
Graph Neural Network (QGNN) [33], highlighting its
enhanced capabilities across various metrics.

In the context of fraud detection, the QAE-FD model
significantly outperforms the CAE. Although the CAE has
a high recall of 0.917, its precision is only 0.090, indicating
a large number of FPs; thus, it is less reliable in practical
applications. By contrast, QAE-FD maintains a much better
balance, with a precision of 0.379 and a superior recall
of 0.897; therefore, it not only captures most fraudulent
transactions but also maintains a lower rate of false alarms.
Additionally, QAE-FD’s accuracy of 0.990 far surpasses
CAE’s 0.800, and its AUC (a metric unavailable for the CAE)
of 0.947 indicates its robust ability to discriminate between
fraudulent and genuine transactions.

Comparing QAE-FD with QO-SVM in fraud detection
reveals the strengths of the proposed model. Although QO-
SVM achieves a commendable precision of 0.700, it lacks
available data for recall and accuracy, limiting our assessment
of its effectiveness. On the contrary, QAE-FD not only
provides all necessary metrics but also excels in recall (0.897)
and accuracy (0.990), highlighting its reliability and robust-
ness in fraud detection. QAE-FD’s AUC of 0.947 further
underscores its superior classification capabilities compared
with QO-SVM (unreported AUC). Additionally, QAE-FD’s
efficiency is evident; it requires only 4 qubits, showcasing
better quantum resource management than QO-SVM, which
needs 20 qubits.

Compared with the QGNN, QAE-FD again demonstrates
superiority in fraud detection. Although the QGNN shows
an impressive precision of 0.945, its recall (0.795) is lower
than that of QAE-FD. Thus, QAE-FD is more effective
in identifying TPs. Furthermore, QAE-FD’s accuracy of
0.990 surpasses QGNN’s 0.920, and its AUC of 0.947 is
considerably higher than QGNN’s unreported AUC, affirm-
ing its enhanced ability to differentiate between fraudulent
and genuine transactions accurately. Requiring only 4 qubits
compared with the QGNN’s 6, QAE-FD also highlights its
efficiency in using quantum resources.

Overall, the proposed QAE-FD model stands out as
the most effective and efficient model for fraud detection
compared with the CAE, QO-SVM, and QGNN. It not only
achieves higher accuracy and recall but also uses quantum
resources more efficiently than the other models. Hence, it is
a highly effective and efficient solution to fraud detection in
noisy quantum computing environments.

VI. DISCUSSION AND LIMITATION
Our proposed QAE-FD performs robustly across various
metrics; however, it does have limitations, particularly in
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TABLE 5. Other critical metrics on the noisy environment. This table exhibits the model’s performance under simulated noisy conditions, including
precision, recall, accuracy, F1-score, specificity, G-mean, and AUC. The results are shown for the most sensitive scenario with a threshold of T = 0.7.

TABLE 6. Model comparison between classical, existing quantum, and our proposed methods. This table provides a detailed comparison between our
proposed model and existing classical and quantum models. Our model, QAE-FD, with an overall AUC performance score of 0.947, achieves superior
precision and accuracy compared to classical models by effectively reducing the false alarm rate in fraud detection. Additionally, it demonstrates
enhanced performance in a critical metric, recall. This improvement signifies that our model can accurately classify the actual number of fraud cases in a
highly imbalanced dataset while efficiently utilizing only 4 qubits.

TABLE 7. Ablation study on the effect of circuit layer (L) in QAE-FD model. Results indicate an optimal balance between fraud detection effectiveness and
false alarm minimization is achieved with L = 3 to L = 5 layers. Increasing layers beyond this range do not correspond to linear improvements, potentially
leading to diminishing returns and performance degradation due to overfitting and difficulties in generalizing across imbalanced datasets.

terms of sensitivity. Although our model achieves commend-
able accuracy and specificity, its sensitivity, as reflected in
its precision and recall values, reveals certain constraints
when handling noisy data and complex fraud scenarios.
These limitations necessitate a deeper exploration of how
adjustments in the quantum circuit’s complexity and number
of layers will affect the overall model performance.

Table 7 presents a nuanced exploration of how changes
in the number of layers (L) in the quantum circuit affect
the performance of QAE-FD. Specifically, the table shows
how different model configurations (and thus levels of
complexity) affect precision, recall, accuracy, F1-score,
specificity, G-mean, and AUC, leading to a discussion on the
trade-offs and limitations associated with each configuration.

