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Abstract

We study the statistics of thermal energy transfer in the nonequilibrium (two-bath) spin-boson model.
This quantum many-body impurity system serves as a canonical model for quantum energy transport.
Our method makes use of the Majorana fermion representation for the spin operators, in combination
with the Keldysh nonequilibrium Green’s function approach. We derive an analytical expression for
the cumulant generating function of the model in the steady state limit, and show that it satisfies the
Gallavotti—-Cohen fluctuation symmetry. We obtain analytical expressions for the heat current and its
noise, valid beyond the sequential and the co-tunneling regimes. Our results satisfy the quantum
mechanical bound for heat current in interacting nanojunctions. Results are compared with other
approximate theories, as well as with a non-interacting model, a fully harmonic thermal junction.

1. Introduction

The spin-boson (SB) model comprises a two-state system (spin) interacting with a dissipative thermal
environment, a collection of harmonic modes. It is one of the (conceptually) simplest, yet non-trivial models in
the theory of open quantum systems [1, 2]. The model has found diverse applications in condensed phases
physics, chemical dynamics, and quantum optics. In particular, it offers a rich platform for studying complex
physical processes such as dissipative spin-dynamics [1], charge and energy transfer phenomena in condensed
phases [1, 3], Kondo physics [2], and decoherence dynamics of superconducting qubits [2, 4]. In such
applications, the spin system can represent donor-acceptor charge states, a magnetic impurity [1], or a truncated
harmonic spectrum, mimicking an anharmonic oscillator [5, 6]. The bosonic bath may stand for a collection of
lattice phonons, electromagnetic modes, bound electron—hole pairs, and other composite bosonic

excitations [1, 2].

Beyond questions over quantum decoherence, dissipation, and thermalization, which can be addressed by
the ‘canonical’ SB model, the two-bath, nonequilibrium spin-boson (NESB) model has been put forward as a
minimal model for exploring the fundamentals of thermal energy transfer in anharmonic nano-junctions [5].
When the two reservoirs are maintained at different temperatures—away from linear response (LR)—nonlinear
functionality such as the diode effect can develop in the junction [5-9]. More generally, the NESB model serves
as abuilding block for addressing fundamental and practical challenges in thermal conduction in nanoscale gaps
[10-14], quantum heat engine operation [14—18], molecular conduction junctions [12, 19—23] and nano-scale
energy conversion devices [21, 24].

From the theoretical perspective, the NESB model is an extremely rich platform for studying
nonequilibrium quantum physics. One is interested in studying its transport characteristics, including transient
dynamics and steady state properties, while covering different regimes: low-to-high temperatures, weak-to-
strong system-bath coupling, adiabatic-to-nonadiabatic spin dynamics, with or without a (magnetic) spin
biasing field, from LR to the far from equilibrium regime. This challenge could be tackled by extending open

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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quantum system methodologies, previously developed to treat the dissipative dynamics of the (traditional) SB
model, to treat the more complicated, nonequilibrium, two-bath version.

Among the techniques developed to study the characteristics of the thermal heat current in the NESB model
we recount perturbative quantum master equation tools: Redfield equation [5-7, 9, 25], the noninteracting blip
approximation (NIBA) [6, 7, 26], as well as Keldysh nonequilibrium Green’s function (NEGF) methods [27, 28].
Furthermore, efforts have been made to go beyond the standard Born—-Markov limit, and include higher order
co-tunneling processes [29]. In addition, to interpolate between the weak-coupling Born—Markov limit and
strong-coupling NIBA—with general spectral functions—a nonequilibrium polaron-transformed Redfield
equation method has been recently developed in [30, 31], capturing the full-counting statistics (FCS) of the SB
model in the high temperature limit.

Computational studies had further established the non-monotonic behavior of the heat current with the
spin-bath coupling energy, including studies based on the multi-layer multi-configuration Hartree approach
[32], the iterative influence functional path integral technique (in the spin-fermion representation) [11, 33],
Monte Carlo simulations [10], and the hierarchical equation of motion [34, 35].

Beyond the analysis of the thermal conductance or the energy current, in small systems the fluctuations of
the current are expected to reveal plethora of information, such as current correlations to all orders [36, 37]. In
fact, rather than focusing on the thermal conductance, it is more demanding yet highly profitable to pursue the
probability distribution B (Q) of the transferred energy Q within a certain interval of time ¢. This measure is also
known as FCS in the context of electron transport. Obtaining the FCS for interacting systems is a highly
desirable, yet formidable task. The FCS of the NESB model has been analyzed so far in two different limits: (i) in
the sequential tunneling limiti.e., to the lowest order in the system-bath tunneling strength, by employing the
Redfield-type quantum master equation approach [17, 26], and (ii) in the strong coupling and/or high
temperature regime, following NIBA-type quantum master equations [26, 38]. A theory interpolating these two
limits was presented in [30]. However, these studies still miss the low temperature limit [28].

