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Abstract

The concept of compactifications is used in theoretical physics to perform a dimensional reduc-
tion of a theory — often needed in string theory which is formulated in more than four dimensions.
This report provides a concise and pedagogical introduction to the idea of compactifications
which is accessible to students. We compute the three established massive AdS; x S° vacua,
discussed recently in e.g. [1]: Starting from the ten-dimensional type ITA supergravity action and
employing the AdS, x S® ansatz, we perform a dimensional reduction to derive the corresponding
four-dimensional effective theory. We analyse two scenarios: Initially, we only consider the field
strengths Fy and Fg; later, we include all possible field strengths, i.e. also H, F» and Fy. For
both cases, we identify the potential and search for its minima. The comparison with [1] shows
that we can reproduce the three AdSy x S® minima that they find: two non-supersymmetric and
one supersymmetric one. For all minima, we calculate the zero mode of the Kaluza Klein tower

and show that they fulfil the BF bound.

Sammanfattning

Begreppet kompaktifiering anviands inom teoretisk fysik for att gora dimensionella reduktioner
av en teori — ofta behévs det inom stréngteori som &r formulerad i fler 4n fyra dimensioner.
Denna rapport ger en kortfattad och pedagogisk introduktion till idén om kompaktifieringar som
ar tillginglig for studenter. Vi berdknar de tre vilkidnda massiva AdSy x S8 vakuumen: Med
utgangspunkt fran den tiodimensionella supergravitationsteorin ITA och med AdS, x S® ansatzen,
utfor vi en dimensionell reduktion for att hiarleda motsvarande fyrdimensionella effektiva teori.
Vi analyserar tva scenarier: Inledningsvis beaktar vi endast faltstyrkorna Fy och Fg; senare
inkluderar vi alla mojliga filtstyrkor, dvs. &ven H, Fy och Fy. I bada fallen identifierar vi
potentialen och soker efter dess minima. Jamforelsen med [1] visar att vi kan aterskapa de tre
AdS; x S® minima som de hittar: tva icke-supersymmetriska och ett supersymmetriskt. For

alla minima berdknar vi nolldget i Kaluza Klein-tornet och visar att de uppfyller BF-grénsen.
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Conventions and Notations

Throughout this report, we will use different indices on different spaces. We will consider spaces

of the form Z1y = X4 X Mg with a maximally symmetric four-dimensional Lorentzian manifold



X4 and a compact six-dimensional internal manifold Mg. Capital Latin indices M, N, ... run
on Zjg from 0 to 9, Greek indices p,v,... run on Xy from 0 to 3, and lowercase Latin indices
run on Mg from 1 to 6. Further, we denote the coordinates on Z1g as zjs, the ones on Xy as x,,

and the ones on Mg as y,:

{xu for0< M <3
ZM =

Ym ford < M <9.



CHAPTER 1

Introduction

In 1915, Einstein’s theory of general relativity (GR) revolutionised the understanding of gravity
— transforming it from a force as described by Newton to a property of the four-dimensional
spacetime, the curvature. Later, when quantum mechanics (QM) was established as the new
theory to describe the microscopic scales of our world, the need arose to describe all known
interactions according to the principles of QM. This was indeed possible for almost all inter-
actions — except for gravity: GR’s description of gravity breaks down at lengths approaching
the Planck scale. The goal of finding a complete quantum description of gravity remains one
of the open questions in modern theoretical physics and is called quantum gravity (QG). One
promising candidate for a QG theory is string theory, which postulates that the fundamental
particles of nature are not pointlike but excitations of one-dimensional strings. String theory
went through several revolutions in the last decades, one of which was based on the introduction
of supersymmetry — a symmetry between the two types of particles: fermions with half-integer-
valued spin and bosons with integer-valued spin. Today, the best understood string theories are
supersymmetric. Their low-energy limits describe supergravity — theories that combine GR and
supersymmetry. One of these low-energy limits — type ITA supergravity — is the centre of this

work.

An essential property of string theory is that it is formulated in more than four dimensions —

in the best understood supersymmetric form, it has ten dimensions. Hence, when describing our
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four-dimensional spacetime in the setting of string theory, one is confronted with a dimensional-
ity problem. One way to approach this is called compactification. The idea is — after specifying
the shape of the space (in fact, the compact so-called internal manifold) on which the addi-
tional six dimensions live on — to integrate them out of the ten-dimensional action. One then
attempts to make this six-dimensional manifold sufficiently small — so small that we can assume
its coordinates are unobservable with our current measurement techniques. Making the internal
manifold that small is not always possible — when it is, it is referred to as scale separation, a

necessary condition for a theory to describe our reality, since we only observe four dimensions.

A common illustration for the concept of scale separation is a straw (with an infinitely thin

wall), a two-dimensional object that looks like a one-dimensional object from far enough away:

Distance from the straw

Figure 1.1: A straw is an example for an object that seems to have less dimensions from far

away.

In this example, the two coordinates live on very different length scales — the straw’s length

is much greater than its radius.

In this work, we choose an ansatz for a six-dimensional manifold, since we want to use a
ten-dimensional theory to describe a four-dimensional spacetime. Similar to the straw, where
the internal manifold is a circle, we choose the six-sphere S% — the generalisation of the one-
dimensional circle or the two-dimensional sphere to six dimensions and the most simple and
symmetric choice imaginable. In fact, the possibilities for manifolds used in compactifications
are much more numerous and complex, but for this work the conceptual idea is central. We
go back to our straw to hopefully make the concept tangible. Mathematically, a (now infinite)
straw is the product R x S', a line times a circle. With increasing distance from the straw, the
dimension living on the circle is not visible anymore; the object seems like a line. In the action,
one integrates out the coordinate on the circle to go from the two- to the one-dimensional de-
scription. Here, we already note an important property of the internal manifold: It needs to be

compact, i.e. all its points have to lie within a certain distance (and it has to include all limiting



REPORT

values of its points). This makes sure that we do not get infinite results if we integrate out the
internal manifold’s coordinates. The coordinate on the circle S lives on the compact interval

[0, 27], for example.

Similarly to the infinite straw which mathematically is R x S!, for our ten-dimensional theory
we choose the ansatz AdS; x S with the four-dimensional anti-de Sitter spacetime AdS,; and

the six-sphere S®. The analogy to the straw example is illustrated in this table:

External manifold | Internal manifold

Straw R St

This work 4d spacetime S6

After compactifying the six dimensions on the S°, one obtains a four-dimensional theory. We
then identify the theory’s potential and search for its minima — the lowest energy states — since
these correspond to the vacuum solutions, the so-called vacua that describe empty spacetimes.
The vacua can then be examined for stability, the explained scale separation and supersymme-

try, for instance.

This work is structured as follows: Chapter 2 will introduce the conceptual framework of
general relativity, string theory (in particular, type ITA supergravity) and compactifications. In
chapter 3 we will perform the dimensional reduction of the ten-dimensional action of type ITA
supergravity. We will then present the found vacua of the effective four-dimensional theory and

their properties and eventually interpret our results in chapter 4.



CHAPTER 2

Gravity and Strings

This chapter aims to introduce the key concepts that are essential for this work. We begin with
the foundations of general relativity in section 2.1, followed by an introduction to the relevant
theory, type ITA supergravity, in section 2.2. We then present the subject of compactifications

in section 2.3 and examine vacua and their stability in section 2.4.

2.1 A Brief Review of General Relativity

Even though general relativity (GR) is not the focus of this work, one particular type of solution
of the Einstein equations, the Anti-de Sitter (AdS) space, will occur frequently. Hence, we will
spend a little time to present a few basic ideas of GR in order to introduce the AdS space. We

will loosely follow David Tong’s lecture notes [2].
Curvature of Spacetime and Geodesics
In GR, the motion of relativistic particles is described by the geodesic equation

d2zH dz¥ dzxf
NG
dr? +

wdr dr &1

with a scalar parameter 7, e.g. the proper time, and the objects I'}} ,, called Christoffel symbols
and defined as

1
Flljp = Eglwy (8pgvu + 81/9;)'\/ - aq/gup) (22)
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with the metric tensor g. They obviously satisfy
ry,=1%,. (2.3)

A solution of the geodesic equation is called a geodesic, the generalisation of a straight line in

curved space: Freely falling or moving particles always follow geodesics.

