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Abstract. Recent years have seen considerable progress with ab-initio calculations of the
nuclear structure by non-relativistic many-body methods. Dirac-Brueckner-Hartree-Fock
Theory provides a relativistic ab-intio approach, which is able to reproduce saturation properties
of symmetric nuclear matter without three-body forces. However, so far, the corresponding
equations have been solved only for positive energy states. Negative energy states have
been included for forty years in various approximations, leading to differences in the isospin
dependence. This problem has been solved only recently by a complete solution of the self-
consistent relativistic Brueckner-Hartree-Fock equations in asymmetric nuclear matter. Due
to its numerical complexity, however, it is very difficult to extend the Relativistic Brueckner-
Hartree-Fock theory to the study of finite nuclear systems. Recent efforts will be discussed to
overcome this problem.
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1. Introduction
In the last thirty years ab-initio derivations of nuclear structure properties are at the forefront
of nuclear studies. Here the starting point are bare nucleon-nucleon forces. They are used
to calculate binding energies, radii, and spectroscopic data. Nowadays it is possible to solve
the exact nuclear many-body problem for light nuclei on the computer. Investigations of
properties for the majority of nuclear systems, however, are carried out in the framework of
density functional theory. Non-relativistic [1, 2] and relativistic [3, 4, 5, 6, 7, 8] versions allow a
successful description of the nuclear many-body problem not only for ground state properties,
but also for excitations such as collective rotations and giant resonances and, by going beyond
mean field, for sophisticated low-lying spectra in transitional nuclei [9, 10] and the coupling
to complex configurations [11]. At present most of these functionals contain phenomenological
parts. Therefore, one of the main goals in nuclear structure physics is to derive a universal
density functional based on microscopic calculations [12, 13], a goal which has been reached
since many years in Coulombic systems [14]. This functional should allow to explain as many
data as possible within a universally valid parameter set and to provide reliable predictions for
nuclei far from stability, which are at present not accessible to experiments in the laboratory.
It should be derived in a completely microscopic way from the bare interactions. At present,
however, such attempts provide only qualitative results for two reasons: first, the three-body
term of the bare interaction is not known well enough and, second, the methods to derive such
a functional are not precise enough to achieve the required accuracy.

In deriving such energy density functionals, symmetries play an essential role. One of the
underlying symmetries of QCD is Lorentz invariance. Therefore, in nuclear physics, relativistic
density functionals are of particular interest. This symmetry allows consistently describing the
spin-orbit coupling. It has an important influence on the underlying shell structure. In addition,
it puts many restrictions on the number of parameters in the corresponding functionals but
keeps the quality of the agreement with experimental data [8]. The velocities of nucleons in
the Fermi sea are relatively small. However, as sumrule approaches to QCD predict [15], there
are large scalar and vector fields of opposite sign in the nuclear medium. Since the fifties, one
knows [16] that they cancel in the average field, but they add up in the velocity-dependent
spin-orbit term, such that even small velocities lead to significant effects. They are difficult to
handle in perturbation theory. A non-relativistic expansion is possible, but it leads to various
large correction terms at the cost of additional phenomenological parameters in non-relativistic
density functionals. Therefore we restrict ourselves, in the following, to Covariant Density
Functionals Theory (CDFT).

