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Abstract

In this thesis, applications of Holography in the context of Condensed
Matter Physics and in particular hydrodynamics, will be studied. Holog-
raphy or gauge/gravity duality has been an enormously useful tool in
studying strongly-coupled Field Theories with particular success in their
low-frequency and large-wavelength fluctuation regime, i.e the hydrody-
namical regime. Here, following a phenomenological approach, gravita-
tional systems, simple enough to be properly examined, will be studied in
order to derive as much information as possible about their dual theories,
given that their exact form is not accessible in this way. After a review
of the most important elements of standard Condensed Matter Theory,
the gauge/gravity duality itself will be presented, along with some of its
most important achievements. Having established the framework of this
work, the main results of this thesis will be presented. Initially the sound
channel of the theory dual to the anti-de Sitter Reissner-Nordstrém black
hole space-time will be studied, at finite temperature and finite chemical
potential. Hydrodynamical properties of the boundary theory will be of
major interest. Following that, focus will be shifted towards another grav-
itational system, namely the Electron Star. There, the shear channel of
the dual theory will be mainly examined. The goal will be, as before, to
extract information about the hydrodynamical properties of the boundary

theory.
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Chapter 1

Introduction

Over the past fifteen years an amazing development coming from String Theory, has
created a novel and fast growing sector in the field of Theoretical Physics. This
development is Holography or what was originally named AdS/CFEFT correspondence
or later gauge/gravity duality |[5H8]. Holography has had a twofold effect - on the
one hand it has significantly revitalized String Theory releasing it from the singular
pursuit of a Theory of Everything, posing new problems for investigation and pointing
at new directions to be explored. On the other hand it has proven to be a stupendously
useful computational tool (which also provides unique insights) that can be applied to
a vast variety of problems seemingly unrelated to String Theory. One may call it a tool
instead of an actual physical theory, because it maps physically interesting systems
to artificial (though not necessarily) configurations that fall under the purview of
String Theory, where they can be solved or at the very least be addressed in an
unprecedented and almost always useful way. Though the specifics of Holography
will be developed in a following chapter, it should be noted from this point that this
aspect of Holography, i.e. the practical one, that is going to be explored in this thesis.

Temporarily postponing any technical description, Holography in its very essence
provides a map (and the tools to implement it) between strongly interacting theories
of some kind and weakly coupled ones of a completely different kind. In particular
Quantum Field Theories (QFTs) at strong coupling are mapped to weakly coupled
gravitational theories in higher dimensions. It is hard to over-emphasize the impor-
tance of this statement, given that strongly coupled problems have forever plagued
Theoretical Physics, limiting one to perturbative descriptions of most phenomena.
Holography offers a path around this restriction, since for each intractable problem
it substitutes a solvable one or at least one that can be systematically studied. This
feature was immediately appreciated and from the very early stages Holographic ap-

plications were sought in almost every strongly coupled system of interest. The most



noticeable examples of application fields include Heavy Ion Physics (and in particular
the study of Quark Gluon Plasma) [9] and Condensed Matter Physics |[10]. The latter
will be the most pertinent to this thesis.

In Condensed Matter Physics one studies systems consisting of large number of
components, or said in a better way, degrees of freedom. Systems like that include
gases, liquids, metals, plasmas as well as more exotic configurations. Despite the long
and successful history of this field there are still a lot of outstanding problems, e.g.
high-temperature superconductivity, strange metals, non-Fermi liquids and others.
The difficulties are primarily focused on developing a deeper understanding of the
mechanisms that lead to the emergence of these phenomena. These difficulties are
attributed, to a great extent, to the strongly-coupled nature of those systems, because
of which standard perturbation theory breaks down and one is left without reliable,
systematic tools to use. The break-through brought about by Holography is what one
could colloquially call “transmutation” of degrees of freedom. That is the realization
that the fundamental degrees of freedom (dof), appropriate to describe a system,
and consequently the appropriate perturbative scheme, in its weak regime are not
necessarily suitable to describe the same system in its strongly-coupled phase. In fact
in going from the former to the latter the dof can change so dramatically that the
resulting system may be difficult to identify with or even relate to the original.

Even after more than a decade of intensive study the single most examined and
better understood system is that of the A" = 4 Super Yang-Mills (SYM) non-Abelian
Quantum Field Theory, with SU(N,.) N. — oo gauge group at four dimensions (d =
4). This system is dual to a String Theory (Type-I1IB) in a particular background,
namely AdSs x S°. It should be noted at this point that Holography takes its name
from the fact that the dimensionality of the dual theories differ by one, and in fact
one is defined on the boundary of the other, hence the holographic interpretation.
The innovative part is that difficult, i.e. strongly-coupled, problems in the Field
Theory side can be translated into weakly-coupled ones on the String Theory (actually
gravity) side where the perturbative arsenal is still available, solved and then the
solution can be translated back, or at the very least some useful intuition can be
gained.

However, what can a highly super-symmetric, non-Abelian theory at N. — oo tell
one about regular Condensed Matter? The first and easy answer is that even though
N = 4 SYM is not a realistic theory, it provides a very well-controlled toy model,
in the strongly-coupled regime, that can be used to extract new insights into how to

address such systems. The most interesting answer though came as people started



understanding better the nature and mechanics of the duality, realizing that one
can engineer Holographic duals, i.e. stringy/gravitational, systems (backgrounds),
suitable for the Condensed Matter problem in question, overcoming the limitation
posed by excessive and often exotic symmetries. Thus began what is commonly known
as “bottom-up” approaches to Holography. That is one first decides the essential
ingredients of the boundary theory and then “tailors” the (minimal) appropriate
gravitational dual, respecting of course the Holographic principles, which is then used
to compute interesting and previously inaccessible properties of the boundary theory.
Examples of this method will be examined in this thesis. This approach has become
so wide-spread that it nowadays goes by its own name, that is AdS-CMT [10H1§].

Besides being a computational tool, Holography has provided some amazing in-
sights too. One of the most interesting ones is the emergence of universalities in
strongly-coupled systems. By allowing the treatment of system in that regime, in-
accessible by conventional perturbative methods, it has shown that quite distinct
weakly-coupled theories flow, in the RGE] sense, to similar duals on the other end of
the coupling scale. As an illustration it is worth mentioning that most Holographic
models have a common gravitational sector, the Einstein-Hilbert action, that seems to
provide a basic set of characteristics for all these strongly (in fact infinitely) coupled
theories. The emergence of common behaviour is more apparent in a regime where
Holography is particularly powerful - that is hydrodynamics or in other words the
regime of low-frequency and large-wavelength fluctuations. Hydrodynamics emerge
for almost every theory as a low-energy effective theory. Through Holography they
are mapped, to the low-frequency regime of gravity. Exactly because the Holographic
dual is essentially horizon dynamics within classical gravity, for which quite a lot is
known, Holography has had such a remarkable success in hydrodynamics [19].

In particular, the thermodynamic and near-equilibrium properties of such strongly-
coupled field theories can be obtained relatively easily from their dual gravitational
descriptions. Initial studies of these properties concentrated on field theories at non-
zero temperature T’ (most notably N' = 4 SU(N..) super-symmetric Yang-Mills theory
with N. — 00) and were motivated by experimentally-observed properties of ther-
mal field theories [9]. For perturbations whose frequency w and momentum ¢ are
much less than T, these field theories were found to obey the laws of hydrodynamics
and their transport coefficients, such as shear viscosity, charge diffusion constant etc.
were calculated (see [20-22] and subsequent work). More recently, there has been

a lot of interest in studying field theories at zero temperature but with a non-zero

'Renormalization Group.



density of a conserved global U(1) charge - these are analogues of strongly-coupled
condensed matter systems with a non-zero density of particles (see [10,|18}23}24] for
some introductions to the field).

This thesis will be structured as follows. In the chapter following this introduction,
aspects of Condensed Matter Physics will be reviewed. This will familiarize one with
the field into which Holographic applications will be later attempted. This review will
also provide the framework into which any Holographic results concerning Condensed
Matter systems should belong, as well as a baseline against which the novelty and
sensibility of any Holographic result will be measured.

In the next chapter more detailed aspects of Holography itself will be presented.
The technical details that have been avoided in this introduction, to the detriment of
specificity, will be provided. The String Theory/gravity framework in which Holog-
raphy “lives” will also be addressed. Towards the end of this section some celebrated
Holographic results, particularly of hydrodynamic/CM nature, will be reviewed, in
order to demonstrate the power of the Duality.

In the fourth chapter the AdS,— RN system will be studied. This system consists,
on the gravity side, of a Reissner-Nordstrom black hole in a four-dimensional anti-de
Sitter space-time. The properties of the dual theory, i.e. a 2 4+ 1-dimensional theory,
will be examined. Even though the exact nature of the theory on the boundary is not
known, as this system does not come directly from some UV-complete configuration,
very interesting information can still be extracted. In particular the long-lived modes
of the charge density and energy density correlators will be studied, in the strongly-
coupled, finite density and temperature phase of the theory dual to this gravitational
system.

In the fifth chapter the properties of a different gravitational system, namely the
Electron Star, will be investigated. This system consists of a four-dimensional RN-
AdS background, as before, in which fermions are introduced. More specifically the
fermions are assumed to populate the available states to form a star-like object, i.e.
a system of charged fermions at gravitational equilibrium, that has not however gone
through collapse. In other words the fermionic matter does not introduce a horizon.
For simplicity the fermiong’] are assumed to behave like an ideal fermionic liquid.
The total system has therefore two kinds of charge available - that which comes from
behind the horizon and that coming directly from the bulk. The relation between

these two will be of particular interest. The shear channel of this system will be

2In this context the terms fermions and electrons will be used interchangeably.



primarily examined while only some preliminary results on the longitudinal one will
be presented.
Finally this thesis will be concluded by a summary of the most important findings

and some discussion regarding the prospects of this work.



Chapter 2

Elements of Condensed Matter
Physics

In this chapter, which is of auxiliary nature, a set of fundamental ideas and results
from Condensed Matter Theory, will be reviewed. The purpose of this presentation
is twofold. Firstly it will provide context for some of the most important results
of Holography, which are related to strongly coupled hydrodynamics. Secondly it
will guide one’s physical intuition through the unfamiliar regime of strongly coupled
dynamics and provide the contrast, given that it typically refers to weakly interacting
systems, necessary to appreciate the novelty of Holographic calculations.

The structure of this chapter is the following. In the first section the standard
approach to both ideal and viscous hydrodynamics, will be presented. Following
that the relativistic approach to hydrodynamics will be reviewed, which is the most
relevant in the Holographic context. Next quantum aspects of Hydrodynamics will
be addressed, which formally fall into the purview of finite-temperature and finite-
density Field Theory. Finally the most characteristic example of a quantum liquid in
the context of Condensed Matter Physics (Fermi liquid), will be examined in some
detail. This example will prove to be particularly useful as it will act as the yardstick

against which the Holographic results, can be compared.

2.1 Hydrodynamics

One might wonder why Hydrodynamics are relevant to our discussion. On the face
of it, they seem to describe rather trivial and exhausted systems. However if viewed
as the dynamics of long-wavelength fluctuations of any given system they acquire a
highly universal and modern character [25,26]. Essentially any theory describing a
physical system (i.e. a Quantum Field Theory) at the limit of long wavelengths and



small frequencies admits a hydrodynamic description. This universality is particu-
larly useful in the case of Holography as in many cases the exact microscopic theory
describing the relevant system is not known. Nonetheless the hydrodynamic limit
of such a theory can still be studied and important properties can be revealed. A
spectacular example of this phenomenon is the case of Heavy Ion Collisions and stud-
ies of Quark Gluon Plasma [27]. In that system the specific microscopic dynamics
are extremely difficult to track, given that QCD is still in its strongly-coupled phase.
However one can still study the hydrodynamical properties of the system, which turn

out to be the primary route of access to that regime.

Perfect fluids

Let us start this presentation with the simplest system - that of an ideal fluid. The
current presentation follows very closely the standard textbook [28]. An ideal fluid
is a classical multi-particle system treated as a continuum with the following scale
restriction - the unit volume of this fluid, even if considered infinitesimal around a
point, has to be much larger than the characteristic inter-particle distances or in
other words even infinitesimal fluid volumes must contain a very large number of
constituent particles. Additionally an ideal fluid is characterized by the absence of
heat exchange and dissipation, or equivalently there is no thermal conductivity or
viscosity. Consequently the motion of such fluid is adiabatic, i.e. % = 0, where s is
the entropy density. In order to describe the dynamics of ideal fluids one uses the
velocity v(t, ), energy density (p(t, 7)) and pressure p(¢, r) fields, which are functions
of space-time, with the aforementioned caveat regarding scales. The dynamics are

governed by the continuity and Euler equations. The continuity equation
op+ V(pv) =0 (2.1)

is just a representation of the conservation of matter (i.e the rate of change of the
amount of fluid within some volume is equal to the amount crossing the boundary of

said volume). Defining the flux vector j := pwv this equation can be written as
Op+pVo+v-Vp=0 (2.2)

Similarly by considering the force that is exerted on a unit volume due to pressure,
— ¢$pdS = — [dV'Vp (where dS is the infinitesimal surface bounding the infinitesi-

mal volume dV'), and essentially writing Newton’s law one gets Euler’s equation

dv
- .V 2.3
pdt p (2.3)

7



Taking into account that the time derivative is a total one, i.e. it contains the implicit

dependence through the fluid’s flow, one arrives at the familiar form
1
v+ (v-V)v=—-Vp (2.4)
P

Specifying v, p, p along with the appropriate boundary conditions, fully determines
the system.

Given that such fluids are adiabatic one can make use of the constancy of entropy
in order to re-write Euler’s equation ([2.4) with respect to macroscopic quantities.
Starting from the definition of enthalpy dw = T'ds+Vdp (where T is the temperature
and V = 1/p is the specific volume) which for adiabatic systems becomes dw = Vdp,
one gets %Vp = Vw. Equation therefore becomes

v+ (v-V)v=—-Vuw (2.5)
By applying some trivial vector calculus one can recast this in the following form
1
ﬁtv—vxva:—V(w+§v2):>at(va):V><(vax'v) (2.6)

This particular form is special because it only involves the velocity field.
In anticipation of the viscous fluids results, as well as the Holographic results,
let us define the quantities of energy and momentum flux. Starting from the energy

contained in a unit volume % pv? + pe one has

1 1

8t(§pv2) = —§U2V(,01)) —v-Vp—pv-(v-V)v (2.7)

for the first term. Using, as before, thermodynamic quantities, this equations becomes
L, L, L,

8t(§pv )= —5Y V(pv) — pv - V(év +w)+pTv-Vs (2.8)

Moving now to the second term of the energy
Oi(pe) = wop + pTOs = —wV (pv) — pTv - Vs (2.9)

where the first law of thermodynamics de = T'ds —pdV = T'ds + (7)dp has been used.
By adding the two terms up and integrating over the relevant volume one immediately

sees that

8t/dV(%pv2 + pe) = —/alVV(pv(%v2 +w))

1

= 8t/dV(%,0v2 + pe) = — %pv(giﬂ +w)-dS (2.10)



It therefore becomes obvious that the quantity p'v(%v2 +w) is the energy flux density
vector, i.e. the energy that flows through a surface that bounds a volume in which
the energy changes in time.

One can repeat the same process with respect to the momentum contained in a
unit volume pv
N i 211
with the definition of the symmetric tensor II;; = pd;; + pv;v;, where both the conti-
nuity and Euler’s equations have been used. In order to make the physical

content of this tensor clear, one can integrate over a certain volume

Ai(pvi) =

where dS is the vector perpendicular to the surface surrounding the integration vol-
ume. It is now obvious that II;; represents the ith component of momentum flowing
through an infinitesimal surface element oriented along the jth direction (encoded
in the normal vector). In the next section it will be seen how this is related to the

stress-energy tensor, which is central in interpreting the Holographic results.

Viscous fluids

Departing from the perfect fluid, towards a more realistic system, viscous fluids will
now be examined, by allowing energy dissipation. Dissipation is tightly related to
thermodynamic irreversibility. Formally this can be treated through the study of

Liouville equation for an N—particle system [29)

Oufn =1{H, fn} (2.13)

where fy is the N—particle probability function. For statistical systems N — oo,
hence in order to make the system manageable one would like to reduce the previous
equation down to one for the single-particle probability function, by integrating out

higher-particle contributions
N
= N/Hfi (2.14)
=2

In this way the BBGKY E| hierarchy of equations emerges

L[ OU Bfin
Ocfi = {H,, f; Y .
fi=1{ f}+j§:1: / 5z op, (2.15)

IThe acronym stands for Bogoliubov, Born, Green, Kirkwood and Yuan



where H; is the effective Hamiltonian

H, = ; (;’m + wm) + > Uri—r)) (2.16)

1<j<n

for an overall potential V' and inter-particle interaction potential U. BBGKY is par-
ticularly convenient as an approximation scheme, provided that reliable assumptions
can be made about the magnitude of the i—th-particle function.

In a more intuitive way one can attribute irreversibility and therefore dissipation,
to internal friction (encoded in the viscosity of the fluid) and thermal conduction.
How does one incorporate this into the fluid dynamics description, without changing
the degrees of freedom (d.o.f.), i.e. the velocity, density, pressure etc. fields? Another
element that one cannot change is the continuity equation, since it is just a mani-
festation of the conservation of mass which should not be altered by the existence of
dissipation. Hence Euler’s equation must be modified in such a way that it does
not represent the reversible mechanical interaction of constituent particles. Equipped
with the momentum flux tensor that was previously defined, one can write ({2.4)) as

o1l
Ox;

A (pvi) = (2.17)

and modify II;; so that transfer of energy from high to low velocity regions of the

fluid, is achieved. This can be accomplished by writing
Hij = p(5zj + p?]ﬂ)j — &ij (218)

where ¢;; is the viscous stress tensor which along with pd;; form the stress-energy

tensor 0;; = —pd;; + 0;;. The particular form of the viscous stress tensor is
. Ou;  Ouj 2 _ Ouy Ovy,
= — S5 ) oy 2.19
74 n(@xj+0$i 3 Jaxk)+< T Oy, (2.19)

where 7, ¢ are constants (know as first order transport coefficients, which however still
depend on temperature and pressure), namely the shear and bulk viscosity. The form
of the viscous stress tensor requires some explanation. As mentioned before one would
like ;; to encode transfer of energy from high velocity areas to low velocity ones. It
should therefore depend on spatial derivatives of velocities. Generically ¢;; can be
written as a gradient expansion of velocities and to first order (which is sufficient
for small gradients) it only depends linearly on velocity derivatives. However rigid
rotation of a fluid cannot result in dissipation. It therefore follows that this linear

dependence must not contain the antisymmetric combinations (which correspond to

10



Fluid n(1073kgm=ts™1)

Water 0.891
Ethanol 1.06
Mercury 1.55

Sulphuric acid 27

Table 2.1: Shear viscosity values for various fluids at 7" = 298K [4]

rotations), so that it vanishes when in uniform rotation. Under these conditions
is the most general rank-2 tensor that one can write. Having determined the viscous
stress tensor one has fully determined, to first order in the gradient expansion, the
equations of motion for a viscous fluid.

If one assumes, furthermore, that shear and bulk viscosities remain constant
throughout the fluid, Euler’s equation (2.17)) becomes

p (0w + (v-V)v)=-=Vp+nlv+ ((+ %n)VV v (2.20)

which is the Navier-Stokes equation. Expecting the results from Holography, it is

worth writing down this equation for the case of incompressible fluids, i.e. V -v =0

1
v+ (v-V)v=—-—-Vp+ N (2.21)
p p
In terms of the stress-energy tensor this means that
ov;  0v;
s, i Y 2.22
7 P j+n<@x]+0xl) ( )

Let this section end by presenting a table of typical values for the shear viscosity
for a selection of fluids, as seen in table 2.1l This is particularly interesting since
Holography makes a prediction for a related quantity (namely ?), and it would be

helpful to develop some intuition.

Sound

A highly interesting property of these systems (i.e. compressible fluids) is that they
can support sound-wave propagation. Such waves correspond to fluctuations of pres-
sure / density. In order to study these fluctuations the pressure and density fields are

written as

P = Do+ 0p
p=po+op (2.23)

11



where pg, po are the unperturbed / equilibrium values of pressure and density. The

continuity and Euler’s equations, therefore become

00p + poVo =0

Do + (i> Vip =0 (2.24)
Po

In the previous set of equations the term (v - V)v from has been dismissed
because of the small-velocity approximation and only fist-order terms have been con-
sistently kept. An extra condition that needs to be satisfied in order for this approx-
imation to be valid is that the velocity of the constituents particles must be much
smaller that the speed of sound (which will henceforth be denoted by ¢),i.e. v < ¢,
which is equivalent to demanding that the density perturbations are much smaller
than the unperturbed value, i.e. dp < po.

Equations can be simplified if one can reliably assume that the process (of

the travelling wave inside the fluid) is adiabatic, as is the case for ideal fluids, because

Op
op = (—) )
dpo P
which makes the first of ([2.24])

0p + po (3) Vo =0 (2.25)

Po

Although the second of equations (2.24)) along with (2.25]) fully describe the (adia-
batic) propagation of waves, they do not look like the regular wave equation. This can
be rectified by introducing the velocity potential ¢ : v = V¢ so that op = —py0;¢.

Hence

0}p— *Np =0 (2.26)

with 2 = <g—’;>s the speed of sound. This is the familiar form of the wave equation
(admitting the expected solutions). The individual equations for v, p, p can be then
derived from ([2.26]).

What happens though if one takes into account phenomena of dissipation, due to
viscosity or thermal conductivity? For this purpose it is necessary to compute the
rate of loss of energy £ = — (g—g) S, where S is the entropy. At this point one can

lift the results from thermal conduction in fluids, from which one knows that

§= /dvi(VT>2+/dvi Oui | Ovy 25 Oui 2+/dV£(Vv)2 (2.27)
N T2 2T alL‘j 8% 3 " 61’2 T ‘

12



from which one gets

Nk 2 1 Oui  dvj 2. Ouvi\ _ / 2
E= T/dV(VT) 2n/dV (axj * B 352]8% ¢ [ avV(Vv)? (2.28)

where £ is the thermal conductivity. For simplicity and without loss of generality one

can choose a particular configuration, namely a wave travelling along the z axis of
the form v, = vy cos(kx — wt),v, = v, = 0. Taking the time average one has

(B) = —%k%gvo ((%n O+ m(é _ c—lp)) (2.29)

where Vj is the volume of the fluid and ¢y, ¢, are the heat capacities under constant
volume and pressure respectively. Furthermore the total energy of the sound wave is
(Ey) = % pvaVy. There are enough ingredients now to compute the damping coefficient

Vg o exp|—yz]

(E) w? [ 4 11 )
_ _ = - = = 2.30
7 2¢(E;)  2pc? <377 TO 4R vy G OM (2:30)
Finally in the presence of damping the wave-vector will become complex and in par-
ticular
w 2
k=— 40w (2.31)
c

Relativistic Hydrodynamics

So far the fluid dynamics treatment presented has been non-relativistic. However
most results coming from Holography are of relativistic nature, since they refer to the
hydrodynamic limit of Quantum Field Theories (QFTs). It is worth noting though
that this is not exclusively the case, as a lot of studies have been focused on various
departures from relativistic dynamics. In this section the most noteworthy elements
of relativistic hydrodynamics will be reviewed [30,31].

The first thing that needs to be reconsidered is the degrees of freedom, with which
the fluid dynamics will be described. This is quite obvious since the 3-velocity, scalar
density and 3-vector pressure, are not well-defined objects in a four-dimensional space-
time. The fields appropriate for relativistic hydrodynamics are the 4-velocity u* and
the energy-momentum tensor 7),,. Another detail to be taken under consideration is
that the mass density p, used so far, is not a good degree of freedom since it cannot
account for the kinetic energy, of the system, that can now become comparable to the
mass. In its place one should use the total energy, which will be denote by e(z#). As

expected limz_,o € = p. It should be noted that although the 4-velocity has apparently

13



four degrees of freedom corresponding to the four components, this is not the case
since there is also a constraint, namely u? = —1 ﬂ

In order to determine the dynamics, one needs first to determine the energy-
momentum tensor form. Starting from the case of ideal fluid{’, one notices that
the energy-momentum tensor has to be built out of €, p, u# and the metric tensor
g*. T,, must also be a symmetric rank - 2 tensor (i.e. have a well-defined Lorentz

transformation). The most general such tensor can be written as

T(yy = € (g™ + puu”) + p (vg" + ouu”) (2.32)

In the fluid’s rest frame T(%(; should reduce to the total energy e. Additionally in

the rest frame T(Ooi) =0,Vi € {1,2,3} and T(ig) = pd i,j € {1,2,3}. Applying these

constraints on the general form of the energy-momentum tensor one gets the following

system of equations

(a+pBet(y+o)p=e
—ae—p=p

which result ina =0, =1,v=—-1,d =1, or

Tigy = eut'n” — p(g"" — u'u”) (2.33)

The form of the energy-momentum tensor suggests the definition of the projection
tensor A* = g — uHu” which projects on the space orthogonal to the fluid velocity
u*. It is obvious that A*u, = A*wu, = 0 and A? = A*’. Using the projection
tensor the energy-momentum tensors can be written as

T(y) = eut'u” — pA* (2.34)

In the absence of external sources, conservation of the energy-momentum tensor reads
8MT(’”6§ =0 (2.35)

which encodes the equations of motion for the fluid dynamics. One can use the
projection tensor to split these equations into directions parallel (i.e. u,,(‘?#T(‘él)’) and
perpendicular (i.e. A7J,T(y) to the fluid velocity. One therefore has

u, 0, T = u"Oue+e(Ou”) +euw,u"dyu” —pu, 0,A" = (e+p)du" +u"0,e = 0 (2.36)

2There is a sign ambiguity in this expression, which depends on the metric signature used.
3When ideal fluids are considered, this will be denoted by a 0 index
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and

A0, Ty = eu AJOu” — A (9yup) + pu AT u” = (e + p)u O u” — A*9,p =0

(2.37)

Introducing, for conciseness, the operators D := ut0, and V7 := A#?9,, one can
rewrite the equations of motion in a compact form

De+ (e +p)o,u* =0 (2.38)

(e+p)Du’ —Vop=0 (2.39)

One can now make a connection to the non-relativistic case by taking the small

velocity limit 2 — 0

D =u"d, = 0 +v-V + 0O (2.40)
Vi=A"9, — 0+ Ov) (2.41)

In other words D and V' reduce to the time and space derivatives, respectively. If one
further demands that the energy is primarily that corresponding to the mass density,
i.e. € >~ p and that p < € (in the appropriate units), one retrieves the non-relativistic
continuity and Euler’s equations.

So far only ideal relativistic fluids have been considered. Introducing dissipation
effects, as is the case when one does not neglect viscosity, the energy-momentum
tensor has to be modified, in the same spirit as in the non-relativistic case

T =Ty 4 T (2.42)

where T(‘Sl)’ is the previously defined energy-momentum tensor for ideal fluids, while

[1*¥ is the viscous stress tensor. The equations of motion get modified to

u,0,T" = De + (e + p)0,u" + u,0,I1" =0 (2.43)
AZ9,T" = (¢ +p)Du — Vp + AZO,II™ = 0 (2.44)

Note now that u,0,I1" = 0, (u,I11") — 11" 0,u,y (where parentheses around indices

imply symmetrization) and 9, = u,D + V,. Putting all this together one gets the
final version of the equations of motion

De + (6 +p)(9#u“ — H“VV(M)UV) =0 (245)

(e+p)Du’ —Vop+ A9, 11" =0 (2.46)
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It is necessary at this point to emphasize that the viscous stress tensor still needs to be
determined. One way of achieving that is to assume local thermodynamic equilibrium
in which case the local version of the Second Law of Thermodynamics is 9,s* > 0,
where s is the entropy 4-current, which in local equilibrium is s# = su*. Using the

basic thermodynamic relations (in the absence of conserved charges)
e+p="Ts
Tds = de
the divergence of the entropy current becomes
0,5" = Ds + sO,u" = %De +- er’%#“” = %HWV(#%) >0 (2.47)

Conventionally one writes [1* = 7 + A#1I, which is a splitting into a traceless part

and the remainder. It is also convenient to define the traceless part of V(,u,)

2
V) =2V () — gAWVUuU (2.48)
The entropy current divergence is hence rewritten as
1 v 1 g
st = ﬁw“ V iy + THVUU >0 (2.49)

This is satisfied if 7# = nV*#u*) and II = (V,u’, with n > 0 and ¢ > 0. In the
non-relativistic limit 1 and ¢ reduce to the shear and bulk viscosity, respectively.

There is an interesting caveat in the presentation so far. That is, the fluids
considered have been uncharged, or more precisely there have been no conserved
charges. This is important because the existence of conserved charges implies the
existence of a charge current J*, which can be used to define the fluid velocity. This
allows one to consider two different frames choices. In one of them (Landau) one
defines the local rest frame as the frame where energy density is at rest, while in the
other (Eckart) the local rest frame is identified with the frame in which the charge
density is at rest. This choice is a redundancy of the description and physical content
should not depend on it. The result of this freedom of choice is that what is interpreted
as charge diffusion in one frame is thermal conduction in the other.

