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Quantum key distribution with flawed and leaky sources

Margarida Pereira’, Marcos Curty’ and Kiyoshi Tamaki?

In theory, quantum key distribution (QKD) allows secure communications between two parties based on physical laws. However,
most of the security proofs of QKD today make unrealistic assumptions and neglect many relevant device imperfections. As a result,
they cannot guarantee the security of the practical implementations. Recently, the loss-tolerant protocol (K. Tamaki et al., Phys. Rev.
A, 90, 052314, 2014) was proposed to make QKD robust against state preparation flaws. This protocol relies on the emission of qubit
systems, which, unfortunately, is difficult to achieve in practice. In this work, we remove such qubit assumption and generalise the
loss-tolerant protocol to accommodate multiple optical modes in the emitted signals. These multiple optical modes could arise, e.g.,
from Trojan horse attacks and/or device imperfections. Our security proof determines some dominant device parameter regimes
needed for achieving secure communication and, therefore, it can serve as a guideline to characterise QKD transmitters.
Furthermore, we compare our approach with that of H.-K. Lo et al. (Quantum Inf. Comput., 7, 431-458, 2007) and identify which
method provides the highest secret key generation rate as a function of the device imperfections. Our work constitutes an
important step towards the best practical and secure implementation for QKD.
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INTRODUCTION

Quantum key distribution (QKD)'™> enables two distant parties,
Alice and Bob, to share a common secret key that can be used to
encrypt and decrypt messages. In theory, QKD can offer
information-theoretic security based on the laws of physics. In
practice, however, it does not, because typical security proofs of
QKD require assumptions that are not actually met by the practical
implementations, as they usually ignore many experimental
device imperfections. This discrepancy between the theory and
the practice of QKD has been evidenced by many quantum
hacking attacks, especially by those that exploit flaws in the
detectors of QKD systems.*> Fortunately, the proposal of
measurement-device-independent QKD (MDI-QKD)® can solve all
security loopholes in the measurement unit and, therefore, Eve
cannot take advantage of detector side channels to learn
information about the key. Furthermore, MDI-QKD can be
implemented experimentally using standard optical compo-
nents.” 2 Therefore, to guarantee implementation security we
now need to focus on how to secure the source in QKD.

Ideally, the sending devices are single-photon sources and the
encoding of the light pulses is executed perfectly, without any
state preparation flaw (SPF). However, none of these two
conditions are met experimentally, as all devices have inherent
deficiencies. The decoy-state method'>'® was proposed to
replace single-photon sources with coherent light sources. Also,
by using the Gottesman-Lo-Liitkenhaus—Preskill (GLLP) security
analysis'® the problem with SPFs is fixed. The main drawback of
this last approach is that the resulting secret key rate is poor and
fragile against channel loss. This is because it assumes the worst-
case scenario in which Eve could enhance the signals’ flaws
through channel loss, which significantly decreases the perfor-
mance of the QKD scheme.

Recently, a protocol that is loss-tolerant (LT) to SPFs has been
proposed'’ to address the limitation of the GLLP analysis. The LT
protocol employs only three states and takes into account
modulation errors due to an imperfect phase modulator (PM).
Remarkably, by using a different phase error estimation technique
involving the use of the basis mismatched events, the secret key
rate of the LT protocol remains almost unchanged even if the SPFs
increase. In fact, the maximum transmission distance for a QKD
system in fiber so far has been recently achieved using this
protocol,'® which shows that the LT protocol is highly practical. Its
main weakness, however, is the assumption that the single-
photon signals sent by Alice are qubits, which is difficult to
guarantee in practice. For instance, if Eve conducts a Trojan horse
attack (THA)"23 against the source, this assumption can be
violated. In a THA, Eve sends bright light into Alice’s PM and
obtains information about the encoding by measuring the back-
reflected light that exits Alice’s lab. Moreover, an optical mode of
the light pulse emitted by Alice could be dependent on the value
of the phase modulation, which means that a sent single-photon
pulse might not be a qubit (we call this imperfection the non-
qubit assumption). That is, Alice’s setting choice information could
be encoded in other degrees of freedom of the emitted light, and
this spontaneous leakage of information results in a higher-
dimensional sending state.

This work aims to reduce the big gap between the theory and
the practice of QKD by generalising the LT protocol such that it
can include typical imperfections in the sending device. To be
precise, and in contrast to,'” here we remove the qubit
assumption and include the effect of side-channels by considering
the mode dependency of the PM and THAs. Moreover, like in
ref. '/, we also include in the analysis SPFs in a single-mode qubit
subspace. Therefore, our analysis covers dominant imperfections
that a source device has, allowing the use of a much wider class of
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Fig. 1

Each single-photon pulse emitted by Alice’s source goes through a 50:50 beamsplitter (BS) and is decomposed into the reference and

the signal pulses. The reference pulse travels through the longer arm of Alice’s Mach-Zehnder interferometer. To perform the encoding, she
uses a PM that applies a phase shift to the signal pulse. The two pulses are recombined at the second 50:50 BS, sent through the quantum
channel and then received in Bob'’s lab. On reception, they are split by a 50:50 BS and Bob applies a phase shift on the reference and signal
pulses in the upper arm of his Mach-Zehnder interferometer. These pulses then interfere with the pulses that travelled through the shorter
arm of the interferometer at the second 50:50 BS. Bob can then detect click events corresponding to photons choosing the shortest arm in
Alice’s interferometer and the longest one in Bob’s, and to the opposite, by using two detectors, DO and D1, which correspond to obtaining bit

value 0 and 1, respectively

imperfect devices in a secure manner. Our generalised LT protocol
can be applied to any multi-mode scenario as long as the states of
the emitted signals are independently and identically distributed
(L1.D.), namely, this proof does not consider correlations between
the sending signals. However, we remark that recent results
reported in ref. * imply that our analysis could also accommodate
correlations between the signals which are independent of Alice’s
setting choice. Furthermore, we emphasise that the basic idea is
rather general and can be applied to many other QKD protocols
such as, for instance, the six-state protocol,?> distributed-phase-
reference protocols?®?® and MDI-QKD.® In simple terms, it is a
formalism to estimate the phase error rate of a QKD protocol by
evaluating the transmission rates of some virtual states with the
help of the state structure of Alice’s signals (see Eq. (1) below). We
also emphasise that our method does not require a complete
characterisation of the side channels, which significantly simplifies
the experiments for characterising the source. Using this
formalism, we can quantify the device parameters required to
ensure secure communications with flawed and leaky sources.

In addition, we investigate how Lo-Preskill's (LP) security
analysis®® behaves in the presence of the same device's
imperfections and, by using imperfectly characterised states, we
compare it with our generalised LT protocol. As a result, we
determine which security proof provides a higher secret key rate
as a function of the device parameters. These parameters are
essential for experimentalists to produce and to calibrate the
transmitting devices, and therefore our work can be used as a
guideline for securing the source in the presence of multi-mode
signals.

