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ABSTRACT

Unintegrated Gluon Distributions at
Small-x

Fabio Dominguez

The study of strong interactions at very high energies has prompted a large interest in

the small-x regime of quantum chromodynamics where partons carry a small fraction

of the momentum of their parent hadrons. In this regime gluon occupation num-

bers are believed to be very high leading to saturation of the corresponding parton

densities. This thesis is intended to explore the validity of factorization approaches

in the small-x regime and establish a relation with partonic interpretations when

possible. Two fundamental unintegrated (transverse momentum dependent) gluon

distributions are proposed as fundamental building blocks to describe all processes

sensitive to the small-x regime which admit a factorized description. Single-particle

production processes and two-particle production processes are studied in asymmetric

collisions of a dilute probe scattering from a dense target and it is shown that it is

possible to recover factorized expression in a particular kinematical limit.
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Chapter 1

Introduction

The eternal quest of part of the scientific community to determine what is the funda-

mental structure of matter has led to a widely accepted classification of fundamental

particles. Every physicist in the world is taught during his first years of training that

all matter is made of fermions (quarks and leptons) which interact through interme-

diate bosons (photons, gluons, W ’s, Z’s, gravitons). Matter is made of atoms. Atoms

are made of protons, neutrons and electrons. Electrons are fundamental particles but

protons and neutrons are made of three quarks each. Anyone who has tried to explain

this idea to someone outside of the field has probably run into the same question:

Has anyone ever seen a quark? The answer to this question is, of course, another

question: What do you mean by the word “see”? Leaving semantics aside, a more

accurate answer would be that no one has ever detected a free quark but there is

plenty of evidence that protons and neutrons are composite particles, and the most

successful theory to describe the strong interactions among hadrons assumes that all

hadronic states are made of quarks and gluons, and more specifically each proton or

neutron must have three “valence” quarks.

How such a simple question has such an elaborate answer is intimately related to

the source of many of the difficulties of studying strong interactions. When formulat-

ing a quantum field theory describing the dynamics of a certain set of particles, it is
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desirable to assign field variables for each observed particle. This strategy worked well

for the development of quantum electrodynamics (QED) and later on the complete

theory of electroweak interactions but runs into difficulties when strong interactions

are considered. Any attempt to formulate a quantum field theory where the fun-

damental degrees of freedom correspond to observed hadrons runs into problems of

self-consistency or is not renormalizable.

Eventually, motivated by developments in hadron spectroscopy and results from

deep inelastic lepton-hadron scattering experiments, it was realized that hadrons are

composite states and therefore the correct description of strong interactions has to be

formulated in terms of the more fundamental quarks and gluons. These fundamental

degrees of freedom carry a new kind of charge, referred as the color charge, which

leads to the gauge structure of the theory known as quantum chromodynamics (QCD).

The puzzle of why isolated quarks and gluons are not observed is addressed by the

hypothesis of color confinement, which states that all observed states must be color

singlet.

Regardless of all the evidence in favor of hadrons being composite, giving up on the

direct relationship between observed particles and the fields of the theory is potentially

dangerous for the capability of the theory of producing any testable predictions. In

this case, asymptotic states cannot be expanded in a perturbation series in terms of

free fields, making the calculation of amplitudes for scattering processes beyond the

scope of usual perturbation theory.

The fact that some of the complications of the theory come from the inability to

use perturbation theory is not so surprising. If the interactions are inherently strong

the corresponding coupling constant is expected to be large, invalidating the use of

perturbative methods by means of an expansion in terms of the coupling constant.

The strong coupling case is consistent with color confinement, if binding energies

are much larger than the quark masses any attempt to break hadrons apart will

create additional color charges which rearrange in such a way that color neutrality is
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preserved.

To get around this complications, it is important to make use of one of the most

important features of strong interactions: asymptotic freedom. Strong interactions

are observed to become rather weak when considered at very small distances. This

particular observation indicates that there is a regime where a perturbative treatment

is well justified and interactions can be accurately described in terms of quarks and

gluons. The small distance behavior is only observed in scattering processes when

the momentum transfer between the participants is large, in that case it is assumed

that only one of the constituents, partons, inside each hadron participate in the

hard scattering process. The corresponding partonic cross section is calculable via

perturbative methods to any order.

Of course asymptotic freedom does not get rid of non perturbative effects com-

pletely, it only says that some part of the process can be calculated perturbatively.

Any realistic scattering process still happens between hadronic states and the dy-

namics determining which particular partons are the ones participating in the hard

process is non perturbative. Assuming that perturbative and non perturbative effects

do not interfere, the calculation of hadronic cross sections could be thought as a con-

volution of partonic cross sections with probability distributions of finding a parton

in a particular momentum state.

The picture described above is precisely the foundation of the parton model. When

considered in the formal framework of QCD several additional features have to be in-

cluded. This will be discussed in chapters 2 and 3. Most importantly, the formal

statement of the model takes the shape of factorization theorems which can be for-

mulated independently of the partonic picture. The probabilistic interpretation of the

distributions is not necessary, the definition of the distributions is purely motivated

in the ability of factoring out the non perturbative effects.

Having the option of formulating the formalism independently of the partonic

picture will prove useful in subsequent chapters when dealing with gluon distributions
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and their behavior under gauge transformations. In most cases, the partonic picture

will be manifest only in a specific gauge, in some particular cases the partonic picture

will not be available in any known gauge. The reason to define distributions with

no partonic interpretation will be clear when some particular scattering processes are

considered.

The original formulation of the parton model defines the parton distributions as

functions of a variable x which, in the appropriate reference frame, can be interpreted

as the momentum fraction carried by the parton in the hadron’s momentum direction.

When QCD considerations are taken into account, the parton distributions acquire an

additional dependence in the energy scale characterizing the hard partonic interaction.

Even though the distributions represent the non perturbative part of any scattering

process, it has been shown that the dependence on the energy scale is determined by

perturbative dynamics. More on this in chapter 2. In the same spirit of obtaining

important information about parton distributions via perturbative methods, it has

been noted that the x dependence in the small-x regime also obeys an evolution

equation which can be derived by perturbative considerations.

The main problem when considering evolution of parton distributions at small-x

comes form the fact that small-x effects become important in a region where factor-

ization is believed to break down. The problem comes mainly from softer processes

becoming increasingly important as gluon distributions grow rapidly when moving to

smaller values of x. These difficulties in the formalism will be explained throughout

the following chapters and finally summarized in chapter 5.

Despite the complications of the factorization formalism in the small-x region, it is

still very instructive to consider gluon distributions at small-x since they give further

insight into the dynamics of nonlinear effects. These distributions can be considered

either from a purely partonic point of view, leading to the so called Weizsäcker-

Williams distribution function, or by trying to recover factorized forms for different

cross sections where multiple interactions can be conveniently resummed. Either
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of the two approaches makes explicit reference to the transverse momentum of the

gluons, leading naturally to a transverse momentum dependent approach to factor-

ization if any factorization at all is recovered. How to reconcile these approaches is

first explained in chapter 5 and then put into work for calculating different processes

in chapters 6 and 7.

The fact that these different approaches can be reconciled in a consistent way is the

main original contribution of this thesis. The existence of several gluon distributions

in the small-x regime had already been pointed out some time ago, but it was not

well understood why they appeared for different processes and how they could fit in a

more general approach. Most of this results are already in published form in Refs. [3;

4; 5]. Here the presentation is mainly focused in the small-x general results in a Color

Glass Condensate framework in order to be able to address the small-x evolution of

the distributions.
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Chapter 2

Quantum Chromodynamics

More than a general review of the whole theory of strong interactions this chapter is

intended to emphasize the particular features of QCD which will play an important

role in the development of subsequent chapters. For a thorough review of QCD,

its foundations and general predictions, the reader is referred to the many available

textbooks and reviews such as [6; 7; 8; 9; 10].

In particular, special attention will be given to renormalization issues and how

this affects the partonic picture of hard scattering processes as well as multi-particle

states and deviations from perturbative treatments in the weakly coupled regime.

2.1 Basics

For a long time now, there has been a common agreement in the high energy physics

community that QCD is the correct theory to describe the dynamics of strong inter-

actions. Despite the many technical difficulties in performing accurate calculations,

many different experimental tests show a very good agreement with predictions at a

qualitative and quantitative level. Among the most important features predicted by

QCD are: asymptotic freedom, color degrees of freedom, scaling violations, etc.

Formally speaking, QCD is a particular case of a Yang-Mills theory with gauge
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group SU(Nc), and more specifically Nc = 3. The additional degree of freedom

associated with this gauge group is referred to as color and it plays a main role in the

dynamics of the theory. In particular, it is of uttermost importance that the gauge

bosons, the gluons, carry color as well as the fermions and therefore can interact

among each other.

The QCD Lagrangian is given by

L = −1

4
F a
αβF

αβ
a +

∑

f

q̄f(iγµD
µ −m)qf . (2.1)

where F a
αβ is the field strength tensor derived from the gauge field Aa

α,

F a
αβ = ∂αA

a
β − ∂βA

a
α − gfabcAb

αA
c
β , (2.2)

all color indices in the adjoint representation of SU(Nc). The fermion spinors qf are

in the fundamental representation and the sum is over all the quark flavors.

The Lagrangian above represents just the classical part of the theory. For the

full quantum description of the bosonic degrees of freedom it is necessary to include

a gauge-fixing term which would allow to specify the gluon propagator. Moreover,

if the gauge-fixing term is of the covariant type then an additional term, the ghost

term, is needed to cancel unphysical degrees of freedom. Details about this terms of

the Lagrangian will not be provided here. Some details about the gauge choice will

be provided when required by the calculations in the subsequent sections.

Some properties of the theory can be inferred directly from analyzing the form of

the Lagrangian above. First of all, notice the interactions terms among the different

fields. Besides the already familiar fermion-boson vertex, the QCD Lagrangian in-

cludes three-gluon and four-gluon vertices. Gluons can interact among themselves and

therefore carry color as well, unlike electrodynamics where photons have no charge.

This particular feature of the theory makes it conceivable to have a theory with only

the gauge fields and no fermions, and therefore makes it possible in some cases to iso-

late the contributions coming from only the gauge part from the contribution coming

from the fermions.
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These gluon self-interactions are responsible for most of the distinctive aspects of

QCD such as asymptotic freedom and the existence of jets. In the former case, the

possibility of gluon splittings allows for an anti-screening effect which manifests in

the coupling being effectively larger at larger distances. For the latter case, gluon

splitting plays a fundamental role in the creation of large number of particles all

coming from the same leading parton.

The second fundamental aspect of the theory that can be directly read from the

Lagrangian is gauge invariance. The theory is constructed in such a way that it is

invariant under local gauge transformations of the type

q(x) → V (x)q(x), (2.3)

Aµ(x) → V (x)Aµ(x)V
−1(x) +

i

g
(∂µV (x))V −1(x), (2.4)

with V (x) ∈ SU(Nc).

Even though this symmetry has to be explicitly broken in order to successfully

quantize the bosonic degrees of freedom, the symmetry is still present in the fact

that any physical observables should be independent of the specific gauge choice used

to construct the gluon propagator. This property is not exclusive of QCD and it is

already present in QED where the gauge group is considerably simpler. In terms of the

gauge invariance, there is a fundamental difference between non-abelian theories like

QCD as compared to abelian theories like QED, and that is that the gauge strength

tensor F µν is not gauge invariant.

This fact has several implications regarding the way processes are pictured in

terms of states with a definite number of off-shell particles. For the fermions there

is a conserved current which still allows one to define unambiguously the number of

fermions in a given state, but for the gluons that ability is lost when F µν is no longer

gauge invariant. A state with only a quark and no gluons can be turned into a state

with a quark and many gluons by means of a gauge transformation. This implies

that the partonic picture of processes involving hadronic states changes depending on
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the gauge choice and therefore one has to pay extra attention to gauge choices when

dealing with parton distributions as will be the case in subsequent chapters.

2.2 Running of the coupling and asymptotic free-

dom

One of the most important properties of the strong interactions, and a feature that

must be present in any theory which attempts to successfully describe them, is that

of asymptotic freedom. Strong interactions seem to turn off when probed at very

short distances. This short-distance behavior is directly related to the high-energy

degrees of freedom and therefore an accurate description of this phenomenon has to

come from a good understanding of the ultraviolet regime.

The fact that QCD is asymptotically free is not straightforward from the La-

grangian formulation. In order to see explicitly how this property comes about it is

mandatory to address the removal of ultraviolet divergences and, in particular, the

renormalization procedure applied to the effective fermion-boson vertex. To one-loop

order, the beta function can be calculated from the divergent part of the correspond-

ing counterterms [11; 12]. The result is

β(αS) = −α
2
S(11Nc − 2Nf)

12π
, (2.5)

where Nf is the number of active fermion flavors.

The most important thing to notice about this result is that for Nc = 3 and

Nf < 17 the beta function is negative. This means that increasing the energy scale

lowers the value of the renormalized coupling, which is exactly what you need for an

asymptotically free theory. For sufficiently high energies the value of the coupling

goes to zero, effectively turning off interactions at very small distances.

Even though specific details of the calculation are not shown here, a few observa-

tions can be easily made about the origin of the different contributions to the beta
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function. First, the term proportional to the number of fermion flavors comes from

the contribution of fermion loops to the gluon propagator. This is the familiar vacuum

polarization already present in QED which is often associated with a screening effect

by giving the vacuum dielectric properties. On the other hand, the term proportional

to the number of colors comes from the contribution of the gluon loops in the gluon

propagator and the correction to the vertex due to the triple-gluon vertex.

As was mentioned in the previous section, the fact that non-abelian gauge theories

are asymptotically free is a direct consequence of the interactions between gluons.

The fact that gluons give an opposite effect as compared to fermions in this case

has been argued to be due to the gluons having spin 1 [13]. Even though there is

no straightforward intuitive explanation for this phenomenon it is often compared

to magnetic polarization. In this picture the familiar QED screening is compared

to the dielectric response of the vacuum to the presence of a charge whereas the

QCD case resembles the static magnetic case where the fermions show a diamagnetic

behavior while the gluons show a paramagnetic behavior which ultimately overcomes

the diamagnetic effect to give a total effective anti-screening.

The beta function above shows how the coupling constant changes with the energy

scale but does not say anything about its actual value. Given a small value for the

coupling at some scale (the renormalization scale) it is possible to calculate the value

of the coupling at a different scale, provided the coupling does not get too big so it

is still valid to use perturbative techniques. The one-loop result for the beta function

can be integrated to obtain an explicit expression in terms of the energy scale with

the renormalization scale and the value of the coupling at that point as parameters.

αS(Q
2) =

αS(µ
2)

1 + αS(µ2)b ln(Q2/µ2)
, (2.6)

where µ is the renormalization scale and b = (11Nc − 2Nf )/12π.

The two parameters above can be replaced for a single dimensionful parameter

ΛQCD defined as the scale where the coupling would diverge according to the pertur-

bative expression for the beta function. The coupling does not actually diverge at
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that point since perturbation theory loses validity before reaching that energy scale.

In terms of this parameter, the coupling to one-loop order takes the form

αS(Q
2) =

1

b ln(Q2/ΛQCD)
. (2.7)

Qualitatively, the order of magnitude of ΛQCD gives the approximate scale where

non-perturbative effects become important and therefore perturbation theory breaks

down. Experimentally this scale is found to be ∼ 200 MeV which is the order of

magnitude of the mass of the lightest hadrons. This indicates that we can only trust

perturbation theory at energy scales of or higher than 1 GeV.

For the reasons outlined above, the use of perturbative QCD has been limited

mostly to the study of hard processes where the exchanged transverse momentum is

very large. When that is the case, perturbative methods are used to calculate rates

of processes at the partonic level where the degrees of freedom are quarks and gluons.

This is in contrast with what is seen in experiments where free quarks and gluons are

never observed. Therefore it is necessary to complement the perturbative approach

with parton distribution functions and fragmentation functions which take care of

the transition from hadronic to partonic degrees of freedom. The physics behind this

distribution functions is non-perturbative, and therefore they are not calculable from

first principles with the current field theory methods and have to be extracted from

data. More about this distribution functions will be discussed in subsequent sections.

2.3 Factorization and distributions

Despite the enormous amount of work that has been devoted in recent years to the

study of strongly coupled systems, there is still no reliable systematic way to calculate

rates for arbitrary processes in a field theory with a strong coupling. Current theoret-

ical tools rely mostly on perturbative expansions which are valid only as long as there

is a small parameter which is typically taken to be the coupling of the interaction.
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Figure 2.1: Schematic picture of factorization.

As was mention in previous sections, despite the fact that strong interactions are in-

herently strong, the fact that asymptotic freedom is observed allows the perturbative

study of processes where the relevant energy scale of the problem is sufficiently large.

It is important to note that perturbative calculations deal directly with quarks and

gluons rather than with the hadronic states present in real experiments. Since these

calculations are performed at the partonic level, it becomes important to establish

a systematic way to relate partonic processes to hadronic states. As a first step, it

was suggested that if it is possible to calculate cross sections at the partonic level

all that is left to do in order to find the cross section involving hadronic states is to



CHAPTER 2. QUANTUM CHROMODYNAMICS 13

convolute the result with the corresponding probability of finding the specific parton

involved inside a hadron. Under that setup, processes would be represented as in Fig.

2.1 where f ’s denote the parton distribution functions (PDF) giving the probability

to find a specific parton inside a hadron, σ is the partonic cross section which is

perturbatively calculable, and D’s denote the fragmentation functions which give the

probability of a specific hadron forming from the hadronization of an outgoing parton.

The convolution of all these pieces gives the total cross section of the process.

σtot =

∫

dx1dx2dz1dz2 fh1(x1)fh2(x2)σ(x1P1, x2P2; k1, k2)Dh3(z1)Dh4(z2) . (2.8)

The picture described above relies heavily in the assumption of factorization due

to the separation of scales. Chapter 3 will be devoted to explain some of the details of

this very broad and important subject, here a few comments are provided in order to

motivate further discussion in this and subsequent sections. First, it is important to

note that this partonic picture is usually better understood in the infinite momentum

frame of the hadron and in the light-cone gauge. The choice of light-cone gauge is

motivated by some of the nice features present in light-cone quantization (see [14;

15]), among which is the fact that the vacuum of the full-theory is the same as the

vacuum of the free theory, therefore allowing for an expansion of any state in terms of

non-interacting eigenstates of the free Hamiltonian. The infinite momentum frame is

chosen because it allows for a picture of the hadron as a collection of constituents all

moving almost parallel to each other. Under this setup, partons can be characterized

by the hadron’s momentum fraction they carry in the longitudinal direction.

Calculating the weights of the different multiparticle states, or equivalently, the

probability of finding a parton with a definite momentum fraction, is beyond the scope

of perturbation theory. The dynamics of these objects is dominated by branching

induced by multiple gluon emissions, which is sensitive to the non-perturbative regime

in the collinear limit. When calculated perturbatively, gluon emission from a fast

moving parton gives a divergence which comes from integrating over the region of low

transverse momentum of the emitted gluon. In order to remove this divergence it is
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necessary to introduce a cut-off scale (factorization scale) to separate “soft modes” (in

transverse momentum space) from “hard” modes. The soft divergent part is absorbed

by the renormalized distribution functions at the given scale while the hard modes

dictate the evolution of the distributions with respect to the factorization scale.

The fact that the collinear divergence can be absorbed by the distribution func-

tions is not a trivial statement and requires a more complete proof. Proofs for several

cases are available in the literature [6] and some of them will be addressed in Chapter

3. These proofs of factorization actually show that formula (2.8) is just the leading

contribution of an expansion in terms of inverse powers of the large energy scale of

the problem (necessary to justify the use of perturbation theory).

Now, if these distributions are not calculable from first principles, how can they

be used to predict the outcome of any experiment? The answer to this question lies

in the idea of universality. These distributions are assumed to be universal in the

sense that, for a given hadron, the same distribution should be used for any hard

process in which the hadron is involved. In practice, the distributions are measured

in deep inelastic scattering experiments and then used to calculate cross sections for

hadron-hadron collision experiments. Deep inelastic scattering experiments are ideal

to determine the parton distribution functions of a hadron since the probe is color

neutral and therefore does not interact strongly.

Instead of presenting a formal treatment of DIS, a few comments will be made

concerning relevant kinematics and how parton distributions are extracted from in-

clusive measurements in DIS. The relevant kinematic variables for this process are the

initial 4-momentum of the hadron P µ and the 4-momentum of the virtual photon qµ.

There are two independent Lorentz scalars for the hadron system which are usually

taken to be Q2 = −q2 and the Bjorken variable

x =
Q2

2P · q , (2.9)

the choice of the latter being motivated by the fact that, up to corrections suppressed

by powers of Q2, it can be identified with the fraction of the total longitudinal mo-



CHAPTER 2. QUANTUM CHROMODYNAMICS 15

x
-410 -310 -210 -110 1

)2
xf

(x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

g/10

d

d

u

u
ss,

cc,

2 = 10 GeV2Q

x
-410 -310 -210 -110 1

)2
xf

(x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

x
-410 -310 -210 -110 1

)2
xf

(x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

g/10

d

d

u

u

ss,

cc,

bb,

2 GeV4 = 102Q

x
-410 -310 -210 -110 1

)2
xf

(x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

MSTW 2008 NLO PDFs (68% C.L.)

Figure 2.2: Parton distributions at fixed Q2 = 10 GeV2 and Q2 = 104 GeV2. Taken

from [1].

mentum carried by the struck parton. It is sometimes convenient to express quantities

in terms of dimensionless variables, in which case Q2 is replaced by

y =
Q2

xs
(2.10)

with s the usual Mandelstam variable. If factorization holds for this process, the

partonic cross section can be calculated to first order using on-shell massless par-

tons independently of the non-perturbative parts of the process. The corresponding

hadronization of the struck parton can also be omitted by simply considering the

inclusive cross section and therefore summing over all possible hadronic final states.

In the spirit of the parton model, the total cross section is obtained from a convo-

lution of the partonic cross section (calculated perturbatively) with the corresponding

parton distribution functions. To first approximation, these parton distributions de-
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pend only on the fraction of momentum carried by the parton. Further considerations

show that the distributions are also dependent on the factorization scale, which is usu-

ally taken by convenience as the hard scale of the process Q2. Putting these pieces

together, it can be easily shown that the inclusive cross section for DIS can be written

as
d2σ

dxdy
=

2πα2
Ss

Q4

(

∑

f

xff (x,Q
2)e2f

)

[

1 + (1− y)2
]

, (2.11)

where ff(x,Q
2) is the parton distribution function for flavor f and ef the correspond-

ing electric charge.

It is clear from Eq. (2.11) how to extract the sum of the parton distributions

weighted by their electric charge squared (also know as the structure function F2).