Having cleared this intricacy, the relativistic hydrodynamics of charged fluids will
now be presented [32]. In addition to the conservation of energy-momentum tensor
0, " = 0, one now has the conservation of current density d,J" = 0. Moreover the

constitutive equations are

T" = (e 4+ p)uru” + pg"” + 11" (2.50)
Jt = put + v* (2.51)

16



where € is the local energy density, p the local pressure density, II*” the dissipative
part of the energy-momentum tensor and v* the dissipative part of the charge current.
The choice one can make at this point is u, II" = u,* = 0. As before one can derive
the form of the dissipative parts, from the Second Law. The thermodynamic relations

for a charged fluid are

e+p="Ts+ pp (2.52)
de = Tds + pdp (2.53)

where p is the chemical potential. One can now compute the divergence of the entropy

current, using in addition the fact that «,0,7"" = 0

e
Ou(sh) = %8MVM — T(‘?Muy =
I
oy <su“ — %V”) = —V“@u% — Tauw (2.54)

Defining the left-hand side of (2.54]) as the entropy current, one has to demand that
the right-hand side is positive. Hence it follows that

v = —kK (8"% + u“u”@,,%) (2.55)
2
" = —n (0"u” + 0"u" + uu® pu” + u'u’ dyul) — (C N §77> )0
(2.56)

where 7, ( are the shear and bulk viscosity respectively and « is the thermal conduc-

tivity.

2.2 Quantum Hydrodynamics

One of the most celebrated achievements of Holography is the ability to describe
strongly interacting systems, away but very close to equilibrium. For weakly inter-
acting systems this is the purview of Linear Response. In this section Linear Response
of a generic quantum system will be presented, so as to lay the foundation and set
the context for the Holographic results. This will also serve as an introduction to the
presentation of purely quantum systems (with no classical analogue) such as Fermi
liquids, which are of high interest from a Holographic point of view.

Linear Response treats a system under an external stimulus, like an electromag-
netic field, a temperature or pressure fluctuation. In the framework of Quantum

Mechanics the dynamics of a system are encoded in its Hamiltonian, H. Similarly an
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observable is mapped into an operator, say O. The goal is to study the system under
some perturbation. Such a perturbation is described by the addition of a term in the

Hamiltonian

A~

H— H+ Hpert

where

[:Ipert = ¢O

The coeflicient field corresponding to an observable O is referred to as the source of
said observable and plays the role of the external stimulus. The introduction of Iflpm
deforms the original theory, modifying the equations of motion, in which one now
finds the field ¢ in addition to the original degrees of freedom.

Generically this problem is difficult to address, hence the first step is to assume
that the response of the system under the external perturbation, remains linear. In
other words the change in the expectation value of an operator (corresponding to an

observable) is a linear function of the external sourceﬂ

50 = [ arxet)olr) (2.57)

This is the case for sources that are small in comparison with the relative scales.
The function x(t,t') is called the response function. It is obvious from the above
definitions that the response function is nothing more than the Green’s function, of
the system and the terms will be henceforth used interchangeably. If the system is
endowed with space-time symmetries, like time reversal (and similarly translational

invariance) one can simplify things significantly by writing the linear response relation

in Fourier space
3(0w) = [ dtdte (e~ )ott) = X)) (258)

where Y(w) and ¢(w) are the Fourier transformations of the response function and
the source respectively. Moreover the product is to be understood as the convolution
of the two functions. The simplification in working in Fourier space, lies in the fact
that what is a bi-local function (x(¢ —t')) in coordinate space is a local function in
frequency space (x(w)).

Writing it in frequency space, allows one to easily uncover further properties of
the response function. Note first that since O correspond to an observable, it has to

be Hermitian as an operator and hence its expectation value has to be real. Assuming

4Here the Heisenberg picture is adopted, in which time dependence is included in the operators.
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that the external source is also real one concludes that the response function is real
in coordinate space (x(t,t') € R). In Fourier space though x(w) € C, with its real
(Rx(w)) and imaginary (3x(w)) parts having distinct interpretations. The imaginary

part can be written

W) = 5 (W)~ W) = = [d® (=) @s)
——p [aer @ -x-0) 2o

1 1

3 () + x(@)) = 5 [ e ((®) + x(~1) (261)

It becomes clear from the above expressions that the imaginary part of the response
function is not symmetric under time reversal, while the real part is. Given that on
a microscopic level, dynamics are assumed to be time reversible, the imaginary part
must originate from dissipative effects. Sy is therefore called the dissipative part of
the response function and is also referred to as the spectral function.

Another interesting aspect of the response function is its detailed relation to the
Green’s function. In real-time Quantum dynamics (as opposed to Euclidean time)
there are more than one Green’s functions (i.e. retarded (Gg), advanced (G4), Feyn-
man (Gr)). By demanding causality, i.e. no response prior to the appearance of the
external source, assuming that at ¢ = 0 the source is turned on, one has x(t < 0) = 0.
This relates the response function to the retarded Green’s function. Borrowing from
the analytic properties of Green’s functions one can translate this requirement into
a requirement about the analytic structure of x(w) for complex frequencies (w € C).

For ¢t < 0 the Fourier integral

w0 = [ Srenw)

has to follow a contour that closes in the upper complex plane (Fig.. In order for
X to vanish, it is therefore required that it has no poles for Sw > 0. The requirement
that x(w) is analytic in the upper w-plane induces a relation between its real and
imaginary part, known as the Krammers-Kronig relation. In particular by making

use of the Principal Value one can write the Krammers—Kronig relations

7?/ = w,_w (2.62)
Sy(w) = —P/dﬁm( ) (2.63)

T W —w
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Figure 2.1: Integration contour in the complex w plane.

At this point two comments are in order. Firstly these relations are derived purely
from causality, without any extra assumption and details about the dynamics. How-
ever the cost for such a broad result is that one needs the full analytic structure of
the imaginary part of the response function in order to reconstruct the real part and
vice versa. A rephrasing of this result is that one can write the full response func-
tion, knowing only its imaginary or dissipative part. To see this one needs to write
the principal value as a deformation of the integration contour. In particular if one
defines g(w) := (1/ur) [ dw'x(w)/(w — w), then

P/dw’% = %T (g(w + 1€) + g(w —2€)) (2.64)

By Cauchy’s theorem one also has that x(w) = (1/2) (g(w + 2€) — g(w —2€)) and

hence one writes

dw'  Sy(W dw'  Sy(w
W —w — 1€ W —w — 1€

= Qx(w) — Ry (w) (2.65)

which then leads to d' Sy(W)
W Sx(w

T oW —w—1€
It is then apparent that the imaginary (or dissipative) part of the response function
(i.e. the spectral function) contains the full information about the system studied
and this is why it will play a very important role in what follows. This fact also
highlights the importance of being able to compute the spectral function of strongly

interacting systems by Holographic means.
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A quantity that can immediately be computed from the response function is sus-
ceptibility (y). For an external source ¢ corresponding to the observable O, causing

a change of the expectation value §(O) susceptibility is
06(0)

="/ 2.67
9 |, (2.67)
which by the definition of the response function means that
X = lim y(w) (2.68)
w—0
or in integral form
. dw” Sy (W'
%= / A Sx(e) (2.69)
T W —e

It is appropriate at this point to make an aside to established a connection with
what was presented before, with respect to classical hydrodynamics. To achieve this
a simple dissipative hydrodynamics model will be examined, in which one adds a

diffusive current on top of an ideal fluid, along with and external driving force
J=-DVp+f (2.70)

where D is the diffusion constant and f is the driving force. From the continuity

equation (2.1)) one has
Op—DV?p=-V-f (2.71)

Treating f as the external source here, the observables would be the density p and
the current J and it is the response to these that one wants to study. Using (2.57)

one writes
ot ) = / ddayy (F, 2 ) F (o) (2.72)
J(t,z) = /dt’dm’XJJ(t',m’;t’x)f(t’,x') (2.73)

where the indices in the response function appear now because there are two correlated
responses to the external source. Hence there is a current-density response, i.e. the
external source drives the current which in turn perturbs the density, and a current-
current response, i.e. the immediate response of the current to the external force.
Assuming full space-time translational symmetry and Fourier transforming, as before,

the responses become

p(w,k) = XﬂJ(w>k>f<w7k) (2'74>
J(w, k) = xus(w, k) fw, k) (2.75)
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Plugging into (2.71) the Fourier transformations for p,.J and the linear response
relations (2.7442.75)) the density-current response function is

—k

XpJ = o — DE2 (276)

Then from the definition of the current J one also gets the current-current response

function
w

X = — DR?
From ([2.76)2.77) it is obvious that both response functions have a pole at w = —1DE?.

This is the well-known diffusion pole that governs the diffusive behaviour of the sys-

(2.77)

tem. This pole will re-appear in the Holographic context demonstrating the persis-
tence of hydrodynamics even in strongly interacting systems.

One of the last pieces necessary to have a relatively complete picture of hydrody-
namics and linear response on the quantum level, is the celebrated Kubo formulae.
These are relations, derived in the context of quantum statistical mechanics, which
relate the response of a system under perturbation, to the two-point function of the
relevant observable. In order to arrive at the Kubo formula, one needs to do first-order
perturbation of a quantum system, described by a density matrix pﬁ As before the
perturbation is encoded in the Hamiltonian, through Hp.,; := ¢;0;, where the index
indicates that there can be more than one sources, for more than one observables. [

Following standard perturbation theory one defines the time evolution operator

U(t,t') =T exp (—z /t dt'Hpert) (2.78)
"
which satisfies Schrédinger’s equation
10:U = HpersU (2.79)
and governs the time evolution of the wave-functions
[W(t)) = Ut to) |1 (to)) (2.80)

Similarly the density matrix evolves as

p(t) = U(t,to) poU ™" (L, to) (2.81)

5Not to be confused with the energy density for which this symbol has been used previously.
SHere Einstein’s index summation convention is adopted.
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where pg is the density matrix at a distant enough time (ty — —oco) that the pertur-
bation has died off. One is in position now to compute the expectation value of an

operator, for a non-vanishing external source ¢

(O))]y = Trpt)O(t) = TrpoU *OU (2.82)
=Trpy (O +@/ dt' [Hpert, O] + .. ) = (O0)|p=0 + z/ dt'([Hpert, O]) + . ..
(2.83)

The change in the expectation value 6(0) := (O), — (O)4—o can be written, taking

into account the explicit form of the perturbation, as

5(0) =1 / ar{O(t"), O] o(t) (2.84)

o0

or in order to make the integration interval symmetric, one can introduce a step

function, resulting in

5(0) = Z/m dt'o(t —¢)([O("), OM))o(t) (2.85)

A simple comparison of the last equation with (2.57)) reveals that the response function
is

X(t =1") = = (t = t')([0(t), O(t)]) (2.86)
which is the well-known Kubo formula. From this point it is straightforward to gen-
eralize to Quantum Field Theory, which is more relevant to Holography, by allowing

the operators as well as the response function to depend in space in addition to time.

The Kubo formula becomes then
xij(t, 't x) = —0(t — t){([0;(t, ), O;(t', 2)]) (2.87)

where the indices account for multiple operators.

The usefulness of Kubo’s formula is most easily demonstrated by straightforwardly
calculating two quantities that come up almost constantly in Holographic calculations,
and which sparked interest in using Holography as a computational tool. The first
quantity is conductivity. Assume a system that possesses a global U(1) symmetry.
For this symmetry there is a corresponding conserved current J#. This current plays
the role of the operator in the previous discussion. The external source is the elec-

tromagnetic field A, and the perturbation Hamiltonian reads
Hpery = / d'z A, J" (2.88)
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where d is the number of spatial dimensions. By restricting the electromagnetic field
to a purely electric one, the (electrical) conductivity is defined as the response function

relative to the electric field
(il k) = 03w, k) By (. ) (2.89)

Applying Kubo’s formula for this perturbation gives

0{Ju) = () = {Ju)o = _Z/d4$l<[°7u<x/)a Jo(2)])0Au (@) (2.90)

Now by working in a gauge where Ay = 0, the U(1) field in Fourier space is just
FE;i(w) = wA;(w) and hence the change in the current’s expectation value can be put
into the Ohm’s law form (2.89)) by setting the conductivity tensor to be

Xij(w, k)

o (2.91)

s M
Oij = — 045
J w J

The second term in the above sum, which is the relevant one for this discussion, comes

directly from the current-current Green’s function

Xij(w, k) = —z/d4x9(t)e’kx<[Ji(w), J;(0)]) (2.92)

It should be noted here that the first term in derives from the background,
(J;)o = €*A;p, where p, allowing for some abuse of the notation, is the charge density.
Hence o = —ep in (2.91]).

The second, even more celebrated in the Holographic context, quantity that can
be computed using Kubo’s formula, is the shear viscosity. In this case the operator
involved is the energy-momentum tensor 7}, and the response function has a tensor
structure because of the different configurations possible. For this example a situa-
tion where momentum injected in x; direction gets diffused into xs, is picked. This
scenario involves the T1s components of the energy-momentum tensor. The relevant

components of the response function are therefore

X12.12(w, k) = —Z/d4$0<t)62kx<[T12($>,Tlg(O)D (2.93)

Compared to the case of conductivity there is no background contribution, since in
the unperturbed state there is no net momentum diffusion. Finally to get the actual

viscosity one needs to apply the zero frequency limit

.1
n=lim —xi212(w,0) (2.94)

w—0 2w

given that viscosity is related to constant external force (source).
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Fermi Liquids

In this final section of the present chapter the theory of Fermi liquids will be re-
viewed [33-37]. Fermi liquids are quintessentially quantum mechanical in nature,
and as it will soon become apparent, possess characteristics that survive into the
strongly interacting regime, making them a very interesting test-bed for Holographic
calculations. In particular the systematic Holographic reconstruction of one of their
most important feature, i.e. the existence of a Fermi surface, is a constant goal
of Holographic models. The starting point will be the standard phenomenological
approach, followed by a quick microscopical justification. Towards the end of this
section, the Renormalization Group analysis of Fermi surfaces, will be presented as
the background necessary to justify the discussion of Fermi surfaces in the context of
strongly interacting theories and Holography.

The term Fermi Liquid is used to generically describe a multi-particle state of
fermions at non-vanishing density. One of the most striking characteristics of Fermi
liquids is that, even in the non-zero interaction regime, they retain properties of
the free Fermion gas system. Free multi-particle fermion states are organized based
on Pauli’s exclusion principle, into shells, resulting in the Fermi surface, defined
as the last occupied shell. It should be noted that this surface lives in momentum
space. Low-energy excitations around this ground states involve quasi-particles, which
resemble particles, above and holes below the Fermi surface. Examples of Fermi
liquids include “He and the electron gas of metals.

The free action of a spin-1/2 fermion 4(k), of spin s and momentum k (in d

spatial dimensions) is

dk
_ T
Sf'ree - /dT/ (271_)61103(15) (87' + €(k>> ¢S<k) (295)
The corresponding Green’s function is therefore
1
Go(wn, k) = ———— 2.96
o(n: k) —wwp, + €(k) (2.96)

Analytically continuing to real frequencies, reveals that has a simple pole at
energy F = ¢(k) with residue 1. This pole corresponds to quasi-particle excitations,
which can have either positive (particle-like) or negative (hole-like) energies. The
locus of points in the phase space where the energy flips sign, is exactly the Fermi

surface, i.e. it is the surface that divides particle-like from hole-like excitations. E|

It should be noted here that the appearance of negative energies should not be interpreted as
the emergence of an instability. This is just a result of artificially combining particles and holes in
the same propagator, through identifying hole-like excitations with the negative-energy counterpart
of the particle-like ones.
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In studying further the quasi-particle excitations it is important to take into ac-
count the complications imposed by the fact that these do not occur in some empty,
uniform space, but rather around the Fermi surface. This means that there could be
excitations travelling tangentially to the Fermi surface, with e(k) = 0. In order to
accommodate for this particularity, it is convenient assign kr(n) to the actual Fermi

surface and then define momenta with respect to that as

where n is the unit vector perpendicular to the Fermi surface, pointing outwards

kL kL

ke

ki ki

Figure 2.2: Momenta defined relative to the Fermi surfaces.

(n = IZ_;I) (Fig.. Now any momenta expansion is considered around the Fermi
surface, i.e. with respect to k;. One can now rescale the original fermion fields as
1
%(k) — V_¢s7n(kj_) (298)
F

where Vp is the area of the Fermi surface. Another, more intuitive, way of under-
standing this reformulation is that because motion tangentially to the Fermi surface
corresponds to €(k) = 0, one needs to expand around every point of the surface.

Taking this into account the effective action becomes

Spp = / io, / Ak 0l (k1) (0 — wp(ndy, ) bem(ks) (2.99)

where v is the Fermi velocity which corresponds to the energy gradient on the Fermi

surface, i.e. vp(n) = |Vier,|. Intuitively this effective action describes the Fermi
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surface as an infinite collection of (one for each point of the surface) fermions, moving
in a transverse to the surface direction. The effective action , does not take
into account excitations moving along the surface. To address this issue one can work
with fermions living in the full d-dimensional space, instead of just on the surface.
Then one splits the coordinates into k£, which is perpendicular to the Fermi surface
and k,, normal to the k, direction. With that in mind the effective action can be

recast in the form

S = /dT/dkl/dk//wl (aT — wply, — gvi/) Vs (2.100)

where x encodes the curvature of the Fermi surface. The benefit of using this action
now becomes apparent, as one can immediately extract the dispersion relation
k.2

vrky + m% =0 (2.101)

Having given a very brief, definitional overview of Fermi liquids, one can now
approach them from a more phenomenological (statistical) point of view. Temporarily
ignoring interactions, the energy of a system consisting of N free fermions (i.e. a free

Fermi gas) is

E=>)" %n(k) (2.102)

where n(k = 20(kr — |k|) is the occupation number for a state of momentum k. If
one applies an external stimulus on the system the energy will get shifted implicitly,

through the change in the occupation number
/{2
0E =Y = _—din(k) (2.103)
k

To the extent that the external field applied remains small, the occupation number
will be a distribution concentrated around the Fermi surface.

The next step is to allow for inter-particle interactions. A critical point in doing so,
is that interactions need to be turned on adiabatically, so that one retains a one-to-one
correspondence between the free and interacting states. In other words one does not
want bound states created as one introduces interactions, which would drastically
change the true degrees of freedom. As a results the picture of Fermi surface and
particle or hole-like excitations around it, coming from the free system, remains valid.
Since interactions are now present, apart from the quasi-particle’s energy e(k) (while
€o(k) will be the unperturbed energy) there is also the interaction energy, denoted

by f(k, k'), where k, k' are the momenta of the quasi-particles involved. Applying a
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weak external field on the interacting system, the induced change of energy for the
system is |
/
SE = Xk: co(k)on(k) + o ;; f(k, k"on(k)on(k') (2.104)
where V' is the volume occupied by the system. From one can now compute
the “dressed” (i.e. the perturbed) energy of each quasi-particle

(k) = L = k) + 1 3 f (k. K)on(K) (2.105)

on(k)

while the interaction energy is given by

)

T )

(2.106)

Here one can make use, again, of the adiabaticity to note that interacting quasi-
particles, stemming from fermions, will obey Fermi-Dirac statistics and hence the
occupation number is

1
ee(Tk) r+1

where p is the system’s chemical potential.

n(k) = (2.107)

With this description at hand one can calculate various observable / phenomeno-
logical properties of Fermi liquids, which will be very useful to compare with Holo-
graphic results, testing whether the latter constitute or not true Fermi liquids. One

such quantity of particular interest is specific heat. By definition

1 OF

_ -9 2.1
VTV oor (2.108)

\%

The change of temperature affects the energy indirectly through the change of the

occupation number, hence

(2.109)

which by using (2.104]) becomes

_ 1 On(k) (p—ek) | O(e(k) — p)
cv_v;e(k) ok ( A ) (2.110)

At this point one needs to notice that at low temperatures (5 — 00) the interaction
part of (2.104)) goes like 372 or T? which means that it can be ignored compared to
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€o(k) and therefore one can just use the latter. An immediate result of this approxi-
mation is that the sum over momenta can be substituted by a sum over energies. At

low temperatures, the sum can then be computed giving
1 *
Cy = gm kaBT (2111)

where kp is the Boltzmann constant and m™* the effective mass. The effective mass
comes as the modification of the dispersion relation, by the self energy and can be

extracted from

k
co(k) = p+ (k — k;F)#k (2.112)
k
m* =X (2.113)
3
where vp = 855,(:“). The linear temperature dependence of the specific heat is one of

the most commonly used tests, in Holography, to verify whether the system studied
is dominated by fermions.

Another interesting quantity is the speed of sound, also referred to as first sound to
contrast it with zero-sound which will be presented momentarily. The thermodynamic
speed of sound is defined as

= tor_ 1 (2.114)
m dp  mpx
where m is the bare fermion mass, p = % the density and y the compressibility which

is defined as

oP 0P
-1 _ or_ Yt
X =Yy =g,

In order to relate the speed of sound to the, by now familiar, interaction function

(2.115)

f(k,Kk'), one needs to first employ the Free Energy to write the compressibility in
term of the chemical potential, which is then related to the energy on the Fermi
surface. Then using one write ¢; in terms of f(k,k’) and more specifically
in terms of spatial averages of the first two multi-pole components of the interaction

function, known as Landau parameters. In particular, one starts from the pressure

oF of

where F'is the Free Energy and f = F'/V the Free Energy per unity volume. Hence

X =p= (2.117)
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By definition of the chemical potential

oF  of
= =_ 2.118
=N T o (2.118)
and therefore y =1 = p? g“ Then noting that u = €(kp,n) one can use (2.104) to write
8,u 860 8k:F / dgk/ (9 ( ) akp
— = f(k 2.119
dp 8kF 2 r k) okr Op (2.119)

The remaining sum in the previous expression is over the spin degrees of freedom.

Employing the following properties of Fermi liquids
ki

=33 (2.120)

860 /{ZF
a5 T % 2.121

on(k')
— = =0k -k 92.122
Ok ( r) (2.122)
([2.119)) can be rewritten as
o kF kF

df2 1+ F 2.123
Rl ACE =gha+n)

Here Fjy is just the spherically symmetric average of the interaction function, or in
other words the first term in its multi-pole expansion. By borrowing the expression

for the effective mass from [34] in terms of Landau parameters one writes

_1 pk% 1 + FO
=L 2.124
where F} is the next term in the multi-pole expansion of f. Consequently
k3 1+ F
2 F 0
= £ 2.125

First, or regular thermodynamic, sound dies off as T — 0. In particular for a
sound wave of frequency v its life-time goes like 7 ~ (€ — €p)~2 and its energy like
(e(k) — €r) ~ kT and therefore in order to have sound, temperature has to be
T? > v. Intuitively in the 7? < v limit, inter-particle collisions cease to exists and
liquid perturbations cannot propagate. However in this collision-less regime another
collective mode emerges out of the Boltzmann equation. In particular, Boltzmann’s
equation is

Ohn + Opndge — Oxndpe = I(n) (2.126)
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where I(n) encodes quasi-particle collisions. Hence one can look for propagating
solution to (2.126]) in its collision-less regime, where I(n) = 0. Since one looks for

wave-like solutions, one writes
on(k,r,t) = expl(q-r — wt)|ox (2.127)

and then the linearised version of Boltzmann’s equations becomes
1 /
(- vi =)o+ q - vkd(u — (k)3 D f(k. K)o =0 (2.128)
k/

where v, = k/m*. Rescaling the solution like
o = 0(e(k) — p)vpu(k) (2.129)

so that u(k) measure the displacement of the Fermi surface, one gets
1 / /
(g vx —w)u(k) + g vy > fk K)o (ew — pu(k') =0 (2.130)
k/

Since the momentum is restricted on the Fermi surface, the remaining dependence is
on the angles ({0, ¢} =: Q) defining the direction of k and of course spin. Writing all
the parameters of (2.128) in terms of the Fermi momentum kg, one eventually gets

(s —cosD)u(Q, s) = COSHZ / %6(%(16 — kp))f(k, K s, u(,s")  (2.131)

where s = ﬁ.

From the discussion so far it has become abundantly clear that the key object
in the Fermi liquid description is the interaction function f(k,k'). It is therefore
important to see how it is related to the microscopic degrees of freedom of the theory.
In this part of the section, it will be presented how this can be achieved. In fact it will
be shown that f(k, k') is related to a particular limit of the four-point Green’s function
(or to be more precise the vertex function, i.e. the sum of the one-particle irreducible
amputated Feynman diagrams). In order to keep the discussion concise and given
that the details of these calculations are not the purpose of this section, elements
of finite-temperature perturbation theory will be borrowed from standard textbooks
treatments [34-36]. For purposes of simplicity of the notation the convention of [34]
will be adopted, so that all the degrees of freedom associated with a particle will be
encoded in a number representing said particle (e.g. {x1,s1,...} — 1).

The first object needed is the two-point Green’s function (or propagator)
G(1,2) = —o(vo| T {% (1), ¥'(2)} [0) (2.132)
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where [1g) is the ground state and T'{...} represents the time-ordered product. In

momentum space the propagator can be written

1

w2 —Y(w,p)

Ga(p) (2.133)

where X (w, p) is the standard self-energy. Rewriting this around the Fermi surface

one gets
a

w—ep —vp(p—kr) +1¢sgn(w — ep)

Ga(p) = (2.134)

where a = (1 — 862)71 is the residue of the quasi-particle pole, er the Fermi energy,
vp = kp/m* and ( just a positive infinitesimal constant.

The next object one needs, is the four-point Green’s function

Ga(1,2;3,4) = (to|T { (¥ (2)4" (3)8'(4) } [¢o) (2.135)

which following standard perturbation procedures is split into disconnected and 1PI

parts
G4(1,2;3,4) = G2(1,3)G2(2,4) — G2(1,4)G2(2, 3)
—|—z/d1’d2’d3/d4’G2(1,1/)G2(2,2’)G2(3,3’)G2(4,4/)1“4(1’,2/;3/,4/)
(2.136)

or in momentum space

Ga(P1, P2 P3, Ps) = (27)°Ga(p1)Ga(p2) (0(p) — P3)3(Py — Py) — 0(py — P4)O(Py — P3))

+0(2m) ' G2(p1)Ga(p2) G2(p3) G2 (P4)d (P1 + Py — P — Po)Ta(P1, Poi P3, Pa)

(2.137)

The analytic structure of I'y is then of prime interest, since its poles correspond to
different states of the system. In particular the specific time ordering determines this
state. Since here the Fermi liquids dynamics are of interest, the relevant ordering is
¥ (1)(3)74)(2)2(4)T, which in turn means that poles should be found in the w(3)—w(1)
channel, i.e. the particle-hole channel. In order to remain within the regime of
validity of Fermi liquid description both energy and momentum should remain small
and close to the Fermi surface. It is then convenient to write p3 = p; + k and
ps = p2 — k, where k = (w, k) is a small four-vector. Putting all these together one
can now write down the Feynman diagrams involved in computing I'y. In Fig2.3|
the first two orders of perturbation series are presented. Given that the momentum

with respect to which the poles should be studied is k, it is convenient to write

I'(p1, p2; k) = Tu(p1, p2; 03, Da)-
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P2 —k D2 po—k DPiLtD2—q py

p1+k P1 p1+k q D1
(a) (b)
pr—p2+k+gqg
b2 pe — k b2 pe— k
k+q q
pi+ b - P pi+k P

(c) (d)

Figure 2.3: Feynman diagrams corresponding to I'y up to one loop.

Out of the one-loop graphs in Figl2.3] the first two behave nicely in the limit
k — 0, so one can just set k = 0 for them. On the other hand in the last graph as
k — 0 the two propagators G5(q) and Gy(k + ¢q) come together, making the graph
apparently divergent. Defining I'(py,ps) := I(p1,po; k = 0) as the finite part of the
vertex function one can write the integral equation that governs I'y
diq -

amil e )G(0)Gola + B)Talg,p2ik)  (2138)

Now one uses expression ([2.134)) to explicitly write the product of the two propagators

as

La(pr,p2i k) = f(p1,p2) — Z/

a

€ —ep —vp(q—kp) +1(sgn(e — ep)
a

‘wre—ep—uvp((k+q) — kr) +1Csgn(w + € — ep)

Ga(q)Ga(q + k) =

(2.139)

The regime of interest is the Hydrodynamic one, meaning long wavelengths and small
frequencies, i.e. £k — 0 and w — 0. In this limit one can split the product of the

propagators into divergent and regular part

G2(q)Gag + k) = Res(0)d(e = er)d(q — kr) + Reg(q) (2.140)

—
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where Reg(q) is the regular part and Res(6) is the residue (6 = cos_l(ﬁ)). Fol-

lowing standard procedures the residue can be computed by carefully taking the

integration over the complex plane, resulting in

21a°k cos 0
Res(l) = ——— 2.141
es(0) k=0 w — vpk cos O ( )
making the product of propagators
202G - k
Ga(q)Galq + k) T % (e — er)d(q — kr) + Reg(q) (2.142)

k—0 w — Vg cos 0

where the following identity has been used: kcosf = ¢ - k. Putting all the pieces

together the four-point function (to first order) becomes

. dia -~

Ly(p1,pos k) = T(p1,p2) — Z/ﬁf(plﬁ)f?@g(q}m(q,pz;k)
(ZQICF
(2m)3

where d*q = ¢?dqdedQ) and d€) is the solid angle. At this point one encounters a

A~

. G-k .
/dQF(pl, ) — = La(a,p2; k) (2.143)

+

crucial detail - the way the Hydrodynamic limit is taken. In other words the two
limits involved, i.e. k — 0 and w — 0 are not commuting. For the present purposes
the one that will be used is lim,,_,¢ limj_,q. |§| Consequently

lim lim (&> =0 (2.144)

w=0k—0 \ W — vpq - k

and the vertex function, which in this limit will be denoted as I' becomes

4

L0 (p1. ) Reg(q)T* (g, p2) (2.145)

F“(pl,p2) = f(PhPQ) - Z/W

and eliminating Reg(q)
a’k? q-k
r k) =T £ dore(p,q)————T  k 2.146
4(p1, p2; k) (p1.p2) + (27r)3/ (p’Q)w—chi-k alg,p2ik)  (2.146)
Now all the components are in place to take the Hydrodynamic limit
q-k
w—vpq-k

a%% w
Ly(p1,posk) = ——5 [ dQ“(p1,q)

k-0 (27)3 L4(g; p2; k) (2.147)

where the fact that energy and momentum is very close to the Fermi values, i.e. p; =

(ep, kpp1) and py = (ep, kpps), where p; and po are unit vectors and limg_,o I = 0,

8The other limit, i.e. limy_,lim,_,0, results in a I'y that corresponds to physical forward scat-
tering of quasi-particles off the the Fermi surface, while the limit used in the text, corresponds to
virtual excitations.
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has been used. In the last equation the only real variable is p; and hence is can be
manipulated into a familiar form so that the connection with the interaction function

f(k, k") can be made. Namely one writes it as

“k d§)
(ﬁ — COS 9) u(ﬁ) = COS 07T;7T2F Ea2rw<ﬁ7 qA)u(qA> (2148)
where
u@ = " 1) (2.149)
q N w — quA . k 4 q .

