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Quantum key distribution with flawed and leaky sources
Margarida Pereira1, Marcos Curty1 and Kiyoshi Tamaki2

In theory, quantum key distribution (QKD) allows secure communications between two parties based on physical laws. However,
most of the security proofs of QKD today make unrealistic assumptions and neglect many relevant device imperfections. As a result,
they cannot guarantee the security of the practical implementations. Recently, the loss-tolerant protocol (K. Tamaki et al., Phys. Rev.
A, 90, 052314, 2014) was proposed to make QKD robust against state preparation flaws. This protocol relies on the emission of qubit
systems, which, unfortunately, is difficult to achieve in practice. In this work, we remove such qubit assumption and generalise the
loss-tolerant protocol to accommodate multiple optical modes in the emitted signals. These multiple optical modes could arise, e.g.,
from Trojan horse attacks and/or device imperfections. Our security proof determines some dominant device parameter regimes
needed for achieving secure communication and, therefore, it can serve as a guideline to characterise QKD transmitters.
Furthermore, we compare our approach with that of H.-K. Lo et al. (Quantum Inf. Comput., 7, 431–458, 2007) and identify which
method provides the highest secret key generation rate as a function of the device imperfections. Our work constitutes an
important step towards the best practical and secure implementation for QKD.
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INTRODUCTION
Quantum key distribution (QKD)1–3 enables two distant parties,
Alice and Bob, to share a common secret key that can be used to
encrypt and decrypt messages. In theory, QKD can offer
information-theoretic security based on the laws of physics. In
practice, however, it does not, because typical security proofs of
QKD require assumptions that are not actually met by the practical
implementations, as they usually ignore many experimental
device imperfections. This discrepancy between the theory and
the practice of QKD has been evidenced by many quantum
hacking attacks, especially by those that exploit flaws in the
detectors of QKD systems.4,5 Fortunately, the proposal of
measurement-device-independent QKD (MDI-QKD)6 can solve all
security loopholes in the measurement unit and, therefore, Eve
cannot take advantage of detector side channels to learn
information about the key. Furthermore, MDI-QKD can be
implemented experimentally using standard optical compo-
nents.7–12 Therefore, to guarantee implementation security we
now need to focus on how to secure the source in QKD.
Ideally, the sending devices are single-photon sources and the

encoding of the light pulses is executed perfectly, without any
state preparation flaw (SPF). However, none of these two
conditions are met experimentally, as all devices have inherent
deficiencies. The decoy-state method13–15 was proposed to
replace single-photon sources with coherent light sources. Also,
by using the Gottesman–Lo–Lütkenhaus–Preskill (GLLP) security
analysis16 the problem with SPFs is fixed. The main drawback of
this last approach is that the resulting secret key rate is poor and
fragile against channel loss. This is because it assumes the worst-
case scenario in which Eve could enhance the signals’ flaws
through channel loss, which significantly decreases the perfor-
mance of the QKD scheme.

Recently, a protocol that is loss-tolerant (LT) to SPFs has been
proposed17 to address the limitation of the GLLP analysis. The LT
protocol employs only three states and takes into account
modulation errors due to an imperfect phase modulator (PM).
Remarkably, by using a different phase error estimation technique
involving the use of the basis mismatched events, the secret key
rate of the LT protocol remains almost unchanged even if the SPFs
increase. In fact, the maximum transmission distance for a QKD
system in fiber so far has been recently achieved using this
protocol,18 which shows that the LT protocol is highly practical. Its
main weakness, however, is the assumption that the single-
photon signals sent by Alice are qubits, which is difficult to
guarantee in practice. For instance, if Eve conducts a Trojan horse
attack (THA)19–23 against the source, this assumption can be
violated. In a THA, Eve sends bright light into Alice’s PM and
obtains information about the encoding by measuring the back-
reflected light that exits Alice’s lab. Moreover, an optical mode of
the light pulse emitted by Alice could be dependent on the value
of the phase modulation, which means that a sent single-photon
pulse might not be a qubit (we call this imperfection the non-
qubit assumption). That is, Alice’s setting choice information could
be encoded in other degrees of freedom of the emitted light, and
this spontaneous leakage of information results in a higher-
dimensional sending state.
This work aims to reduce the big gap between the theory and

the practice of QKD by generalising the LT protocol such that it
can include typical imperfections in the sending device. To be
precise, and in contrast to,17 here we remove the qubit
assumption and include the effect of side-channels by considering
the mode dependency of the PM and THAs. Moreover, like in
ref. 17, we also include in the analysis SPFs in a single-mode qubit
subspace. Therefore, our analysis covers dominant imperfections
that a source device has, allowing the use of a much wider class of
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imperfect devices in a secure manner. Our generalised LT protocol
can be applied to any multi-mode scenario as long as the states of
the emitted signals are independently and identically distributed
(I.I.D.), namely, this proof does not consider correlations between
the sending signals. However, we remark that recent results
reported in ref. 24 imply that our analysis could also accommodate
correlations between the signals which are independent of Alice’s
setting choice. Furthermore, we emphasise that the basic idea is
rather general and can be applied to many other QKD protocols
such as, for instance, the six-state protocol,25 distributed-phase-
reference protocols26–28 and MDI-QKD.6 In simple terms, it is a
formalism to estimate the phase error rate of a QKD protocol by
evaluating the transmission rates of some virtual states with the
help of the state structure of Alice’s signals (see Eq. (1) below). We
also emphasise that our method does not require a complete
characterisation of the side channels, which significantly simplifies
the experiments for characterising the source. Using this
formalism, we can quantify the device parameters required to
ensure secure communications with flawed and leaky sources.
In addition, we investigate how Lo–Preskill’s (LP) security

analysis29 behaves in the presence of the same device’s
imperfections and, by using imperfectly characterised states, we
compare it with our generalised LT protocol. As a result, we
determine which security proof provides a higher secret key rate
as a function of the device parameters. These parameters are
essential for experimentalists to produce and to calibrate the
transmitting devices, and therefore our work can be used as a
guideline for securing the source in the presence of multi-mode
signals.

RESULTS
Description of the protocol
We shall assume, for simplicity, that Alice’s lab has a single-photon
source. However, we emphasise that our analysis can also be
applied to the case where Alice emits phase-randomised weak
coherent pulses. In this latter case, Alice can use the decoy-state
method13–15 to estimate all the quantities corresponding to the
single-photon pulses that are needed to apply our method. Below
we focus on the case where Alice has at her disposal single-
photon sources only because the study with phase-randomised
weak coherent pulses, together with decoy states, results in an
unnecessarily cumbersome analysis. Figure 1 shows the QKD
setup (see Section I of the Supplementary Material for a detailed
description of the actual protocol). Next, we describe the
assumptions we make on Alice’s and Bob’s devices.

Assumptions on Alice’s device
In this work, we consider the asymptotic scenario where Alice
sends Bob an infinite number of pulses. Our formalism is valid for
any source that emits pulses whose quantum state is of the form

Φjβ

�� �
BE¼ ajβ ϕjβ

�� �
BE
þ bjβ ϕ?

jβ

��� E
BE
; (1)

with |ajβ|
2+ |bjβ|

2= 1, where j∈ {0, 1} and β∈ {Z, X} are Alice’s bit
value and basis choices, respectively. As in the LT analysis
introduced in ref. 17, we consider a three-state protocol where
Alice selects jβ∈ {0Z, 1Z, 0X}. Furthermore, in Eq. (1), we assume
that |ϕjβ〉BE is a pure state in a single-mode qubit space, where BE
stands for Bob’s and Eve’s systems due to a potential THA. For
instance, |ϕjβ〉BE could be of the form |ϕjβ〉BE= |ωjβ〉B⊗ |ϵ〉E, where
Eve’s system does not depend on jβ and |ωjβ〉B is a qubit state. The

state ϕ?
jβ

��� E
BE
, on the other hand, corresponds to any state outside

of the single-mode qubit space, including the state of a side
channel, and it is in an Hilbert space orthogonal to |φjβ〉BE. We note
that the form of the pure state given by Eq. (1) is the most general
I.I.D. state. Indeed, this equation simply decomposes a state in a
given Hilbert space into a direct sum of two states in different
Hilbert spaces, which can always be done. One of these states is in
a qubit space and the other one is in any complementary Hilbert
space. That is, any pure state can be written in the form given by
Eq. (1). In addition, we further assume that, similar to that in ref. 17,
the states |ϕjβ〉BE in Eq. (1) form a triangle in the Bloch sphere and
we set their Y-components to be the same by choosing the y-axis
appropriately. This assumption is required to ensure that Alice is
sending essentially three different states rather than one or two
states. Importantly, we note that by introducing an ancilla system
for Alice to purify the state, our formalism is also valid for a mixed
state in a single-mode qubit space, as shown in section ‘Security
proof against coherent attacks’.
The state structure in Eq. (1) means that the inner product