2. Semi-microscopic density functionals
In Coulombic systems an essential input for the derivation of microscopic functionals [14] is
the numerical calculation of the energy of an homogeneous electron gas as a function of the
density. Starting from this energy functional E∞[ρ] additional corrections are added with great
success. It seems to be reasonable to apply a similar concept in nuclear physics [22]. Of course,
at present, there are no exact solutions for homogeneous nuclear matter available. One has
to rely on approximate solutions, such as sophisticated variational calculations [23] or modern
Brueckner-Hartree-Fock methods [17, 18]. The point coupling functional DD-PC1 of the Munich-
Zagreb group [21] used this microscopic input together with experimental masses of 64 heavy
deformed nuclei. Ten phenomenological parameters have been adjusted, four coupling constants
at saturation densities: αS , αV , αST , δS and six additional parameters to describe the density
dependence. The result is a semi-microscopic functional with an equation of state very close
to the microscopic results of the Illinois group [23]. This can be applied at higher densities,
as for instance in neutron stars, with much more confidence than the simple extrapolations of
phenomenological functionals, which are adjusted only at the saturation density and below. In
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Figure 1. (Color online) Binding energy per nucleon E/A for symmetric nuclear matter and
for neutron matter (left panel)and proton-neutron effective mass difference as a function of the
nucleon density in pure neutron matter (right panel). The dots represent the results of BHF [17]
and RBHF [18, 19] calculations. The lines correspond to DD-MEδ. Figure taken from Ref. [20].

analogy to the non-relativistic considerations of the Catania group [24], a semi-phenomenological
covariant functional DD-MEδ has been derived. It contains besides the isovector vector ρ-meson
the isovector scalar δ-meson [20] and it is adjusted to the equations of state in symmetric
nuclear matter and in neutron matter derived in non-relativistic Brueckner-Hartree-Fock (BHF)
theory [17] (see the left panel of Fig. 1) and to the proton-neutron effective mass difference
calculated in covariant RBHF calculations [18, 19] (see right panel of Fig. 1). In addition it
has only 4 phenomenological parameters for the additional fine-tuning. In fact, for microscopic
nuclear energy density functionals, such a fine-tuning will always be necessary.

Looking, for instance, at the various contributions to the total binding energy of 208Pb, one
finds for the functionals DD-MEδ and DD-PC1 that the scalar energy ES of roughly 30 GeV
is compensated mainly by the vector energy EV and by the kinetic energy. The total binding
energy Etot of roughly 1.638 GeV represents only ≈ 5 % of the scalar energy. Consequently,
to reach an accuracy of 100 keV, as required for some astrophysical applications, one needs an
accuracy of 0.1/30000 ≈ 3 · 10−6. This will never be reached in ab-initio calculations without
some fine-tuning.

A systematic investigation over the entire nuclear chart in Ref. [25] has shown that the semi-
microscopic functional DD-MEδ has very similar properties as DD-ME2. This is a remarkable
result because compared to DD-ME2 with eight, DD-MEδ has only four phenomenological
parameters. The rest is determined ab-initio, i.e., by the bare nucleon-nucleon force through
relativistic and non-relativistic Brueckner-Hartree-Fock theory.

3. Relativistic Bruechner-Hartree-Fock theory
Relativistic Brueckner-Hartree-Fock (RBHF) theory is one of the most successful ab initio
approaches. It is based on bare two-body forces only. On the contrary, in non-relativistic ab
initio calculations, one needs three-body forces with additional phenomenological parameters.
Recently RBHF theory has also been applied for light finite nuclei [26, 27]. The relativistic
framework contains the important Z-diagram [28], an effective three-body force generated by a
virtual nucleon-antinucleon excitation.

Since the pioneering work of the Brooklyn group [29, 30], RBHF calculations are primarily
performed with positive-energy states (PESs) because the construction ofNN interaction matrix
elements in entire Dirac space, i.e., between negative-energy states (NESs) and PESs, and
the corresponding solution of the in-medium scattering equation is rather complicated. The
corresponding computer codes for the relativistic in-medium scattering are usually based on
the old relativistic scattering codes in free space [31], where negative energy states are not
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necessary. To compensate for the incompleteness of the Dirac space, different approximations
have been introduced to extract the effective single-particle potentials [32, 33, 34] necessary
for the self-consistent solution of the Hartree-Fock equation. These approximations have been
applied to solve for symmetric [32, 35, 33, 34, 36] and asymmetric nuclear matter [37, 38, 39, 40,
41, 18, 42, 43]. However, it turned out that they cannot uniquely determine the single-particle
properties [44]. Contradictory results for the isospin dependence of single-particle potentials
are found between two frequently used approximations [45]. Therefore, to clarify the properties
of asymmetric nuclear matter, it is necessary to solve the RBHF equations in the full Dirac
space [46, 47, 48].