Comparing the last equation with (2.131]) one immediately sees that the sought after

relation between f(k, k') and the vertex function is
f(B,q) = a®T*(p, q) (2.150)

The significance of this result needs to be stressed, since it relates a phenomenologi-
cally introduced function that encodes the interaction energy between quasi-particles,
with a microscopic quantity, the vertex function, that is well grounded on Quantum
Field Theory and can be perturbatively calculated in a systematic way. It is also
important to explicitly state the physical content of this statement. It describes the
scattering of a particle-hole pair from one point of the Fermi surface to another.

To conclude this presentation of Fermi liquids, the resilience of their description by
Landau’s theory and of the presence of a Fermi surface, will be reviewed. Landau’s
theory is in essence an effective theory and as such it can be examined using the
standard toolbox of effective field theories. Here [33},37] will be followed. What will
be shown is that interaction terms of this theory, can be effectively integrated out
resulting in a theory with almost no relevant or marginal operators.

The starting point will be the non-interacting action encountered before

/ dtd*p {1ps(p)'0ps(p) — (e(p) — €r) s (p) s (p) } (2.151)

with the ground state corresponding to the Fermi sea, with filled states for ¢ < ex and
empty ones for € > ep. In order to make the presence of the Fermi surface explicit
one writes, as done previously, the momentum as p = k + [, where k is vector on the
Fermi surface and [ is orthogonal to it. The single-particle energy therefore becomes
e(p) — ep = lvp + O(1?).

In order to study the effects of adding interactions to this theory, one does what
is usually done with effective theories, that is write down all the terms allowed by

the symmetries of the system and study their scaling behaviour. Assuming that an
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effective theory is studied at a scale A the interaction terms at this scale can be

written as a series of operators
Sy = /ddng,-oi (2.152)

with the i-th term scaling as [ dzO; ~ E%=4 or written in terms of a dimensionless
parameter X; (E/A)*~% If §; > d, O; is irrelevant, i.e. it becomes less important
as energy becomes lower (E — 0). If §; < d, O; is relevant, i.e. it becomes more
important as energy becomes lower. If §; = d, O; is marginal and it is equally
important at all energy scales. Marginal operators can turn relevant or irrelevant

depending or higher interaction terms. This is determined by the beta-function
Edgg = bg® + O(g%) (2.153)

If b > 0 then the corresponding operator is marginally irrelevant, while if b < 0 it is
marginally relevant. In the case where b = 0 for all higher orders then the operator
is truly marginal.

The symmetries of this theory include number of particle and space-time sym-
metries, which for the case of realistic scenarios break down to lattice symmetries.
Additionally in the non-relativistic limit (¢ — c0), where spin and rotational symme-
tries get decoupled, one gets an additional SU(2) internal spin symmetry.

If energies get rescaled as E — AE, where A < 1, then k — k, [ — M, dt — \~'dt,
dk — dk, dl — Adl and 9; — A\0,. The action then scales as Ax (scaling of 1)),
which means the ¢ ~ A™1/2. The scaling of possible interaction terms will now be

examined. A quadratic term

[ty () 6. 5) ~ A (2.154)

This looks like a mass term and it is relevant but it can be absorbed into the definition

of €(p). Next a quartic term will be examined

/dtkoldlld2kgdlzdzkgdl3d2k4dl4‘/(k1, ko, k3, k4)
V(1) s (p3) s (p2) e (p4) 0P (01 +p+2 — p3 — pa) ~ AL X As (2.155)

where \; is the scaling of the delta-function. If one naively assumes that the scaling

of the delta-function goes like \° because

5(3)(]?1 +p2—p3—ps) = 5(3)(l€1+k¢2—k’3—k4+l1+l2—l3—l4) &~ 5(3)(k1+1€2—k3—l€4)
(2.156)
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since [ scales to 0, then the overall scaling of the quartic operator is A\', which makes
it irrelevant. It therefore seems that quadratic and quartic terms are irrelevant indi-
cating that at low energies the theory becomes “freer” - almost like a free electron
gas.

However there are two caveats that require further examination. The first one
involves phonon interactions, while the second one stems from the delta-function
scaling. Starting from the phonon interactions, one notices that the presence of a
crystal lattice breaks space-time symmetries giving rise to Goldstone bosons. This
bosons must be included in the low-energy theory and therefore one introduces a
phonon field D(r) which is proportional the displacement of the ions from their
equilibrium position times their mass (M'/2). The kinetic plus restoring force part of

the action describing the phonon field is

%/dtdgq (8:Di(q)8:Di(—q) — M~ Ay;(q) Di(q) D;(—q)) (2.157)

The scaling of the phonon field can be determined by the free action and then used
to derive the scaling of the phonon-fermion interaction term. In particular close
to the Fermi surface the particles’” momenta scale as ¢ ~ A\° while the integration
variables and the derivatives of the kinetic term contribute another A'. Overall then
the phonon field’s scaling is A~/2. If one now examines the first of possible phonon-

particle interaction terms

/ dtd3qd?lydlyd*lydla M =2 g5(q, ke, ko) Di(q)1hs(py) 0 (p9)0®) (py — Py — @) (2.158)

1/2

scales as A\™'/< assuming that one treats the delta-function as before, i.e. scaling as

A’ That makes the term relevant. However the term gets suppressed by a factor
of (m/M)Y*. Note here that below the Debye energy (m/M)Y2E,, where Ej is the
characteristic energy scale, the restoring force is larger than the kinetic term and it is
therefore what should be used to determine the scaling of D. In that case D ~ \!/2
and similarly (2.158)~ A'/2, making the interaction term irrelevant below E.
Finally one needs to address the issue of the scaling of the delta-function. So far
it has been assumed that it scales as \°. This is a valid assumption when particles
scattered with generic initial momenta. Assume that two particles of momenta p;

and ps scatter into p3 and ps. One can then write

p3 = p1 + Oks + 0l (2.159)
pa = Py + Oky + 0l (2.160)
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and the corresponding delta-function becomes 84 (§ks 4 0k, + 13 + dly). Recall that,
as before, [— momenta are perpendicular to the Fermi surface and k—momenta tan-
gential. Now for generic momenta, dk; are linearly independent, hence the argument
of the delta-function is dominated by those and neglecting the §l; parts is reasonable,
leading to the scaling \°. However in the special case where the initial momenta add
up to zero, i.e. p; = —py, then 6 (5ks + 0ky4) becomes degenerate and one needs
to take into account the perpendicular momenta /;. This leads to a A™! scaling for
the delta-function which in turn makes the quartic interaction term scale as \°, i.e.
marginal. The rest of the interaction terms remain irrelevant. As for the phonon-
particle interactions one can integrate out the phonons leading back to the quartic
interaction term. The effect of the presence of a marginal operator is that the one-
loop (and higher) correction to a diagram involving external momenta, restricted to
sum up to zero, is not suppressed and need to be explicitly calculated and taken into
account. These corrections can be summed up into a geometric series and their effect

is a modification of the expectation values of currents, compared to the free case.
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Chapter 3

Aspects of Holography

Following the review of some fundamental aspects of Condensed Matter, a detour will
be attempted in order to provide an overview of Holography itself. In this chapter
some of its most important elements will be presented, starting from its origins in
String Theory and ending at its application to strongly coupled Condensed Matter
systems. The structure of this chapter is the following. Firstly a brief history of
Holography and strong-weak dualities will be presented. Then the practical tools
of Holography (which is usually refereed to as the Holographic dictionary) will be
reviewed. Finally those tools, will be used in practical applications and contact with

Condensed Matter Theory will be attempted.

3.1 History

Holography can be considered as the most successful and most influential example
of a strong-weak duality. It is highly interesting to note though that it is neither
the only nor the first one. As early as the forties it was noticed that in the context
of Lattice Field Theory one encounters such dualities. In particular Krammers and
Wannier [38.39] noticed that for d = 2 Ising model on a square lattice, with nearest-

neighbour interactions, where the partition function is

Z[J] = Z exp JZsisj (3.1)

s=+1 (i)

one can do the following transformation J — J* = —zIntanhJ resulting in the

1
2
transformed partition function Z[J| — Z[J] = C(J)Z*[J*] or explicitly

1
Z[J] = 3 (cosh J sinh J)"~ Z exp |J* Zsfs; (3.2)

st (i)
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where N is number of sites of the lattice. It is then obvious that in the starred
coordinates one gets an identical (self-dual) system with a new coupling constant
J*. What gives rise to the strong-weak duality, is the relation between the two
coupling constants J and J*. As shown in fig. when the system in its strongly-
coupled regime in the starred coordinates, it is in its weak regime in the un-starred

coordinates and vice-versa. It should be noted here, that the emergence of a self-dual

Weak coupling in J coordinates

2.0+

1.5¢
-
1.0t
0.5¢
Weak couplingin J* coordinates
0.0t ]
0.0 0.5 1.0 15 2.0
J

Figure 3.1: The relation between the coupling coefficients between the two dual theories in
Krammers-Wannier system.

system under this transformation is specific to the d = 2 case. In higher dimensions
the system is not necessarily self-dual. This system contains a phase transition at Jo
such that sinh? 2Jo = 1 [40]. It is important to note that the simplicity of this model
is predicated on the symmetry group (which for the d = 2 Ising model is Zs) being
Abelian. If this is not the case the treatment is much more involved and leads to what
is referred to as Tannaka-Krein duality [41]. Further information on this subject can
be found in the excellent review of R.Savit [42].

Another such system, that develops strong-weak duality is the Sin-Gordon model
[43]. The standard action is

a
3
In this theory there are two types of excitations: meson (M,,.s = y/«) and solitons
(Mo = Sg/Qa). The perturbative regime of this theory is 5% < 1 where M,y > M.,

Ssa = /d2x {%8ﬂ¢8“¢ + — (cos B¢ — 1)} (3.3)
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where 32 is the relevant coupling constant. It turns out that this model is dual

(through bosonization) to the Thirring model, described by the action
— — g — —

Sr= [ @ {0+ miv - Lo} (3.4

The excitations of this theory consist of fundamental fermions (dual to solitons in

the Sin-Gordon model) and fermion-anti-fermion bound states (dual to meson in the

Sin-Gordon model). The duality relates the coupling constants of the two models as
g1

Ar 1+ 4

(3.5)

which makes it clear that when on side of the duality pair is at its weakly-coupled
regime, then the other is at its strongly-coupled regime and vice-versa. It should be
noted here that in this case the dual degrees of freedom are fundamental quanta on
the on side and solitons on the other, while Noether charges are interchanged with
topological charges.

Strong-weak dualities are not restricted to low-dimensional models. There are nu-
merous higher-dimensional cases, which however are usually super-symmetric. Such
examples include the Montonen-Olive duality [44] as well as the Seiberg-Witten du-
ality [45].

Having established that weak-strong dualities are not a rare and exotic phe-
nomenon but rather abundant one can now turn two Holography. As it will be
argued momentarily Holography is based on a similar duality but involving gravita-
tional degrees of freedom. What is even more striking is that the dual degrees of
freedom are not gravitational. There are many reviews on this subject, of which a
few are used and cited here [8,46-52].

The historic context within which Holography emerged was that of attempting to
describe in a microscopic way (within String Theory most commonly), Black Holes
and their thermodynamic properties in particular (e.g. see [53]). This properties are
nicely reviewed in [54] and more recent progress presented in [55]. These attempts
brought into the foreground the extended objects which naturally occur in String The-
ory, i.e. branes and emphasized their importance in extending one’s understanding
of String Theory. The origins of Holography itself can be traced back to the sem-
inal work of Maldacena [5], Witten |7] and Gubser, Klebanov, Polyakov [6]. These
constitute the foundational works of Holography, that sparked an enormous interest
on the subject and motivated a huge body of work, that extends from fundamental,
mathematical aspects of Holography, all the way to applications to “real-life” systems

(e.g. Heavy Ion physics [27] and high-T superconductivity [12]).
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3.2 Background

The framework of Holography is String Theory [56-59], which started as the quantum
theory describing interacting strings but it became quickly apparent that it quite

naturally includes other extended objects, i.e. branes [60-H62].

o Qj 4>

(a) Open string (b) Closed string (c) Brane

Figure 3.2: The objects of String Theory.

In the full quantum theory apart from the open-closed string interaction, there
are interactions between open-closed strings and branes, as schematically depicted in

fig. [3.7. The dynamics of the string is governed by the action
S = —T/d2a\/—g (3.6)

where
_ G OXH*oXY
90 = G o 57

and T is the string tension. This is the fundamental parameter of String Theory and

X" = X" (o) (3.7)

{Xx"}

Figure 3.3: The world-sheet of a closed string.

is often written as T' = 4737, with o/ = [? where [, is the fundamental string length.

Strings are quantized in the first quantization formalism and once super-symmetric
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extensions are included one gets a finite number of massless states along with an
infinite number of massive modes, the mass of which is M ~ m,;'. Depending
on the boundary conditions imposed, one finds five self-consistent string theories.
Namely Type-I1TA, Type-1IB, Type-1, Heterotic SO(32) and Heterotic Eg x Fjg, all of
which are considered as limits of an eleven-dimensional theory, i.e. M-theory [63]. The
requirement of no negative-norm states fixes the dimensionality to D = 10. When
weak string interactions are included one gets a scheme similar to the perturbation
theory in QFTs (i.e. Feynman diagrams) where the summation is over distinct world-

sheet topologies (fig. 3 ) The string length or equivalently o/ controls the departure

b

Figure 3.4: Perturbation series of String Theory - sum over topologies.

of string amplitudes from the corresponding point-like particle amplitudes, so that at

ls — 0 one recovers the standard perturbative series (fig. . Similarly the string

e+ o

Figure 3.5: As Iy — 0 the String Theory perturbation series reduces to the standard Feyn-
man perturbation series.

coupling g, which is related to the string length and the ten-dimensional Newton’s
constant through 167G = (27)7¢2l% and is attached to each vertex (as depicted in
fig.[3.6)), controls the convergence of the topological series (fig. . For each diagram

2ht1 wwhere h is the number of holes of the world-

in this series one gets a factor of g
sheet surface. It should be noted here that g, is not a free parameter (as is the case in
QFTs) but rather is related to the dilaton (¢) through g; = exp[{¢)]. In the context
of Holography the gauge-string duality is often approximated by the gauge-gravity

duality, which involves the following limits: L > [, and g, < 1, where L is the
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Ngs

Figure 3.6: Closed string vertex.

characteristic length scale. The former guarantees that the string-length effects can
be safely neglected, while the latter, which is equivalent to the requirement that the
dilaton remains small, allows the use of only the first term in the perturbative series
(fig. , i.e allows one to neglect quantum corrections.

Before proceeding further towards the presentation of the Holographic duality,
one needs to introduce branes and in particular D-branes. Within String Theory
branes enter as non-perturbative (with respect to g,) higher-dimensional objects with
tension (i.e. energy per unit volume) Ty ~ gis. D, — branes are topological defects
in the D—dimensional space-time, with (p+ 1)—dimensional world-volume, on which
open strings can end (hence the name D from the Dirichlet boundary conditions
imposed) [61]. It should be noted here that D,—branes are by no means the only
type of extended objects “living” within String Theory, but they are the most relevant
to Holography, at least as it was originally formulated. Apart from having open strings
ending on them, D,—branes can emit and absorb closed strings, as they carry tension,
i.e. energy and therefore they gravitate (with gravity belonging to the closed string
spectrum) (fig. . At low energies, i.e. for £ < my, ~ i, only the lowest states
are relevant. Taking Type-I1IB String Theory as a working example (which is also the
most relevant for Holography), the low-energy spectrum includes the fields listed in
table [3.1] which constitutes a ' = 2 ten-dimensional Super-gravity (SUGRA) [64].

Guv Graviton
o, C Dilaton and Axion
B, AL Rank-2 anti-symmetric tensors
Al . | Rank-4, anti-symmetric, self-dual tensor
[;LQ Majorana-Weyl gravitini
A=1.2 Dilatini

Table 3.1: Low-energy spectrum of Type-1IB String Theory.
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Figure 3.7: Schematic of interactions between strings and branes.

Next one writes down the Polyakov action

1

4o

Sp = / A"V —hh*P0,X"05X" g, (3.8)
where g, is the ten-dimensional metric, X* the embedding functions, h®? the world-
sheet metric and h its determinant. Demanding the preservation of the symmetries
(like conformal symmetry) of the Polyakov action on the quantum level one gets a

set of restrictions which appear as the beta functionals of the theory [65]

1
Bu(X) = Ry + 7HY, H,, = 2D,y + O(o) =0 (3.9)
where pr = 0,B,, + 0,B,, + 0,B,, is a generalization of the Faraday tensor

F, =90,A, —0,A,. Similarly there are more beta functionals

1 1 1 1
Ry = 50,00,6 +  exp|—] {HWBHV“B = 59w H 2} +exp[2¢]50,00,C

1( - 1 - 1

+ exp[gb]zl {FMAU FI/)\J - §g,ul/F(23)} + %Fu/\pan Fl/ Apos (310)

2 1 g, 1 2
V¢ = exp[2¢]0,CO"C — D exp|—¢|Hj + D exp[@F (3 (3.11)
1 g
Op{V=99" exp26]0,C} = — ¢ explo]H,,, o " (3.12)
d* Fy = Hy A Fy (3.13)
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d * (exp[(b]ﬁg,) — F5 A Hj (3.14)
* <C’F3 exp|¢p| — Hj exp[—(b]> =F3AFy (3.15)
Fy = xF} (3.16)

where Fy = Fy — CHs, Fy = dA, (noting that Ay <> A,,), H3 = dB; (noting that
By <+ B,,). On top of the beta functionals there are a couple of Bianchi identities

dFy = —dC AN Hs , dF5 = Hs N Fy (3.17)

This set of equations constitute the equations of motion of the low energy theory, and

can be derived from and action

Slow enersy — Sy + Sp 4 Ses + fermions (3.18)
with
Sng = Fw dlo\/_{R — —8qu8“¢ — = eXp[ ]|H3|2} (3.19)
Su= dmr{exp[zaanm +expldl| B + §|F5F} (3.20)
Scs = K%0/144 A H; A Py (3.21)

where F7 = dC. A word of caution is appropriate here - these equations of mo-
tion receive string-length corrections (i.e. o' # 0), which signify a departure from
Super—gravity towards String Theory. For example the action contains corrections
like v exp[—2¢]W with

= ke PO L+ (3.22)

pmnq

where C" is the Weyl tenso and v = £¢ (3)a’®

Most solutions to the Type-IIB equations of motion receive o/ corrections with
some exceptions the most striking of which is Minkowski and AdSs x S° space-times,
which are highly relevant to Holography. Generically if one has a classical solution to
the Super-gravity equations of motion, characterized by some length scale L (as is the
case for the Schwarzschild black hole solution where L = rg) then this solution will
receive string corrections (o # 0) and quantum corrections (gs # 0) unless L > I,
and L > [, (where [, is the Planck length) respectively. The equations of motion

(egs. . to - have an extremely rich structure resulting in numerous solutions.

'Coved = Rapea = 723 (9ateRja = gofeRaja) + mf@a{c%lb
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However, there is also a sub-sector of the fields that can be isolated and excited
separately so that one can consistently eliminate the rest. One such example studied
in [32] among other places, involves keeping only gravitational degrees of freedom g,
and the five-form field Fy (also keeping the dilaton (¢) constant). Setting all other

fields to zero, one gets a much simpler set of equations of motion

1 abc
RNV = %Fuabcd Fl/ bed <323)
F5 = *F5 (324)

which can be solved by
1
f(r)
4172 1 .
F5:_H27’5”T0+L (I+*)dt Ndxe ANdy ANdz A dr (3.26)

dsty = H™2(r) (—f(r)dt + da® + dy* + d2?) + H* < dr? + r%mg) (3.25)

where f(r) =1— :—é, H(ry=1+ {j—: This solution corresponds to a black 3—brane
with ry being the horizon’s radial position. An interesting limit emerges when this
solution is examined near its horizon. In particular in the limit where » < L one
can bring the metric solution in the following form (changing coordinates to

u = :—é)
(7T L)? L?
where T' = —75 is the temperature corresponding to the solution’s horizon. If fur-

thermore, one takes the zero-temperature limit 7" — 0 and going to the original

coordinates, the metric becomes

7,2 L2
ds?, = 7 (=dt® + dz” + dy* + d=*) + = (dr® +r?d$23) (3.28)
It is then clear that the space-time described by this metric is AdSs x S° EL which
will be crucial in what follows.
Reviewing the ingredients of this restricted theory, one sees that on a perturbative

level, i.e. where the relevant degrees of freedom are (potentially interacting) open and

.I.
HUAp®

level there is a variety of higher-dimensional objects appearing like the D,—branes.

closed strings, there are gravitons g, and a gauge field A On the non-perturbative

As mentioned before these are dynamical hyper-surfaces, with (p + 1)—dimensional

world-volumes, on which open strings can end. They are charged objects (under the

2In particular this is the Poincaré patch of AdSs
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gauge field Al), of solitonic nature (with respect to SUGRA), that carry finite tension
Tp. Given their definition as the locus of open-string endpoints, it is not surprising
that their fluctuations are determined by the quantum spectrum of the attached
open strings. This spectrum consists of a massless sector, including a U(1) gauge
field A,(z") , i =0,...,p and (9 — p) scalars ¢'(z) , i = 1...(9 — p) corresponding
to transverse fluctuations, along with their super-partners, and a massive sector with
energies E/ ~ mg ~ ll Considering the D,— branes as solitons the massless modes
correspond to the collective modes of said soliton [43].

Now assume that instead of just one brane, two of them are present. The config-

uration looks like fig. 3.8 The two gauge fields extending between the two branes are

Figure 3.8: Possible configurations of open string between two branes.

now massive, in fact m ~ 57—, both of them carrying U(1) charges at their end-points.
If one takes them limit » — 0 then the two branes get superimposed, the gauge fields
become massless and the gauge symmetry gets enhanced into a U(2) consisting of
the fields (A,)5 , «,8 = 1,2. Along with the gauge fields there are also scalars
(gbl)g [66]. The dynamics of the massless modes now constitute a non-Abelian gauge

theory. One can take this process further, superimposing N, Ds—branes (fig. [3.9).
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The massless spectrum of this system consists of A, , ¢*, i = 1,...,6 along with the

Figure 3.9: A stack of N, Ds—branes.

super-partners - four Weyl fermions in the adjoint of U(N,). The low-energy effective

action describing this system would then be

L= —g;M Tr {EFWFW + %DugbiDﬂgbi + [¢', ¢j]2 + fermz'ons} (3.29)
where ¢2,, = 47T95E|. In other words the low-energy effective action of a stack of
Ds;—branes correspond to an N = 4, U (NC)H Super-Yang-Mills theory in four dimen-
sions (d = 4). This is a rather special and particularly interesting theory. For example
it has an identically vanishing beta-function, i.e. it is scale invariant and its coupling
constant does not run (can be set to an arbitrary value and it will remain there).
This is a striking difference with ordinary, less symmetric Quantum Field Theories
where the beta-functions are either positive or negative, but certainly non-zero.

The effective super-symmetric theory is governed by two parameters - N, and gy .
It is however convenient to combine them into the 'tHooft coupling A = g%,,N,, as

in the large-N, limit the perturbative expansion of any amplitude A(gy s, N¢) can be

3This can be derived from DBI action, describing a single D,—brane with constant (or slowly
varying) world-volume fields, re-summing the o’ corrections [61].

4The U(N,) group is decomposed into SU(N,) ® U(1) with the U(1) component describing the
motion of the centre of mass of the brane system, essentially resulting in the more familiar SU(N..),
N =4 SYM.
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written as
oo

Algya, No) =Y N7 f,(N) (3.30)

9=0
where g is the genus of the diagram [67].

The content and the symmetries of this theory are highly relevant to the AdS/CFT
conjecture as the constitute the first tests one can perform on it. As mentioned earlier
the field content consists of A,, ¢* and A2, i.e. gauge field, scalars and fermions. The

theory’s symmetries are

e Conformal symmetry SO(2,4), with generators P,, L,,, D, K,

nz)
e R-Symmetry SO(6) ~ SU(4)r
e Poincaré SUSY, with generators ()¢, Q,w-é, a=1,...,4

e Conformal SUSY, with generators s,.4, S%,

a=1,...,4

It should not be overlooked that the action is an effective one and therefore
receives corrections, which take the form of higher derivative terms. This corrections
however are suppressed by factors of E?a/, where E is the energy scale. The brane-
system also includes closed strings which interact with a strength G ~ ¢2I5 meaning
that interaction terms will come with factors of E8G o and can be neglected for small
enough energies, i.e. for £ < i At this energy regime closed string do not interact
(i.e. one is in the classical gravity regime) and they decouple from the open string
sector which in this limit reduces to the N' =4 SYM in d = 4. More formally the
system’s action is

S = Strane + Stulk + Sinteraction (3.31)

At the low energy regime Sinteraction can be neglected (~ O(E®G1g)), Sprane is the
N =4, SU(N,) SYM in d = 3 + 1 dimensions (plus corrections O(E?1?)) and Sy
corresponds to d = 10 Minkowski gravity (plus corrections O(E®G1)). More specifi-
cally as the number of branes grows the gravitational field they induce increases, since
each one carries a finite tension. The resulting gravitational system, at low energies,
is one that has been encountered before , i.e the p = 3 black p—brane solution
of Type-IIB super-gravity. Noticing that fsg,p *xF5 = Q = L* = 4mg N I} which is
the relevant scale. Therefore the gravitational system at r < L (near-horizon limit)
simplifies to AdSs x S°.

Given that it has been established that the brane-system gravitates, it is interest-

ing to estimate at which point of the parameter space, the gravitational effects are
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significant. In general an extended p—dimensional object will produce a gravitation

GloNcT(3)
r

field ~ % Specifically for a Ds—brane this field is ~ ———= or written in

terms of the theory’s parameters

gchlg
T

gravity field for Ds — brane ~ (3.32)

This now allows one to estimate the regime of validity for each picture, i.e. that of
the stack of branes embedded in flat space-time (fig. or that of the black brane
space-time (fig. [3.10)). In particular one has

Figure 3.10: Ten-dimensional space-time from the closed-string or gravitational perspective
for gsN. > 1 and N, > 1. There are two distinct regimes - the near-horizon “throat” and
the asymptotic boundary.

e for g;N. < 1 gravity corrections are of order O(1) for r < I

e for g;N. > 1 gravity corrections are of order O(1) for r > I

Beyond these limits there is another, more subtle one that needs to be examined,

particularly if one intends to ignore quantum gravity corrections. Suppression of

quantum effects occurs when L > [, & % > 1. Recalling that (l}(,lo))8 = % and
p

G1o ~ g% one sees that
LY gsNelg
E ~ Gl/2 ~ Nc (333)
10
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It is then apparent that in order for quantum gravity effects to be negligible N, > 1,
independently of any other limits.
To summarize, the system consisting of a stack of N. Ds—branes admits the

following two descriptions

e at g,N. < 1 or equivalently A < 1, the open-string picture prevails, giving rise
to the effective action corresponding to a N' =4 SU(N.) SYM

e at g,N. > 1 or equivalently A > 1 and N, > 1, the closed-string picture

prevails, giving rise to the geometric black brane description

In principle both these descriptions should be valid for any value of the parameters
A, N, and it is only a matter of one’s ability to track the theory at each limit that
these convenient effective theories emerge. In other words each of them is limited
to a particular area of the parameter space (fig. , only because of the difficulty
(and potentially inability) to compute the higher corrections necessary to extend the

regime of validity.
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Figure 3.11: The Holographic parameter space. Figure taken from [1].

Having established the relation of this two regimes and the corresponding theories,

as limits of a common starting point, one is now in a position to explicitly state the
AdS/CFT conjecture:

The AdS/CFT Conjecture.

N =4, SUN,) SYM Qd = 3+ 1 = Typel I B superstring theory on AdSs x S°
(3.34)
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This is a weak-strong duality, in which the relevant degrees of freedom are very
different - on the one side they are gauge ones and on the other side they are gravita-
tional. The characterization of this duality as Holographic, stems from the fact that
the gravity side lives on a five (in fact 5+ 5) dimensional space-time while the gauge
side lives on the boundary of this space-time, in one dimension less, i.e. d =3+1. In
a more formal way one can write down the duality using the partition functions on
each side

Zd:3+1,N:4SYM [J] = ZTypeIIB@Ad35><S5 [J] (335>

The very first test one performs on this duality, as mentioned earlier, is to check
if the symmetries on the two sides match. As seen in table that appears to be the

case.

N=4SYMd=3+1 AdS5 x S5

SO(4,2) (conformal) x SO(6)g (R-symmetry) | SO(4,2) x SO(6) (isometries)
SL(2,7) SL(2,7)

Table 3.2: The symmetries of the theories on the two sides of the Holographic duality.

