

Projected shell model study of yrast bands of some odd mass N=61 isotones

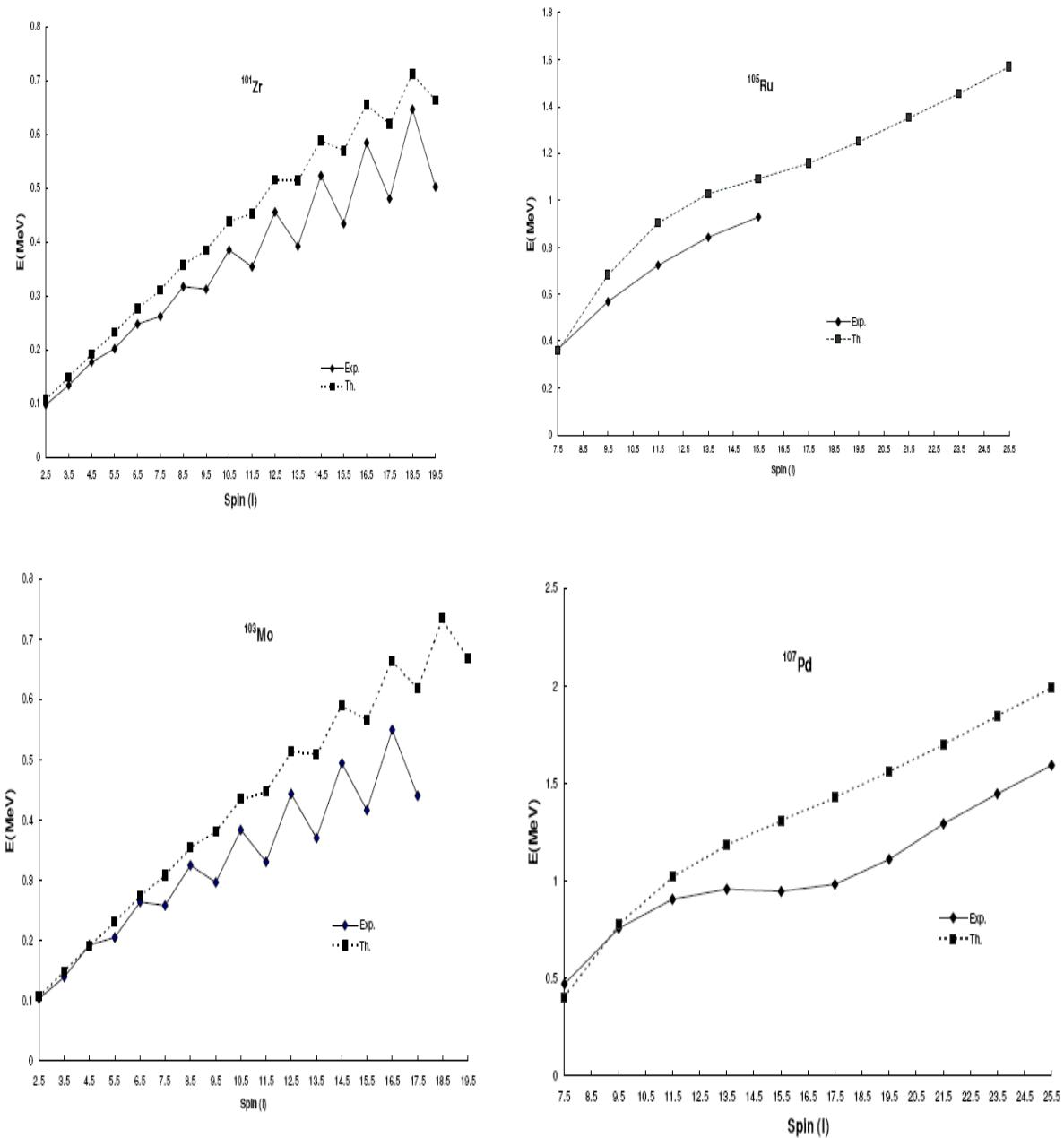
Monika Mahajan, Daya Ram,* Rani Devi , and S.K Khosa

Department of Physics & Electronics, University of Jammu, Jammu -180006, INDIA
 *email: rani_rakwal@yahoo.co.in

With the advent of new experimental tools the level scheme of N=61 nuclei have been extended to higher spins [1-4]. For example, for ^{101}Zr and ^{103}Mo [1] the ground state bands have been extended from spins $23/2^+$ to $39/2^+$ and $31/2^+$ to $39/2^+$, respectively. The signature splitting has been observed in ^{101}Zr and ^{103}Mo isotopes. Particle rotor model [5,6] has been employed to study the signature splitting phenomenon in these nuclei. To interpret the latest experimental data and to study the structure of yrast bands in some N=61 isotones, projected shell model (PSM) approach has been employed.

The Hamiltonian [7] employed in the present work is

$$H = H_0 - \frac{1}{2} \chi \sum_{\mu} Q_{\mu}^+ Q_{\mu} - G_M P^+ P - G_Q \sum_{\mu} P_{\mu}^+ P_{\mu}$$


where H_0 is the spherical single-particle Hamiltonian. The second term in the Hamiltonian is the quadrupole-quadrupole interaction and the last two terms the monopole and quadrupole pairing interaction, respectively. The strength of the quadrupole force χ is adjusted such that the known quadrupole deformation parameter ϵ_2 is obtained. This condition results from the mean field approximation of quadrupole-quadrupole interaction of the Hamiltonian in above equation. The monopole pairing force constant G are adjusted to give known energy gaps. The strength parameter G_Q for quadrupole pairing is assumed to be proportional to G_M .

In the present piece of work, the yrast energies and transition energies of yrast bands of ^{101}Zr , ^{103}Mo , ^{105}Ru and ^{107}Pd have been obtained. In Fig.1, the transition energies are presented for ^{101}Zr , ^{103}Mo , ^{105}Ru and ^{107}Pd , respectively. For ^{101}Zr and ^{103}Mo there are $[E(I)-E(I-1)]$ transitions

in the experimental data and the available experimental data shows staggering in the yrast band . It can be seen that energy staggering in the yrast bands for ^{101}Zr and ^{103}Mo are reproduced qualitatively by PSM calculations. In case of ^{105}Ru and ^{107}Pd experimental data shows E2 transitions in the yrast bands and so energy staggering is absent in these nuclei. In case of ^{105}Ru and ^{107}Pd , the theoretical $[E(I)-E(I-2)]$ transition energies are compared with the experimental data in Fig.1. In case of ^{105}Ru , the increasing trend of $[E(I)-E(I-2)]$ displayed in fig.1 is reproduced by theoretical results. In case of ^{107}Pd , the transition energy versus spin graph reproduces the experimental transition energies up to spin $10.5\hbar$. For the higher spins the deviation from the experimental data is more.

References

- [1] H. Hua et al., Phys. Rev. **C 69** (2004) 014317.
- [2] H. Hua et al., Phys. Rev. **C 65** (2002) 064325.
- [3] J.K. Hwang et al., J.Phys.**G24** (1998) L9.
- [4] K.R. Pohl et al., Phys. Rev. **C53** (1996)2682.
- [5] J. Mayer et al., Nucl. Phys. **A249** (1975)141.
- [6] S.E. Larsson et al., Nucl. Phys. **A307** (1978) 149.
- [7] K. Hara and Y. Sun, Int. J. Mod. Phys. **E 4** (1995) 637.

Fig. 1 Comparison of the calculated transition energies with experimental data for some $N=6$ isotones.