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Abstract: The meaning of the quantum minimum effective length that should distinguish the quantum

nature of a gravitational field is investigated in the context of manifestly covariant quantum gravity

theory (CQG-theory). In such a framework, the possible occurrence of a non-vanishing minimum

length requires one to identify it necessarily with a 4-scalar proper length s.It is shown that the latter

must be treated in a statistical way and associated with a lower bound in the error measurement

of distance, namely to be identified with a standard deviation. In this reference, the existence of

a minimum length is proven based on a canonical form of Heisenberg inequality that is peculiar

to CQG-theory in predicting massive quantum gravitons with finite path-length trajectories. As a

notable outcome, it is found that, apart from a numerical factor of O(1), the invariant minimum

length is realized by the Planck length, which, therefore, arises as a constitutive element of quantum

gravity phenomenology. This theoretical result permits one to establish the intrinsic minimum-

length character of CQG-theory, which emerges consistently with manifest covariance as one of its

foundational properties and is rooted both on the mathematical structure of canonical Hamiltonian

quantization, as well as on the logic underlying the Heisenberg uncertainty principle.

Keywords: quantum gravity; invariant minimum length; Planck length; Heisenberg uncertainty

principle; Heisenberg inequality; Hamiltonian quantization; stochastic graviton trajectories

PACS: 03.50.-z; 04.20.-q; 04.20.Cv; 04.20.Fy

1. Introduction

A physically acceptable model of quantum gravity should be characterized by the
occurrence of a minimum length, whose existence should be regarded as a ground-level
requisite of consistency for the validity of any theory of this kind [1]. In this reference, the
possibility of introducing a notion of minimum length for the quantum representation of
gravitational space–time can be motivated by first principles. This refers to the characteristic
intrinsically discrete nature of quantum physics per se, as well as quantum field dynamics
with respect to the corresponding classical counterparts, as it occurs, for example, in the
case of quantum mechanics, electromagnetic fields and radiation theories. According to
this reasoning, the minimum length should be interpreted as a quantum of the geometry of
space–time, namely the minimum length of discretization that composes its microscopic
structure and admits the continuum space–time of General Relativity (GR) as a macroscopic
limit [2,3].

Nevertheless, beyond these general remarks, at least two crucial questions remain
to be addressed. The first one concerns the very existence of a minimum length to be
intended both from a physical and a mathematical perspective. This issue pertains to the
identification and subsequent establishment of a unique character of minimum length,
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which relies on the theory of quantum gravity implemented and/or the physical con-
text introduced. In fact, a priori, one cannot exclude the possibility of multiple admis-
sible definitions depending on the type of quantum-gravity phenomena and scenarios
treated [4–6]. On the other hand, in the case of uniqueness, the minimum length should rep-
resent a constitutive intrinsic element of a given quantum-gravity theory with a universal
character that overcomes any specific realization.

In the last few decades, the literature on minimum-length theories has been abundant
and apparently fertile [7–16]. The concept of minimum length arises often in association
with quantum-gravity phenomenological models focused on modification of the Heisen-
berg indeterminacy principle in the framework of so-called Generalized Uncertainty Princi-
ple (GUP) theories [17–23]. The target of these approaches is hopefully that of predicting
the manifestation of some kind of quantum phenomena for particle physics [24–27], or for
semi-classical GR solutions in cosmological scenarios [28–31] and in strong gravitational
field regimes, like in the case of Hawking radiation near black holes [32–37]. These kinds
of studies attract interest from research communities in both scientific and philosophical
fields, and it is partly related to the possibility of representing valuable theoretical ways
for making concrete progress on the formulation of a comprehensive theory of quantum
gravitational fields [38]. However, it is clear that only rigorous approaches that are formu-
lated within canonical quantization schemes and established conceptual frameworks may
be susceptible to bringing concrete theoretical advances on the matter.

The second question to ascertain pertains instead to the relationship that exists between
the effective minimum length of quantum gravity and the Planck length (ℓP), namely the
characteristic unit of length that arises in the system of Planck units. The latter is defined as
an invariant quantity in terms of the reduced Planck constant (h̄), the gravitational constant
(G) and the speed of light in vacuum (c) as

ℓP =

√
h̄G

c3
. (1)

In SI units, where lengths are expressed in meters (m), the value of the Planck length is of
the order of 1.6 × 10−35 m, which represents, by far, a much smaller length than any known
size in atomic or subatomic physics. Because of its dependence on both the Planck and the
gravitational constants, it has been speculated that the invariant Planck length can acquire
a physical meaning in the framework of quantum gravity.

More precisely, it is believed that ℓP should express the invariant scale at which the
laws of classical gravity theory, in its currently accepted formulation due to Einstein,
fail and the structure of continuum space–time predicted by the same GR theory breaks
down [39]. This leads to the conjecture that, at Planck-length scales, quantum-gravity
phenomena should appear or become relevant, thus demanding the adoption of a theory of
quantum gravity for their correct understanding [40–42]. For example, in quantum-gravity
approaches that rely on suitable slices of space–time into sub-dimensional spaces [43,44],
like the quantum Geometrodynamics, to be distinguished into its two main variants by
the Wheeler–DeWitt equation [45–48] and Loop Quantum Gravity theory [49–53], the
Planck length is claimed to be the minimum length of the discretization of the underlying
geometric space–time grid. Hence, a crucial question to be addressed is about the nature of
ℓP and its meaning as a minimum length for quantum gravity. This must be ascertained
based on first-principle mathematical and physical approaches in order to disclose whether
the Planck length can truly represent an intrinsic element of the conceptual framework of
quantum gravity.

Given these premises, the purpose of the present research is to investigate the meaning
of a quantum minimum effective length that should distinguish the quantum nature of
gravitational field in contrast to its classical deterministic description. To this aim, in the
following, we shall adopt the framework of manifestly covariant quantum gravity theory
(CQG-theory), whose fundamentals have been proposed in a series of recent works [54,55].
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The main peculiar features of CQG-theory that distinguish it from alternative literature
approaches to quantum gravity are as follows:

• It satisfies the principle of manifest covariance, which states that all quantum op-
erators, dynamical variables and physical observables must be represented exclu-
sively in 4-tensor form and be endowed with tensor properties with respect to a suit-
able group of local point-coordinate transformations [56,57] (see extended definition
given below).

• It relies on the canonical quantization of the continuum space–time field theory pro-
vided by classical General Relativity, such that it possesses abstract quantum Hamil-
tonian and Hilbert space structures that are formally analogous and ontologically
equivalent to Quantum Mechanics.

• It admits a 4-dimensional continuous quantum space–time that is expressed by the
unconstrained and independent quantum field variables g(r) ≡

{
gµν(r)

}
= {gµν(r)}.

These must be distinguished from the background metric tensor ĝ(r) ≡
{

ĝµν(r)
}
=

{ĝµν(r)}, which determines the geometric properties of space–time and raises and
lowers tensor indices with respect to which covariance and tensor transformation laws
are defined [58].

• It obeys the same quantum logic of Quantum Mechanics, as was recently pointed out
in [59], and it relies on the stochastic character of quantum canonical theory and the
related validity of Heisenberg inequalities in conventional canonical invariant form.

As a consequence, it must be noticed that the possible occurrence of a non-vanishing
invariant quantum minimum length for CQG-theory requires one necessarily to identify it
with a 4-scalar structure, and it is denoted with the symbol σ. This must be defined with
respect to the continuous background space–time ĝ(r) in order to warrant its objective,
i.e., unique, character.

In agreement with these criteria, the target of the present research is twofold. First,
it is proven that a consistent realization of the invariant quantum minimum length σ is
obtained by expressing it as a proper arc-length. In order to be non-vanishing, the latter
must be related to the path-length of quantum particles endowed with finite masses and
having corresponding sub-luminal finite-length geodesic trajectories on the background
space–time ĝ(r). In the framework of CQG-theory, the natural choice for such a particle
endowed with a gravitational-field nature is to identify it with the massive graviton, whose
existence is predicted by the validity of manifestly covariant Hamiltonian structure and
the canonical quantization at the basis of CQG-theory. It must be noted that the only
key assumption is that of non-null geodesics. This is a mandatory requisite for proper-
time parametrization to exist both at the classical and quantum levels for gravitational
field dynamics. Instead, the existence of massive gravitons with finite masses can be
interpreted as a fundamental consequence. In this regard, the existence of a minimum and
non-vanishing mass for gravitons was proven in ref. [55].