Another revealing comparison that can be made, is that of the entropy density
(s) on the two sides. As seen in [68] using Holographic techniques one gets
2
2

This should match the entropy density for N' = 4 SYM at the A — oo, N, — oo
limit. From standard perturbative approaches [35,[36] (i.e. A < 1) it is known that

SH —

N?T3 (3.36)

42 7
SYM|>\_)0 = %ng (NB + gNF) (337)

where N and Ng are the number of bosons and fermions respectively. For the
particular field content of N'=4 SYM this reduces to

212

s(A—=0) = ?NCQT?’ (3.38)
This expression though receives A correction, which one necessarily needs to include
in order to depart from the strict A — 0 limit. In fact as seen in [69,70] for A > 0

s(\) = %QNET?’ fA) (3.39)
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where

5
) =12 )\+3+3\/_X3+...
N

272

Similarly in order to depart from the strict A — oo limit, on the other side, one needs

(3.40)

to include + corrections. This is done in [68], resulting in

) = Z + %g(zs)xi +... (3.41)

It is therefore presumed that f(\) interpolates between the two limiting values f(0) =

1 and f(oo) = 2.

3.3 Holographic toolbox

Having stated the AdS/CFT conjecture, established its connections to String Theory
and glossed over its derivation, the next step is to examine how one can make practical
use out of it. To do that one notices that on the right-hand-side of eq. (3.35)) saddle

point approximation can be used to give

saddle 1 3
Z11B ST@AdS5 % S5 p;%nt exp [—SHB SUGRA] + O(m, A 2) (3-42)

where O() corresponds to quantum corrections and O(A\"2) to higher-derivative
terms. This is a much more tractable theory and can even be consistently truncated
down to regular gravity. Given this approximation one can then compute expectation

values of operators (O(x1)...O(x,))ya in the dual theory since

foxp | [ 070y = exp [-5,rl] (3.43)

The question then becomes what plays the role of J on the gravity side. For this
purpose it is instructive to recall that the string coupling constant g, = 4mwgi,,
is related to the expectation value of the dilaton at the AdS boundary, i.e. g, =
exp [(¢oo)]. Deforming the gauge theory (on the boundary), meaning that one changes
the coupling constant is equivalent to changing the boundary value of a bulk field,
namely the dilaton. This can be extended so that generically a deformation of the
YM theory is of the form

where O(z) is a local, gauge-invariant operator (e.g. O = TrF?) and ¢(z) is a source.
Then

O(x) = Poutklpaas () = rli_{go Ppuire (1, ) (3.45)
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This process leads quite naturally to the field-operator correspondence. That is for
every boundary operator O(z) there is a bulk field, the boundary value of which
acts as a source for that operator. In some cases where both gravity and boundary
theories are well-controlled and fully understood this field-operator matching comes
directly (e.g. DBI action can help in these identifications). This however is not always
possible in which case a more phenomenological approach is needed. For example one
looks for fields such that the quantum numbers of the global symmetries in both
sides match. For conserved currents such as O*(z) = J#(x) or O*(x) = T"(x) the

appropriate terms are easy to identify, namely

/d4xAu(x)J“ — Ay(x,r) Qd =5 (3.46)
/d4xgw,(ac)T“”(x) — g (z,r) Qd =5 (3.47)
/d%gb(m)O(z) — ¢(z,7r) Qd =5 (3.48)

Out of these considerations a Holographic “dictionary” emerges

O (boundary operator) ‘ d¢ (bulk field)

T,ul/ 5guy
Jy A,
TrE*? )

Table 3.3: Operator-field mapping within the Holographic dictionary.

One therefore is equipped with a tool to compute strongly-coupled (in fact infinitely-
coupled) correlators of the boundary theory, the most important of which is the
two-point (Green’s) function (or propagator). This is achieved by taking functional
derivatives of the (on-shell) gravitational action with respect to the boundary val-
ues of the field corresponding to the operator, the correlator of which one wants to
compute. Since in most Holographic calculations the goal (at least initially) is the
computation of some theory’s propagators, the discussion about a subtlety is in order.
When working in Euclidean signature the propagator G is uniquely defined, without

any ambiguity.
Gg(kp) = / d*zgexp [tkgarg] (TE0(25)0(0)) 1 (3.49)

For finite temperature this becomes the Matsubara propagator defined at wg = 27Tn
for boson and wgy = 27T (n + 1/2) for fermions [35]. In fact the first Holographic

calculations were done in Euclidean signature [7].
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It was soon realized though that this poses some difficulties particularly if one
tries to compute non-zero temperature and chemical potential correlators as well
as real-time dynamics (small deviations from equilibrium). In principal one would
expect that this could be achieved through an analytic continuation, however this
poses problems since there is not a unique way to do this continuation. Additionally
in many cases of practical interest propagators can only be calculated numerically, in
which case it is not clear how one could analytically continue a numerical function.
These limitations were realized and addressed in [71,[72] which laid the foundations
for real-time Holography. Moreover this opened the way for a more phenomenological
approach to Holography.

From ordinary Quantum Field Theory (at finite temperature) it is already known

that [35,36] there are four distinct propagators in Minkowski signature, namely

GR(k) =1 / d'z expl-ikr](1)([0(x), 0(0)] )1 (3.50)
GAR) =1 / d'z expl-1kr]O(1)([0(x). 00)}r (3.51)

G(k) = % / d*z exp[—1kz](O(2)O(0) + O(0)O(x)) 1 (3.52)
GF (k) = —1 / i3 expl—1kz](TO()O(0))r (3.53)

where the expectation values are (/1) .= TrpA, with p = exp[—ﬁﬁ + MAQA] and
T(...) is the time-ordering. In the order that they appear these are the Retarded,
Advanced, Wightman and Feynman propagators, respectively. It is important to note
that these are not all independent. In fact using the spectral representation of the

propagators one can write

GF = % (G +G*) -G (3.54)
G(k) = — coth %%GR (3.55)
GF (k) = RG® + 1coth %%GR (3.56)
GAk) = GR(—k) = (GF)* (3.57)

and moreover at the zero-temperature limit 7 — 0, G¥ (k) = ReG" + 1sgnwImG=E.
Out of this set of Green’s functions causality picks out the retarded one, because,
as seen in the Linear Response section, one does not want a response prior to the
appearance of the external stimulus.

All the elements are in place now to write down the “recipe” for Holographic

calculation of correlation functions
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e identify the bulk field d¢ corresponding to the operator O of interest

e solve the equations of motion (to linear order if one is interested in Linear
Response) for d¢ with the boundary condition that ¢(boundary) = J

e compute the on-shell action Sy,q,[J]
e compute correlators by taking functional derivatives 2 exp [~ Sy au[J]]

This concludes the recipe for the cases of Euclidean signature. In order to compute

real-time Green’s functions this recipe needs to be amended to
e Fourier decompose the bulk field d¢(r, z) [ dk exp[ik - x] fi(r) o (k)

e solve equations of motion with boundary conditions fi(r — 9) = 1 and impose

incoming wave conditions at the horizon

e write the on-shell action in the form S = fd koo(—k) F(k,r)po(k)|. 2

r—0

e extract the retarded Green’s function Ggr(k) = —2F (k, )|

r—0

This section will end by presenting a simple example of such a Holographic cal-
culation, which will smoothly transition to one of the most celebrated results of
Holography, namely the calculation of the ratio of shear viscosity over the entropy
density .

The background will be an AdS space-time,

2 L2
ds? = % (~df? + o} + dada?) + —-dr” + LA (3.58)
or making the radial coordinate transformation r — z = LTQ
L2
ds® = = (d2* 4 daf + da? + dzf) (3.59)
2

where the sphere part is left out. Now consider in this background a massive scalar
field describe by the action

2718 4 2712
se=T [ T5E [00r + @02+ " (3.60)

T4k, 23
Following the procedure described previously, one first Fourier decomposes the field
in

(2, k) = / % expluka] fi(=) o (k) (3.61)

®Note that in these coordinates the AdS boundary r — oo is now at z = 0.
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The equations of motion are then

2L2

1)~ SHie) - (R +

with the boundary condition fy(z — 0) = 1 as well as the demand for regularity. The

) fi(z) = (3.62)

on-shell action then becomes

3L8 d4

4/{10

272
- fufe| an(b)an )
(3.63)
where € is a small number setting the lower end of the integral close to but not on the
AdS boundary. This is because divergences emerge as one approaches the boundary
that need to be carefully renormalized, giving rise to additional terms in the action
(i.e. Holographic counter-terms). This is the subject of Holographic Renormalization

discussed in [73,74], but will not be pursued here as it doesn’t affect the results. The
solutions of eq. (3.62) are of the form

fi(z) = A1, (kz) + B2" K, (kz) (3.64)

where k = |kg|, v = (4 + m?L*)Y/? and I, K are the modified Bessel functions
of the first and second kind (following the standard Frobenious theory for Ordinary
Differential Equations (ODE) [75]). The asymptotic behaviour of the Bessel functions,
ie. K,(x — 00) ~ exp|—z| while I,(z — o0) ~ exp|z], allows one, by demanding
finiteness to exclude the latter. Hence the solution is (for the massless case, which

means v = 2)

22Ky (kz)
== 3.65
f(z) €2 Ko (ke) ( )
such that fx(¢) = 1. Plugging this back into the on-shell action, it can be written as
w3 L8 [ d*kd*E n S0 fi(2) [ d*kd*k N 100
Sp = 0, / (2 O(k+k")po(k)do(K) s | = /cho(k)ﬁbo(k ) F
(3.66)
which allows one to compute the two-point function
Y 1 5 Z[¢]
Ok)OK)) = =————+— = —2F(z,k, K|
(ORIOWN = 3 5 ot |, = kb
7L f0. fi|™
= —2m)*(k + K — .
~(mtath 4 k) G (367
or recalling that kg = 27°/2 L , the Euclidean propagator becomes
R . N? /
(OK)O(K)) g = o 50k +k )f (¢ (3.68)
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in the limit ¢ — 0. In this limit, properly treating the Holographic counter-terms,

and neglecting contact ones (non singular terms), one finds that

! k‘4
11_1%5—3 =-3 In k? (3.69)
Hence
(O(k)O(K)) g = — &Mﬁhfﬂk+k%ﬂnﬁ (3.70)

There is an interesting observation to be made at this point. From perturbative

calculations one knows that

Ao A 1 1
(O(x)O(y))pert ~ i (3.71)

resulting in Ay = 4. By Fourier transforming the Holographic result back into coor-

dinate space one
A Yo Nc2
(O(K)O(K)) ~

3.72
|z —y® (3.72)

yielding A(A = 0) = A(X = co) = 4. This is consistent with what is known for N' =4
SYM (non-renormalization theorems), which is scale invariant. However not all N' = 4
operators are protected against running so generically one expects A = A()\) to be a
non-trivial function.

The calculation presented so far has been in Euclidean signature. The Minkowski

version will now be presented. The background metric is now
o L2,
ds* = = [d2” + nydztda] (3.73)

where 7, = diag|— + ... +|. The Fourier decomposition is

o(z,x) = /% exp[—wt + 1kz] fr(2)po(k) (3.74)

the action

3 8 2 2
= L /d4 / { 2 g M¢ay¢+ L gb} (3.75)

4,%10

the equations of motion

e -2 - (P ) =0 (3.70

but note that here k% can be either positive or negative. The on-shell action becomes

d*k
5 = [ G (Flkvoc) = (k. 0) dn(—k)on(h (3.17)

29



where F(k,z) = —’fﬁg L *lz%f . It should be mentioned here that for space-like mo-
10

menta k2 > 0, the situation is similar to the Euclidean case. For time-like momenta

k? < 0 requiring non-diverging solutions, results in usual instead of modified Bessel

functions. In particular setting ¢ = v/ —k?

(
fu(z) = ) w >0 (3.78)
21 (q2)
fi(z) = EQH,EZ)((]E) ; w<0 (3.79)

with H, being the Hankel function H, ,51’2) = J, £1Y,. Incoming wave conditions need

to be imposed now. To do this notice first that the asymptotic behaviour of Hankel

2 vw T
im HOD(2) — 4] 2 [i < ____ﬂ 3.80
e e S S (550

and therefore imposing incoming conditions at z — oo means that for w > 0 picks

functions is

out HY and for w < 0, HY. The incoming conditions also pick out the retarded

Green’s function G¥. Putting all these together one gets

Nk
642

GE(k) (In |&?*| — 1w O(—k*)sgnw) (3.81)

which a posteriori can be easily checked to be the proper analytic continuation of the
Euclidean propagator Gg.
The above calculation can be easily extended to higher dimensions, where the

metric is )

L
dsi,, = ) (d2® + ndatdz) (3.82)

and the equations of motion
210, (2'790.9) — kK*2*¢ — m°L*¢ =0 (3.83)
The solution near the boundary 0AdS (z — 0) can be written asﬂ

oz, k) = A(k) 22 + ...+ B(k)2" + ... (3.84)

1/2
where A = % + v, with v = (% —l—m2L2> . This “anomalous” dimension, that

controls whether a mode is normalizable or non-normalizable [7] raises an interesting

6This comes again from Frobenious theory [30].
"Normalizability is determined with respect to the AdS inner product that is defined, according

to [76], as (¢1,¢2) = —1 fzt dtd?z\/=gg" (¢ 012 — $20:0}).

60



d2
_I’

small negative window of mass that is allowed. This is the well-known Breitenlohner-

issue. It has to be real and that can be achieved when m?L? > i.e there is a
Freedman bound [77]. The modes with masses above the BF bound are split into two

categories

o L <miP< - 41

° —Ci—2—i—1§m2L2

In the first case both 242 and z2 are normalizable. In the case where the mass is
unbounded from above, i.e . m?2L? > —% +1, the term ¢ ~ 2?2 is non-normalizable

A

while the term ¢ ~ z2 is normalizable. The non-normalizable term (at the bound-

ary) plays the role of the source for the boundary operator operator O whereas the

normalizable mode correspond to the its expectation value (O). In particular on the

boundary

Soads — Soads + /dde(a:)O(x) (3.85)
with

J(x) = Plyags = lin% 227p(2, x) (3.86)

~

In other words if the bulk field ¢ correspond to the boundary operator O, using
eq. , J < A and (O)  B.

This section will end with the presentation of the Holographic hydrodynamical
limit, that will allow a smooth transition to the Condensed Matter applications of
Holography (as it actually happened historically). For this purpose the prototypical
example of N' =4 SYM at finite temperature, will be used. The dual background to

this theory, as seen above, is the black brane configuration

(ﬂ—TL)2 (—f(u)dt2 + de) + L—Qdu2 (387)

2 _
ds = u 4f(u)u?

with u = :—‘3 and T' = —P5. In order to study the hydrodynamical limit, one needs
to perturb the system (remaining close to equilibrium. For this purpose one expands
the gravity field as g,, = g,(ﬁy) + 69, (t, ,u). It is then straightforward to write the
linearised version of Einstein’s equation
2A

Ry =RO+RY)+... = = (99 + g +...) (3.88)
Using the symmetries of the system one can pick, without loss of generality, the di-
rection into which the metric perturbation propagates, the presence of which breaks
rotational symmetry. Fortunately the resulting system still possesses enough symme-

try to split the metric perturbations into three families
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® 0g,y, called tensor channel
o {0gut, 0Gzt, 0Gry, 09y.}, called vector (or shear) channel
e {0g:,,00:}, called scalar (or sound) channel

assuming that the perturbation travels along the z direction. Since the elements of
each channel cannot mix with any other, Einstein’s equations also split along these
channels, significantly simplifying treatment of the system. Focusing, for now, on the

shear channel, the relevant Einstein’s equations are

H+Lra —o (3.89)
w

1 woq 7
H —-H — —H,— —H, =0 3.90
t u t Uf2 uf t ( )

1+ u? ? wq
H' — H' H, H, =0 3.91
z Uf 2t Uf2 + Uf2 t ( )
where H; := %, H, = (:‘;?32, W = 5% and ¢ = 5%. Considering that one

wants to compute correlation functions of gauge invariant operators and given that
individual metric components are not invariant under diffeomorphism transforma-
tions (which are the gauge transformations of gravity) it is necessary to combine the

fundamental degrees of freedom into gauge invariant ones. For this case one defines
Zy:=qH; +wH, (3.92)

Taking the Lie derivative of Z; one sees that L:Z; = 0 ﬂ The shear Einstein’s
equations can be combined into a single equation for this gauge invariant degree of

freedom, namely

g @ =FNf—uwf N, [ —Ef B
R e S b RN

Near the boundary (u = 0) the solution of this equation can be expanded as Z; =

Ai(1+...)+By(u*+...). As seen before, once one has this expansion extracting the

Green’s functions is straightforward, i.e.
Gi(@,q) = —w2N2T4M (3.94)

At this stage one can impose the hydrodynamical limit, by looking for solutions G

perturbatively in @, ¢. In other words the hydrodynamic limit is valid for small @

8Recall that Leg,, = V& + Vo€,
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and g. To see why this is the case, first notice that for finite-temperature N = 4
SYM there is only one scale, that of the temperature T. Therefore the free mean
path scales like I, ¢, ~ % In terms of the free mean path the hydrodynamic limit
is lympp < | < L. Tt is then apparent that this limit is equivalent to gl < 1 or

72= < 1 and similarly £ < 1. One then writes Z; as a series over & and ¢
/2 g’ f 2 2
Zi(w) = Cof ()™ (14 = + 0@, 7, @7) (3.95)

Imposing Dirichlet boundary conditions on the boundary, i.e. Z;(0) = 0, yields the
dispersion relation

v 9 4
W= = +0O(q¢") (3.96)

This is the Holographic result for Y = 4 SYM at A — oo and N, — oo. From
general dissipative hydrodynamics it is known that from the dispersion relation one
can extract the diffusion coefficient D, since w = 1Dq? + . ... Hence the Holographic
prediction is that D = ﬁ. It is also the case that D = %, where 7 is the shear
viscosity, € the energy density and p the pressure. For a system where the chemical
potential vanishes, i.e.u = 0, thermodynamic relations dictate that e +p = sT', where
s is the entropy density. Therefore D = L. Combining this with the Holographic
result one gets the famous result [71}7§].

77_1
s A4

(3.97)

This has been a very impactful result and it has been conjectured that it constitutes
a lower bound for a certain class of Holographic theories. Its corrections have also

been studied quite extensively and it is known that to first A correction it is

n_h 15¢(3)
ST <1 + = ) (3.98)

where all the units have been put back in explicitly. In general it is expected that at
N, — oo viscosity itself (that is extracting s = T N2T?) is n(\) = f(A)N2T?, where
f(X) is a function interpolating between 7/8 at A > 1 and A2In"" £ at A < 1, i.e.

between the strongly-coupled and the perturbative results.

3.4 AdS-CMT

In the final section of this chapter further Holographic calculations pertaining to

Condensed Matter systems will be presented.
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Sound

The starting point will be sound propagation. This is a natural point to begin, since
it is closely related to the calculation of shear viscosity. In particular the underlying
system is the same and one only changes the channel studied [21]. The background

metric is again

TL)? L
(rTL) (—flw)dt? + da® + dy* + d2*) + ——du® (3.99)

ds" = u 4u? f (u)

As expected by the listing of the fundamental components dg,, in the sound
channel above, the linearised Einstein’s equation are more numerous and less simple.

In particular (using radial gauge where dg,, = 0) and reducing to the independent

set one has
3
Hyy — 2 H] — Hj + 2 H], = 0 (3.100)
/ /
2
w (H@% + %H) +4q <H£z + 7“%) =0 (3.101)
q(fH,, —uHy) +oH], — gH., =0 (3.102)
3f Hj, 2 2 __ 5
B =3 ~ @y &+ 200l + 0 (Hu = Ha)) =0 (3109
where Hy = Wégtt, H,, = ﬁégw, H,;, = ﬁégij, Hy : Hyp + Hyy and
H;; .= H,, + H... The equations of motion still have some residual gauge symmetry,

thus one can construct solution to them by acting on the trivial solution H,, = 0
with the generating transformations of said symmetry. This are by construction pure

gauge solutions and are linear combinations of the terms

HL =w (3.104)
H! = —2q (3.105)
HI = -2 (3.106)
H!! = qf (3.107)
HIT = % (3.108)
HI! = —goarcsinu — qoun/f (3.109)
Hi' = —=2\/f (3.110)
HIT = 27 arcsini — \/f (3.111)

as found in [21]. Proceeding further one employs the standard Frobenius procedure,

on top of which the small frequency and long wavelength (0 < 1 and ¢ < 1) limit is
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taken, along with the incoming boundary conditions, one gets (to second order in w

and q)
qZ
Hi = (1 —u) (3.113)
q Nl ©q oy 2(1 —w)
H, = —1~(1— Ll —u) — = (1 —u?)l 3.114
t 15 (1= u") + Su(l —u) — —~( Jn—=—— (3.114)
1 2 2 02 1
Hao=1 -2 0 L2 )~ Zn(1 — )
302 4+¢ . 14w @ ,14u @ . 1—wu
“52(1 — 1 = In? — —Li 11
t el (l—u) + = PR T R Rt (3115)

To these solutions the pure gauge one can be added, yielding another solution. The
general solution can then be deduced and given that the on-shell action can be com-
puted. The action of the system, including the appropriate counter-terms [73], is

w3 LP

W)
2K

S /1 dud*z/—g (R — 2A) + 2/d4x\/—_hK - %/d4x\/—_h (3.116)

where h,,,, is the induced metric (and h its determinant) and K the extrinsic curvature.
On shell this reduces to

T2N2T*

1
SOS(E) = /d413 <—1 + 5(3Htt + H“>

8
1
+§(3Hft —12H: +2H,Hy; +2H..H,, — H?)
1 1
- 2_€<Hi,‘2z + Z 3(1 — HyHi; + szHaa)/> (3117)

for some infinitesimal ¢ > 0. Plugging in the solutions, to linear order in @ and ¢ the

action becomes

[(2qH}. + ©H;)”

72 N2T* 1
Sos = (

1

Vi+-(BH° + HO) + — —
) 4+3( tt+ ’L’L)+2(62_3a]2>
+ Hp(3q°Hy, + 12qoHY, + (30° + ¢*)HY)|

1
+ S [3(Hy)? — 12(H},)* 4+ 2H, Hy, + 2H), HY), — (HQZ)ﬂ) (3.118)

where V} is the four-dimensional volume, making the first term in the action the free
energy F = —%ZN 271V,. The zero index indicates non-dependence on @ and . It is

now possible to extract some useful information about the dual theory. Namely the
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expectation values of the stress-energy tensor can be computed

(SSOS . 37‘(’2

e=(T") =2 SH0 = ?NET“ (3.119)
tt
5S 2
2p = (T°) = 45205 = %NET‘* (3.120)
5S 2
p=(T%) =2205 — %N3T4 (3.121)

Combining the above one sees that e = 3P. This is exactly what one would expect
from a conformal theory, like the boundary one (N = 4 SYM), which constitutes
another test for the AdS/CFT correspondence. Beyond one-point function one can
get the two-point function as well

5%2S0s B IN2m2T4q?  3n?

Gtttt S — o N2T4 =3

5¢% — 3w?
3w? — ¢?

(3.122)

More information can be derived from this Green’s function. In particular it has a
pole at w = \/Lgk This pole corresponds to sound propagation (density fluctuations)
and its velocity is exactly v, = \/Lg (see relative section of previous chapter), which
once again is exactly what is expected of a conformal boundary theory (in which the
stress-energy tensor has to be trace-less). It should be noted that it is not just the
position of the pole that matches but the full two-point function is identical to the

one computed by field-theoretical tools (for N'=4 SYM).

Zero sound

It has been seen that there is sound propagation in Holographic models and it is of
the exact form expected for the relative field theory. One can then ask if it is possible
to reconstruct Holographically zero-sound, which as seen in the previous chapter is
a feature of quantum liquids (Fermi liquids in particular). This has actually been
studied in [2,79]. On the gravity side (IIB string theory) the system consists of
intersecting N, Ds—branes and Ny D;—branes with the following configuration in

the ten-dimensional space

o X1 X2 T3 T4 Tz Tg X7 Ty X9
D3 x x x X (3.123)
D7 x X X x X X X X

In the usual Holographic limits N, — oo and A — oo the Ds-branes reduce, as usual,
to gravity in AdSs x S?, whereas the D;—branes can be made into probes (that do not
disturb the gravitational background) provided that Ny < N,. The Holographic dual
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of this system is N' = 4 SU(N,) SYM with N; massless N' = 2 hyper-multiplet fields
(flavours) at zero temperature. The gravitational background, in the near-horizon

limit, is as seen previously

2 2

r , L
da'de” + — (dr? + r?dQ) (3.124)

d82 = ﬁnl/,u

In this background the action describing the dynamics of the D;—branes is the DB]H

action

Sppr = —NfTD7 /dsf\/—det (gab + 27TO/Fab) (3125)

where £, are the brane’s world-volume coordinates, g, is the induced metric and F,,
the world-volume U(1) gauge field. In order to induce a non-vanishing baryon density
on the boundary one needs to turn on the zeroth component of the bulk gauge field
Ap. This results in (J°) # 0, where J* is the flavour current, that belongs to the
baryon number subgroup (U(1)g) of the U(Ny) global symmetry, characterizing the
N = 2 hyper-multiplet. This significantly simplifies the DBI action ([3.125])

AN¢N, / ,
SDBI = —W‘fg/d’mﬁ 1-— A02 (3126)

where a factor of 2ra’ has been absorbed by rescaling Ay and V3 is the volume of the
boundary theory. In order to study the existence of zero-sound one needs to compute
the current-density two-point (retarded) correlation function and check whether this
has a pole at zero temperature. Following the standard Holographic recipe the system

needs to be slightly perturbed, i.e.
A, — A, + 04, (3.127)

Substituting this into the DBI action and expanding to first order with respect to the
gauge field, leads to

P) . 2 P
Sy = g/d‘lxdrr?’ { a o4, + (0.4, — 0.4 s } (3.128)

—ARPR T 1A 1- AP

where N = AN;N,/(27)*. Continuing with the Holographic dictionary, the fluctua-

tions are Fourier decomposed as

0A, = /% exp[—wt 4+ 1qx]0 A, (3.129)

9Dirac-Born-Infeld.
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and the equations of motion are

30 A, ! 1
(1 _ A’2t)3/2:| - Tm (wq(SAz + q26At) =0 (3130)
L t — A
[ B A 1
|+ = (wgd A + w?0A.) =0 3.131
g Ty e (3131)
WA, + (1 — A2)gdA, =0 (3.132)

where eq. (3.132)) is just a constraint equation, resulting from the residual gauge

symmetry. As seen before given that the goal is to calculate correlators of gauge-

invariant operators on the boundary, it is very useful to construct a gauge invariant

bulk field, out of the variables dA; and dA,. The gauge invariant variable is Z =
wdA, + q0A; and the equations of motion are combined into
! 3(]2 - w2f2) 1 w2f2 _ (]2

Z" I - = Z+———7Z=0 3.133

+<ﬂf—wﬁ> W) ST (3133)

where variables have been switched » — w = 1/r and f(u) = V1 + d?u® where

d = (2ra’N)~'p, with p being the baryon density. Imposing incoming boundary

conditions close to the horizon at u — oo the solution asymptotes to E(u) ~ %.

Assuming that wu < 1, qu < 1 with w/q fixed, the equation of motion reduces to
'8¢ —w?f?) 1

z"+ { ) E} E'=0 (3.134)

the solution of which is

(3.135)

2 2 _ 3w? 114
Z201+CQU2(q uF o 150 ))

=+
3f 6
where , F; is the Hyper-geometric function. Using the asymptotic behaviour of , F

one then finds
Z =0+ Cy (g + b) +O(1/u?) (3.136)

where a = w?/d and b = (¢ — 3w?)d?*T'(1/3)T'(1/6)(18'(1/2))~*. In order to deter-
mine the integration constants C; and Cy this solution needs to be matched with the

asymptotic behavior when wz < 1. In that case
C
Z =—4wC (3.137)
u

The matching of the two asymptotic expansions leads to €} = (w — b/a)C and
Cy = C/a. There is enough information in place to examine the existence of zero-

sound. This is because zero-sound would appear as a pole of the two-point retarded
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function, which from the gravity point of view would emerge as a quasi-normal mode
of the field Z [80]. More precisely given that the hydrodynamic limit is of interest
here, one needs to extract the lowest quasi-normal pole (i.e. the one with the smallest
|w|). Seeing as an analytic solution is available for this case, it is easy to extract the
lowest quasi-normal mode by just imposting the Dirichlet boundary conditions on the
field Z, on the AdS boundary, i.e. Z(0) =0 <« C; = 0. This in turn yields

¢ d'31(1/3)I(1/6)
w = (F - 3) 1ST(1/6) (3.138)

In the hydrodynamic regime, i.e. for small w and ¢ this simplifies to

q oI'(1/2)¢?

W= E R T BT (1/3)T(1/6)

+O(¢%) (3.139)
or in a more convenient form
w=+L " 1o (3.140)
where the zero-temperature chemical potential has been used
o = T(1/3)T(1/6)(6(1/2)) " *d/? (3.141)

In summary what has been shown in [79] is that the system of D3/D; branes, in the
probe limit, has a propagating mode at zero temperature. The identification of this
mode as zero-sound, comes firstly from the dependence of its imaginary part on g,
i.e. ¢%. This is compatible with zero-sound. Moreover this dependence excludes the
possibility of this mode corresponding to a super-fluid phonon. In fact this could not
have been the case since the background preserves the particle number symmetry,
meaning that the ground state cannot be a super-fluid. However, this particular
zero-sound is not exactly the zero-sound of Fermi liquids. This is because its speed
is the same at finite temperatures (first sound), whereas in the case of Fermi liquids
zero and first sound differ by a factor of /3.

