
 

Quark-quark-gluon vertex for heavy quarks up to order 1=m5
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Instead of the often used Foldy-Wouthuysen-Tani (FWT) transformation in nonrelativistic quantum
chromodynamics (NRQCD), we take a more general relation between the relativistic and nonrelativistic on-
shell spinors to recalculate the quark-quark-gluon vertex for heavy quarks. In comparison with the previous
result using FWT, we obtain the high-order coefficients in the NRQCD Lagrangian up to 1=m5, where m is
the heavy quark mass.
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Nonrelativistic quantum chromodynamics (NRQCD) is
often used to describe the dynamics of heavy quarks at low
energy [1–3]. The usual understanding of the total heavy
quark momentum is the summation of the quark mass m
times its velocity v and the residual momentum k,

p ¼ mvþ k. Luke and Manohar constructed the trans-
formation for spinor fields in analogy to a vector trans-
formation, which yields the relation between the
reparametrized spinor field Ψv and the conventional heavy
quark field ψv [4],

Ψv ¼
mþ i∂ · vþ i=∂⊥ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ i∂ · vÞ2 þ ði∂⊥Þ2

p
½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ i∂ · vÞ2 þ ði∂⊥Þ2

p
ðmþ i∂ · vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ i∂ · vÞ2 þ ði∂⊥Þ2

p
Þ�1=2 ψv ð1Þ

with the definition of a transverse vector aμ⊥ ¼ aμ − vμa · v.
On the other hand, the often used Foldy-Wouthuysen-Tani
(FWT) transformation yields a simple representation [5],

Ψv ¼ e
iD⊥
2m ψv; ð2Þ

which can be expanded in terms of the inverse heavy quark
mass,

Ψv ¼
�
1þ =k⊥

2m
þ k2⊥
8m2

þ � � �
�
ψv ð3Þ

in momentum representation. To the order 1=m2, the two
results (1) and (2) are consistent with each other, under the
condition of i∂ · vψv → k · vψv ¼ 0, which is, however,

not easy to understand for p ¼ mvþ k. Attempts to obtain
exact FWT transformation in some cases can be seen, for
instance, in Ref. [6].
In this paper, we recalculate the quark-quark-gluon

vertex, using a more general relation for relativistic and
nonrelativistic on-shell fields, and fix the coefficients of the
corresponding NRQCD Lagrangian by matching the result
with the perturbative QCD calculation. We also make a
comparison with the previous calculation using the FWT
transformation to see the difference.
Under the assumption of the on-shell condition

p0 ¼ E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, which is valid for heavy quarks,

the relation between the relativistic spinors u and v
corresponding to positive and negative energies and their
nonrelativistic limits uNR and vNR can be expressed as [7]

uðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp ðmþ =pÞuNRðpÞ ¼

mþ Eþ =p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp uNRðpÞ;

vðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp ðm − =pÞvNRðpÞ ¼

mþ E − =p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp vNRðpÞ ð4Þ
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in the local rest frame with quark velocity vμ ¼ ð1; 0; 0; 0Þ.
The 1=m expansion of the relation for heavy quarks to the
order 1=m2 is just the normal FWT transformation (2),
when we take k⊥ to be p⊥. In this sense, the relation (4) can
be considered a generalized FWT transformation. Under
the assumption i∂ · vψv → k · vψv ¼ 0 and i∂μψv ⇒
kμψv ¼ pμ

⊥ψv in the momentum representation, the repar-
ameterization (1) and the relation (4) are also consistent
with each other.
We now calculate the quark-quark-gluon vertex for

heavy quarks. Taking the on-shell condition, the vertex

can be expressed in terms of the form factors F1ðq2=m2Þ
and F2ðq2=m2Þ [4],

−igūðp0ÞTa

�
γμF1ðq2=m2Þþiσμνqν

2m
F2ðq2=m2Þ

�
uðpÞ;

