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Abstract: Quantum information scrambling refers to the spread of the initially stored information
over many degrees of freedom of a quantum many-body system. Information scrambling is intimately
linked to the thermalization of isolated quantum many-body systems, and has been typically studied
in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to
critical quantum many-body systems undergoing an adiabatic evolution. In particular, we analyze
how the symmetry-breaking information of an initial state is scrambled in adiabatically driven
integrable systems, such as the Lipkin–Meshkov–Glick and quantum Rabi models. Following a
time-dependent protocol that drives the system from symmetry-breaking to a normal phase, we
show how the initial information is scrambled, even for perfect adiabatic evolutions, as indicated by
the expectation value of a suitable observable. We detail the underlying mechanism for quantum
information scrambling, its relation to ground- and excited-state quantum phase transitions, and
quantify the degree of scrambling in terms of the number of eigenstates that participate in the
encoding of the initial symmetry-breaking information. While the energy of the final state remains
unaltered in an adiabatic protocol, the relative phases among eigenstates are scrambled, and so
is the symmetry-breaking information. We show that a potential information retrieval, following
a time-reversed protocol, is hindered by small perturbations, as indicated by a vanishingly small
Loschmidt echo and out-of-time-ordered correlators. The reported phenomenon is amenable for its
experimental verification, and may help in the understanding of information scrambling in critical
quantum many-body systems.

Keywords: nonequilibrium critical dynamics; quantum phase transitions; quantum information
scrambling

1. Introduction

The process by which quantum information, initially localized within the degrees of
freedom of a many-body system, propagates and becomes distributed across the entire
system degrees of freedom, is known as information scrambling [1–3]. This phenomenon is
particularly intriguing from a fundamental perspective, as it delves into the mechanisms
of information dispersal and entanglement in complex quantum systems [4–6]. Under-
standing how this scrambling occurs can shed light on the underlying principles governing
quantum dynamics, and may have significant implications in quantum computing [7],
quantum chaos [8], quantum thermodynamics [6,9–11], and high energy physics [12].

Quantum many-body systems offer an unrivaled testbed platform to explore the rich
interplay between entanglement, thermalization, non-equilibrium dynamics, and even
quantum phase transitions (QPTs) [13–15]. Quantum information scrambling has been
primarily linked with thermalization in closed systems and, thus, it is intimately related to
chaotic behavior in quantum many-body systems [9,13,16–21]. The complex nature of corre-
lations in non-integrable systems reveals itself in signatures of information scrambling [22],
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typically measured in terms of out-of-time-ordered correlation (OTOC) functions [12],
tripartite mutual information [23,24], and the Loschmidt echo [1–3]. Such scrambling of
information has been extensively studied in a sudden-quench scenario [19,20,25–30], where
an initial state evolves under its governing and constant Hamiltonian. The integrability
of the system has a profound impact on how the information becomes scrambled, with
non-integrable systems being better scramblers, as evidenced by the dynamics of OTOCs
and the Loschmidt echo (see, for example, [28]). Additionally, OTOCs can be utilized
to dynamically detect both equilibrium and nonequilibrium phase transitions in various
many-body quantum systems [21,31–34]. However, the role of time-dependent quenches
in quantum information scrambling remains largely unexplored, and even more so when
involving critical features of a quantum many-body system.

In this work, we aim to close this gap and analyze quantum information scram-
bling in critical systems undergoing a fully coherent adiabatic protocol. The adiabatic
protocol ensures zero irreversible work, which may otherwise be significant in critical
systems [35–39]. The considered systems feature a normal and symmetry-breaking phase
where a Z2 parity is spontaneously broken. The initial information consists of one of
the two possible symmetry-breaking choices, and is encoded in an initial state that pop-
ulates a large collection of degenerate energy eigenstates that break the discrete parity
symmetry of the governing Hamiltonian. Such symmetry-breaking information remains
unaltered under the dynamics of the initial Hamiltonian. This is possible for systems where
a symmetry-breaking phase is not only restricted to the ground and first excited states, but
rather propagates up to a certain critical excitation energy [40–53]. Indeed, this is the case
for many-body systems with few effective and collective degrees of freedom, such as the
Lipkin–Meshkov–Glick (LMG) model [54–59], Dicke model [60,61], or quantum Rabi model
(QRM) [62–66]. These systems feature a ground-state mean-field quantum phase transition,
as well as an excited-state quantum phase transition precisely at a critical excitation energy
that divides the spectrum between normal (energy eigenstates with well-defined parity)
and a degenerate phase, where eigenstates with opposite parities are degenerated by pairs,
as described by a standard double-well semiclassical potential. We stress that the LMG
and QRM are integrable systems, while the Dicke model exhibits a region with chaotic
behavior at sufficiently high excitation energies [67–70]. It is worth remarking that the
paradigmatic one-dimensional Ising model with a transverse field does not meet the previ-
ous criterion, since only the two lowest-energy eigenstates are degenerate in the antiferro-
or ferromagnetic phase separated by the quantum phase transition [15].