ϕjβjϕ?
j0β0

D E
BE

for all j, j′, β and β′ is always zero. Also, depending on

Alice’s knowledge about the state given in Eq. (1), she might have

to consider the worst-case scenario, i.e., ϕ?
jβjϕ?

j0β0
D E

BE
¼ 0 for any

combination of (j, β) and (j′, β′). This means that, complete

information about ϕ?
jβ

��� E
is not required, which significantly

simplifies the experiments for characterising the source. On the
other hand, if Alice knows some structure of the side channel she

should fully exploit it and lower bound ϕ?
jβjϕ?

j0β0
D E

BE
. For example,

if she knows that the side channel is associated with the
polarisation state of the single-mode qubit, then the worst-case

Fig. 1 Each single-photon pulse emitted by Alice’s source goes through a 50:50 beamsplitter (BS) and is decomposed into the reference and
the signal pulses. The reference pulse travels through the longer arm of Alice’s Mach–Zehnder interferometer. To perform the encoding, she
uses a PM that applies a phase shift to the signal pulse. The two pulses are recombined at the second 50:50 BS, sent through the quantum
channel and then received in Bob’s lab. On reception, they are split by a 50:50 BS and Bob applies a phase shift on the reference and signal
pulses in the upper arm of his Mach–Zehnder interferometer. These pulses then interfere with the pulses that travelled through the shorter
arm of the interferometer at the second 50:50 BS. Bob can then detect click events corresponding to photons choosing the shortest arm in
Alice’s interferometer and the longest one in Bob’s, and to the opposite, by using two detectors, D0 and D1, which correspond to obtaining bit
value 0 and 1, respectively
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scenario does not apply, i.e., ϕ?
jβjϕ?

j0β0
D E

BE
≠ 0, as it is impossible for

three states to be orthogonal to each other given the two-
dimensionality of polarisation. This way, our formalism can readily
take into account the available information.
We remark that, to apply the procedure introduced below we

only need to determine the coefficients ajβ and bjβ, and the qubit
state, but it is not necessary to completely characterise the

quantum information of the side channel, ϕ?
jβ

��� E
BE
. That is, our

characterisation seems to be rather simple and there is no need to
perform further detailed characterisations. Nonetheless, the better
Alice and Bob know the state given in Eq. (1), the better the
resulting performance, as explained later in this section. An
experimental procedure to perform this estimation is out of the
scope of this paper; hence, we assume that these parameters
are given.
Furthermore, our work can accommodate any SPF in the single-

mode qubit space and one could also employ the techniques in
refs. 24,30. For example, we may select a case in which the states
that Alice prepares can be expressed as

1ffiffiffi
2

p 1j ir vj is þ eφAþδφA=π vj ir 1j is
� �

; (2)

where δ(≥0) is the deviation of the phase modulation from the
intended value φA and we define |1〉r|v〉s= |0Y〉 and |v〉r|1〉s= |1Y〉,
where v stands for vacuum, |1〉 denotes a Fock state with one
photon and the subscript r (s) corresponds to the reference
(signal) pulse. In the case of the three-state protocol we have that
φA∈ {0, π, π/2}. Then, by using 0Zj i ¼ 0Yj i þ 1Yj ið Þ= ffiffiffi

2
p

and
1Zj i ¼ � 0Yj i þ 1Yj ið Þ= ffiffiffi

2
p

, we obtain the following expressions
for the three states in the single-mode qubit space:

ω0Zj iB¼ 0Zj i;
ω1Zj iB¼ �sin δ

2

� �
0Zj i þ cos δ

2

� �
1Zj i;

ω0Xj iB¼ cos π
4 þ δ

4

� �
0Zj i þ sin π

4 þ δ
4

� �
1Zj i:

(3)

Therefore, our formalism can be used, for instance, when the
information about Alice’s choice of state is leaked and/or the
optical mode depends on Alice’s selection. This leakage from the
source can occur spontaneously or with an active THA.

Assumptions on Bob’s device
Bob receives the signal and reference pulses from Alice and
measures them in a basis selected at random. More precisely,
Bob’s measurements are defined by the positive-operator valued
measures (POVMs) fM̂0β; M̂1β; M̂fg, where M̂0β (M̂1β) with β∈ {X, Z}
corresponds to obtaining the bit value 0 (1) when Bob chooses the
basis β and M̂f corresponds to an inconclusive outcome.
Importantly, M̂f is assumed to be the same for the two bases.
This means that the detection efficiencies are independent of
Bob’s measurement basis choice, which is required to prevent
side-channel attacks exploiting channel loss.4,5 It is noteworthy
that this assumption is widely used in most security proofs and
one of the simplest ways to circumvent such detector side-
channel attacks is to use MDI-QKD, to which our technique also
applies (see Section II in the Supplementary Material).

Security analysis
In order to prove the information-theoretic security of our
protocol we use the complementary scenario introduced by
Koashi.31,32 For this, we first need to create an equivalent virtual
protocol (see section ‘Security proof against coherent attacks’)
concerning an observable conjugate to the key. The classical and
quantum information available to Eve in the actual and virtual
protocols are the same and therefore she cannot distinguish and
behave differently between them. Hence, by proving the security

in the virtual protocol we ensure the security of the actual
protocol. In addition, from the virtual protocol we can determine
the phase error rate, which quantifies the amount of information
that is leaked to Eve and has to be removed in the privacy
amplification step. In this section, we show how this last quantity
is estimated by generalising the LT method.
As explained before, for simplicity we assume the asymptotic

scenario where Alice sends Bob an infinite number of pulses. The
asymptotic key rate for the single-photon signals can be
expressed as

R � YZ ½1� hðeXÞ � fhðeZÞ�; (4)

where YZ is the yield of the single photons in the Z basis, i.e., the
joint probability of Alice emitting a single-photon in the Z basis
and Bob detecting it with a measurement also in the Z basis. The
function h(x)=−x log2(x)− (1− x)log2(1− x) is the binary entropy
function and f is the error correction efficiency. The term eX is the
phase error rate and thus h(eX) is the cost of performing privacy
amplification in order to remove the correlations between the
corrected sifted key and Eve. The term eZ is the bit error rate and
fh(eZ) corresponds to the amount of syndrome information
required to make Alice’s and Bob’s keys the same. The quantities
YZ and eZ in Eq. (4) can be directly obtained from an
implementation of the experiment. Therefore, we are left with
the estimation of the phase error rate. We do this below.

Estimation of the phase error rate
We assume that Alice prepares the states |Φjβ〉BE as defined in Eq.
(1). These states take into consideration the non-qubit assump-
tion, a possible THA by Eve, and SPFs. In the virtual protocol (see
section ‘Security proof against coherent attacks’ for further
details), Alice prepares the following state in the Z basis:

ΨZj iABE ¼ 1ffiffi
2

p 0Zj iA� a0Z ϕ0Zj iBE þ b0Z ϕ?
0Z

�� �
BE

� �h

þ 1Zj iA� a1Z ϕ1Zj iBE þ b1Z ϕ?
1Z

�� �
BE

� �i
:

(5)

We then define the bit error rate as

eZ ¼ YðZÞ
0Z;1Z þ YðZÞ

1Z;0Z

YðZÞ
0Z;0Z þ YðZÞ

1Z;0Z þ YðZÞ
0Z;1Z þ YðZÞ

1Z;1Z

; (6)

where the yields YðZÞ
sZ;jZ , with s, j∈ {0, 1}, are the joint probabilities

that Alice prepares the state |ΨZ〉ABE, Bob selects the Z basis and
Alice (Bob) obtains the bit value j (s) when she (he) measures the
system A (B) in the Z basis. It is noteworthy that the superscript (Z)
in the yields represents the basis used in the state preparation,
while the subscripts denote the bases employed in the measure-
ments. These yields are directly observed in the experiment.
Similarly, the phase error rate is defined as

eX ¼ YðZÞvir
0X;1X þ YðZÞvir

1X;0X

YðZÞvir
0X;0X þ YðZÞvir

1X;0X þ YðZÞvir
0X;1X þ YðZÞvir

1X;1X

; (7)

where YðZÞvir
sX;jX , with s, j∈ {0, 1}, is the joint probability that Alice

prepares the state |ΨZ〉ABE, she and Bob select the Z basis but both
use the X basis for their measurements (rather than the selected Z
basis) and Alice (Bob) obtains the bit value j (s). The phase error
rate corresponds to the bit error in the virtual protocol. Also, we
have that the denominator of eX in Eq. (7) is equal to