In order to access individual distributions for each flavor it is necessary to consider

also neutrino deep inelastic scattering. Details on how to extract different parton

distributions and the most up to date fits can be found in [2]. Figure 2.2 shows the

parton distribution functions as a function of x for Q2 = 10 GeV2 and Q2 = 104

GeV2.

Figure 2.2 shows that the distribution functions are large at small-x and in partic-

ular the gluon distribution becomes dominant. This fact will be central in the rest of

the presentation, where only the gluon dynamics will be relevant when dealing with

the small-x degrees of freedom.

Even though the original parton model does not account for Q2 dependence for the

parton distribution functions, it was included in Eq. (2.11) since the scale dependence

was already anticipated in this section. Figure 2.3 shows this Q2 dependence of the

form factor F2 for many different fixed values of x.

2.4 Parton evolution

Under particular circumstances, the dependence of the parton distribution functions

on its two arguments can be studied by perturbative methods. The result is a set of
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evolution equations which do not determine completely the distributions (since they

are inherently non-perturbative) but constrain them to great extent.

2.4.1 DGLAP

It was already observed in the previous section that the parton model can be improved

by taking into account corrections that come from considering parton branching in

the perturbative limit. The Q2 dependence of the parton distribution functions can

be calculated perturbatively provided that Q2 is sufficiently large.

Taking into account that the the transverse resolution is set by Q2, it comes as no

surprise that the Q2 dependence of the distributions is closely related to the already

mentioned divergence in the emission amplitude for gluons at low transverse momen-

tum. From this point of view, the distributions fi(x,Q
2) can be interpreted as the

probability of finding parton i where emissions with transverse momentum lower than

Q are not resolved. The evolution of the distributions in Q2 is therefore computed

by considering the probability of emitting a parton with transverse momentum close

to Q2.

It is very important to note that even though parton branching is down by powers

of the coupling (assumed small due to the large scale Q2), integration over phase

space brings a factor of ln(Q2/ΛQCD) which compensates for the smallness of the

coupling. If these contributions are not suppressed then multiple emissions should

be resummed. In general the large logarithms are obtained from the region in phase

space in which the multiple emissions are strongly ordered in transverse momenta

with later emissions having larger momenta. This leads to the usual resummation of

large logarithms characteristic of renormalization group equations.

Either following the renormalization group approach or the partonic picture with

parton emission having transverse momenta of order Q2, the evolution equation

for the parton distributions, known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi



CHAPTER 2. QUANTUM CHROMODYNAMICS 19

(DGLAP) equation, can be explicitly calculated [16; 17; 18; 19].

d

d lnQ
fi(x,Q) =

αS(Q
2)

π

∫ 1

x

dz

z
Pi/j(z)fj(

x
z
, Q), (2.12)

where i and j run over all possible parton flavors. The splitting functions Pi/j(z)

are most easily calculated in light-cone perturbation theory [18]. Clearly, the split-

ting functions are independent of the quark flavor and are the same for quarks and

antiquarks. To first order in the coupling they are given by

Pq/q(z) = CF

[

1 + z2

(1− z)+
+

3

2
δ(1− z)

]

, (2.13)

Pq/g(z) =
1

2

[

z2 + (1− z)2
]

, (2.14)

Pg/q(z) = CF

[

1 + (1− z)2

z

]

, (2.15)

Pg/g(z) = 2Nc

[

z

(1− z)+
+

1− z

z
+ z(1− z)

]

+
11Nc − 2Nf

6
δ(1− z) , (2.16)

with CF = (N2
c − 1)/2Nc and the “plus” distribution defined by the property

∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz
f(z)− f(1)

1− z
. (2.17)

2.4.2 BFKL

The derivation of the DGLAP equation makes use of the collinear divergence in gluon

emission to justify the resummation of logarithms in the transverse scale. Similar

arguments hold for the other divergence usually present in this kind of processes, the

soft divergence. Soft gluon emissions are the driving force of the dynamics at small-x

where a proper resummation has to be taken into account due to the large parameter

ln(1/x) compensating the smallness of the coupling in the perturbative regime.

When multiple emission are taken into account it is easy to see that the leading

logarithmic contribution comes from the region in phase space where the emitted

gluons are strongly ordered in longitudinal momentum with softer emission occurring

later in time.
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Intuitively, the process of multiple emission can be picture in the following way.

Consider the rapidity variable y = ln(1/x). The probability of emitting one gluon

is proportional to the color charge of the system and the rapidity interval available.

The larger the rapidity interval is the more gluons would be emitted, and therefore

the effective color charge of the system becomes much larger, which consequently

increases the probability of further emissions. It can be seen that this phenomenon

induces an exponential growth of the number of gluons emitted as a function of the

rapidity interval.

A formal study of this dynamics was first done by Balitsky, Fadin, Kuraev, and

Lipatov leading to what is now know as the BFKL equation [20; 21; 22; 23]. Being a

small-x effect, a more thorough explanation will be given in chapter 4 where a brief

review of the derivation is presented along its many consequences and implications.
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Chapter 3

Factorization

The subject of factorization in QCD has been widely studied for many decades since

it is one of the cornerstones of the predictive power of the theory. Being such an im-

portant part of the formalism, it is still a very active field of research with many open

interesting problems. Because of these, and many other reasons, a comprehensive

review of factorization in QCD is beyond the scope of this work1.

As was explained in the previous chapter, the concept of factorization comes

very naturally in an attempt to be able to take advantage of the full machinery

of perturbative methods regardless of the fact that almost any process in QCD is

sensitive to large distance phenomena, where the coupling is large and perturbation

theory explicitly breaks down. Because of this, factorization is taken for granted

without considering its possible downfalls and limitations.

This chapter is intended to review, in a very casual way, what are the assumptions

of factorization, for which processes it has been formally proven, and where it breaks

down. Also, the formalism of transverse momentum dependent (TMD) factorization

is briefly introduced since it is closely related to the main topic of this thesis.

The main reason to consider the TMD formalism is that, even though the study of

gluon distributions at small-x is interesting in itself from a theoretical point of view, in

1For a full review of the formalism see [6; 24]and references therein.
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the development of the study of these distributions special emphasis is made on how

to relate them to physical observables and scattering processes. Most of the material

of subsequent chapters is focused on the description of the small-x degrees of freedom

from an effective field theoretical point of view and how the gluon distributions fit

in different processes from this approach. As a consistency check, it will become

important to compare to approaches based on factorization as the central idea. This

last observation has to be taken with caution since different approaches are not always

valid in the same kinematic regions and, therefore, it becomes important to find a

common ground where both approaches can be trusted and the comparison makes

sense.

3.1 Collinear factorization

The form of factorization that was briefly discussed qualitatively in the previous

chapter is usually referred to as collinear factorization. The word collinear is used

to emphasize that transverse effects are not taken into account as opposed to the

TMD formalism. This is the most established form of factorization and has been

successfully used for many decades to both extract parton distributions from data

and make testable predictions.

For this factorization to work, it is always assumed an underlying hard scattering

process which dominates the dynamics. Consequently, all the energy scales involved

are assumed to be large and of the same order. This typically means that the processes

which can be addressed this way are inclusive processes where it is necessary to sum

over a large class of possible final states, all momentum variables which can not be

fixed to be of the same order of the large scale of the problem (usually the center of

mass energy of the collision) should be integrated over.

Processes for which collinear factorization is well stablished and proofs to all

orders (some with small gaps) are available include DIS, Drell-Yan, e+e− annihilation
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into hadrons, and single jet production in hadron-hadron scattering. Following the

comment made above about the size of the kinematical variables entering the process,

a few comments on the validity of this approach for each of the mentioned processes

are necessary. For DIS, only the total cross section can be calculated this way since

measuring any other particle introduces a transverse momentum scale which can not

be fixed to be of the same order as the virtuality of the photon. In Drell-Yan it is

required that the virtuality of the virtual boson is of the same order of the center of

mass energy and its transverse momentum is also fixed to be of the same order or is

integrated over. Similarly for the other processes.

These assumptions are very natural when considered in terms of the parton model,

since they allow for a proper separation of time scales justifying the ability to fac-

torize long distance dynamics from short distance dynamics without interference (up

to corrections suppressed by the large energy scale). When a high energy scattering

process is considered in the center of mass frame, the incoming hadrons are Lorentz

contracted and have a very small longitudinal extent, implying that they don’t “see”

each other before the collision. Their distributions are therefore unaffected by the

presence of the other hadron. The assumption that the momentum transfer or virtu-

ality of the intermediate particle is very high ensures that the time scale in which the

hard interaction occurs is much shorter than the soft interactions binding the hadrons

together, making it reasonable to decouple these two different effects.

This picture can be seen as the interplay of the two effects of having fast moving

hadrons, the length contraction in the direction of the collision and the time dilation of

the interactions inside the hadron. The first effect combined with the large momentum

transfer ensures that the collision occurs between one parton from each hadron only

while the second effect implies that at the moment of the hard scattering the partons

seem frozen and the inner dynamics of the parent hadrons can be ignored.

All this considerations also imply that the parton distribution functions should

be independent of the hard process and therefore universal. This statement plays
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a fundamental role in the formalism and without it QCD loses all predictive power

for high energy collisions. Since the distributions are determined by inherently non-

perturbative phenomena and can not be calculated by standard methods, they have

to be extracted from data. It is possible to make sensible predictions only if the

distributions extracted from a specific experiment can be used to predict the outcome

of a different process, that is only possible if the distributions are universal.

To be more precise, the distributions are not completely independent of the hard

process under consideration. As was mentioned in the previous chapter, parton dis-

tributions have a (weak) dependence on the energy scale at which the hard scattering

occurs, but this dependence can be calculated perturbatively via the DGLAP equa-

tion and it is independent of the specific process under consideration, it only depends

on the energy scale. In practice, what is done to make testable predictions is to

measure the distributions at some particular energy scale, evolve them to the energy

scale of the new process to be considered and then use them for the new calculated

cross sections.

The fact that separation between perturbative and non perturbative effects can

be cast into partonic cross sections and distribution functions allows to consider fac-

torization theorems as the field theoretic realization of the parton model. As such,

it becomes necessary to introduce more formal definitions of the parton distribution

functions in terms of local operators. The quark distribution can be written in terms

of the fermionic field ψ as [24; 25]

fq(x) =
1

4π

∫

dξ− e−ixP+ξ−〈P |ψ̄(0, ξ−, 0⊥)γ+Gψ(0, 0, 0⊥)|P 〉, (3.1)

for a hadron with large momentum P in the positive z direction. The hadronic state

above has a definite momentum and is normalized such that 〈P ′|P 〉 = (2π)32P+δ(P+−
P

′+)δ(2)(P⊥ − P ′
⊥). The operator G in between the two field operators is there to

guarantee that the definition is gauge invariant and is given by the path ordered
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exponential

G = P exp

{

ig

∫ ξ−

0

dz− A+
c (0, z

−, 0⊥)T
c

}

, (3.2)

with the color matrices T c in the fundamental representation of the gauge group.

As usual, the partonic interpretation is manifest in light-cone gauge where the

“gauge link” G can be dropped and the remaining operator counts the number of

quarks with a definite longitudinal momentum.

Analogously, the corresponding definition for the gluon distribution is [24; 25]

fg(x) =
1

2πxP+

∫

dξ− e−ixP+ξ−〈P |F+ν
a (0, ξ−, 0⊥)γ

+GabF
+
b ν(0, 0, 0⊥)|P 〉, (3.3)

where now the gauge link is defined in the adjoint representation and F µν is the usual

field strength tensor. The definitions above will allow to generalize the formalism in a

straightforward manner to the case where distributions are allowed to have transverse

momentum dependence.

Before the end of this section, it is important to mention two important cases

where collinear factorization breaks down and therefore alternative approaches are

needed. The first case is when there is another energy scale in the process which is

much smaller than the center of mass energy (or whatever kinematical invariant used

as the hard scale of the process). In particular processes with particle production at

low transverse momentum fall into that category, which motivates the introduction of

transverse momentum dependence in the distributions. The next section is devoted

to introduce that approach. The second case where collinear factorization loses its

validity is when parton densities become too large. In that case, it is not fully justified

to consider processes with only one hard interaction and ways of resumming multiple

interactions have to be considered. This is particularly troublesome when the small-x

regime is considered. Ways of addressing this problem are considered in the next

chapter.
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3.2 TMD factorization

The main motivation to define and study transverse momentum distributions, and

their respective factorization theorems, is to extend the scope of the factorization

approach described in the previous section to be able to include processes that, in

a partonic picture, would be sensitive to the transverse momentum of the incoming

partons. Accounting for transverse momentum dependence implies relaxing the as-

sumption that all energy scales in the problem are of the same order. In particular

when the new energy scale is much smaller than the hard scale, this formalism allows

one to calculate only the leading term in a series expansion in terms of the ratio of

the two energy scales.

In principle, extending the formalism of the previous section to include transverse

momentum in the definition should not be too difficult. In terms of the operator

definitions all that is needed is to allow for a transverse separation of the two field

operators and then perform the Fourier transform on the transverse coordinates [25].

Unfortunately, things are not so simple. The first problem can be seen directly from

the form of definitions (3.1) and (3.3), if the fields are allowed to be at different

transverse coordinates the gauge link has to include also a transverse part. There

is no obvious choice for the path of the gauge link from one point to another and

different choices would lead to different definitions, therefore a prescription for the

gauge link path is needed. This first observation is potentially problematic since the

gauge links are usually seen as a way of resumming contributions from either initial

or final state interactions, in the collinear case most of these contributions cancel out

but in the TMD case it is likely that these become process dependent, spoiling the

universality of the distributions.

Numerous studies have addressed the question of how to determine the appro-

priate gauge links for different processes with several interesting results [26; 27; 28;

29]. It is now commonly accepted that the gauge links are intimately related with

the resummation of gluon emissions collinear to one of the participating partons.



CHAPTER 3. FACTORIZATION 27

ξ−

ξ⊥

ξ−

ξ⊥

Figure 3.1: Left: path of future pointing gauge link U [+]. Right: path of past pointing

gauge link U [−].

This resummation procedure is quite general and the only differences between differ-

ent processes is due to the color flow. The simplest example comes from comparing

single inclusive deep inelastic scattering (SIDIS) and Drell-Yan processes, when com-

puting the quark distributions for SIDIS it is necessary to consider only final state

interactions and therefore the gauge link structure will be “future pointing” with

Wilson lines extending in the plus infinite longitudinal direction, while for Drell-Yan

the gauge link involved will be “past pointing” with Wilson lines extending to mi-

nus infinity in the longitudinal direction. To be more specific, consider the following

Wilson lines in the longitudinal and transverse directions:

Un[a, b; x⊥] = P exp

{

ig

∫ b

a

dx− A+(0, x−, x⊥)

}

(3.4)

UT [x−; a⊥, b⊥] = P exp

{

ig

∫ b⊥

a⊥

dx⊥ · A⊥(0, x
−, x⊥)

}

. (3.5)

The gauge link involved in the quark distribution for SIDIS is

U [+] = Un[0,∞; 0⊥]U
T [∞; 0⊥,∞⊥]U

T [∞;∞⊥, ξ⊥]U
n[∞, ξ−; ξ⊥] , (3.6)

and is illustrated in the left side of Fig. 3.1. The transverse gauge links at infinity

have been shown to be crucial to maintain the gauge invariance and, even though

their contribution will be dropped most of the times by choosing a gauge where the

fields are zero at infinity, it is important to keep them in mind when making general

considerations. The detailed structured of the transverse link at infinity is chosen in
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that particular way for technical reasons [29]. Similarly, the gauge link for the quark

distribution in Drell-Yan is

U [−] = Un[0,−∞; 0⊥]U
T [−∞; 0⊥,∞⊥]U

T [−∞;∞⊥, ξ⊥]U
n[−∞, ξ−; ξ⊥] , (3.7)

and is illustrated in the right side of Fig. 3.1.

For the gluon distributions it is convenient to write the gauge links in the funda-

mental representation instead of the adjoint representation used in Eq. (3.3) for the

collinear case. First note that any gauge link in the adjoint representation can be

written in terms of the fundamental representation version using the identity

Fa(ξ)GabFb(0) = Tr
[

Fa(ξ)T
aGFb(0)T

bG†
]

, (3.8)

but in the fundamental representation more general gauge links can be defined by

allowing different paths for the fundamental gauge links connecting the two points on

either side.

Since the gauge links are related to either initial or final state interactions between

the incoming hadron under consideration and other participants in the hard inter-

actions, it is natural to include in the gauge link Wilson lines for each of the other

participants, future pointing for outgoing partons and past pointing for incoming par-

tons. Depending on the identity of the parton such Wilson line would be either in

the fundamental (for quarks and antiquarks) or the adjoint representation (for glu-

ons). The procedure of how to combine all these pieces into one gauge link structure

is thoroughly explained in [28]. In particular, the two-to-two processes considered

in the appendix of [28] will be crucial to the study of two-particle measurements of

chapter 7.

It is important to note that it has been shown that this approach does not work

in general for hadron-hadron collisions where it has been explicitly shown that TMD

factorization breaks down [30; 31]. The problem comes from the fact that the soft

gluon interactions can be resummed into gauge links as long as only one hadron

is considered at a time. Gluon emissions from different participants could interfere
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in complicated ways that can not be cast into a factorized version. The approach

described above to determine the appropriate gauge link for a process works only

when the transverse momentum of only one of the participants in the scattering

process is relevant. For later chapters, when asymmetric collisions of a dilute probe

with a dense nuclear target are considered, this approach remains valid.

Some approaches to include evolution in the x variable for these distributions have

been made in a rather different framework. In the language of small-x physics, unin-

tegrated gluon distributions were first considered as a way of describing heavy quark

production processes [32]. There it was shown that in the two-gluon approximation

it is possible to obtain factorized formulas using transverse momentum dependent

distributions which satisfy the BFKL evolution equation. Even though this approach

successfully resums multiple gluon emissions, it ignores non linear effects which play

an important role in the dynamics in the small-x regime. How to include this effects

is the main objective of the rest of this document.

As a final comment on TMD factorization, it is important to note that there are

extra complications with establishing the validity of this formalism. Among them are

the presence of soft factors and the rapidity divergences of the light-light gauge links.

These issues will not be addressed here. The most up to date developments in this

field can be found in [6].
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Chapter 4

Small-x Physics

As the main framework of the material presented in this thesis, the subject of small-x

physics deserves a chapter on its own. Here the main motivations for looking at this

particular regime and what are the techniques that have been developed to understand

its dynamics will be explained to some detail. Particular attention will be paid to

results that will be central in the presentation of subsequent chapters but most of the

details are left out and can be found in any of the many good reviews on the subject

[33; 34; 35; 36; 37].

4.1 Why is small-x physics relevant?

The high energies reached at the current accelerator collider experiments have played

a very important role in the development of new techniques to describe the dynamics

of strong interactions. In particular, the description of the dynamics of partons with

small Bjorken x has become increasingly important as this regime is now kinemat-

ically accessible and considerably affects particle production mechanisms in hadron

collisions. The high energy limit of hadronic interactions was poorly understood from

the usual perturbative QCD approach commonly used for processes with a large mo-

mentum transfer. The reason is that factorization breaking contributions become
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more relevant as they can be enhanced by factors of the total energy without raising

the momentum exchange of the partonic interaction.

These previous considerations lead one to think that perturbative methods are not

suitable for the high energy limit of hadronic interactions and therefore there is little

that can be done with standard methods. The solution to this predicament comes

from the fact that parton densities grow at low values of x creating a high density sys-

tem. Under these conditions parton distributions “saturate” generating a semi-hard

scale characterizing the transition between the saturated and non-saturated regimes

[38; 39]. The presence of this semi-hard scale justifies a weak coupling approach,

but the large number of partons implies that multiple interactions are important and

therefore care should be taken when using perturbative approaches. The resummation

of contributions coming from either multiple emissions or multiple scatterings with

a target becomes a central piece of the formalism and, as will be seen in subsequent

sections, has many interesting consequences.

It was already mentioned in Section 2.4 that when small-x evolution is taken into

account via the BFKL formalism multiple emissions are expected and the number of

gluons grows exponentially as a function of rapidity. This result, as will be explained

below in this chapter, raises very interesting issues that lead to think that further

developments and non-linear dynamics are needed to get a full description of the

small-x regime. Among those issues is the fact that, since rapidity scales as the

logarithm of the center of mass energy of the collision process, the total cross section

would grow as a power of energy, violating unitarity bounds [40]. Again, the resolution

to this problem is provided by saturation, which predicts that when the density of

color charges reaches a critical value recombination effects become important and

unitarize the corresponding cross section.

All these high density effects play an important role in the description of the early

stages of heavy ion collisions and therefore are crucial in an accurate description of

the creation of the quark-gluon plasma observed at RHIC and LHC. A complete
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Figure 4.1: Scattering of two onia with evolution in the two gluon interaction.

understanding of the high density systems entering a heavy ion collision would allow

one to separate hot matter effects from initial state effects and therefore allow for a

better understanding of processes like deconfinement and thermalization.

4.2 BFKL

The formulation of the BFKL equation is considered as one of the most important

steps in the development of small-x physics. Despite the possible problems it may

have at very high energies, it remains a very good approximation with many phe-

nomenological applications. This section is devoted to explaining its formulation, in

momentum space as well as in transverse coordinate space, features of its solutions,

and possible problems.
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Figure 4.2: Left: real evolution correction. Right: example of a virtual evolution

correction.

4.2.1 Formulation in momentum space

One of the original derivations of the BFKL equation [23] was performed in the frame-

work of a collision of two onia (heavy bound quark-antiquark pairs). The ingredients

to calculate the total cross section for such a process are the onia light-cone wave

functions and the imaginary part of the forward onium-onium scattering amplitude.

The momentum space version of this process is depicted in Figure 4.1 where f(l, l′, Y )

is the forward amplitude in momentum space, l and l′ transverse momenta, and Y

is the rapidity variable which is proportional to the logarithm of the center of mass

energy.

The evolution in rapidity is obtained by considering emission of (real and virtual)

softer gluons. Examples of both kinds of contributions are shown in Figure 4.2 where

the thick dots in the real contribution stand for the Lipatov vertex which sums all

the possible ways to attach the emitted gluon [23; 22]. Putting the pieces together,

the BFKL equation takes the form

∂f(l, l′, Y )

∂Y
=
αSNc

π2

∫

d2k

(k − l)2

[

f(k, l′, Y )− l2f(l, l′, Y )

k2 + (k − l)2

]

. (4.1)

The first term inside the square bracket correspond to the real contribution while the
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Figure 4.3: BFKL ladder after multiple iterations.

second term accounts for the virtual pieces.

Equation (4.1) above can be rewritten as an integral equation which could be

solved by iteration. Under this approach, a term with a fixed number on gluon

emission is represented by the ladder diagram of Figure 4.3 where again the thick

vertices both sides of the cut represent the Lipatov vertex and the t-channel gluon

lines should be interpret as Reggeized gluon propagators [23; 22].