The adiabatic protocol brings the initial symmetry-breaking state towards the normal
and back to the degenerate phase by quenching the control parameter of the system.
However, while the populations of the energy eigenstates remain constant under the
adiabatic theorem, the symmetry-breaking information is scrambled, due to the different
and non-commensurable relative phases gained during the protocol, provided that the
system is driven into the normal phase. Such dynamical phases are uniformly distributed,
resulting in adiabatic quantum information scrambling (AQIS). The effectiveness of AQIS is
illustrated in the LMG model, and quantified in terms of the final expectation value of
a suitable symmetry-breaking observables and the number of populated eigenstates, as
well as with the OTOCs. The robustness of AQIS is analyzed by means of the Loschmidt
echo between an adiabatically evolved state and its time-reversed protocol with a small
perturbation. AQIS is illustrated for different initial states and another integrable quantum
critical model, namely QRM [62].

The article is organized as follows. In Section 2 we present the mechanism that leads
to the quantum scrambling of symmetry-breaking information for an adiabatically driven
quantum many-body system, i.e., AQIS. In Section 3 we first introduce the LMG model,
and then present numerical results of the adiabatic quantum information scrambling.
A different model, QRM, is analyzed in Section 4, and presents similar numerical results,
supporting quantum information scrambling. Finally, in Section 5, we summarize the main
results of the article.
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2. Adiabatic Quantum Information Scrambling

Let us start by considering a quantum critical system described by a Hamiltonian
Ĥ(g) that depends on an external controllable parameter g, such that

Ĥ(g) = ∑
k=0

Ek(g)|φk(g)⟩⟨φk(g)|, (1)

where Ek(g) denotes the energy of the kth eigenstate |φk(g)⟩ for g. In addition, we assume
that the Hamiltonian commutes with a discrete parity operator Π̂, [Ĥ(g), Π̂] = 0, so that
the eigenstates can be labeled in terms of the eigenvalues of Π̂, +1 or −1, owing to a Z2
symmetry, i.e., the eigenstates can be written as |φk,±(g)⟩ with Π̂|φk,±(g)⟩ = ±1|φk,±(g)⟩,
and similarly for its energy Ek,±(g), so that

Ĥ(g) = ∑
k=0
p=±

Ek,p(g)|φk,p(g)⟩⟨φk,p(g)|. (2)

The phase diagram of the Hamiltonian can be split in two regions, namely the normal
phase where Ek,+(g) ̸= Ek,−(g), and a symmetry-breaking phase where the eigenstates
belonging to a different parity subspace are degenerate, i.e., Ek,+(g) = Ek,−(g), possibly
up to a certain critical excitation energy Ec(g). These two phases are separated by ground-
and excited-state quantum phase transitions [15,40–49], taking the place of a critical value
gc and at an excitation energy Ec(g), respectively. Note that in the symmetry-breaking
phase, any state of the form |φ(g)⟩ = α|φk,+(g)⟩ + β|φk,−(g)⟩ with |α|2 + |β|2 = 1 and
Ek,+(g) = Ek,−(g) is also a valid eigenstate of Ĥ(g). However, for any α such that |α| ̸= 1, 0,
|φ(g)⟩ is no longer an eigenstate of the parity operator, Π̂|φ(g)⟩ ̸= ±|φ(g)⟩, and thus
the symmetry may be spontaneously broken. This effect can be quantified employing
the expectation value of a suitable operator Ô, such that ⟨φk,+(g0)|Ô|φk,−(g0)⟩ ̸= 0 and
⟨φk,p(g0)|Ô|φk,p(g0)⟩ = 0. Indeed, its expectation value behaves as an order parameter, i.e.,
⟨Ô⟩ = 0 for a symmetric state, and ⟨Ô⟩ ̸= 0 for symmetry-breaking states, as is the case for
magnetization in a standard ferro-to-paramagnetic phase transition.

We consider an initial state, |ψ0⟩, which breaks this symmetry for an initial value
g0 of the control parameter in the symmetry-breaking phase, i.e., ⟨ψ0|Ô|ψ0⟩ ̸= 0. This is
the information we will consider throughout the rest of the article. Note that, in general,
[Ĥ(g), Ô] ̸= 0. Such a state can be written in the eigenbasis of Ĥ(g0) as

|ψ0⟩ = ∑
k=0
p=±

ck,p|φk,p(g0)⟩. (3)

The coefficients, ck,p, therefore encode the choice of the symmetry-breaking state, and
thus the initial information. Moreover, since Ô = ∑n γn|γn⟩⟨γn|, we can characterize the
probability distribution of measuring γn’s in the initial state |ψ0⟩, which reads as

P(γn) = |⟨ψ0|γn⟩|2 =

∣

∣

∣

∣

∣

∑
k,p=±

c∗k,p⟨φk,p(g0)|γn⟩
∣

∣

∣

∣

∣

2

. (4)

