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Abstract
We study the statistics of thermal energy transfer in the nonequilibrium (two-bath) spin-bosonmodel.
This quantummany-body impurity system serves as a canonicalmodel for quantum energy transport.
Ourmethodmakes use of theMajorana fermion representation for the spin operators, in combination
with theKeldysh nonequilibriumGreenʼs function approach.We derive an analytical expression for
the cumulant generating function of themodel in the steady state limit, and show that it satisfies the
Gallavotti–Cohen fluctuation symmetry.We obtain analytical expressions for the heat current and its
noise, valid beyond the sequential and the co-tunneling regimes. Our results satisfy the quantum
mechanical bound for heat current in interacting nanojunctions. Results are comparedwith other
approximate theories, as well aswith a non-interactingmodel, a fully harmonic thermal junction.

1. Introduction

The spin-boson (SB)model comprises a two-state system (spin) interactingwith a dissipative thermal
environment, a collection of harmonicmodes. It is one of the (conceptually) simplest, yet non-trivialmodels in
the theory of open quantum systems [1, 2]. Themodel has found diverse applications in condensed phases
physics, chemical dynamics, and quantumoptics. In particular, it offers a rich platform for studying complex
physical processes such as dissipative spin-dynamics [1], charge and energy transfer phenomena in condensed
phases [1, 3], Kondo physics [2], and decoherence dynamics of superconducting qubits [2, 4]. In such
applications, the spin system can represent donor-acceptor charge states, amagnetic impurity [1], or a truncated
harmonic spectrum,mimicking an anharmonic oscillator [5, 6]. The bosonic bathmay stand for a collection of
lattice phonons, electromagneticmodes, bound electron–hole pairs, and other composite bosonic
excitations [1, 2].

Beyond questions over quantumdecoherence, dissipation, and thermalization, which can be addressed by
the ‘canonical’ SBmodel, the two-bath, nonequilibrium spin-boson (NESB)model has been put forward as a
minimalmodel for exploring the fundamentals of thermal energy transfer in anharmonic nano-junctions [5].
When the two reservoirs aremaintained at different temperatures—away from linear response (LR)—nonlinear
functionality such as the diode effect can develop in the junction [5–9].More generally, theNESBmodel serves
as a building block for addressing fundamental and practical challenges in thermal conduction in nanoscale gaps
[10–14], quantumheat engine operation [14–18], molecular conduction junctions [12, 19–23] and nano-scale
energy conversion devices [21, 24].

From the theoretical perspective, theNESBmodel is an extremely rich platform for studying
nonequilibriumquantumphysics. One is interested in studying its transport characteristics, including transient
dynamics and steady state properties, while covering different regimes: low-to-high temperatures, weak-to-
strong system-bath coupling, adiabatic-to-nonadiabatic spin dynamics, with orwithout a (magnetic) spin
biasingfield, fromLR to the far from equilibrium regime. This challenge could be tackled by extending open
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quantum systemmethodologies, previously developed to treat the dissipative dynamics of the (traditional) SB
model, to treat themore complicated, nonequilibrium, two-bath version.

Among the techniques developed to study the characteristics of the thermal heat current in theNESBmodel
we recount perturbative quantummaster equation tools: Redfield equation [5–7, 9, 25], the noninteracting blip
approximation (NIBA) [6, 7, 26], as well as Keldysh nonequilibriumGreenʼs function (NEGF)methods [27, 28].
Furthermore, efforts have beenmade to go beyond the standard Born–Markov limit, and include higher order
co-tunneling processes [29]. In addition, to interpolate between theweak-coupling Born–Markov limit and
strong-couplingNIBA—with general spectral functions—a nonequilibriumpolaron-transformed Redfield
equationmethod has been recently developed in [30, 31], capturing the full-counting statistics (FCS) of the SB
model in the high temperature limit.

Computational studies had further established the non-monotonic behavior of the heat current with the
spin-bath coupling energy, including studies based on themulti-layermulti-configurationHartree approach
[32], the iterative influence functional path integral technique (in the spin-fermion representation) [11, 33],
Monte Carlo simulations [10], and the hierarchical equation ofmotion [34, 35].

Beyond the analysis of the thermal conductance or the energy current, in small systems the fluctuations of
the current are expected to reveal plethora of information, such as current correlations to all orders [36, 37]. In
fact, rather than focusing on the thermal conductance, it ismore demanding yet highly profitable to pursue the
probability distribution ( )P Qt of the transferred energyQwithin a certain interval of time t. Thismeasure is also
known as FCS in the context of electron transport. Obtaining the FCS for interacting systems is a highly
desirable, yet formidable task. The FCS of theNESBmodel has been analyzed so far in two different limits: (i) in
the sequential tunneling limit i.e., to the lowest order in the system-bath tunneling strength, by employing the
Redfield-type quantummaster equation approach [17, 26], and (ii) in the strong coupling and/or high
temperature regime, followingNIBA-type quantummaster equations [26, 38]. A theory interpolating these two
limits was presented in [30]. However, these studies stillmiss the low temperature limit [28].

