EPJ Web of Conferences 153, 06022 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715306022

Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Test-
ing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Prob-
lem

Tianyu Liu', Noah Wolfe', Hui Lin', Kris Zieb', Wei Ji', Peter Caracappa’, Christopher Carothers', and X. George
XU1’*

'Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York, USA, 12180

Abstract. This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many In-
tegrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading
(OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new
codes were tested on a 60-core 5110P MIC. The test case was FS7TONN]I, a radiation shielding problem used
in MCNP’s verification and validation suite. It was observed that both codes became slower on the MIC than
on a 6-core X5650 CPU, by a factor of ~4 for the MPI code and, abnormally, ~20 for the OpenMP code, and
both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry
(CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding
simulation. The functions of this module are frequently called in the particle random walk process. To identify
the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry
data from FS7ONNIi. The profiling data showed that the code was primarily memory latency bound on the MIC.
This study suggests that despite low initial porting effort, Monte Carlo codes do not naturally lend themselves
to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in
order to achieve decent performance gain.

1 Introduction 1.1 Easiness of porting

Currently the MICs (Knights Corner generation) and
GPUs (Kepler and Maxwell generations) are not binary
compatible with the CPUs, which means existing pro-
grams cannot directly run on accelerators.

For GPUs, the codes need to be rewritten in Nvidia’s
GPU-specific Application Programming Interface (API)
called CUDA [3]. Users’ programming responsibility typ-
ically includes determining parts of codes to be run on
the GPUs in parallel, devising appropriate multithread-
ing strategy, modifying those parts of codes as GPU ker-
nel or device functions, managing GPU memory whose
address space is separate from the host system memory,
and controlling data transfer between the host and GPUs.
At present, porting large-scale production or legacy codes
completely to CUDA could be a onerous task despite not
being entirely impossible. None the less, over years we
have observed a steady evolution in CUDA with respect
to programmability. Examples include the development of

In recent years hardware acceleration using Many Inte-
grated Core coprocessors (MICs) made by Intel or Graph-
ics Processing Units (GPUs) by Nvidia has become in-
creasingly common in scientific computing. As of June
2016, these two types of accelerators have been employed
in 89 supercomputers on the Top-500 list [1] and, most
impressively, in 19 out of the top 20 supercomputers on
the Green-500 list [2] which ranks the systems in en-
ergy efficiency (floating-point operations per Joule). Sev-
eral national laboratories in the U.S. have been building
their next-generation supercomputers based on accelera-
tors, notably “Trinity” at LANL, “Cori” at NERSC, “Au-
rora” at ANL, “Summit” at ORNL and “Sierra” at LLNL.

With the advent of these new platforms, of our partic-
ular interest in nuclear engineering and science commu-
nity is how to effectively speed up some routinely used but
extremely slow applications such as Monte Carlo simula-

tion of radiation transport. Two specific questions from
developers are: @ how hard is it to port existing codes
to accelerators, how good is the performance and what is
the bottleneck, @ how hard is it to perform accelerator-
specific optimization?.

*e-mail: xug2@rpi.edu

“CUDA runtime API” built on the original low-level driver
API, which significantly reduces the amount of boilerplate
codes and improves readability, “unified memory” which
carries the burden of memory management to some ex-
tent by eliminating the need for explicit data copy. The
cost of porting will likely continue to drop in the years to
come. In addition, alternative languages do exist, such as

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution

License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 153, 06022 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715306022

the compiler directive based OpenACC [4] and new ver-
sion of OpenMP (> 4.0) [5], to facilitate code porting at
the cost of less functionality and lower performance than
CUDA.

