
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 960 (2020) 115203
www.elsevier.com/locate/nuclphysb

Purely triplet seesaw and leptogenesis within 

cosmological bound, dark matter, and vacuum stability

Mina Ketan Parida a,∗, Mainak Chakraborty b, Swaraj Kumar Nanda a, 
Riyanka Samantaray a

a Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, 
Khandagiri Square, Bhubaneswar 751030, India

b Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India

Received 4 June 2020; received in revised form 24 September 2020; accepted 25 September 2020
Available online 29 September 2020

Editor: Tommy Ohlsson

Abstract

In a novel standard model extension it has been suggested that, even in the absence of right-handed 
neutrinos and type-I seesaw, purely triplet leptogenesis leading to baryon asymmetry of the universe can 
be realized by two heavy Higgs triplets which also provide type-II seesaw ansatz for neutrino masses. In 
this work we discuss this model predictions for hierarchical neutrino masses in concordance with recently 
determined cosmological bounds and oscillation data including θ23 in the second octant and large Dirac CP 
phases. We find that for both normal and inverted orderings, the model fits the oscillation data with the sum 
of the three neutrino masses consistent with current cosmological bounds determined from Planck satellite 
data. In addition, using this model ansatz for CP-asymmetry and solutions of Boltzmann equations, we also 
show how successful predictions of baryon asymmetry emerges in the cases of both unflavoured and two-
flavoured leptogeneses. With additional Z2 discrete symmetry, a minimal extension of this model is further 
shown to predict a scalar singlet WIMP dark matter in agreement with direct and indirect observations 
which also resolves the issue of vacuum instability persisting in the original model. Although the combined 
constraints due to relic density and direct detection cross section allow this scalar singlet dark matter mass 
to be mξ = 750 GeV, the additional vacuum stability constraint pushes this limiting value to mξ = 1.3 TeV 
which is verifiable by ongoing experiments. We also discuss constraint on the model parameters for the 
radiative stability of the standard Higgs mass.
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1. Introduction

Neutrino oscillation [1–3], baryon asymmetry of the universe [4,5] and dark matter [6] are the 
three most prominent physics issues which can not be explained within the purview of the stan-
dard model (SM). However, seesaw mechanisms have been widely recognized as possible origins 
of tiny neutrino masses where leptogenesis caused by the decay of mediating heavy particles are 
believed to be the underlying sources of baryon asymmetry through sphaleron interactions [7]. 
Large number of leptogenesis models using right-handed neutrino (RHN) mediated type-I see-
saw [8–10], or other seesaw mechanisms, have been proposed for successful baryon asymmetry 
generation and a partial list of such extensive investigations is given in [11–14]. Since SM itself 
does not have RHNs, it has to be extended for the implementation of type-I seesaw. But, in a 
novel interesting proposal against the conventional lore and without using any RHNs or super-
symmetry, realisation of neutrino masses and baryon asymmetry have been also shown to be 
possible [15] through the SM extension by two heavy scalar triplets, �1 and �2, each of which 
generates neutrino mass by another popular mechanism, called type-II seesaw [16]. The tree level 
dilepton decay of any one of these triplets combined with loop contribution generated by their 
collaboration predicts the desired CP-asymmetry formula for leptogenesis leading to observed 
baryon asymmetry of the Universe (BAU). In an implementation of this leptogenesis idea [15] in 
non-supersymmetric (non-SUSY) SM extension in the scalar sector, quasi-degenerate (QD) neu-
trino masses of order ∼ 1 eV and solution to simplified Boltzmann equations have been used to 
predict the baryon asymmetry of the Universe YB ∼ 10−11. Leptogenesis with or without RHNs 
has been also implemented including or excluding supersymmetry [12,17–24]. The QD neutrino 
mass hypothesis used in [15] has also a very interesting outcome of predicting neutrinoless dou-
ble beta decay rates [25], radiative magnification of neutrino mixings [26], and unification of 
quark and neutrino mixings at high scales [27]. On the other hand recent Planck satellite data [5]
have set the cosmological upper bound on the sum of three light neutrino masses∑

mi ≤ 0.23 eV ≡ �Planck, (1)

which is consistent with the standard �CDM big bang cosmology of the Universe [5]. Although 
Planck satellite data [5] also permits a much larger value �C � 0.71 eV, this latter type of solution 
has been shown to be possible only in the absence of the cosmological constant (�). Compared 
to Planck satellite data [5], somewhat lower value of the cosmological bound �new = 0.12 eV in 
the �CDM model has been also noted [28]∑

mi ≤ 0.12 eV ≡ �new. (2)

Sensitivity of non-standard interactions to neutrino masses has been investigated [29]. As against 
such cosmological bounds of eq. (1) and eq. (2), KATRIN Collaboration [30] has recently set the 
upper limit on the neutrino mass scale m0 ≤ 1 eV which predicts for QD neutrinos∑

mi ≤ 3 eV ≡ �KATRIN. (3)

For a QD neutrino mass scale as low as m0 � 0.2 eV or heavier, the neutrino would manifest in 
the direct experimental detection of neutrinoless double beta decay [25] establishing its Majorana 
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nature which has remained elusive so far. In any case it is quite important to investigate the impact 
of the cosmological bounds [5,28] and the recently measured neutrino oscillation data [1–3] on 
the two-Higgs triplet seesaw and purely triplet leptogenesis [15] in the absence of RHNs.

Quite recently certain new features have been revealed in the neutrino oscillation data [1–3]
which have to be explained in any theoretical model. The new data reveal the values on atmo-
spheric neutrino mixing angle to be in the second octant with θ23 � 49.6◦ and the Dirac CP 
phase to be large, δ ∼ 214◦. The impact of new cosmological bounds [5,28] or the new oscilla-
tion data [1–3] have not been examined on the triplet leptogenesis model [15,31,32]. On the other 
hand, type-II seesaw dominance in SO(10) with scalar dark matter and vacuum stability has been 
shown to be capable of providing excellent representation of the neutrino data [33] where RHN 
loop mediated triplet leptogenesis explains the baryon asymmetry of the universe. Unlike type-I 
seesaw, the type-II seesaw dominant mass matrix elements have one-to-one correspondence with 
the mass matrix constructed using the oscillation data, a fact which underlines the importance of 
type-II over type-I. The model under discussion [15] has the property of predicting two different 
type-II seesaw mass matrices mediated by the respective heavy triplets and has the ability that 
one of them can dominate over the other. In fact this type-II seesaw dominance property has 
been utilized in the original model [15] with quasi-degenerate neutrino masses. It is, therefore, 
quite pertinent to examine whether the seesaw model [15] can fit the current neutrino data [1–3]
for hierarchical neutrino masses satisfying the cosmological bounds [5,28] while successfully 
predicting the observed baryon asymmetry of the universe.

Supersymmetric type-I seesaw leptogenesis with RHN mass scale MN ≥ 109 GeV [34] is 
known to predict over-production of gravitinos in the early universe affecting relic abundance of 
light elements. Resolution of gravitino problem [35] in the supersymmetric triplet seesaw model 
has been discussed [17]. A clear advantage of non-supersymmetric (non-SUSY) leptogenesis 
models including [15] is the absence of the gravitino problem ensuring cosmologically safe relic 
abundance [35]. On the other hand, the SM Higgs mass (mφ) in [15] is not protected against 
radiative correction which is likely to give δmφ � 1013 GeV = the heaviest triplet mass in the 
model [36] tending to destabilise the electroweak gauge hierarchy. This calls for exploring fine-
tuned naturalness (or stability) constraint on the model parameters as derived in this work which 
might restrict such correction [37,38] not to exceed the Higgs mass.

As the purely triplet seesaw model [15,31] does not have dark matter prediction to explain 
observed relic density and mass bounds determined by direct and indirect detection experiments 
[39–43], it would enhance the model capabilities if the dark matter phenomena can be accom-
modated in its simple minimal extension as suggested in this work.

Despite the presence of two heavy Higgs triplets, we note that the renormalisation group 
running renders the Higgs quartic coupling in the model [15,31] to acquire negative values in 
the interval |φ| = (5 × 109 − 1013) GeV leading to vacuum instability [44,45]. Noting that it is 
a natural compulsion to guarantee vacuum stability of the scalar potential in any of the model 
applications such as neutrino masses, baryon asymmetry and dark matter, we have shown in this 
work how the minimally extended model with scalar singlet dark matter ensures such a stability.

Compared to earlier works on purely triplet seesaw ansatz [15,31], in this work we have 
fitted the most recent neutrino data [1–3] including θ23 in the second octant and large Dirac CP-
phase (δ � 214◦). We have further exposed the success of the model potential to be compatible 
with recent cosmological bounds determined from Planck satellite data [5,28]. In our approach, 
the dominant of the two matrices being completely determined from neutrino data, provides 
known values of lepton flavour and number violating couplings occurring in the CP-asymmetry 
parameters. In addition, optimal or randomised phase differences between the elements of the 
3
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two matrices provide a rich structure for CP-asymmetry parameters for unflavoured and flavoured 
leptogenesis. Using our model CP-asymmetry inputs, we find solutions of Boltzmann equations 
successfully predicting baryon asymmetry of the Universe in the unflavoured as well as two-
flavoured regimes.

Highlights of the present work are

• The two-Higgs triplet seesaw model [15] is found to fit the most recent neutrino data in-
cluding θ23 in the second octant and large Dirac CP-phases for both normal ordering (NO) 
and inverted ordering (IO) of neutrino masses in concordance with cosmological bounds 
determined from Planck satellite measurements [5,28].

• The model ansatz for CP-asymmetry and solutions of Boltzmann equations are found to 
predict the observed value of baryon asymmetry of the Universe in the case of unflavoured 
(two-flavoured) leptogenesis for the lighter triplet mass values M�2 � O(1012) GeV (M�2 �
O(1011) GeV) with corresponding values of lepton number violating coupling μ�2 in each 
case.

• Whereas the original model [15] does not have dark matter (DM), a simple extension of the 
model is found to predict a real scalar singlet WIMP [46] dark matter [47] in agreement 
with observed relic density and direct detection measurements which set the lower bound 
mξ = 750 GeV.

• This real scalar DM is also found to remove the vacuum instability of the scalar potential 
existing in the original model.

• When the vacuum stability constraint is combined with those due to relic density and direct 
detection measurements, this real scalar singlet mass limit is pushed from mξ = 750 GeV to 
mξ = 1.3 GeV which is verifiable by ongoing experiments.

• Despite the two heavy triplet scalar masses, the model parameters are noted to satisfy fine-
tuned conditions necessary for the radiative stability of the standard Higgs mass.

• Using the two-Higgs triplet model [15] and its further simple extension, we have thus suc-
cessfully addressed four important issues confronting the standard model: neutrino masses 
and mixings within cosmological bound, baryon asymmetry of the universe, dark matter, and 
vacuum stability of the scalar potential. In addition, we have derived necessary constraint on 
the model parameters for the radiative stability of standard Higgs mass.

This paper is organised in the following manner. In Sec. 2 we discuss the triplet leptogenesis 
model [15]. In Sec. 3 we discuss how the current neutrino data is fitted by two-triplet generated 
type-II seesaw formula with NO or IO masses consistent with cosmological bound where we 
also derive possible values of the scalar triplet masses and trilinear couplings for leptogenesis. 
Prediction of baryon asymmetry with detailed numerical analyses supported by proper graphical 
representation is presented in Sec. 4. Its subsections deal with different regimes of leptogenesis 
taking into account various schemes to choose the data set for leptogenesis calculation. Extension 
of the model to accommodate dark matter is discussed in Sec. 5, Sec. 5.1, and Sec. 5.1.1. In 
Sec. 5.1.3 we discuss the issue of vacuum instability of the scalar potential and its resolution 
with a summary on DM investigation in Sec. 5.1.4. In Sec. 6 we discuss Higgs mass stability 
constraint on the model parameters. The work is summarised in Sec. 7. Explanation and definition 
of different functions and parameters associated with Boltzmann equations are given in Sec. A.1, 
Sec. A.2 and Sec. A.3 while renormalisation group equations for gauge, scalar and top-quark 
Yukawa couplings have been discussed in Sec. A.4 of the Appendix.
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2. The two-triplet model

Whereas in majority of models the RHNs have been found instrumental in theories of neutrino 
masses and leptogenesis, along with type-II dominance seesaw ansatz for neutrino mass possible 
realisation of leptogenesis in two-triplet extensions of standard model has been proposed in [15]
without any RHN.

In other triplet seesaw and leptogenesis models [19,31,33], heavy RHNs are needed for loop 
mediation even though the triplet in collaboration with SM Higgs doublet is capable of explaining 
neutrino masses. But this model [15] does not need any RHN to implement both the phenomena: 
neutrino mass and leptogenesis for successful prediction of baryon asymmetry of the Universe. 
The resulting scalar potential in this model has different terms depending upon the SM Higgs 
field values μ = |φ| as discussed in Sec. 5. The charges of fermions and scalars have been also 
defined in Sec. 5 in Table 2. Thus, in addition to the usual SM interactions and their modifications, 
the nonstandard part of the Lagrangian that contributes to type-II seesaw and leptogenesis is

−Lext =
2∑

α=1

(
(Dμ

	�α)†.(Dμ 	�α) − M2
�α

T r(�†
α�α)

+[1

2
y

(α)
ij LT

i Ciτ2�αLj − μ�αφ
T iτ2�αφ + h.c.]

)
. (4)

Here i, j = 1, 2, 3 denote the three lepton flavors represented by the lepton doublets Li but α =
1, 2 denote the two scalar triplets. M�α = mass of the triplet �α , y(α)

ij = Majorana coupling of 
�α with Li and Lj and μ�α = lepton-number violating trilinear coupling of �α with standard 
Higgs doublet φ.