4.2.2 Formulation in transverse coordinate space

The derivation of the BFKL equation in transverse coordinate space is easier to un-

derstand in terms of the dipole model introduced by Mueller [41], which is formulated

in the large-Nc limit. Under this framework, emission of soft gluons is taken as part

of the onia wave functions which are now dependent on the rapidity variable. In

the large-Nc limit these emitted gluons are replaced by quark-antiquark pairs and
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Figure 4.4: Dipole splitting in large Nc limit. Transverse coordinates and longitudinal

momentum fractions are explicitly shown.

therefore each emission is considered as the original color dipole splitting into two

new dipoles (see Figure 4.4).

This dipole splitting is easily calculated in light-cone perturbation theory [15].

Adding the contributions from emission from the quark and emission from the anti-

quark, the amplitude for the splitting is

− igT a

π

(

x2 − x0
(x2 − x0)2

− x2 − x1
(x2 − x1)2

)

· ǫλ , (4.2)

where T a is the color matrix in the fundamental representation and ǫλ is the transverse

part of the polarization vector of the emitted gluon. After squaring this amplitude,

summing over the gluon polarization and color, and including the appropriate phase

space factors, the probability for soft emission in transverse coordinate space repre-

sentation is given by

dP =
αsCF

π2

(x0 − x1)
2

(x0 − x2)2(x1 − x2)2
d2x2 dy2 , (4.3)

with dy2 = dz2/z2. The quantity shown in Equation (4.3) is also known as the dipole

kernel and will appear every time that soft gluon emissions are considered from a

color singlet configuration in a transverse coordinate representation.

Since the evolution is put in the wave function of the onia, the relevant quantity

to study its evolution is the density of dipoles in the onium state. Defining n(x0 −
x1, x, Y ) as the number density of dipoles of size x in an onium state of size x0 − x1
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at rapidity Y , the corresponding evolution equation reads then

∂

∂Y
n(x0 − x1, x, Y ) =

αSCF

π2

∫

d2x2
(x0 − x1)

2

(x0 − x2)2(x1 − x2)2

× [n(x0 − x2, x, Y ) + n(x2 − x1, x, Y )− n(x0 − x1, x, Y )] .

(4.4)

The different pieces of this equation are easy to understand. Since the evolution

is caused by soft gluon emission it is natural to include the dipole kernel of Eq. (4.3).

The first two terms in the bracket correspond to the densities on the two new color

dipoles while the last term is the virtual correction which accounts for the loss of the

initial dipole after emission.

A few comments are necessary to explain the validity of the physical picture

explained above. First, it is important to note that the leading logarithmic approx-

imation plays a fundamental role. The fact that the longitudinal momentum of the

emitted gluon is much softer than the original quark and antiquark is what allows

to ignore recoil effects and keep the transverse coordinates of the original dipole un-

changed. Second, even though the large-Nc limit is crucial to formulate the evolution

equation only in terms of dipole densities, the result is exact within the leading loga-

rithmic approximation, in other words, the finite Nc corrections are not enhanced by

large logarithms.

Eq. (4.4) is known as the coordinate version of the BFKL equation. The con-

nection with the momentum space version of BFKL is by no means straightforward

mainly because the objects involved in the description are not the same. However,

when observable quantities such as the total cross section for the scattering of two onia

are considered both approaches yield the same results. Different methods to show

the equivalence of the two approaches can be found in [42; 43]. For the purposes of

this document, only the coordinate version will be considered since resummation of

multiple scatterings, which were already mention to play an important role in the

small-x regime, are much easier to deal with in coordinate representation.
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Instead of the setup of two onia states scattering from each other, the situation

that will be recurrent in subsequent sections is the scattering of a dipole in a nuclear

target. The forward scattering amplitude of a dipole with a quark with transverse

coordinate x0, an antiquark with transverse coordinate x1, evaluated at rapidity Y ,

N(x0, x1, Y ) can be obtained by convoluting the dipole density n with the amplitude

of scattering of a dipole from a nucleon integrated over the nuclear length (in the

leading twist case). The evolution of this dipole scattering amplitude is put all in

the dipole wave function, and therefore the amplitude N(x0, x1, Y ) also satisfies the

BFKL equation.

∂

∂Y
N(x0, x1, Y ) =

αSCF

π2

∫

d2x2
(x0 − x1)

2

(x0 − x2)2(x1 − x2)2

× [N(x0, x2, Y ) +N(x2, x1, Y )−N(x0, x1, Y )] . (4.5)

4.2.3 Solution of the BFKL equation

The subject of how to solve the BFKL equation in its different versions have been

widely address in the literature [44; 23; 22; 42; 43]. Here, only the final results are

presented in order to be able to observe characteristic features of the BFKL evolution.

The standard procedure to solve this equation is to take advantage of the scale

invariance of the kernel to find its eigenfunctions and eigenvalues. In terms of these,

the solution of Eq. (4.4) can be written explicitly as

n(x0 − x1, x, Y ) = 2

∫ ∞

−∞

dν

2π

( |x0 − x1|
x

)1+2iν

e
2αSNc

π
χ(ν)Y , (4.6)

where χ(ν) = ψ(1)− 1
2
ψ(1

2
+ iν)− 1

2
ψ(1

2
− iν) and ψ(x) = d

dx
ln Γ(x). The integration

above can be perform around the saddle point in ν = 0 yielding the result

n(x0 − x1, x, Y ) =
|x0 − x1|

2x

e(αP−1)Y

√

7
2
αSNcζ(3)Y

exp



−
π ln2

(

|x0−x1|
x

)

14αSNcζ(3)Y



 , (4.7)

with αP − 1 = 4αSNc

π
ln 2.
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The most important feature of this solution is the exponential growth with ra-

pidity. When expressed in terms of the center of mass energy of a collision process

it implies that total cross sections grow as sαP−1. This asymptotic behavior at large

energies is characteristic of the hard Pomeron from Regge theory. The problem with

this behavior is that it violates the Froissart bound [40] and therefore is inconsistent

with the unitarity of the theory.

4.2.4 Unitarization: the Balitsky-Kovchegov equation

The main reason why BFKL stops being a good approximation at very high energies is

that it does not account for the nonlinear effects which are a fundamental part of non-

abelian theories. In the physical picture of multiple gluon emission or dipole splitting,

the nonlinear effects take the form of gluon (or dipole) recombination. If soft gluon

emission is enhanced by a large logarithm of the energy, then gluon recombination is

enhanced by a factor of density, when the density becomes of the order of 1 over the

coupling then recombination effects have to be resummed as well.

A first attempt to include this nonlinear effects in the BFKL formalism, without

making fundamental changes to the framework, was first proposed independently by

Balitsky [45; 46] and Kovchegov [47; 48]. Take as a starting point the coordinate

space version of BFKL in terms of the dipole-nucleus scattering amplitude Eq. (4.5).

There, the first two terms correspond to the real emission and each term accounts for

the case where only one of the resulting dipoles interacts with the nucleus, while the

last term corresponds to the virtual correction where the original dipole is the one

interacting with the nucleus. The natural thing to do to account for nonlinear effects

would be to include a term where both dipoles can interact with the nucleus. The
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resulting equation would be

∂

∂Y
N(x0, x1, Y ) =

αSCF

π2

∫

d2x2
(x0 − x1)

2

(x0 − x2)2(x1 − x2)2
[N(x0, x2, Y )

+N(x2, x1, Y )−N(x0, x1, Y )−N(x0, x2, Y )N(x2, x1, Y )] .

(4.8)

This equation is known as the Balitsky-Kovchegov (BK) equation. It can be derived

by formal methods with the use of a mean field approximation that allows to separate

the scatterings of the two dipoles in the nonlinear term.

Despite its apparent simplicity, the BK equation solves most of the troublesome

issues present in the solutions of the BFKL equation. Several thorough studies, both

analytical and numerical, of this equation have been performed [49; 50; 51; 52; 53;

54; 55; 56] since its original proposal and it has become one of the most commonly

used tools for phenomenological studies of small-x phenomena.

The explanation above in terms of dipole-nucleus scattering does not refer ex-

plicitly to recombination of gluons or dipoles as was suggested in the beginning of

this section as the source of nonlinear effects. To make explicit the relation with

recombination it is necessary to consider the picture of BFKL in terms of density of

dipoles instead an onium state, there the nonlinear term has the interpretation of the

probability of creating a dipole of the original size provided there were two dipoles

of the appropriate size inside the onium state. In terms of the ladder diagrams, as

the one in Figure 4.3, the nonlinear term allows merging of ladders, which was not

an option in the original form of BFKL.

The BK equation will appear again later when a complete analysis of nonlin-

ear evolution is presented. The presentation of the features of solutions to the BK

equations is postponed until then.
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Figure 4.5: Multiple scattering of a dipole on independent nucleons via two-gluon

exchange.

4.3 Saturation

At the end of the previous section it was noted that there is a close relation between

the effects of gluon recombination and resummation of multiple scatterings. This

will be a recurrent topic for the rest of this document as it is often useful to consider

different physical pictures of the same processes which are related by a change of gauge

or a change of reference frame. In the material presented so far, the phenomenon of

saturation has been mentioned in the context of gluon recombination and advertised

as the consequence of nonlinear effects when parton (gluon) densities become large

enough. Here saturation will be presented as an inherent property of the resummation

of multiple scattering even when small-x evolution is not taken into account.

The starting point for this analysis is the forward dipole-nucleus scattering am-

plitude mentioned in section 4.2.2. This amplitude is of uttermost importance when

nuclear DIS is considered, as the process can be described as the convolution of the

probability of the virtual photon splitting into a quark-antiquark pair with the re-

spective dipole nucleus amplitude. Also, in the spirit of the large-Nc dipole model,

processes involving gluons are often represented in terms of dipole splittings where

the dipole-nucleus amplitude plays a central role in describing scattering processes.

In covariant gauge and assuming that nucleons inside the nucleus are dilutely
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Figure 4.6: Three diagrams involved in dipole-nucleon scattering in the two-gluon

approximation.

distributed, the multiple scattering of the dipole on the nucleus can be seen as a

succession of dipole-nucleon independent interactions (see Fig. 4.5). Being the am-

plitude in question a forward amplitude, it is necessary to consider singlet interactions

with each nucleon such that it remains color neutral. To lowest order, this condition

translates in the dipole-nucleon interaction being mediated by two-gluon exchanges.

In the case of a large nucleus, the two-gluon approximation is justified by considering

the multiple scattering series as an expansion in the parameter α2
SA

1/3 which can be

of order one for a sufficiently large nucleus. The fact that this two-gluon interactions

are indeed ordered as Fig. ?? suggests and there are no contributions where gluons

from different nucleons cross is not a trivial matter. To show that that is indeed the

case, it is necessary to make use of the fact that this setup assumes eikonal scattering

due to the very high energy of the probe. Details of the calculation showing that

diagrams which are not ordered can be safely neglected can be found in Ref. [57] and

will not be presented here.

The dipole-nucleon interaction has to include the three diagrams of Fig. 4.6

which are conveniently grouped this way in order to cancel the infrared divergence

of the single diagrams. The resulting dipole-nucleon cross section is shown [57; 58]

to be proportional to the gluon distribution of the nucleon, which to a lowest order

approximation is independent of x.

σqq̄N

2
=
αSπ

2

2Nc
x2⊥xGN(x, 1/x

2
⊥), (4.9)
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where the gluon distribution is taken as [58]

xGN (x,Q
2) =

αSCF

π
ln
Q2

Λ2
. (4.10)

Given the ordering mentioned above, it is easy to see that multiple independent

interactions exponentiate for the calculation of the S-matrix. The probability for one

scattering is obtained after multiplying the cross section above with ρ the density of

nucleons in the nucleus and the longitudinal distance seen by the probe at an impact

parameter b given by the nuclear profile function T (b). The corresponding result for

the S matrix as a function of the dipole separation and the impact parameter is

S(x⊥, b) = e−
ρT (b)σqq̄N

2

= exp

{

−πα
2
SCFρT (b)

Nc
x2⊥ ln(1/x⊥Λ)

}

, (4.11)

or, in terms of the scattering amplitude N(x⊥, b), we get the Glauber-type formula [58;

59]

N(x⊥, b) = 1− exp

{

−πα
2
SCFρT (b)

Nc

x2⊥ ln(1/x⊥Λ)

}

. (4.12)

The quark saturation scale Q̄s is defined such that the transition from the linear

regime where N is small and grows as x2⊥ to the saturated regime where N ∼ 1

occurs at x⊥ ∼ 1/Q̄s. Sometimes it is convenient to define the quark saturation scale

without the logarithmic dependence Q̄s0 in which case the dipole amplitude can be

written in the convenient compact form

N(x⊥) = 1− e−
Q̄2
s0
4

x2
⊥
ln(1/x⊥Λ). (4.13)

4.4 Color Glass Condensate

The quasi-classical approach described in the previous section has the advantage of

having a direct physical picture where it is easy to guess which diagrams contribute

and have to be included in the resummation. In order to include small-x evolution

in this approach it is necessary to consider gluon emissions in the projectile dipole
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and then consider the separate interactions with the nucleus of the resulting partonic

system. Several high-energy processes have been studied under this setup with very

interesting results. This procedure has the limitation that it somehow obscures the

inner dynamics of the partons in the nucleus by putting all the evolution in the

incoming probe and does not allow for a clear picture for the effects of high parton

densities.

To make manifest the partonic structure of the nucleus and relate saturation

phenomena to this particular dynamics, it is necessary to change reference frames

and use light-cone gauge. The multiple scattering picture of the previous section is

set in a reference frame where the nucleus is at rest and the energy dependence is

all carried by the incoming probe. For that setup, the choice of a covariant gauge is

convenient as it allows for the mentioned ordering of the two-gluon interactions. If

instead, the infinite momentum frame of the nucleus and light-cone gauge are used,

the partonic picture of the nucleus becomes manifest and the energy dependence is

all put in the partonic distributions of the nucleus.

This is the starting point for the effective theory which is currently the most

accepted approach to describe small-x degrees of freedom, the Color Glass Condensate

(CGC) [60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70]. Several review papers have been

written with detailed explanations of the formalism [33; 34; 35; 36; 37]. This chapter is

intended to highlight the aspects of the theory that will be central for the presentation

of the results of chapters 7 and 8 where this formalism plays a crucial role.

Since at small-x the gluon distributions are much bigger than the quark distribu-

tions, the emphasis of CGC is in the dynamics of the gluonic degrees of freedom. The

foundations of the theory lay in the following observation: for a fast moving nucleus,

partons with large fractions of the total momentum can be seen as static and there-

fore treated as sources for the dynamics of the gluons at smaller momentum fractions

which, thanks to the large occupation numbers, can be treated semi-classically [60;

61]. Treating the gluonic degrees of freedom classically means solving the classi-
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cal Yang-Mills equations of motion with an external source (determined by the fast

moving partons),

(DνF
µν)a(x) = Jµ

a (x). (4.14)

This can not be done perturbatively, since the gauge field is assumed to be large due

to the large number of gluons, and an exact solution is therefore needed.

4.4.1 Classical gluon field

Anticipating the kinematical setup that will be used in subsequent chapters, the

presentation here does not follow the usual approach with a fast moving nucleus in

the light-cone plus direction as it is usually done. Instead, the nucleus is assumed to

be moving in the negative z direction which correspond to motion along the light-

cone minus direction. The large component of the nucleus momentum is therefore

P−. The light-cone gauge in which the partonic picture is manifest is therefore the

A− = 0 gauge. The general derivation is the same as in [33; 34] interchanging the

plus and minus components.

Since the nucleus is moving in the minus direction, the source current is taken to

have only a minus component

Jµ
a (x) = δµ−ρa(x

+, x⊥), (4.15)

with ρa the source color charge density, which is independent of x− due to current

conservation.

Finding a solution in the desired gauge is not straightforward. On the other hand,

things are simpler in covariant gauge where a simple solution is available for the

current given above. It is easy to check that

Ãµ
a(x) = δµ−αa(x

+, x⊥), with −∇2
⊥αa(~x) = ρa(~x), (4.16)

is a solution of the Yang-Mills equations. Even though this solution is not in a

gauge that allows for a direct partonic interpretation, it is very useful for many
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computations and will reappear later when scattering processes with a high-energy

probe are considered. This solution can be transformed to the desired light-cone

gauge of the nucleus by a simple transformation. The resulting field is

A+
a (x) = A−

a (x) = 0 Ai
a(x) =

i

g

[

∂iU(x
+, x⊥)

]

U †(x+, x⊥), (4.17)

with U an element of the gauge group determined by the gauge condition A− = 0,

U(x+, x⊥) = P exp

{

ig

∫ ∞

x+

dz+ αa(z
+, x⊥)

}

. (4.18)

The limits on the integral over z+ are conveniently chosen such that the field vanishes

at infinity. This path ordered Wilson line in the fundamental representation will

appear again several times in different contexts, here it is a gauge transformation but

later it will be used to describe multiple interactions on a fast moving quark.

From (4.17) it is straightforward to calculate the gauge strength tensor, which

only nontrivial components are

F−i
a (x+, x⊥) = −U(x+, x⊥) ∂iαa(x

+, x⊥) U
†(x+, x⊥) = −Ũ †

ab(x
+, x⊥) ∂iαb(x

+, x⊥)

(4.19)

where Ũab is the Wilson line in the adjoint representation. This calculation of the

fields will be used in the next chapter to calculate explicitly the density of gluons.

From the derivation above it is clear that the fields associated with the small-x

degrees of freedom are completely determined by the fast moving sources described by

the density ρa. In order to calculate observables from this theory a weighted average

has to be taken over the possible values of the color charge densities. This average

is performed via a functional integration with a properly normalized weight function

which is in principle not known (more details in the next subsection). The physics

that determines the specific form of this weight function is non perturbative but,

as will be seen later, its evolution with rapidity can be calculated by perturbative

methods.
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4.4.2 Functional formulation

Once established how to compute the gauge field from the source color charge density

all that is left to determine physical observables is a way to describe appropriately the

color charge source and account for possible fluctuations. It was already mentioned

that the approach to follow is to take a functional average over all possible source

configurations with a properly normalized weight function. More explicitly, for an

operator O(A) which is a function of the gauge field, its average over the color sources

is written as

〈O〉Y =

∫

Dρ WY [ρ]O[ρ] , (4.20)

where O is a function of the source color charge density through the construction of

the previous subsection. The subindex Y in the average and in the weight function

is there to emphasize that, in this framework, the rapidity evolution is all put in the

nucleus and therefore the weight function is rapidity dependent.

The interpretation given to this rapidity dependence in terms of the physical

picture in which the small-x degrees of freedom behave classically with the large-x

components serving as color sources is the following: the rapidity variable is related

to the lowest longitudinal momentum fraction xA probed in a given scattering via

Y = ln(1/xA), this lowest longitudinal momentum fraction determines the separation

between what is considered large and small x and therefore determines what should

be included as part of the color sources. If this separation of sources and dynamical

fields is not taken at the appropriate value, quantum fluctuations are enhanced by

large logarithms and therefore the quasi-classical approximation is no longer justified.

4.4.3 Eikonal scattering in terms of Wilson lines

In order to be able to compare with previous approaches, the CGC formalism has

to provide a way of calculating amplitude for multiple scatterings of partons in a

nucleus. In the spirit of the previous subsections, the way to proceed is to express



CHAPTER 4. SMALL-X PHYSICS 47

the scattering S-matrix in terms of the gauge field of the nucleus and then perform

the CGC average over field configurations.

Given that the central focus of this discussion is on high energy probes, it is

common to use the eikonal approximation where the transverse coordinates remain

frozen during the scattering. This approximation leads to great simplifications and is

the main reason why the multiple scattering analysis is often performed in transverse

coordinate space instead of momentum space.

Consider a quark undergoing multiple scatterings with some static scattering cen-

ters as depicted in Fig. ??. Each gluon insertion accounts for a factor of the form

ū(p′)igAµ
a(x)T

aγµu(p). Considering that the fast moving quark is a right mover and

therefore p+ is much larger than all the other momentum components, it is easy to see

that in the eikonal approximation only the A− component of the field will contribute

to the scattering. In the eikonal approximation the transverse coordinates are the

same for all the scattering centers, but the longitudinal coordinate should be inte-

grated over. The ordering of the scattering centers implies that the series organized in

terms of the number of scatterings can be resummed into a path ordered exponential

of the form [71]

U(x⊥) = P exp

{

ig

∫

dx+ A−
a (x

+, x⊥)T
a

}

. (4.21)

The integration limits in the x+ integration can be safely taken to ±∞ as long as it

is understood that the gauge field goes to zero rapidly outside of the nucleus (which

is true in a covariant gauge).

The explanation above is intended more as an illustration than a derivation and

therefore some important aspects were omitted. A few words of caution should be

mentioned for completeness sake. First, the argument is valid in a covariant gauge

where it is possible to pick up the leading contribution from the eikonal vertex, the

same can not be said of the light-cone gauge of the target where the minus component

of the field is set to zero. Second, the x− dependence was completely ignored in the

argument which is a valid approximation as long as the coherence time of the probe
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is much longer than the length of the target. This approximation has as a direct

consequence that the momentum transfer induced by the scattering is only transverse

and the longitudinal component of the quark momentum is conserved.

If instead of a quark the incoming particle is an antiquark, the result would be

the complex conjugate of the same Wilson line in (4.21). It can also be shown that

the same argument applies when the incoming particle is a gluon instead of a quark

with the only difference that the color matrices are now in the adjoint representation

leading to an adjoint representation Wilson line [71].

This formalism allows one to calculate the dipole-nucleus amplitude of section 4.3.

The scattering of the quark gives a Wilson line in the fundamental representation

while the scattering of the antiquark gives a conjugate Wilson line (ordered in the

inverse direction). The singlet part of the pair dominates, so it is common to write

the scattering matrix for the dipole-nucleus scattering as

S(x0, x1) =
1

Nc
〈TrU(x0)U †(x1)〉. (4.22)

In the following subsection an example of how to calculate this amplitude with a

particular model for the weight function will be explicitly shown.

4.4.4 Recovering the two-gluon approximation

For practical purposes, knowing how to calculate correlators for an arbitrary number

of sources is equivalent to knowing the explicit form of the weight function. From

these correlators it is possible to derive expressions for the corresponding same light-

cone time correlators of an arbitrary number of gauge fields, which is all that is needed

to compute averages of operators which are smooth functions of the gauge field.

The simplest non trivial choice for the correlators is such that two-point correla-

tions are local and any higher point connected correlator is exactly zero. The locality

of the two-point correlator implies

〈ρa(x+, x⊥)ρb(y+, y⊥)〉 = δabδ(x
+ − y+)δ(2)(x⊥ − y⊥)µ

2(x+) , (4.23)



CHAPTER 4. SMALL-X PHYSICS 49

where the function µ2 characterizes the color charge density and is assumed indepen-

dent of the transverse coordinates for simplicity.