In this paper, we use the Schwinger—Keldysh NEGF approach [39, 40] in combination with the Majorana
fermion representation for the system-spin operators, and obtain the cumulant generating function (CGF) of
the NESB model beyond the weak spin-bath coupling limit. The crucial impetus to introduce the Majorana
representation is that in the fermion representation we are able to use Wick’s theorem, thus obtain relevant
nonequilibrium spin—spin correlation functions—while including the counting parameter. Moreover, in the
Majorana-fermion representation the system-bath coupling Hamiltonian transforms into a relatively simple
form, unlike other well known transformations such as the Jordan—Wigner transformation or the polaron
transformation. Our results go beyond the sequential and co-tunneling limits. On the other hand, while our
result is valid beyond the strict weak-coupling limit, it misses the strong-coupling behavior as received e.g. in
[10,11, 30, 32,41] using the NIBA method and numerically exact tools. This is because our approach, while
relying on an exact expression for the energy current, is limited to the lowest non-zero order of the nonlinear
self-energy. The main outcome of our study is an analytic expression for the FCS of the NESB model, capturing
quantum effects, interactions, and far-from-equilibrium function.

The paper is organized as follows. We introduce the NESB model and the Majorana fermion representation
in section 2. In section 3, we present our main results for the CGF, followed by a discussion over different limits
and numerical examples. We further compare our expressions to previous theories on the NESB model, and to
the harmonic oscillator (HO)-junction model. We present numerical simulations in Sec. 4, and conclude in Sec.
5. The derivation of the CGF is explained in details in the appendix.

2. Model

The NESB model comprises a two-state (spin) system coupled to two bosonic reservoirs (v = L, R), which are
maintained at different temperatures. The generic form of the full Hamiltonian is

H= %O’z + %O’x + Zﬁwj’ybjﬁybj’y + oy Zh)\j,,/(bj,y + bj,y) (1)
Jsv

i

Here, 0; (i = x, y, z) are different components of the Pauli matrix, wy and A represents level detuning and the
hopping between the spin states, respectively. bj*’,, (bj,,,) is the creation (annihilation) operator of the jth phonon
mode in the v-th reservoir. The last term describes the system-bath coupling term with J; , as the coupling
strength. For simplicity, we focus here on the unbiased case with degenerate spin levels (wy = 0). Performinga
unitary transformation, givenby U = % (0 + 0,), the transformed Hamiltonian reads

2
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- hA
H = TO'Z —+ Ehwj)]/b;l/bj)y —+ oy Zﬁ)\j,u(bj,u + b;,y) )

v IV

We are interested here in obtaining the steady state energy current and its statistics beyond the weak system-bath
coupling limit. Unlike the Redfield master equation technique, which captures only resonant energy transfer
processes due to its underlying weak coupling approximation [6], the Keldysh NEGF method offers a well
established procedure so as to treat the system-bath interaction in a systematic-perturbative way [39, 40].
However, the validity of Wick’s theorem is a crucial requirement for practicing the method. Due to the lack of
standard bosonic or fermionic commutation relations for spin operators, the NEGF approach is in fact
unsuitable to be used in the spin representation of the NESB model. However this problem can be avoided by
mapping the impurity spin to fermions, using the Majorana-fermion representation [28, 42, 43].

Explicitly, the spin operators can be expressed as 6 = — %?] X 1,1.e.,

Oy = —in,n, oy = —in,n, o = —in, 3)

Majorana fermions’ operators satisfy the anti commutation relation, {,, 73} = 0,for o = 3, ni = l,and

unlike the Dirac fermions, they are real 1, = nl. Therefore, these fermions can be constructed in terms of
ordinary Dirac fermions ( f, ¢) and their conjugates as

ne=f+fD n,=i(fT =), n,=@g+gh (C))
In this context, it is important to introduce the so-called copy-switching operator
TX = _inxnynz’ (5)

in terms of which the Majorana fermions can be expressed as o, = 7,1, . Note that 7, commutes with all
Majorana fermion operators and therefore is a constant of motion. Also, 72 = 1. With the help of this operator,
the spin—spin correlator reduces to correlator involving two Majorana fermions

(o) ap(t")) = (T (O, (O T () 13(1")) = (1, (O1(1)). (6)

In this mixed Majorana—Dirac representation, the full Hamiltonian reads

~ hA
= - 1 =21+ Zﬁwjub;ybj,l/ + (f" = f)n, (BL + Bp), 7
v
where B, = ) i I (b + bj,y) is a vbath operator coupled to the spin system. Note that in this representation,

the system-bath coupling term is no longer given in a bilinear form. For later use, we also identify the components
ofthe Hamiltonianas H = Hs + H; + Hy + Hgg, with

hA .
Hs = B 1 -2f%), H,= Zﬁwj,ubj',,,bj,m Hsg = (f* = f)n, (BL + Bp). €))
j

3. FCS: main results

3.1. Working expressions for the FCS

The complete information over the energy transport statistics can be obtained from the so-called CGF, G(§), for
heat exchange. We begin by defining the energy current operator as the rate of change of energy in one of the
reservoirs, say L, and write down the energy currentas I (1) = — ng—i(t). Below we interchangeably refer to this
quantity as ‘energy current’ or ‘heat current’. The operators are written in the Heisenberg picture, and they
evolve with respect to the total Hamiltonian H in equation (7). Therefore, the total energy change in the L solid
within the time interval #, = 0 to f, where #, () is the initial (final) observation time, is given by the integrated

current

Qr(t, to) = ft

ty=

J @hde" = Hy (0) — H' (1) )

Following this definition, we write down the characteristic function Z(&) based on the two-time measurement
protocol [36, 37],