In this paper, we use the Schwinger–KeldyshNEGF approach [39, 40] in combinationwith theMajorana
fermion representation for the system-spin operators, and obtain the cumulant generating function (CGF) of
theNESBmodel beyond theweak spin-bath coupling limit. The crucial impetus to introduce theMajorana
representation is that in the fermion representationwe are able to useWickʼs theorem, thus obtain relevant
nonequilibrium spin–spin correlation functions—while including the counting parameter.Moreover, in the
Majorana-fermion representation the system-bath couplingHamiltonian transforms into a relatively simple
form, unlike other well known transformations such as the Jordan–Wigner transformation or the polaron
transformation.Our results go beyond the sequential and co-tunneling limits. On the other hand, while our
result is valid beyond the strict weak-coupling limit, itmisses the strong-coupling behavior as received e.g. in
[10, 11, 30, 32, 41] using theNIBAmethod and numerically exact tools. This is because our approach, while
relying on an exact expression for the energy current, is limited to the lowest non-zero order of the nonlinear
self-energy. Themain outcome of our study is an analytic expression for the FCS of theNESBmodel, capturing
quantum effects, interactions, and far-from-equilibrium function.

The paper is organized as follows.We introduce theNESBmodel and theMajorana fermion representation
in section 2. In section 3, we present ourmain results for theCGF, followed by a discussion over different limits
and numerical examples.We further compare our expressions to previous theories on theNESBmodel, and to
the harmonic oscillator (HO)-junctionmodel.We present numerical simulations in Sec. 4, and conclude in Sec.
5. The derivation of theCGF is explained in details in the appendix.

2.Model

TheNESBmodel comprises a two-state (spin) system coupled to two bosonic reservoirs n =( )L R, , which are
maintained at different temperatures. The generic formof the full Hamiltonian is

 
 å åw

s s w s l= +
D

+ + +
n

n n n
n

n n n( ) ( )† †H b b b b
2 2

. 1z x
j

j j j z
j

j j j
0

,
, , ,

,
, , ,

Here, s =( )i x y z, ,i are different components of the Paulimatrix, w0 andΔ represents level detuning and the
hopping between the spin states, respectively. n

†bj, ( nbj, ) is the creation (annihilation) operator of the jth phonon
mode in the ν-th reservoir. The last termdescribes the system-bath coupling termwith l nj, as the coupling
strength. For simplicity, we focus here on the unbiased casewith degenerate spin levels (w = 00 ). Performing a
unitary transformation, given by s s= +( )U x z

1

2
, the transformedHamiltonian reads
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Weare interested here in obtaining the steady state energy current and its statistics beyond theweak system-bath
coupling limit. Unlike the Redfieldmaster equation technique, which captures only resonant energy transfer
processes due to its underlyingweak coupling approximation [6], the KeldyshNEGFmethod offers a well
established procedure so as to treat the system-bath interaction in a systematic-perturbative way [39, 40].
However, the validity ofWickʼs theorem is a crucial requirement for practicing themethod.Due to the lack of
standard bosonic or fermionic commutation relations for spin operators, theNEGF approach is in fact
unsuitable to be used in the spin representation of theNESBmodel. However this problem can be avoided by
mapping the impurity spin to fermions, using theMajorana-fermion representation [28, 42, 43].

Explicitly, the spin operators can be expressed as s h h= - ´
  i

2
, i.e.,

s h h s h h s h h= - = - = - ( )i , i , i . 3x y z y z x z x y

Majorana fermions’ operators satisfy the anti commutation relation, h h =a b{ }, 0, for a b¹ , h =a 12 , and

unlike theDirac fermions, they are real h h=a a
† . Therefore, these fermions can be constructed in terms of

ordinaryDirac fermions ( f, g) and their conjugates as

h h h= + = - = +( ) ( ) ( ) ( )† † †f f f f g g, i , . 4x y z

In this context, it is important to introduce the so-called copy-switching operator

t h h h= - ( )i , 5x x y z

in terms of which theMajorana fermions can be expressed as s t h=a ax . Note that tx commutes with all
Majorana fermion operators and therefore is a constant ofmotion. Also, t = 1x

2 .With the help of this operator,
the spin–spin correlator reduces to correlator involving twoMajorana fermions

s s t h t h h há ¢ ñ = á ¢ ¢ ñ = á ¢ ña b a b a b( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t . 6x x

In thismixedMajorana–Dirac representation, the full Hamiltonian reads


å w h=

D
- + + - +

n
n n n¯ ( ) ( ) ( ) ( )† † †H f f b b f f B B

2
1 2 , 7

j
j j j z L R

,
, ,

where lº å +n n n n( )†B b bj j j j, , , is a νbath operator coupled to the spin system.Note that in this representation,
the system-bath coupling term is no longer given in a bilinear form.For later use,we also identify the components
of theHamiltonian as = + + +H̄ H H H HS L R SB, with


