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Abstract: One key issue of the foundation of statistical mechanics is the emergence of equilibrium

ensembles in isolated and closed quantum systems. Recently, it was predicted that in the thermo-

dynamic (N → ∞) limit of large quantum many-body systems, canonical density matrices emerge

for small subsystems from almost all pure states. This notion of canonical typicality is assumed to

originate from the entanglement between subsystem and environment and the resulting intrinsic

quantum complexity of the many-body state. For individual eigenstates, it has been shown that local

observables show thermal properties provided the eigenstate thermalization hypothesis holds, which

requires the system to be quantum-chaotic. In the present paper, we study the emergence of thermal

states in the regime of a quantum analog of a mixed phase space. Specifically, we study the emergence

of the canonical density matrix of an impurity upon reduction from isolated energy eigenstates of a

large but finite quantum system the impurity is embedded in. Our system can be tuned by means of

a single parameter from quantum integrability to quantum chaos and corresponds in between to a

system with mixed quantum phase space. We show that the probability for finding a canonical density

matrix when reducing the ensemble of energy eigenstates of the finite many-body system can be

quantitatively controlled and tuned by the degree of quantum chaos present. For the transition from

quantum integrability to quantum chaos, we find a continuous and universal (i.e., size-independent)

relation between the fraction of canonical eigenstates and the degree of chaoticity as measured by the

Brody parameter or the Shannon entropy.

Keywords: thermal state; isolated many-body system; quantum chaos; quantum integrability;

canonical density matrix

1. Introduction

As first recognized by Ludwig Boltzmann [1,2] “molecular” chaos lies at the core
of the foundation of classical statistical mechanics. Only when the phase space of an
isolated mechanical system is structureless can the motion be safely assumed to be ergodic
and the equal a priori probability for phase space points on the energy hypersurface, the
basic tenet of the microcanonical ensemble, is realized. Moreover, chaotic dynamics is
“mixing”, thereby enforcing the approach to the thermal equilibrium state from “almost
all” out-of-equilibrium initial conditions. While any large isolated system is expected to be
described by a microcanonical ensemble, any well-defined small subsystem thereof that is
only allowed to exchange energy with the remainder of the large system (referred to as
bath or environment in the following) is described by the canonical ensemble. The phase-
space density of the subsystem is weighted by the Boltzmann factor e−βHs , where Hs is the
Hamilton function of the subsystem, β = 1/kBT with T the temperature imprinted by the
environment and kB the Boltzmann constant. However, when the phase space of the system
is not chaotic but rather dominated by regular motion on KAM tori [3,4], neither ergodicity
nor mixing is a priori assured, and thermalization of an initial non-equilibrium state may

Entropy 2022, 24, 1740. https://doi.org/10.3390/e24121740 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121740
https://doi.org/10.3390/e24121740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4876-2875
https://doi.org/10.3390/e24121740
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121740?type=check_update&version=1


Entropy 2022, 24, 1740 2 of 25

be elusive. The implicit assumption of classical equilibrium statistical mechanics is that
in the limit of a large number of degrees of freedom, chaos is generic for any interacting
many-particle system.

How those concepts translate into quantum physics has remained a topic of great
conceptual interest and lively debate [5–21]. Renewed interest is stimulated by the ex-
perimental accessibility of ultracold quantum gases [22–28], trapped ions [29], and nano-
systems [30,31], where many of the underlying concepts became quantitatively accessible
in large but finite quantum systems in unprecedented detail. The foundation of thermaliza-
tion of quantum systems has been pioneered by von Neumann in terms of the quantum
ergodic theorem [32–37]. Accordingly, the entropy is an increasing function of time and
expectation values of generic macroscopic observables for pure states formed by coherent
superposition of states within microscopic energy shells converge to that of the microcanon-
ical ensemble provided that the energy spectrum of the system is strictly non-degenerate.
Recently, this description of thermal equilibrium states was extended to the notion of
canonical typicality [37–40]. Accordingly, starting from almost any pure state formed by a
coherent superposition of energy eigenstates of a large isolated many-body system with
eigenenergies within a given energy shell [E, E + ∆E] of macroscopically small thickness
∆E, the reduction to a small subsystem by tracing out the degrees of freedom of the bath
will yield the same reduced density matrix one would obtain from the reduction of the
microcanonical density matrix for the entire system. If the bath is sufficiently large and the
interactions between the bath and the subsystem sufficiently weak, the reduced density
matrix corresponds to the standard canonical density matrix ρ̂s = e−βĤs /Tr[e−βĤs ] with Ĥs

the Hamilton operator of the subsystem. The proof of this canonical typicality invokes the
intrinsic randomness of the expansion coefficients of the pure state in terms of entangled
subsystem–bath states. The latter assumption goes back to the notion of intrinsic quantum
complexity of entangled states in large systems put forward already by Schrödinger [41].

An alternative approach to thermalization is tied to the eigenstate thermalization
hypothesis (ETH) [5–8] first put forward by Landau and Lifshitz [42], stating that basic
properties of statistical mechanics can emerge not only from ensemble averages but from
typical single wavefunctions. However, the condition under which such an equivalence
may emerge has remained open. The more recent formulation of the ETH [5–8] invokes
the notion of quantum chaos and Berry’s conjecture. Characteristics of quantum chaos
were originally identified in few-degrees of freedom systems whose classical limit exhibits
chaos [43–49]. Nowadays, the notion of quantum chaos is invoked more generally for
systems that display the same signatures such as energy level distributions predicted by ran-
dom matrix theory (RMT) [43,48,50,51] or randomness of wavefunction amplitudes [5,52]
even when a well-defined classically chaotic counterpart is not known. The ETH conjec-
tures that for chaotic systems, the diagonal matrix elements of any generic local observable
taken in the energy eigenstate basis are smooth functions of the total energy while the
off-diagonal elements are exponentially decreasing randomly fluctuating variables with
zero mean [6–8]. If the ETH is valid for a specific system, individual eigenstates show
thermal properties upon reduction to a small subsystem. The ETH has been shown to
hold for a large variety of systems without a classical analogue [24,53–64]. Deviations from
the ETH have been observed for local observables in finite systems of hard-core bosons
and spin-less fermions [57,58,65] when the energy level distribution deviates from the
Wigner–Dyson level statistics of RMT characteristic for chaotic systems.

In the present paper, we explore the quantitative relationship between thermal prop-
erties of reduced density matrices (RDMs) emerging from single isolated eigenstates of
the entire system and quantum chaos. More specifically, we want to address the question:
Is for large but finite systems quantum chaos a conditio sine qua non for the emergence
of the Gibbs ensemble, i.e., the canonical ensemble of the subsystem, from eigenstates of
the entire system? Or is quantum entanglement and complexity in these systems itself
sufficient to render the reduced density matrix of a small subsystem canonical? To this end,
we determine the fraction of canonical density matrices emerging upon reduction from the
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entire set of eigenstates. We explore the existence of a quantitative relationship between
the fraction of eigenstates that upon reduction lead to canonical eigenstates, also termed
fraction of canonical eigenstates, and the degree of quantum chaos of the entire system. We
unravel the connection between this eigenstate canonicity and quantum chaos by exact
diagonalization of a large yet finite mesoscopic quantum system. We emphasize that this
measure addresses isolated energy eigenstates of the many-body system, in contrast to
coherent superpositions of energy eigenstates from a given energy shell of finite width
with random expansion coefficients as invoked in the well-established notion of canonical
typicality [37–40].

