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Report

Abstract

The concept of compactifications is used in theoretical physics to perform a dimensional reduc-

tion of a theory – often needed in string theory which is formulated in more than four dimensions.

This report provides a concise and pedagogical introduction to the idea of compactifications

which is accessible to students. We compute the three established massive AdS4 ◊ S
6 vacua,

discussed recently in e.g. [1]: Starting from the ten-dimensional type IIA supergravity action and

employing the AdS4◊S
6 ansatz, we perform a dimensional reduction to derive the corresponding

four-dimensional e�ective theory. We analyse two scenarios: Initially, we only consider the field

strengths F0 and F6; later, we include all possible field strengths, i.e. also H, F2 and F4. For

both cases, we identify the potential and search for its minima. The comparison with [1] shows

that we can reproduce the three AdS4 ◊S
6 minima that they find: two non-supersymmetric and

one supersymmetric one. For all minima, we calculate the zero mode of the Kaluza Klein tower

and show that they fulfil the BF bound.

Sammanfattning

Begreppet kompaktifiering används inom teoretisk fysik för att göra dimensionella reduktioner

av en teori – ofta behövs det inom strängteori som är formulerad i fler än fyra dimensioner.

Denna rapport ger en kortfattad och pedagogisk introduktion till idén om kompaktifieringar som

är tillgänglig för studenter. Vi beräknar de tre välkända massiva AdS4 ◊ S
6 vakuumen: Med

utg̊angspunkt fr̊an den tiodimensionella supergravitationsteorin IIA och med AdS4◊S
6 ansatzen,

utför vi en dimensionell reduktion för att härleda motsvarande fyrdimensionella e�ektiva teori.

Vi analyserar tv̊a scenarier: Inledningsvis beaktar vi endast fältstyrkorna F0 och F6; senare

inkluderar vi alla möjliga fältstyrkor, dvs. även H, F2 och F4. I b̊ada fallen identifierar vi

potentialen och söker efter dess minima. Jämförelsen med [1] visar att vi kan återskapa de tre

AdS4 ◊ S
6 minima som de hittar: tv̊a icke-supersymmetriska och ett supersymmetriskt. För

alla minima beräknar vi nolläget i Kaluza Klein-tornet och visar att de uppfyller BF-gränsen.
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Conventions and Notations

Throughout this report, we will use di�erent indices on di�erent spaces. We will consider spaces

of the form Z10 = X4 ◊ M6 with a maximally symmetric four-dimensional Lorentzian manifold



X4 and a compact six-dimensional internal manifold M6. Capital Latin indices M, N, . . . run

on Z10 from 0 to 9, Greek indices µ, ‹, . . . run on X4 from 0 to 3, and lowercase Latin indices

run on M6 from 1 to 6. Further, we denote the coordinates on Z10 as zM , the ones on X4 as xµ

and the ones on M6 as ym:

zM =
I

xµ for 0 Æ M Æ 3

ym for 4 Æ M Æ 9.



CHAPTER 1

Introduction

In 1915, Einstein’s theory of general relativity (GR) revolutionised the understanding of gravity

– transforming it from a force as described by Newton to a property of the four-dimensional

spacetime, the curvature. Later, when quantum mechanics (QM) was established as the new

theory to describe the microscopic scales of our world, the need arose to describe all known

interactions according to the principles of QM. This was indeed possible for almost all inter-

actions – except for gravity: GR’s description of gravity breaks down at lengths approaching

the Planck scale. The goal of finding a complete quantum description of gravity remains one

of the open questions in modern theoretical physics and is called quantum gravity (QG). One

promising candidate for a QG theory is string theory, which postulates that the fundamental

particles of nature are not pointlike but excitations of one-dimensional strings. String theory

went through several revolutions in the last decades, one of which was based on the introduction

of supersymmetry – a symmetry between the two types of particles: fermions with half-integer-

valued spin and bosons with integer-valued spin. Today, the best understood string theories are

supersymmetric. Their low-energy limits describe supergravity – theories that combine GR and

supersymmetry. One of these low-energy limits – type IIA supergravity – is the centre of this

work.

An essential property of string theory is that it is formulated in more than four dimensions –

in the best understood supersymmetric form, it has ten dimensions. Hence, when describing our
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four-dimensional spacetime in the setting of string theory, one is confronted with a dimensional-

ity problem. One way to approach this is called compactification. The idea is – after specifying

the shape of the space (in fact, the compact so-called internal manifold) on which the addi-

tional six dimensions live on – to integrate them out of the ten-dimensional action. One then

attempts to make this six-dimensional manifold su�ciently small – so small that we can assume

its coordinates are unobservable with our current measurement techniques. Making the internal

manifold that small is not always possible – when it is, it is referred to as scale separation, a

necessary condition for a theory to describe our reality, since we only observe four dimensions.

A common illustration for the concept of scale separation is a straw (with an infinitely thin

wall), a two-dimensional object that looks like a one-dimensional object from far enough away:

Distance from the straw

Figure 1.1: A straw is an example for an object that seems to have less dimensions from far

away.

In this example, the two coordinates live on very di�erent length scales – the straw’s length

is much greater than its radius.

In this work, we choose an ansatz for a six-dimensional manifold, since we want to use a

ten-dimensional theory to describe a four-dimensional spacetime. Similar to the straw, where

the internal manifold is a circle, we choose the six-sphere S
6 – the generalisation of the one-

dimensional circle or the two-dimensional sphere to six dimensions and the most simple and

symmetric choice imaginable. In fact, the possibilities for manifolds used in compactifications

are much more numerous and complex, but for this work the conceptual idea is central. We

go back to our straw to hopefully make the concept tangible. Mathematically, a (now infinite)

straw is the product R ◊ S
1, a line times a circle. With increasing distance from the straw, the

dimension living on the circle is not visible anymore; the object seems like a line. In the action,

one integrates out the coordinate on the circle to go from the two- to the one-dimensional de-

scription. Here, we already note an important property of the internal manifold: It needs to be

compact, i.e. all its points have to lie within a certain distance (and it has to include all limiting
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values of its points). This makes sure that we do not get infinite results if we integrate out the

internal manifold’s coordinates. The coordinate on the circle S
1 lives on the compact interval

[0, 2fi], for example.

Similarly to the infinite straw which mathematically is R◊S
1, for our ten-dimensional theory

we choose the ansatz AdS4 ◊ S
6 with the four-dimensional anti-de Sitter spacetime AdS4 and

the six-sphere S
6. The analogy to the straw example is illustrated in this table:

External manifold Internal manifold

Straw R S
1

This work 4d spacetime S
6

After compactifying the six dimensions on the S
6, one obtains a four-dimensional theory. We

then identify the theory’s potential and search for its minima – the lowest energy states – since

these correspond to the vacuum solutions, the so-called vacua that describe empty spacetimes.

The vacua can then be examined for stability, the explained scale separation and supersymme-

try, for instance.

This work is structured as follows: Chapter 2 will introduce the conceptual framework of

general relativity, string theory (in particular, type IIA supergravity) and compactifications. In

chapter 3 we will perform the dimensional reduction of the ten-dimensional action of type IIA

supergravity. We will then present the found vacua of the e�ective four-dimensional theory and

their properties and eventually interpret our results in chapter 4.
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CHAPTER 2

Gravity and Strings

This chapter aims to introduce the key concepts that are essential for this work. We begin with

the foundations of general relativity in section 2.1, followed by an introduction to the relevant

theory, type IIA supergravity, in section 2.2. We then present the subject of compactifications

in section 2.3 and examine vacua and their stability in section 2.4.

2.1 A Brief Review of General Relativity

Even though general relativity (GR) is not the focus of this work, one particular type of solution

of the Einstein equations, the Anti-de Sitter (AdS) space, will occur frequently. Hence, we will

spend a little time to present a few basic ideas of GR in order to introduce the AdS space. We

will loosely follow David Tong’s lecture notes [2].

Curvature of Spacetime and Geodesics

In GR, the motion of relativistic particles is described by the geodesic equation

d
2
x

µ

d·2
+ �µ

‹fl
dx

‹

d·

dx
fl

d·
= 0 (2.1)

with a scalar parameter · , e.g. the proper time, and the objects �µ
‹fl, called Christo�el symbols

and defined as

�µ
‹fl := 1

2g
µ“ (ˆflg“‹ + ˆ‹gfl“ ≠ ˆ“g‹fl) (2.2)
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with the metric tensor g. They obviously satisfy

�µ
‹fl = �µ

fl‹ . (2.3)

A solution of the geodesic equation is called a geodesic, the generalisation of a straight line in

curved space: Freely falling or moving particles always follow geodesics.

Geometric Invariants

We define the covariant derivative, a generalisation of the partial derivative that transforms

covariantly under Lorentz transformations:

Òµv
‹ © (Òµv)‹ := ˆµv

‹ + �‹
µflv

fl; Òµv‹ © (Òµv)‹ := ˆµv‹ ≠ �fl
µ‹vfl, (2.4)

where we introduced the rather sloppy yet widely used bracketless notation. Note that Òµv
‹

really is the ‹-th component of Òµv, and not a di�erentiation of v’s ‹-th component. In contrast

to partial derivatives, covariant derivatives do not commute anymore. In fact, the Riemann

tensor encodes the non-commutativity of the covariant derivative. Its components are defined

as

R
‡
flµ‹ := ˆµ�‡

‹fl ≠ ˆ‹�‡
µfl + �⁄

‹fl�‡
µ⁄ ≠ �⁄

µfl�‡
‹⁄ (2.5)

which by definition are antisymmetric in their last two indices,

R
‡
flµ‹ := ≠R

‡
fl‹µ. (2.6)

Contracting the first with the third index yields the Ricci tensor

Rµ‹ := R
fl
µfl‹ (2.7)

whose trace is the Ricci scalar

R := g
µ‹

Rµ‹ . (2.8)

Finally, we define the Einstein tensor as

Gµ‹ := Rµ‹ ≠ 1
2Rgµ‹ . (2.9)

The Vacuum Einstein Equations

The goal is to understand the dynamics of the gravitational field which is described by the

Einstein field equations. In the absence of matter, varying the Einstein-Hilbert action, defined

as

S =
⁄

d
4
x

Ò
≠|gµ‹ |R (2.10)
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with the Ricci scalar R, yields the vacuum Einstein field equations:

Gµ‹ = 0. (2.11)

They actually simplify to

Rµ‹ = 0 (2.12)

which means that the metric is Ricci flat.