Fermi Liquids

It has just been reviewed how one can construct gravitational systems, that can re-
produce Condensed Matter phenomena (like normal and zero-sound). Is it possible
in a Holographic context to actually reconstruct Fermi liquids? The answer seems to

be affirmative. Following [15,16] a quick review of this answer, will be demonstrated
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here. Once again the starting point is the Holographic ingredients. The system con-
sists of a four-dimensiona¥| gravitational background (AdS,), a bulk gauge field (Ay)
and a bulk, charged fermionic field (¥). It should be stressed here, that this is the
phenomenological or bottom-up way of approaching the problem, i.e. including the
minimum set of necessary ingredients without looking for a String Theory embedding.
This may cause some worries and in general it needs to be addressed, however none
of the relevant results are affected by this subtlety. Thus one can begin this analysis
from the action

S = Hi d*r\/—g {R + % + L? {—izﬂ — U TADy U — mxinlf] } (3.142)

10

containing all the aforementioned fields. In eq. I'4 are just the Dirac matrices
(T4 = {7%,7}) and €% is the inverse vielbein. Moreover the covariant derivative,

acting on the spinors is

1
Dy = (aM + gwff T4, 5]+ ngM) 7} (3.143)

A solution to the equations of motion coming from this action contains and AdSy
black-hole background

L2 2 LQ
2 L (= fdf? + da + dy?) + ——d2? (3.144)
z

ds 27

a gauge field
Ay = 2qa(z — 1) (3.145)

where f(z) = (1 —2)(2% + z + 1 — ¢>2?). For book-keeping reasons it should be noted
that, in these coordinates, the horizon is located at z = 1 and the AdS boundary at
z = 0. Temperature and chemical potential for this system are T' = (3 — ¢?) and
1 = —2qa respectively. Treatment of the fermions becomes more involved because of
their action is first-order and hence on the boundary it vanishes identically, making
it more tricky to set up the variational problem and use the boundary action as the
generating functional for the boundary theory. This phenomenon is a side-effect of
the fact that not all the components of the Dirac spinor are independent. However
one can project out half of the spinor and use that to define the boundary action [81].
Following the careful analysis in [15] one can eventually derive the retarded fermionic

Green’s function and then from that the spectral function. Studying the behaviour

10This choice is made so that the dual theory is 2 + 1 dimensional, which is the case for many
relevant experimental configurations.
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of the spectral function, the authors of [15] have established that in fact there is a
parameter regime, within this model, that describes a Fermi liquid.

The examples presented here are in no way an exhaustive list. In fact over the
last several years a lot of effort has been invested in understanding strongly coupled
systems from Condensed Matter, using the tools of Holography. The systems studied
include high-T¢ superconductivity [12/17], strange metals [82}/83], non-Fermi liquids
[14], Josephson junctions [84], Mott insulators [85] and almost every other system of
Condensed Matter interest. Here, just for completeness, the major references for each

system are provided.
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Chapter 4

Anti-de Sitter Reissner-Nordstrom

4.1 Introduction

In this chapter a Holographic study of the Anti-de Sitter Reissner-Nordstrom (RN-
AdS) system will be presented [86]. As it may already be known the RN-AdS system
is an extremely useful one, particularly from the phenomenological or bottom-up,
approach to Holography, since it contains the necessary ingredients, that is gravity
and a U(1) gauge field, necessary to address a lot of interesting Condensed Matter
problems. It is also very popular because it constitutes a realistic truncation of
top-down models, presenting a quite universal character. It therefore provides an
excellent toy model / laboratory to explore Holography. This system has been rather
well-examined so this study comes as an addition to the existing body of work which
most notably includes [3,87,88].

Over the years, the excitations present when 7" = 0 and w,q < p in specific
strongly-coupled field theories have attracted a lot of interest and a significant amount
of scrutiny, and one common feature amongst many examples is a propagating longi-

tudinal mode with the dispersion relation

w = +v,q — ileq* + O (), (4.1)
where
W= °—U, and §= g (4.2)
p p

One can detect this feature in probe brane theories in different dimensions and with
different UV symmetries (where the conserved charge is a density of fundamental
matter - at least in the case where the background is derived from string theory)
[79,89-96] as well as in 4D bulk Einstein-Maxwell theory with a cosmological constant

(where the conserved charge is an R-charge density) [3].
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Figure 4.1: The sound attenuation I' in an LFL as a function of temperature, at fixed w
and p. A is the collisionless quantum regime, B is the collisionless thermal regime and C is
the hydrodynamic regime.

In one of these probe brane theories (the D3/D7 theory in (341) dimensions), the
behaviour of this zero temperature sound mode was analysed as the temperature was
increased from 7' = 0 and it was found to behave similarly to the ‘zero sound” mode
due to the oscillation of the Fermi surface of a Landau Fermi liquid (LFL), despite
the fact that some of its other properties are quite different from an LFL (e.g. its
heat capacity is proportional to T° rather than T') [2]. The theory of an LFL is valid
when 7" < p and w, ¢ < p and it predicts three different regimes for the behaviour
of the sound attenuation, as shown in figure [97-101). At T = 0, the sound
mode has a non-zero attenuation I' proportional to w?/u. As the temperature is
increased from zero (with w and pu fixed), the attenuation of the sound mode remains
approximately constant until 7'/u ~ w/p (the ‘collisionless quantum regime’ denoted
by A in figure . Above this, thermal excitations around the Fermi surface must be
taken into account and collisions between these thermally-excited quasiparticles cause
the sound attenuation to increase at a rate proportional to 7?%/u (the ‘collisionless
thermal regime’ B). When 7' is sufficiently high such that 7'/p ~ \/07 , these thermal
collisions become so frequent that the zero sound mode is no longer a long-lived
mode. However, the thermal collisions support the hydrodynamic modes of sound
and diffusion. This results in the ‘collisionless/hydrodynamic crossover’ and the sound
attenuation begins to decrease at a rate proportional to p (w/ T)? as the hydrodynamic

sound mode stabilises.
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These features were reproduced precisely in the strongly-coupled D3/D7 field the-
ory except that there was no sound propagation in the hydrodynamic regime - this
can be explained by the fact that the fluctuations of the bulk metric, which generate
the hydrodynamic sound mode of the dual field theory, were explicitly suppressed for
consistency with the probe limit. The collisionless/hydrodynamic crossover is most
clearly exhibited in the D3/D7 theory via the poles of the charge density Green’s
function in the complex frequency plane [2]. As the temperature is raised, the low
temperature poles corresponding to sound propagation approach the imaginary axis
and collide to form two purely imaginary poles, one of which becomes the hydrody-
namic diffusion mode as the temperature is raised further. The crossover can also be
seen by examining the charge density spectral function - the tall, narrow peak cor-
responding to the sound mode becomes smaller and moves towards the origin as the
temperature is raised, eventually forming a diffusive peak around w = 0. A natural
question to ask is whether similar behaviour is observed in the low temperature sound
modes of other holographic theories at large chemical potential and hence whether

they can all be characterised in this way as LFL-like ‘zero sound’ modes or not.

Here, the strongly-coupled field theory dual to the RN-AdS, black hole solution
of 4D Einstein-Maxwell theory with a cosmological constant, will be studied. Many
properties of this theory have been investigated in recent years as it is relatively
simple and yet has very interesting behaviour. In particular when 7" = 0, the low
energy behaviour of the field theory is governed by a CFT; dual to the AdS, factor
of the black hole’s AdS, x R? near-horizon geometry [16]. If one considers a probe
Dirac action for fermions in this background, the field theory operators dual to these
fermions exhibit Fermi surfaces of a non-Fermi liquid type |14-16]. If instead one
considers a fermionic action which is the super-symmetric completion of the Einstein-

Maxwell action, no such Fermi surfaces are observed [102-{104].

The quasi-normal modes of the bulk bosonic fields, which correspond to the poles of
the retarded Green’s functions of the field theory energy-momentum tensor 7" and
U(1) current J*, have also been studied at zero temperature. At 7' = 0 the transverse
sector (i.e. transport perpendicular to the direction of the momentum flow) contains a
branch cut along the negative imaginary frequency axis, and no long-lived modes (by
which we mean no modes satisfying w — 0 as ¢ — 0). At very small temperatures
T < p, this branch cut becomes a series of poles, one of which has a dispersion
relation of the form & = —iDg* + O (g®) [88,/105,[106]. This is an analogue of the
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well-known hydrodynamic shear diffusive mode of the energy-momentum tensor [20].
At T = 0, the longitudinal sector (i.e. transport parallel to the direction of the
momentum flow) also contains a branch cut along the negative imaginary frequency
axis. Additionally, it has two propagating modes with dispersion relations of the

form (4.1) with v, = /(0P/0€)|r—o and Ty ~ ume/2(e + P), where 7 is the ‘zero

temperature viscosity’ derived via the ‘Kubo formula’

1
= —lim —Im [GE., ey (w,0 , 4.3
Mo b [ TyTy( )} . ( )
€ and P are the field theory’s energy density and pressure respectively, and the ‘~’
signifies that these are equal to within about 10% [3,87)[T] A priori, this result is not
obvious. It suggests that when T = 0, i acts as an ‘effective hydrodynamic scale’; at

least as far as sound propagation is concerned.

In this work, a numerical study of the behaviour of the longitudinal poles for a
fixed momentum ¢ < 1 as the temperature is increased from 7' = 0 to T > u, will
be presented. Of particular interest is the behaviour of the sound mode and whether
there is a collisionless/hydrodynamic crossover as in the D3/D7 theory and Landau’s
theory of Fermi liquids. What is discovered is that the attenuation of the sound mode
shows no significant temperature dependence over the range T' < p where we may
have expected to find LFL-like behaviour and above this it approaches the u = 0
hydrodynamic result [107,108] where the attenuation decreases like 7. Tts speed is
approximately 1/ V2 at all temperatures. This is in complete contrast to the results
for an LFL (as shown in figure . Such an outcome is not particularly surprising
since all available evidence suggests that this field theory is not an LFL. However, this
is also true of the D3/D7 theory and yet it possesses an LFL-like zero sound mode.
The present results show that this kind of mode is not generic to all strongly-coupled

field theories at large chemical potential which have a gravitational dual.

The other long-lived, longitudinal mode of the theory corresponds to a purely imag-
inary pole that forms when the branch cut along the negative imaginary frequency
axis dissolves at non-zero temperatures. This mode becomes more stable as the tem-
perature increases and when T > p its dispersion relation is that of the y = 0

hydrodynamic charge diffusion mode |108}109).

!The sound attenuation I'y is only known numerically and thus an exact comparison cannot be
made.
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In addition to the poles of the Green’s functions, the spectral functions of energy
density and charge density, is also computed, as the temperature is increased at fixed
g < 1. The energy density spectral function is dominated by the peak corresponding
to sound propagation at all temperatures. In contrast to this, the charge density
spectral function undergoes a crossover from being dominated by the sound peak
at low temperatures to being dominated by the diffusion peak at high temperatures
T > p?/q. Note that this mechanism is quite different than in the D3/D7 theory
where the sound poles collide to form the diffusion pole. Here, the sound and diffusion
poles coexist at all non-zero temperatures (that we can access numerically) but their
residues change and this results in the crossover. In the D3/D7 theory this crossover
was reminiscent of that in an LFL, but here we know of no such comparison - in
particular, the RN-AdS, crossover occurs outside of the ‘quantum liquid’ range T' <

where we may expect an LFL-like theory to apply.

As well as the previous results regarding the temperature dependence of the poles
and spectral functions at fixed momentum, their momentum dependence at various
fixed temperatures has also been calculated. The results show that the sound and
purely imaginary modes exist at all non-zero temperatures that can be accessed nu-

merically (7" > 0.0219u) with the dispersion relations

—ilD(T/ )@ + O(), (4.4)

5o L
V2

and
w=—iD(T/w)q + O(3*), (4.5)

where the functions D(T'/u) and I'(T'/p) are computed numerically. For this reason,
and the fact that it becomes the ;1 = 0 hydrodynamic charge diffusion mode in the
T > p limit, this purely imaginary mode will be labelled the diffusion mode. When
G > 1, these modes no longer dominate the low-energy properties of the theory and

one must consider additional poles of the Green’s functions also.

Finally, the properties of sound propagation in the theory, at some fixed momentum
q, over the (T, 1) plane, are investigated. As discussed above, it is known that when
w =0, T is the hydrodynamic scale and sound will propagate provided its momentum
satisfies ¢ < T'. It is also known that when T" = 0, there is an effective hydrodynamic
scale p in that there is a long-lived sound mode provided that ¢ < p. It is found
that when both of these scales are non-zero, there will be a long-lived sound mode

provided that any one of them is much larger than the momentum. In other words,
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sound will propagate for any value of /T, provided that one considers small enough

momenta.

The structure of the rest of this chapter is as follows. In section the RN-
AdS, solution of the four dimensional Einstein-Maxwell theory with a cosmological
constant is presented, as well as the gauge-invariant fluctuations of the bulk fields
that are used to compute the poles of the retarded Green’s functions and the spectral
functions. Section contains the numerical results showing how the properties of
the sound mode change as we increase the temperature at fixed ¢ < 1. In particular,
it is demonstrated that these properties are significantly different from those of an
LFL and of the D3/D7 theory. In section [£.4] the behaviour of the other long-lived
mode of the system - the diffusion mode - as T is increased for ¢ < 1, is explored.
The dependence of the energy and charge density spectral functions on 7T for ¢ < 1,
is also examined. Section contains results for the poles and spectral functions as a
function of g at fixed temperature T' < u. The existence of an effective hydrodynamic
scale in section is then studied, by examining the properties of the sound mode
as a function of both ¢/u and ¢q/T.

4.2 The RN-AdS, background and fluctuations

The action and background solution

The gravitational theory under investigation is the four dimensional Einstein-Maxwell

theory with a cosmological constant, described by the action

1
S=— [/ d*zv/—g (R —2A — LQFWF’“’) + 2/ d*x+/|h| (K + counterterms)} ,

where A = —3/L?, h is the induced metric on the boundary of the space-time, K is
the extrinsic curvature on this boundary and F),, is the field strength of a U(1) gauge

field A,. This is a consistent truncation of D = 11 super-gravity [110,/111].
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This theory has a charged, asymptotically-AdS black hole solution with a planar
horizon: the planar AdS, Reissner-Nordstrom black hole (RN-AdS;)

2f() L
dt* + ﬁd +ﬁdy+ f() r?,

f()—l—(1+Q)< ) e (M) (4.7

Qro To
A::——<1——)
> r)’

2 _
ds; = —

where r is the bulk radial co-ordinate, rq is the position of the horizon and () deter-
mines the U(1) charge of the black hole. In the full D = 11 supergravity theory, it
is the decoupling limit of the geometry created by a stack of M2-branes which are
rotating (in a specific way) in the directions transverse to their world-volume [111].
The bulk U(1) gauge field is dual to a U(1) R-current in the field theory on this

world-volume.

This solution has one tunable dimensionless parameter () which determines the

ratio of the chemical potential in the field theory to the temperature

po_ 4nQ

T 3-Q

(4.8)

It takes values between 0 (the zero chemical potential limit) and v/3 (the zero tem-
perature limit). The thermodynamics of the dual field theory are well-known [110]. It
is important to note that the entropy density has the unusual property of being non-
zero when T' = 0, which will naturally lead to the next system that will be studied,
that of the Electron Star.

Fluctuations around equilibrium

Of interest is the response of the field theory to small perturbations around the
equilibrium state - this is encoded holographically in the linear response of the black

hole to perturbations around the background solution (4.7)):

Gy = G + Iy,

(4.9)
A, — A, +a,.

The residual rotational invariance in the (z,y)-plane is used to choose the momentum
to flow only in the x-direction of the field theory, without loss of generality. One may
then classify fluctuations according to their parity under y — —y. The fluctuations

which are even under this operation (hyy, hyy, Brr, Bee, hyr, Begy hot, ar, a; and ay)
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decouple from those which are odd (hy,, hys, hy, and a,) at linear order [109]. The
indices are raised and lowered with the background metric. In the following of interest
are only the even fluctuations which will be referred to as ‘longitudinal’ henceforth,
as they encode the response of the fields parallel to the direction of momentum flow.
The metric and gauge field fluctuations are coupled within this longitudinal sector
which means that the retarded Green’s functions of the longitudinal components of
the field theory energy-momentum tensor 7" and U(1) conserved current J* are not

independent.

Two properties of the retarded Green’s functions G& L0 Will be particularly inter-
esting. The first is the poles of the Green’s functions in the complex frequency plane.
These poles correspond to the field theory excitations - the real part of each pole is
its propagating frequency and the imaginary part is its decay rate. One is primarily
interested in the long-lived excitations - those with the smallest imaginary part. Note
that if any excited bulk fields are coupled, their dual field theory operators share a

common set of Green’s function poles.

The second object of interest is the matrix of spectral functions

XaB (W, q) =1 (GngB (w,q) — GgBoA (w, Q)*) ) (4.10)

which contains information about the rate of work done on the system by small ex-
ternal sources for O and Op with frequency w (see, for example, [10]). Modes which
couple strongly to external sources in this way are visible in the spectral functions
as tall, narrow peaks centred on the propagating frequency and with a width pro-
portional to their decay rate. Such a peak will be produced by a pole of the Green’s
function with small imaginary part provided that the residue of the Green’s function
is large enough at this pole and that there are no other poles near it in the complex
frequency plane. Unlike the existence of a pole, the residue at a pole differs between
the Green’s functions of a set of coupled operators and hence despite the fact that
they have a shared set of Green’s function poles, the spectral functions of coupled op-
erators can be very different. The focus of interest will be the energy density spectral
function xrurt = X and the charge density spectral function x50 = xgq, which
are real quantities, and dictate which modes couple strongly to external sources of

energy density and charge density respectively.
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Gauge-invariant variables and Ward identities

The retarded Green’s functions can be computed from the on-shell action of the

gravitational theory which generically has the form

dwd?q
Son—shell = / [¢I( _Q)QIJaT¢J (7", W, q)+¢1(7”7 —Ww, _Q)CIJQSJ(n W, Q)] 9
—00,w>0 (271-)

(4.11)
where ¢; label the perturbations of bulk fields which are dual to field theory operators
O;. To obtain the retarded Green’s function of two operators GOAOB (w, q), one must
find solutions to the bulk field equations which satisfy ingoing conditions at the black
hole horizon and asymptote to
1, I=A 1, J=18B

’ and ¢y (r — oo,w,q) =< ,
0, I#A 0, J#B
(4.12)

near the boundary. GgAOB (w, q) is then given by the integrand of the on-shell action

o1 (r — 00, —w, —q) — {

evaluated on these solutions [71}/112].

The longitudinal sector of the theory contains ten fields whose excitations are cou-
pled. The equations of motion and on-shell action for the excited longitudinal fields
can be simplified considerably by noting that the theory has a U(1) gauge symmetry

which acts on the gauge field fluctuations as
a, — a, — A, (4.13)
and a diffeomorphism symmetry which acts as

h,uu — h;w - vufzx - vufua

(4.14)
a, = a, — VA, — ALV £,

to linear order, where V is the covariant derivative with respect to the background
metric |[113]. One can form two linearly-independent variables which are invariant
under these transformations

L2Al(r
q t( )h

2r iy

w2 2 / ’
Zo(r,w,q) = Q:tht + 5 haa + —hu + ! f( )h vy <1 + g];”((:)) - q;}}(r)) ,

and to linear order in the fluctuations, one can write the theory in terms of these

Zi(r,w, q) = wag(r,w, q) + qa,(r,w, q) —
(4.15)

variables. In particular, this reduces the set of ten coupled equations to a set of two.
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It also allows one to write the on-shell action in the form

dwd?
Son—shell = / —q [ZZ (7’, —Ww, _Q) gijaij (T, w, Q)+¢I (T‘, —Ww, _Q) CIJ¢J (7’, w, Q) )
r—o0,w>0

(2m)°
(4.16)
where i = 1,2 and ¢; denote the fundamental fluctuations {hy, by, hyy, P, ar, az b
The C;; terms are analytic in w,q and hence contribute only contact terms to the
retarded Green’s functions (i.e. terms analytic in w,q). These Z; variables are a
generalisation of those of [114] to non-zero chemical potential (and in 341, rather

than 441, dimensions).

Written in this way it is seen explicitly that, neglecting contact terms, the on-shell
action for a solution that has the form a, (r — oo, tw, £¢q) — 1 (with all others fields
zero in this limit) differs from that for a solution with a, (r — oo, £w, £¢q) — 1 (with
all other fields zero in this limit) only by the factor ¢?/w? in the definition of the

variables Z;, and similarly for the other fields.

This property of bulk gauge-invariance thus generates a number of relationships

between the retarded Green’s functions of the corresponding field theory operators:

R W ~R R w? g

GJa:Jt :—GJtJt, GJsz :_QGJtJt, (417)

q q

R w? g R W ~R R w” R
GTzth = ?GthJt, GthJt = EGTttJt, GTnyt =1|1- ? GTttJt, ceey
(4.18)
2
w w

G?sztt - ?G?ttTtt, G?ttht — gG?ttTﬂ, ey (419)
where the ‘...” represents other similar relations, and these equations should be un-

derstood to hold up to contact terms. These are precisely the Ward identities of the
field theory.

Thus not only do these gauge-invariant variables simplify the equations of mo-
tion for the bulk fluctuations, they also explicitly encode the Ward identities of the
field theory. The contribution of the contact terms to the diagonal retarded Green’s
functions is purely real, and thus they don’t affect our results for the spectral func-
tions . and xqq. Note that the contact terms cannot be written in terms of these
gauge-invariant variables - it is believed that this is because the linear diffeomor-
phism transformations are not the correct ones to apply to the action which is

quadratic in fluctuations.
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It should be noted that these are not the only possible gauge-invariant choice
of variables. Another choice is the Kodama-Ishibashi variables which involve radial
derivatives of the bulk fields, and have the advantage that the two equations of motion

in these variables decouple [115].

Equations of motion and on-shell action in dimensionless vari-
ables

It is convenient to work with the dimensionless radial co-ordinate u = r/rq. For

T > 0, the following gauge-invariant variables are used

> - _ qu
7 — Ga, ~ Wy,
1 (u,w, q) = wa, + qay oy

Zy (u,w,q) = it | 20h] +&°hg — 3 F (w)hi + 3 F(w) (1 i 15;/((5)) - q;fuim) ]ZL;)

where f(u) = 1 — (1 + Q*)/u® + Q*/u*. The two linearly-independent, coupled

equations of motion in these variables, for Z; (u,, q) and Z, (u,@, ) can be written

in the form

" (4.21)
. .

Y
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where the dependence of Z; 5 on @ and ¢ has been suppressed, and the coefficients

o UL E 4 20 () [+t @ — f()e?)
B f(w) (@ — F0)P) |
fy = —ig S WP +2(Q°F —u' (& — f(u)g?)]
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Q[ (@ — f(u)P) — 4f (u)] 17
As 5 f (u)? e @ WD
SR - S) + Q]
@ = WD) WP WE — 1@ — TP
A, 4Q% + ud f'(u)

:iﬁﬁ1)wﬁ() 1@ J@WP)
B = i@ WP~ 1 = f0)P)
F @ WD) ’

B 1 —16u* f(u)*g*
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+2f ()2 [—4Q* + 16u*@® + u® (f'(w) + uf"(u)) ¢*]
— f(u )[ 83" + 16w + ug{ f/(u) (2Q°F" — 20" +w'f' ()
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f%—uwwﬂw—fmmammw¢—4@@—ﬂan{‘”) A

— f(W)@® [-4Q°0* + uf'(u) (Q°F — 3u*@® + v’ ' (u)T*) + u° f" (u)@?]
+ f(w)?q [—4Q% + o’ (f'(u) + uf"(u))] }

1

B = AP e

4 (0 — f(u)@?)] {_4Q fu)q + Q°w0 [uf'(u)q* — 40°]
+ fw)@® [8Q°0% + uf'(u) (u' f"(u) + 5u® [ (u) — Q°F) ] }

(4.22)

In these variables, the off-shell action to quadratic order in the fluctuations is of
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the form

* dwd? - _ _
7“L/ du = [ 610,70 (1, 0, =)0 71 (1, 2,0) + G120u 7 (1, —, ~0)0uZa (0, 0,0)
1

S (e
+ g218u22(u7 —w, _Cj)auzl (U, W, Q) + g228u22(u, —w, _Q)auZQ(UW W, Cj) + .. ] )
(4.23)
where the coefficients are
G 2w
o2 f(w)g®
Gy — 2iquf(u)
27T @ fWP) 4@ — W) + uf W) (424
G = —G1a,
2ut f(u) [(@? = F(w)) + ZF]
g22 = ’
Q@ = [()@) [-4 (@ = [f()@?) + ¢uf' ()]’
and the ‘..." represents terms with less than two u derivatives (which cannot gener-

ically be written in terms of these gauge-invariant variables). These coefficients,
combined with the equations of motion listed previously, allow one to compute the
Green’s function’s poles and spectral functions x., Xg¢ by following the method
of [112]. Note that the counter-terms in (listed, for example, in [3]) do not affect
these quantities.

To compute the poles and spectral functions, the numerical procedure described
in [112] is used. This procedure involves a numerical check which relies on the co-
efficients of the one-derivative terms in the action in addition to the two-derivative
terms. Hence to obtain a numerical check in the present gauge-invariant formalism, a
boundary ‘counter-term’ has been added (distinct from those mentioned previously)
to the off-shell action of the form

c.t. _i Mi N A c.t. R — _
S = 2/@21 /du (27)3 du |:¢I (U, w, Q) D[J (U,w,q) ¢J (U,UJ,C])] , (425)

where D$ (u, @, ) was chosen such that the full off-shell action could then be written
in terms of the gauge-invariant variables Z; 5. This boundary term does not alter the
equations of motion and as the coefficients D§- are purely real, it does not have any

effect upon the poles of the Green’s functions or the diagonal spectral functions y..

and xgo-

At T' = 0, on the other hand, the Kodama-Ishibashi variables are used following

the methods described in [3]. The equations of motion in these variables are given in
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appendix A of [3]. Accurate numerics at 7' = 0 are only expected above ¢ 2 0.1, and

hence only 7" = 0 results in this range are presented.

4.3 Temperature dependence of the sound mode

The primary motivation for studying this theory is that it supports stable, propa-
gating excitations of energy and charge density at zero temperature and large chemical
potential § < 1. These sound modes at zero temperature have a dispersion relation
of the form (4.1) where the speed is v, = 1/v/2 [3]. One would want to know what
effect the increase of temperature has upon this mode - in particular one is interested
to see if it shares the characteristics of the ‘zero sound’ mode of a Landau Fermi lig-
uid. This comparison can be made by studying the sound attenuation as a function

of temperature for T' < p and looking for the three different regimes shown in figure

41l

Note that when = 0 and w,q < T, there are sound modes with the dispersion
relation . X
w=4+—q—i——q +0(¢*). (4.26)

V2 81T

At non-zero u, we would expect to recover these results when y < w,q < T', which
is outside of the ‘quantum liquid’ regime T" < p where any LFL-like behaviour would

be present.

The temperature dependence of the real and imaginary parts of the sound mode
are shown in figures and for various ¢ < 1. The finite temperature numerical
results are shown along with 77 = 0 numerical results (for § > 0.1 where accurate
results can be obtained) and the p = 0 analytic result .

The plots show that both the real and imaginary parts of the mode have a non-
trivial temperature dependence. As the temperature is increased from zero, finite
temperature corrections cause small changes to the real part of the sound mode whose
sign depends upon the value of g. At sufficiently high temperature, 7'/u 2 1, the real
part quickly asymptotes to the 1 = 0 hydrodynamic result . The imaginary part
of the sound mode shows similar behaviour. This is slightly surprising - it indicates
that the p = 0 result is valid when ¢ < pu < T. This will be reviewed in
section
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Figure 4.2: Variation of the real part of the sound mode as the temperature is increased.
The crosses mark the T' = 0 numerical results, the dots are the numerical results for 7' > 0,

and the solid lines are the y = 0 analytic result (4.26]).

To make an easier comparison with Landau Fermi liquid theory, the temperature

dependence of the imaginary part of the sound mode is plotted on a logarithmic scale

in figure [1.4] These plots show only the region 7' < p where one may expect such a

theory to apply, and the imaginary part of the sound mode is normalised by @y, its

value at the lowest non-zero temperature that can be accessed.

There is a stark contrast between these plots and the results expected for an LFL

zero sound mode, shown in figure E] Landau’s theory predicts that as the tem-

2The magnitude of the frequency of the sound mode in the RN-AdS, theory is of the same order

as its momentum for the results shown, and thus comparisons are made to the LFL results with
w—q.
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Figure 4.3: Variation of the imaginary part of the sound mode as the temperature is in-
creased. The crosses marks the T' = 0 numerical results, the dots are the numerical results
for T' > 0, and the solid lines are the ;1 = 0 analytic result (4.26)).
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Figure 4.5: A superposition of the plots of the temperature dependence of the normalised
imaginary part of the sound mode when ¢/u = 0.2 for both the D3/D7 theory and the
RN-AdS, theory. Crosses denote the D3/D7 numerical results [2] and circles denote the
RN-AdSy results. Moving from left to right, the dotted lines mark the transition points
between the quantum and thermal collisionless regimes, and the thermal collisionless regime
and the hydrodynamic regime, in the D3/D7 theory. These occur when w ~ T and w ~ T2/
respectively. There are no results for the D3/D7 sound mode in the hydrodynamic regime
since the hydrodynamic sound mode is suppressed in the probe brane limit. We refer the
reader to [2] for a more detailed discussion of these features.

perature is increased at fixed ¢ and u, the imaginary part of the zero sound mode
should be approximately constant up until 7'/p ~ ¢/p. Between T'/u ~ ¢/p and
T/u ~ /q/u, it should increase like T2. Above T/u ~ +/q/p and below T/p ~ 1, it
should decrease like 72. None of these features are present in our results. The mag-
nitude of the imaginary part of the sound mode in our theory shows no significant
temperature dependence until 7' ~ u. Above this, it begins to approach the p = 0,
w,q < T result where it decreases as 1/7.

