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Theory:
Wigner Matrices, 3 j Symbols, and Character Localization
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R. Gurau]Razvan Gurau

Abstract In this paper, we employ a technique combining the Euler
Maclaurin formula with the saddle point approximation method to obtain the
asymptotic behavior (in the limit of large representation index J) of generic Wigner
matrix elements DJ

MM′(g). We use this result to derive asymptotic formulae for the
character χJ(g) of an SU(2) group element and for Wigner’s 3 j symbol. Sur-
prisingly, given that we perform five successive layers of approximations, the
asymptotic formula we obtain for χJ(g) is in fact exact. The result hints at a
“Duistermaat-Heckman like” localization property for discrete sums.
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1 Introduction

The saddle point approximation (SPA) is a classical algorithm to determine asymp-
totic behavior of a large class of integrals in some large parameter limit (1). One
uses it when exact calculations are either too complex or not very relevant. Re-
cently, SPA has been used in conjunction with the Euler Maclaurin (EM) formula
to derive asymptotic behavior of discrete sums (2; 3). In the combined EM SPA
scheme corrections to the leading behavior come from two sources: the derivative
terms in the EM formula and sub-leading terms in the SPA estimate.

It is worthwhile emphasizing that similar approximation methods can be traced
back for years (4) and such methods have led to more or less accurate results de-
pending on the oscillatory character of the summand. As pointed out in (4) (see
from page 358 for a review), one of the best way to convert discrete sums to
integrals in semiclassical cases, is the Poisson summation formula. For instance,
Braun et al. (5) discussed the semiclassical approximation of the
Floquet operator (which is a composition of a rotation and then a torsion around
the z axis) in a stroboscopic period-to-period dynamics that in return possesses an
application in the asymptotic of the small Wigner d-matrix element. They were
able to prove also using the Poisson summation formula that SPA asymptotes of
the SU(2) character turns out to be exact.

The semiclassical analysis of a Wigner matrix element has been performed
in many different ways (see (6; 7; 8) and also (9) for a recent review and the
geometric perspective attached to it). One the first contribution on this analysis
is may be the work by Brussaard et al. (6). Therein, relations of Clebsch-Gordan
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and Racah coefficients for large angular momenta are derived. Classical analogues
of the square of Clebsch-Gordan coefficients and the square of the little Wigner
matrix element are suggested based on their geometrical meaning. In (8), again a
combined Poisson sum formula and the stationary phase method have been used
to perform the semiclassical approximation for a reduced rotation matrix element
expressed in terms of a classical generating function.

In this paper, we use a slightly different EM SPA (using deformation contours
exploring the complex plane) method to derive the asymptotic behavior of Wigner
rotation matrix elements. We subsequently use this asymptotic
formula to derive the asymptotic behavior of the character of an SU(2) group
element. Although our estimate is obtained after using twice the EM SPA approx-
imation and once the Stirling approximation for Euler’s Gamma functions it turns
out to be the exact result. We then proceed to obtain the asymptotic expression for
Wigner’s 3 j symbol, recovering with this method the
results of (10).

Both our results and method are relevant for computing topological
(Turaev Viro like (11)) invariants and in connection to the volume conjecture (12).
From a theoretical physics perspective, they are of consequence for spin foam
models (13), group field theory (14; 15), discretized BF theory and lattice gravity
(16; 17; 18). Continuous SPA has been extensively used in this context to derive
asymptotic behaviors of spin foam amplitudes (19; 20; 21) and (22; 23; 24).

In the recoupling theory of SU(2), the EM SPA method has already been used
to obtain in a particularly simple way the Ponzano-Regge asymptotic of the 6 j
symbol (3; 25). The main strength of this approach is the following: most rele-
vant quantities in the recoupling theory of SU(2) are expressed in Fourier space
by discrete sums. In particular, the Wigner matrix elements admit a single sum
representation (26). However, generically, the sums are alternated, hence it is dif-
ficult to handle. Our EM SPA method deals very efficiently with alternating signs:
generically such signs lead to complex saddle points situated outside the initial
summation interval. After exchanging the original sums (via the EM formula) for
integrals, only one deforms the integration contour in the complex plane to pass
trough the saddle points in a completely standard manner. This feature is the cru-
cial strength of our method, and allows rapid access to explicit results. The EM
SPA method should allow one to prove for instance the asymptotic behavior (27)
of the 9 j symbol.

The proofs of our three main results (Theorems 1, 2 and 3) are straightforward,
but the shear amount of computations performed renders this a somewhat technical
paper. In Sect. 2, we give a quick review of iterated saddle point approximations.
In Sect. 3, we establish Theorem 1 and use it in Sect. 4 to derive the character
formula (Theorem 2). Section 5 proves the asymptotic formulae of the 3 j symbol
(Theorem 3). Section 6 draws the conclusion of our work and roughly discusses
a possible connection between our result for the character and the Duistermaat
Heckman theorem. The (very detailed) Appendices present explicit computations
and detail the EM derivative terms.
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2 Successive Saddle Point Approximations

We briefly review the iterated SPA approximations. The result of this section jus-
tifies the use of our asymptote of the Wigner matrices to derive the asymptotic
behavior of SU(2) characters and Wigner 3 j symbols.

Consider a function f of two real variables. We are interested in evaluating the
asymptotic behavior of the integral

I =
∫

dudx eJ f (u,x), (1)

for large J. One can chose to either evaluate I via an SPA in both variables at
the same time or via two successive SPAs, one for each variable. The question is
if the two estimates coincide. This problem is addressed in full detail in (1) and
the answer to the above question is yes (for sufficiently smooth functions), with
known estimates. Let us give a quick flavor of the origin of this result.
Remark 1 Let f : R×R → C be a function with an unique critical point (uc,xc)
and non degenerate Hessian at (uc,xc) such that I =

∫
dudxeJ f (u,x) admits a SPA

at large J. Assume that the equation ∂u f (u,x) = 0 admits an unique solution uc =
h(x), such that [∂ 2

u f ](h(x),x) 6= 0. Then, the SPA of
∫

dudxeJ f (u,x) in both variables
(u,x) gives the same estimate as two successive SPAs, the first one in u and the
second one in x.

Proof The simultaneous SPA in u and x yields the estimate

I ≈ 2π

J
√

[∂ 2
u f ∂ 2

x f − (∂u∂x f )2] |(uc,xc)

eJ f (uc,xc). (2)

The saddle point equation for u, [∂u f ] (u,x) = 0, is solved by uc = h(x). Thus, a
first SPA in u gives

I ≈
√

2π

J

∫
dx

1√
−∂ 2

u f |(h(x),x)

eJ f (h(x),x). (3)

We evaluate Eq. (3) by a second SPA, in the x variable. The saddle point equation
is

d
dx

( f (h(x),x)) = [∂u f ] |(h(x),x)
dh
dx

+[∂x f ] |(h(x),x), (4)

and, as [∂u f ](h(x),x) = 0, the first term above vanishes. The critical point xc is
therefore a solution of [∂x f ] |(h(x),x) = 0. The second derivative of f (h(x),x) com-
putes to

d2

dx2 ( f (h(x),x)) =
d
dx

(
[∂x f ]

∣∣∣
(h(x),x)

)
= [∂u∂x f ]

∣∣∣
(h(x),x)

dh
dx

+[∂ 2
x f ]
∣∣∣
(h(x),x)

, (5)
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and noting that

d
dx

[∂u f ]
∣∣∣
(h(x),x)

= 0⇒ [∂ 2
u f ]
∣∣∣
(h(x),x)

dh
dx

+∂x[∂u f ]
∣∣∣
(h(x),x)

= 0⇒ dh
dx

= − [∂x∂u f ]
[∂ 2

u f ]

∣∣∣
(h(x),x)

, (6)

the estimate obtained by two successive SPAs is

I ≈ 2π

J
√

∂ 2
u f
∣∣
(h(xc),xc)

(
− [∂u∂x f ]2

[∂ 2
u f ] +∂ 2

x f
)∣∣

(h(xc),xc)

eJ f (uc,xc), (7)

identical with Eq. (2).

This remark can be generalized (1), for sufficiently smooth functions of more
variables with non-degenerate critical points. In the sequel, we will express the
Wigner matrix elements DJ

MM′ (up to corrections coming from the EM formula)
as integrals which we approximate by a first SPA. To compute more involved sums
or integrals of products of such matrix elements (the character of an SU(2) group
element and the 3 j symbol) we will substitute the SPA approximation for each
DJ

MM′ and evaluate the resulting expressions by subsequent SPAs.

3 Asymptotic Formula of a Wigner Matrix Element

In this section, we prove an asymptotic formula for a Wigner matrix element.
Before proceeding, let us mention that many of our results are expressed in terms
of angles. We will always denote them as ıφ = lnw for some complex number
w with |w| = 1 without mentioning at this formal level which of the logarithm
branches is used. For numerical evaluations, one could take the principal branch
of the logarithm function.

Our starting point is the classical expression of DJ
MM′ in terms of Euler angles

(α,β ,γ) in z y z order (see (26))

DJ
MM′(α,β ,γ)

= e−ıαMe−ıγM′
∑

t
(−)t

√
(J +M)!(J−M)!(J +M′)!(J−M′)!

(J +M− t)!(J−M′− t)!t!(t−M +M′)!

× ξ
2J+M−M′−2t

η
2t−M+M′

, (8)
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with ξ = cos(β/2), η = sin(β/2). The sum is taken over all t such that all facto-
rials have positive argument (hence it has 1 + min{J + M,J−M,J + M′,J−M′}
terms). We call a Wigner matrix generic if its second Euler angle β /∈ Zπ (that
is 0 < ξ 2 < 1). We define the reduced variables x = J

M and y = J
M′ . A priori the

asymptotic behavior we derive below holds in certain region of the parameters x,y
and ξ detailed in Appendices E and C.
Theorem 1 A generic Wigner matrix element in the spin J representation of an
SU(2) group element has in the large J limit the asymptotic behavior

DJ
xJ,yJ(α,β ,γ)

≈ e−ıJαx−ıJγy
(

1
πJ
√

∆

) 1
2

cos
[(

J +
1
2

)
φ + xJψ− yJω− π

4

]
, (9)

with

∆ = (1−ξ
2)(ξ 2− xy)− (x− y)2

4
≥ 0, (10)

with φ ,ψ and ω the three angles

ıφ = ln
2ξ 2−1− xy+2ı

√
∆√

(1− x2)(1− y2)
, ıψ = ln

x+y
2 − xξ 2 + ı

√
∆√

ξ 2(1−ξ 2)(1− x2)
,

ıω = ln
− x+y

2 + yξ 2 + ı
√

∆√
ξ 2(1−ξ 2)(1− y2)

. (11)

Proof The proof of Theorem 1 is divided into two steps: first the approximation of
Eq. (8) by an integral via the EM formula, and second the evaluation of the latter
by an SPA.

Step 1: In the large J limit, the leading behavior of the Wigner matrix element
Eq. (8) is

DJ
xJ,yJ(α,β ,γ)≈ 1

2π

∫
du
√

K(x,y,u)eJ f (x,y,u), (12)

where

f (x,y,u) = −ıαx− ıγy+ ıπu+(2+ x− y−2u) lnξ +(2u− x+ y) lnη

+
1
2
(1− x) ln(1− x)+

1
2
(1+ x) ln(1+ x)

+
1
2
(1− y) ln(1− y)+

1
2
(1+ y) ln(1+ y)

−(1+ x−u) ln(1+ x−u)− (1− y−u) ln(1− y−u)
−u lnu− (u− x+ y) ln(u− x+ y), (13)

and

K(x,y,u) =

√
(1− x)(1+ x)(1− y)(1+ y)

(1+ x−u)(1− y−u)(u)(u− x+ y)
. (14)
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To prove this we rewrite Eq. (8) in terms of Gamma functions

DJ
MM′(α,β ,γ) = ∑

t
F(J,M,M′, t),

F(J,M,M′, t) = eıπte−ıαMe−ıγM′
ξ

2J+M−M′−2t
η

2t−M+M′
(15)

×
√

Γ (J +M +1)Γ (J−M +1)Γ (J +M′+1)Γ (J−M′+1)
Γ (J +M− t +1)Γ (J−M′− t +1)Γ (t +1)Γ (t−M +M′+1)

,

and use the Euler–Maclaurin formula
tmax

∑
tmin

h(t) =
∫ tmax

tmin

h(t)dt−B1 [h(tmax)+h(tmin)]

+∑
k

B2k

(2k)!