Z(8) = (M ) = (U, (¢, 0) U_ga(t, 0)), :<Tcexp[—% f H§1§T>(T)dr]>, (10)

Here, ¢ is the ‘counting-field’, keeping track of the net amount of energy transferred from the solid L to the spin.
(...) represents an average with respect to the total density matrix at the initial time, p;(0). We assume a
factorized initial state, p;(0) = p; (0) ® pr(0) ® pg(0), with reservoirs prepared ata canonical state with
inverse temperature 5, = T, ' kg_,, p,(0) = e %H /T, [e~ ], and an arbitrary state for the spin system

3
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ps(0). We also use the definition,
Up (t,0) = eiPH, o—iAt o—ipH; _ e—int/h, 11)

for the counting field-dependent unitary evolution. Here, p = ££/2 corresponds to the forward and backward
evolution branches. Note that due to the measurement protocol, the modified Hamiltonian H,, acquires a phase
in the system-bath coupling term, modifying only the left-bath operators,

Ay = 22 0= o)+ S b b+ (FF = 1), B + B (12
jv
Here, Bf = 2 hAj (b e iPhwie b]T’ L ePin) is the modified bath operator, dressed by the counting field. In
the second line of equation (10), the operators are written in the interaction picture with respect to the non-
interacting part of the Hamiltonian Hg + H; + Hy. T, is the contour-ordered operator which orders operators
according to their contour time; earlier contour-time operators are placed to the right of later-time terms. In the
long time limit, the CGF is defined as

G(6) = lim }ln 2(6) = lim % > “%«Q"». (13)
t—00 t—00 n=1 !

Here, { Q™) represent cumulants. Specifically, the second cumulantis {Q?) = (Q?) — (Q)%. Taking
derivatives of the CGF with respect to £ immediately hands over the current and its higher order fluctuations, or
cumulants. However, instead of working with the CGF directly, one can manipulate the so-called generalized
current, defined as

16 = 299, (14)
a(ig)
by following the nonequilibrium version of Feynman—Hellman theorem first introduced by Gogolin et al [44]—
in the context of counting statistics for charge transport.
Using the NEGF with counting fields as developed in [45], an expression for the generalized energy current
can be formally organized as

o= [ 2—“’ o [T (@) ST (@)e ¥ — T (@) S (w) el (15)
—0o0 4T

When ¢ = 0, this expression reduces to the standard Meir—Wingreen (MW) formula [46] for heat current [27].
The key advantage in treating the generalized current (15), rather than the CGF itself (13), lies in the fact that the
problem can be treated with the diagrammatic NEGF technique as developed for the original MW formula
without counting fields [47-50]. In the present case, we follow similar steps—for a counting-field dependent
(dressed) Hamiltonian.

In equation (15), the symbol tilde represents that operators within the Green’s functions evolve with the
dressed (counting field-dependent) Hamiltonian I-_Ip given in equation (12). f[;f(w) are the Fourier
transformed lesser and greater components of the spin—spin correlators, namely,

I (t, 1) = — i{ox (t) 0 (1)
ﬁ;x(t) t/) = i<Ux (t)o'x (t/) >£- (16)

Y57 (w) are the self-energy components emerging due to the coupling of the spin to the solids, responsible for
transferring energy in and out of the system,

Yo(w)=—1in,(w) L, (w),
Y (W) =—if, W) L w). (17)

Here, i, (w) = [1 + n, (w)]with n, (w) = (e — 1)~!as the Bose—Einstein distribution function and
B, = 1/7T, isthe inverse temperature. I}, (w) = 2wy )\i,, 0 (w — wj)is the spectral function for the v reservoir.

Note that we write integrals covering negative frequencies, by extending the range of the spectral function while
satisfying I, (w) = —I,(—w).

3.2. Main results
To receive the generalized current, our primary objective is to obtain the components l:[jx/>(w). These terms are
obtained using the NEGF method following a first order perturbation expansion with respect to the interaction
of the bath with the spin. We summarize here the central results; details are given in the appendix.

The lesser and greater components are obtained to the lowest non-zero order in the nonlinear self-energy.
They are given as
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M) = - Di;A,z 5 (T (w)ng (w)elth + Tr(w)ng (w)), (18)
M. (w) = — 5 (L’z 5 (T (W) i (w)e ¥ + T (w) ig (w)), (19)

with
D(w, &) = (w? — A?)? + w>M (w, §). (20)

Here M (w, §) = C*(w) + 4 A(w, &) includes the two term:s,
C(w) =I1(W)[1 + 2n(W)] + Ir(W)[1 + 2ng (W)],
Aw, &) = I (W) Tr(w) [ () fig (W) (€™ — 1) + ng (w) 7 (w) (e ™ — D). (21)

If we eliminate the counting parameter, £ = 0, I15/”(w) provides the imaginary components of the response
function Hﬁx (w),

2N () + (W)

Im[IIR (w)] = — ; (22)
= (w? = A + W [T (W) + 2 (w)) + Tr(w)(1 + 2ng (W)
matching the results of [28].
Using these expressions, the CGF for the NESB model, Gsp(&) = j(; ¢ d¢’' Z(€'),1is obtained as
00 d AZ
Gos© = [ XSl + Tonws Tio Tl ()i (@)
—codm W
(e — 1) + ng (W) (w) (e — D]}, (23)
with the temperature-dependent transmission function
2
Tonws Tiy T) = 1) hw) (24)

(W? — A2 4+ W [T (W) + 21 (W) + Tr(w)(A + 2mg (W)

This expression is valid with an arbitrary form for the spectral function I, (w). The CGF further satisfies the
steady state Gallavotti-Cohen fluctuation symmetry, G(§) = G(—& + i(Br — (1)) [51]. Equation (23)
constitutes the main result of our work.