An explicit comparison between these RN-AdS; results and the corresponding
D3/D7 results is shown in figure . This highlights the fact that the D3/D7 sound
mode behaves like the LFL zero sound mode, whereas the RN-AdS, sound mode does

not.
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4.4 Further temperature-dependent properties of
the theory when ¢ < 1

In addition to the sound modes at T" = 0, there are other propagating modes lying
deeper in the complex frequency plane as well as a branch cut along the negative
imaginary frequency axis [3|. In this section, changes in this configuration are studied
as T'/u is increased at a fixed momentum ¢ < 1. In particular, attention is focused
on the longest-lived purely imaginary mode - this exists at non-zero temperatures as
the branch cut mentioned above dissolves into a series of poles when T" # 0. We note
here that when ¢ = 0 and w, ¢ < T', the longest-lived purely imaginary mode has the

dispersion relation

R S 4.9

corresponding to hydrodynamic charge diffusion [109]. One expects to recover this

behaviour at non-zero p in the limit p < w,q < T

It is also shown in this section how the energy density and charge density spec-
tral functions of the theory change with the temperature, and in particular how the
residues of the long-lived modes play an important role in the transition from sound

domination of the charge density spectral function to diffusion domination.

Temperature dependence of the diffusion mode

The study begins with the longitudinal diffusion mode of the theory. At T' = 0, the
negative imaginary frequency axis is a branch cut [3]. At non-zero temperatures, this
branch cut dissolves into a series of poles along the axis and generically these become
less stable (they recede into the complex plane) as the temperature is increased.
However, one of the modes is special in that it becomes more stable as the temperature
is increased, and at very high temperatures it becomes the . = 0 hydrodynamic charge
diffusion mode . Figure shows how the imaginary part of this mode changes
with the temperature. Its real part is always zero. Unlike for the sound mode, this
plot has the same shape for all values of 0.01 < g < 0.5 and so we show only one for
brevity. The decay rate of this mode decreases monotonically as the temperature is
increased, and is described well by the p = 0 result when T 2 u. Again, it is
non-trivial that the p = 0 result holds in the regime ¢ < u < T'. Note that there is
no T' = 0 point on this plot because it does not make sense to ask where the pole is

in that case - the whole negative imaginary frequency axis forms a branch cut.
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Figure 4.6: Variation of the imaginary part of the longitudinal diffusion mode as the tem-
perature is increased. The dots are the numerical results for 1" > 0, and the solid line is the
p = 0 analytic result (4.27).

Movement of the poles in the complex frequency plane with
temperature

It is instructive to view the simultaneous movement of the Green’s function poles
described previously in the complex frequency plane as the temperature is increased
- this is shown in figure 1.7 As described previously, the sound and diffusion modes
both become more stable, approaching the real axis as the temperature is increased.
Note that the sound mode is closer to the real axis than the diffusion mode for all
values of the temperature and thus it is always the longest-lived mode of the theory.
However this does not mean that it always dominates the low-energy properties of the
theory, as it will be shown in the following subsection. Finally, it must be noted that
both the sound and diffusion poles coexist for all non-zero values of the temperature
that we can access numerically (7" 2 0.02u). This is in contrast to the strongly-
coupled D3/D7 field theory in which the low temperature sound poles collide to form
the high temperature diffusion pole [2].

In addition to the sound and diffusion poles, there are ‘secondary’ modes corre-

sponding to poles lying deeper in the complex frequency plane. These are much

shorter-lived than the sound and diffusion poles when ¢ < 1 and become less stable
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Figure 4.7: Movement of the sound and diffusion poles in the complex frequency plane as
the temperature is increased at fixed ¢ = 0.5.
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as the temperature is increased. They do not have a significant effect on the low
energy properties of the theory when ¢ < 1 and hence their temperature dependence

is not shown.

Variation of the spectral functions with temperature

Up to this point, attention has been exclusively focused on the positions of the poles
of the retarded Green’s functions in the complex frequency plane. While these are
interesting, they do not tell the full story of how charge and energy are transported
in the theory. To investigate this, one needs to turn one’s attention to the spectral
functions of the energy density and charge density. These determine the average work
done on the system when an external source of some frequency is applied to either the
energy density or the charge density respectively. Despite the fact that the retarded
Green’s functions of both of these operators have the same set of poles, their spectral
functions are quite different as shown in figures [4.8) and [4.9

At very low temperatures, both spectral functions are dominated by the peak corre-
sponding to sound propagation. As the temperature is increased, the spectral function
of the energy density undergoes a fairly unremarkable change - the sound peak be-
comes narrower and taller (corresponding to a longer-lived excitation) but completely
dominates at all temperatures. In contrast to this, the sound peak of the charge den-
sity spectral function becomes smaller (and narrower) as the temperature increases.
At a sufficiently high temperature it becomes so small that the peak around w = 0,
corresponding to the high temperature diffusion mode, dominates the spectral func-
tion. At what temperature does this crossover occur? In figure [4.10} it is shown how
the crossover value of /T (i.e. the value where the sound and diffusion peaks are of
the same height) varies with ¢/u. There is a clear linear relationship, signifying that

the crossover occurs when
Tcross, ~ HQ/% (428)

and that diffusion dominates when 7' > u?/q. Note that since we are studying the
range ¢ < 1, this condition automatically implies that 7" > u. This crossover is
reminiscent of the p — 0 limit. In that limit, the fluctuations of 7*” and J* decouple
resulting in a hydrodynamic sound pole in the T"” correlators and a hydrodynamic
diffusion pole in the J# correlators. The charge density spectral function in this limit
is shown in [116]. However, it is not possible to interpret the crossover shown above
to be due to approaching this limit, since it corresponds to the limit u < ¢, T of the
results, whereas the regime studied here is ¢ < p < T
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Figure 4.8: The energy density spectral function for § = 0.5 as the temperature is increased,
in units of 2u?ry/k%. The peak due to sound propagation dominates at all temperatures.
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Figure 4.10: The dependence of the crossover value of /T upon q/pu. The best fit straight-
line to these results has intercept ~ 0.003 and gradient ~ 0.34.

In the D3/D7 theory, the corresponding crossover occurred for T s, ~ +/qu and
was reminiscent of the collisionless/hydrodynamic crossover in an LFL [2], but no
such explanation is available here. In particular, the crossover observed here in the

RN-AdS, theory occurs outside of the ‘quantum liquid’ regime T < p.

4.5 Dispersion relations at fixed temperature T' <
1]

In the previous sections, it has been established how an increase in temperature
affects the sound and diffusion modes that exist at some fixed, low momentum q < pu.
The next interesting object to study is the dispersion relations of these modes at a

fixed temperature 7" and chemical potential . This is done by fixing 7'/p and varying

q.

The sound mode dispersion relation

In [3], the dispersion relation at 7' = 0 and § < 1 was found numerically to be
of the form with v, = 1/ V2 and 'y = 0.083, which is remarkably close to the
dispersion relation expected from the ‘zero temperature hydrodynamics’ described in
the introduction and in [3], which has I'yg = 0.072 rather than 0.083.
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Figure 4.11: The temperature dependence of the quadratic term I" in the imaginary part of
the sound dispersion relation . Circles show our numerical results, the solid line shows
the o = 0 analytic result (4.26)), the ‘+’ shows the T = 0 numerical result of [3] and the ‘x’
shows the prediction of ‘T" = 0 hydrodynamics’.

Here a dispersion relation of the form (4.4) was found to be valid for non-zero
temperatures also. The quadratic coefficient of the attenuation I' as a function of
temperature is shown in figure These results were obtained by fitting over the
range 0.01 < g < 0.5, and an example of the fit for 7" = 0.0219u is shown in figure
. At high temperatures T > p, it agrees with the p = 0 result , and at low
temperatures 7' < p it approaches a similar value to the 7" = 0 result of |3]. Although
the results at very low T' do not match smoothly onto the 7" = 0 numerical result
of [3], they differ only by around 10% and it is believed that this is most likely caused
by numerical inaccuracies, which grow as the temperature is lowered. The proximity
of the numerical results to the prediction of “I" = 0 hydrodynamics’ is surprising -
ultimately, an analytic calculation will be needed to determine whether these small
discrepancies are due to inaccurate numerics, or whether this proximity is in fact a
coincidence. The general trend of the results is clear however - as the temperature

increases, the sound mode becomes more stable, as was observed in section
When g 2 1, this series form of the dispersion relation is useless. Figure [4.13]

shows the dispersion relation of the sound mode when ¢ > pu > T, at two different

temperatures: T'=0 and T = 0.159u. The dispersion relations have the same shape
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Figure 4.14: The dispersion relation of the diffusion mode at two different temperatures:
T = 0.0219u (circles) and T' = 0.159u (crosses) with the polynomial best fit at 7' = 0.0219x
shown also (solid line). We cannot track the 7' = 0.0219x mode for as high momenta as the
T = 0.159u mode.

at both temperatures - the real part asymptotes to w = ¢, and the imaginary part

tends to a constant, in the region ¢ > u > T.

The diffusion mode dispersion relation

Recall that at non-zero temperatures, the branch cut along the negative imaginary
frequency axis becomes a series of poles and that the most stable of these becomes
the p = 0 diffusion mode at high temperatures. Figure shows the imaginary
part of the dispersion relation of this pole at two fixed, low temperatures 7' = 0.0219u
and T = 0.159u (its real part is always zero). At both temperatures, the pole recedes
quickly into the complex plane as the momentum is increased. Performing a polyno-
mial fit to the imaginary part in the range 0.01 < ¢ < 0.5 at the very low temperature
T = 0.0219p, a dispersion relation of the form is found, with D ~ 0.83. The fit is
shown in figure [4.14b] This therefore is an analogue, at low temperatures T < ¢ < p,
of the y =0, ¢ < T hydrodynamic charge diffusion mode.

In fact, this quadratic form of the dispersion relation (4.5)) is valid for all non-
zero temperatures that could be accessed - the dependence of D upon T is shown in
figure 4.15, D was extracted from a fit over the range 0.01 < ¢ < 0.5. It decreases

monotonically as the temperature is raised, in agreement with the results of section
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Figure 4.15: The temperature dependence of the quadratic coefficient D in the dispersion
relation of the diffusion mode (4.5). The circles show the numerical results and the solid

line is the analytic 1 = 0 result (4.27).

[1.4] and approaches the p = 0 result (4.27) in the limit 7' > p. Again, it should be
noted that this is despite the fact that the regime p > ¢ is studied.

It has not been possible to obtain the numerical accuracy required to access non-
zero temperatures lower than 7' = 0.0219u and hence it is impossible to say whether
the mode exists with a quadratic dispersion relation for arbitrarily low non-zero tem-
peratures. It is emphasized again that this mode does not exist at 7" = 0 itself (unlike

the T'= 0 ‘R-spin diffusion’ mode of [91]), as there is a branch cut in that case.

Dispersion relations of the secondary modes

Figures [4.16] and [4.17) show the dispersion relations of the second stablest (‘sec-

ondary’) propagating and purely imaginary modes at two different temperatures.
These differ qualitatively from the sound and diffusion modes described above in that
w # 0 when ¢ = 0. At high momenta ¢ > u > T, the propagating secondary modes
have the same form as the sound modes - their real parts asymptote to Re (w) = ¢
and their imaginary parts tend to a constant. The purely imaginary secondary mode
recedes into the complex plane as the momentum is increased, and the rate at which

this happens increases with the temperature.
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Dispersion relation of 2nd stablest propagating mode

8 AR ‘ Dispersion relation of 2nd stablest propagating mode
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Figure 4.16: The dispersion relation of the second stablest propagating mode at two different
temperatures: T = 0 (circles) and 7" = 0.159p (crosses). The dashed line is the line
Re (@) = q.

Dispersion relation of 2nd stablest purely imaginary mode
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Figure 4.17: The dispersion relation of the second-stablest purely imaginary mode at two
different temperatures: T' = 0.0219u (circles) and T = 0.159 (crosses).
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Movement of the poles in the complex frequency plane with
momentum

It is instructive to view the simultaneous movements of these poles in the complex
frequency plane as the momentum is increased. This is shown in figure for
T = 0.159u. It is apparent that as ¢ is increased, the purely imaginary modes both
become less stable as described previously. This figure shows that the diffusion mode
destabilises much quicker than the secondary imaginary mode. The propagating
modes show a different behaviour - their speeds both increase but their imaginary
parts move in opposite directions and begin to approach each other in the complex
plane as ¢ increases. They eventually cross, before moving off horizontally together
along the relativistic trajectory Re (@) = ¢. At these high values of ¢ it is clear
that our original separation of modes into the stablest (sound and diffusion), second

stablest ete. is of no value.

Variation of the spectral functions with momentum

Finally, attention is turned towards the spectral functions of the theory at low
temperatures and as a function of the momentum . These are shown in figures 4.19
and for T'= 0.159u. At ¢ = 0.5, the lowest momentum shown, both spectral
functions are completely dominated by the peak due to sound propagation. As the
momentum is increased, this peak becomes smaller and wider and when ¢ 2 p, it
no longer dominates the spectral function - a peak due to the secondary propagating
mode also becomes visible. As the momentum is increased further, these two peaks
merge into one peak which moves with speed Re () = ¢ and constant width. This is
a direct reflection of the two corresponding Green’s function poles approaching each
other in the complex plane. At high momenta, the value of the spectral function is
very small at low frequencies w < ¢ and it only becomes significant when w 2> g. Note
that there is no significant difference between the charge density and energy density

spectral functions in this regime.

4.6 An effective hydrodynamic scale

As discussed previously, when p = 0 there is a long-lived sound mode with mo-
mentum ¢ provided that ¢ < T, and when 7" = 0 there is a long-lived sound mode
provided that ¢ < p. In the first instance, this is the regime of applicability of hydro-
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Figure 4.18: Movement of the six longest-lived modes in the complex frequency plane as a
function of momentum, for fixed 7' = 0.159u. The crosses denote the sound and diffusion
modes, and the circles denote the secondary propagating and imaginary modes.
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Figure 4.19: The energy density spectral function for 7' = 0.159u as the momentum is
increased, in units of 2u%rg/k2. As the momentum is increased, the peak due to sound
propagation becomes less dominant.
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Figure 4.20: The charge density spectral function for T" = 0.159u as the momentum is
increased, in units of 27’0//@21. As the momentum is increased, the peak due to sound
propagation becomes less dominant.
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(a) Numerical results (b) Best fit

Figure 4.21: Contour plot showing [Im (@) |/Re (@) for the sound mode as a function of ¢/
and ¢/T and the best fit to these results: ag = 10.1 and a; = 8.3. Darker colours correspond
to smaller values (i.e. more stable propagation) and the contours show the values 0.02, 0.04,
0.06, and 0.08.

dynamics and the condition on the momentum is such that the perturbations occur

over much larger distance scales than the mean free path between thermal collisions.

The behaviour of the sound mode has been studied, when both 7" and p are non-
zero, to determine if there is some ‘effective hydrodynamic scale’ (or effective mean
free path) which determines whether sound propagation is possible or not in this more
general case. Figure is a contour plot showing the value of |Im (@) |/Re (@) -
which is the ratio of the decay rate to the propagating frequency - for the sound mode
as a function of ¢/u and ¢/T'. Darker colours correspond to smaller values (i.e. more
stable propagation). There is a clear pattern in the plot - provided that one of ¢/T
or q/p is small enough, there is stable sound propagation. It suggests that there is
an ‘effective hydrodynamic scale’ governing sound propagation which is qualitatively
of the form Eg = T (ap+ ...+ ao (/T)* + ...+ a1p/T) where o € (0,1). This
reduces to the correct form in the 7" = 0 and p = 0 limits separately. A fit of the
form ¢/(agT + aip) could not quantitatively reproduce the plot above - suggesting
that this ansatz is an oversimplification (for example, it neglects almost all terms of

the form (u/T)” in the denominator as well as higher order terms in ¢) - but does

106



give qualitatively the correct features for the sound propagation properties. Figure
[4.210) shows the best fit to this form.

An effective hydrodynamic scale of this form is also consistent with the fact that

the region ¢ < p < T reproduces the p = 0, ¢ < T results, as seen in section [4.3]
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Chapter 5

Electron Star

Useful as it is, the Reissner-Nordstrém (RN) system exhibits a major complication,
when using it in comparison with Condensed Matter systems. This comes from the
peculiarity of Reissner-Nordstrom horizon. In particular it is well known (e.g. [113])
that at zero-temperature, i.e. at extremality, the area of the horizon does not van-
ish and given that the black hole’s entropy is proportional to the horizon area, the
system has non-zero entropy at zero temperature. This contradicts standard intu-
ition from Condensed Matter. Many attempts have been made to construct systems
that would have the necessary Holographic ingredients, the RN system provides, but
circumventing the finite entropy limitation. One such system is the Electron Star.
The system consists of an ideal fluid of bulk (in 3 + 1 dimensions) fermions which is
set-up in a similar way that the Neutron Star was constructed as a solution of Ein-
stein’s equations, resulting in the Tolman-Oppenheimer-Volkoff equations [117,(118].
In the infra-red regime and at zero temperature, the system asymptotes to a Lifshitz
background geometry. The absence of a horizon resolves the finite entropy problem.
Similarly at finite temperature, the system is a composite, consisting of an AdS-RN,
that provides the temperature to the system, followed by the electron cloud and finally
another AdS-RN up to the ultraviolet regime.

Another indication that extensions to the standard AdS-RN system need to be
considered is that in many cases, RN black holes have been found to be thermody-
namically unstable, transitioning to different systems. This transition involves the
discharge of the black hole via various mechanisms, resulting in some bulk field carry-
ing the charge that was “hiding” behind the horizon. Such mechanisms have been ex-
tensively explored and some indicative examples include, charged scalar field conden-
sation [11], fermion Cooper pairing [119], D-branes emission [82}/120}/121], fermionic

back-reaction [82], confinement [122-124] and lattice emergences [125]. Moreover
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in [126] the more general issue of whether any finite-size-horizon black brane remains

stable at zero temperature, has been addressed.

5.1 Background

As introduced in [127H129] the Electron Star emerges as a solution to the Einstein-

Maxwell system with non-trivial stress-energy tensor. Namely, the Einstein equations

are
1 3 1 s 1 -
Ryw = 59w R = 139 = K b (FWFV = 19 Fpr F” ) + TW] (5.1)
while the Maxwell equations are
VP =2 P (5.2)

Here the crucial difference to the AdS-RN system is the non-trivial energy-momentum
tensor on the right-hand side of eq. , which given that one is dealing with a perfect
fluid, is

Tw = @+ p)uyty + 09 , Ju = ouy, (5.3)

Where p, p, o are the pressure, energy and charge density respectively. Moreover u,, is
the velocity field which is normalized so that u?> = —1, L is the characteristic length
scale of the AdS, e is the electromagnetic coupling, x Newton’s constant (in d = 3+1).
As is usual the case one makes the black-brane ansatz in search for solutions to this

problem. Namely
1
ds* = L? | —f(r)dt* + ﬁ(dﬁ +dy?) + g(r)dr? (5.4)

for the metric, while for the gauge field

A= L (5.5)

K

In order to unclutter the formalism, as well as in anticipation of numerical calcula-
tions, it makes sense to rescale the fields in order to absorb the various constants. To

achieve this one rescales

1 1 . 1
p—>p=L2/€2p, p—>p=L2’€2p, J_HT:esziU (56)
and works with the hatted variables. Introducing the ansatz , into the

Einstein-Maxwell system, one gets the following system of equations for the fields to
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be determined, i.e. f,g,h,p,p,o

! h,A
ﬁ’+(ﬁ+ﬁ)2f—f—\/;=0 (5.7)
1/7f ¢ 4 N
;(7+E+;)+(p+p)g—0 (58)
fh? 1
T——ﬁ%—g(S—i-p)—ﬁ—O (5.9)
W g4 p) - gv/Fo = (5.10)

2

At first glance, it seems as if one has an under-determined system, since there are
more fields than equations. However, if one takes into account the assumptions about
the fluid, i.e. that it is an ideal fluid constituting of zero-temperature fermiond] of
unit charge and mass m. Filling up the fermionic states on has a density of states
g(F)=p0FE Using that one can determine the pressure, energy and charge
density through

p= /MdEEg(E) , 0= /MdEg(E) , D=0 —p (5.11)

m m

where p is the chemical potential. Now comes a quite drastic approximation - the
locally flat space approximation. This means that the local chemical potential, which

governs the fermions, is assumed to be the tangent frame value of the gauge field, i.e.

1 e h
Hiocal = AE = At = -7 (512)
LVf avai
Inserting this assumption into the definitions ([5.11]) and rescaling everything
i i h
N g N f
p=p dEE*VE?2 —m? , 6 =0 dEEVE2 —m? |, p=—6—p (5.13)

where 3 = ei’; B and m? = ’Z—jmg. Intuitively the approximation used, precludes any
gravitational and electromagnetic interactions, which however is acceptable. To see
why assume that & ~ 1 and e® ~ /L < 1 which means that L3 ~ % > 1. This is
covered by the classical gravity limit, which is implicitly used and the fact that the

Compton length of the fermions is much smaller that the curvature scale.

I The zero-temperature approximation is justified because any correction to that would be of the
order % ~ O(ZF) < 1. Here T, pu are the local quantities carrying metric components to account for
their radial position.

23 is a free parameter of the system that will be later encountered.
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Equations ([5.13)) eliminate three of the unknown fields, in the equations of motion,

reducing them down to three, involving only f, g, h as dynamic fields

(L) e
/ 2

j—f—g—f+g(3+ﬁ)—r%=0 (5.15)

B+ 3—‘; (T};h, - f) —0 (5.16)

For finite temperature, as discussed before, at the deep IR the space-time is that

of AdS-RN. In particular using the forms ((5.4}5.5)), AdS-RN corresponds to

1 1 2\ r (12 12

r2 E 2 ) ry 77"3
B 1
g_7‘4f
. r
r+

where 7, is the location of the event horizon and fi the chemical potential. It is clear
from the above, and expressions that the star cannot be supported for any
temperature of the black hole. That is for a given mass m the star appears only when
the AdS-RN parameters f, g, h, that are governed by the temperature as the only
physical parameter of the black hole, become such that

. h d h
m—ﬁ,dr\/f—o (5.18)
All the information is in place now, to compute the background solutions for 7' > 0.
This is done by taking the AdS-RN at lower and lower temperatures and solving the
background equations numerically in the exterior. In order to do so
the coordinates have been switched (r — wu) so that the horizon is at v = 1 and
the AdS boundary at v = 0. This allows for a better depiction of the full range of
features. Moreover the controlling parameter used, is the dimensionless 7'/ instead
of just T. The results for T'/p = 0.00003,0.007,0.027,0.05,0.07,0.09,0.12,0.13 are
presented in fig. What becomes immediately obvious is that there is a critical
temperature, determined by eq. , over which the Electron Star background
equations have no non-trivial solutions, or in other words a finite star cannot be
sustained. Once the critical temperature is crossed the star emerges and as one

continues to lower the temperature, it eventually dominates the full space-time. It
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Figure 5.1: The Electron Star’s development as a function of 7'/u. The top curves corre-
spond to T'/u = 0.00003 and the bottom ones to 7'/ = 0.13. Here m = 0.36, 8 = 19.951.

should also be mentioned that the star eventually ends, at its surface (which is also
a function of the temperature), determined by the position where all p, p, o vanish.
As mentioned before there are two free parameters in this system, i.e. m and B,
which affect the star dynamics. As it will be shown momentarily these two are tied
in an interesting way at T' = 0, but for now an indicative set of plots depicting the
dependence of the star on them, is displayed in fig. [5.2]

The T = 0 case will now be examined more carefully. As seen above, as one

lowers the temperature the Electron Star background tends to dominate the space-

time. Strictly at 7" = 0, another very interesting solution to ({5.14 5.16]) emerges.
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Figure 5.2: Dependence of the Electron Star background on the parameters 1, B for T/n=
0.007.

That is the Lifshitz solution, i.e.

f TQZ Y g 7"2 Y 7"2 ( )
where z is dynamical critical exponent. By plugging the Lifshitz solution into the

background equations, the parameters g,, and h., are determined. In particular
climinating 3 from (eq. (5.14)) and (eq. (5.16)) yields

1
e 5.20
=2 (5.20)
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and substituting this in (eq. (5.14))) results in

o _ 36(z— 1) (5.21)
T (=) - 1)p '

Using the last two equations in (eq. (5.15])), one gets a rather complicated relation

between z, 3, m, namely

1 (z — 1)z BVz—1y/—m? — 2 +1((2—5m?) z — 2) —
1\ -z B i

_38mA, [— (z — 1)z o m — 92z 2 =
Y \/m(mz1>z+1>31g(,/_m2_g+1+¢31) e ”)) 0

(5.22)

which albeit analytically intractable, can be numerically solved (fig. , meaning
that out of z, B, m, only two are really independent. Taking sections of fig. one

10

20 05

15

Figure 5.3: The surface defined by eq. (5.22)).
gets z = z(B) (fig. and z = z(m) (fig. .
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Figure 5.4: (z, B) section of fig. giving the critical exponent as a function of /3’

It is instructive to identify some significant limits of the parameter space of this

model. At fixed m and /3’ — o0 the critical exponent is

1 64/3m2/3 1 5
= - 0.2
T T R )Pt — TR 1 68 G (5.23)
which at the massless limits (1 — 0) becomes
6
z=1+=4+... (5.24)
B
In the opposite limit B —0
36 1 3t log (A==
p= o 8w ) (5.25)

(1 _ m2)3/2 5 2(1 _ 7§»L2)3/2

An interesting connection with AdS-RN geometry can now be made. Setting m to 1
and taking B — 0 yields z = oo which in turn recovers the near-horizon geometry of
the AdS-RN black hole, i.e. and AdS; x R? space. In other words the back-reaction
of the fermions becomes negligible.

Of course the (5.19)) ansatz is asymptotically valid, i.e. when r — co. Depar-

tures from that limit induce corrections which can be computed in a series form. In
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Figure 5.5: (z,7) section of fig. giving the critical exponent as a function of .

fact these corrections are necessary to define accurate boundary conditions for the

perturbation fields, that will be encountered later on. Generically one writes

1

f=g (L fir™ o+ for® ) (5.26)

g= ‘3%0 (14 g™ + gor® +...) (5.27)
hoo

h = p (14 hyr™ 4+ hor®? +...) (5.28)

which can be inserted into the equations of motion and recursively determine the

coefficients f;, g;, h;, ;. In fact solving for «y yields three solutions

) =2+2 (5.29)

ok = 2+2 V923 — 2122 + 40z — 28 — m22(4 — 32)?
2 2/(1 —m?)z -1

(5.30)

Out of the three solutions a? corresponds to a relevant deformation, which generates

the finite temperature solution, a; is negative and corresponds to the coupling of an

irrelevant operator and o is positive and corresponds to the expectation value of
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that operator. The expressions for g; and hy are significantly more complicated
g1 = =367 + 1807 (Bguchlr/ (e — i) (e + 1) +2)
+ B gochos ((4h§o n?) (5900 o (B2 = 102) % = 63/ (hog — 172) (oo + m))
4367/ (he — 110) (how + m)) 622 <6a1 + Bgochoor/ (hoo — 1) (hoo + 1) (102 — 4h2 ))
+2 (72a§ ~ 18y (Bgoohio (oo — 110) (hoo + 172) + 2)
~Bgochoe (4% = 1) (Bgochos (h, = 11%) 2 = 6/ (oo — 1) (oo + 1) ))
—206%g%, (h2, —m®)?/
2 (1807 + 903 (Bghis (hoo = 17) (I +712)) /% = 2)
4B goches ((hw — 1) (heo + 1) (Bgoohoo (B2, — 12) 2 = 63/ (how — 112) (hoo + m))
18/ (hoe — 17) (oo + 7)) +62° (301 + Agachoe ((heo — 11) (oo + 1)) /)
+z (—36a% +9a, (Bgoohoo\/(hoo — ) (hoo + 1) (202 — 3h2.) + 2)
CBRGRR, (12, — 1)+ 60gshc (B — 1) (o -+ 1)) Y2 + 252, (12, — 1))

= Bgoo/ (hoo — 1) (heo + 1) (3ay (h2, (31%2 — 8) — 62hl, + 2im?)
+4ﬁgoohio \/(hoo — 1) (hoo + 112) = 881M° gochZ\/ (hoo — 111) (hoo + 110)
4B goo hoor/ (oo — 1) (oo + m)) /
e (1805’ + 902 (Bgoohoo (hoo — 17) (hoo + 1)) ¥/2 — 2)
B gooho ((hoo — 1) (heo + 70) (Bgoo (h2 — 2) 2
6/ (oo — 11) (oo = 11) ) = 18/ (how — 1) (oo + 1)
+622 (3(11 + Bgoohoo (hoo — 1) (hoo + 110)) 3/2)
2 (—36a% + 9, <Bgoohoo V(oo — 112) (how + 1) (2002 — 312 + 2)

—B2g2.h2, (h2, — 1) ® + 6Bgschoc ((heo — 1) (hoo +172)) 3/2) + 2822 (2 —?) 3)
(5.32)

In general f; is unconstrained and has been set to unity in the previous expressions.