Geometric Invariants

We define the covariant derivative, a generalisation of the partial derivative that transforms

covariantly under Lorentz transformations:
Vo' = (V) = 00" + I‘va”; Vv, = (Vo) = 0,0, — FWUP, (2.4)

where we introduced the rather sloppy yet widely used bracketless notation. Note that V,v"
really is the v-th component of Vv, and not a differentiation of v’s v-th component. In contrast
to partial derivatives, covariant derivatives do not commute anymore. In fact, the Riemann
tensor encodes the non-commutativity of the covariant derivative. Its components are defined
as

RS, = 8,1, — 9,5, + T

o FWFZ/\ (2.5)

vp ,u)\

which by definition are antisymmetric in their last two indices,

R}, =—R},,. (2.6)

Contracting the first with the third index yields the Ricci tensor

Ry =Ry, (2.7)
whose trace is the Ricci scalar
R:=g"Ry,,. (2.8)
Finally, we define the Finstein tensor as
1
Gu =Ry — §Rgm,. (2.9)

The Vacuum Einstein Equations

The goal is to understand the dynamics of the gravitational field which is described by the
Einstein field equations. In the absence of matter, varying the Finstein-Hilbert action, defined

as

S = /d4 —|guv|R (2.10)
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with the Ricci scalar R, yields the vacuum FEinstein field equations:

G =0. (2.11)
They actually simplify to

R =0 (2.12)

which means that the metric is Ricci flat.

We can then extend this action by adding a potential term,

_ 1 4
S = m/d T\/=|gu|(R — 20), (2.13)

where the prefactor has dimensional reasons. A is called cosmological constant and has the

interpretation of a potential energy. The corresponding equations of motion are given by

G = —Agu (2.14)
and simplify to

Ry = Agpw. (2.15)
These are the vacuum Einstein equations in the presence of the cosmological constant. De-
pending on if A is positive, negative or zero, the solutions will take different forms. Solutions
with A = 0 are called Minkowski, solutions with A > 0 de-Sitter, and the ones with A < 0
Anti-de-Sitter (AdS).

The metric of AdS space is takes the form

2 2\ !
2 _ r 2 r 2 20102 | 2 2
ds® = — (1 + R2> dt” + (1 + RQ> dr® 4+ r*(df* + sin” 6d¢~) (2.16)
where R? = —% Another common notation for the AdS metric is, after introducing r = R sinh p,
ds? = — cosh? pdt® + R%dp® + R*sinh? p(d6? + sin? 0dp?). (2.17)

AdS spacetime pushes massive particles towards the origin » = 0 while it acts as a homogeneous
space for massless particles. Moreover, the isometry group of AdS is the ten-dimensional group

S0(2, 3).

2.2 Type ITA Supergravity

We present the theory that forms the basis of this work — type ITA supergravity. It is the low-
energy limit of type IIA string theory, one of the five consistent supersymmetric string theories.
This section will first briefly introduce the idea of string theory’s framework before discussing

the ten-dimensional action of type ITA supergravity.
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String Theory

String theory postulates a completely new understanding of particles: The fundamental objects
are not zero-dimensional points anymore but vibration modes of one-dimensional strings. One
distinguishes between open and closed strings, where the former are topologically equivalent
to a line interval and the latter to a circle. When describing the propagation of a string in
spacetime, the one-dimensional worldline that describes the propagation of zero-dimensional
particles is replaced by the two-dimensional worldsheet ¥, see figure 2.1. Y is parameterised by
two parameters — the time and the spatial coordinates 7 and o, where it is 0 < ¢ <[ with the

string length .

X0

<Y

(a) closed string (b) open string

Figure 2.1: Worldsheets for (a) closed and (b) open strings

String theory has only one free parameter, o', that defines the string length, the string mass

scale and the string tension:

I, = Vo string length (2.18)
1 .
M = N string mass scale (2.19)
1
T= string tension. (2.20)

2ma

Supersymmetric String Theory

After the original version of string theory — bosonic string theory, developed in the late 1960s
and formulated in 26 dimensions — failed in several ways (for instance in predicting fermions),
the discovery of supersymmetry in the context of string theory in the 1970s led to superstring
theory. Supersymmetry is a symmetry based on the assumption that for each boson there exists

a fermion and vice versa, and that these pairs of particles share some properties such as their
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masses. As far as we know, our world does not obey supersymmetry. However, because of a
phenomenon called symmetry breaking this does not make the study of supersymmetry obsolete.
In fact, it is possible that supersymmetry is a symmetry of our world but a broken one and

therefore not observable at low energies.

There are five consistent supersymmetric string theories, all formulated in ten dimensions
and assumed to be different limits of one single theory called M-theory. Their low-energy limits
describe supergravity, theories that combine GR and supersymmetry. As mentioned before, we

will study type IIA supergravity in this work.

The Action of Type IIA Supergravity

The ten-dimensional action of type ITA supergravity in Einstein frame is given as follows:

SlO _ 2 1 /dl(] /_ 10( (8¢) 1 *d)’H/ 2 Z e 2n¢>|F/|2>
o (2.21)

n even

/B/\F4/\F4
2k

Note that the prime indicates that quantities are contracted with the primed metric, since we
will also have an unprimed metric in the following. Typically, the action is given either in
Einstein frame or in String frame where the two are related via a metric rescaling, G,y =
GE v =e 2 GS - The Einstein frame is named as such because its first term takes the form
of the Einstein-Hilbert action from GR (compare (2.10)). The Einstein-Hilbert term is followed
by the kinetic term of the dilaton ¢, a scalar field appearing in theories with extra dimensions.
The Neveu-Schwarz-Neveu-Schwarz (NSNS) field strength H and the Ramond-Ramond (RR)
field strengths F;,’s are exterior derivatives of gauge fields, similar to electrodynamics. Note
that we sum over even n’s — in type 1IB supergravity one sums over odd n’s. Since the F},’s are
differential forms and we work in ten dimensions, there are no F,’s with n > 10, and further Fg,

Fg and Fig are related to Fy, Fy and Fy, respectively, via Hodge duality,

(n—1)(n—2)

F,=(=1)" 2 xFin. (2.22)

We work with the four RR field strengths: Fy, Fs, Fy and Fg. The NSNS and the RR field

strengths have to satisfy the Bianchi-identities

dF, = H A F—3 + 0p(8—n)/0(8—n) (2.23)
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where the second term will not be present in the setup we work with. Fields H or F},’s satisfying
the Bianchi-identites are often called fluxes. Finally, the last term is the Chern-Simons term

which will also not be present in our setup.

We will later fix specific choices for the field strengths in order to transform them.

2.3 Compactifications

The term compactification refers to a dimensional reduction of a theory. Regarding the ter-
minology, we refer to the manifold of the dimensions we want to retain (in our case, the four-
dimensional spacetime) as the external manifold. Conversely, the manifold containing the dimen-
sions we aim to compactify (in our case, the six-sphere) is called the internal manifold. In the

following, we will give a quick historical review and introduce the idea behind compactifications.

A Historical Perspective: Kaluza-Klein Reduction

The attempt to unify descriptions of different fundamental forces by adding spacetime dimen-
sions is not a new one and did not arise in string theory for the first time: Independently from
each other, Nordstrom in 1914 and Kaluza in 1921 developed a five-dimensional theory that
yielded the field equations of both gravity and electromagnetism. The naturally arising question
why we do not observe a fifth dimension was answered by both of them with the assumption that
our reality is located on a four-dimensional hypersurface in a five-dimensional universe [3]. Klein
further developed Kaluza’s ansatz in 1926 by choosing the topology of the fifth dimension to be
a tiny circle. The fields, depending on the circle periodically, could then be Fourier-expanded,
with, if choosing the circle to be small enough, Fourier modes with energies so high that they
are effectively unobservable. Based on their work, the general procedure of expanding the fields
in terms of the eigenfunctions of the compact space is called Kaluza-Klein reduction. It leads to
an infinite tower of modes appearing in the lower dimensional theory, a so-called Kaluza-Klein
tower.