We can then extend this action by adding a potential term,

S = 1
16fiG

⁄
d

4
x

Ò
≠|gµ‹ |(R ≠ 2�), (2.13)

where the prefactor has dimensional reasons. � is called cosmological constant and has the

interpretation of a potential energy. The corresponding equations of motion are given by

Gµ‹ = ≠�gµ‹ (2.14)

and simplify to

Rµ‹ = �gµ‹ . (2.15)

These are the vacuum Einstein equations in the presence of the cosmological constant. De-

pending on if � is positive, negative or zero, the solutions will take di�erent forms. Solutions

with � = 0 are called Minkowski, solutions with � > 0 de-Sitter, and the ones with � < 0

Anti-de-Sitter (AdS).

The metric of AdS space is takes the form

ds
2 = ≠

A

1 + r
2

R2

B

dt
2 +

A

1 + r
2

R2

B≠1

dr
2 + r

2(d◊
2 + sin2

◊d„
2) (2.16)

where R
2 = ≠ 3

�
. Another common notation for the AdS metric is, after introducing r = R sinh fl,

ds
2 = ≠ cosh2

fldt
2 + R

2
dfl

2 + R
2 sinh2

fl(d◊
2 + sin2

◊d„
2). (2.17)

AdS spacetime pushes massive particles towards the origin r = 0 while it acts as a homogeneous

space for massless particles. Moreover, the isometry group of AdS is the ten-dimensional group

SO(2, 3).

2.2 Type IIA Supergravity

We present the theory that forms the basis of this work – type IIA supergravity. It is the low-

energy limit of type IIA string theory, one of the five consistent supersymmetric string theories.

This section will first briefly introduce the idea of string theory’s framework before discussing

the ten-dimensional action of type IIA supergravity.
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String Theory

String theory postulates a completely new understanding of particles: The fundamental objects

are not zero-dimensional points anymore but vibration modes of one-dimensional strings. One

distinguishes between open and closed strings, where the former are topologically equivalent

to a line interval and the latter to a circle. When describing the propagation of a string in

spacetime, the one-dimensional worldline that describes the propagation of zero-dimensional

particles is replaced by the two-dimensional worldsheet �, see figure 2.1. � is parameterised by

two parameters – the time and the spatial coordinates · and ‡, where it is 0 Æ ‡ Æ l with the

string length l.

· = ·1

· = ·2

‡ = 0 = l

‡ = ‡1

X̨

X
0

(a) closed string

‡ = 0
‡ = l

· = ·3

· = ·2

· = ·1

X̨

X
0

(b) open string

Figure 2.1: Worldsheets for (a) closed and (b) open strings

String theory has only one free parameter, –
Õ, that defines the string length, the string mass

scale and the string tension:

ls =
Ô

–Õ string length (2.18)

Ms = 1Ô
–Õ

string mass scale (2.19)

T = 1
2fi–Õ string tension. (2.20)

Supersymmetric String Theory

After the original version of string theory – bosonic string theory, developed in the late 1960s

and formulated in 26 dimensions – failed in several ways (for instance in predicting fermions),

the discovery of supersymmetry in the context of string theory in the 1970s led to superstring

theory. Supersymmetry is a symmetry based on the assumption that for each boson there exists

a fermion and vice versa, and that these pairs of particles share some properties such as their
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masses. As far as we know, our world does not obey supersymmetry. However, because of a

phenomenon called symmetry breaking this does not make the study of supersymmetry obsolete.

In fact, it is possible that supersymmetry is a symmetry of our world but a broken one and

therefore not observable at low energies.

There are five consistent supersymmetric string theories, all formulated in ten dimensions

and assumed to be di�erent limits of one single theory called M-theory. Their low-energy limits

describe supergravity, theories that combine GR and supersymmetry. As mentioned before, we

will study type IIA supergravity in this work.

The Action of Type IIA Supergravity

The ten-dimensional action of type IIA supergravity in Einstein frame is given as follows:

S10 = 1
2Ÿ

2
10

⁄
d

10
z

Ò
≠G

Õ
10

A

R
Õ
10 ≠ 1

2(ˆ„)Õ2 ≠ 1
2 · 3!e

≠„|H Õ|2 ≠ 1
2

ÿ

n even

e
5≠n

2 „|F Õ
n|2

B

+ 1
2Ÿ

2
10

⁄
B · F4 · F4.

(2.21)

Note that the prime indicates that quantities are contracted with the primed metric, since we

will also have an unprimed metric in the following. Typically, the action is given either in

Einstein frame or in String frame where the two are related via a metric rescaling, G
Õ
MN ©

G
E
MN = e

≠ „
2 G

S
MN . The Einstein frame is named as such because its first term takes the form

of the Einstein-Hilbert action from GR (compare (2.10)). The Einstein-Hilbert term is followed

by the kinetic term of the dilaton „, a scalar field appearing in theories with extra dimensions.

The Neveu-Schwarz-Neveu-Schwarz (NSNS) field strength H and the Ramond-Ramond (RR)

field strengths Fn’s are exterior derivatives of gauge fields, similar to electrodynamics. Note

that we sum over even n’s – in type IIB supergravity one sums over odd n’s. Since the Fn’s are

di�erential forms and we work in ten dimensions, there are no Fn’s with n > 10, and further F6,

F8 and F10 are related to F4, F2 and F0, respectively, via Hodge duality,

Fn = (≠1)
(n≠1)(n≠2)

2 ú F10≠n. (2.22)

We work with the four RR field strengths: F0, F2, F4 and F6. The NSNS and the RR field

strengths have to satisfy the Bianchi-identities

dFn = H · Fn≠3 + ”D(8≠n)/O(8≠n) (2.23)
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where the second term will not be present in the setup we work with. Fields H or Fn’s satisfying

the Bianchi-identites are often called fluxes. Finally, the last term is the Chern-Simons term

which will also not be present in our setup.

We will later fix specific choices for the field strengths in order to transform them.

2.3 Compactifications

The term compactification refers to a dimensional reduction of a theory. Regarding the ter-

minology, we refer to the manifold of the dimensions we want to retain (in our case, the four-

dimensional spacetime) as the external manifold. Conversely, the manifold containing the dimen-

sions we aim to compactify (in our case, the six-sphere) is called the internal manifold. In the

following, we will give a quick historical review and introduce the idea behind compactifications.

A Historical Perspective: Kaluza-Klein Reduction

The attempt to unify descriptions of di�erent fundamental forces by adding spacetime dimen-

sions is not a new one and did not arise in string theory for the first time: Independently from

each other, Nordström in 1914 and Kaluza in 1921 developed a five-dimensional theory that

yielded the field equations of both gravity and electromagnetism. The naturally arising question

why we do not observe a fifth dimension was answered by both of them with the assumption that

our reality is located on a four-dimensional hypersurface in a five-dimensional universe [3]. Klein

further developed Kaluza’s ansatz in 1926 by choosing the topology of the fifth dimension to be

a tiny circle. The fields, depending on the circle periodically, could then be Fourier-expanded,

with, if choosing the circle to be small enough, Fourier modes with energies so high that they

are e�ectively unobservable. Based on their work, the general procedure of expanding the fields

in terms of the eigenfunctions of the compact space is called Kaluza-Klein reduction. It leads to

an infinite tower of modes appearing in the lower dimensional theory, a so-called Kaluza-Klein

tower.

This brings us to a very important constraint for a compactification to be realistic: Scale

separation.

9
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Scale separation

The common explanation for why we do not observe specific dimensions in higher dimensional

theories is that these dimensions are too small to be detected. This concept, known as scale

separation, suggests that the length scales of the external and the internal manifold di�er by

several orders of magnitudes. However, this condition is not always achievable. After choosing

the internal manifold, performing the dimensional reduction and obtaining an e�ective lower

dimensional theory, it can be determined if the internal manifold’s length scale can indeed be

made su�ciently small.

Moduli Stabilisation and Fluxes

When considering theories with extra dimensions, one main issue is the appearance of modulus

fields, unobserved massless scalar fields associated with the geometry of the internal manifold

[4]. They lack a potential, meaning their vacuum expectation values (vevs), known as moduli,

are not restricted to any values. Among other problems, this undermines the predictive power

of the theory. To get rid of the ambiguity, the moduli need to be stabilised by some mechanism.

A common approach is to introduce fluxes, background values of field strengths, to stabilise the

moduli by giving them fixed vevs – which means that they become massive. In our setup, the

moduli are the dilaton „, a volume field Ï and the two axion fields ’ and b, while the fluxes are

the field strengths H and Fn.

The Problem with de-Sitter Compactifications

Since we observe a positive cosmological constant we would like to focus on compactifications

where the external manifold is a de Sitter space. Unfortunately, these solutions are hard to

obtain. As explained in [5], theories with an Einstein-Hilbert term satisfying the strong energy

condition – the often required condition that gravity is always attractive in GR [6] – have no

de Sitter compactifications and only marginally allow Minkowski solutions. Hence, one usually

deals with external Anti-de Sitter spaces.

