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Asymptotes in SU(2) Recoupling Theory]Asymptotes in SU(2) Recoupling
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Wigner Matrices, 3 j Symbols, and Character Localization
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R. Gurau]Razvan Gurau
Abstract In this paper, we employ a technique combining the Euler
Maclaurin formula with the saddle point approximation method to obtain the
asymptotic behavior (in the limit of large representation index J) of generic Wigner
matrix elements D;/IM, (g). We use this result to derive asymptotic formulae for the

character y’(g) of an SU(2) group element and for Wigner’s 3 symbol. Sur-
prisingly, given that we perform five successive layers of approximations, the
asymptotic formula we obtain for y”(g) is in fact exact. The result hints at a
“Duistermaat-Heckman like” localization property for discrete sums.
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1 Introduction

The saddle point approximation (SPA) is a classical algorithm to determine asymp-
totic behavior of a large class of integrals in some large parameter limit (1). One
uses it when exact calculations are either too complex or not very relevant. Re-
cently, SPA has been used in conjunction with the Euler Maclaurin (EM) formula
to derive asymptotic behavior of discrete sums (2; 13). In the combined EM SPA
scheme corrections to the leading behavior come from two sources: the derivative
terms in the EM formula and sub-leading terms in the SPA estimate.

Itis worthwhile emphasizing that similar approximation methods can be traced
back for years (4) and such methods have led to more or less accurate results de-
pending on the oscillatory character of the summand. As pointed out in (4) (see
from page 358 for a review), one of the best way to convert discrete sums to
integrals in semiclassical cases, is the Poisson summation formula. For instance,
Braun et al. (5) discussed the semiclassical approximation of the
Floquet operator (which is a composition of a rotation and then a torsion around
the z axis) in a stroboscopic period-to-period dynamics that in return possesses an
application in the asymptotic of the small Wigner d-matrix element. They were
able to prove also using the Poisson summation formula that SPA asymptotes of
the SU(2) character turns out to be exact.

The semiclassical analysis of a Wigner matrix element has been performed
in many different ways (see (6; [7; [8) and also (9) for a recent review and the
geometric perspective attached to it). One the first contribution on this analysis
is may be the work by Brussaard et al. (6)). Therein, relations of Clebsch-Gordan
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and Racah coefficients for large angular momenta are derived. Classical analogues
of the square of Clebsch-Gordan coefficients and the square of the little Wigner
matrix element are suggested based on their geometrical meaning. In (8)), again a
combined Poisson sum formula and the stationary phase method have been used
to perform the semiclassical approximation for a reduced rotation matrix element
expressed in terms of a classical generating function.

In this paper, we use a slightly different EM SPA (using deformation contours
exploring the complex plane) method to derive the asymptotic behavior of Wigner
rotation matrix elements. We subsequently use this asymptotic
formula to derive the asymptotic behavior of the character of an SU(2) group
element. Although our estimate is obtained after using twice the EM SPA approx-
imation and once the Stirling approximation for Euler’s Gamma functions it turns
out to be the exact result. We then proceed to obtain the asymptotic expression for
Wigner’s 3j symbol, recovering with this method the
results of (10)).

Both our results and method are relevant for computing topological
(Turaev Viro like (11)) invariants and in connection to the volume conjecture (12).
From a theoretical physics perspective, they are of consequence for spin foam
models (13)), group field theory (14 [15), discretized BF theory and lattice gravity
(165 [17; [18). Continuous SPA has been extensively used in this context to derive
asymptotic behaviors of spin foam amplitudes (19;20; 21)) and (225 123} 124).

In the recoupling theory of SU(2), the EM SPA method has already been used
to obtain in a particularly simple way the Ponzano-Regge asymptotic of the 6j
symbol (3; [25). The main strength of this approach is the following: most rele-
vant quantities in the recoupling theory of SU(2) are expressed in Fourier space
by discrete sums. In particular, the Wigner matrix elements admit a single sum
representation (26). However, generically, the sums are alternated, hence it is dif-
ficult to handle. Our EM SPA method deals very efficiently with alternating signs:
generically such signs lead to complex saddle points situated outside the initial
summation interval. After exchanging the original sums (via the EM formula) for
integrals, only one deforms the integration contour in the complex plane to pass
trough the saddle points in a completely standard manner. This feature is the cru-
cial strength of our method, and allows rapid access to explicit results. The EM
SPA method should allow one to prove for instance the asymptotic behavior (27)
of the 9 symbol.

The proofs of our three main results (Theorems|[I] [2]and[3)) are straightforward,
but the shear amount of computations performed renders this a somewhat technical
paper. In Sect. 2] we give a quick review of iterated saddle point approximations.
In Sect. 3] we establish Theorem [I] and use it in Sect. [d] to derive the character
formula (Theorem 2. Section 5| proves the asymptotic formulae of the 3 symbol
(Theorem [3). Section [6] draws the conclusion of our work and roughly discusses
a possible connection between our result for the character and the Duistermaat
Heckman theorem. The (very detailed) Appendices present explicit computations
and detail the EM derivative terms.



2 Successive Saddle Point Approximations

We briefly review the iterated SPA approximations. The result of this section jus-
tifies the use of our asymptote of the Wigner matrices to derive the asymptotic
behavior of SU(2) characters and Wigner 3 j symbols.

Consider a function f of two real variables. We are interested in evaluating the
asymptotic behavior of the integral

= / dudx ') (1)

for large J. One can chose to either evaluate / via an SPA in both variables at
the same time or via two successive SPAs, one for each variable. The question is
if the two estimates coincide. This problem is addressed in full detail in (1) and
the answer to the above question is yes (for sufficiently smooth functions), with
known estimates. Let us give a quick flavor of the origin of this result.

Remark I Let f: R xR — C be a function with an unique critical point (u,x.)
and non degenerate Hessian at (u,x.) such that I = [ dudxe’/(“~) admits a SPA
at large J. Assume that the equation d, f (u,x) = 0 admits an unique solution u, =
h(x), such that [92 ] (h(x), x) # 0. Then, the SPA of [ dudxe’/“*) in both variables
(u,x) gives the same estimate as two successive SPAs, the first one in u and the
second one in x.

Proof The simultaneous SPA in u and x yields the estimate

I~ 21 ol tee), @)
I\J192£92F = (39 (1.

The saddle point equation for u, [d, f] (#,x) = 0, is solved by u, = h(x). Thus, a
first SPA in u gives

I~ /27” / D ) 3)
V9% o

We evaluate Eq. (3)) by a second SPA, in the x variable. The saddle point equation
is

d dh
o (f (h(x),x)) = [Ouf] | (nx) x) Frs [9xf] | (h(x) ) 4)

and, as [d,f](h(x),x) = 0, the first term above vanishes. The critical point x, is
therefore a solution of [0xf] |(;(y) ) = 0. The second derivative of f(h(x),x) com-
putes to

d? d
f U000) = o (], )
_ dh 2
- [a“aXf]’(h(x),x)a + [aXf]’ h(x)x) ®)



and noting that

d dh dh

— 19, =0=[0? — +9,[0, =0= —

dx (9] (h(x)%) (90 7] ‘(h(x)JC) dx [9u]] (h(x)x) dx

[0x9uf]
= - ) (6)
(97 /] ‘(h(xxx)
the estimate obtained by two successive SPAs is

I~ on o luec), (7)

N
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identical with Eq. (2).

This remark can be generalized (1)), for sufficiently smooth functions of more
variables with non-degenerate critical points. In the sequel, we will express the
Wigner matrix elements %M, (up to corrections coming from the EM formula)
as integrals which we approximate by a first SPA. To compute more involved sums
or integrals of products of such matrix elements (the character of an SU(2) group
element and the 37 symbol) we will substitute the SPA approximation for each

%M, and evaluate the resulting expressions by subsequent SPAs.

3 Asymptotic Formula of a Wigner Matrix Element

In this section, we prove an asymptotic formula for a Wigner matrix element.
Before proceeding, let us mention that many of our results are expressed in terms
of angles. We will always denote them as :¢p = Inw for some complex number
w with |w| = 1 without mentioning at this formal level which of the logarithm
branches is used. For numerical evaluations, one could take the principal branch
of the logarithm function.