This brings us to a very important constraint for a compactification to be realistic: Scale

separation.
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Scale separation

The common explanation for why we do not observe specific dimensions in higher dimensional
theories is that these dimensions are too small to be detected. This concept, known as scale
separation, suggests that the length scales of the external and the internal manifold differ by
several orders of magnitudes. However, this condition is not always achievable. After choosing
the internal manifold, performing the dimensional reduction and obtaining an effective lower
dimensional theory, it can be determined if the internal manifold’s length scale can indeed be

made sufficiently small.

Moduli Stabilisation and Fluxes

When considering theories with extra dimensions, one main issue is the appearance of modulus
fields, unobserved massless scalar fields associated with the geometry of the internal manifold
[4]. They lack a potential, meaning their vacuum expectation values (vevs), known as moduli,
are not restricted to any values. Among other problems, this undermines the predictive power
of the theory. To get rid of the ambiguity, the moduli need to be stabilised by some mechanism.
A common approach is to introduce fluzes, background values of field strengths, to stabilise the
moduli by giving them fixed vevs — which means that they become massive. In our setup, the
moduli are the dilaton ¢, a volume field ¢ and the two axion fields ¢ and b, while the fluxes are

the field strengths H and F,.

The Problem with de-Sitter Compactifications

Since we observe a positive cosmological constant we would like to focus on compactifications
where the external manifold is a de Sitter space. Unfortunately, these solutions are hard to
obtain. As explained in [5], theories with an Einstein-Hilbert term satisfying the strong energy
condition — the often required condition that gravity is always attractive in GR [6] — have no
de Sitter compactifications and only marginally allow Minkowski solutions. Hence, one usually

deals with external Anti-de Sitter spaces.

2.4 Stability of Vacua

In order to find vacuum solutions, so-called vacua, of a theory, one searches for minima of the

potential. One distinguishes between local potential minima, corresponding to so-called false

10
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vacua, and global minima, corresponding to true vacua. False vacua are metastable and can
decay into stable vacua at a lower energy in various ways, events that are called false vacuum
decay. We call the potential minima the critical points: If the potential V' depends on fields

@1, ..., dn, the critical points (¢7,...,¢}) fulfil

oV (61, -, 6l = 05106 V (D1, 60l ) = O (2.24)

and describe the vacuum energies of the solutions. Note that at the minimum, V(¢7,...,¢})
acts as a cosmological constant A in the d-dimensional theory. In four dimensions and for A < 0,
we can identify [7]

V(3. .., ¢8) = M3, - A. (2.25)

The cosmological constant is further related to the length scale of the external AdS space as

A= 3 (2.26)

-
LAdS
As mentioned, there are several types of false vacuum decays where metastable vacua decay

into other ones at a lower energy. In the following, we will discuss some of these decays.

Bubble Nucleation

In the process of bubble nucleation, a bubble of true vacuum materialises inside a false vacuum
and expands with a speed that asymptotically reaches ¢ while converting the false to true
vacuum.

A bubble of true vacuum inside a false vacuum has a positive surface tension and a negative
volume term, since the true vacuum has a lower energy compared to the false one. There is a
critical radius R, at which the bubble has total energy zero — which is required due to energy
conservation. However, through a quantum tunnelling event a bubble can overcome R. which
then leads to the bubble’s expansion. In 1977, this phenomenon was introduced by Coleman
[8]; and in 1980, Coleman and Luccia expanded the idea by taking the effects of gravitation
into account [9]. They found that gravitation can both favour and unfavour a decay, depending
on the energies of the initial and final vacuum. They restricted themselves to the thin-wall
approrimation, i.e. the assumption that the energy density difference between the true and the
false vacuum is small. In the absence of gravity, a bubble with total energy zero can always
be achieved: The smaller the energy difference between the false and the true vacuum, the

larger the radius has to be. This is no longer true when including the effects of gravity. The

11
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negative energy density inside the bubble diminishes the volume/surface ratio with the result
that for sufficiently small energy difference € there is no bubble with a big enough volume /surface
ratio [9]. Supersymmetric AdS-vacua are protected against this type of tunnel effect, while for
non-supersymmetric vacua several examples have been found where this vacuum decay indeed

happens [5].

The Bubble of Nothing

The bubble of nothing is another vacuum decay which is similar to the already discussed bubble
decay. It also describes the nucleation of a bubble that then expands rapidly — yet for this
effect it is literally nothing inside the bubble, where nothing means the absence of spacetime [5].
For AdS, nothing should be thought of as the limit of AdS space in which the curvature length

approaches zero [10].

Breitenlohner Freedman Bound

The Breitenlohner-Freedman (BF) bound [11] is a bound for perturbative stability and describes
a lower bar for the mass below which the AdS space becomes unstable.

In flat space, fields with negative squared masses — so-called tachyons — signal an instability:
i(wttkiz’)

The solution of the Klein-Gordon equation 9,0"¢ = m2¢ is a plane wave e w is a

2 < 0, then w becomes imaginary which then leads to the solution

function of m, and for m
becoming an exponentially growing function. However, in AdS, stable solutions with negative
squared masses are actually possible: If the squared mass is negative but sufficiently small, the
Compton wavelength m ™! can become so large that it eliminates the instability [5]. We find

that the frequency w is real and thus the solution stable if and only if the mass satisfies the BF

bound,
(d-1)

1 (2.27)

2712
m*Lygs > —

In our convention, the masses are given by the eigenvalues of the Hessian H;; = 31'3;"/\(@,...,@)
when they are canonically normalised.
While supersymmetric vacua always have masses above the BF bound and therefore avoid

this instability, non-supersymmetric vacua usually have masses below the bound [5].

12
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Compactification on S¢

We present our results in this chapter. Starting with an ansatz for the ten-dimensional metric and
the introduction of the necessary Weyl rescalings, we perform the general dimensional reduction
from the ten- to the four-dimensional action. We then further investigate two different setups:
In a first one, we only include the two field strengths Fjy and Fg, and in a second, general one
we also include F5, Fy and H. For both setups we identify the potential of the theory, search

for its minima and investigate their properties.

3.1 General Dimensional Reduction

As introduced in (2.21), the ten-dimensional action of type ITA string theory in Einstein frame

is given by
S _L A/ / _la /2_L—¢>H/2_1 5*7"¢F/2
=g [ @2/ ~Glo Ry~ 5(06)7 — 5 P 3 3 IR
K10 T n even (3]_)
1
+72/B/\F4/\F4.
2K7

For the ten-dimensional spacetime we choose an ansatz of the form X, x Mg where X, is
a four-dimensional maximally symmetric Lorentzian manifold (either Minkowski, de Sitter or
Anti-de Sitter space) and Mg is a six-dimensional compact manifold. We will find that for the

compactifications we consider in this work, X, is actually an Anti-de-Sitter space, X, = AdSy,

13
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but we want to underline that it is not an assumption we make. We set
ds?y = GhyndzMdzN = eQa‘P(x)ngx“dx” + e20°@) g, dy™ dy" (3.2)

where p,v run from 0 to 3 and m,n from 1 to 6, and where x are the coordinates on X4. The
factor 2##(®) describes the dependence of Mg on the X4-coordinates — in particular, it controls
the volume of Mg — and the factor ¢2*#(*) is chosen for convenience. The parameters o and
B are initially arbitrary, yet we will fix them later to attain a four-dimensional effective action
with a standard Einstein-Hilbert term. From now on we write ¢ = ¢(z). The aim is to express
all terms in the action (3.1) in terms of the metric g,,. In particular, in order to integrate out
the six y-coordinates, we must decompose the Ricci scalar R, into R}, = R + Rg. This can
only be achieved if the two spaces Xy and Mg are independent of each other, requiring Weyl

rescalings for that purpose.

Weyl Rescalings

We will perform two Weyl rescalings of the metric in order to express all terms in the action

(3.1) in terms of the g,, and the g, metric. We already defined

620“’09“1/ 0
IJWN = ’ (33)
0 ezﬁ‘pgmn
and now set
2(a—B)y 0
~ B € Guv
GMN =€ QBSOG/]V[N = (3.4)
0 ‘ Gmn

This is the first Weyl rescaling in which we successfully removed the x-dependence from the g,-

metric. We further define a second Weyl rescaling, now only for the four-dimensional metric:

G = 2 Peg. (3.5)
With this, we can write
. Guv | O
Gun = | — : (3.6)
0 | gmn

Transformation of the Metric Determinant

With definition (3.4) from above, we can rewrite the metric determinant as

\/—G’lo = \/— det(e282Gg) = €'/ —G1p = 610&"\/— det(e2(e=Fvgy)\/g6
= !0t gy fge = 1T gu /g6

(3.7)

14
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where we used that det(aA) = a™det(A) and that we can write the determinant of G' as the

product of the determinants of the single blocks as it is in block-diagonal form.