å w h=

D
- = = - +n n n n( ) ( ) ( ) ( )† † †H f f H b b H f f B B

2
1 2 , , . 8S

j
j j j z L R, , , SB

3. FCS:main results

3.1.Working expressions for the FCS
The complete information over the energy transport statistics can be obtained from the so-calledCGF,  x( ), for
heat exchange.We begin by defining the energy current operator as the rate of change of energy in one of the

reservoirs, say L, andwrite down the energy current as = -( ) ( )I tL
H t

t

d

d
L
H

. Belowwe interchangeably refer to this

quantity as ‘energy current’ or ‘heat current’. The operators are written in theHeisenberg picture, and they
evolvewith respect to the totalHamiltonian H̄ in equation (7). Therefore, the total energy change in the L solid
within the time interval =t 00 to t, where ( )t t0 is the initial (final) observation time, is given by the integrated
current

ò= ¢ ¢ = -
=

( ) ( ) ( ) ( ) ( )Q t t I t t H H t, d 0 . 9L
t

t

L L L
H

0
00

Following this definition, wewrite down the characteristic function  x( ) based on the two-timemeasurement
protocol [36, 37],


 òx t t= á ñ = á ñ = -x x

x x
x t-

-
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )( ) † ( )U t U t T He e , 0 , 0 , exp

i
d , 10H H t

c
c

i i
2 2 SB

L L
H

Here, ξ is the ‘counting-field’, keeping track of the net amount of energy transferred from the solid L to the spin.
á ñ... represents an averagewith respect to the total densitymatrix at the initial time, r ( )0T .We assume a
factorized initial state, r r r r= Ä Ä( ) ( ) ( ) ( )0 0 0 0T L R S , with reservoirs prepared at a canonical state with
inverse temperature b =n n

-T 1
=k ,B 1 r =n

b
n

b- -n n n n( ) [ ]0 e Tr eH H , and an arbitrary state for the spin system
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r ( )0S .We also use the definition,

º =- - -( ) ( )¯ ¯U t, 0 e e e e , 11p
pH Ht pH H ti i i iL L p

for the countingfield-dependent unitary evolution.Here, x= p 2 corresponds to the forward and backward
evolution branches. Note that due to themeasurement protocol, themodifiedHamiltonian H̄p acquires a phase
in the system-bath coupling term,modifying only the left-bath operators,


å w h=

D
- + + - +

n
n n n¯ ( ) ( ) ( ) ( )† † †H f f b b f f B B

2
1 2 . 12p

j
j j j z L

p
R

,
, , ,

Here,   l= å +w w-( )†B b be eL
p

j j L j L
p

j L
p

, ,
i

,
ij L j L, , is themodified bath operator, dressed by the counting field. In

the second line of equation (10), the operators arewritten in the interaction picturewith respect to the non-
interacting part of theHamiltonian + +H H HS L R.Tc is the contour-ordered operator which orders operators
according to their contour time; earlier contour-time operators are placed to the right of later-time terms. In the
long time limit, theCGF is defined as

  åx x
x

º =
¥ ¥ =

¥

( ) ( ) ( )
!

⟪ ⟫ ( )
t t n

Qlim
1

ln lim
1 i

. 13
t t n

n
n

1

Here, ⟪ ⟫Qn represent cumulants. Specifically, the second cumulant is = á ñ - á ñ⟪ ⟫Q Q Q2 2 2. Taking
derivatives of the CGFwith respect to ξ immediately hands over the current and its higher orderfluctuations, or
cumulants. However, instead of workingwith theCGFdirectly, one canmanipulate the so-called generalized
current, defined as




x
x
x

º
¶
¶

( ) ( )
( )

( )
i

, 14

by following the nonequilibrium version of Feynman–Hellman theorem first introduced byGogolin et al [44]—
in the context of counting statistics for charge transport.

Using theNEGFwith countingfields as developed in [45], an expression for the generalized energy current
can be formally organized as

   òx
w
p

w w w w w= P S - P Sx w x w

-¥

¥ < > - > <( ) [ ˜ ( ) ( ) ˜ ( ) ( ) ] ( )d

4
e e . 15xx L xx L

i i

When x = 0, this expression reduces to the standardMeir–Wingreen (MW) formula [46] for heat current [27].
The key advantage in treating the generalized current (15), rather than theCGF itself (13), lies in the fact that the
problem can be treatedwith the diagrammaticNEGF technique as developed for the originalMW formula
without countingfields [47–50]. In the present case, we follow similar steps—for a counting-field dependent
(dressed)Hamiltonian.

In equation (15), the symbol tilde represents that operators within theGreenʼs functions evolve with the
dressed (countingfield-dependent)Hamiltonian H̄p given in equation (12). wP< >˜ ( )xx

,
are the Fourier

transformed lesser and greater components of the spin–spin correlators, namely,

s s

s s

P ¢ = - á ¢ ñ

P ¢ = - á ¢ ñ

x

x

<

>

˜ ( ) ( ) ( )
˜ ( ) ( ) ( ) ( )

t t t t

t t t t

, i ,

, i . 16

xx x x

xx x x

wSn
< >( ), are the self-energy components emerging due to the coupling of the spin to the solids, responsible for

transferring energy in and out of the system,

w w w
w w w

S =- G
S =- G

n n n

n n n

<

>

( ) ( ) ( )
( ) ¯ ( ) ( ) ( )

n

n

i ,

i . 17

Here, w wº +n n¯ ( ) [ ( )]n n1 with w = -n
b w -n( ) ( )n e 1 1 as the Bose–Einstein distribution function and

b =n nT1 is the inverse temperature. w p l d w wG = å -n n( ) ( )2 j j j,
2 is the spectral function for the ν reservoir.