As a prototypical case in point, we consider an itinerant impurity embedded in a spin-
polarized Fermi–Hubbard system. Unlike impurity models for disordered systems [66], our
model is fully deterministic. All key ingredients for the realization of the present system,
i.e., discrete lattice, tunable interactions, and impurity can be experimentally realized with
ultracold fermionic atoms (see, e.g., [67–72]). In the present scenario, the impurity serves
as a probe or “thermometer” in the isolated many-body quantum system providing an
unambiguous subsystem–bath decomposition with tunable coupling strength between
subsystem and bath. Moreover, our system features a tunable transition from quantum
chaos to quantum integrability without invoking any extrinsic stochasticity or disorder [66].
The fact that the subsystem consists of a distinguishable particle has a number of distinct
advantages: The reduced density matrix of the probe is uniquely defined and its properties
are basis-independent. No choice of a specific basis for the probe such as the independent-
particle basis is involved. Moreover, its canonical RDM approaches a Maxwell–Boltzmann
rather than a Fermi–Dirac distribution for indistinguishable fermions. Its thermal state is
thus characterized by a single equilibrium parameter, the temperature T, without the need
for introducing a chemical potential µ, thereby improving the numerical accuracy of the test
of canonicity. We measure the proximity of the reduced density matrix of the impurity to
the canonical density matrix and identify a direct and size-independent correlation between
the fraction of canonical eigenstates and quantum chaos.

The paper is structured as follows. In Section 2, we introduce our impurity-Fermi–
Hubbard model which serves as a prototypical (sub)system–environment model system.
Quantitative measures for quantum chaos are introduced in Section 3. The mapping of
spectral properties of this isolated many-body system onto thermal states of the impurity
within the framework of the microcanonical and canonical ensembles are discussed in
Section 4. The distance in Liouville space between the reduced density matrix of the
impurity and a generic canonical density matrix is analyzed and the relation between the
fraction of canonical eigenstates and quantum chaos is established in Section 5. Concluding
remarks are given in Section 6.

2. The Fermi–Hubbard Model with Impurity

We investigate a variant of the single-band one-dimensional Fermi–Hubbard model
which is particularly well suited to study entanglement and quantum correlations between
subsystem and its environment or bath. The bath is represented by spin-polarized fermions
enforcing single occupancy of sites by bath particles while the distinguishable impurity
can occupy any site. Accordingly, the Hamiltonian of the total system is given by

Ĥ = ĤI + ĤB + ĤIB, (1)

where the Hamiltonian of the subsystem, i.e., the impurity (I), is

ĤI = −JI ∑
Ms−1
j=1

[

â†
j+1 âj + c.c.

]

+ ∑
Ms
j=1 V(j)n̂j, (2)

while the Hamiltonian of the bath is

ĤB = −JB

Ms−1

∑
j=1

[

b̂†
j+1b̂j + c.c.

]

+ WBB

Ms−1

∑
j=1

N̂j+1N̂j +
Ms

∑
j=1

V(j)N̂j. (3)
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The interaction between the subsystem and the bath is given by

ĤIB = WIB

Ms

∑
j=1

n̂jN̂j. (4)

The operators âj and â†
j (b̂j and b̂†

j ) are the creation and annihilation operators of the

impurity (bath particles) on site j with the anticommutation relations {ai, aj} = 0, {a†
i , a†

j } =

0, {ai, a†
j } = δij, and {a

(†)
i , b(†)} = 0. The operators n̂j = â†

j âj and N̂j = b̂†
j b̂j correspond to

the number operators of impurity and bath n̂j|j〉 = nj|j〉 and N̂j|j〉 = Nj|j〉 with occupation
numbers nj and Nj of site j, respectively. JI (JB) describes the hopping matrix elements
of the impurity (bath particles). The bath particles interact with each other by a nearest-
neighbor interaction with strength WBB while the impurity interacts with the bath particles
via an on-site interaction with strength WIB. The Hubbard chain has Ms sites with Dirichlet
boundary conditions imposed at the edges. An additional very weak external background
potential (V ≪ JI, JB) with on-site matrix element V(j) (j = 1, . . . , Ms) is applied,

V(j) = 0.01
[

−0.5 +
(j − 1)n

(Ms − 1)n

]

, (5)

for which we use a linear (n = 1) or quadratic (n = 2) function in order to remove residual
geometric symmetries such that the irreducible state space coincides with the entire state
space and symmetry related degeneracies are lifted. Alternative impurity models were
recently suggested for the investigation of the ETH [64].

We solve the system via exact diagonalization to determine all eigenstates and eigenen-
ergies of the entire system. The dimension of the Hilbert space of the system is dH = Ms(

Ms
NB
),

where NB is the number of bath particles. We consider typical half-filling configurations
with NB ≈ Ms/2. The largest Ms considered is Ms = 15 resulting in a Hilbert space
dimension of dH = 96,525 for NB = 7. We set JI = JB = J which also defines the unit of
energy (J = 1) in the following. The key advantage of the present model is that it allows to
control and tune the properties of the bath separately by varying WBB while keeping fixed
the properties of the subsystem whose reduced density matrix we probe. This clear-cut
subsystem–bath decomposition allows for the unambiguous probing of the emergence of
canonical density matrices, thereby avoiding any ad hoc separation by “cutting out” of the
subsystem which then requires the grand canonical density matrix for an open quantum
system since both energy and particles can be exchanged [65]. Moreover, its thermal state is
unambiguously characterized by T rather than by T and µ as for indistinguishable fermions,
thereby improving the numerical reliability of the performed tests.

The present system should be realizable for ultracold fermionic atoms trapped in
optical lattices [28,69–74]. All key ingredients required for its realization including tunable
interactions and impurity–bath mixtures are available in the toolbox of ultracold atomic
physics. We note that tuning the nearest-neighbor interaction WBB between the atoms in
optical lattices to large values in the regime of strong correlations, WBB/JB & 1, still poses
an experimental challenge which might be overcome in the near future.

3. Measures of Quantum Chaos

The present single-band Fermi–Hubbard model does not possess an obvious classical
counterpart whose phase space consists of regions of regular and/or chaotic motion. Lack-
ing such direct quantum–classical correspondence, quantum integrability and quantum
chaos in the present system is identified by signatures of the quantum system that have
been shown to probe chaotic and regular motion in systems where quantum–classical
correspondence does prevail. Several measures of quantum chaos have been proposed
that are based on either properties of eigenstates or of the spectrum [14,49,58,75–79]. As
will be shown below, by tuning WBB, we can continuously tune the entire system from the
limit of quantum integrability to the limit of quantum chaos across the transition region
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of a mixed quantum system in which integrable and chaotic motion coexist and explore
its impact on the fraction of eigenstates which upon reduction lead to canonical density
matrices. The influence of the continuous transition from quantum integrability to quantum
chaos on the thermal state of the subsystem will be explored with the help of the present
prototypical system.