Transformation of the Ricci Scalar

In appendix A, we calculate how the Ricci scalar transforms under Weyl rescalings. Under the

metric rescaling (3.4), Gun = e*w“’G’MN, R1o transforms as
R}y = e 2%(Ryg — 188V2p — 728%()?). (3.8)

Note that the second and third term are effectively only contracted with the four-dimensional
metric since ¢ is a function of the z-coordinates on Xy and thus, derivatives of ¢ w.r.t. the
y-coordinates on Mg vanish. This means that we can write V2o = V2 and ()2 = ()2

Furthermore, since the Mg part lost its z-dependence in Gy, we can now split the Ricci scalar,

i.e.
~ guu 0 ~ A
Guyn = > Rip = R4 + Rg. (3.9)
0 | gmn
This then yields
Rio = e 2P9(Ry + Rs — 188V2p — 726%(d¢)?). (3.10)

We can rewrite Ry using the found formula for transformed Ricci scalars (now for n = 4) and

the transformation g,, = 6_2("_6)9"@“,,:
Ry = e P?(Ry — 6(a — B)VZp — 6(c — B)°(9)°). (3.11)

The expressions V2 and (3gp)2 in (3.10) still need to be expressed in terms of the metric g, .
It is

(D)% = 30,00, = e 2O A g9, 00,0 = e D2 (9p)? (3.12)

and

A

V2 = V.V = ¢V, Vg = 0V ,u0up = 0" (9,00 — T0,0,0)

— DG (0,0, — T, 0p0) = XTGP O,0, — (Th + af)00) (315

— e 2(@=P)¢ 9" (8,0, — Fﬁuap@) _672(a75)eogwazyap@

:VQSQ

where we used the expression for transformed Christoffel symbols we derive in appendix A.

Hence, using

ab, = (a = B)(0updl, + 0updl) — 040" gpu) (3.14)
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3.1. GENERAL DIMENSIONAL REDUCTION REPORT

we can write

A

Vi = e 20wy — =20 B2 (o — B) g (9,060 + 0,008 — 0y09™ Guu) Dpip

=0y 0 p+0up0y p—0y 07 pguu

(3.15)
=018y, 40O p—40, 0T p=—2(0p)?
= e_z(a_ﬁ)“pVng + 26_2(0_5)“0(@ — ﬂ)(ago)Q.
Now, we finally have all the terms to rewrite the ten-dimensional Ricci scalar:
Rh, = e 2% (eQ(aﬁ)w(Pu; — 6(a — B)VZp — 6(a — B)%(09)?) + Re
—185(e72eV2p 4 27200 (0 — ) (99)°) — 72626‘2(“‘5)“"(0@)2)
(3.16)
= e 2PPRe + 72 <R4 — (6(c — B) +188)VZp — (6(a — B)?
+368(a — B) + 723%) (&p)2>.
Fixing the Relation between « and f
To fix the relation between the two parameters o and S we consider the action
1 / A2/ —GoRyo- (3.17)
2/4;%0
In the previous subsections, we saw how both |/—G/, and R}, transform under the discussed
Weyl rescalings. Plugging in the found results yields
Sh=5o /d43: by elAat6)e, /= g4ﬁ[e 25¢ Rg + e~ 2% (R4 — (6(a — B) +183)V?
10
= (6(a = B)* +368(a — B) + 72/32)(&0)2)] :
(3.18)

Note that we can now clearly separate the terms depending on = and the ones depending on y.
In particular, as we discussed earlier, for the last two terms we only sum over the z-coordinates.

Therefore, we can split the integral as follows:

Sr= L d'z dby eUeto0e /=g, \/ze—m <R4 — (6(c — B) + 188) V¢ — (6(a — )

2/4?10

+368(a — ) + 728%) (D¢ ) /d4x dBy Bat6B)e /g1 Jaee 2P Rg

- <21 / 'z o990 /=g Ry~ (6o 6) + 189V — (6l — 6 + 363(a )

+ 72/3%) )) /de\F /d4:v eHotBe /g, /d y\ﬁRﬁ
o (3.19)
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3.1. GENERAL DIMENSIONAL REDUCTION REPORT

Since all the information about the volume of Mg is stored in the term e2??, we need to impose

that the integral just gives the unit volume of Mg:

/dﬁy\/gT; =1 (3.20)

Additionally, since Rg is constant for the choice of Mg we will consider, the integral

/de\/gT;Rﬁ = R (3.21)

just gives a constant as well.
When performing the dimensional reduction, in principle the xjg-factor is replaced by a
ky-factor, related via

= (3.22)

where g is a constant one can fix, for example to be the value of ¢ in the potential minimum.

However, we set

|

kg =1 (3.23)

which means that in four dimensions, we work in Planck units.

Using that, we can write down the dimensional reduced action:

Sr = </d433 6(20‘%5)@\/—74@4 — (6(a— B) +188) V¢ — (6(cc — 8)* + 363(c — )
(3.24)

+ 7262)(&0)2)) + RG( / d*z e4<a+ﬁ>¢\/—74).

We then fix the relation between o and 8 by demanding the prefactor in front of Ry to be

1,ie. 2+ 683 20 = a= —34. Plugging in this relation gives us
Sp = (/d4:v\/—g4 <R4 +68V2p — 2452(6@)2)) + R6</d4x 6_865"\/—94). (3.25)

Fixing [

The parameter 5 remains undetermined, allowing us to set the prefactor in front of the ki-

netic term of ¢ to —2%, a common convention. In order to do so, first note that the integral

2

[ dz*\/—g4V?¢ vanishes: We can write the Laplace-Beltrami operator as [12]

1
Vi = <=0, (V=510 0). (3.26)
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3.1. GENERAL DIMENSIONAL REDUCTION REPORT

and thus
/X dra/—gaV3iep / d*z —g Oy (V—919"" 0vp)
4
= [ d'z o, (\ﬁ—gmw) (3.27)
X4
= do\/—gs0t'p =
0X4

where we used Stokes’ theorem in the second last step, and for the last step we assumed that
the derivative of the field ¢ tends to zero at infinity. With this part of the action being zero, we

are left with

Sp = ( / d'wy/=gi (Rs— 2452(890)2)> + Rg ( / d'z 6_8’3@\/7—94> . (3.28)
Imposing the condition for 8 explained above and choosing the positive solution, it is § = J%T;'
Transformation of the Dilaton

There are other terms in the action (3.1) that are affected by the transformation of the metric

as well. First, consider the dilaton contribution (9¢)? in (3.1):
1 10 ! 1 2
— —= . 2
S0= g [ 42/ ~Chol—5 091" (3:29)
Under the discussed metric transformations it is
(0¢)? = GMNopgond = e PGV N Oy dON G = e (09). (3.30)

The dilaton only depends on the X4-coordinates and thus it is (9¢)% = (9¢)?, and with the

second rescaling we find
(09)? = e22(9¢)? = e 2P2e 2270)2(9¢)? = e72%(09)*. (3.31)
With /—G, = e(4a+6ﬁ>%/—g4\/g>6 it is

S¢ _ r d*x dﬁy e(4o¢+65 /794\/>€ 2acp(8¢

K1o
=3 /d x@€(2a+65)w(a¢)2 (3.32)
1
- —§/d4x ~01(09)°
where we identified again the unit volume [dy™,/gs and used the found relation o = —3p.

Hence, the kinetic terms of both scalar fields ¢ and ¢ come with a prefactor of % in the four-
dimensional action, which is convenient.
To be able to transform the other terms in the action (3.1) we need to choose specific ansatzes

which we will do in the next sections.
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3.2. SETUP 1: TURNING ON Fy AND Fy REPORT

3.2 Setup 1: Turning on Fj and Fj

We choose the six-dimensional internal manifold to be the six-sphere which is a compact nearly
Ké&hler-manifold. For now, we assume the presence of only Fy and Fg. Since Fj vanishes in
this scenario, B A Fy A Fy and H = dB do that as well. The \F}Q|2 all only depend on the

Meg-coordinates and are therefore only affected by the first Weyl rescaling:

1
/12 1M1 N 1My, N,
|Fp’ = G G pFMl...MpFNl...Np

p!