[
h(2k−1)(tmax)−h(2k−1)(tmin)

]
, (16)

where B1,B2k are the Bernoulli numbers.1 To derive our asymptote, we only take
into consideration the integral approximation of Eq. (15) (the boundary terms are
discussed in Appendix E), hence

DJ
MM′(α,β ,γ)≈

∫
dt F(J,M,M′, t). (17)

We define u = t
J hence du = 1

J dt and using the Stirling formula for the Gamma
functions (see Appendix A) we get Eq. (12).

Step 2: We now proceed to evaluate the integral (12) by an SPA. Some of the
computations relevant for this proof are included in Appendix B. Denoting the set
of saddle points by C , the leading asymptotic behavior of a generic Wigner matrix
element can be written

DJ
xJ,yJ(α,β ,γ)≈ 1√

2πJ ∑
u∗∈C

√
K|x,y,u∗√

(−∂ 2
u f )|x,y,u∗

eJ f (x,y,u∗). (18)

Our task is to identify C and to calculate K|x,y,u∗ ,(−∂ 2
u f )|x,y,u∗ and

f (x,y,u∗).

The set C . The derivative of f with respect to u is

∂u f = ıπ−2lnξ +2lnη+ln(1+ x−u)+ ln(1− y−u)−lnu−ln(u− x+ y).
(19)

A straightforward computation shows that the saddle points are the solutions of

(1+ x−u)(1− y−u) (1−ξ 2)
ξ 2 +u(u− x+ y) = 0 (20)

⇔ u2−u[2(1−ξ 2)+ x− y]+ (1−ξ 2)(1+ x)(1− y) = 0. (21)

The region of parameters x,y,ξ for which the discriminant of Eq. (21) is posi-
tive gives exponentially suppressed matrix elements, while the region for which it
is zero gives an Airy function estimate. Both cases are detailed in Appendix C.

1 Equation (16) holds for all C∞ functions h(t), such that the sum over k converges.
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In the rest of this proof, we treat the region in which the discriminant of
Eq. (21) is negative. We denote by ∆ minus the reduced discriminant, that is

∆ = (1−ξ
2)(ξ 2− xy)− (x− y)2

4
> 0, (22)

and the two saddle points, solutions of Eq. (21), can be written as

u± = (1−ξ
2)+

x− y
2

± ı
√

∆ , (23)

thus the set of saddle points is C = {u+,u−}.

Evaluation of f (x,y,u±). We rearrange the terms in Eq. (13) and then write

f (x,y,u) =−ıαx− ıγy+(2+ x− y) lnξ +(−x+ y) lnη

+
1
2
(1− x) ln(1− x)+

1
2
(1+ x) ln(1+ x)

+
1
2
(1− y) ln(1− y)+

1
2
(1+ y) ln(1+ y)

−(1+ x) ln(1+ x−u)− (1− y) ln(1− y−u)− (−x+ y) ln(u− x+ y)

+u ln
[
(−)

1−ξ 2

ξ 2
(1+ x−u)(1− y−u)

u(u− x+ y)

]
. (24)

Note that by the saddle point equations the last line in Eq. (24) is zero
for u±. The rest of Eq. (24) can be worked out to (see Appendix B.1 for details)

f (x,y,u±) =−ıαx− ıγy± ı(φ + xψ− yω) , (25)

with

ıφ = ln
2ξ 2−1− xy+2ı

√
∆√

(1− x2)(1− y2)
, ıψ = ln

x+y
2 − xξ 2 + ı

√
∆√

ξ 2(1−ξ 2)(1− x2)
,

ıω = ln
− x+y

2 + yξ 2 + ı
√

∆√
ξ 2(1−ξ 2)(1− y2)

. (26)

Second derivative. The derivative of Eq. (19) is

−∂
2
u f (x,y,u) =

1
1+ x−u

+
1

1− y−u
+

1
u

+
1

u− x+ y
. (27)

At the saddle points, a straightforward computation shows that (see Appendix B.2)

(−∂
2
u f )
∣∣∣
x,y,u±

=
1

(1− x2)(1− y2)ξ 2(1−ξ 2)

(
4∆ ± ı2

√
∆
[
1+ xy−2ξ

2]) .

(28)

The prefactor K. The prefactor K(x,y,u) is given by

K =

√
(1− x2)(1− y2)

u(1+ x−u)(1− y−u)(u− x+ y)
, (29)
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which can be calculated at the saddle points to (see Appendix B.3)

K |x,y,u± =
−
√

(1− x2)(1− y2)
(

2ξ 2−1− xy±2ı
√

∆

)2

ξ 2(1−ξ 2)(1− x2)2(1− y2)2 . (30)

Final evaluation. Before collecting all our previous results we first evaluate, using
Eqs. (28) and (30)

K|x,y,u±
(−∂ 2

u f )|x,y,u±
= −

(
2ξ 2−1− xy±2ı

√
∆

)2

√
(1− x2)(1− y2)

(
4∆ ± ı2

√
∆ [1+ xy−2ξ 2]

)
=

1√
(1− x2)(1− y2)(±2ı

√
∆)

(
2ξ

2−1− xy±2ı
√

∆

)

=
1

±ı2
√

∆

(
2ξ 2−1− xy±2ı

√
∆

)
√

(1− x2)(1− y2)
. (31)

When comparing Eqs. (31) with (11), it can be inferred that

K|x,y,u±
(−∂ 2

u f )|x,y,u±
=

1
±ı2

√
∆

e±ıφ . (32)

Substituting Eqs. (32) and (25) into Eq. (18), we obtain

DJ
xJ,yJ(α,β ,γ) ≈ 1√

2πJ

(
1

2
√

∆

) 1
2

e−ıJαx−ıJγy

×

(√
1
ı

eıφ eıJ(φ+xψ−yω)+

√
1
−ı

e−ıφ e−ıJ(φ+xψ−yω)

)
, (33)

and a straightforward computation proves Theorem 1.

4 Characters

In this section, we use Theorem 1 to derive an asymptotic formula for the character
of an SU(2) group element.
Theorem 2 The leading asymptotic behavior of the character of an SU(2) group
element (with Euler angles (α,β ,γ)) in the J representation,
χJ(α,β ,γ) is

χ
J(α,β ,γ)≈

sin
[(

J + 1
2

)
θ
]

sin θ

2

, (34)

with θ defined by

cos
θ

2
= cos

β

2
cos

(α + γ)
2

. (35)
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Let us emphasize that up to this point we already performed three different
approximations: first the EM approximation, second the Stirling approximation
and third the SPA approximation. To prove Theorem 2, we will use a second EM
approximation and a second SPA approximation. However, formula (35) is ex-
actly the classical relation between the Euler angle parametrization and the θ ,n
parametrization of an SU(2) group element, thus the leading behavior we find (af-
ter five levels of approximation) is in fact the exact formula of the character! We
will discuss this rather surprising result in Sect. 6.

Proof of Theorem 2 To establish Theorem 2, we follow again the EM SPA recipe.
The character χJ of a group element can be written

χ
J(α,β ,γ) =

J

∑
M=−J

DJ
MM(α,β ,γ) =

1

∑
x=−1

DJ
xJ,xJ(α,β ,γ), (36)

with x = M
J the re-scaled variable. Note that the step in the second sum is dx =

1
J . The leading EM approximation (see end of Appendix E) for the character is,
therefore, the continuous integral (dropping henceforth the arguments (α,β ,γ))

χ
J ≈ J

∫ 1

−1
dx DJ

xJ,xJ . (37)

We now use Theorem 1 (more precisely Eq. (33)) and write a diagonal Wigner
matrix element as

DJ
xJ,xJ ≈

[
1

4πJ
√

∆

] 1
2

√eıφ

ı
eJ f (x,x,u+) +

√
e−ıφ

−ı
eJ f (x,x,u−)

 . (38)

Note that for diagonal matrix elements the exponents can be further simplified
such that

f (x,x,u±) =−ı(α + γ)x± ı(φ + x(ψ−ω)), (39)

while the discriminant ∆ and angles φ ,ψ and ω from Eq. (11) become

ıφ = ln
2ξ 2−1− x2 +2ı

√
∆

(1− x2)
, ıψ = ln

x(1−ξ 2)+ ı
√

∆√
ξ 2(1−ξ 2)(1− x2)

, (40)

ıω = ln
−x(1−ξ 2)+ ı

√
∆√

ξ 2(1−ξ 2)(1− x2)
, ∆ = (1−ξ

2)(ξ 2− x2). (41)

We follow the same steps as in the proof of Theorem 1.

Critical set Cχ . The derivatives of the exponents for each of the two terms in
Eq. (38) are

∂x f (x,x,u±) =−ı(α + γ)± ı(ψ−ω)± ı∂xφ ± ıx∂x(ψ−ω). (42)
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The derivative of φ is given by

ı∂xφ = ∂x

[
ln(
√

ξ 2− x2 + ı
√

1−ξ 2)2− ln(1− x2)
]

= ı
2x
√

1−ξ 2

(1− x2)
√

ξ 2− x2
.

(43)

The difference ψ−ω can be recast as

ı(ψ−ω) = ln
x(1−ξ 2)+ ı

√
∆

−x(1−ξ 2)+ ı
√

∆
= ln

(√
ξ 2− x2− ıx

√
1−ξ 2

)2

ξ 2(1− x2)
, (44)

so that its derivative is expressed as follows:

ı∂x(ψ−ω)=2

−x√
ξ 2−x2

− ı
√

1−ξ 2√
ξ 2− x2− ıx

√
1−ξ 2

− −2x
1− x2 = ı

−2
√

1−ξ 2

(1− x2)
√

ξ 2− x2
. (45)

When combining Eqs. (43) and (45), we have

∂xφ + x∂x(ψ−ω) = 0, (46)

and therefore simplify the saddle point Eq. (42) as

ψ−ω =±(α + γ). (47)

Dividing by 2 and exponentiating, the following holds:√
ξ 2− x2− ıx

√
1−ξ 2√

ξ 2(1− x2)
= e±ı α+γ

2 ⇒ x
√

1−ξ 2√
ξ 2− x2

=∓ tan
α + γ

2
. (48)

Hence, the saddle points are solutions of the quadratic equation

x2(1−ξ
2) = (ξ 2− x2) tan2 α + γ

2
⇒ x2 =

ξ 2 sin2 α+γ

2

1−ξ 2 cos2 α+γ

2

. (49)

Defining a new variable θ via the relation cos θ

2 = ξ cos α+γ

2 , the saddle points can
be rewritten

x2 =
ξ 2 sin2 α+γ

2

sin2 θ

2

. (50)

Taking into consideration Eq. (48), one identifies an unique saddle point (x1) for
f (x,x,u+) and an unique saddle point (x2) for f (x,x,u−) with x1 and x2 given by

x1 =−
ξ sin α+γ

2

sin θ

2

, x2 =
ξ sin α+γ

2

sin θ

2

. (51)
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Evaluation of the functions and Hessian on Cχ . Straightforward computations lead
to

ξ
2− x2

1,2 = (1−ξ
2)

cos2 θ

2

sin2 θ

2

,

∆ |x1,2 = (1−ξ
2)2 cos2 θ

2

sin2 θ

2

≥ 0, (52)

1− x2
1,2 =

(1−ξ 2)
sin2 θ

2

.

