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Abstract. We discuss the one-dimensional Schrodinger equation for a harmonic oscillator with
a finite step at the origin and/or an external field described by a ramp function. The first half of
this paper is a partial review of our recent work. The latter half is devoted to an extension of the
problem, i.e., imposing an external linear field on the negative half line. The solvability of the
problem via the Hermite polynomials is discussed. We demonstrate that a harmonic oscillator
with a step and a ramp can have one eigenstate whose wavefunction is expressed in terms of
Hermite polynomials of different orders. Explicit examples are also provided at appropriate
places in the text.

1. Introduction

In quantum theories, a variety of exactly solvable models have extensively been considered
to understand related physical phenomena. Among them, the harmonic oscillator is probably
the most basic and important one. We discuss exact solutions of the time-independent, one-
dimensional Schrodinger equation:

d*(x
STV v (i) = Bo(@) (1)
particularly with deformations of the harmonic oscillator in this study.

The exactly solvable potentials for the Schrodinger equation (1) can be categorized into several
classes. One major class would be the piecewise constant potentials, including the so-called
point interaction models. The finite square-well potential and the Kronig—Penney model are
two typical examples. The essence of their solution is the matching-of-wavefunctions technique.
Another major class is analytical potentials whose eigenfunctions are written in closed analytic
form. The shape-invariant potentials, such as the harmonic oscillator and the Coulomb problem,
are classified in this devision. A notable feature of the shape-invariant potentials is that their
solvability is guaranteed by the orthogonal polynomials. The problems lying in the intersection
between these two classes, that is, potentials defined by piecewise analytic functions, have also
attracted attention (For recent works, see, e.g., references [1, 2, 3, 4, 5, 6]).

One of the subclasses in this intersection is potentials made up of a harmonic oscillator
plus singularity functions. In reference [7], a Dirac delta function at the origin d(x) under
a harmonic oscillator has been discussed. Moreover, our recent work [6] has dealt with a
harmonic oscillator with a Heaviside step function 6(z). A natural extension of these problems
is to consider a harmonic oscillator plus some other singularity functions zf(z),z20(z),... or
6 (z) = d"6(x)/dx™. In this paper, we discuss the case with z6(z), which is often referred to
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‘ ‘ x Figure 1. The ramp function, x6(z). It is
named after the shape of its graph.

as the ramp function (See figure 1). A potential described by the ramp function can be seen as
an external linear field, such as an electric field, on a half line.

Since our problems are non-analytic at = 0, the Schrédinger equation are to be solved
under the following boundary condition (or matching condition) at x = 0:

. . . dy(x) . dy(x)
1 =1 , lim —— = lim ————~= . 2

A=l vl i e = T @
In addition, we summarize some of our notations here for later use. The general solution of the
following second-order ordinary differential equation:

SV (o2 1) le) = Biste) (3)
i V@) =% {a1F1 <—Zj; ;;332> + B F (—E4_2; 2;332)} : (4)

where o and 8 are constants, and 1 F}(a; c; z) denotes the Kummer’s confluent hypergeometric
function. In the case of the ordinary harmonic oscillator, we require the square-integrability of
Y(z) in (—o0, 00), and get

2

E=E,=2n, () =¢u(z)=e THy(z), n=01,2,..., (5)

where H,,(z) is the n-th order Hermite polynomial.

2. Harmonic Oscillator with a Step
In this section, we summarize the first half of what are discussed in reference [6].

2.1. The potential
In reference [6], we have considered a potential, which is a combination of a harmonic oscillator

and a finite step,
> ~1—a (x<0)
V(z)= ) 6
(@) {xQ—l (z > 0) (©)

where a is a positive constant. This is a confining potential, so it has infinitely many discrete
eigenvalues, {E,} (n = 0,1,2,...), where the n-th excited state has the energy E,. The
corresponding wavefunctions {1, (x)} are square integrable, 1, (x) € L?(R), which leads to
the boundary conditions at x — %oo: ¢(x) — 0.
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2.2. The solutions
For arbitrary a > 0, the n-th wavefunction is obtained as

o2 E 1 E -2 3
ez [alFl < n4+a;2;x2> + Bz 1 Fy <n +4a ;2;302)} (x <0)
;

(1)
2 E, 1 E,—2 3
-5 F _n,. -2 F _—-n ) 0
e 2 I:al 1( 4,2,36)—1—5.%1 1( 4 727 >:| (‘T’.> )
where « and 3 are constants, and E,, is a root of the following transcendental equation:

r(f r(Em

TT(-EZ) T r(-E) .

which comes from the boundary conditions at £ — +o00. As is often the case with square-well
potentials, we are to solve this equation graphically.