Defining the induced triplet VEVs VLα(α = 1, 2)

VLα = μ�αv
2

2M2
�α

, (5)

the formula for the light neutrino mass matrix mν is

mν = 2y(1)VL1 + 2y(2)VL2 ,

= y(1) μ�1v
2

M2
�1

+ y(2) μ�2v
2

M2
�2

≡ m(1)
ν + m(2)

ν . (6)

Here v = 246 GeV, the standard Higgs vacuum expectation value (VEV).

2.1. CP asymmetry

Now we discuss about the source of lepton number violation and generation of CP asymmetry. 
It is clear from the interaction lagrangian (eq. (4)) that lepton number violation (LNV) is possible 
due to the coexistence of the Higgs triplet-bilepton Yukawa matrix y along with the trilinear 
coupling μ�α(α = 1, 2). Since heavy RHNs are absent in the theory, the entire CP asymmetry is 
created due to the decay of the heavy scalar triplets. In tree level the scalar triplets can decay to 
bi-leptons as well as two SM Higgs. The corresponding branching ratios of �α decay to leptons 
and SM Higgs are respectively
5
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Fig. 1. Tree level and one loop Feynman diagrams for a triplet decaying to bi-leptons in case of flavoured leptogenesis.

Bα
l =

∑
i=e,μ,τ

Bα
li

=
∑

i,j=e,μ,τ

Bα
lij

=
∑

i,j=e,μ,τ

M�α

8π
tot
�α

|y(α)
ij |2 and (7)

Bα
φ = |μ�α |2

8πM�
tot
�α

, (8)

which obviously satisfy Bα
l + Bα

φ = 1, where 
tot
�α

is the total decay width of �α , given by


tot
�α

= M�α

8π

(∑
i,j

|y(α)
ij |2 + |μ�α |2

M2
�α

)
. (9)

The decay to bi-leptons can also occur due to one loop process where the loop is mediated by 
either SM Higgs or leptons as shown in Fig. 1.1 The CP asymmetry arises due to the interference 
of the tree level contribution with that of the one loop wave function diagrams as shown in Fig. 1. 
Again the total flavoured CP asymmetry consists of two pieces, the scalar loop gives rise to a part 
which violates both lepton number and flavour whereas the one with lepton loop gives rise to only 
flavour violating asymmetry. So the total flavoured asymmetry (taking into account both lepton 
number + flavour violations, denoted by (/L, /F ), and only lepton flavour violation denoted by /F ) 
is given by

ε
li
�α

= ε
li (/L,/F)

�α
+ ε

li (/F )

�α
. (10)

In the present work we have considered only two heavy triplets corresponding to α = 1, 2. It 
is well known that lepton asymmetry will be produced mostly due to the decay of the lighter 
triplet which is �2 in our case while the asymmetry due to the heavier one will be washed out. 
Dynamical origin of neutrino masses is thus made consistent with the dominance of the �2
to neutrino mass matrix over �1. Therefore, in all the future expressions of CP asymmetries, 
branching ratios, decay widths we will omit the index on the scalar triplet. It is to be understood 
that ε� ≡ ε�2, Bl ≡ B2

l , Bφ ≡ B2
φ . The above mentioned two pieces of CP asymmetry in eq. (10)

arising due to �2 decay are given by

ε
li (/L,/F)

� = 1

2π

Im

{∑
n

(
y(2)

)∗
ni

(
y(1)

)
ni

μ∗
�2

μ�1

}
M2

�2
T r(y(2)y(2)

†
) + |μ�2 |2

g(x12), (11)

ε
li (/F)

� = 1

2π

Im
{
(y(2)†

y(1))iiT r(y(2)y(1)†
)
}

M2
�2

T r(y(2)y(2)
†
) + |μ�2 |2

g(x12), (12)

1 It is to be noted that we wish to study the leptogenesis phenomena in both the regimes above and below 1012 GeV. 
Lepton flavours become distinguishable below 1012 GeV. The resulting leptogenesis is termed as flavoured leptogenesis. 
Thus in the Feynman diagram we have denoted the lepton flavors with different indices.
6



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
where

g(xαβ) = xαβ(1 − xαβ)

(1 − xαβ)2 + xαβy
,

xαβ = M2
�α

M2
�β

,

y =
(


tot
�β

M�β

)2

. (13)

The indices n, i in the above expressions of CP asymmetries stand for the lepton flavour indices 
(e, μ, τ). It can be easily understood that if we sum over the flavour indices, the second piece of 
the CP asymmetry which is solely due to flavour violation vanishes identically, i.e.∑

i=e,μ,τ

ε
li (/F )

� = 0 . (14)

This CP asymmetry parameter survives only in the case of flavoured leptogenesis. Since this 
asymmetry does not involve any lepton number violation, some times it is called purely flavoured 
asymmetry and the corresponding leptogenesis scenario which is dominated by the flavour vi-

olating CP asymmetry (εli (/F )

� 
 ε
li (/L,/F )

� ) is referred to as purely flavoured (PFL) leptogenesis. 
The condition to get PFL leptogenesis can be shown to be [31]

μ∗
�2

μ�1 � M2
�2

T r(y(2)y(1)†
) . (15)

Therefore, consistent with dominance of m(2)
ν over m(1)

ν and the condition that M�2 < M�1 �
μ�1 , PFL is not always guaranteed in flavoured leptogenesis regime. During our actual numerical 
analysis of flavoured leptogenesis we will examine whether PFL is achievable in our case.

The following set of parameters have been used for the model predictions in [15]

y
(1)
kl = 0.1 (k, l = 1,2,3), y

(2)
33 = 1, |μ�1 | = 1013 GeV,

|μ�2 | = 2 × 1012 GeV, M�1 = 3 × 1013 GeV, M�2 = 1013 GeV, (16)

consistent with QD neutrino mass eigenvalues

m1 ∼ m2 ∼ m3 ∼ 1.2eV (17)

This choice leads to an interesting prediction for observable neutrinoless double beta decay close 
to the current experimental limit [25]. KATRIN [30] experimental search program has recently 
set the neutrino mass limit to m0 ≤ 1 eV.

However, recent estimations derived from Planck satellite data appear to constrain the QD 
spectrum considerably [5,28] as stated through eq. (1) and eq. (2). In addition the recent neutrino 
data has revealed certain significant interesting changes over previous results with the atmo-
spheric neutrino mixing angle in the second octant θ23 ≥ 45◦ and the Dirac CP phase δ � 214◦. 
Success of a class of type-II seesaw dominant models but with RHN loop mediated triplet 
leptogenesis has been investigated along with predictions of new CP-asymmetry formulas in 
concordance with the recent oscillation data [33] and cosmological bound [5]. It is thus quite 
important to examine whether purely triplet seesaw and leptogenesis predictions without RHNs 
7
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could be compatible with the recent data, cosmological bound [5], baryon asymmetry [5,28] and 
dark matter while ensuring vacuum stability of the scalar potential.
In order to fit the recent neutrino data by the present formulation, we use the approximation 
that the type-II seesaw formula generated by lighter of the two triplets (with M�2 � M�1 ) has 
dominant contribution, i.e.

mν � m(2)
ν = m(DAT A)

ν . (18)

m
(1)
ν and m(2)

ν matrices can always be represented as

(m(1)
ν )ij = |m(1)

ν ij |eiφ
(1)
ij , (m(2)

ν )ij = |m(2)
ν ij |eiφ

(2)
ij , (19)

which in turn gives

(m
(1)
ν )ij

(m
(2)
ν )ij

= |m(1)
ν ij |

|m(1)
ν ij |

e
i(φ

(1)
ij −φ

(2)
ij )

. (20)

Under this assumption each element of m(1)
ν is connected to the corresponding element of m(2)

ν

through a multiplicative factor which is a complex number in general and can be represented as

(m(1)
ν )ij = Fij e

i(φ
(1)
ij −φ

(2)
ij )

(m(2)
ν )ij (21)

where Fij = |m(1)
ν ij |/|m(2)

ν ij | which is a real ratio. In order to ensure the dominance of m(2)
ν

over m(1)
ν we assume Fij ≤ 0.1 for all i, j . In general Fij s and (φ(1)

ij − φ
(2)
ij ) can have different 

values for different combinations of i and j . Using eq. (6) and very near equality of m(2)
ν with 

m
(DAT A)
ν , the numerical value of the Yukawa coupling matrix y(2) can be easily found for a 

known set of (M�2, μ�2). Again for any random value of the ratio Fij and the phase difference 
(φ

(1)
ij −φ

(2)
ij ), the other Yukawa coupling y(1) can be computed from eq. (21) provided the corre-

sponding trilinear coupling (μ�1) and the triplet mass (M�1) are already known. We may assume 
some numerical values (M�2, μ�2) depending upon the regime of leptogenesis (flavoured/un-
flavoured) and then (M�1, μ�1) can be accordingly chosen to keep m(1)

ν sub-dominant, which 
in turn requires M�1 
 M�2 . This also ensures the contribution of �1 towards leptogenesis to 
be negligible. Knowledge of all these parameters along with some random value of the phase 
difference and the ratio enables us to calculate the flavoured CP asymmetry (eq. (11), (12)) pa-
rameters. However in the unflavoured regime the purely flavoured CP asymmetry part vanishes 
and we are left with (lepton number + flavour) violating part which can be represented in terms 
of the experimental value of light neutrino mass matrix (denoted as mν(= mDATA

ν )) as

εl
� =

∑
i

ε
li (/L,/F)

�

= M2
�1

M2
�2

2πv4

∑
ij

Fij |(mν)ij |2 sin(φ
(1)
ij − φ

(2)
ij )

M2
�2

T r(y(2)y(2)†
) + |μ�2 |2

g(x12) (22)

� M2
�1

M2
�2

16π2v4

∑
ij

Fij |(mν)ij |2 sin(φ
(1)
ij − φ

(2)
ij )

(M2
�1

− M2
�2

)

(
M�2


tot
�2

)
. (23)

Then for M� 
 M� , the CP-asymmetry is
1 2

8
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εl
� = M2

�2

16π2v4

∑
ij

Fij |(mν)ij |2 sin(φ
(1)
ij − φ

(2)
ij )

(
M�2


tot
�2

)
. (24)

2.2. Boltzmann equations for leptogenesis

Boltzmann equations are used to track the evolution of the particle asymmetries in the early 
universe where the hot plasma is composed of large number of particle species resulting in nu-
merous reactions. However there is no need take into account all of them. Only those reactions are 
important whose rates at that temperature are comparable to the Hubble rate (i.e. 
(T ) ∼ H(T )).

Lepton number violation is embedded in the interaction lagrangian (eq. (4)) through the Ma-
jorana type coupling of the triplet Higgs with bi-leptons. Lepton number is violated by two units 
whenever � decays to (li , lj ). As it is a baryon number conserving process, (B − L) is also vio-
lated by two units. So our aim is to find out the evolution of abundance of (B − L) which at later 
stage gets converted into baryon number through sphaleron transition process. It is worthwhile to 
mention that during the sphaleron process the quantity (B − L) (B/3 − Li) is conserved in case 
of unflavoured (flavoured) leptogenesis. Accordingly the asymmetry parameter whose evolution 
with temperature has to be traced is (B − L) ((B/3 − Li)) for unflavoured (flavoured) leptogen-
esis scenario. It is not possible to compute the evolution of (B −L) or (B/3 −Li) independently 
as it includes other parameters which also evolve with temperature. In fact the Boltzmann equa-
tions consist of a set of coupled differential equations which have to be solved simultaneously 
to find solution for any of the variables. In this purely triplet leptogenesis model the asymmetry 
can only be generated by the decay of heavy scalar triplet. Therefore, along with the first order 
differential of (B − L) or (B/3 − Li), the Boltzmann equations contain first order differentials 
of scalar triplet density and scalar triplet asymmetry. This scalar triplet asymmetry arises due to 
the fact that �2 and �†

2 are not self-conjugate. The right hand side of relevant Boltzmann equa-
tions contains interaction terms that tend to change the density of the corresponding variable. 
Considering all such interactions, the network of lepton flavour dependent coupled Boltzmann 
equations are [31–33]

Ẏ� = −
( Y�

Y
eq
�

− 1
)
γD − 2

[( Y�

Y
eq
�

)2 − 1
]
γA, (25)

Ẏ�� = −
[Y��

Y
eq
�

−
∑

k

(∑
i

Bli C
l
ik − BφC

φ
k

)Y�k

Y
eq
l

]
γD, (26)

Ẏ�B/3−Li
= −

[( Y�

Y
eq
�

− 1
)
ε
li
� − 2

∑
j

(Y��

Y
eq
�

− 1

2

∑
k

Cl
ijk

Y�k

Y
eq
l

)
Blij

]
γD

− 2
∑
j,k

(
C

φ
k + 1

2
Cl

ijk

)Y�k

Y
eq
l

(
γ

′φφ
li lj

+ γ
φlj
φli

)

−
∑

j,m,n,k

Cl
ijmnk

Y�k

Y
eq
l

(
γ

′lnlm
li lj

+ γ
lmlj
li ln

)
. (27)

Notational conventions adopted here are as follows: Y�X
stands for the ratio of number density 