RESULTS

Description of the protocol

We shall assume, for simplicity, that Alice’s lab has a single-photon
source. However, we emphasise that our analysis can also be
applied to the case where Alice emits phase-randomised weak
coherent pulses. In this latter case, Alice can use the decoy-state
method'*™" to estimate all the quantities corresponding to the
single-photon pulses that are needed to apply our method. Below
we focus on the case where Alice has at her disposal single-
photon sources only because the study with phase-randomised
weak coherent pulses, together with decoy states, results in an
unnecessarily cumbersome analysis. Figure 1 shows the QKD
setup (see Section | of the Supplementary Material for a detailed
description of the actual protocol). Next, we describe the
assumptions we make on Alice’s and Bob’s devices.
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Assumptions on Alice’s device

In this work, we consider the asymptotic scenario where Alice
sends Bob an infinite number of pulses. Our formalism is valid for
any source that emits pulses whose quantum state is of the form

"Dfﬁ>BE: afﬁ|¢iﬁ>BE+bjﬁ‘¢fﬁ>BE’ W

with |as|” + |bjs]” = 1, where j€{0, 1} and B €{Z, X} are Alice’s bit
value and basis choices, respectively. As in the LT analysis
introduced in ref. '/, we consider a three-state protocol where
Alice selects jB €{0Z, 1Z, 0X}. Furthermore, in Eq. (1), we assume
that |¢;g)ee is a pure state in a single-mode qubit space, where BE
stands for Bob’s and Eve’s systems due to a potential THA. For
instance, |¢;s)ee could be of the form |¢;s)ee = |wjs)s ® |€)e, where
Eve’s system does not depend on jB and |w;g)s is a qubit state. The

state

(/)}%> , on the other hand, corresponds to any state outside
BE

of the single-mode qubit space, including the state of a side
channel, and it is in an Hilbert space orthogonal to |@;s)ge. We note
that the form of the pure state given by Eq. (1) is the most general
LL.D. state. Indeed, this equation simply decomposes a state in a
given Hilbert space into a direct sum of two states in different
Hilbert spaces, which can always be done. One of these states is in
a qubit space and the other one is in any complementary Hilbert
space. That is, any pure state can be written in the form given by
Eq. (1). In addition, we further assume that, similar to that in ref. '’
the states |¢;g)ge in Eq. (1) form a triangle in the Bloch sphere and
we set their Y-components to be the same by choosing the y-axis
appropriately. This assumption is required to ensure that Alice is
sending essentially three different states rather than one or two
states. Importantly, we note that by introducing an ancilla system
for Alice to purify the state, our formalism is also valid for a mixed
state in a single-mode qubit space, as shown in section ‘Security
proof against coherent attacks'.

The state structure in Eq. (1) means that the inner product

<¢jﬁ|¢ﬁ5’>35 for all j, j/, B and B’ is always zero. Also, depending on
Alice’s knowledge about the state given in Eq. (1), she might have
to consider the worst-case scenario, i.e., <¢/§\¢/$B,>BE: 0 for any
combination of (j, B) and (7, B'). This means that, complete
information about ‘¢J¢> is not required, which significantly

simplifies the experiments for characterising the source. On the
other hand, if Alice knows some structure of the side channel she

should fully exploit it and lower bound <¢fﬁ\¢jﬁ,>BE. For example,

if she knows that the side channel is associated with the
polarisation state of the single-mode qubit, then the worst-case
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scenario does not apply, i.e., <¢/§\¢ﬁﬁ/>BE #0, as it is impossible for

three states to be orthogonal to each other given the two-
dimensionality of polarisation. This way, our formalism can readily
take into account the available information.

We remark that, to apply the procedure introduced below we
only need to determine the coefficients a;z and bjg, and the qubit
state, but it is not necessary to completely characterise the

guantum information of the side channel, ‘¢$>BE. That is, our

characterisation seems to be rather simple and there is no need to
perform further detailed characterisations. Nonetheless, the better
Alice and Bob know the state given in Eq. (1), the better the
resulting performance, as explained later in this section. An
experimental procedure to perform this estimation is out of the
scope of this paper; hence, we assume that these parameters
are given.

Furthermore, our work can accommodate any SPF in the single-
mode qubit space and one could also employ the techniques in
refs. 2%°°, For example, we may select a case in which the states
that Alice prepares can be expressed as

1

=5 (), eersermin) ), ), @
where §(=0) is the deviation of the phase modulation from the
intended value @4 and we define |1),|v);=|0y) and |v)|1)s=]1y),
where v stands for vacuum, |1) denotes a Fock state with one
photon and the subscript r (s) corresponds to the reference
(signal) pulse. In the case of the three-state protocol we have that
©a€1{0, m, m/2}. Then, by using |0z) = (|0y) +|1y))/v2 and
[17) = (—|0y) + |1v))/V/2, we obtain the following expressions
for the three states in the single-mode qubit space:

lwoz)g= [02),
lwiz)g= —sin(8)|0z) + cos($)|1z), 3)
|wox)g= cos (5 +5)10z) +sin(5 +)|12).

Therefore, our formalism can be used, for instance, when the
information about Alice’s choice of state is leaked and/or the
optical mode depends on Alice’s selection. This leakage from the
source can occur spontaneously or with an active THA.

Assumptions on Bob’s device

Bob receives the signal and reference pulses from Alice and
measures them in a basis selected at random. More precisely,
Bob’s measurements are defined by the positive-operator valued
measures (POVMs) {Mog, M1, Mr}, where Mog (M1) with B € {X, Z}
corresponds to obtaining the bit value 0 (1) when Bob chooses the
basis B and_ M; corresponds to an inconclusive outcome.
Importantly, My is assumed to be the same for the two bases.
This means that the detection efficiencies are independent of
Bob’s measurement basis choice, which is required to prevent
side-channel attacks exploiting channel loss.*” It is noteworthy
that this assumption is widely used in most security proofs and
one of the simplest ways to circumvent such detector side-
channel attacks is to use MDI-QKD, to which our technique also
applies (see Section Il in the Supplementary Material).

Security analysis

In order to prove the information-theoretic security of our
protocol we use the complementary scenario introduced by
Koashi.3'3? For this, we first need to create an equivalent virtual
protocol (see section ‘Security proof against coherent attacks’)
concerning an observable conjugate to the key. The classical and
quantum information available to Eve in the actual and virtual
protocols are the same and therefore she cannot distinguish and
behave differently between them. Hence, by proving the security
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in the virtual protocol we ensure the security of the actual
protocol. In addition, from the virtual protocol we can determine
the phase error rate, which quantifies the amount of information
that is leaked to Eve and has to be removed in the privacy
amplification step. In this section, we show how this last quantity
is estimated by generalising the LT method.

As explained before, for simplicity we assume the asymptotic
scenario where Alice sends Bob an infinite number of pulses. The
asymptotic key rate for the single-photon signals can be
expressed as

R> Yz[1 — h(ex) — fh(ez)], (4)

where Y is the yield of the single photons in the Z basis, i.e., the
joint probability of Alice emitting a single-photon in the Z basis
and Bob detecting it with a measurement also in the Z basis. The
function h(x) = —x log,(x) — (1 — x)log,(1 — x) is the binary entropy
function and f is the error correction efficiency. The term ey is the
phase error rate and thus h(ey) is the cost of performing privacy
amplification in order to remove the correlations between the
corrected sifted key and Eve. The term e is the bit error rate and
fh(ez) corresponds to the amount of syndrome information
required to make Alice’s and Bob’s keys the same. The quantities
Y, and ez in Eg. (4) can be directly obtained from an
implementation of the experiment. Therefore, we are left with
the estimation of the phase error rate. We do this below.

