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Quark-quark-gluon vertex for heavy quarks up to order 1/m?®
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Instead of the often used Foldy-Wouthuysen-Tani (FWT) transformation in nonrelativistic quantum
chromodynamics (NRQCD), we take a more general relation between the relativistic and nonrelativistic on-
shell spinors to recalculate the quark-quark-gluon vertex for heavy quarks. In comparison with the previous
result using FWT, we obtain the high-order coefficients in the NRQCD Lagrangian up to 1/m?, where m is

the heavy quark mass.
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Nonrelativistic quantum chromodynamics (NRQCD) is
often used to describe the dynamics of heavy quarks at low
energy [1-3]. The usual understanding of the total heavy
quark momentum is the summation of the quark mass m
times its velocity v and the residual momentum &,
|

b g

p = mv + k. Luke and Manohar constructed the trans-
formation for spinor fields in analogy to a vector trans-
formation, which yields the relation between the
reparametrized spinor field ¥, and the conventional heavy
quark field vy, [4],

m+id-v+i@, ++/(m+id-v)?*+ (i0,)?

with the definition of a transverse vector /| = a* — v#a - v.
On the other hand, the often used Foldy-Wouthuysen-Tani
(FWT) transformation yields a simple representation [5],

i)

va =emy,, (2)

which can be expanded in terms of the inverse heavy quark
mass,

koo K

in momentum representation. To the order 1/m?, the two
results (1) and (2) are consistent with each other, under the
condition of id- vy, — k- vy, =0, which is, however,
|

T /mti0 02+ D) (m+id- v+ /mti0- 0 + (9,)7)]

1AL (1)

not easy to understand for p = mv + k. Attempts to obtain
exact FWT transformation in some cases can be seen, for
instance, in Ref. [6].

In this paper, we recalculate the quark-quark-gluon
vertex, using a more general relation for relativistic and
nonrelativistic on-shell fields, and fix the coefficients of the
corresponding NRQCD Lagrangian by matching the result
with the perturbative QCD calculation. We also make a
comparison with the previous calculation using the FWT
transformation to see the difference.

Under the assumption of the on-shell condition
po = E = \/m? + p?, which is valid for heavy quarks,
the relation between the relativistic spinors u# and v
corresponding to positive and negative energies and their
nonrelativistic limits uyg and vyg can be expressed as [7]

=—(m u :—m+E+ﬂl u
u(p) = 2E(E+m)( + P)unr(p) SEE T m) vr(P),
e _(m-p _mtE-p
v(p) = 2E(Eer)( #)ong(p) EE T ~n&(P) (4)
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in the local rest frame with quark velocity v, = (1,0,0,0).
The 1/m expansion of the relation for heavy quarks to the
order 1/m? is just the normal FWT transformation (2),
when we take k| to be p . In this sense, the relation (4) can
be considered a generalized FWT transformation. Under
the assumption i0-vy, —» k-vy, =0 and iy, =
Ky, = p'ly, in the momentum representation, the repar-
ameterization (1) and the relation (4) are also consistent
with each other.

We now calculate the quark-quark-gluon vertex for
heavy quarks. Taking the on-shell condition, the vertex
J

—igT®
VAE'(E' + m)E(E + m)
x [#o((m+ E')(m +

_ Fy(qg*/m?)
2m

w{(F

(p" + p")[(m + E")(m + E) -

with the final-state energy E' =

can be expressed in terms of the form factors F;(g?/m?)
and F,(q*/m?) [4],

S ) u(p),
)

with coupling constant g, Gell-Mann matrices T,, and
momentum transfer g = p’ — p between the initial
and final momenta. Taking the relations yy =03 ® I,
and y = io, ® o, the vertex can be explicitly written as

—igu(p')T* <7”F 1(g*/m?)

1(q*/m*) + Fy(q*/m?))
E)+p' -p+ic-(p'xp))+&,(m+E)e'p-6+ (m+E)p 60)]

"-p—ic-(p' xp)}w (6)

In terms of the small variable g>/m? for heavy quarks, the form factors F; (i = 1, 2) can be expanded as

d" (Z/mZ)

PG 1) = 3 i | e (T
= F,(0) =T, Fi(0) + 1 [(92 ~ P2 FI(0) + 20 FY(0)] 4 -+ ™

To simplify the notation, we take F; = F;(0), F, =

F}(0) and F! = F/(0) in the following.

Taking into account the transformation (4) between relativistic and nonrelativistic quark fields, the expansion (7)

+

for the form factors, and the relations uy, = (w',0) and yuyg = uyg, the vertex can be expressed in terms of the

current j s

—igT* ”;rij,lAl:z UNR (8)

with

. 1 1 :
Jo :Fl —r’nz |:<2F1 +F2 +4F/1>q2—l(F1 +2F2)6(p’xp)]

16

L[(5 . 1 3
+3_K Fivy F2+2F’>(p2—p’2)2+(F’1+2F’2+4F’{)q4+(—
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to order 1/m* and
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jz%[Fl(P+P/)+i(F1+F2)0'XQ]

1 ]

~ [P0 070+ (572447 )2 | 0 40+ P+ P07 4+ 07) +4(F] + Pl xa
1 i .