(or difference of number density) to the entropy density, i.e. Y�X
= nX−nX̄

s
, where nX (nX̄)

is the X (X̄) number density. Standard mathematical forms of equilibrium number densities 
of different particle species X (X̄) are given in Sec. A.1 of Appendix. It is implied that the 
9
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variables of the differential equations (Y��, Y�, Y�B/3−Li
) are function of z = M�/T . Here ẎX

denotes ẎX ≡ ẎX(z) = s(z)H(z)
dYX(z)

dz
. The scalar triplet density and asymmetry are denoted as 

� = � + �† and �� = � − �†, respectively. Superscript ‘eq’ denotes the equilibrium value 
of the corresponding quantity. Functional forms of all such equilibrium densities are presented 
in Sec. A.1 of Appendix. The total reaction density of the triplet including its decay and inverse 
decay to lepton pair or scalars is represented as γD . The gauge induced 2 ↔ 2 scattering of 
triplets to fermions, scalars and gauge bosons is denoted by γA. Lepton flavour and number 
((�L = 2)) violating Yukawa scalar induced s channel (φφ ↔ l̄i l̄j ) and t channel (φlj ↔ φ̄l̄i )

scattering related reaction densities are denoted as γ φφ
li lj

and γ
φlj
φli

, respectively. Similarly reaction 
densities related to Yukawa induced triplet mediated lepton flavour violating 2 ↔ 2 s channel 
and t channel processes are denoted by γ lnlm

li lj
and γ

lj lm
li ln

. The primed s channel reaction densities 

are given by γ ′ = γ − γ on shell. We present the explicit expressions of these reaction densities in 
Sec. A.2 of Appendix. The asymmetry coupling matrices Cl

ijk and Cl
ijmnk are defined as [31]

Cl
ijk = Cl

ik + Cl
jk,

Cl
ijmnk = Cl

ik + Cl
jk − Cl

mk − Cl
nk, (28)

where Cl matrix connects the asymmetry of lepton doublets with that of B/3 − Li whereas Cφ

establishes a relation between the asymmetry of scalar triplet and B/3 − Li , i.e.,

Y�li
= −

∑
k

Cl
ikY�k

Y�φ = −
∑

k

C
φ
k Y�k

(29)

where Y�k
represents the components of the asymmetry vector 	Y�,

	Y� ≡ (Y��,Y�B/3−Lk
)T . (30)

The generation index k in the above equation runs from 1 to 3 for fully (three) flavoured leptogen-
esis whereas it takes values 1, 2 for two flavoured leptogenesis which dictates the corresponding 
	Y� will be a column matrix with four or three entries, respectively. Cl and Cφ matrices are 
determined from chemical equilibrium conditions. Their detailed structure and dimensionality 
in different temperature regimes are given in Sec. A.3 of Appendix. The flavoured Boltzmann 
equations presented in eqs. (25), (26), (27) have to be solved simultaneously upto a large value 
of z (where the asymmetry gets frozen). Then the final value of Baryon asymmetry parameter is 
computed to be

YB ≡ Y�B
= 3 × 12

37

∑
i

Y�B/3−Li
(31)

where the factor 3 takes care of different SU(2) degrees of freedom of the scalar triplet. When the 
mass of the decaying heavy particle (or equivalently the temperature for asymmetry generation) 
exceeds 1012 GeV, the charged lepton Yukawa interactions go out of equilibrium and, as a result, 
the lepton flavours lose their distinguishability. Thus we need not treat the flavours separately 
and as a result corresponding Boltzmann equations are free of lepton flavour index. This variant 
of leptogenesis is referred to as the unflavoured leptogenesis and the set of Boltzmann equations 
applicable to this case are obtained through modifications of eq. (25)–(27) [31] as
10



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
Ẏ� = −
( Y�

Y
eq
�

− 1
)
γD − 2

[( Y�

Y
eq
�

)2 − 1
]
γA (32)

Ẏ�� =
[Y��

Y
eq
�

−
∑

k

(
BlC

l
k − BφC

φ
k

)Y�k

Y
eq
l

]
γD, (33)

Ẏ�B−L
= −

[( Y�

Y
eq
�

− 1
)
εl
� − 2

(Y��

Y
eq
�

−
∑

k

Cl
k

Y�k

Y
eq
l

)
Bl

]
γD

− 2
∑

k

(
C

φ
k + Cl

k

)Y�k

Y
eq
l

(
γ

′φφ
ll + γ

φl
φl

)
, (34)

where εl
� (= ∑

i ε
li
�) is the flavor summed or unflavoured CP asymmetry parameter and the 

asymmetry vector 	Y� has now been reduced to a column vector with only two entries, 	YT
� =

(Y��, Y�B−L
). Thus, in this case too, the final baryon asymmetry is computed using the simple 

formula of eq. (31) where the whole quantity under the summation should be replaced by a single 
asymmetry parameter Y�B−L

.

2.3. Flavour decoherence and different regimes of leptogenesis

Whether the lepton flavours have to be treated separately at a certain temperature is decided 
completely by the phenomenon of flavour decoherence [31]. It is a common practice to assume 
that flavour decoherence sets in as soon as the corresponding charged lepton Yukawa interaction 
rate exceeds the Hubble rate at that very temperature. Along with this assumption, few intricate 
details of the underlying processes are also taken into account to deal with this flavour decoher-
ence issue. In the present model under consideration (SM + two triplets �1, �2) with �2 ≡ �

and M� < M�1 , it is logical to assume survival of leptogenesis caused by the � decay. Then the 
flavour decoherence is dictated by the competition of two processes: SM charged lepton Yukawa 
interaction and inverse decay of leptons to triplet �. To clarify this statement let us assume that at 
some temperature (Th) during the evolution of Universe, the charged lepton Yukawa interaction 
is faster than the Hubble rate but slower compared to triplet inverse decay (ll → �̄). As a re-
sult the charged leptons inverse decay before the triplet can undergo any charged lepton Yukawa 
interaction. Even then it is still impossible to differentiate between the lepton flavours. At some 
later stage of evolution when the temperature of the thermal bath becomes lower, the charged 
leptons inverse decay rate by virtue of being Boltzmann suppressed gets reduced further. Then, 
at a temperature T = Tdecoh, when the lepton inverse decay rate to �̄ becomes less than the 
lepton Yukawa interaction rate, the decoherence between the lepton flavours is achieved. Thus, 
between the temperature range (Th − Tdecoh), the flavour decoherence is not fully achieved, i.e.
within this intermediate temperature regime, it is not totally justified to use flavoured leptogenesis 
formalism.

The decoherence temperature (Tdecoh) is determined by the mass of the lighter of the two 
scalar triplets (M�(= M�2)) and the effective decay parameter [31]

M̃
eff
� = M̃�

√
1 − Bφ

Bφ

, (35)

where
11
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M̃2
� = |μ�|2 v4

M4
�

T r[YY †], (36)

and Bφ is branching ratio of � → φφ.

Decoherence is fully achieved when our chosen parameter space satisfies the condition that, 
at a given temperature, lepton triplet inverse decay rate is slower than the SM charged lepton 
Yukawa interaction rate. Imposition of this condition will lead us to an upper limit on M� as a 
function of M̃eff

� which can be expressed as


fi
≥ Bl


tot
�

Y
eq
�

Y
eq
l

(with fi = τ,μ). (37)

Here Bl is the branching ratio of dilepton decay rate �2 → ll that occurs due to Yukawa interac-
tion. This constraint relation can be translated into constraints over M� and M̃eff

� as [31]

M� ≤ 4 ×
(10−3 eV

M̃
eff
�

)
× 1011 GeV (fully two flavoured), (38)

M� ≤ 1 ×
(10−3 eV

M̃
eff
�

)
× 109 GeV (fully three flavoured) . (39)

Following eq. (38) and eq. (39) we can say that, when the mass of the decaying triplet 
M� > 4 × 1011 GeV, all the lepton flavours act as a coherent superposition and the correspond-
ing asymmetry generation proceeds through unflavoured or single flavoured leptogenesis. When 
the temperature (or equivalently M�) drops below 4 × 1011 GeV, the τ flavour gets decoupled 
whereas e + μ still act indistinguishably. Thus, the coherent superposition is effectively split 
into two flavours (e + μ and τ ) and the corresponding leptogenesis phenomena is termed as 
2-flavoured (or τ -flavoured) leptogenesis. Below 109 GeV, all the charged lepton Yukawa inter-
actions reach equilibrium and flavour decoherence is fully attained resulting in 3-flavoured (or 
fully flavoured) leptogenesis.

3. Model fitting of neutrino data within cosmological bound

In this section at first we discuss the model capability to fit the most recent neutrino data 
satisfying the constraint imposed by cosmological bounds [5,28]. Using the PDG convention 
[48] we parameterize the PMNS mixing matrix

UPMNS =
⎛
⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎠diag(e

iαM
2 , e

iβM
2 ,1)

(40)

where sij = sin θij , cij = cos θij with (i, j = 1, 2, 3), δ is the Dirac CP phase and (αM, βM) are 
Majorana phases. We use the best fit values of the oscillation data [2,3] as summarised below in 
Table 1.

Important among new interesting salient features of this set of data points are: (i) the best 
fit value of atmospheric mixing angle θ23 is in the second octant, (ii) large values of Dirac CP 
phases exceeding δ = 200◦. The data Table 1 includes the reactor neutrino mixing θ13 = 8.6◦
which was known earlier.
12
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Table 1
Input data from neutrino oscillation experiments [2,3].

Quantity Best fit values 3σ ranges

�m2
21 [10−5 eV2] 7.39 6.79 − 8.01

|�m2
31| [10−3 eV2] (NO) 2.52 2.427 − 2.625

|�m2
32| [10−3 eV2] (IO) 2.51 2.412 − 2.611

θ12/◦ 33.82 31.61 − 36.27

θ23/◦ (NO) 49.6 40.3 − 52.4

θ23/◦ (IO) 49.8 40.6 − 52.5

θ13/◦ (NO) 8.61 8.22 − 8.99

θ13/◦ (IO) 8.65 8.27 − 9.03

δ/◦ (NO) 215 125 − 392

δ/◦ (IO) 284 196 − 360

Using the mass-squared differences from Table 1 and choosing the lightest mass eigenvalue
m1 = 0.001 eV, we at first determine the other two mass eigenvalues. Then using the three mass 
eigenvalues, mixing angles and phases given in Table 1 we derive neutrino mass matrix consistent 
with best fit to the data through the standard relation

mν = UPMNS diag(m1,m2,m3)U
T
PMNS . (41)

For NO and IO cases we get the following results:

Normal ordering (NO):

m1 = 0.001 eV, m2 = 0.0086 eV, m3 = 0.0502 eV,∑
i

mi = 0.0598 eV � �Planck, or �new (42)

where �Planck = 0.23 eV of eq. (1) and �new = 0.12 eV of eq. (2) are cosmological bounds 
derived in [5] and [28], respectively, using the Planck satellite data and the �CDM big-bang 
cosmological model of the Universe. We thus find that our best fit of the present neutrino data 
easily satisfies both the cosmological bounds in the NO case. We have noted [49] that within 
the 3σ uncertainty, the oscillation data can accommodate lower (higher) values of 

∑
i mi with 

m1 < 0.001 eV (0.001 eV < m1 ≤ 0.04 eV) consistent with the cosmological bound �Planck [5]. 
But when m1 > 0.04 eV, the bound �new [28] is violated. For best fit values of masses, the 
neutrino mass matrix constructed from neutrino data is

mNO
ν (eV) =

⎛
⎝ 0.00367 − 0.00105i −0.00205 + 0.00346i −0.00634 + 0.00294i

−0.00205 + 0.00346i 0.03154 + 0.00034i 0.02106 − 0.0001i

−0.00634 + 0.00294i 0.02106 − 0.0001i 0.02383 − 0.00027i

⎞
⎠ .

(43)

This gives∑
n,l

|mNO
ν,nl |2 = 2.595 × 10−3 eV2 . (44)

Its close vicinity with �m2 value of Table 1 in the NO case is noteworthy.
31
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Although here we have presented the numerical values of (mν)ij only for the best fit of neu-
trino oscillation data, the analysis can be easily extended for 3σ range of the extant data. We 
have to start with a suitably chosen value of the lightest eigenvalue (m1). Then the 3σ range of 
solar (�m2

21) and atmospheric (�m2
31) mass squared differences provides a range of values for 

m2(=
√

m2
1 + �m2

21) and m3(=
√

m2
1 + �m2

31) such that the set (m1, m2, m3) remains compat-
ible with the 3σ limit. Plugging in these mass eigenvalues along with all possible combinations 
and the mixing angles within the 3σ uncertainty of oscillation data as presented in the third col-
umn of Table 1 in eq. (41), we can generate large number of sets of mν matrix. It is easy to 
realise that elements of the resulting mν matrix are constrained to vary within a range as dictated 
by the 3σ uncertainty of the oscillation data. Since we are dealing with purely triplet seesaw, the 
Yukawa coupling matrix (= y(2)) has one-to-one correspondence with mν . Elements of mν and 
y(2) differ only by a scale factor (μ�2v

2/M2
�2

). A detailed analysis on 3σ and 1σ fit of neutrino 
oscillation data (including both NO and IO) for Type-II seesaw has already been presented in our 
previous work [49]. Therefore we are not repeating the whole analysis here.

Inverted ordering (IO):

m1 = 0.04938 eV, m2 = 0.0501 eV, m3 = 0.001 eV,∑
i

mi = 0.100 eV < �Planck, or �new, (45)

where �Planck = 0.23 eV [5] and �new = 0.12 eV [28] given in eq. (1) and eq. (2), respectively. 
Both the bounds have been derived using Planck satellite data [28]. It is clear that the best fit in 
the IO case also satisfies both the cosmological bounds.

mIO
ν (eV) =

⎛
⎝ 0.0484 − 0.00001i −0.001122 + 0.0055i −0.00137 + 0.00471i

−0.001122 + 0.0055i 0.02075 − 0.00025i −0.02459 − 0.00026i

−0.00137 + 0.00471i −0.02459 − 0.00026i 0.02910 − 0.00026i

⎞
⎠ .