ð5Þ
with coupling constant g, Gell-Mann matrices Ta, and
momentum transfer q ¼ p0 − p between the initial
and final momenta. Taking the relations γ0 ¼ σ3 ⊗ I2
and γ ¼ iσ2 ⊗ σ, the vertex can be explicitly written as

−igTaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E0ðE0 þmÞEðEþmÞp ψ†fðF1ðq2=m2Þ þ F2ðq2=m2ÞÞ

× ½δμ0ððmþ E0Þðmþ EÞ þ p0 · pþ iσ · ðp0 × pÞÞ þ δμjððmþ E0Þσjp · σ þ ðmþ EÞp0 · σσjÞ�

−
F2ðq2=m2Þ

2m
ðp0μ þ pμÞ½ðmþ E0Þðmþ EÞ − p0 · p − iσ · ðp0 × pÞ�gψ ð6Þ

with the final-state energy E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02p

.
In terms of the small variable q2=m2 for heavy quarks, the form factors Fi (i ¼ 1, 2) can be expanded as

Fiðq2=m2Þ ¼
Xþ∞

n¼0

1

n!
dnFiðq2=m2Þ
dðq2=m2Þn

����
q2=m2¼0

ðq2=m2Þn

¼ Fið0Þ −
q2

m2
F0
ið0Þ þ

1

4m4
½ðp2 − p02Þ2F0

ið0Þ þ 2q4F00
i ð0Þ� þ � � � : ð7Þ

To simplify the notation, we take Fi ¼ Fið0Þ; F0
i ¼ F0

ið0Þ and F00
i ¼ F00

i ð0Þ in the following.
Taking into account the transformation (4) between relativistic and nonrelativistic quark fields, the expansion (7)

for the form factors, and the relations u†NR ¼ ðψ†; 0Þ and γ0uNR ¼ uNR, the vertex can be expressed in terms of the
current jμ,

−igTau†NRjμA
μ
auNR ð8Þ

with

j0 ¼ F1 −
1

4m2

��
1

2
F1 þ F2 þ 4F0

1

�
q2 − iðF1 þ 2F2Þσ · ðp0 × pÞ

�

þ 1

8m4

��
5

16
F1 þ

1

4
F2 þ 2F0

1

�
ðp2 − p02Þ2 þ ðF0

1 þ 2F0
2 þ 4F00

1Þq4 þ
�
3

8
F1 þ

1

2
F2

�
ðp02 þ p2Þq2

− ið2F0
1 þ 4F0

2Þσ · ðp0 × pÞq2 − i

�
3

4
F1 þ F2

�
σ · ðp0 × pÞðp02 þ p2Þ

�
þOð1=m6Þ ð9Þ

to order 1=m4 and
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j ¼ 1

2m
½F1ðpþ p0Þ þ iðF1 þ F2Þσ × q�

−
1

8m3

��
F1ðp02 þ p2Þ þ

�
1

2
F2 þ 4F0

1

�
q2

�
ðpþ p0Þ þ i½ðF1 þ F2Þðp02 þ p2Þ þ 4ðF0

1 þ F0
2Þq2�σ × q

þ 1

2
ðF1 þ F2Þðp02 − p2Þqþ i

2
ðF1 þ F2Þðp02 − p2Þσ × ðpþ p0Þ − iF2σ · ðp0 × pÞðpþ p0Þ

	