Recently, self-consistent RBHF calculations in the full Dirac space have been carried out for
SNM [49] and for ANM [50]. They avoid the approximations used in RBHF calculations in the
Dirac space with PESs only. The saturation properties found in this way are in good agreement
with the empirical values.

In the RBHF theory, the nucleons inside the nuclear medium are viewed as dressed particles
because of the interactions with the surrounding nucleons. The single-particle motion of a
nucleon with rest mass M , momentum p, and single-particle energy Ep, are found by the
solution of the Dirac equation.

[α · p+ β (M +Σ(p))]ψ(p) = Epψ(p), (1)

where Σ is the self-energy in full Dirac space:

Σ(p) = US(p) + γ0U0(p) + γ · p̂UV (p). (2)

The effective Dirac-mass is given by MD(p) = M + U0(p) Here p̂ = p/p is the unit vector
parallel to the momentum p. US(p), U0(p), and UV (p) are the scalar potential, the timelike
part, and the spacelike part of the vector potential. For simplicity, spin and isospin indices are
neglected. ψ(p) are Dirac spinors. For each value of p, there is a solution with positive energy
(PES) and one with negative energy (NES). One needs the self-energy in full Dirac space for
their calculation.

In the RBHF scheme, the single-particle operator Σ in Dirac space is calculated as integral
over the effective relativistic interaction, the G-matrix

Σ(p) =

∫ pF

0

d3p′

(2π)3
⟨ψ̄(p)ψ̄(p′)|Ḡ(W )|ψ(p)ψ(p′)⟩. (3)

Here one sums up over all occupied states in the Fermi sea (|p′| ≤ pF ). For simplicity, spin- and
isospin-indices are neglected in these equations. W is the starting energy. For further details,
see Ref. [49].

For the calculation of the self-energy in full Dirac space in Eq. (1), one needs all the matrix
elements G++++, G+−++, and G−−++, where ± indicate positive and negative energy solutions.

The effectiveNN interaction G in the nuclear medium is the basic ingredient of RBHF theory.
In non-relativistic BHF theory, it is an effective scattering matrix, found as the solution of the
Bethe-Goldstone equation [51, 52]. Here the Pauli operator Q excludes scattering processes to
occupied states below the Fermi surface.

In relativistic scattering theory, the scattering matrix is determined by the four-dimensional
Bethe-Salpeter equation [53]. To reduce it to a three-dimensional equation, several methods
have been proposed [54, 55]. Nowadays, in most of the applications of the RBHF scheme, the
G-matrix is calculated by solving the in-medium covariant Thompson equation [32],

G(q′, q|P ,W ) = V (q′, q|P ) +

∫
d3k

(2π)3
V (q′,k|P )

Q(k,P )

W − EP+k − EP−k
G(k, q|P ,W ). (4)
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Here P = 1
2(k1 + k2) and k = 1

2(k1 − k2) are the center-of-mass and the relative momenta of
the two interacting nucleons with the momenta k1 and k2. The initial, intermediate, and final
relative momenta of the two nucleons are q,k, and q′. W denotes the starting energy and the
Pauli operator Q(k,P ) restricts the NN scattering in the nuclear medium.

Equations (1), (3), and (4) form a coupled system. It has to be solved by iteration, in a self-
consistent way. After convergence, the binding energy per nucleon for ANM can be calculated
straightforwardly [40, 42, 43].