1 N -
= —'e_ZP’BSDGMlNl R GMPNPFML._MPFNL._NP

v (3.33)
= H€—2pﬁ¢9m1n1 cee gmponml.,.mpFnl...np
- €—2p6<p|Fp|2

where we used that we only have to sum over the indices on Mg. We further choose an ansatz

for F of the form [7]

FIQ = Qpép (3.34)
with a constant @), and the Levi-Civita tensor €, satisfying | €, = 1. It is then
P P P
Me
|F|? = e 2PP2Q2(¢,)? = e PP Q2. (3.35)
Thus,
1 1 5-p
Sk, = 5 [ d2/=Glo(—5 > TR
K1o p even
1 5-=py _
=~ [ d'v dyy/=g/gee 1N YT e e Q] (3.36)
K1o p even
— —1Q§/d4x _946—6/3<p Z e—2p/3we5%”¢_
2 p even
In particular, we find
1
Sk, = —ng/d%ﬁ —gae 90%e3? (3.37)

with Qg being the Romans mass and
1
Sr, = fng/d‘lx *946_185('06_%(1). (3.38)

As before, we choose to work in Planck units in the four-dimensional setup where it is k4 = 1.
We can then put everything together to get the four-dimensional action of the theory. Hence,
we consider the action
1 1
S = §/d49€\/ —94 l(R4 - 5((590)2 + (3¢)2)) +e 3R
(3.39)

2 2
N %6—65%% _ %6—185%—%@5
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3.2. SETUP 1: TURNING ON Fy AND Fy REPORT

We identify the kinetic and the potential terms in this action and find the potential to be

1 2 2
V= 5( — e 8PP Rs + %e‘ﬁwegd’ + %6_185¢6_%¢). (3.40)

From the action above we can extract three equations of motion, for R4, ¢ and ¢. The one for

R4 will yield the Einstein equations, but for now we are more interested in the potentials.

Find Minima of the Potential

The potential depends on two fields, the dilaton ¢ and the volume . As discussed in 2.4, the

critical points (¢*, ¢*) with
0oV (gro7) = 0; V(g o) = 0, (3.41)

determine the vacuum energy of the solution. Recall also that at the minimum, V(¢*, ¢*) acts
as a cosmological constant A. We start setting the partial derivatives of (3.40) to zero:

! ! 1 1 2
0V l(gr o) =0 = ¢°(p) = —4Bp+ 3ln (5 (gi) ) : (3.42)

Further, setting 0,V |(g o+ =0 and using the found relation for ¢*(¢) yields

(3 (5) R

p*=——1In 3.43
SRl o 49
Thus, we found the critical point
1
1 2 38
1 5 Qi 3
() <Qg>3 55 (28)° Re 602 (.40
| 503 67 | oz (e | |
56 (@g) Rﬁ
and plugging this into the potential V' gives
5 1
5%(82)3 Rg
* * Qo 6
V(p*,¢*) = ————. 3.45
NI fo% 249

Note that the cosmological constant relates to the potential at the minimum, V (¢*, ¢*) = MFZ,1 A
— that we just find to be negative. That means, that the four-dimensional maximally symmetric

Lorentzian manifold is indeed an Anti-de Sitter space.

The BF bound

Recall the BF bound from section 2.4 that vacua need to fulfil to be perturbatively stable: The

masses, i.e. the eigenvalues of the Hessian, need to satisfy

o (d=1)

>_ ) (3.46)
L3 4

20



3.2. SETUP 1: TURNING ON Fy AND Fy REPORT

We plug (¢*, ¢*) into the Hessian matrix and get

2 SR2(Q3 [ 5 5
H((b* (p*) _ 6¢V aqbagov _ _w 96 v/3-96 ' (3 47)
’ 2 K50Q 5 37 ’
8¢8¢V 890‘/ (¢*,%) 1076 V396 288
The eigenvalues are given by
1
2 ( Qs \3 5
m2:R6 (Qg) 56/“2
12k2,Q2 ’ (3.48)
ith L >
wi =- =—.
H1 2 ) 125) 3
Using Lids = —W we can rewrite these as
6 20
cig(H) = m? = { } : (3.49)
LQAdS LQAdS

Comparing this with the BF-bound (3.46), both eigenvalues fulfil this stability condition and

therefore describe stable solutions:

6 20 9 d—1)2
= {L2 L2 } S _(4L2 = (3.50)
AdS AdS AdS AdS

Scale Separation

As discussed in section 2.3, a compactification can only describe our physical reality if scale
separation holds, i.e.

Lags >> Lgs. (3.51)

Hence, we compare the length scales of both the AdSs-space and the S®-sphere. We have to
be careful with the dimensions. As we defined the potential, it has mass dimension 4 while the
cosmological constant has mass dimension 2. They are related via

6204(,0

V(g",0%) = MAA = oA, (3.52)
Ko
The length scale of the external space is given by
3 e??” 3
Ligs, = —~ = — (3.53)

A Kio V(0¥ ¢*)
while the length scale of the sphere is given by

L = %7, (3.54)

We find
L, 12 2
= — == 3.55

where we used that the Ricci scalar of the S is given by Rg = 30. Hence, scale separation does

not hold; the internal and the external manifold have length scales in the same order.
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3.3. SETUP 2: TURNING ON ALL FIELD STRENGTHS REPORT

Plot the Potential

We want to plot the potential V(¢*, ¢*) as a function of both ¢* and ¢*. We would like to have
the same (g, Qs-dependence in the last two terms since we do not know their values. For that

purpose, we redefine the fields ¢ and ¢. We write the potential (3.40) as

_1 —8B¢ Q% 28p,5¢ Q% —108¢p —1
V—§e (R6—76 ez -5 e 2 ) (3.56)

(1) 2)

¢
We now make an ansatz for e’? and ez, namely

5 1 _1 5 1 _1
e’ ~ QF QI RS = QF Q2 R, ° L,
P _1 5 1 1 _5 1
e’ ~ Qg *Qy *RE =: Q4 °Q, ° RZ4.

where we fixed the exponents by requiring that both terms (1) and (2) go with QJQYR}. Note

(3.57)

that the L corresponds to the radius of the six-sphere, and the ¢ corresponds to the string

coupling constant gs. With this ansatz, we find
1
V=-A-L3%1- 5(L255 + L7107 h)). (3.58)

5 1
with A = ﬁQG *Qy *. We plot V/A as a function of L and 0, i.e. of the (rescaled) radius of
S6 and of the (rescaled) string coupling constant, see figure 3.1. The potential has its minimum

in

1 1

v oo _ (67 5o

(L ,6 ) — (5,1> . (359)
Hig 061

Figure 3.1: Potential V' as a function of L (left) and d (right).

3.3 Setup 2: Turning on all Field Strengths

So far, we considered the action with only the two RR field strengths, Fy and Fg, and found a
first vacuum of the theory. However, that is not the most general action. In fact, we can turn

on axion fields as well — scalar fields with a continuous shift symmetry.
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3.3. SETUP 2: TURNING ON ALL FIELD STRENGTHS REPORT

The Setting

We will turn on the other two RR field strengths F» and Fy and also the NSNS field strength H.
The RR and NSNS field strengths are not completely free to choose, in particular, they have to

fulfil the Bianchi identities
dF, =HAF,_3+ 6D(87n)/0(87n) (3.60)

where the second J-term vanishes in the setting we work with. One can check that the following

choice for B indeed fulfils the Bianchi identities:
By = b(x)Jimn, H =dB = Huymn = 0ub(2)Jmn, Hpm = 2b(x)m(ReQ) . (3.61)
Here, b(z) is a four-dimensional axion, /m is a parameter, and J is a 2-form that satisfies
%Jmn!]klgmkg”l =3 (3.62)

and

1
g7 NI AT = vols. (3.63)

It encodes the volume of 2-cycles or 2d submanifolds. Similarly, the complex 3-form 2 encodes

the volume of 3-cycles or three-dimensional submanifolds, and satisfies

1 1
?(RGQ)mnk’(ReQ)uvwgmngmjgkw = g(ImQ)mnk(ImQ)uvwgmngnvgkw =4
(ReQ) i, (ImN)™* = 0 (3.64)
Qo J™ = 0.