þ 1

8m5

��
−ðF0

1 þ F0
2Þðp02 − p2Þp0 · pþ

�
1

2
ðF0

1 þ F0
2Þ þ

5

16
ðF1 þ F2Þ

�
ðp04 − p4Þ

�
iσ × ðp0 þ pÞ

þ
�
8ðF00

1 þ F00
2Þðp0 · pÞ2 − 2ðF0

1 þ F0
2 þ 4ðF00

1 þ F00
2ÞÞðp02 þ p2Þp0 · p

þ
�
3

16
ðF1 þ F2Þ þ 4ðF00

1 þ F00
2Þ
�
p2p02 þ

�
21

32
ðF1 þ F2Þ þ 2ðF0

1 þ F0
2 þ F00

1 þ F00
2Þ
�
ðp04 þ p4Þ

�
iσ × q

−
��

F0
2 þ

3

8
F2

�
ðp02 þ p2Þ − 2F0

2p
0 · p

�
iσ · ðp0 × pÞðp0 þ pÞ

þ
�
1

2
ðF0

1 þ F0
2Þðp02 − p2Þq2 þ 5

16
ðF1 þ F2Þðp04 − p4Þ

�
q

þ
�
ð2F0

2 þ 8F00
1Þðp0 · pÞ2 −

�
3

8
F2 þ 2F0

1 þ 2F0
2 þ 8F00

1

�
ðp02 þ p2Þp0 · p

þ
�
3

16
F1 þ

1

8
F2 þ F0

2 þ 4F00
1

�
p2p02 þ

�
21

32
F1 þ

5

16
F2 þ 2F0

1 þ
1

2
F0
2 þ 2F00

1

�
ðp04 þ p4Þ

�
ðp0 þ pÞ

	

þOð1=m7Þ ð10Þ

to order 1=m5.
We now turn to the NRQCD calculation. The corresponding NRQCD Lagrangian density can be fixed by matching the

above calculated quark-quark-gluon vertex. Integrating out the unphysical field ψ 0
v which is defined as ψðxÞ ¼

e−imv·xðhvðxÞ þ ψ 0
vðxÞÞ and satisfies the relation =vψ 0

v ¼ −ψ 0
v, the familiar Lagrangian density

L ¼ h̄vðiD · vÞhv þ h̄v

�
i=D⊥

1

2mþ iD · v
i=D⊥

�
hv ð11Þ

can be expanded in terms of 1=m,

L ¼ h̄vðiD0Þhv þ
1

2

X∞
n¼0

ð−1Þn
ð2mÞnþ1

h̄vfðiD0Þn;D2 þ gσ ·Bghv

þ 1

2

X∞
n¼0

ð−1Þn
ð2mÞnþ2

Xn
l¼0

h̄vðiD0Þn−lgð½D;E�: þ iσ · ½D;E�×ÞðiD0Þlhv

þ
X∞
n¼1

ð−1Þn
ð2mÞnþ2

Xn−1
l¼0

Xn−l−1
l0¼0

h̄vðiD0Þn−1−l−l0g2ðE · ðiD0Þl0Eþ iσ · ðE × ðiD0Þl0EÞÞðiD0Þlhv ð12Þ

in the local rest frame with the derivatives D0 ¼ ∂t þ igZA0 and D ¼ ∇ − igZAaTa, the color field strengths Ei ¼ −Gi0

and Bi ¼ −ϵijkGjk=2, and the definitions of ½a;b�: ¼ a · b − b · a, ½a;b�× ¼ a × b − b × a, fa;bg: ¼ a · bþ b · a, and
fa;bg× ¼ a × bþ b × a, where Z is the renormalization constant. By redefining the field

hv →
�
1þD2 þ gσ ·B

8m2
þ ðiD0Þ3 þ gð½D;E�: þ iσ · ½D;E�×Þ

16m3
þ � � �

�
hv; ð13Þ

dropping the terms unrelated to the quark-quark-gluon vertex, and taking the process used in [8], we have, to order 1=m5,
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L ¼ h†v

�
iD0 þ c2

D2

2m
þ c4

D4

8m3
þ c6

D6

16m5
þ g

cFσ ·B
2m

þ g
cD½D;E�: þ icSσ · ½D;E�×

8m2

þ g
cW1fD2; σ ·Bg − 2cW2D · ðσ ·BÞDþ cp0pððσ ·DÞðB · DÞ þ ðD · BÞðσ · DÞÞ þ icMfD;B × Dg:

8m3

þ g
cX1½D2; fD;Eg:� þ cX2fD2; ½D;E�:g þ cX3½Di; ½Di; ½D;E�:��

m4

þ g
icX5Diσ · ½D;E�×Di þ icX6ϵijkσiDj½D;E�:Dk

m4

þ g
cY1fD4; σ ·Bg þ cY2D2ðσ ·BÞD2 þ cY3fD2; Diðσ ·BÞDig þ cY4DiDjðσ ·BÞDjDi

m5

þ g
cY5fD2; ðσ ·DÞðB · DÞ þ ðD · BÞðσ ·DÞg þ cY6Diððσ · DÞðB ·DÞ þ ðD ·BÞðσ · DÞÞDi

m5

þ g
icY7fD2;D · ðB × DÞ þ ðD × BÞ ·Dg þ icY8DiðD · ðB ×DÞ þ ðD ×BÞ · DÞDi

m5

þ g
cY9½D2; ½σ · D;B · Dþ D ·B��

m5
þ � � �

�
hv ð14Þ

with the definition of fa;b×cg:¼a·ðb×cÞþðc×bÞ·a,
where c2, c4, c6, cF, cD, cS, cW1, cW2, cp0p, cM, cX1,
cX2, cX3, cX5, cX6, cY1, cY2, cY3, cY4, cY5, cY6, cY7, cY8, and
cY9 are the coefficients to be determined. The first four
terms in the Lagrangian determine the quark propagator in
the gauge field Aa

μ, and the other terms control the quark-
quark-gluon vertex [9,10].
We can directly take out the quark-quark-gluon vertex

from the NRQCD Lagrangian density (14). By matching it
with the current (8) controlled by the form factors, we
extract the NRQCD coefficients to order 1=m5,

c2 ¼ c4 ¼ c6 ¼ 1;

cF ¼ F1 þ F2;

cD ¼ F1 þ 2F2 þ 8F0
1;

cS ¼ F1 þ 2F2;

cW1 ¼ F1 þ F2=2þ 4F0
1 þ 4F0

2;

cW2 ¼ F2=2þ 4F0
1 þ 4F0

2;

cp0p ¼ F2;

cM ¼ F2=2þ 4F0
1;

cX1 ¼ 5F1=128þ F2=32þ F0
1=4;

cX2 ¼ 3F1=64þ F2=16;

cX3 ¼ F0
1=8þ F0

2=4þ F00
1=2;

cX5 ¼ 3F1=32þ F2=8;

cX6 ¼ −3F1=32 − F2=8 − F0
1=4 − F0

2=2;

cY1 ¼ 27F1=256þ 23F2=256þ 5F0
1=16

þ 5F0
2=16þ F00

1=4þ F00
2=4;

cY2 ¼ −3F1=128 − 11F2=128 − F0
1=8 − 3F0

2=8

þ F00
1=2þ F00

2=2;

cY3 ¼ −3F2=64 − F0
1=4 − F0

2=4 − F00
1 − F00

2;

cY4 ¼ F0
2=4þ F00

1 þ F00
2;

cY5 ¼ 3F2=64þ F0
2=8;

cY6 ¼ −F0
2=4;

cY7 ¼ 3F2=128þ F0
1=8þ F0

2=16þ F00
1=4;

cY8 ¼ −F0
2=8 − F00

1=2;

cY9 ¼ −3F1=128 − F2=32 − F0
1=16 − F0

2=8: ð15Þ

We now compare our result with the previous calcu-
lations [9,11–14]. Instead of the general transformation (4)
between relativistic and nonrelativistic on-shell spinors,
which is employed in the above calculation, the usual FWT
transformation (2) was used in the previous calculations. To
order 1=m3, the obtained coefficients here are consistent
with the recent ones, but cM differs by a sign of the previous
one [9]. It is clear that the above calculation can also be
applied to heavy fermions in nonrelativistic quantum
electrodynamics (NRQED). In comparison with the
NRQED calculation in the frame of the variational method
[8], we obtain exactly the same coefficients up to order
1=m4. In particular, we have the same relation 2cM ¼
cD − cF among the coefficients at different orders [8,11].
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Note that the previous calculations, including NRQCD and
NRQED, are up to order 1=m4; the calculation here
up to order 1=m5 results in the new coefficients
cX1; cX2; cX3; cX5, cX6, cY1, cY2, cY3, cY4, cY5, cY6, cY7,
cY8, and cY9.

