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Abstract The present work deals with a complex scalar
field in scalar tensor gravity theory in the background of spa-
tially flat Friedmann–Lemaî tre–Robertson–Walker (FLRW)
geometry. Noether symmetry analysis has been used to deter-
mine the classical cosmological solution of a scalar field
in scalar–tensor theory with the scalar field as a nonmin-
imally coupled complex field. Noether symmetry analysis
is not only used to find a symmetry vector and potential
but also it helps in finding an appropriate transformation
(a, φ, θ) → (u, v, θ) in the augmented space so that one
of the new variables becomes cyclic. In quantum cosmol-
ogy, the Wheeler–DeWitt (WD) equation has been formed
in the minisuperspace and its solution i.e. the wave function
of the universe has been evaluated by using the operator ver-
sion of the conserved (Noether) charge. Finally, the nature
of the classical solution has been discussed from the obser-
vational point of view and the cosmological singularity has
been examined both classically and quantum mechanically.

1 Introduction

Since the end of the last century, standard cosmology is fac-
ing a great challenge, to explain the observational evidences
which indicate that our Universe is going through an acceler-
ated phase. To accommodate this fact in cosmological con-
text, the cosmologist are sharing two possible modifications
of standard cosmology. One of the groups introduced an extra
term in Einstein–Hilbert action [1] (i.e., modification of grav-
ity theory) while the other group prefers an exotic matter
within the framework of Einstein gravity. This exotic matter
is known as dark energy having large negative pressure. A
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hypothetical scalar field (known as inflaton [2–5]) is respon-
sible for the early accelerated era of evolution i.e. inflationary
era. In analogy, the scalar fields describing the late time accel-
eration (known as dark energy [6–12]) must have large −ve
pressure.

Multiscalar field cosmology has a significant role in study-
ing hybrid inflation, double inflation, α-attractors. Quintom
model [13], Chiral model are two well known examples of
multiscalar field cosmological models. The quintom model
(where one is a quintessence field while the other one is a
phantom field) is a DE model while the Chiral model leads to
hyperbolic inflation [14]. For introducing a multiscalar field
model, one can consider the existence of a complex scalar
field [15–22] whose real part and imaginary part give the
equivalent of a two scalar-field theory [23,24]. In this paper,
scalar–tensor theory is studied with a complex scalar field
[25]. The scalar field in scalar tensor theory is minimally cou-
pled to gravity and it interacts with the gravitational action
integral of Einstein’s general relativity. The scalar tensor the-
ory is usually defined in Jordan frame [26] with Mach Prin-
ciple [27]. The scalar tensor theory with teleparallel gravity
describes the scalar torsion theory.

Since the last century, symmetry analysis has an important
role in studying the internal symmetries of the space-time,
global continuous symmetries and permutation symmetries
in quantum field theory [28,29]. In particular, Noether sym-
metry has a great role to identify the conserved quantities
associated with a physical system. Also Noether integral can
simplify a system of differential equations to a great extent
[30–35]. In addition, using Noether symmetry, any arbitrary
function associated in the action integral of a physical system
can be obtained uniquely.

This paper is an example of using Noether symmetry anal-
ysis to a cosmological model having scalar–tensor theory
with a complex scalar field. Classical cosmological solutions
for this model are obtained using Noether symmetry analy-
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sis. Conserved quantities associated to this system are also
obtained. In the context of quantum cosmology, formulat-
ing the Wheeler DeWitt (WD) equation, the wave function
of the Universe is obtained by identifying the periodic part
of the solution from the quantum version of the conserved
charge. The plan of the paper is as follows: Sect. 2 presents the
basic equations of scalar–tensor cosmological model while
in Sect. 3 Noether symmetry approach has been used for find-
ing the analytic solutions of the present model. In Sect. 4, the
formation of WD equation in the present cosmological model
and its possible solution using Noether symmetry approach
have been discussed and the paper ends with a brief review
in Sect. 5.

In Noether’s theorem, the invariance of the functional of
the calculus of variations or in mechanics the invariance of
the action integral is examined under an infinitesimal trans-
formation. In general such transformations are generated by
a differential operator termed as Noether symmetry vector.
However, in the present work we are confined ourselves only
to point transformation. For a complete classification one
may refer to [36].