Estimation of the phase error rate

We assume that Alice prepares the states |®;g)ge as defined in Eq.
(1). These states take into consideration the non-qubit assump-
tion, a possible THA by Eve, and SPFs. In the virtual protocol (see
section ‘Security proof against coherent attacks’ for further
details), Alice prepares the following state in the Z basis:

¥Z2)nse = 75 [\OZ>A®<GOZ|¢02>BE + boz\¢éz>35>
+ |1Z>A®<U1Z\¢1Z>BE + b1z‘¢1LZ>BE)]

We then define the bit error rate as

(2) (2)
Yozaz + Yizoz

7 Z z 7)
Y(gz,)oz + Y1<z,)oz + Y((JZ?1Z + Y1<z?1z

(6)

ez =

where the yields Ys(f‘)z, with s, j€{0, 1}, are the joint probabilities
that Alice prepares the state |¥z)age, Bob selects the Z basis and
Alice (Bob) obtains the bit value j (s) when she (he) measures the
system A (B) in the Z basis. It is noteworthy that the superscript (2)
in the yields represents the basis used in the state preparation,
while the subscripts denote the bases employed in the measure-
ments. These yields are directly observed in the experiment.
Similarly, the phase error rate is defined as
Vit + Vizox

Yoxon + Vixox + Yook + Yixi

@)

ex =

where Y;fj;" with s, j€{0, 1}, is the joint probability that Alice

prepares the state |¥;)age, She and Bob select the Z basis but both
use the X basis for their measurements (rather than the selected Z
basis) and Alice (Bob) obtains the bit value j (s). The phase error
rate corresponds to the bit error in the virtual protocol. Also, we
have that the denominator of ex in Eq. (7) is equal to
Yé?oz + Yf?oz + Y((é?u + Y@m as by assumption the probability
to obtain an inconclusive outcome associated to the operator My
is the same for the both basis for any incoming state. This means
that to estimate ey we only need to calculate the virtual yields

Yoxaw and Yics.
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In the virtual protocol, after Alice measures the system A in Eq.
(5) in the X basis, she sends Bob the (unnormalised) states:

éBEjX‘vir =Try “Ix) (jX|A®1BE |¥z) <WZ|ABE] , (8

where Try is the partial trace over the virtual system A. Using Eqs.
(5) and (8) we can calculate the unnormalised states sent by Alice
for j€{0, 1} and obtain that Bge jx.vir = ) (Wge jxvir With

% [GOZ\¢OZ>BE + boz|¢éZ>BE

+ (=1Y (a1z\¢1z>BE + b1z|¢1LZ>BE>}'

Writing Eq. (9) in terms of the states |yx)ge and ‘yj(> , defined
below, we have that: BE

) BE.jX,vir —
9)

W) ge jxvir :% [\/‘GOZ‘Z + (*1)1(032012<‘/’02|¢12>BE + aOZa?z(¢1z‘¢oz>BE) + ‘012‘2‘ij>55

+ /lbazl? + (<17 (bizb1z (bazlehiz g + bozbiz izl ) + 1012 )
(10

where the normalised states |yx)se have the form

oz|Poz)ge+(=1) arz|¢h1z)ee

2 i >
laoz [*+(—1Y (012 oz |12)pe +a02a}, (12 |0z ge ) +lenz|

‘YJ'X>BE: V (11)

and the normalised states ‘yﬁ(> , which are orthogonal to |yx)se,
are given by BE
‘V-L> _ boz| o) o+ (1) b1z | i) o

PTBE \/1boz+(=1) (biyb1z (d57167 ) g +b0zbi, (il g ) o1z

Note that, in Eq. (10), we have decomposed |()gg jxir into a single-
mode qubit ‘ij>BE and a state in any mode orthogonal to it,

(12)

‘yj§>BE. This decomposition follows the definition provided in Eq.

(1), and it is an essential step for our estimation of the phase
error rate.
To obtain the yields Y,

VII’
XJX we need to calculate

Yﬁf};” = Pz,Pz, Tr [DSXQBE e V|r:| , (13)

where Dy = ZA,(MS)(A,X corresponds to Eve’s action, represented
by the Kraus operators A, as well as Bob’s measurement with Mgy
being an element of Bob’s POVM. Here, recall the definition of the
phase error rate where the Z basis is selected but both Alice and
Bob use the X basis for their measurements (rather than the
selected Z basis), which is why Pz, and Pz, appear in Eq. (13).
Moreover, here we assume, for simplicity, that Eve applies the
same quantum operation to every signal, which corresponds to a
collective attack, but our analysis can be generalised to coherent
attacks by considering the Azuma's inequality®® (see section
‘Azuma's inequality and its application to the security proof’),
which deals with any correlations among the events, ie., the
phase error rate pattern. Using Egs. (10)-(13), we obtain the
following expression for the yields:

Ys(xi)v(" Pz,Pz, (A Tr[ 5X|V/X><YJX|BE}
+ T0[Dur (Bl (Wit o+ 8 ) el + G (v ) )

(14)

where the coefficients A, B; and C; are defined in section
‘Coefficients’, and we omit presenting their explicit expressions
here for simplicity. As the state |y;x)ge in the first term of Eq. (14) is
a single-mode qubit state, its density matrix can be expressed as

ZP’XWM' (15)

where P are the coefficients of the Bloch vector and &;, with
ie{ld, x, y, z}, represent the identity and the three Pauli operators,

p/X - |V/X YJX|BE
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respectively. Therefore, we have that
A Tr [sz’ij><ij’%] =A {sz’wr%xud + PTG ix

o o (16)
+ P{VX’qusX\y + P]ZX,qusX‘z]’

where P =Ty [6’}VJX><V/‘X|BE} and gy, =1 TrDy&;] can be
regarded as the transmission rates of the operator G;. These can
be calculated by solving a system of linear equations with the
events from the actual protocol, which we will explain later.
Moreover, by choosing the y-axis of the Bloch sphere appro-
priately we can always set P = 0 for all the Bloch vectors, as

the PM just creates rotations in the X-Z plane of the Bloch sphere.
Indeed, even if the PM introduces loss depending on Alice’s state
selection, as long as the three states form a triangle in the Bloch
sphere, we can apply such simplification.'” As already mentioned
in section ‘Assumptions on Alice's device’, we note that any
implementation of the LT protocol requires that the three states
form a triangle in the Bloch sphere.

Furthermore, it is possible to find both lower and upper bounds
on the second term of Eq. (14). In particular, this term can be

%

written as Tr[DyN;] where N; is the matrix [g’ g/} with
j

eigenvalues
G+ \ Cj2+4|8j|2 G- \ Cj2+4|Bj|2 17)
max; — f an min; = f

Using the properties of POVMs, we have that the operators Dex
have eigenvalues between 0 and 1; therefore, Tr[Dsx ;] is bounded
by Amin; < Tr[szNj] < Amax;s Since Amin,; is negative.
This means that the virtual yields satisfy:
PPz (A Qi + P o + PE 0] + M) < Vit
< Pz,Pz (Aj [qu\Id + PQX’VirqSX\x + PJ;X’Virqu\z} + /\maxj)-

To find the transmission rates g, the actual events we need to

(18)

consider are those associated with the yields Ys()f)OZ' Yﬁﬂz and

YS(X>0X These are defined as foiﬁ = PigPx, Tr[ SX‘(D/B><(D/B‘BE} for

jB€1{0Z, 1Z, 0X}, where the normalised actual states |Djg)ge are
defined in Eq. (1). That is, |®;g)ge are the states emitted by Alice in
the actual protocol when she chooses the bit value j and the basis
B, in the presence of multi-mode signals. Using exactly the same
method explained above, we obtain

Yo = PisPxa (Ejﬁ Tr [sz}d)jﬁ><¢jﬁ|3£}

+Tr [bsx (Fjﬁ|¢jﬂ><¢$‘BE+F $><¢1B|BE+GW‘¢/‘JI§>< /JI_3 BE)])?
(19)
2 There-

where Ejg = |ajsl*, Fjg = ajbjs, Fis = ajbjg and Gig = |byg|
fore, we find that the actual yields satisfy
P'ﬁPXB (EjB [qs)(\ld + Pjﬂqu\x + PqusX\z] + )\minjg) < Ys()[(;)”;

< PﬁPXg( jB [QSXUd + Pjﬁqu\x PjBQsX\z] + )\max,ﬁ)v

where
2 2
Gjg + /Gl + 4lFig Gjg — 1/ Gl + 4lFig

maxjg — > 2 ’
(21)
are the eigenvalues for the non-qubit part of the actual states, and
P{(B and P/f are the coefficients of the Bloch vector for the actual

states. By substituting j8 €{0Z, 1Z, 0X} in Egs. (20) and (21), we
obtain a system of three linear inequalities, which can be

(20)

an ming =

Published in partnership with The University of New South Wales



expressed as

[QSX\Idv Asx|x» qu\z]A

A A A < V()?z Y()?z Y<))(()x 22
. . . sX.0. X1 sX.0.