YðZÞ
0Z;0Z þ YðZÞ

1Z;0Z þ YðZÞ
0Z;1Z þ YðZÞ

1Z;1Z , as by assumption the probability

to obtain an inconclusive outcome associated to the operator M̂f
is the same for the both basis for any incoming state. This means
that to estimate eX we only need to calculate the virtual yields

YðZÞvir
0X;1X and YðZÞvir

1X;0X .
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In the virtual protocol, after Alice measures the system A in Eq.
(5) in the X basis, she sends Bob the (unnormalised) states:

θ̂BE;jX;vir ¼ TrA jXj i jXh jA�1̂BE ΨZj i ΨZh jABE
	 


; (8)

where TrA is the partial trace over the virtual system A. Using Eqs.
(5) and (8) we can calculate the unnormalised states sent by Alice
for j∈ {0, 1} and obtain that θ̂BE;jX;vir ¼ ψj i ψh jBE;jX;vir with
ψj iBE;jX;vir ¼ 1

2 a0Z ϕ0Zj iBE þ b0Z ϕ?
0Z

�� �
BE

h

þ ð�1Þj a1Z ϕ1Zj iBE þ b1Z ϕ?
1Z

�� �
BE

� �i
:

(9)

Writing Eq. (9) in terms of the states |γjX〉BE and γ?jX
��� E

BE
, defined

below, we have that:

ψj iBE;jX;vir ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja0Z j2 þ ð�1Þj a�0Za1Z ϕ0Z jϕ1Zh iBE þ a0Za�1Z ϕ1Z jϕ0Zh iBE

� �þ ja1Z j2
q

γjX
�� �

BE

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0Z j2 þ ð�1Þj b�0Zb1Z ϕ?

0Z jϕ?
1Z

� �
BE þ b0Zb�1Z ϕ?

1Z jϕ?
0Z

� �
BE

� �þ jb1Z j2
q

γ?jX
��� E

BE
;

(10)

where the normalised states |γjX〉BE have the form

γjX
�� �

BE
¼ a0Z ϕ0Zj iBEþð�1Þja1Z ϕ1Zj iBEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja0Z j2þð�1Þj a�0Za1Z ϕ0Z jϕ1Zh iBEþa0Za�1Z ϕ1Z jϕ0Zh iBEð Þþja1Z j2
p ; (11)

and the normalised states γ?jX
��� E

BE
, which are orthogonal to |γjX〉BE,

are given by

γ?jX
��� E

BE
¼ b0Z ϕ?

0Zj iBEþð�1Þjb1Z ϕ?
1Zj iBEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jb0Z j2þð�1Þj b�0Zb1Z ϕ?
0Z jϕ?

1Zh iBEþb0Zb�1Z ϕ?
1Z jϕ?

0Zh iBEð Þþjb1Z j2
p : (12)

Note that, in Eq. (10), we have decomposed |ψ〉BE,jX,vir into a single-
mode qubit γjX

�� �
BE

and a state in any mode orthogonal to it,

γ?jX
��� E

BE
. This decomposition follows the definition provided in Eq.

(1), and it is an essential step for our estimation of the phase
error rate.
To obtain the yields YðZÞvir

sX;jX we need to calculate

YðZÞvir
sX;jX ¼ PZAPZB Tr D̂sX θ̂BE;jX;vir

h i
; (13)

where D̂sX ¼ P
k
Ây
kM̂sX Âk corresponds to Eve’s action, represented

by the Kraus operators Âk , as well as Bob’s measurement with M̂sX
being an element of Bob’s POVM. Here, recall the definition of the
phase error rate where the Z basis is selected but both Alice and
Bob use the X basis for their measurements (rather than the
selected Z basis), which is why PZA and PZB appear in Eq. (13).
Moreover, here we assume, for simplicity, that Eve applies the
same quantum operation to every signal, which corresponds to a
collective attack, but our analysis can be generalised to coherent
attacks by considering the Azuma’s inequality33 (see section
‘Azuma's inequality and its application to the security proof’),
which deals with any correlations among the events, i.e., the
phase error rate pattern. Using Eqs. (10)–(13), we obtain the
following expression for the yields:

YðZÞvir
sX;jX ¼ PZAPZB Aj Tr D̂sX γjX

�� �
γjX
� ��

BE

h i�

þ Tr D̂sX Bj γjX
�� �

γ?jX
D ���

BE
þ B�j γ?jX

��� E
γjX
� ��

BE
þ Cj γ?jX

��� E
γ?jX

D ���
BE

� �h i�
;

(14)

where the coefficients Aj, Bj and Cj are defined in section
‘Coefficients’, and we omit presenting their explicit expressions
here for simplicity. As the state |γjX〉BE in the first term of Eq. (14) is
a single-mode qubit state, its density matrix can be expressed as

ρ̂jX ¼ γjX
�� �

γjX
� ��

BE
¼ 1

2

X
i

PjX;viri σ̂i; (15)

where PjX;viri are the coefficients of the Bloch vector and σ̂i , with
i∈ {Id, x, y, z}, represent the identity and the three Pauli operators,

respectively. Therefore, we have that

Aj Tr D̂sX γjX
�� �

γjX
� ��

BE

h i
¼ Aj P

jX;vir
Id qsXjId þ PjX;virx qsXjx

h

þ PjX;viry qsXjy þ PjX;virz qsXjz
i
;

(16)

where PjX;viri ¼ Tr σ̂i γjX
�� �

γjX
� ��

BE

h i
and qsXji ¼ 1

2 Tr½D̂sX σ̂i� can be

regarded as the transmission rates of the operator σ̂i . These can
be calculated by solving a system of linear equations with the
events from the actual protocol, which we will explain later.
Moreover, by choosing the y-axis of the Bloch sphere appro-
priately we can always set PjX;viry ¼ 0 for all the Bloch vectors, as
the PM just creates rotations in the X–Z plane of the Bloch sphere.
Indeed, even if the PM introduces loss depending on Alice’s state
selection, as long as the three states form a triangle in the Bloch
sphere, we can apply such simplification.17 As already mentioned
in section ‘Assumptions on Alice's device’, we note that any
implementation of the LT protocol requires that the three states
form a triangle in the Bloch sphere.
Furthermore, it is possible to find both lower and upper bounds

on the second term of Eq. (14). In particular, this term can be

written as Tr½D̂sXNj� where Nj is the matrix
Cj B�j
Bj 0

� 

with

eigenvalues

λmaxj ¼
Cj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
j þ 4jBjj2

q
2

and λminj ¼
Cj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
j þ 4jBj j2

q
2

:
(17)

Using the properties of POVMs, we have that the operators D̂sX

have eigenvalues between 0 and 1; therefore, Tr½D̂sXNj � is bounded
by λminj � Tr½D̂sXNj� � λmaxj , since λminj is negative.
This means that the virtual yields satisfy:

PZAPZB Aj qsXjId þ PjX;virx qsXjx þ PjX;virz qsXjz
	 
þ λminj

� � � YðZÞvir
sX;jX

� PZAPZB Aj qsXjId þ PjX;virx qsXjx þ PjX;virz qsXjz
	 
þ λmaxj

� �
:

(18)

To find the transmission rates qsX|i, the actual events we need to

consider are those associated with the yields YðZÞ
sX;0Z , Y

ðZÞ
sX;1Z and

YðXÞ
sX;0X . These are defined as YðβÞ

sX;jβ ¼ PjβPXB Tr D̂sX Φjβ

�� �
Φjβ
� ��

BE

h i
for

jβ∈ {0Z, 1Z, 0X}, where the normalised actual states |Φjβ〉BE are
defined in Eq. (1). That is, |Φjβ〉BE are the states emitted by Alice in
the actual protocol when she chooses the bit value j and the basis
β, in the presence of multi-mode signals. Using exactly the same
method explained above, we obtain

YðβÞ
sX;jβ ¼ PjβPXB Ejβ Tr D̂sX ϕjβ

�� �
ϕjβ

� ��
BE

h i�

þ Tr D̂sX Fjβ ϕjβ

�� �
ϕ?
jβ

D ���
BE
þF�jβ ϕ?

jβ

��� E
ϕjβ

� ��
BE
þGjβ ϕ?

jβ

��� E
ϕ?
jβ

D ���
BE

� �h i�
;

(19)

where Ejβ= |ajβ|
2, Fjβ ¼ ajβb�jβ, F

�
jβ ¼ a�jβbjβ and Gjβ ¼ jbjβj2. There-

fore, we find that the actual yields satisfy

PjβPXB Ejβ qsXjId þ Pjβx qsXjx þ Pjβz qsXjz
	 
þ λminjβ

� � � YðβÞ
sX;jβ

� PjβPXB Ejβ qsXjId þ Pjβx qsXjx þ Pjβz qsXjz
	 
þ λmaxjβ

� �
;

(20)

where

λmaxjβ ¼
Gjβ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
jβ þ 4jFjβj2

q
2

and λminjβ ¼
Gjβ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
jβ þ 4jFjβj2

q
2

;