For MICs, code porting is usually easier. The fastest
solution is a straightforward “recompile and run”. Us-
ing special compiler flags MIC-compatible programs can
be directly generated, and the MIC coprocessor is sim-
ply used as a separate compute node. Production codes
can be ported this way effortlessly to enable a quick test
drive. The drawback, however, is that the entire program
has to run on the MICs and the serial parts can be very
slow due to low single-core performance. Besides, the en-
tire data to be used by the serial and parallel parts need to
fit the memory on the MIC node and be copied to it be-
forehand. Solutions without this limitation are available
but require code changes. Examples are (1) Intel MPI [6].
It allows communications between MPI processes on the
host node and MIC node, thus making CUDA-like, hetero-
geneous computing possible. (2) Compiler directive based
languages such as OpenACC, OpenMP and Intel offload
pragma [7]; (3) Intel APIs such as “Cilk Plus” [8] which
uses a shared memory model analogous to CUDA’s uni-
fied memory, “Coprocessor Offload Infrastructure (COI)”
[9] which is a low-level, versatile API that permits fine
control of memory allocation and copy.

1.2 Potential problems of directly ported code

While MIC’s “recompile and run” significantly reduces
the initial porting cost, we have some theoretical con-
cern over the performance of Monte Carlo codes gen-
erated this way. (1) The MICs are most suited to vec-
torized computations for compute-bound programs. The
unique Single-Instruction Multiple Data (SIMD) 512-bit
wide registers on the MICs allow simultaneous opera-
tions on 8 double-precision data at a single instruction.
However, the history-based Monte Carlo codes cannot di-
rectly benefit from this feature: Each compute thread still
tracks a single particle at a time instead of 8; the preva-
lent do-while loops that require indefinite steps to exit,
and the data dependency across different iterations within
a loop, essentially inhibit compiler’s capability to perform
automatic vectorization. (2) The Knights Corner (KNC)
generation of MICs use the legacy in-order execution pro-
cessors. Such processors will stall when waiting for the
data to be loaded from the memory to the cache then to
the registers. Hardware threading on the MICs mitigates
this problem but to a limited degree. Monte Carlo codes
usually require intensive memory access in a random, scat-
tered pattern, and there is a fair chance that data are not
available in the cache when needed for computation and
must be loaded from the memory, leading to processor stall
and long latency.

This paper uses experimental approach to answer
question (1) by examining two Monte Carlo codes on the
MIC platform. In the first part of the paper, MCNP 6.1
was recompiled into MIC-compatible parallel codes with
multithreading and multiprocessing capacity, respectively.

The performance was studied using a strong scaling test.
In the second part, the performance of a Constructive Solid
Geometry (CSG) proxy application in ARCHER was char-
acterized. Both experiments used the radiation shielding
benchmark problem “FS7ONNi” in MCNP’s verification
and validation suite.

2 Part 1: Testing of MCNP 6.1
2.1 Method

The MCNP 6.1 source code and build system (using the
GNU make tool set) support build configurations for both
OpenMP (shared memory model) and MPI (distributed
memory model) parallel computing approaches. Cross
compilation of the large MCNP 6.1 code base was per-
formed on the host x86/x86_64 machine in order to gener-
ate MIC compatible binary executables to run on the MIC
device. The Intel fortran (“ifort”) compiler was used to
compile the fortran code, and the Intel C (“icc””) and MPI
(“mpiicc”) compilers were used to compile the C code for
OpenMP and MPI executables respectively. The version
of these tools is 16.0.2. During cross compilation, the
-mmic flag was added to both the compiler and linker to
reference the MIC compatible libraries so that the emitted
binary was able to execute the Initial Many Core Instruc-
tions (IMCI) on the MIC.

The test case FS7TONNI is a neutron transport problem,
where a disc source is placed in a room (9.0x6.9x 6.8 m?)
with multiple shielding objects in it. There are 178 cells
and 61 surfaces in total. The flux at a certain point in the
room (point detector tally) is calculated.

The MIC coprocessor is 5110P with KNC architecture,
which has 60 cores at 1.052 GHz and 7.75 GB memory
(ECC enabled). Two CPUs were used to compare against
the MIC. They are X5650 CPU with Westmere architec-
ture and 6 cores at 2.66 GHz, and E5-2697 v3 CPU with
Haswell architecture and 14 cores at 2.6 GHz. Each core
of the MIC supports four hardware threads (also com-
monly known as hyperthreads), whereas that of the CPUs
support two.