(46)

The manifestly hierarchical nature of mass eigenvalues are evident from eq. (42) and eq. (45). 
This gives∑

n,l

|mIO
ν,nl |2 = 4.9 × 10−3 eV2 (47)

which is nearly 2 times larger than the �m2
32 value of Table 1 in the IO case. In both the NO 

and IO cases, the sum of the three neutrino masses are also consistent with the upper bound 
�new = 0.12 eV [28].

4. Estimation of baryon asymmetry

In general baryon asymmetry is expressed as excess of matter over anti-matter scaled by 
entropy density or photon density which, in practice, are expressed by two nearly equivalent 
quantities YB or ηB defined below, i.e.

YB = nB − nB

s
, (48)

where nB, nB are number densities of baryons and anti-baryons, respectively, and s is the entropy 
density and
14
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ηB = nB − nB

nγ

, (49)

where nγ = photon density. Their values as observed by recent Planck satellite experiment [5]
are

(ηB)0 = (6 − 6.6) × 10−10, (50)

or equivalently

(YB)0 = (8.55 − 9.37) × 10−11, (51)

where subscript zero indicates that the value of the corresponding asymmetry parameter is at 
the present epoch. In the present model under consideration the asymmetry is at first generated 
in the leptonic sector where lepton flavour and number violating decays of the heavy scalar 
triplet to bi-leptons gives rise to the lepton asymmetry which, later, gets converted into baryon 
asymmetry through sphaleron process. As we have clarified through an exhaustive discussion in 
Sec. 2.3 that, depending upon the mass of the decaying particle, the asymmetry production and its 
evolution down the temperature occur via unflavoured or flavoured leptogenesis. In the sections 
below we present a systematic and elaborate study of scalar triplet leptogenesis in unflavoured 
and flavoured regimes through support of proper numerical data with graphical analysis.

4.1. Unflavoured regime

In this regime the mass M�2 = M� of the decaying particle �2(= �), which is mainly re-
sponsible for asymmetry generation, is M� � 4 ×1011 GeV. As discussed earlier, lepton flavours 
in this regime are indistinguishable and their coherent superposition acts as a single entity. There-
fore, to calculate the baryon asymmetry, at first we have to compute the flavour summed CP 
asymmetry parameter εl

� given in eqs. (22), (23) which has to be plugged into the set of un-
flavoured Boltzmann equations (32)–(34). Simultaneous solution of those equations upto a large 
value of z = M�/T (or equivalently low temperature) will provide us the freeze-in value of 
(B − L) asymmetry. A fraction of this freeze-in value will be converted into baryon asym-
metry (YB) through sphaleron process which is shown in eq. (31). Throughout the analysis 
we use a fixed set of values for the heavier triplet mass and its associated tri-linear coupling 
M�1 = 3 × 1013, μ�1 = 1013 (GeV). For the phase differences between the corresponding el-

ements of m(1)
ν and m(2)

ν we follow two conventions for our numerical computations: (i) Fixed 
phase differences for all the elements, (ii) Random and different values of phase differences. 
Numerical results using both these conventions are discussed in the following two subsections.

4.1.1. Identical mass ratio and fixed phase difference connecting m(1)
ν and m(2)

ν

As we can see from the expression of the unflavoured CP asymmetry parameter (eq. (23)) 
two very important ingredients in its calculation are the modulus ratio (Fij) and phase difference 
(φ

(1)
ij −φ

(2)
ij ) between the corresponding elements of m(1)

ν and m(2)
ν . In this section our numerical 

results will be limited to the first convention with a fixed choice of ratio and phase differences 
which are again identical for all the elements, i.e. we use Fij = 0.1 and (φ(1)

ij −φ
(2)
ij ) = −π/2 for 

all i, j . For numerical value of (mν)ij we use best fit values of the neutrino oscillation observables 
in normal mass ordering (NO) as presented in eq. (43). We proceed to calculate the baryon 
asymmetry for two benchmark values of the lighter triplet mass (M�2 = 5 × 1011, 1012 GeV) 
in the unflavoured regime. For each of the fixed benchmark value of M� the corresponding 
2
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Fig. 2. Variation of final value of baryon asymmetry with trilinear coupling for two fixed benchmark values of lighter 
triplet mass using best fit values of NO type neutrino masses. The horizontal dashed line represents the experimental 
value of baryon asymmetry.

trilinear coupling μ�2 is varied over a large range and for each combination of (M�2, μ�2) final 
value of baryon asymmetry (YB) is evaluated. The variation of final YB , denoted by (YB)f in the 
figure, with μ�2 for these two fixed values of M�2 is shown graphically in Fig. 2. The dashed 
line intersects the (YB)f vs μ�2 curve in two places which signifies that for fixed value of M�2

there are two μ�2 values which can produce baryon asymmetry within the experimental range. 
We now choose one such combination (M�2 = 1012, μ�2 = 2 × 1010 GeV)2 from the Fig. 2 and 
show the evolution of different variables of the Boltzmann equation with z in Fig. 3. From the 
right panel of Fig. 3 it is clear that the final value of YB indeed freezes to ∼ 8.6 × 10−11 (which 
is well inside the range (eq. (51)) as observed by the Planck satellite experiment).

For the sake of completeness we have repeated the same analysis using IO for light neutrino 
masses i.e. every other parameters remains the same except for (mν)ij we use eq. (46). The 
resulting plot for the final values of YB with μ�2 is presented in Fig. 4. It gives similar plot as 
that of the NO case, the only difference is that for a fixed M�2 the value of μ�2 required to 
produce same YB is shifted slightly to a higher value. Again the evolution of different variables 
of the Boltzmann equation with z (for the fixed set (M�2 = 1012, μ�2 = 2.4 × 1010 GeV)) is 
shown in Fig. 5.

In a simplistic approach if we neglect the triplet asymmetry term (Y��) then we are left with 
only two coupled differential equations involving Y� and YB−L. Again in case of very weak 
washout, the wash-out term can be neglected, i.e. the 2nd Boltzmann equation contains only the 
source term. This assumption lead us to a set of Boltzmann equations which are same as those 
presented in [15], i.e.

Ẏ� = −
( Y�

Y
eq
�

− 1
)
γD − 2

[( Y�

Y
eq
�

)2 − 1
]
γA (52)

2 Although we are showing graphical representation of solution of Boltzmann equation only for this combination, 
rigorous solution of the Boltzmann equation has been carried out for each and every combinations of (M�2 , μ�2 )

shown in Fig. 2.
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Fig. 3. Left panel: Evolution of different variables of the Boltzmann equation with z = M�2/T for the fixed set (M�2 =
1012, μ�2 = 2 × 1010 GeV) and best fit to oscillation data with NO type neutrino masses. The horizontal dashed line 
represents the experimental value of baryon asymmetry. YB and Y��

are scaled by the modulus value of unflavoured 
CP asymmetry parameter denoted by ε� in the plot; Right panel: variation of YB with z for the same fixed set of 
(M�2 , μ�2 ).

Fig. 4. Variation of final value of baryon asymmetry with trilinear coupling for two fixed benchmark values of lighter 
triplet mass M�2 and IO type light neutrino masses. The horizontal dashed line represents the experimental value of 
baryon asymmetry.

Ẏ�B−L
= −

( Y�

Y
eq
�

− 1
)
εl
� . (53)

Proceeding exactly in a similar manner we compute final YB through solution of these two equa-
tions for two benchmark values of M�2 whereas μ�2 is varied over a wide range of values. The 
resulting plot of final YB with μ�2 is presented below in Fig. 6 for both the NO and IO type 
neutrino mass orderings. Due to the absence of the washout term the asymmetry produced in 
this case (for a fixed set of (M�2, μ�2)) is much higher than the value given by solution of the 
full set of Boltzmann equations (Fig. 2, Fig. 4). The triplet asymmetry which has been omitted 
in this treatment has a non-trivial effect and also neglecting the washout term (without proper 
estimation of the decay parameter (K = 
tot /H)) may lead to overestimation of the asymmetry. 
�2
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Fig. 5. Left panel: Evolution of different variables of the Boltzmann equation with z for the fixed set (M�2 =
1012, μ�2 = 2.4 × 1010 GeV) for best fit to oscillation data with IO type neutrino masses. The horizontal dashed line 
represents the experimental value of baryon asymmetry. YB and Y��

are scaled by the modulus value of unflavoured 
CP asymmetry parameter denoted by ε� in the plot; Right panel: variation of YB with z for the same fixed set of 
(M�2 , μ�2 ).

Fig. 6. Variation of baryon asymmetry with trilinear coupling for two fixed benchmark values of lighter triplet mass 
neglecting triplet asymmetry and washout. The horizontal dashed line represents the experimental value of baryon asym-
metry. The left-panel (right-panel) represents solutions for NO (IO) type light neutrino mass hierarchy.

We present this analysis just for comparison. For all the future studies in this work we will use 
the full set of Boltzmann equations.

It is worthwhile to mention that pattern of the (YB)f vs μ�2 plot exactly follows the varia-
tion of the CP asymmetry (εl

�) with μ�2 . In our analysis all the parameters except the trilinear 
coupling (μ�2 ) are fixed. In the expression of CP asymmetry parameter εl

� (eq. (22)), μ�2 de-
pendence is contained only in the total triplet decay width (
tot

�2
), and εl

�(|μ�2 |) ∼ 1/
tot
�2

(|μ�2 |)
where


tot
�2

(|μ�2 |) = c1|μ�2 |2 + c2
2 , (54)
|μ�2 |
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Fig. 7. Dependence of total decay width 
tot
�2

(of the lighter triplet) on the trilinear coupling μ�2 for fixed a mass of the 
scalar triplet �2 taking NO for light neutrinos and best fit values of the oscillation data.

with c1 = 1
8πM�2

and c2 = M5
�2

T r
(
mνm

†
ν

)
8πv4 . In the plot (Fig. 7) below we depict the μ�2 depen-

dence of 1/
tot
�2

which shows a peak near3 μ�2 =
(

c2
c1

)1/4
. It is obvious that the CP asymmetry 

will exactly follow this pattern and the final baryon asymmetry which is also directly proportional 
to CP asymmetry will also closely follow the same type of μ�2 dependence.

4.1.2. Identical mass ratio but random phase differences connecting m(1)
ν and m(2)

ν

We denote the phase difference between two corresponding elements of m
(1)
ν and m

(2)
ν

as φij = (φ
(1)
ij − φ

(2)
ij ). In the most general case, we need a set of six independent phase 

parameters {φ11, φ12, φ13, φ22, φ23, φ33} and modulus ratios {F11, F12, F13, F22, F23, F33} to 
connect m(1)

ν and m(2)
ν since they are both complex symmetric Majorana type matrices. We 

denote the set of phases and ratios as a whole by �k ≡ {φ11, φ12, φ13, φ22, φ23, φ33}k and 
Fk ≡ {F11, F12, F13, F22, F23, F33}k , where k denotes one of the sets. Here we generate a large 
number sets �k=1,...N for the phase differences where each of the component phases is an ab-
solute random number in the range −π ≤ φij ≤ π . But for the sake of simplicity we have 
limited ourselves to the case of identical modulus ratio for all the elements (i, j = 1, 3), i.e.
Fk=1,....N = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1} for each and every sets marked as k = 1, ...., N . At first 
we estimate the unflavoured CP asymmetry parameter (εl

�) for the N number of random sets 
and then choose those sets among them which gives rise to negative value of the CP asymmetry 
parameter.4 Naturally, imposition of this constraint (εl

� < 0 or equivalently YB > 0) reduces the 
number of allowed sets to ∼ N/2. To get the value of final baryon asymmetry parameter (YB), 
the set of coupled Boltzmann equations, eq. (32)-eq. (34) have to be solved approximately N/2
times which is time consuming or rather repetitive. Therefore, we pick a random set

3 Its numerical value is μ�2 = 2.9 × 1010 GeV assuming NO, taking best fit values of oscillation data and triplet mass 
fixed at M�2 = 1012 GeV.

4 For the unflavoured leptogenesis case there is relative negative sign in the formula connecting CP asymmetry ((εl
�)) 

and the final baryon asymmetry parameter (YB ). Therefore to get positive YB , the CP asymmetry (εl ) must be negative.
�

19



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
Fig. 8. Variation of baryon asymmetry with trilinear coupling μ�2 for three fixed benchmark values of lighter triplet mass 
M�2 derived by the solution full set of Boltzmann equations. The horizontal dashed line represents the experimental 
value of baryon asymmetry. The left-panel and the right-panel represent the result for NO and IO cases, respectively, 
consistent with the best fit to the oscillation data.

�k=krandom

π
≡ {−0.3418,−0.0807,0.7850,0.9961,−0.4427,0.7244} (55)

as a representative set among those N/2 and proceed further for the calculation of baryon asym-
metry in NO and IO cases. In Fig. 8 we show the dependence of the final baryon asymmetry 
on the trilinear coupling μ�2 for three benchmark values of the triplet mass M�2 taking into 
account both the NO and IO types of light neutrino mass spectra consistent with the best fit to 
the oscillation data. It is clear from Fig. 8 (left-panel) that for this choice of phases given in 
eq. (55)) in the NO case, even M�2 = 1012 GeV fails to generate adequate asymmetry within the 
experimental range for any value of μ�2 . But the left-panel of the same Fig. 8 also shows that 
the required value of baryon asymmetry can be successfully generated for M�2 = 2 × 1012 GeV 
and higher values. Right-panel of Fig. 8 shows that for IO case M�2 = 1012 GeV is enough to 
generate baryon asymmetry within the experimental range.