The choice for local correlators in the longitudinal direction can be justified on

the basis of assuming that color charges corresponding to different nucleons are not

correlated. Strictly speaking this does not imply a delta function in the longitudinal

direction, moreover, in order to avoid troublesome singularities it is necessary to

consider the longitudinal structure of this correlators over some small region for some

particular calculations. For the level of detail required in the following calculations

the delta function approximation works fine.

The structure described above, where the only non trivial correlators are given by

Eq. (4.23) can be easily reproduced with a Gaussian weight function of the form

W [ρ] = exp

{

−
∫

d2x d2y dz+
ρa(z

+, x⊥)ρa(z
+, y⊥)

2µ2(z+)

}

. (4.24)

This particular choice of weight function is commonly known as the McLerran-

Venugopalan model [60; 61] and is often used as an initial condition for the rapidity

evolution.

Note that in the definition of the correlators, as well as the weight function above,

the rapidity dependence has been omitted. The reason for this omission is that this

particular structure is not respected by the evolution, the Gaussian weight develops

other components and new non trivial correlators appear. As a phenomenological tool,

one can allow for rapidity dependence within the Gaussian approach by making the

function µ2 rapidity dependent with its evolution dictated by the evolution equation

of the two-point correlation (which will be shown to be equivalent to the BK equation

in the large-Nc limit). Recent analytical studies have shown that this approach misses

contributions to the evolution of the operators which are not Nc suppressed [72]. In

order to quantify how good is this Gaussian approximation further numerical studies

are needed and are currently under way.

As it is suggested in the title of this subsection, this model reproduces the re-

sults obtained by considering multiple scatterings in the two-gluon approximation
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as explained in section 4.3. To see this consider the dipole-nucleus S-matrix of Eq.

(4.22). The way to proceed to evaluate this correlator is to expand the Wilson lines

and evaluate the correlators of multiple fields via Wick’s theorem. In order to follow

this procedure it is important to consider the two-point correlator in terms of the

gauge field instead of the color charge density. Taking into account that the field that

appears in the exponent of the Wilson lines is given in covariant gauge as defined in

(4.16), the correlator of two such fields is given by

g2S〈A−
c (x

+, x⊥)A
−
d (y

+, y⊥)〉 = δcdδ(x
+ − y+)µ2(x+)Lxy, (4.25)

with L given in terms of the two-dimensional massless propagator G0,

Lxy = g4S

∫

d2z G0(x⊥ − z⊥)G0(y⊥ − z⊥), G0(x⊥) =

∫

d2k

(2π)2
eik·x⊥

k2
. (4.26)

There are two different kinds of pairings of the field that should be considered.

First, consider correlators between two fields from the same Wilson line. One of such

correlators at a transverse coordinate x⊥ gives a contribution of −CFµ
2Lxx/2 where

µ2 =
∫

dz+ µ2(z+). It has a color singlet structure and therefore can be factored out

of the calculation of any specific term in the expansion. When multiple occurrences

of this kind of correlator are considered, it is easy to notice that the path-ordering

of the Wilson line together with the locality in the longitudinal coordinate of the

correlators imply that these contributions exponentiate.

Now consider correlators between fields from different Wilson lines. Again the

path-ordering of the Wilson line together with the longitudinal locality of the cor-

relators allow to simplify greatly the calculation since they imply that each of these

correlators are in a color singlet structure each contributing a factor of CFµ
2Lxy.

These contributions also exponentiate nicely giving the following result for the S-

matrix,

S(x⊥, y⊥) = e−
CF
2

Γ(x⊥−y⊥), (4.27)

where Γ(x⊥ − y⊥) = µ2(Lxx + Lyy − 2Lxy). This result is already reminiscent of

Eq. (4.11). To notice that indeed the result is the same, the function Γ has to be
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evaluated. This can be done with the help of (4.26) where a cut-off scale is necessary

to regulate the transverse two-dimensional propagator, the result agrees completely

with (4.11) (see details of this derivation in [73]).

4.4.5 Quantum evolution

In this framework, the inclusion of quantum evolution is done through the dependence

on rapidity of the weight function used in the functional definition of the effective

theory. Since the theory is based in the assumption that the gauge field can be

treated classically by solving the classical Yang-Mills equations of motion, the effect

of quantum fluctuations is accounted for by renormalizing the source term whenever

the quantum corrections become important. These quantum fluctuations take the

form of gluon emissions form the original sources, creating new color charges that

affect the dynamics of the gauge fields at the relevant scale.

Seen this way, it seems that this new procedure is analogous to BFKL evolution

where multiple soft emissions were already taken into account, the difference lays

in the fact that in these formalism the nonlinear effects are included in a natural

way by just including a few more diagrams for the evolution of the weight function.

These new diagrams account for the nonlinearities arising from the gauge field being

a nonlinear function of the sources and from the propagation of the newly radiated

gluon in the background field, therefore allowing gluon recombination and merging of

BFKL ladders.

A one loop calculation is enough to include the leading logarithmic effects and

the high density effects. The details of the calculation are quite technical and will

be skipped in this presentation. The resulting evolution equation takes the form

of a renormalization group equation for the weight function WY [ρ] and it is usually

referred in the literature as the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–

Kovner (JIMWLK) equation. It can be written in the following compact form [68;
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70],
∂WY [ρ]

∂Y
=

1

2

∫

d2x⊥d
2y⊥

δ

δρa(x⊥)
ξab(x⊥, y⊥)[ρ]

δ

δρb(y⊥)
WY [ρ], (4.28)

where ξ is related to the charge-charge correlator induced by including in the source

term the fluctuations at a rapidity Y . The explicit form of ξ is not very illuminating

and not particularly useful for specific calculations. Therefore, it is common to express

Eq. (4.28) in terms of the covariant field α of Eq. (4.16) where the kernel takes a

simpler form in terms of Wilson lines,

∂WY [α]

∂Y
=

1

2

∫

d2x⊥d
2y⊥

δ

δαa(x⊥)
ηab(x⊥, y⊥)[α]

δ

δαb(y⊥)
WY [α], (4.29)

with

ηab(x⊥, y⊥) =
1

π

∫

d2z⊥
(2π)2

(x⊥ − z⊥) · (y⊥ − z⊥)

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
[

1 + Ũ †(x⊥)Ũ(y⊥)− Ũ †(x⊥)Ũ(z⊥)− Ũ †(z⊥)Ũ(y⊥)
]

ab
, (4.30)

where the Ũ ’s are Wilson lines in the adjoint representation.

The equation above, in its different versions, contains all the information needed

to compute the small-x evolution of any observable of the effective theory. In order

to make useful predictions, it is necessary to derive specific evolution equation for the

observables of interest. It is easy to see from Eq. (4.29) that such evolution equation

takes the form

∂〈O〉Y
∂Y

=
1

2

∫

d2x⊥d
2y⊥

〈

δ

δαa(x⊥)
ηab(x⊥, y⊥)[α]

δ

δαb(y⊥)
O[α]

〉

Y

. (4.31)

In particular, it can be applied to the trace of two Wilson lines to reproduce the

BK equation of section 4.2.4. For this case, it has been proven that the JIMWLK

equation reduces to [70]

∂

∂Y

〈

Tr
[

U(x⊥)U
†(y⊥)

]〉

Y
= −αSNc

2π2

∫

d2z⊥
(x⊥ − y⊥)

2

(x⊥ − z⊥)2(y⊥ − z⊥)2

×
{

〈

Tr
[

U(x⊥)U
†(y⊥)

]〉

Y
− 1

Nc

〈

Tr
[

U(x⊥)U
†(z⊥)

]

Tr
[

U(z⊥)U
†(y⊥)

]〉

Y

}

.

(4.32)
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This equation has the problem that it is not a closed equation but rather the

first step of an infinity hierarchy of equations, each one relating the evolution of a

correlator to a correlator with more Wilson lines. The pioneering works of Balitsky

and Kovchegov assumed a mean field approximation in a large nucleus in the large-Nc

limit to be able to separate the correlator appearing in the second term. Under those

conditions, and using the notation of Eq. (4.22), Eq. (4.32) takes the form

∂

∂Y
S(x⊥, y⊥)Y = −αSNc

2π2

∫

d2z⊥
(x⊥ − y⊥)

2

(x⊥ − z⊥)2(y⊥ − z⊥)2

× [S(x⊥, y⊥)Y − S(x⊥, z⊥)Y S(z⊥, y⊥)Y ] , (4.33)

which clearly agrees with Eq. (4.8) in the large-Nc limit.



CHAPTER 5. BASIC GLUON DISTRIBUTIONS AT SMALL-X 54

Chapter 5

Basic Gluon Distributions at

Small-x

After the necessary tools have been introduced in previous chapters, it is time to start

addressing the main issue of this thesis: gluon distributions at small-x. So far, it has

only been stated that the small-x regime is dominated by gluons since soft emission is

enhanced by large logarithms and that, at some point, that growth has to slow down

via saturation mechanisms in order to satisfy unitarity constraints. This chapter is

intended to shed some light on how these previous observations can be quantified and

how more insight can be obtained from the small-x dynamics described in chapter 4.

From all the integrated parton distributions used in perturbative QCD via collinear

factorization, the gluon distribution is the least constrained by current data, specially

at low-x. This is mostly due to the fact that gluons only interact via strong interac-

tions and therefore leptonic probes can only give indirect measurements via scaling

violations, which are know to be small due to the fact that the dependence on the

transverse momentum scale is only logarithmic. The fact that the situation is worse

at low-x is also largely due to the small-x region being only available at very high

energies, where the applicability of collinear factorization is somewhat restricted be-

cause of the large effect of multiple interactions with the absence of a single large
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momentum transfer.

As will be explained in the next section, it becomes natural to consider uninte-

grated gluon distributions in the small-x regime. Because of this, the rest of the

chapter is devoted to introduce such transverse momentum dependent distributions

and relate them to the formalism of chapter 3. In particular two different defini-

tions of unintegrated gluon distributions will be considered, the Weizsäcker-Williams

distribution and the Fourier transform of the dipole scattering amplitude. The ini-

tial motivation to consider these two particular cases will be explained at length in

the following sections and the reason why it is sufficient to consider only these two

distributions will be addressed in chapter 7.

5.1 Integrated vs unintegrated

It is very important for the development of the rest of the chapter, as well as sub-

sequent chapters, to review the ideas behind the choice of unintegrated distributions

over integrated distributions in an attempt to describe gluon dynamics at small-x.

This section is therefore intended to summarize those ideas that have been presented

in previous chapters leading to that conclusion. Among them are: increasing con-

tributions from soft processes not accounted for in collinear factorization, multiple

scattering becoming important as gluon densities grow, and the dynamic generation

of a semi-hard intrinsic transverse momentum scale which requires transverse mo-

mentum of partons to be taken into account.

It is important to note that the effects mentioned above are not independent. In

fact they are all intimately related and, in some cases, can be easily related to one

another by a change of reference frame. This was already observed in chapter 4 where

it was seen that nonlinear effects can manifest in the form of gluon recombinations

or in the form of coherent multiple scatterings.

The high energy limit of strong interactions has been know to be problematic
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from a factorization point of view for a long time. Before the development of modern

techniques associated with the description of the small-x degrees of freedom, very

high energy (diffractive) scattering had been studied through Regge theory to some

extent, but it was thought that a perturbative treatment of that regime was out of

the question. Nevertheless, the development of BFKL helped to clarify the situation

since it showed that the power-like behavior of total cross sections for some of the

processes could be explained by resummation of soft emissions. In that sense, it

is natural to relate this phenomenon to the presence of high densities of partons,

and in particular gluons. From that point of view, the breakdown of factorization is

due to the presence of many partons from which the probe can scatter, increasing

the probability of multiple scatterings without a single large momentum transfer of

the order of the center of mass energy. In other words, coherence effects become

increasingly important to the point that the incoherent picture in which factorization

is based on loses its validity.

The picture of collinear factorization is not completely lost at very high energies

and usually it is still considered as a consistency check for the appropriate kinemat-

ical limits. When considering the transverse momentum distribution of a produced

particle, it is important that when this transverse momentum is taken very large (of

the same order of the center of mass energy) the collinearly factorized expressions

are recovered. What is being emphasized in the description above is that processes

where that factorized description runs into trouble are now dominant and therefore

it is needed to consider alternative approaches.

All the previous considerations already suggest that TMD factorization can have

better luck than collinear factorization in an attempt to describe processes at small-x.

The momentum picture of BFKL is clearly expressed in terms of gluons in the target

having a definite transverse momentum. Also, the multiple scattering picture was

shown to be directly related with saturation where the boundary between different

regimes is given by a transverse momentum scale. Moreover, the gauge link structure
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which seemed so fundamental in the definitions of the TMD distributions has the

same form of the Wilson lines encountered in the description of multiple scatterings

in the eikonal approximation, suggesting that what was seen as the resummation

of collinear gluons in a particular approach can be cast into the multiple scattering

picture at high densities proper of the small-x regime.

5.2 Weizsäcker-Williams distribution

The first unintegrated gluon distribution to be introduced here is the one known in

the literature [74] as the Weizsäcker-Williams distribution. The name comes from

the fact that it can be calculated from a correlator of two non-Abelian Weizsäcker-

Williams fields of the hadron (nucleus) in the quasi-classical case. Its definition is

motivated by an attempt to propose an unintegrated distribution that actually counts

explicitly the number of gluons in a given momentum state in some physical gauge.

An important comment should be made here regarding gauge invariance of the

quantities of interest. As was already mentioned in chapter 3, gauge invariance is

a desirable property for any distribution intended to be used in the calculation of a

physical observable. Nevertheless, the partonic picture of a physical state is gauge de-

pendent and the occupation number of gluonic states changes when a gauge transfor-

mation is performed. What it is being attempted by the definition of the Weizsäcker-

Williams distribution is to find a distribution which is gauge invariant but allows for

a partonic interpretation only when a convenient gauge is chosen. In other words,

results from calculations and the actual value of the distribution does not change

when the gauge is changed, but that value is taken literally as the number of gluons

in a specific state only for a particular gauge choice.

It has already been argued several times in previous chapters that one of the

advantages of light-cone gauge is that it allows for a straightforward representation of

hadronic states in terms of a partonic basis. Because of this property, it is natural to



CHAPTER 5. BASIC GLUON DISTRIBUTIONS AT SMALL-X 58

chose the light-cone gauge as the particular gauge in which the Weizsäcker-Williams

distribution can be interpreted as the number density of gluons.

In chapter 3 it was already seen that a definition of a transverse momentum

dependent distribution attempting to count explicitly the number of gluon runs into

problems regarding gauge invariance. The way to solve this issue was to introduce

gauge links connecting the two point where the bilocal product of field operators was

evaluated. In order to recover the partonic picture it is necessary that the gauge link

cancel out in the particular gauge chosen for this interpretation. In the light-cone

gauge this is achieved by choosing the gauge link path along the light-cone, therefore

giving a trivial contribution due to the gauge fixing condition. In order to ensure

gauge invariance, the gauge link must also have a transverse part which is taken at

infinity in the longitudinal direction where the field can also be taken to be zero by

means of additional gauge freedom.

The gauge link structure described above has been addressed in the literature

before [25; 75] in different contexts. In particular, the corresponding definition of the

WW gluon distribution function takes the form

xG(1)(x, k⊥) =

∫

dξ−d2ξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |F+i(ξ−, ξ⊥)L†

ξL0F
+i(0)|P 〉 , (5.1)

where F µν is the gauge field strength tensor and

L†
ξ = P exp

{

−ig
∫ ∞

ξ−
dζ−A+(ζ, ξ⊥)

}

P exp

{

−ig
∫ ∞

ξ⊥

dζ⊥ · A⊥(ζ
− = ∞, ζ⊥)

}

(5.2)

is the gauge link in the adjoint representation. In the above definition, we assume

that the hadron is moving along the +ẑ direction. This gluon distribution can also

be defined in the fundamental representation [28],

xG(1)(x, k⊥) = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[

F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]
]

|P 〉 ,
(5.3)

where the gauge link U [+] was defined in Eq. (3.6).
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In Eqs. (5.1) and (5.3) it is evident that by choosing the light-cone gauge with

certain boundary condition for the gauge potential (A⊥(ζ
− = ∞) = 0 for the specific

case above), the gauge link contribution can be dropped leading to the standard

number density interpretation.

The definitions above are written in terms of the language introduced in chapter 3

for the formal definition of the TMD distributions where the expectation value of the

relevant operators is computed with a hadronic state with a relativistic normalization.

When this distribution is considered in the small-x regime using the CGC framework

of chapter 4 this expectation value should be substituted by the averaging over field

configurations introduced in section 4.4, taking into account the proper normalization

factors.

The computation of the distribution in the CGC framework would need an explicit

form of the nuclear weight function. The standard method to do this is to perform

the calculation using the McLerran-Venugopalan model and then consider quantum

evolution via JIMWLK. The first part of this program is a known result [61], while

the second has not been thoroughly studied and only preliminary results are available

and will be presented in chapter 8. Here the MV model evaluation is reviewed.

When the gauge link contribution is dropped, the relevant correlator to calculate

involves only two gauge strength tensors evaluated a two different points. Switching

to the setup from section 4.4.1, where the nucleus is a left mover, the correlator

takes the form 〈F−i
a (x+, x⊥)F

−i
a (y+, y⊥)〉 with the gauge strength tensor given by Eq.

(4.19). In the spirit of the MV procedure to evaluate correlators outlined in section

4.4.4, it is necessary to consider all possible pairings of fields (the covariant field αa in

this case). It is easy to see that the path-ordering of the Wilson lines in Eq. (4.19),

rotational invariance and the locality in the longitudinal coordinate of the two-point
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correlators imply that the correlator above can be written as

〈F−i
a (x+, x⊥)F

−i
a (y+, y⊥)〉 =

〈

∂iαb(x
+, x⊥)∂iαc(y

+, y⊥)
〉

〈

Ũ †
ab(x

+, x⊥)Ũca(y
+, y⊥)

〉

=
1

g2S
δ(x+ − y+)µ2(x+)

(

∇2
⊥Lxy

)

〈

TrŨ †(x+, x⊥)Ũ(x
+, y⊥)

〉

.

(5.4)

The correlator involving the Wilson lines above is evaluated in the exact same way

that it was done in section 4.4.4 with a few modifications. Since the Wilson lines here

are in the adjoint representation, as opposed to the Wilson lines in the fundamental

representation considered before, two changes have to be made. One, the Casimir

CF appearing in formula (4.27) should be replaced by the corresponding Casimir of

the adjoint representation Nc. Two, the factor of Nc in the denominator of (4.22) is

the number of quark colors and therefore should be replaced by the number of gluon

colors N2
c −1. Besides the changes induced by the change in representation, it should

also be taken into account that the Wilson lines above start at x+ in the longitudinal

coordinate, therefore the definition of the function Γ appearing in (4.27) should be

replaced by

Γ(x+, x⊥ − y⊥) =

(
∫ ∞

x+

dz+ µ2(z+)

)

(Lxx + Lyy − 2Lxy). (5.5)

Putting all these pieces together, the correlator of two field strength tensors takes

the form

〈F−i
a (x+, x⊥)F

−i
a (y+, y⊥)〉 =

1

g2S
δ(x+− y+)µ2(x+)

(

−∇2
⊥Lxy

)

(N2
c −1)e−

Nc
2
Γ(x+,x⊥−y⊥).

(5.6)

Using this result in the properly CGC normalized expression for the WW distri-

bution,

xG(1)(x, k⊥) = 4

∫

dx+d2x⊥dy
+d2y⊥

(2π)3
eixP

−(x+−y+)−ik⊥·(x⊥−y⊥)〈F−i
a (x+, x⊥)F

−i
a (y+, y⊥)〉

=
S⊥

2π2αS
(N2

c − 1)

∫

dx+
d2r⊥
(2π)2

e−ik⊥·r⊥µ2(x+)
(

−∇2
⊥Lxy

)

e−
Nc
2
Γ(x+,r⊥)

=
S⊥

4π2αS

N2
c − 1

Nc

∫

d2r⊥
(2π)2

e−ik⊥·r⊥
∇2

⊥Γ(r⊥)

Γ(r⊥)

(

1− e−
Nc
2
Γ(r⊥)

)

, (5.7)
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where S⊥ is the transverse area of the nucleus which appears explicitly since it was

assumed, for simplicity, that the nuclear density is uniform in the transverse plane.

Also, in the last line the function Γ is the previous version of section 4.4.4 without

longitudinal dependence. Using the explicit evaluation of Γ and keeping only the

leading logarithmic part, this distribution can be written in terms of the gluon sat-

uration scale Qs0 (which differs from the quark saturation scale only by a Casimir

operator Q2
s0 =

Nc

CF
Q̄2

s0),

xG(1)(x, k⊥) =
S⊥

π2αS

N2
c − 1

Nc

∫

d2r⊥
(2π)2

e−ik⊥·r⊥
1

r2⊥

(

1− e−
Q2
s0
4

r2
⊥
ln(1/r⊥Λ)

)

. (5.8)

A very important consequence of the result above is that it shows the distinction

between the dilute regime and the saturation regime. At large values of transverse

momentum, k⊥ ≫ Qs, the Fourier transform is dominated by small values of r⊥ and

therefore the exponential can be expanded to first order. Then xG(1)(x, k⊥) ∝ Qs0

k2
⊥

.

On the other hand, for small values of the transverse momentum, k⊥ ≪ Qs, the

Fourier transform is dominated by large values of r⊥ where the exponential can be

neglected (and therefore acts overall as a cut-off). In this regime xG(1)(x, k⊥) ∝ ln Q2
s

k2
⊥

,

showing that for small values of the transverse momentum the distribution saturates

leading to a much smaller growth in the occupation numbers of the corresponding

states.

In the derivation above, the Wilson lines in the adjoint representation were part

of the gauge strength tensor, where they were playing the role of a gauge transforma-

tion to the desired gauge where the partonic picture is manifest. On section 4.4.3 it

was argued that, in covariant gauge, Wilson lines in the adjoint representation are an

appropriate way of computing multiple scatterings of gluons in a nuclear target. In

the particular case above, the Wilson lines are not defined over the full range of the

longitudinal coordinate, they start somewhere inside the nucleus and extend all the

way to infinity. If these Wilson lines were to be interpreted as gluons undergoing mul-

tiple scatterings they would have to be created somewhere inside the nucleus, which

seems unlikely given that there are no other high energy particles transversing the
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Figure 5.1: Left: colorless current on nucleus in covariant gauge. Right: same process

in light cone gauge.

nucleus. Nevertheless, there is a way in which this multiple scattering interpretation

makes sense and relates the WW distribution to a (unrealistic) scattering process. It

was shown in [59] that if a colorless current coupled to gluons is considered, a DIS

process using this current as a probe would measure exactly the WW unintegrated

distribution. When considered in a covariant gauge, this process looks like a colorless

current penetrating in the nucleus where it creates a gluon which undergoes subse-

quent multiple scatterings as depicted in the left part of Fig. 5.1. On the other hand,

when considered in light-cone gauge (with an appropriate boundary condition) final

state interactions can be turned off and the colorless current is seen as only freeing

one of the gluons living inside the nucleus (right side of Fig. 5.1). By measuring

the spectrum of produced gluons in this process it is possible to measure the WW

distribution of the nucleus.