In addition, the space–time trajectories of gravitons are expected to be non-deterministic,
i.e., stochastic, in character. This means that the phenomenon of quantum minimum length
must also be closely related to fundamental physical principles that may limit the precision
of quantum position measurements, giving rise to an effective “delocalization” of quantum
particles and quantum trajectories. Indeed, CQG-theory involves, just like in the case of
particle dynamics in QM [60], the treatment of the stochastic space–time trajectories associated
with massive quantum gravitons [61]. Departing from the customary GUP literature, the
physical basis is provided by a new form of generalized Heisenberg uncertainty principle in
tensor form. The latter is peculiar to CQG-theory as it involves the Riemann distance, i.e., the
arc length along the background geodetics of gravitons, together with its canonically conjugate
quantum momentum. The goal is to show that the quantum minimum length σ must be
treated in a statistical way and associated with a lower bound in the error measurement
of distance, namely to be identified with a standard deviation constrained by a suitable
generalized Heisenberg inequality.
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In this regard, as a remarkable feature, it must be stressed that such a statistical and
intrinsically quantum definition for the minimum length σ is reached by uniquely imple-
menting a canonical form of the Heisenberg indeterminacy principle, which is analogous to
the one that is held in quantum mechanics. Therefore, the result is established without any
phenomenological modification of the same Heisenberg principle (like it occurs instead
in GUP models), warranting the full consistency of the treatment with the conceptual
scheme of canonical Hamiltonian field quantization. Finally, it must be also noted that the
existence for CQG-theory of the arc length σ is not at variance nor in contradiction with the
postulates of manifest covariance. In fact, the minimum length σ is not pertinent to any
kind of discretization model or symmetry breaking of the continuum space–time coordinate
systems, which remain associated to the (possibly quantum-modified) background metric
tensor ĝ(r).

The second target deals instead with the establishment of the relationship existing
between the minimum length σ and the Planck length ℓP. This represents a continuation
of the theoretical investigation proposed recently in ref. [62] on the meaning of Planck
length in the Hamiltonian formulation of classical GR and its quantum version expressed
by CQG-theory. In particular, it was shown that the requirements for a realization of
a manifestly covariant classical GR Hamiltonian theory for the Einstein field equations
with non-vanishing canonical momenta place stringent constraints on the admissible
Planck length-dependent contributions that can appear in the corresponding Lagrangian
function. In fact, it was proved that, in such a framework and beyond the apparent
freedom characterizing the formulation of Lagrangian theory, only terms independent
of ℓP were ultimately admitted at the classical and quantum variational level for the
Hamiltonian theory to hold. This suggests the conjecture that the Planck length ℓP should
not be introduced from first principles as a coupling constant at the level of the variational
treatment of classical GR but, rather, should emerge consistently a posteriori from the
canonical quantization procedure as part of the logical structure of CQG-theory [63].

Indeed, the target of the present research includes the proof that, apart from a numeri-
cal factor of O(1), the Heisenberg inequality implies a realization of the minimum length σ
as an extremal standard deviation in terms of the Planck length, namely—under a suitable
ordering assumption on the effective Planck mass (see the related discussion in Section 6
below)—the following notable outcome:

σ ∼ ℓP. (2)

Therefore, ℓP arises as a constitutive element of quantum gravity phenomenology charac-
terizing the stochastic quantum dynamics of massive gravitons. This theoretical result is
unique among quantum gravity theories and appears peculiar to CQG-theory due to its
invariant manifestly covariant representation. In fact, without invoking an implausible
hypothesis for the ad hoc modifications of the ontological principles of quantum mechanics,
it permits one to establish the intrinsic minimum-length character of CQG-theory. This is
found to emerge consistently as a foundational property from the combined validity of
both the mathematical structure of canonical Hamiltonian quantization, as well as that of
the logic underlying the Heisenberg uncertainty principle.

In summary, the scheme of this paper is as follows. In Section 2, the theoretical setting
underlying the manifestly covariant quantum gravity theory is recalled. In Section 3, the
validity of the Heisenberg indeterminacy principle holding for the same quantum gravity
theory is established. Based on this result, Section 4 deals with the proof of validity of the
proper-time Heisenberg inequality, which is peculiar to the manifestly covariant quantum
gravity theory and applies to a novel set of conjugate canonical variables. Given this
mathematical framework, in Section 5, the proof of existence of the quantum minimum
length is reached. Then, the relationship holding between the representation of the quantum
minimum length and the Planck length is elucidated in Section 6. Final remarks and
concluding discussion are reported in Section 7.
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2. Theoretical Setting

In this section, we summarize the main features of the theoretical setting adopted
in the following treatment, which is represented by the theory of manifestly covariant
quantum gravity (CQG-theory). These notions are propedeutical for the mathematical
proof of existence and realization of quantum minimum length in such a framework. In this
regard, the problem treated below demands the introduction of the following requirements:

1. The principle of manifest covariance. This principle states that it should always be pos-
sible to cast the physical laws of relativistic field theories in a coordinate-independent
form, namely in 4-tensor form with respect to the group of local-point transforma-
tions (LPT-group), which leaves invariant the differential manifold of the background
space–time [64]. It is assumed that the space–time is represented by a Lorentzian
differential manifold of the type

{
Q4, ĝ(r)

}
, with Q4 being the 4-dimensional real

vector space R4 representing space–time and ĝ(r) ≡
{

ĝµν(r)
}
≡ {ĝµν(r)} being a

real and symmetric metric tensor represented in terms of a coordinate system (or
GR-frame) r ≡ {rµ} ∈ Q4. The same coordinates are parametrized in terms of the
arc length s defined along a suitable family of geodetics. Then, it follows that the
coordinate system itself is r ≡ {rµ} and can also be parametrized with respect to s. As
a consequence, LPTs are necessarily realized by diffeomorphisms (i.e., differentiable
bijections) of the form

r(s) → r′(s) = r′(r(s)), (3)

which are globally defined for all s ∈ I ⊆ R and are referred to as the LPT-group,
with the inverse

r′(s) → r(s) = r(r′(s)) (4)

being characterized by a non-singular Jacobian matrix M ≡
{

Mk
µ(r)

}
≡

{
∂rk(r)

∂r
′µ

}
.

Thus, r(s) ≡ {rµ(s)} and r′(s) ≡ {r′µ(s)} denote arbitrary points along suitable
geodetics that belong to the initial and transformed space–time structures

{
Q4, ĝ(r)

}

and
{

Q′4, ĝ′(r′)
}

, respectively. The space–time structure is then preserved by construc-
tion under the action of LPT-group (3) and (4) so that

{
Q4, ĝ(r)

}
≡

{
Q′4, ĝ′(r′)

}
while

the Riemann distance s is realized by means of the 4-scalar ds2 = ĝµν(r)drµdrν =
ĝ′µν(r

′)dr′µdr′ν, which is manifestly coordinate-independent (i.e., invariant with re-
spect to the globally defined LPT-group). Instead, any other 4-tensor, including the
Ricci and Riemann tensors, necessarily transforms in accordance with appropriate
4-tensor transformation laws [56].