2 Basic equations of scalar–tensor cosmology

The scalar tensor and the scalar torsion theories are consid-
ered in this work where the scalar field is complex in nature
and minimally coupled to gravity. Considering ξ as the com-
plex scalar field in scalar–tensor theory, the action integral
takes the form [37]

A =
∫

d4x
√−g

[
F(|ξ |)R + 1

2
gmnξ,mξ∗

,n − V (|ξ |)
]

. (1)

Here R is the usual Ricci scalar which is related to the
Levi-Civita connection for the metric tensor gmn . Also ξ

is the complex scalar field and |ξ | determines its norm i.e,
|ξ |2 = ξξ∗. F(|ξ |) denotes the coupling function between
the gravitational and the scalar field and the potential function
V (|ξ |) drives the dynamics.

If the coupling function F(|ξ |) takes the value F0|ξ |2
where F0 is a constant, then one can get the Brans–Dicke
theory with a complex scalar field and the action integral (1)
transforms as [37]

ABD =
∫

d4x
√−g

[
F0|ξ |2R + 1

2
gmnξ,mξ∗

,n − V (|ξ |)
]

.

(2)

The line element for a spatially flat FLRW universe can be
written as

ds2 = −N 2(t)dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (3)

where a(t) is the scale factor and N (t) denotes the lapse
function.

Also the Ricci scalar takes the expression as

R = 6

(
1

N
Ḣ + 2H2

)
, (4)

where H denotes the usual Hubble parameter defined by

H = 1

N

ȧ

a
and the overdot indicates the differentiation with

respect to the cosmic time t .
Integrating Eq. (1) by parts after using the expression of

Ricci scalar (from Eq. (4)) one gets the point-like Lagrangian
as

L(N , a, ȧ, ξ, ξ̇ ) = 1

N

[
6F(|ξ |)aȧ2 + 6Ḟ(|ξ |)a2ȧ

+1

2
a3 (

ξ̇ ξ̇∗)
]

− a3NV (|ξ |). (5)

Similarly, integrating Eq. (2) by parts and using the expres-
sion (4) one can get the point-like Lagrangian for Brans–
Dicke theory as

LBD(N , a, ȧ, ξ, ξ̇ ) = 1

N

[
6F0|ξ |2aȧ2 + 6F0(|ξ |2)a2ȧ

+1

2
a3 (

ξ̇ ξ̇∗)
]

− a3NV (|ξ |). (6)

Using the polar form, the complex scalar field ξ can be written
as

ξ(t) = φ(t)eiθ(t) (7)

Using Eq. (7), the Lagrangian (6) transforms as [37]

LBD(N , a, ȧ, φ, φ̇, θ, θ̇ )

= 1

N

[
6F0aφ2ȧ2 + 12F0a

2φȧφ̇

+1

2
a3

(
φ̇2 + φ2θ̇2

) ]
− a3NV (φ) (8)

Clearly, the above Lagrangian represents a multiscalar field
cosmological model where φ is the Brans–Dicke field and
the second scalar field θ is minimally coupled to gravity and
also it is minimally coupled to φ. Further, the present cos-

mological model with V (φ) = φ
− 3α0+δ0

β0 represents the usual
Brans–Dicke field in FLRW model with a cosmological con-
stant and an uncoupled scalar field θ. Such cosmological
model has been widely used in the literature [38,39].

The field equations for Brans Dicke cosmological model
corresponding to the Lagrangian (8) can be written as

1

N

(
6F0φ

2H2 + 12F0φH φ̇

+1

2

(
φ̇2 + φ2θ̇2

))
+ NV (φ) = 0 (9)

1

N

(
2F0φ

2
(

2Ḣ + 3H2
)

+ 8F0Hφφ̇ − 1

2
φ̇2
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+4F0φ̇
2 − 1

2
φ̇2θ̇2 + 4F0φφ̈

)
+ NV (φ) = 0 (10)

1

N

(
φ̈ + φ

(
12F0 Ḣ − θ̇2

)

+3φ̇ Ḣ + 12F0φH
2
)

+ NV,φ = 0 (11)

1

N

(
φθ̈ + (

2φ̇ + 3Hφ
)
θ̇
) = 0 (12)

3 Analytic solution using Noether symmetry approach

If the Lagrangian of a physical system remains invariant with
respect to the Lie derivative [40] along an appropriate vec-
tor field then the corresponding physical system is associ-
ated with some conserved quantities (Noether’s first theorem
[41]).