The cumulants of the energy flux can be readily obtained by taking derivatives of the CGF with respect to the
counting field £. For example, the heat current and its noise are given by

00 hA?
oy = 2528 I & I T T T U () = (@), (3)
0? < d
O h T J7 S (- Ty T ol @) — m@)?
+ Tsp(ws Tp, To) [ (W) iR (W) + ng (W) (w)] ). (26)

The result for the current agrees with the derivation in [28]—once we organize our expressions, f F dw.. > 2 x
— 00

f *dw ...
0
The procedure followed in our NEGF-Majorana perturbative formalism does not offer a transparent-

intuitive understanding over the nature of the approximations involved. However, the CGF in equation (23),
and specifically, the energy current in equation (25), allow us to identify processes that are taken into account
here: The energy current expression in equation (25) involves an integral over frequencies, with the integrand
comprising the difference between Bose—FEinstein occupation functions, weighted by an effective temperature-
dependent transmission function. Our perturbative technique thus takes into account tunneling processes
beyond the resonant (so called sequential tunneling) limit, and beyond the low-temperature co-tunneling limit
(see next section for more details). However, our result does not accommodate inelastic, multi-phonon
scattering processes— with combination of modes crossing the junction (e.g., one mode comes in, two modes
go out). Such high-order scattering processes are expected to be important when the system-bath coupling is
strong, and at high temperatures, when many modes in the baths are active. Multi-phonon processes are
accounted for e.g. in the polaronic method [6, 7, 26, 30, 31, 38] and in numerically exact simulations
[10, 32, 34, 35]. In this respect, we note that the polaron-transformed Redfield equation method [30, 31] nicely
interpolates between the weak-coupling (Born—markov) and the strong coupling (NIBA) regimes. However, this
treatment does not take include coherent co-tunneling processes.

Why do we capture here scattering effects beyond a low-order system-bath-perturbative quantum master
equation, as described e.g. in [5, 6]2 Our starting point in the present calculation is equation (15), the generalized
MW formula, which is an exact expression [27]. Our perturbative approach is aimed to calculate the ingredients

5
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in the MW formula, which are the various components of spin—spin correlation functions. In contrast, in e.g.
[5, 6], we develop alow-order perturbative expression for the energy current itself, resulting in a lower
performance. In fact, a similar framework was followed in [27]: the exact MW expression for the energy current
was used, but spin—spin correlation functions were evaluated in the limit of weak system-bath coupling—albeit
in the so-called Redfield limit. While this NEGF-Redfield calculation shows substantially improved results over
low-order QME techniques [5, 6], the method suffers from a fundamental flaw (common to such treatments), as
it does not conserve energy. In this regard, it is important to mention that our perturbative technique does not
violate energy conservation, and we further manage to organize the CGF in an elegant analytical form,
equation (23), which pinpoints on the scattering effects contained in our treatment.

In the next subsection, we discuss interesting limits of the general results.

3.3. Special limits

Incoherent sequential tunneling. When the system-bath coupling is weak and the reservoirs’ temperatures are
high, I, < A « T,, the above generating function reduces to the result obtained from the Redfield quantum
master equation approach [26], when directly employing the Born—-Markov approximation. We now derive this
result. Following equation (23), the generalized current can be simplified to

e d_(.d A% M/(W’ 5)
Isp(§) = [m 47 (W — A2 + WM (w, §) 7

where M'(w, &) = 01\;((12)6) . To thelowest order O (F%) r)> workingin thelimit [}, < A < T, the polesin the

integrand can be approximated by

i{A + %«/M(A, 3) } (28)
weak(g) _ lam

By employing the residue theorem, the integration in equation (27) results in Z g 2606

and the

generating function reduces to
1
G55 (©) = =2 (C(A) =M A, ). (29)

This expression matches the result obtained in [26]. This CGF also respects the fluctuation symmetry. It
immediately yields the heat current in the weak coupling limit [5]

[T (A TR(A) [ (A) — ng(A)]

(I = ha .
[TL(A)A + 20 (A)] + TR(A)(A + 21 (A))]

(30)

Co-tunneling. Atlow temperatures, I, < T, < A, the process of sequential tunneling is exponentially
suppressed since incoming phonons are off-resonance—with frequencies below the spin energy gap, w < A.
The dominant contribution to the current and higher order fluctuations thus comes from coherent two-phonon
co-tunneling processes. In this limit, the transmission function of equation (24) is given by

T 8w, Tp, Tr) ~ 4T (W) Tr(w)w?/At < 1. Byapproximating In(1 + x) ~ x for small x, we reduce the CGF
of equation (23) to

co 2 “h I (W) IR(w = i&hw = —iéhw
$©O == f dw Lf() (. () iR () (€87 — 1) + ng (W) 7L (w) (e~ M — 1), (31)
m Jo A

with fluctuation symmetry being satisfied. Here, wy, the upper limit in the integral, should be determined by the
smaller energy scale: temperature, or the cutoff frequency of the baths. The co-tunneling (co) heat current then
becomes