Our starting point is the classical expression of D
(a,B,7) in z y z order (see (26))

J

M in terms of Euler angles

DX/IM’(avﬁvY)
MM VM) M)\ +M)\(J —M)!
e e ;(_) J+M -1 —M — )t (1 — M+ M)

2J4+M—M' =2t .\ 2t —M+M'
x & n ) 3




with & = cos(B8/2), 1 =sin(f/2). The sum is taken over all 7 such that all facto-
rials have positive argument (hence it has 1 +min{J +M,J —M,J +M',J —M'}
terms). We call a Wigner matrix generic if its second Euler angle B ¢ Zrn (that
is 0 < £ < 1). We define the reduced variables x = M and y = M/ A priori the
asymptotic behavior we derive below holds in certain region of the parameters x,y
and & detailed in Appendices|[E|and

Theorem 1 A generic Wigner matrix element in the spin J representation of an
SU(2) group element has in the large J limit the asymptotic behavior

D)Jcl,yl(av B.,7)

1

1 2 1 T
~ e Wox—dyy [~ - o v
e (EJ\/Z) cos[(]+2>(l)+le// yo Ak 9

with
)2
A:(l—éz)(éz—xy)—on, (10)
with ¢,y and @ the three angles
2 _1_ X+y 2
l¢:ln2é 1 )cy—i-Zl\/Z7 oy = x& +1v/A 7
(1—=x*)(1—y?) \/5 1-8%)(1-x%)
x+\ 2
10 =1In 8 +iva (1)
NEET=E)

Proof The proof of Theorem(T]is divided into two steps: first the approximation of
Eq. () by an integral via the EM formula, and second the evaluation of the latter
by an SPA.

Step 1: In the large J limit, the leading behavior of the Wigner matrix element
Eq. @) is
Dlss(0sB.) = 5 [ dus/Klayu 100, (12)
where
FOoyu) = —oax—1yy+mmu+ (2+x—y—2u)In€ + 2u—x+y)Inn

1 1
—I—E(l—x)ln(l —x)+§(1+x)ln(1+x)

1 1
+5(1=y)In(l=y) + 5 (1+y)In(1+y)
—(I4+x—u)ln(l+x—u)—(1—y—u)In(1—y—u)
—ulnu—(u—x+y)In(u—x+y), (13)

and

VI=x)(T+x)(1—y)(1+y)
(I+x—u)(1—y—u)(u)(u—x+y)

K(x,y,u) = (14)



To prove this we rewrite Eq. (8) in terms of Gamma functions
DJMM’(a7B7}/) = ZF(JvaMlvl)v
t

F(J,M.,M/,t) _ ezme—uxMe—zyM’52J+M7M’72rn217M+M’ (15)
y VIU+M+ DT -M+ 1)L +M + 1)L —M +1)
FU4+M—t+1)[(J-M —t+ 1)L+ D)t —M+M +1)’

and use the Euler-Maclaurin formula

fmax

$ ) = [ b0t~ By (i) + )]

Tmin Y Imin

(2k—1) o (2k=1), |
+zk" (2k)! [h (fmax) — (tmm)} ) (16)

where By, By are the Bernoulli numbersE] To derive our asymptote, we only take
into consideration the integral approximation of Eq. (I3)) (the boundary terms are
discussed in Appendix [E), hence

Dl (o, B,y) ~ /th(J,M7M’7t). (17)

We define u = ; hence du = }dt and using the Stirling formula for the Gamma
functions (see Appendix [A) we get Eq. (12).

Step 2: We now proceed to evaluate the integral (IZ) by an SPA. Some of the
computations relevant for this proof are included in Appendix [B] Denoting the set
of saddle points by %, the leading asymptotic behavior of a generic Wigner matrix
element can be written

1 K X, y,u 5
Dl (o, B.y) ~ 2 ), (18)
! Vaml & e Do

Our task is to identify ¥ and to calculate Kl|cyu,,(—02f)|xyu and
f(x7y7 I/t*)

The set €. The derivative of f with respect to u is

ouf=1r—2I&E+2Inn+In(1+x—u)+In(1 —y —u)—Inu—In(u —x+y).

19)
A straightforward computation shows that the saddle points are the solutions of
_£2
(1 x—u)(1 =y =) P55 uu—x+y) =0 (20)
et —u2(1-8%) +x—y]+(1-E)(1+x)(1-y) =0. 2D

The region of parameters x,y,& for which the discriminant of Eq. (21)) is posi-
tive gives exponentially suppressed matrix elements, while the region for which it
is zero gives an Airy function estimate. Both cases are detailed in Appendix [C|

! Equation holds for all C* functions A(t), such that the sum over k converges.



In the rest of this proof, we treat the region in which the discriminant of
Eq. (21) is negative. We denote by A minus the reduced discriminant, that is

Y
a=(-g)E—x) -T2 s )
and the two saddle points, solutions of Eq. , can be written as
2 xX—y
ui:(1—§)+Tiz\/Z, (23)

thus the set of saddle points is ¢ = {uy,u_}.
Evaluation of f(x,y,us ). We rearrange the terms in Eq. and then write

fleyu) = —ox =1y + (2 +x—y)In& + (—x+y)Inn
+%(1 —x)In(1—x)+ %(1 +x)In(1+x)

—|—%(1 —y)In(1—y) —0—%(1 +y)In(1+y)
—(1+x)In(1+x—u)—(1—=y)In(l =y —u) — (—x+y)In(u —x+y)
1-8% (I+x—u)(1—y—u)

&2 u(u—x+y) @4

+uln | (—)

Note that by the saddle point equations the last line in Eq. (24) is zero
for uy.. The rest of Eq. (24) can be worked out to (see Appendix [B.1]for details)

flxyug) = —ax—1yy £ (¢ +xy —yo), (25)
with
282 1 —xy+2VA Y xE2+ /A
10 =1In & 2xy—|— l\zf, 1y =1In 22 x§2+l\/>2 ,
(1=x?)(1=y%) VEI-E2)(1-27)
Xy 2 A
10 =1In 22 +yi —HC . (26)
VE(1-82)(1-y?)
Second derivative. The derivative of Eq. is
1 1 1 1
—9? = - . 27
S (x,y,u) 1+x7u+17y7u+u+u—x+y 27)

At the saddle points, a straightforward computation shows that (see Appendix [B.2))

Y _ 1 g2
N . = Tomaomeae (44 £2VA 1 +2y-267)).
(28)
The prefactor K. The prefactor K (x,y,u) is given by
— 2\ (=2
‘o (=)= 09)

Cu(ltx—w)(1—y—u)(u—x+y)’



which can be calculated at the saddle points to (see Appendix [B.3)

VRT3 (282 - 1 - xy£2VA)

K = 30
e 20 -8)(1 - 2P0 2P .
Final evaluation. Before collecting all our previous results we first evaluate, using
Eqgs. (28) and (30)
2
Klows (252 —1 —xyj:ZI\/Z>
(=02 lxys (T=2)(T =) (44 £2VA 1 +xy - 2£7])
1 ( 2
- 282 1 —xy+2uVA )
o0 )
1 (8- 1-wE2va)
- . G1)
+2vVA L /(1-x2)(1—)?)
When comparing Eqs. with (TI), it can be inferred that
K|x7)’7ui . 1 :l:l(l). (32)

= e
(_auzf) X,V Ut :EIZ\/Z
Substituting Eqgs. and into Eq. (I8)), we obtain

1
1 1 2
D)ch,yj(aaﬁ#) ~ \/TTJ (M) e W ox—1lyy
¢ oM

> <1 llez Py —yo) 4 /iefup e—lf(¢+xw—yw)>, (33)
1 —1

and a straightforward computation proves Theorem [I]

4 Characters

In this section, we use Theorem|[I]to derive an asymptotic formula for the character
of an SU (2) group element.

Theorem 2 The leading asymptotic behavior of the character of an SU (2) group
element  (with Euler angles (a,B,y)) in the J representation,

1’ (o, B,7) is
sin [(J+ %) 6]

x' (o, B,7) ~ — (34)
Sin 5
with 0 defined by
COS — = COS E cos (@+7) . (35

2 2 2
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Let us emphasize that up to this point we already performed three different
approximations: first the EM approximation, second the Stirling approximation
and third the SPA approximation. To prove Theorem 2] we will use a second EM
approximation and a second SPA approximation. However, formula is ex-
actly the classical relation between the Euler angle parametrization and the 6,n
parametrization of an SU(2) group element, thus the leading behavior we find (af-
ter five levels of approximation) is in fact the exact formula of the character! We
will discuss this rather surprising result in Sect. [6}

Proof of Theorem 2] To establish Theorem 2] we follow again the EM SPA recipe.
The character ¥ of a group element can be written

1 (0, B,y) = Z Dyy(0,B,y) = Z DxeJ a,B,7), (36)
x=—1

with x = % the re-scaled variable. Note that the step in the second sum is dx =

}. The leading EM approximation (see end of Appendix |E)) for the character is,
therefore, the continuous integral (dropping henceforth the arguments (¢, 8,7))

1
X’ zJ/ dx D!, ;. (37)
7] ’

We now use Theorem [I] (more precisely Eq. (33)) and write a diagonal Wigner
matrix element as

J ﬂejf(x,x,u+)_|_ et e]f(x,x,u,) ) (38)

1
Dy = LMTJ\/Z] .

Note that for diagonal matrix elements the exponents can be further simplified
such that