2.4 Stability of Vacua

In order to find vacuum solutions, so-called vacua, of a theory, one searches for minima of the

potential. One distinguishes between local potential minima, corresponding to so-called false

10
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vacua, and global minima, corresponding to true vacua. False vacua are metastable and can

decay into stable vacua at a lower energy in various ways, events that are called false vacuum

decay. We call the potential minima the critical points: If the potential V depends on fields

„1, . . . , „n, the critical points („ú
1, . . . , „

ú
n) fulfil

ˆ„1V („1, . . . , „n)|(„ú
1,...,„ú

n) = 0; . . . ; ˆ„nV („1, . . . , „n)|(„ú
1,...,„ú

n) = 0 (2.24)

and describe the vacuum energies of the solutions. Note that at the minimum, V („ú
1, . . . , „

ú
n)

acts as a cosmological constant � in the d-dimensional theory. In four dimensions and for � < 0,

we can identify [7]

V („ú
1, . . . , „

ú
n) = M

2

Pl · �. (2.25)

The cosmological constant is further related to the length scale of the external AdS space as

� = ≠ 3
L

2

AdS

. (2.26)

As mentioned, there are several types of false vacuum decays where metastable vacua decay

into other ones at a lower energy. In the following, we will discuss some of these decays.

Bubble Nucleation

In the process of bubble nucleation, a bubble of true vacuum materialises inside a false vacuum

and expands with a speed that asymptotically reaches c while converting the false to true

vacuum.

A bubble of true vacuum inside a false vacuum has a positive surface tension and a negative

volume term, since the true vacuum has a lower energy compared to the false one. There is a

critical radius Rc at which the bubble has total energy zero – which is required due to energy

conservation. However, through a quantum tunnelling event a bubble can overcome Rc which

then leads to the bubble’s expansion. In 1977, this phenomenon was introduced by Coleman

[8]; and in 1980, Coleman and Luccia expanded the idea by taking the e�ects of gravitation

into account [9]. They found that gravitation can both favour and unfavour a decay, depending

on the energies of the initial and final vacuum. They restricted themselves to the thin-wall

approximation, i.e. the assumption that the energy density di�erence between the true and the

false vacuum is small. In the absence of gravity, a bubble with total energy zero can always

be achieved: The smaller the energy di�erence between the false and the true vacuum, the

larger the radius has to be. This is no longer true when including the e�ects of gravity. The
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negative energy density inside the bubble diminishes the volume/surface ratio with the result

that for su�ciently small energy di�erence ‘ there is no bubble with a big enough volume/surface

ratio [9]. Supersymmetric AdS-vacua are protected against this type of tunnel e�ect, while for

non-supersymmetric vacua several examples have been found where this vacuum decay indeed

happens [5].

The Bubble of Nothing

The bubble of nothing is another vacuum decay which is similar to the already discussed bubble

decay. It also describes the nucleation of a bubble that then expands rapidly – yet for this

e�ect it is literally nothing inside the bubble, where nothing means the absence of spacetime [5].

For AdS, nothing should be thought of as the limit of AdS space in which the curvature length

approaches zero [10].

Breitenlohner Freedman Bound

The Breitenlohner-Freedman (BF) bound [11] is a bound for perturbative stability and describes

a lower bar for the mass below which the AdS space becomes unstable.

In flat space, fields with negative squared masses – so-called tachyons – signal an instability:

The solution of the Klein-Gordon equation ˆµˆ
µ
„ = m

2
„ is a plane wave e

i(Êt+kixi
). Ê is a

function of m, and for m
2

< 0, then Ê becomes imaginary which then leads to the solution

becoming an exponentially growing function. However, in AdS, stable solutions with negative

squared masses are actually possible: If the squared mass is negative but su�ciently small, the

Compton wavelength m
≠1 can become so large that it eliminates the instability [5]. We find

that the frequency Ê is real and thus the solution stable if and only if the mass satisfies the BF

bound,

m
2
L

2

AdS Ø ≠(d ≠ 1)2

4 . (2.27)

In our convention, the masses are given by the eigenvalues of the Hessian Hij = ˆiˆjV |(„ú
1,...,„ú

n)

when they are canonically normalised.

While supersymmetric vacua always have masses above the BF bound and therefore avoid

this instability, non-supersymmetric vacua usually have masses below the bound [5].
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Compactification on S
6

We present our results in this chapter. Starting with an ansatz for the ten-dimensional metric and

the introduction of the necessary Weyl rescalings, we perform the general dimensional reduction

from the ten- to the four-dimensional action. We then further investigate two di�erent setups:

In a first one, we only include the two field strengths F0 and F6, and in a second, general one

we also include F2, F4 and H. For both setups we identify the potential of the theory, search

for its minima and investigate their properties.

3.1 General Dimensional Reduction

As introduced in (2.21), the ten-dimensional action of type IIA string theory in Einstein frame

is given by

S10 = 1
2Ÿ

2
10

⁄
d

10
z

Ò
≠G

Õ
10

A

R
Õ
10 ≠ 1

2(ˆ„)Õ2 ≠ 1
2 · 3!e

≠„|H Õ|2 ≠ 1
2

ÿ

n even

e
5≠n

2 „|F Õ
n|2

B

+ 1
2Ÿ

2
10

⁄
B · F4 · F4.

(3.1)

For the ten-dimensional spacetime we choose an ansatz of the form X4 ◊ M6 where X4 is

a four-dimensional maximally symmetric Lorentzian manifold (either Minkowski, de Sitter or

Anti-de Sitter space) and M6 is a six-dimensional compact manifold. We will find that for the

compactifications we consider in this work, X4 is actually an Anti-de-Sitter space, X4 = AdS4,

13



3.1. General Dimensional Reduction Report

but we want to underline that it is not an assumption we make. We set

ds
2

10 = G
Õ
MN dz

M
dz

N = e
2–Ï(x)

gµ‹dx
µ
dx

‹ + e
2—Ï(x)

gmndy
m

dy
n (3.2)

where µ, ‹ run from 0 to 3 and m, n from 1 to 6, and where x are the coordinates on X4. The

factor e
2—Ï(x) describes the dependence of M6 on the X4-coordinates – in particular, it controls

the volume of M6 – and the factor e
2–Ï(x) is chosen for convenience. The parameters – and

— are initially arbitrary, yet we will fix them later to attain a four-dimensional e�ective action

with a standard Einstein-Hilbert term. From now on we write Ï = Ï(x). The aim is to express

all terms in the action (3.1) in terms of the metric gµ‹ . In particular, in order to integrate out

the six y-coordinates, we must decompose the Ricci scalar R
Õ
10 into R

Õ
10 = R

Õ
4 + R

Õ
6. This can

only be achieved if the two spaces X4 and M6 are independent of each other, requiring Weyl

rescalings for that purpose.

Weyl Rescalings

We will perform two Weyl rescalings of the metric in order to express all terms in the action

(3.1) in terms of the gµ‹ and the gmn metric. We already defined

G
Õ
MN =

Q

ca
e

2–Ï
gµ‹ 0

0 e
2—Ï

gmn

R

db , (3.3)

and now set

G̃MN := e
≠2—Ï

G
Õ
MN =

Q

ca
e

2(–≠—)Ï
gµ‹ 0

0 gmn

R

db . (3.4)

This is the first Weyl rescaling in which we successfully removed the x-dependence from the gmn-

metric. We further define a second Weyl rescaling, now only for the four-dimensional metric:

ĝµ‹ := e
2(–≠—)Ï

gµ‹ . (3.5)

With this, we can write

G̃MN =

Q

ca
ĝµ‹ 0

0 gmn

R

db . (3.6)

Transformation of the Metric Determinant

With definition (3.4) from above, we can rewrite the metric determinant as
Ò

≠G
Õ
10

=
Ò

≠ det(e2—ÏG̃10) = e
10—Ï

Ò
≠G̃10 = e

10—Ï
Ò

≠ det(e2(–≠—)Ïg4)Ôg6

= e
10—Ï

e
4(–≠—)ÏÔ

≠g4

Ô
g6 = e

(4–+6—)ÏÔ
≠g4

Ô
g6

(3.7)

14



3.1. General Dimensional Reduction Report

where we used that det(aA) = a
n det(A) and that we can write the determinant of G̃ as the

product of the determinants of the single blocks as it is in block-diagonal form.

Transformation of the Ricci Scalar

In appendix A, we calculate how the Ricci scalar transforms under Weyl rescalings. Under the

metric rescaling (3.4), G̃MN = e
≠2—Ï

G
Õ
MN , R10 transforms as

R
Õ
10 = e

≠2—Ï!
R̃10 ≠ 18—Ò̃2

Ï ≠ 72—
2( ˜̂Ï)2

"
. (3.8)

Note that the second and third term are e�ectively only contracted with the four-dimensional

metric since Ï is a function of the x-coordinates on X4 and thus, derivatives of Ï w.r.t. the

y-coordinates on M6 vanish. This means that we can write Ò̃2
Ï = Ò̂2

Ï and ( ˜̂Ï)2 = ( ˆ̂Ï)2.

Furthermore, since the M6 part lost its x-dependence in G̃MN , we can now split the Ricci scalar,

i.e.

G̃MN =

Q

ca
ĝµ‹ 0

0 gmn

R

db =∆ R̃10 = R̂4 + R6. (3.9)

This then yields

R
Õ
10 = e

≠2—Ï!
R̂4 + R6 ≠ 18—Ò̂2

Ï ≠ 72—
2( ˆ̂Ï)2

"
. (3.10)

We can rewrite R̂4 using the found formula for transformed Ricci scalars (now for n = 4) and

the transformation gµ‹ = e
≠2(–≠—)Ï

ĝµ‹ :

R̂4 = e
≠2(–≠—)Ï!

R4 ≠ 6(– ≠ —)Ò2
Ï ≠ 6(– ≠ —)2(ˆÏ)2

"
. (3.11)

The expressions Ò̂2
Ï and ( ˆ̂Ï)2 in (3.10) still need to be expressed in terms of the metric gµ‹ .

It is

( ˆ̂Ï)2 = ĝ
µ‹

ˆµÏˆ‹Ï = e
≠2(–≠—)Ï

g
µ‹

ˆµÏˆ‹Ï = e
≠2(–≠—)Ï(ˆÏ)2 (3.12)

and

Ò̂2
Ï = Ò̂µÒ̂µ

Ï = ĝ
µ‹Ò̂µÒ̂‹Ï = ĝ

µ‹Ò̂µˆ‹Ï = ĝ
µ‹!