Note that wewrite integrals covering negative frequencies, by extending the range of the spectral functionwhile
satisfying w wG = -G -n n( ) ( ).

3.2.Main results

To receive the generalized current, our primary objective is to obtain the components wP< >˜ ( )xx . These terms are
obtained using theNEGFmethod following afirst order perturbation expansionwith respect to the interaction
of the bathwith the spin.We summarize here the central results; details are given in the appendix.

The lesser and greater components are obtained to the lowest non-zero order in the nonlinear self-energy.
They are given as

4
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Here w x w w x= +( ) ( ) ( )M C A, 4 ,2 includes the two terms,

 
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If we eliminate the counting parameter, x = 0, wP< >( )xx provides the imaginary components of the response
function wP ( )xx

R ,

w
w w

w w w w w w
P = -

D G + G
- D + G + + G +

[ ( )] ( ( ) ( ))
( ) [ ( )( ( )) ( )( ( ))]

( )
n n

Im
2

1 2 1 2
, 22xx

R L L

L L R R

2

2 2 2 2 2

matching the results of [28].

Using these expressions, the CGF for theNESBmodel,  òx x xº ¢ ¢
x

( ) ( )dSB 0
, is obtained as

 
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p w
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with the temperature-dependent transmission function

 w
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=
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SB

2
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This expression is validwith an arbitrary form for the spectral function wGn ( ). TheCGF further satisfies the
steady state Gallavotti–Cohen fluctuation symmetry,  x x b b= - + -( ) ( ( ))i R L [51]. Equation (23)
constitutes themain result of ourwork.

The cumulants of the energy flux can be readily obtained by taking derivatives of the CGFwith respect to the
countingfield ξ. For example, the heat current and its noise are given by

 
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x

w
p w

w w wá ñ º
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The result for the current agreeswith thederivation in [28]—onceweorganize our expressions, ò w  ´
-¥

¥
d ... 2

ò w
¥

d
0

...

The procedure followed in ourNEGF-Majorana perturbative formalismdoes not offer a transparent-
intuitive understanding over the nature of the approximations involved.However, the CGF in equation (23),
and specifically, the energy current in equation (25), allow us to identify processes that are taken into account
here: The energy current expression in equation (25) involves an integral over frequencies, with the integrand
comprising the difference between Bose–Einstein occupation functions, weighted by an effective temperature-
dependent transmission function.Our perturbative technique thus takes into account tunneling processes
beyond the resonant (so called sequential tunneling) limit, and beyond the low-temperature co-tunneling limit
(see next section formore details). However, our result does not accommodate inelastic,multi-phonon
scattering processes—with combination ofmodes crossing the junction (e.g., onemode comes in, twomodes
go out). Such high-order scattering processes are expected to be important when the system-bath coupling is
strong, and at high temperatures, whenmanymodes in the baths are active.Multi-phonon processes are
accounted for e.g. in the polaronicmethod [6, 7, 26, 30, 31, 38] and in numerically exact simulations
[10, 32, 34, 35]. In this respect, we note that the polaron-transformedRedfield equationmethod [30, 31]nicely
interpolates between theweak-coupling (Born–markov) and the strong coupling (NIBA) regimes. However, this
treatment does not take include coherent co-tunneling processes.

Why dowe capture here scattering effects beyond a low-order system-bath-perturbative quantummaster
equation, as described e.g. in [5, 6]? Our starting point in the present calculation is equation (15), the generalized
MWformula, which is an exact expression [27]. Our perturbative approach is aimed to calculate the ingredients

5
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in theMWformula, which are the various components of spin–spin correlation functions. In contrast, in e.g.
[5, 6], we develop a low-order perturbative expression for the energy current itself, resulting in a lower
performance. In fact, a similar frameworkwas followed in [27]: the exactMWexpression for the energy current
was used, but spin–spin correlation functions were evaluated in the limit of weak system-bath coupling—albeit
in the so-called Redfield limit.While thisNEGF-Redfield calculation shows substantially improved results over
low-orderQME techniques [5, 6], themethod suffers from a fundamentalflaw (common to such treatments), as
it does not conserve energy. In this regard, it is important tomention that our perturbative technique does not
violate energy conservation, andwe furthermanage to organize theCGF in an elegant analytical form,
equation (23), which pinpoints on the scattering effects contained in our treatment.

In the next subsection, we discuss interesting limits of the general results.