FfOxus)=—1la+y)xxi(¢ +x(y— o)), (39)
while the discriminant A and angles ¢, y and @ from Eq. (TI)) become
287 — 1 -4+ 2VA _1 x(1-E2)+1/A

A RV e

_ —x(1-¢& +l\/> L (1—E2(E2_ 2
W= A=A D

We follow the same steps as in the proof of Theorem|[I}

(40)

Critical set 6. The derivatives of the exponents for each of the two terms in

Eq. (38) are
O f(x,xur) = —(a+7y) iy — o) 10,9 £ 1xdi(y — o). 42)



The derivative of ¢ is given by

2ip =0 [T Tl )] = U

(43)
The difference ¥ — @ can be recast as
2_2 7\’
W(-&)+wd (VB2 -x/1-87)
(y—)=In =1In 5 5 , (44
—x(1-E)+1/A §2(1—x2)
so that its derivative is expressed as follows:
=X _E2
Jam WIt6 —2x —2\/1=-¢&
10 (Y—w)=2 — 5 =1 : (45)
VE -2 —mxy/1-E2 1-x (1—x2)\/E2—x2
When combining Eqs. {@3)) and (45), we have
09 +x0: (Y — w) =0, (46)
and therefore simplify the saddle point Eq. as
y—o==x(a+7y). 47)

Dividing by 2 and exponentiating, the following holds:

E2—x2—wy/1-82 % xy/1—E&2 o+y 48)
& .

= =~ ——=_ = Ftan
e F 5

&) NG
Hence, the saddle points are solutions of the quadratic equation

22 Bty
P1=E) = (P2 2T o 2 & sin” (49)

2 1—&2cos? T

Defining a new variable 6 via the relation cos g =& cos O‘T” , the saddle points can
be rewritten
2 in2 &+
sin” =5+
X = 672 (50)

Taking into consideration Eq. (48), one identifies an unique saddle point (x;) for
f(x,x,u;) and an unique saddle point (x;) for f(x,x,u_) with x; and x, given by

.oty oty
&Esin = Esin =1
2 2
X1 =— 9 Xy = 0 - (51)
sin 5 sin 5



12

Evaluation of the functions and Hessian on €. Straightforward computations lead
to
26
cos” 3
éz—xlz = (1—52) - 292»
Sin 5
26
cos” 3
Ay, = (1-8)——2 >0, (52)
’ sm” 5
(1-£%)
1 _x%,Z - .20
sin” 5
Also note that at the saddle points, the angle ¢ can be simplified further to
oo 282 =1 =i, +21 /A,
19 =1In
(1- x%,z)
20 s 8
(1-8) %5 —(1-8)+2(1-§) g
=i (&2
sin? g
0 0 6 .0 ;
=1In [00522 —sin2§+12<:os§sin } =1ne'? =i0. (53)
Substituting the saddle point Eqs. into (39), we see that, at the saddles
Foxnup) =19 =10, flo,x,u-)=—19=—16. (54)

To evaluate the Hessian at the saddle, we first simplify Eqs. (42)) using (#6) hence

__£2
R f(xovs) = 0.y~ 0) = T2 _% (55)

which becomes at the saddle points

V1-€&2 1 sin’ ¢

1 =F2 . (56)
1-&2 cos & 1— &2 0
(szig) /(1— éz)smig &% cos?
Final evaluation. Using Egs. and (56), the SPA of the character Eq. is
; 1 L elJG e—10 e*lf@
= 2 cos § o o sin’$ * -1 o sin®$ 7
2(1_6 )@ l1—§2 cos § _ll—éz cos &
(57)
which is
: 1
1 ~ '1 ; <1ez(J+;)9+lez(J+§)9> _ s W*‘Gz)e] . (58)
2sin7 \ ! —1 sin &



5 Asymptotes of 3 j Symbols

In this section, we employ the asymptotic formula for the Wigner matrices to ob-
tain an asymptotic formula for Wigner’s 3 j symbol. Note that one can use directly
the EM SPA method to derive this asymptotic starting from the single sum rep-
resentation of the 3 symbol (26). We take here the alternative route of using the
results of Theorem || and the representation of 3j symbols in terms of Wigner
matrices

J J.
/ng]l} M’ MM’(g)D]VS@Mé(g)

- J 1 Jz J3 J 1 J2 J3 (59)
“\m M My )\ M, ML, ML)
where the integral is taken over SU(2) with the normalized Haar measure
1 27 2 b2
/dg = —/ da/ dy/ dBsinf. (60)
872 Jo 0 0

Substituting the asymptote (9) for each matrix element D’ M, M,( ) (i=1,2,3),
the main contribution to the integral (59) is

| 1/2 | 12 | 1/2
do ——— I - -
/ 8 <4ﬂJ1f> <4ﬂJz\/A7) <4nfs¢A7>

1 (9T (bt v — v
% 71] (a+y) elvl(2+']l(¢l+xlll/l }’zwl)))' (61)
HS,X::H \/‘ﬁ

We expand (61), perform the integration over o and 7y and change variables from
B to & such that

%/OﬂsinﬁdﬁZ%/O”%ingcosgdﬁ:z/olgdg Z/()ld(§2)7 62)

to rewrite it as

1

0y Jix;,0 Oy, 13,0 {/Old(éz)] ((4%)3 Hilji H,-Al) 7

L ms(9+)
= Vs 7

where the index i runs from 1 to 3, 53. Jix;,0 18 a Kronecker symbols and

fi=Jiloi+xiyi — yioy]. (64)

We will derive the asymptotic behavior of Eq. (63) via an SPA with respect to
E2. Note that Eq. (59) involves two distinct 3j symbols. If one attempts to first
set M/ = M;, and obtaln a representation of the square of a single 3 j symbol, one
encounters a very serious technical problem. We will see in the sequel that there

x (63)
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Fig. 1 Angular momentum vectors

are two saddle points £2 contributing to the asymptotic behavior of Eq. 1i If
one starts by setting M; = M/, one of the two saddle points éﬁ =1, and the second

derivative in £7 diverges. The contribution of this saddle point cannot be worked
out by a simple Gaussian integration.

The SPA evaluation of the general case, Eq. (63), is a very lengthy compu-
tation. We will perform it using the classical angular momentum vectors. For
large representation index J;, there exists a classical angular momentum vector
J; in R? of length |J;| = J; and projection on the Oz axis (of unit vector n)
n-J; = M;. A 3j symbol is then associated to three vectors, J;,J2,J3 with |J;| = J;
and n-J; = M; = x;J;. By the selection rules, the quantum numbers J; respect the
triangle inequalities, and M + M, + M3 = 0. This translates into the condition
that the vectors J; form a triangle J; +J2+J3 =0 (and n- [J; +J2 + J3] = 0).
The asymptotic behavior of the 3j symbol can be written in terms of the angular
momentum vectors as given by the following statement:

Theorem 3 For large representation indices J; the 3 j symbol has the asymptotic
behavior

L L s
M, M, Ms

__ N @ 1w (. T2
- n(n~S)COS l2<J1+2> Dy + (n-J1) W7+ (n-J2) Wy +

T

7 ©

1

with 8 = J1 ANJo = Jo AJs = J3 Ay, twice the area of the triangle {J;} and
D, ‘I{P and '}’,123 five angles defined as

n- (Ji/\S)-i-lJi(l‘l'S)

lqul; =In ,
Sv/(nAJ;)? 66)
3 (mAJ)-(mAJ3)+m-(J3AT;)
B = In —1,2.
V(A2 (nAJ3)?