ˆµˆ‹Ï ≠ �̂fl
µ‹ˆflÏ

"

= e
≠2(–≠—)Ï

g
µ‹!

ˆµˆ‹Ï ≠ �̂fl
µ‹ˆflÏ

"
= e

≠2(–≠—)Ï
g

µ‹!
ˆµˆ‹Ï ≠ (�fl

µ‹ + a
fl
µ‹)ˆflÏ

"

= e
≠2(–≠—)Ï

g
µ‹(ˆµˆ‹Ï ≠ �fl

µ‹ˆflÏ)
¸ ˚˙ ˝

=Ò2Ï

≠e
≠2(–≠—)Ï

g
µ‹

a
fl
µ‹ˆflÏ

(3.13)

where we used the expression for transformed Christo�el symbols we derive in appendix A.

Hence, using

a
fl
µ‹ = (– ≠ —)

!
ˆ‹Ï”

fl
µ + ˆµÏ”

fl
‹ ≠ ˆ“Ïg

fl“
gµ‹

"
(3.14)
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3.1. General Dimensional Reduction Report

we can write

Ò̂2
Ï = e

≠2(–≠—)ÏÒ2
Ï ≠ e

≠2(–≠—)Ï(– ≠ —) g
µ‹ !

ˆ‹Ï”
fl
µ + ˆµÏ”

fl
‹ ≠ ˆ“Ïg

fl“
gµ‹

"
ˆflÏ

¸ ˚˙ ˝
=ˆ‹ÏˆµÏ+ˆµÏˆ‹Ï≠ˆ“Ïˆ“Ïgµ‹¸ ˚˙ ˝

=ˆµÏˆµÏ+ˆµÏˆµÏ≠4ˆ“Ïˆ“Ï=≠2(ˆÏ)2

= e
≠2(–≠—)ÏÒ2

Ï + 2e
≠2(–≠—)Ï(– ≠ —)(ˆÏ)2

.

(3.15)

Now, we finally have all the terms to rewrite the ten-dimensional Ricci scalar:

R
Õ
10 = e

≠2—Ï
3

e
≠2(–≠—)Ï!

R4 ≠ 6(– ≠ —)Ò2
Ï ≠ 6(– ≠ —)2(ˆÏ)2

"
+ R6

≠ 18—
!
e

≠2(–≠—)ÏÒ2
Ï + 2e

≠2(–≠—)Ï(– ≠ —)(ˆÏ)2
"

≠ 72—
2
e

≠2(–≠—)Ï(ˆÏ)2

4

= e
≠2—Ï

R6 + e
≠2–Ï

3
R4 ≠

!
6(– ≠ —) + 18—

"
Ò2

Ï ≠
!
6(– ≠ —)2

+ 36—(– ≠ —) + 72—
2
"
(ˆÏ)2

4
.

(3.16)

Fixing the Relation between – and —

To fix the relation between the two parameters – and — we consider the action

SR = 1
2Ÿ

2
10

⁄
d

10
z

Ò
≠G

Õ
10

R
Õ
10. (3.17)

In the previous subsections, we saw how both
Ò

≠G
Õ
10

and R
Õ
10 transform under the discussed

Weyl rescalings. Plugging in the found results yields

SR = 1
2Ÿ

2
10

⁄
d

4
x d

6
y e

(4–+6—)ÏÔ
≠g4

Ô
g6

C

e
≠2—Ï

R6 + e
≠2–Ï

3
R4 ≠

!
6(– ≠ —) + 18—

"
Ò2

Ï

≠
!
6(– ≠ —)2 + 36—(– ≠ —) + 72—

2
"
(ˆÏ)2

4D

.

(3.18)

Note that we can now clearly separate the terms depending on x and the ones depending on y.

In particular, as we discussed earlier, for the last two terms we only sum over the x-coordinates.

Therefore, we can split the integral as follows:

SR = 1
2Ÿ

2
10

⁄
d

4
x d

6
y e

(4–+6—)ÏÔ
≠g4

Ô
g6e

≠2–Ï
3

R4 ≠
!
6(– ≠ —) + 18—

"
Ò2

Ï ≠
!
6(– ≠ —)2

+ 36—(– ≠ —) + 72—
2
"
(ˆÏ)2

4
+ 1

2Ÿ
2
10

⁄
d

4
x d

6
y e

(4–+6—)ÏÔ
≠g4

Ô
g6e

≠2—Ï
R6

=
A

1
2Ÿ

2
10

⁄
d

4
x e

(2–+6—)ÏÔ
≠g4

3
R4 ≠

!
6(– ≠ —) + 18—

"
Ò2

Ï ≠
!
6(– ≠ —)2 + 36—(– ≠ —)

+ 72—
2
"
(ˆÏ)2

4B1 ⁄
d

6
y
Ô

g6

2
+

1 1
2Ÿ

2
10

⁄
d

4
x e

4(–+—)ÏÔ
≠g4

21 ⁄
d

6
y
Ô

g6R6

2
.

(3.19)
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3.1. General Dimensional Reduction Report

Since all the information about the volume of M6 is stored in the term e
2—Ï, we need to impose

that the integral just gives the unit volume of M6:
⁄

d
6
y
Ô

g6 = 1. (3.20)

Additionally, since R6 is constant for the choice of M6 we will consider, the integral
⁄

d
6
y
Ô

g6R6 = R6 (3.21)

just gives a constant as well.

When performing the dimensional reduction, in principle the Ÿ10-factor is replaced by a

Ÿ4-factor, related via
1
Ÿ

2
4

= e
≠2–Ï0

Ÿ
2
10

(3.22)

where Ï0 is a constant one can fix, for example to be the value of Ï in the potential minimum.

However, we set

Ÿ4

!= 1 (3.23)

which means that in four dimensions, we work in Planck units.

Using that, we can write down the dimensional reduced action:

SR =
A ⁄

d
4
x e

(2–+6—)ÏÔ
≠g4

3
R4 ≠

!
6(– ≠ —) + 18—

"
Ò2

Ï ≠
!
6(– ≠ —)2 + 36—(– ≠ —)

+ 72—
2
"
(ˆÏ)2

4B

+ R6

1 ⁄
d

4
x e

4(–+—)ÏÔ
≠g4

2
.

(3.24)

We then fix the relation between – and — by demanding the prefactor in front of R4 to be

1, i.e. 2– + 6—
!= 0 =∆ – = ≠3—. Plugging in this relation gives us

SR =
A ⁄

d
4
x

Ô
≠g4

3
R4 + 6—Ò2

Ï ≠ 24—
2(ˆÏ)2

4B

+ R6

1 ⁄
d

4
x e

≠8—ÏÔ
≠g4

2
. (3.25)

Fixing —

The parameter — remains undetermined, allowing us to set the prefactor in front of the ki-

netic term of Ï to ≠1

2
, a common convention. In order to do so, first note that the integral

s
dx

µÔ
≠g4Ò2

Ï vanishes: We can write the Laplace-Beltrami operator as [12]

Ò2
Ï = 1Ô

≠g4

ˆµ
!Ô

≠g4g
µ‹

ˆ‹Ï
"

, (3.26)
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3.1. General Dimensional Reduction Report

and thus ⁄

X4
d

4
x

Ô
≠g4Ò2

Ï =
⁄

X4
d

4
x

Ô
≠g4

1Ô
≠g4

ˆµ
!Ô

≠g4g
µ‹

ˆ‹Ï
"

=
⁄

X4
d

4
x ˆµ

!Ô
≠g4ˆ

µ
Ï

"

=
⁄

ˆX4
d‡

Ô
≠g4ˆ

µ
Ï = 0

(3.27)

where we used Stokes’ theorem in the second last step, and for the last step we assumed that

the derivative of the field Ï tends to zero at infinity. With this part of the action being zero, we

are left with

SR =
3⁄

d
4
x

Ô
≠g4

1
R4 ≠ 24—

2(ˆÏ)2
24

+ R6

3⁄
d

4
x e

≠8—ÏÔ
≠g4

4
. (3.28)

Imposing the condition for — explained above and choosing the positive solution, it is — = 1Ô
48

.

Transformation of the Dilaton

There are other terms in the action (3.1) that are a�ected by the transformation of the metric

as well. First, consider the dilaton contribution (ˆ„)2 in (3.1):

S„ = 1
2Ÿ

2
10

⁄
d

10
z

Ò
≠G

Õ
10

(≠1
2(ˆ„)Õ2). (3.29)

Under the discussed metric transformations it is

(ˆ„)Õ2 = G
ÕMN

ˆM „ˆN „ = e
≠2—Ï

G̃
MN

ˆM „ˆN „ = e
≠2—Ï( ˜̂„)2

. (3.30)

The dilaton only depends on the X4-coordinates and thus it is ( ˜̂„)2 = ( ˆ̂„)2, and with the

second rescaling we find

(ˆ„)Õ2 = e
≠2—Ï( ˆ̂„)2 = e

≠2—Ï
e

≠2(–≠—)Ï(ˆ„)2 = e
≠2–Ï(ˆ„)2

. (3.31)

With
Ò

≠G
Õ
10

= e
(4–+6—)ÏÔ

≠g4

Ô
g6 it is

S„ = ≠ 1
4Ÿ

2
10

⁄
d

4
x d

6
y e

(4–+6—)ÏÔ
≠g4

Ô
g6e

≠2–Ï(ˆ„)2

= ≠1
2

⁄
d

4
x

Ô
≠g4e

(2–+6—)Ï(ˆ„)2

= ≠1
2

⁄
d

4
x

Ô
≠g4(ˆ„)2

(3.32)

where we identified again the unit volume
s

dy
mÔ

g6 and used the found relation – = ≠3—.

Hence, the kinetic terms of both scalar fields „ and Ï come with a prefactor of 1

2
in the four-

dimensional action, which is convenient.