For a symmetric state, P(γn) = P(−γn), and thus ⟨Ô⟩ = 0. However, for maximally
symmetry-broken states, the distribution is only non-zero for one of the two branches,
i.e., either P(γ > 0) ̸= or P(γ < 0) ̸= 0. For simplicity, and without loss of generality,
we will consider initial maximally symmetry-broken states |ψ0⟩ where P(γ > 0) ̸= 0 and
P(γ < 0) = 0. In addition, note that the energy probability distribution of the initial state is
simply given by P(Ek(g)) = |ck,+|2 + |ck,−|2, since we consider the initial state to be in the
symmetry-breaking phase. Therefore, P(E) is independent of the initial information, and
thus the energy probability distribution does not depend on how the symmetry is broken.
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We then consider a time-dependent protocol, g(t), that drives the system from g(0) = g0
to g(τ) = g1, and back to the initial control value, g(2τ) = g0. For simplicity, we consider a
linear ramp, namely

g(t) =







g0 + (g1 − g0)
t
τ , for 0 ≤ t ≤ τ,

g1 + (g0 − g1)
(t−τ)

τ , for τ ≤ t ≤ 2τ.
(5)

We also assume that the driving is performed very slowly, allowing us to resort to the
adiabatic approximation for the final state, |ψ(2τ)⟩. Indeed, one can write

|ψ(2τ)⟩ ≈ ∑
k,p

ck,pe−iϕk,p |φk,p(g0)⟩, (6)

where ϕk,p denotes the accumulated phase for the k-th eigenstate of parity p upon complet-
ing the cycle from g0 to g1 and back to g0, i.e.,

ϕk,p =
2τ

(g1 − g0)

∫ g1

g0

dgEk,p(g). (7)

Under the adiabatic approximation, neither the average energy nor the energy proba-
bility distribution P(E) are altered. The relative phases between degenerate eigenstates are
irrelevant to the energy, as commented above. However, the symmetry-breaking informa-
tion may be largely affected, since ⟨φk,+(g0)|Ô|φk,−(g0)⟩ ̸= 0, and thus ⟨ψ(2τ)|Ô|ψ(2τ)⟩
will depend on the phases ϕk,p, and will be, in general, different from the initial condition
⟨ψ(2τ)|Ô|ψ(2τ)⟩ ̸= ⟨ψ0|Ô|ψ0⟩.

We can explicitly write the expression for the expectation value of Ô after the comple-
tion of the cycle. Assuming that ⟨φk,p(g0)|Ô|φk,p(g0)⟩ = 0 for p = +,−, then

⟨ψ(2τ)|Ô|ψ(2τ)⟩ = ∑
k,k′

ck,+c∗k′ ,−e−i(ϕk,+−ϕk′ ,−)⟨φk′ ,−(g0)|Ô|φk,+(g0)⟩+ H.c. (8)

Now, since only the eigenstates with the same k label and opposite parity are degener-
ate, we can further simplify the previous expression, and find that

⟨ψ(2τ)|Ô|ψ(2τ)⟩ ≈ ∑
k

ck,+c∗k,−e−i(ϕk,+−ϕk,−)⟨φk,−(g0)|Ô|φk,+(g0)⟩+ H.c. (9)

If the initial state populates just a single doublet (e.g., only the coefficients c0,+ and c0,−
are non-zero), then the final value will be present an oscillatory behavior ⟨ψ(2τ)|Ô|ψ(2τ)⟩ ∝

cos[δϕ0]⟨ψ0|Ô|ψ0⟩, where δϕ0 = ϕ0,+ − ϕ0,− = 2τ/(g1 − g0)
∫ g1

g0
dg(Ek,+(g)− Ek,−(g)) is

the difference between the phases, depending on τ. In this manner, tuning τ (assuming
that the adiabatic approximation holds), the symmetry-breaking observable can be of any
value between ⟨ψ0|Ô|ψ0⟩ and −⟨ψ0|Ô|ψ0⟩. Hence, the information regarding the initial
symmetry breaking is not scrambled, as the expectation value ⟨ψ(2τ)|O|ψ(2τ)⟩ may or
may not reverse the initial value by simply tuning τ. However, when the initial state
populates a large number of eigenstates, and if the difference in the accumulated phases
δϕk for different ks uniformly sample the interval [0, 2π), then,

⟨ψ(2τ)|Ô|ψ(2τ)⟩ ≈ 0, (10)

regardless of the specific time τ. Note that the phase differences δϕk will only be non-zero
if the system is driven from the symmetry-breaking to the normal phase, as Ek,+ = Ek,−
otherwise, leading to δϕk = 0. Hence, the mechanism for AQIS requires g0 to be in the
symmetry-breaking phase and g1 in the normal phase, thus forcing the system to traverse
the excited-state quantum phase transition.
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A consequence of Equation (10) is that the probability distribution of the operator Ô
for the final state |ψ(2τ)⟩ will exhibit a balanced distribution for γ < 0 and γ > 0, as if
it were a symmetric state. In this manner, the initial symmetry-breaking information is
scrambled in the quantum system due to the large number of populated eigenstates. We
can anticipate the expression given in Equation (10), i.e., that AQIS will be more effective
the larger the support of the initial state over the eigenstates of Ĥ(g0). In the following, we
illustrate AQIS in the LMG and QRM models, supporting its effectiveness, robustness, and
dependence on different initial states with numerical simulations.