Also note that at the saddle points, the angle φ can be simplified further to

ıφ = ln
2ξ 2−1− x2

1,2 +2ı
√

∆ |x1,2

(1− x2
1,2)

= ln
(1−ξ 2) cos2 θ

2
sin2 θ

2
− (1−ξ 2)+2ı(1−ξ 2) cos θ

2
sin θ

2
(1−ξ 2)
sin2 θ

2

= ln
[

cos2 θ

2
− sin2 θ

2
+ ı2cos

θ

2
sin

θ

2

]
= lneiθ = iθ . (53)

Substituting the saddle point Eqs. (47) into (39), we see that, at the saddles

f (x1,x1,u+) = ıφ = ıθ , f (x2,x2,u−) =−ıφ =−ıθ . (54)

To evaluate the Hessian at the saddle, we first simplify Eqs. (42) using (46) hence

∂
2
x f (x,x,u±) =±ı∂x(ψ−ω) =∓2ı

√
1−ξ 2

(1− x2)
√

ξ 2− x2
(55)

which becomes at the saddle points

∓2ı

√
1−ξ 2

(1−ξ 2)
sin2 θ

2

√
(1−ξ 2) cos θ

2
sin θ

2

=∓2ı
1

1−ξ 2

sin3 θ

2

cos θ

2

. (56)

Final evaluation. Using Eqs. (54) and (56), the SPA of the character Eq. (37) is

χ
J ≈ 1√

2(1−ξ 2) cos θ
2

sin θ
2


√

eıθ

ı
eıJθ√

ı 2
1−ξ 2

sin3 θ
2

cos θ
2

+

√
e−ıθ

−ı
e−ıJθ√

−ı 2
1−ξ 2

sin3 θ
2

cos θ
2

 ,

(57)

which is

χ
J ≈ 1

2sin θ

2

(
1
ı

eı(J+ 1
2 )θ +

1
−ı

e−ı(J+ 1
2 )θ
)

=
sin
[
(J + 1

2 )θ
]

sin θ

2

. (58)
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5 Asymptotes of 3 j Symbols

In this section, we employ the asymptotic formula for the Wigner matrices to ob-
tain an asymptotic formula for Wigner’s 3 j symbol. Note that one can use directly
the EM SPA method to derive this asymptotic starting from the single sum rep-
resentation of the 3 j symbol (26). We take here the alternative route of using the
results of Theorem 1 and the representation of 3 j symbols in terms of Wigner
matrices ∫

dg DJ1
M1M′

1
(g)DJ1

M2M′
2
(g)DJ3

M3M′
3
(g)

=
(

J1 J2 J3
M1 M2 M3

)(
J1 J2 J3
M′

1 M′
2 M′

3

)
, (59)

where the integral is taken over SU(2) with the normalized Haar measure∫
dg :=

1
8π2

∫ 2π

0
dα

∫ 2π

0
dγ

∫
π

0
dβ sinβ . (60)

Substituting the asymptote (9) for each matrix element DJi
MiM′

i
(g) (i = 1,2,3),

the main contribution to the integral (59) is∫
dg
(

1
4πJ1

√
∆1

)1/2( 1
4πJ2

√
∆2

)1/2( 1
4πJ3

√
∆3

)1/2

×
3

∏
i=1

∑
si=±1

e−ıJi(α+γ) 1
√

siı
eısi

(
φi
2 +Ji(φi+xiψi−yiωi))

)
. (61)

We expand (61), perform the integration over α and γ and change variables from
β to ξ such that

1
2

∫
π

0
sinβdβ =

1
2

∫
π

0
2sin

β

2
cos

β

2
dβ = 2

∫ 1

0
ξ dξ =

∫ 1

0
d(ξ 2), (62)

to rewrite it as

δ∑i Jixi,0 δ∑i Jiyi,0

[∫ 1

0
d(ξ 2)

](
1

(4π)3 ∏i Ji
√

∏i ∆i

) 1
2

× ∑
si=±1

1√
∏i siı3

eı∑i si

(
φi
2 + fi

)
, (63)

where the index i runs from 1 to 3,δ∑i Jixi,0 is a Kronecker symbols and

fi = Ji [φi + xiψi− yiωi]. (64)

We will derive the asymptotic behavior of Eq. (63) via an SPA with respect to
ξ 2. Note that Eq. (59) involves two distinct 3 j symbols. If one attempts to first
set M′

i = Mi, and obtain a representation of the square of a single 3 j symbol, one
encounters a very serious technical problem. We will see in the sequel that there
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Fig. 1 Angular momentum vectors

are two saddle points ξ 2
± contributing to the asymptotic behavior of Eq. (63). If

one starts by setting Mi = M′
i , one of the two saddle points ξ 2

+ = 1, and the second
derivative in ξ 2

+ diverges. The contribution of this saddle point cannot be worked
out by a simple Gaussian integration.

The SPA evaluation of the general case, Eq. (63), is a very lengthy compu-
tation. We will perform it using the classical angular momentum vectors. For
large representation index Ji, there exists a classical angular momentum vector
Ji in R3 of length |Ji| = Ji and projection on the Oz axis (of unit vector n)
n ·Ji = Mi. A 3 j symbol is then associated to three vectors, J1,J2,J3 with |Ji|= Ji
and n ·Ji = Mi = xiJi. By the selection rules, the quantum numbers Ji respect the
triangle inequalities, and M1 + M2 + M3 = 0. This translates into the condition
that the vectors Ji form a triangle J1 + J2 + J3 = 0 (and n · [J1 + J2 + J3] = 0).
The asymptotic behavior of the 3 j symbol can be written in terms of the angular
momentum vectors as given by the following statement:
Theorem 3 For large representation indices Ji the 3 j symbol has the asymptotic
behavior

(
J1 J2 J3
M1 M2 M3

)
=

1√
π(n ·S)

cos

[
∑

i

(
Ji +

1
2

)
Φ

i
n +(n ·J1)Ψ 13

n +(n ·J2)Ψ 23
n +

π

4

]
, (65)

with S = J1 ∧ J2 = J2 ∧ J3 = J3 ∧ J1, twice the area of the triangle {Ji} and
Φ i

n,Ψ
13

n and Ψ 23
n five angles defined as

ıΦ i
n = ln

n · (Ji∧S)+ ıJi(n ·S)
S
√

(n∧Ji)2
,

(66)
ıΨ i3

n = ln
(n∧Ji) · (n∧J3)+ ın · (J3∧Ji)√

(n∧Ji)2(n∧J3)2
, i = 1,2.

Before proceeding with the proof of Theorem 3, note that our starting Eq. (59)
involves two distinct 3 j symbols. They are each associated to a triple of vectors,
J1,J2,J3 (|Ji| = Ji and n · Ji = xiJi) and J′1,J

′
2,J

′
3

( |J′i|= Ji,n ·J′i = yiJi). Remarking that |Ji|= |J′i|, the two triangles {Ji} and {J′i}
are congruent. Consequently there exists a rotation which overlaps them. Under
this rotation the normal vector n turns into the unit vector k. All the geometrical
information can therefore be encoded into an unique triple of vectors, henceforth
denoted Ji, and the two unit vectors n and k such that |Ji| = Ji,n · Ji = xiJi and
k ·Ji = yiJi (see Fig. 1).
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Proof of Theorem 3 The proof follows the, by now familiar, routine of an SPA. We
perform this evaluation at fixed angular momenta, i.e. at the fixed set of vectors
Ji,n,k.

The dominant saddle points. The saddle points governing the asymptotic behavior
of Eq. (63) are solutions of the equation

0 = ∂(ξ 2) ∑si(ı fi) = ı∑
i

siJi[∂(ξ 2)φi + xi∂(ξ 2)ψi− yi∂(ξ 2)ωi)]. (67)

A straightforward computation (see Appendix D.1) yields

∂(ξ 2) ∑si(ı fi) =− ı
ξ 2(1−ξ 2) ∑

i
siJi
√

∆i, (68)

hence the saddle point equation is of the form

0 = s1J1
√

∆1 + s2J2
√

∆2 + s3J3
√

∆3. (69)

Introducing the angular momentum vectors, the saddle point equation becomes
after a short calculation (see Appendix D.2)

4ξ
4S2−4ξ

2{S2 +(n ·k)S2− (n ·S)(k ·S)
}

+
{
[1+(n ·k)]2 S2−2(n ·S)(k ·S) [1+(n ·k)]

}
= 0, (70)

for all choices of signs s1,s2 and s3. Dividing by 4S2, Eq. (70) can be factorized as[
ξ

2− 1+(n ·k)
2

][
ξ

2−
(

1+(n ·k)
2

− (n ·S)(k ·S)
S2

)]
= 0, (71)

with roots,

ξ
2
+ =

1+(n ·k)
2

, ξ
2
− =

1+(n ·k)
2

− (n ·S)(k ·S)
S2 , (72)

again independent of the signs s1,s2 and s3. To identify the terms contributing to
the asymptotic of Eq. (63) for fixed Ji,n and k one needs to evaluate Ji

√
∆i for

each of the two roots ξ 2
+ and ξ 2

−. Using Appendix D.3, we have

J2
i ∆

+
i =

1
4

[Ji · (n∧k)]2 ,
(73)

J2
i ∆

−
i =

1
4
{Ji · [(S∧n)(k ·S)+(S∧k)(n ·S)]}2

S4 .

To any semiclassical state Ji,n,k, we associate six signs, ε
+
i and ε

−
i defined by

Ji

√
∆

+
i = ε

+
i

1
2

Ji · (n∧k),
(74)

Ji

√
∆
−
i = ε

−
i

1
2

Ji · [(S∧n)(k ·S)+(S∧k)(n ·S)]
S2 .
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Substituting Ji

√
∆
±
i into the saddle point Eq. (69), the latter becomes

1
2

(
∑

i
siε

±
i Ji

)
·A±, (75)

with A+ =(n∧k) and A− = [(S∧n)(k·S)+(S∧k)(n·S)]
S2 . As, on the other hand, ∑i Ji = 0,

we conclude that at fixed a semiclassical state we have two saddle points ξ 2
+ and

two saddle points ξ 2
− contributing

• The ξ 2
+ saddle point in the term si = ε

+
i and that in the term si =−ε

+
i

• The ξ 2
− saddle point in the term si = ε

−
i and that in the term si =−ε

−
i

The SPA evaluation of Eq. (63) is the sum of these four contributions.