3.1. Spectral Measures

Starting point for analyzing and quantifying quantum chaos by means of spectral
statistics is the cumulative spectral function also called the staircase function

N(E) = ∑
α

Θ(E − Eα), (6)

where Eα are the energy eigenvalues of the entire system, and Θ is the Heaviside step
function. Its spectral derivative is the density of states (DOS)

Ω(E) =
d

dE
N(E). (7)

Examples for N(E) and Ω(E) of the present system are shown in Figure 1.
The smoothed “average” spectral staircase function N̄(E) fitted to a polynomial of

order 10, also shown in Figure 1, provides the reference for spectral unfolding required
for certain measures of quantum fluctuations about the (classical) mean. Accordingly,
the unfolded energy spectrum is given by eα = N̄(Eα). For systems for which quantum–
classical correspondence holds, N̄(E) corresponds to the classical phase space volume in
units of Planck’s constant h and Ω(E) to the microcanonical energy shell. We note that the
saturation of N(E) observed with increasing E (Figure 1a) or, likewise, the bell-shaped curve
for the DOS (Figure 1b) decreasing at large E is in the present case a consequence of the
single-band approximation of the Fermi–Hubbard model (Equation (1)) and, more generally,
appears for systems with a spectrum bounded from above. For realistic macroscopic
systems, N(E) and Ω(E) should generically increase monotonically with E. As discussed
in more detail below, this non-generic decrease of the density of states observed for the
present as well as for other finite and mesoscopic systems has implications for the ensuing
thermal properties.

The probability density P(s) of the nearest-neighbor level spacings (NNLS), s =
eα+1 − eα, features distinctively different shapes for quantum integrable and quantum
chaotic systems. While for integrable systems, the NNLS have been predicted by Berry
and Tabor [50] to feature an exponential (or Poissonian) distribution PP(s) = exp (−s), for
chaotic systems it closely follows random matrix theory [43]. In our case of a time-reversal
symmetric system, the corresponding random-matrix ensemble is the Gaussian orthogonal
ensemble (GOE) which has been shown (see e.g., [46]) to closely follow the Wigner–Dyson
distribution (or Wigner surmise) given by

PWD(s) =
πs

2
e−πs2/4. (8)

A complementary spectral measure first proposed by Gurevich and Pevzner [80] and
applied to quantum chaos [81,82] has the advantage that it does not require spectral
unfolding but can be applied to the spectral raw data, i.e., the restricted gap ratios rα

rα = min
(

rα,
1
rα

)

, (9)
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where rα = (Eα+1 − Eα)/(Eα − Eα−1). The distribution of restricted gap ratios has been
shown to obey for 3 × 3 GOE matrices the analytical prediction

WGOE(r) =
27
4

r + r2

(1 + r + r2)5/2
. (10)

For chaotic systems, this prediction remains very accurate even for large systems [82]. In
the limit of quantum integrable systems, the distribution of restricted gap ratios is given by
(see [81])

WP(r) =
2

(1 + r)2 . (11)

The search for generic spectral measures for the transition regime between the quantum
integrable and quantum chaotic limit has remained an open problem. For systems pos-
sessing a classical counterpart with a mixed phase space in which integrable and chaotic
motion coexist, several models for the NNLS have been proposed [83–87]. Empirically, one
of the best fits to spectral data for mixed systems has been provided by a heuristic ansatz
suggested by Brody [88] which allows for a one-parameter smooth interpolation of the
NNLS distribution in the transition region between the quantum integrable and quantum
chaotic limit,

PB(s) = (γ + 1)bsγe−bsγ+1
, (12)

where the Brody parameter γ characterizes the transition from the integrable (γ = 0) to the
chaotic limit (γ = 1) and b follows from the normalization as

b =

[

Γ

(

γ + 2
γ + 1

)]γ+1

. (13)

The Brody parameter can be viewed as a measure of the strength of level repulsion between
neighboring levels of the quantum system. For mixed few-degrees of freedom systems with
a classical analogue, γ could be identified as a measure for the chaotic fraction of classical
phase space [86,89]. Moreover, γ has also been found to be directly proportional to the
degree of phase-space (de)localization of eigenstates as measured by their Husimi distribu-
tion [77]. The parameterization of the transition from quantum integrability to quantum
chaos in terms of a variable exponent γ has the salient feature that even for very small
but finite γ, 0 < γ ≪ 1, PB(0) = 0, reflecting the fact that any perturbation of quantum
integrability immediately causes level repulsion and suppresses the probability density
for any exact degeneracy. We recall that non-degeneracy is one of the key prerequisites
of von Neumann’s quantum ergodic theorem [32]. We further note that the Hasegawa
distribution [84] sometimes provides an even more accurate fit to the NNLS distribution
(see, e.g., [90]), however, at the price of a second adjustable parameter.

To determine γ, we fit Equation (12) to the data for P(s) (Figure 2). The quality of the
fit is evaluated through the χ2-function

χ2 = ∑
i

[P(si)− PB(si)]
2∆s, (14)

which measures the deviation of the distribution of nearest-neighbor spacings P(s) from
the Brody distribution PB(s) using a bin size of ∆s. As an additional measure for the
uncertainty of γ, we use the fact that the Brody parameter can be alternatively determined
from a fit to the integral

∫

ds′P(s′) rather than to P(s) itself. The small differences found
between the two fits can be used as a measure for the numerical error.



Entropy 2022, 24, 1740 7 of 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5  0  5  10

(a)

N
(E

) 
[i

n
 u

n
it

s
 o

f 
d

H
]

E

 0.1396

 0.1398

 0.14

-0.325 -0.32

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-15 -10 -5  0  5  10  15  20  25

(b)

Ω(
E
) 

[i
n
 u

n
it

s
 o

f 
d

H
]

E

WBB=0.01
WBB=1
WBB=3

Figure 1. (a) The spectral staircase function N(E) for the Fermi–Hubbard model with impurity
with WBB = 1 and a total number of states dH = 96,525 (Ms = 15, NB = 7). The inset shows a
magnification of N(E) with a fit for the smoothed “average” staircase function N̄(E) entering the
spectral unfolding. (b) The normalized density of states (DOS), Ω(E), using a bin size of ∆E = 0.4 for
different interaction strengths of the bath particles. The impurity–bath interaction in (a,b) is WIB = 1.

For WBB = 0 and for the linear tilt of the external potential V(j) (Equation (5)),
we observe an excess of (near-) degenerate states as compared to the prediction of the
exponential (Poisson) distribution in the first bin at s = 0 with ∆s = 0.01. This hints at the
presence of an only weakly broken symmetry which disappears when using a quadratic tilt.
For reasons of consistency, we employ for all WBB a linear tilt in the following. Neglecting
the first bin in the fitting procedure for WBB = 0, we obtain γ = 0.005 and, overall, a very
good agreement with the Poisson distribution (Figure 2a). As the intra-bath interaction
is varied from WBB = 0 to WBB = 1, we observe a continuous transition from a near
Poissonian to an approximate Wigner–Dyson NNLS distribution (Figure 2a–c). The Brody
parameter monotonically increases from γ ≃ 0.005 at WBB = 0 to γ ≃ 0.9 at WBB = 1.
We note that after reaching a plateau at γ ≃ 0.93 near WBB = 3, the Brody parameter
decreases again for WBB > 5 and vanishes in the strongly correlated limit of WBB ≫ 1.
The decrease of the Brody parameter for large WBB results from clustering of the energy
spectrum in the strongly interacting regime. The bath fragments into clusters of particles
with the interactions between separate clusters suppressed. Thus, a partially ordered
system emerges reducing the degree of quantum chaoticity. We will focus in the following
on the parameter range WBB ≤ 1 within which the transition from a nearly quantum
integrable to a nearly fully quantum chaotic system occurs.