3. Lipkin–Meshkov–Glick Model

The LMG model [54], originally introduced in the context of nuclear physics, describes
the long-range dipole–dipole interaction of N spin- 1

2 under a transverse magnetic field. This
model exhibits QPT [15] at a certain critical value of the field strength gc [55–59], and has
attracted renewed attention due to its experimental realization, e.g., with cold atoms [71]
or in trapped ions [72]. Indeed, the LMG has served as a test bed for the exploration of
different aspects of quantum critical systems [38,48,50,73–86]. The Hamiltonian of the N
spin- 1

2 particles can be written as (where the unit of frequency is equal to 1, and h̄ = 1)

ĤLMG = −gŜz −
Ŝ2

x

N
, (11)

where Ŝα = ∑
N
k=1 σ̂α/2 are the collective spin-1/2 operators along the α-direction (α = x, y, z).

Since the Ĥ(g) commutes with Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z , we restrict ourselves to the sector of maxi-

mum spin, i.e., J = N/2, and work in the Dicke basis, Ŝz|J, M⟩ = M|J, M⟩ with −J ≤ M ≤ J,
and Ŝ2|J, M⟩ = J(J + 1)|J, M⟩. For simplicity, we will consider N to be even. In the N → ∞,
the previous Hamiltonian features QPT at the critical value gc = 1 [58,59], which divides
the spectrum into two phases (see Figure 1 for a representation of the energy spectrum for
N = 300 spins). For g < gc, there is a symmetry-breaking Z2 phase up to critical energy
Ec(g), dependent on g, where the eigenstates of different parity are degenerate; to the con-
trary, for energies above Ec(g) or for g > gc, there is a normal phase where the parity is
well defined and the eigenstates are no longer degenerate. The location of the critical ex-
citation energy Ec(g) corresponds to the so-called excited-state quantum phase transition
(ESQPT), whose main hallmark consists of a logarithmically diverging density of states at
Ec(g) [40–44,47,56,63,87,88]. In the LMG model, the spin operator Ŝx plays the role of the
operator Ô introduced in Section 2, whose ground-state expectation value serves as a good
order parameter for the ground-state QPT.

In the following, we illustrate how the mechanism described in Section 2 applies to the
LMG model, i.e., the adiabatic quantum information scrambling of the symmetry-breaking
initial state. To study the effectiveness of AQIS as a function of the number of populated
eigenstates, i.e., the validity of Equation (10), we first consider an initial microcanonical-like
state that uniformly populates the first 2Nmc eigenstates. That is,

|ψ0⟩ =
1√

2Nmc

Nmc−1

∑
k=0

(|φk,+(g0)⟩+ xk|φk,−(g0)⟩), (12)

where the coefficients xk = −1,+1 are chosen according to the sign of ⟨φk,+|Ŝx|φk,−⟩, so
that ⟨ψ0|Ŝx|ψ0⟩ is positive, and the probability distribution P(Sx) only shows non-zero
values in the positive branch. See Figure 2a,b for the initial probability distribution of this
microcanonical-like state where g0 = 0 and N = 100 spins with Nmc = 10. The dynamical
protocol follows Equation (5) with g1 = 1.25 to ensure that the system is completely driven
into the normal phase (cf. Figure 1). The final probability distributions are also plotted in
Figure 2a,b for the Ŝx and energy, respectively. Considering slow ramps (τ ≫ 1), we first
note that the energy probability distribution P(E) remains unaltered, i.e., the coefficients
ck,p approximately hold constant. To the contrary, P(Sx) significantly differs from the initial
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distribution as a consequence of AQIS. The final state |ψ(2τ)⟩ populates both branches of
the observable Ŝx, and thus its expectation value after the completion of the cycle vanishes,
⟨ψ(2τ)|Ŝx|ψ(2τ)⟩ ≈ 0. This can be better visualized in Figure 2c, where we show the
evolution of ⟨ψ(t)|Ŝx|ψ(t)⟩ as a function of g(t). Since the dynamical evolution is to a very
good approximation adiabatic, other observables not related to the symmetry-breaking
information remain unchanged, such as Ŝz or the energy (cf. Figure 2d). In the following,
and to ease the numerical simulations, we assume that the evolution is adiabatic, and
thus make use of the approximation given in Equation (6) to compute the final state after
the cycle.

Figure 1. Sketch of protocol that leads to an adiabatic scrambling of information. Information is
encoded in an initially symmetry-breaking state |ψ0⟩, which populates a large collection of eigenstates
in the symmetry-broken phase of the model at g0 < gc. The system then undergoes a coherent
adiabatic cycle g(t), entering into the normal phase and back. The populations of the initial state
remain unaltered, while the information is scrambled due to the change in the relative phases among
degenerate eigenstates. The energy spectrum corresponds to the LMG for N = 300 spins, where
∆0,k(g) = Ek(g)− E0(g), with the dashed and solid lines depicting the energies of even and odd
parity eigenstates, respectively.