Now we choose a specific set of triplet mass and trilinear coupling (M�2 = 5 × 1012, μ�2 =
2.6 × 1011 GeV) for NO case, and (M�2 = 5 × 1012, μ�2 = 2.1 × 1011 GeV) for IO case. We 
show the evolution of relevant variables of Boltzmann equation as a function of z(= M�2/T ) in 
Fig. 9 and Fig. 10 for the NO and IO cases, respectively.

4.2. Flavoured regime

As already discussed above, the flavoured regime can be approximately subdivided into two: 
(i) the two-flavoured or τ -flavoured regime for which 109 <

M�2
GeV < 4 × 1011, and (ii) the 

three-flavoured or fully flavoured regime for which M�2 < 109 GeV. For the sake of simplic-
ity throughout the present work we confine our discussion to the ‘two-flavoured or τ -flavoured’ 
regime only. Here we take the mass of the lighter triplet (M�2 ) to be less than 4 ×1011 but greater 
than 109 GeV. Therefore, according to the discussion presented in Sec. 2.3, the decoherence of 
τ flavour has been achieved fully whereas e and μ still act as a coherent superposition which 
can be treated equivalently as a single flavour a ≡ e + μ. Thus here we have two distinguish-
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Fig. 9. Left-panel: Evolutions of different variables of the Boltzmann equation with z for the fixed set (M�2 = 5 ×
1012, μ�2 = 2.6 × 1011 GeV) in NO case. The horizontal dashed line represents the experimental value of baryon 
asymmetry. Right panel: variation of YB with z for the same fixed set of (M�2 , μ�2 ) as in the left-panel.

Fig. 10. Left-panel: Evolutions of different variables of the Boltzmann equation with z for the fixed set (M�2 =
5 × 1012, μ�2 = 2.1 × 1011 GeV) in IO case. The horizontal dashed line represents the experimental value of baryon 
asymmetry. Right-panel: Variation of YB with z for the same fixed set of (M�2 , μ�2 ) as in the left-panel.

able flavours a and τ .5 Accordingly we have two flavoured CP asymmetry parameters ετ
� and 

εa
� where � ≡ �2 and εa

� = εe
� + ε

μ
�. They can be calculated using the set of formulas given 

in eq. (10), eq. (11), and eq. (12) of Sec. 2.1 for flavoured CP asymmetry. Those flavoured CP 
asymmetry parameters are then used in the set of flavoured Boltzmann equations in eq. (25), 
eq. (26), and eq. (27) which have to be solved simultaneously upto a very high value of z in 
order to derive the final freeze-in value of baryon asymmetry YB . In the process of these compu-
tations we bear in mind that the lepton flavour indices (i, j, k) in those equations can take only 
two values a and τ . Therefore, the asymmetry vector 	Y� in this case consists of three entries 

given by 
[ 	Y�

]T ≡ (
Y��,YB/3−La ,YB/3−Lτ

)
. It can be understood that the dimensionality of the 

5 Hence the nomenclature of this regime as 2-flavoured or τ -flavoured regime is well known [31].
21



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
asymmetries coupling matrices Cl
ij , Cφ

k will be 2 × 3 and 1 × 3, respectively and their explicit 
numerical forms are given in Table 4 of Appendix A.3. The branching ratios (Blij ) of triplet 
decay to different lepton flavours can be regarded as a 2 × 2 matrix of the form

Bl =
(

Blaa Blaτ

Blτa Blττ

)
. (56)

The 22 element is obvious Blττ = M�2
8π
tot

�2

|y(2)
33 |2, whereas the other three entries are given by

Blaa = M�2

8π
tot
�2

∑
i,j=1,2

|y(2)
ij |2, (57)

Blaτ = M�2

8π
tot
�2

∑
i=1,2

|y(2)
i3 |2, (58)

Blτa = M�2

8π
tot
�2

∑
j=1,2

|y(2)
3j |2 . (59)

We are now in a position to solve the set of flavoured Boltzmann equations to find the value of the 
asymmetry parameters YB/3−La (z → zf ), YB/3−Lτ (z → zf ) where zf is a large enough value 
of z where asymmetry freezes, i.e. it does not change furthermore with decrease in temperature 
T. Then the final baryon asymmetry parameter YB is evaluated by summing over YB/3−La(zf ), 
YB/3−Lτ (zf ) followed by multiplication with sphaleronic factor and the SU(2) factor as shown 
in eq. (31). Now the detailed numerical analysis has been subdivided in two categories depending 
upon the phase differences and modulus ratios in a manner similar to that of the unflavoured case.

4.2.1. Identical ratio and phase differences connecting m(1)
ν and m(2)

ν

For numerical computations we use a fixed modulus ratio and phase difference as Fij = 0.1

and (φ(1)
ij −φ

(2)
ij ) = −π/2 for all i, j . Numerical values of the light neutrino mass matrix elements 

(mν)ij have been obtained by using the best fit values of the neutrino oscillation data with NO 
type mass hierarchy of eq. (43). The rest of the analysis has been carried out for two fixed 
benchmark values of the lighter triplet mass in the range 109 GeV < M�2 < 4 × 1011 GeV. The 
trilinear LNV coupling μ�2 is taken over a wider range of values while keeping the ratio 

μ�2
M�2

within the perturbative limit. After gathering information about all the required quantities, we 
first estimate the flavoured CP asymmetry parameters of eq. (10), eq. (11) and eq. (12). In this 
context, it should be mentioned that the flavour violating (or the purely flavoured) part of the CP 

asymmetry parameter εli (/F )

� of eq. (12) vanishes identically since the phase differences (φ(1)
ij −

φ
(2)
ij ) are assumed to be identical for any combination of i, j . Therefore only the combined CP-

asymmetry with (lepton number + flavour) violating part εli(/L,/F )

� contributes to the asymmetry 
generation.

For NO type light neutrino mass hierarchy, the (YB ) parameter dependence on the trilinear 
coupling (μ�2 ) is shown in Fig. 11 for two fixed benchmark values of M�2 = 1011, 4 × 1011

GeV. For both the values of the triplet mass, the curve intersects the horizontal line representing 
experimental baryon asymmetry at two places. It signifies that for each fixed value of the triplet 
mass, enough asymmetry within the experimental range can be generated with two distinct values 
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Fig. 11. Variation of baryon asymmetry with trilinear coupling for two fixed benchmark values of the triplet mass (M�2 =
1011 GeV and M�2 = 4 × 1011 GeV) in the NO case. The horizontal dashed line represents the experimental value of 
baryon asymmetry.

Fig. 12. Left-panel: Evolutions of different flavour asymmetry parameters with z for the fixed set (M�2 = 1011, μ�2 =
3.4 × 109 GeV). Right-panel: Variation of Y�, Y��

, YB with z for the same fixed set of (M�2 , μ�2 ). The horizontal 
dashed line represents the experimental value of baryon asymmetry. The whole analysis has been carried out using NO 
type light neutrino masses and the best fit.

of trilinear coupling μ�2 , one before and the other after the peak of the curve. Picking one such 
combination of triplet mass and trilinear coupling (M�2 = 1011, μ�2 = 3.4 ×109 GeV) we show 
the evolution of different flavour asymmetry parameters with z in the left-panel of Fig. 12 while 
the right-panel of the same figure depicts the variations of triplet density abundance (Y�), triplet 
asymmetry (Y��) and the baryon asymmetry parameter (YB)6 which for a large value of z freezes 
to the experimental value (shown by dashed line).

6 In Fig. 12 we have scaled the variables Y��
, YB by sum of absolute value of the flavoured CP asymmetry parameters 

(ε� = |εe+μ| + |ετ |) to show all of them (Y�, Y� , YB ) in same figure.
� � �
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Fig. 13. CP asymmetry parameter corresponding to the flavour a ≡ e + μ for a wide range of values of μ�2 . The thick 
spread along the vertical axis signifies N number of values of the asymmetry parameter corresponding to N random sets 
of phase differences. Left-panel: M�2 = 1011 GeV (fixed); Right-panel: M�2 = 4 × 1011 GeV (fixed).

4.2.2. Identical ratio but random phase differences connecting m(1)
ν and m(2)

ν

Following exactly the same procedure as in Sec. 4.1.2 we generate large number of sets of ran-
dom phase differences �k=1,...N (N = large integer) while taking identical values for all ratios 
Fk=1,....N = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1}. Although theoretically we can find the baryon asym-
metry for all these N number of sets, practically it is too time consuming. So we choose one 
specific set among those N number of sets. Particularly, we select that set which will produce 
maximum CP asymmetry. For this purpose we choose two fixed values of the lighter triplet 
mass M�2 = 1011, 4 × 1011 GeV, while permitting μ�2 over a wide range. For each combi-
nation of (M�2, μ�2) the flavoured CP asymmetries are computed taking into account all of 
the (N ) random sets of phases.7 The resulting plot is shown in Fig. 13 where the spread in 
values of CP asymmetry for a fixed value of μ�2 arises due to the N random sets. Then we 
pick the top most value of CP asymmetry from the plot and the set of phase differences as 
�k=kmax

π
= {−0.711, −2.228, −1.798, −1.606, −1.809, −1.481}. Only this very set is used for 

all the future numerical computations. One interesting aspect of this scenario is that here we 
can have non-trivial value of the flavour violating (or purely flavoured) CP asymmetry parameter 

(ε
li (/F )

� ) due to the unequal values of phase differences (φ(1)
ij −φ

(2)
ij ) (i, j = 1, 3) for different com-

binations of i, j . We examine whether the allowed range of parameters can meet the requirement 

of purely flavoured leptogenesis (PFL) (i.e. (ε
li (/F )

� 
 ε
li (/L,/F )

� )). In Fig. 14 we show the relative 
magnitudes of the two components (only F violating, (L + F violating)) of the CP asymmetry 
parameter corresponding to the flavour a ≡ e +μ for a wide range of μ�2 for each value of M�2

kept fixed at 1011 GeV or 4 × 1011 GeV. It is clear from Fig. 14 that PFL condition is satisfied 
only over a short range of values of μ�2 , i.e. μ�2 � 106 GeV when M�2 fixed at 1011 GeV and 
μ�2 � 107 GeV for M�2 = 4 × 1011 GeV. But the resulting values of the total CP asymmetry 
within these above mentioned range are too small (εe+μ

� ∼ 10−12 − 10−11) to produce enough 
baryon asymmetry. To get higher values of CP asymmetry we have to go to the higher values 

of μ�2 for which εli (/L,/F )

� increases but εli (/F )

� decreases with μ�2 and, eventually, the (lepton 
number+flavour) violating asymmetry becomes much larger than the flavour violating one so 

7 Here we have taken N = 10000, i.e. 10000 random sets have been generated.
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Fig. 14. Relative magnitude of different components of the CP asymmetry parameter corresponding to the flavour a ≡
e + μ for a wide range of values of μ�2 . Left panel: M�2 = 1011 GeV (fixed); Right panel: M�2 = 4 × 1011 GeV 
(fixed).

Fig. 15. Variation final value of baryon asymmetry with trilinear coupling for two fixed benchmark values of lighter 
triplet mass (M�2 = 1011 GeV and M�2 = 4 × 1011 GeV). The horizontal dashed line represents the experimental 
value of baryon asymmetry (the whole analysis has been carried out assuming NO for light neutrino masses).

that the total asymmetry merges with the (/L, /F ) component, i.e. ε
li
� � ε

li (/L,/F )

� . For successful 
leptogenesis (i.e. to generate baryon asymmetry at the experimental order through leptogene-
sis), the value of CP asymmetry required is around (∼ 10−8 − 10−6) depending upon the mass 
of the lighter triplet. When the total CP-asymmetry lies around the range mentioned above, the 

flavour violating component εli(/F )

� is negligibly small and total asymmetry can be considered to 

be constituted solely by the (lepton number+flavour) violating part (εli(/L,/F )

� ) which is clear from 
Fig. 14. Therefore the discussions following Fig. 14 allow us to conclude that although we can 
generate adequate baryon asymmetry (YB) through flavoured leptogenesis, condition of PFL can 
not be satisfied. In other words in the regime where PFL condition is satisfied, the resulting CP 
asymmetry comes out to be so small that it can not generate YB within the experimental range.

We now plot the final values of the baryon asymmetry parameter (YB)f as a function of the tri-
linear coupling (μ� ) in Fig. 15 for two fixed benchmark values of the triplet mass (M� ). Both 
2 2
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Fig. 16. Left-panel: Evolution of baryon asymmetry parameters with z for fixed values of (M�2 = 1011, μ�2 =
3.6 × 109 GeV) using best fit to neutrino oscillation data with NO type light neutrino masses. Right panel: Variation 
of Y�, Y��

, YB with z for the same fixed set of (M�2 , μ�2 ). The horizontal dashed line represents the experimental 
value of baryon asymmetry.

the curves ((YB)f vs (μ�2)) intersect the horizontal dashed line representing the experimental 
value of YB at two places which in turn indicates that for each fixed value of (M�2) there are two 
(M�2 , μ�2) combinations which successfully generates the desired value of baryon asymmetry 
in the experimental range. Out of the two intersecting points located on the horizontal line in the 
(YB)f vs (μ�2) curve, we choose the extreme left point corresponding to fixed M�2 = 1011 GeV 
curve which identifies this point with (M�2 = 1011, μ�2 = 3.6 × 109 GeV)). Correspondingly 
we show the variation of flavour asymmetry parameters (YB/3−Le+μ, YB/3−Lτ ) with z in the left 
panel of Fig. 16 while the right panel of the same figure depicts the evolution of other variables 
occurring in solutions of Boltzmann equations including the baryon asymmetry. The left-panel 
and the right-panel of this figure clearly indicate that, for this specific choice of parameters, the 
baryon asymmetry finally freezes-in to the desired constant value within the experimental range 
at a large enough value of z (or at sufficiently low temperature).