The second derivative. The derivative of Eq. (68) with respect to ξ 2 yields

∂(ξ 2)[∂(ξ 2) ∑
i

si(ı fi)] = −ı∂(ξ 2)

(
1

ξ 2(1−ξ 2)

)
∑

i
siJi
√

∆i

− ı
ξ 2(1−ξ 2) ∑

i
siJi

−(2ξ 2−1− xiyi)
2
√

∆i
, (76)

and the term in the first line cancels (due to the saddle point equation) when eval-
uating the second derivative at the critical points. After Gaussian integration of
the dominant saddle point contributions, the prefactor in the SPA approximation
of Eq. (63) can be written

1√
K

, K = 32 π
2s1s2s3ı3J1J2J3

√
∆1∆2∆3

(
−∂

2
(ξ 2) ∑

i
si(ı fi)

)
. (77)

The remainder of this paragraph is devoted to the evaluation of K for the two roots
ξ 2

+ and ξ 2
−. Substituting the second derivative gives

K± =−16π
2s1s2s3ı4

J1J2J3

ξ 2
±(1−ξ 2

±) ∑
i

siJi

√
∆1∆2∆3√

∆i
(2ξ

2
±−1− xiyi). (78)

Taking into consideration s2
1s2s3 = ε

±
2 ε

±
3 ,K± can be expressed as

K± =−(16π
2)

[
ε
±
2 ε

±
3 J2

√
∆
±
2 J3

√
∆
±
3

[
(2ξ 2

±−1)J2
1 − Jn

1 Jk
1
]
+ 	123

]
ξ 2
±(1−ξ 2

±)
, (79)

where 	123 denotes circular permutations on the indices 1,2 and 3. Using Eq. (72),
the denominator evaluates to, for the ξ 2

+ root,

ξ
2
+(1−ξ

2
+) =

1− (n ·k)2

4
, (80)
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while the numerator can be computed to (see Appendix D.4 for detailed computa-
tions and notations)

ε
+
2 ε

+
3 J2

√
∆

+
2 J3

√
∆

+
3

[
(2ξ

2
+−1)J2

1−Jn
1 Jk

1
]
+	123=−1

4
SnSk(n∧k)2, (81)

hence

K+ = 16π
2SnSk. (82)

Evaluating the denominator in Eq. (79) for ξ 2
−, we obtain

ξ
2
−(1−ξ

2
−) =

(
1+(n ·k)

2
− SnSk

S2

)(
1− (n ·k)

2
+

SnSk

S2

)
=

1
4

{
(1− (n ·k)2 +4(n ·k)

SnSk

S2 −4
(SnSk)2

S4

}
, (83)

while a lengthy computation (see Appendix D.4) shows that the numerator is

ε
−
2 ε

−
3 J2

√
∆
−
2 J3

√
∆
−
3

[
(2ξ

2
−−1)J2

1 − Jn
1 Jk

1
]
+ 	123

=
1
4

SnSk
{

1− (n ·k)2 +4(n ·k)
SnSk

S2 −4
(SnSk)2

S4

}
, (84)

proving that

K− =−16π
2SnSk. (85)

Contribution of each saddle. To evaluate the contribution of each saddle point to
the asymptote of Eq. (63), we first evaluate

ı∑
i

si

[
φi

2
+ fi

]
= ∑

i
si

[(
Ji +

1
2

)
(ıφ±i )+ xiJi(ıψ±

i )− yiJi(ıω±
i )
]
. (86)

Recall that for a fixed semiclassical state only the terms with si equal to ε
+
i ,−ε

+
i ,ε−i

and −ε
−
i contribute. We substitute x3J3 = −x2J2− x1J1 and y3J3 = −y1J1− y2J2

into Eq. (86) to bring it into the form
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±

{
∑

i

(
Ji +

1
2

)
(ıε±i φ

±
i )+ x1J1(ıε±1 ψ

±
1 − ıε±3 ψ

±
3 )+ x2J2(ıε±2 ψ

±
2 − ıε±3 ψ

±
3 )

−y1J1(ıε±1 ω
±
1 − ıε±3 ω

±
3 )− y2J2(ıε±2 ω

±
2 − ıω±

3 ψ
±
3 )

}
, (87)

where φ
±
i ,ψ±

i and ω
±
i are the angles φi,ψi and ωi evaluated at ξ 2

+ and ξ 2
−. For each

choice + or − in the accolades, one must count both choices of the overall sign.
The angles φ

±
i ,ε±1 ψ

±
1 −ε

±
3 ψ

±
3 , etc. are evaluated by a rather involved computation

in Appendix D.5. The end results are synthesized below

ıε±i φ
±
i = ıΦ i

n∓ ıΦ i
k, ıΦ i

n = ln
n · (Ji∧S)+ ıJiSn

S
√

(n∧Ji)2

ıε±j ψ
±
j − ıε±3 ψ

±
3 = ıΨ j3

n , ıΨ j3
n = ln

(n∧J j) · (n∧J3)+ ın · (J3∧J j)√
(n∧J j)2(n∧J3)2

,

j = 1,2,

ıε±j ω
±
j − ıε±3 ω

±
3 =±ıΨ j3

k . (88)

It is a now matter of substitution of Eqs. (88) into (87) to get

±

{
∑

i

(
Ji +

1
2

)(
ıΦ i

n∓ ıΦ i
k
)
+(n ·J1)ıΨ 13

n +(n ·J2)ıΨ 23
n

∓(k ·J1)ıΨ 13
k ∓ (k ·J2)ıΨ 23

k

}
=±(Ωn∓Ωk), (89)

where Ωn denotes

ıΩn = ∑
i

(
Ji +

1
2

)
ıΦ i

n +(n ·J1)ıΨ 13
n +(n ·J2)ıΨ 23

n . (90)

Final evaluation. We put together Eqs. (82), (85) and (89) and, noting that the two
contributions from the saddle ξ 2

− are complex conjugate to one another, we obtain(
J1 J2 J3
M1 M2 M3

)(
J1 J2 J3
M′

1 M′
2 M′

3

)
≈ 1√

π(n ·S)
1√

π(k ·S)
1
4

(
eı(Ωn−Ωk) + e−ı(Ωn−Ωk) + ıeı(Ωn+Ωk)−ıe−ı(Ωn+Ωk)

)
.

(91)

Taking into consideration

1
4

(
eı(Ωn−Ωk) + e−ı(Ωn−Ωk) + ıeı(Ωn+Ωk)− ıe−ı(Ωn+Ωk)

)
= cos

(
Ωn +

π

4

)
cos
(

Ωk +
π

4

)
, (92)

Theorem 3 follows.
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6 Conclusion

Using the EM SPA method, we have determined the asymptotic behaviors at large
spin J of Wigner matrix elements, Wigner 3 j symbols and the character χJ(g) of
an SU(2) group element g.

By far the most surprising fact about this computation is that our formula for
the character χJ(g) is exact. SPA reproducing the exact result for integrals are usu-
ally the consequence of a Duistermaat Heckman (28; 29; 30) localization property
(one of the most famous example of this being the Harish Chandra Itzykson Zuber
integral (31)). Recall that the Duistermaat–Heckman theorem states that a phase
space integral ∫

Ω e−ıH(p,q), (93)

where Ω is the Liouville form, equals its leading order SPA estimation if the flow
of the Hamiltonian vector field X (iXΩ = dH) is U(1). To our knowledge, all
integrals exhibiting a localization property (i.e. equaling their leading order SPA
approximation) fall in (some generalization of) this case. A standard example is
the integration of the height function on the sphere (29; 30) which turns out to be
the exact sum of the evaluation of the function on the north and south pole which
are indeed the extrema the height function.

Note that the character of an SU(2) group element can be expressed directly
as a double integral by

χ
J(g)=∑

M,t
eh(J,M,t) ≈ J

2π

∫
dudx

√
K(x,x,u)eJ f (x,x,u) +E.M.+S., (94)

where E.M. denotes corrections coming from the Euler–Maclaurin approximation,
and S the corrections coming from sub leading terms in the Stirling approximation.
The double integral in Eq. (94) is of the correct form, with symplectic form Ω =√

K(x,x,u)dx∧du and Hamiltonian f (x,x,u) generating the Hamiltonian flow

du
dρ

=

√
u2(1+ x−u)(1− x−u)

1− x2 ln
{
e−ı(α+γ) (1+ x)(1− x−u)

(1− x)(1+ x−u)

}
(95)

dx
dρ

= −

√
u2(1+ x−u)(1− x−u)

1− x2 ln
{
eıπ (1−ξ 2)

ξ 2
(1− x−u)(1+ x−u)

u2

}
.

(96)

Our result can be explained if first, the above flow is U(1) (thus the SPA of the
double integral is exact) and second the EM and Stirling correction terms cancel,
E.M.+S. = 0. The alternative, namely that the flow is not U(1) would require an
even more subtle cancellation of the sub leading correction terms. Either way, the
exact result for the character we derive in this paper deserves further investigation.
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Appendix

In these appendices, we detail various technical points and computations.

A The Stirling Approximation

We provide here details on the passage from Eq. (17) to (12). Our starting point is

DJ
MM′(α,β ,γ)≈

∫
dt F(J,M,M′, t), (A.1)

with

F(J,M,M′, t) = eıπte−ıαMe−ıγM′
ξ

2J+M−M′−2t
η

2t−M+M′

×
√

Γ (J +M +1)Γ (J−M +1)Γ (J +M′+1)Γ (J−M′+1)
Γ (J +M− t +1)Γ (J−M′− t +1)Γ (t +1)Γ (t−M +M′+1)

. (A.2)

We use the Stirling formula

Γ (n+1) = n!≈
√

2πn
(n

e

)n
=
√

2πnen lnn−n, (A.3)

for all Γ functions and re-scaled variables M = xJ,M′ = yJ, t = uJ. Collecting all prefactors, we
end up with( √

(2π)4J4(1+ x)(1− x)(1+ y)(1− y)
(2π)4J4(1+ x−u)(1− y−u)(u)(u− x+ y)

) 1
2

=
1

2πJ

√
K(x,y,u), (A.4)

and K(x,y,u) takes the form as in Eq. (14). The “-n” terms in the Stirling approximation add to

1
2
{−J(1+ x)− J(1− x)− J(1+ y)− J(1− y)}

−{−J(1+ x−u)− J(1− y−u)− Ju− J(u− x+ y)}= 0, (A.5)

which also implies that the coefficient of lnJ in the exponent cancels. The contribution of the Γ

functions Eq. (A.2) is therefore

J
2
{(1+ x) ln(1+ x)+(1− x) ln(1− x)+(1+ y) ln(1+ y)+(1− y) ln(1− y)}

−J {(1+ x−u) ln(1+ x−u)+(1− y−u) ln(1− y−u)
+u ln(u)+(u− x+ y) ln(u− x+ y)} . (A.6)

The substitution of Eqs. (A.6) into (A.2) yields

F(J,xJ,yJ,uJ)≈ 1
2πJ

√
K(x,y,u)eJ f (x,y,u), (A.7)

where f (x,y,u) takes the form in Eq. (13), and

DJ
MM′(α,β ,γ)≈

∫
dt F(J,M,M′, t)≈

∫
dt

1
2πJ

√
K(x,y,u)eJ f (x,y,u),

(A.8)

which reproduces Eq. (12) after changing the integration variable to u = t
J .
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B Evaluations on the Critical Set

In this appendix, we present the various evaluations relevant for the proof of Theorem 1. We
start by some preliminary computations. Let us recall that

∆ = (1−ξ
2)(ξ 2− xy)− (x− y)2

4
≥ 0. (B.9)

As a preliminary, we calculate the absolute values of the four complex numbers

u± = 1−ξ
2 +

x− y
2

± ı
√

∆ , u±− x+ y = 1−ξ
2− x− y

2
± ı
√

∆ ,

1+ x−u± = ξ
2 +

x+ y
2

∓ ı
√

∆ , 1− y−u± = ξ
2− x+ y

2
∓ ı
√

∆ ,

(B.10)

which are

|u±|2 = (1−ξ 2)(1+ x)(1− y), |u±− x+ y|2 = (1−ξ
2)(1− x)(1+ y),

|1+ x−u±|2 = ξ 2(1+ x)(1+ y), |1− y−u±|2 = ξ
2(1− x)(1− y).