The model with the simplest configuration L = 1 cannot
effectively detect fraudulent transactions, as evidenced by
precision and recall values of 0 despite the 0.990 accuracy.
This indicates that the model is overly conservative in
this configuration, primarily classifying most transactions as
genuine, hence the specificity of 1.000. This configuration
results in a high number of FNs; fraudulent activities are not
detected, as reflected by the very low F1-score andAUCvalue
of 0.500.
L = 2 significantly enhances the model’s ability to

detect fraud, with its recall improving drastically to 0.816,
although precision remains moderate at 0.500. This layer
configuration begins to address the sensitivity limitations
observed in the single-layer model, balancing the detection
of fraudulent transactions and a manageable rate of FPs. Its
accuracy remains high (0.990), its specificity slightly declines

but remains robust, and its AUC improves to 0.907, indicating
better model balance.

The L = 3 configuration optimizes the trade-off
between precision and recall, with values of 0.379 and
0.897, respectively. This layer setup not only maintains high
accuracy (0.990) but also achieves a good F1-score (0.533).
The high G-mean and AUC of 0.946 and 0.947 further show
the model’s effective discrimination between fraudulent and
genuine transactions. This configuration is the most balanced
in terms of overall model performance.

The L = 4 and L = 5 configurations show continuous
adjustments in the balance between model sensitivity and
specificity. Both configurations exhibit slight variations in
precision and recall, with L = 4 slightly outperforming
L = 5 in G-mean and AUC. These configurations indicate
that further increases in model complexity may begin to yield
diminishing returns (i.e., declining model efficiency in credit
card fraud detection).

Layer L = 6 demonstrates a potential onset of over-
fitting or unnecessary complexity, as evidenced by a slight
regression in the performance metrics, such as precision,
F1-score, and AUC. Thus, adding layers beyond this point
may not necessarily enhance the model’s capability and
can compromise its ability to generalize effectively across
different scenarios.

This detailed evaluation reveals that although QAE-FD is
effective, the design of the quantum circuit for fraud detection
has a critical limitation: increasing the number of layers does
not linearly improve model performance across all metrics.
Instead, it suggests an optimal midpoint (approximately
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L = 3 to L = 5), where the model achieves the best
balance between detecting fraud andminimizing false alarms.
Beyond this point, additional layers may lead to diminishing
returns or even degrade performance, illustrating the complex
interplay between circuit depth, model overfitting, and
generalization ability across noisy data. This analysis is
crucial for guiding architectural decisions in QML models,
particularly in balancing complexity with the real-world
practical efficacy.

VII. CONCLUSION
This study substantiates the considerable potential of QAEs
in augmenting the detection of fraudulent activities within
imbalanced credit card transaction datasets. The innovative
application of quantum computing principles in our QAE-
FD model not only markedly enhances the detection rates
of fraudulent transactions but also significantly expedites
analytical processing. This dual improvement addresses
pivotal challenges inherent in the anomaly detection systems
traditionally used in financial sectors. The core of our
approach is the use of quantum mechanical properties
to compress high-dimensional transaction data into lower-
dimensional quantum states, enhancing the system’s ability to
detect subtle anomalies indicative of fraud. The methodology
has a bifurcated operational structure: transforming classical
transaction data into quantum states and then applying
quantum classification techniques. This novel strategy estab-
lishes new benchmarks for accuracy and computational
efficiency in fraud detection mechanisms. Empirical val-
idation performed on a real-world dataset corroborates
the enhanced performance of the QAE-FD model over
conventional machine learning models, thereby highlighting
the operational feasibility of quantum approaches in real-
time settings. Our findings prompt the expanded exploration
and integration of quantum technologies in financial security
frameworks, suggesting the significant potential of these
technologies to advance frontline defenses against credit card
fraud. Furthermore, this study contributes to both theoretical
and practical enhancements in the QML field. It paves
the way for future scholarly research on the integration of
quantum computing technologies across various aspects of
anomaly detection and cybersecurity using different simu-
lators and real quantum computers, such as Qiskit (IBM),
Cirq (Google), and Forest (Rigetti). Given the scalability of
the proposed model, it shows substantial potential for real-
world application beyond the financial sector, potentially
revolutionizing approaches to data anomaly detection in an
increasingly digitized global landscape. Future research will
prioritize a systematic evaluation of the QAE-FD model in
comparison with classical machine learning algorithms to
establish a comprehensive performance benchmark such as
Logistic Regression, Random Forest, and Support Vector
Machines. A comparative study of computational resource
requirements will yield critical insights into the model’s oper-
ational efficiency like execution time, memory consumption,
and hardware dependencies. Furthermore, the simulation

of a realistic quantum noise model will be undertaken to
rigorously assess the model’s robustness. Enhancing noise
resilience through advanced error mitigation techniques,
coupled with the development of interpretability frameworks
to clarify latent space representations and circuit dynamics,
will further strengthen the model’s practical utility in real-
world fraud detection scenarios.

CODE AVAILABILITY
The code that supports the findings of this study is openly
available in the Github repository, QAE-FD.
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