5. Minimal model extension for dark matter and vacuum stability

The inert scalar doublet model has radiative seesaw ansatz for neutrino masses and intrinsic 
capability for dark matter [50] which has been also shown to originate from SO(10) [51] with 
matter parity [52–54] as the stabilising discrete symmetry. More recently new possible origin of 
scotogenic dark matter stability has been also suggested from softly broken global lepton number 
symmetry U(1)L [55]. This inert doublet model [50] also does not have vacuum instability prob-
lem in the associated scalar potential. But the two heavy Higgs scalar triplet model [15] (or the 
purely triplet seesaw model [31]), as such, does not possess dark matter through which it can ex-
plain cosmological evidences including the observed relic density (�DMh2 = 0.1172 − 0.1224)

[5,6,43]. The expected DM mass has been also bounded from direct and indirect detection ex-
periments [39–42]. This issue has been also addressed in a number of ways in SM extensions 
through a singlet scalar representing a weakly interacting massive particle (WIMP) [46] as DM 
candidate and the investigations have been also updated more recently in [47]. But most of the 
models discussed in [47] and earlier have not addressed neutrino oscillation data, cosmological 
bound, and baryon asymmetry via leptogenesis. Also they have not addressed the issue on the 
26



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
Table 2
Singlet scalar extensions of the two Higgs triplet model [15] and its particle 
content with respective charges under G213 × Z2 symmetry. The second and 
the third generation fermions not shown in this Table have identical transfor-
mation properties.

Particle SM charges Z2 charge

(ν, e)T
L

(2,−1/2,1) −1
eR (1,−1,1) −1
(u, d)T

L
(2,1/6,3) −1

uR (1,2/3,3) −1
dR (1,−1/3,3) −1
φ (2,1/2,1) +1
�1 (3,−1,1) +1
�2 (3,−1,1) +1
ξ (1,0,1) −1

vacuum stability of the associated scalar potential [44,45]. Using corresponding renormalisation 
group evolutions (RGEs) discussed in the Appendix we find that in the two heavy Higgs triplet 
model [15] with M�i

(i = 1, 2) ≥ 1013 GeV, although the stability has been improved by pre-
dicting the Higgs quartic coupling λφ to be positive in an extended region with |φ| ≥ 1013 GeV, 
the problem has not been completely resolved. In particular, we note that in this model [15] the 
standard Higgs quartic coupling λφ runs negative in the interval |φ| � 1010 − 1013 GeV showing 
the persistence of vacuum instability of the scalar potential [44,45]. Such instability also persists 
in the more recent investigation of the two-triplet model [31]. In this section we discuss how the 
heavy Higgs triplet model that accounts for neutrino mass and baryon asymmetry as discussed 
above can also be easily extended further to account for the phenomena of WIMP DM while 
completing vacuum stability through the same scalar DM. We add a real scalar singlet ξ to the 
two Higgs triplet model [15] and assume an additional Z2 discrete symmetry under which ξ and 
all SM fermions are odd. All other scalars including the SM Higgs φ and the two triplets are 
assumed to possess Z2 = +1. Thus the resulting Lagrangian after this real scalar extension has 
the symmetry SU(2)L × U(1)Y × SU(3)C × Z2(≡ G213 × Z2). The particle content and their 
charges in the minimally extended model under this symmetry are shown in Table 2.

5.1. Real scalar singlet dark matter

At all lower mass scales μ � M�i
(i = 1, 2) noting that the two heavy Higgs triplets in the 

Lagrangian of [15] are expected to have decoupled leading, effectively, to the SM scalar potential
μ � M�i

(i = 1, 2):

VSM = −μ2
H φ†φ + λφ(φ†φ)2. (60)

It is well known that this SM potential alone develops vacuum instability as the quartic coupling 
λφ runs negative at energy scales μ ≥ 5 × 109 GeV [44,45]. In models with type-I see saw 
extensions of the SM, the negativity of λφ is further enhanced due to RHN Yukawa interactions. 
This latter type of enhancement due to RHN is absent in the purely triplet leptogenesis model 
[15]. Using renormalisation group equations discussed in the Appendix we find that the SM 
Higgs quartic coupling remains positive for field values |φ| ≤ 5 × 109 GeV and |φ| ≥ 1013 GeV 
where the latter limit is due to M�2 = 1013 GeV in [15]. Although such positive values of Higgs 
quartic coupling is a considerable improvement over purely SM running, the model [15] does 
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not resolve the vacuum instability issue completely. This is due to the fact that standard Higgs 
quartic coupling in the model [15] acquires negative values in the region |φ| � 5 × 109 GeV to 
|φ| � 1013 GeV. Further details of discussion of this problem has been made below in Sec. 5.1.3.

In order to resolve both the issues on DM and vacuum stability of the scalar potential, we 
make a simple extension of the model [15] by adding a real scalar singlet ξ whose mass we 
determine from DM relic density, direct detection experimental bounds and vacuum stability fits. 
For the stability of DM we impose a Z2 discrete symmetry under which ξ and all SM fermions 
are odd, but all other scalars in the extended model are even under Z2 as shown in Table 2. The 
scalar potential is now modified in the presence of ξ for mass scales μ < M�2

Vξ = VSM + μ2
ξ ξ

2 + λξ ξ
4 + 2λφξ (φ

†φ)ξ2. (61)

In eq. (61) λξ = dark matter self coupling, λφξ = Higgs portal coupling and μξ = mass of ξ . 
The VEV of the standard Higgs doublet redefines the DM mass parameter

M2
DM = 2(μ2

ξ + λ2
φξ v

2),

m2
φ = 2μ2

H = 2λφv2. (62)

For mass scales μ ≥ M�2 the Higgs potential receives additional contributions due to �i(i =
1, 2) and its interactions with others

μ ≥ M�2 :

Vξ� = Vξ +
∑

(i=1,2)

(
M2

�i
Tr(�†

i �i) + λi
1[Tr(�†

i �i)]2 + λi
2[Tr(�†

i �i)]2 − Tr[(�†
i �i)

2]
)

+
∑

(i=1,2)

(
λi

3(φ
†φ)Tr(�†

i �i) + λi
4φ

†[(�†
i �i) − (�i�

†
i )]φ

+
[

μi√
2
φT iτ2�

†
i φ + H.c.

])

+
∑

(i=1,2)

λi
ξ Tr(�†

i �i)ξ
2 (63)

where Vξ has been defined in eq. (61).

In order to examine the allowed values of the Higgs portal coupling λφξ , we use two different 
kinds of experimental results: (i) bounds on cosmological DM relic density [5,43] �DMh2 =
0.1172 − 0.1224, (ii) bounds from DM direct detection experiments such as LUX-2016 [39], 
XENON1T [40,41] and PANDA-X-II [42]. Using our ansatz we estimate the relic densities for 
different combinations of mξ, λφχ . It is then easy to restrict the values of mξ and λφξ using 
the bound on relic density mentioned above. In direct detection experiments it is assumed that 
WIMPs passing through earth scatter elastically from the target material of the detector. The 
energy transfer to the detector nuclei can be measured through various types of signals. All 
those direct detection experiments provide DM mass vs DM-nucleon scattering cross section 
plot which clearly separates the allowed regions below the predicted curve from the forbidden 
regions above the curve.
28



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
5.1.1. Estimation of dark matter relic density
We assume the WIMP DM particle ξ to have decoupled from the thermal bath at some early 

epoch which has thus remained as a thermal relic. The following conventions are used at a certain 
stage of evolution of the Universe. Denoting 
 = particle decay rate and H = Hubble parameter, 
a particle species is said to be coupled if 
 > H . Similarly it is assumed to have decoupled 
if 
 < H . The corresponding Boltzmann equation [56,57] is solved for the estimation of the 
particle relic density

dn

dt
+ 3Hn = −〈σv0〉(n2 − n2

eq) (64)

Here n = actual number density of ξ at a certain instant of time, neq = its equilibrium number 
density, v0 = velocity of ξ , and 〈σv0〉 = thermally averaged DM annihilation cross section. 
Approximate solution of Boltzmann equation gives the expression for the relic density [57,58]

�DMh2 = 1.07 × 109xF√
g∗Mpl〈σv0〉 (65)

where xF = mξ/TF , TF = freeze-out temperature, g∗ = effective number of massless degrees 
of freedom and Mpl = 1.22 × 1019 GeV. This xF can be computed by iteratively solving the 
equation

xF = ln

⎛
⎝ mξ

2π3

√
45M2

pl

8g∗xF

〈σv0〉
⎞
⎠ . (66)

In eq. (65) and eq. (66), the only particle physics input is the thermally averaged annihilation 
cross section. The total annihilation cross section is obtained by summing over all the annihi-
lation channels of the singlet DM which are ξξ → FF̄ , W+W−, ZZ, hh where the symbol F
represents all the associated fermions of SM. Using the expression of total annihilation cross sec-
tion [59–61] in eq. (66) at first we compute xF which is then utilised in eq. (65) to yield the relic 
density. Two free parameters involved in this computation are mass of the DM particle mξ and 
the Higgs portal coupling λφξ . The relic density has been estimated for a wide range of values 
of the DM matter mass ranging from few GeVs to few TeVs while the coupling λφξ is also var-
ied simultaneously in the range (10−4 − 1). The parameter space (mξ , λφξ ) is thus constrained 
by using the bound on the relic density reported by WMAP [43] and Planck [5]. In Fig. 17 we 
show only those combinations of λφξ and mξ which are capable of producing relic density in the 
experimentally observed range.

5.1.2. Dark matter mass bounds from direct detection experiments
We get exclusion plots of DM-nucleon scattering cross section and DM mass from different 

direct detection experiments. The spin independent scattering cross section of singlet DM on 
nucleon is [62]

σ SI = f 2
n λ2

φξμ
2
Rm2

N

4πm2
ξm

4
h

(cm2), (67)

where mh = mass of the SM Higgs (∼ 125 GeV), mN = nucleon mass ∼ 939 MeV, μR =
(mξmN)/(mξ + mN) = reduced DM-nucleon mass and the factor fn ∼ 0.3. Using eq. (67) the 
exclusion plots in the σ − mξ plane can be easily brought to λφξ − mξ plane. We superimpose 
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Fig. 17. Determination of dark matter mass from observed relic density, direct detection experiments, and vacuum sta-
bility: The yellow curve denotes the values of the parameters (λφξ , mξ ) allowed by the relic density bound (�DMh2 =
0.1172 −0.1224). The cyan band represents overlapping exclusion plots from direct detection experiments of LUX-2016, 
XENON1T(2017) and PANDA-XII(2017) for which any region below (above) the green band is allowed (forbidden). The 
vertical line at log(mξ ) = 3.1 (mξ = 1.3 TeV) is due to limit set by vacuum stability of the scalar potential as discussed 
in Sec. 5.1.3. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

the λφξ versus mξ plots for different experiments on the plot of allowed parameter space con-
strained by relic density bound resulting in Fig. 17. Thus the Fig. 17 exhibits the parameter space 
(λφξ vs. mξ ) constrained by both the relic density bound and the direct detection experiments.

From Fig. 17 we note that the points on the yellow curve lying below the green band are 
allowed by both relic density and direct detection experiments. This predicts lower values of 
DM mass in the region mξ � 59 − 63 GeV for the Higgs portal coupling λφ,ξ ≤ 10−3 which 
is too small to be compatible with vacuum stability completion discussed below in Sec. 5.1.3. 
All other values of DM masses mξ ≥ 750 GeV are also allowed by relic density and direct 
detection experimental constraints. But as discussed below this region will be further constrained 
by vacuum stability criteria.