(21)

are the eigenvalues for the non-qubit part of the actual states, and
Pjβx and Pjβz are the coefficients of the Bloch vector for the actual
states. By substituting jβ∈ {0Z, 1Z, 0X} in Eqs. (20) and (21), we
obtain a system of three linear inequalities, which can be
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expressed as

qsXjId; qsXjx ; qsXjz
	 


Â

þ λmin0Z ; λmin1Z ; λmin0X½ � � YðZÞ
sX;0Z

P0ZPXB
;

YðZÞ
sX;1Z

P1ZPXB
;

YðXÞ
sX;0X

P0X PXB

� 


� qsXjId; qsXjx ; qsXjz
	 


Âþ λmax0Z ; λmax1Z ; λmax0X½ �;

(22)

where Â :¼ ðVT
0Z ; V

T
1Z ; V

T
0XÞ in which Vjβ ¼ Ejβð1; Pjβx ; Pjβz Þ and where

the superscript T means transpose. By rearranging Eq. (22), we
obtain the bounds on the transmission rates qsX|Id, qsX|x and qsX|z to
be

YðZÞ
sX;0Z

P0ZPXB
;

YðZÞ
sX;1Z

P1ZPXB
;

YðXÞ
sX;0X

P0X PXB

� 

� λmax0Z ; λmax1Z ; λmax0X½ �

� �
Â�1

� qsXjId; qsXjx; qsXjz
	 


� YðZÞ
sX;0Z

P0ZPXB
;

YðZÞ
sX;1Z

P1ZPXB
;

YðXÞ
sX;0X

P0X PXB

� 

� λmin0Z ; λmin1Z ; λmin0X½ �

� �
Â�1;

(23)

where Â�1 is the inverse of the matrix Â.
By solving Eq. (23), we can calculate the transmission rates and

then substitute them into Eq. (18) to find the upper bounds on the

virtual yields YðZÞvir
0X;1X and YðZÞvir

1X;0X . Finally, by using these upper
bounds on the virtual yields and the yields from the actual events
we can estimate the phase error rate eX in Eq. (7).
As already mentioned previously, this technique is quite general

and could be applied to many other QKD protocols. As an
example, in the Supplementary Material (Section II), we outline
how this analysis could be performed for MDI-QKD.

Simulation of the key rate
Only for the purpose of the simulation, we now consider a
particular device model and a particular THA. In general, to
experimentally guarantee that the three states emitted by Alice
remain in two dimensions, i.e., in a single-mode qubit, her PM
needs to have the same temporal, spectral, spatial and polarisa-
tion mode independently of the bit and basis choices. However,
due to imperfections in the devices this condition is hard to fulfil.
Some counter-measures against these imperfections have been
suggested,34–37 but they cannot rigorously ensure a single-mode
qubit. Therefore, it is crucial to consider how device’s flaws can be
taken into account in a security proof. This is the aim of our
analysis. For simplicity, among many imperfections, we select the
polarisation mode as an example of how to use our framework.
A change in polarisation can arise from the imperfect alignment

of the laser with the principal axis of the PM and/or when the PM
is polarisation dependent, i.e., the state of polarisation of the
signals prepared might be different for each encoding phase
value. In principle, this could be avoided by using a polarisation
beamsplitter (PBS) that selects a single polarisation mode. In
practice, however, because of the finite extinction ratio of the PBS
this is usually not the case. Here we relax the need for a perfect
PBS by considering a polarisation multi-mode scenario. We
remark, nonetheless, that our analysis can be applied to any
multi-mode scenario. Using our formalism, we can express the
states sent by Alice in the scenario considered in an analogous
way to Eq. (1):

Ωjβ

�� �
B¼ cosθjβ ωjβ

�� �
HB þ sinθjβ ωjβ

�� �
VB; (24)

for jβ∈ {0Z, 1Z, 0X}, where the subscripts H and V refer to the
horizontal and vertical polarisation modes, respectively. That is,
now the polarisation state of |ωjβ〉B depends on Alice’s bit and
basis choices instead of being the same independently of her
encoding. Next, we add the SPF and the THA to this particular
device model.

For the states |ωjβ〉HB and |ωjβ〉VB, we use the definitions in Eq.
(3), where they both live in a qubit space. Also, by using Eq. (3)
these states already include SPFs whenever the parameter δ > 0.
As stressed in section ‘Assumptions on Alice’s device’, as in this
case we know the form of the states we do not need to consider
the worst-case scenario but only the inner product HB〈ωjβ|ωj′β′〉VB
= 0 for all j, j′, β and β′.
In addition, we consider an active information leakage in our

device model. For this, we assume that Eve sends strong light into
Alice’s PM, which is then back-reflected and exits Alice’s lab in the
form

ξ jβ
�� �

E¼ CI ej iEþCD ejβ
�� �

E: (25)

In this expression, |CI|
2+ |CD|

2= 1 and |e〉E (|ejβ〉E) represents
(represent) the setting independent (dependent) state (states) on
Alice’s bit and basis choice, where we assume that 〈e|ejβ〉E= 0.
That is, the state |e〉E (|ejβ〉E) provides Eve with no (some)
information about Alice’s bit and basis values each given time.
Therefore, our model for the THA can be parameterised by only
two parameters, CI and CD, and no further detailed information is
needed to apply our analysis. For instance, when we increase
isolation on Alice’s sending device, the independent component
increases and Eve obtains less information about the states being
sent. Moreover, in the absence of further information about the
states |ejβ〉E, we assume the worst-case scenario where these states
are orthogonal to each other, i.e., 〈ejβ|ej′β〉E= 0 for any (j, β) ≠ (j′, β′).
Clearly, if Alice and Bob know the states |ejβ〉E, this information can
be trivially included in the formalism below.
If |ξjβ〉E is say, for instance, a coherent state, |e〉E is the vacuum

state (i.e., |e〉E= |v〉E), CI= e−μ/2 and CD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�μ

p
, where μ is the

intensity of Eve’s back-reflected light. In this case, note that the
condition 〈ejβ|ej′β′〉E= 0 is not satisfied, as Eve will never be able to
perfectly distinguish the states dependent on Alice’s encoding.
The value of this overlap depends on the isolation of the devices.
Below, however, we conservatively assume for simplicity the
worst-case scenario where this overlap is zero.
Putting Eqs. (24) and (25) together, Alice’s emitted state for the

single-photon pulses is modelled as

Φjβ

�� �
BE¼ Ωjβ

�� �
B� ξ jβ

�� �
E: (26)

By using Eqs. (3), (24), (25) and (26), and by assuming that |ξjβ〉E are
coherent states, we obtain

Φjβ

�� �
BE¼ cosθjβ ωjβ

�� �
HB þ sinθjβ ωjβ

�� �
VB

� �
� CI vj iE þ CD ejβ

�� �
E

� �
¼ cosθjβCI ωjβ

�� �
HB vj iE þ cosθjβCD ωjβ

�� �
HB ejβ
�� �

E

þ sinθjβ ωjβ

�� �
VB� CI vj iE þ CD ejβ

�� �
E

� �
:

(27)

The first term of Eq. (27) has polarisation H and is insensitive to the
THA, it corresponds to ajβ|ϕjβ〉BE in Eq. (1). Similarly, the other
terms have either polarisation V and/or are affected by the THA,

and together they correspond to bjβ ϕ?
jβ

��� E
BE

in Eq. (1). In this case,

the unnormalised virtual states given by Eq. (10) have now the
form

ψj iBE;jX;vir ¼ 1
2 CI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosθ20Z � ð�1Þj2cosθ0Zcosθ1Zsin δ

2 þ cosθ21Z

q
γjX
�� �

BE

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
I sinθ20Z � ð�1Þj2sinθ0Zsinθ1Zsin δ

2 þ sinθ21Z
� �

þ 2C2
D

r
γ?jX
��� E

BE



;

(28)

where we have used the relationship
ω0Z jω1Zh iB¼ ω0Z jω1Zh iB¼ �sinðδ2Þ. In order to estimate the phase
error rate, we need to calculate the transmission rates qsX|Id, qsX|x
and qsX|z using the actual yields. For this, we use Eq. (23) where in
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this particular example, the matrix Â is

Â ¼
E0Z E1Z E0X
0 �E1Z sinðδÞ E0X sinðπ=2þ δ=2Þ
E0Z �E1Z cosðδÞ E0X cosðπ=2þ δ=2Þ

2
64

3
75; (29)

where Ejβ ¼ C2
I cos

2θjβ. Then, we can find the virtual yields by
using Eq. (18) where, in this example, the coefficients of the Bloch
vectors are

PjX;virx ¼ ð�1Þj2 cos θ0Z cos θ1Z cosδ2�2 cos θ21Z cos
δ
2 sin

δ
2

cos θ20Z�ð�1Þj2 cos θ0Z cos θ1Z sinδ2þcos θ21Z
;

PjX;virz ¼ cos θ20Z�ð�1Þj2 cos θ0Z cos θ1Z sinδ2þcos θ21Z ð1�2 cos2δ2Þ
cos θ20Z�ð�1Þj2 cos θ0Z cos θ1Z sinδ2þcos θ21Z

:
(30)

Finally, one can directly use Eq. (7) to estimate the phase error
rate eX.