For the two limiting cases of quantum integrability (WBB → 0) and quantum chaos
(WBB → 1) of the present Fermi–Hubbard system, we can also apply the predictions for the
restricted gap ratio distribution (Equations (10) and (11)) . We find for these two limiting
cases very good agreement between the prediction and the data (Figure 3), confirming
that the identification of quantum integrability and quantum chaos is independent of the
particular choice of the spectral measure.
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Figure 2. The numerically determined nearest-neighbor level statistics P(s) for the Fermi–Hubbard
model with impurity (Equations (1)–(4)) (a) WBB = 0, (b) WBB = 0.1 and (c) WBB = 1 compared to
the Poisson (exponential) distribution PP(s), the Wigner–Dyson distribution PWD(s), as well as the
fit to the Brody distribution PB(s). The bin size used is ∆s = 0.01. Other parameters are Ms = 15,
NB = 7, and WIB = 1.
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impurity (Ms = 15, NB = 7) for different WBB and WIB = 1 compared to the analytical predictions for
random matrices within the GOE ensemble (Equation (10)) and for integrable spectra (Equation (11)).
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For the first moment of the restricted gap ratio distribution, we find 〈r〉 = 0.5284
for WBB = 1 agreeing to within 0.5% with the GOE expectation value for asymptotically
large matrices 〈r〉GOE = 0.5307 [82]. Conversely, for WBB = 0, we find 〈r〉 = 0.3811 in very
good agreement with the prediction for a Poisson distribution 〈r〉P = 0.3863. As there is
presently no interpolation function W(r) available for the transition between the quantum
integrable limit (Equation (11)) and the quantum chaotic limit (Equation (10)), we will
focus in the following on the Brody distribution for the NNLS as spectral measure for the
transition regime.

3.2. Measures for Wavefunctions

As an alternative to spectral measures, on can also explore and quantify chaos through
the complexity of the eigenstates. According to Berry’s conjecture, the eigenstates of a
chaotic system feature randomly distributed amplitudes over an appropriate basis, e.g., in
quantum billiards, they correspond to randomly distributed plane waves [75]. Follow-
ing this conjecture, a large number of such measures have been proposed. They include
the statistical distribution of eigenvectors [9,12,46,91], the configuration-space probability
distribution [92], the configuration-space self-avoiding path correlation function [52], the
Wigner function-based wavefunction autocorrelation function [75], the inverse participa-
tion ratio [93], the Shannon entropy [94], and the phase space localization measured in
terms of the information entropy encoded in the Husimi distribution [77]. One limitation
for the quantitative significance of most of these measures (with the possible exception
of [77]) is their dependence on the chosen basis of representation. For systems that can be
continuously tuned from integrable to chaotic, the eigenstates of the integrable limit suggest
themselves as a convenient basis to monitor the transition to chaos [9,12,58]. For many-
body systems, the eigenstates of the mean-field Hamiltonian often provide the reference
basis for measuring quantum chaoticity [14]. In the following, we use the eigenstates |ψ0

α〉
of the integrable system with WBB = 0 as a basis for determining the statistical distribution
of eigenvectors. From the amplitudes cα′

α = 〈ψ0
α′ |ψα〉 and probabilities |cα′

α |2, we calculate
the Shannon entropy [94] for each eigenstate |ψα〉

Sα = −
dH

∑
α′=1

|cα′
α |2 ln |cα′

α |2. (15)

We observe that for WBB = 1, the Shannon entropy as a function of Eα forms an in-
verted parabola-like function with remarkably small eigenstate-to-eigenstate fluctuations
(Figure 4). At the apex near the center of the spectrum, Sα reaches a maximum Smax close to
the GOE limit SGOE ≈ ln 0.48dH [58] with dH the dimension of the Hilbert space (Figure 4a).
States in the tails of the spectrum show strong deviations from this limit as the eigenstates
in this region are less complex and do not fulfill the ETH [58]. Best agreement with GOE
predictions can therefore be expected near the center of the spectrum at α ≈ dH/2 with the
highest density of states.

For smaller WBB (Figure 4b–d), the Shanon entropy reveals a significantly diminished
complexity of the eigenstates indicated by a reduced Smax and, at the same time, drastically
increased state-to-state fluctuations. Probing the generic features of the wavefunctions, we
will use the dependence of the scaled Shannon entropy

S̄ = Smax(WBB)/SGOE (16)

as an alternative wavefunction-based measure of quantum chaoticity complementing the
Brody parameter γ as spectral measure. Numerically, we determine Smax by averaging
over small intervals of energy and calculating the maximum of the resulting smooth curve.
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Figure 4. Distribution of Shannon entropies (Equation (15)) as a measure of the complexity of
eigenstates of the system for different WBB, (a) WBB = 1, (b) WBB = 0.3, (c) WBB = 0.1, and
(d) WBB = 0.05. The horizontal lines mark the value SGOE ≈ ln 0.48dH expected for the GOE
ensemble. All other parameters as in Figure 2.

Empirically, we find that the dependence of the Brody parameter γ, i.e., the degree of
quantum chaoticity on the interaction parameter of the bath particles, γ(WBB) (Figure 5)
can be accurately approximated by

γ(WBB) ≈ γ0 tanh(WBB/W0
BB) (17)

with γ0 = 0.88 and W0
BB = 0.15. While a monotonic increase is intuitively expected, the

origin of this particularly simple functional form remains to be understood. Remarkably, the
evolutions of γ and S̄ as a function of WBB closely mirror each other, thereby representing
two independent measures of the degree of quantum chaoticity during the transition from
integrability to chaos. Overall, the agreement between γ and S̄ is very good. Residual
differences can be viewed as a measure for the residual uncertainty in the quantitative
determination of the degree of the eigenstate quantum chaoticity.
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Figure 5. The Brody parameter γ (Equation (12)) or scaled Shannon entropy S̄ (Equation (16), left
y-axis) as a function of WBB. The error bars for γ correspond to the standard deviation by comparison
between the fits to P(s) with fits to

∫ s
0 ds′P(s′), and the black line corresponds to a fit to a tanh

function γ(WBB) ≈ γ0 tanh(WBB/W0
BB) with the parameters γ0 = 0.88 and W0

BB = 0.15. The error
bars in S̄ reflect the width of S in Figure 4 and correspond to the scaled standard deviation around
Smax. Error of the fit to the Brody distribution as measured by the square root of the χ2 function
(Equation (14)) (gray line and right y-axis).