2. The formulation of Classical Hamiltonian theory of GR consistent with the principle
of manifest covariance [65]. This is realized by identifying an invariant (i.e., 4-scalar)
evolution parameter s, which is denoted as proper-time, and by introducing the
Classical Hamiltonian structure represented by the set {x, H}, which is formed by
the canonical state, expressed in 4-tensor form, x(s) ≡ (g(s), π(s)) and a suitable
classical 4-scalar Hamiltonian density H. Here, g(s) =

{
gµν(s)

}
and π(s) = {πµν(s)}

denote, respectively, the variational tensor field and the conjugate tensor canonical
momentum. The canonical state x(s) must therefore fulfill a corresponding set of
continuum 4-tensor Hamilton equations





dgµν

ds =
[
gµν, H

]
= ∂H

∂πµν ,

dπµν

ds = [πµν, H] = − ∂H
∂gµν

,

(5)

which are subject to the initial-value condition

x(so) ≡ (gµν(so), πµν(so)). (6)
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Here, gµν(so) and πµν(so) denote two initial conjugate 4-tensor fields, where so is

the initial proper-time and d
ds is a suitable covariant s−derivative operator defined

in ref. [54]. Then, the solution of the initial-value problem (5) and (6) generates the
Hamiltonian flow

x(so) → x(s), (7)

which is associated with the Hamiltonian structure {x, H}. For the validity of the
theory, the canonical Equation (5) must correctly recover the form of the Einstein
field equations among their extremal solutions so that {x, H} effectively identifies
the Hamiltonian structure of GR [66]. In particular, we require the extremal field
equations to take the customary 4-tensor form

R̂µν −
1

2
R̂ĝµν + Λĝµν = κT̂µν, (8)

where R̂µν = Rµν(ĝ(r)) and R̂ = ĝµν(r)R̂µν ≡ R(ĝ(r)) denote, respectively, the back-
ground Ricci 4-tensor and Ricci 4-scalar, Λ is the cosmological constant,
T̂µν = Tµν(ĝ(r)) is the background stress-energy tensor associated with the exter-
nal source fields and κ denotes the dimensional constant κ = 8πG/c4. In addition, the
background metric tensor ĝµν is subject to the so-called metric compatibility condition

∇̂µ ĝµν = 0 with respect to the background covariant derivative operator ∇̂µ, which,
in turn, yields the representation of the Christoffel symbols.

3. The validity of a quantum Hamiltonian theory of GR [67]. Given the classical GR–

Hamiltonian structure {x, H}, this is represented by the set
{

x(q), H(q)
}

realized by

the formal map 



gµν → g
(q)
µν ≡ gµν,

πµν → π
(q)
µν ≡ −iℏ ∂

∂gµν ,

H → H(q),

(9)

where the dimensional 4-scalar H(q) identifies the quantum Hamiltonian operator,

where x(q) ≡
{

g
(q)
µν , π

(q)
µν

}
is the quantum canonical state and π

(q)
µν is the quantum mo-

mentum operator prescribed so that the commutator
[

g
(q)
µν , π(q)αβ

]
= iℏδα

µδ
β
ν applies.

The actual realization of the mapping (9) also requires the prescription of dimensional
constants to warrant the correct physical dimensions of the quantum Hamiltonian
function and quantum operators. This quantum correspondence must then imply the
realization of a manifestly covariant Schroedinger-like quantum-wave equation for a
4-scalar quantum-wave function ψ of the form

iℏ
∂

∂s
ψ(s) =

[
H(q), ψ(s)

]
≡ H(q)ψ(s), (10)

with ∂
∂s denoting a covariant s-derivative, H(q) being the quantum Hamiltonian opera-

tor and [A, B] being the quantum commutator defined in general as

[A, B] ≡ AB− BA, which is therefore specified here such that
[

H(q), ψ(s)
]
≡ H(q)ψ(s).

The complex quantum-wave function ψ must admit a Madelung representation
as follows:

ψ(s) =
√

ρ(s) exp

{
i

ℏ
S(q)(s)

}
, (11)

where the real quantum fluid fields
{

ρ(s), S(q)(s)
}

identify the quantum probability

density function (PDF) and the quantum phase function. As a consequence, consistent
with the unitarity principle, the quantum-wave Equation (10) is equivalent to a set
of two real PDEs, which are referred to as the quantum continuity and quantum
Hamilton–Jacobi equations advancing in proper-time ρ(s) and S(q)(s), respectively.
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The acceptable quantum gravity theory must warrant the probabilistic character of
quantum mechanics and, particularly, the validity of the Born rule, such that the

4-scalar ρ(s) ≡ |ψ(s)|2 is a probability density on 4-dimensional space–time.

The appropriate setup that realizes the scheme proposed above is provided by the
manifestly covariant classical and quantum theories of the gravitational field, which are
denoted, respectively, as the CCG-theory and CQG-theory. In this regard, the explicit
representation of the classical and quantum Hamiltonian functions H and H(q) can be
found in refs. [54,55]. However, it should be noted that, for the subsequent development,
their mathematical definitions is not actually required. For this reason, and without
missing clarity, we omit to report them here. In fact, the remarkable aspect to underline
is the Hamiltonian character that distinguishes the formalisms of the CCG-theory and
CQG-theory with respect to other non-Hamiltonian formulations of classical and quantum
gravity theories, including the validity of canonical quantization rules and the conceptual
framework of quantum mechanics.

This follows precisely because CCG-theory and CQG-theory are rooted on a varia-
tional formulation that is based on synchronous Lagrangian and Hamiltonian variational
principles [68], which realize a De Donder–Weyl manifestly covariant variational repre-
sentation of classical and quantum GR [69–76]. Characteristic features of the synchronous
approach with respect to the customary literature asynchronous principles (which include,
for example, the original Hilbert–Einstein approach) are the space–time representation in
terms of the superabundant and unconstrained field variables gµν, and adopting the back-
ground metric tensor formalism in terms of a suitably-prescribed background metric tensor
ĝµν. Accordingly, manifest covariance is defined with respect to a continuum background

metric tensor ĝ ≡
{

ĝµν

}
, which satisfies both the orthogonality condition ĝµν ĝµk = δk

ν, so

that it raises/lowers tensor indices, as well as the metric compatibility condition ∇̂α ĝµν = 0
so that it defines the standard Christoffel connections and curvature tensors of space–time,
namely in defining the geometric properties of space–time. The background metric tensor
ĝ is then determined self-consistently as a solution of the quantum-modified Einstein field
equations implied by the same CQG quantum-wave equation. In contrast, the variational
theory applies to the tensor field g ≡

{
gµν

}
, which is such that gµνgµk ̸= δk

ν, and, generally,

has a non-vanishing covariant derivative in the action functional so that ∇̂αgµν ̸= 0, where
∇̂α is the covariant derivative whose connections are expressed in terms of ĝµν. The field
gµν must be interpreted as the quantum gravitational field of the quantum Hamiltonian
theory. In this sense, the same quantum field gµν is allowed to evolve dynamically on the
background space–time defined by ĝµν according to the quantum-wave equation (CQG-
wave equation), a feature that implies that it can correspondingly carry a non-vanishing
quantum momentum πµν.

It must be noted that the distinction between g and ĝ holds only at the variational
level of virtual curves, while, for the extremal fields yielding Einstein field equations,
the identity g = ĝ is restored. In the synchronous setting, hatted quantities depend on
the background metric tensor ĝ and do not contribute to the variational calculus. Thus,
denoting, in particular, the synchronous volume element as dΩ̂ = d4r

√
−|ĝ|, its variation

vanishes by construction so that δdΩ̂ = 0, where |ĝ| denotes the determinant of ĝ. This
volume-preserving property under the action of the variational operator δ justifies the
name given to this approach as the synchronous variational principle. Indeed, this feature
provides a point of connection between the synchronous setting and literature approaches
that go under the name of non-metric volume forms, or modified measures, which were
defined, for example, in refs. [77,78], or the so-called non-Riemannian space–time volume
elements [79,80]. Contrary to the customary assumption of the Hilbert–Einstein theory,
these works also propose variational approaches to the GR equations in which the volume
elements of integration in the action principles are metric-independent and are determined
dynamically through additional degrees of freedom. In practice, this is met by the inclusion
of new scalar fields. Therefore, as a common point of contact, both synchronous and
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non-metric approaches treat the 4-dimensional volume element of integration as a non-
variational quantity, namely to be independent of the variational metric tensor. However,
the synchronous setting distinguishes itself because it does not invoke nor does it demand
any additional field of unknown nature but only the use of superabundant field variables
that ultimately coincide with the unique observable space–time metric tensor in extremal
Einstein equations.