Before proceeding with the proof of Theorem [3] note that our starting Eq. (59)
involves two distinct 3j symbols. They are each associated to a triple of vectors,
Ji,J2,J3 3 = & and n-J = xJ/ and /I 9 18
(|3}l = Ji,n-J; = y;J;). Remarking that |J;| = |J}|, the two triangles {J;} and {J}}
are congruent. Consequently there exists a rotation which overlaps them. Under
this rotation the normal vector n turns into the unit vector k. All the geometrical
information can therefore be encoded into an unique triple of vectors, henceforth
denoted J;, and the rwo unit vectors n and k such that |J;| = J;,n-J; = x;J; and
k- Ji = yiJi (see Flg EI)



Proof of Theorem [3| The proof follows the, by now familiar, routine of an SPA. We

perform this evaluation at fixed angular momenta, i.e. at the fixed set of vectors
Jianvk'

The dominant saddle points. The saddle points governing the asymptotic behavior
of Eq. (63) are solutions of the equation

0= 3@2) Zsi(lfi> = lZs,'J,' [8@2)(])1' +xi8(§z)u/,- —y,~8<§z)w,-)]. (67)
A straightforward computation (see Appendix [D.1) yields

a(gz)ZS,‘(lfi) = —@;Sﬁ]i\/&; (68)

hence the saddle point equation is of the form

0 = 51 VAL + 52027/ Ds + 53737/ 3. (69)

Introducing the angular momentum vectors, the saddle point equation becomes
after a short calculation (see Appendix [D.2))

4E45% — 42 {§* + (n-k)S* — (n-S)(k-S) }
{1+ (k)5 —2(n-8)(k-S) [1 + (n k)] } =0, (70)

for all choices of signs s1, s> and s3. Dividing by 452, Eq. can be factorized as
[52_ 1+(n~k)] Fz_ <1+(n-k) B (n-S)(k-S))] —o, 71

2 2 S2
with roots,

R

again independent of the signs s1,s7 and s3. To identify the terms contributing to
the asymptotic of Eq. (63) for fixed J;,n and k one needs to evaluate J;/A; for
each of the two roots &7 and £2. Using Appendix we have

_1+mk)  (@8)(kS)

> o (72)

RAT = {0 (AR
(73)

l{LiﬁAnka%+$AanSHf_

24—
A= 4

To any semiclassical state J;,n,k, we associate six signs, €' and € defined by

/ 1
Ji Al+ = 8i+§J,'~(n/\k),

_1J;-[(SAn)(k-S)+ (SAK)(n-S)]
P2 s2 '

(74)
Ji Ai_ =&
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Substituting J; Al.i into the saddle point Eq. 1@! the latter becomes

: (Zsis,.iJi> A%, 75)

with AT = (nAKk) and A~ = [(S7n) (k-S)S2 +HSM®S)] | As, on the other hand, Y Ji=

we conclude that at fixed a semiclassical state we have two saddle points &2 i and
two saddle points 2 contributing

e The &2 saddle point in the term s; = € and that in the term s; = —¢&;"
e The £? saddle point in the term s; = € and that in the term s; = —¢&;”

The SPA evaluation of Eq. (63)) is the sum of these four contributions.
The second derivative. The derivative of Eq. with respect to &2 yields

1
2 [8(52);&@](1)] = —18(52) (52(]_§2)> ;siji\/Zi
! —(28% — 1 —xy;)
BT A

and the term in the first line cancels (due to the saddle point equation) when eval-
uating the second derivative at the critical points. After Gaussian integration of
the dominant saddle point contributions, the prefactor in the SPA approximation
of Eq. (63) can be written

(76)

1
ﬁ’ K=32 7172S1S2S3l3]1]2]3 v/ A1Ar Az (—8(252) Zsl(lf,)> . 77

The remainder of this paragraph is devoted to the evaluation of K for the two roots
5% and &2, Substituting the second derivative gives

J1JoJ3 VAL Ay A
KT = —167%s 59531 siJ; 7(25 — XiYi)- (78)
B-g L e

Taking into consideration s%sz53 = szi £§t, K* can be expressed as

[82 0y \[AE T\ [AE [(2E82 —1)72 — mIK] + 0123}
K* = —(167?%)

éi( 5)

where (9123 denotes circular permutatlons on the indices 1,2 and 3. Using Eq. (72),
the denominator evaluates to, for the &2 1 root,

) (79)

— (n-k)?
ga-gh =0 (80)



while the numerator can be computed to (see Appendix [D.4]for detailed computa-
tions and notations)

1

& & /AT T\ AT [(2E2 —1)J] I+ O3 = — S“Sk(n/\k) (81)
hence

+ = 16m2S"sk. (82)

Evaluating the denominator in Eq. for £2, we obtain

a-e- (1 58 (e 0
Ssngk 4(51151()2}7

52 A

= i{(l—(n-k)2+4(n-k) (83)

while a lengthy computation (see Appendix shows that the numerator is

& & Jor/A 13\/ 252 ) J?JH + O123

SnSk (Snsk)Z
:4S“Sk{1—(n-k)2+4(n-k) SRR }

(84)

proving that
= —167°S"Sk. (85)

Contribution of each saddle. To evaluate the contribution of each saddle point to
the asymptote of Eq. (63)), we first evaluate

zZs,- [q;i—kfi] Zs,[(J, ) 19; )+x,~]i(zl;/,i)—y,~J,-(za)li) ) (86)

Recall that for a fixed semiclassical state only the terms with s; equal to €;, —€;", &

and —¢; contribute. We substitute x3J3 = —x2J2 — x1J1 and y3J3 = —yJ1 —y2/2
into Eq. (86) to bring it into the form
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1

1
+ {Z (Ji + 2) (165 07) +x101 (1€ Wi — 165 Y5) + 0 da (165795 — 15 yy)
—y1J1 (1€ 0f — 18F 0F) — y2ha (165 05 — 105 y/f)} : (87)

where ¢ii, 1//1'jE and a)l-i are the angles ¢;, y; and w; evaluated at &ﬁ and &£2. For each
choice + or — in the accolades, one must count both choices of the overall sign.
The angles ¢ii, 81i 1;/1i - 63i l//3i, etc. are evaluated by a rather involved computation
in Appendix [D.5] The end results are synthesized below

; : ; n- (J;AS)+u;S"
€59 =1®L F1dy, 1P, =1n JiNS) + 1)

Sy (mAJ;)?
S P W LY LYY LT HE Y
\/(n/\Jj)2<l‘l/\J3)2
j=12,
€7 0F — 187 0f = 1% (88)

It is a now matter of substitution of Egs. into to get

1

+ {Z (J,- + ;) (1L F1D)) + (n- T + (n- T )

Fk-J ) F (k-Jz)l'Pf3} = +(2 T ), (89)
where 2, denotes

1 ,
12 = (J,-+ 2) 1D+ (- J) B+ (n-J) B, (90)

1

Final evaluation. We put together Eqs. (82)), (85) and and, noting that the two
contributions from the saddle £2 are complex conjugate to one another, we obtain

Ji I J3 J1 J J3
My M, M; Mi Mé Mé
! I 1 (emrfzk) 4o () | (a0 _lefmnmk)) _

¥ /zn-S) \/alk.S) 4

on

Taking into consideration

! (ezmn—ak) 4o @ 2) | (@t ) _ ,e—mnmk))

= cos (.Qn + g) cos (.Qk + g), (92)

Theorem [3] follows.



6 Conclusion

Using the EM SPA method, we have determined the asymptotic behaviors at large
spin J of Wigner matrix elements, Wigner 3 j symbols and the character y”(g) of
an SU(2) group element g.

By far the most surprising fact about this computation is that our formula for
the character y”(g) is exact. SPA reproducing the exact result for integrals are usu-
ally the consequence of a Duistermaat Heckman (285 [29;|30) localization property
(one of the most famous example of this being the Harish Chandra Itzykson Zuber
integral (31)). Recall that the Duistermaat—Heckman theorem states that a phase
space integral

/ Q e HPa), (93)

where € is the Liouville form, equals its leading order SPA estimation if the flow
of the Hamiltonian vector field X (ixQ = dH) is U(1). To our knowledge, all
integrals exhibiting a localization property (i.e. equaling their leading order SPA
approximation) fall in (some generalization of) this case. A standard example is
the integration of the height function on the sphere (29;130) which turns out to be
the exact sum of the evaluation of the function on the north and south pole which
are indeed the extrema the height function.

Note that the character of an SU(2) group element can be expressed directly
as a double integral by

1 (g)=Y VM) ~ % / dudx /K (x,x,u)e’/ %) { EM.+ ., (94)
Mz

where E.M. denotes corrections coming from the Euler—-Maclaurin approximation,
and S the corrections coming from sub leading terms in the Stirling approximation.
The double integral in Eq. (94) is of the correct form, with symplectic form 2 =

/K (x,x,u)dx A du and Hamiltonian f(x,x,u) generating the Hamiltonian flow

du w(1+x—u)(1—x—u) o dpmilot y(1+x)(1—x—u)
ap \/ 2 1 { ' <1—x><1+x—u>} ©>

_\/u2<1+x—u><1—x—u> m{emu—éz) <1—x—u><1+x—u>}
( |

1—x2 &2 u

dp

(96)

Our result can be explained if first, the above flow is U(1) (thus the SPA of the
double integral is exact) and second the EM and Stirling correction terms cancel,
E.M. +S. = 0. The alternative, namely that the flow is not U (1) would require an
even more subtle cancellation of the sub leading correction terms. Either way, the
exact result for the character we derive in this paper deserves further investigation.
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Appendix

In these appendices, we detail various technical points and computations.