2.8. For specific choices of a =40 (£ =1,2,...)

When a takes 4¢ (¢ = 1,2,...), the wavefunction (7) is reduced to a rather simple expression
for all the non-negative energy states, that is, the eigenfunctions are expressed in terms of the
Hermite polynomials. Also, these states are isospectral to the ordinary harmonic oscillator
(a — 0). The point, regarding the construction of such wavefunctions, is that the eigenfunctions
of the ordinary harmonic oscillator have either zero or extremum at the origin regardless of the
parameters, which is guaranteed by the parity of the potential.

The solutions are

Bu=2n—1), gn(e)={ g THoedl@) @0 ke )
e” 2 Hy,y(x) (x > 0)
where
n —0)! (24!
N, = (—1)£En - 2: E"zfg: if (n—/¢) is even , (10a)
n— 0! n+l—1
N, = ( 1)€En - 2: E”ilg: if (n —¢) is odd . (10Db)

For n’s lower than ¢, the wavefunctions are no longer expressed by the Hermite polynomials,
and we need to go back to equation (7) itself. On the other hand, as for the energy eigenvalues,
the transcendental equation (8) is reduced to an algebraic equation of degree ¢:

14 4

~JI(E+4k—2) = T[(E+4k) . (11)

k=1 k=1

Note that the ¢ roots of this equation has the following property: if E = —1 — 2 4+ « is a root,
E =—-1-20— « is also a root. For odd ¢/, E = —1 — 2/ is also a root, which corresponds to
a=0.

Remarks. For explicit examples, see reference [6]. In reference [6], the authors have further
investigated the spectral properties of the potential (6). They have discussed several isospectral
transformations of the potential, and showed that it is possible to construct infinitely many
potentials whose energy spectra coincide completely with that of the ordinary harmonic
oscillator.
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3. Harmonic Oscillator with a Step and a Ramp
In this paper, we consider a harmonic oscillator with a step function and a ramp function. This
potential can describe the system (6) under an external field, such as an electric field.

3.1. The potential
We add a linear potential —gz to the potential (6) for z < 0,

2

x2—1—a—g:c:(x—g>2—1—a—g— (x <0)
2 4 , (12)

2 -1 (x >0)

V(r) =

where ¢ is a real constant. This is also a confining potential and has infinitely many discrete
eigenvalues { £, }. Taking g = 0 coincides with the potential (6).

Remark. 1In this paper, we restrict ourselves to a > 0 in the potential (12). Note that unlike the
case of a harmonic oscillator with a step (section 2), the constraint on a breaks the generality.
For a < 0, discussions are almost parallel to those for a > 0 (See the following), but a kind of
double-well potentials appear and they are more likely to be physically applicable.

3.2. The solutions
One can construct the eigenfunctions for arbitrary a and g:

E,+a+9% 1 g\ 2
b [ =g (e - )

nle) = - (r=9) R (—E"”*‘f =5 (- 9)2>] (@<0) .

_@=$)?
e 2

2 4 "2’ 2
2 E, 1 E,—2 3
— 5 F o n, .2 F _—n ) >0
le 2 |:05+1 1< 472,$>+B+$1 1( 4 727'7: (fL’ )
(13)
in which a4, B4 are constants. From the boundary conditions at © = 0, ay and 4 are
- dipn(07)
= O - .
Q4 ¢n( ) ) B—i— dx

On the other hand, those at + — 400 yield the following simultaneous transcendental equations:

Entatl—2
1 d%(of) _ _2F (_En4_2) 6; _ 2F<_ 4 ) (14)
Yn(07)  dx I (—%) a_ F( _ En+Z+%)

which are to be solved graphically, and determine the energy eigenvalues {E,} as is shown in
the following example.