3. The Heisenberg Indeterminacy Principle

A peculiar property of CQG-theory, which follows from the principle of manifest
covariance and the Hamiltonian structure of its formulation, is the possibility of proving
the validity of the Heisenberg indeterminacy principle for the CQG-wave Equation (10).
This outcome is essential for the subsequent establishment of the quantum minimum-
length character of the same CQG-theory. The extended mathematical formulation of the
Heisenberg uncertainty theory can be found in refs. [81,82]. Based on these works, in
the following section, we summarize the main conceptual steps that are needed for the
present research, providing here the formal extension of the theory that includes the case of
stochastic graviton trajectories.

First, we require that the quantum-wave function ψ(s) must span a Hilbert space,
namely a functional linear space on which a suitable definition of the scalar product

⟨⟨ψa(s)|ψb(s)⟩⟩ can be given. This prescription is needed to warrant the validity of the
principle of quantum unitarity, namely the condition for the arbitrary s ∈ I ≡ R of the
normalization constraint

⟨⟨ψ(s)|ψ(s)⟩⟩ = 1. (12)

This, in turn, requires the Hamiltonian operator H(q) in Equation (10) to be a Hermitian
operator, i.e., to also satisfy, in terms of the same scalar product, the identity

〈〈
ψ(s)

∣∣∣H(q)
R ψ(s)

〉〉
=

〈〈
H

(q)
R ψ(s)

∣∣∣ψ(s)
〉〉

. (13)

As shown in ref. [82], the appropriate prescription of the scalar product is introduced
according to the following non-local definition:

⟨⟨ψa|ψb⟩⟩ ≡
1

s1∫
s0

ds

s1∫

s0

ds⟨ψa|ψb⟩L, (14)

where a proper-time integration on the interval [s0, s1] (with s0, s1 ∈ I ⊆ R) is included.
Here, ⟨ψa|ψb⟩L denotes the customary local scalar product

⟨ψa|ψb⟩L ≡
∫

Ug

d(g)ψ∗
a ψb, (15)

where ψa ≡ ψa(g, ĝ(r, s), r(s), s) and ψb ≡ ψb(g, ĝ(r, s), r(s), s) are two arbitrary elements
of the Hilbert space. We notice that ⟨ψa|ψb⟩L is still a function of the arguments ĝ(r), r(s)
and s. Thus, while, generally, for an arbitrary Hermitian quantum operator A, one has that

⟨⟨ψa|Aψb⟩⟩ ̸= ⟨ψa|Aψb⟩L thanks to Equation (12), it follows that

⟨⟨ψ(s)|ψ(s)⟩⟩ ≡
∫

Ug

d(g)|ψ(g, ĝ(r, s), r(s), s)|2

≡ ⟨ψ(s)|ψ(s)⟩L.
(16)

This equation was obtained by setting ψ∗
a ≡ ψ∗(s) and ψb ≡ ψ(s), with ψ(s) ≡ ψ(g, ĝ(r, s), r(s), s)

denoting the arbitrary element of the same Hilbert space, such as a particular solution of
the CQG-wave Equation (10). Notice that, furthermore, the equality of the rhs is warranted
by the fact that, in the unitary case, ⟨ψ(s)|ψ(s)⟩L is independent of the proper-time s.
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Furthermore, as is appropriate for the theory of stochastic CQG-theory [61] and in
view of subsequent development, we generalized the notion of a non-local scalar product
and introduced to this aim the stochastic-averaged scalar product, which is defined as

⟨⟨⟨ψa|ψb⟩⟩⟩α =
∫

Iα

dαgε(α)⟨⟨ψa|ψb⟩⟩, (17)

where ⟨•⟩α denotes the stochastic α-average

⟨•⟩α ≡
∫

Iα

dα • gε(α). (18)

Here, α denotes a dimensionless stochastic independent 4-scalar parameter (hidden vari-
able), while r(s, α) is a space–time stochastic curve that is required to satisfy the condition
that the displacement r(s, α)− r(s) is suitably small with respect to the characteristic scale
length of the geodesics r(s). For definiteness, α is assumed here to belong to the finite set
(stochasticity domain)

Iα = [−a, a]− {−ε, ε}, (19)

where either a = 1, ∞, and the value α = 0 is assumed to be forbidden, while α is assumed
to be endowed with a stochastic PDF. The form of such a PDF remains arbitrary so that
possible examples include the following: (a) a binomial PDF with α taking only the values
±1, and (b) a Gaussian PDF of the form

gα(ε) = N exp
{
−α2/ε2

}
. (20)

Here, ε > 0 is a dimensionless parameter such that ε ≪ 1, and N is a normalization constant
defined so that

⟨1⟩α ≡
∫

Iα

dαgε(α) = 1. (21)

Given these definitions, it is possible to prove that, as a consequence of the strict
positivity and smoothness of the quantum PDF ρ(s), the wave function ψ(s) of quantum
gravitational field satisfies suitable generalized Heisenberg inequalities, which are related
to the fluctuations (and corresponding standard deviations) of the Lagrangian variables
and of conjugate quantum canonical momenta. Denoting, for brevity, ψa = ψa(s) and
ψb = ψb(s), we first notice that the definitions of the scalar product introduced above
satisfy the standard properties of the Cauchy–Schwartz inequality, namely

⟨⟨ψa|ψa⟩⟩⟨⟨ψb|ψb⟩⟩ ≥ |⟨⟨ψa|ψb⟩⟩|2. (22)

On the other hand, it can also be proven that

∣∣∣(⟨⟨ψa|ψb⟩⟩)2
∣∣∣ ≥

∣∣∣∣
1

2i
(⟨⟨ψa|ψb⟩⟩ − ⟨⟨ψb|ψa⟩⟩)

∣∣∣∣
2

, (23)

and, by construction, that

⟨⟨ψa|ψb⟩⟩ = ⟨⟨ψb|ψa⟩⟩∗. (24)

Let us consider now two Hermitian operators A and B, which are denoted as

|ψa⟩⟩ = |(A − a)ψ⟩⟩, (25)

|ψb⟩⟩ = |(B − b)ψ⟩⟩, (26)

with a = ⟨⟨ψ |Aψ⟩⟩ and b = ⟨⟨ψ |Bψ⟩⟩ being the respective expectation values. Furthermore,
let us assume that the quantum-wave function ψ is not an eigenfunction of either operators,
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namely let us identically exclude that either (A − a)ψ ≡ 0 or (B − b)ψ ≡ 0. Then, it
follows that

⟨⟨ψa|ψa⟩⟩ = σ2
A ≡ ⟨ψ

∣∣∣(A − a)2ψ
〉
> 0, (27)

⟨⟨ψb|ψb⟩⟩ = σ2
B ≡ ⟨ψ

∣∣∣(B − b)2ψ
〉
> 0, (28)

where σA and σB denote the standard deviations of the quantum operators A and B.
Furthermore, one can show that, under the same assumption of the operators A and B
being Hermitian, it follows that

⟨⟨ψa|ψb⟩⟩ − ⟨⟨ψb|ψa⟩⟩ =
∣∣∣∣

1

2i
⟨⟨ψ|[A, B]ψ⟩⟩

∣∣∣∣
2

. (29)

We also conclude that, therefore, in the context of CQG-theory, and in the analogy with
foundations of standard quantum mechanics, the formal inequality

σ2
Aσ2

B ≥
∣∣∣∣

1

2i
⟨⟨ψ|[A, B]ψ⟩⟩

∣∣∣∣
2

(30)

holds, namely

σAσB ≥
∣∣∣∣

1

2i
⟨⟨ψ|[A, B]ψ⟩⟩

∣∣∣∣. (31)

This identifies the so-called Robertson uncertainty relation, and it actually proves the
validity of the Heisenberg indeterminacy principle that holds for the CQG-theory and is
expressed in tensorial form, namely it is consistent with the principle of manifest covariance.