2.2 Result
2.2.1 OpenMP/MPI on a single MIC

Both the OpenMP and MPI versions of MCNP were run in
the “native” execution mode. In this mode, the simulation
was entirely performed on the MIC alone. The executable
files, cross-section data, user-input, and dynamic libraries
were uploaded to the MIC in advance.

In the first test one MIC coprocessor was used. The
threads or processes were evenly distributed among 60
physical cores. Simulation with only 1 particle was per-
formed at first to determine the time of initialization and
finalization. This process was found to be ~22 seconds
on the KNC MICs (due to low single-core performance)
and ~2 seconds on the Westmere and Haswell CPUs. This
value was subtracted from the time of complete simulation
to derive the time of parallel particle transport.

EPJ Web of Conferences 153, 06022 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715306022

The scalability of OpenMP and MPI on the MIC is
compared in Figure 1. The sweet spot was found to be
60 processes for the MPI version with 1 process pinned to
each physical core, and 40 threads for the OpenMP version
with one thread on each physical core where some cores
were unused. At 60 or less MPI processes or OpenMP
threads, one process or thread possesses full utilization of
its corresponding core’s cache and memory access system.
The particle transport process consists of a large amount
of irregular memory accesses. Therefore, memory latency
is vital in order to supply the execution pipelines of each
core. Moving past 60 MPI processes, or OpenMP threads,
increases the demand on each core’s cache and memory
access system. As a result, performance is diminished as
execution pipelines are starved waiting for memory. Fur-
thermore, it was observed that over subscription of MIC
resulted in serious performance degradation. For example,
when 480 threads were launched, the computation time al-
most quadrupled that of 240 threads. Such cases always
have remarkably high “system CPU time”, which is pre-
sumably caused by a disproportionate increase in the par-
allel overhead. It is worth mentioning that despite better
performance, MPI with distributed memory model is not
intended for use on a single node such as one MIC card, as
the memory is soon to be consumed by the processes with
separate address space. In fact, for our test case one MIC
can only run 120 processes at a time.

According to [10], the scalability of multithreaded
OpenMP was largely reduced when the compiler flag
-heap-arrays was applied to an earlier version of com-
piler. We compiled the program with -heap-arrays and
-no-heap-arrays (this is also compiler’s default flag)
flags respectively and compared their performance in Fig-
ure 1. In general, -no-heap-arrays resulted in faster
code, since this flag places statically allocated arrays on
the stack which has faster access than the heap memory.
However, it did not improve scalability appreciably.

2.0e+04

T T T T T
o- *—x OpenMP, -heap-arrays

/’:./ 4\\\ & - MPI, -heap-arrays
[° NS *—x OpenMP, -no-heap-arrays
1.5e+04} . AN @ - MPI, -no-heap-arrays

1.0e+04-

s

Performance [histories per sec]

5.0e+03

0.0e+00

P umberottresdsorprocesses
Figure 1: Comparison of MCNP 6.1 OpenMP and
MPI performance when the program is compiled with
-heap-arrays and -no-heap-arrays flags respec-
tively. Only the time of parallel particle transport is con-
sidered. The performance is normalized to particle histo-
ries simulated per second.

The OpenMP scalability of MCNP 6.1 on the MIC and
CPUs are compared in Figure 2. On both CPUs the scala-

bility are much better, as linearity holds until all the physi-
cal cores are used, beyond which hardware threads help to
hide memory access latency and improve the performance
to some extent. Compared to Westmere and Haswell
CPUs, the peak performance on the MIC was found to be
lower by a factor of 4.2x and 14X, respectively, shown
in Table 1. This is believed to be a result of the under-
lying interconnection network of cores and memory con-
trollers within the MIC architecture. The current genera-
tion MIC based on KNC architecture uses a bi-directional
multi-layered ring interconnect for data transfer between
cores and memory controllers and can quickly get satu-
rated with the irregular memory access of MCNP. The fu-
ture Knights Landing (KNL) and Knights Hill (KNH) ar-
chitectures with their proposed 2D mesh interconnect may
benefit memory performance.