If L(qα(xi ), q̇α(xi )) is the point-like canonical Lagrangian
then,

∂ j

(
∂L

∂∂ j qα

)
= ∂L

∂qα
(13)

are the corresponding Euler–Lagrange equations.
After contracting the Eq. (13) with μα

(
qβ

)
(some

unknown functions), one get the following result

μα ∂L

∂qα
+ (

∂ jμ
α
) (

∂L

∂∂ j qα

)
= ∂ j

(
μα ∂L

∂∂ j qα

)
. (14)

Thus, the Lie derivative of the Lagrangian takes the form

L−→
X
L = μα ∂L

∂qα
+ (

∂ jμ
α
) (

∂L

∂∂ j qα

)

= ∂ j

(
μα ∂L

∂∂ j qα

)
(15)

This vector field
−→
X defined by [42,43]

−→
X = μα ∂

∂qα
+ (

∂ jμ
α
) ∂

∂
(
∂ j qα

) . (16)

is known as infinitesimal generator of the symmetry. Now,
according to Noether’s first theorem if L−→

X
L = 0 then the

physical system will be invariant with respect to the vector
field

−→
X .

Noether symmetry approach is very much useful to iden-
tify the conserved quantities of a physical system. The sym-
metry condition is associated with a constant of motion for the
Lagrangian having conserved phase flux along the infinites-
imal generator

−→
X . Furthermore, from Eq. (15) one can con-

clude that associated to this symmetry criteria there is a con-
stant of motion of the system which is known as Noether
current or conserved current Qi . It is defined by [30,44,45]

Qi = μα ∂L

∂ (∂i qα)
. (17)

Also Qi satisfy the condition

∂i Q
i = 0. (18)

The energy function associated to this system can be written
as [33,46]

E = q̇α ∂L

∂ q̇α
− L. (19)

If the Lagrangian does not contain time explicitly, then this
energy function which is also known as the Hamiltonian of
the system, is a constant of motion. Using these Symmetry
constraints, the evolution equations of a physical system can
either be solvable or simplified to a great extent.

For the present model the configuration space is a 3D space
(a, φ, θ). Also from the Lagrangian (8), one can see that θ

is a cyclic variable and the infinitesimal generator takes the
form

−→
X = α

∂

∂a
+ β

∂

∂φ
+ δ

∂

∂N
+ α̇

∂

∂ ȧ
+ β̇

∂

∂φ̇
+ γ̇

∂

∂θ̇
. (20)

Here, α = α(a, φ), β = β(a, φ), γ = γ (θ) and δ = δ(N )

are the coefficients of the infinitesimal generator and

α̇ = ∂α

∂a
ȧ + ∂α

∂φ
φ̇

β̇ = ∂β

∂a
ȧ + ∂β

∂φ
φ̇

γ̇ = ∂γ

∂θ
θ̇ . (21)

Now, imposing the Noether’s first theorem to the Lagrangian
(8) one gets

L−→
X
LBD = 0 (22)

The explicit form of the Eq. (22) gives a system of partial
differential equations as follows:

φα + 2aβ + 2aφ
∂α

∂a
+ 2a2 ∂β

∂a
−aφ

N
δ = 0 (23)

3α + 24F0φ
∂α

∂φ
+ 2a

∂β

∂φ
− a

N
δ = 0 (24)

3φα + 2aβ + 2aφ
∂γ

∂θ
−aφ

N
δ = 0 (25)

24F0φα + 12F0aβ + 12F0φ
2 ∂α

∂φ
+ 12F0aφ

∂α

∂a

+a2 ∂β

∂a
+ 12F0aφ

∂β

∂φ
−12F0aφ

δ

N
= 0 (26)

3αV (φ) + aβV ′(φ)+aV (φ)
δ

N
= 0 (27)

For solving the above set of partial differential equations
one can use the method of separation of variable i.e,
α(a, φ) = α1(a)α2(φ), β(a, φ) = β1(a)β2(φ), γ = γ (θ)

and δ = δ(N ).
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Solving the Eqs. (23–26) one can get

α = α0a

β = β0φ

γ = γ0

δ = δ0N (28)

where α0, β0, γ0 and δ0 are integration constants with the
relation 3α0 + 2β0 − δ0 = 0.

Putting the values of α, β and δ from (28) into Eq. (27)
one gets on integration

V (φ) = V0φ
− 3α0+δ0

β0 (29)

where V0, an integration constant is strictly positive.
Thus imposing the symmetry condition on the Lagrangian

one can find out the infinitesimal generator of Noether sym-
metry. Also the potential function V (φ) is determined using
the symmetry criteria rather than choosing phenomenologi-
cally.