2 e I (@)Ir(w)

2

sy = — dwhw
7 Jo

[ (w) — ng(w)]. (32)

This expression was previously achieved in two ways: (i) by using a systematic perturbative treatment [25], and
(ii) working with the so-called Born—Oppenheimer approach for heat exchange [52], by assuming slow bath and
afast (high frequency) impurity. In the case of an Ohmic bath, I, (w) o w*® withs = 1, the heat current scales as
(I)$ oc Tf — Tp, thus the thermal conductance scales with T°, in agreement with numerically exact simulations
on the NESB model [10]. As well, in this low temperature limit the NESB junction behaves similarly to a fully
harmonic junction, as we discuss in section 3.4.

Note that in contrast to the CGF received in equations (23) and (29), the CGF in the co-tunneling limit is
symmetric with respect to I, (w). Therefore, in this limit the system does not support the thermal rectification

0"Gsp ()

s scaleas C" o< 1/, whereas in the sequential
a@ig)" =0

effect. Moreover, in this limit the cumulants C* =

tunneling limit cumulants grow as C” oc A"
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3.4. Comparison between the NESB model and the HO junction
In the HO junction, a single HO of frequency wy, replaces the spin impurity of the NESB model, equation (1).
The resulting Hamiltonian is fully harmonic, and it can be readily solved exactly to yield the CGF [53, 54]

Gio(© =~ [ Sl - Tuo@) (@ A@E™ — 1) + mE@m @ - D). 63

Surprisingly, our final expression for the CGF of the NESB model, equation (23), is very similar to this
expression. The following differences show up: (i) in the HO case the transmission function does not depend on
the temperatures of the baths,

4Ty (w) Tr(w) w?
(W? — w)? + w? (L(w) + Tr(w)?

Tho(Ww) = (34)

Further, (ii) there is a crucial sign difference in this CGF as compared to Gsg(£) in equation (23). This sign
difference reflects on the nonlinear nature of the spin. A similar sign-difference between harmonic and spin
impurity nanojunctions has been observed in vibrationally-assisted electron conducting junctions [21, 24]. The
above expression immediately provides the Landauer formula for the heat current,

(Do = = [~ dowTo(@lm @) — m(@)1, (35)
47T —0o0
and the noise

(Sho = ﬁ ffo dw (hw)*[ T fo(w) (L (w) — mr(W))? + Tio(w) (1 (W) ig (W) + AR (W)L (W)]. (36)

In the weak coupling limit, the CGF of the HO model reduces to the standard result obtained by alow order
QME[17,26]

grak(e) = (cHo @0) = Ciowo) — 4 Ano(wn © ), (37)
with
Cro (wo) = I (wo) + Ir(wo),
Ao (wo, §) = T1(wo) Tr(wo) (111 (wo) 7ig (wo) (€80 — 1) + g (wy) 71, (wo) (e 40 — 1)).
The heat current then reduces to the familiar result,

wea I (wo) Tr(w

(DN = Fiog 1 (wo) I (wo) [
I(wo) + Ir(wo)

The co-tunneling limit is more subtle, and we exemplify it now when calculating the current. We break the

transmission function (34) into two contributions (leaving for a moment the numerator)
Tnow) = T,(w) + Te(w),

ng (wo) — ng (wo)]. (38)

w? — wi
W? — wd)? + [T (w) + Tr(w)Pw?’

W

(W — w)? + [T (w) + Tr(w)Pw?

Assuming the hierarchy of energies I}, < T, < wy, we note that the function w [#; (w) — ng (w)] changes slowly
at the vicinity of wy, in the regime where the functlons 7.,.(w) have significant weight. Therefore, the integral
(35) over the odd component (approximately) cancels out, and the current is solely determined by the even

term, 7,(w) ~ 1/w}, toyield

To(w) =

To(w) = (39

_ fw’f FL(“J)PR(‘U)

HO__

[ (w) — nr(w)]. (40)
wy

This result reproduces exactly the behavior of the NESB model in the corresponding limit, equation (32). This

correspondence is not surprising: at low temperatures (smaller than the energy spacing in the quantum

impurity) and at weak system-bath coupling, the NESB and the HO junctions should behave rather similarly.

For a comprehensive analysis of the harmonic-mode thermal junction, see [55].

3.5. Steady state population and a bound on heat current

Besides transport properties, we use the Majorana formalism and calculate the steady state population of the
ground and excited states in the eigenbasis of the spin. This can be obtained by calculating (o, ) in the
transformed basis (2), given as,
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Figure 1. Scaled current (I) /AT (dashed lines) and noise (S) /2T? (symbols) for the NESB model as a function of coupling strength
oy, employing different theoretical schemes: Redfield (blue), Majorana (red) and NIBA (purple). (a) Results close to equilibrium,
AT = 0.05T,. (b) Calculations far-from-equilibrium, AT = T, demonstrating deviations from the fluctuation—dissipation theorem.
Parametersare A = T, = 1, Ty p = T, = AT/2, w. = 10A,and a; = og.