Ezample 1: a =2, g = 1. We first solve equations (14) with a = 2 and g = 1 to obtain the
energy spectrum (See figure 2). The first several energy eigenvalues are displayed in the caption
of figure 2 with six digits. With the knowledge of the energy spectrum, one can determine
the coefficients vy, B+ for each n, and therefore the eigenfunction 1, (x). The solution of the
Schrodinger equation (1) is summarized in figure 3.
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Figure 2. Graphical solution of (14) for
Ezxample 1. The blue curves correspond to
the left hand side of the equation, while the
red ones are the right hand side. The first
several energy eigenvalues are determined
as follows: Eg ~ —1.97196, Fq ~ 0.343665,
FEy ~ 2.12101, E3 =~ 4.02740, E4 ~ 5.91817,
Fs ~ 7.81348, Eg ~ 9.74097.
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Figure 3. The solution of the Schrodinger

N\ equation (1) for Ezample 1. Thin blue
lines show the energy spectrum, and the
X blue curve on each line is the corresponding

x eigenfunction. The potential (12) with a =
2, g = 1 is also plotted in this figure by a
black curve.

3.3. Case a — 0: Harmonic oscillator with a ramp

Here, let us concentrate on the case a — 0, where the potential consists of a harmonic oscillator
plus a ramp function only. In this subsection, we show how the energy spectrum changes as the
external field is imposed. Remember that for the case of a harmonic oscillator plus homogeneous
external field, what happens is a constant shift of energies. However, for our present case, figure
4 shows that that is not the case and the spectrum is never equidistant except for ¢ = 0. For
each n, the energy eigenvalue F),, increases monotonically in g.

3.4. Quasi Hermite-polynomial solvability
A potential is said to be quasi-exactly solvable, when several eigenstates are explicitly obtained
whereas the others are not [8, 9]. In our model (12), we can make only one state solvable via
the Hermite polynomials, while for other states the wavefunctions are expressed only by the
confluent hypergeometric functions and they are not reduced to any orthogonal polynomials.
This situation is similar to those in references [4, 5].

The construction is as follows. First we choose g such that ¢,,(x — ¢g/2) has one of either
zeros or extrema at x = 0 (See table 1). Suppose that ¢,,(—g/2) is the j-th zero [extremum]
from the left. Then, when the remaining model parameter a is set to

2
g
=2k — =, 15
a y (15)
where k € Z~¢ is smaller than or equal to, and of the opposite parity to [same parity as|] m, the

(j + m}’“*l)—th [(] + mT*k — )—th] excited state is Hermite-polynomially solvable. Such state

is of the energy eigenvalue

Ejymeims = 2j+m—k—1 [Ej+mT+k_1=2j+m—k—2 : (16)
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:;: / I Figure 4. The first six eigenvalues E,
n=2 I as functions of g for a = 0. They are all
n=1-—3 _ = 1 2 5 8 monotonically increasing in g, but never be
n=0 equidistant for g # 0.

and the corresponding wavefunction is

NOe™ =" H,, (v - %) (2<0)
Vo mok=1 (2) |V mak 4 (7)] = 2 2 (17)
jracget @) [V N T Hy, () (¢ > 0)

with &) are constants to be determined from the boundary condition at z = 0.

Ezample 2: g = 2, k= 1. Let us pick such g’s that ¢o(z — g/2) has an extremum at x = 0.
There are two extrema, j = {1,2}, and —g/2 = +1/4/2. Then, only k = 1 is allowed, and a is
specified as a = 3/2.

For g = —/2, the first excited-state wavefunction consists of Hermite polynomials,
2
1 (H%) 1
wl(x) — 2e1e . 2 H2 (CC + ﬁ) (33‘ < O) , (18)
e T Hy(x) (x > 0)

and the energy is F; = 2. On the other hand, for ¢ = v/2, the Hermite polynomials constitute
the second excited-state wavefunction with the energy Fo = 4:

1 (zf%>2
1/12(33) _ ) —2e1e” ] { Hy (SU - %) (SC < O) ' (19)
—e~ 7 Hy(x) (x >0)

In order to obtain the other eigenstates, one needs to follow the solution explained in section
3.2. The solutions of the Schrédinger equation (1) are plotted in figure 5.