(B.11)

B.1 Evaluation of f at the Critical Points

To establish Eqs. (25) and (26), we note that Eq. (24) at u± is

f (x,y,u±) =−ıαx− ıγy+(2+ x− y) lnξ +(−x+ y) lnη

+
1
2
(1− x) ln(1− x)+

1
2
(1+ x) ln(1+ x)+

1
2
(1− y) ln(1− y)

+
1
2
(1+ y) ln(1+ y)− (1+ x) ln(1+ x−u±)− (1− y) ln(1− y−u±)

−(−x+ y) ln(u±− x+ y). (B.12)

The real part of f (x,y,u±) is

ℜ f (x,y,u±) = (2+ x− y) lnξ +(−x+ y) lnη

+
1
2
(1− x) ln(1− x)+

1
2
(1+ x) ln(1+ x)+

1
2
(1− y) ln(1− y)

+
1
2
(1+ y) ln(1+ y)− (1+ x) ln |1+ x−u±|− (1− y) ln |1− y−u±|

−(−x+ y) ln |u±− x+ y|, (B.13)

and substituting the absolute values computed in Eq. (B.11) leads to

ℜ f (x,y,u±) = (2+ x− y) lnξ +(−x+ y) lnη

+
1
2
(1− x) ln(1− x)+

1
2
(1+ x) ln(1+ x)+

1
2
(1− y) ln(1− y)

+
1
2
(1+ y) ln(1+ y)− (1+ x)

2
ln
[
ξ

2(1+ x)(1+ y)
]

− (1− y)
2

ln
[
ξ

2(1− x)(1− y)
]
− (−x+ y)

2
ln
[
(1−ξ

2)(1− x)(1+ y)
]
. (B.14)
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Keeping in mind that 1−ξ 2 = η2, one notes that the coefficients of both lnξ and ln(1−ξ 2) can-
cel. Furthermore, a direct inspection shows that the coefficients of all ln(1−x), ln(1+x), ln(1−
y) and ln(1+ y) cancel. Hence

ℜ f (x,y,u±) = 0. (B.15)

Therefore f (x,y,u±) is a purely imaginary number

f (x,y,u±) = −ıαx− ıγy− (1+ x) ln
1+ x−u±
|1+ x−u±|

− (1− y) ln
1− y−u±
|1− y−u±|

−(−x+ y) ln
u±− x+ y
|u±− x+ y|

. (B.16)

which assumes the form

f (x,y,u±) =−ıαx− ıγy± ı(φ + xψ− yω), (B.17)

where the three angles φ ,ψ and ω read off

ıφ =− ln
(1+ x−u+)
|1+ x−u+|

− ln
(1− y−u+)
|1− y−u+|

,

ıψ =− ln
1+ x−u+

|1+ x−u+|
+ ln

(u+− x+ y)
|u+− x+ y|

, (B.18)

ıω =− ln
(1− y−u+)
|1− y−u+|

+ ln
u+− x+ y
|u+− x+ y|

.

As the two roots u+ and u− are complex conjugate, one can absorb the various signs in Eq. (B.18)
and then writes

ıφ = ln
(1+ x−u−)(1− y−u−)
|1+ x−u−||1− y−u−|

, ıψ = ln
(1+ x−u−)(u+− x+ y)
|1+ x−u−||u+− x+ y|

,

ıω = ln
(1− y−u−)(u+− x+ y)
|1− y−u−||u+− x+ y|

. (B.19)

One by one φ ,ψ and ω can be computed by substituting Eqs. (B.10) and
(B.11) to

ıφ = ln

(
ξ 2 + x+y

2 + ı
√

∆

)(
ξ 2− x+y

2 + ı
√

∆

)
√

ξ 4(1− x2)(1− y2)

= ln
ξ 4− (x+y)2

4 +2ξ 2ı
√

∆ − (1−ξ 2)(ξ 2− xy)+ (x−y)2

4√
ξ 4(1− x2)(1− y2)

= ln
2ξ 2−1− xy+2ı

√
∆√

(1− x2)(1− y2)
, (B.20)
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and

ıψ = ln

(
ξ 2 + x+y

2 + ı
√

∆

)(
1−ξ 2− x−y

2 + ı
√

∆

)
√

ξ 2(1−ξ 2)(1− x2)(1+ y)2

= ln

{
ξ 2(1−ξ 2)− x+y

2 + yξ 2 + x2−y2

4 − (1−ξ 2)(ξ 2− xy)√
ξ 2(1−ξ 2)(1− x2)(1+ y)2

+
(x−y)2

4 + ı(1+ y)
√

∆√
ξ 2(1−ξ 2)(1− x2)(1+ y)2

}

= ln
−x(1+ y)ξ 2 + x+y

2 + xy+ y2−xy
2 + ı(1+ y)

√
∆√

ξ 2(1−ξ 2)(1− x2)(1+ y)2

= ln
x+y

2 − xξ 2 + ı
√

∆√
ξ 2(1−ξ 2)(1− x2)

, (B.21)

and finally

ıω = ln

(
ξ 2− x+y

2 + ı
√

∆

)(
1−ξ 2− x−y

2 + ı
√

∆

)
√

ξ 2(1−ξ 2)(1− y2)(1− x)2

= ln

{
ξ 2(1−ξ 2)− x+y

2 + yξ 2 + x2−y2

4 − (1−ξ 2)(ξ 2− xy)√
ξ 2(1−ξ 2)(1− y2)(1− x)2

+
(x−y)2

4 + ı(1− x)
√

∆√
ξ 2(1−ξ 2)(1− y2)(1− x)2

}

= ln
y(1− x)ξ 2− x+y

2 + xy+ x2−xy
2 + ı(1− x)

√
∆√

ξ 2(1−ξ 2)(1− y2)(1− x)2

= ln
− x+y

2 + yξ + ı
√

∆√
ξ 2(1−ξ 2)(1− y2)

. (B.22)

B.2 Evaluation of the Second Derivative

From Eq. (27), we have

−∂
2
u f (x,y,u) =

1
1+ x−u

+
1

1− y−u
+

1
u

+
1

u− x+ y
. (B.23)

Each term can be evaluated at the critical points as

1
1+ x−u±

=
1+ x−u∓
|1+ x−u±|2

=
ξ 2 + x+y

2 ± ı
√

∆

ξ 2(1+ x)(1+ y)

1
1− y+u±

=
1− y+u∓
|1− y+u∓|2

=
ξ 2− x+y

2 ± ı
√

∆

ξ 2(1− x)(1− y)
(B.24)

1
u±− x+ y

=
u∓− x+ y
|u∓− x+ y|2

=
(1−ξ 2)− x−y

2 ∓ ı
√

∆

(1−ξ 2)(1− x)(1+ y)

1
u±

=
u∓
|u∓|2

=
(1−ξ 2)+ x−y

2 ∓ ı
√

∆

(1−ξ 2)(1+ x)(1− y)
.



24 [

The real part of (B.23) is, therefore,

ξ 2 + x+y
2

ξ 2(1+ x)(1+ y)
+

ξ 2− x+y
2

ξ 2(1− x)(1− y)

+
(1−ξ 2)− x−y

2
(1−ξ 2)(1− x)(1+ y)

+
(1−ξ 2)+ x−y

2
(1−ξ 2)(1+ x)(1− y)

, (B.25)

and can be rewritten as

ℜ(−∂
2
u f )|x,y,u± =

4∆

(1− x2)(1− y2)ξ 2(1−ξ 2)
. (B.26)

The imaginary part of Eq. (B.23) is

±ı
√

∆

(
1

ξ 2(1+ x)(1+ y)
+

1
ξ 2(1− x)(1− y)

− 1
(1−ξ 2)(1− x)(1+ y)

− 1
(1−ξ 2)(1+ x)(1− y)

)
, (B.27)

which, after some algebra, can be put in the form

ℑ(−∂
2
u f )|x,y,u± =±ı2

√
∆

1−2ξ 2− xy
(1− x2)(1− y2)ξ 2(1−ξ 2)

. (B.28)

B.3 Evaluation of K

The prefactor K|x,y,u± is

K =

√
(1− x2)(1− y2)

(1+ x−u±)(1− y−u±)(u±)(u±− x+ y)
, (B.29)

which is, using Eq. (B.24),

K =

√
(1− x2)(1− y2)

ξ 4(1−ξ 2)2(1− x2)2(1− y2)2

×
(

ξ
2 +

x+ y
2

± ı
√

∆

)(
ξ

2− x+ y
2

± ı
√

∆

)
×
(

(1−ξ
2)− x− y

2
∓ ı
√

∆

)(
(1−ξ

2)+
x− y

2
∓ ı
√

∆

)
, (B.30)

and a straightforward computation proves Eq. (30).

C Real Saddle Points

In this section, we present the SPA evaluation of a matrix element with

∆ = (1−ξ
2)(ξ 2− xy)− (x− y)2

4
< 0. (C.31)

For convenience we denote ∆ ′ =−∆ > 0. In this range of parameters the two saddle points

u± = h±(x;y) = (1−ξ
2)+

x− y
2

±
√

∆ ′, (C.32)
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Fig. 2 The function Ξ = Φ + xΨ − yΩ (red) is negative, and vanishes (plane z = 0 light blue)
when ∆ ′ (dark blue) vanishes, for ξ = 0.1,0.5 and 0.9, from left to the right

are real. For simplicity suppose that 0 < x≤ y < 1. A straightforward computation shows that 0 <
u− < u+ < 1− y, hence both roots are in the integration interval. Using the results of Appendix
B.1, the function finds, at the two saddle points, the evaluation such that

f |u± =−ıαx− ıβy± (Φ + xΨ − yΩ), (C.33)

with

Φ = ln
(2ξ 2−1− xy+2

√
∆ ′)√

(1− x2)(1− y2)
, (C.34)

Ψ = ln
(−xξ 2 + x+y

2 +
√

∆ ′)√
ξ 2(1−ξ 2)(1− x2)

, (C.35)

Ω = ln
(ξ 2y− x+y

2 +
√

∆ ′)√
ξ 2(1−ξ 2)(1− y2)

. (C.36)

From Appendix B.2, we obtain

−∂
2
u f |u± =

−4∆ ′∓2
√

∆ ′(2ξ 2−1− xy)
ξ 2(1−ξ 2)(1− x2)(1− y2)

, (C.37)

which shows in particular that the maximum of f is u− (as −∂ 2
u f |u− < 0), and the SPA is

dominated by the latter. In Fig. 2, we represent the function Ξ = Φ + xΨ − yΩ as a function of
x and y,

The prefactor can be evaluated as, using Appendix B.3,

K|u− =
−
√

(1− x2)(1− y2)
(

2ξ 2−1− xy−2
√

∆

)2

ξ 2(1−ξ 2)(1− x2)2(1− y2)2 , (C.38)

hence we get the asymptotic estimate

DJ
xJ,yJ(α,β ,γ)≈− 1√

2πJ

(
1

2
√

∆ ′

)1/2

e−ıαJx−ıγJye−
Φ
2 e−J(Φ+xΨ−yΩ), (C.39)

which is indeed suppressed for large J.
The case ∆ ′ = 0 is special. A straightforward calculation shows that under these circum-

stances

Φ = Ψ = Ω = 0. (C.40)

In addition, Eq. (C.37) implies ∂ 2
u f |u± = 0. One needs to push the Taylor development around

the root

u0 = 1−ξ
2 +

x− y
2

, (C.41)

to the third order

f (u,x,y) = f |u0
+

1
6
(u−u0)3[∂ 3

u f ] |u0
+O(u3), (C.42)

and the Wigner matrix elements has an asymptotic behavior (see (1))∫
du
√

K(u,x,y)eJ f

≈ eJ f |u0

{
Ai(a(x,y)[ıJ]

2
3 )[ıJ]−

1
3 + Ai′(a(x,y)[ıJ]

2
3 )[ıJ]−

2
3

}
, (C.43)
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where a(x,y) is some non vanishing smooth real function (determined by K and f evaluated at
u0, see (1)), Ai is the Airy function of the first kind and Ai′ its derivative. At large argument, the
Airy functions behave like

Ai(ζ )≈ e−
2
3 ζ

3
2

2
√

π ζ
1
4
≈−Ai′(ζ ). (C.44)

The term Ai′ is therefore sub-leading and we have

∫
du
√

K(u,x,y)eJ f ≈ e
ıJ
(

αx+γy− 2
3 (a(x,y))

3
2

)
√

ıJ(a(x,y))1/4
. (C.45)

D Computations for the 3 j Symbol

In this appendix, we detail at length the various computations required for the proof of Theo-
rem 3.