To be able to transform the other terms in the action (3.1) we need to choose specific ansatzes

which we will do in the next sections.
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3.2. Setup 1: Turning on F0 and F6 Report

3.2 Setup 1: Turning on F0 and F6

We choose the six-dimensional internal manifold to be the six-sphere which is a compact nearly

Kähler-manifold. For now, we assume the presence of only F0 and F6. Since F4 vanishes in

this scenario, B · F4 · F4 and H = dB do that as well. The |F Õ
p|2 all only depend on the

M6-coordinates and are therefore only a�ected by the first Weyl rescaling:

|F Õ
p|2 = 1

p!G
ÕM1N1 . . . G

ÕMpNpFM1...MpFN1...Np

= 1
p!e

≠2p—Ï
G̃

M1N1 . . . G̃
MpNpFM1...MpFN1...Np

= 1
p!e

≠2p—Ï
g

m1n1 . . . g
mpnpFm1...mpFn1...np

= e
≠2p—Ï|Fp|2

(3.33)

where we used that we only have to sum over the indices on M6. We further choose an ansatz

for F
Õ
p of the form [7]

F
Õ
p = Qp‘̃p (3.34)

with a constant Qp and the Levi-Civita tensor ‘̃p satisfying
s

M6
‘̃p = 1. It is then

|F Õ
p|2 = e

≠2p—Ï
Q

2

p(‘̃p)2 = e
≠2p—Ï

Q
2

p. (3.35)

Thus,
SFp = 1

2Ÿ
2
10

⁄
d

10
z

Ò
≠G

Õ
10

(≠1
2

ÿ

p even

e
5≠p

2 „|F Õ
p|2)

= ≠ 1
4Ÿ

2
10

⁄
d

4
x d

6
y
Ô

≠g4

Ô
g6e

(4–+6—)Ï
ÿ

p even

e
5≠p

2 „
e

≠2p—Ï
Q

2

p

= ≠1
2Q

2

p

⁄
d

4
x

Ô
≠g4e

≠6—Ï
ÿ

p even

e
≠2p—Ï

e
5≠p

2 „
.

(3.36)

In particular, we find

SF0 = ≠1
2Q

2

0

⁄
d

4
x

Ô
≠g4e

≠6—Ï
e

5
2 „ (3.37)

with Q0 being the Romans mass and

SF6 = ≠1
2Q

2

6

⁄
d

4
x

Ô
≠g4e

≠18—Ï
e

≠ 1
2 „

. (3.38)

As before, we choose to work in Planck units in the four-dimensional setup where it is Ÿ4 = 1.

We can then put everything together to get the four-dimensional action of the theory. Hence,

we consider the action

S = 1
2

⁄
d

4
x

Ô
≠g4

C1
R4 ≠ 1

2
!
(ˆÏ)2 + (ˆ„)2

"2
+ e

≠8—Ï
R6

≠ Q
2
0

2 e
≠6—Ï

e
5
2 „ ≠ Q

2
6

2 e
≠18—Ï

e
≠ 1

2 „

D

.

(3.39)
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We identify the kinetic and the potential terms in this action and find the potential to be

V = 1
2

1
≠ e

≠8—Ï
R6 + Q

2
0

2 e
≠6—Ï

e
5
2 „ + Q

2
6

2 e
≠18—Ï

e
≠ 1

2 „
2
. (3.40)

From the action above we can extract three equations of motion, for R4, Ï and „. The one for

R4 will yield the Einstein equations, but for now we are more interested in the potentials.

Find Minima of the Potential

The potential depends on two fields, the dilaton „ and the volume Ï. As discussed in 2.4, the

critical points („ú
, Ï

ú) with

ˆ„V |(„ú,Ïú) = 0; ˆÏV |(„ú,Ïú) = 0, (3.41)

determine the vacuum energy of the solution. Recall also that at the minimum, V („ú
, Ï

ú) acts

as a cosmological constant �. We start setting the partial derivatives of (3.40) to zero:

ˆ„V |(„ú,Ïú)

!= 0 =∆ „
ú(Ï) != ≠4—Ï + 1

3 ln
A

1
5

3
Q6

Q0

42
B

. (3.42)

Further, setting ˆÏV |(„ú,Ïú)

!= 0 and using the found relation for „
ú(Ï) yields

Ï
ú = ≠ 1

8—
ln

Q

cca
5 5

6
1

Q6
Q0

2 1
3

R6

6Q
2
6

R

ddb . (3.43)

Thus, we found the critical point

(e„ú
, e

Ïú) =

Q

ccca

A
Q

2
6

5Q
2
0

B 1
3

Q

cca
5 5

6
1

Q6
Q0

2 1
3

R6

6Q
2
6

R

ddb

1
2

,

Q

cca
6Q

2
6

5 5
6

1
Q6
Q0

2 1
3

R6

R

ddb

1
8—

R

dddb , (3.44)

and plugging this into the potential V gives

V („ú
, Ï

ú) = ≠
5 5

6 (Q6
Q0

) 1
3 R

2
6

24Ÿ
2
10

Q
2
6

. (3.45)

Note that the cosmological constant relates to the potential at the minimum, V („ú
, Ï

ú) = M
2

Pl
·�

– that we just find to be negative. That means, that the four-dimensional maximally symmetric

Lorentzian manifold is indeed an Anti-de Sitter space.

The BF bound

Recall the BF bound from section 2.4 that vacua need to fulfil to be perturbatively stable: The

masses, i.e. the eigenvalues of the Hessian, need to satisfy

m
2 Ø ≠(d ≠ 1)2

4L
2

AdS

. (3.46)
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We plug („ú
, Ï

ú) into the Hessian matrix and get

H(„ú
, Ï

ú) =

Q

ca
ˆ

2

„V ˆ„ˆÏV

ˆÏˆ„V ˆ
2
ÏV

R

db

-------
(„ú,Ïú)

= ≠
5 5

6 R
2
6(Q6

Q0
) 1

3

Ÿ
2
10

Q
2
6

Q

ca
5

96

5Ô
3·96

5Ô
3·96

37

288

R

db . (3.47)

The eigenvalues are given by

m
2 =

R
2
6

1
Q6
Q0

2 1
3 5 5

6

12Ÿ
2
10

Q
2
6

µ1,2

with µ1 = 1
2 , µ2 = 5

3 .

(3.48)

Using L
2

AdS
= ≠ 6

V („ú,Ïú)
we can rewrite these as

eig(H) = m
2 =

I
6

L
2

AdS

,
20

L
2

AdS

J

. (3.49)

Comparing this with the BF-bound (3.46), both eigenvalues fulfil this stability condition and

therefore describe stable solutions:

m
2 =

I
6

L
2

AdS

,
20

L
2

AdS

J

Ø ≠ 9
4L

2

AdS

= ≠(d ≠ 1)2

4L
2

AdS

. (3.50)

Scale Separation

As discussed in section 2.3, a compactification can only describe our physical reality if scale

separation holds, i.e.

LAdS >> LS6 . (3.51)

Hence, we compare the length scales of both the AdS4-space and the S
6-sphere. We have to

be careful with the dimensions. As we defined the potential, it has mass dimension 4 while the

cosmological constant has mass dimension 2. They are related via

V („ú
, Ï

ú) = M
2

Pl� = e
2–Ïú

Ÿ
2
10

�. (3.52)

The length scale of the external space is given by

L
2

AdS4 = ≠ 3
� = ≠e

2–Ïú

Ÿ
2
10

3
V („ú, Ïú) (3.53)

while the length scale of the sphere is given by

L
2

S6 = e
2—Ïú

. (3.54)

We find
L

2

AdS4

L
2

S6
= 12

R6

= 2
5 (3.55)

where we used that the Ricci scalar of the S
6 is given by R6 = 30. Hence, scale separation does

not hold; the internal and the external manifold have length scales in the same order.
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Plot the Potential

We want to plot the potential V („ú
, Ï

ú) as a function of both „
ú and Ï

ú. We would like to have

the same Q0, Q6-dependence in the last two terms since we do not know their values. For that

purpose, we redefine the fields „ and Ï. We write the potential (3.40) as

V = 1
2e

≠8—Ï
1
R6 ≠ Q

2
0

2 e
2—Ï

e
5
2 „

¸ ˚˙ ˝
(1)

≠ Q
2
6

2 e
≠10—Ï

e
≠ 1

2 „

¸ ˚˙ ˝
(2)

2

(3.56)

We now make an ansatz for e
—Ï and e

„
2 , namely

e
—Ï ≥ Q

5
24
6

Q

1
24
0

R
≠ 1

8
6

=: Q

5
24
6

Q

1
24
0

R
≠ 1

8
6

L,

e
„ ≥ Q

≠ 1
6

6
Q

≠ 5
6

0
R

1
2
6

=: Q
≠ 1

6
6

Q
≠ 5

6
0

R

1
2
6

”.

(3.57)

where we fixed the exponents by requiring that both terms (1) and (2) go with Q
0
0Q

0
6R

1
6. Note

that the L corresponds to the radius of the six-sphere, and the ” corresponds to the string

coupling constant gs. With this ansatz, we find

V = ≠A · L
≠8

!
1 ≠ 1

2(L2
”

5 + L
≠10

”
≠1)

"
. (3.58)

with A = 1

2Ÿ2
10

Q
≠ 5

3
6

Q
≠ 1

3
0

. We plot V/A as a function of L and ”, i.e. of the (rescaled) radius of

S
6 and of the (rescaled) string coupling constant, see figure 3.1. The potential has its minimum

in

(Lú
, ”

ú) =
A

6 1
8

5 5
48

,
5 1

24

6 1
4

B

. (3.59)

Figure 3.1: Potential V as a function of L (left) and d (right).

3.3 Setup 2: Turning on all Field Strengths

So far, we considered the action with only the two RR field strengths, F0 and F6, and found a

first vacuum of the theory. However, that is not the most general action. In fact, we can turn

on axion fields as well – scalar fields with a continuous shift symmetry.
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3.3. Setup 2: Turning on all Field Strengths Report

The Setting

We will turn on the other two RR field strengths F2 and F4 and also the NSNS field strength H.