Results of the simulation
With the method described above, it is possible to employ the
leaky source without compromising the security of the QKD
system. Nonetheless, depending on the situation and the
particular experimental parameters, it might be beneficial to
consider another method that, in some cases, might provide a
higher key generation rate. Therefore, it is important to compare
our generalised LT protocol with an alternative method, say the LP
analysis introduced in ref. 29. In Section III of Supplementary
Material, we provide a detailed description of this analysis.

In order to evaluate how the different imperfections of the source
affect the key generation rate for both security proofs, we analyse
each of them separately. The results and discussion of this analysis
are in the Supplementary Material (Sections I and III). Now, we
present the comparison results between the generalised LT protocol
and the LP analysis, and identify which one provides a better R
depending on the experimental setup. This way an experimentalist
can choose which method to use for known device parameters and
ensure the security of the generated key between Alice and Bob. It
is noteworthy that for a fair comparison between both protocols we
consider the efficient four-state LT protocol, where the four states of
the BB84 protocol38 are used to run two LT protocols simulta-
neously. That is, when Alice emits the state |ω0X〉B (|ω1X〉B), she
considers that it belongs to the first (second) LT protocol, whereas
each of the two protocols is randomly chosen by Alice before
sending the pulse. See Supplementary Eq. (III.8) for the definition of
the state |ω1X〉B in the presence of SPFs. This means that no
modifications to the hardware of the standard BB84 protocol are
required and therefore, the four-state LT protocol is equivalent to
the BB84 protocol from an experimental point of view.
We show the results obtained for R as a function of the overall

system loss (which includes both the channel attenuation and the
loss at Bob’s receiver), for different values of δ, θjβ and μ, which
correspond to the SPFs, non-qubit assumption and THA, respec-
tively. The angles θjβ are chosen such that they are associated with
Alice’s encoding of the states |ωjβ〉B. That is, θ0Z= 0, θ1Z ¼ πθ̂ and
θ0X ¼ π

2 θ̂ for a certain angle θ̂. In our simulations, we consider the
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Fig. 2 Secret key rate R vs. the overall system loss measured in dB for the generalised LT protocol and LP analysis. The blue and red dashed
lines are superimposed in all graphs. a The LP protocol performs better in this scenario, because the SPFs are small but θ̂ is high. b For a
smaller θ̂, the generalised LT analysis is better when μ= 10−10. c The LP performs better when θ̂ is larger even if δ is high. d For large δ and
small θ̂, the generalised LT clearly surpasses the LP analysis when μ= 10−10 or μ= 10−7
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experimental parameters to be the following: the dark count rate
pd= 10−7, f= 1.16 and the fiber loss coefficient α= 0.2 dB/Km.
Moreover, we assume for simplicity that in the LT protocol and in
the LP analysis PZA ¼ 1

2 and PZB ¼ 1
2. This selection of probabilities

might not be ideal but it is sufficient for the purpose of the
simulation. By using the channel model described in the
Supplementary Material (Section IV), we find that YZ ¼ YðZÞ

0Z;0Z þ
YðZÞ
1Z;0Z þ YðZÞ

0Z;1Z þ YðZÞ
1Z;1Z ¼ PZAPZB ½4ð1� η

2Þpd þ η� where η is the
overall transmission efficiency of the system (see Section IV in
the Supplementary Material for more details). The bit error rate is
then given by

eZ ¼ 2ð1� η
2Þpd þ η

2 þ η
4 ðcos 2δþ cos δÞðpd � 1Þ

4ð1� η
2Þpd þ η

: (31)

As the range of the experimental parameters greatly depend on
the devices being used, we select the SPFs to be either δ= 0.063
or δ= 0.126 according to the experimental results reported in
refs. 34,39,40. There are some works related with the mode
dependency,34,41 but unfortunately they do not directly provide
the value of θ̂. Therefore, we evaluate θ̂ over a big range (see
Sections I and III in the Supplementary Material) and for these
simulations we choose θ̂ ¼ 10�3 and θ̂ ¼ 10�5. Obviously, a better
experimental characterisation of the source would be essential to
improve the accuracy of the current parameters. Finally, for the
intensity of Eve’s back-reflected light during the THA, we use μ=
10−10, μ= 10−7 and μ= 10−4.21 The results are shown in Fig. 2. It
is noteworthy that the blue and red dashed lines coincide (for the
resolution presented) in all graphs. The reason for this lies in the
value of the variable μ. That is, for μ= 10−10 and μ= 10−7, the LP
analysis results in approximately the same secret key rate (see
Supplementary Material, Section III, for more details).
By comparing Fig. 2a, c or Fig. 2b, d, we can see how an increase

in the parameter δ, which is associated with SPFs, affects both
protocols. For the generalised LT protocol, the key rate stays
approximately the same as expected, as this method is loss
tolerant to SPFs. On the other hand, the LP analysis is more
influenced by SPFs (see also Supplementary Fig. III.2). The reason for
this difference is that in LP it is assumed the worst-case scenario, in
which Eve can enhance the basis dependence of the signals by
exploiting the channel loss. However, in LT no such assumption is
required; hence, the performance is maintained. This means that LT
will typically outperform LP in the presence of high SPFs.
To compare LT and LP as a function of the setting-dependent

θjβ, we can contrast Fig. 2a, b or Fig. 2c, d. The graphs show clear
differences due to decreasing the value of θ̂, especially for the LT
case. In Fig. 2a, LP reaches a longer distance for any value of μ, but

when θ̂ ¼ 10�5 LT gets better, particularly for μ= 10−10 as seen in
Fig. 2b. Furthermore, Fig. 2b shows that even when there are SPFs,
LP can still do better than LT if the states sent are far from the
idealised qubit. This is because the non-qubit assumption
negatively affects more LT than LP (see Supplementary Figs I.1c
and III.2c).
When we compare the values of μ for the LT and LP, we can see

a similar trend in the secret key rate for all graphs in Fig. 2.
Namely, the difference between the curves when μ= 10−10 (blue)
and μ= 10−4 (yellow) is much larger for LT than for LP, which
means that the THA is worse for the LT. However, μ is a parameter
that might be easily controlled experimentally by introducing
passive counter-measures, such as optical isolators.21 Indeed, in
ref. 21, it has been shown, for instance, that a value of μ= 10−6

could be easily achieved in practice. For example, even if Eve
sends Alice optical pulses with 1020 photons, practical combina-
tions of the components of Alice’s transmitter could guarantee a
total optical isolation of −170 dB, which would be enough to
achieve μ= 10−6.21 This means that the LT method may be a
better alternative when the SPFs are more dominant and the
mode dependency is small, as it outperforms the LP analysis in Fig.
2b and d.
As explained above, the non-qubit assumption and the THA

affect more the LT than the LP analysis. This might be because our
generalisation of the LT protocol is overestimating Eve. When we
calculate the bounds for the yields we obtain that the eigenvalues
λmax and λmin depend on the state preparation. However, this is
probably too pessimistic, because there might be some additional
constraints among them, as the space spanned by the states
associated to 0Z and 1Z, respectively, is not orthogonal to the one
spanned by the virtual states associated to 0Xvir and 1Xvir. This
means that these separate optimisations should not be possible in
practice, because Eve cannot achieve optimal values for all λs. In
other words, by improving our characterisation of the states we
can improve the performance of the generalised LT protocol. This
is however beyond the scope of this paper and we leave it for
future work.
In order to further investigate the differences between the two

methods, we determine the parameter regimes where their
performance is identical. First, by setting θ̂ ¼ 10�6, we can identify
which values of δ and μ provide the same key generation rate R
for LT and LP. The results are presented in Fig. 3a, where the
diagram clearly shows which protocol performs better given a
certain δ and μ: above the fitted curve, the LT provides a better
performance but below the curve LP is the preferable method. In
other words, as the SPFs increase the LT is superior but as μ
increases LP becomes more suitable.