D.1 The First Derivative

To compute the derivative ∂ξ 2 ∑i si(ı fi), note that ∂(ξ 2)∆i =−(2ξ 2−1−xiyi). The partial deriva-
tive of ıφi is then

ı∂(ξ 2)φi =
2+2ı

∂(ξ 2)∆i

2
√

∆i

(2ξ 2−1− xiyi +2ı
√

∆i)

=

(
2− ı 2ξ 2−1−xiyi√

∆i

)(
2ξ 2−1− xiyi−2ı

√
∆i
)

(2ξ 2−1− xiyi)2 +4∆i

=
−ı√
∆i

, (D.46)

while the derivative of ıψi is

ı∂(ξ 2)ψi =
−xi + ı

∂(ξ 2)∆i

2
√

∆i
xi+yi

2 − xiξ 2 + ı
√

∆i
− 1−2ξ 2

2ξ 2(1−ξ 2)

= ı

[
−(2ξ 2−1− xiyi)+ ı2xi

√
∆i
][ xi+yi

2 − xiξ
2− ı

√
∆i
]

2
√

∆iξ 2(1−ξ 2)(1− x2
i )

− 1−2ξ 2

2ξ 2(1−ξ 2)
. (D.47)

We first evaluate 2xi∆i−
(
2ξ 2−1− xiyi

)( xi+yi
2 − xiξ

2
)

as

= 2xi

[
−ξ

4 +ξ
2(1+ xiyi)−

(xi + yi)2

4

]
−
[
2ξ

2−1− xiyi
]( xi + yi

2
− xiξ

2
)

= ξ
2 [xi(1+ xiyi)− xi− yi]−

xi + yi

2
[xi(xi + yi)−1− xiyi]

= (1− x2
i )(

xi + yi

2
−ξ

2yi), (D.48)
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hence Eq. (D.47) can be translated as

ı
(1− x2

i )(
xi+yi

2 −ξ 2yi)
2
√

∆iξ 2(1−ξ 2)(1− x2
i )

+ ı
ı
√

∆i
[
x2

i −2x2
i ξ 2 +2ξ 2−1

]
2
√

∆iξ 2(1−ξ 2)(1− x2
i )

− (1−2ξ 2)
2ξ 2(1−ξ 2)

= ı
( xi+yi

2 −ξ 2yi)
2
√

∆iξ 2
. (D.49)

Noting that ω(xi,yi) = ψ(−yi,−xi) the derivative of ıω is simply

ı∂(ξ 2)ωi =
ı(− xi+yi

2 +ξ 2xi)
2
√

∆iξ 2(1−ξ 2)
. (D.50)

The derivative of ∑i si(ı fi) is then

∂(ξ 2) ∑
i

si(ı fi) = ı∑
i

siJi

(
−1√

∆i
+ xi

( xi+yi
2 −ξ 2yi)

2
√

∆iξ 2(1−ξ 2)

−yi
(− xi+yi

2 +ξ 2xi)
2
√

∆iξ 2(1−ξ 2)

)

= ı∑
i

siJi

(
−2ξ 2(1−ξ 2)+ (xi+yi)2

2 −2ξ 2xiyi

2
√

∆iξ 2(1−ξ 2)

)

= ı∑
i

siJi

(
−2

∆i

2
√

∆iξ 2(1−ξ 2)

)
= − ı

ξ 2(1−ξ 2) ∑
i

siJi
√

∆i. (D.51)

D.2 The Saddle Point Equation

We will use in the sequel the short hand notation AB := A ·B for all vectors A and B. Squaring
twice the saddle point Eq. (69) we obtain, for all signs si,[

J2
3 ∆3− J2

1 ∆1− J2
2 ∆2
]2

= 4J2
1 J2

2 ∆1∆2. (D.52)

We first translate Eq. (D.52) in terms of angular momentum vectors

J2
i ∆i = (1−ξ

2)ξ 2J2
i +ξ

2Jn
i Jk

i −
1
4
(Jn+k

i )2, (D.53)

and this allows us to write the sum J2
3 ∆3− J2

1 ∆1− J2
2 ∆2 as

(1−ξ
2)ξ 2 [J2

3 − J2
1 − J2

2
]
+ξ

2 [Jn
3 Jk

3 − Jn
1 Jk

1 − Jn
2 Jk

2
]

−1
4
[
(Jn+k

3 )2− (Jn+k
1 )2− (Jn+k

2 )2] , (D.54)

and using J3 =−J1−J2, Eq. (D.52) becomes{
2(1−ξ

2)ξ 2J1 ·J2 +ξ
2 (Jn

1 Jk
2 + Jn

2 Jk
1
)
− 1

2
Jn+k

1 Jn+k
2

}2

=
[

2(1−ξ
2)ξ 2J2

1 +2ξ
2Jn

1 Jk
1 −

1
2
(Jn+k

1 )2
]

×
[

2(1−ξ
2)ξ 2J2

2 +2ξ
2Jn

2 Jk
2 −

1
2
(Jn+k

2 )2
]
. (D.55)
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Collecting all terms on the LHS, we get

4(1−ξ
2)2

ξ
4 [J2

1 J2
2 − (J1 ·J2)2]

+4(1−ξ
2)ξ 4 [J2

1 Jn
2 Jk

2 + J2
2 Jn

1 Jk
1 −J1 ·J2

(
Jn

1 Jk
2 + Jn

2 Jk
1
)]

−(1−ξ
2)ξ 2 [J2

1 (Jn+k
2 )2 + J2

2 (Jn+k
1 )2−2J1 ·J2Jn+k

1 Jn+k
2
]

+ξ
4
[
4Jn

1 Jk
1 Jn

2 Jk
2 −

(
Jn

1 Jk
2 + Jn

2 Jk
1
)2
]

−ξ
2 [Jn

1 Jk
1 (Jn+k

2 )2+Jn
2 Jk

2 (Jn+k
1 )2−

(
Jn

1 Jk
2 + Jn

2 Jk
1
)

Jn+k
1 Jn+k

2
]
=0.

(D.56)

which is again

4(1−ξ
2)2

ξ
4 [J1∧J2]

2 +4(1−ξ
2)ξ 4 [n∧ (J1∧J2)] · [k∧ (J1∧J2)]

−(1−ξ
2)ξ 2 [(n+k)∧ (J1∧J2)]

2−ξ
4 [(n∧k) · (J1∧J2)]

2

−ξ
2 [n · [(n+k)∧ (J1∧J2)]] [k · [(n+k)∧ (J1∧J2)]] = 0. (D.57)

Using S = J1∧J2, twice the oriented area of the triangle {Ji}, the saddle point equation can be
written

0 = 4(1−ξ
2)2

ξ
4S2 +4(1−ξ

2)ξ 4 [n∧S] · [k∧S]

−(1−ξ
2)ξ 2 [(n+k)∧S]2−ξ

4 [(n∧k) ·S]2

−ξ
2 [S · (n∧k)] [S · (k∧n)] , (D.58)

and dividing by (1−ξ 2)ξ 2, we obtain

0 = 4(1−ξ
2)ξ 2S2 +4ξ

2 [n∧S] · [k∧S]+ [S · (n∧k)]2− [(n+k)∧S]2 ,

(D.59)

that is

0 = 4ξ
4S2−4ξ

2 [S2 +(n ·k)S2−SnSk]
−S2(n∧k)2 +[S∧ (n∧k)]2 +S2(n+k)2− (Sn +Sk)2. (D.60)

The last line in Eq. (D.60) can be simplified as

−S2 +S2(n ·k)2 +(Sn)2 +(Sk)2−2(n ·k)SnSk

+2S2 +2S2(n ·k)− (Sn)2− (Sk)2−2SnSk

= [1+(n ·k)]2S2−2[1+(n ·k)]SnSk, (D.61)

from which Eq. (70) follows.

D.3 Evaluation of J2
i ∆

±
i

Recall that J2
i ∆i is

J2
i ∆i = (1−ξ

2)ξ 2J2
i +ξ

2Jn
i Jk

i −
1
4
(Jn+k

i )2. (D.62)

Evaluated for ξ 2
+ = 1+(n·k)

2 , Eq. (D.62) gives

J2
i ∆

+
i =

1− (n ·k)2

4
J2

i +
1+(n ·k)

2
Jn

i Jk
i −

1
4
(Jn

i + Jk
i )2, (D.63)
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which can be simplified further to

J2
i ∆

+
i =

1
4
{
(n∧k)2J2

i +2(n ·k)Jn
i Jk

i − (Jn
i )2− (Jk

i )2}
=

1
4
[
(n∧k)2J2

i + Jn
i [(n∧k) · (k∧Ji)]− Jk

i [(n∧k) · (n∧Ji)]
]
.

(D.64)

Combining the last two terms, this is

1
4
{
(n∧k)2J2

i +(n∧k) · [(Ji∧ (k∧n))∧Ji]
}

=
1
4
{
(n∧k)2J2

i +(n∧k) ·
[
Ji (Ji · (n∧k))− (n∧k)J2

i
]}

, (D.65)

hence for ξ 2
+, we get

Ji∆
+
i =

1
4

[Ji · (n∧k)]2 . (D.66)

Evaluated in ξ 2
− = 1+(n·k)

2 − SnSk

S2 ,J2
i ∆i is of the form

Ji∆
−
i =

(
1− (n ·k)

2
+

SnSk

S2

)(
1+(n ·k)

2
− SnSk

S2

)
J2

i

+
(

1+(n ·k)
2

− SnSk

S2

)
Jn

i Jk
i −

1
4
(Jn+k

i )2. (D.67)

Combining all the terms common to the RHS in Eqs. (D.63) and (D.67), one obtains

Ji∆
−
i =

1
4

[Ji · (n∧k)]2 +
SnSk

S2

[
(n ·k)J2

i − Jn
i Jk

i

]
− J2

i
(SnSk)2

S4

=
1

4S2

{
[S(Ji · (n∧k))]2 +4SnSk [(n∧Ji) · (k∧Ji)]−4J2

i
(SnSk)2

S2

}
.

(D.68)

But remarking that S ·Ji = 0, the first term on the RHS above can be written as a double vector
product, i.e.

Ji∆
−
i

=
1

4S2

{
[Ji∧ (S∧ (n∧k))]2 +4SnSk [(n∧Ji) · (k∧Ji)]−4J2

i
(SnSk)2

S2

}
=

1
4S2

{[
Ji∧

(
nSk +kSn

)]2
−4J2

i
(SnSk)2

S2

}
=

1
4S4

{
S2
[
Ji∧

(
nSk +kSn

)]2
−4J2

i (SnSk)2
}

. (D.69)

Then, since A2B2 = (A ·B)2 +(A∧B)2, we have

Ji∆
−
i =

1
4S4

{[
S ·
[
Ji∧

(
nSk +kSn

)]]2
+
[
Ji(SnSk +SkSn)

]2
−4J2

i (SnSk)2
}

=

{
Ji ·
[
(n∧S)Sk +(k∧S)Sn]}2

4S4 =

{
Ji ·
[
(S∧n)Sk +(S∧k)Sn]}2

4S4 .