For completeness, it must be noticed that analogous inequalities can also be determined
in terms of the local scalar product, thus yielding

σAσB ≥
∣∣∣∣

1

2i
⟨ψ|[A, B]ψ⟩

∣∣∣∣, (32)

where the standard deviations are again prescribed in terms of the local scalar product
defined above. The appropriate choice of the inequalities depends on the Hermitian
properties of the operators A and B, i.e., whether they are fulfilled or not by the local scalar
product rather than by the non-local one. However, in both cases, the physical meaning
of the inequalities is analogous. It is stated that the product of the standard deviations of
two non-commuting quantum observables A and B is necessarily bounded from below by
one half of the modulus of the expectation value of the commutator [A, B].

As an example of application of the theory appropriate for the CQG-theory, one can
consider the conjugate quantum canonical variables that are expressed by the set

(A, B) =

(
gµν, π

(q)
µν ≡ −iℏ

∂

∂gµν

)
, (33)

for which the commutator is given by

[
g(µ)(ν), π

(q)
µν

]
= iℏ. (34)

The inequality for the corresponding standard deviations is then

σg(µ)(ν)σπ
(q)
(µ)(ν)

≥ h̄

2
, (35)
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which realizes the generalized Heisenberg inequality for this set of conjugate canonical
variables (33). The corresponding squared standard deviations are then given in terms of
the local scalar product by

σ2
g(µ)(ν)

≡
〈(

g(µ)(ν) − g̃(µ)(ν)

)2
〉

≡
〈〈

ψ|
(

g(µ)(ν) − g̃(µ)(ν)

)2
ψ

〉〉
,

(36)

σ2

π
(q)
(µ)(ν)

≡
〈(

∆π
(q)
(µ)(ν)

)2
〉

≡
〈〈

ψ|
(

∆π
(q)
(µ)(ν)

)2
ψ

〉〉
, (37)

where ∆π
(q)
(µ)(ν)

= π
(q)
(µ)(ν)

− π̃
(q)
(µ)(ν)

, while g̃(µ)(ν) and π̃
(q)
(µ)(ν)

are the quantum expecta-

tion values.

4. Proper-Time Heisenberg Inequality

The Heisenberg indeterminacy principle expressed in terms of the non-local scalar
product (14) brings a unique result that is peculiar to CQG-theory and its stochastic ex-
tension [61]. This concerns the validity of the Heisenberg inequality for additional sets of
conjugate canonical variables besides the fundamental ones provided by Equation (33).
This feature permits one to establish the existence of a minimum length and its relationship
with the Planck length in terms of a statistical notion related to the lower bound on error
measurements of invariant lengths in the CQG-theory. As a result, it is shown that the
quantum minimum length σ can actually be related to the small-scale stochastic character
of quantum graviton trajectories.

To illustrate the issue, let us consider the set of canonical variables
(

s, p
(q)
s

)
. More

precisely, the invariant path-length (s) along the suitable space–time trajectories of graviton
particles is introduced, whereby graviton quantum particles are assumed to move freely
along one of the infinite set of possible space–time stochastic geodesics that they may
belong to. Introducing the quantum momentum

p
(q)
s ≡ −iℏ

∂

∂s
, (38)

and denoting by ℏ the Planck constant, it is assumed that, within the framework of the
CQG-theory, the ensemble of 4-scalar operators

(A, B) =

(
s, p

(q)
s ≡ −iℏ

∂

∂s

)
(39)

identifies a set of quantum canonical variables. Here, s is the proper time that parameterizes

the local-field geodetic { r(s)|s ∈ [s0, s1]}, and p
(q)
s is the corresponding extended canonical

momentum. We notice that both
(

s, p
(q)
s

)
are Hermitian operators. In particular, setting

in Equation (14) ψ∗
a ≡ ψ∗(s), ψb ≡ p

(q)
s ψ(s), where ψ(s) ≡ ψ(g, ĝ(r, s), r(s), s) denotes an

arbitrary element of the Hilbert space to be identified with a particular solution of the
CQG-wave Equation (10), then, by construction, it follows that
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〈〈
ψ|p(q)s ψ

〉〉
≡ F

{
∫

Ug

d(g)ψ∗(s)p
(q)
s ψ(s)

}

= F

{
∫

Ug

d(g)
(

p
(q)
s ψ∗(s)

)
ψ(s)

}

=
〈〈

p
(q)
s ψ|ψ

〉〉
.

(40)

Here, according to Equation (14), F is the linear operator F = 1
∆s

s0+∆s∫
s0

ds, where ∆s ≡
s1∫

s0

ds.

The same relationship also follows by partial integration with respect to the proper-time

s. In fact,
〈〈

ψ|p(q)s ψ
〉〉

≡ −iℏ
〈〈

ψ| ∂
∂s ψ

〉〉
; hence, integrating by parts

〈〈
ψ|p(q)s ψ

〉〉
=

iℏ
〈〈

∂
∂s ψ|ψ

〉〉
=

〈〈
p
(q)
s ψ|ψ

〉〉
. However, the products of Hermitian operators need not be

Hermitian. In particular, direct evaluation shows that
〈〈

ψ|sp
(q)
s ψ

〉〉
̸=

〈〈
sp

(q)
s ψ|ψ

〉〉
. On

the other hand, the commutator of (s, p
(q)
s ) is evidently

[
s, p

(q)
s

]
= iℏ. (41)

Assuming, for greater generality, the case of stochastic quantum graviton trajectories,

the quantum expectation values of the variables
(

s, p
(q)
s

)
are evaluated by means of the

quantum averages

s̃ ≡ ⟨⟨ψ |sψ⟩⟩α, (42)

p̃
(q)
s ≡

〈〈
ψ
∣∣∣p(q)s ψ

〉〉
α
, (43)

with ⟨⟨• |•⟩⟩α denoting the stochastic-averaged scalar product prescribed in Section 3.
Similarly, the corresponding quantum standard deviations (i.e., quantum fluctuations) σs

and σ
p
(q)
s

were prescribed by the quantum averages of the form

σ2
s ≡

〈
⟨ψ

∣∣∣(s − s̃)2ψ
〉〉

α
, (44)

σ2

p
(q)
s

≡
〈〈

ψ

∣∣∣∣
(

p
(q)
s − p̃

(q)
s

)2
ψ

〉〉

α

. (45)

In particular, in the case of a unitary solution, one can show that p̃
(q)
s = −H̃(q), namely p̃

(q)
s

is related to the expectation value of the quantum Hamiltonian. Then, provided σs and
σ

p
(q)
s

are both non-vanishing, from the Robertson inequality (31), it therefore follows that

σsσ
p
(q)
s

≥ h̄

2
, (46)

which realizes the proper-time-extended canonical momentum Heisenberg inequality for

the canonical variables
(

s, p
(q)
s

)
. Therefore, the simultaneous quantum measurement of

proper-time s and its conjugate quantum-extended momentum p
(q)
s during the proper-

time interval (so, s1 = s0 + ∆s) involves the evaluation of the expectation values
(

s̃, p̃
(q)
s

)

together with the related standard deviations σs and σ
p
(q)
s

. The corresponding quantum

fluctuations (i.e., the squares of the standard deviations σs and σ
p
(q)
s

) are therefore given by

Equations (44) and (45).
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5. Quantum Minimum Length

Let us now prove the existence of the quantum minimum length σ for the CQG-theory
based on the theoretical framework provided by the proper-time Heisenberg indetermi-
nacy principle.

First, let us consider the prescription of the proper-time extrema, which enter the
stochastic non-local scalar product introduced in Equation (17) and affects the prescription
of the fluctuations in Equations (44) and (45). In fact, under validity of the unitarity
principle, let

s1 = s0 + ∆s (47)

and let both s0 and ∆s remain in principle arbitrary, with ∆s being interpreted as the ampli-
tude of proper-time intervals during which a quantum measurement is performed, and
which is associated with a massive graviton along its stochastic trajectory on the back-
ground space–time. As such, it follows that the amplitude ∆s cannot be arbitrarily small.