Another important feature of Noether Symmetry is that
there are some conserved quantities associated with it. There
is no well defined notion of energy for a field theory in a
curved space. But when there exists a time like killing vector
in the system, then an associated conserved energy exists.
It is well known that there is no time like killing vector in
FLRW space-time. But the Lagrangian density is explicit
time independent. Hence, for a point-like Lagrangian, one
can define a conserved energy. So associated to this symmetry
criteria there are two conserved quantities, namely, conserved
charge (defined in Eq. (17)) and conserved energy (defined
in Eq. (19)) which have the explicit form as follows:

Q = 1

N

(
12F0(α0 + β0)a

2φ2ȧ

+(12F0α0 + β0)a
3φφ̇ + γ0a

3φ2θ̇
)

(30)

E = 1

N

(
6F0aφ2ȧ2 + 12F0a

2φȧφ̇

+1

2
a3

(
φ̇2 + a2θ̇2

))
+ NV0a

3φ
− 3α0+δ0

β0 (31)

Usually Eq. (17) gives the conserved current associated to
this symmetry criteria. Integrating the time component of
the conserved current over the spatial volume one can get
conserved charge. But all the variables in the present model
are time dependent. So Eq. (30) gives the conserved charge
associated to this symmetry. Moreover, this conserved charge
also can be expressed as the inner product of the infinitesimal
generator with Cartan one form as [47]

Q = i−→
X


L (32)

where Cartan one form 
L is defined as


L = ∂L

∂ ȧ
da + ∂L

∂φ̇
dφ + ∂L

∂θ̇
dθ (33)

and i−→
X

denotes the inner product with the vector field
−→
X .

Now, we want to make a point transformation (a, φ, θ,

N ) → (u, v, θ, w) in such a way that u becomes cyclic
because cyclic variable is very much useful for solving non-
linear coupled evolution equations. For the above transforma-
tion, the transformed infinitesimal generator takes the form
as

−→
XT =

(
i−→
X
du

) ∂

∂u
+

(
i−→
X
dv

) ∂

∂v
+

(
i−→
X
dθ

) ∂

∂θ

+
(
i−→
X
dw

) ∂

∂w
+

{
d

dt

(
i−→
X
du

)}
d

du̇

+
{
d

dt

(
i−→
X
dv

)}
d

d v̇
+

{
d

dt

(
i−→
X
dθ

)}
d

d θ̇
(34)

For making u cyclic, one can restrict the transformation as

i−→
X
du = 1, i−→

X
dv = 0 and i−→

X
dw = 0. (35)

The explicit form of Eq. (35) can be written as

u = 1

α0
ln a

v = ln

(
aβ0

φα0

)

w = ln

(
a3φ2

N

)
(36)

Equation (36) actually describes the relation between the old
co-ordinates and new co-ordinates. Then using Eq. (36), the
Lagrangian (8) transforms as

LT = ew

{
Au̇2 + C v̇2 − Bu̇v̇ + 1

2
θ̇2 − V0e

−2we
6v
β0

}
(37)

Here A, B and C are arbitrary constants.
Now, Euler–Lagrange equations for the transformed

Lagrangian can be written as

2Au̇ − Bv̇ = R (constant)

θ̇ = c1 (constant)

ew(−Bü + 2C v̈) + 6V0

β0
e−we

6v
β0 = 0

ew

(
Au̇2 + C v̇2 − Bu̇v̇ + 1

2
θ̇2 + V0e

−2we
6v
β0

)
= 0 (38)

Solving the set of equations (38) one can write the new vari-
ables as

u(t) = Bβ0

12A
ln

[
c1

2N1

{
tanh2

(
1

2M

√
6Mc1

β0
(t + c2)

)
− 1

}]

+ Rt

2A
+ l

2A
(39)

v(t) = β0

6
ln

[
c1

2N1

{
tanh2

(
1

2M

√
6Mc1

β0
(t + c2)

)
− 1

}]
(40)

θ(t) = c1t + c3 (41)
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Fig. 1 Graphical representation of the scale factor with respect to cos-
mic time t for different values of (E, M, c1, β0, α0, B, A, R) parameter
spaces

Here, c1, c2, c3, M, N1, R, l are arbitrary constants. Also
we may get “w′′ by using the relation (38). The consequence
of this value we may determine the Lapse function.