-4 -3.8 -3.6 -3.4 -3.2 -3
0.14

0.15

0.16

0.17

0.18

0.19

Generalised loss-tolerant

Lo-Preskill

-9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Generalised loss-tolerant

Lo-Preskill

Fig. 3 The fitted line corresponds to those experimental parameters that result in the same key generation rate R for both methods, the
generalised LT protocol and the LP analysis. Above the line the generalised LT protocol performs better, and below the line the LP analysis is
the preferred method. The data points were fitted using a shape-preserving interpolant in Matlab. a Plot of δ against μ for θ̂ ¼ 10�6. b Plot of δ
against θ̂ for μ= 10−6
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Similar results are obtained when μ= 10−6. This case is
particularly useful, as in principle we can control the value of μ
experimentally by the amount of isolation we use in our devices.
Again, as SPFs increase the LT becomes better, giving a better
estimation of the phase error rate and a better secret key
generation rate.

DISCUSSION
Typical security proofs ignore many imperfections of experimental
devices, thus hindering the security claim of QKD. In this work, we
have generalised the LT QKD protocol to accommodate general
imperfections. In particular, our formalism is valid for a general
device model with, for instance, SPFs, mode dependency and
THAs, which result in passive and active information leakage to an
eavesdropper. Using this multi-mode scenario, we have shown
that the qubit assumption can be removed from the LT protocol
without compromising the security of the QKD scheme. We
present a formalism that can be used to estimate the phase error
rate by finding the transmission rates of some virtual states and
assuming the general state structure defined in Eq. (1). Therefore,
in principle, it can be applied to most QKD protocols.
In order to compare our generalised LT protocol with other

security proofs, we have applied the LP analysis29 to the same
device model. In so doing, we have identified which approach
delivers a higher secret key rate as a function of the experimental
parameters. For example, the results obtained show that LP
method performs better under the non-qubit assumption and the
THA but the generalised LT protocol is better when there are SPFs.
As the THAs can be controlled using passive counter-measures,
such as optical isolators, we have shown that in some cases the
generalised LT protocol might be the preferable method when the
SPFs are more dominant. This way, our work can be used as a
guideline to improve current experimental implementations in
which multi-mode QKD is unavoidable. Moreover, it highlights the
importance of source characterisation for more realistic security
proofs.
For completeness, we also note that ref. 42 has recently

proposed a computational toolbox that can be used to
numerically estimate the phase error rate of a QKD protocol and
such technique could be applied to the scenario considered in this
paper. Essentially, similar to the LP analysis, their technique only
requires the knowledge of the inner products between the states
emitted by Alice and is mathematically simple, which is a striking
difference to previous numerical analyses.43,44 That is, the
approach in ref. 42 can also remove the qubit assumption and
include side channels when estimating the phase error rate. There
are, however, some relevant differences between that method
and our formalism, besides the obvious one, i.e., that our work is
an analytical technique. The approach in ref. 42 requires a full
characterisation of the side channels in order to obtain the inner
product of the states, whereas ours does not, resulting in a simpler
characterisation of the source. Moreover, in the absence of side
channels, their method is not loss tolerant in some parameter
regimes, whereas ours is always loss tolerant, which is essential to
guarantee a good performance over long distances. Furthermore,
their analysis considers pure states, whereas our method also
applies to the mixed-state scenario. Despite these differences, it
would be interesting to combine the advantages of both methods
to achieve a better implementation security, but we leave this for
future works.

METHODS
Security proof against coherent attacks
Here we present the security proof of our formalism against coherent
attacks. For simplicity of the discussion, the Results section deals with the
case of pure states in a single-mode qubit space; however, in this section

we consider the general scenario where the states could be mixed states in
a single-mode qubit space. For this, we consider a virtual protocol.45,46 This
protocol is equivalent to the actual protocol in the sense that the resulting
statistics of the measurements and the secret key rate generated between
Alice and Bob are the same. Furthermore, the classical and quantum
information available to Eve is equal in both protocols. The security claim
follows from the fact that Alice and Bob can choose which protocol to
execute and Eve is unable to distinguish between them. Hence, by proving
the security of the virtual protocol we prove the security of the actual
protocol.
In this work we employ the complementary scenario,31,32 which

considers a virtual protocol that uses the complementary observable of
the key generation basis. For instance, in the actual protocol Alice and Bob
agree on the bit values in the Z basis, whereas in the virtual protocol they
collaborate to prepare a qubit in an eigenstate of the X basis. In doing so,
the security proof basically reduces to the estimation of the phase error
rate, which corresponds to the bit error rate that Alice and Bob would have
observed if they would have measured the Z basis state in the X basis.
Therefore, the aim of the virtual protocol is to estimate the phase error
rate. In the section ‘Estimation of the phase error rate’, we showed how this
can be done by using our formalism and how we can calculate the secret
key rate R against collective attacks. Here we describe in detail the virtual
protocol used for the security proof and explain how to accommodate
coherent attacks by Eve through the use of Azuma’s inequality.33

We consider a more general case than that studied in the Results section
in which Alice generates a single-mode qubit system B, whose states are
mixed states, and we show how to define the pure states needed for our
security proof. We denote the mixed states by the density matrices ρ̂0ZB ,
ρ̂1ZB and ρ̂0XB . These states are diagonalised as

ρ̂jZB ¼ P0jZ ϕ0
jZ

��� E
ϕ0
jZ

D ���
B
þ P1jZ ϕ1

jZ

��� E
ϕ1
jZ

D ���
B
;

ρ̂0XB ¼ P00X ϕ0
0X

�� �
ϕ0
0X

� ��
B þ P1jZ ϕ1

0X

�� �
ϕ1
0X

� ��
B;

(32)

where j∈ {0, 1} and P0jZ , P
1
jZ , P

0
0X and P10X are probabilities satisfying P0jZ þ

P1jZ ¼ 1 and P00X þ P10X ¼ 1. Moreover, ϕ0
jZ

��� E
B
; ϕ1

jZ

��� E
B

n o
and

ϕ0
0X

�� �
B; ϕ1

0X

�� �
B

n o
are orthonormal bases in the single-mode qubit. The

states sent might be mixed due to imperfections in Alice’s devices,
including a potential entanglement between her devices and Eve’s ancilla.
This means that in general these mixed states can be purified by
introducing Alice’s ancilla system A1 and Eve’s system E, and therefore we
have the purifications of ρ̂0ZB , ρ̂1ZB and ρ̂0XB as ~ψ0Z

�� �
A1BE

, ~ψ1Z

�� �
A1BE

, and
~ψ0X

�� �
A1BE

, each of which expressed by

~ψjZ

�� �
A1BE

¼
ffiffiffiffiffiffi
P0jZ

q
0jZ
�� �

A1E
ϕ0
jZ

��� E
B
þ

ffiffiffiffiffiffi
P1jZ

q
1jZ
�� �

A1E
ϕ1
jZ

��� E
B
;

~ψ0X

�� �
A1BE

¼ ffiffiffiffiffiffiffi
P00X

p
00Xj iA1E ϕ0

0X

�� �
Bþ

ffiffiffiffiffiffiffi
P10X

p
10Xj iA1E ϕ1

0X

�� �
B:

(33)

Here, 0jZ
�� �

A1E
; 1jZ
�� �

A1E

n o
and 00Xj iA1E; 10Xj iA1E

n o
are orthonormal bases.

Now, we define states similar to Eq. (5) that include the purification of
Alice’s state:

~ΨZ

�� �
A1A2BE

¼ 1ffiffi
2

p 0Zj iA2
~ψ0Z

�� �
A1BE

þ 1Zj iA2
~ψ1Z

�� �
A1BE

h i
;

j~ΨX
�
A1A2BE

¼ 0Xj iA2
~ψ0X

�� �
A1BE

;
(34)

where A2 is Alice’s ancilla system used to generate a bit value in the
protocol, i.e., it possesses information about Alice’s encoding. As explained
above, in the security analysis Alice measures A2 in the X basis instead of
the Z basis when ~ΨZ

�� �
A1A2BE

is prepared; therefore, it is useful to write this

state in the X basis of system A2. By substituting 0Zj iA2
¼

1ffiffi
2

p 0Xj iA2
þ 1Xj iA2

� �
and 1Zj iA2

¼ 1ffiffi
2

p 0Xj iA2
� 1Xj iA2

� �
we can express

~ΨZ

�� �
A1A2BE

as

~ΨZ

�� �
A1A2BE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~ψ0Z j~ψ1Zh iA1BE

2

r
0Xj iA2

~ψvir
0X

�� �
A1BE

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ψ0Z j~ψ1Zh iA1BE

2

r
1Xj iA2

~ψvir
1X

�� �
A1BE

;

(35)
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where

~ψvir
jX

��� E
A1BE

¼
~ψ0Z

�� �
A1BE

þð�1Þj ~ψ1Z

�� �
A1BEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1þ ð�1Þj ~ψ0Z j~ψ1Z

� �
A1BE

� �r : (36)