2.5e+05

2.0e+05 H JURVEVE % Sodad

1.5e+05

»—x OpenMP, Haswell CPU (14 cores)
+—+ OpenMP, Westmere CPU (6 cores)
e—e OpenMP, KNC MIC (60 cores)

1.0e+05-

Performance [histories per sec]

5.0e+04 S

¢

0.0e+00 M’/’/‘/./.\.“
0

f ; ;
10 20 30 40 50 60
Number of threads or processes

Figure 2: Strong scaling of MCNP 6.1 on the MIC and
CPUs. Only the time of parallel particle transport is con-
sidered. The performance is normalized to particle histo-
ries simulated per second. The Haswell CPU outperforms
KNC MIC by a wide margin.

Table 1: Peak performance comparison of MCNP 6.1 on
the CPUs and MIC. The compute time of the parallel par-
ticle transport is normalized to per 1 million particles.

Number of
. Compute
Processor execution X
X time[sec]
unit
6-core Westmere CPU 12 threads 16
14-core Haswell CPU 28 thread 4.9

60-core KNC MIC 40 threads 85

3 Part 2: Development and Profiling of
CSG Module in ARCHER

3.1 Method
3.1.1 CSG Module and Data Structure

The CSG module in ARCHER is based on OpenMC [11],
an open source neutronics Monte Carlo transport code in
Fortran. Several basic features have been inherited from: it,
such as the capability to handle universe-based geometries

EPJ Web of Conferences 153, 06022 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715306022

and lattice structures. Our modifications include porting
it to ARCHER’s CPU-GPU-MIC framework, rewriting in
C++11, adding the functionality of reading and parsing
MCNP input files.

The CSG data consists of cell and surface arrays,
shown in Figure 3. Both arrays are a list of pointers, with
each element pointing to an object. The objects are not
contiguous in memory since they are created at different
points when the MCNP input file is parsed. The cell ob-
jects are instantiated from a single class, whose data mem-
bers include cell ID, universe ID, material ID and a vector
of indices of the bounding surfaces. The surface objects
vary in size, as they are instantiated from different classes
(planes, cylinders, spheres, etc). These surface classes are
derived from a common base class whose data members
include surface ID and vectors of indices of the cells in the
positive or negative sense of the surface. The difference of
these surface classes is the number of geometry parame-
ters. For instance, a plane perpendicular to x axis contains
1 parameter (x0), while a sphere contains 4 (x0, y0, z0, r).
In order to obtain all data in a cell or surface object from
the memory, the program needs to undergo a few levels
of indirection — the pointer of the object, the object it-
self, and the index vectors. This data layout indicates that
memory access can be subject to long latency in case of
cache misses on the MIC, whereby the data are not readily
available in the cache. Cache misses are simulated in our
proxy application described in the next section.

p1
(pointer)

G e
(noln;el‘! sur object) |

P
(pointer)
1 sur |
o sur object) |’
((cel object)|

Figure 3: Memory layout of CSG cell (yellow) and sur-
face (green) data structure. Separate boxes indicate that
the data are not contiguous in memory. Accessing all data
in a cell or surface requires several levels of indirection.

3.1.2 CSG Proxy Application

The functions in the CSG module are intensively used
in the particle tracking process. In order to study the
properties of this module we developed a proxy applica-
tion for it. A proxy application [12] is a catchall term
for the simplification of characteristics of real applica-
tions that are of interest to DOE. Our CSG proxy appli-
cation falls into the “mini app” category where the CSG
module combined with an artificial, simplified interac-
tion model forms a stand-alone application. The interac-
tion model assumes one-group transport and only simu-
lates absorption (Z, = 0.001cm™") and isotropic scattering
(Z, = 0.099cm™"). The particle’s path-length in the entire
spatial region is scored as the program output.