Using the relation (36) and the solutions (39)–(41) one can
find out the solutions of the evolution equations of Brans–
Dicke cosmological model for the old variables as:

a(t) = Ee
α0Rt
12A

{
tanh2

(
1

2M

√
6Mc1

β0
(t + c2)

)
− 1

} α0β0B
12A

(42)

φ(t) = Fe
β0Rt
12A

{
tanh2

(
1

2M

√
6Mc1

β0
(t + c2)

)
− 1

} Bβ2
0

12A − β0
6α0

(43)

θ(t) = c1t + c3 (44)

The variation of the dimensionless scale factor a(t)
a0

has
been presented with respect to the dimensionless cosmic time
t
t0

in Fig. 1 (here a0 is the value of the scale factor and H0 is
the value of the Hubble parameter at the present cosmic time
t0). Similarly the dimensionless hubble parameter H

H0
and

the deceleration parameter q(t) has been presented graphi-
cally with the variation of the dimensionless scale factor a(t)

a0
in Figs. 2 and 3. Figure 1 shows that in the present model
the Universe is an expanding model with rate of expansion
gradually diminishes as reflected in Fig. 2. The graphical rep-
resentation of the deceleration parameter shows that initially
the Universe was in an accelerating phase, subsequently there
was an era of deceleration and then again at present the Uni-
verse has entered an acceleration epoch (from Fig. 3). Lastly
it is to be mentioned that for proper choice of the parametric
symbol the present value of the deceleration parameter for
the model with the observed value “ − 0.55615′′ [48].

Fig. 2 Graphical representation of the dimensionless Hubble parame-
ter with respect to scale factor a(t)

Fig. 3 Graphical representation of deceleration parameter q(t) with
respect to scale factor a(t)

4 Formation of WD equation and wave function of the
Universe: a description of quantum cosmology

In the context of quantum cosmology, the Noether symmetry
condition can be rewritten as

L−→
X H

H = 0 (45)
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Here H is the Hamiltonian of the system which is very much
useful to derive the Wheeler Dewitt (WD) equation and

−→
X H

is defined by

−→
X H = q̇

∂

∂q
+ q̈

∂

∂q̇
, (46)

the symmetry vector in phase space.
In minisuperspace models of quantum cosmology, sym-

metry analysis can appropriately interpret the wave function
of the Universe as follows:

The conserved canonically conjugate momenta can be
written as

pl = ∂L

∂q̇l
= �l , l = 1, 2, . . . ,m (47)

where m is the number of symmetries.
The operator version of Eq. (47) can be written as

− i∂ql |ψ〉 = �l |ψ〉 (48)

The above Eq. (48) gives an oscillatory solution which is
given by

|ψ〉 =
m∑
l=1

ei�l ql |φ(qk)〉, k < n (49)

Here k stands for the direction along which there is no sym-
metry. Thus the oscillatory part of the wave function indicates
the existence of Noether symmetry.

In 3D configuration space {a, φ, θ}, the canonically con-
jugate momenta associated to this model can be written as

pa = 1

N
(12F0aφ2ȧ + 12F0a

2φφ̇) (50)

pφ = 1

N
(12F0a

2φȧ + a3φ̇) (51)

pθ = 1

N
a3φ2θ̇ (52)

Then the Hamiltonian of the system takes the form

H = N

[(
l11

aφ2 − l22

aφ

)
p2
a +

(
l33

a3 − l22φ

a3

)
p2
φ

+
(
l44

a2 − l55

a2φ

)
pa pφ + p2

θ

2a3φ2 + V0a
3φ

− 3α0+δ0
β0

]

(53)

where l11, l22, l33, l44, l55 are arbitrary constants. In quantum
cosmology, the wave function of the Universe is a solution of
the Wheeler DeWitt (WD) equation. WD equation is a sec-
ond order hyperbolic partial differential equation. Actually
it is the operator version of the Hamiltonian constraint. WD
equation can be written as Ĥψ(a, φ, θ) = 0, where Ĥ is
the operator version of the Hamiltonian and ψ(a, φ, θ) is the
wave function of the Universe. But in course of conversion to
the operator version we have encountered a problem which
is known as operator ordering problem. Here pa → −i ∂