3.3. Special limits
Incoherent sequential tunneling.When the system-bath coupling is weak and the reservoirs’ temperatures are
high, G Dn n  T , the above generating function reduces to the result obtained from the Redfield quantum
master equation approach [26], when directly employing the Born–Markov approximation.Wenowderive this
result. Following equation (23), the generalized current can be simplified to
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. To the lowest order G( )O L R,
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integrand can be approximated by

x D  D{ }( ) ( )M
i

2
, . 28

By employing the residue theorem, the integration in equation (27) results in  x = x
x

¶

¶
( ) ( )

( )
M

SB
weak 1

2 i
and the
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This expressionmatches the result obtained in [26]. This CGF also respects thefluctuation symmetry. It
immediately yields the heat current in theweak coupling limit [5]

á ñ = D
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Co-tunneling. At low temperatures, G Dn n T , the process of sequential tunneling is exponentially
suppressed since incoming phonons are off-resonance—with frequencies below the spin energy gap, w D .
The dominant contribution to the current and higher order fluctuations thus comes from coherent two-phonon
co-tunneling processes. In this limit, the transmission function of equation (24) is given by
 w w w w~ G G D ( ) ( ) ( )T T, , 4 1L R L RSB

co 2 4 . By approximating + ~( )x xln 1 for small x, we reduce theCGF
of equation (23) to
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withfluctuation symmetry being satisfied.Here, wh, the upper limit in the integral, should be determined by the
smaller energy scale: temperature, or the cutoff frequency of the baths. The co-tunneling (co) heat current then
becomes

òp
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This expressionwas previously achieved in twoways: (i) by using a systematic perturbative treatment [25], and
(ii)workingwith the so-called Born–Oppenheimer approach for heat exchange [52], by assuming slow bath and
a fast (high frequency) impurity. In the case of anOhmic bath, w wG µn ( ) s with s=1, the heat current scales as
á ñ µ -I T TL RSB

co 4 4, thus the thermal conductance scales withT3, in agreementwith numerically exact simulations
on theNESBmodel [10]. Aswell, in this low temperature limit theNESB junction behaves similarly to a fully
harmonic junction, as we discuss in section 3.4.

Note that in contrast to theCGF received in equations (23) and (29), the CGF in the co-tunneling limit is
symmetricwith respect to wGn ( ). Therefore, in this limit the systemdoes not support the thermal rectification

effect.Moreover, in this limit the cumulants = x
x x

¶
¶ =

( )
( )

Cn
i 0

n

n
SB scale as µ DC 1n 2, whereas in the sequential

tunneling limit cumulants grow as µ DCn n.
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3.4. Comparison between theNESBmodel and theHO junction
In theHO junction, a singleHOof frequency w0, replaces the spin impurity of theNESBmodel, equation (1).
The resultingHamiltonian is fully harmonic, and it can be readily solved exactly to yield theCGF [53, 54]
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w
p
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¥
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ln 1 e 1 e 1 . 33L R R LHO HO

i i

Surprisingly, ourfinal expression for theCGF of theNESBmodel, equation (23), is very similar to this
expression. The following differences showup: (i) in theHOcase the transmission function does not depend on
the temperatures of the baths,

 w
w w w
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Further, (ii) there is a crucial sign difference in this CGF as compared to  x( )SB in equation (23). This sign
difference reflects on the nonlinear nature of the spin. A similar sign-difference between harmonic and spin
impurity nanojunctions has been observed in vibrationally-assisted electron conducting junctions [21, 24]. The
above expression immediately provides the Landauer formula for the heat current,
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In theweak coupling limit, theCGF of theHOmodel reduces to the standard result obtained by a loworder
QME [17, 26]
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The heat current then reduces to the familiar result,
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The co-tunneling limit ismore subtle, andwe exemplify it nowwhen calculating the current.We break the
transmission function (34) into two contributions (leaving for amoment the numerator)
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Assuming the hierarchy of energies  wGn n T 0, we note that the function w w w-[ ( ) ( )]n nL R changes slowly
at the vicinity of w0, in the regimewhere the functions  w( )e o, have significantweight. Therefore, the integral
(35) over the odd component (approximately) cancels out, and the current is solely determined by the even
term,  w w~( ) 1e 0

2, to yield

òp
w w

w w
w

w wá ñ =
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d . 40L R

L RHO
co

0 0
2

h

This result reproduces exactly the behavior of theNESBmodel in the corresponding limit, equation (32). This
correspondence is not surprising: at low temperatures (smaller than the energy spacing in the quantum
impurity) and atweak system-bath coupling, theNESB and theHO junctions should behave rather similarly.
For a comprehensive analysis of the harmonic-mode thermal junction, see [55].

3.5. Steady state population and a bound onheat current
Besides transport properties, we use theMajorana formalism and calculate the steady state population of the
ground and excited states in the eigenbasis of the spin. This can be obtained by calculating sá ñz in the
transformed basis (2), given as,
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The function w( )C is defined in equation (21). In theweak coupling limit, we receive the same result as obtained
in [6],
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The population of the states are s= - á ñ( )p 1g z
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2
and s= + á ñ( )p 1e z
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2
.

Recently, a rigorous quantummechanical bound for the heat current in interacting systems has been
derived, valid at the high temperature—yet in the quantum regime [56].We now confirm that the heat current
derived in ourwork, equation (25), does not violate the bound. This further affirms the validity and usefulness of
our result.

In the following analysis wemake use of the inequality  w w w- -[ ( ) ( )] ( ) ( )n n T T0 L R L R for w > 0
and >T TL R. Aswell, we recall on the positivity of the transmission function  w >( ) 0SB . Furthermore, we
assume anOhmic spectral density function for the reservoirs, w g w nG = =n n( ) L R, , (see [56] for a detailed
discussion over different spectral functions). Putting these pieces together, we conclude that the heat current of
equation (25) satisfies the following inequality
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which preciselymatches with the bound organized in [56] for theNESBmodel.We conclude that our expression
for the current thus does not violate a fundamental bound, unlike the prediction of the RedfieldQME, see [56].