In the virtual protocol, we consider that Alice sends Bob two virtual

states, ~ψvir
jX

��� E
A1BE

, and three actual states, ~ψjZ

�� �
A1BE

and ~ψ0X

�� �
A1BE

, which are

used to estimate the phase error rate. We have seen that even in the case
of mixed states we can define actual and virtual pure states, and these
pure states can be directly used in our security proof. Therefore, our
formalism is valid for mixed states in a single-mode qubit space.
Next, let us continue to explain the security proof in more detail. The

selection of these actual and virtual states can be expressed as

φj iSA1BE ¼
X5
c¼1

ffiffiffiffiffiffiffiffiffi
PðcÞ

p
cj iS ϑðcÞ

�� E
A1BE

; (37)

where S is the shield system that is kept inside of Alice’s lab and the states
ϑðcÞ
�� �

A1BE
are

ϑð1Þ
�� �

A1BE
¼ ~ψvir

0X

�� �
A1BE

;

ϑð2Þ
�� �

A1BE
¼ ~ψvir

1X

�� �
A1BE

;

ϑð3Þ
�� �

A1BE
¼ ~ψ0Z

�� �
A1BE

;

ϑð4Þ
�� �

A1BE
¼ ~ψ1Z

�� �
A1BE

;

ϑð5Þ
�� �

A1BE
¼ ~ψ0X

�� �
A1BE

;

(38)

with their respective probabilities P(c)

Pð1Þ ¼ PZA PZB
2 1þ ~ψ0Z j~ψ1Z

� �
A1BE

� �
;

Pð2Þ ¼ PZA PZB
2 1� ~ψ0Z j~ψ1Z

� �
A1BE

� �
;

Pð3Þ ¼ PZA PXB
2 ;

Pð4Þ ¼ PZA PXB
2 ;

Pð5Þ ¼ PXAPZB þ PXAPXB ¼ PXA :

(39)

When Bob receives the states, he performs a measurement in either the Z
or the X basis, and these are defined by the POVMs described in section

‘Assumptions on Bob's device’. Also, all announcements between Alice and
Bob are done via an authenticated public channel. It is noteworthy that in
the virtual protocol we assume that Alice and Bob are sitting in the same
lab so that they can choose the measurement basis, and this is allowed
because the quantum and classical information available to Eve is the
same between the actual and the virtual protocols. The detailed steps of
the virtual protocol are presented below and the logic schematics in Fig. 4.
Virtual protocol

1. Initialisation: Before running the protocol, Alice and Bob agree on a
number Nfixed of rounds, on the error correcting codes and on a set
of hash functions to perform privacy amplification. Steps 2–4 of the
protocol are repeated N times until the number of detected events
N becomes Nfixed.

2. State preparation: After a potential THA, Alice prepares systems S,
A1 and BE in the entangled state φj iSA1BE, in Eq. (37), and sends Bob
the system BE via a quantum channel.

3. QND measurement: For each incoming system, Bob performs a
quantum non-demolition (QND) measurement to determine
whether the signals are detected or not. If Bob obtains a detection
event, he keeps the resulting system and N is increased by 1 unit.

4. Detection announcement: If N= Nfixed, Bob announces the
termination of quantum communication and the detection pattern.
Otherwise Alice and Bob return to Step 2 of the protocol.

5. Measurement and basis announcement: For each of the detected
events, Alice measures her system S and announces the Z (X) basis
when c= 1, 2, 3, 4 (c= 5). Bob announces the Z (X) basis for c= 1, 2
(3, 4), but he always measures in the X basis. For c= 5, Bob selects
the basis β∈ {Z, X} probabilistically and announces his basis choice.
Then, he carries out the measurement on system BE in his
selected basis.

6. Sifting and announcement: Alice and Bob define and announce
the bit strings~sX;0Z ,~sX;1Z and~sX;0X , which correspond to the events
when Alice sends the actual states and Bob performs the X basis
measurements. These are the basis mismatched events when c= 3,
4 and one of the events when c= 5, the basis matched event. These
strings are used to estimate the phase error rate.

In the virtual protocol, we require that Alice and Bob postpone their
measurements until the quantum communication ends; therefore, we
assume that Alice and Bob possess quantum memories where they can
store their systems. The reason for this deferral comes from the application
of Azuma’s inequality, which is explained later. In the case of Alice, she only
makes her measurement after the termination condition, in Step 5. This is
allowed because it does not matter when she performs the measurement,
as it commutes with Eve’s operations and hence it will not affect Alice’s
statistics. For Bob, we divide his measurement in two steps: a QND
measurement, which allows him to know when a detected event occurred,
and a measurement to output the bit value with the chosen basis. If the
QND measurement results in a detected instance, Bob performs the
measurement using the Z or X basis. We are able to delay Bob’s
measurement choice because the inconclusive outcomes are assumed to
be independent of the basis, as explained in section ‘Assumptions on Bob's
device’. The key point in the virtual protocol is as follows: the security of
the events when Alice sends the actual Z basis states and Bob obtains a
detected event in the actual protocol with the Z basis can be analysed by
imagining that Alice and Bob both employ the X basis to measure
respectively the systems A2 and BE. This means that when Alice sends a
virtual state (c= 1, 2), Bob’s measurement basis is always the X basis.
It is clear that the virtual protocol described here is equivalent to the

actual protocol in the Supplementary Material (Section I). This is so,
because the quantum states sent by Alice are the same in both protocols
as well as the announcements made by the two parties. For instance, when
Alice sends the virtual states they both measure in the X basis but they
announce the Z basis (Step 5). In the actual protocol, these events are used
for key generation, and therefore Alice and Bob also announce the Z basis.
This means that the protocols are indistinguishable from Eve’s perspective
as required. It is noteworthy that the virtual protocol does not produce a
key; it is merely used for the estimation of the phase error rate.

Azuma’s inequality and its application to the security proof
In coherent attacks, Eve interacts with all the signals sent by Alice followed
by a joint measurement after listening to all the classical information
exchanged between Alice and Bob. In this scenario we use Azuma’s
inequality33, which takes into account this dependency and allows us to

Fig. 4 The logical schematics for the virtual protocol, where the
notation XA/ZA, XB/ZB corresponds to Alice’s and Bob’s measure-
ments bases, respectively. The virtual states correspond to c= 1, 2,
the actual Z states to c= 3, 4, and the actual X states to c= 5. For
each click event, Alice measures system S and Bob measures system
BE. It is noteworthy that the selection of c= 1, 2, 3, 4 already
includes Bob’s measurement in the X basis, but when c= 5 his
measurement basis is chosen probabilistically
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derive a relation between the expected values and the observed values.
Most importantly, once we have the conditional probabilities on all
previous measurement outcomes, we can find the actual number of events
observed.
Azuma’s inequality can be applied to a stochastic model as long as a

sequence of random variables is a martingale and satisfies the bounded
difference conditions (BDCs). A Martingale is a sequence of random
variables X(0), X(1), …, X(l) for which the expectation E[⋅] of the next value is
equal to the present value in the sequence given that we know all the
previous outcomes, i.e., E[X(l+1)|X(0), X(1), …, X(l)]= X(l) for all l ≥ 0. This
sequence is said to satisfy BDC if there exists c(l) > 0 such that |X(l+1)−
X(l)| ≤ c(l) for all l ≥ 0. For N trials of a variable X(l) with c(l)= 1, Azuma’s
inequality states that

P½jXðNÞ � Xð0Þj>NδA� � 2e
�Nδ2

A
2 ; (40)

holds for any δA∈ (0, 1). Now, for the lth trial, we define X(l) as

XðlÞ :¼ ΛðlÞ �
Xl

k¼1

Pðζk ¼ 1jζ0; :::; ζk�1Þ; (41)

where Λ(l) is a random variable representing the actual number of events

(that is ΛðlÞ ¼ Pl
k¼1

ζk ) observed during the first l trials, ζk is the random

variable of interest and it has the value of 0 or 1. Moreover, P(ζk= 1|ζ0, …,
ζk−1) is the conditional probability of obtaining the outcome specified by
ζk= 1 in the kth trial given that the first k− 1 outcomes are ζ0, …, ζk−1. It is
possible to show that the sequence of random variables in Eq. (41) is
Martingale and satisfies the BDC. Hence, we can apply the Azuma’s
inequality and write

P½jΛðNÞ �
XN
k¼1

Pðζk ¼ 1jζ0; :::; ζk�1Þj>NδA� � 2e
�Nδ2

A
2 ; (42)

where we use the definition X(0)= 0. This also means that

XN
k¼1

Pðζk ¼ 1jζ0; :::; ζk�1Þ � NδA � ΛðNÞ �
XN
k¼1

Pðζk ¼ 1jζ0; :::; ζk�1Þ þ NδA;

(43)

holds at least with probability P ¼ 1� 2e
�Nδ2

A
2 . Therefore,

ΛðNÞ ¼
XN
k¼1

Pðζk ¼ 1jζ0; :::; ζk�1Þ þ δB; (44)

except for error probability ϵþ ϵ̂, where the deviation parameter
δB 2 ½�Δ; Δ̂�. These bounds are defined as Δ= f(N, ϵ) and Δ̂ ¼ f ðN; ϵ̂Þ
where f ðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x lnð1=yÞp
.