Then, formally setting s0 = 0 in the time averages, one finds out that the expectation
value and standard deviation of s are, respectively, given by

s̃ =
∫

Iα

dαgε(α)
1

s1∫
s0

ds

s1∫

s0

dss =
⟨∆s⟩α

2
, (48)

σs ≡
√
⟨⟨ψ |(s − s̃)2ψ⟩⟩α =

√
⟨∆s2⟩α

2
√

3
. (49)

Then, the generalized Heisenberg inequality, written in terms of the invariant length ∆s
and the standard deviation σ

p
(q)
s

, requires that

σsσ
p
(q)
s

=

√
⟨∆s2⟩α

2
√

3
σ

p
(q)
s

≥ h̄

2
, (50)

which, therefore, reduces to √
⟨∆s2⟩ασ

p
(q)
s

≥ h̄
√

3. (51)

Let us briefly analyze the physical implications of this result in the context of the
unitary representation of the CQG-theory. The first one follows from the validity of
manifest covariance. The consistency with such a principle warrants that Inequality (51)
holds in arbitrary GR-frames, which belong to the same space–time

{
Q4, ĝ

}
, i.e., are defined

with respect to arbitrary coordinate systems that are mutually related by means of the
local-point transformations r′ = r′(r). In fact, the physical meaning of inequality (50)
is that of expressing a lower bound for the length σs, i.e., the proper-time amplitude of
the quantum measurement. In turn, this naturally gives rise to a minimal length that is
determined by the same inequality, i.e., in terms of the standard deviation of the conjugate
quantum momentum operator σ

p
(q)
s

. As a remarkable consequence, such a minimal length

is necessarily an invariant, i.e., it is a 4-scalar with respect to the background space–time of
CQG-theory that is expressed by the set

{
Q4, ĝ

}
. This means that σs itself has an objective

character (which is, in a proper sense, a mandatory requirement for a quantum observable);
therefore, it has the same value when expressed again in arbitrary GR-frames belonging
to

{
Q4, ĝ

}
. The generalized Heisenberg Inequality (50) implies that, by construction, σs, is

strictly positive and therefore that the limit σs → 0 is physically meaningless.
Let us consider, in more detail, Equation (50). First, we noticed that, by construction,

both σs and mc ≡ σ
p
(q)
s

may generally depend on the neighborhood of space–time in

which the quantum averages are evaluated. On the other hand, in Equation (50) the case
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of equality effectively determines a threshold condition. Under such an occurrence, the
standard deviations σs and σ

p
(q)
s

are assumed to take extremal values expressed as

σs → σs|extr, (52)

σ
p
(q)
s

→ σ
p
(q)
s

∣∣∣∣
extr

≡ mc, (53)

where mc can be also equivalently referred to as the (minimum) mass–momentum particle.
As a consequence, the extremal form of Equation (50) becomes

σs|extr σ
p
(q)
s

∣∣∣∣
extr

=
ℏ

2
, (54)

where σs|extr and σ
p
(q)
s

∣∣∣∣
extr

are universal constants, namely, by assumption, they depend

only on the universal constants G, ℏ and c. The problem of the determination of σs|extr is
referred to here as the quantum minimum-length problem. This ultimately permits one to
establish that

σ ≡ σs|extr, (55)

which clearly identifies the quantum minimum length and proves its existence within the
conceptual framework of the CQG-theory.

In particular, such an evaluation is conveniently carried out in terms of Planck units,
namely introducing the Planck length and momentum that are, respectively, defined as

ℓP =
√

h̄G
c3 and PP = cmP, where mP =

√
h̄c
G is the corresponding Planck mass. Thus, once

Inequality (50) is set in terms of the Planck units ℓP and PP, it follows that




√
⟨∆s2⟩α

ℓP

σ
p
(q)
s

PP


ℓPPP ≥ h̄

√
3, (56)

namely

∆sσ
p
(q)
s

≥
√

3, (57)

where ∆s =

√
⟨∆s2⟩α

ℓP
and σ

p
(q)
s

=
σ

p
(q)
s

PP
denote the normalized, stochastic-averaged proper

length and the normalized stochastic-averaged conjugate momentum uncertainties,
respectively.

These conclusions provide the basis for inferring an important physical clue on the
concept of minimal length. Specifically, we refer here to the debate that usually arises in
the framework of phenomenological Generalized Uncertainty Principle (GUP) theories
[83,84]. GUP models have been investigated as alternative quantum approaches in the
study of the quantum properties of classic black-hole solutions and related Hawking
evaporation phenomena [85–87]. First of all, we wish to stress that the present Heisenberg
indeterminacy principle originates from a canonical quantization of the gravitational field
satisfying manifestly covariant representation. In contrast, in the literature, GUP proposals
usually arise as heuristic non-canonical quantum theories, although similar generalized
uncertainty relations can be inferred by non-commutative geometry [88–92] and string
theory [93–95]. As an immediate consequence, the minimal length predicted by GUP
models might not be generally a 4-scalar, a fact which implies the violation of the principle
of manifest covariance. The notable aspect of the present prescription is that it suggests
a possible way out to the problem since the formalism of CQG-theory has a tensorial
character and is therefore manifestly covariant. Nevertheless, as a matter of consistency,
the relation with the Heisenberg principle determined above is intrinsically distinguished
from GUP models. This follows precisely because of the canonical Hamiltonian structure of
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the same CQG-theory in comparison with non-canonical and non-Hamiltonian approaches.
In particular, the theory proposed here leads to a relation that does not contain any ad hoc
minimum length parameter to be introduced as a modification of the rhs of the Heisenberg
inequality [96]. Hence, on the conceptual side, thanks to the adoption of the concept of
stochastic trajectories in the context of CQG-theory, the GUP is no longer needed.

Because of these features, given the existence of a quantum minimum-effective length,
at the same time, CQG-theory can be interpreted as a minimum-length theory. The latter
phenomenon arises as a lower bound in the error measurement of physical distances in
a curved space–time for massive gravitons that are generally characterized by stochastic
quantum dynamics. Hence, the intuitive reason behind the existence of such a minimum
length can be related to the stochastic behavior that may/might appear to characterize the
small-scale behavior of quantum gravity or, equivalently, the quanta of gravitational fields.

6. Minimum-Length Representation: The Planck Length

In this section, we establish the relationship that exists between the quantum minimum
length σ determined in Section 5 and its representation in terms of the Planck length. This
permits one to explicitly draw the physical meaning of the Planck length in CQG-theory
as an invariant scale length that emerges consistently with the fundamental principles
of quantum field theory and quantum mechanics, namely from the theory of stochastic
error measurements of the conjugate set of observables determined by the Heisenberg
indeterminacy principle.

In detail, the generalized Heisenberg Inequality (50), or its normalized form (56),
permit us to draw definite conclusions concerning the extremal values of σs and σ

p
(q)
s

. In

fact, the validity of Equation (54) leads one to constrain the value of the minimum length σ.
One can show that this implies that

σs|extr =
√

β

√
ℏG

c3
, (58)

σ
p
(q)
s

∣∣∣∣
extr

=
c

2
√

β

√
ℏc

G
, (59)

where mP =
√

ℏc
G and ℓP =

√
ℏG
c3 denote, respectively, the Planck mass and length, while

β = β(r/LC) (60)

represents some suitable dimensionless and non-vanishing function that will be discussed
below and is expressed in terms of the ratio r/LC, with LC being the the Compton length
associated with massive quantum gravitons. The freedom in the prescription of function
β is a characteristic property of the theory that may be seen as a gauge property or as an
arbitrariness that is analogous to the (arbitrary) choice of the unit system.