The field strength F5 and its components are given by

F,=0QoB = Fun=Qob(x)Jmn. (3.65)
Moreover, we set
1 1 4m
Fy= §B A BQo + d(¢(x)ImQ) = 5B A BQo + d¢(x) A ImQ — ?C(SU)J ANJ (3.66)
with components
9 8 op
F,umnl = a,uC(ImQ)mnly Fklmn = (QOb - ?C)eklmnopj . (367)

The ¢ that appears here is another axion. Finally, also Fg gains additional terms:
1
Fs = Qgvols + QoB A B A B + B AdCy = (Qs — b>Qq + 8mh)volg (3.68)

with components

Fklmnop = (Qﬁ - b3Q0 + 8m<b)6klmnop- (369)
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3.3. SETUP 2: TURNING ON ALL FIELD STRENGTHS REPORT

Transformation of the Field Strengths
We compute how the field strengths H, F>, Fj; and Fg transform under the Weyl rescalings.
The computations can be found in appendix B. It is
H' = 6e2=89)2(9b)? + 96e 5% m?b?,
|F5)? = 3¢ 72Q5(b(x))?,
8 \2 (3.70)
|F/|2 2a 108)¢ (ac) + 1267854,0 <Q0b2 g) 7
2
|[Fgl? = 71292 (Qs — b Qo + 81Ch)

Action

Collecting all terms together yields the four-dimensional action, as before we now work in Planck

units with k4 = 1. The derivation can be found in more detail in appendix B. We find the action

to be . )
=5 [ d'av=gi(Ra— 500 + 06)) — Je e @by
2 | 2 (3.71)
— 56%6_2%“"(802 - V)
with the potential
V= —G_SWRG + Qe b 12895 m2b? + Q062¢ —6B8¢ 4+ 2 3 3¢ —105%22()2
2 2° " (3.72)
3 148 9 8m o 1 _¢ —188¢p 3 ~ 782
+5eTe QU — RO+ SemTe 9 (Qs — BPQo + 8mcb)”.

Similar to the first setup, we rescale the four moduli fields to achieve an overall dependence of

Qo, Q6 and R6:
S5 1 1
e’ =QFQF R ° L,

1
6%:Q612Q012Ré15
11 (3.73)
b=0Q5Q°b,
V30 2 1 1
(=20 R ¢

We can then write the potential as

3 1 3 -
V = e 8¢ R ( —1+ 55*2L*4b2 + 55%2 + 553Lf2b2

(3.74)
32 AN2er6, Leir 10 73 o772
+5 (B =) oL+ S5 LT - B+ 30D)
where we used RG—E(gm) & m? —40R6

Searching for minima of V', now dependent on four fields, yields three solutions, see table

3.1. Note that the first solution is the one we already found in the first setup.
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. 1/24 1/8
Solution 1 561ﬁ 5?5% 0 0
2
: 1 35/16 1 2)3
Solution 2 51/1231/851/6 | 37/2451/12 | — 92/351/3 (5)
. 1 35/1655/48 1 1
Solution 3 51/331/851/24 52/3 5.92/35173 | ~ 91/352/3

Table 3.1: Three found minima

We compare the three found minima with the ones found in [1]. Indeed, the results only differ
by overall prefactors which do not change the results due to freedom of convention. Multiplying
1/3
our AdS length scale L,4q2 with % (%) / yields the AdS length scale in [1], multiplying our ¢
. 5\1/3 . 5\2/3 . . . : o
with — (E) and our b with — (i) yields the axions ¢ and b in [1]. Finally, multiplying our
2/3 2/3
L? with § (%) / and our §* with 3 - (%) / gives the dilaton and volume fields in [1]. Hence,
we could reproduce the results in [1]. From their discussions, we can also conclude that — while
solutions 1 and 2 are not supersymmetric — the third solution is actually a supersymmetric one.

For these minima, we calculate the critical masses using the Hessian. In contrast to setup 1,

not all kinetic terms in the action (3.71) have a prefactor 3, i.e. the matrix g in

T == (09)" g (09) (3.75)

N

with kinetic energy T and ® = (4, ¢,b,¢)T is not canonical. The introduction of a metric £
such that ET - E = ¢g and a rescaled moduli vector Z := E - ® solves the problem: We can write
the kinetic term in a canonic form, T = %(QE)T - (0Z), and the mass matrix is then given by
(E~YHT . H - E~! with the Hessian matrix H. We find the following critical masses (in [L;]

AdS

. 2 _ 6 .
with L3 g = 7‘/(6*@*,6*,5*))'

Solution 1 20 20 6 6
. 64 6
Solution 2 2 x 6 -3

0
Solution 3 | 47 + (/33 | 4T — /33 | 446 | 4— 6

Table 3.2: Masses of the found minima

They all satisfy the BF bound

9 (d—1)2

2

m” > — =— . (3.76)
4L?&ds 4L2AdS
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CHAPTER 4

Conclusion

In this work, we looked at string compactifications on AdSy x S% in type IIA supergravity. After
choosing an ansatz for the ten-dimensional metric, we performed the dimensional reduction of
the ten-dimensional action to obtain the four-dimensional effective theory. We then examined
this theory for its vacua, and investigated certain properties of those. In a first setup, where
we only included the two field strengths Fy and Fg, we were able to identify one vacuum. In a
second, general setup, we included all field strengths, namely Fy, F5, Fy, Fg and H. Besides the
vacuum already found in the first setup, we found two additional vacua. We were able to identify
the correspondence between our results and the three well-known solutions for AdS, x S, first
found in [13], [14] and [15], and for example presented in [1]: Two non-supersymmetric vacua
and one supersymmetric one. For all three vacua, we calculated the corresponding masses of
the axion fields and found that for each vacuum and each axion, the first mode of the tower of

masses fulfils the BF-bound.

Widely discussed is the stability of non-supersymmetric AdS vacua as it could enhance our
understanding of time-dependent de Sitter solutions and the use of holography in realistic sys-
tems, such as those found in condensed matter physics or QCD [16]. The (non-) perturbative
stability of the two non-supersymmetric AdS; x S® vacua is the subject matter of several pub-
lications.

In [17], Ooguri and Vafa sharpen the famous weak gravity conjecture, which then implies
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that any non-supersymmetric AdS vacuum supported by fluxes must be unstable. This con-
jecture applies for the two found vacua with N' = 0: While the perturbative instability of the
non-supersymmetric, SO(7) preserving AdS; x S® vacuum was proven in [18], [1] presents a
vacuum decay for the Go invariant vacuum with N' = 0, a decay via expanding D-branes go-
ing through a bubble of nothing regime. This instability does not only apply in this scenario,

but more generally for related AdSy x M solutions with Mg being a nearly-Kéhler manifold [1].