4. The Reduced Density Matrix of the Impurity

The impurity embedded in the Fermi–Hubbard system serves as a “thermometer”,
i.e., as a sensitive probe of the thermal state of the interacting many-body system. We
aim at exploring the emergence of thermal properties of the impurity when the entire
(subsystem and bath) system is in a given pure and stationary eigenstate of Ĥ with energy
Eα and vanishing state entropy (or von Neumann entropy SvN = 0). Such an isolated
large quantum system can be viewed as the limiting case of the quantum microcanonical
ensemble where the width of the energy shell ∆E vanishes, i.e., ∆E → 0. Unlike other
approaches, it does not invoke any coarse-graining over a macroscopically small but finite
width of the energy shell nor any random interactions. For such a quantum system without
any a priori built-in statistical randomness, we pose the following question: Starting
from a given isolated eigenstate of the entire system, under which conditions will the
reduced density matrix of the impurity correspond to a canonical density matrix, i.e., the
thermometer will be accurately represented by a Gibbs ensemble or, for short, be in a
Gibbs state? If such a thermal state emerges, what will be its temperature T, or its inverse
temperature β = 1/kBT? We refer to this process as emergence of a thermal equilibrium
state rather than the frequently used term “thermalization” as the latter (implicitly) implies
a time-dependent approach to an equilibrium state starting from an out-of-equilibrium
(statistical or pure) initial state that represents a coherent superposition of different energy
eigenstates. We neither invoke any ensemble average over states from the microcanonical
energy shell of finite thickness ∆E nor do we invoke wave packet dynamics of a non-
stationary state of the entire system.

For finite isolated systems, in particular, systems with a bounded spectrum such as the
present Fermi–Hubbard model, the extraction of proper thermodynamic (or thermostatic)
variables from the microcanonical ensemble requires special care. As has been recently
demonstrated [95,96], the alternative definitions of the entropy used as the fundamental
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thermodynamic potential for the microcanonical ensemble yield, in general, inequivalent
results. The standard definition [97] attributed to Boltzmann

SBoltzmann = kB ln Ω(E) = kB ln N′(E), (18)

with Ω(E) the DOS of the entire closed system, implies an inverse temperature

βBoltzmann(E) =
1
kB

∂SBoltzmann(E)

∂E
=

∂ ln Ω(E)

∂E
=

Ω′(E)

Ω(E)
=

N′′(E)

N′(E)
, (19)

that may violate certain thermodynamic relations for mesoscopic systems with a bounded
spectrum [95,96]. As shown more than 100 years ago [97,98], the Gibbs entropy defined by

SGibbs = kB ln N(E) (20)

results in an inverse temperature

βGibbs(E) =
∂ ln N(E)

∂E
=

N′(E)

N(E)
=

Ω(E)

N(E)
(21)

that is free of such inconsistencies. From Equations (19) and (21), it follows that the two
inverse temperature definitions are interrelated through the specific heat C [95]

βBoltzmann = (1 − kB/C)βGibbs (22)

with C = (∂TGibbs/∂E)−1 and TGibbs = β−1
Gibbs/kB. Only for systems with a small spe-

cific heat of the order of kB or smaller, differences between βBoltzmann and βGibbs become
noticeable. This is in particular the case for systems with a bounded spectrum. While
βBoltzmann(E) features negative values as soon as the density of states Ω(E) = N′(E) de-
creases (Equation (19)), βGibbs(E) remains always positive semi-definite (Equation (21)).
Figure 6 presents a comparison between βGibbs and βBoltzmann for the present Fermi–Hubbard
model with an impurity where we have applied the microcanonical thermodynamic re-
lations for βBoltzmann and βGibbs (Equations (19) and (21)) to the numerically determined
spectral data (Figure 1) of the entire system over a wide range of energies E. The two
inverse temperatures closely follow each other in parallel with βGibbs shifted upwards
relative to βBoltzmann as long as Ω′(E) > 0. For larger E when βBoltzmann turns negative, the
discrepancies increase as βGibbs remains positive for all E.

Alternatively, the entire system can be assigned an inverse temperature βc by treating
the system as a canonical ensemble. Accordingly, the energy E can be expressed in terms of
the canonical expectation value

E =
Tr
[

Ĥe−βc Ĥ
]

Tr
[

e−βc Ĥ
] =

∂ ln Zc

∂βc
, (23)

where Zc = Tr
[

exp (−βcĤ)
]

is the canonical partition function and Ĥ is the Hamiltonian
of the entire system (see Equation (1)). For a given E, Equation (23) yields an implicit
relation for βc also shown in Figure 6. Obviously, for this finite system, βc is close to
βBoltzmann. In the thermodynamic limit, we would expect βc = βBoltzmann. In spite of
the fact that the size of our system is still far from the thermodynamic limit (N → ∞),
the agreement between different thermodynamic ensembles is already remarkably close.
Deviations appear primarily near the tails of the density of states and are larger in the
region of negative βBoltzmann where the DOS decreases rather than increases with E.
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Figure 6. The inverse temperature as a function of the energy of the entire system predicted by the
microcanonical Boltzmann entropy (Equation (18), solid black) and the Gibbs entropy (Equation (20),
blue) as well as the canonical expectation value (Equation (23), dashed black). The energy is restricted
to the interval [Emin, Epeak + EFWHM/2, ] with Emin the lower bound where the DOS of the entire
system is ≥15% of its peak value at Epeak, and EFWHM the full-width-at-half-maximum of the DOS.
Bath–bath interaction strength WBB = 1 and impurity–bath interaction WIB = 1 (see Figure 1b).

The conceptually interesting question now arises which of these temperatures, if
any, will be imprinted on the impurity upon an exact calculation of its reduced density
matrix by tracing out all bath degrees of freedom from a given single exact eigenstate of
a the isolated many-body system, and without invoking any a priori assumption of the
microcanonical ensemble.

To address this question, we start from the density operator for any pure energy
eigenstate |ψα〉 of the entire system given by the projector |ψα〉〈ψα|. Consequently, the
reduced density matrix (RDM) of the impurity follows from tracing out all bath degrees
of freedom,

D
(I)
α = TrNB [|ψα〉〈ψα|], (24)

which will, in general, depend on the parent state |ψα〉 it is derived from. We explore now

the generic properties of D
(I)
α independent of the particular parent state. Specifically, we

investigate whether a given D
(I)
α emerging from an individual eigenstate |ψα〉 approaches a

canonical density matrix. To this end, we diagonalize the RDM

D
(I)
α =

Ms

∑
m=1

nm,α|ηm,α〉〈ηm,α|, (25)

yielding natural orbitals |ηm,α〉 with natural occupation numbers nm,α [99]. We emphasize

that within the present approach, the RDMs D
(I)
α and their eigenvalues, the occupation

numbers nm,α, which characterize the thermal state, are a priori uniquely determined
and not influenced by the choice of any (approximate) basis. Compared to previous
investigations, this is one distinguishing feature of the present study of the thermal state
emerging from an isolated deterministic many-body system. RDMs have been previously
employed in studies of disordered fermionic systems [100–102].

Canonicity is reached when nm,α is given by the Boltzmann factor e−βǫ
(I)
m,α with ǫ

(I)
m,α

the expectation value of the Hamilton operator HI of the impurity alone evaluated in

the basis of natural orbitals, ǫ
(I)
m,α = 〈ηm,α|ĤI|ηm,α〉, which, in turn, should be close to
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the eigenstates of ĤI. Moreover, the resulting value for β extracted from the fit to the
exponential distribution allows the identification of the inverse temperature uniquely
characterizing the thermal distribution.