The proof is as follows. First, one notices that dimensional analysis requires

σs|extr = σ, (61)

σ
p
(q)
s

∣∣∣∣
extr

= mc, (62)

where σ and m are, respectively, a length and a rest mass that are both to be determined.
Then, Equation (54) requires that r and m are related via

2σ =
ℏ

mc
≡ LC(m), (63)
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where LC(m) denotes the Compton length of a particle of rest mass m. On the other hand,
given a graviton particle of mass m, it is always possible to also introduce the corresponding
Schwarzschild radius rS(m) ≡ 2Gm

c2 and to require that σalso takes the form

σ = β
2Gm

c2
≡ βrS(m), (64)

namely it coincides, up to a factor β, with the same characteristic graviton Schwarzschild
radius rS(m). Notice that, in general, here, β is a real non-vanishing function of the form
β = β(σ/LC), which remains, in principle, arbitrary. Let us now require and assume that σ
and m only depend on the universal constants G, ℏ and c. This demands that, therefore, m
and σ take the general form

m = M
(β)
P ≡ 1

2
√

β

√
ℏc

G
=

1

2
√

β
mP, (65)

σ = r
(β)
P = β

2GM
(β)
P

c2
=

√
βrS(mP)

≡ βrS(M
(β)
P ), (66)

where rS(mP) and rS(M
(β)
P ) ≡ 2GM

(β)
P

c2 denote, respectively, the Schwarzschild radius for

the Planck mass and the effective Planck mass M
(β)
P . Again, we notice that the function β

remains arbitrary and non-vanishing in order to allow for a generality of the formalism
since, a priori, one should not assume Planck units to identically hold. Furthermore, as a
matter of consistency, invoking Equation (63), it follows that

r
(β)
P

LC

(
M

(β)
P

) =
β

2GM
(β)
P

c2
ℏ

M
(β)
P

c

= β
2GM

(β)2
P

ℏc

= β 2G
ℏc

1
4β

ℏc
G = 1

2 .

(67)

Hence, provided β is non-vanishing, Equation (54) is identically satisfied since

r
(β)
P M

(β)
P c ≡

√
β

√
ℏG

c3

c

2
√

β

√
ℏc

G
=

ℏ

2
. (68)

Thus, when comparing Equation (68) with Equation (63), it follows that the extremal
values σs and σ

p
(q)
s

must coincide with Equations (58) and (59), respectively. Notice that,

in principle, nothing prevents one to assume that the arbitrary factor β appearing in the
previous Equations (65) and (66) should be different from O(1) (and possibly even either
≪1 or ≫1). A definite answer on the issue requires the explicit evaluation of the extremal
standard deviation σs|extr , i.e., one that is based on the prescription of the quantum

Hamiltonian operator H(q), which appears in the quantum-wave Equation (10)—a task
that shall be reported elsewhere. However, the question is under what conditions, if any, it
is warranted that—consistently with Claim (2), which was stated at the beginning—the
ordering β ∼ O(1) actually holds. The answer is related to the possible independent
estimates of either the effective Schwarzschild or the Compton lengths, and it occurs
provided the assumptions

rS(M
(β)
P ) ≃ ℓP, (69)

or equivalently

LC

(
M

(β)
P

)
≃ LC(mP), (70)
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hold. However, both orderings apply if the effective Planck mass M
(β)
P becomes of the same

order of the Planck mass mP. Therefore, under this condition, one concludes that

σ ≡ σs|extr ≃
√

ℏG

c3
≡ ℓP, (71)

σ
p
(q)
s

∣∣∣∣
extr

≃
√

ℏc3

G
≡ mPc, (72)

namely, as anticipated, the extremal values σs and σ
p
(q)
s

coincide up to factors of the order

O(1), respectively, with the Planck length and Planck particle mass momentum. As a
consequence, invoking the validity of Equation (55) implies that the quantum minimum
length σ, whose existence is proven on the basis of the Heisenberg indeterminacy principle
up to a factor of order O(1), is also identified at the same time with the Planck length. This
proves the validity of Equation (2).

Let us briefly analyze the physical meaning of the results expressed by Equations (71)
and (72):

• Since the extremal value of σs coincides with the quantum minimum-length σ, the
obvious consequence is that the CQG-theory can be viewed as an invariant minimum-
length theory, where the same length is not, however, associated with the possible
discreteness of space–time, nor does it modify, in any way, the form of the Heisenberg
indeterminacy principle.

• The existence of the quantum minimum length σ is not at variance with the validity of
the CQG-theory nor, in particular, its manifest covariance.

• The mathematical proof established above determines the connection between the
quantum minimum length σ and the Planck length ℓP. The relevant outcome is
that they coincide up to a factor of order O(1); thus, an emerging character as a
foundational element of CQG-theory and its logical framework is assigned to the
Planck length ℓP.

7. Conclusions

The rationale at the basis of the present research is that, in quantum gravity theory, a
quantum minimum effective length can correspond to the standard deviation in the path
length (s) defined along the non-zero geodesic curves that identify the possible stochastic
space–time trajectories of massive graviton particles. In order that the same arc length
and the standard deviation make sense at all (i.e., actually identify observable dynamical
variables), however, requires placing well-defined constraints on the requisite admissible
quantum gravity theory in which the notion of minimum length is determined. Thus,
in order to satisfy the principle of general covariance, the arc length and the standard
deviation must necessarily preserve their form in arbitrary GR-frames, i.e., they should
be expressed in 4-tensor form with respect to the group of local-point transformations
(diffeomorphisms).

In particular, this means that the following apply: (1) gravitons must be realized
by massive particles with quantum stochastic trajectories; (2) the physical space–time in
which the quantum gravity theory is developed must be identified with a 4-dimensional
background space–time, which is endowed with a well-defined Lorentzian time-oriented
and curved structure; and (3) quantum gravity theory must be manifestly covariant and
satisfy a generalized Heisenberg uncertainty principle in 4-tensor form, which involves—in
particular—the standard deviation of the path length s and that of its canonically conjugate
quantum momentum.

A possible model of quantum gravity theory satisfying these requirements is realized
by the theory of manifestly covariant quantum gravity (CQG-theory) that was recently
achieved. This is rooted on the canonical quantization of the classical Hamiltonian structure
underlying General Relativity and is displayed by means of a synchronous variational
principle. As shown here, the theory permits one to reach well-defined conclusions regard-
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ing the proof of existence of a quantum minimum length and its realization in terms of
Planck length. The analysis is based on the implementation of the stochastic quantization
underlying CQG-theory, particularly the validity of a generalized Heisenberg inequality

for the set of conjugate canonical variables that are represented by
(

s, p
(q)
s ≡ −iℏ ∂

∂s

)
. As

a result, it has been shown that, ultimately, the existence of a quantum minimum length
arises due to the stochastic character of quantum graviton trajectories. The minimum length
in such a case remains associated to the lower bound of the error measurement of graviton
arc lengths. Remarkably, apart from a numerical factor of order unity, such a limit is found
to be expressed by the Planck length.

A relevant aspect of the treatment proposed here is that the existence of a minimum
length follows from the validity of the Heisenberg indeterminacy principle for the CQG-
theory, which is expressed in canonical form according to the algebraic prescription of
quantum mechanics. In addition, the same feature permits one to prove that the existence
of the minimum length obtained in this way is not at variance with the principle of manifest
covariance on which the CQG-theory is rooted. In fact, in such a framework, the minimum
length appears as a property of the geodesic trajectory of massive gravitons and does not
rely on any assumption of the discreteness of quantum space–time.

In conclusion, what emerges is that the stochastic CQG-theory appears to meet the
physical requirements set by the quantum minimum-length problem. Nevertheless, further
investigations are demanded to understand the full implications of the present theory, with
particular reference to the role of the stochastic properties of quantum gravitational fields
at the Planck scale.
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66. Cremaschini, C.; Kovář, J.; Stuchlík, Z.; Tessarotto, M. Variational theory of the Ricci curvature tensor dynamics. Eur. Phys. J. C

2021, 81, 1030. [CrossRef]

67. Cremaschini, C.; Tessarotto, M. Coupling of quantum gravitational field with Riemann and Ricci curvature tensors. Eur. Phys. J. C

2021, 81, 548. [CrossRef]

68. Cremaschini, C.; Tessarotto, M. Synchronous Lagrangian variational principles in General Relativity. Eur. Phys. J. Plus 2015,

130, 123. [CrossRef]

69. De Donder, T. Théorie Invariantive du Calcul des Variations; Gaultier-Villars & Cia.: Paris, France, 1930.

70. Weyl, H. Geodesic Fields in the Calculus of Variation for Multiple Integrals . Ann. Math. 1935, 36, 607. [CrossRef]

71. Echeverría-Enríquez, A.; Mu noz-Lecanda, M.C.; Román-Roy, N. Geometry of Lagrangian First-order Classical Field Theories.