In previous RBHF calculations [32, 33, 34] the Thompson equation (4) is solved in the Dirac
space with PES only. Because relativistic scattering algorithms are relatively complicated, the
starting point for such calculations was the free scattering algorithm used to derive a relativistic
NN -potential from the experimental phase shifts [31, 56]. This algorithm is restricted to
scattering processes of particles with positive energy. Negative energy solutions (scattering
of anti-particles) are not considered. The results of such calculations are the matrix elements of
the scattering matrix (T -matrix) and the corresponding phase shifts for proton and neutrons,
i.e., for a particle with positive energy. The situation is much more complicated for the self-
consistent solution of the RBHF equations. In each step of the iteration, we need, for the
evaluation of the Dirac spinors in the medium by the solution of the Dirac equation (1), not
only the matrix elements of the potential Σ for PESs Σ++, but also matrix elements Σ+−

between PESs and NESs and the elements between NESs Σ−−. This requires, in principle, a
solution of the Thompson equation (4) in the full Dirac space. Previous RBHF calculations
avoid the calculation of Σ+− and Σ−−, and use several approximations [32, 33, 34]. It turns
out that these approximations are valid for symmetric nuclear matter, but they show significant
differences for asymmetric nuclear matter.
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Figure 2. (Color online) Effective Dirac mass for the neutron (solid lines) and the proton
(dashed lines) as functions of the asymmetry parameter α at ρ = 0.16 fm−3 calculated by the
RBHF theory in the full Dirac space (left), in comparison with the results obtained by RBHF
calculations with PESs only using the projection method [33] (middle) and the momentum-
independence approximation [32] (right). The Bonn-A potential [57] is used. Figure taken from
Ref. [50].

We investigate the isospin dependence of the single-particle potential. In the left panel
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of Fig. 2, the Dirac mass M∗
D,τ = M + US,τ at the Fermi surface for protons and neutrons

(τ = p, n) obtained with the RBHF theory in the full Dirac space are plotted as functions of
the asymmetry parameter α = (ρn − ρp)/ρ at the density ρ = 0.16 fm−3. It is found that, with
increasing asymmetry parameter, the Dirac mass for the neutron is decreasing, while for the
proton, an opposite tendency is found. As a result, M∗

D,n < M∗
D,p with the isovector effective

mass (M∗
D,p −M∗

D,n)/M = 0.095 in pure neutron matter (PNM) is predicted in the full Dirac
space.

The other two panels of Fig. 2 contain approximations used in the literature. Here the
Thompson equation 4 is solved only for PESs, and the remaining parts of the self-energy Σ(p)
are determined by various approximations: The middle panel is obtained by the projection
method [33] with the ps representation for the subtracted T matrix described in detail in
Ref. [40].

Comparing with calculations in the full Dirac space, it is found that the projection method
leads to a qualitatively consistent isospin dependence of the Dirac mass, but the amplitudes of
M∗

D,n andM∗
D,p are overestimated. The result shown in the right panel of Fig. 2 is obtained with

the momentum-independence approximation [32]. Here the spacelike part of the vector potential
is neglected, and the momentum dependence of the single-particle potentials is neglected. With
these approximations, the scalar potential and the timelike part of the vector potential are
extracted directly from the single-particle potential energies at two casually selected momenta,
0.7kτF and kτF . It can be seen that, M∗

D,n > M∗
D,p for the entire region of the asymmetry

parameter. This contradicts the calculations with the RBHF theory in the full Dirac space
and with the projection method. As pointed out in Ref. [45], a wrong sign for the isovector
dependence of the single-particle potentials is obtained by applying the momentum-independence
approximation to asymmetric nuclear systems.

The determination of the single-particle potentials by using the full Dirac space gives us
confidence for a reasonable investigation of the symmetry energy and its density dependence.

In Fig. 2, the red solid line shows the symmetry energy Esym(ρ) =
1
2
∂2E(ρ,α)

∂α2

∣∣∣
α=0

found by the

RBHF theory in the full Dirac space as a function of the density ρ. At the saturation density
ρ0 = 0.188 fm−3 (see Ref. [49]), the symmetry energy Esym(ρ0) is 33.1 MeV. This agrees with
the empirical values 31.7 ± 3.2 MeV [61]. The slope parameter of the symmetry energy L is
65.2 MeV, which is consistent with the empirical values 58.7± 28.1 MeV [61]. As compared to
the results obtained by the projection method (olive dashed line), our results lead to a softer
symmetry energy. This fact is also favored by the historical detection of the gravitational wave
from GW170817 [62]. The gray band reveals the uncertainties of the momentum-independence
approximation as discussed in Ref. [49]. These results demonstrate again that it is important to
carry out calculations in the full Dirac space.