∂a ,

pφ → −i ∂
∂φ

and pθ → −i ∂
∂θ

. Then WD equation corre-
sponding the Hamiltonian (53) takes the form as
[

−
(

l11

aφ2 − l22

aφ

)
∂2

∂a2 −
(
l33

a3 − l22φ

a3

)
∂2

∂φ2

−
(
l44

a2 − l55

a2φ

)
∂2

∂a∂φ

− 1

2a3φ2

∂2

∂θ2 + V0a
3φ

− 3α0+δ0
β0

]
ψ(a, φ, θ) = 0 (54)

The solution of this equation can be obtained by separation
of eigen functions of the WD operator as follows: [49]

ψ(a, φ, θ) =
∫

W (Q)ψ(a, φ, θ, Q)dQ (55)

Here ψ is treated as the eigen function of the WD operator,
Q is the conserved charge and W (Q) is a weight function.
But we can’t get any explicit solution from the above WD
equation (54) using separation of variables because the min-
isuperspace variables are highly coupled in WD operator.
Thus one may analyze this model using the new variables
(u, v, θ). So associated to the point-like Lagrangian (37),
the canonically conjugate momenta can be written as [50]

pu = ∂L

∂ u̇
= ew(2Au̇ − Bv̇) = σ (conserved) (56)

pv = ∂L

∂v̇
= ew (2C v̇ − Bu̇) (57)

pθ = ∂L

∂θ̇
= ewθ̇ = � (conserved) (58)

Since u and θ are cyclic in the Lagrangian (37), pu and pθ

will be conserved in nature.
Then the Hamiltonian of the system takes the form as

follows:

H = A′ p2
u + B ′ p2

v + C ′ pu pv + D′ p2
θ + V0e

−we
6v
β0 (59)

Here, A′, B ′, C ′ and D′ are arbitrary constants.
As mentioned earlier the issue of factor ordering in the

quantization scheme is nothing but the ordering of a variable
and its conjugate momentum. So with the usual operator con-
version: f pu → −i ∂

∂u , pv → −i ∂
∂v

and pθ → −i ∂
∂θ

one
gets a six parameter family of Wheeler–DeWitt(WD) equa-
tion[

A′e− 6v
β0

∂2

∂u2 + B ′e−l1
6v
β0

∂

∂v
e
−l2

6v
β0

∂

∂v
e
−l3

6v
β0

+C ′ ∂

∂u

(
e
−m1

6v
β0

∂2

∂v
e
−m2

6v
β0

)
+ D′ ∂2

∂θ2 − V0e
−w

]

×ψ(u, v, θ) = 0

with the restriction l1 + l2 + l3 = 1 and m1 + m2 = 1. As
there are infinite number of possibilities for the choice of
the triplet (l1, l2, l3) and the dublet (m1,m2) so it is possible
to have infinite possible ordering. In the literature, there are
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some preferred choices for the above triplet and dublet as
follows:

(i) Vilenkin operator ordering: l1 = l3 = 0, l2 = 1; m1 =
0, m2 = 1.

(ii) D’Alembert operator ordering: l1 = 2, l2 = −1, l3 =
0; m1 = 2, m2 = −1.

(iii) no ordering: l1 = 1, l2 = 0 = l3; m1 = 1, m2 = 0.

Through the nature of the wave function depends on the
choice of operator ordering, yet the semi-classical description
remain unaltered [50,51]. For simplicity we shall confine
ourselves to the above 3rd choice (i.e., no ordering) and the
WD equation takes the form
[
A′ ∂2

∂u2 + B ′ ∂2

∂v2 + C ′ ∂2

∂u∂v

+D′ ∂2

∂θ2 − V0e
−we

6v
β0

]
ψ(u, v, θ) = 0 (60)

For solving Eq. (60) one can use the method of separation of
variable as

ψ(u, v, θ) = ψ1(u)ψ2(v)ψ3(θ) (61)

The operator version of (56) and (58) can be written as

− i
∂ψ

∂u
= σψ (62)

−i
∂ψ

∂θ
= �ψ (63)

Solving (62) and (63) using (61) one can get

ψ1(u) = σ0e
iσu (64)

ψ3(θ) = �0e
i�θ (65)

where σ0 and �0 are integration constants. Actually Eqs. (64)
and (65) describes the oscillatory part of the wave function.