The RR and NSNS field strengths are not completely free to choose, in particular, they have to

fulfil the Bianchi identities

dFn = H · Fn≠3 + ”D(8≠n)/O(8≠n) (3.60)

where the second ”-term vanishes in the setting we work with. One can check that the following

choice for B indeed fulfils the Bianchi identities:

Bmn = b(x)Jmn, H = dB =∆ Hµmn = ˆµb(x)Jmn, Hmnl = 2b(x)m̃(Re�)mnl. (3.61)

Here, b(x) is a four-dimensional axion, m̃ is a parameter, and J is a 2-form that satisfies

1
2!JmnJklg

mk
g

nl = 3 (3.62)

and
1
6J · J · J = vol6. (3.63)

It encodes the volume of 2-cycles or 2d submanifolds. Similarly, the complex 3-form � encodes

the volume of 3-cycles or three-dimensional submanifolds, and satisfies
1
3!(Re�)mnk(Re�)uvwg

mn
g

nv
g

kw = 1
3!(Im�)mnk(Im�)uvwg

mn
g

nv
g

kw = 4

(Re�)mnk(Im�)mnk = 0

�mnlJ
mn = 0.

(3.64)

The field strength F2 and its components are given by

F2 = Q0B =∆ Fmn = Q0b(x)Jmn. (3.65)

Moreover, we set

F4 = 1
2B · BQ0 + d(’(x)Im�) = 1

2B · BQ0 + d’(x) · Im� ≠ 4m̃

3 ’(x)J · J (3.66)

with components

Fµmnl = ˆµ’(Im�)mnl, Fklmn = (Q0b
2 ≠ 8m̃

3 ’)‘klmnopJ
op

. (3.67)

The ’ that appears here is another axion. Finally, also F6 gains additional terms:

F6 = Q6vol6 + 1
6Q0B · B · B + B · dC3 = (Q6 ≠ b

3
Q0 + 8m̃’b)vol6 (3.68)

with components

Fklmnop = (Q6 ≠ b
3
Q0 + 8m̃’b)‘klmnop. (3.69)
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3.3. Setup 2: Turning on all Field Strengths Report

Transformation of the Field Strengths

We compute how the field strengths H, F2, F4 and F6 transform under the Weyl rescalings.

The computations can be found in appendix B. It is

H
Õ = 6e

(2–≠8—)Ï(ˆb)2 + 96e
≠6—Ï

m̃
2
b

2
,

|F Õ
2|2 = 3e

≠4—Ï
Q

2

0(b(x))2
,

|F Õ
4|2 = e

(2–≠10—)Ï(ˆ’)2 + 12e
≠8—Ï

3
Q0b

2 ≠ 8m̃

3 ’

42

,

|F Õ
6|2 = e

≠12—Ï
1
Q6 ≠ b

3
Q0 + 8m̃’b

22

.

(3.70)

Action

Collecting all terms together yields the four-dimensional action, as before we now work in Planck

units with Ÿ4 = 1. The derivation can be found in more detail in appendix B. We find the action

to be
S = 1

2

⁄
d

4
x

Ô
≠g4

1
R4 ≠ 1

2((ˆÏ)2 + (ˆ„)2) ≠ 1
2e

≠„
e

≠20—Ï(ˆb)2

≠ 1
2e

„
2 e

≠22—Ï(ˆ’)2 ≠ V

2 (3.71)

with the potential

V = ≠e
≠8—Ï

R6 + 8e
≠„

e
≠12—Ï

m̃
2
b

2 + Q
2
0

2 e
5
2 „

e
≠6—Ï + 3

2e
3
2 „

e
≠10—Ï

Q
2

0b
2

+ 3
2e

„
2 e

≠14—Ï(Q0b
2 ≠ 8m̃

3 ’)2 + 1
2e

≠ „
2 e

≠18—Ï(Q6 ≠ b
3
Q0 + 8m̃’b)2

.

(3.72)

Similar to the first setup, we rescale the four moduli fields to achieve an overall dependence of

Q0, Q6 and R6:
e

—Ï = Q

5
24
6

Q

1
24
0

R
≠ 1

8
6

L,

e
„
2 = Q

≠ 1
12

6
Q

≠ 5
12

0
R

1
4
6

”,

b = Q

1
3
6

Q
≠ 1

3
0

b̃,

’ =
Ô

30
4 Q

2
3
6

Q

1
3
0

R
≠ 1

2
6

’̃.

(3.73)

We can then write the potential as

V = e
≠8—Ï

R6

A

≠ 1 + 3
5”

≠2
L

≠4
b̃

2 + 1
2”

5
L

2 + 3
2”

3
L

≠2
b̃

2

+ 3
2

1
b̃

2 ≠ ’̃

22

”L
≠6 + 1

2”
≠1

L
≠10

!
1 ≠ b̃

3 + 3’̃ b̃
"2

B (3.74)

where we used R6 = 15

2

1
4

3
m̃

22

… m̃
2 = 3

40
R6.

Searching for minima of V , now dependent on four fields, yields three solutions, see table

3.1. Note that the first solution is the one we already found in the first setup.
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3.3. Setup 2: Turning on all Field Strengths Report

”
ú

L
ú

b̃
ú

’̃
ú

Solution 1 5
1/24

61/4
6

1/8

55/48 0 0

Solution 2 1

21/1231/851/6
3

5/16

27/2451/12 ≠ 1

22/351/3

1
2

5

2 2
3

Solution 3 1

21/331/851/24
3

5/16
5

5/48

22/3
1

2·22/351/3 ≠ 1

21/352/3

Table 3.1: Three found minima

We compare the three found minima with the ones found in [1]. Indeed, the results only di�er

by overall prefactors which do not change the results due to freedom of convention. Multiplying

our AdS length scale L
AdS

2 with 1

9

1
2

5

21/3

yields the AdS length scale in [1], multiplying our ’

with ≠
1

5

2

21/3

and our b with ≠
1

5

2

22/3

yields the axions ’ and b in [1]. Finally, multiplying our

L
8 with 1

3

1
5

2

22/3

and our ”
4 with 3 ·

1
5

2

22/3

gives the dilaton and volume fields in [1]. Hence,

we could reproduce the results in [1]. From their discussions, we can also conclude that – while

solutions 1 and 2 are not supersymmetric – the third solution is actually a supersymmetric one.

For these minima, we calculate the critical masses using the Hessian. In contrast to setup 1,

not all kinetic terms in the action (3.71) have a prefactor 1

2
, i.e. the matrix g in

T = 1
2 (ˆ�)T · g · (ˆ�) (3.75)

with kinetic energy T and � = („, Ï, b, ’)T is not canonical. The introduction of a metric E

such that E
T · E = g and a rescaled moduli vector � := E · � solves the problem: We can write

the kinetic term in a canonic form, T = 1

2
(ˆ�)T · (ˆ�), and the mass matrix is then given by

(E≠1)T · H · E
≠1 with the Hessian matrix H. We find the following critical masses (in

5
1

L2
AdS

6

with L
2

AdS
= ≠ 6

V (”ú,Lú,b̃ú,’̃ú)
):

Solution 1 20 20 6 6

Solution 2 20 64

5
6 ≠6

5

Solution 3 47

3
+

Ò
53

3

47

3
≠

Ò
53

3
4 +

Ô
6 4 ≠

Ô
6

Table 3.2: Masses of the found minima

They all satisfy the BF bound

m
2 Ø ≠ 9

4L
2

AdS

= ≠(d ≠ 1)2

4L
2

AdS

. (3.76)

25



CHAPTER 4

Conclusion

In this work, we looked at string compactifications on AdS4 ◊S
6 in type IIA supergravity. After

choosing an ansatz for the ten-dimensional metric, we performed the dimensional reduction of

the ten-dimensional action to obtain the four-dimensional e�ective theory. We then examined

this theory for its vacua, and investigated certain properties of those. In a first setup, where

we only included the two field strengths F0 and F6, we were able to identify one vacuum. In a

second, general setup, we included all field strengths, namely F0, F2, F4, F6 and H. Besides the

vacuum already found in the first setup, we found two additional vacua. We were able to identify

the correspondence between our results and the three well-known solutions for AdS4 ◊ S
6, first

found in [13], [14] and [15], and for example presented in [1]: Two non-supersymmetric vacua

and one supersymmetric one. For all three vacua, we calculated the corresponding masses of

the axion fields and found that for each vacuum and each axion, the first mode of the tower of

masses fulfils the BF-bound.

Widely discussed is the stability of non-supersymmetric AdS vacua as it could enhance our

understanding of time-dependent de Sitter solutions and the use of holography in realistic sys-

tems, such as those found in condensed matter physics or QCD [16]. The (non-) perturbative

stability of the two non-supersymmetric AdS4 ◊ S
6 vacua is the subject matter of several pub-

lications.

In [17], Ooguri and Vafa sharpen the famous weak gravity conjecture, which then implies
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that any non-supersymmetric AdS vacuum supported by fluxes must be unstable. This con-

jecture applies for the two found vacua with N = 0: While the perturbative instability of the

non-supersymmetric, SO(7) preserving AdS4 ◊ S
6 vacuum was proven in [18], [1] presents a

vacuum decay for the G2 invariant vacuum with N = 0, a decay via expanding D-branes go-

ing through a bubble of nothing regime. This instability does not only apply in this scenario,

but more generally for related AdS4 ◊M6 solutions with M6 being a nearly-Kähler manifold [1].