The workflow of the CSG proxy application is shown
in algorithm 1. In a full Monte Carlo transport code, some

events such as constructing macroscopic cross-sections,
interpolating pretabulated data, and accumulating tallies,
entail memory read or write operations to other memory
and can cause the CSG data to be evicted from the cache.
This effect has been taken into account in the proxy appli-
cation. Specifically, all the cell and surface objects were
manually evicted from both L1 and L2 cache on the MIC.
The eviction was implemented using compiler intrinsic
function _mm_clevict(p, hint), where p is the mem-
ory address and hint specifies eviction mode. Allowed
options include eviction from L1 only and from both L1
and L2.

Table 2 lists three most time-consuming functions in
the CSG proxy application. The instrumented function
EvictCSGCache appears on the top mainly because the
overhead of artificial L2 cache eviction is very large. Our
current focus is to study the 2nd and 3rd hotspots.

Table 2: Top 3 hotspots in the CSG proxy application.

Function Time percentage [%]
EvictCSGCache 56%
FindCell (FC) 13%

FindDistanceToBoundary (FD) 12%

To characterize the performance of CSG proxy appli-
cation, we derived the following 5 performance metrics
from the profiling results. The exact definition of these
metrics can be found in Intel’s reference [13]. The profiler
“Intel VTune Amplifier XE 2016 was used to collect the
metrics.

o Vectorization Intensity (VI).

A measure of how effectively the 512-bit wide SIMD
register is utilized overall. Higher is better. On MICs
both scalar and vector operations use vector registers via
masks. For pure scalar operations, one bit of the mask is
set so that only one 64-bit double-precision data element
is applied (VI=1), while for full vector operations, all
bits of the mask are set, allowing all 8 data elements
(VI=8).

e L] compute to data access ratio (LICD).
A measure of how many computations are performed
per L1 cache access. Higher is better. When L1CD is
smaller than VI, the program is considered not compu-
tationally dense.

o [.2 compute to data access ratio (L2CD).
A measure of how many computations are performed
per L2 cache access. Higher is better. When L2CD is
smaller than 100 x L1CD, the program is considered to
have too many L1 cache misses [13].

e L] hit rate (LIH).

A measure of the probability that the data hits L1 cache
per memory access. Higher is better. This metric is a
conservative estimate of L1 hits, as it takes into account
a special type of L1 cache misses, where the data are
not in L1 cache but are being prefetched into L1. When
L1H is smaller than 95%, the program is considered to
have too many L1 cache misses [13].

EPJ Web of Conferences 153, 06022 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715306022

o Estimated Latency Impact (ELI).

An approximation of the clock cycles spent on L2 cache
access and memory access per L1 cache miss. Lower is
better. On MICs, a conservative estimate of L2 hit rate
is unavailable due to the limitation that the special type
of L2 cache misses, where the data are not in L2 cache
but are being prefetched into L2, cannot be properly de-
termined. Intel recommend using ELI as a workaround.
If all data not in L1 are found in L2, then ELI=21 (lower
bound), which is the clock cycles of a L2 cache access
after a L1 cache miss. If there are L2 cache misses, it
will take extra hundreds of clock cycles to load the data
from the system memory. When ELI is larger than 145
clock cycles, the program is considered to suffer from
long access latency due to L2 cache misses [13].