Putting the value of ψ1(u) and ψ3(θ) in WD equation (60)
one gets a second order differential equation as

B ′ d2ψ2(v)

dv2 + iσC ′ dψ2(v)

dv
− V0e

−wψ2(v)

−
(
A′σ 2 + D′�2

)
ψ2(v) = 0 (66)

The solution of Eq. (66) describes the non-oscillatory part of
the wave function and is given by

ψ2(v) = e−ivμ+ A3π

2

[
�(1 − A3)I−A3

(
A4e

3v
β0

)

+(−1)A3�(1 + A3)IA3

(
A4e

3v
β0

)]
(67)

Here, I is the modified Bessel function of first kind and
gamma function is denoted by �. A2, A3 and A4 are arbitrary
constants. So the wave function of the Universe becomes

ψ(u, v, θ) = �0σ0e
A3π

2 ei(−vμ+σu+�θ)

·
[
�(1 − A3)I−A3

(
A4e

3v
β0

)

+(−1)A3�(1 + A3)IA3

(
A4e

3v
β0

)]

i.e., ψ(a, φ, θ) = �0σ0e
A3π

2 e
i(−μ ln

(
aβ0
φα0

)
+ σ

α0
ln a+�θ)

·
[
�(1 − A3)I−A3

(
A4a3

φ
α0
β0

)

+(−1)A3�(1 + A3)IA3

(
A4a3

φ
α0
β0

)]
(68)

It is to be noted that |ψ |2 gives the probability measure on
the minisuperspace.

The Figs. 4 and 5 shows that the measure of probabil-
ity depends on the sign of the constant A3. There is finite
non-zero probability at zero volume for A3 = 0 while the
probability at zero volume will be zero if A3 > 0 or A3 is a
−ve integer. However, the probability can not be defined for
negative non-integral values of A3. Thus quantum descrip-
tion allow the big-bang singularity for A3 = 0 while quantum
formulation overcomes the initial singularity for A3 > 0 or
a −ve integer.

For WKB approximation in the semi classical limit one
may write

ψ = exp

(
i

h̄
S

)
(69)

where the classical HJ function S can be expanded as power
series in h̄ as

S = S0 + h̄S1 + h̄2S2 + · · · (70)

Thus the wave packet

ψ =
∫

S(
−→
k ) exp

(
i

h̄
S0

)
d
−→
k (71)

Characterizes the classical solution with
−→
k = (k1, k2, k3)

as arbitrary parameters (i.e., separation constants). The above
semiclassical limit in the WD equation gives the HJ equation
(in zeroth order) for so as[

A′e− 6v
β0

(
∂S0

∂u

)2

+ B ′e− 6v
β0

(
∂S0

∂v

)2

+C ′e− 6v
β0

∂2S0

∂u∂v
+ D′e− 6v

β0

(
∂S0

∂θ

)2

− V0e
−w

]
= 0

(72)

For an explicit solution for S0 the following separation form
is suitable

S0(u, v, θ) = Su(u) + Sv(v) + Sθ (θ) (73)
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Fig. 4 The graphical representation of |ψ |2 when (α0, β0, A3, A4) =
(1.07,−1.4, .035, .01)

with

Su = 1

4

(
l0√
A′ u + c0

)2

(74)

Sθ = 1

4

(
m0√
D′ θ + d0

)2

(75)

and

Sv = β2
1

[(
v′ − k2e

− 6v
β0

) 3
2 + V0

]2

(76)

Here l0, m0 are separation constants and c0, d0 and V0 are
constants of integration.

Thus the wave packet (71) has the explicit form as

ψ(u, v, θ) =
∫ ∫ ∫

μ(l0,m0) exp

[
i

h̄

×Su(u, l0)Sv(v, l0,m0)Sθ (θ,m0)

]
dl0dm0

(77)

where μ has the bivariate Gaussian distribution having means
l̄0 > 0, m̄0 > 0. For l0, m0 > 0, the wave function will
oscillate rapidly if u, θ → −∞ i.e., a → 0. Thus construc-
tive interference is possible provided
(

∂S0

∂l0

∣∣∣
l0=l̄0

)2

+
(

∂S0

∂m0

∣∣∣
m0=m̄0

)2

= 0. (78)

This is supported by the classical solutions. Thus as usual the
classical limit will be obtained when a → 0.