3.1. Effectiveness of the Quantum Information Scrambling

The effectiveness of the AQIS of the symmetry-breaking information is intimately
related to the distribution of the phases δϕk, i.e., the difference of the accumulated phase
among eigenstates of opposite parity, as discussed in Section 2. Thus, the proper quantum
information scrambling requires δϕk to uniformly sample [0, 2π). In Figure 3, we show the
resulting distribution of these phases δϕk for a LMG model comprising N = 2000 spins for
the first 200 eigenstates, and τ = 103 with g0 = 0 and g1 = 1.25. Note that it approximately
corresponds to a uniform distribution in the range [0, 2π). Similar results can be found
for other choices of τ, N, g0, and g1, provided that g1 ensures that the system enters in the
normal phase. Otherwise, if the system remains in the symmetry-breaking phase during the
whole cycle, then δϕk = 0 ∀k, since Ek,+(g) = Ek,−(g) during the protocol, and information
scrambling will not occur.
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Figure 2. Adiabatic quantum scrambling of the symmetry-breaking information in the LMG

model. Panel (a) shows the initial and final probability distribution over the observable Ŝx for
an initial microcanonical-like state undergoing a fully coherent cycle from the symmetry-breaking
to the normal phase and back. Panel (b) shows the energy probability distribution P(E) for the
initial and final states after the cycle (same τ values as in (a)). Panel (c) illustrates the dynamics of
the expectation value ⟨ψ(t)|Ŝx|ψ(t)⟩ as a function of the time-dependent control g(t) for τ = 500.
Here, F (B) denotes the forward (backward) process from g0 → g1 (g1 → g0). Note that ⟨Sx⟩ ≈ 0
after the adiabatic protocol. In (d) the dynamics of other relevant observables not related to the
symmetry-breaking information are shown, and thus not scrambled during the adiabatic protocol.
The employed parameters are N = 100 spins, g0 = 0, g1 = 1.25, Nmc = 10.
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Figure 3. Distribution of the phases δϕk. Panel (a) shows the obtained phases plotted in a unit circle,
while the distribution of the phases in the range [0, 2π) is shown in (b), revealing an approximately
uniform distribution. The results correspond to the LMG model with N = 2000 spins and for the first
200 eigenstates, τ = 103 with g0 = 0 and g1 = 1.25.

As stated in Section 2, the effectiveness of AQIS depends on the number of popu-
lated eigenstates in the initial state, i.e., on the support of |ψ0⟩ on the eigenstates of Ĥ(g0).
The initial state given in Equation (12) allows us to systematically analyze the validity of
Equation (10) as Nmc increases. We first note that, if Nmc ≈ 1, then the final expectation
value of Ŝx will simply undergo an oscillatory dependent on τ. This can be seen in Figure 4a
for an initial state with Nmc = 4, which hardly scrambles the symmetry-breaking informa-
tion, as one can recover the initial value ⟨ψ0|Ŝx|ψ0⟩ at a suitable time τ. Yet, as Nmc grows,
this is no longer the case, due to the uniform distribution of the phases δϕk, which forces
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the final expectation value to average to zero, i.e., ⟨ψ(2τ)|Ŝx|ψ(2τ)⟩ ≈ 0. The effectiveness
of AQIS can therefore be quantified in terms of the fluctuations of ⟨ψ(2τ)|Ŝx|ψ(2τ)⟩ around
its average value, i.e.,

σ2(Sx) =
(

⟨ψ(2τ)|Ŝx|ψ(2τ)⟩ − ⟨ψ(2τ)|Ŝx|ψ(2τ)⟩
)2

. (13)

In the previous expression, X corresponds to the average value of X in an interval of
quench times τ ∈ [τ0, τ1], where τ0 already ensures the validity of the adiabatic approxima-
tion. If the information is perfectly scrambled, then σ2(Sx) = 0, so that the adiabatically
evolved final state features ⟨ψ(2τ)|Ŝx|ψ(2τ)⟩ = 0 independently of τ. Therefore, the
smaller the σ(Sx), the more effective AQIS is. The results are plotted in Figure 4b, obtained
for τ0 = 103, τ1 = 104, and similar parameters as in the previous figures, namely g0 = 0,
g1 = 1.25, and for two system sizes, N = 1000 and 2000 spins. As the number of populated
states grows, Nmc, the variance σ2(Sx) decreases, thus indicating a better scrambling per-
formance. A fit to the numerical results reveals a dependence σ(Sx) ∝ N−2/3

mc (cf. Figure 4b).
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Figure 4. Effectiveness of AQIS as a function of the number of populated eigenstates. Panel (a) shows
the final expectation value of Ŝx, i.e., ⟨ψ(2τ)|Ŝx|ψ(2τ)⟩ as a function of τ, ensuring the adiabatic approx-
imation, and for a different number of populated eigenstates Nmc, i.e., 4, 64 and 512. Panel (b) shows
the the resulting standard deviation of the results in (a) for their average value, as a function of Nmc. See
the main text for further details.