A The Stirling Approximation
We provide here details on the passage from Eq. (T7) to (T2). Our starting point is
Dy (0, BLy) = /sz(J,M,M’,z), (A1)

with

! ! !
F(J.,M,M/,t) _ ezme—sze—zyM 52/+M—M —2tn21—M+M

VIU+M+ D)L -M+DCT+M + DI —M +1)

. A2
“TUTM—t+ DI —M — 1+ )Lt + VL — M+ M +1) (A4.2)
We use the Stirling formula
n
F(n+1)=n!~21n (ﬁ) — V2mnetnnn, (A3)
e

for all I" functions and re-scaled variables M = xJ, M’ = yJ,t = uJ. Collecting all prefactors, we
end up with

1

F
> :ﬁ K(x,y,u), (A4)

VR +x) (1 —x)(1+y)(1—y)
Qr)* (1 +x—uw)(1—y—u)(u)(u—x+y)

and K (x,y,u) takes the form as in Eq. . The “-n” terms in the Stirling approximation add to

040 I =) = J(143) I )}
—{—J(+x—u)—J(1 —y—u) —Ju—J(u—x+y)} =0, (A5)

which also implies that the coefficient of InJ in the exponent cancels. The contribution of the I
functions Eq. (A2) is therefore

12 I(14.3)+ (1) (1 =)+ (14+3)In(1 ) 1 =) In(1 =)}

—J{(l+x—u)In(14+x—u)+(1—y—u)In(l —y—u)
+uln(u)+ (u—x+y)In(u—x+y)}. (A.6)

The substitution of Egs. (A.6) into (A.2) yields

1 ,
F(J,xJ,yJ,ul) ~ ﬁ\/l((x,y7 u)ejf("’-““)7 (A7)

where f(x,y,u) takes the form in Eq. , and
1 ,
Dl (@ Boy) =~ [t FUMM 1)~ [drs/Rleye! /),
(A8)

which reproduces Eq. after changing the integration variable to u = §



B Evaluations on the Critical Set

In this appendix, we present the various evaluations relevant for the proof of Theorem m We
start by some preliminary computations. Let us recall that

a=(-e)g - 50 ®9

As a preliminary, we calculate the absolute values of the four complex numbers
Uy = 1,§2+%i,\/27 uifx+yzlf§27x%y:tt\/z7

1+x7ui=§2+¥iﬁ\/1 lfy*ui=§2*¥:|:l\/g7

(B.10)
which are
s = (1 =& +x)(1=y),  Jur —x+y = (1=} (1 —x)(1+y),
Mx—ueP =& (1+x)(1+y), [1—y—usl’ = (1-x)(1-y).
(B.11)
B.1 Evaluation of f at the Critical Points
To establish Eqgs. (23) and 26), we note that Eq. (24) at u. is
Ffl,yus) =—1ox—1yy+2+x—y)Iné + (—x+y)Inn
1 1 1
+§(1fx)ln(lfx)+§(1+x)ln(1+x)+§(lfy)ln(lfy)
1
+§(1+y)ln(1+y)f(1+x)1n(1+x7ui)f(lfy)ln(lfyfui)
—(=x+y)In(ur —x+y). (B.12)
The real part of f(x,y,uy ) is
Rf(x,yuz) = (2+x—y)In+ (—x+y)lnn
1 1 1
+§(1 —x)In(1—x)+ 5(1 +x)In(1+x)+ 5(1 —y)In(1—y)
1
+§(1+y)ln(1+y)f(l+x)ln|1+x7ui|f(lfy)ln\l —y—ug]
—(=x+y)Injur —x+y|, (B.13)

and substituting the absolute values computed in Eq. (B-TT) leads to

Rf(x,yus) = (2+xfy)ln<§ +(—x+y)Inn
+%(l —x)In(1 —x)+ %(I—O—X)ln(l—kx)—l-%(l —y)In(1—y)

(I+x)
2

+%(1+y)ln(1+y)— In [éz(l—kx)(l—i-y)}

Sn[g0 0] - [0 -0 0] @
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Keeping in mind that 1 — &2 = 12, one notes that the coefficients of both In& and In(1—£2) can-
cel. Furthermore, a direct inspection shows that the coefficients of all In(1 —x),In(1+x),In(1 —
y) and In(1+y) cancel. Hence

Rf(x,y,us) =0. (B.15)

Therefore f(x,y,uy) is a purely imaginary number

) 1+x—us 1—y—uy
x,yuy) = —1oex—1yy—(l+x)ln — — (1 —y) In —
U+ —x+y
—(= In———. B.16
(=x+y) S P (B.16)
which assumes the form
f(xvy',ui):7laxilwil(¢+xwiyw)1 (B17)
where the three angles ¢, v and w read off
14+x— 1—y—
oo _mlltrw) | (oy )
[T4x—uy [1—y—uy
1 — —
W=l (14 Hy), (B.18)
[T4x—uy [y —x+]
1—vy— _
za):—ln( Y u+)+ln s x+y.
-y U4 Uy —x—ry
I | | +|

As the two roots u and u_ are complex conjugate, one can absorb the various signs in Eq. (B-T8)
and then writes

(14xu)(1-y—u)
N+x—u_||l—y—u_|’
(I—y—u)(up—x+y)
1=y —u_ljug —x+y]

(I4+x—u_)(uy —x+y)
M+x—u_|luy —x+y|’

19 =In 1y =1In

10 =In

(B.19)

One by one ¢,y and ® can be computed by substituting Eqs. (B.10) and
to

(&2+ 5 +1vA) (82— +1Va)
E(1—a)(1—)?)
g4 — Bl 402 A - (1-E2)(E2—xy) + UL
E(1-x2)(1-)?)
287 —1—xy+20V/A
(1—2)(1—y?)

19 =In

=In

(B.20)



and
(@ E) (185 va)
\/62(1762)(1*)62)(] +y)2
B0 e 5 (1) (E )
VE(1-82)(1- x2) 1+y)2
(X4y) (1+y)VA
\/52 —E)(1—x2)(1 +y)2
=In 7x(1+y)52+)(42ﬂ J”WJF} 2M +i(l+y)VA
VeI 1)1 +y)
M—xﬁzﬂ\/l
522(1—52)(1—;@)7 (B.21)
and finally
10 = In Gyi%Jﬂ\/Z) Oﬁ&ﬁ%jﬂﬁ)

\/52(1*52)(1*)'2)(1*@2
zln{ézu—é) e+ 2 (18 )
VE(I-8(1- y)(l—)f)2
N (x4y) +(1— x)\/Z }
VE(I-E)(1 - y)(l x)?
y(1 —x)E2 — X+V+xy+ zx’+(1 X)VA
VE(I=E) (1 —y?)(1—x)
—HYyE+ /A

—In , (B.22)
E2(1-82)(1—»%)

=1In

B.2 Evaluation of the Second Derivative

From Eq. 7)), we have

1 1 1 1
—9? 1) = - ) B.23
uf(x»y,u) 1+X7M+17y7u+u+’/i*x+y ( )

Each term can be evaluated at the critical points as

1 1 +x—uz 52 H'yil\/Z
I+x—us \1+x ur | E2(1+x)(1+y)
1 1—y+us &2 Hyiz\/Z
1-— 1-— 2T (1 —x)(1—
e [T ) 524
1 up—x+y _(1-8)-5FiV/A

ur—x+y uz—x+yP (1—62)( x)(1+y)
2 ux ( é )+ l\/>
Ut ‘”ﬂz (1*5 )1+ )(1 )’)




24 [

The real part of (B:23) is, therefore,

52 X+} 52 x+)
ETan Ty T B0
(1-¢)-3 (1-8)+%
T ei-—vay) T’ (29
and can be rewritten as
ER(_auzf) |Aﬂy,ui = 4A (B26)

(1=x?)(1—»?)E2(1-82)°
The imaginary part of Eq. (B:23) is
1 1
ilf(52<1+x><1+y> Ty

1 1
,(1—52)(1—)()(1—}—);)7(1_§2)(1+x)(1_y)>7 (B.27)

which, after some algebra, can be put in the form

1-2E% -
eyuy = F2VA & . (B.28)

S(=0;7f) -2 (1 2)E1-&9)

B.3 Evaluation of K
The prefactor K|y, is

(=2 (1 —y%)

k= (I+x—us)(1—y—ug)(ug)(ug —x+y)’

(B.29)

which is, using Eq. @),

. )
T B -1y
(§2+x+yi f) (gt”yilm)

(( -&)- nf) (( —ey+ 2 nf) (B.30)

and a straightforward computation proves Eq. @)

C Real Saddle Points
In this section, we present the SPA evaluation of a matrix element with

(x—y)?