3.5. Construction of a sequence of quasi Hermite-polynomial solvable potentials

One application of our present work is to construct a sequence of the solvable potentials where

only the ground-state wavefunction can be expressed by Hermite polynomials of different orders.
Such sequence is constructed as follows. First we choose g such that ¢,,(—g¢/2) is the first

extremum from the left of ¢,,(z — ¢g/2). Here, m can be any non-negative integer, and we

choose & = m. Then we identify the parameter a using equation (15). In this manner, one

can construct infinitely many potentials whose ground-state wavefunctions are expressed by the

Hermite polynomials but other eigenfunctions are not. We show first several potentials V;,(x),
m = 1,2,3,4, in figure 6a and the ground-state eigenfunctions 1/)(()m) (x):
Ao (@=-$)? Hy(2—9) (z<0)
e 2 r—2 T <
g (@) = {0 LT T : (20)

x

ez (x >0)
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Table 1. The zeros and extrema of ¢, (x) = e*IZ/QHn(:L‘) forn=0,1,2,3,4.

Ordern O 1 2 3 4
Zeros — x=0 mz:l:L r=0,=+ § r=4 §j: §
V2 2 2
Extrema z=0 x=41 2=0,+ g x:iivgi Va7 z=0,44/= % %
V&), E Vx), E

- —/— —
-\ /
I ]
N
N /7
= = \Jr/ 7 7 4 > 2 4
(a) g=—-v2. (b) g=+2.

Figure 5. The solutions for Ezample 2 with (a) g = —v/2 and (b) g = v/2. The potential (12) is
displayed in this figure by a black curve. Thin lines show the energy spectrum, and the colored
curve on each line is the corresponding eigenfunction. The states plotted in yellow possess the
Hermite-polynomial solvability, while that colored in blue does not.
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4 /
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K

with NV, being a constant (See table 2) in figure 6b. They all have the energy Ey = 0. Taking
m = (0 means the ordinary harmonic oscillator.

Note that a similar procedure can be applied to construct a sequence of potentials such that
only the N-th excited states can be expressed by Hermite polynomials of different orders.

4. Conclusion

In this paper, we have investigated the Schrodinger equation for a harmonic oscillator with a
finite step at the origin and/or an external linear field on the negative half line. The analytic
solutions are obtained by applying the matching-of-wavefunctions technique to the general
solutions (4) of equation (3) under the matching condition (2).

The eigenfunctions are not of closed form in general, but when ¢ = 0 and a = 44, the excited
states higher than ¢-th are expressed by the Hermite polynomials [6]. Moreover, when g is
selected such that ¢y, (z — g/2) has one of the zeros or the extrema at x = 0 and a = 2k — g2 /4,
only one eigenstate is solvable in terms of the Hermite polynomials. This situation is similar to
that in references [4, 5]. It would be quite a challenge to understand this type of quasi-exact
solvability, including the one discussed in reference [10], in an integrated manner.

At the end, we make a comment on a problem of a harmonic oscillators with an z260(z)-type
singularity function. Such potential is of different angular frequencies on z < 0 and =z > 0
respectively. This problem has already been considered in, e.g., references [11, 12].
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Table 2. Parameters of the wavefunction wém) () for m =1,2,3,4.

mo 1 2 | 4
5 7 |
2 24\/5 9 : - 7
g 2 + \/7 2 | 2
Vo
| _é e5/4 ) e9+§/ﬁ e7+4 22
m
g 2/6(39 + 5V57) 324+ V22)
Ve, B
/”’ m=4
//;’ ) ) m=3
/””7 m=2
/’,’ m=1
L x "’,
4
” :2 | é )‘ x
o (b) The ground-state wavefunctions 1/)(()771) ().

Figure 6. The sequence {V,,(x)}. (a) The potentials for m = 1,2,3,4 are plotted in red,
orange, green and blue respectively, and m = 0 (harmonic oscillator) by black dashed curve.
For x > 0, they all share the same function, so we plotted them in the same color: black. (b)
The ground-state wavefunctions of those potentials, whose energies are zero, are expressed in
terms of Hermite polynomials with different orders. They are plotted in the same colors as
the potentials. The black dashed curves are the ground-state wavefunctions of the harmonic
oscillator.
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