+ [ mingz » min;z mmgx} = | PPy’ PPy’ PoxPrg (22)
S [qu\Idv qu\m qu\z ]A + [/\maxop /\max1zy )\maxox ]7

where A := (V],,VI,,V],) in which Vjg = Ejg(1, P, PF) and where
the superscript T means transpose. By rearranging Eq. (22), we
obtain the bounds on the transmission rates gsxja gsxjx and g, to

be

y(@ % yX) A1
sX.0Z X.1Z Xox_ | [)\max027 )\max 25 )\maxox ] A~
> PizPxg !

PozPxg PoxPxg

S[QSX|Id7 9sx|xs qSX‘Z}

@ v Y A
< sX.0Z , X.1Z , XOX | [)\minop )\min1z7 )‘minox] A ,
PozPx, P1zPx, PoxPxg
(23)

where A" is the inverse of the matrix A.

By solving Eq. (23), we can calculate the transmission rates and
then substitute them into Eq. (18) to find the upper bounds on the
virtual yields Y$2¥" and Y!2¥" Finally, by using these upper
bounds on the virtual yields and the yields from the actual events
we can estimate the phase error rate ey in Eq. (7).

As already mentioned previously, this technique is quite general
and could be applied to many other QKD protocols. As an
example, in the Supplementary Material (Section Il), we outline
how this analysis could be performed for MDI-QKD.

Simulation of the key rate
Only for the purpose of the simulation, we now consider a
particular device model and a particular THA. In general, to
experimentally guarantee that the three states emitted by Alice
remain in two dimensions, i.e,, in a single-mode qubit, her PM
needs to have the same temporal, spectral, spatial and polarisa-
tion mode independently of the bit and basis choices. However,
due to imperfections in the devices this condition is hard to fulfil.
Some counter-measures against these imperfections have been
suggested,®*™3” but they cannot rigorously ensure a single-mode
qubit. Therefore, it is crucial to consider how device's flaws can be
taken into account in a security proof. This is the aim of our
analysis. For simplicity, among many imperfections, we select the
polarisation mode as an example of how to use our framework.
A change in polarisation can arise from the imperfect alignment
of the laser with the principal axis of the PM and/or when the PM
is polarisation dependent, i.e., the state of polarisation of the
signals prepared might be different for each encoding phase
value. In principle, this could be avoided by using a polarisation
beamsplitter (PBS) that selects a single polarisation mode. In
practice, however, because of the finite extinction ratio of the PBS
this is usually not the case. Here we relax the need for a perfect
PBS by considering a polarisation multi-mode scenario. We
remark, nonetheless, that our analysis can be applied to any
multi-mode scenario. Using our formalism, we can express the
states sent by Alice in the scenario considered in an analogous
way to Eq. (1):

|Qig) = OO |wjg) g + SiNOjs W) )5 (24)

for jB€{0Z, 1Z, 0X}, where the subscripts H and V refer to the
horizontal and vertical polarisation modes, respectively. That is,
now the polarisation state of |w;s)s depends on Alice’s bit and
basis choices instead of being the same independently of her
encoding. Next, we add the SPF and the THA to this particular
device model.
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For the states |wjg)ng and |wjg)ve, We use the definitions in Eq.
(3), where they both live in a qubit space. Also, by using Eq. (3)
these states already include SPFs whenever the parameter 6 > 0.
As stressed in section ‘Assumptions on Alice’s device’, as in this
case we know the form of the states we do not need to consider
the worst-case scenario but only the inner product pg(wjs|lwjs)ve
=0forallj,j, Band g.

In addition, we consider an active information leakage in our
device model. For this, we assume that Eve sends strong light into
Alice’s PM, which is then back-reflected and exits Alice’s lab in the
form

€i8)e= Cile)e+Colejp ). (25)

In this expression, |G|*+|Col>=1 and le)e (lejs)e) represents
(represent) the setting independent (dependent) state (states) on
Alice’s bit and basis choice, where we assume that (e|ejs)e =0.
That is, the state |e)e (|lejs)e) provides Eve with no (some)
information about Alice’s bit and basis values each given time.
Therefore, our model for the THA can be parameterised by only
two parameters, C; and Cp, and no further detailed information is
needed to apply our analysis. For instance, when we increase
isolation on Alice’s sending device, the independent component
increases and Eve obtains less information about the states being
sent. Moreover, in the absence of further information about the
states |e;g)g, We assume the worst-case scenario where these states
are orthogonal to each other, i.e., (ejglesg)e = O for any (j, B) = (/, B).
Clearly, if Alice and Bob know the states |e;g)e, this information can
be trivially included in the formalism below.

If |€s)e is say, for instance, a coherent state, |e)¢ is the vacuum
state (i.e., [e)g = |V)e), G = e ™2 and Cp = V1 — e #, where y is the
intensity of Eve's back-reflected light. In this case, note that the
condition (ejgleyz)e = 0 is not satisfied, as Eve will never be able to
perfectly distinguish the states dependent on Alice’s encoding.
The value of this overlap depends on the isolation of the devices.
Below, however, we conservatively assume for simplicity the
worst-case scenario where this overlap is zero.

Putting Egs. (24) and (25) together, Alice’s emitted state for the
single-photon pulses is modelled as

|Oj6)ge= |Qp)s |8 )e- (26)

By using Egs. (3), (24), (25) and (26), and by assuming that |§g) are
coherent states, we obtain

|08 e= (c0sBys|wip s + sin6alwip)yg ) © (Ve + Colesa)e)
= cosBjpCi|wjg ) g v)e + cOsOpColwjs) g €ip e

+ sinBluyp)ye® (Ve + Cole)e).
(27)

The first term of Eq. (27) has polarisation H and is insensitive to the
THA, it corresponds to ajg|¢;g)ee in Eq. (1). Similarly, the other
terms have either polarisation V and/or are affected by the THA,

and together they correspond to bjﬁ‘¢ﬁ3>as in Eq. (1). In this case,

the unnormalised virtual states given by Eq. (10) have now the
form

W) eexir = 3 {Q \/COSGSZ - (—1)j2coseozc0591zsin§ + cos@fz|ij>BE

+ \/CI2 (sin@éz — (—1)/25inBo75inBy75in S + sin@fz) + 2C§‘yﬁ>BJ ,

(28)
where we have used the relationship
(woz|wiz)g= (woz|wiz)g= —sin(3). In order to estimate the phase

error rate, we need to calculate the transmission rates G, Gsxix
and gy, using the actual yields. For this, we use Eq. (23) where in

npj Quantum Information (2019) 62



npj

M. Pereira et al.

6

this particular example, the matrix A is

Eoz Eiz Eox
A=| 0 —Egzsin(6) Euwxsin(m/2+6/2) (29)
Eoz —Eizcos(8) Eoxcos(m/2+6/2)

where Ejg = C?cos’6js. Then, we can find the virtual yields by
using Eq. (18) where, in this example, the coefficients of the Bloch
vectors are

(—1)'2 cos 8oz cos 87 cos3—2 cos B3, cos3 sing
cos 83, —(—1)2 cos Bz cos 6z sin+cos 63,

jX,vir
PP ,

(30)

piXvir _ €05 02,—(—1Y2cos B0z 05 617 sind+cos 67, (1-2 cos?)
z cos 03, —(—1)2 cos Boz cos 0;7 sind+cos 67,

Finally, one can directly use Eqg. (7) to estimate the phase error
rate ey.