3.2. Loschmidt Echo and Out-of-Time-Ordered Correlator

The previous results support the effectiveness of AQIS of the symmetry-breaking
information of the initial state |ψ0⟩. However, since the state evolves in a fully coherent

manner, |ψ(2τ)⟩ = Û(2τ)|ψ0⟩ where Û(t) = T̂ e−i
∫ t

0 dt′ Ĥ(t′) corresponds to unitary time-
evolution operator from 0 to t under the protocol g(t), the initial state can be recovered
by a perfect time-reversal operation, i.e., |ψ0⟩ = Û(2τ)†|ψ(2τ)⟩. This corresponds to an
evolution of the final state under Ĥ(g) → −Ĥ(g) ∀g. If such a time-reversal operation is
perfect, then the symmetry-breaking information can be recovered from the scrambled state
|ψ(2τ)⟩. However, as is customary in closed systems, the retrieval of the initial information
highly depends on any potential deviation from a perfect time-reversal evolution, and thus
any small mismatch will hinder the recovery of the initial state. This motivates the analysis
of the Loschmidt echo,

L(τ, δt) =
∣

∣⟨ψ0|Û†(2τ + δt)Û(2τ)|ψ0⟩
∣

∣, (14)

which quantifies the overlap between the final state |ψ(2τ)⟩ = Û(2τ)|ψ0⟩ and the poten-
tially restored initial state upon a time-reversal evolution with a small time-delay δt. Hence,
for δt = 0, it follows that L(τ, δt = 0) = 1 ∀τ. The scrambling due to AQIS will be robust
the smaller the Loschmidt echo for small time-delays, i.e., if L(τ, δt) ≈ 0 for δt ≪ 1.
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As we are interested in an adiabatic evolution, i.e., for sufficiently long τ, we rely
again on the adiabatic approximation. It is easy to see that, under this approximation, one
obtains the simple expression

L(τ, δt) =

∣

∣

∣

∣

∣

∑
k=0
p=±

|ck,p|2eiδtϕk,p

∣

∣

∣

∣

∣

, (15)

with ∑k,p |ck,p|2 = 1. Note that under the adiabatic approximation, the previous quantity
does not depend on τ, i.e., L(τ, δt) ≡ L(δt). Again, as for the effectiveness of AQIS
(Equation (10)), for initial states with a large support and uniformly distributed phases
ϕk,p, one expects L(δt) ≈ 0, even for 0 < δt ≪ 1. The results are plotted in Figure 5a–c,
which precisely reveal a vanishingly small echo L(δt) ≈ 0 for small time mismatches δt.
Although not explicitly shown, we note that similar results can be obtained if, instead
of a time mismatch δt, a deviation in another quantity is considered, such as in g0,1. In
particular, we observe a decay L(δt) ∝ 1/δt for short δt and Nmc ≫ 1. As expected, in
states with little support (few populated eigenstates), L(δt) displays large revivals, and
never decays to 0, a clear indication of the failure of quantum information scrambling.
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Figure 5. Loschmidt echo and OTOC for the LMG model. Panels (a–c) show the Loschmidt echo
L(δt) as a function of the time mismatch δt and for initial states with different populated eigenstates
Nmc. Note strong revivals even at late times (b), and the decaying echo 1/δt (dashed line) in (c) when
Nmc ≫ 1. Panel (d) corresponds to a rescaled OTOC, which signals a similar behavior to the
expectation value of Sx. The simulation parameters are N = 2000 spins, g0 = 0, and g1 = 1.25. See
the main text for further details.

As commented in Section 1, OTOCs have been proven a valuable tool for studying
information scrambling. In a sudden quench scenario, scrambling is related to the short-
time behavior of the OTOC for a relevant observable [28]. In our case, we can define the
OTOC as

O(t) = ⟨ψ0|Ŝx(t)ŜxŜx(t)Ŝx|ψ0⟩,
= ⟨ψ0|Û†(t)ŜxÛ(t)ŜxÛ†(t)ŜxÛ(t)Ŝx|ψ0⟩.

(16)

Since AQIS is effective only after the cycle has been completed, we focus on O(2τ).
Again, relying on the adiabatic approximation of the evolved state, we approximate Û(2τ)
by its adiabatic counterpart ÛAd(2τ), so that the populations in the eigenbasis of the
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instantaneous Hamiltonian remain constant, and the only change is due to the accumulated
phase during the cycle. In this manner, we can compute the adiabatic OTOC, denoted
here as OAd(2τ) and fulfilling OAd(2τ) ≈ O(2τ) for τ ≫ 1. The results for OAd(2τ),
plotted in Figure 5d, reveal essentially the same behavior as ⟨ψ(2τ)|Ŝx|ψ(2τ)⟩. That is,
the adiabatic dynamics scramble the symmetry-breaking information contained in the
initial state, and thus O(2τ) ≈ 0. This becomes more effective the more eigenstates are
significantly populated in the initial state. Conversely, for small support (e.g., Nmc = 4
corresponding to the red line in Figure 5d), the OTOC features large oscillations, potentially
reaching its initial value. Although not explicitly shown here, it is worth mentioning that
the corresponding OTOC for operators not related to the symmetry-breaking information,
such as Ŝz, do not show scrambling. As a consequence, these OTOCs are approximately
constant, and close to their initial value.