A=(1-E)(E>—xy)— . <0 (C.31)

For convenience we denote A’ = —A > 0. In this range of parameters the two saddle points

s=ha(ay) = (1-8)+ 72 £ VA, (C.32)



Fig. 2 The function & = @ +x¥ — yQ (red) is negative, and vanishes (plane z = 0 light blue)
when A’ (dark blue) vanishes, for & = 0.1,0.5 and 0.9, from left to the right

are real. For simplicity suppose that 0 < x <y < 1. A straightforward computation shows that 0 <
u_ < uy < 1—y,hence both roots are in the integration interval. Using the results of Appendix
[BT] the function finds, at the two saddle points, the evaluation such that

Slue = —1ax— 1By £ (P +x¥ —yQ), (C.33)
with
2 _1_ /
<15:1n(2§ 1 —xy+2vA7) (C.34)
(1—=x2)(1-y%)
p g ST VA (C.35)
VE(1-E)(1-22) '
2, Xty i
Y HVA) (C.36)
&2(1-81)(1—»?)
From Appendix [B.2] we obtain
—4A! 1(DE2 _1—
_33f|ui: 4A ;2\/A7(2§ 1—xy) ©37)

SH1=82)(1=x)(1-»?)

which shows in particular that the maximum of f is u_ (as —d2f|,_ < 0), and the SPA is
dominated by the latter. In Fig. |ZL we represent the function & = @ 4+ x¥ — yQ as a function of
x and y,

The prefactor can be evaluated as, using Appendix [B3]

2

—/T=2) (1) (262~ 1-xy—2V4)

Kl = C.38
| E(1-E)(1 -1 (€39
hence we get the asymptotic estimate
1 1 \"? S S
D} (B, y)~— NI ( 5 @) ¢TIy o= T o (P 2) (C.39)

which is indeed suppressed for large J.
The case A’ = 0 is special. A straightforward calculation shows that under these circum-
stances

S=¥=0=0. (C.40)

In addition, Eq. (C.37) implies 83 fluy = 0. One needs to push the Taylor development around
the root

u0=1762+%7 (C.41)
to the third order
Fu) = Ly + g =0 93], + 0, c42)
and the Wigner matrix elements has an asymptotic behavior (see (1))
[ auv/Kluxy)e”

~ ¢/l {Ai(a(x, W] + A (ale,y)[]3) W)~ 3 } , (C.43)
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where a(x,y) is some non vanishing smooth real function (determined by K and f evaluated at
up, see (1)), Ai is the Airy function of the first kind and Ai’ its derivative. At large argument, the
Airy functions behave like

Al - e_%g%
I(C)NW

The term Ai’ is therefore sub-leading and we have

~ AT ((). (C.44)

[

W (txx+7y* 2 (a(xy))

Vi (a(x,y))'/4

) .

/ duv/K(u,x,y)e' = ¢ (C.45)
D Computations for the 3 j Symbol

In this appendix, we detail at length the various computations required for the proof of Theo-
rem[3]

D.1 The First Derivative

To compute the derivative g2 ¥; 5i(1;), note that 9 z2)A; = — (2% —1—x;y;). The partial deriva-
tive of 1¢; is then

e
@52—1—XJr+%vE3

(2—12577\}”‘) (2§z—l—xly,—21\/7)
(282 — 1 —x;y:) +44;

18(52)(25[ =

= T (D.46)
while the derivative of 1y; is
—x-+ta(52)Ai 2
18@2)% = X+) : 22\F 12_2‘S 2
D i€ +l\/7[ 262(1-£2)
[7(2§2717x,-y,-)+12x,-\/A>,-] [X’H’ x,ézfl\/»]
=1
2VEE(1-E)(1 D)
1—2&2
—7252(1 —eny (D.47)

We first evaluate 2x;A; (252 -1 —xlyl) (X'H' Xiéz) as

xi+yi)? Xi+yi
= 2| g4 £200 ) - S - o] (2 )
= EX [xi(1+xyi) —xi —yi] — ,Ty, i (xi +yi) — 1 = xii]

= (- gy, (D.48)



hence Eq. (D.47) can be translated as

(=) (2 &%) | WA [ -2q82+28> 1] (1-28%)
WER(I-E) -3 AR I-E1-x)  2E(1-8)

(5 - &%)
T (D.49)
Noting that @ (x;,y;) = w(—yi, —x;) the derivative of 1@ is simply
(=T 8
The derivative of Y; s;(1f;) is then
_ —1 (55— E2y;)
Y L) = (m PVAR(- &)
(%)
MavaE (-
_AE2(1_E2 Gty hg2.
iy (2808 2y
7 2VAE(1-82)
A;
R
- 7mzsm\/& (D.51)

D.2 The Saddle Point Equation

We will use in the sequel the short hand notation AB := A - B for all vectors A and B. Squaring
twice the saddle point Eq. (69) we obtain, for all signs s;,

(A — 24| — B3A) = 41253 A 4. (D.52)

We first translate Eq. (D-32) in terms of angular momentum vectors
1
Tai=(1=E)E R+ G2 = 2 (), (D.53)
and this allows us to write the sum JZA3 — J?A; — J3A; as
(1=8)8 [15 =77 — 3] + &2 [J3J5 — 1Y — 13U ]
1
= [ = )2 = (7], (D.54)
and using J3 = —J; — J», Eq. (D.52) becomes
| 2
{a0-9g s ot ety - i)
1
= - gt g - S|

X {2(1 — ENELZ 12828 T% — %(J;‘*k)z} . (D.55)
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Collecting all terms on the LHS, we get
4= 11 - (31 - 1)
+4(1 =& [RBTS + B = Ju-Jo (S5 + 39|
—(1=ENE [T + BT =201 - o]
8t (At - (71t K]

—E2 TR (IR L IR IE (IR — (JPIE + JRIK) TR TR =0

(D.56)
which is again
A(1=EN2E N AP +4(1 - EDE AT AT)] - kA (1 ATL)]
—(1=EHEX [(n+K) AT AR —E [(nAK) - (T AT
—E - [(n+K) AT AR [k [(n+K) AT AJ2)]] =0. (D.57)

Using S = J; A Ja, twice the oriented area of the triangle {J;}, the saddle point equation can be
written

0 = 4(1—E2)2E4S% +4(1 - EHE* nAS] - [kAS]
~(1-&)E* [(n+k) AS]> —E*[(n k) -S]?
—E2[S-(nAK)][S- (kAn)], (D.58)

and dividing by (1 — £?)E2, we obtain

0=4(1—E%)E%S?+4E2mAS] [kAS]+[S- (mAK)]> —[(n+k)AS]*,

(D.59)
that is
0 = 4&%S? —4&E% [S? + (n-k)S* — S"SK]
—S2(nAK)?+[SAMAK))? + S (n+Kk)% — (S" 4 55)2. (D.60)
The last line in Eq. (D.60) can be simplified as
—82 4+ 8% (n-k)* + (8")% + (8¥)2 —2(n - k)s"s*
4282 4+28%(n - k) — (S")% — (8¥)2 — 25n sk
=1+ (n-Kk)]28? —2[1 + (n-k)]s"sk, (D.61)
from which Eq. (70) follows.
D.3 Evaluation of J?A*
Recall that J?4; is
1
T = (1=E)E R+ G2 = 2 ()% (D.62)
Evaluated for £2 = w, Eq. li gives
1—(n-k)? 1+ (n-k 1
pay =1 2 i (2 Lk SV, (D.63)



which can be simplified further to

JAT = —{(mAK)ZI? +2(n-K)JPTE — (I - (JK)?)

Bl— s —

[(nAK)2T? +JP [(nAK) - (kAT —JF [(nAK) - (nAT:)]].
(D.64)

Combining the last two terms, this is
%{(nAk)zJ,-2+ (MAK)- (A (kAD) AT}
= % {(nAK)2 7+ (nAK) - [J;(Ji- (nAK)) — (nAK)I?] ], (D.65)
hence for &2, we get

JAT = % [Ji-mAK)?. (D.66)

Evaluated in £2 = <2" k) 5‘;;‘“ ,J?4; is of the form

_ I[—(n-k) S"S%\ /1+(n-k) Snsk
o () (e

1+ (n-k) S"sK 1
+ (% -5 ) JrJk Z(J;'“‘)Z. (D.67)

J2

i

Combining all the terms common to the RHS in Egs. 3)) and (D.67), one obtains

(S“Sk)
s4

- _ 1 2 S"Sk 2 mKk|_p
A7 = 7 AK)P + = [(n-K)J; —Jiji}fli

= 4;2{[ Ji (n/\k))]2+4S“Sk[(n/\Jl) k/\Jz)]—412

(sms%)?
(-
(D.68)

But remarking that S - J; = 0, the first term on the RHS above can be written as a double vector
product, i.e.