+5(Fi+ Fy)(p”? —p*)q + S (Fi+ Fy)(p? —p*ox (p+p')—iF-(p/ xp)(p+ p’)}

{[ (Fy + F3)(p” —=p*)p’- p+<%(F’1+F/2)+i

o) ) =)o x (0 +p)

+[8 (F{ 4+ F5)(p'-p)* = 2(F) + Fy + 4(F| + F7))(p”> +p*)p’ - P

21
4 Fl +F2) +4(F”+F”)>p2p’2 + (

> (Fi + F,) +2(F} + Fy + F| + F”)) (p'* + p4)] ic x q

+ |z (F) + F5)(p"* - pH)q* +

(5%
[(F’+ F) /2+p2)—2F§p’-p]ia-(p/><p)(p’+p)
3 i

5
—(F1+Fz)(p’4—p4)}q
3
+[(2F’2+8F’1’)(p’-p)2—(§F2+2F’1+2F’2+8F’1’>(p’2+p2)p"p
3 1 / 1 272 21 5 / 1 ! 11 14 4 /
+ 16F1+ Fy+ F,+4F] |p*p”? + 32F1+16F2+2F +2F +2F] | (p* +p*)|(p +p)
+0(1/m) (10)

to order 1/m’.

We now turn to the NRQCD calculation. The corresponding NRQCD Lagrangian density can be fixed by matching the
above calculated quark-quark-gluon vertex. Integrating out the unphysical field y/, which is defined as w(x) =
e~ mvx(p, (x) + ) (x)) and satisfies the relation py’, = —y/,, the familiar Lagrangian density

s = . 1 .
L= h,(iD-v)h, + h, (lplmlpJ_)hv (11)

can be expanded in terms of 1/m,

. 1S (=) -
‘C:hv(iDO)h@_'_ Z ( ) hy{(iDO)",D2+g6'B}h1/.

2 — (2m)"1
23 Y S (Do) (D, ) + i [D.E) ) (iDo)'h,
2 n=0 (2m) =0
°° _1yn n=lan=l-1 |
> (Z(m;’)l“ hy(iDg)"~' =" (E - (iDy)"E + ic - (E x (iDo)"E))(iDy)'h, (12)
n=1 Ji

—0 I'—

S

in the local rest frame with the derivatives Dy = 0, + igZAy and D = V — igZA T, the color field strengths E; = -Gy
and B; = —e,-jkGfk/Z, and the definitions of [a,b] =a-b—-b-a, [a,b], =axb-bxa,{a,b} =a-b+b-a, and
{a,b}, =axb+b xa, where Z is the renormalization constant. By redefining the field

D’ 495 B (iDy)’+ g(ID.E] +ic: [D.E,)
8m? 16m3

h, — [1 + + | hy, (13)

dropping the terms unrelated to the quark-quark-gluon vertex, and taking the process used in [8], we have, to order 1/m?,
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D2 D D°  c;6-B  cp[D.E] +icso- [D,E]
AR F D> . S ’ X
L=h ZDO+C2%+C4w+6616m5+g 2m g 8m?
4 cm{D%6-B} =201D- (6 B)D + (o D)(B-D) + (D- B)(s- D)) + icy {D. B x D}
g
8m?3

+9g

pat D2, {D.E} | + cxo{ D, [D. E] } + cxs[D:. [D;. [D. E] ]]

m*

giCXsDil)' . [D, E]xDi + icXﬁeijko-iDj[D’ E]Dk
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CYI{D4,G . B} -+ CyzDQ(U . B)D2 =4 Cy3{D2,Di(G . B)Dl} 4+ Cy4DiDj(O' . B)D]Dl
5

m

gcy5{D2, (6-D)(B-D)+ (D-B)(6-D)} +cyD;i((6-D)(B-D) + (D-B)(s - D))D;