The description of the process above has the problem that it is a rather unrealistic

one. The colorless current is only a theoretical device that does not have an analog

in any collision experiment. A way to get around this problem and formulate the

scattering process in terms of quarks and gluons only is presented in chapter 7.
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5.3 Dipole distribution

After considering the difficulties to relate the Weizsäcker-Williams distribution to

simple scattering processes it becomes unclear how it would be possible to have any

kt- factorized formulas for realistic processes involving gluons in the small-x regime,

where multiple scatterings play a fundamental role. The complication seems to come

from the fact that, in order to be able to have a partonic interpretation, it is desirable

to not have either initial state or final state interactions. This would typically require

a colorless probe which would only be able to interact with gluons coming from the

nucleus if there is production of colored objects inside the nucleus, a process that is

typically suppressed by powers of the center of mass energy of the collision.

Nevertheless, different calculations have shown that it is possible to obtain single

particle production cross sections which can be written in a kt-factorized way for dif-

ferent processes not necessarily involving colorless objects. The ability to factorize all

the nuclear effects in a single gluon distribution comes at the price of this distribution

not having a straightforward partonic interpretation.

The second unintegrated gluon distribution to be considered, the Fourier trans-

form of the dipole cross section, is defined in the fundamental representation1

xG(2)(x, k⊥) = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[

F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]
]

|P 〉 ,
(5.9)

where the gauge link U [−] was defined in Eq. (3.7) and stands for initial state in-

teractions. Thus, the dipole gluon distribution contains both initial and final state

interactions in the definition.

Even though this particular combination of the gauge links is very suggestive of a

direct relation with a dipole scattering amplitude, in the sense that it has two Wilson

1The Fourier transform of the dipole cross section in the adjoint representation is also commonly

used, as it enters single gluon production in pA collisions [76; 77; 78]. In the large-Nc limit, it is

related to the convolution of two xG(2).
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lines from minus infinity to plus infinity with two different transverse coordinates,

it is not straightforward to go from one formulation to the other. The derivation is

more clear when worked out backwards. Consider first the combination k2⊥S⊥F (k⊥)

where F (k⊥) is the two-dimensional Fourier transform or the dipole-nucleus scattering

S-matrix.

k2⊥S⊥F (k⊥) = k2⊥S⊥

∫

d2r⊥
(2π)2

e−ik⊥·r⊥
1

Nc

〈

TrU(r⊥)U
†(0)

〉

= (2π)2k2⊥

∫

d2v⊥
(2π)2

d2v′⊥
(2π)2

e−ik⊥·(v⊥−v′
⊥
) 1

Nc

〈

TrU(v⊥)U
†(v′⊥)

〉

=
(2π)2

Nc

∫

d2v⊥
(2π)2

d2v′⊥
(2π)2

e−ik⊥·(v⊥−v′
⊥
)∂vi∂v′i

〈

TrU(v⊥)U
†(v′⊥)

〉

. (5.10)

Clearly, the transverse derivatives of the Wilson lines are given by

∂iU(v⊥) = ig

∫ ∞

−∞

dv+ U [−∞, v+; v⊥]
(

∂iA
−(v+, v⊥)

)

U [v+,∞; v⊥], (5.11)

where U [a, b; x⊥] = P exp{ig
∫ b

a
dx+ T cA−

c (x
+, x⊥)}. Taking into account that the

Wilson lines above represent the multiple scattering in a gauge where the only non-

trivial component is A−, it is easy to see that the correlator in (5.10) will take the

desire form of (5.9) when the appropriate replacements due to the reversal of the

direction of motion of the nucleus are taken into account. Introducing the proper

normalization factors, it can be easily shown that the distribution in Eq. (5.9) can

be written as

xG(2)(x, k⊥) =
k2⊥Nc

2π2αs
S⊥

∫

d2r⊥
(2π)2

e−iq⊥·r⊥
1

Nc

〈

TrU(r⊥)U
†(0)

〉

. (5.12)

When the dipole-nucleus amplitude is evaluated in the MV model, it can be shown

[73] that for large transverse momentum, k⊥ ≫ Qs, this distribution has the same

asymptotic limit as the WW distribution xG(2)(x, k⊥) ∝ Q2
s0

k2
⊥

.
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Chapter 6

Single Particle Measurements

One of the motivations to consider transverse momentum dependent distributions is

the limited scope of collinear factorization when it comes to less inclusive measure-

ments. Collinear factorization works well when it comes to calculating total cross

sections or when the measured transverse momentum of an outgoing particle is of

the same order of the other large kinematical invariants of the process. The natural

place where TMD distributions are supposed to provide a more complete formalism

is single-particle measurements at low transverse momentum of the measured parti-

cle. The first processes that were successfully addressed by TMD factorization fall

into this category, those are semi-inclusive deep inelastic scattering and Drell-Yan

boson production. Now, formal proofs exist for these and some other slightly more

complicated cases (see [6]).

If something was learned from the first attempts to use collinear factorization to

extract parton distribution functions is that the simpler cases are of no use when

it comes to determining the gluon distributions (to first approximation). The same

is going to happen here, the simpler processes for which formal theorems have been

stablished deal only with the quark distributions. The main reason is the same as for

the integrated distributions, the simpler processes involve colorless objects either in

the initial (DIS) or final state (Drell-Yan) which do not interact directly with gluons
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and therefore the contributions from the gluon distributions are subdominant. As

a first guess there are two possible ways of solving this problem, one is to consider

more complicated processes possibly with more particles in the final state, the other

is to move to the small-x regime where gluons are supposed to be dominant. The

first approach is the subject of chapter 7, the second approach will be addressed in

this chapter with partial success.

This chapter is intended as a review of existing results in the literature and there-

fore will not include details of the derivations. Emphasis will be made in relations

between the different distributions and features of the calculations which will be useful

for the development of chapter 7.

6.1 SIDIS

SIDIS in the small-x regime is better understood, as has been done here so far with

most of the processes, when it is considered in a nuclear target. In that setup, the

process is viewed as a virtual photon splitting into a quark-antiquark pair which

subsequently multiply interacts with the nuclear target by gluon exchange. Precise

calculations for this process are available either from a dipole approach [79] or from

the MV model with classical Yang-Mills fields [80].

For instance, consider the dipole approach where the process can be seen as the

convolution of the photon splitting wave function with the dipole-nucleus scattering

amplitude. Since only the quark or the antiquark, but not both, will be detected in

the final state, integration over the momentum of one of the two fermions have to be

performed at the level of the cross section. The integrated particle then drops out of

the multiple scattering terms because of real-virtual cancelations, therefore leaving

only the scattering of one particle in the amplitude and in the conjugate amplitude

with different transverse coordinates. The effect of these multiple scatterings can then

be expressed in term of dipole amplitudes involving only the remaining unintegrated
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particle. This particular cancelation between real and virtual contributions takes a

simple form when the scattering is expressed in terms of Wilson lines. Integrating over

transverse momentum means putting the particle at the same transverse coordinate

in the amplitude and the conjugate amplitude, since the Wilson line is a unitary

matrix its contribution times its conjugate drops out.

The result of this calculation is often rightfully quoted as the explicit calculation of

the unintegrated quark distribution of the nucleus. In particular it was used in [79] to

show that quark densities saturate at small-x. It can be confusing at first to consider

this a calculation of the quark distribution of the nucleus since the nucleus only enters

the calculation through gluon exchanges, but it is important to remember that this

multiple scattering picture makes sense in a covariant gauge which is not well suited

for a partonic interpretation. When light-cone gauge is used with the appropriate

boundary condition, this process looks like a photon hitting a quark coming from

the nucleus with no final state interactions. When translated to this picture, the

assumption that the nucleus takes part on the scattering process only through gluon

exchanges takes the form of assuming that the small-x quarks come only from small-x

gluons splitting into quark-antiquark pairs.

The relation between quark and gluon distributions at small-x implied by these

assumptions was studied to some extent in [81] where the expressions found in [79;

80] where written in terms of the Fourier transform of one dipole-nucleus amplitude.

This clearly suggests a relation with the unintegrated gluon distribution function

described in section 5.3. Nevertheless, it was also shown that the expressions found

for the cross section within a CGC framework correspond exactly to the small-x limit

of the factorized expression obtained from applying directly the TMD formalism.

This analysis shows that it is possible to obtain some information about the un-

integrated gluon distribution when a process, that typically would depend only on

the quark distributions, is considered in the small-x regime. One problem with this

approach is that the gluon distribution enters through an integral over transverse
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momentum and therefore would not be straightforward to extract it from data. The

only way to fix the transverse momentum of the corresponding gluon distribution is

by not integrating out the other particle in the original dipole, this possibility will be

considered in chapter 7 where two-particle measurements are studied in detail.

Unintegrated quark distributions at small-x and their universality properties where

thoroughly studied in [82; 83] and will not be considered here from now on.

6.2 Photon production and Drell-Yan in pA colli-

sions

This process is strikingly similar to the one considered in the previous section when

considered in the small-x region. First it is important to note that, in order to be

able to access the small-x degrees of freedom in the nuclear target, it is necessary

to look for particles emitted in the forward direction of the incident proton. When

that is the case, the nuclear target can be considered to be in the dense saturated

regime while the incident proton is in a dilute state where only valence quarks will

contribute to the scattering process. Motivated by this observation, it is convenient to

treat the proton in the parton model, described by an integrated quark distribution,

and perform the rest of the calculation with an incoming quark with no transverse

momentum.

If the transverse momentum dependence of the distributions of only one of the

participants is going to be taken into account, it is not surprising that the photon

emission process resembles the SIDIS process of the previous section. In principle,

the SIDIS process should be sensitive to the quark distribution while the Drell-Yan

process should be sensitive to the antiquark distribution. Since the nuclear target

is included in the calculation only through gluon exchanges in the small-x regime,

quark and antiquark distributions are going to look the same since both are coming

from low-x gluons splitting into quark-antiquark pairs.
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This process was first calculated in a CGC framework in [84; 85]. In this approach

a quark emits a photon and interacts coherently with the target nucleus either before

or after the emission. The aforementioned quark is not measured in the final state,

so its momentum has to be integrated over (the same way that one of the particles

was integrated over in SIDIS). Details of the calculation will be revisited in chapter

7 where it is shown explicitly how the dipole distribution of section 5.3 shows up in

the final result.

The main reason to postpone the analysis of this process to chapter 7 is that

the two particle measurement is, from a theoretical point of view, a much better

place to look for the effects of the gluon distribution. This is the case because in

the two-particle case the distribution can be isolated completely with the x value

and the transverse momentum fixed by the kinematics of the final state particles.

That is clearly not the case for the one-particle measurements where only one of the

moments of the distribution could be measured and an additional integration over the

longitudinal momentum fraction would be necessary. In general that will be the case

when considering processes with more than one hadron (nucleus) in the initial state,

the values of x of the partons involved in the process are not fixed by the kinematics

and an integration over an extended range of longitudinal momentum fractions is

always present in expressions for cross sections.

6.3 Single hadron production in pA collisions

When studying hadronic collisions, processes involving photons are suppressed as

compared to processes which involve only strong interactions due to the smallness

of the electromagnetic coupling. Because of this it is necessary to address particle

production by strong mechanisms only and in particular hadron production due to

emission of gluons. The main problem with this kind of process is that the nontrivial

color flow makes resummation of multiple interactions not straightforward and even
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in some cases it is not possible to obtain closed expressions unless the large-Nc limit

is taken.

The first attempts to calculate the gluon production cross section in proton-ion

collisions where performed under the soft gluon approximation where the produced

gluon does not take a big fraction of the longitudinal momentum of the parent quark

and therefore recoil effects can be safely ignored [86; 59; 87]. The fact that the result is

nontrivial in this particular limit shows a fundamental difference between emissions of

photons as compared to gluons, without a recoil of the charged particle there cannot

be photon emission. This approximation makes the calculation suitable for production

of hadrons at mid rapidities where this is clearly the dominant mechanism but runs

into problems when forward rapidities are considered. As was already mentioned

in the last section, the forward rapidity region is where the small-x component of

the nucleus distributions become accessible and the small-x evolution effects become

sizable.

Gluon production in the soft gluon approximation is nevertheless very interesting

as it shows many of the aspects that are fundamental for this type of calculation

in a simplified setup. The approach followed in [59] is particularly illuminating in

the sense that allows for a clear interpretation of different contributions in terms of

specific diagrams. As anticipated the resummation of multiple interactions is not

straightforward, in particular the interference terms between initial and final state

interactions when considered at the cross section level, which conveniently exponenti-

ates due to the fact that the transverse coordinate of the quark does not change after

the gluon emission. These simplifications allow to write the cross section in terms of

a gluon dipole-nucleus scattering amplitude and therefore it is possible to write the

cross section in a factorized form using a gluon distribution as the dipole distribution

of section 5.3 but with a gluon dipole instead of a quark dipole (in the language of

Wilson lines this is accounted for by taken the adjoint Wilson line instead of the

fundamental). It was already noted in [74] that the gluon distribution describing the
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nucleus is not the one with the straightforward partonic interpretation. The reason

why this particular distribution is not studied separately from the two mentioned in

the previous chapter is that in the large-Nc limit it can be related to the square of the

quark dipole distribution. In the next chapter it will be seen that more complicated

processes can be described in terms of the two aforementioned distributions only in

the large-Nc limit, in that spirit the gluon dipole distribution is not considered as one

the basic ones.

The cross section obtained in the soft gluon approximation is widely used for phe-

nomenological applications where the main interest is in the central rapidity region. It

has also been used to propose an ansatz for particle production in nucleus-nucleus col-

lisions where two nuclear gluon distributions enter the process instead of just one [77;

88]. This approach will not be addressed here since the focus is on asymmetric colli-

sions where the use of TMD factorization is well stablished.

Moving to the more general case where the recoil of the initial quark is taken into

account, one runs into a similar situation as in the processes described in previous

sections. The correct way to account for the recoil of the initial quark is to consider

the two-particle process with a quark and a gluon in the final state and then inte-

grate over the momentum of one of them. This problem was first approached in a

momentum space representation in [89] where the two particles are kept in the final

state, the integration over one of the particle momenta is performed in [90] where

it is shown that the final form indeed shows a factorized form by also noticing that

the collinear divergences are properly regulated by renormalizing the corresponding

parton distributions of the incoming proton and the fragmentation functions for the

final hadron. The result from this program is indeed very similar to the result from

the soft gluon approximation with the main difference that there is another term

accounting for the possibility that the detected particle comes from the fragmenta-

tion of the quark instead of the gluon. These formulas obtained by this approach

have been successfully used in phenomenological applications which account for the
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small-x evolution to explain the single hadron measurements at forward rapidities in

deuteron-gold collisions [91].

The problem with the approach described above when it comes to generalize the

procedure to the two-particle case is that the momentum space description yields very

complicated formulas that obscure the dynamics of the interaction with the nucleus.

In chapter 7 this process is revisited by considering the calculation in transverse

coordinate space and much simpler formulas are found.
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Chapter 7

Two Particle Measurements

After analyzing single particle production, the most natural path to follow would

be to consider two-particle production processes and try to write the obtained cross

sections in a factorized way. It is not difficult to foresee that this approach is doomed

to fail, except for very specific cases, for a very simple reason: when more than one

particle is detected in the final state the transverse momentum transferred to the

particle transversing the nucleus has to be split in two (or more) parts. In that case

the picture of an effective one-gluon interactions completely breaks and there is no

hope of finding kt-factorized expressions for the most general cases.

This problem was already observed in [92] where quark-antiquark pair production

in pA collisions was considered. The other case that has been previously studied, and

will be addressed in this chapter also, is the case of two-particle production in pA

from a valence quark and an emitted gluon [93; 89] where it was also observed that

the general case can not be written in a kt-factorized form.

Despite those discouraging results, this chapter is devoted to the study of some

of these two-particle processes and ways of obtaining kt-factorized expressions. The

goal is not to contradict results from the previous works cited above, but rather find

kinematic regimes where an effective kt-factorization is recovered. It turns out that

putting constraints on the momenta of the outgoing particles allows for a separation
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Figure 7.1: Schematic diagrams for two-particle production in a dilute system scat-

tering on a dense target with multiple scattering. The imbalance between the two-

particle in transverse momentum can be used to probe the unintegrated gluon distri-

bution of the dense target.

of scales that naturally leads to kt-factorized cross sections.

Consider a generic two-particle production process as illustrated in Fig. 7.1,

B + A→ H1(k1) +H2(k2) +X , (7.1)

where A represents the dense target, B stands for the dilute projectile (such as a

photon or a high-x parton in a hadron), H1 and H2 are the final state two particles

with momenta k1 and k2, respectively. The kinematic region of interest is where the

transverse momentum imbalance between the outgoing particles is much smaller than

their individual momenta: q⊥ = |~k1⊥ + ~k2⊥| ≪ k1 ≃ k2 ≃ P⊥ where ~P⊥ is defined as

(~k1⊥−~k2⊥)/2. This is referred to as the back-to-back correlation limit (the correlation

limit) in the discussion below. An important advantage of taking this limit is that it is

possible to apply a power counting method to obtain the leading order contribution

in q⊥/P⊥ where the differential cross section directly depends on the unintegrated

gluon distribution of the nucleus.

The calculations in this chapter are set on a CGC framework. When the cor-

relation limit described above is taken, it is possible to compare the resulting cross
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section with a direct application of the TMD formalism of chapter 3. It is remarkable

that both approaches agree within the regime where both are applicable.

7.1 Dijet production in DIS

The process of nuclear DIS has been widely studied in the literature and it is often

used to introduce many of the relevant concepts for processes in the small-x regime.

Most of these studies have focus either on the total cross section or in single inclusive

gluon production but, except for isolated attempts, very little has been done regarding

two-particle production. The particular process considered here, two-particle (jet)

production from the initial quark-antiquark pair in which the photon splits, has a

very particular and interesting color structure which will be crucial to include the

WW distribution in the general picture.

7.1.1 CGC approach to the DIS dijet production

The appropriate to visualize this process in the CGC formalism is to consider the

photon splitting into a quark-antiquark pair which then multiply interacts with the

nucleus (see Fig. 7.2). As usual for this kind of high-energy process, the coherence

time of the produced quark-antiquark pair is much longer than the length of the

nucleus and therefore the splitting should occur much earlier than the scattering.

At the amplitude level the process can be divided into two parts: the splitting wave

function of the incoming photon and the multiple scattering factor. It is convenient

to write these quantities in transverse coordinate space since in this basis, and in the

eikonal approximation, the multiple interaction factor is diagonal.

To be consistent with previous CGC calculations in the literature, a frame is chosen

such that the photon is moving along the positive z direction whereas the nuclear

target moves in the negative z direction. Note that even though the presentation

in chapter 4 was given in this same kinematics, the formalism of chapter 3 differs
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Figure 7.2: Typical diagrams contributing to the cross section in the deep inelastic

process.

from this choice and therefore care should be taken when the result obtained here is

compared to the TMD formalism.

For a right-moving photon with longitudinal momentum p+, no transverse mo-

mentum, and virtuality Q2, the splitting wave function in transverse coordinate space

takes the form,

ψT λ
αβ (p

+, z, r) = 2π

√

2

p+











iǫfK1(ǫf |r|) r·ǫ
(1)
⊥

|r|
[δα+δβ+(1− z) + δα−δβ−z], λ = 1,

iǫfK1(ǫf |r|) r·ǫ
(2)
⊥

|r|
[δα−δβ−(1− z) + δα+δβ+z], λ = 2,

(7.2)

ψL
αβ(p

+, z, r) = 2π

√

4

p+
z(1 − z)QK0(ǫf |r|)δαβ. (7.3)

where z is the momentum fraction of the photon carried by the quark, λ is the

photon polarization, α and β are the quark and antiquark helicities, r the transverse

separation of the pair, ǫ2f = z(1 − z)Q2, and the quarks are assumed to be massless.

The heavy quark case will be considered in the next subsection.

Following section 4.4.3, the multiple scattering factor is written in terms of Wilson

lines. Here it is very important to note that no assumption is made about the pair in

the final state and therefore it is not appropriate to put the two Wilson lines inside

a trace. It can be shown rigorously [94] that this interaction term takes the form
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[

U †(x2)U(x1)− 1
]

ji
where x1 and x2 are the transverse positions of the quark and

the antiquark, i and j are their color indices, and the Wilson line is given in terms of

the background field as usual by

U(x) = P exp

{

igS

∫ +∞

−∞

dx+ T cA−
c (x

+, x)

}

. (7.4)

The subtraction (the −1 term) performed in the multiple scattering factor requires

an additional explanation. It represents the subtraction of the no interaction term

in order to include the T -matrix instead of the S-matrix in the calculation of the

cross section. In other words, the term without interaction has to be subtracted since

without interaction a space-like photon can not decay into a quark-antiquark pair.

This should be done in the amplitude and the conjugate amplitude separately. More

details on this subtraction can be found in [76].

With the pieces described above it is possible to write down an explicit formula for

the differential cross section for dijet production. After averaging over the photon’s

polarization and summing over the quark and antiquark helicities and colors the cross

section takes the form

dσγ∗
T,LA→qq̄X

d3k1d3k2
= Ncαeme

2
qδ(p

+ − k+1 − k+2 )

∫

d2x1
(2π)2

d2x′1
(2π)2

d2x2
(2π)2

d2x′2
(2π)2

×e−ik1⊥·(x1−x′
1)e−ik2⊥·(x2−x′

2)
∑

λαβ

ψT,Lλ
αβ (x1 − x2)ψ

T,Lλ∗
αβ (x′1 − x′2)

×
[

1 +Qxg
(x1, x2; x

′
2, x

′
1)− S(2)

xg
(x1, x2)− S(2)

xg
(x′2, x

′
1)
]

, (7.5)

where the two- and four-point functions are defined as

S(2)
xg

(x1, x2) =
1

Nc

〈

TrU(x1)U
†(x2)

〉

xg
, (7.6)

Qxg
(x1, x2; x

′
2, x

′
1) =

1

Nc

〈

TrU(x1)U
†(x′1)U(x

′
2)U

†(x2)
〉

xg
. (7.7)

The notation 〈. . . 〉xg
is used for the CGC average of the color charges over the nuclear

wave function where xg is the smallest fraction of longitudinal momentum probed,

and is determined by the kinematics.



CHAPTER 7. TWO PARTICLE MEASUREMENTS 78

Notice that the transverse coordinates of the quark and antiquark in the amplitude

(unprimed coordinates) are different from the coordinates in the complex conjugate

amplitude (primed coordinates) since the two final momenta are not integrated over.