5.1.3. Resolution of vacuum instability
We have examined vacuum stability of different scalar potentials encountered in different 

regions of Higgs field value μ = |φ| starting from μ = mtop − MPlanck through the renormalisa-
tion group evolutions (RGEs) of the standard Higgs (φ) quartic coupling in the respective cases 
[63–66] which have been given in Sec. A.4 of the Appendix. At first using RGEs for Higgs quar-
tic coupling λφ and gauge and top quark Yukawa couplings for the SM alone in the absence of 
DM ξ or heavy triplets, we have plotted the quartic coupling against standard Higgs field values 
μ = |φ| = mtop − MPlanck . As already noted [44,45] λφ(μ) runs negative for all field values 
μ ≥ 5 × 109 GeV clearly exhibiting vacuum instability of the SM Higgs potential. This has been 
shown by the lower curve in Fig. 18. We next examined the evolution of λφ(μ) in the two-heavy 
Higgs triplet extension model [15] using M�2 � M�1 � 1013 GeV but in the absence of DM ξ . 
Besides being positive for μ < 5 × 109 GeV, the Higgs potential became definitely positive for 
field values μ ≥ 1013 GeV with considerable improvement on the stability. However, the quartic 
coupling is found to be negative for field values in the range μ = 5 × 109 GeV to μ = 1013 GeV 
as demarcated by the two vertical green dashed lines in Fig. 18). We next included the effect of 
DM ξ and the Higgs portal coupling λφξ through the DM modified Higgs potential Vξ ignor-
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Fig. 18. Renormalization group evolution of Higgs quartic coupling (denoted as λ�) as a function of scalar field value 
μ = |φ| showing presence of vacuum instability in the SM (lower red curve) for μ > 5 × 109 GeV. The vertical green 
dashed lines represent boundaries of the region within which λφ runs negative for 5 ×109 GeV < μ < M�2 � 1013 GeV
in the model of [15]. The middle blue curve marked as SM+DM represents evolution of λφ in the presence of real scalar 
DM ξ , excluding triplets, in the present model extension. Additional RG correction in the present model due to triplet 
masses has been shown by the uppermost curve marked as SM+DM+� where threshold enhancement due to �2 mass 
has been also included.

ing the presence of Higgs triplets in the model extension. The quartic coupling λφ was found to 
be positive in the entire region of Higgs field values until the Planck mass. This behaviour has 
been shown by the upper curve in Fig. 18 excluding the threshold like enhancement at μ = 1012

GeV. Finally the combined effects of DM ξ and the heavy Higgs triplets have been included 
on the Higgs quartic coupling running where the effect of heavy Higgs triplets occurs only for 
μ ≥ M�2 . In this region we have taken λ(2)

1 = λ
(1)
2 � 0.15 and ignored the effect of all other 

quartic couplings by setting their starting values to be negligibly small. We have also retained 

small threshold effect due to �2 resulting in �λφ = μ2
�2

M2
�2

. Due to allowed heavier mass of �1 its 

threshold effect has been treated to be negligible.
Initial values of the Higgs quartic coupling λφ , DM self coupling λξ , DM Higgs portal cou-

pling λφξ , SM gauge couplings gY , g2L, g3c , and the top quark Yukawa coupling ht used for 
RG evolution have been shown in Table 3 for mξ = 1.3 TeV and mξ = 2 GeV. We find that 
at mξ = 1.3 TeV, the one-loop evolution of λφ reaches its minimum positive value around 
|φ| = 1013 GeV. But if mξ < 1.3 TeV, then λφ tends to run negative in the region 1011 − 1012

GeV even in the presence of heavy triplets which have their masses > 1011 GeV in the present 
investigation. This leads us to conclude that the vacuum stability predicts the real scalar DM 
mass to be mξ ≥ 1.3 TeV. As the direct detection cross section rapidly decreases with increasing 
mξ in this region, the predicted mass mξ = 1.3 TeV is expected to be more accessible to experi-
ments compared to values mξ 
 1.3 TeV, although the latter values are also allowed by the three 
constraints:relic density, direct detection, and vacuum stability.

5.1.4. Summary of dark matter mass prediction
We summarize below the results of theoretical and computational analyses on DM mass car-

ried out in this section
31



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
Table 3
Initial values of coupling constants at top quark mass μ = mtop = 173.34 GeV [67,68] for different values of the scalar 
singlet dark matter mass mξ . The input values of gauge couplings gi (i = Y, 2L, 3C) and top-quark Yukawa coupling ht

are due to PDG data [69] as explained in the Appendix. The predicted values of λφξ and mξ are obtained from the plot 
of constrained parameter space of Fig. 17. Values mentioned in 4th to 8th columns are common to all the dark matter 
masses.

mχ (TeV) λφξ λξ λφ g1Y g2L g3C ht

0.75 0.075 0.190
1.3 0.118 0.220
1.5 0.140 0.165 0.129 0.35 0.64 1.16 0.94
2 0.158 0.100

• Although the DM mass values in the narrow region mξ = 59 − 63 GeV are permitted by 
both relic density [43,70] and direct detection measurements, the corresponding Higgs portal 
coupling values λφ,ξ � 1.7 × 10−4 − 1.6 × 10−3 are too small to complete vacuum stability 
of the scalar potential.

• All DM mass values mξ ≥ 750 GeV easily satisfy both the relic density and the direct detec-
tion constraints. But for masses 0.75 TeV < mξ < 1.3 TeV, the corresponding input values 
of λφ,ξ yield negative values for the RG evolution of λφ in the region |φ| � 1010 −1011 GeV 
leading to vacuum instability of the scalar potential.

• Thus, we find that the present minimal extension of the two-triplet model predicts real scalar 
singlet DM mass mξ ≥ 1300 GeV that satisfies all the three constraints: relic density, direct 
detection, and vacuum stability of the scalar potential. Out of these, the lowest limit mξ =
1.3 TeV is expected to be comparatively more sensitive and accessible to direct detection 
experiments.

6. Radiative stability of Higgs mass and naturalness

In the present two-triplet model there are couplings of SM Higgs scalar (φ) with triplets 
which are likely to introduce large radiative correction δmφ ∝ M�1 � 1013 GeV, the highest 
mass scale in the theory. This would destabilise the SM Higgs mass prediction and electroweak 
gauge hierarchy, and calls for exploring naturalness criteria [37,38,71,72], if any, to restrict such 
correction not to exceed the observed Higgs mass. A number of investigations have been carried 
out to constrain certain non-SUSY seesaw model parameters to stabilise the Higgs mass near 
the electroweak scale [37,38,71,72]. In this section we discuss how a naturalness constraint is 
available within this two-triplet model without upsetting the model predictions for neutrino mass, 
leptogenesis, dark matter, and vacuum stability discussed in previous sections.

The Feynman diagrams with loop-mediation by the components of the two heavy Higgs 
triplets are shown in Fig. 19. Neglecting the contribution of the second diagram in Fig. 19 which 
is ∝ v2, those due to the other two diagrams add up to

δm2
φ = −3

16π2

(
[λ(1)

3 + 1

2
|λ(1)

6 |2]M2
�1

[1 + ln(
�2

R

M2
�1

)]
)

+ −3

16π2

(
[λ(2)

3 + 1

2
|λ(2)

6 |2]M2
�2

[1 + ln(
�2

R

M2 )]
)

. (68)

�2
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Fig. 19. Feynman diagrams showing one-loop corrections to the standard Higgs mass mediated by charged and neutral 
components of two heavy scalar triplets �i

α(α = 1, 2; i = ±±, ±). Here Im�0 is the imaginary part of the neutral 
component of standard Higgs doublet �.

As explained earlier, the dimensionless couplings λ(j)

6 = μj

M�j
(j = 1, 2) are known from fitting 

the oscillation data and our leptogenesis ansatz in various cases leading to wider range of values 
for λ(2)

6 . The first (second) line in eq. (68) represents the dominant radiative corrections to the 
Higgs mass due to the heavy triplet �1(�2). Using the regularisation scale �R = M�1 which is 
the highest scalar mass in this model gives

δm2
φ = (

−3

16π2 )

(
[λ(1)

3 + 1

2
|λ(1)

6 |2]M2
�1

+ [λ(2)
3 + 1

2
|λ(2)

6 |2]M2
�2

RL

)
, (69)

where

RL = 1 + ln(
M2

�1

M2
�2

). (70)

Eq. (69) leads to

δm2
φ

m2
φ

= 0.019

[
M�1

100 GeV

]2 (
λ

(1)
3 + 1

2
|λ(1)

6 |2 + [λ(2)
3 + 1

2
|λ(2)

6 |2]R�RL

)
, (71)

where

R� = M2
�2

M2
�1

. (72)

The naturalness criteria then suggest that RHS of eq. (71) ≤ 1. Thus the present model can be 
consistent with naturalness if the quantity inside the parenthesis in the RHS of this eq. (71) is 
fine tuned to be zero and such cancellation should be ensured at least upto 2nδ − 4 places after 
the decimal point where 

M�1
GeV

= 10nδ . For this purpose we note that although 0.1 ≤ R� < 1
and RL > 1, the product 0.1 < R�RL < 1 which make the cancellation possible within the 
perturbative limits of λ(i)

3 (i = 1, 2). Contrary to various constraints available on φφ�� quartic 
couplings [73] in one-triplet extensions of the SM [72], there does not seem to exist similar 
bounds in two-Higgs triplet model except for the universal perturbativity bound.

With fixed values of (M�1 = 3 × 1013, μ�1 = 1013) GeV but for three different sets of 
(M�2 = 5 × 1012, μ�2 = 2 × 1011) GeV, (2 × 1012, μ�2 = 7.7 × 1010) GeV, and (1012, μ�2 =
1.1 × 1011) GeV, allowed by neutrino mass and unflavoured leptogenesis, we make a parametric 
representation of the naturalness criteria for those values of (λ(1)

3 vs.λ(2)
3 ) for which the RHS 

of eq. (71) vanishes. These three domains of naturalness solutions are presented by respec-
tive straight lines designated by the corresponding values of parameters as shown in Fig. 20. 
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Fig. 20. Allowed domains for fine-tuned naturalness solution in the two-heavy triplet seesaw and leptogenesis model 
consistent with neutrino mass, baryon asymmetry of the Universe, vacuum stability, and one-loop radiative stability of 
Higgs mass.

From Fig. 20 we find that the naturalness constraint that keeps RHS of eq. (71) ≤ 1 is satis-
fied for all quartic couplings well within the perturbative limits. Some of the numerical values 
of λ(i)

3 (i = 1, 2) satisfying naturalness constraint as shown in Fig. 20 have been already taken 
into account in the RGE of λφ(μ) in our vacuum stability ansatz of Sec. 5.1.3. Contributions 
of other larger values of these quartic couplings λ(i)

3 (i = 1, 2) are found to keep the values of 
λφ(μ) well below the perturbative limit even at μ � MPlanck . We have checked that similar plots 
displaying naturalness constraints on the quartic couplings are possible for other two-flavoured 
leptogenesis solutions with M�2 = 1 × 1011 GeV and M�2 = 4 × 1011 GeV. Particularly, the 
small λ(i)

3 (i = 1, 2) solutions represented by red and orange coloured straight lines in Fig. 20
might be relevant for quantum gravity [74] which predicts all quartic couplings to vanish for 
μ > MPlanck .

We thus conclude that the two triplet model can confront the Higgs mass naturalness problem 
via fine tuning of the model parameters without affecting neutrino mass, leptogenesis, dark matter 
and vacuum stability predictions.

7. Summary and outlook

The original suggestion of purely triplet seesaw and leptogenesis [15] addresses the interesting 
new possibility that both neutrino masses and baryon asymmetry of the universe can be explained 
using only two heavy Higgs triplets in the absence of right-handed neutrinos. If neutrinos are 
quasi-degenerate with relatively larger mass scale, they can predict baryon asymmetry of the 
universe [15] while manifesting in experimentally verifiable double beta decay. Noting that the 
recently determined cosmological bounds due to Planck satellite data has severely restricted 
the sum of three neutrino masses to < 0.23 eV (or even smaller bound < 0.12 eV), and the 
recent neutrino oscillation data have revealed θ23 to be in the second octant with large Dirac CP-
phase (� 214◦), in this work we have examined this model predictions with hierarchical neutrino 
masses satisfying these cosmological bounds in concordance with the neutrino oscillation data.

We have also attempted to explore the model potential in addressing current issues on dark 
matter and vacuum stability of the scalar potential through a simple minimal extension of the 
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model [15]. We find that the original model can explain both the recent neutrino oscillation data 
while successfully predicting baryon asymmetry of the universe for both normal and inverted 
orderings where our best fit is consistent with the sum of the three neutrino masses to be nearly 
25%(50%) of the Planck satellite bound reported in [5] ([28]).

We have further shown the possibilities of both unflavoured and two-flavoured leptogenesis 
leading to experimental values of baryon asymmetry through detailed solutions to the respective 
set of CP-asymmetries and Boltzmann equations where the numerical results are consistent with 
generic choice of the two constituent light neutrino mass matrices (m(1)

ν , m(2)
ν ). It has been shown 

(through proper graphical illustration) that adequate asymmetry as quoted by the experiments can 
be successfully generated even if elements of those two matrices are connected by completely 
random phases.

In addition we have also found that a simple minimal extension of the two-Higgs triplet model 
[15] successfully predicts a real scalar single dark matter in agreement with observed relic den-
sity and mass bounds set by direct and indirect detection experiments. Noting that in the scalar 
potential of the original model [15], the standard Higgs quartic coupling λφ runs negative in the 
region 5 ×109 GeV ≤ |φ| ≤ 1013 GeV, we have shown how the presence of this real scalar singlet 
DM also completes the vacuum stability. The lowest limit of the DM mass mξ � 750 GeV that 
satisfies the existing data and constraints due to relic density and direct and indirect detection 
experiments, is further pushed to 1.3 TeV under the constraint of vacuum stability completion.

Noting that the two-triplet model, as such, is likely to destabilise the electroweak gauge hi-
erarchy through large Higgs mass radiative correction, we have also found the corresponding 
naturalness constraint on the model parameters that restricts this correction not to exceed the ob-
served value of the Higgs mass itself. This naturalness constraint on model parameters does not 
affect our successful predictions of neutrino mass, leptogenesis, baryon asymmetry, dark matter 
and vacuum stability.

In conclusion we note that the purely triplet seesaw model for neutrino mass and leptogenesis 
[15] is capable of successfully describing the most recent neutrino oscillation data including θ23
in the second octant and large Dirac CP-phase for both normal and inverted ordering of neutrino 
masses in concordance with the existing cosmological bounds determined from Planck satellite 
measurement. Being non-supersymmetric the model has no gravitino problem and has a natural 
advantage of predicting cosmologically safe relic abundance of light elements. Supplemented 
by the underlying naturalness criteria the model is capable of ensuring Higgs mass radiative 
stability. We further conclude that a simple minimal extension of this model [15] successfully 
explains the direct and indirect evidences of dark matter; it also completes vacuum stability of 
the scalar potential. Thus, a simple and minimal extension of the original model [15] is capable 
of solving current puzzles confronting the SM: neutrino oscillation and baryon asymmetry of 
the universe within the cosmological bound but without gravitino problem, dark matter, vacuum 
stability, and Higgs mass radiative stability.