Despite the complexity of the expressions, they can be iteratively solved to give as
many terms as necessary.
It is interesting to notice that in the pure Lifshitz background the chemical poten-

tial u = h/+/f takes a constant value. This can be seen by the fact that the pressure,
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energy and charge density of the Electron Star background are asymptotically con-

stant (fig. [5.6)).

15+

1.0+

0.5¢

00 £

Figure 5.6: The pressure, energy and charge density for z = 3, = 0.36. In these coordi-
nates r — oo corresponds to the IR (Lifshitz).

Before carrying forward any further, another point about Lifshitz backgrounds
needs to be stressed. It has been noticed (e.g. in [130]) that even though all the
curvature scalars of this background, i.e. Ricci (R = R /), Kretschmann (K =
R, .,R"P7), are all finite at r — oo, at that limit the tidal forces on a test string

vpo
dil;eprge. This would indicate that there is a true, naked singularity at r — oo which
cannot be lifted by String Theory. This however is slightly misleading. Lishitz back-
grounds are not solutions of vacuum Einstein’s equations. In other words there needs
to be matter contained in the space-time in order to support Lishitz backgrounds.
This means that when one studies the nature of this space-time at r — oo, one
has to take into account interactions with the relevant matter. Apparently, carefully
incorporating these interactions resolves the singularity [131].

Concluding the discussion about the Electron Star background the space-time
outside the Electron Star needs to be described. That exterior corresponds to an
AdS-RN, but with modified parameters (compared to interior RN-AdS when 7' > 0).
Those parameters are determined by matching the functions f, g, h across the star’s
surface when T = 0 or across the surface and across the interface between the star

and the interior RN-AdS when T > 0. More explicitly one writes down the generic
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RN-AdS functions as

02

1 N r? .

2 2
_ = — —Mr+—Q B -
JRN-a4s = ¢ (r2 r 5 ) » YRN—AdS rif

hrN—ads = ¢ (/:b - 7‘@)
(5.33)
where c is the speed of light which is now not necessarily equal to one. The rest of

the parameters are the standard RN-AdS ones. Then by writing

Jry-adsl,—,, = fesl,—,, (5.34)
9RN-AdS|y—y, = 9ES|.—,, (5.35)
IRN-4dS| =y, = 9ES|,—,, (5.36)

one gets a system of equations that can be solved to compute Q, M and c.

5.2 Thermo/Hydro-dynamics

Having reviewed the nature of the Electron-Star background, and before endeavouring
to study the linear response of the this system, it is useful to examine its thermo-
dynamic properties. This will provide a deeper understanding of the system and its
usefulness. From the Holographic dictionary it is known that the on-shell Euclidean

bulk action corresponds to the Free energy of the dual theory (£2). In terms of the

other thermodynamic parameters the free energy is

Q=M —jQ — 5T (5.37)

where § is the Bekenstein-Hawking entropy, M the mass parameter of the AdS-RN
black hole, ji the chemical potential and Q the charge parameter of the AdS-RN black

hole. From standard thermodynamics it is also known that
Q=—pV (5.38)

where p is the pressure and V the system’s volume. The bulk action reads

1 6 1
_ 4 2 ~
where Sgpy is the Gibbons-Hawking term, necessary to make the variational problem
well-defined and S, ;. is the counter-term prescribed by Holographic Renormalization,

necessary to cancel the infinity that emerges at r — 0AdS [73,[88]. In particular

1
Sen = — =~ dPr/2K (5.40)

2
2K* Joads
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and
1

Sep = ——
. 2
2K Joads

4
d%:zﬁ +Ly/7®R (5.41)

where 7 is the determinant of the induced metric, K the extrinsic curvature and ®)R
the three-dimensional Ricci scalar which in this case vanishes. Written out explicitly

the action is

Sp =LV f(r)g(r) (rPg(n)f' (r)* +rf(r) (nf'(r)g (r) + 2g(r) (=rf"(r) + 2f'(r)
+rh!(r)?)) +4f(r)* (g(r) (g (r) (b(r) +3) = 5) —rg'(r))) / (471" f(r)?g(r)?)

(5.42)
and after applying the background equations of motion one gets
L2 / -9 !
5, = L2410 =20 0) 513
r2dr 22/ f(r)g(r)
Similarly
L (cf'(e) + 4£() (V9 1))
Sen + Set. = (5.44)

2ek21/ f(€)V/9(€)

where € is an infinitesimal positive number, i.e. ¢ — 0. Given that the background
can be numerically computed, so can the action and consequently the free energy.
The results are presented in fig. and fig. 5.8 What one sees is that as the electron
mass m decreases so does the free energy, at low temperaturesﬂ Moreover as the
temperature is increased, a transition to the pure AdS-RN appears (for each m there
is a different transition temperature T;) as the free energies of different Electron Star
systems converge onto the AdS-RN free energy. Said differently for every electron
mass there is a temperature over which the RN black hole becomes big enough that
the Electron System ceases being supported and the black hole dominates the space-
time. Furthermore by varying the critical exponent (z) one sees that the higher z is,
the closer to the RN results one gets. This is in accordance with expectations, as at
the limit where z — oo one expects to recover the RN-AdS system. It should also
be noted that the AdS-RN free energy is always larger that the Electron Star one, in
the regime where the two systems can co-exist. This means that the Electron Star
configuration is thermodynamically preferred to the pure AdS-RN.

Having numerically computed the background, more thermodynamical quantities

can be computed. The entropy densityﬁ for example, which in the coordinate system

3Here temperature is measured with respect to the chemical potential through the dimensionless
parameter %
4As in the case of temperature and Free Energy, entropy density is measure in units of chemical
potential, which is the relevant scale. Seen in another way one computes the dimensionless entropy

density.
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Figure 5.7: Free energy of the Electron Star system for three electron masses m. The RN
result is overlaid for comparison.

where the horizon is placed at r =r, =1 is

% _ % _ Z_Z (5.45)
Extracting the chemical potential from the outer (i.e. the one on the boundary side of
space-time) RN one finds fig.|5.9] where the electron mass is varied and fig. Where
the critical exponent dependence is examined. The striking characteristic compared
to the RN case, is that the dimensionless entropy density vanishes as the temperature
(also dimensionless) goes to zero. This seems to be circumventing one of the major
issues encountered when studying the thermodynamics of theories dual to a pure RN-
AdS system, since in those cases, as seen by the RN curve in fig. the entropy
density remains finite even at zero temperature, which is a bizarre result from the
Condensed Matter point of view. With respect to the Electron Star parameters,
one again sees that higher electron mass and higher critical exponent leads to faster
convergence to RN.

Having the Free Energy and entropy of the system available, one can proceed to
compute every thermodynamical quantity. What is more pertinent however is that
one can compute at least one hydrodynamical quantity, namely the diffusion constant
D, for viscous fluids. It is known from standard liquid hydrodynamics (e.g. [28]) that

the diffusion constant is related to the shear viscosity, the energy density and pressure,
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Figure 5.8: Free energy of the Electron Star system for four critical exponents z. The RN
result is overlaid for comparison.

through
N

€E+p

D=

(5.46)

The standard practice in Holography literature is to use the KSY| relation [132]

n h 1
s

= = — 5.47
drky  4Am ( )

where in the last step natural units (kg = i = 1) have been used. Moreover, asymp-
totic symmetries indicate that the boundary theory should be conformal, imposing
the relation

e—2p=0 (5.48)

on energy density and pressure. Since the Electron Star system has not been examined
in this way before and mainly out of caution concerning the potential numerical errors
stemming from the fact that the background itself is only known numerically, both
these statements will now be verified. The first to be examined is the conformality
condition. The pressure can be extracted from the on-shell action through eq.
and the energy corresponds to the mass parameter of the outer RN part of the space-
time. It should be noted that since in the outer region ¢ # 1 it has to be properly
re-inserted in the calculation. From the numerical solution one indeed sees in fig.
that the condition holds.

5Kovtun-Son-Starinets
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Figure 5.9: The entropy density of the Electron Star for three electron masses (7). The
RN result is overlaid for comparison.

The next one, i.e. the KSS relation is a bit more involved to verify. Since the
entropy for this system is already known (5.45) one needs to calculate the shear
viscosity in an independent way. To do that one makes use of the Kubo formula that
relates the shear viscosity with the Green’s function of the shear part (in this case
xy) of the stress-energy tensor which, in turn, is computed, in standard Holographic
practice, by calculating the solution of the perturbation to the gravity mode of the
same symmetries [32,/109]. In particular

n = lim x /dtdmeZ”t([Txy(x),Txy(O)D = — lim lG’(cu, 0) (5.49)

w—0 2(,u w—0 W

where in the last part 0 stands for zero momentum. To complete this calculation one
needs the equation of motion for the zy component of the metric. The setup is similar
to that described by eq. and eq. with the caveat that the background is a
modified RN-AdS. The equations of motion are similarly

1 3 1 1
RMV - §gul/R - ﬁguu =’ |:_ (FMUFVU - ZQMVFPTFPT)] (550)

e2

perturbed at linear order. Fortunately at zero momentum, which is the case for this

calculation, the Einstein’s equation involving this mode, decouple giving

v () éut(r) Y () wgowf(r) Y(r) =
bt () & e () s e ) = 0 (5.51)
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Figure 5.10: The entropy density for the Electron Star for four critical exponents (z). The
RN result is overlaid for comparison.

where four, Gouts houwr are the RN parameters for the outer RN part of the space-time
determined by eq. (5.36). By expanding this equation near the boundary one sees

that its solution admits a series expansion of the form
hY = ag + a1 + agr® + asr® +agrt + ... (5.52)

The indices of the equation (determined by setting h,Y = r”f(r) and solving the

resulting equation so that f is regular) for the regular singular point 0, are v = 0, ﬂ,

which indicates that the leading and sub-leading terms in the expansion are ~ r° and

~ 13 and the rest of the coefficients are determined in terms of ag, as. In fact
w? _ 9a3*M — agQ*w?

ar =0 (p = o5 5 04 =

(5.53)

w2
where ¢, M, () are the RN parameters for the outer region. These relations will be
used as checks of our numerical solution. In order to proceed, eq. will be solved
numerically setting in-going boundary conditions on the horizon. Once the solution is
found the checks mentioned above are performed to verify the numerical stability of
the solution. Once the tests are passed the solution is fitted to the series expression,

in order to determine the free parameters ag and a3. Having determined these then

6This means that the solution can be written in the form h,¥ ~r%(1+...) +7r3(1 +...).
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Figure 5.11: Verification of the conformality condition (|5.48|).

one can immediately determine the relative Green’s function through the standard

Holographic procedure (see e.g. [18])

az(w, k)

ap(w, k)

G(w, k) = (2A —d) (5.54)
where d is the dimensionality of the boundary (here d = 3) and A the scaling dimen-
sion of the involved operator. The latter can either be computed by the indices of

the governing equation of motion, at the boundary or through the standard formula

d d\?>
I _ 2
Al 5+ <2> +m (5.55)

which in this case (m = 0) yields 0,3. Hence the A = 3. Combining eq. and
eq. the results of fig. are obtained, verifying that KSS does indeed hold.
Now all the components are in place to compute the diffusion coefficient D through
eq. (5.46)). The results are presented in fig. where the electron mass (m) is varied
and fig. [5.14] where the critical exponent (z) is varied.

It should be stressed here that this is the prediction of standard hydrodynamics,
for this particular system. In the next section it will be compared and found to
conditionally disagree with the full linear perturbation analysis of the system. For the
time being, though one sees that at low temperature the diffusion coefficient vanishes

as expected from standard Condensed Matter intuition. Moreover in accordance
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Figure 5.12: g for two critical exponents. The solid line corresponds to the value ﬁ.

with the already established fact that the Electron Star disappears at high enough
temperatures, one sees that D converges to the RN values above a certain temperature
(distinct for each electron mass). What can also be determined from these results
is that the more massive the constituent electrons are the “quicker” (in terms of
temperature) D converges to RN. Similarly the higher the critical exponent is the
“quicker” the convergence to RN occurs. This is to be expected however, since it is
known that at the infinite critical exponent limit (z — o0) one recovers the AdS,

near horizon geometry corresponding to the RN black hole.

5.3 Shear channel

Now that all the necessary information is extracted from the background one can
proceed to the full linear perturbation of the Electron Star system. What is going to
be presented next, is a study of the low-lying poles of the correlators of the boundary
theory, dual to the Electron Star system. The standard Holographic dictionary will
be followed, according to which one needs to perturb the system and then examine
the equation of motions of the fluctuations of all relevant bulk fields, as was done in
the previous chapter for the Reissner-Nordstrom black hole. At first, attention will

be focused on the shear channel (defined below).
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Figure 5.13: Diffusion coefficient for three electron masses as well as RN.

The starting point will be the action

T 4e2

1 6 1
S:/d%/—g {ﬁ (R+ﬁ) — F, F*" — p(o) + ou"(0,0 + A,)
+ Aufu, + 1)} + Sau + counterterms (5.56)

The non-Einstein-Maxwell terms in this action comprise the so-called Schutz action
at zero temperature [133]. This action should be varied with respect to the metric
Yy the U (1) gauge field A, the four-velocity of the fluid w,, the charge density of
the fluid o, the Clebsch potential ¢ and the Lagrange multiplier A, which imposes
the requirement for a relativistic fluid that u?> = —1. For simplicity, the fields will be

rescaled so that the full action is proportional to g—z

el eL 1 1
AM—>?AM, ¢—>?¢, u, — Lu, , 0= 50 )\_>L2/<2

Note that when fluctuations of these fields will be considered shortly, they will inherit

A (5.57)

this rescaling also.

If one now makes the definitions
#(0) = §(0) = (0,6 + Ay) , p(0) = —plo) + opa(o) (5.58)
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Figure 5.14: Diffusion coefficient for four critical exponents as well as RN.

then the energy-momentum tensor associated to the Schutz action is simply that of
a perfect fluid
Téoars = (0 + p)ulu” + pg" (5.59)
with pressure p, energy density p, charge density ¢ and chemical potential p.
In order to get the equations of motion for the perturbations, one has to excite

all the involved fields as

G (1) = G (r) + Iy (7, 1, )
A,(r) = Au(r) +au(r, t, x)
wu(r) = wu(r) + ou,(r, t, x)
8(r) = 6(r) + 66(r, 1, )
o(r) = o(r)+do(r,t,x)
A(r) = A(r) 4+ 0A(r, t, x) (5.60)

The equations then come from varying the action. Furthermore, the non-radial spatial

dependence for every field takes, without loss of generality, the trivial form

o(r,t, @) = exp[—wt + 1kz]p(r, w, k) (5.61)
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where ¢ stands for each field. This procedure results in twenty one equations. These
split naturally into two decoupled sets of equations - the shear equations of motion,
involving fields that are odd under y — —y, and the longitudinal equations of motion,
involving fields that are even under y — —y. This decoupling is guaranteed at linear
order in the fluctuations as the theory is invariant under y — —y.

The shear degrees of freedom include hyy, hyy, byy, ay, 0u,. By varying the action

with respect to these one gets the equations

/ / 2 / /
h,™ — zk;rgh"’+<f —g———>h$’ QZkTg(f+ )hr

2f 29 r 4f
+w ?h v — wkrigh! =0 (5.62)
3ff 4 21’ g (g 1
ht//_ ghr/ - I ht/__/_2 J( s J = hr
y fy+<2f 29) " T T T ag T ap )
9
+wk‘fhyz k*r?gh, + 2%( + p)ou, + 2 (7 +g(p+ ,0)) h)t =0 (5.63)

2 2,2 T f t/ f x/ f t W —
(w* = E*r?f) b, +w=h," —1k=h, + +f ) h, —2w—a, =0 (5.64)
g g 9 g

" f/ g/ / 9, 2 2.2 1yt 90y ¢
a +2 i a, + S (w* = k*r*f)a, — b'h," +w=h'h," + godu,

f f f
/ f/ .
+5<rg(p+p)—7+g)hy—0 (5.65)
day + pou, = 0 (5.66)

where indices of the metric fluctuations h,, are raised and lowered using the back-
ground metric, a prime denotes a derivative with respect to r, and the dependence
of the field fluctuations upon r, w and k, and of the background fields upon r, have
been suppressed for conciseness. Now the equations in this form are unmanageable.
Thankfully, they may be considerably simplified. This is done by solving a subset
of the equations of motion algebraically. In the shear sector one can solve equations
(5.64) and (5.66) for h,” and du,. Substituting the solutions for these fields into the
remaining equations, one finds that there are only two linearly-independent equations
of motion in the shear sector. These equations are naturally written in terms of the

following gauge-invariant combinations of the fluctuations

Zi(r,w, k) = wh,” — l{:rzf(r)hyt(nw, k) (5.67)
Zy(r,w, k) = ay(r,w, k) (5.68)

These are invariant under both the bulk U(1) gauge symmetry, which acts as

a,(ryw, k) = a,(r,w, k) — 0,A(r,w, k) (5.69)

129



and the bulk diffeomorphism symmetry which acts as

h,,(r,z,t) — hW(T, z,t) — V& (r,x,t) — V8. (r, x, 1)

a,(r,z,t) = a,(r,z,t) — £(r, 2, t) Vo Au(r) — AlV,.%(r, 2, t)
do(r,x,t) = do(r,z,t) — £ (r,x,t)V o (1) (5.70)

to linear order in the fluctuations, where V, is the covariant derivative with respect
to the background metric. These particular combinations are natural in the language
of the dual field theory operators as they guarantee that the relevant field theory
Ward identities are satisfied (as seen above).

In terms of these fluctuations the the two linearly-independent equations of motion

are

2 £/ 2k2 2
2"+ 2k 7L + (rg"“ W f A2k ] )Z{+2( 2 _k2%2f)7,

2 f(w? = k*r2 f) f
2%k \/f 2h 99 z,=0 5.71
VI e ) 2 o7y
YA kR /
Zi+ 5 (7 - %) Zg—mzl+§( 2 _ k%2 f)Z,
2 2h’2
- (f(w;i wep) 970) 7=l 072)

These are the equations that need to be solved numerically. In order however to
compute physical quantities, like spectral functions, one needs the on-shell action,
which from standard Holographic dictionary, correspond to the generating functional
for the boundary theory. By perturbing the action to quadratic order in fluctuations

(O(h?)), and imposing the equations of motion one gets, in terms of the original
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degrees of freedom

(2) = dek L2 1 Tl T Zw\/-a x r Ty T r
Son—shell = /r—>0 (271_)2? 4r4\/ﬁht h + 47“2\/7<ht h,” —h, b/ —h, h")

\/7 ty x xy t t t T x
+ 8r2\/_(ht R A A R e R S R S )

/ﬁ/_ ok 1
A R T Q\f hi'h — ——m=h,"
ar2\/f /g
+—(Tf,_ D (i, + by hhy + hh? — b — b — B2 — b
167’3\/% t "x t 'y z 'Yy y 'Yz r "Yx r Yy x y

Vi
4r3./g

— ——ay(al, —ika,) —

\/gghr5¢+ \/7

(2 4ty = Bl = by + Sl + wa,)

1
212/ fq

h/ r t x
47’2— _gat(hr -+ ht — h’m — hyy) —

92 o 2\/— Our@
3/2 / k /

_ \/7 hxhzl+f htht/_lw thr ? fghxhr_ \/Tayal

4T2\/§ Yy Yy 4\/_ Yy 4 ) Yy 2\/§ )

!/ _ 2 / h/
CVIOP 20 G =20), e VI
4r\/g Y 4r3\/fg 2,/9 hy

+ counterterms (5.73)

where the first fluctuation written in each term has argument (r, —w, —k), the second
has argument (r,w, k), and a prime denotes a derivative with respect to r.

As we will work with the equations of motion for the gauge-invariant variables
(5.68), we require the action to be written in terms of these variables also. It is
not possible to write the full on-shell action in terms of these variables. This does
not mean that any of the bulk gauge symmetries are broken but simply reflects the
fact that the variables are valid to linear order in fluctuations, whereas the
action is quadratic in fluctuations. However, the derivative terms in the on-shell
action can be written purely in terms of the gauge-invariant variables - this ensures
that the relevant Ward identities of the field theory are satisfied. In terms of the

gauge-invariant variables the on-shell action can be recast in the following form

dwdk L*
Séi)—shell — /r_>0 (;T)QE [Zi(r,—w, —k)Ai; Z(r,w, k)] + non — derivative terms
(5.74)

where the coefficients, though lengthy, are presented here for completeness:
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Vf

11 1252 — R2RS) (5.75)
VT

A= =5 (5.76)

Alz = ./421 - O (577)

Ass =[—4k*r? futo + r’W? (K*r’p + o — 2pPo + ,u4a)f/2 + 42 (K r?wu — 2k r?w? i?
+wiouo(w? + Kt f) + f(8w'y’ + 4k WP uf’ + drwo ff
i (st 4 K )]/ 4 R ) e (st — 202
+ k,2r3fl)2 + 2M20(_4k2T2f2 + 4f(w2 + k27“3f') _ rf'(4w2 + ]{?27"3f/))
+ro(4k*rf? — 4P f f1 4 F(8w? + K2 )] (5.78)

A = [V (@Pp(dw? — 26272 f 4+ k22 f1)? + 20?120 (—4k2r2 f2 + Af (W2 + k2P f)
+ —rf (4w + B2 f) 4+ ro(—4k P f3 4 202 f (dw? + K2 f)
— KPP f (8w + KPP 1) + Af2 (2K r0® + Kt )]/
[2w?(w? — k*r? £)\/g(u(dw® — 2K%r% f + K2 f1)? + 2pP0 (—4k>r? f2
+Af (W K ) — v f (4w + B2 f) + ro(4kPr f2 — AR f f!
+ /(8w + k*r® f1)))] (5.79)

Ass = —[f3/20(4w2 — 2k f + k2r3f')2ul2}/[2r2w2\/ﬁ(u(4w2 — 227 f + KPR )2
+ 2P a (—4k* 2 f2 H Af (WP B ) — rf (4w? + B2t ) 4 ro(4kPr f2
— AR (8w + KPP f)))o ] (5.80)

Asy = —[k(—4E* P 2120 + 42 (—K*r’w’p + w?o + pPo (W + B2 f)) + rw f'(ro f’
—rplof 4 p(dw? + B2 ) + F(Swhn + droPo ff — rpfo f'(4w? + K2t f1))]/
[Aw?(w?® — K22 ) /gu(pu(dw® — 2272 f + K21 )2 + 2u 0 (—4k>r? f2
+Af(W + K —rf (4w + B2 ) + ro(4kPr 2 — AkPr2 f f)

+ f'(8w? + E*r® £)))] (5.81)
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Ass = [\ fo(4k*r? f2p? — 4f 2w + K52 1) + r f/(—40® + 2 (40® + K2 )]/
[4r2w* Jgp(p(dw? — 222 f + K2r3 )2 + 2u 0 (—4k*r? f2 4+ Af (WP + E*rP f)
—rf (4w + K3 1)) + ro(4k%r f2 — 4R f 1+ (8w + KX 1)) o] (5.82)

Ags = —[kfo2f —rf)(—4w® 4+ 2k%r* f — E*r® f) ']/ [2w® /g (u(4w® — 2k%r® f
+ k‘27‘3f,)2 4 2N20(_4k32r2f2 + 4f(w2 + k2r3f/) . rf’(4w2 + k?27"3f/)>

+ro(4k*r f2 — 422 f f + f/(8w? + E*r® )’ (5.83)
Ayz = —Asy (5.84)

Asz = Asy (5.85)

Ast = —Aus (5.86)

(5.87)

where a prime denotes a derivative with respect to r.
It is also of interest to determine the off-shell action to quadratic order in the
fluctuations in the gauge-invariant variables. This action has a Noether current cor-

responding to a global symmetry of the form

o(r,w, k) — explra]o(r, w, k)
o(r, —w, —k) — exp[—wa]o(r, —w, —k) (5.88)

where ¢ represents the fluctuation of a generic field. This results in the existence
of a quantity which is invariant under translations in the radial direction and this
invariance can be used as a check on the numerical results obtained. As explained
previously, the full quadratic action cannot be written in the variables . In fact,
only the first-derivative squared terms in the action may be written in these variables.
The conserved quantity depends on these terms, and also the single-derivative terms.
This problem can be circumvented by adding purely real boundary counter-terms
(different from the counter-terms the action) such that the single-derivative terms
may be written in terms of the variables . These do not affect the equations

of motion of the theory (and hence the Green’s function poles), nor the spectral
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functions (as they are purely real) but only the contact terms in the real part of the
Green’s function. Having done this, the off-shell action takes the form
dwdl L?
2
S5t ahel Z/dT(QT)QE [Z{(r, —w, —k) Ay Z}(r,w, k) + Zi(r, —w, —k) By; Z}(r,w, k)

+non — derivativeterms| (5.89)

where a prime denotes a derivative with respect to r. The coefficients are

_ i

B 412, /g(w? — k2r2f)
A12 == A21 = O (591)
i

All

_rf =2f
Bu=55s YT (5.93)
_ k(rf +2f)
By = _QTM\/E(WQ ~ k) (5.95)
Boy =0 (5.96)
(5.97)

Note that A;; = A;; in the shear sector.

In order to proceed one needs to determine the boundary conditions, in order to
numerically solve the equations of motion, and set up the numerical framework. The
framework followed here will be the one prescribed in [112]. In particular it needs
to be noted that the system consists of a coupled system of differential equation and
hence it is not well-defined to talk about one-to-one solution-operator correspondence
anywhere but strictly on the boundary. In other words it is only strictly on the
boundary that the solution of each equation of motion provides information about a
single, specific operator of the boundary theory. Given though that numerically one
is never strictly on the boundary, but rather on a radial slice close to it, which defines
a cut-off scale (1, ), one must take into account operator mixing effects. In essence the
recipe in [112] consists of (numerically) finding a set of linearly independent solutions
to the equations of motion, out of which, one forms a solution matrix which at the
boundary reduces to a diagonal one. Out of this matrix one can extract all the
relevant information about the boundary system. This process will now be briefly

reviewed. The starting point is a system consisting of N fields ®!, I € {1,--- ,N}
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governed by the bilinear action

S = / d®x / dr [0, @ Ary(2,7)0,27g™" + @' B (2,7)0,, @7 + &' Cry(z,r) ]

(5.98)
where m,n span the Minkowski and radial coordinates (z ~ x*,z). For the specific
case in which this machinery will be implemented here, N = 2 and the two fields are
the two gauge-invariant variables defined above. As usual, the non-radial directions

are separated through a Fourier decomposition
! (2", 7) :/ d @I( ) exp|—tkz] (5.99)

(2m)

which transforms the action into

S = / &'k / <I>” WAy (k1)@ + ®L, Bk, )@ + &L, Cry(k, )0
(5.100)
where k = k*, Arj(—k,r) = Ars(k,r)*, and similarly for B and C. Now the small
issue of double counting arises, but is easily fixed by splitting the momentum in-

tegration into (k= = (w > 0,k)) and (k. = (w < 0,k)) and re-writing the action

S = /dk:> /dr 2AH Lo @' 4+ B,®l @Y + Bl @, & + 2080 )| (5.101)

where [ dk- = ﬁ fooo dw féfl d%'k. One can now disregard the positive-negative
momenta issue and just use the momentum variable £ = k~. The equations of motion

can be recovered by varying ®',, holding @/ fixed,
—2(AE®Y 4 2B @) + (2C" — BY) 0] =0 (5.102)

where M4 now stands for the (anti-)hermitian part M*4 = 1(M £ M), for some
matrix M. This is precisely how eq. and eq. where derived. In solving
the equations of motion, one finds that near the boundary, the components of the
vector @ asymptote to ®f(r — 0) ~ r2-¢f + .. + 24l + ... Al is the smallest
exponent at the boundary » = 0. In order to compute the Green’s functions of the
dual quantum operators one needs to consider conveniently normalized fields ®(r) =
rALPI(2) that close to the boundary have an expansion ! (r — 0) = ¢L+O(r2+—4%),
meaning that ¢{ can be interpreted as the source of the dual operator. The new fields

can be treated collectively in the same formalism by defining the rescaling matrix
DT, = 61,227 = DT Replacing ® by D® inside (eq. (5.101))) yields

S = /d/;> /dz {mg@'i B+ By, L, 87 + Bl 81,87 + 201! ,@g] . (5.103)
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where

A = DIARD (5.104)
B=D'BD +2D""A"D, (5.105)
i 1 1

CH =DICH"D + DTA" D + 5DTBD’ + §D/TBTD (5.106)

One can now assume that the fields are indeed normalized this way and avoid the
clutter caused by the barred symbols. Now consider a solution ®. of the coupled
system. The boundary value of it acts as the source for the boundary theory oper-
ator Of. Conversely the source of a particular operator, will be given by a vector
(®}.(r), ®2(r), ...) that, approaching the UV cut-off r,, asymptotes, by construction,
to a single component vector, (®L(r), ®2(r),...) "=* (¢1,0,0,...). Similarly for ev-
ery boundary operator. Therefore the bulk solution dual to a source O (k) is given
by a set {®(r)} that solves the equations of motion in the bulk and asymptote to
7 (ry) = 87,0l (k), J = 1,...,N, where ¢ (k) = . is the source of the corre-
sponding operator O (k). Since the system of equations of motion is coupled, at any
other scale r > r, this set, {®1(2)}, will generically source a linear combination of all
the operators. Hence, this set can be expressed in terms of the arbitrary boundary

values, ¢y, as

Oi(r) = F' ik, r)g (5.107)
L, (r) = Flyj(=k,r)¢?, = o7 FT (K, r) (5.108)

The interesting dynamics of the fields are in this formalism contained in the solution
matrix F(k,z)! ; = F(—k, z)*;, which is constructed to be normalized at the UV
cut-off r, as

F(k,ra) ;=64 (5.109)

i.e. it reduces to a diagonal matrix, with each element corresponding to a specific
boundary operator. Immediately two question arise - how does one construct this
solution matrix and how can one extract the Green’s function out of it. The latter
is easier to address and therefore it will be treated first. Assuming that in some way
one has constructed the solution matrix, the on-shell action can be rewritten in the

form
d
S = /dk:/dr {(Pl_k [e.om.(Dy)] + %[QAU(DI_IC(D%J + Bl !, o]

= [ o Fute ) el (5.110)
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where
Flk,r)=2FTA"F + FIBTF. (5.111)

r, is the position of the horizon and 7, the position of the boundary. In the present
case those values are 1 and 0 respectively. It is now straightforward to generalize the

standard Holographic approach [71] and write the Green’s functions as
GTy(k) = = lim Fry(k,7y) (5.112)
raA—0

One immediate property of these Green’s functions can be derived by the conjugation

properties of A, B, F' defined above, i.e .
Gry(=k) = G1y (k)" (5.113)

It is important to notice at this point that the Green’s function constructed in this
fashion are not finite at the boundary. As prescribed by the Holographic Renor-
malization program [73], specific counter-terms need to be include in the action to

compensate for the boundary infinities. These terms induce a change
Fra(k,ra) = Fro(k,ra) — Forrs(k,ma) (5.114)

These terms, presented in eq. (5.40) and eq. (5.41), have been appropriately intro-
duced in the action used in this work.