=i la e () - 1 oeie(})]

__ A dw w I (w) + IR(w) 1)

7 Um0 (W? — A2 4+ w2 C(w)

The function C(w) is defined in equation (21). In the weak coupling limit, we receive the same result as obtained
in[6],
_ IL.(A) + Tr(A)

(A1 + 2n.(A)] + Tr(A)[1 + 2nr(A)]

<Uz>weak = (42)

The population of the states are B = %(1 — (oz))and p, = %(1 + {0,)).

Recently, a rigorous quantum mechanical bound for the heat current in interacting systems has been
derived, valid at the high temperature—yet in the quantum regime [56]. We now confirm that the heat current
derived in our work, equation (25), does not violate the bound. This further affirms the validity and usefulness of
our result.

In the following analysis we make use of the inequality 0 < [n; (w) — ng(w)] < (Tp — Tp) / (hw) forw > 0
and T; > Tg. As well, we recall on the positivity of the transmission function Zgg(w) > 0. Furthermore, we
assume an Ohmic spectral density function for the reservoirs, I}, (w) = 7, w, ¥ = L, R (see [56] for a detailed
discussion over different spectral functions). Putting these pieces together, we conclude that the heat current of
equation (25) satisfies the following inequality

1< foc dw 4y R AW (T — Tr)
SJw dr (WP — A2 4 W2CR(w)

2 YLVR o YL+ IR
== N(Tp — Tp)———— dw w?
T (I %) yr + YR j(; (w? — A?)? + W C?*(w)
=~ AT, - To—22 (o) (43)
Y+ IR

which precisely matches with the bound organized in [56] for the NESB model. We conclude that our expression
for the current thus does not violate a fundamental bound, unlike the prediction of the Redfield QME, see [56].

4. Numerical results

In figures 1-3, we present simulations demonstrating the behavior of the heat current (I') and the second
cumulant (S), based on equation (23), as a function of the system-bath coupling, averaged temperature, and
temperature difference. We compare our results to two different methods: the Born—Markov limit, as originally
proposed in [5], referred to as ‘Redfield’, and the high-temperature NIBA equations as developed originally in
the same work, referred to as ‘NIBA’. For a more recent discussion over these two limits, see [11]. We focus on
the following questions regarding the operation of the NESB nanojunction:
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Figure 2. Temperature dependence of the heat current and noise for the SB junction (Redfield, Majorana and NIBA) and the HO
model. (al)—(b1) Weak coupling limit oy, = 0.01. (a2)-(b2) Intermediate coupling, o, = 0.1. Parametersare A = 1, AT = 0.2T,

OZR/(XL
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Figure 3. Thermal diode effect. (a) Rectification ratio, R = (I (T}, = 1.5, Tz = 0.5)) |(I(Ty = 0.5, Tz = 1.5))|, asa function of the
asymmetry in the system-bath coupling, ag /oy, while fixing oy . (b) Noise (S) for forward and backward operations as a function of
the junction asymmetry using oy, = 0.1. Parametersare A = 1, AT = T, (T;, Tz)=(1.5,0.5)and (0.5, 1.5), w, = 10A.
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(i) How are the current and noise influenced by the system-bath coupling strength (figures 1 and 3)?
(i) What are the signatures of operating the system far from equilibrium, as opposed to the LR regime (figures 1
and 3)? (iii) What is the temperature dependence of the heat current (figure 2)? (iv) Thermal diode effect: Can we
enhance this effect if we go beyond the weak spin-bath coupling (figure 3)? (v) What is the relation between the
Majorana-based treatment and other techniques (figures 1-3)?
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Figure 1 displays the current and the noise as obtained from equations (25) and (26), as well as the weak
coupling (Redfield) limit [11, 26] and the NIBA approximation [11,41]. Here and below, we use an ohmic
spectral function for the baths with an exponential cutoff, I}, (w) = ma, we “/“. In accord with previous results
(for the heat current [11]), we find that Redfield equation dramatically overestimates the current and the noise
beyond weak coupling, in comparison to the (more accurate) Majorana and NIBA results. The Majorana
treatment shows a saturation of the current and its noise at large o, but under NIBA these quantities quickly
decaybeyond « ~ 0.15. Since the temperature is rather high, A = T, with T, = (T; + Tg) /2, we expect the
NIBA to be rather accurate here for the ohmic spectral function [10, 11, 41]. Note that our NIBA treatment
[11,26,41] fails at weak coupling for e.g., a bath characterized by a super-ohmic spectral function, as discussed in
[30, 31]. To remedy this problem, a polaron-transformed Redfield equation method was developed in [30],
properly capturing both the weak and strong coupling regimes.

We also confirm in figure 1 panel (a) that in LR, the conductance, (I)1r /AT, is proportional to the thermal
noise in the junction, in accord with the Green—Kubo relation,

(S)eq = 2T (I)ir /AT. (44)

Far from equilibrium (see panel (b)), we obviously observe violations of the above relation. However, it is
interesting to note that the current and noise still follow a similar functional form within the three different
methods.