The symmetry energy has been extensively studied both in the theory and in the experiment.
For the comparison, we consider data from simulations of the low-energy HIC involving 112Sn
and 124Sn [58], nuclear structure studies involving excitation energies to isobaric analog states
(IASs) [59], and the ASY-EOS experiments at GSI [60]. They are shown as the blue, yellow, and
black shadow regions in Fig. 3. Below the saturation density, the symmetry energy obtained by
RBHF theory in the full Dirac space is found compatible with the constraints from the IAS [59]
and the HIC [58] experiments. At twice normal saturation density, i.e., 0.32 fm−3, the symmetry
energy obtained in this work is 51.6 MeV. This is in agreement with the constraint 50.8− 60.4
MeV from ASY-EOS [60].

4. Summary
On the way to an ab-initio determination of covariant density functionals, two essential steps
forward have been discussed: (a) the determination of the realistic and very successful semi-
microscopic functionals DD-PC1 and DD-MEδ has shown that because of essential cancellations
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Figure 3. (Color online) The symmetry energy Esym as a function of the density ρ calculated
by the RBHF theory in the full Dirac space (red solid line), in comparison with the results
obtained by the RBHF calculation with the projection method (olive dashed line) and the
momentum-independence approximation (Mom.-ind. app., gray band). The constraints from
the HIC [58], the IAS [59], and the ASY-EOS experiments [60] are depicted with blue, yellow,
and gray shadows, respectively. Figure taken from Ref. [50].

of the various relativistic potentials, one will always need some fine-tuning to obtain the high
required accuracy of the results for binding energies. (b) The problem of solving the Thompson
equation in full Dirac space existing for 40 years has been solved. This will allow further steps
in an ab-initio derivation of relativistic functionals, such a the derivation of a relativistic version
of the potential Vlowk. The symmetry energy Esym and its slope parameter L at saturation
density are 33.1 and 65.2 MeV, respectively, both in agreement with the empirical values. Below
saturation density, the symmetry energy is consistent with the experimental constraint of nuclear
structure and heavy ion collisions.
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[45] S. Ulrych and H. Müther, Phys. Rev. C 56, 1788 (1997).
[46] P. Poschenrieder and M. K. Weigel, Phys. Rev. C 38, 471 (1988).
[47] H. Huber, F. Weber, and M. K. Weigel, Phys. Rev. C 51, 1790 (1995).
[48] F. de Jong and H. Lenske, Phys. Rev. C 58, 890 (1998).
[49] S. Wang, Q. Zhao, P. Ring, and J. Meng, Phys. Rev. C 103, 054319 (2021).
[50] S. Wang, H. Tong, Q. Zhao, C. Wang, P. Ring, and J. Meng, Phys. Rev. C 106, L021305 (2022).
[51] H. A. Bethe and J. Goldstone, Proc. Roy. Soc. A 238, 551 (1957).
[52] K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958).
[53] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
[54] R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
[55] R. H. Thompson, Phys. Rev. D 1, 110 (1970).



ISS-2022
Journal of Physics: Conference Series 2453 (2023) 012031

IOP Publishing
doi:10.1088/1742-6596/2453/1/012031

9

[56] K. Erkelenz, Phys. Rep. 13, 191 (1974).
[57] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[58] M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch, and A. W. Steiner, Phys. Rev.

Lett. 102, 122701 (2009).
[59] P. Danielewicz and J. Lee, Nucl. Phys. A 922, 1 (2014).
[60] P. Russotto, M. D. Cozma and A. Le Fevre and Y. Leifels and R. Lemmon and Q. Li, J. Lukasik, and W.

Trautmann, Phys. Rev. C 94, 034608 (2016).
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