3.2 Results
3.2.1 Performance Characterization

The profiling results for the two time-consuming functions
FindCell and FindDistanceToBoundary are listed in
Table 3. The VI values of both functions are 2, which
means the SIMD feature of MIC is almost completely un-
tapped. In fact, by checking compiler’s vectorization re-
port, no automatic vectorization was made for these func-
tions at all, and VI values should be 1. It is speculated
that the mask operations in scalar calculations also count
as vector operations and hence contribute to VI. The fact
that L1CD values are lower than VI is an indicator that
the code is not computationally dense but instead memory
access demanding. Specifically, the cache utilization is in-
efficient, confirmed by the borderline low L1H, the signif-
icantly low L2CD, and the high ELI value. These values
suggest that due to L1 cache (only costing 1 clock cycle)
misses, access to L2 cache (costing 21 clock cycles) is fre-
quent. To exacerbate the situation, those data that miss L1
cache mostly do not hit L2 cache, and thus can only be
loaded from the main memory. The resulting performance
penalty is quantified by the ELI values, which exceed the
145 clock cycle threshold. These data indicate that the two
functions are memory latency bound.

Table 3: Profiling result of ARCHER’s CSG proxy appli-
cation on the MIC. Refer to subsubsection 3.1.2 for the
metrics’ full name. FC: FindCell, FD: FindDistanceTo-
Boundary.

Metrics FC FD Investigate if

VI 2 2 <8

L1CD 1.3 1.4 <VI

L1H 9%% 92% <95%

L2CD 34 18 <100 x L1CD
ELI 1135 972 > 145

It should be pointed out that that the geometry data in
the FSTONNI test case are not sufficiently large in size.
Therefore two important metrics — L1 and L2 translation
lookaside buffer (TLB) miss ratios [13] were found trivial
in this performance study. They are, however, useful when

data significantly exceed the memory page size, i.e. 2 MB
on the MIC.

The result of the strong scaling test is shown in Fig-
ure 4. Again, only the parallel particle transport was
timed. The OpenMP thread affinity was set to “balanced”
whereby threads are evenly spread across 60 cores. Scal-
ability observed was not satisfactory as the performance
increase started to become sublinear before 60 physical
cores are used. However, what is better than part 1 is
that the increase continued and reached its peak when all
240 hardware threads were used. Here the compute per-
formance of MIC and CPU codes was not compared. This
is because on the CPU, there is no intrinsic function equiv-
alent to _mm_clevict(p, hint) that simply performs
cache eviction. The most similar, CPU-specific intrinsic
function _mm_clflush(p) invalidates the cache line but
also writes data back to the memory. Therefore it has large
overhead and the performance result would be heavily bi-
ased against the CPU.

5.0e+04

‘ »—x OpenMP observed on KNC MIC|
4.0e+04} /
3.0e+04- //
2.0e+04} /
1.0e+04} //

0.0e+00
0

Performance [histories per sec]

30 60 90 NUMberI(ZJfOthread515D 180 210 240
Figure 4: Strong scaling of ARCHER’s CSG proxy ap-
plication on the MIC. Only the time of parallel particle
transport is considered. The performance is normalized to
particle histories simulated per second.

4 Discussion

The bottleneck of Monte Carlo codes on the MICs are
the lack of vectorization and excess of memory access la-
tency. Solutions to these problems exist, in spite of be-
ing only effective to some specific parts of Monte Carlo
codes. For example, the macroscopic cross-section con-
struction subroutine is usually one of the hotspots in neu-
tronics transport simulation. This subroutine has a rela-
tively simple structure and offer good opportunity for op-
timization. In our recent study [14], we optimized the XS-
Bench code [15] to the accelerators. XSBench abstracts
the macroscopic cross-section construction process from
a full Monte Carlo code OpenMC [11]. Compared to
the original XSBench run on a 6-core CPU, our directly
ported codes were found to have a speedup factor of only
2.7x on a MIC (60 cores) and 1.4x on a GPU (15 stream-
ing processors), whereas these numbers rose to 6.0x and
8.1x%, respectively, as a result of several optimization tech-
niques that focuses on vectorizing the computation and
hiding memory latency. Another example is the study by

EPJ Web of Conferences 153, 06022 (2017)
ICRS-13 & RPSD-2016

DOI: 10.1051/epjconf/201715306022

[16], where the OpenMC code was tested on the MICs and
OpenMP-specific optimizations were made to reduce tally
overhead, such as replacing OpenMP’s critical sections
with atomic operations.