In metric formulation of Einstein gravity, there are four
constraints of which the super momentum constrain (a group
of three) or the vector constraint vanish identically for min-
isuperspaces homogeneous in nature. The only non-trivial
constraint equation is known as Hamiltonian constraint or

Fig. 5 The graphical representation of |ψ |2 when (α0, β0, A3, A4) =
(1.07,−1.4, 0, 0)

scalar constraint having operator form in quantum version is
nothing but the WD equation

Ĥ
(
q̂α(t), p̂α(t)

)
ψ(qα) = 0 (79)

The homogeneous degrees of freedom qα(t) and pα(t) can be
deduced from the three metric hi j and the conjugate momenta
π i j . Now analogous to WKB approximation if the wave func-
tion ψ can be written as

ψ = A(q) exp

[
i

h̄
B(q)

]
(80)

then from the WD equation one gets the quantum modified
Hamilton–Jacobi equation as

1

2
lμν(qα)

∂S

∂qμ

∂S

∂qν

+ φ(qμ) + ξ(qμ) = 0 (81)

where lμν is the reduced supermetric to the given minisuper-
space [52], φ is the particularization of the scalar curvature

density
(
−h

1
2 (3)R

)
of the spacelike hypersurfaces and

ξ(qμ) = − 1

R
lμν

∂2R

∂qμ∂qν

(82)

is termed as quantum potential.
Now, due to causal interpretation in quantum cosmology

the trajectories qα(t) should be real and independent of any
observations. Such trajectories are identified by the corre-
sponding HJ equation. By identifying

pα = ∂S

∂qα

(83)

with the usual momentum–velocity relation

pα = lαβ 1

N

∂qβ

∂t
, (84)
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the first order trajectories namely

∂S

∂qα

= lαβ 1

N

∂qβ

∂t
(85)

are termed as Bohmian trajectories (i.e., quantum trajecto-
ries). One may note that these quantum trajectories are invari-
ant under time reparametrization [52].

In the present context the Bohmian trajectories are char-
acterized by (choosing ω = 0)

∂S

∂u
= 2Au̇ − Bv̇,

∂S

∂v
= 2C v̇ − Bu̇,

∂S

∂θ
= θ̇ (86)

Also the quantum corrected HJ equation takes the form

A′
(

∂S

∂u

)2

+ B ′
(

∂S

∂v

)2

+ C ′ ∂2S0

∂u∂v

+D′
(

∂S

∂θ

)2

− V0e
6v
β0 + ξ = 0 (87)

with

ξ = 1

A

[
A′ ∂2A

∂u2 + B ′ ∂2A

∂v2 + C ′ ∂2A

∂u∂v
+ D′ ∂2A

∂θ2

]
(88)

as the explicit form of the quantum potential.

5 A brief summary

The present work deals with a multiscalar field cosmologi-
cal model where one scalar field is non-minimally coupled
to both gravity and the other scalar field while the second
scalar field is minimally coupled to gravity. Due to highly
coupled and non-linear field equations the present model
cannot be studied cosmologically in the usual way. How-
ever, here it is shown how the symmetry analysis specifically
the Noether symmetry helps us to analyze the present cos-
mological model both classically and quantum mechanically.
The identification of a cyclic variable through the symmetry
vector simplifies the Lagrangian to a great extend so that the
field equations become solvable. From the classical solution,
the relevant cosmological parameters are plotted in Figs. 1,
2 and 3. Most specifically Fig. 1 shows that the Universe is
expanding through out the evolution. The graph of the dimen-
sionless Hubble parameter in Fig. 2 indicates that though the
universe is expanding but the rate of expansion gradually
diminishes with the evolution. Figure 3 indicates that the
present model describes all the three phases of evolution (ini-
tially accelerating era, subsequently decelerating phase and
lastly the present accelerated expansion) after the big-bang.
Also with proper choice of the parameter involved the present
theoretical prediction of the deceleration parameter matches
the observed value. So one may say that the present model
agrees with observation at least qualitatively. The Noether

symmetry takes a crucial role in analyzing quantum cosmol-
ogy with canonical quantization. The fundamental equation
in quantum cosmology namely the WD equation is a 2nd
order hyperbolic type p.d.e. The operator version of the con-
served charge not only identifies the periodic part of the wave
function but also helps to solve the WD equation. As a result,
one may examine whether the big-bang singularity may be
eliminated by quantum description or not. Here it is found
that with proper choice of the parameter A3, the singularity
may be avoided by quantum formulation. Therefore, Noether
symmetry analysis plays a crucial role to study any cosmo-
logical model.
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