4.Numerical results

Infigures 1–3, we present simulations demonstrating the behavior of the heat current á ñI and the second
cumulant á ñS , based on equation (23), as a function of the system-bath coupling, averaged temperature, and
temperature difference.We compare our results to two differentmethods: the Born–Markov limit, as originally
proposed in [5], referred to as ‘Redfield’, and the high-temperatureNIBA equations as developed originally in
the samework, referred to as ‘NIBA’. For amore recent discussion over these two limits, see [11].We focus on
the following questions regarding the operation of theNESBnanojunction:

Figure 1. Scaled current á ñ DI T (dashed lines) and noise á ñS T2 a
2 (symbols) for theNESBmodel as a function of coupling strength

an , employing different theoretical schemes: Redfield (blue),Majorana (red) andNIBA (purple). (a)Results close to equilibrium,
D =T T0.05 a. (b)Calculations far-from-equilibrium,D =T Ta, demonstrating deviations from thefluctuation–dissipation theorem.
Parameters areD = =T 1a , =  DT T T 2L R a, , w = D10c , and a a=L R.
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(i)Howare the current and noise influenced by the system-bath coupling strength (figures 1 and 3)?
(ii)What are the signatures of operating the system far from equilibrium, as opposed to the LR regime (figures 1
and 3)? (iii)What is the temperature dependence of the heat current (figure 2)? (iv)Thermal diode effect: Canwe
enhance this effect if we go beyond theweak spin-bath coupling (figure 3)? (v)What is the relation between the
Majorana-based treatment and other techniques (figures 1–3)?

Figure 2.Temperature dependence of the heat current and noise for the SB junction (Redfield,Majorana andNIBA) and theHO
model. (a1)–(b1)Weak coupling limit a =n 0.01. (a2)–(b2) Intermediate coupling, a =n 0.1. Parameters areD = 1,D =T T0.2 a

and =  DT T T 2L R a, , w = D10c .

Figure 3.Thermal diode effect. (a)Rectification ratio, = á = = ñ á = = ñ( ) ∣ ( ) ∣R I T T I T T1.5, 0.5 0.5, 1.5L R L R , as a function of the
asymmetry in the system-bath coupling, a aR L, whilefixing aL. (b)Noise á ñS for forward and backward operations as a function of
the junction asymmetry using a = 0.1L . Parameters areD = 1,D =T Ta, ( )T T,L R =(1.5, 0.5) and (0.5, 1.5), w = D10c .
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Figure 1 displays the current and the noise as obtained from equations (25) and (26), as well as theweak
coupling (Redfield) limit [11, 26] and theNIBA approximation [11, 41]. Here and below, we use an ohmic
spectral function for the baths with an exponential cutoff, w pa wG =n n

w w-( ) e c . In accordwith previous results
(for the heat current [11]), we find that Redfield equation dramatically overestimates the current and the noise
beyondweak coupling, in comparison to the (more accurate)Majorana andNIBA results. TheMajorana
treatment shows a saturation of the current and its noise at largeα, but underNIBA these quantities quickly
decay beyond a ~ 0.15. Since the temperature is rather high,D = Ta, with = +( )T T T 2a L R , we expect the
NIBA to be rather accurate here for the ohmic spectral function [10, 11, 41]. Note that ourNIBA treatment
[11, 26, 41] fails at weak coupling for e.g., a bath characterized by a super-ohmic spectral function, as discussed in
[30, 31]. To remedy this problem, a polaron-transformedRedfield equationmethodwas developed in [30],
properly capturing both theweak and strong coupling regimes.

We also confirm infigure 1 panel (a) that in LR, the conductance, á ñ DI TLR , is proportional to the thermal
noise in the junction, in accordwith theGreen–Kubo relation,

á ñ = á ñ D ( )S T I T2 . 44aeq
2

LR

Far from equilibrium (see panel (b)), we obviously observe violations of the above relation. However, it is
interesting to note that the current and noise still follow a similar functional formwithin the three different
methods.

Figure 2 displays the temperature dependence of the current and the noise.We study both theNESBmodel
and a fully harmonic junction, equations (35) and (36), andmake the following observations: (i) comparing the
current in theHOandNESBnanojunctions, anharmonicity, as realized here by the spin, leads to the
suppression of the heat current. (ii)Atweak coupling, a =n 0.01, see panels (a1)–(b1), theMajorana and
Redfield approaches for theNESBmodel agree. Results fromNIBA agree here as well—at high temperatures, as
expected. (iii)Beyond the strict weak coupling limit, a =n 0.1, see panels (a2)–(b2), the Redfield formalism
leads to unphysical high currents, even beyond the harmonic limit. (iv)At high temperatures and forweak-
intermediate couplings,Majorana andNIBA agree, showing the saturation of the current with temperature, see
panel (a2) [12].