This is a very important feature of this calculation that does not appear in previous

CGC calculations of DIS in nuclei. It allows for a different color structure and in

particular it is responsible for the appearance of the 4-point function Qxg
which

cannot be expressed in terms of 2-point functions, even in the large Nc limit.

This 4-point function is now referred to in the small-x community as a color

quadrupole [89]. It can be evaluated explicitly with a Gaussian distribution of charges

which as usual is associated to computing the multiple scattering in the two-gluon

approximation with independent scattering centers. Even though this evaluation is

restricted, it sheds some light on the dynamics of the color structure. In particular, it

is seen that the final state of the pair is most likely found in an octet state. In order

to go beyond the Gaussian distribution of charges, it is important to understand the

evolution in rapidity of this correlator. This is a topic of current research and some

comment will be made in the subject in chapter 8.

Eq. (7.5) is as far as one can go without assuming a model for the calculation

of the medium averages or imposing kinematic constraints. As explained at the

beginning of the chapter, it is necessary to take the correlation limit to get factorized

cross sections. For convenience, new transverse coordinate variables are introduced:

u = x1 − x2 and v = zx1 + (1 − z)x2, and similarly for the primed coordinates.

The respective conjugate momenta are P̃⊥ = (1 − z)k1⊥ − zk2⊥ ≈ P⊥ and q⊥, and

therefore the correlation limit can be taken by assuming u and u′ are small and then

expanding the integrand with respect to these two variables before performing the

Fourier transform.

First consider the multiple scattering factor. By using the following identities,

Qxg
(x1, x2; v

′, v′) = S(2)
xg

(x1, x2) , (7.8)

Qxg
(v, v; x′2, x

′
1) = S(2)

xg
(x′2, x

′
1) , (7.9)
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it is easy to see that terms from the expansion of Qxg
cancel the other terms in (7.5).

After applying

U †(v) (∂iU(v)) = −
(

∂iU
†(v)

)

U(v) ,

it is straightforward that the lowest order contribution in u and u′ to the scattering

factor can be written as

− uiu
′
j

1

Nc
〈Tr [∂iU(v)]U †(v′) [∂jU(v

′)]U †(v)〉xg
. (7.10)

Taking into account the path ordering of the Wilson lines, their derivatives can be

written as

∂iU(v) = igS

∫ ∞

−∞

dv+ U [−∞, v+; v]
(

∂iA
−(v+, v)

)

U [v+,∞; v], (7.11)

where U [a, b; x] = P exp{igS
∫ b

a
dx+ T cA−

c (x
+, x)}. Note that (∂iA

−(v+, v)) is part of

the gauge invariant field strength tensor F i−(~v)1. Therefore, the above correlator can

be written in terms of a gauge invariant matrix element,

−〈Tr [∂iU(v)]U †(v′) [∂jU(v
′)]U †(v)〉xg

= g2S

∫ ∞

−∞

dv+dv′+
〈

Tr
[

F i−(~v)U [+]†F j−(~v′)U [+]
]〉

xg
.

(7.12)

Performing the u and u′ integration in (7.5) after the expansion of the multiple scatter-

ing term, an explicit formula for the differential cross section in the desired kinematic

region is found,

dσγ∗
TA→qq̄X

dy1dy2d2P⊥d2q⊥
= αeme

2
qαsδ (xγ∗ − 1) z(1 − z)

(

z2 + (1− z)2
) P 4

⊥ + ǫ4f
(P 2

⊥ + ǫ2f )
4

×(16π3)

∫

d3vd3v′

(2π)6
e−iq⊥·(v−v′)2

〈

Tr
[

F i−(v)U [+]†F i−(v′)U [+]
]〉

xg
,(7.13)

dσγ∗
LA→qq̄X

dy1dy2d2P⊥d2q⊥
= αeme

2
qαsδ (xγ∗ − 1) z2(1− z)2

8P 2
⊥ǫ

2
f

(P 2
⊥ + ǫ2f)

4

×(16π3)

∫

d3vd3v′

(2π)6
e−iq⊥·(v−v′)2

〈

Tr
[

F i−(v)U [+]†F i−(v′)U [+]
]〉

xg
.(7.14)

1The other part of the the field strength tensor shall come from the transverse component of the

Wilson lines as the gauge invariance of QCD requires. When the A+ = 0 gauge is used the only

non-zero component of the gauge field is A− [95] and the transverse parts drop out of the equations,

giving a simpler form of the equations.
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Figure 7.3: Left: interaction of quark-antiquark pair with a small distance. Right:

effective picture of first order expansion.

Comparing with the definition for the WW distribution of section 5.2, it is clear

that these results can be written in a factorized form as

dσ
γ∗
TA→qq̄+X

TMD

dy1dy2d2P⊥d2q⊥
= δ(xγ∗ − 1)xgG

(1)(xg, q⊥)Hγ∗
T
g→qq̄, (7.15)

dσ
γ∗
LA→qq̄+X

TMD

dy1dy2d2P⊥d2q⊥
= δ(xγ∗ − 1)xgG

(1)(xg, q⊥)Hγ∗
L
g→qq̄, (7.16)

with

Hγ∗
T
g→qq̄ = αsαeme

2
qz(1− z)

(

z2 + (1− z)2
) P 4

⊥ + ǫ4f
(P 2

⊥ + ǫ2f )
4
, (7.17)

Hγ∗
L
g→qq̄ = αsαeme

2
qz

2(1− z)2
8P 2

⊥ǫ
2
f

(P 2
⊥ + ǫ2f)

4
. (7.18)

The fact that the WW distribution appears in the factorized version of this process

is very important since it is the first time that that particular distribution has been

related to an observable in terms of only quarks and gluons and no fictitious currents

as in the approach described in chapter 5 and in [59]. How this distribution comes in is

not very clear in the formal derivation, but there is a way to relate this process to the

fictitious process of section 5.2. When the 4-point function is expanded to first order

in the separation of the quark-antiquark pairs in the amplitude and the conjugate

amplitude it is implied that only one of the scattering can resolve the separation of

the quark-antiquark system. This particular interaction induces a transition in the

pair from the singlet state to the octet state, when the separation is set to zero for
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the rest of the interactions the singlet pair is effectively a colorless current while the

octet pair behaves effectively as a gluon (see Fig. 7.3). This picture agrees exactly

with the description of the DIS process with a colorless current as seen in covariant

gauge.

In the spirit of the previous chapter, it is useful to compare the dijet produc-

tion process in DIS to the inclusive and semi-inclusive DIS. As shown above, the

dijet production cross section in DIS is proportional to the WW gluon distribution

in the correlation limit. On the other hand, it is well-known that inclusive and semi-

inclusive DIS involves the dipole cross section instead [81], which can be related to

the second gluon distribution. This might look confusing at first sight, so it is useful

to take a closer look at Eq. (7.5). If one integrates over one of the outgoing momenta,

say k1, one can easily see that the corresponding coordinates in the amplitude and

conjugate amplitude are identified (x1 = x′1) and, therefore, the four-point function

Qxg
(x1, x2; x

′
2, x

′
1) collapses to a two-point function S

(2)
xg (x2, x

′
2). As a result, The

SIDIS and inclusive DIS cross section only depend on two-point functions, thus they

only involve the dipole gluon distribution. Now it is possible to see the unique feature

of the dijet production process in DIS. By keeping the momenta of the quark and

antiquark unintegrated, one keeps the full color structure of the four-point function

which eventually leads to the WW gluon distribution in the correlation limit. There-

fore, measuring the dijet production cross sections or dihadron correlations in DIS at

future experimental facilities like EIC or LHeC would give a first direct and unique

opportunity to probe and understand the Weizsäcker-Williams gluon distribution.

7.1.2 TMD-factorization approach to the DIS dijet produc-

tion

Now it is time to turn to the TMD formalism described in chapter 3. The cal-

culations are performed for Q2 in the same order of P 2
⊥. As was discussed above,

only the leading order contribution in the correlation limit is kept and all higher
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order corrections are neglected. The typical Feynman diagram for the process is

plotted in Fig. 7.4, where the bubble in the partonic part represents the hard in-

teraction vertex including gluon attachments to both quark and antiquark lines.

Fig. 7.4 (a) is the leading Born diagram whose contributions can be associated

with the hard partonic cross section times the gluon distribution from Eq. (5.1) [96;

97]. In high energy scattering with the nucleus target, additional gluon attachments

are important and their contributions should be resummed in the large nuclear num-

ber limit. Figs. 1(b,c) represent the diagrams contributing at two-gluon exchange

order, where the second gluon can attach to either the quark line or the antiquark

line. By applying the power counting method in the correlation limit (q⊥ ≪ P⊥), it is

possible to simplify the scattering amplitudes within the Eikonal approximation [96;

97]. For example, Fig. 7.4 (b) can be reduced to:

g

−q+2 + iǫ
T bΓa , (7.19)

where q2 is the gluon momentum and Γa represents the rest of the partonic scattering

amplitude with color indices for the two gluons a and b. Similarly, Fig. 7.4(c) can be

reduced to:

− g

−q+2 + iǫ
ΓaT b . (7.20)

The sum of these two diagrams will be g/(−q+2 + iǫ)
[

T bΓa − ΓaT b
]

. Because of the

unique color index in Γa, the effective vertex is found to be

Fig. 7.4(b, c) ∼ i

−q+2 + iǫ
(−ig)(−ifbca)T c , (7.21)

which corresponds to the first order expansion of the gauge link contribution in the

gluon distribution defined in Eq. (5.1). For all high order contributions, one can

follow the procedure outlined in Ref. [29; 28] to derive the gluon distribution.

Of course, to build a rigorous TMD factorization theorem for this process, it is

needed to go beyond the diagrams shown in Fig. 7.4, and include the real gluon

radiation contributions [25; 75]. These diagrams will introduce the large logarithms
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(a) (b) (c)

q2 q2

k1

k2 k2

k1

Figure 7.4: Typical Feynman diagrams contributing to the quark-antiquark jet cor-

relation in deep inelastic scattering: (a) leading order, where the bubble represents

the gluon attachments to both quark lines; (b,c) two-gluon exchange diagrams.

of ln(P 2
⊥/q

2
⊥), in addition to the small-x logarithms ln(1/x). The combination of both

effects has not yet been systematically studied in the literature. Moreover, there have

been discussions on the power counting method to factorize the gluon distribution

from any generic Feynman diagrams, where one has to be extra cautions about the

“super-leading-power” contributions (see, for example, Ref. [98]).

By putting in the hard partonic cross section Hγ∗g→qq̄ and especially the correct

gluon distribution, namely the WW gluon distribution, which resums all the final state

interactions between the qq̄ pair and the target nucleus, one obtains the transverse

and longitudinal differential cross sections for the quark-antiquark jet correlation in

the DIS process of Eqs. (7.15) and (7.16) with the following leading order partonic

cross sections

Hγ∗
T
g→qq̄ = αsαeme

2
q

ŝ2 +Q4

(ŝ+Q2)4

(

û

t̂
+
t̂

û

)

(7.22)

Hγ∗
L
g→qq̄ = αsαeme

2
q

8ŝQ2

(ŝ+Q2)4
(7.23)

with the usually defined partonic Mandelstam variables ŝ = (k1+k2)
2 = P 2

⊥/(z(1−z)),
t̂ = (k2 − kγ∗)2 = −(P 2

⊥ + ǫ2f )/(1 − z), and û = (k1 − kγ∗)2 = −(P 2
⊥ + ǫ2f )/z with

ǫ2f = z(1 − z)Q2 and z = zq.
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7.1.3 Heavy quark production in DIS dijet

In order to expand our calculation and include the possibility of charm and bottom

production, we now consider the finite quark mass case. From the TMD point of view,

having massive quarks modifies the hard cross sections while the parton distributions

remain the same. The new leading order hard partonic cross sections read

Hγ∗
T
g→qq̄ = αsαeme

2
qz

2(1− z)2

[

P 4
⊥ + ǫ′4f

(P 2
⊥ + ǫ′2f )

4

(

ũ

t̃
+
t̃

ũ

)

+
2m2

qP
2
⊥

z(1 − z)(P 2
⊥ + ǫ′2f )

4

]

,(7.24)

Hγ∗
L
g→qq̄ = αsαeme

2
q

8Q2

(s̃+Q2)4

(

s̃−
m2

q

z(1− z)

)

, (7.25)

where s̃ = (k1+k2)
2 = (P 2

⊥+m
2
q)/(z(1−z)), t̃ = (k2−kγ∗)2−m2

q = −(P 2
⊥+ǫ

′2
f )/(1−z),

and ũ = (k1 − kγ∗)2 −m2
q = −(P 2

⊥ + ǫ′2f )/z with ǫ′2f = z(1 − z)Q2 +m2
q and z = zq.

In terms of the CGC approach, one needs to modify the dipole splitting wave

functions as follows:

ψT λ
αβ (p

+, z, r) = 2π

√

2

p+







































iǫ′fK1(ǫ
′
f |r|)

r·ǫ
(1)
⊥

|r|
[δα+δβ+(1− z) + δα−δβ−z]

+δα−δβ+mqK0(ǫ
′
f |r|), λ = 1,

iǫ′fK1(ǫ
′
f |r|)

r·ǫ
(2)
⊥

|r|
[δα−δβ−(1− z) + δα+δβ+z]

+δα+δβ−mqK0(ǫ
′
f |r|), λ = 2,

(7.26)

ψL
αβ(p

+, z, r) = 2π

√

4

p+
z(1 − z)QK0(ǫ

′
f |r|)δαβ . (7.27)

Following the same procedure, it is easy to show that again both approaches agree in

the correlation limit for heavy quark production. By setting Q2 = 0, one can get the

results for the heavy quark production in real photon-nucleus scattering.
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7.2 Direct-photon jet in pA collisions

In this context, the simplest process where the dipole distribution can be accessed is

the direct photon-quark jet correlation in pA collisions,

pA→ γ(k1) + q(k2) +X , (7.28)

where the incoming quark carries momentum p, and nucleus target with momentum

PA, and outgoing photon and quark with momenta k1 and k2, respectively.

7.2.1 CGC approach to the direct photon-jet production in

pA collisions

This process was already considered in the CGC framework in [84] where the calcula-

tion was performed entirely in momentum space. In order to compare with the result

from the previous section and illustrate why a different distribution should be used,

the corresponding cross section will be derived following the same procedure as the

previous section by showing the splitting wave function and the multiple scattering

factor in transverse coordinate space. The obtained result is consistent with [84].

Consider the partonic level process q → qγ. For a right-moving massless quark,

with initial longitudinal momentum p+ and no transverse momentum, the splitting

wave function in transverse coordinate space is given by

ψλ
αβ(p

+, k+1 , r) = 2πi

√

2

k+1











r·ǫ
(1)
⊥

r2
(δα−δβ− + (1− z)δα+δβ+), λ = 1,

r·ǫ
(2)
⊥

r2
(δα+δβ+ + (1− z)δα−δβ−), λ = 2.

, (7.29)

where again λ is the photon polarization, α, β are helicities for the incoming and

outgoing quarks, and z is the momentum fraction of the incoming quark carried by

the photon. To account for the multiple scatterings in this process it is necessary to

consider interactions both before and after the splitting. If the transverse coordinates

of the quark and photon in the final state are b and x respectively, then the multiple
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b

x

b’

x’

Amplitude

v=zx+(1−z)b v’=zx’+(1−z)b’

Conjugate
amplitude

Figure 7.5: Interactions before and after the splitting have to be taken into account

for both amplitude and conjugate amplitude. Here is a typical diagram representing

the third interaction term in Eq. (7.30).

scattering factor in the amplitude takes the form U(b)−U(zx+(1− z)b). Where the

coordinate assigned to the quark before the scattering is a direct consequence of mo-

mentum conservation as expressed in this mixed formalism where only the transverse

part is Fourier transformed.

After summing over final polarization, helicity and color, and averaging over initial

helicity and color, we find the following expression for the partonic level cross section

(see Fig. 7.5).

dσqA→qγX

d3k1d3k2
= αeme

2
qδ(p

+ − k+1 − k+2 )

∫

d2x

(2π)2
d2x′

(2π)2
d2b

(2π)2
d2b′

(2π)2

×e−ik1⊥·(x−x′)e−ik2⊥·(b−b′)
∑

λαβ

ψλ∗
αβ(x

′ − b′)ψλ
αβ(x− b)

×
[

S(2)
xg

(b, b′) + S(2)
xg

(zx + (1− z)b, zx′ + (1− z)b′)

−S(2)
xg

(b, zx′ + (1− z)b′)− S(2)
xg

(zx+ (1− z)b, b′)
]

. (7.30)

Notice that the color structure is simpler than in the DIS case. There is no four-

point function and all the terms in the multiple scattering factor can be expressed in

terms of the color dipole cross section S
(2)
xg . By changing the variables on each of the

terms of the scattering factor to u = x− b and either v = b or v = zx+(1− z)b , and
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similarly for the primed coordinates, the cross section above can be written as

dσqA→qγX

d3k1d3k2
= αeme

2
qδ(p

+ − k+1 − k+2 )

∫

d2u

(2π)2
d2u′

(2π)2
d2v

(2π)2
d2v′

(2π)2

×e−iq⊥·(v−v′)S(2)
xg

(v, v′)
∑

λαβ

ψλ∗
αβ(u

′)ψλ
αβ(u)

×
[

e−iu·(P̃⊥+zq⊥)eiu
′·(P̃⊥+zq⊥) + e−iu·P̃⊥eiu

′·P̃⊥

−e−iu·(P̃⊥+zq⊥)eiu
′·P̃⊥ − e−iu·P̃⊥eiu

′·(P̃⊥+zq⊥)
]

, (7.31)

where P̃⊥ = (1− z)k1⊥ − zk2⊥ ≈ P⊥.

From the above expression it is easy to see that performing the u and u′ inte-

grations reduces to taking the Fourier transform of the splitting wave function with

different values of the momentum variable for each term. Clearly, the Fourier trans-

form of the dipole cross section factors out. Using collinear approximation for the

proton projectile one finds the final result for the cross section of the desired process.

dσpA→γq+X

dP.S. =
∑

f

xpqf (xp)αeme
2
fNc

[

1 + (1− z)2
]

z2(1− z)
2q2⊥

P̃ 2
⊥(P̃⊥ + zq⊥)2

×
∫

d2v

(2π)2
d2v′

(2π)2
e−iq⊥·(v−v′)S(2)

xg
(v, v′). (7.32)

Notice that this result already seems to be in a factorized form in the sense that

all the nuclear effects are confined to the last factor with the Fourier transform of

the dipole amplitude. Clearly, the distribution that will appear here is the dipole

distribution of section 5.3 which was observed to be proportional to the dipole-nucleus

scattering amplitude. Nevertheless, this expression is not in the desired factorized

form yet. The problem lies in the denominator of the “hard” part of the expression

where the two momentum variables appear through the combination P̃⊥+zq⊥ instead

of factored out separately as would be desired for a true factorized expression where

all the q⊥ dependence is on the the gluon unintegrated distribution.

When the correlation limit P⊥ ≈ P̃⊥ ≫ q⊥ is taken, the q⊥ dependence of the

hard part can be dropped yielding the result that will be shown in next subsection
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(a) (b) (c)

k1

k2
q2

k1

k2 q2

Figure 7.6: Same as Fig. (7.4) for direct photon-jet correlation in pA collisions.

to agree with the TMD factorization approach.

dσ(pA→γq+X)

dy1dy2d2P⊥d2q⊥
=
∑

f

xpqf(xp)xgG
(2)(xg, q⊥)Hqg→γq , (7.33)

with

Hqg→γq =
αsαeme

2
q

Nc

[1 + (1− z)2] z2(1− z)

P 4
⊥

. (7.34)

7.2.2 TMD factorization approach to the direct photon-jet

production in pA collisions

The analysis of this process follows that for the quark-antiquark jet correlation in

DIS process in the previous section.

The relevant diagrams are plotted in Fig. 7.6(a,b,c), again for the leading one gluon

exchange and two gluon exchanges. Similarly, the two gluon exchange contributions

can be summarized as

Fig. 7.6(b, c) ∼ (−ig)
(

i

−q+2 + iǫ
T bΓa +

i

q+2 + iǫ
ΓaT b

)

, (7.35)

where the plus sign comes from the fact that the second gluon attaches to the quark

line in the initial and final states. Since there is no color structure corresponding

to Eq. (7.35), it can only be expressed in the fundamental representation. Following

Ref. [28], one finds that the gluon distribution in this process can be written as

xG(2)(x, k⊥) = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−ik⊥·ξ⊥〈P |Tr

[

F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]
]

|P 〉 ,
(7.36)
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where the gauge link U [−]
ξ = Un [0,−∞; 0]Un [−∞, ξ−; ξ⊥] resums the initial state

interactions between the incoming quark and the target nucleus. On the other hand,

the gauge link U [+] represents the final state interactions between the outgoing quark

and the target nucleus.

Therefore, by plugging in the appropriate gluon distribution, namely the dipole

gluon distribution, which resums both the initial and final state interactions, one can

write the differential cross section of (7.28) as was done in Eq. (7.33 where xp is

the momentum fraction of the projectile nucleon carried by the quark, qf(xp) is the

integrated quark distribution. Because we are taking large nuclear number limit, the

intrinsic transverse momentum associated with it can be neglected compared to that

from the gluon distribution of nucleus. The hard partonic cross section is calculated

perturbatively and found to be

Hqg→γq =
αsαeme

2
q

Ncŝ2

(

− ŝ

û
− û

ŝ

)

. (7.37)

where the Mandelstam variables can be expressed in terms of P⊥ and z: ŝ = (k1 +

k2)
2 =

P 2
⊥

z(1−z)
, û = (k1 − p)2 = −P 2

⊥

z
and t̂ = (k2 − p)2 = − P 2

⊥

1−z
.

7.3 Dijet production in pA collisions

Dijet production in pA collisions receive contributions from several channels such as

qg → qg, gg → qq̄ and gg → gg. For convenience, the following common variables

are defined as in the last two sections,

z =
|k1⊥|ey1

|k1⊥|ey1 + |k2⊥|ey2
, xp =

|k1⊥|ey1 + |k2⊥|ey2√
s

, xg =
|k1⊥|e−y1 + |k2⊥|e−y2

√
s

,

(7.38)

where k1 and k2 are momenta, and y1 and y2 are rapidities for the two outgoing par-

ticles, xp is the momentum fraction of the projectile nucleon carried by the incoming

parton, xg is the momentum fraction of the target nucleus carried by the gluon, re-

spectively. Taking into account that the quark distribution functions are dominant
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at large-x and the gluon distribution functions are dominant at low-x, it comes as no

surprise the fact that different channels are relevant in different kinematic regions.