Now the actual process of constructing the solution matrix will be considered, in
particular in the context of numerical solutions. In order to construct these solutions
a “shooting” method will be implemented. This means that a point close to the
horizon will be picked, from which the integration will start, and on which boundary
conditions (values and derivatives) will be set. The integration will be carried through
the three parts of the space-time, i.e. first AdS-RN, Electron Star and finally the outer
AdS-RN, all the way to a cut-off very close to the boundary, where the solutions will
be checked using various numerical checks for stability and consistency. This checks
include conservation of the current derived through the off-shell action, as well as the
near-boundary solution of the equations of motion (what was defined before as ag, as).
In the presence of the horizon one imposes, as usual, in-going boundary conditions,
which mirror the computation of the retarded Green’s function. Hence, formally the

solutions can be written as
Oy = (r—1) "2 (efg) + O(r — 7)) (5.115)

realizing the IR boundary conditions. Here 7' is the Hawking temperature of the

black hole in the inner region. The vectors e, should be used so as to provide
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linearly independent solutions. In the present case, where two fields are involved,

they are chosen to be

ey = (1,1) (5.116)
ey = (1,—1) (5.117)

By performing the numerical integration for each boundary condition one obtains 2
independent solutions that extend in the range r € (ra,7,). These IR-normalized
solutions can be arranged in a matrix, H(k,r), in such a way that the J* solution

(CID%J), CID%J), . @Z)) appears as the J column, i.e.

H j(k,r) = (5 (k,r) (5.118)

In the present case this is going to be a 2 X 2 matrix. Any in-going solution,
can be written as a linear combination of the 2 independent solutions stemming
from these boundary conditions. Consequently the matrix F'(k,r), consisting of the
UV-normalized solutions must be related to H(k,r). Given that by construction
F(k,ry) =1 this relation must be

F(k,r) = H(k,7) - H(k,ry) ™" (5.119)
Then the Green’s functions is

GH(k) = — lim F(k,ry) = — lim (24" (k,rp)F'(k,ra) + BY(k,ra))  (5.120)

ra—0 ra—0

where Holographic counter-terms have not been explicitly included. The near-boundary
numerical check, i.e. the near-boundary behaviour of the fields, can be translated in

this matrix language as
H j(k,r = 0) ~ A(k)  + 224258k, + ... (5.121)

in the standard Holographic practice. Here A(k) and B(k) are equivalent to the
connection coefficient found for example in [134], modified into matrices in order to

fit this case. Inserting this expression into the Green’s function one gets

GR(k)'y = — lim [2(A] — AL AT

rA—0

APk, 77)B(R)VA(K) ) + B (k) | i
(5.122)
As is the case in many Holographic studies, of particular importance are the
Quasi-Normal modes (QNMs) related to these Green’s functions. Those correspond

to poles of said Green’s functions and even though the contain less information than
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the full function, since they do not include the residue of each pole, they are easier to
compute, particularly in cases where only numerical approaches are available like the
present one, and contain enough information to calculate many interesting properties
of the dual theory. In this coupled systems one can define a very useful operational
criterion to locate QNMs. In particular one notices from eq. that GT(k) is
ill-defined whenever det A(k) = 0, hence the Green’s function has poles whenever the
inverse matrix H(k,r,)~" does not exist. This is equivalent to demanding that the

determinant of H vanishes at the cut-off, i.e.
det[H (kn,rA)] =0 (5.123)

This is going to be the quantity computed in what follows to determine the position
of a QNM.

Before presenting the main results it is useful, for completeness, to present the
actual near-horizon boundary conditions determined after imposing in-going condition
on the two coupled equations eq. and eq. . By expanding the equations
of motion close to the horizon and demanding that the regular part of the solution is

expressed as a series, one has

Z79u) =ap+a1(1 —u)+ ... (5.124)
deg(u) :b0+b1<1—u)+ (5125)

Here the first two coefficients will be presented due to space limitations. However in
the actual calculation the series has been continued up to sixth order, which provide
enhanced numerical accuracy. Plugging in this ansatz into the equations of motion
and iteratively solving, one finds that every coefficient can be computed in terms of
ao and byg. Those two parameters will provide the two linearly independent solutions
by setting (ag,bp) = (1,1) for one of them and (ag,by) = (1,—1) for the other.

Indicatively the first order coefficients for each field are presented here

a1 —ag (5 e -DE (-1 2K+ Q% —6)  Sufe - 1)Q2w)

w Q2 + 4w — 6 (Q?—6)?
2bo(e — 1)kQ (Q* + 2w — 6)
N Dt 1 (5.126)
b — 20— DRQ_ | 2(e— DK +2Q%) _ Siho(e = Q% oo

w (Q? + 4w — 6) Q%+ 4w — 6 (Q2 —6)
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Here ¢ is taken to be a very small (0 < ¢ < 1) number determining how close to
the horizon the integration starts. Its appearance in these expressions highlights the
point that one cannot just set the boundary conditions to either 1 or —1 since de-
parture from the exact position of the horizon, which is numerically unavoidable,
induces extra corrections. Having this series expansion, and the capacity to itera-
tively compute all terms up to what is required for numerical reasons, allows one to
fully set boundary conditions for the gauge-invariant variables and their derivatives
on the horizon. Therefore one has a well-defined differential problem that can be
systematically studied.

The free parameters of the studied system are the temperature (in its dimen-
sionless form) %, the injected (dimensionless) momentum ﬁ, the critical exponent z
and the electron mass m. The main target is to isolate the QNM corresponding to
diffusion, in other words the lowest lying pole on the imaginary axis in the complex
frequency plane ﬂ The interest will be focused on extracting the diffusion coeffi-
cient of the dual theory and studying its dependence on temperature, momentum
(dispersion relation) and then z and m.

Putting all the ingredients together the complex frequency plane looks like fig.[5.15
In this plot the first three (in the sense that they are the lowest ones, or said dif-
ferently they have the smallest (absolute) imaginary part) poles are presented, for a
series of temperatures. The blob near the origin represents the lowest lying poles,
which because they have the smallest imaginary part they are the longest-living ones
(i.e. they attenuate with the slowest rate). The scaling imposed by the simultaneous
plotting of the poles with non-vanishing real part, obscures these poles, which are
the ones corresponding to diffusion and are the most interesting. Zooming into the
origin, the diffusion mode, for various temperatures, looks like fig. [5.16, Since the
purely imaginary pole is of maximum interest, from now on plots will be presented
in one-dimensional form, only depicting the imaginary axis.

The first numerical study will attempt to extract the diffusion coefficient. It is

expected that the diffusion mode behaves like
w=—1D(T)k*+ ... (5.128)

or in the proper dimensionless form

i = —D(T) (S)Q o (5.129)

"By definition the frequencies of QNMs are complex [114].
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Figure 5.15: QNMs in the complex frequency (w) plane for % = 0.1 and % ~
0.11,0.09,0.07,0.05, 0.03.
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Figure 5.16: QNMs on the imaginary axis for % = 0.1 and % ~ (.11, 0.09,0.07,0.05, 0.03.
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In order to extract D therefore, one can track the diffusion pole for a very small

ﬁ, against temperature and then D(T') = —%(‘Z///’: )CQ. The momentum value chosen
is k/p = 0.001. The remaining free parameters are then z and m, that is each

pair defines a D(T) curve. Firstly the critical exponent z will be kept constant at

z = 2 and variations of the electron mass m will be presented. These results are

(a) z=2; m=0.10 (b) z=2; m=0.36

0.0 0.1 0.2 0.3 0.4

(¢) z=2; m =0.50
Figure 5.17: D(T) for z = 2 and 7 € {0.1,0.36,0.5}.

presented in fig. [5.17, where the solid lines correspond to the actual results, derived
from the diffusion pole, while the RN result (dotted line) along with hydrodynamics
expectation (dashed line) have been overlaid for comparison. Similarly in fig. [5.18
the diffusion constant (again from the pole, from hydrodynamics and for AdS-RN)
is presented for four different critical exponents (z € {3,5,10,100}), keeping the

142



electron mass constant at m = 0.36.

0.25 e 0.25

020 e 020

02 03 04 02 03

(a) z=3; m=0.36 (b) z=5; m =0.36

04

.............

.............

1=
()

(¢) =10 ; 7 = 0.36 (d) 2 =100 ; 172 = 0.36
Figure 5.18: D(T) for 7 = 0.36 and z € {3,5,10,100}.

Let’s summarize these results. The first, and easiest to describe, feature of the
plots presented in this sections, is that for every pair of the parameters z, m there
is a transition temperature above which the diffusion coefficient converges to the
prediction for the pure AdS-RN system, i.e. when the Electron Star is absent. This is
trivially expected since, as it has been noticed when studying the background, there is
a finite range of temperatures within which the Electron Star is supported. Once the
temperature exceeds the upper bound the black hole is hot/large enough to dominate
the space-time, leaving no room for the star. The transition temperature appears to

depend on the mass of the electron (/). In particular the larger the mass the lower
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the transition temperature. On the other hand the transition temperature seems to
be very weakly correlated (if at all) with the critical exponent (z).

The more interesting and challenging part of these results is however related with
the low-temperature behaviour of the diffusion constant. The striking characteristic
is that it does not match the purely hydrodynamical prediction. The discrepancy
seems not to be affected primarily by the electron mass, however the fact that an
increase in m makes the transition towards the RN prediction quicker, suppresses the
phenomenon. On the other hand this discrepancy seems to depend more strongly on
the critical exponent. In particular the higher the critical exponent the closer the
results are to both the hydrodynamics prediction and the RN. This should not be
surprising since, as already noticed before, it is expected that at the limit z — oo
one should recover the AdS; near-horizon geometry. In other words the purely RN
result.

What is striking and unexpected is that away from the limits when one recovers
known systems, the system does not agree with hydrodynamical expectations. In
order to understand this phenomenon one needs to consider the physical attributes of
the system. What one has here is a system with two types of bulk charges - one that
is behind the horizon (corresponding to the black hole) and one that is outside the
horizon (corresponding to the electron star). Each of these charge sources, induces
an electric flux through the boundary corresponding to boundary states. Depending
on the source of the flux the phases are described as mesonic (Electron Star), fully
fractionalised (RN) and partially fractionalised (ES and RN together) [135]. At low
temperatures where ES and RN coexist the system is in the partially fractionlized
phase, while above the transition temperature where there is only RN the system is in
the fully fractionalised phase. Although this system has been studied at zero temper-
ature in [135], here the system is heated up by taking the RN black hole away from
extremality without however allowing the mesonic degrees of freedom to exchange
heat with the fractionalised ones. This is because the Electron Star is assumed to
remain at zero temperature (as explained above) no matter what the Hawking tem-
perature of the black hole is. In other words on the boundary the systems consists of
a set of two degrees of freedom that do not “communicate” thermodynamically and
therefore the system is not in equilibrium. When the temperature is lowered enough,
i.e the black hole is nearly extremal, eventually the phenomenon becomes irrelevant
and diffusion ceases as expected by standard hydrodynamics, since the degrees of
freedom “freeze” out, leading to D(T"— 0) = 0.
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Figure 5.19: Fraction of Electron Star charge vs. z and %

How can one quantify this phenomenon? A useful parameter is the ratio of the
charge of the Electron Star over the total charge of the system [129]. This quantity
measures how much of the boundary flux comes from the “frozen” mesonic degrees
of freedom. Varying the critical exponent the ratio against temperature is presented
in fig. [5.19 while the results varying the electron mass in fig. What one sees
from these is that the higher the critical exponent, the faster the transition from a
partially to a fully fractionalised phase is. The more the system approaches the latter
the more the diffusion constant agrees with both the hydrodynamical prediction and
the pure RN, which corresponds to the fully fractionalised phase. Said differently
for a fixed temperature (and electron mass) the charge ratio % — 0 as z —
00, i.e the boundary flux is essentially sourced from behind the horizon, restoring
the known hydrodynamical properties of the AdS-RN system. Similarly if one fixes
the temperature and the critical exponent and varies the electron mass, it becomes
apparent that as the mass grows the ratio goes to 0 again asymptoting to the AdS-RN
system.

Trying to explain further this phenomenon the following was attempted. Assuming

the form for the diffusion coefficient what would happen if one had included more
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Figure 5.20: Fraction of Electron Star charge vs. m and %

than the appropriate degrees of freedom in the diffusion process? To address that the
denominator of was split into two parts, on of which corresponds to the Electron
Star, that is

etp=€+p +epst+pes=€+p +ou (5.130)

where the equation of state for the Electron Star has been used. Assuming that
degrees of freedom of the Electron Star do not diffuse and therefore removing them
from the sum, one gets a hydrodynamical prediction that is much closer to the ob-
served results. This observation has encouraged the interpretation of the two part
boundary system, with one part being unaffected by the thermal fluctuations (that
is the mesonic dof) whereas the other behaves as expected from hydrodynamics. The
interplay between the two appears to be intricate and it is not easy to separate one
from the other. In an attempt to make this interpretation more convincing the dif-
ference between observed €p + po and hydrodynamical ez + py has been computed,
and it turns out that at low temperatures, where the mesonic dof dominate, it can
be almost completely attributed to the Electron Star not interacting thermally. At
the other end of the scale, i.e. at temperatures close to the transition, where more

and more dof get fractionalised, the difference vanishes and the single RN black hole
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High Low L
p 1

=9 ~ (k/,u)Z.OG ~ (k/u)2.003
2=3 | ~ (k/u)*"  ~ (k/u)*"
o210 |~ ()™ ~ (/)2

Table 5.1: Dispersion relation for the lowest QNM, for various ES parameters and temper-
atures.

appears to account quite well for the observed diffusion coefficient.

In extracting the diffusion coefficient an important assumption has been made -
that the imaginary part of the corresponding pole should behave quadratically (at
least to first approximation) with momentum. This is an assumption that can and
needs to be tested. In this last part of the current section the dispersion relation of the
lowest lying pole will be examined. Of particular interest is its dependence (if any) on
temperature and the two Electron Star parameters, i.e. the critical exponent and the
electron mass. The way these results will be presented is the following - for each set
of (z,1) the position of the pole against the injected momentum ﬁ will be plotted for
the lowest and highest available temperatures ﬂ The results are presented in fig. [5.21|.
The plots are made to be log-log so that a power law will be immediately identified
as straight line. Inset in every plot is the estimate for the exponent of power-law
relation fitting to the small-momentum data ﬂ Since the presentation of the plots
is quite compact, the actual results are summarized in table 5.1 What becomes
apparent from fig. and table is that the imaginary part of the lowest lying
QNM does in fact behave quadratically (to a very satisfactory numerical accuracy),
independently of temperature, critical exponent and electron mass. It is also clear
that there are corrections to the quadratic relation, as for higher momenta there is a

deviation from the quadratic curve.

5.4 Sound channel

In this final section, preliminary work on the other channel, i.e sound, will be pre-

sented. What will be included is essentially the necessary analytic preparatory work,

8This form is chosen due to space limitation even though intermediate temperature have been
examined and found to agree with what is presented here.

9In the inset the symbol k is used for the fitted relation. This is in fact ﬁ but the symbol k was
chosen for presentation reasons.
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whereas the actual full numerical analysis will not be done here, due to space-time
limitations. The sound channel consists of the following perturbation components:
Ry, Paay Pty Byys Bty Ry By Qg @, @, 0, Oy, Oy, Oy, 00, 0N, By perturbing the ac-
tion with respect to these components, one can extract the relevant equations of
motion, which as mentioned before form a closed set and do not couple to the shear

sector due to their symmetry properties (parity under y — —y). The equations of

motion are:
. A A , v W (F 9N
h*" — (§+%+; h 4 awr?gh,” — ikr?gh,” — Erzg 7—1—5 h,
+ 22 g_f_4 h, +r*gwk (kY 4+ h,") + 2r°h' (d, — ika,)
2 g f r x Yy r x r
+2r2\/fgo(ay + 1kép) = 0 (5.131)

v fo2g 2f 29 1) I
1 f’) , <2g g’) 29 21
+ === h"+ = —Z b+ Z(hY+h,") — =(a, + wa,
(T 2f rf o f) f(y ) f(t )
2f  h? 2) (h'2 ) go
+ (- — S )b+ (= +gp+p) ) b} —27=(a, — wdp) =0 (5.132
(Tf f 2 f ( p) t \/7(75 ) ( )
h :cl/_l_hy//_szngh r1+2h vl g_/+§ (h xl+h yl)+lk3(27‘g—7"2g/)h r
2f K% 2 h'?
— k*r?g(h,” +hY ———— 12 h" — | — h,!
rog(h,” + y)+(rf 7T g(p+p)) . (f +g(p+p) )Ny
+ —Qh,(a’ + wa,) + 097 (ay — wdd) + dgudo — 4gdA =0 (5.133)
r - 0= = :
fr Vit

!/ / 1 1 /
hxmll_'_httll o 2Zkr2ghxr/ - Znghtrl T <£ o g_ o _) htt/+ (_ o L) hTr/

/ f 9 g ro2f
o q 2) ) (g’ 29> ( 2 ngf’) g
+l=—===)h" —w (% — = b =ik |r°¢ + h,” +2wk=h”*
<2f 29 7 forf) g f f
g g K
+ w2?hxﬂc — k*r?gh! + }(uﬂ —E*r?f)h,” + (7 +g(p+ P)) hy!
2f"  h? 2) 2h go
+ = ———=)h"~— —(a; + wa,) — 27=(a; — wdg) =0 5.134
(-2 2 ) - 2 v 227 — ) (5131
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k 1 1
Z(h + B+ b+ kR ghy + Swkrigh,” + %hx — g+ p)h)

2 2 2 2
f/ Yy f/ x AN
(4f (hy* + h,Y) — ok T h' =/ fola, +6¢) =0
(5.135)
1k W g 1
—(hY +hY) — —=h"" + Zwkh, wh," + 1k ht
0 1) = 5+ gk + ot ok (o)
fl 1 , hl B
1k <4f 5 h,” —1 7 (wa, + ka;) =0 (5.136)
f/ / / t/ Zklr.g
EA N h 20 I — Iy o
(4 2r( FhyY) +zf e~ 20)h,
- ———p+ h! — 2h2 o f/ +2f>h + L - K%,
p t o 2f 2f 9 t
+ L = w2, + Lokh + (4 wa) — 9% (0 — wd) = 0 (5.137)
2f f f i
f g’) g h?
al —ikal + = <——— —ka,) + Sw(wa, + ka —i——hx
2 \F g ) (ke el e gl
gh’
+ szhx’" + godu, =0 (5.138)
ay + wa, + %(p + p)(a, +wa,) — krg(ka; + way) — 1kr*gh’h,”
h/ / / / ’r‘/
+ 5 (™ + b)Y = ht — — g\/foh, + godu, — g\/féc =0 (5.139)
way + tkr® fal, — a,(W® — K*r* f) + —h'(h,* + h,Y — b — h,") + 1kh'h,"
+/fgoh,” — fodu, =0 (5.140)
h;’—*/—fau;+<i—i——)h + 2 (h +h," Y — b)) + kb,
g 2g o 1
V(g f o 2 w W 9
V(L L 72 X S+ oo — - 141
g \29 2 o + . oy \/T(Sut + . 6o — kr®\/fou, =0  (5.141)



g + k0 + pou, =0 (5.142)

o
20\ — pdo — ﬁ(at —wdp + pdug) =0 (5.143)
a, +6¢" + pou, =0 (5.144)
W e 1
géa + ph, — ﬁ(at —wdp — pouy) (5.145)
’ 2
b+ —=bu; = 0 (5.146)

vf

where again indices of the metric fluctuations h,, are raised and lowered using the
background metric, a prime denotes a derivative with respect to r, and the depen-
dence of the field fluctuations upon r, w and k, and of the background fields upon r,
have been suppressed. It should be noted that one may also choose to parametrise
deviations from equilibrium in terms of the variables h,,, a,, du,, do, op and Jp.
This is convenient if one works directly at the level of equations of motion without
invoking an action (as in section 2 of |[127]). The bulk fluctuations of pressure and
energy density are related to fluctuations of the Schutz variables via

U/f do , O0p = pdo (5.147)
o

op =

This set of equations is even more unmanageable than the shear sector. Again
though they organize themselves in a much more convenient way, if one introduces

the gauge-invariant variables

Zs(r,w, 1) =w*h,"(r,w, k) 4+ 2wkh,* (r,w, k) — E*r2 fh!(r,w, k) (5.148)
k2 3f
( S5 )
k
Zy(r,w, 1) =wag(r,w, k) + ka,(r,w, k) + Thhy(rwk:)
Zs(r,w,l) =60 (r,w, k) + Thyy (5.149)

These are invariant under, as were their shear counterparts, both U(1) (5.69), as
well as diffeomorphism transformations ((5.70). Again not all of these equations are
dynamic. Some of them, corresponding to constraint equations, can be solved al-

gebraically and used to simplify the rest. In particular one can solve (5.134-5.136)
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and (5.139-5.144) for the constraint fields h,", h,", h,", a,, duy, duy, ou,, 6¢ and SA.
Substituting the solutions for these fields into the remaining equations, one finds that
there are only three linearly independent equations in the sound (longitudinal) sector.

These linearly-independent equations of motion may be written in the form

Zg(?“) + C’ngé(r) + ngZZl(T) —+ OggZé(’l") + 03423(7") + Cg5Z4(T) + 036Z5(’l“) =0
(5.150)

ZZ(T) + 04125(7’) + C42ZZ1(7“) + O43Zé(’l") + 04423(7") + C45Z4(T) + 046Z5(’l“) =0
(5.151)

Zg(?“) + 05125(7’) + C52Z!1(7“) + O53Zé(’l") + 05423(7") + C55Z4(T) + 056Z5(’l“) =0
(5.152)

The coefficients of these equations are too lengthy and complicated to be put into
print, which would anyway be of limited value. In fact they are computed through
computer algebra software (in particular Mathematica) and are planned to accompany
the upcoming publication of this work, in electronic form. Similarly unprintable is
the on-shell action, which has also been computed in this way. Now, as was the case
for the shear sector, all the necessary ingredients are available in order to proceed
in a systematic numerical analysis of this system. Of particular interest will be the

quest for zero-sound. For this extensive study one is referred to upcoming work.
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Chapter 6

Conclusions and discussion

In the concluding chapter of this thesis the main results presented so far will be

summarized. First the AdS, case will be reviewed, followed by the Electron Star.

6.1 AdS,

In the studying the Anti-de Sitter Reissner—Nordstrom system the main results, in
summary, are as follows:

i) When momentum ¢ < p, the long-lived modes of the charge density and en-
ergy density Green’s functions are the sound and diffusion-like modes with dispersion
relations and respectively.

ii) When momentum ¢ < g and temperature T < pu, the attenuation of the
sound mode shows no significant temperature dependence, unlike in the strongly-
coupled D3/D7 field theory and in Landau’s theory of Fermi liquids. When ¢ < pu
and T" > pu, the sound and diffusion dispersion relations are well-approximated by
the p = 0 results of [107,109].

iii) When ¢ < p, the energy density spectral function is dominated by the sound
peak at all temperatures, whereas the charge density spectral function undergoes a
crossover from sound domination at low temperatures to diffusion domination at high
temperatures. This crossover is due to the changing residue at each pole, and occurs
at a temperature Tiposs ~ t2/q > pi.

iv) When ¢ > p and T' < p, the sound and diffusion modes no longer dominate
the energy density and charge density spectral functions, and the effects of other
modes become important.

v) When both p and T are non-zero, a long-lived sound mode will propagate

provided that its momentum ¢ is much less than either p or T
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These results show that although many strongly-coupled field theories at large
chemical potential (which have a gravitational dual) possess a 7' = 0 sound mode,
these are not all LFL-like ‘zero sound’ modes (by which one means that they don’t
have the properties shown in ﬁgure as was the case in the D3/D7 theory. However,
there is still the possibility that there could be universal behaviour of the sound mode
within subsets of strongly-coupled field theories with a gravitational dual. It is noted
that the density-dependent physics in the D3/D7 and RN-AdS, theories arise through
different holographic mechanisms (see [824|136] for further discussion of this). In the
D3/D7 theory, the background metric is fixed and it is the gauge field action - the DBI
action - which alters the equation of motion of the gauge field from the p = 0 Maxwell
equation (whose only long-lived mode is the high temperature charge diffusion mode).
In contrast to this, the gauge field equation of motion in the RN-AdS, theory departs
from the p = 0 Maxwell equation via couplings to the bulk metric fluctuations.
The other major difference between these two field theories is the number of spatial
dimensions, but it not expected that this will have a significant effect on the acoustic
properties of the theory (provided that the number of field theory spatial dimensions
is greater than one).

It would be very interesting to check whether the low temperature sound modes in
other probe brane theories [92-96] share the LFL-like properties of the D3/D7 theory.
This would help to establish whether it is the form of the DBI action, which implies
that the non-zero density in the field theory is a density of fundamental matter
(at least in the cases where the background geometry can be derived from string
theory) rather than, for example, the R-charge density in the RN-AdS, theory, that
generates these interesting properties or not. The effects of metric back-reaction (i.e.
coupling between the field theory’s charge density and energy density) are also yet to
be computed for these probe brane theories. These may complete the LFL-like picture
of acoustic propagation (by reproducing the full LFL sound attenuation curve - figure
4.1|- including the hydrodynamic regime), or they may result in deviations from it. No
more insight can be gained into this from our back-reacted RN-AdS, results because
of the difference in gauge field actions described previously. Although an expansion
of the DBI action in powers of F},, yields the Maxwell action at lowest order, in field
theory quantities this is an expansion in powers of p/T which is the opposite limit
from that in which any LFL-like properties of a theory would be exhibited.

In addition to those mentioned above, there are numerous other field theories with
a gravitational dual which may possess interesting sound modes when T" < y1. Among

the most interesting of these are dilatonic black holes [136-138] and geometries where
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the bulk charge density is sourced by fermions [127,|129}139-141]. It would also
be worthwhile to determine the acoustic properties of more general truncations of
super-gravity which admit more complicated solutions than RN-AdS, (for example,
those of |111}/137,/142]), to determine whether the specific truncation chosen has a
significant effect on these properties.

It has become clear that even this relatively simple holographic theory has many
non-trivial features in its bosonic excitations. Among the most intriguing are the
accuracy of the ‘zero temperature hydrodynamics’, and the crossover temperature
Teross. ~ 1%/q between the charge density spectral function being dominated by the
sound mode and the diffusion mode. It would be useful to have a clearer physical
understanding of these properties, and also to determine if they are present in other

field theories at non-zero chemical potential.

6.2 Electron Star

In studying the Electron Star system, in a non-zero temperature RN-AdS background,
and in particular in the shear channel, the main results, in summary, are as follows:

i)The system possesses a QNM structure similar to many other gravitational sys-
tems, studied within Holography. In particular there is a long-lived or stable (i.e.
very close to the origin of the complex frequency plane) pole on the imaginary axis
(i.e. purely dissipative), which corresponds to diffusion in the system.

ii)The system is essentially composed of two kinds of degrees of freedom on the
boundary - those related to the black-hole charge, i.e. the charge coming from behind
the horizon and those related to the bulk fermionic charge of the Electron Star. The
two sets of degrees of freedom are not in equilibrium, as one of them (the mesonic
part) is constantly kept at zero temperature, while the other is heated up. This
is reflected in the non-hydrodynamical low-temperature behaviour of the diffusion
coefficient.

iii) The mixture of the two kinds of degrees of freedom is measure by the Electron
Star to total charge ratio, which has been shown to depend on the system’s tem-
perature as well as the critical exponent and the electron mass. This ratio can be
used as an order parameter to distinguish between the partially fractionalised and
the fully fractionalised phases. Furthermore, as seen from the results presented here,
it measures the departure from the hydrodynamical behaviour.

iv)A feature that has been observed in this analysis but was not elaborated on,

since it is a negative result, is the absence of a real pole in the frequency plane. Such
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a pole would correspond to a Fermi Surface in the boundary theory. This absence
cannot be reliably accounted for and further study along with more robust numerical
methods, appears to be required.

Moving forward in the exploration of the properties of this system, two directions
should be pursued. Firstly and most importantly the bulk fermions must be allowed
to thermally interact with the rest of the system so that it can relax and reach a
proper equilibrium state. This entails the explicit treatment of the bulk fermions in
the RN-AdS background, in place of the current approximation. This work is already
under way.

Finally, the sound channel of the system has to be finalized. The existence of a
zero-sound, as is the case in so many Holographic systems, should be examined. This

work is almost completed and will be soon published.
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