Figure 2 displays the temperature dependence of the current and the noise. We study both the NESB model
and a fully harmonic junction, equations (35) and (36), and make the following observations: (i) comparing the
current in the HO and NESB nanojunctions, anharmonicity, as realized here by the spin, leads to the
suppression of the heat current. (ii) At weak coupling, a;, = 0.01, see panels (al)—(b1), the Majorana and
Redfield approaches for the NESB model agree. Results from NIBA agree here as well—at high temperatures, as
expected. (iii) Beyond the strict weak coupling limit, oy, = 0.1, see panels (a2)—(b2), the Redfield formalism
leads to unphysical high currents, even beyond the harmonic limit. (iv) At high temperatures and for weak-
intermediate couplings, Majorana and NIBA agree, showing the saturation of the current with temperature, see
panel (a2) [12].

Next, we discuss the operation of the NESB as a heat diode, as suggested in [5]. To materialize this effect, it is
necessary to (i) include anharmonic interactions, and (ii) introduce a spatial asymmetry [8]. The NESB model
naturally includes an anharmonic potential. We break here the left-right symmetry by using different coupling
strengths at the contacts, oy = ag. In figure 3, we analyze the ratio between the forward and backward currents
as we switch the temperatures of the two baths, R = [(I (T, Tx))|/I{I (Tz, T))|- Weset oy = 0.01,0.1,and
modify ag over abroad range of values.

Based on equation (30), we can readily confirm that under the Redfield formalism the rectification ratio R
does not depend on the absolute value of « (given the linearity of the current with o), only on the ratio ag /cy. In
contrast, the Majorana treatment, which goes beyond weak coupling, reveals that the diode effect is enhanced as
we increase the coupling strength itself. This result points out to the crucial role of many-body interactions in
realizing the diode function.

The thermal noise of a rectifying junction is displayed in figure 3(b). For ag /oy > 2, the Redfield approach,
which predicts a lower rectification ratio than the Majorana treatment, suffers from a higher level of noise.

5. Conclusions

We have studied the statistics of energy transfer in the NESB model. By combining Majorana fermion
representation for the spin operators with the Schwinger—Keldysh Green’s function approach, we were able to
derive an analytical expression for the CGF of the model. This function, which we confirmed here to satisfy the
fluctuation symmetry for heat exchange, hands over the complete information over the energy statistics in the
steady state limit. Our approach goes beyond the weak-coupling (Redfield) and the co-tunneling limits.
Surprisingly, the CGF of the NESB model has a similar structure as in the HO junction, besides sign differences
and the appearance of a temperature-dependent transmission function—in the NESB model. These differences
reflect on the nonlinear nature of the SB system.

We have presented numerical examples for the heat current and its noise, and compared our results to
previously-developed quantum master equation approaches, namely Redfield and the NIBA. We have further
demonstrated that a heat diode becomes more effective as we increase the system-bath coupling. Additional
improvements to the Majorana formulation presented here could be made, e.g., by developing a polaron-
transformed Majorana fermion-NEGF approach [57]. Future work will be focused on simulating counting
statistics in the NESB model beyond perturbative approaches [35, 58, 59].
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Appendix. Derivation of the CGF within an NEGF approach

Our goal is to evaluate the generalized current, equation (15). It is given in terms of the (dressed) lesser I:I;(t, th
= —i(0y (t) 0x (t) )¢ and greater I:I;(t, t') = —i{0y (t) oy (t') )¢ correlators. Keeping in mind the nonequilibrium
setup, we introduce the £-dependent contour-ordered Green’s function for the o, component,

]-:[xx (7—) 7_/) - - i<TcUx (T)Ux (T/)>§
B [ﬁ;x(t, t"y TI..(t, t’)}

== (AD)
I (¢, t) I (t, t)

Recall that (--- ) means that operators are evolving with the dressed Hamiltonian of equation (12). Here 7, 7/ are
the contour times. When projecting to real time (¢, t'), we receive four different components, namely, time-
ordered (#), anti-time ordered (7), lesser (<) and greater (>) Green’s functions.

To evaluate the greater and lesser components, we use the Majorana fermion representation of spin
operators, equations (3)—(6). We identify our objective of interestby —i(T. (f (1) + fT(T)(f (7)) + f1(7))e.
We define Green’s function for the Dirac ffermion in the Bogolyubov—Nambu representationi.e., ¥ = (f, f7)T

and ¥ = (f7, f),and write é\p (7, ') = —i(T.¥(7)¥(7") ). The symbol hat in é\p (1, T')representsa2 x 2
matrix in the contour space (4 X 4inreal time)i.e.,

—ULf@Of () —ULf@Of ()
—ULFTOfT () — ULFT(Of (7))

Gu(r, ) = (A2)

and in real time
Gt ) Gty t))

G\p(t, th = s . I N
G1/, (t, t") Glﬁ/‘(t’ th.