Let us now show how we use this inequality in our security proof. In
particular, we consider

XðlÞ
csX ¼ Λ

ðlÞ
csX �

Xl

k¼1

Pðζk;csX ¼ 1jζ0; :::; ζk�1Þ; (45)

where csX= c, s for c= 1, 2, 3, 4, as Bob’s basis choice is already included in
these cases, and csX= c, s, X for c= 5. In Eq. (45), P(ζk,csX= 1|ζ0, …, ζk−1) is
the probability of Alice selecting the state c and Bob observing s (s, X) for
s∈ {0, 1} when c= 1, 2, 3, 4 (c= 5) in the kth trial, conditional on all the
previous outcomes from the measurements ζ0, …, ζk−1. To obtain this
probability we first define

τj iSA1BE ¼ φk�1j iSA1BE φkj iSA1BE φrj iSA1BE; (46)

to be the state prepared by Alice in an execution of the protocol, where
φk�1j iSA1BE, φkj iSA1BE and φrj iSA1BE correspond to all the systems before the
kth trial, in the kth trial and in the rest of the trials after k (i.e., r= N− k),
respectively.
Eve’s action can be described as ÛBEE0 τj iSA1BE 0j iE0¼

P
t B̂tB τj iSA1BE tj iE0 ,

where ÛBEE0 is a unitary transformation acting on systems BEE, B̂tB is the
Kraus operator, which acts on system BE depending on Eve’s measurement
outcome t, and |t〉{t=1, 2, …} is an orthonormal basis. It is noteworthy that
here we use the subscript E to refer to Eve’s system originating from a THA
and E′ corresponds to an additional ancilla system in her hands. Alice and
Bob only communicate after performing the measurements so these
parameters are independent of the state preparation.
In order to consider Alice’s and Bob’s measurements previous to the kth

trial, we define the operator Ôk�1;SBE ¼ �k�1
ν¼1M̂SνBEν , where M̂SνBEν denotes

the Kraus operator associated with the νth measurement outcome of Alice
and Bob. Hence, after Eve’s interaction, the normalised kth state of the
system SBE conditioned on the measurement outcomes, Ok−1, and the
detected event can be expressed as

ρ̂SBEkjOk�1
¼

σ̂SBEkjOk�1

Tr σ̂SBEkjOk�1

� � ; (47)

where the state σ̂SBEkjOk�1
is defined shortly below (see Eq. (49)). We know that

σ̂SA1BE
kjOk�1

¼
X
t

Trk F̂BEk Ôk�1;SBEB̂tB τj iSA1BE τh jB̂ytBÔy
k�1;SBEF̂

y
BEk

h i
; (48)

where Trk is the partial trace over the systems S, A1 and BE for all the
events that are not in the kth trial, and F̂BEk is Bob’s Kraus operator acting
on the kth system, corresponding to the detected events. This means
taking the trace with the basis ~xk�1j i; ~xrj if g, where ~xk�1j i corresponds to
all the systems in the first k− 1 runs and ~xrj i to the rest of the systems
after k. Then, we can rewrite Eq. (48) as

σ̂SBEkjOk�1
¼

X
t

X
~xk�1 ;~xr

TrkA1
Að~xk�1 ;~xrÞ
t;BEjOk�1

φkj iSA1BE φkh jAyð~xk�1 ;~xr Þ
t;BEjOk�1

h i
; (49)

where TrkA1
is the partial trace over the system A1 in the kth trial and

Að~xk�1 ;~xrÞ
t;BEjOk�1

is the Kraus operator acting on the kth system conditional on all
the previous detected events, and it is defined as

Að~xk�1 ;~xr Þ
t;BEjOk�1

¼ ~xrh j ~xk�1h jF̂BEk Ôk�1;SBEB̂tB φk�1j iSA1BE φrj iSA1BE: (50)

By substituting Eq. (37) into Eq. (49) we get

σ̂SBEkjOk�1
¼

X
c;c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðcÞPðc0Þ

p X
t

X
~xk�1 ;~xr

TrkA1
Að~xk�1 ;~xr Þ
t;BEjOk�1

cj iS c0h j � ϑðcÞ
�� E

A1BE
ϑðc0Þ

D ��Ayð~xk�1 ;~xr Þ
t;BEjOk�1

� 

:

(51)

It is clear now that this state is dependent on Eve’s action as well as on the
previous outcomes. Also, note that the partial trace only acts on system A1.
The probability that Alice obtains the outcome c, Bob selects the X basis
and obtains a bit value s conditional on all the previous measurement
outcomes is calculated as

PcsXjOk�1
¼ PðX\cÞ

Tr σ̂SBE
kjOk�1

� �P
t

P
~xk�1 ;~xr

Tr Að~xk�1 ;~xrÞ
t;BEjOk�1

TrkA1 ϑðcÞ
�� �

ϑðcÞ
� ��

A1BE

h i
Ayð~xk�1 ;~xr Þ
t;BEjOk�1

M̂sX

h i

¼ PðX\cÞ
Trðσ̂SBE

kjOk�1
Þ Tr D̂sXjOk�1

TrkA1T ϑðcÞ
�� �

ϑðcÞ
� ��

A1BE

h ih i

(52)

where PðX \ cÞ ¼ PðcÞ for c= 1, 2, 3, 4 and PðX \ cÞ ¼ PðcÞPðXBÞ for c= 5.

In this expression, D̂sXjOk�1
¼ P

t

P
~xk�1 ;~xr

Ayð~xk�1 ;~xr Þ
t;BEjOk�1

M̂sXA
ð~xk�1 ;~xr Þ
t;BEjOk�1

represents
Eve’s action as well as Bob’s measurement. This is independent of c, which
means that Eve cannot behave differently depending of the state sent.
Importantly, the probability PcsXjOk�1

essentially corresponds to the actual
yields YsX,jβ in section ‘Estimation of the phase error rate’ when c= 3, 4, 5. It
is noteworthy that the yields in this section are normalised by the detected
events while those in the Results section are not. In the finite key size
regime, the normalisation according to the detected events results in a
better performance; however, in the limit of large number of pulses, they
are essentially the same. As we consider this limit throughout this paper, in
section ‘Estimation of the phase error rate’, we adopt the yields that are not
normalised by the detected events for simplicity of explanation. We know
Λ3sX, Λ4sX and Λ5sX by collecting the corresponding number of events from
the actual protocol. Therefore, using Azuma’s inequality, i.e., Eq. (44), we
can calculate the conditional probabilities that correspond to the yields

YðZÞ
sX;0Z , Y

ðZÞ
sX;1Z and YðXÞ

sX;0X , respectively. From section ‘Estimation of the phase
error rate’, we know how these yields are related to the transmission rates

and, in turn, how these are related to the virtual yields YðZÞvir
1X;0Z and YðZÞvir

0X;1Z .
Here we would like to emphasise that using Eq. (18) we can calculate these
yields, which correspond to the probabilities P11XjOk�1

and P20XjOk�1
,

respectively, both of which are conditional on the previous measurement
outcomes. Using Azuma’s inequality again, we can find the number of
number of events, Λ11X and Λ20X, which are the number of phase errors,
and this concludes the estimation of the phase error rate.

Coefficients
In this section, we list the coefficients used in section ‘Estimation of the
phase error rate’. Direct calculations show that the coefficients Aj, Bj and Cj
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for Eqs. (14)–(18) are given by

Aj ¼ 1
4 ja0Z j2 þ ð�1Þj a�0Za1Z ϕ0Z jϕ1Zh iBEþa0Za�1Z ϕ1Z jϕ0Zh iBE

� �þ ja1Z j2
h i

;

Bj ¼ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja0Z j2 þ ð�1Þj a�0Za1Z ϕ0Z jϕ1Zh iBEþa0Za�1Z ϕ1Z jϕ0Zh iBE

� �þ ja1Z j2
q

´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0Z j2 þ ð�1Þj b�0Zb1Z ϕ?

0Z jϕ?
1Z

� �
BEþb0Zb21Z ϕ?

1Z jϕ?
0Z

� �
BE

� �þ jb1Z j2
q

;

Cj ¼ 1
4 jb0Z j2 þ ð�1Þj b�0Zb1Z ϕ?

0Z jϕ?
1Z

� �
BEþb0Zb�1Z ϕ?

1Z jϕ?
0Z

� �
BE

� �þ b21Z
h i

:

(53)
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