3.3. Symmetry-Breaking Thermal States

Having systematically analyzed the mechanism of AQIS in the LMG model and its
effectiveness in terms of the number of populated eigenstates, we turn now our attention
to a different initial state. Moreover, we will study how the reported AQIS depends on the
control parameter g1, i.e., on whether the system is driven from the symmetry-breaking
into the normal phase or not.

Here, we consider a different initial state, namely, a symmetry-breaking thermal state
with inverse temperature β (kb = 1),

ρ̂β,SB =
1
Z ∑

k

e−βEk(g0)|ψk,SB(g0)⟩⟨ψk,SB(g0)|, (17)

where Z is the partition function that ensures a proper normalization of the state, Tr[ρ̂β,SB] = 1,
while |ψk,SB(g0)⟩ = 1√

2
(|ψk,+(g0)⟩+ xk|ψk,−(g0)⟩) and xk = ±1, depending on the expecta-

tion value of Ŝx. As for Equation (12), we consider a maximally symmetry-breaking state
with Tr[ρ̂β,SBŜx] > 0 so that P(Sx) shows only non-zero probability for positive eigenvalues
of Ŝx (cf. Figure 6a), while P(E) displays the standard exponentially decaying populations (cf.
Figure 6b). Hence, the state ρ̂β,SB corresponds to a thermal state projected onto one of the two
symmetry-breaking branches, i.e., to a generalized Gibbs state.

We then analyze how the realization of the adiabatic cycle scrambles the initial infor-
mation, depending on the value of g1. As shown in Figure 1, to ensure that the whole state
is driven into the normal phase, g1 > 1. For a final value g1 < 1, only a fraction of excited
states will enter the normal phase, thus rendering AQIS ineffective, as δϕk = 0 for those
eigenstates that remain within the symmetry-breaking phase. The results are plotted in
Figure 6. As for the initial state given in Equation (12), the final distribution P(Sx) largely
differs from the initial one, since both branches are populated, ensured by g1 = 1.25. For
other choices of g1, the final P(Sx) may fail to be a balanced distribution. This is shown in
Figure 6c, where the final expectation value ⟨Ŝx(2τ)⟩ = Tr[Û(2τ)ρ̂β,SBÛ†(2τ)Sx] is plotted
as a function of τ, and for three different values of g1. For g1 = 0.1 the system remains in
the symmetry-breaking phase during the whole cycle, and thus δϕk = 0 ∀k, resulting in
the absence of scrambling. For g1 = 0.65, only a fraction of eigenstates are driven into the
normal phase, partially scrambling the initial information. Finally, for g1 = 1.25, the whole
system enters in the normal phase, which corresponds to AQIS, as discussed previously.
To better visualize this effect, in Figure 6d, we show the average value of ⟨Sx(2τ)⟩ in the
range τ ∈ [103, 104] as a function of g1, which behaves as an order parameter for AQIS.



Entropy 2024, 26, 951 11 of 16

 0

 0.005

 0.01

 0.015

 0.02

-1 -0.5  0  0.5  1
P

(S
x
)

Sx/J

g1=1.25
Initial

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-0.5 -0.4 -0.3 -0.2 -0.1  0

P
(E

n
)

En/J

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

103 104

〈S
x
(2
τ)
〉/〈

S
x
(0

)〉

τ

g1=0.1
g1=0.65
g1=1.25

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1 1.2

|

(a) (b)

(c) (d)

〈S
x
〉/〈

S
x
(0

)〉
g1

Figure 6. AQIS for a symmetry-breaking thermal state in the LMG model. (a) Initial probability
distribution P(Sx) over the observable Ŝx for ρ̂β,SB with β = 0.02 for N = 103 and g0 = 0 (solid black
line), together with the probability for the state upon an adiabatic protocol for τ = 103 and g1 = 1.25
(blue squares), which equally populates both Sx branches. (b) Population of the initial eigenstate
for the symmetry-breaking thermal state ρ̂β,SB, as in (a). (c) Final expectation value of Ŝx after an
adiabatic protocol from g0 = 0 to g1 = 0.1 (red), 0.65 (green), and 1.25 (blue), as a function of τ and
for ρ̂β,SB with β = 0.02 and N = 103, as in (a,b). For g1 = 0.1, the system is not driven into the normal
phase. For g = 0.65, the state enters partially, while for g1 = 1.25 it is driven completely into the
normal phase, leading to a full AQIS. (d) Average expectation value of Ŝx in the range τ ∈ {103, 104}
as a function of the final coupling strength g1, revealing an order-parameter-like behavior. The error
bars correspond to a standard deviation for the average of ⟨Ŝx(2τ)⟩. See the main text for details.