Next, we discuss the operation of theNESB as a heat diode, as suggested in [5]. Tomaterialize this effect, it is
necessary to (i) include anharmonic interactions, and (ii) introduce a spatial asymmetry [8]. TheNESBmodel
naturally includes an anharmonic potential.We break here the left–right symmetry by using different coupling
strengths at the contacts, a a¹L R. Infigure 3, we analyze the ratio between the forward and backward currents
aswe switch the temperatures of the two baths, º á ñ á ñ∣ ( ) ∣ ∣ ( ) ∣R I T T I T T, ,L R R L .We set a = 0.01L , 0.1, and
modify aR over a broad range of values.

Based on equation (30), we can readily confirm that under the Redfield formalism the rectification ratioR
does not depend on the absolute value ofα (given the linearity of the current withα), only on the ratio a aR L. In
contrast, theMajorana treatment, which goes beyondweak coupling, reveals that the diode effect is enhanced as
we increase the coupling strength itself. This result points out to the crucial role ofmany-body interactions in
realizing the diode function.

The thermal noise of a rectifying junction is displayed infigure 3(b). For a a > 2R L , the Redfield approach,
which predicts a lower rectification ratio than theMajorana treatment, suffers from a higher level of noise.

5. Conclusions

Wehave studied the statistics of energy transfer in theNESBmodel. By combiningMajorana fermion
representation for the spin operators with the Schwinger–KeldyshGreenʼs function approach, wewere able to
derive an analytical expression for theCGFof themodel. This function, whichwe confirmed here to satisfy the
fluctuation symmetry for heat exchange, hands over the complete information over the energy statistics in the
steady state limit. Our approach goes beyond theweak-coupling (Redfield) and the co-tunneling limits.
Surprisingly, the CGFof theNESBmodel has a similar structure as in theHO junction, besides sign differences
and the appearance of a temperature-dependent transmission function—in theNESBmodel. These differences
reflect on the nonlinear nature of the SB system.

Wehave presented numerical examples for the heat current and its noise, and compared our results to
previously-developed quantummaster equation approaches, namely Redfield and theNIBA.Wehave further
demonstrated that a heat diode becomesmore effective aswe increase the system-bath coupling. Additional
improvements to theMajorana formulation presented here could bemade, e.g., by developing a polaron-
transformedMajorana fermion-NEGF approach [57]. Futureworkwill be focused on simulating counting
statistics in theNESBmodel beyond perturbative approaches [35, 58, 59].
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Appendix. Derivation of theCGFwithin anNEGF approach

Our goal is to evaluate the generalized current, equation (15). It is given in terms of the (dressed) lesserP ¢<˜ ( )t t,xx

= s s- á ¢ ñx( ) ( )t ti x x and greater s sP ¢ = - á ¢ ñx
>˜ ( ) ( ) ( )t t t t, ixx x x correlators. Keeping inmind the nonequilibrium

setup, we introduce the ξ-dependent contour-orderedGreenʼs function for the sx component,
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Recall that á ñx means that operators are evolvingwith the dressedHamiltonian of equation (12). Here t t¢, are
the contour times.When projecting to real time ¢( )t t, , we receive four different components, namely, time-
ordered (t), anti-time ordered (¯)t , lesser <( ) and greater >( )Greenʼs functions.

To evaluate the greater and lesser components, we use theMajorana fermion representation of spin
operators, equations (3)–(6).We identify our objective of interest by t t t t- á + ¢ + ¢ ñx( ( ) ( ))( ( ) ( ))† †T f f f fi c .
We defineGreenʼs function for theDirac f fermion in the Bogolyubov–Nambu representation i.e., Y º ( )†f f, T
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Wenext construct aDyson (kinetic) equation for t t¢Y˜̂ ( )G , following the dressedHamiltonian in equation (12)
treating the nonlinear part of theHamiltonian, h- +( ) ( )†f f B Bz L

p
R , as a perturbation,
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TheGreenʼs functions of the ordinary fermion g and the reservoirs operators are calculated to the lowest

(noninteracting) order.We thuswrite the contour ordered version of the self-energy t tSY˜̂ ( ),1 2 as

t t l t t t t t tS ¢ = S ¢ + S ¢ ¢hY˜̂ ( ) ˆ ( ˜ ( ) ( )) ( ) ( )G, i , , , . A6L R

t t¢Yˆ ( )G ,,0 is theGreenʼs function corresponding to the the noninteracting part of theHamiltonian. It satisfies
the following differential equation in contour time
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where Î is 2×2 identitymatrix. In frequencydomain,weobtain the solution w w w= - D + DY
-ˆ ( ) (G diag , ,,0

1

w w- + D - - D), .
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andS S˜ ,L R are the bare Greenʼs functions for the Bosonic baths,

t t t t
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Recall that the operators of the left reservoirs are dressed by the additional ξ dependence, i.e., t = x-˜ ( ) ( )B B tL L
2

( x+ ( )B tL
2 ), when τ is on the upper (lower) branch.Given the perturbative nature of our treatment, the self-

energy contribution from the baths is additive.
To the lowest non-zero order, various components of the self-energy can be obtained analytically. Invoking

the steady state limit, wewrite down these components in frequency domain, given by the convolution of the
Greenʼs functions for the baths and theMajorana fermions. Following equation (A6), we get
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HereK is theKeldysh component, the sumof lesser andgreaterGreenʼs functions.The spectral functionof the
ordinary fermion, w w w pd wG = - =h h h( ) ( ( ) ( )) ( )G G 2r ai