For a finite-size system with an impurity and a bath with an order of magnitude of
10 particles and finite impurity–bath coupling, the residual interaction of the impurity
with the bath is not negligible and should therefore be included to improve the numerical
accuracy. We account for the residual impurity–bath interaction on the level of the mean-
field (MF) or Hartree approximation [14]. Accordingly, the energies ǫ(I) of the impurity
appearing in the Boltzmann factor include a correction term

ǭ
(I)
m,α = 〈ηm,α|ĤI + Ŵ

(IB)
MF,α|ηm,α〉, (26)

where the MF interaction operator in site-representation reads

W(IB)
MF,α(j) = WIB ρB,α(j) (27)

with
ρB,α(j) = 〈j|TrNB−1,I[|Ψα〉〈Ψα|]|j〉 (28)

the reduced one-body density of residual bath particles at the site j when the entire system
is in state |ψα〉. In Equation (28), the partial trace over all but one (NB − 1) bath particles
and the impurity (I) is denoted by TrNB−1,I. The energy fluctuations

∆ǭ
(I)
m,α =

√

〈ηm,α|(ĤI + Ŵ
(IB)
MF,α)

2|ηm,α〉 − ǭ
(I)2
m,α (29)

provide a measure for the proximity of the natural orbitals of the RDM to the eigenstates of
the (perturbed) single-particle Hamilton operator of the subsystem, ĤI,eff = ĤI + Ŵ(IB)

MF,α.
The energy fluctuations (Equation (29)) vanish only when the natural orbitals |ηm,α〉 with
which the matrix elements in Equation (29) are evaluated do coincide with the eigenstates
of ĤI,eff. Therefore, the variance ∆ǭ(I)

m,α can serve as a distance measure of the natural
orbitals from eigenstates of the impurity Hamiltonian operator. The MF correction in
Equation (27) follows from the Liouville–von Neumann equation for the reduced system
where the interaction with the bath consists of the MF term and a collision operator. The
collision operator describes the correlations between the impurity and the bath particles
and contains the so-called two-particle (subsystem–bath) cumulant ∆12. We numerically
monitor the validity of the MF approximation through the magnitude of the two-particle
correlation energy determined by ∆12. Consistently, we find that for all many-particle
states |ψα〉 which reduce to a near-canonical RDM for the impurity, the correlation energy
is negligible compared to the MF energy thereby justifying Equation (26). Of course, in the
limit of weak impurity–bath coupling, the MF correction (Equation (27)) becomes negligible
as well.

A representative example for the spectrum of the impurity RDM, i.e., the occupation
number distribution of natural orbitals of the impurity RDM emerging from a single energy
eigenstate of the entire system with state index α = 4364 (with α sorted by energy) and
energy eigenvalue Eα = −2.396 lying on the tail of the DOS with positive β for WBB = 1, is
shown in Figure 7.

Indeed, a Boltzmann distribution ∝ e−βǭ
(I)
m,α characterizing the canonical density matrix

is observed. Moreover, the fit to an exponential yields β ≈ 0.58 in close agreement
with βBoltzmann = 0.58 predicted by Equation (19) for the inverse temperature within the
microcanonical ensemble (see also Figure 6) and reproduces the distribution of occupation
numbers very well. It also agrees with βc predicted by Equation (23) where the entire
system is treated as a canonical ensemble. We note that the Boltzmann-like decay of
the diagonal elements would remain qualitatively unchanged when neglecting the MF
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correction in Equation (26) but the fit to β would deteriorate. Thus, from the reduction of
state α = 4364, we have verified that a canonical density matrix emerges.
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Figure 7. The occupation numbers nm,α of the natural orbitals as a function of their energies ǭm,α

(Equation (26)) for the eigenstate number α = 4364 of the total system with energy Eα ≈ −2.396
and WBB = 1 (Ms = 15, NB = 7). The impurity–bath coupling strength is WIB = 1. The horizontal
error bars indicate the fluctuations ∆ǭm,α (Equation (29)). The blue solid line corresponds to the best
exponential fit yielding the exponent β ≈ 0.58 in agreement with βBoltzmann deduced for this state
from Equation (19). The inset shows the same plot on a logarithmic scale.

On a conceptual level, the present results confirm the analysis by Dunkel and Hilbert [95]
who showed that the recently observed experimental single-particle population distribution
in an isolated finite cold-atom system [22] is governed by βBoltzmann. Thus, the canonical
density matrix of a small system emerging from tracing out bath variables is characterized
by the inverse Boltzmann temperature βBoltzmann rather than by βGibbs. Consequently,
level inversion in a small system in thermal contact with a bath, in particular, spin sys-
tems [103,104], can be properly characterized by negative βBoltzmann. The point to be noted
is that while βBoltzmann describes the canonical density matrix, the use of βGibbs is required
for consistency in thermodynamic relations such as the Carnot efficiency [95,96]. In the
following, we present the numerical results for the canonical density matrix of the impurity
in terms of βBoltzmann which we denote, from now on, for notational simplicity by β. We
point out that β can be straightforwardly transformed into βGibbs using Equation (22) and
that none of the conclusions to be drawn in the following are altered by this transformation.

5. Eigenstate Canonicity and Degree of Quantum Chaoticity

The demonstration of the emergence of a canonical density matrix from a particular
eigenstate |ψα〉 (α = 4364) of the entire system invites now the following questions: Is
the reduction to a canonical density matrix generic, i.e., will it emerge for almost all |ψα〉?
Is this appearance related to the quantum chaos present in the underlying many-body
system? On a more quantitative footing: For how many of the eigenstates will a canonical
density matrix emerge and does this number depend on the degree of quantum chaos of
the system?

We explore these questions by determining the fraction of many-body eigenstates
reducing to a canonical density matrix of the impurity, referred to in the following as
eigenstate canonicity, as a function of the exact total energy Eα for the complete set of
eigenstates α of the entire system and for varying bath–bath interaction WBB. The cor-
responding degree of quantum chaoticity of the entire system is measured by either the
Brody parameter (Equation (12)) or the Shannon entropy (Equation (16)). Striking dif-
ferences in the approach to the thermal state with inverse temperature β appear which
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are controlled by the Brody parameter γ (or Shannon entropy S̄): At WBB = 1, when the
system is chaotic as indicated by a Brody parameter γ ≈ 0.9 (or scaled Shannon entropy
S̄ = 0.9), a thermal distribution with a well-defined inverse temperature β, consistent
with the (micro)canonical ensemble prediction (Equations (19) and (23)), emerges for an
overwhelming fraction of states with the exception of states in the tails of the spectrum
where the DOS is strongly suppressed (Figure 8a). The large deviations in the tails are
consistent with the corresponding deviations of S̄ in the same spectral region (Figure 4a).
With decreasing WBB and, correspondingly, decreasing γ or S̄, an increasing fraction of
states yields values of β that are far from the thermal ensemble prediction. Moreover, the
quality of the fit to a canonical density matrix measured by the variance of ∆β and indicated
by the color coding of Figure 8 drastically deteriorates. In other words, for a significant
fraction of states, the emerging RDMs do not conform with the constraints of a canonical
density matrix.