Although the dark matter stabilising Z2 discrete symmetry has been assumed in the present 
model extension based upon the symmetry SU(2)L × U(1)Y × SU(3)C × Z2 in the spirit of 
numerous other models including [21,47,50,75,76], it would be interesting to explore its deeper 
gauge theoretic origin as in [51–53,77,78] from unified model perspectives [33,54,79]. Because 
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of dark-matter portal couplings with triplets, λ(i)
ξ (i = 1, 2), the real scalar DM mass prediction 

may be unstable against one loop radiative correction. But the model has a DM mass stability 
constraint similar to eq. (71) that can restrict the radiative correction close to or less than mξ

through fine-tuning of these couplings.
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Appendix A

A.1. Number density of particle species

The number densities for the massive as well as massless particles (assuming Maxwell Boltz-
mann distribution for both) are given by [31,32]

n
eq
� (z) = n

eq
� (z) + n

eq
N (z)† , (73)

n
eq
� (z) = 3M3

�K2(z)

2π2z
, (74)

n
eq
l,φ(z) = 2M3

�

π2z
, (75)

where K2(z) is the modified Bessel function of second kind. The expressions of entropy density 
and Hubble parameter are listed below.

s(z) = 4g∗M3
�

π2z3 , (76)

H(z) =
√

8g∗
π2

M�

MPlanckz2 , (77)

with effective relativistic degrees of freedom g∗ = 106.75 and Planck mass MPlanck = 1.22 ×
1019 GeV.

A.2. Reaction densities

Decay (1 → 2) related reaction densities for lightest scalar triplet is given by [31,32]

γD = K1(z)
n

eq
� (z)
tot

� (78)

K2(z)
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where 
tot
� is the total triplet decay width. The generic expression of (2 ↔ 2) scattering reaction 

densities is given by

γs = M4
�

64π4

∞∫
xmin

√
x

(z
√

x)σ̂s

z
dx (79)

where x = s′/M2
� (s′ is the centre of mass energy) and σ̂s denotes reduced cross section. For 

gauge induced process xmin = 4 and Yukawa induced process it is xmin = 0. The reduced cross 
sections for the gauge induced processes are given by [31,32]

σ̂A = 2

72π

{
(15C1 − 3C2)ω + (5C2 − 11C1)ω

3 + 3(ω2 − 1)[2C1 + C2(ω
2 − 1)]

× ln
(1 + ω

1 − ω

)}

+
(50g4

2L + 41g1Y
4

48π

)
ω

3
2 , (80)

where ω ≡ ω(x) = √
1 − 4/x and C1 = 12g4

2L + 3g4
1Y + 12g2

2Lg2
1Y , C2 = 6g4

2L + 3g4
1Y +

12g2
2Lg2

1Y . (g2L is the SM SU(2) coupling and g1Y is the SM U(1)Y coupling.) Reduced cross 
sections of �L = 2 scattering processes (s channel and t channel respectively) are given by

σ̂
φφ
li lj

= 64πBφBlij δ
2
[ x

(x − 1)2 + δ2

]
, (81)

σ̂
φlj
φlj

= 64πBφBlij δ
2 1

x

[
ln(1 + x) − x

1 + x

]
, (82)

where δ = 
tot
� /M�. Similarly the reduced cross sections for lepton flavor violating processes (s

channel and t channel) are represented as

σ̂
lnlm
li lj

= 64πBlnmBlij δ
2
[ x

(x − 1)2 + δ2

]
, (83)

σ̂
lj lm
li ln

= 64πBlnmBlij δ
2
[x + 2

x + 1
− ln(1 + x)

]
. (84)

Reaction densities of different scattering processes (γA, γ φφ
li lj

, γ lnlm
li lj

etc) can be calculated using 
the expressions of reduced cross sections (eq. (80)–eq. (84)) in the generic formula (eq. (79)) for 
the scattering reaction density. The Resonant intermediate state subtracted reaction densities are 
given by

γ
′φφ
li lj

= γ
φφ
li lj

− Blij BφγD (85)

γ
′lnlm
li lj

= γ
lnlm
li lj

− Blij BlnmγD . (86)

A.3. Cl and Cφ matrices

The lepton asymmetry and scalar doublet asymmetry are related to (B/3 − Li) and triplet 
asymmetry through the asymmetry coupling matrices Cl and Cφ . These matrices are determined 
by solving a constrained set (imposed by Global symmetry of the Lagrangian and chemical 
equilibrium relations) of equations involving chemical potentials. Above a certain temperature 
(∼ 1012 GeV) the lepton flavours act as a single entity (a coherent superposition of three flavours 
37



M.K. Parida, M. Chakraborty, S.K. Nanda et al. Nuclear Physics B 960 (2020) 115203
Table 4
Cl and Cφ matrices in different temperature regimes.

T (GeV) Flavours Cl Cφ

� 1015 single
(

0 1
2

) (
3 1

2

)
[1012,1015]

(
0 1

2

) (
2 1

3

)
[T τ

decoh
,1012]

(
0 3

10

) (
3
4

1
8

)

[109, T τ
decoh

], two

(
− 6

359
307
718 − 18

359
39
359 − 21

718
117
359

) (
258
359

41
359

56
359

)
[T μ

decoh
,T τ

decoh
]

[105, T
μ
decoh

] three

⎛
⎜⎝ − 6

179
151
358 − 10

179 − 10
179

33
358 − 25

716
172
537 − 7

537
33
358 − 25

716 − 7
537

172
537

⎞
⎟⎠ (

123
179

37
358

26
179

26
179

)

� 105

⎛
⎜⎝ − 9

158
221
711 − 16

711 − 16
711

9
158 − 16

711
221
711 − 16

711
9

158 − 16
711 − 16

711
221
711

⎞
⎟⎠ (

39
79

8
79

8
79

8
79

)

(e, μ, τ )). The lepton flavour decoherence temperature (which signifies the temperature at which 
a specific lepton flavour loses its coherence and can be treated as a separate entity) is denoted 
by T fi

decoh, where fi stands for any specific flavour (e, μ, τ). So it is clear that above a tempera-
ture T τ

decoh all three lepton flavours act indistinguishably and the Boltzmann equation has to be 
solved for the quantity (B − L). Again the regime T > T τ

decoh is subdivided into three windows. 
The structure of Cl and Cφ matrices are different in those windows since the number of active 
chemical potentials and the governing constraint equations are different in each of these windows 
(This issue has been discussed extensively in Sec. 3.1 and Appendix B of Ref. [31]). Similarly 
in the intermediate region between T τ

decoh − T
μ
decoh two lepton flavours (a(≡ e + μ), τ) are 

effectively active, whereas below T μ
decoh complete flavour decoherence is attained and all three 

lepton flavours are separately identifiable, thus the set of flavoured Boltzmann equations has 
to be solved in terms of (B/3 − Le, B/3 − Lμ, B/3 − Lτ ). The asymmetry coupling matrices 
(following Ref. [31]) are shown in Table 4.

A.4. Renormalisation group equations for gauge and scalar couplings

We use the following electroweak precision data at μ � mtop and the Higgs mass [67–69] as 
inputs in the bottom-up approach

mtop = 173.34 ± 0.77 GeV

sin2 θW = 0.23129 ± 0.00005

αS = 0.1182 ± 0.0005
1

α
= 127.9 ± 0.02

mh = 125.09 ± 0.237 GeV (87)
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These values determine the initial boundary values λφ = 0.129, the SM gauge couplings g1Y =
0.35, g2L = 0.64, g3C = 1.16 and the top-quark Yukawa coupling ht = 0.94. In addition we use 
the Higgs triplet masses, their trilinear couplings, and scalar singlet DM mass as discussed in 
Sec. 3, Sec. 4, Sec. 5 and Sec. 5.1,

M�2 = 1012 GeV

μ�2 = 6 × 1010 GeV

mξ = 1.3 TeV

M�1 = 1013 GeV

μ�1 = 1012 GeV. (88)

The RGEs for SM gauge couplings and top quark Yukawa coupling at two loop level are given 
by

dht

d lnμ
= 1

16π2

(
9

2
h2

t − 17

12
g2

1Y − 9

4
g2

2L − 8g2
3C

)
ht (89)

+ 1

(16π2)2 [−23

4
g4

2L − 3

4
g2

2Lg2
1Y + 1187

216
g4

1Y + 9g2
2Lg2

3C + 19

9
g2

3Cg2
1Y − 108g4

3C

+
(

225

16
g2

2L + 131

16
g2

1Y + 36g2
3C

)
h2

t + 6(−2h4
t − 2h2

t λφ + λ2
φ)],

dg1Y

d lnμ
= 1

16π2

(
41

6
g3

1Y

)
+ 1

(16π2)2

(
199

18
g2

1Y + 9

2
g2

2L + 44

3
g2

3C − 17

6
h2

t

)
g3

1Y ,

dg2L

d lnμ
= 1

16π2

(
−19

6
g3

2L

)
+ 1

(16π2)2

(
3

2
g2

1Y + 35

6
g2

2L + 12g2
3C − 3

2
h2

t

)
g3

2L,

dg3C

d lnμ
= 1

16π2

(
−7g3

3C

)
+ 1

(16π2)2

(
11

6
g2

1Y + 9

2
g2

2L − 26g2
3C − 2h2

t

)
g3

3C,

where g2L, g1Y , g3C are the gauge couplings of SU(2)L, U(1)Y , SU(3)C , respectively, and ht is 
the top quark Yukawa coupling. The RG equations for the scalar quartic couplings up to one loop 
level are

dλφ

d lnμ
= 1

16π2

[
(12h2

t − 3g1Y
2 − 9g2

2L)λφ − 6h4
t + 3

8
{2g4

2L + (g1Y
2 + g2

2L)2}

+ 24λ2
φ + 4λ2

φξ

]
,

dλφξ

d lnμ
= 1

16π2

[
1

2
(12h2

t − 3g1Y
2 − 9g2

2L)λφξ + 4λφξ (3λφ + 2λξ ) + 8λ2
φξ

]
,

dλξ

d lnμ
= 1

16π2

[
8λ2

φξ + 20λ2
ξ

]
. (90)

For mass scale μ ≥ M�2 � 1012 GeV, the scalar potential is defined through eq. (63) of 
Sec. 5.1.

We define the respective beta functions through

16π2 dC = βC (C = λφ,λφξ , λξ , λ
i
1, λ

i
2, λ

i
3, λ

i
4, (i = 1,2)). (91)
dt
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The beta functions for desired quartic couplings are

βλφ = λφ

[
12λφ −

(
9

5
g2

1Y + 9g2
2L

)
+ 12h2

t

]
+ 9

4

(
3

25
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1Y + 2

5
g2

1Y g2
2L + g4

2L

)

+
∑

(i=1,2)

(
6(λi

3)
2 + 4(λi

4)
2
)

− 12h4
t , (92)

For i = 1, 2, the RGEs for respective quartic couplings are

βλi
1
= λi

1

[
14λi

1 + 4λi
2 −

(
36

5
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1Y + 24g2
2L

)
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, (93)

βλi
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, (94)

βλi
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= λi
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βλi
4
= λi
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(
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t + 2Tr [T ]
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1Y g2
2L

+4Tr
[
T 2

]
, (96)

where T is defined as T = y(2)†
y(2) where y(2) � mν/V L2 and its beta function is expressed 

through the relation

βT = T

[
6T − 3

(
3

5
g2

1Y + 3g2
2L

)
+ 2Tr[T ]

]
. (97)

We have examined how vacuum stability of the scalar potential in this minimally extended 
model is ensured by the presence of the scalar singlet DM even with its lowest mass mξ �
1.3 TeV and its associated Higgs portal coupling. We have estimated RG evolution of standard 
Higgs quartic coupling λφ in the presence of the DM as well as the heavy scalar triplets in the 
appropriate ranges of mass scales and Higgs field values. When the DM and the triplets are 
excluded we get the lowermost red curve [44,45] of Fig. 18 of Sec. 5.1.3 where λφ runs negative 
for all values of Higgs field |φ| > 5 × 109 GeV showing unstable SM vacuum. When we exclude 
the scalar DM but include the two heavy triplets as in the original model of [15], the negativity 
of the quartic coupling persists only in the interval |φ| = 5 × 109 − 1013 GeV after which the 
quartic coupling has the ability to be positive due to the additional contribution of the triplets. 
Here a major compensation is caused by the �2-threshold enhancement at M�2 = 1013 GeV not 
shown in Fig. 18. In Fig. 18 the negative part of the red coloured curve bounded by vertical green 
dashed lines is also predicted by the original model [15] signifying vacuum instability in the 
model. Excluding the triplets but including DM, the solution is given by the upper blue curve of 
Fig. 18 marked as SM+DM (excluding threshold enhancement). When effects of heavy triplets 
are also included along with DM in the present model extension, the RG evolution for the quartic 
40
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coupling develops threshold enhancement at M�2 = 1012 GeV (rather than 1013 GeV of [15]) 
which has been predicted by matching the baryon asymmetry data in the present analysis. This 
threshold enhancement is �λφ � μ2

�2
/M2

�2
� 0.005 − 0.01. In addition we have also included 

the effects of small triplet portal couplings using λ(2)
3 � λ

(2)
4 � 0.1. The resulting corrections 

have been shown by the uppermost curve for μ > 1012 Gev in Fig. 18 of Sec. 5.1.3. This part of 
the curve has been marked as SM+DM+�.
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