As discussed, the supersymmetry of the three AdS, x S° vacua is well-known. However, this
was not examined in this work and offers possibilities for further investigations. Moreover, in

a next step one could investigate a slightly more complex ten-dimensional spacetime, such as

AdS, x CP3.
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APPENDIX A

The Transformation of the Ricci Scalar under Weyl Rescalings

We compute how the Ricci scalar transforms under a Weyl transformation of the n-dimensional

metric,

g;w _ €2cw(z)guy; gl,uu _ 6—20(1.)(z)g,uu7 (Al)

with ¢ being a constant and w a smooth function of the coordinates. Note that the following

two useful relations hold:
Tjir + Drji = 9500 + Gem Ly

1 1
= ~01;9" (0igyk + Ok Giy — Orgit) + = Gem g™ (0j9ui + 0:95u — Oudis)

2 2

2 (A.2)
=3 (0igjk + Orgi; — 0j9ik + Ojgri + 0igji — Orgij)
= Uigjk

and

9,97 = 0ig"™ 5%, = 0;(¢"™) g 9" = —9"* 7" 0i g1 = — " ¢ (Tonit + Timi)
—
=—g"8;(gm1) (A.3)

= —(glkrgz + ¢TIk ).
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We first consider the transformed connection:
1y,
9" (Ogk + Okghy — O4911)
—2cwgw[a (GQng )+a ( 2cw )_ ) ( 2cw
vk (AN EY) ~\€ gkl)]

—e 2 g [2c0(w)e*™ gy, + €2 OU(gyr) + 200k (W) gy + €2 Ok (gy1)

F _
2
1
2
1
T2 (A.4)
— 20+ (W)e** gy — €20, (gr1)]
1 .
= ggm(azgyk + Ok gyt — Oy i) + g [01(w) gk + Ok (W) gyt — O (W) gil]
=T} + ajy
with
aly = cg"[01(w) gk + Ok(W) gy — O (w)gni

= c[01(w) 8} + O (w)d} — D (w) g™ gral-

The transformed Ricci scalar is given by

R =g R = ¢V R}, = ¢ (0T — 9,0 + TR T — T

; k k k
_ g ( N + Okal; — Ojaf; + Fmaﬂ + ak71W +aja 1= Tha); — aj, T — ﬂazl) (A.6)

_ /’Lj _ 9. Yy k 'y k v
- (Rzkj+8kaji ajaki+ak'yr a F +Pk'y Ji F ak1+ak7 ji ]’Yakz)

(1) (2) ®3) 4)
We compute the single terms, starting with (1): It is

Opaly; = O, (C (aj ()0} + 0i(w)dy — av(“)gmgij))

= c(0k(05(w)) 8} + O (0i(w))dF — (05 (w))g* gij + 0; (“)?ﬁfi

=0

+ 0i(w) O —04(w) k(9™ 9i5)) (A7)
—

=0
= ¢(0;(0j(w)) + 9;(di(w)) — 7 (0y(w))gi; — 87(w)8k(gk7gij))
= ¢(20;(0;(w)) — 07 (0y(w))gij — 95 (w)Ik(9" gij))
where we used that we can interchange the derivatives because of Schwarz, and

~0jaf; = —0;(c(%i(w) \51;3/ +01(w)8f — 0y(w)3]))

=n

= ¢ = nd;(9;(w)) — 0;(F(w))8F + 0;(,(w))8]

— 03(w) 0;(n) —0k(w) 9;(07) +05(w) 9;(]) ) (A.-8)
= ) =5

= c(—nd;(0i(w)) — 9;(0i(w)) + 9;(0s(w)))
= —ncd;(0;(w)).
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Thus,
o' (Daf; — Dyal) = " (20:(0;(w)) — 7 (05()gis — Oy(@)Ok (6" 9i5) — n 0;(Di()))
= 2% (200 (9;(w)) — 1 07(9(w)) — 0y(w)g " D(g" gis) —m D' (Du(w)))

= 2% (=0, (w)g" O(g" gij) + (2 - 2n) D (Bi(w))) -

(A.9)
Further, (2) is given by
af, T, = af, - T, = ¢ (85 (@)5f + 0e(w)3h — 9 (w)d ) 17,
=ndy (w)
—c (37(00)5? +9j(w)k — g’“"‘é’mu(W)gm) T (A.10)
=c(n Ow(w)l“]i - a’Y(UJ)F]’i - Oj(w)I‘:’ﬂ; + ak(W)ngZi)
=c((n—1) &Y(w)l“}i — 0 (W)in + Bk(w)gmf%i)-
Having that, it is
glij(aﬁfy : P;‘i - a% : FZJ = e726&}‘3((” - 1) 87(“)9“57‘1‘ —8i(w)I‘zi + 0’“(&))&%)
=0 (A.11)
=(n— 1)6_20‘“087(w)gij1“]i.
We continue with the third term (3). It is
Tk, -y = T, - ¢ (0()8] + ;)] — 9 0,(w)gy:)
(A.12)
= ¢(9;(w)Th; + 8 ()T — 07 (W)L, 956)
and
_F% cay, = —I‘;?W -~ (0;(w)d) + O(w)d] — g7 0 (w)gki) (A.13)
=c(— &(w)F?k - 8k(w)F?i + 8“’(w)F§ngi),
thus
Ly, -a), =T% -a), = c(aj ()T = Op(w)IF; + 07 (w) (F%gki — r’,gygﬁ) ) (A.14)

and further
g0k, - ), = T8 ) = e (9 (W)Tf; — Ok(w)g"Th; + 07 (w) (6715, g8 — 97T}, g5:) )
= 6_28“)0 (al(w)l“ﬁz — 8k(w)gijl“§i + 87(5‘])(11%7 - anfy))

— 20w, ((2 — )0 (w)IE; — ak(w)gijfﬁ-) :
(A.15)

Finally, we have to look at the last term (4):
alljva}i — a?},ali =2 (&Y(w)é,]: + 8;€(w)6]7€ - gk“(?M(w)gm> <8¢(w)5} + 9j(w)d; — gw&,(w)gﬂ)
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— (&Y(w)éf + 0; (w)é’j - gk“augm) (0i(w)d) + O (w)d; — g7 By (w)gki)

=c’ < 03(w)i(w) (8] — 67) +0(w)0;(w) (658 ) =05 (w)dy (w) (ng™" gji — 97" 9ji)

=(n—1)9;(w)d;(w) =+n 0;(w)0;(w) =—(n—1)0"(w)0, (w)gji
+0k (w)0i(w)6F) +0k ()0 (w) (656 — 8567) —Oh(w)D, (w) (8597 g;)
— ———
=+0;(w)di(w) =0 ==0"(w)0y (w)gji

— Op(w)0i(w) (8% — 6%) =0pu(w)9j(w) '

—_— —

=0 ==0;(w)9;(w)
+0u(w) 0y (W) (9" v 9" gji — 9795797 Gri) — 0 (W) O (w) (5567
:g“”g]’i—éyéf =—0; (w)aj (w)

=+0"(w)0u (w)g5i—0i(w) 05 (w)

0, ()01 (w)8E8] 0,00, () (850701 £0,()04() 091,07 )
=—n 8;(w)d;(w) =67 =+0%(w)0k(w)gji

5, 0n(@)
= (0= 1) 9()0,w) + 1 %()0;(w) - (0~ 1) (), wgs + B5(@)iw)
— 0" (w)0y(w)gji — 0i(w)0j(w) + 0" (w)0Dy(w)gji — 0i(w)0j(w) — 0i(w)0j(w)

1 0(w)0(w) + 0;(w)Ds(w) + 8 (W) (w)gﬁ>

= 02((n —2) 0i(w)0j(w) — (n —2) 3k(w)8k (w)gji)
and hence,

gV (akyal; — ajya);) = ¢ ((n — 2)0:(w)8;(w) — (n — 2)8* ()9 (w)gji)
= e 2% ((n — 2)8 (w)9;(w) — n(n — 2)0F (w) Ik (w)) (A.16)
=—(n-1)(n- 2)026_20“’8j(w)8j(w).

Collecting all computed terms together yields

R = e (R — cd,(w)g7 (g™ gij) — 2(n — 1)cd*(8;(w)) + (n — 1)087(w)gijf‘]7i
— (n = 2)cd" (W)Tf; — cOp(w)g" Tk — (n — 1)(n — 2)*P (w)9; (w))
— ¢ 2R~ 2n — 1)ed (Bi(w)) — (n — 1)(n — 2)2 (w)d;(w) (A17)

—cBy(w)g7 (9™ 9is) + (n — 2)edy (w)g"T]; — (n — 2)cd"(w)T};)-

(=:A)
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We want to rewrite the term A. For that, first consider its first summand:

c0y(w)g" Ok(9" gi7) = ¢(0(w) (9" 09" g3 + 979" D1 (gi5)))

o0, w) (=n (97Th + 9" Tok) + 979" (Tits + D) ))
0,(w) (—n (¢"Th + "1, ) + 9T, + 6T ) ) (418

— e(0y() (1 = m)g" T, — ng"™ T, + gL )) |

e+ O (W)

(
(

= c((1 = n)d' (W), — ndy(w)g"™" T}
(

With this, we can rewrite A as follows:

o = 0y(w)g7 k(9" gij) + (n — 2)0,(w)g"TT; — (n — 2)0 (w)T};)

= ¢((n — 2)0"(w)T§; + nd, (w)g*™T7

m

(=20, (g T — (=20 ()LL) (A19)
= c(2n — 2)0,(w)g"T7;.
We plug this back into R':
R = e_QC‘”(R —2(n— l)cﬁi(ai(w)) —(n—=1)(n— 2)C2aj(w)8j(w) +c(2n — 2)87(w)gijfzi)

= (R 2(n = e (91(0,w)) - 9,()g7T,) ~(n ~ Din — 23 (0w

=¢" (V;V,;w)=V3w

(A.20)
where we identified the covariant derivative V, v, = d,v, — Fﬁl,vp and introduced the rather
sloppy notation (dw)? := 97(w)d;(w). Thus, our final result for the transformed Ricci scalar

under a Weyl transformation g:“, = e2ew(@) Juv is given by

R =e 2% (R —2(n —1)eViw — (n —1)(n — 2)02(8w)2) . (A.21)
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APPENDIX B

Computations

We calculate how the field strengths transform in section 3.3.