In order to quantify the decomposition of the Hilbert space into the subspace of states
|ψα〉 whose reduction to the subsystem yields a canonical density matrix and into the
complement whose reduction fails to yield such a thermal state, we introduce a threshold
for the variance of the inverse temperature ∆βth above which we consider the eigenstate
canonicity to be failing. We then calculate for all states |ψα〉 the fraction of emerging
canonical density matrices satisfying ∆β ≤ ∆βth. Of course, the resulting fraction of states
will depend on the precise value of ∆βth chosen. We have determined these fractions for
thresholds ranging from ∆βth = 5 × 10−3 to 1.5 × 10−2. Changes of the fractions due to
variation of ∆βth are indicated by the vertical error bars in Figure 9. An unambiguous
trend of a monotonic increase of the fraction of canonical density matrices with chaoticity
is emerging, obviously unaffected by the choice of ∆βth. This fraction representing Gibbs
states, denoted in the following by G, monotonically increases with quantum chaoticity
as parameterized by either the Brody parameter γ, G(γ), or alternatively by the scaled
Shannon entropy, G(S̄) (Figure 9). Since γ and S̄ both increase monotonically with the
bath interaction WBB (see Figure 5), this implies also a monotonic relationship G(WBB). The
conceptually important observation emerging from Figure 9 is that the degree of canonicity
of the RDM, G(γ), undergoes a continuous transition from the quantum-integrable (γ → 0)
to the quantum-chaotic limit (γ → 1). The strength of level repulsion in the NNLS
parameterized by γ directly determines the probability of finding the RDM of the impurity
represented by a Gibbs ensemble.

The approach of the RDM of the impurity to the Gibbs ensemble

DGibbs
α =

1
Zc,α

e
−βα

(

ĤI+Ŵ
(IB)
MF,α

)

, (30)

with Zc,α = Tr[e
−βα

(

ĤI+W
(IB)
MF,α

)

] can be also directly observed in the spatial site representa-
tion (j1, j2) of the RDM of the impurity (Figure 10b).

We illustrate the RDM in the site representation for two energetically nearest-neighbor
states (α = 13,637 and α = 13,638) when the system is in the transition regime between
integrable and non-integrable (in the present case, WBB = 0.1). We quantify the approach
to DGibbs

α through the density matrix site correlation function

Cα(∆j) =
Ms−∆j

∑
j=1

〈j|D(I)
α |j + ∆j〉, (31)

where 〈j|D(I)
α |j′〉 is the RDM of the impurity (Equation (24)) in the site basis. While the

state α = 13,638 results in a nearly diagonal RDM in the site basis (Figure 10a) with
rapidly decaying site correlations closely following the prediction for a Gibbs ensemble
(Equation (30)), the adjacent state α = 13,637 yields a RDM with significant off-diagonal
entries, extended site correlations, and strong deviations from Equation (30). Thus, the
emergence of a thermal density matrix in the transition regime between quantum integra-
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bility and quantum chaos displays strong state-to-state fluctuations and is not a smooth
function of the energy Eα.

Figure 8. The inverse Boltzmann temperature βα of the impurity as a function of energy Eα for
the eigenstates of the entire system as obtained from fits to the RDM of the impurity for varying
interaction strengths WBB, (a) WBB = 1 with γ ≈ 0.9, (b) WBB = 0.3 with γ ≈ 0.8, (c) WBB = 0.1 with
γ ≈ 0.5 and (d) WBB = 0.05 with γ ≈ 0.3. The color bar on the right-hand side represents the variance
of βα, ∆βα, obtained from the fit. Variances above ∆β > 0.05 are shown in red. The lines correspond
to β(E) obtained from the microcanonical ensemble Equation (19) (solid) and the canonical ensemble
Equation (23) (dashed), respectively. Other parameters are Ms = 15, NB = 7, WIB = 1.
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Figure 9. The fraction of canonical density matrices G obtained for the RDM of the impurity as a
function of the Brody parameter γ (lower horizontal axis, dots) or as a function of the scaled Shannon
entropy S̄ (upper horizontal axis, triangles). The dots are color-coded by the interaction strength WBB

between the bath particles. Horizontal error bars for γ indicate the uncertainty in the extraction of the
Brody parameter, horizontal error bars in S̄ indicate the standard deviation of the Shannon entropy
(see Figure 5). The vertical error bars give the variation of G under variation of the threshold ∆β.
Other parameters are Ms = 15, NB = 7, and WIB = 1.
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Figure 10. Site representation of the impurity RDM, 〈j2|D(I)
α |j1〉, resulting from the reduction of two

adjacent states (a) α = 13,638 and (b) α = 13,637 of the entire system. In (c), we compare the site
correlation function Cα(∆j) (Equation (31)) for these two states with the prediction for the ideal Gibbs
state (Equation (30)) (black open circles). The system is in the transition regime between quantum
integrable and quantum chaotic (WBB = 0.1). Other parameters are Ms = 15, NB = 7, WIB = 1.

As quantitative measure for the distance of a given RDM from the Gibbs ensemble,
we use the trace-class norm

∆Dα = ||D(I)
α − DGibbs

α ||1 (32)

with ||M||1 = Tr
√

M† M the largest of the Schatten p-norms (p = 1). For hermitian positive-
semidefinite matrices of unit trace, the Schatten 1-norm is bounded by 0 ≤ ||M1 − M2||1 ≤ 2.
We observe for RDMs derived from all eigenstates of the entire system (Figure 11) an
overall reduction of distances ∆Dα from a canonical density matrix with increasing WBB.
For WBB = 1 (Figure 11a) in the (near) quantum chaotic limit, the vast majority of impurity
RDMs have a distance of .0.15 from an ideal Gibbs ensemble (apart from those reduced
from many-body states in the tail regions of the spectrum with low DOS). The distribution
of ∆Dα mirrors the distribution of Shannon entropies (Figure 4). We note that for the
present finite quantum system, we find that the distance measured by the Schatten 1-norm
has a lower bound of ∆Dα & 0.05. As the Schatten 1-norm is sensitive to small deviations in
both diagonal and off-diagonal elements, these deviations are due to residual fluctuations
(Equation (29), Figure 7) of the natural orbitals of the impurity which are expected to
vanish in the thermodynamic limit N → ∞. Indeed, plotting the value of the smallest
distance (∆Dα)min as a function of the dimension of the Hilbert space of the system dH
for three numerically feasible system sizes indicates that the minimal distance vanishes in
the thermodynamic limit as d−1/3

H (inset Figure 11a). With decreasing WBB, e.g., WBB = 0.1
in Figure 11b, the mean distance of RDMs from a Gibbs state significantly increases and,
moreover, the spread becomes much larger reflecting, again, the behavior of the Shannon
entropy (Figure 4c).
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Figure 11. Distribution of distances ∆Dα (Equation (32)) from the (ideal) Gibbs state of the impurity
density matrices reduced from the eigenstates |ψα〉 of the large system with energy Eα. Shown are
only those states with variance ∆βα < 0.01. The points are color-coded by the Shannon entropy of
their parent state |ψα〉. (a) Near the quantum chaotic limit (WBB = 1); (b) in the transition regime
between quantum integrability and quantum chaos (WBB = 0.1). The dashed horizontal line in (a)
marks the minimal distance (∆Dα)min plotted in the inset of (a) as a function of the dimension of the
Hilbert space dH for WBB = 1. Other parameters are Ms = 15, NB = 7, WIB = 1.