JiA
1 n ok ‘ 5 (SSk)?
K{ A(SA(MAK))]Z+4S"SK[((nAT) - (KAT)] — 4T % }
1 k n 2 Z(SnSk)2
K{[ (nsk -+ k)| 47 - }
1 2
= {52 ns"+ks")] —4J?(s“s")2}. (D.69)
Then, since A2B*> = (A-B)? + (A AB)2, we have
4; { ns“+ks“)H2+[ ,-(S"S"+Sksn)r—4J,-2(s"sk)2}
{3 [mAS)Sk+ kAS)STTY {3 [(SAm)SK+ (SAk)st]

454 454
(D.70)
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D.4 Second Derivative

Using J; Ai+ from Eq. and éf the following is valid

&5 &y o/ AY T3/ A [(2E2 — 1)JF — JPIE] + O
1
= BN A AT (RAI)]+ A (A T) - (kAT)]

+IME K (nAT3) - (kAT3)] (D.71)
Substituting in the equation above J3 = —J; — J», the RHS can be written

HE L LIS SR D . LT L CYS BRIYS )

— IR K[ A ) - (KA D)) — KT [(nATL) - (KA J2)]
HIER (AT (KAT) + (AT - (KAT2)
+(mAJ) - (kAJ)+(mATL) - (KAJ2)]T, (D.72)

canceling the appropriate cross terms, the remaining expression admits the factorization

—i {[A*mAT) =" mAT)] - [B R RAT) =T (kA T)] }

= —i {n A ((AK) A1 AT2))} - {kA((nAK) A (J1AJ2))}
(D.73)

developing the double vector products and taking into account that n- (n Ak) = k- (nAKk) =0,
we conclude

1
& & o/ AS T3/ A [(2E2 — 1)J] = JPIF] + O1s= —ZS“Sk(n/\k)z.

(D.74)
For the £2 root, we have
& & 1/ Mads /A [(282 = 1)JF — (- 1) (k- J1)] + O3
B 1 [JZS/\nsk +JZS/\kSn} [Jg/\nsk +J3S/\ksn}
T4 $2 52
I Snsk T
x (n/\J1)~(k/\J1)—2J127
+1 [JIS/\nSk +JIS/\kSn} [J3S/\n5k +JSS/\kSn]
4 52 52
. gk
x |mATy) - (KAT) —272 @
. 1 [JIS/\nSk _’_JlS/\kSn} [st/\nsk +stAkSn]
4 S2 S2
I 5 S"SKT
x| (AT5) - (KAT3) =205 = |- (D.75)




We substitute again in the equation above J3 = —J; — J». The coefficient of é can be calcu-
lated, canceling the appropriate cross terms,

2
— [k s (A dy) - (kA )
2
= [k g5 () - (k)
+ [JIS/\nSk_’_JIS/\kSn} {stAnSk_'_JzS/\kSn]
x[(mAT) - (kAT)+mAT) - (KATY)], (D.76)
sksn

while the coefficient of — o5 is

2 2
_le [JZSAnSk+stAkSn:| _J% [JISAnSk+J]SAkSn]
231 - Js [JISA“S" +J§“‘S“] [JQSA“Sk +J§“‘Sﬂ] . (D.77)
The RHS of Eq. (D.73) becomes

-1

45%
(8t a8 e dy) = (a5 4 a5 (kA )|

sksm
256

which can be again rewritten, combining the appropriate terms into double vector products as

[(JZSAnSk+J2SAkSn> (AJ))— <JISAnSk+JlSAkSn) (n/\Jz)]

o (B (8 msk g g5 ) -y (st g5 s | g (D.78)

% {nA[(SAR) A AT)S +(SAK)A (1 AT2)S"] }
AKA[SAR) A1 AT)SE+ (SAK) A (T AT2)S"] }
sksn
2856
Recalling that J; A J, =S, the above equation is again

+

[(SAR) AT AT2)SK+ (SAK)A (T AT2)S"] (D.79)

-1
58 (A [(SAm) ASS¥+(SAK) ASS"]}
JKA[(SAD) ASSE+ (SAK)AS)S"] }
Skgn
256
We develop the double vector products in the first line and take into account thatn- (SAn) =k-
(S AK) = 0. For the second line we use (SAA)? = S?4% —(S-A)? and S- (SAn) =S-(SAk) =0
to rewrite the equation as

+2 o [(SAm) ASS*+ (S AK) ASS"]”. (D.80)

—SnSk
454
A{~k-(SAN)]S+(SAn)S* + (SAk)S"] }
sksm
254
Noting that the cross term in the first scalar product cancel (again as S- (SAn) =S- (SAk) = 0),
and combining the remaining three terms, we get

{~[n-(SAK)]S+ (SAm)S*+(SAK)S"] }

+2 2 [(SAm)SE+ (SAK)S"] . (D.81)

snsk ,  Sksm
-(nAK
a5 S$7[S- (nAK)]” + a5t

[(SAD)S*+ (S AK)s"]”. (D.82)
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Factoring S in the second term and using A2B%> = (A -B)? + (A AB)?2, this expression can be
rewritten as

sn sk 5 [mS*—KkS"*  [nS*+ kS 4(s"s%)?
2 {(n/\k) — @ + @ - 5 } , (D.83)
thus we conclude
& & Ja\/ AyJ3\/ A3 [(263 -1 - (n~J1)(k~J1)] + O123
SnSk ) SnSk 4(SnSk)2
=— {(n/\k) +4(n-k) @ 574} . (D.84)

D.5 Function at the Saddle Points
We evaluate the relevant angles at the points £7 by substituting Eqs. and 1) into .
D.5.1 The Angles ¢l~i

For the angles ¢,.i, the direct substitution yields

(mAJ) - (KAJ) + i [Ji - (n AK)]

181'+ ¢i+ =In
(mAJ)2V(kAT)? .
n . k n .
(MAJ)- (kA J;) — 202 885 gy, 2SS0

1€ ¢ =1In

(mAJi)2/ (kAJi)?
Consider first the denominator of ¢, multiplied by 2, namely

S*mAJ) - (KAT) —2J78"SK + 13- [(SAn)S* + (S AK)S")
=[SAMAT)]-[SAKAT)]+[S-mAT)][S- (kAT)]
2728785 1. - [(S Am)SK + (S AK)S"]
=[n-(JiAS)+1iS"| [k- (Ji AS) +1JiS¥], (D.86)

hence

n- (JLAS) +lJiSn

t£7¢f:l¢,’;+1¢|’; 1D} =1n VYL
1

1

(D.&7)

Note that
- (JiAS) +1;S"] [k- (J; AS) — ;8]
=[S-mAJ)][S- (KAJ;)]+J2s"sk
+17iJi - [SA (kS™ —nS¥)]
=S2mAJ)- (kAJ) = [SAMAT)]-[SA (AT
+J28"SK 4+ 10 Ji - [SA(SA (KAm))], (D.88)

and developing the double vector products, taking into account S - J; = 0, we deduce

1€ ¢ = 10} —1D]. (D.89)



D.5.2 The Angles 81 l;/1 — l//;—r

We will denote in this section AAB = A"B. A direct substitution of &2 and &2 yields

JE—J(n-k)+uJ;- (nAK)
V1= (n-K?](nAJ;)?

JE— P (n-K) + 27058 4

\/[1—(11 K)2+4(n k) S5 —4 S“S“]( /\J,)

€ty =In
Ji-[(SAn)SK+-(SAK)S"] (D-90)
SZ

1€y, =1In

To evaluate 1€] y;" — 15 y5", we take apart the numerator

[ J?A(kAn) T Jn/\k] [ J;A(km) _ Jg/\k}

Jl [nA(kAR)] J3 [nA(kAR)] +J| s (n/\(k/\n))2 +]=1Ak1;mk
" <JnAkJ“/\(k/\“) 7‘];1/\(k/\n)‘];1/\k> ) (D.91)

Taking into account n- (k An) = 0, this can be expressed as

—(KRAR)AE ;- J3(kAn)? + 1] - [J3 A[(mAK) A (nA (KAR))]]
= (kAn)*(nAJy) - (nAJ3) =i [J3A [n(nAk)?], (D.92)

hence

mAJ)-(mAJ3)—m-(J1AJ3)

=g, (D.93)
(n/\Jl)z(n/\J3)2

+yt +ut —
€Y gy =In

To evaluate 1€ W, — 1€ Y3, we again consider apart the numerator

K K
nA(kAn)+2n 5"5 S/\n§7+5/\kg—'2I nA(kAn)+2n 5"5 S/\n§7+S/\k§—'2l
. 1, 7 —1J, .