Fortschritte Phys. Phys. 1996, 44, 235. [CrossRef]

72. Echeverría-Enríquez, A.; Mu noz-Lecanda, M.C.; Román-Roy, N. Geometry of multisymplectic Hamiltonian first-order field

theories. J. Math. Phys. 2000, 41, 7402. [CrossRef]

73. Echeverría-Enríquez, A.; López, C.; Mar ín-Solano, J.; Mu noz-Lecanda, M.C.; Román-Roy, N. Lagrangian-Hamiltonian unified

formalism for field theory. J. Math. Phys. 2004, 45, 360. [CrossRef]

74. Struckmeier, J.; Redelbach, A. Covariant Hamiltonian Field Theory. Int. J. Mod. Phys. E 2008, 17, 435. [CrossRef]

75. Vey, D. Multisymplectic formulation of vielbein gravity: I. De Donder-Weyl formulation, Hamiltonian (n-1)-forms. Class. Quant.

Grav. 2015, 32, 095005. [CrossRef]

76. Gaset, J.; Román-Roy, N. Multisymplectic unified formalism for Einstein-Hilbert gravity. J. Math. Phys. 2018, 59, 032502. [CrossRef]

77. Guendelman, E.I.; Kaganovich, A.B. Dynamical measure and field theory models free of the cosmological constant problem.

Phys. Rev. D 1999, 60, 065004. [CrossRef]

78. Guendelman, E.I. Scale Invariance, New Inflation and Decaying Λ-terms. Mod. Phys. Lett. A 1999, 14, 1043. [CrossRef]

79. Guendelman, E.; Nissimov, E.; Pacheva, S. Dark energy and dark matter from hidden symmetry of gravity model with a

non-Riemannian volume form. Eur. Phys. J. C 2015, 75, 472. [CrossRef]

80. Benisty, D.; Guendelman, E.I.; Nissimov, E.; Pacheva, S. Dynamically Generated Inflation from Non-Riemannian Volume Forms.

Eur. Phys. J. C 2019, 79, 806. [CrossRef]

81. Cremaschini, C.; Tessarotto, M. Quantum-wave equation and Heisenberg inequalities of covariant quantum gravity. Entropy 2017,

19, 339. [CrossRef]

82. Tessarotto, M.; Cremaschini, C. The Heisenberg Indeterminacy Principle in the Context of Covariant Quantum Gravity. Entropy

2020, 22, 1209. [CrossRef]

83. Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020,

807, 135558. [CrossRef]

84. Sprenger, M.; Nicolini, P.; Bleicher, M. Physics on the smallest scales: An introduction to minimal length phenomenology. Eur. J.

Phys. 2012, 33, 853. [CrossRef]

85. Arraut, I.; Batic, D.; Nowakowskiv, M. Comparing two approaches to Hawking radiation of Schwarzschild-de Sitter black holes.

Class. Quant. Grav. 2009, 26, 125006. [CrossRef]

86. Nowakowski, M.; Arraut, I. The Minimum and Maximum Temperature of Black Body Radiation. Mod. Phys. Lett. A 2009,

24, 2133. [CrossRef]

http://dx.doi.org/10.1140/epjc/s10052-017-4854-1
http://dx.doi.org/10.1140/epjc/s10052-017-4855-0
http://dx.doi.org/10.3390/e25020337
http://www.ncbi.nlm.nih.gov/pubmed/36832703
http://dx.doi.org/10.1007/s10701-022-00547-z
http://dx.doi.org/10.1007/s10701-016-9989-7
http://dx.doi.org/10.3390/sym14112229
http://dx.doi.org/10.1140/epjc/s10052-023-11909-w
http://dx.doi.org/10.1007/s10701-022-00548-y
http://dx.doi.org/10.3390/e23020215
http://dx.doi.org/10.1140/epjc/s10052-021-09847-6
http://dx.doi.org/10.1140/epjc/s10052-021-09343-x
http://dx.doi.org/10.1140/epjp/i2015-15123-4
http://dx.doi.org/10.2307/1968645
http://dx.doi.org/10.1002/prop.2190440304
http://dx.doi.org/10.1063/1.1308075
http://dx.doi.org/10.1063/1.1628384
http://dx.doi.org/10.1142/S0218301308009458
http://dx.doi.org/10.1088/0264-9381/32/9/095005
http://dx.doi.org/10.1063/1.4998526
http://dx.doi.org/10.1103/PhysRevD.60.065004
http://dx.doi.org/10.1142/S0217732399001103
http://dx.doi.org/10.1140/epjc/s10052-015-3699-8
http://dx.doi.org/10.1140/epjc/s10052-019-7310-6
http://dx.doi.org/10.3390/e19070339
http://dx.doi.org/10.3390/e22111209
http://dx.doi.org/10.1016/j.physletb.2020.135558
http://dx.doi.org/10.1088/0143-0807/33/4/853
http://dx.doi.org/10.1088/0264-9381/26/12/125006
http://dx.doi.org/10.1142/S0217732309030679


Symmetry 2024, 16, 1042 21 of 21

87. Adler, R.J.; Chen, P.; Santiago, D.I. The Generalized Uncertainty Principle and Black Hole Remnants. Gen. Gravit. 2001, 33, 2101.

[CrossRef]

88. Maggiore, M. Quantum groups, gravity, and the generalized uncertainty principle. Phys. Rev. D 1994, 49, 5182. [CrossRef]

89. Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977. [CrossRef]

90. Ansoldi, S.; Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geometry inspired charged black holes. Phys. Lett. B 2007,

645, 261. [CrossRef]

91. Nicolini, P. Noncommutative black holes, the final appeal to quantum gravity: A review. Int. J. Mod. Phys. A 2009, 24 , 1229.

[CrossRef]

92. Kanazawa, T.; Lambiase, G.; Vilasi, G.; Yoshioka, A. Noncommutative Schwarzschild geometry and generalized uncertainty

principle. Eur. Phys. J. C 2019, 79, 95. [CrossRef]

93. Veneziano, G. A Stringy Nature Needs Just Two Constants. Europhys. Lett. 1986, 2, 199. [CrossRef]

94. Giddings, S.B.; Thomas, S.High energy colliders as black hole factories: The end of short distance physics. Phys. Rev. D 2002,

65, 056010. [CrossRef]

95. Giddings, S.B.; Gross, D.J.; Maharana, A. Gravitational effects in ultrahigh-energy string scattering. Phys. Rev. D 2008, 77, 046001.

[CrossRef]

96. Ong, Y.C. A critique on some aspects of GUP effective metric. Eur. Phys. J. C 2023, 83, 209. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1015281430411
http://dx.doi.org/10.1103/PhysRevD.49.5182
http://dx.doi.org/10.1103/RevModPhys.73.977
http://dx.doi.org/10.1016/j.physletb.2006.12.020
http://dx.doi.org/10.1142/S0217751X09043353
http://dx.doi.org/10.1140/epjc/s10052-019-6610-1
http://dx.doi.org/10.1209/0295-5075/2/3/006
http://dx.doi.org/10.1103/PhysRevD.65.056010
http://dx.doi.org/10.1103/PhysRevD.77.046001
http://dx.doi.org/10.1140/epjc/s10052-023-11360-x

	Introduction
	Theoretical Setting
	The Heisenberg Indeterminacy Principle
	Proper-Time Heisenberg Inequality
	Quantum Minimum Length
	Minimum-Length Representation: The Planck Length
	Conclusions 
	References