As discussed, the supersymmetry of the three AdS4 ◊ S
6 vacua is well-known. However, this

was not examined in this work and o�ers possibilities for further investigations. Moreover, in

a next step one could investigate a slightly more complex ten-dimensional spacetime, such as

AdS4 ◊ CP3.
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APPENDIX A

The Transformation of the Ricci Scalar under Weyl Rescalings

We compute how the Ricci scalar transforms under a Weyl transformation of the n-dimensional

metric,

g
Õ
µ‹ = e

2cÊ(x)
gµ‹ ; g

Õµ‹ = e
≠2cÊ(x)

g
µ‹

, (A.1)

with c being a constant and Ê a smooth function of the coordinates. Note that the following

two useful relations hold:

�jik + �kji = glj�l
ik + gkm�m

ji

= 1
2gljg

l“ (ˆig“k + ˆkgi“ ≠ ˆ“gik) + 1
2gkmg

mµ (ˆjgµi + ˆigjµ ≠ ˆµgij)

= 1
2 (ˆigjk + ˆkgij ≠ ˆjgik + ˆjgki + ˆigjk ≠ ˆkgij)

= ˆigjk

(A.2)

and

ˆig
jk = ˆig

jm
”

k
m = ˆi(gjm)gml¸ ˚˙ ˝

=≠gjmˆi(gml)

g
lk = ≠g

lk
g

jm
ˆigml = ≠g

lk
g

jm(�mil + �lmi)

= ≠(glk�j
il + g

jm�k
mi).

(A.3)
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We first consider the transformed connection:

�Õi
kl = 1

2g
Õi“(ˆlg

Õ
“k + ˆkg

Õ
“l ≠ ˆ“g

Õ
kl)

= 1
2e

≠2cÊ
g

i“ [ˆl(e2cÊ
g“k) + ˆk(e2cÊ

g“l) ≠ ˆ“(e2cÊ
gkl)]

= 1
2e

≠2cÊ
g

i“ [2cˆl(Ê)e2cÊ
g“k + e

2cÊ
ˆl(g“k) + 2cˆk(Ê)e2cÊ

g“l + e
2cÊ

ˆk(g“l)

≠ 2cˆ“(Ê)e2cÊ
gkl ≠ e

2cÊ
ˆ“(gkl)]

= 1
2g

i“(ˆlg“k + ˆkg“l ≠ ˆ“gkl) + cg
i“ [ˆl(Ê)g“k + ˆk(Ê)g“l ≠ ˆ“(Ê)gkl]

= �i
kl + a

i
kl

(A.4)

with
a

i
kl = cg

i“ [ˆl(Ê)g“k + ˆk(Ê)gl“ ≠ ˆ“(Ê)gkl]

= c[ˆl(Ê)”i
k + ˆk(Ê)”i

l ≠ ˆ“(Ê)gi“
gkl].

(A.5)

The transformed Ricci scalar is given by

R
Õ = g

Õij
R

Õ
ij = g

Õij
R

Õk
ikj = g

Õij
1
ˆk�Õk

ji ≠ ˆj�Õk
ki + �Õk

k“�Õ“
ji ≠ �Õk

j“�Õ“
ki

2

= g
Õij

1
R

k
ikj + ˆka

k
ji ≠ ˆja

k
ki + �k

k“a
“
ji + a

k
k“�“

ji + a
k
k“a

“
ji ≠ �k

j“a
“
ki ≠ a

k
j“�“

ki ≠ a
k
j“a

“
ki

2

= g
Õij(Rk

ikj + ˆka
k
ji ≠ ˆja

k
ki¸ ˚˙ ˝

(1)

+ a
k
k“�“

ji ≠ a
k
j“�“

ki¸ ˚˙ ˝
(2)

+ �k
k“a

“
ji ≠ �k

j“a
“
ki¸ ˚˙ ˝

(3)

+ a
k
k“a

“
ji ≠ a

k
j“a

“
ki¸ ˚˙ ˝

(4)

).
(A.6)

We compute the single terms, starting with (1): It is

ˆka
k
ji = ˆk

1
c

1
ˆj(Ê)”k

i + ˆi(Ê)”k
j ≠ ˆ“(Ê)gk“

gij

22

= c
!
ˆk(ˆj(Ê))”k

i + ˆk(ˆi(Ê))”k
j ≠ ˆk(ˆ“(Ê))gk“

gij + ˆj(Ê) ˆk”
k
i¸ ˚˙ ˝

=0

+ ˆi(Ê) ˆk”
k
j¸ ˚˙ ˝

=0

≠ˆ“(Ê)ˆk(gk“
gij)

"

= c
!
ˆi(ˆj(Ê)) + ˆj(ˆi(Ê)) ≠ ˆ

“(ˆ“(Ê))gij ≠ ˆ“(Ê)ˆk(gk“
gij)

"

= c
!
2ˆi(ˆj(Ê)) ≠ ˆ

“(ˆ“(Ê))gij ≠ ˆ“(Ê)ˆk(gk“
gij)

"

(A.7)

where we used that we can interchange the derivatives because of Schwarz, and

≠ˆja
k
ki = ≠ˆj

!
c(ˆi(Ê) ”

k
k¸˚˙˝

=n

+ˆk(Ê)”k
i ≠ ˆ“(Ê)”“

i )
"

= c
!

≠ nˆj(ˆi(Ê)) ≠ ˆj(ˆk(Ê))”k
i + ˆj(ˆ“(Ê))”“

i

≠ ˆi(Ê) ˆj(n)
¸ ˚˙ ˝

=0

≠ˆk(Ê) ˆj(”k
i )

¸ ˚˙ ˝
=0

+ˆ“(Ê) ˆj(”“
i )

¸ ˚˙ ˝
=0

"

= c
!

≠ nˆj(ˆi(Ê)) ≠ ˆj(ˆi(Ê)) + ˆj(ˆi(Ê))
"

= ≠ncˆj(ˆi(Ê)).

(A.8)
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Thus,

g
Õij(ˆka

k
ji ≠ ˆja

k
ki) = g

Õij
1
2ˆi(ˆj(Ê)) ≠ ˆ

“(ˆ“(Ê))gij ≠ ˆ“(Ê)ˆk(gk“
gij) ≠ n ˆj(ˆi(Ê))

2

= e
≠2cÊ

c

1
2ˆ

j(ˆj(Ê)) ≠ n ˆ
“(ˆ“(Ê)) ≠ ˆ“(Ê)gij

ˆk(gk“
gij) ≠ n ˆ

i(ˆi(Ê))
2

= e
≠2cÊ

c

1
≠ˆ“(Ê)gij

ˆk(gk“
gij) + (2 ≠ 2n) ˆ

i(ˆi(Ê))
2

.

(A.9)

Further, (2) is given by

a
k
k“ · �“

ji ≠ a
k
j“ · �“

ki = c

1
ˆ“(Ê)”k

k + ˆk(Ê)”k
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“
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ˆmu(Ê)gj“

2
· �“

ki

= c
!
n ˆ“(Ê)�“
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"

= c
!
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k(Ê)gj“�“
ki

"
.

(A.10)

Having that, it is

g
Õij(ak

k“ · �“
ji ≠ a

k
j“ · �“

ki) = e
≠2cÊ

c
!
(n ≠ 1) ˆ“(Ê)gij�“

ji ≠ˆ
i(Ê)�“

“i + ˆ
k(Ê)”i

“�“
ki¸ ˚˙ ˝

=0

"

= (n ≠ 1)e≠2cÊ
cˆ“(Ê)gij�“

ji.

(A.11)

We continue with the third term (3). It is

�k
k“ · a

“
ji = �k

k“ · c

1
ˆi(Ê)”“

j + ˆj(Ê)”“
i ≠ g

“‹
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2

= c
!
ˆi(Ê)�k

kj + ˆj(Ê)�k
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and
≠�k

j“ · a
“
ki = ≠�k
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!
ˆi(Ê)”“
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= c
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≠ ˆi(Ê)�k
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(A.13)

thus
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“(Ê)
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�k
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2 4
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and further
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c

1
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(A.15)

Finally, we have to look at the last term (4):

a
k
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“
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“
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2
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“
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≠ˆk(Ê)ˆ‹(Ê)(”k
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“‹
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=≠ˆ‹(Ê)ˆ‹(Ê)gji

≠ ˆµ(Ê)ˆi(Ê) (”µ
j ≠ ”

µ
j )

¸ ˚˙ ˝
=0

≠ˆµ(Ê)ˆj(Ê)”µ
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“
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=≠n ˆj(Ê)ˆi(Ê)

+ˆj(Ê)ˆ‹(Ê) (”k
“g

“‹
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+ˆµ(Ê)ˆk(Ê)(gkµ
gj“”

“
i )
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=+ˆk(Ê)ˆk(Ê)gji

4

= c
2

3
(n ≠ 1) ˆj(Ê)ˆi(Ê) + n ˆi(Ê)ˆj(Ê) ≠ (n ≠ 1) ˆ

‹(Ê)ˆ‹(Ê)gji + ˆj(Ê)ˆi(Ê)

≠ ˆ
‹(Ê)ˆ‹(Ê)gji ≠ ˆi(Ê)ˆj(Ê) + ˆ

‹(Ê)ˆ‹(Ê)gji ≠ ˆi(Ê)ˆj(Ê) ≠ ˆi(Ê)ˆj(Ê)

≠ n ˆj(Ê)ˆi(Ê) + ˆj(Ê)ˆi(Ê) + ˆ
k(Ê)ˆk(Ê)gji

4

= c
2
!
(n ≠ 2) ˆi(Ê)ˆj(Ê) ≠ (n ≠ 2) ˆ

k(Ê)ˆk(Ê)gji
"

and hence,

g
Õij(ak

k“a
“
ji ≠ a

k
j“a

“
ki) = g

Õij
c

2((n ≠ 2)ˆi(Ê)ˆj(Ê) ≠ (n ≠ 2)ˆk(Ê)ˆk(Ê)gji)

= e
≠2cÊ

c
2((n ≠ 2)ˆj(Ê)ˆj(Ê) ≠ n(n ≠ 2)ˆk(Ê)ˆk(Ê))

= ≠(n ≠ 1)(n ≠ 2)c2
e

≠2cÊ
ˆ

j(Ê)ˆj(Ê).