At RHIC energies, the low -x region is only accessible in events where the two jets

are produced in the forward rapidity region of the projectile. Under those conditions

xp ∼ 0.1 and xg ≪ 0.1, and therefore quark initiated processes dominate (qg → qg

channel).

The higher energies available at LHC will allow to explore more thoroughly the

low-x regime in the target nucleus as well as in the projectile(see e.g., in a recent

study [99]). Under these circumstances, and in particular at central rapidities at the

LHC, it is possible to have processes with both xp and xg small where the dominant

channels are gg → qq̄ and gg → gg.

This process has attracted a lot of interest in the last few years due to the recent

data from STAR and PHENIX on di-hadron measurements in the forward region

in dAu collisions [100; 101]. When measuring two-particle azimuthal correlations

in pA collisions it is common to find a near side peak due mostly to collinear pion

production, and an away side peak due to the parent partons balancing exactly their

transverse momentum. It was originally predicted in [93] (where only the quark

initiated process was considered) that, as a consequence of small-x evolution, the

away side peak should be present when considering particles at mid rapidity but

suppressed when considering both particles at forward rapidities (in the direction of

the proton). The data confirms the predictions, and since more complete studies of

the process have been developed [102]. Even though it has been argued, and will

also be explained here, that some of the approximations performed in [93; 102] are

not well justified, this particular measurement stands as the most clear evidence of

saturation physics.
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Figure 7.7: Interactions before and after the splitting have to be taken into account

for both amplitude and conjugate amplitude. After the splitting the nucleus interacts

coherently with the quark-gluon system. Here is a typical diagram representing the

second interaction term in Eq. (7.39).

7.3.1 CGC Calculations

7.3.1.1 q → qg

This process is studied in detail in Refs. [89; 93], and in particular Ref. [93] is close

to the approach followed here, where an explicit formula analogous to the ones cited

here for DIS and photon emission is given. As a starting point and in analogy with

the previous cases, the cross section for this case can be taken as (see Fig. 7.7)

dσqA→qgX

d3k1d3k2
= αSCF δ(p

+ − k+1 − k+2 )

∫

d2x

(2π)2
d2x′

(2π)2
d2b

(2π)2
d2b′

(2π)2

×e−ik1⊥·(x−x′)e−ik2⊥·(b−b′)
∑

λαβ

ψλ∗
αβ(x

′ − b′)ψλ
αβ(x− b)

×
[

S(6)
xg

(b, x, b′, x′)− S(3)
xg

(b, x, zx′ + (1− z)b′)

−S(3)
xg

(zx+ (1− z)b, x′, b′) + S(2)
xg

(zx+ (1− z)b, zx′ + (1− z)b′)
]

.(7.39)

where

S(6)
xg

(b, x, b′, x′) =
1

CFNc

〈

Tr
(

U(b)U †(b′)T dT c
) [

W (x)W †(x′)
]cd
〉

xg

, (7.40)

S(3)
xg

(b, x, v′) =
1

CFNc

〈

Tr
(

U(b)T dU †(v′)T c
)

W cd(x)
〉

xg
, (7.41)
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and W (x) is a Wilson line in the adjoint representation. In the correlators above,

Wilson lines in the fundamental representation appear when considering the multiple

interaction of a quark with the nucleus and Wilson lines in the adjoint representation

appear when considering multiple interactions of a gluon with the nucleus. Clearly,

the S
(6)
xg term represents the case where interactions occur after the splitting both in

the amplitude and in the conjugate amplitude, the S
(3)
xg terms represent the interfer-

ence terms, and the S
(2)
xg term represent interactions before the splitting only.

This formula for the cross section has the same structure as Eqs. (7.5) and (7.31).

The splitting wave function is the same as in the photon emission case (Eq. (7.29)).

The only difference in the emission vertex is a color matrix which is included as

part of the multiple scattering factor (therefore confining the color algebra to just

the multiple scattering factor). Using Fierz identities, the terms appearing in the

multiple scattering factor above can be written in terms of fundamental Wilson lines

only as

S(6)
xg

(b, x, b′, x′) =
1

2CFNc

〈

Tr
(

U(b)U †(b′)U(x′)U †(x)
)

TrU(x)U †(x′)− 1

Nc

TrU(b)U †(b′)

〉

xg

,

(7.42)

S(3)
xg

(b, x, v′) =
1

2CFNc

〈

TrU(b)U †(x)TrU(x)U †(v′)− 1

Nc
TrU(b)U †(v′)

〉

xg

,

(7.43)

Some of the correlators appearing in the expressions above are familiar or have

been calculated in the literature before. The 4-point function in S
(3)
xg is different from

the one appearing in the DIS case but it has been studied and calculated in a model

with Gaussian distribution of sources in [103]. The 6-point function appearing in

S
(6)
xg presents a more difficult challenge even with only four independent coordinates.

In order to deal with this difficulty, it is convenient to address the problem in the

large-Nc limit where correlators of products of traces are evaluated as product of
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correlators of traces. Specifically, for the correlators above

S(6)
xg

(b, x, b′, x′) ≃ 1

N2
c

〈

TrU(b)U †(b′)U(x′)U †(x)
〉

xg

〈

TrU(x)U †(x′)
〉

xg
, (7.44)

= Qxg
(b, x, b′, x′)S(2)

xg
(x, x′), (7.45)

S(3)
xg

(b, x, v′) ≃ 1

N2
c

〈

TrU(b)U †(x)
〉

xg

〈

TrU(x)U †(v′)
〉

xg
, (7.46)

= S(2)
xg

(b, x)S(2)
xg

(x, v′). (7.47)

Note that in the large-Nc limit, the 6-point function is related to the 4-point function

that appeared in the DIS dijet case.

The procedure to follow to enforce the correlation limit it the same used in the DIS

case. From the structure of the terms in the multiple scattering factor, it is easy to

see that the same kind of cancellations will occur and the final result will be the sum

of the lowest order non-vanishing terms from the expansion of S
(6)
xg . Moreover, since

there is no linear term in the expansion of Qxg
, the lowest non-vanishing terms come

separately from the Qxg
factor and the S

(2)
xg in the same fashion as in the previous

calculations for DIS and photon emission. With the previous considerations in mind,

it is easy to see that the final result takes the form

dσpA→qgX

d2q⊥d2P⊥dy1dy2
=
∑

f

xpqf (xp)16π
3α

2
S

P 4
⊥

(1− z)
[

1 + (1− z)2
]

×
∫

d3v

(2π)3
d3v′

(2π)3
e−iq⊥·(v−v′)

[

(1− z)2
〈

Tr
[

F i−(~v)U [−]†F i−(~v′)U [+]
]〉

xg

+
1

Nc

〈

TrU(v)U †(v′)
〉

xg

〈

Tr
[

F i−(~v)U [+]†F i−(~v′)U [+]
]〉

xg

]

.

(7.48)

Taking into account the difference between the normalizations, it is straightfor-

ward to see that the result above agrees with the factorized formula (7.77).

In order to bring some insight to the relation between the processes considered

so far, and how the different distributions come in for this particular channel, it is

useful to consider the graphical representation of the large-Nc limit used to factorize



CHAPTER 7. TWO PARTICLE MEASUREMENTS 94

b

x

b’

x’

v=zx+(1−z)b v’=zx’+(1−z)b’

Figure 7.8: Graphical representation of the splitting q → qg in the large-Nc limit, in

the amplitude and the conjugate amplitude.

the correlators of Wilson lines. In the large-Nc limit, a gluon line can be effectively

considered as a quark-antiquark pair. Forgetting about the multiple interactions for

the moment, and focusing primarily in the color flow of the process, one sees that in

the large-Nc limit the process takes the form depicted in Fig. 7.8. The system splits

into two separate pieces, a quark line in the lower part of the diagram which resembles

the photon emission process, and a loop in the upper part of the diagram which has

the same color structure as the DIS dijet case. Interactions involving both parts of

the process are Nc-suppressed, so it comes as no surprise that the final result can be

written as two separate pieces each involving the respective distributions found for

DIS and photon emission.

The fact that one of the terms in the final result involves only one of the distribu-

tions while the other involves a convolution of two factors can also be understood in a

simple way from the previous considerations. The enforcement of the correlation limit

is schematically the same as singling out one hard scattering in the process and then

taking u = u′ = 0 for the rest of the interactions. When the hard scattering occurs on

the lower part of the diagram in Fig. 7.8, the quark-antiquark pair in the upper part

does not interact by color transparency (Qxg
(b, b; b′, b′) = 1) and therefore there is no

trace of it in the first term of the factorized expression. When the hard scattering

occurs in the upper part of the diagram in Fig. 7.8, the quark in the lower part still

interacts with the nucleus (and exchanges transverse momentum) and therefore has
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to be included in the form of a dipole cross section.

7.3.1.2 g → qq̄

Following the same strategy from previous sections, start with the partonic level

formula for the cross section built from the splitting wave function and the multiple

scattering factor. In this particular case it takes the following form,

dσgA→qq̄X

d3k1d3k2
= αSδ(p

+ − k+1 − k+2 )
1

2

∫

d2x1
(2π)2

d2x′1
(2π)2

d2x2
(2π)2

d2x′2
(2π)2

×e−ik1⊥·(x1−x′
1)e−ik2⊥·(x2−x′

2)
∑

λαβ

ψTλ
αβ (x1 − x2)ψ

Tλ∗
αβ (x′1 − x′2)

×
[

Cxg
(x1, x2, x

′
1, x

′
2) + SA

xg
(zx1 + (1− z)x2, zx

′
1 + (1− z)x′2)

−S(3)
xg

(x1, zx
′
1 + (1− z)x′2, x2)− S(3)

xg
(x′2, zx1 + (1− z)x2, x

′
1)
]

,(7.49)

where S
(3)
xg is given by (7.43) and

Cxg
(x1, x2, x

′
1, x

′
2) =

1

CFNc

〈

Tr
(

U †(x2)T
cU(x1)U

†(x′1)T
cU(x′2)

)〉

xg
, (7.50)

SA
xg
(v, v′) =

1

N2
c − 1

〈

TrW (v)W †(v′)
〉

, (7.51)

and the splitting wave function is the same as in the DIS case with Q2 = 0. Notice

this cross section is down by a factor of Nc as compared to the q → qg case. This is

due to the averaging over the incoming particle which amounts for a factor of 1
N2

c−1

for gluons instead of the factor of 1
Nc

for quarks.

All the correlators above have been previously studied in the literature and ex-

plicit expressions for a Gaussian distribution of charges have been found. The only

new ingredient that has not been considered in previous sections is Cxg
which was

thoroughly studied in [92]. Following the procedure from the previous section, express

the correlators defined above in terms of fundamental Wilson lines only by means of
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Fierz identities.

Cxg
(x1, x2, x

′
1, x

′
2) =

1

2CFNc

〈

TrU(x1)U
†(x′1)TrU(x

′
2)U

†(x2)

− 1

Nc
TrU(x1)U

†(x′1)U(x
′
2)U

†(x2)

〉

xg

, (7.52)

SA
xg
(v, v′) =

1

N2
c − 1

〈

TrU(v)U †(v′)TrU(v′)U †(v)− 1
〉

xg
. (7.53)

Take the large-Nc limit in order to be able to compare with the results from the

previous section and relate the cross section to the gluon distributions defined before.

Under this approximation, the correlators above can be expressed entirely in terms

of 2-point functions.

Cxg
(x1, x2, x

′
1, x

′
2) ≃ S(2)

xg
(x1, x

′
1)S

(2)
xg

(x′2, x2), (7.54)

SA
xg
(v, v′) ≃ S(2)

xg
(v, v′)S(2)

xg
(v′, v). (7.55)

This way of factorizing the correlators and the fact that the 4-point function is absent

suggests that this process is related to the distribution given by the Fourier transform

of the dipole cross section only. With this consideration in mind, we Fourier transform

all the S
(2)
xg factors and perform the usual change of variables u = x1 − x2 and v =

zx1 + (1− z)x2 (and similarly for the primed coordinates) and obtain

dσgA→qq̄X

d3k1d3k2
= αSδ(p

+ − k+1 − k+2 )
1

2

∫

d2u

(2π)2
d2u′

(2π)2
d2v

(2π)2
d2v′

(2π)2
d2q1d

2q2Fxg
(q1)Fxg

(q2)

×e−i(q⊥−q1−q2)·(v−v′)e−iP̃⊥·(u−u′)
∑

λαβ

ψλ∗
αβ(u

′)ψλ
αβ(u)

×
[

ei((1−z)q2−zq1)·(u−u′) − ei((1−z)q2−zq1)·u − e−i((1−z)q2−zq1)·u′

+ 1
]

. (7.56)

As in the photon emission case, the u and u′ integrations reduce to calculate the

Fourier transform of the splitting wave function with different momentum variables for

each of the terms. The v and v′ integrations give a δ-function relating the momentum

variables of the two distributions and a factor of the total transverse area. As in

previous cases, collinear factorization is used for the incoming parton from the proton
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projectile and obtain

dσpA→qq̄X

dP.S. = xpgf(xp)αS

[

z2 + (1− z)2
]

z(1 − z)
S⊥

(2π)2

×
∫

d2q1d
2q2δ

(2)(q⊥ − q1 − q2)Fxg
(q1)Fxg

(q2)
(zq1 − (1− z)q2)

2

P̃ 2
⊥(P̃⊥ + zq1 − (1− z)q2)2

.

(7.57)

In the correlation limit, the denominator of the last fraction above becomes just

P 4
⊥. From this expression it is clear that the distributions involved will be written

as a convolution of two factors involving the Fourier transform of the dipole cross

section. To notice how this equation above agrees with the factorized form in (7.81),

expand the numerator and write the momentum factors as derivatives with respect

to transverse coordinates of the dipole cross sections inside the definition of Fxg
as

was explained for the case of photon emission. There is a subtlety concerning the

relative signs of the different terms when this identification is made. In order to find

a complete agreement between the formula above and the factorized formula from the

TMD formalism, it is necessary to write the two Fxg
factors as Fourier transforms of

Wilson loops in opposite directions (one of them in terms of U [�] and the other in

terms of U [�]†). Because of this, q1 and q2 enter with opposite signs when expressed as

derivatives of the Wilson loops. This sign is not visible in the terms with q21 or q22 but

it changes the sign of the cross term, giving complete agreement with the factorized

expression.

As done for the previous channel, consider the graphical representation of this

channel in the large-Nc limit in Fig. 7.9. After replacing the gluon line with a quark-

antiquark pair we are left with two independent fermion lines which scatter separately

with the nucleus. Each of them resembles the photon emission case and therefore we

expect, even before performing the calculation, to obtain a convolution of two Fourier

transforms of the dipole cross section. In the correlation limit, the two terms in (7.81)

have a simple explanation in terms of a hard scattering. The first term accounts for

the cases where the hard scattering involves only one of the two quark lines, while
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Figure 7.9: Above: graphical representation of the splitting in the amplitude and

conjugate amplitude. Below: splitting in the large-Nc limit.

the second term is an interference term when the large momentum transfer involves

the two participants.

This channel had already been considered in [92] where, due to the choice of gauge,

the separation of the amplitude in terms of splitting function and multiple scattering

terms is not visible. It is possible to show the expressions above are consistent with

their results when expressed in the same set of coordinates and momentum variables.

7.3.1.3 g → gg

In order to study the partonic process g → gg, it is necessry to derive the splitting

function first. It can be written in momentum space as

Ψg→gg(z, p⊥) =
1

√

8p+k+1 k
+
2

Vg→gg

k−1 + k−2 − p−
, (7.58)

where Vg→gg is just the three-gluon vertex with the coupling and color factor factorized

out. This can be written as

Vg→gg = ǫαa ǫ
β
b ǫ

γ
c

[

gαβ (pa − pb)γ + gβγ (pb − pc)α + gγα (pc − pa)β

]

. (7.59)
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Here ǫµi represents the polarization vector for gluon i with four momentum pi. It is

straightforward to find that

∑

spin

|Vg→gg|2 =
8p2⊥

z(1 − z)

[

z

1− z
+

1− z

z
+ z(1 − z)

]

. (7.60)

After summing over all polarizations, the squared splitting function in transverse

coordinate space reads

∑

Ψ∗
g→gg(z, u

′)Ψg→gg(z, u) = (2π)2
4

p+

[

z

1− z
+

1− z

z
+ z(1 − z)

]

u′ · u
u′2u2

. (7.61)

Now focus on the multiple scattering terms. Since all the particles involved in the

process are gluons, all terms contain only Wilson lines in the adjoint representation.

In the following explicit forms of the scattering terms are given with their respective

large-Nc expressions in terms of fundamental Wilson lines.

〈

fade
[

W (x1)W
†(x′1)

]db [
W (x2)W

†(x′2)
]ec
fabc

〉

xg

≃
〈

TrU †(x1)U(x
′
1)
〉

xg

〈

TrU(x2)U
†(x′2)

〉

xg

×
〈

TrU(x1)U
†(x′1)U(x

′
2)U

†(x2)
〉

xg
,

(7.62)

〈

fadeW
db(x1)W

ec(x2)ffbcW
fa(v′)

〉

xg
≃

〈

TrU †(x1)U(v
′)
〉

xg

〈

TrU(x2)U
†(v′)

〉

xg

×
〈

TrU(x1)U
†(x2)

〉

xg
, (7.63)

〈

fadeW
db(x′1)W

ec(x′2)ffbcW
fa(v)

〉

xg
≃

〈

TrU †(v)U(x′1)
〉

xg

〈

TrU(v)U †(x′2)
〉

xg

×
〈

TrU(x′2)U
†(x′1)

〉

xg
, (7.64)

Nc

〈

TrW (v)W †(v′)
〉

xg
≃ Nc

〈

TrU †(v)U(v′)
〉

xg

〈

TrU(v)U †(v′)
〉

xg
.(7.65)

The correlation limit is applied by following the procedure developed in the DIS

case and reproduced in the q → qg channel. By inspection of the multiple scattering

terms above, it is easy to see that the same kind of cancelations occur for this channel.

Since the lowest order terms left after the various cancelations come from the first of

the scattering terms, it is easy to see that the final result will involve combinations
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Figure 7.10: Graphical representation of the splitting g → gg in the large-Nc limit,

in the amplitude and the conjugate amplitude.

of one WW distribution and two Fourier transforms of the dipole cross section.

dσpA→ggX

dP.S. = xpg(xp)64π
3 α

2
S

P 4
⊥

z(1 − z)

[

1− z

z
+

z

1− z
+ z(1− z)

]
∫

d3v

(2π)3
d3v′

(2π)3
e−iq⊥·(v−v′)

×
[

(

z2 + (1− z)2
) 1

Nc

〈

TrU(v)U †(v′)
〉

xg

〈

Tr
[

F i−(~v)U [+]†F i−(~v′)U [−]
]〉

xg

+
1

Nc

〈

TrU(v)U †(v′)
〉

xg

1

Nc

〈

TrU(v′)U †(v)
〉

xg

〈

Tr
[

F i−(~v)U [+]†F i−(~v′)U [+]
]〉

xg

+2z(1− z)
1

Nc

〈

TrF i−(~v)U(v)U †(v′)
〉

xg

1

Nc

〈

TrF i−(~v′)U(v′)U †(v)
〉

xg

]

, (7.66)

which is straightforward to compare to the factorized expression in (7.89).

This structure could have been anticipated by looking at the graphical represen-

tation of this process in the large-Nc limit shown in Fig. 7.10. In terms of the hard

scattering picture used in previous sections the structure of the expression above is

consistent with previous results. The first and third term look exactly the same as

the two terms in the g → qq̄ case and they correspond to the case in which the hard

scattering does not involve the inner loop in Fig. 7.10. The second term corresponds

to the case where the hard scattering occurs in the inner loop. It has the same struc-

ture as one of the terms found in the q → qg case with an additional convolution

associated to the extra quark line in the top of the diagram.
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Table 7.1: The color and hard factors for the qg → qg scattering channels in Fig. 7.11,

where CF = (N2
c − 1)/2Nc.

(1) (2) (3) (4) (5) (6)

h − 4(t̂2−ŝû)2

t̂2ŝû
− 2(û2+t̂2)

ŝû
2(t̂2−ŝû)(û−t̂)

ŝt̂û
− 2(ŝ2+t̂2)

ŝû
− 2(t̂2−ŝû)(ŝ−t̂)

ŝt̂û
2t̂2

ŝû

Cu
1
2

CF

2Nc
−1

4
CF

2Nc

1
4

− 1
4N2

c

7.3.2 TMD-factorization approach

7.3.2.1 The qg → qg channel

The calculations follow the previous examples. However, there are several different

Feynman graphs contributing to the production of qg in the final state, as shown

in Fig. 7.11. In addition, they have different color structures. Therefore, we need

to compute the hard factors and the associated initial/final state interaction phases

separately. In the end, we will sum their contributions together to obtain the final

result.

It is straightforward to obtain the hard cross section contributions from each

diagram in Fig. 7.11 for the qg → qg process, and have been calculated in Ref. [96;

97]. These results are listed in Table 7.1 with the same notations, where h(i) is

the partonic hard factor and C
(i)
u is the associated color factor. In the calculations,

in order to apply the eikonal approximation when multiple gluon interactions are

formulated, physical polarizations have been chosen for the outgoing gluon. However,

the final result for the differential cross section does not depend on this choice.

As a consistency check, the known results for the total hard cross section are easily

reproduced by summing all the graphs in Fig. 7.11 and explicitly taking Nc = 3,

dσ̂

dt̂
(gq → gq) =

g4

16πŝ2

{

∑

i=1,2,4

C(i)
u h(i) + 2

∑

i=3,5,6

C(i)
u h(i)

}

=
g4

16πŝ2

(

4

9

ŝ2 + û2

−ŝû +
ŝ2 + û2

t̂2

)

. (7.67)

Since the graphs in Fig. 7.11 have different color structure, the gluon distributions
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(2) (3)

(6)

(1)

(4) (5)

Figure 7.11: Quark-gluon scattering diagrams. The mirror diagrams of (3), (5) and

(6) give identical contributions.

associated with those graphs have different gauge links according to Ref. [28]. There-

fore, the corresponding gluon distributions in coordinate space are found as follows:

Φ(1)
g =

〈

Tr

[

F (ξ)

{

1

2

Tr
[

U [�]
]

Nc
U [+]† +

1

2
U [−]†

}

F (0)U [+]

]〉

, (7.68)

Φ(2)
g =

〈

Tr

[

F (ξ)

{

N2
c

N2
c − 1

Tr
[

U [�]
]

Nc
U [+]† − 1

N2
c − 1

U [−]†

}

F (0)U [+]

]〉

,(7.69)

Φ(3)
g =

〈

Tr

[

F (ξ)
Tr
[

U [�]
]

Nc
U [+]†F (0)U [+]

]〉

, (7.70)

Φ(4),(5),(6)
g =

〈

Tr
[

F (ξ)U [−]†F (0)U [+]
]〉

, (7.71)

where U [�] = U [+]U [−]† = U [−]†U [+] emerges as a Wilson loop. Now it is possible

to combine all the channels together. The distributions above will be factorizable

in terms of convolutions of the two basic distributions from the previous sections.