Transformation of H

It is

H=dB =  Hupmn = 0,b(x)Jyn, Hpnt = b(2)27(ReQ) -

With that, we calculate how H transforms under the Weyl rescalings:

H/ — G/M1N1 G/M2N2G/M3N3HM1M2M3HN1N2N3

) —68p AMi Ny A MsaNa ~MsN:
=€ BLPG 2GS 3HM1M2M3HN1N2N3

—

(i) efGﬁgaéMll\H mang

msan,
g 9" Htymoms HNynons

B) —68p 2(a— -6
) =68 2( 5)¢gHng2”29m3n3H“QOBHl,mm +e ’Bc'ogmlnlgm2n29m3n3Hm1m2m3Hn1n2n3

L) Go88)e g manz 15, (i) Ty, Dy 1) Ty
+ 6_66¢gm1n19m2n29m3n3 (b(x))2(2m)Q(ReQ)m1m2m3 (ReQ)n1nans
© 213e(2a=80)2 g1 9 b(2)D,b(x) + 3l4e =% (b(x))? (2m)?

= 6e(22785)¢(9b)% 4 96~ 0P b2,

(B.2)

Here, we used for (1) that GMN = ¢26¢G'MN | for (2) that the last two indices of H are internal

ones, for (3) we divided the expression in two parts for M, N either internal or external, for (4)

we used (B.1), and finally for (5) we used the relations (3.64).
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Transformation of F5

In (3.65) we set
F2 = QOB — an = QOb(«T)Jmn

With that we can transform as follows:

1
/12 1M1 N1 1Mo N:
|F2| = EG G 21:‘]\411\/[2}711\111\72

—
N

1 n = _
= o 4Be yMiN GMQN?FMlMgFNlNZ

—
Nl

mima Fn1n2

2!
1
i6—459097711711 g F,
1

—
=

= 76—4ﬂ<p‘gm1n1 gm2n2 Q%(b(l‘))QJmlmz Jn1n2

2
4 _
D 3e19Q3 (b(x))?

(B.4)

where we used for (1) that GMN = ¢28¢G'MN  for (2) that F, only depends on the internal

coordinates, for (3) the definition (3.65) for the components of Fy, and for (4) the contraction

(3.62) of J.

Transformation of F)

The components of F were defined as

8m
Fumnl = aﬂC(ImQ)mnla Fklmn = (Q0b2 - ?()Eklmm)pjop

(compare (3.67)). It follows

1
/2 IM1 N1~ Mo No 1 M3zN3 ~IMyN.
|F4| = EG G N C 4FM1M2M3M4FN1N2N3N4

W) 1 850 20 Ny AMa Ny A M3 N3 SMN
= o 8Bp yMiNy M2 N2 (aM3 N3 (yMa 4 Fg My s My FNy Ny N N,

(2)1—8 M1 N1 mang msns , man
- Ee FeGih Lg"2 g g v mgmama E N nangng

3 %e—&&pe?(a—ﬁ)wgwg

1
—8 m
+ Ee ﬂcpg 1L gmanz gmans gmana B mamama Fninonsna

@ 1 - v
= 56(206 IOﬂ)wgu gm2n2.gm3n3.gm4N4aﬂg(ImQ)QOgmzlaVC(ImQ)n2n3n4
1
+ 76—8ﬂ<pgm,1n1gnLQanm,gng gm4n4 (Q0b2

41

maong  Mm3ans3

g

mang
g Fum2m3m4Fun2n3n4

i

2 ]0\/'\
3 ¢) €mimomsamaorp: * €ningonsngozp2

8m

(5) — 1 _ . .
= e(2a IOB)WQuVaHCaVC + Ee 8/8%7(620(72 - 7<)2 En1nzn5n4q1716n1n2n3n402p2 Yo1q19p1m1

3

1891 571 _ 591 ST
—4!(50561,;751,;50;)

0151 ,p1t1 02592  pato
’/r*‘l/].(/ g Jsgtg.q gp
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02 7p2 p2-02/7q1 11

877
— 6(20‘_105)“"(8@2 + 6—8@#(@052 _ %4)2(511157“1 — 01 §TL) g1 gt go2s2 gpate Jort: Jsots

Q7
_ e(2a—10,8)go(8€)2 + e—SBcp(QObQ _ ?mc)Q(ngzgmh _ gr1sng1t2)Jq1m Js
(6)

9 01090202 4 12¢7592(Qob? — ¢

2t2

where we used GMN = ¢28¢G'MN for (1), for (2) that the last three indices of Fj are internal
ones, for (3) that GMN = 2a=Begm 4 gmn for (4) we used (3.67), for (5) we used (3.64)
and rewrote the coloured expressions. Finally, for (6) we used (3.62) and the fact that J is

antisymmetric. Using o = —30, we find

|F4U2 — 6_16B¢(0C)2 + 126—8/&,0(@062 o S?mg)2 (BG)

Transformation of Fj

Fg’s components are given by
Fklmnop = (QG - bdQO + 8me)€klmnop (B7)
(compare (3.69)). Then

1
/2 1My N 1 Mg N,
| F| :gG R € L VR V¥ & N

—
N

1 _ _
S 12B<pGM1N1 o GM6N6FM1...M6FN1...N6

6!
(_) 1 —128¢ min; mene [ F
= ae g ... g mi..mgl'ni...ng
oo ) (B.8)
® ae_lzﬁ‘pgml"l N A (O b2Qo + 8m<b)26m1..‘m66n1...n6
1
= 3¢ 27(Q6 — 0’ Qo + 8imCb)? €0 en, g
. \qf_/

=6!
= e 127%(Qg — b°Qo + 81Ch)>.
We again used GMN = ¢282G™MN for (1), we used for (2) the fact that F only depends on the

internal coordinates, and we used (3.69) for (3).

Action

Putting all terms together and using

1 1 5-n
SF = —7/61102’\/ —Gloie%ﬂFAP

2
2K

B.9
L[y (da—68)p 3| 11 |2 (B9)
= - [ dlev=gietie e g
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where we work in Planck units in the four-dimensional theory, i.e. k4 = 1, we get the full action:

1 1 _ 5—n

=2 { [avzy- ao< S8 — SO - Y e ¢|F,3|2>

10 n even
10

_ 1 d10, 9 l ’“H/ 1 5¢F2 2¢>F/2

=2 2/ =Gl ( )% [H'[P— ez | Fy | F|
Lo 0 1 e o 1

f§6’,2‘F,H —56 2|F6‘ >+%%()/BAF4AF4}

1 4 » .
= ;/d4$ —3g4 (R4 — %((8()0)2 + <a¢)2) 4 6_8/BWR6_17:)(‘7(')(6(’72”‘{;@1%)(;(7))‘)

(B.10)

+96e 128252 (b(a ))2)_%)76/5%%@_% 30=1080002 (p( o o 1 2/ 295, 9C)2
96e e e2?—gei% Q5 (b(z)) G (0¢)

8m o 1
+12e7 1482 (Qgb? — ;n()2>—26 e 185*’(Q6—b3Qo+8mgb)2)

=5 [ ev=ai(Ra = 5(09) + @6)%) - g be 2 (@b(x)?

1 2 —228p 2
—gere (0¢) —V).
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