(D.70)
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D.4 Second Derivative

Using Ji

√
∆

+
i from Eq. (74) and ξ 2

+, the following is valid

ε
+
2 ε

+
3 J2

√
∆

+
2 J3

√
∆

+
3

[
(2ξ

2
+−1)J2

1 − Jn
1 Jk

1
]
+ 	123

=
1
4
{

Jn∧k
2 Jn∧k

3 [(n∧J1) · (k∧J1)]+ Jn∧k
3 Jn∧k

1 [(n∧J2) · (k∧J2)]

+Jn∧k
1 Jn∧k

2 [(n∧J3) · (k∧J3)]
}
. (D.71)

Substituting in the equation above J3 =−J1−J2, the RHS can be written

1
4
{
−Jn∧k

2 Jn∧k
2 [(n∧J1) · (k∧J1)]− Jn∧k

2 Jn∧k
1 [(n∧J1) · (k∧J1)]

−Jn∧k
1 Jn∧k

1 [(n∧J2) · (k∧J2)]− Jn∧k
2 Jn∧k

1 [(n∧J2) · (k∧J2)]

+Jn∧k
1 Jn∧k

2 [(n∧J1) · (k∧J1)+(n∧J1) · (k∧J2)
+(n∧J2) · (k∧J1)+(n∧J2) · (k∧J2)]} , (D.72)

canceling the appropriate cross terms, the remaining expression admits the factorization

−1
4
{[

Jn∧k
2 (n∧J1)− Jn∧k

1 (n∧J2)
]
·
[
Jn∧k

2 (k∧J1)− Jn∧k
1 (k∧J2)

]}
=−1

4
{n∧ ((n∧k)∧ (J1∧J2))} · {k∧ ((n∧k)∧ (J1∧J2))} ,

(D.73)

developing the double vector products and taking into account that n · (n∧k) = k · (n∧k) = 0,
we conclude

ε
+
2 ε

+
3 J2

√
∆

+
2 J3

√
∆

+
3

[
(2ξ

2
+−1)J2

1 − Jn
1 Jk

1
]
+ 	123=−1

4
SnSk(n∧k)2.

(D.74)

For the ξ 2
− root, we have

ε
−
2 ε

−
3 J2
√

∆2J3
√

∆3
[
(2ξ

2
−−1)J2

1 − (n ·J1)(k ·J1)
]
+ 	123

=
1
4

[
JS∧n

2 Sk + JS∧k
2 Sn]

S2

[
JS∧n

3 Sk + JS∧k
3 Sn]

S2

×
[
(n∧J1) · (k∧J1)−2J2

1
SnSk

S2

]
+

1
4

[
JS∧n

1 Sk + JS∧k
1 Sn]

S2

[
JS∧n

3 Sk + JS∧k
3 Sn]

S2

×
[
(n∧J2) · (k∧J2)−2J2

2
SnSk

S2

]
+

1
4

[
JS∧n

1 Sk + JS∧k
1 Sn]

S2

[
JS∧n

2 Sk + JS∧k
2 Sn]

S2

×
[
(n∧J3) · (k∧J3)−2J2

3
SnSk

S2

]
. (D.75)
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We substitute again in the equation above J3 = −J1− J2. The coefficient of 1
4S2 can be calcu-

lated, canceling the appropriate cross terms,

−
[
JS∧n

2 Sk + JS∧k
2 Sn

]2
(n∧J1) · (k∧J1)

−
[
JS∧n

1 Sk + JS∧k
1 Sn

]2
(n∧J2) · (k∧J2)

+
[
JS∧n

1 Sk + JS∧k
1 Sn

][
JS∧n

2 Sk + JS∧k
2 Sn

]
× [(n∧J1) · (k∧J2)+(n∧J2) · (k∧J1)] , (D.76)

while the coefficient of − SkSn

2S6 is

− J2
1

[
JS∧n

2 Sk + JS∧k
2 Sn

]2
− J2

2

[
JS∧n

1 Sk + JS∧k
1 Sn

]2

+2J1 ·J2

[
JS∧n

1 Sk + JS∧k
1 Sn

][
JS∧n

2 Sk + JS∧k
2 Sn

]
. (D.77)

The RHS of Eq. (D.75) becomes

−1
4S4

[(
JS∧n

2 Sk + JS∧k
2 Sn

)
(n∧J1)−

(
JS∧n

1 Sk + JS∧k
1 Sn

)
(n∧J2)

]
·
[(

JS∧n
2 Sk + JS∧k

2 Sn
)

(k∧J1)−
(

JS∧n
1 Sk + JS∧k

1 Sn
)

(k∧J2)
]

+
SkSn

2S6

[
J1

(
JS∧n

2 Sk + JS∧k
2 Sn

)
−J2

(
JS∧n

1 Sk + JS∧k
1 Sn

)]2
, (D.78)

which can be again rewritten, combining the appropriate terms into double vector products as

−1
4S4

{
n∧
[
(S∧n)∧ (J1∧J2)Sk +(S∧k)∧ (J1∧J2)Sn]}

·
{

k∧
[
(S∧n)∧ (J1∧J2)Sk +(S∧k)∧ (J1∧J2)Sn]}

+
SkSn

2S6

[
(S∧n)∧ (J1∧J2)Sk +(S∧k)∧ (J1∧J2)Sn]2 . (D.79)

Recalling that J1∧J2 = S, the above equation is again

−1
4S4

{
n∧
[
(S∧n)∧SSk +(S∧k)∧SSn]}

·
{

k∧
[
(S∧n)∧SSk +(S∧k)∧S)Sn]}

+
SkSn

2S6

[
(S∧n)∧SSk +(S∧k)∧SSn]2 . (D.80)

We develop the double vector products in the first line and take into account that n · (S∧n) = k ·
(S∧k) = 0. For the second line we use (S∧A)2 = S2A2−(S ·A)2 and S ·(S∧n) = S ·(S∧k) = 0
to rewrite the equation as

−SnSk

4S4

{
− [n · (S∧k)]S+ (S∧n)Sk +(S∧k)Sn]}

·
{
− [k · (S∧n)]S+(S∧n)Sk + (S∧k)Sn]

}
+

SkSn

2S4

[
(S∧n)Sk +(S∧k)Sn]2 . (D.81)

Noting that the cross term in the first scalar product cancel (again as S ·(S∧n) = S ·(S∧k) = 0),
and combining the remaining three terms, we get

SnSk

4S4 S2 [S · (n∧k)]2 +
SkSn

4S4

[
(S∧n)Sk +(S∧k)Sn]2 . (D.82)
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Factoring S in the second term and using A2B2 = (A ·B)2 + (A∧B)2, this expression can be
rewritten as

SnSk

4

[
(n∧k)2− [nSk−kSn]2

S2 +
[nSk +kSn]2

S2 − 4(SnSk)2

S4

]
, (D.83)

thus we conclude

ε
−
2 ε

−
3 J2
√

∆2J3
√

∆3
[
(2ξ

2
−−1)J2

1 − (n ·J1)(k ·J1)
]
+ 	123

=
SnSk

4

[
(n∧k)2 +4(n ·k)

SnSk

S2 − 4(SnSk)2

S4

]
. (D.84)

D.5 Function at the Saddle Points

We evaluate the relevant angles at the points ξ 2
± by substituting Eqs. (72) and (74) into (26).

D.5.1 The Angles φ
±
i

For the angles φ
±
i , the direct substitution yields

ıε+
i φ

+
i = ln

(n∧Ji) · (k∧Ji)+ ıJi [Ji · (n∧k)]√
(n∧Ji)2

√
(k∧Ji)2

(D.85)

ıε−i φ
−
i = ln

(n∧Ji) · (k∧Ji)−2J2
i

SnSk

S2 + ıJi
Ji·[(S∧n)Sk+(S∧k)Sn]

S2√
(n∧Ji)2

√
(k∧Ji)2

.

Consider first the denominator of ıφ−i multiplied by S2, namely

S2(n∧Ji) · (k∧Ji)−2J2
i SnSk + ıJiJi ·

[
(S∧n)Sk +(S∧k)Sn]

= [S∧ (n∧Ji)] · [S∧ (k∧Ji)]+ [S · (n∧Ji)][S · (k∧Ji)]

−2J2
i SnSk + ıJiJi ·

[
(S∧n)Sk +(S∧k)Sn]

= [n · (Ji∧S)+ ıJiSn]
[
k · (Ji∧S)+ ıJiSk], (D.86)

hence

ıε−i φ
−
i = ıΦ i

n + ıΦ i
k ıΦ i

n = ln
n · (Ji∧S)+ ıJiSn

S
√

(n∧Ji)2
. (D.87)

Note that

[n · (Ji∧S)+ ıJiSn]
[
k · (Ji∧S)− ıJiSk]

= [S · (n∧Ji)][S · (k∧Ji)]+ J2
i SnSk

+ıJiJi ·
[
S∧
(
kSn−nSk)]

= S2(n∧Ji) · (k∧Ji)− [S∧ (n∧Ji)] · [S∧ (k∧Ji)]

+J2
i SnSk + ıJiJi · [S∧ (S∧ (k∧n))] , (D.88)

and developing the double vector products, taking into account S ·Ji = 0, we deduce

ıε+
i φ

+
i = ıΦ i

n− ıΦ i
k. (D.89)
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D.5.2 The Angles ε
±
1 ψ

±
1 − ε

±
3 ψ

±
3

We will denote in this section A∧B = A∧B. A direct substitution of ξ 2
+ and ξ 2

− yields

ıε+
i ψ

+
i = ln

Jk
i − Jn

i (n ·k)+ ıJi · (n∧k)√
[1− (n ·k)2] (n∧Ji)2

(D.90)

ıε−i ψ
−
i = ln

Jk
i − Jn

i (n ·k)+2Jn
i

SnSk

S2 + ı
Ji·[(S∧n)Sk+(S∧k)Sn]

S2√[
1− (n ·k)2 +4(n ·k) SnSk

S2 −4 (SnSk)2

S4

]
(n∧Ji)2

.

To evaluate ıε+
1 ψ

+
1 − ıε+

3 ψ
+
3 , we take apart the numerator

[
Jn∧(k∧n)

1 + ıJn∧k
1

][
Jn∧(k∧n)

3 − ıJn∧k
3

]
=−J ∧[n∧(k∧n)]

1 ·J ∧[n∧(k∧n)]
3 +J1 ·J3 (n∧ (k∧n))2 + Jn∧k

1 Jn∧k
3

+ı
(

Jn∧k
1 Jn∧(k∧n)

3 − Jn∧(k∧n)
1 Jn∧k

3

)
. (D.91)

Taking into account n · (k∧n) = 0, this can be expressed as

−(k∧n)2Jn
1 Jn

3 +J1 ·J3(k∧n)2 + ıJ1 · [J3∧ [(n∧k)∧ (n∧ (k∧n))]]

= (k∧n)2(n∧J1) · (n∧J3)− ıJ1 ·
[
J3∧

[
n(n∧k)2 ] , (D.92)

hence

ıε+
1 ψ

+
1 − ıε+

3 ψ
+
3 = ln

(n∧J1) · (n∧J3)− ın · (J1∧J3)√
(n∧J1)2(n∧J3)2

= ıΨ 13
n . (D.93)

To evaluate ıε−1 ψ
−
1 − ıε−3 ψ

−
3 , we again consider apart the numerator

(
J

n∧(k∧n)+2n SnSk
S2

1 +ıJ
S∧n Sk

S2 +S∧k Sn
S2

1

)(
J

n∧(k∧n)+2n SnSk
S2

3 −ıJ
S∧n Sk

S2 +S∧k Sn
S2

3

)
.