The emergence of canonical density matrices, i.e., of Gibbs states for almost all |ψα〉 in
the quantum chaotic limit (γ ≃ 1 or S̄ ≃ 1) can be viewed as a rather specific manifestation
and extension of the ETH [5–8]. The local observable in this case is the RDM of the impurity,

D
(I)
α , itself. Its diagonal elements are, indeed, a smooth function of the total energy Eα

as predicted by ETH but now, more specifically, Boltzmann-distributed ∝ e−βα ǭ
(I)
m,α over

impurity states with the inverse temperature imprinted by Eα. The present analysis covers,
in addition, also the transition regime between quantum integrability and quantum chaos
(0 < γ < 1) where, in general, the ETH does not apply. A canonical density matrix may
still emerge but now only for a decreasing fraction of eigenstates of the finite large system.
The size of this fraction G is predicted by the degree of quantum chaoticity as measured by
the Brody parameter γ or Shannon entropy S̄ (Figure 9).

The direct relation between the emergence of the canonical density matrix for a small
subsystem from eigenstate reduction and the quantum chaoticity of the large system
it is embedded in, established here for a finite quantum system, raises the conceptual
question as to the extension of this connection to the thermodynamic (N → ∞) limit.
Clearly, this question cannot be conclusively addressed by the present method of exact
diagonalization. Nevertheless, we can provide evidence to this effect by exploring the
scaling with system size still within computational reach. We first establish that the degree
of quantum chaoticity as measured by the Brody parameter γ (or the Shannon entropy
S̄) indeed increases with system size at fixed strength of the interaction WBB that breaks
quantum integrability (Figure 12).
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Figure 12. Variation of the Brody parameter γ characterizing the transition from quantum integrability
to quantum chaos as a function of the bath–bath interaction WBB breaking quantum integrability
shown for different system sizes. The impurity–bath interaction is WIB = 1.

We vary the system size by increasing the total number of sites while keeping the
system at (approximate) half-filling of bath particles. The corresponding Hilbert space
increases from dH = 22,308 (Ms = 13, NB = 6) to dH = 96,525 (Ms = 15, NB = 7). The
observed increase of quantum chaoticity with system size is qualitatively in line with
properties of classical chaos: In a mixed phase space with surviving local regular structures
such as tori, their influence on phase space dynamics is rapidly diminishing with increasing
phase space dimension a prominent example of which is Arnold diffusion [3,4]. This
increase of quantum chaoticity with system size at fixed interaction strength turns out to be
key for the emergence of a universal, i.e., (nearly) system-size-independent, interrelation
between the fraction of canonical eigenstates and the degree of quantum chaoticity. Both
the Brody parameter γ as well as the fraction of density matrices complying with the Gibbs
ensemble increase with system size at fixed bath interaction strength. As a consequence, a
near universal, i.e., size-independent, relation G(γ) between the fraction of (approximate)
Gibbs states and the degree of quantum chaos as measured by γ emerges (Figure 13).

The data for different combinations of values of WBB and Ms fall on the same curve. A
very similar relation would emerge for G(S̄) as a function of the scaled Shannon entropy.
We have thus established the remarkable feature that the fraction of canonical eigenstates,
i.e., the likelihood that a subsystem is in a Gibbs state when the large but finite system is in
a pure energy eigenstate with zero von Neumann entropy is controlled and can be tuned
by γ (or S̄) and, in turn, by the degree of level repulsion in the quantum many-body system
which is controlled by γ.
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Figure 13. Universal relation between the fraction G of RDMs of the impurity converging to a Gibbs
state and the Brody parameter γ for different combinations of system sizes (Ms and NB) and bath
interaction strengths WBB. Impurity–bath interaction in all systems considered is WIB = 1. Dashed
line to guide the eye.

6. Conclusions and Outlook

In this work, we have explored the emergence of a thermal state (or Gibbs ensemble) of
a small (sub)system in contact with a bath when the combined large but finite deterministic
quantum system is isolated and in a well-defined energy eigenstate. As prototypical
case, we have considered an impurity embedded in an interacting spin-polarized Fermi–
Hubbard many-body bath which facilitates a clear-cut subsystem–bath decomposition and
a tunable transition of the entire system from quantum integrability to quantum chaos. By
tracing out the bath degrees of freedom, we have investigated how many of the resulting
reduced density matrices of the subsystem represent a canonical density matrix. We have
shown that the probability for finding a canonical density matrix monotonically increases
with the degree of quantum chaos. The degree of quantum chaos is identified here by both
the energy-level statistics as well as by the randomness of the eigenstates as measured by
the Shannon entropy. The likelihood for the emergence of thermal states is thus found to be
controlled by the degree of quantum chaoticity as parameterized by the Brody parameter
or the Shannon entropy. Even though our simulations are limited to finite-size systems,
the present results for varying system sizes suggest that the relation between the fraction
of eigenstates of the isolated many-body system whose reduction to a small subsystem
yields a reduced canonical density matrix and the degree of quantum chaoticity is universal,
i.e., size-independent.

Each many-body eigenstate represents the fine-grained version of the energy shell
of the microcanonical ensemble of the entire impurity–bath system. This connection
between the fraction of canonical eigenstates and quantum chaoticity thus offers a direct
quantum analogue to the role of classical chaos which Boltzmann invoked in deducing
the classical (micro-)canonical ensemble. One can view this as an example of classical–
quantum correspondence to this cornerstone of the foundation of statistical mechanics. The
statistical ensemble properties can already emerge for isolated energy eigenstates without
invoking any randomness, e.g., coarse-graining over a macroscopically thin energy shell or
superposition of many eigenstates of the isolated large system as frequently employed. The
emergence of statistical ensemble properties from the reduction of pure states was already
early anticipated by Landau and Lifshitz [42] and later related to quantum chaos [14]. The
present study establishes a direct quantitative relationship between the degree of canonicity
and the degree of quantum chaos, in particular, also covering the transition regime from
quantum integrability to quantum chaos.

The present results are also expected to have implications for the topical issue of ther-
malization in finite quantum systems [24,26,27,30]. In this paper, we intentionally avoided
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this notion and, instead, focused on thermal equilibrium states as we deduce the canonical
density matrix from stationary energy eigenstates bypassing any explicit time dependence
of the dynamics. Thermalization of an initial non-equilibrium state is, by contrast, a fun-
damental probe of the time evolution of quantum many-body systems. Up to now, one
primary focus has been on quantum quenches, the relaxation of out-off equilibrium initial
states. Their time evolution has typically shown a transition from an exponential decay
for weakly perturbed many-body systems to a Gaussian decay in the strongly coupled
limit, however, without an unambiguous correlation to quantum chaos [105,106]. The
Shannon entropy was found to linearly increase with time before reaching saturation [107].
For disordered systems, an initial rapid decay followed by a slow power-law relaxation
of occupation numbers has been observed [66,102]. The extension of the present study
to a non-equilibrium initial state of a deterministic many-body system would yield the
time evolution of the entire one-body RDM, and its eigenvalues and eigenvectors, the time
dependence of which remains to be explored. Moreover, the dependence of the relaxation
dynamics of the RDM on the choice of the initial state for systems in the transition regime
between quantum integrability and quantum chaos (i.e., for intermediate values of the
Brody parameter γ) is of particular interest. Most importantly, will quantum chaos play an
analogous role for the process of mixing as classical chaos does for classical non-equilibrium
dynamics and the relaxation to equilibrium? The origin and properties of such “quantum
mixing” remain a widely open question.
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