md

, ier{D’.D (B xD) + (D xB) D} + icyyD(D- (BxD) + (DxB) - D),
g

mS

cy9[D*[6-D,B-D+D-B
jenlD I

I
with the definition of {a,bxc} =a-(bxc)+(cxb)-a, )
where ¢y, ¢4, Cor Cpy Cpy Cso Cwls Cwas Cpips Cats Cxis CY1 = 27F/256 4+ 23F,/256 + 5F /16
Cx2> €x3» €x5> Cx6> Cy1> Cy2s Cy3s Cy4s Cy5, Cygs Cy7, Cys, and +S5F3/16 + Fy/4 + F5/4,
cyqg are the coefficients to be determined. The first four , ,
terms in the Lagrangian determine the quark propagator in Y2 = —3F,/128 — 11F,/128 - I} /8 = 3F/8
the gauge field A%, and the other terms control the quark- + F|/2+F}/2,
quark-gluon vertex [9,10]. _ A A
We can directly take out the quark-quark-gluon vertex Y3~ 3F2/64 = Fy /4= F3/4—Fi - F,
from the NRQCD Lagrangian density (14). By matching it~ c¢yq = F,/4 + F| + F7,
with the current (8) controlled by the form factors, we — 3F. /64 + F /8
extract the NRQCD coefficients to order 1/ m>, €rs 2/64+ 2/ ’
cye = —F3/4,
cy7 =3F,/128 + F| /8 + F, /16 + F{ /4,
Cy = Cqg = Cqg = 1,
cyg = —F5/8 - F{/2,
r=fih 3F,/128 — Fy/32 — F! /16 — F}/8 (15)
Cyg = — - - - .
¢p = Fy +2F, +8F'. Y9 1 2 1 2
Cg = Fl + 2F2,

cwi = Fy + Fa/2 + 4F 1 4F),

Cws = Fa)2 + 4F, + 4F),

Cpp = Fa,

cy = Fy/2 4+ 4F),

Cx1 = 5F1 /128 + F»/32 + F) /4,

cxo = 3F, /64 + F,/16,

exs = F| /8 + Fy /4 + FI /2,

Cxs = 3F /32 + Fy /8,

cxe = —3F1/32 - F,/8 = F| /4 - F}/2,

We now compare our result with the previous calcu-
lations [9,11-14]. Instead of the general transformation (4)
between relativistic and nonrelativistic on-shell spinors,
which is employed in the above calculation, the usual FWT
transformation (2) was used in the previous calculations. To
order 1/m?, the obtained coefficients here are consistent
with the recent ones, but c,, differs by a sign of the previous
one [9]. It is clear that the above calculation can also be
applied to heavy fermions in nonrelativistic quantum
electrodynamics (NRQED). In comparison with the
NRQED calculation in the frame of the variational method
[8], we obtain exactly the same coefficients up to order
1/m*. In particular, we have the same relation 2c, =
cp — cr among the coefficients at different orders [8,11].

014034-4



QUARK-QUARK-GLUON VERTEX FOR HEAVY QUARKS UP TO ...

PHYS. REV. D 102, 014034 (2020)

Note that the previous calculations, including NRQCD and
NRQED, are up to order 1/m®*; the calculation here
up to order 1/m’ results in the new coefficients
€x1,Cx2, €x3, Cxs5> Cx6> Cyl> Cy2, Cy3, Cy4, Cys, Cye> Cy7s

Cys, and Cyg.
|
2
q a
FilL)=1+——
1<m2> " Ta4n

The final step to numerically determine the coefficients
is to calculate the form factors F(g*/m?) and F,(q*/m?)
in QCD at some specific level [15]. For instance, comput-
ing the Feynman diagrams to the one-loop correction and
taking into account the related renormalization, we have

2 1 2
L (=s1+154m2) + =L (131488812 ) |,
m U 10m 7

2 2 2
q\ _a P L e A X m
F2<m2> _6ﬂ{<13 91n'u> o [6 (13 541n'u> i <1 +61nﬂ>}} (16)

with the redefined coupling constant a, = ¢*/(4x) and the
cutoff 4 in dimensional renormalization.

With the known form factors, it is straightforward to
represent the coefficients with m and p,

m
87 (27—|—1001n;),
40 — 891In—
e 36ﬂ( nﬂ)
% <40—891n@>,
© H
Cpp = 67r (13 91n;>

A
124 1271
Cy — 36n‘< + nﬂ)

Cwa =

5 o
3 o
- 13-91
X2 = 64" 96 ( nﬂ)
789 + 2162 1n "
s = 5760 ( - nﬂ>

3,
- 13-9m”
x5 =3 43e ( ?1n ,4)

3 a
- ~209 + 3861n""
XT3 57671( o8 >

u
27 a m
=S (4143 -774110 7
o 256+23040ﬂ< ny>’
3 o
- 3587 + 4889 In
n=Th 8+115207t< * n/.l)

203 + 2561 I
s = 5760 < * nﬂ>

c 8 —2311In
e 360 ( u)

<169 297 In >
U

c 13+54ln—>
e 144 ( u

<859 + 3607 In —)
U

a
C
5T 1152z

a
C
Y= 115207

Cyg = 7;‘0 (98 3091n;)

3
v =~ 128 T 2304s

( —209 + 386ln—>. (17)
U

In summary, we recalculated the quark-quark-gluon
vertex for heavy quarks. Instead of the usual FWT trans-
formation which is often used in previous calculations, we
employed a more general relation between relativistic and
nonrelativistic on-shell spinors. By matching our calcula-
tion with the standard NRQCD calculation, the coefficients
in the NRQCD Lagrangian are fixed. The result to order
1/m3 is almost the same as the previous calculation using
the FWT transformation, and the new coefficients at orders
1/m* and 1/m> are derived in the current calculation and
may have applications in high precision heavy hadron
physics.
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