Results of the simulation

With the method described above, it is possible to employ the
leaky source without compromising the security of the QKD
system. Nonetheless, depending on the situation and the
particular experimental parameters, it might be beneficial to
consider another method that, in some cases, might provide a
higher key generation rate. Therefore, it is important to compare
our generalised LT protocol with an alternative method, say the LP
analysis introduced in ref. ?°. In Section Ill of Supplementary
Material, we provide a detailed description of this analysis.

In order to evaluate how the different imperfections of the source
affect the key generation rate for both security proofs, we analyse
each of them separately. The results and discussion of this analysis
are in the Supplementary Material (Sections | and Ill). Now, we
present the comparison results between the generalised LT protocol
and the LP analysis, and identify which one provides a better R
depending on the experimental setup. This way an experimentalist
can choose which method to use for known device parameters and
ensure the security of the generated key between Alice and Bob. It
is noteworthy that for a fair comparison between both protocols we
consider the efficient four-state LT protocol, where the four states of
the BB84 protocol*® are used to run two LT protocols simulta-
neously. That is, when Alice emits the state |wox)s (|wix)s), she
considers that it belongs to the first (second) LT protocol, whereas
each of the two protocols is randomly chosen by Alice before
sending the pulse. See Supplementary Eq. (lll.8) for the definition of
the state |wqx)s in the presence of SPFs. This means that no
modifications to the hardware of the standard BB84 protocol are
required and therefore, the four-state LT protocol is equivalent to
the BB84 protocol from an experimental point of view.

We show the results obtained for R as a function of the overall
system loss (which includes both the channel attenuation and the
loss at Bob's receiver), for different values of 6, 83 and u, which
correspond to the SPFs, non-qubit assumption and THA, respec-
tively. The angles ;5 are chosen such that they are associated with
Alice’s encoding of the states |wjg)g. That is, 6oz =0, 6;; = 76 and
Box = 50 for a certain angle 6. In our simulations, we consider the

§=0.063 and 6 =103
0 T T T T
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— LT (p=10"7) |{

LT (p=10"%)
- - LP (u=10"1)]
- = LP (p=1077)
> LP (up=107%) ||

’ 0 10 20 30 40 50 60
Attenuation (dB)

(a)

§=0.126and 0 = 1073

§=0.063 and 6 = 107°
0 T T T T

— LT (u=10"1)
— LT (p=10"7) |
LT (p=107%)
LP (p=10"1)
LP (u=10")
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8 . . . . .
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Fig. 2 Secret key rate R vs. the overall system loss measured in dB for the generalised LT protocol and LP analysis. The blue and red dashed
lines are superimposed in all graphs. a The LP protocol performs better in this scenario, because the SPFs are small but 0 is high. b For a
smaller 6, the generalised LT analysis is better when u=10""°. ¢ The LP performs better when B is larger even if 6 is high. d For large 6 and
small 6, the generalised LT clearly surpasses the LP analysis when y=10""or y=10"

npj Quantum Information (2019) 62

Published in partnership with The University of New South Wales



experimental parameters to be the following: the dark count rate
pa=10"7, f=1.16 and the fiber loss coefficient a= 0.2 dB/Km.
Moreover, we assume for simplicity that in the LT protocol and in
the LP analysis Pz, =1 and Pz = 1. This selection of probabilities
might not be ideal but it is sufficient for the purpose of the
simulation. By using the channel model described in the
SuAppIementary Material (Section V), we find that Yy = Yé?oz"’
YiZhz + Y(g,u + Y1717 = P2P5,[4(1 = Dpa +n] where n is the
overall transmission efficiency of the system (see Section IV in
the Supplementary Material for more details). The bit error rate is
then given by
2(1 = Dpg + 2+ 7 (cos 26 + cos ) (pg — 1)
ez = . (31)
4(1 —=pa+n

As the range of the experimental parameters greatly depend on
the devices being used, we select the SPFs to be either 6 = 0.063
or 6§ =0.126 according to the experimental results reported in
refs. 3%3%%° There are some works related with the mode
dependency,***' but unfortunately they do not directly provide
the value of 6. Therefore, we evaluate 6 over a big range (see
Sections | and lll in the Supplementary Material) and for these
simulations we choose 6 = 1073 and 8 = 10~>. Obviously, a better
experimental characterisation of the source would be essential to
improve the accuracy of the current parameters. Finally, for the
intensity of Eve’s back-reflected light during the THA, we use u =
107", u=10"" and pu=10"*2" The results are shown in Fig. 2. It
is noteworthy that the blue and red dashed lines coincide (for the
resolution presented) in all graphs. The reason for this lies in the
value of the variable . That is, for y=10""° and u=10"", the LP
analysis results in approximately the same secret key rate (see
Supplementary Material, Section I, for more details).

By comparing Fig. 2a, ¢ or Fig. 2b, d, we can see how an increase
in the parameter 6, which is associated with SPFs, affects both
protocols. For the generalised LT protocol, the key rate stays
approximately the same as expected, as this method is loss
tolerant to SPFs. On the other hand, the LP analysis is more
influenced by SPFs (see also Supplementary Fig. lIl.2). The reason for
this difference is that in LP it is assumed the worst-case scenario, in
which Eve can enhance the basis dependence of the signals by
exploiting the channel loss. However, in LT no such assumption is
required; hence, the performance is maintained. This means that LT
will typically outperform LP in the presence of high SPFs.

To compare LT and LP as a function of the setting-dependent
;s we can contrast Fig. 2a, b or Fig. 2¢, d. The graphs show clear
differences due to decreasing the value of 0, especially for the LT
case. In Fig. 2a, LP reaches a longer distance for any value of y, but
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when 6 = 1075 LT gets better, particularly for y=10""° as seen in
Fig. 2b. Furthermore, Fig. 2b shows that even when there are SPFs,
LP can still do better than LT if the states sent are far from the
idealised qubit. This is because the non-qubit assumption
negatively affects more LT than LP (see Supplementary Figs I.1c
and I11.2¢).

When we compare the values of u for the LT and LP, we can see
a similar trend in the secret key rate for all graphs in Fig. 2.
Namely, the difference between the curves when u=10""° (blue)
and u=10"" (yellow) is much larger for LT than for LP, which
means that the THA is worse for the LT. However, u is a parameter
that might be easily controlled experimentally by introducing
passive counter-measures, such as optical isolators.?' Indeed, in
ref. 2!, it has been shown, for instance, that a value of u=10"°
could be easily achieved in practice. For example, even if Eve
sends Alice optical pulses with 10%° photons, practical combina-
tions of the components of Alice’s transmitter could guarantee a
total optical isolation of —170dB, which would be enough to
achieve y=10"%2" This means that the LT method may be a
better alternative when the SPFs are more dominant and the
mode dependency is small, as it outperforms the LP analysis in Fig.
2b and d.

As explained above, the non-qubit assumption and the THA
affect more the LT than the LP analysis. This might be because our
generalisation of the LT protocol is overestimating Eve. When we
calculate the bounds for the yields we obtain that the eigenvalues
Amax and Ain depend on the state preparation. However, this is
probably too pessimistic, because there might be some additional
constraints among them, as the space spanned by the states
associated to 0Z and 1Z, respectively, is not orthogonal to the one
spanned by the virtual states associated to 0X"" and 1X*". This
means that these separate optimisations should not be possible in
practice, because Eve cannot achieve optimal values for all As. In
other words, by improving our characterisation of the states we
can improve the performance of the generalised LT protocol. This
is however beyond the scope of this paper and we leave it for
future work.