(D.94)

The real part is

J
n∧(k∧n)+2n SnSk

S2

1 J
n∧(k∧n)+2n SnSk

S2

3 + J
S∧n Sk

S2 +S∧k Sn
S2

1 J
S∧n Sk

S2 +S∧k Sn
S2

3

=−J
∧
[
n∧(k∧n)+2n SnSk

S2

]
1 ·J

∧
[
n∧(k∧n)+2n SnSk

S2

]
3

+J1 ·J3

(
n∧ (k∧n)+2n

SnSk

S2

)2

−J
∧
[
S∧n Sk

S2 +S∧k Sn
S2

]
1 ·J

∧
[
S∧n Sk

S2 +S∧k Sn
S2

]
3

+J1 ·J3

(
S∧n

Sk

S2 +S∧k
Sn

S2

)2

, (D.95)
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which is, holding in mind that S ·Ji = 0,

−
(

nJk∧n
1 − (k∧n)Jn

1 +2J1∧n
SnSk

S2

)
·
(

nJk∧n
3 − (k∧n)Jn

3 +2J3∧n
SnSk

S2

)
−S
(

Jn
1

Sk

S2 + Jk
1

Sn

S2

)
·S
(

Jn
3

Sk

S2 + Jk
3

Sn

S2

)
+J1 ·J3

[
[n∧ (k∧n)]2 +4

(SnSk)2

S4 +S2 (nSk +kSn)2

S4 −4
(SnSk)2

S4

]
.

(D.96)

Developing the products in the first line, we get

−Jk∧n
1 Jk∧n

3 − (n∧k)2Jn
1 Jn

3 −4
(SnSk)2

S2 (J1∧n) · (J3∧n)

+2
SnSk

S2 [(J1∧n) · (k∧n)Jn
3 +(J3∧n) · (k∧n)Jn

1 ]

− 1
S2

(
Jn

1 Sk + Jk
1 Sn
)(

Jn
3 Sk + Jk

3 Sn
)

+J1 ·J3

(
(n∧k)2 +

(nSk +kSn)2

S2

)
,

(D.97)

which is, expanding the second line,

(J1∧n) · (J3∧n)
(

(n∧k)2−4
(SnSk)2

S2

)
− Jk∧n

1 Jk∧n
3

+2
SnSk

S2

[
Jk

1 Jn
3 + Jn

1 Jk
3 −2(n ·k)Jn

1 Jn
3
]

− 1
S2

(
Jn

1 Sk + Jk
1 Sn)(Jn

3 Sk + Jk
3 Sn)+J1 ·J3

(nSk +kSn)2

S2 . (D.98)

Combining the cross terms in the second line and using Jk∧n
1 Jk∧n

3 =
Jn∧k

1 Jn∧k
3 , we obtain

(J1∧n) · (J3∧n)
(

(n∧k)2−4
(SnSk)2

S2

)
−4(n ·k)Jn

1 Jn
3

SnSk

S2

−Jn∧k
1 Jn∧k

3 − 1
S2 JS∧(n∧k)

1 JS∧(n∧k)
3 +J1 ·J3

(nSk +kSn)2

S2 . (D.99)

Computing the middle term on the second line using S ·Ji = 0, the same expression is

(J1∧n) · (J3∧n)
(

(n∧k)2−4
(SnSk)2

S2

)
−4(n ·k)Jn

1 Jn
3

SnSk

S2

+J1 ·J3
(nSk +kSn)2− (nSk−kSn)2

S2 , (D.100)

hence the real part is

(J1∧n) · (J3∧n)
[
(n∧k)2−4

(SnSk)2

S2 +4
SnSk(n ·k)

S2

]
. (D.101)
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The imaginary part of the numerator (D.94) assumes the form

J
S∧n Sk

S2 +S∧k Sn
S2

1 J
n∧(k∧n)+2n SnSk

S2
3 − J

n∧(k∧n)+2n SnSk
S2

1 J
S∧n Sk

S2 +S∧k Sn
S2

3 .

(D.102)

We start by expressing it as

−J
∧
[
n∧(k∧n)+2n SnSk

S2

]
1 ·J

∧
[
S∧n Sk

S2 +S∧k Sn
S2

]
3

+J
∧
[
n∧(k∧n)+2n SnSk

S2

]
3 ·J

∧
[
S∧n Sk

S2 +S∧k Sn
S2

]
1 , (D.103)

as the cross terms in the development of the two scalar products cancel. This computes further
to

−
(

nJk∧n
1 − (k∧n)Jn

1 +2J1∧n SnSk

S2

)
·S
(

Jn
3

Sk

S2 + Jk
3

Sn

S2

)
+
(

nJk∧n
3 − (k∧n)Jn

3 +2J3∧n SnSk

S2

)
·S
(

Jn
1

Sk

S2 + Jk
1

Sn

S2

)
. (D.104)

Grouping together similar terms, one should end up with

SnSk

S2 (J3∧J1) · ((k∧n)∧n)+
(Sn)2

S2 (J3∧J1) · ((k∧n)∧k)

−[(k∧n) ·S]
Sn

S2 (J3∧J1) · (n∧k)

+2
Sn(Sk)2

S4 [(n∧ (J3∧J1))∧n] ·S+2
(Sn)2Sk

S4 [(k∧ (J3∧J1))∧n] ·S.

(D.105)

Recognizing S = J3∧J1, the above can be written

SnSk

S2 [Sn(n ·k)−Sk]+
(Sn)2

S2 [Sn−Sk(n ·k)]+
Sn

S2 [S · (n∧k)]2

+2
Sn(Sk)2

S4

(
−(Sn)2 +S2)+2

(Sn)2Sk

S4

(
−SnSk +(n ·k)S2)

= Sn
[
(n∧k)2− (nSk−kSn)2

S2 − (Sk)2

S2 +
(Sn)2

S2 −4
(SnSk)2

S4

+2
(Sk)2

S2 +2(n ·k)
SnSk

S2

]
= Sn

[
(n∧k)2 +4

SnSk

S2 −4
(SnSk)2

S4

]
. (D.106)

In conclusion, ıε−1 ψ
−
1 − ıε−3 ψ

−
3 is

ıε−1 ψ
−
1 − ıε−3 ψ

−
3 = ln

(n∧J1) · (n∧J3)+ ın · (J3∧J1)√
(n∧J1)2(n∧J3)2

= ıΨ 13
n . (D.107)

Following similar manipulations, we get

ıε±2 ψ
±
2 − ıε±3 ψ

±
3 = ln

(n∧J2) · (n∧J3)+ ın · (J3∧J2)√
(n∧J2)2(n∧J3)2

= ıΨ 23
n . (D.108)

For the angles ωi, recall that ωn,k can be written in terms of ψ−k,−n. Note that due to the

choice of the determination of the
√

∆
+
i the correct relation is ω

+
n,k = −ψ

+
−k,−n and ω

−
n,k =

ψ
−
−k,−n. Moreover, as Ψ−k =−Ψk, we conclude

ıε±1 ω
±
1 − ıε±3 ω

±
3 =±ıΨ 13

k , ıε±2 ω
±
2 − ıε±3 ω

±
3 =±ıΨ 23

k . (D.109)
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E Boundary Terms in the Euler Maclaurin Formula

Using the short hand notation F(t) for F(J,M,M′, t), the remainder terms in the EM formula are
expressed as follows:

−B1 [F(tmax)+F(tmin)]+∑
k

B2k

(2k)!

[
F(2k−1)(tmax)−F(2k−1)(tmin)

]
.

(E.110)

In this section, we deal with generic Wigner matrices, namely we consistently assume that 0 <
ξ 2 < 1. Note that

tmin = max{0,M−M′}, tmax = min{J +M,J−M′}. (E.111)

For simplicity, we will detail the diagonal matrix elements M = M′. By continuity, the region in
which our results apply extends to some strip |M−M′|< P. For such elements tmin = 0 and, for
M > 0, tmax = J−M. The Stirling approximations become easily upper and lower bounds, at the
price of some constants, thus by Appendix A we obtain

Cmin

J

√
K(x,x,u)eJℜ f (x,x,u) < |F(t)|< Cmax

J

√
K(x,x,u)eJℜ f (x,x,u),

(E.112)

with

f (x,x,u) = −ı(α + γ)x+ ıπu+(1−u) lnξ
2 +u ln(1−ξ

2)
+(1− x) ln(1− x)+(1+ x) ln(1+ x)−2u lnu
−(1+ x−u) ln(1+ x−u)− (1− x−u) ln(1− x−u).

(E.113)

and

K(x,u) =
(1− x2)

(1+ x−u)(1− x−u)u2 . (E.114)

The behavior of the higher derivative terms in the EM formula is governed by F(k)(tmin) and
F(k)(tmax). To see this, collect all factors depending on t in F(t) and write

F(t) = q(J,M) pJ,M(t),

pJ,M(t) =
eAt

Γ (J +M− t +1)Γ (J−M− t +1)[Γ (t +1)]2
, (E.115)

A := ı[π−2lnξ −2lnη ].

Hence F(k) = q(J,M)p(k)
J,M , and the first derivative can be expressed in terms of

d
dt

pJ,M(t) = pJ,M(t)
{

A+
Γ ′(J +M− t +1)
Γ (J +M− t +1)

+
Γ ′(J−M− t +1)
Γ (J−M− t +1)

−2
Γ ′(t +1)
Γ (t +1)

}
= pJ,M(t)

{
A+ψ

(0)(J +M− t +1)

+ψ
(0)(J−M− t +1)−2ψ

(0)(t +1)
}

, (E.116)
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with ψ(0)(t) denoting the digamma function. For integer arguments

ψ
(0)(m+1) =−γ0 +

m

∑
k=1

1
k
, (E.117)

hence |F ′(t)|< C lnJ |F(t)| for some constant C. Higher order derivatives of Eq. (E.116) can be
written in terms of higher order polygamma functions ψ(n) = dnψ(0)/dtn. For all k,ψ(2k)(X)≤
ψ(0)(X) at large X , therefore the k’th derivative is dominated by

F(2k−1)(t) = F(t)


[

A+
4

∑
i=1
±ψ

(0)(Xi)

]2k−1

+ · · ·

. (E.118)

Then |F(k)|< C(lnJ)k|F(t)| for some constant C.

From Eq. (E.112), we conclude that both |F(tmin)| and |F(tmax)|, as well as all their deriva-
tives are a priori exponentially suppressed in the region where ℜ f (x,y,umin)< 0 and ℜ f (x,y,umax)<
0. As

ℜ f (x,x,0) = lnξ
2

ℜ f (x,x,1− x) = x lnξ
2 +(1− x) ln(1−ξ

2)
+(1+ x) ln(1+ x)− (1− x) ln(1− x)−2x ln(2x),

(E.119)

we infer that the derivative corrections coming from tmin = 0 are always suppressed term by
term. However the situation is markedly different for the corrections coming from tmax = J−M.
At fixed ξ 2, the corrections are exponentially suppressed for x close enough to either 0 or 1, but

the maximum of ℜ f (x,x,1− x), achieved for x = ξ√
4−3ξ 2

is ln (ξ+
√

4−3ξ 2)2

4 > 0, hence there

exists some interval in which, term by term, the derivative terms are bounded from below by
an exponential blow up. In this region our EM SPA approximation should a priori fail (see also
Fig. 3).

A second set of EM derivative terms come when passing from Eqs. (36) to (37), involving
derivatives ∂ n

(∂x)n DJ
xJ,xJ |x=±1. Using Appendix C, Eq. (C.39) we note that all these derivatives

yield some function times DJ
xJ,xJ . As
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Fig. 3 Shaded region where the EM corrections are exponentially suppressed

DJ
−J,−J(g) = ξ

2Je+ı(α+γ)J , DJ
JJ(g) = ξ

2Je−ı(α+γ)J , (E.120)

all such derivative terms are exponentially suppressed for large J.
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