(A.16)

Collecting all computed terms together yields

R
Õ = e

≠2cÊ(R ≠ cˆ“(Ê)gij
ˆk(gk“

gij) ≠ 2(n ≠ 1)cˆ
i(ˆi(Ê)) + (n ≠ 1)cˆ“(Ê)gij�“

ji

≠ (n ≠ 2)cˆ
i(Ê)�k

ki ≠ cˆk(Ê)gij�k
ji ≠ (n ≠ 1)(n ≠ 2)c2

ˆ
j(Ê)ˆj(Ê))

= e
≠2cÊ(R ≠ 2(n ≠ 1)cˆ

i(ˆi(Ê)) ≠ (n ≠ 1)(n ≠ 2)c2
ˆ

j(Ê)ˆj(Ê)

≠cˆ“(Ê)gij
ˆk(gk“

gij) + (n ≠ 2)cˆ“(Ê)gij�“
ji ≠ (n ≠ 2)cˆ

i(Ê)�k
ki¸ ˚˙ ˝

(=:A)

).

(A.17)

31



Report

We want to rewrite the term A. For that, first consider its first summand:

cˆ“(Ê)gij
ˆk(gk“

gij) = c
!
ˆ“(Ê)(gij

ˆk(gk“)gij + g
ij

g
k“

ˆk(gij))
"

A.2,A.3= c
!
ˆ“(Ê)

1
≠n

1
g

l“�k
kl + g

km�mk

2
+ g

ij
g

k“ (�ikj + �jik)
2 "

= c
!
ˆ“(Ê)

1
≠n

1
g

l“�k
kl + g

km�“
mk

2
+ g

k“�j
kj + g

k“�i
ik

2 "

= c
!
ˆ“(Ê)

1
(1 ≠ n)gl“�k

kl ≠ ng
km�“

mk + g
k“�j

kj

2 "

= c
!
(1 ≠ n)ˆl(Ê)�k

kl ≠ nˆ“(Ê)gkm�“
mk + ˆ

k(Ê)�j
kj

"

= c
!
(2 ≠ n)ˆl(Ê)�k

kl ≠ nˆ“(Ê)gkm�“
mk

"
.

(A.18)

With this, we can rewrite A as follows:

c
!

≠ ˆ“(Ê)gij
ˆk(gk“

gij) + (n ≠ 2)ˆ“(Ê)gij�“
ji ≠ (n ≠ 2)ˆi(Ê)�k

ki

"

= c
!
(n ≠ 2)ˆl(Ê)�k

kl + nˆ“(Ê)gkm�“
mk + (n ≠ 2)ˆ“(Ê)gij�“

ji ≠ (n ≠ 2)ˆi(Ê)�k
ki

"

= c(2n ≠ 2)ˆ“(Ê)gij�“
ji.

(A.19)

We plug this back into R
Õ:

R
Õ = e

≠2cÊ(R ≠ 2(n ≠ 1)cˆ
i(ˆi(Ê)) ≠ (n ≠ 1)(n ≠ 2)c2

ˆ
j(Ê)ˆj(Ê) + c(2n ≠ 2)ˆ“(Ê)gij�“

ji)

= e
≠2cÊ

3
R ≠ 2(n ≠ 1)c

1
ˆ

i(ˆi(Ê)) ≠ ˆ“(Ê)gij�“
ji

2

¸ ˚˙ ˝
=gij(ÒjÒiÊ)=Ò2Ê

≠(n ≠ 1)(n ≠ 2)c2(ˆÊ)2

4

(A.20)

where we identified the covariant derivative Òµv‹ = ˆµv‹ ≠ �fl
µ‹vfl and introduced the rather

sloppy notation (ˆÊ)2 := ˆ
j(Ê)ˆj(Ê). Thus, our final result for the transformed Ricci scalar

under a Weyl transformation g
Õ
µ‹ = e

2cÊ(x)
gµ‹ is given by

R
Õ = e

≠2cÊ
1
R ≠ 2(n ≠ 1)cÒ2

Ê ≠ (n ≠ 1)(n ≠ 2)c2(ˆÊ)2
2

. (A.21)
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APPENDIX B

Computations

We calculate how the field strengths transform in section 3.3.

Transformation of H

It is

H = dB =∆ Hµmn = ˆµb(x)Jmn, Hmnl = b(x)2m̃(Re�)mnl. (B.1)

With that, we calculate how H transforms under the Weyl rescalings:

H
Õ = G

ÕM1N1G
ÕM2N2G

ÕM3N3HM1M2M3HN1N2N3

(1)= e
≠6—Ï

G̃
M1N1G̃

M2N2G̃
M3N3HM1M2M3HN1N2N3

(2)= e
≠6—Ï

G̃
M1N1g

m2n2g
m3n3HM1m2m3HN1n2n3

(3)= e
≠6—Ï

e
2(–≠—)Ï

g
µ‹

g
m2n2g

m3n3Hµm2m3H‹n2n3 + e
≠6—Ï

g
m1n1g

m2n2g
m3n3Hm1m2m3Hn1n2n3

(4)= e
(2–≠8—)Ï

g
µ‹

g
m2n2g

m3n3ˆµb(x)Jm2m3ˆ‹b(x)Jn2n3

+ e
≠6—Ï

g
m1n1g

m2n2g
m3n3(b(x))2(2m̃)2(Re�)m1m2m3(Re�)n1n2n3

(5)= 2!3e
(2–≠8—)Ï

g
µ‹

ˆµb(x)ˆ‹b(x) + 3!4e
≠6—Ï(b(x))2(2m̃)2

= 6e
(2–≠8—)Ï(ˆb)2 + 96e

≠6—Ï
m̃

2
b

2
.

(B.2)

Here, we used for (1) that G̃
MN = e

2—Ï
G

ÕMN , for (2) that the last two indices of H are internal

ones, for (3) we divided the expression in two parts for M, N either internal or external, for (4)

we used (B.1), and finally for (5) we used the relations (3.64).
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Transformation of F2

In (3.65) we set

F2 = Q0B =∆ Fmn = Q0b(x)Jmn. (B.3)

With that we can transform as follows:

|F Õ
2|2 = 1

2!G
ÕM1N1G

ÕM2N2FM1M2FN1N2

(1)= 1
2!e

≠4—Ï
G̃

M1N1G̃
M2N2FM1M2FN1N2

(2)= 1
2!e

≠4—Ï
g

m1n1g
m2n2Fm1m2Fn1n2

(3)= 1
2!e

≠4—Ï
g

m1n1g
m2n2Q

2

0(b(x))2
Jm1m2Jn1n2

(4)= 3e
≠4—Ï

Q
2

0(b(x))2

(B.4)

where we used for (1) that G̃
MN = e

2—Ï
G

ÕMN , for (2) that F2 only depends on the internal

coordinates, for (3) the definition (3.65) for the components of F2, and for (4) the contraction

(3.62) of J.

Transformation of F4

The components of F4 were defined as

Fµmnl = ˆµ’(Im�)mnl, Fklmn = (Q0b
2 ≠ 8m̃

3 ’)‘klmnopJ
op (B.5)

(compare (3.67)). It follows

|F Õ
4|2 = 1

4!G
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ÕM3N3G
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g
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(5)= e
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g
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ˆµ’ˆ‹’ + 1
4!e
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2 ≠ 8m̃

3 ’)2
‘
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=4!(”
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o2 )
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= e
(2–≠10—)Ï(ˆ’)2 + e

≠8—Ï(Q0b
2 ≠ 8m̃

3 ’)2(”q1
o2”

r1
p2 ≠ ”

q1
p2”

r1
o2)”s1

q1 ”
t1
r1g

o2s2g
p2t2Js1t1Js2t2

= e
(2–≠10—)Ï(ˆ’)2 + e

≠8—Ï(Q0b
2 ≠ 8m̃

3 ’)2(gq1s2g
r1t1 ≠ g

r1s2g
q1t2)Jq1r1Js2t2

(6)= e
(2–≠10—)Ï(ˆ’)2 + 12e

≠8—Ï(Q0b
2 ≠ 8m̃

3 ’)2

where we used G̃
MN = e

2—Ï
G

ÕMN for (1), for (2) that the last three indices of F4 are internal

ones, for (3) that G̃
MN = e

2(–≠—)Ï
g

µ‹ + g
mn, for (4) we used (3.67), for (5) we used (3.64)

and rewrote the coloured expressions. Finally, for (6) we used (3.62) and the fact that J is

antisymmetric. Using – = ≠3—, we find

|F Õ
4|2 = e

≠16—Ï(ˆ’)2 + 12e
≠8—Ï(Q0b

2 ≠ 8m̃

3 ’)2 (B.6)

Transformation of F6

F6’s components are given by

Fklmnop = (Q6 ≠ b
3
Q0 + 8m̃’b)‘klmnop (B.7)

(compare (3.69)). Then

|F Õ
6|2 = 1

6!G
ÕM1N1 . . . G

ÕM6N6FM1...M6FN1...N6

(1)= 1
6!e

≠12—Ï
G̃

M1N1 . . . G̃
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(2)= 1
6!e

≠12—Ï
g
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(3)= 1
6!e

≠12—Ï
g

m1n1 . . . g
m6n6(Q6 ≠ b

3
Q0 + 8m̃’b)2

‘m1...m6‘n1...n6

= 1
6!e

≠12—Ï(Q6 ≠ b
3
Q0 + 8m̃’b)2

‘
n1...n6‘n1...n6¸ ˚˙ ˝

=6!

= e
≠12—Ï(Q6 ≠ b

3
Q0 + 8m̃’b)2

.

(B.8)

We again used G̃
MN = e

2—Ï
G

ÕMN for (1), we used for (2) the fact that F6 only depends on the

internal coordinates, and we used (3.69) for (3).

Action

Putting all terms together and using

SF = ≠ 1
2Ÿ

2
10

⁄
d

10
z


≠G10

1
2e

5≠n
2 „|F Õ

n|2
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4

⁄
d

4
x

Ô
≠g4e

(4–≠6—)Ï
e

5≠n
2 „|F Õ

n|2
(B.9)
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where we work in Planck units in the four-dimensional theory, i.e. Ÿ4 = 1, we get the full action:

S = 1
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