(D.94)

The real part is

n gk n gk n
nA(kAn)+2n%3 JnA(k/\n)+2n 53 +JS/\n52 +SAk 3 JS/\n)2 +S/\k
1 3 3

A [n/\(k/\n)JanSr;—gk] A [n/\(k/\n)+2n%]
=-J I3

sngk A SAn%JrS/\kS,—" AlSAnss +SAk S
+J1~J3 (n/\(k/\n)+2n @ ) -], [ s 52}.‘]3{ 2 sz}

k 2

+Ji-J3 (S/\ns +S/\kS) , (D.95)
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which is, holding in mind that S- J; =0,

sngk
_ (n‘]{(/\n _ (k/\n).l?‘l*z.]] /\II?)

snsk
. (njé‘A“ —(kAn)J3 +2J3 /\n7>

. SK sm . SK sn
-S <J| @ +J}‘S—2> -S <J3 @ +J§‘§)

(SnSk)Z +S2 (nSk+kS")2 74(Snsk)2

+Ji )5 {[n/\(kAn)}2+4

s4 s4 S4
(D.96)
Developing the products in the first line, we get
kAR 7kA 2 (snsk)?
—Ji"3" — (nAK) J{‘J?—4T(J1 An)-(J3An)
snsk n n
275 (B Am)- (kAW + (J3 An) - (kAR
1 nsk -+ ks")?
-5 <J{‘S“ +J}‘S“) <J§‘Sk +J§‘S"> 1 2 <(n/\k)2 + (T)) ,
(D.97)
which is, expanding the second line,
SnSk 2
(J1 An)-(J3An) ((n/\k)2 4l o ) ) — Jnnkin
Snsk k mn n 7k n yn
275 [J1J5 + 05 —2(n-k)J13]
1 Sk +ks™)?
-5 (JPS* +JES™) (J5S* 4+ J5S™) +J1 - T3 % (D.98)

Combining the cross terms in the second line and using J}‘“‘J;‘A“
JONR AR e obtain

(SnSk)Z SnSk
(JiAn)-(J3An) ((nAk)2 —4 @ —4(n-k)J}JF @
1 k kS" 2
Ak gk _ §JISA(n/\k)J3SA(nAk) IR (nS —;—2 sm) . (D.99)
Computing the middle term on the second line using S - J; = 0, the same expression is
SnSk 2 SnSk
(JyAn)-(J3An) ((n/\k)2—4( % ) ) —4(n-Kk)J}3 @
nS* +ks")? — (nS* — ks)?
+Ji ~J3( ) SZ( ) , (D.100)
hence the real part is
snsk)2 o snsk(n-k
(JiAn)-(J3An) {(n/\k)274( Sz) +4 éz )} (D.101)



The imaginary part of the numerator (D.94) assumes the form
sk sn snsk snsk sk sn
JS/\"EZ +S/\k57 JnA(k/\"Hz"sT _ Jn/\(k/\n)-¢—2nsT JS/\nS7 +SAk§Z
1 3 1 3 :
(D.102)

We start by expressing it as

sngk sk s
/\[nA(kAn)+2nS—2] . A[SAnSTJrS/\kS—Z]
1 3

AnaGan) 420855 ]  A[sAnSS 1sAKS)
+J3 [ ) 52 ] 'Jl [ Nt 52]’ (D103)

as the cross terms in the development of the two scalar products cancel. This computes further
to

— (= geamr 20 AnSE ) s (S 485
+ (08— (e Am)R 203 AmSE ) S (05 4 ). (D.104)
Grouping together similar terms, one should end up with

n gk n\2
%(JSAJI)'((kAn)/\n)‘F(i} (J3AJ1) - ((kAn) Ak)

—[(kAn)~S}§—Z J3AJ1) - (nAK)

sn Sk 2 sn Zsk
+2 24) [(n/\(J3/\J1))/\n}-S+2( ;4 [(KAJ3AJ1))An]-S.
(D.105)
Recognizing S = J3 A Ji, the above can be written
SnSk n SnZ N sn
o 1S (n-k)—Sk]—i-%[S —Sk(n-k)]+§[S~(n/\k)}2
n (k)2 n\2 ¢k
23 (Si) (f(s“)2+sz)+2(ss)4s (—5"85+(n-k)$?)
N nSkka“ 2 Sk 2 g 2 SnSk 2
g {(Mk)u L P G
(Sk)2 SnSk
+2 ¢ +2(n-Kk) @
n SnSk (SnSk)2
= [(nAk)2+4 o A ] (D.106)

In conclusion, 1e] Y —1&5 Y5 is
A - (DA . A
ey ey = In (mAJ)-(mAJ3)+m-(JsAJy) i3, (D.107)
: (nAJ)2(nAJ3)?
Following similar manipulations, we get

ey ety —1In (mAJ2) - (mAJ3)+m-(J3A)2) ey (D.108)

(n/\Jz)z(n/\J3)2

For the angles @, recall that @,k can be written in terms of W_g _,. Note that due to the

: P + P + - _
choice of the determination of the /A;" the correct relation is @, , = V' n and O =

Wy _,- Moreover, as ¥_x = —%, we conclude

£t etot 13 Eot et pt 23
g 0 —155 03 =27, 16 0 —1g5 03 = 1. (D.109)
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E Boundary Terms in the Euler Maclaurin Formula

Using the short hand notation F (¢) for F(J,M,M’,t), the remainder terms in the EM formula are
expressed as follows:

Boy
(2k)!

_Bl [F(tmax)‘i'F(tmin)]'i'Z [F(Zkil)(tmax)_F(Zkil)(tmin) .
k
(E.110)

In this section, we deal with generic Wigner matrices, namely we consistently assume that 0 <
£2 < 1. Note that

tmin = max{0,M —M'},  tya = min{J +M,J —M'}. (E.111)
For simplicity, we will detail the diagonal matrix elements M = M’. By continuity, the region in
which our results apply extends to some strip |M —M’| < P. For such elements fy;, = 0 and, for

M > 0,tnax = J — M. The Stirling approximations become easily upper and lower bounds, at the
price of some constants, thus by Appendix@we obtain

Cmin Cmax
VK2 u)e™ 0 < |F ()] < = VK (xxu)e 0,

J J
(E.112)
with
Frx,u) = —i(o+Y)x+mu+ (1 —u)InE2 + uln(1 — E2)
+(1=x)In(1 —x)+ (1 +x)In(1 +x) —2ulnu
—(I4+x—u)In(1+x—u)— (1 —x—u)In(l —x—u).
(E.113)
and
_2
K(x,u) = (1-x) . (E.114)

(I+x—u)(1 —x—u)u?

The behavior of the higher derivative terms in the EM formula is governed by F*) (fmin) and
F® (f;nax). To see this, collect all factors depending on ¢ in F(¢) and write

Ft) = q(,M) pru(t),

At
FJ+M—t+ ) (J-M—t+1)[C(+1)?
A= —2In& —2lnn].

p‘]}M(t) = (E115)
Hence F(®¥) = q(J,M) p%)w, and the first derivative can be expressed in terms of

Epm(z) — powl®) {A+ C'J+M—t+1)

dr TJ+M—1+1)
JrF’(J—M—t+1) 72F’(t+1)
rJ—M—t+1) I'(t+1)

= prum(t) {A+ yOU+M—1+1)

+V/(O)(J—M—z+1)—2w(0)(1+1)}, (E.116)



with y(© (t) denoting the digamma function. For integer arguments

yO(m+1)=-p+Y -, (E.117)

D=
| =

k

1

hence |F'(¢)| < C InJ |F(¢)] for some constant C. Higher order derivatives of Eq. (E.116) can be
written in terms of higher order polygamma functions y®) = d"y(©) /d¢". For all k, w29 (X) <
(O (X) at large X, therefore the k’th derivative is dominated by

2k—1

F(2k71>(l‘) =F(1) i‘I/m)(Xi) R (E.118)

4
A+

i=1

Then |[FM| < C(InJ)¥|F(t)| for some constant C.

From Eq. (E.112), we conclude that both |F (fmin )| and |F (fmax)|, as well as all their deriva-
tives are a priori exponentially suppressed in the region where R f(x, y, umin) < 0 and R f(x,y, umax ) <
0. As

Rf(x,x,0) = In&?
Rf(x,x,1—x) = xInE2+ (1 —x)In(1 — E2)
+(1+x)In(1+x)— (1 —x)In(1 —x) —2xIn(2x),
(E.119)

we infer that the derivative corrections coming from t,;, = 0 are always suppressed term by
term. However the situation is markedly different for the corrections coming from fp.x =J — M.
At fixed £2, the corrections are exponentially suppressed for x close enough to either 0 or 1, but
\/4—3E2 2
the maximum of Rf(x,x,1 —x), achieved for x = \/45252 is In &+ t RN 0, hence there
exists some interval in which, term by term, the derivative terms are bounded from below by
an exponential blow up. In this region our EM SPA approximation should a priori fail (see also
Fig. [B).

A second set of EM derivative terms come when passing from Egs. (36) to (37), involving
n

derivatives ﬁD}JCM slx=+1. Using Appendix [Cl Eg. 1) we note that all these derivatives
yield some function times D){ Ty AAS
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Fig. 3 Shaded region where the EM corrections are exponentially suppressed

DJ,]‘,](g) _ §216+’(a+7)J7 Djj(g) _ é:ZJe—t(oH»‘y)J’ (E.120)

all such derivative terms are exponentially suppressed for large J.
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