The final step to numerically determine the coefficients
is to calculate the form factors F1ðq2=m2Þ and F2ðq2=m2Þ
in QCD at some specific level [15]. For instance, comput-
ing the Feynman diagrams to the one-loop correction and
taking into account the related renormalization, we have

F1

�
q2

m2

�
¼ 1þ αs

144π

q2

m2

��
−51þ 154 ln

m
μ

�
þ 1

10

q2

m2

�
131þ 888 ln

m
μ

��
;

F2

�
q2

m2

�
¼ αs

6π

��
13 − 9 ln

m
μ

�
þ q2

m2

�
1

6

�
13 − 54 ln

m
μ

�
−
3

4

q2

m2

�
1þ 6 ln

m
μ

��	
ð16Þ

with the redefined coupling constant αs ¼ g2=ð4πÞ and the
cutoff μ in dimensional renormalization.
With the known form factors, it is straightforward to

represent the coefficients with m and μ,

cF ¼ 1þ αs
6π

�
13 − 9 ln

m
μ

�
;

cD ¼ 1þ αs
18π

�
27þ 100 ln

m
μ

�
;

cS ¼ 1þ αs
3π

�
13 − 9 ln

m
μ

�
;

cW1 ¼ 1þ αs
36π

�
40 − 89 ln

m
μ

�
;

cW2 ¼
αs
36π

�
40 − 89 ln

m
μ

�
;

cp0p ¼ αs
6π

�
13 − 9 ln

m
μ

�
;

cM ¼ αs
36π

�
−12þ 127 ln

m
μ

�
;

cX1 ¼
5

128
þ αs
576π

�
−12þ 127 ln

m
μ

�
;

cX2 ¼
3

64
þ αs
96π

�
13 − 9 ln

m
μ

�
;

cX3 ¼
αs

5760π

�
789þ 2162 ln

m
μ

�
;

cX5 ¼
3

32
þ αs
48π

�
13 − 9 ln

m
μ

�
;

cX6 ¼ −
3

32
þ αs
576π

�
−209þ 386 ln

m
μ

�
;

cY1 ¼
27

256
þ αs
23040π

�
4143 − 7741 ln

m
μ

�
;

cY2 ¼ −
3

128
þ αs
11520π

�
−3587þ 4889 ln

m
μ

�
;

cY3 ¼
αs

5760π

�
−203þ 2561 ln

m
μ

�
;

cY4 ¼
αs

360π

�
8 − 231 ln

m
μ

�
;

cY5 ¼
αs

1152π

�
169 − 297 ln

m
μ

�
;

cY6 ¼
αs

144π

�
−13þ 54 ln

m
μ

�
;

cY7 ¼
αs

11520π

�
859þ 3607 ln

m
μ

�
;

cY8 ¼
αs

720π

�
−98 − 309 ln

m
μ

�
;

cY9 ¼ −
3

128
þ αs
2304π

�
−209þ 386 ln

m
μ

�
: ð17Þ

In summary, we recalculated the quark-quark-gluon
vertex for heavy quarks. Instead of the usual FWT trans-
formation which is often used in previous calculations, we
employed a more general relation between relativistic and
nonrelativistic on-shell spinors. By matching our calcula-
tion with the standard NRQCD calculation, the coefficients
in the NRQCD Lagrangian are fixed. The result to order
1=m3 is almost the same as the previous calculation using
the FWT transformation, and the new coefficients at orders
1=m4 and 1=m5 are derived in the current calculation and
may have applications in high precision heavy hadron
physics.
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