Anticipating this result, only the leading contribution in Nc is considered. Noting

that graph (6) in Fig 7.11 does not contribute in the large-Nc limit, one can find

dσqA→qgX
TMD

d2P⊥d2q⊥dy1dy2
=
∑

f

xpq(xp)
α2
s

ŝ2
[

F (1)
qg H

(1)
qg→qg + F (2)

qg H
(2)
qg→qg

]

, (7.72)
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with

F (1)
qg = xG(2) (x, q⊥) = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈

Tr
[

F (ξ)U [−]†F (0)U [+]
]〉

,(7.73)

F (2)
qg = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈

Tr

[

F (ξ)
Tr
[

U [�]
]

Nc
U [+]†F (0)U [+]

]〉

. (7.74)

In the large-Nc limit, it is straightforward to find that only graphs (1), (2) and (3) in

Fig. 7.11 (t and u channels together with their cross diagrams) contribute to H
(2)
qg→qg

and only graphs (1), (4) and (5) (t and s channels together with their cross diagrams)

contribute to H
(1)
qg→qg. By using CF

2Nc
= 1

4
in the large-Nc limit, one obtains

H(1)
qg→qg = −

(

t̂2 − ŝû
)2

ŝût̂2
− 1

2

t̂2 + ŝ2

ŝû
−
(

t̂2 − ŝû
) (

ŝ− t̂
)

ŝût̂
= − û

2 (ŝ2 + û2)

2ŝût̂2
,(7.75)

H(2)
qg→qg = −

(

t̂2 − ŝû
)2

ŝût̂2
− 1

2

t̂2 + û2

ŝû
−
(

t̂2 − ŝû
) (

û− t̂
)

ŝût̂
= − ŝ

2 (ŝ2 + û2)

2ŝût̂2
.(7.76)

Note that although the individual diagram’s contribution to the above two hard fac-

tors depends on the polarization chosen for the outgoing gluon, the final results for the

hard factors do not depend on this choice. This means the combination of Feynman

graphs according to the relevant color structure is gauge invariant. Similar conclu-

sion has also been obtained for the spin related observables calculated in Refs. [28;

96; 97].

Since one has ŝ =
P 2
⊥

z(1−z)
, û = −P 2

⊥

z
and t̂ = − P 2

⊥

1−z
in the correlation limit, Eq.

(7.72) leads to the following cross section for qg dijet production in pA collisions

dσpA→qgX
TMD

d2P⊥d2q⊥dy1dy2

=
∑

f

xpqf (xp)
α2
s

2P 4
⊥

[

1 + (1− z)2
]

(1− z)
[

(1− z)2 xG(2) (x, q⊥) + F (2)
qg

]

,(7.77)

where xpqf (xp) is the integrated quark distribution for the proton projectile.

7.3.2.2 The gg → qq̄ channel

Following the same procedure illustrated in the qg → qg channel, the dijet production

cross section can be calculated from the gg → qq̄ channel. First of all, the color factors
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(2) (3)

(6)

(1)

(4) (5)

Figure 7.12: gg → qq̄ scattering diagrams. The mirror diagrams of (3), (5) and (6)

give identical contributions.

Table 7.2: The color and hard factors for the gg → qq̄ scattering channels in Fig. 7.12.

(1) (2) (3) (4) (5) (6)

h 2(3t̂2+û2)û

(t̂+û)2 t̂

2(t̂2+3û2)t̂

(t̂+û)2û

2(t̂−û)2

(t̂+û)2
4t̂û

(t̂+û)2
− 4t̂û

(t̂+û)2
4t̂û

(t̂+û)2

Cu
1

4Nc

1
4Nc

− 1
4Nc(N2

c−1)
Nc

2(N2
c−1)

Nc

4(N2
c−1)

− Nc

4(N2
c−1)

and hard factors are computed for each graph in Fig. 7.12 and listed in Table 7.2.

Then, the appropriate gluon distributions2 as found in Ref. [28] are plugged in.

Φ(1),(2)
g =

〈

Tr

[

F (ξ)

{

Tr
[

U [�]
]

Nc
U [−]†

}

F (0)U [+]

]〉

, (7.78)

Φ(3)
g = −Nc

〈

Tr
[

F (ξ)U [�]
]

Tr
[

F (0)U [�]†
]〉

, (7.79)

Φ(4),(5),(6)
g =

〈

Tr
[

F (ξ)U [−]†F (0)U [+]
] Tr

[

U [�]
]

Nc

〉

− 1

Nc

〈

Tr
[

F (ξ)U [�]
]

Tr
[

F (0)U [�]†
]〉

. (7.80)

2These gluon distributions have been simplified by using large-Nc limit and the fact that they

are real in the CGC formalism.



CHAPTER 7. TWO PARTICLE MEASUREMENTS 105

Table 7.3: The color and hard factors for the gg → gg scattering channels in Fig. 7.13.

h Cu

(1) 2(ŝ4+4ŝ3 t̂+11ŝ2 t̂2+10ŝt̂3+4t̂4)

(ŝ+t̂)2ŝ2
N2

c

N2
c−1

(2) 2(2ŝ6+6ŝ5 t̂+14ŝ4 t̂2+20ŝ3 t̂3+21ŝ2t̂4+14ŝt̂5+4t̂6)

(ŝ+t̂)2ŝ2t̂2
N2

c

N2
c−1

(3) − (2ŝ4+5ŝ3t̂+10ŝ2 t̂2+10ŝt̂3+4t̂4)(ŝ+2t̂)

(ŝ+t̂)2ŝ2t̂

N2
c

2(N2
c−1)

(4) 2(ŝ4+ŝ3t̂+5ŝ2t̂2+6ŝt̂3+2t̂4)

(ŝ+t̂)2ŝ2
N2

c

N2
c−1

(5) 2ŝ5+ŝ4t̂−ŝ3t̂2−10ŝ2t̂3−12ŝt̂4−4t̂5

(ŝ+t̂)2ŝ2t̂

N2
c

2(N2
c−1)

(6) (ŝ3+10ŝ2t̂+12ŝt̂2+4t̂3)t

(ŝ+t̂)2ŝ2
− N2

c

2(N2
c −1)

Combining all the channels in the large Nc limit, one finds

dσgA→qq̄X
TMD

d2P⊥d2q⊥dy1dy2
=
∑

f

xpg(xp)
α2
s

ŝ2

[

F (1)
gg H

(1)
gg→qq̄ + F (2)

gg H
(2)
gg→qq̄

]

, (7.81)

with

F (1)
gg = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈

Tr

[

F (ξ)
Tr
[

U [�]
]

Nc

U [−]†F (0)U [+]

]〉

,(7.82)

F (2)
gg = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

1

Nc

〈

Tr
[

F (ξ)U [�]†
]

Tr
[

F (0)U [�]
]〉

, (7.83)

and

H
(1)
gg→qq̄ =

1

4Nc

2
(

t̂2 + û2
)2

ŝ2ût̂
, (7.84)

H
(2)
gg→qq̄ =

1

4Nc

4
(

t̂2 + û2
)

ŝ2
, (7.85)

where xpg(xp) is the integrated gluon distribution in the proton projectile.

7.3.2.3 The gg → gg channel

Similarly, the color factors and hard factors for all the graphs plotted in Fig. 7.13

have been calculated and listed in Table 7.3. Combining these factors with the cor-

responding gluon distributions, taking into account the appropriate gauge links [28],
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(2) (3)

(6)

(1)

(4) (5)

Figure 7.13: gg → gg scattering diagrams. The mirror diagrams of (3), (5) and (6)

give identical contributions.

one arrives at

Φ(1),(2)
g =

1

2

〈

Tr
[

F (ξ)U [+]†F (0)U [+]
] Tr

[

U [�]
]

Nc

Tr
[

U [�]
]

Nc

〉

+

〈

Tr
[

F (ξ)U [−]†F (0)U [+]
] Tr

[

U [�]
]

Nc

〉

, (7.86)

Φ(3)
g =

〈

Tr
[

F (ξ)U [+]†F (0)U [+]
] Tr

[

U [�]
]

Nc

Tr
[

U [�]
]

Nc

〉

+
1

Nc

〈

Tr
[

F (ξ)U [�]
]

Tr
[

F (0)U [�]†
]〉

, (7.87)

Φ(4),(5),(6)
g =

〈

Tr
[

F (ξ)U [−]†F (0)U [+]
] Tr

[

U [�]
]

Nc

〉

− 1

Nc

〈

Tr
[

F (ξ)U [�]
]

Tr
[

F (0)U [�]†
]〉

. (7.88)

Summing over all the channels in the large-Nc limit, one obtains

dσgA→ggX
TMD

d2P⊥d2q⊥dy1dy2
=
∑

f

xpg(xp)
α2
s

ŝ2
[

F (1)
gg H

(1)
gg→gg + F (2)

gg H
(2)
gg→gg + F (3)

gg H
(3)
gg→gg

]

, (7.89)
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where F (1,2)
gg have been defined in Eqs. (7.82,7.83) and F (3)

gg is defined as

F (3)
gg = 2

∫

dξ−dξ⊥
(2π)3P+

eixP
+ξ−−iq⊥·ξ⊥

〈

Tr
[

F (ξ)U [−]†F (0)U [+]
] Tr

[

U [�]
]

Nc

Tr
[

U [�]
]

Nc

〉

.(7.90)

The hard factors are found as

H(1)
gg→gg =

2
(

t̂2 + û2
) (

ŝ2 − t̂û
)2

û2t̂2ŝ2
, H(2)

gg→gg =
4
(

ŝ2 − t̂û
)2

ût̂ŝ2
,

H(3)
gg→gg =

2
(

ŝ2 − t̂û
)2

û2t̂2
. (7.91)

Using the mean field approximation [82], one can simplify the gluon distributions

and find the total dijet production cross section which includes the qg → qg, gg → qq̄

and gg → gg channels as follows

dσ(pA→Dijet+X)

dP.S. =
∑

q

x1q(x1)
α2
s

ŝ2
[

F (1)
qg H

(1)
qg→qg + F (2)

qg H
(2)
qg→qg

]

+ x1g(x1)
α2
s

ŝ2

[

F (1)
gg

(

H
(1)
gg→qq̄ +

1

2
H(1)

gg→gg

)

+F (2)
gg

(

H
(2)
gg→qq̄ +

1

2
H(2)

gg→gg

)

+
1

2
F (3)

gg H
(3)
gg→gg

]

, (7.92)

where again q(x1) and g(x1) are integrated quark and gluon distributions from the

projectile nucleon. A statistical factor of 1
2
has been included in Eq. (7.92) for the

gg → gg channel due to the identical final state. The various gluon distributions of

nucleus A are defined as

F (1)
qg = xG(2)(x, q⊥), F (2)

qg =

∫

xG(1)(q1)⊗ F (q2) ,

F (1)
gg =

∫

xG(2)(q1)⊗ F (q2), F (2)
gg = −

∫

q1⊥ · q2⊥
q21⊥

xG(2)(q1)⊗ F (q2) ,

F (3)
gg =

∫

xG(1)(q1)⊗ F (q2)⊗ F (q3) , (7.93)

where ⊗ represents the convolution in momentum space:
∫

⊗ =
∫

d2q1d
2q2δ

(2)(q⊥ −
q1 − q2). These expressions follow directly from Eqs. (7.73), (7.74), (7.82), (7.83),

(7.90) and the assumption that in the large-Nc limit the expectation values involved
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in these equations can be factored as products of expectation values of the traces

within. Clearly, this process depends on both UGDs in a complicated way, and the

naive TMD-factorization does not hold.
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Chapter 8

Evolution

This chapter gives a first attempt to understand the small-x evolution of the dis-

tributions mentioned in the previous chapters. This is still work in progress and

more detailed analysis are necessary to be able to use this formalism for specific

phenomenological applications.

The way that all the calculations have been set in the CGC framework, all the evo-

lution is put in the correlators which are calculated with a particular weight function

at a certain value of x determined by the kinematics of the process. In the spirit of

the always present large-Nc limit taken all over the presentation of the previous chap-

ters this correlators, and their respective evolution, can be evaluated independently.

Therefore all that is needed to understand the small-x evolution of the different dis-

tributions quoted before is to study the evolution of the basic distributions of chapter

5.

First consider the dipole distribution. Since it is expressed in terms of a correlator

of two Wilson lines, its evolution can be determined entirely by the BK equation, at

least in the large-Nc approximation in which it is valid and has been used throughout

this work. Since this equation has been widely studied in the literature and its

behavior is already known even including part of the next to leading order terms, it

will not be discussed here.
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On the other hand, not much has been said about the full small-x evolution of

the WW distribution including nonlinear effects. In very specific cases, it has been

shown that, to leading order in the sources (the linear regime), a BFKL-like equation

can be recovered when considering occupation numbers of gluons in light-cone gauge.

A more systematic study using the techniques provided by the CGC framework is

therefore necessary. The way to proceed is to take advantage of the specific operator

definition shown for the WW distribution in chapter 5 to put to use the JIMWLK

equation.

8.1 Quadrupole evolution

As it is seen directly from the derivation of the factorized version of the dijet process

in DIS, the correlator involved in the operator definition of the WW distribution

is directly related to the quadrupole term defined as the average of the trace of

four Wilson lines at different coordinates. Applying the JIMWLK equation to such

operator one obtains:

∂

∂Y

〈

Tr
[

U(x1)U
†(x′1)U(x2)U

†(x′2)
]〉

Y

= −αsNc

(2π)2

∫

d2z⊥K1(x1, x
′
1, x2, x

′
2; z)

〈

Tr
[

U(x1)U
†(x′1)U(x2)U

†(x′2)
]〉

Y

+
αsNc

(2π)2

∫

d2z⊥A(x1, x
′
1, x2, x

′
2; z)

1

Nc

〈

Tr
[

U †(x′1)U(x2)
]

Tr
[

U †(x′2)U(x1)
]〉

Y

+
αsNc

(2π)2

∫

d2z⊥B(x1, x′1, x2, x′2; z)
1

Nc

〈

Tr
[

U(x1)U
†(x′1)

]

Tr
[

U(x2)U
†(x′2)

]〉

Y

+
αsNc

(2π)2

∫

d2z⊥K2(x1; x
′
1, x

′
2; z)

1

Nc

〈

Tr
[

U(x1)U
†(z)

]

Tr
[

U(z)U †(x′1)U(x2)U
†(x′2)

]〉

Y

+
αsNc

(2π)2

∫

d2z⊥K2(x
′
1; x1, x2; z)

1

Nc

〈

Tr
[

U(z)U †(x′1)
]

Tr
[

U(x1)U
†(z)U(x2)U

†(x′2)
]〉

Y

+
αsNc

(2π)2

∫

d2z⊥K2(x2; x
′
1, x

′
2; z)

1

Nc

〈

Tr
[

U(x2)U
†(z)

]

Tr
[

U(x1)U
†(x′1)U(z)U

†(x′2)
]〉

Y

+
αsNc

(2π)2

∫

d2z⊥K2(x
′
2; x1, x2; z)

1

Nc

〈

Tr
[

U(z)U †(x′2)
]

Tr
[

U(x1)U
†(x′1)U(x2)U

†(z)
]〉

Y
,(8.1)
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where

K1(x1, x
′
1, x2, x

′
2; z) =

(x′1 − x1)
2

(x′1 − z)2(z − x1)2
+

(x′2 − x2)
2

(x′2 − z)2(z − x2)2
+

(x′1 − x2)
2

(x′1 − z)2(z − x2)2

+
(x′2 − x1)

2

(x′2 − z)2(z − x1)2
, (8.2)

A(x1, x
′
1, x2, x

′
2; z) =

(x′1 − x′2)
2

(x′1 − z)2(z − x′2)
2
+

(x1 − x2)
2

(x1 − z)2(z − x2)2
− (x′1 − x2)

2

(x′1 − z)2(z − x2)2

− (x′2 − x1)
2

(x′2 − z)2(z − x1)2
, (8.3)

B(x1, x′1, x2, x′2; z) =
(x′1 − x′2)

2

(x′1 − z)2(z − x′2)
2
+

(x1 − x2)
2

(x1 − z)2(z − x2)2
− (x′2 − x2)

2

(x′2 − z)2(z − x2)2

− (x′1 − x1)
2

(x′1 − z)2(z − x1)2
, (8.4)

K2(x1; x
′
1, x

′
2; z) =

(x1 − x′1)
2

(x1 − z)2(z − x′1)
2
+

(x1 − x′2)
2

(x1 − z)2(z − x′2)
2
− (x′1 − x′2)

2

(x′1 − z)2(z − x′2)
2
.(8.5)

Eq. (8.1) suffers the same problem as Eq. (4.32) in the sense that it is not a

closed equation because the right hand side includes higher-point correlations. The

way to deal with this difficulty is the same as for the BK equation assuming that, for

a large nucleus, these correlators can be factored as products of correlators involving

only one trace at a time when the large-Nc limit is taken. The resulting equation is

equivalent to the quadrupole evolution equation found in Ref. [89] which was derived

considering only the leading Nc contributions from the beginning. In other words,

the full evolution equation has no terms which are explicitly suppressed by powers of

1/Nc and taking the large-Nc limit only has the effect of allowing the aforementioned

factorization of the correlators. This was also the case for the BK equation [47].

8.2 WW distribution evolution

The operator definition of the WW gluon distribution is given by a slightly different

operator which can be obtained from the quadrupole correlator. As seen in chapter
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5, the WW gluon distribution can be written as

xG(1)(x, k⊥) = − 2

αs

∫

d2v

(2π)2
d2v′

(2π)2
e−ik⊥·(v−v′)

〈

Tr [∂iU(v)]U
†(v′) [∂iU(v

′)]U †(v)
〉

Y
.

(8.6)

The evolution equation for the correlator
〈

Tr [∂iU(v)]U
†(v′) [∂iU(v

′)]U †(v)
〉

Y
can be

obtained from Eq. (8.1) by differentiating with respect to x1 and x2, and then setting

x1 = x′2 = v and x2 = x′1 = v′. Then the resulting evolution equation becomes

∂

∂Y

〈

Tr [∂iU(v)]U
†(v′) [∂iU(v

′)]U †(v)
〉

Y

= −αsNc

2π2

∫

d2z⊥
(v − v′)2

(v − z)2(z − v′)2
〈

Tr [∂iU(v)]U
†(v′) [∂iU(v

′)]U †(v)
〉

Y

−αsNc

2π2

∫

d2z⊥
1

Nc

(v − v′)2

(v − z)2(z − v′)2

[

(v − v′)i
(v − v′)2

− (v − z)i
(v − z)2

]

×
{〈

Tr
[

U(v)U †(v′) [∂iU(v
′)]U †(z)

]

Tr
[

U(z)U †(v)
]〉

Y

−
〈

Tr
[

U(z)U †(v′) [∂iU(v
′)]U †(v)

]

Tr
[

U(v)U †(z)
]〉

Y

}

−αsNc

2π2

∫

d2z⊥
1

Nc

(v − v′)2

(v − z)2(z − v′)2

[

(v′ − v)i
(v′ − v)2

− (v′ − z)i
(v′ − z)2

]

×
{〈

Tr
[

[∂iU(v)]U
†(z)U(v′)U †(v)

]

Tr
[

U(z)U †(v′)
]〉

Y

−
〈

Tr
[

[∂iU(v)]U
†(v′)U(z)U †(v)

]

Tr
[

U(v′)U †(z)
]〉

Y

}

−αsNc

π2

∫

d2z⊥
1

Nc

1

(v − z)2(z − v′)2

[

1− 2 ((v − z) · (z − v′))2

(v − z)2(z − v′)2

]

×
{〈

Tr
[

U(v′)U †(z)
]

Tr
[

U(z)U †(v′)
]〉

Y
+
〈

Tr
[

U(v)U †(z)
]

Tr
[

U(z)U †(v)
]〉

Y

−
〈

Tr
[

U(v′)U †(v)
]

Tr
[

U(v)U †(v′)
]〉

Y
−N2

c

}

. (8.7)

Among these four terms in Eq. (8.7), the second and third terms are quite troublesome

since they introduce new correlators involving three coordinates. The first term can

be understood as the virtual correction as analogous to the first term in the BK

equation. The last term is in agreement with the results obtained from the one-loop

calculation in Ref. [79] in the setup where the WW distribution appear directly from

a process with a fictitious colorless current.

In addition, it is found that one will inevitably run into the evolution of quadrupoles

irrespective of the initial conditions when the WW gluon distribution appears in the
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v v′

z1 z2

Figure 8.1: Illustration of two-step evolution which generates the quadruple am-

plitude. The dotted lines indicate the moments of the interaction with the target

nucleus and the dashed line represents the cut. The two dipoles correspond to the

two internal color lines, and are characterized by the coordinates (z1, v) and (v′, z2)

respectively at the time of the interaction. The single external color line interacts as

a quadrupole defined by the coordinates (v, z1, z2, v
′).

process before small-x evolution is included. As far as the WW gluon distribution is

concerned, one finds that after two steps of evolution, the contribution of quadrupoles

appears as the following S-matrix amplitude

1

Nc

Tr
[

U(z1)U
†(z2)U(v

′)U †(v)
] 1

Nc

Tr
[

U(v)U †(z1)
] 1

Nc

Tr
[

U(z2)U
†(v′)

]

(8.8)

Starting from the correlator
〈

Tr [∂iU(v)]U
†(v′) [∂iU(v

′)]U †(v)
〉

Y
, the first step of evo-

lution is given by Eq. (8.7) which generates terms like

〈

Tr
[

U(z1)U
†(v′) [∂iU(v

′)]U †(v)
]

Tr
[

U(v)U †(z1)
]〉

Y
. (8.9)

One can further evolve such object and find that the second step of evolution yields

a combination of a quadrupole plus two dipoles as in Eq. (8.8). In terms of the

picture introduced to justify the presence of the WW distribution in the DIS di-

jet process, the above terms are illustrated in Fig. 8.1 where the double lines at v

and v′ have the highest longitudinal momentum, the double line at z1 has the next

highest longitudinal momentum and the double line at z2 has the smallest longi-

tudinal momentum. Fig. 8.1 and its radiative corrections are characterized by the
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feature that the double line in the middle does not directly connect to the virtual

photons. By squaring the production amplitude, one gets the basic color and spatial

structure of a quadrupole 1
Nc
Tr
[

U(z1)U
†(z2)U(v

′)U †(v)
]

together with two dipoles

1
Nc
Tr
[

U(v)U †(z1)
]

and 1
Nc
Tr
[

U(z2)U
†(v′)

]

before further evolution. This shows that

the Weizsäcker-Williams distribution does not have a closed evolution equation on its

own and, despite its apparently simpler structure in terms of only two coordinates,

the full quadrupole evolution is needed to include small-x effects.
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