2
, satisfies the regular sumrule ò wG =w

p h ( ) 1d

2
.We also

use the effectivefluctuation–dissipation relation i.e., w w=h h( ) ( )G hK w w w d w- µ =h h h( ( ) ( )) ( ) ( )G G h 0r a

where  w = +h
b w b w( ) ( ) ( )h tanh tanh

2 2
L R . Putting these pieces together,weobtain simplified expressions for the

self-energy components, expressed solely in termsof the reservoirs’ self-energies,

w l w w l wS = S S = - SY
> >

Y
< <˜ ( ) ˆ ˜ ( ) ˜ ( ) ˆ ˜ ( ) ( ), . A13X X

Wenext look at the time ordered and anti-time ordered components. These terms are ξ-independent, and they
satisfy the following relations

w w w w l w wS + S = S + S = S - SY Y Y
>

Y
<( ) ( ) ( ) ( ) ˆ ( ( ) ( )) ( )¯ , A14t t

X
r

X
a

òw w
l w

p
w w wS - S = S + =h hY Y( ) ( )

ˆ
( )( ( ) ( )) ( )¯ G G

i

2

d

2
0. A15t t

X
K r a

Toderive the last expression, we ignore the lamb shift part.We therefore find that

w w
l

w wS = S = - G + GY Y( ) ( )
ˆ

( ( ) ( )) ( )¯ i

2
, A16t t

L R

where w w wG = S - Sn n n( ) ( ( ) ( ))i r a describes the reservoir-subsystem coupling energy. Therefore, to the lowest

order in perturbation theory, the self-energySY˜̂ is fully determined by the reservoirʼs Greenʼs functions as given
by equations (A13) and (A16).

We can now solve equation (A5), by projecting it to real time then Fourier transforming it,

w w w

w w w w w

w w w w w

w w w w w

w w w w w

= - S

=

- D + G - G S -S

- G + D + G -S S

S -S - D - G G

-S S G + D - G

Y
-

Y
-

Y

< <

< <

> >

> >

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

˜̄ ( ) ¯ ( ) ˜̄ ( )

( ) ( ) ˜ ( ) ˜ ( )

( ) ( ) ˜ ( ) ˜ ( )

˜ ( ) ˜ ( ) ( ) ( )

˜ ( ) ˜ ( ) ( ) ( )

( )

G G

. A17

X X

X X

X X

X X

1
,0
1

i

2

i

2
i

2

i

2
i

2

i

2
i

2

i

2

Here, the symbol bar represents s=¯ ˆ̂A Az with s = - -ˆ̂ ( )diag 1, 1, 1, 1z , introduced so as to take into account
the appropriate signs for upper and lower branches of the contour. w w wG = G + G( ) ( ) ( )L R . Inverting this
matrix we obtain the lesser component
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
w

w x
w w w w

w w w w
=

+ D S - - D S

- - D S - D S
Y
<

< <

< <

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

˜ ( )
( )

( ) ˜ ( ) ( ) ˜ ( )
( ) ˜ ( ) ( ) ˜ ( )

( )G
1

,
, A18X X

X X

2 2 2

2 2 2

and the greater component


w

w x
w w w w

w w w w
= -

+ D S - - D S

- - D S - D S
Y
>

> >

> >

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

˜ ( )
( )

( ) ˜ ( ) ( ) ˜ ( )
( ) ˜ ( ) ( ) ˜ ( )

( )G
1

,
. A19X X

X X

2 2 2

2 2 2

 w x( ), is the determinant of thematrix, given as


 

w x w w w w w w w w w w
w w

= - D + G + + G + + G G
- + -x w x w-

( ) ( ) [( ( )( ( )) ( )( ( ))) ( ) ( ){ ( ) ¯ ( )
( ) ( ) ¯ ( )( )}]

( )

n n n n

n n

, 1 2 1 2 4

e 1 e 1 .
A20

L L R R L R L R

R L

2 2 2 2 2

i i

with w w= +n n¯ ( ) ( )n n1 . Using equation (A4), the lesser and greater components of spin–spin correlation
functions arefinally obtained as









w
w x

w w w w

w
w x

w w w w

P =-
D

G + G

P =-
D

G + G

x w

x w

<

> -

˜ ( )
( )

( ( ) ( ) ( ) ( ))

˜ ( )
( )

( ( ) ¯ ( ) ( ) ¯ ( )) ( )

n n

n n

4i

,
e ,

4i

,
e . A21

xx L L R R

xx L L R R

2
i

2
i

Substituting these expressions into the generalized current expression, equation (15), we receive




òx
w
p w w x x

w x=
D ¶

¶-¥

¥
( )

( ) ( )
[ ( )] ( )d

4

1

, i
, . A22

2

2

Manipulating it as  òx x x= ¢ ¢
x

( ) ( )d
0

, we get




òx
w
p w

w x
w x

=
D

=-¥

¥ ⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )d

4
ln

,

, 0
, A23

2

2

whichwe organize into ourmain result, equation (23).
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