4. Quantum Rabi Model

The QRM describes the coherent interaction between a spin-1/2 and a single bosonic
mode, and thus constitutes a fundamental model in the realm of light-matter interaction
and of key relevance in quantum technologies. The Hamiltonian of the QRM can be
written as

ĤQRM(λ) =
Ω

2
σ̂z + ωâ† â + λ(â + â†)σ̂x, (18)

where Ω, ω, and λ correspond to the frequency of the qubit, bosonic mode, and interaction
strength among them. Despite comprising just a single spin, this model has been shown
to display ground-, excited-state, and even dynamical quantum phase transitions in the
limit of Ω/ω → ∞ [62–65]. In this particular parameter limit, which plays the role of the
standard thermodynamic limit where critical phenomena typically take place, the ground-
state QPT occurs at λc =

√
ωΩ/2. Hence, for convenience, we introduce the rescaled

interaction strength, g = λ/λc, so that gc = 1, as in the LMG.
The phase diagram of the critical QRM is divided into three regions. For g < gc,

one has a normal phase. For g > gc, and energy Ek(g) < Ec = −Ω/2, one finds the
symmetry-breaking phase where the Z2 parity symmetry of the total number of excitations
Π̂ is spontaneously broken. Finally, for g > gc and Ek(g) > Ec, the symmetry is restored,
and the model is again in the normal phase. The excited-state QPT takes place at the critical
energy Ec = −Ω/2 [63]. Besides the microscopic details, the universal critical features
are equivalent to those of the LMG model, with a similar energy spectrum as the one
depicted in Figure 1 (note, however, the difference in the location of the normal (g < gc)
and symmetry-breaking phases (g > gc)).
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In the following, we exemplify that AQIS also applies to the QRM. For that, we choose

|ψ0⟩ = |α⟩m|0⟩s, (19)

as our initial symmetry-breaking state. There, |α⟩m = D̂(α)|0⟩m = exp
[

αâ† − α∗ â
]

|0⟩m

represents a coherent state with amplitude α, and |0⟩m is the vacuum state, while the spin
is its ground state, σ̂z|0⟩s = −|0⟩s. This corresponds to a state in the other well of the
effective double-well potential in the symmetry-breaking phase [62,63]. The symmetry-
breaking information is then attributed to the expectation value of the position operator,
x̂ = (â† + â)/

√
2.

The adiabatic protocol is performed from g0 = 2 to g1, according to Equation (5).
Relying on the adiabatic approximation, and choosing α = 5 for a critical QRM with
Ω = 100ω, we compute the final state, and obtain ⟨ψ(2τ)|x̂|ψ(2τ)⟩ as a function of g1.
Numerical simulations have been performed with 1000 Fock states. The results are gathered
in Figure 7. First, the energy probability distribution is shown in Figure 7a, indicating
that the state is contained within the symmetry-breaking phase, since all of the populated
eigenstates have energies below the critical one, Ec = −Ω/2. As before, AQIS becomes
effective when the whole state is driven into the normal phase. For the considered initial
state, this happens for g1 ≲ 1.5 (cf. Figure 7b,c). Note that this corresponds to a larger
parameter than its critical value gc = 1, where the QPT takes place. Instead, the value
g ≈ 1.5 marks the position when the energy of the adiabatically driven state surpasses the
critical energy at which an excited-state QPT occurs [63].
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Figure 7. AQIS for the QRM. (a) Initial energy probability distribution P(En) for |ψ(0)⟩ = |α⟩m|0⟩s

for Ω = 100ω, initial rescaled coupling g0 = 2, and α = 5. The normal phase finds itself above the
critical excitation energy Ec/Ω = −1/2. Upon the adiabatic protocol, the energy probability distribu-
tion is equivalent to the initial one. (b) Expectation value of the symmetry-breaking observable x̂ after
the adiabatic protocol of duration τ from g0 = 2 to g1, as indicated in the key, assuming the adiabatic
approximation. (c) Average symmetry-breaking expectation value, in the range τ ∈ {103, 104}, as a
function of the final coupling g1. For g1 ≲ 1.5, the whole state enters in the normal phase, leading
into a complete adiabatic information scrambling. Error bars correspond to the standard deviation
for ⟨x(2τ)⟩, as plotted in (b). See the main text for further details.

5. Conclusions

In this article, we have analyzed the adiabatic scrambling of the symmetry-breaking
information encoded in an initial state. The mechanism for such adiabatic quantum
information scrambling is detailed, which is related to the difference in accumulated phases
among degenerated eigenstates due to the driving from a symmetry-breaking phase into a
normal phase, and thus to phase transitions taking place both in the ground and excited
states of the system. Owing to its adiabatic nature, the protocol does not alter either the
energy or the expectation values of observables independent of the symmetry-breaking
information. To the contrary, as a consequence of the scrambling, the expectation value of
an operator that quantifies the symmetry-breaking becomes approximately zero, provided
that the initial state has large support in the eigenstates of the Hamiltonian, and the
relative difference among the accumulated phases of eigenstates of opposite parity are
uniformly distributed. We showcase the adiabatic quantum information scrambling in
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the Lipkin–Meshkov–Glick and quantum Rabi models, and quantify the effectiveness of
the scrambling for different initial states. The potential information retrieval is studied
utilizing the Loschmidt echo, which indicates that an effective scrambling would require
an almost perfect time-reversal protocol to restore the initial information. Our results
demonstrate the intriguing interplay between quantum information, many-body systems,
and critical phenomena.
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