5 Conclusions

In this study we tested two Monte Carlo codes on the
Knights Corner generation of MIC coprocessor: the pro-
duction code MCNP 6.1, and the CSG module of our
ARCHER code developed specifically for the heteroge-
neous architecture. The experiments have confirmed our
concern that the Monte Carlo codes do not naturally lend
themselves to the KNC MIC coprocessors, because the
512-bit wide SIMD registers are underutilized, and the
random, scattered memory access pattern is not cache-
friendly and causes long memory latency. Such problems
also occur to the GPUs which implement Single instruc-
tion, multiple thread (SIMT) model and have even less
amount of cache per thread. Software optimizations and
algorithm improvements must be conducted in order for
Monte Carlo codes to achieve decent performance on ac-
celerators.

Acknowledgments

We thank OpenMC community for the high quality code
and Intel Corp. for the hardware donation.

References

[1] Top 500 list (2016), https://www.top500.0rg

[2] Green 500 list (2016),
http://www.green500.o0rg/

[3] Nvidia, CUDA C Programming Guide (2016)

[4] OpenACC committee, The OpenACC application
programming interface, version 2.5 (2015)

[5] OpenMP committee, The OpenMP application pro-
gramming interface, version 4.5 (2015)

[6] Intel, Intel MPI library reference manual for Linux
0S (2016)

[7] Intel, Intel C++ compiler 16.0 user and reference
guide (2016)

[8] Intel, Intel Cilk Plus language extension specifica-
tion, version 1.2 (2013)

[9] C.J. Newburn, S. Dmitriev, R. Narayanaswamy,
J. Wiegert, R. Murty, F. Chinchilla, R. Deodhar,
R. McGuire, Offload compiler runtime for the Intel
Xeon Phi coprocessor, in Parallel and Distributed
Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International (IEEE,
2013), pp. 1213-1225

[10] O. Mikhail, Openmp and -heap-arrays not compati-

ble since ifort 13? (2016)

[11] P.K. Romano, B. Forget, Annals of Nuclear Energy
51, 274 (2013)

[12] M. Heroux, R. Neely, S. Swaminarayan, Tech. Rep.
LA-UR-13-20460 and LLNL-TR-592878, Sandia,

LLNL, LANL (2013)
[13] S. Cepeda, Optimization and Performance Tuning for

Intel Xeon Phi Co-processors, Part 2: Understand-
ing and Using Hardware Events (2012)

[14] T. Liu, N. Wolfe, C.D. Carothers, W. Ji, X.G. Xu,
Optimizing the Monte Carlo neutron cross-section
construction code, XSBench, for MIC and GPU plat-
forms (in press) (2016)

[15] J.R. Tramm, A.R. Siegel, T. Islam, M. Schulz, XS-
Bench - The development and verification of a per-
formance abstraction for Monte Carlo reactor anal-
ysis, in PHYSOR 2014 - The Role of Reactor Physics
toward a Sustainable Future (Kyoto, 2014)

[16] D. Ozog, A.D. Malony, A. Siegel, Full-core PWR
transport simulations on Xeon Phi clusters, in M&C
+ SNA + MC 2015 — Joint International Confer-
ence on Mathematics and Computation (M&C), Su-
percomputing in Nuclear Applications (SNA) and the
Monte Carlo (MC) Method (American Nuclear Soci-
ety, 2015)

Appendix

input : Geometry data
input : n: number of histories
output: Particle path-length in all cells

fori — Oton—1do

InitializeParticle()

while true do

if cell not found then
| FindCell()

end

d = FindDistanceToBoundary()

s = SampleDistanceToCollisionSite()
UpdatePosition()

ScorePathLength()

EvictCSGCache() // manually evict data

if d < s then
BoundaryCrossing() // contains calls of
FindCell Q)
else
‘ Collision()
end

if particle is killed then
break
end

end
end

Algorithm 1: Pseudocode of the CSG proxy appli-
cation