(A3)

Each component comprisesa2 x 2 matrix. Then the IT)”(w) components can be alternatively expressed as
M) = -0 DGie)(})

() =0 1)G;(w)(}). (A4)

We next construct a Dyson (kinetic) equation for G:\p (7, 7') following the dressed Hamiltonian in equation (12)
treating the nonlinear part of the Hamiltonian, (™ — f)n, (Bf + Bg),asa perturbation,

Gu(r, ™) = Guo(r, ) + f dn f 47, Guo (7, 1) S (71, 7) Gur (72, 7). (A5)

The Green’s functions of the ordinary fermion g and the reservoirs operators are calculated to the lowest
(noninteracting) order. We thus write the contour ordered version of the self-energy .y (7, 73) as

Su(r, ™) = iAELE ) + Sk(r, ™) G, (1, ). (A6)

Guy,o (1, ) is the Green’s function corresponding to the the noninteracting part of the Hamiltonian. It satisfies
the following differential equation in contour time

(0,1 — 88,)Guyo(r, 7) = §(r — 7, (A7)
where [ is2 x 2 identity matrix. In frequency domain, we obtain the solution CA?\; (1) (w) = diag(w — A, w + A,
—w+ A, —w — A).
In equation (A6), G, (1, ') = —i(T:n, (1)1, (7)) is the Green’s function involving the zth component of
the Majorana fermion, A is the Nambu matrix

A= [71 X _11] (A8)
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and ¥}, Ty are the bare Green’s functions for the Bosonic baths,
Sp(r, ) = — i(Br(7) B.(1")),
Yr(7, ') = — i(Br(7) Br (1)), (A9)

Recall that the operators of the left reservoirs are dressed by the additional £ dependence, i.e., By (1) = B, 2(1)
B £/2(t)), when is on the upper (lower) branch. Given the perturbative nature of our treatment, the self-
energy contribution from the baths is additive.

To the lowest non-zero order, various components of the self-energy can be obtained analytically. Invoking
the steady state limit, we write down these components in frequency domain, given by the convolution of the
Green'’s functions for the baths and the Majorana fermions. Following equation (A6), we get

So%w) = ik f W oo — ) G, (A10)

where we use the notation 37~ = £, + 7=, This expression can be further simplified by using symmetry
relations, as follows. The sum and difference of the lesser and greater components are given by

Sh (W) = % i—i[(ii ~ S + N GHW) — GHW)) — Ex(w + W)GK (W] (A1)
and
Sow) — Sy(w) = % ‘;—:‘;[zx( +WGW) — GHW)) — Cxw + W) — S5w + W) GE W],
(A12)

Here Kis the Keldysh component the sum of lesser and greater Green’s functions. The spectral function of the
ordinary fermion, I (w) = 3 (G (W) — G (w)) = 276 (w), satisfies the regular sum rule f T, y(Ww) = 1. Wealso

use the effective fluctuation—dissipation relation i.e., Gf (W) = hy,(w) (G,] (w) — G,‘; (w)) h pW)o(w) =0
where h, (w) = tanh (%) + tanh (%) Putting these pieces together, we obtain simplified expressions for the
self-energy components, expressed solely in terms of the reservoirs’ self-energies,

S = AS3w), Syw) = —A Siw). (A13)

We nextlook at the time ordered and anti-time ordered components. These terms are {-independent, and they
satisfy the following relations

Spw) + Th W) = Tgw) + Tiw) = X (Cx W) — Z5w)), (Al4)

dw

bW — Thw) = X (@)(Gy (W) + Gy (W) = 0. (A15)

To derive the last expression, we ignore the lamb shift part. We therefore find that

; i\
Tyw) =By (w) = _?(FL(W) + Ir(w)), (Al6)
where [, (w) = i(X) (w) —
order in perturbation theory, the self-energy 3y, is fully determined by the reservoir’s Green’s functions as given
by equations (A13) and (A16).
We can now solve equation (A5), by projecting it to real time then Fourier transforming it,

Y7 (w)) describes the reservoir-subsystem coupling energy. Therefore, to the lowest

Gy (@) = Gap(@) — Su(w)
w— A+ W) A ®) S3(w) —S3w)
~I W) w+ A+ W) N () S3W)
= > > i i (A17)
dx(w) —>x(w) w— A — EF(w) El—‘(w)
@ Sx(w) T (w) w+ A= W)

Here, the symbol bar represents A = é’ZA with U:Z = diag(1, 1,

—1, —1),introduced so as to take into account

the appropriate signs for upper and lower branches of the contour. I'(w) =

matrix we obtain the lesser component

[ (w) + IR(w). Inverting this

12
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2 $0< (2 A2y <
G\;(w) _ 1 (w+ A) ZX(~w<) (w JA )~§X(w) (A18)
Dw, | - (w? - A S3w) (w— AP Siw)
and the greater component
2 5 02 A S
G‘;(w) _ 1 (w+ A)* Xx(w) (w A% Yy (w) ' (A19)

Dw, | — (W — A Syw)  (w— A)? Sx(w)
D(w, &) isthe determinant of the matrix, given as

D(w, §) = (@ = & + W (LW + 2. (@) + Tr@) (1 + 21 (@)))? + 4T (@) Te(w) {1 (@) fig ()
€™ — 1) + ng(w)iip (w) (e €™ — 1}].
(A20)

with 71, (w) = 1 + n, (w). Using equation (A4), the lesser and greater components of spin—spin correlation
functions are finally obtained as

M (w) = — %(H(w)m (w)el¥™ + Tr(w)ng (W),
M, (w) = — LAZ(FL(w)ﬁL (w)e M 4 T (w) g (w)). (A21)
= D(w, &)

Substituting these expressions into the generalized current expression, equation (15), we receive

s 10
0= | 550 5090w O (A22)

Manipulatingitas G(§) = [ Z(¢/)d¢’, we get

[ dwA [ Dw o
90 = »/:oo 41 w? ln[D(w, &= 0)]) (423)

which we organize into our main result, equation (23).
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