In order to further investigate the differences between the two
methods, we determine the parameter regimes where their
performance is identical. First, by setting 6 = 107, we can identify
which values of 6 and u provide the same key generation rate R
for LT and LP. The results are presented in Fig. 3a, where the
diagram clearly shows which protocol performs better given a
certain 6 and u: above the fitted curve, the LT provides a better
performance but below the curve LP is the preferable method. In
other words, as the SPFs increase the LT is superior but as u
increases LP becomes more suitable.

(b)

u=10"°
02 ; :

T
* Data

0.18 F  Generalised loss-tolerant
0.16
0.14
0.121

0.1r
0.08 |
0.06

0.04 - Lo-Preskill

0.02 b . . . . . . .
9 85 8 15 -1 65 6 55 5

logy, 6

Fig. 3 The fitted line corresponds to those experimental parameters that result in the same key generation rate R for both methods, the
generalised LT protocol and the LP analysis. Above the line the generalised LT protocol performs better, and below the line the LP analysis is

the preferred method. The data points were fitted using a shape-preserving interpolant in Matlab. a Plot of 6 against u for 6=1075.b Plot of 6

against 6 for y=10"°
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Similar results are obtained when u=10"° This case is
particularly useful, as in principle we can control the value of u
experimentally by the amount of isolation we use in our devices.
Again, as SPFs increase the LT becomes better, giving a better
estimation of the phase error rate and a better secret key
generation rate.

DISCUSSION

Typical security proofs ignore many imperfections of experimental
devices, thus hindering the security claim of QKD. In this work, we
have generalised the LT QKD protocol to accommodate general
imperfections. In particular, our formalism is valid for a general
device model with, for instance, SPFs, mode dependency and
THAs, which result in passive and active information leakage to an
eavesdropper. Using this multi-mode scenario, we have shown
that the qubit assumption can be removed from the LT protocol
without compromising the security of the QKD scheme. We
present a formalism that can be used to estimate the phase error
rate by finding the transmission rates of some virtual states and
assuming the general state structure defined in Eq. (1). Therefore,
in principle, it can be applied to most QKD protocols.

In order to compare our generalised LT protocol with other
security proofs, we have applied the LP analysis®® to the same
device model. In so doing, we have identified which approach
delivers a higher secret key rate as a function of the experimental
parameters. For example, the results obtained show that LP
method performs better under the non-qubit assumption and the
THA but the generalised LT protocol is better when there are SPFs.
As the THAs can be controlled using passive counter-measures,
such as optical isolators, we have shown that in some cases the
generalised LT protocol might be the preferable method when the
SPFs are more dominant. This way, our work can be used as a
guideline to improve current experimental implementations in
which multi-mode QKD is unavoidable. Moreover, it highlights the
importance of source characterisation for more realistic security
proofs.

For completeness, we also note that ref. ** has recently
proposed a computational toolbox that can be used to
numerically estimate the phase error rate of a QKD protocol and
such technique could be applied to the scenario considered in this
paper. Essentially, similar to the LP analysis, their technique only
requires the knowledge of the inner products between the states
emitted by Alice and is mathematically simple, which is a striking
difference to previous numerical analyses.”*** That is, the
approach in ref. ** can also remove the qubit assumption and
include side channels when estimating the phase error rate. There
are, however, some relevant differences between that method
and our formalism, besides the obvious one, i.e., that our work is
an analytical technique. The approach in ref. ** requires a full
characterisation of the side channels in order to obtain the inner
product of the states, whereas ours does not, resulting in a simpler
characterisation of the source. Moreover, in the absence of side
channels, their method is not loss tolerant in some parameter
regimes, whereas ours is always loss tolerant, which is essential to
guarantee a good performance over long distances. Furthermore,
their analysis considers pure states, whereas our method also
applies to the mixed-state scenario. Despite these differences, it
would be interesting to combine the advantages of both methods
to achieve a better implementation security, but we leave this for
future works.

METHODS

Security proof against coherent attacks

Here we present the security proof of our formalism against coherent
attacks. For simplicity of the discussion, the Results section deals with the
case of pure states in a single-mode qubit space; however, in this section
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we consider the general scenario where the states could be mixed states in
a single-mode qubit space. For this, we consider a virtual protocol.*>*¢ This
protocol is equivalent to the actual protocol in the sense that the resulting
statistics of the measurements and the secret key rate generated between
Alice and Bob are the same. Furthermore, the classical and quantum
information available to Eve is equal in both protocols. The security claim
follows from the fact that Alice and Bob can choose which protocol to
execute and Eve is unable to distinguish between them. Hence, by proving
the security of the virtual protocol we prove the security of the actual
protocol.

In this work we employ the complementary scenario, which
considers a virtual protocol that uses the complementary observable of
the key generation basis. For instance, in the actual protocol Alice and Bob
agree on the bit values in the Z basis, whereas in the virtual protocol they
collaborate to prepare a qubit in an eigenstate of the X basis. In doing so,
the security proof basically reduces to the estimation of the phase error
rate, which corresponds to the bit error rate that Alice and Bob would have
observed if they would have measured the Z basis state in the X basis.
Therefore, the aim of the virtual protocol is to estimate the phase error
rate. In the section ‘Estimation of the phase error rate’, we showed how this
can be done by using our formalism and how we can calculate the secret
key rate R against collective attacks. Here we describe in detail the virtual
protocol used for the security proof and explain how to accommodate
coherent attacks by Eve through the use of Azuma's inequality.>®

We consider a more general case than that studied in the Results section
in which Alice generates a single-mode qubit system B, whose states are
mixed states, and we show how to define the pure states needed for our
security proof. We denote the mixed states by the density matrices o,
P12, and Pyy,. These states are diagonalised as

31,32

biz = Pl )02, + Pl ) (0%,
ﬁoxB = ng}‘/’gx><(/’8x|g + PJ]Z|(/)(‘|]X><(/)(;I)X|31

(32)

where j€{0, 1} and P}, P}, P§y and Pqy are probabilities satisfying Py +
Py=1 and  Pj +Pj=1. Moreover, { {%>B’ ;Z>B} and

{\¢8X>B, {¢3X>B} are orthonormal bases in the single-mode qubit. The

states sent might be mixed due to imperfections in Alice’s devices,
including a potential entanglement between her devices and Eve’s ancilla.
This means that in general these mixed states can be purified by
introducing Alice’s ancilla system A; and Eve's system E, and therefore we

have the purifications of pyz,, £17, and pgx, as {(];OZ)AWBE, ¥12) pger @nd
|fp0X>A| g €ach of which expressed by

0; = . /P%l0; ‘ 0> /P |1; 1>

IwJZ>ATBE /Z‘ JZ>A|E ¢JZ B+ /Z| JZ>A,E ‘/J’JZ g’ (33)

WJOX>A1BE: Vv 'DgX‘OO)OA]E|¢8X>E,+ V PéX|10X>A‘E{¢(1)X>B'

Here, {|sz>AWE, |1jZ>A1E} and {\OOX>A1E, ‘10X>A1E} are orthonormal bases.

Now, we define states similar to Eq. (5) that include the purification of
Alice’s state:

}¢Z>A1AZBE = \/ii [|OZ>AZ WIOZ>AWBE + |1Z>Az ‘¢1Z>A1BE}’

‘¢X>A1AZBE: |0X>AZ |¢0X>A|BE’

(34)

where A, is Alice’s ancilla system used to generate a bit value in the
protocol, i.e., it possesses information about Alice’s encoding. As explained
above, in the security analysis Alice measures A, in the X basis instead of
the Z basis when }¢2>A1AZBE is prepared; therefore, it is useful to write this

the X basis |0z),=
€ <|OX) + | 1x) ) and |1z), =1 (\OX) —1x) ) we can express
V2 A A, AT 2 Ay Ay

|¢Z>A1AZBE as

state in of system A, By substituting

1+<‘1’oz\‘]}wz>A‘ -

‘qJZ>A1AzBE = 2 |OX>A2 |¢$>AWBE

1*<‘buz\‘1’wz>A1 8E
2

(35)

+ |1X>AZ|¢‘1A}(>A1557
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where

~W.,> B [0z, (1) 1912) 6

o = —— . (36)
\/2<1 + (—1)]<WOZ‘(»UIZ>AWBE)

In the virtual protocol, we consider that Alice sends Bob two virtual
ij>AWBE and |l[J0X>AWBE, which are

used to estimate the phase error rate. We have seen that even in the case
of mixed states we can define actual and virtual pure states, and these
pure states can be directly used in our security proof. Therefore, our
formalism is valid for mixed states in a single-mode qubit space.

Next, let us continue to explain the security proof in more detail. The
selection of these actual and virtual states can be expressed as

5
“p>SAWBE = Z A% P(C)|C>s“9(c)>
c=1

where § is the shield system that is kept inside of Alice’s lab and the states
|19(C)>AWBE are

states,

”VX"> , and three actual states,
N

) (37)
ABE

|19(1>>AWBE: ‘%I)Z A/BE?
|'9(2>>A1BE: “]"1/’)2 ABE?
‘8(3)>AWBE: |¢OZ>AWBE’ (38)
"9<4)>AWBE: |‘7’1Z>A1357
|19(5)>AWBE: WJOX>A1BE’

with their respective probabilities P(c)

P(1) = % (1 + <JJOZ|J}1Z>A1BE)’

P(2) = "la <1 - <¢oz|¢1z>A1BE)7

P@E) =", "
p(4) = "als

P(S) = PXAPZE + PXAPXE = PXA'

When Bob receives the states, he performs a measurement in either the Z
or the X basis, and these are defined by the POVMs described in section

—c=l —— X, ,X,

lick
no cie Discarded

F—c=2 — X,,X;

c=3 Z,,X
click ArTE

F—c=4 —— Z,,X,

— c=5 X, X
PXB Arce
PZB XAIZB

Fig. 4 The logical schematics for the virtual protocol, where the
notation Xa/Za, Xg/Zg corresponds to Alice’s and Bob's measure-
ments bases, respectively. The virtual states correspond to c=1, 2,
the actual Z states to ¢ =3, 4, and the actual X states to ¢=>5. For
each click event, Alice measures system S and Bob measures system
BE. It is noteworthy that the selection of c=1, 2, 3, 4 already
includes Bob’s measurement in the X basis, but when c¢=5 his
measurement basis is chosen probabilistically

Published in partnership with The University of New South Wales

M. Pereira et al.

npj

‘Assumptions on Bob's device'. Also, all announcements between Alice and
Bob are done via an authenticated public channel. It is noteworthy that in
the virtual protocol we assume that Alice and Bob are sitting in the same
lab so that they can choose the measurement basis, and this is allowed
because the quantum and classical information available to Eve is the
same between the actual and the virtual protocols. The detailed steps of
the virtual protocol are presented below and the logic schematics in Fig. 4.
Virtual protocol

1. Initialisation: Before running the protocol, Alice and Bob agree on a
number Ng,eq Of rounds, on the error correcting codes and on a set
of hash functions to perform privacy amplification. Steps 2-4 of the
protocol are repeated N times until the number of detected events
N becomes Ngyeq-

2. State preparation: After a potential THA, Alice prepares systems S,
A, and BE in the entangled state \<p>5A1BE, in Eqg. (37), and sends Bob
the system BE via a quantum channel.

3. QND measurement: For each incoming system, Bob performs a
quantum non-demolition (QND) measurement to determine
whether the signals are detected or not. If Bob obtains a detection
event, he keeps the resulting system and N is increased by 1 unit.

4, Detection announcement: If N=Ngeq Bob announces the
termination of quantum communication and the detection pattern.
Otherwise Alice and Bob return to Step 2 of the protocol.

5. Measurement and basis announcement: For each of the detected
events, Alice measures her system S and announces the Z (X) basis
when c=1, 2, 3, 4 (c=5). Bob announces the Z (X) basis forc=1, 2
(3, 4), but he always measures in the X basis. For c =5, Bob selects
the basis 8 €{Z, X} probabilistically and announces his basis choice.
Then, he carries out the measurement on system BE in his
selected basis.

6. Sifting and announcement: Alice and Bob define and announce
the bit strings Sx.oz, Sx.1z and Sx ox, Which correspond to the events
when Alice sends the actual states and Bob performs the X basis
measurements. These are the basis mismatched events when ¢ =3,
4 and one of the events when ¢ = 5, the basis matched event. These
strings are used to estimate the phase error rate.

In the virtual protocol, we require that Alice and Bob postpone their
measurements until the quantum communication ends; therefore, we
assume that Alice and Bob possess quantum memories where they can
store their systems. The reason for this deferral comes from the application
of Azuma'’s inequality, which is explained later. In the case of Alice, she only
makes her measurement after the termination condition, in Step 5. This is
allowed because it does not matter when she performs the measurement,
as it commutes with Eve’s operations and hence it will not affect Alice’s
statistics. For Bob, we divide his measurement in two steps: a QND
measurement, which allows him to know when a detected event occurred,
and a measurement to output the bit value with the chosen basis. If the
QND measurement results in a detected instance, Bob performs the
measurement using the Z or X basis. We are able to delay Bob's
measurement choice because the inconclusive outcomes are assumed to
be independent of the basis, as explained in section ‘Assumptions on Bob's
device'. The key point in the virtual protocol is as follows: the security of
the events when Alice sends the actual Z basis states and Bob obtains a
detected event in the actual protocol with the Z basis can be analysed by
imagining that Alice and Bob both employ the X basis to measure
respectively the systems A, and BE. This means that when Alice sends a
virtual state (c =1, 2), Bob’s measurement basis is always the X basis.

It is clear that the virtual protocol described here is equivalent to the
actual protocol in the Supplementary Material (Section I). This is so,
because the quantum states sent by Alice are the same in both protocols
as well as the announcements made by the two parties. For instance, when
Alice sends the virtual states they both measure in the X basis but they
announce the Z basis (Step 5). In the actual protocol, these events are used
for key generation, and therefore Alice and Bob also announce the Z basis.
This means that the protocols are indistinguishable from Eve's perspective
as required. It is noteworthy that the virtual protocol does not produce a
key; it is merely used for the estimation of the phase error rate.

Azuma'’s inequality and its application to the security proof

In coherent attacks, Eve interacts with all the signals sent by Alice followed
by a joint measurement after listening to all the classical information
exchanged between Alice and Bob. In this scenario we use Azuma'’s
inequality®, which takes into account this dependency and allows us to
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derive a relation between the expected values and the observed values.
Most importantly, once we have the conditional probabilities on all
previous measurement outcomes, we can find the actual number of events
observed.

Azuma’s inequality can be applied to a stochastic model as long as a
sequence of random variables is a martingale and satisfies the bounded
difference conditions (BDCs). A Martingale is a sequence of random
variables X, X, ..., X for which the expectation £[-] of the next value is
equal to the present value in the sequence given that we know all the
previous outcomes, ie, EX'TUIXQ, X, ., X" =X for all /=0. This
sequence is said to satisfy BDC if there exists ¢ >0 such that X —
X“)| < for all 1>0. For N trials of a variable X with ¢ =1, Azuma’s
inequality states that

-N&2

PIXM — X >N6,| < 2677, (40)
holds for any 6, € (0, 1). Now, for the /th trial, we define XD as

!
= > P& =1/, -
k=1

where A? is a random variable representing the actual number of events

Ck=1)s (41)

(that is A Z {x) observed during the first / trials, {, is the random

k=1
variable of interest and it has the value of 0 or 1. Moreover, P({y = 1|(o, ...,
«-1) is the conditional probability of obtaining the outcome specified by
(=1 in the kth trial given that the first k — 1 outcomes are (g, ..., &_1. Itis
possible to show that the sequence of random variables in Eq. (41) is
Martingale and satisfies the BDC. Hence, we can apply the Azuma’s
inequality and write

N
- ZP(Ck =1|¢o, ...
=

where we use the definition X© =

,N(;z

,Ck=1)|>NGa] < 2677, (42)
0. This also means that

N N
ZP(Q =100, .-; (k1) — N6a < AV < ZP(Q = 1[0, ..., (k1) + Nba,
k=1 k=1

(43)

6
holds at least with probability P = 1 — 2e7z". Therefore,

= ZP(ck =1Co, -, {k1) + s, (44)
k=1

except for error probability ¢+ ¢ where the deviation parameter
8 € [-A,A). These bounds are defined as A=f(N, ¢) and A =f(N,¢)
where f(x,y) = v/2xIn(1/y).

Let us now show how we use this inequality in our security proof. In
particular, we consider

X =Ny ZP (Cesx = G0, s Ch1)s (45)
=

where csX = ¢, sfor c=1, 2, 3, 4, as Bob's basis choice is already included in
these cases, and csX=¢, s, X for c=5. In Eq. (45), P(Ckesx = 1|Cor -+ s Gk—1) is
the probability of Alice selecting the state ¢ and Bob observing s (s, X) for
s€{0, 1} when c=1, 2, 3, 4 (c=5) in the kth trial, conditional on all the
previous outcomes from the measurements (o, ..., (x_;. To obtain this
probability we first define

Pr—1)5a, 82 1P ) sa, e |Pr) s 8> (46)

to be the state prepared by Alice in an execution of the protocol, where
|®k—1)sa,8er 1Pk sa,8e @Nd [@;)sa g COrTespond to all the systems before the
kth trial, in the kth trial and in the rest of the trials after k (i.e, r=N — k),
respectively.

Eve's action can be described as UBEE/‘T>SAWBE|0>E/ > Bﬂ;|r)§A el
where UBEE, is a unitary transformation acting on systems BEE, By is the
Kraus operator, which acts on system BE depending on Eve’s measurement
outcome t, and [t)y—1, 2 ... is an orthonormal basis. It is noteworthy that
here we use the subscript E to refer to Eve’s system originating from a THA
and E’ corresponds to an additional ancilla system in her hands. Alice and
Bob only communicate after performing the measurements so these
parameters are independent of the state preparation.

In order to consider Alice’s and Bob's measurements previous to the kth
trial, we define the operator Ok 1.58E = ® Ms g, Where Ms ge, denotes

|T>SA| BE —
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the Kraus operator associated with the vth measurement outcome of Alice
and Bob. Hence, after Eve's interaction, the normalised kth state of the
system SBE conditioned on the measurement outcomes, O_;, and the
detected event can be expressed as

0
~SBE k|Ok-1

PO = 7o (47)

Tr <°k\ok4)

where the state GE\BCE, is defined shortly below (see Eq. (49)). We know that
~SA|BE P At At P

Uk\dk } ZT‘T {FBEk Ok-1,58eBi8 [T) sp, BE<T‘BIBO}<—1,SBEFéEk ) (48)

t

where Try is the partial trace over the systems S, A; and BE for all the
events that are not in the kth trial, and Fgg, is Bob’s Kraus operator acting
on the kth system, corresponding to the detected events. This means
taking the trace with the basis {|Xc_1), |X;)}, where |X(_1) corresponds to
all the systems in the first k — 1 runs and |x;) to the rest of the systems
after k. Then, we can rewrite Eq. (48) as

~SBE k| g(1.%) (X1 %)
Ok|0x Z Z TrA1 [AszEfok 1|<P/<>5A BE<<pk‘At BE@ ,] (49)
t X1 X

where TrA is the partial trace over the system A; in the kth trial and

Agxgﬂ‘ox’} is the Kraus operator acting on the kth system conditional on all
the previous detected events, and it is defined as

K1 %) _ iz 0w | Fae € B
Az,éEfok,1 = (X¢|(Xc—1|Fee, Ok—1,58e Brb |41 >SAWBE|(pr>SATBE' (50

By substituting Eq. (37) into Eq. (49) we get

GBE \/__‘ Xk—1.Xr () o) | ot Xr)
5., = L VAP Y Y T, Akl ostel 0 |59),  (0lalks |
[ K1 X !

(51

It is clear now that this state is dependent on Eve’s action as well as on the
previous outcomes. Also, note that the partial trace only acts on system A;.
The probability that Alice obtains the outcome ¢, Bob selects the X basis
and obtains a bit value s conditional on all the previous measurement
outcomes is calculated as

__ P(Xno) Xk—1.%r) Tk (XK1 %) [
Pesxor —T—(< DY Tr[ Al T [199)(89) | e | A0 M

GSBE t X1k
}A BEH
(52

O
where P(X N¢) = P(c) forc=1, 2,3, 4 and P(X Nc¢) = P(c)P(Xg) for c=5.
In this expression, Do, , = 3, Y5, Al ;é‘ékx’w MsxAE,XBkEféf,), represents
Eve's action as well as Bob’s measurement. This is independent of ¢, which
means that Eve cannot behave differently depending of the state sent.
Importantly, the probability Py o, , essentially corresponds to the actual
yields Ysyg in section ‘Estimation of the phase error rate’ when c=3, 4, 5. It
is noteworthy that the yields in this section are normalised by the detected
events while those in the Results section are not. In the finite key size
regime, the normalisation according to the detected events results in a
better performance; however, in the limit of large number of pulses, they
are essentially the same. As we consider this limit throughout this paper, in
section ‘Estimation of the phase error rate’, we adopt the yields that are not
normalised by the detected events for simplicity of explanation. We know
Nssx Nasx and Asgx by collecting the corresponding number of events from
the actual protocol. Therefore, using Azuma'’s inequality, i.e., Eq. (44), we
can calculate the conditional probabilities that correspond to the yields
Ys(;)oz, Y;ﬂz and Ys())((.)OX' respectively. From section ‘Estimation of the phase
error rate’, we know how these yields are related to the transmission rates

P Tr Do, , Tek, [ [919) (8

Tr(aSBE
-1

and, in turn, how these are related to the virtual yields Y5 and YOX A
Here we would like to emphasise that using Eq. (18) we can calculate these
yields, which correspond to the probabilities Piixj0,, and Pyoxo, .
respectively, both of which are conditional on the previous measurement
outcomes. Using Azuma'’s inequality again, we can find the number of
number of events, Ay1x and Ayox, Which are the number of phase errors,
and this concludes the estimation of the phase error rate.

Coefficients

In this section, we list the coefficients used in section ‘Estimation of the
phase error rate’. Direct calculations show that the coefficients A; B; and C;
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for Egs. (14)-(18) are given by
Ay = [lauzl? + (=17 (ai,012 ozlhr2)pe-+ 023z iz bz )ee) + Iz
B =31/1a0l + (—1) (517 oz iz e a0z (drzlboz)ac) + oz
x 1/ boz? + (1) (b3zbiz (B b e +b0zb3 (i 1hz)ge) + 012,

Cj = zl; [‘bOZ|2 + (*Uj( Szbﬂ<¢éz|¢1LZ>BE+bOZsz<¢1Lz|¢éz>gg) + b%z]
(53)
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