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ABSTRACT

341 Hai-Zhou Lus** and X. C. Xie®6/

One of the most celebrated accomplishments of modern physics is the description of fundamental

principles of nature in the language of geometry. As the motion of celestial bodies is governed by the

geometry of spacetime, the motion of electrons in condensed matter can be characterized by the geometry

of the Hilbert space of their wave functions. Such quantum geometry, comprising Berry curvature and the

quantum metric, can thus exert profound influences on various properties of materials. The dipoles of both

Berry curvature and the quantum metric produce nonlinear transport. The quantum metric plays an

important role in flat-band superconductors by enhancing the transition temperature. The uniformly

distributed momentum-space quantum geometry stabilizes the fractional Chern insulators and results in the

fractional quantum anomalous Hall effect. Here we review in detail quantum geometry in condensed matter,

paying close attention to its effects on nonlinear transport, superconductivity and topological properties.

Possible future research directions in this field are also envisaged.

Keywords: quantum geometry, Berry curvature, quantum metric, nonlinear transport, flat-band

superconductor, fractional Chern insulator

INTRODUCTION

Berry curvature has undoubtedly reshaped the mod-
ern condensed matter physics [1]. One prominent
example is the family of quantum Hall effects, which
have won Nobel prizes in the years 1985, 1998 and
2016. The integer quantum Hall effect [2,3] is the
first instance of phase transition beyond the Lan-
dau paradigm and marks the commencement of
the topological phases of matter, while its fractional
[4,5] and anomalous [6] counterparts are promis-
ingly applicable in quantum computation and dissi-
pationless quantum devices.

Wave packet dynamics [7] has revealed that the
polarizability of Berry connection (whose curl is the
Berry curvature) also serves as a characteristic geo-
metric quantity and is closely related to the quantum
metric [8,9]. Remarkably, the quantum metric exerts
profound impacts on quantum matter in a way quite
similar to that of Berry curvature. In fact, Berry cur-
vature and the quantum metric respectively corre-
spond to the imaginary and real parts of the so-called
quantum geometric tensor [8-10], which character-
izes the geometry of the Hilbert space comprising
the electron wave functions.

In this review, we summarize the role of such
a quantum geometric tensor in nonlinear trans-
port, superconductivity and topology of condensed
matter.

Oour first focus will be nonlinear transport [7,11-
28], where an ac input can produce either Hall or
longitudinal responses with doubled frequencies.
For example, an ac current in an inversion- (P)
broken but time-reversal (7)) symmetric system can
give rise to a double-frequency Hall voltage, which
is proportional to the dipole of Berry curvature
[12-14]. This purely electric nonlinear Hall effect
was later realized in a variety of transition metal
dichalcogenides (e.g. WTe, [15,16], WSe, [17] and
MoTe, [18,19]) and semimetals (e.g. Cd3As, [20],
TalrTe; [21] and Ce3BiyPd; [22]). Remarkably,
similar electric nonlinear Hall effects can survive
even in the absence of Berry curvature dipoles
[7,23-27]. In antiferromagnets that break both P
and 7 but preserve P T, the Berry curvature dipole
is prohibited, but quantum geometry can survive
in the form of the quantum metric [7,23-27]. The
quantum metric dipole—induced electric nonlinear
Hall effect has been proposed in antiferromagnets
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CuMnAs [24] and Mn,Au [25], and has recently
been observed in the antiferromagnetic topological
insulator MnBi,Te, [26,27]. Besides the electric
nonlinear Hall effect, quantum geometry also plays
an important role in the magento-nonlinear Hall
effect and nonlinear longitudinal transport, which
are respectively realized in the kagome magnet
Fe3Sn; [28] and MnBi, Te, [27]. All these nonlinear
features could serve as new probes detecting the
spectral, symmetrical and topological properties of
quantum matter.

We then examine the flat-band superconduc-
tors, whose transition temperatures are believed
to be dominated by the quantum metric. In par-
ticular, for two-dimensional flat-band supercon-
ductors, the superfluid weight and, in turn, the
Berezinskii-Kosterlitz-Thouless transition temper-
ature have two sources of contributions: the con-
ventional one vanishing for the dispersionless bands,
and the interband process—induced geometric one
that can even survive the perfect flat bands [29-33].
The advert of magic-angle twisted bilayer graphene
made it possible to study the geometric contribu-
tion to the superfluid weight and the transition
temperature [34-37]. On the theoretical side, the
geometric contribution was found to be a Bril-
louin zone integral of the quantum metric. At the
mean-field level with isotropic pairing, the super-
fluid weight of magic-angle twisted bilayer graphene
is also isotropic and is bounded by the band topol-
ogy from below [34]. The superfluid weight be-
comes anisotropic in the presence of strong nearest-
neighbor pairing [36], and its evolution with band
filling exhibits dependence on the twist angle [35].
On the experimental side, the conventional con-
tribution to the superfluid weight of magic-angle
twisted bilayer graphene provides an estimate of the
transition temperature [34] of the order of 0.1K,
which is much lower than the measured T, >~ 2.2 K
and thus implies a dominating quantum metric con-
tribution [37].

We lastly look into the fractional Chern insu-
lators [38-54], whose stability is found to subtly
rely on the distribution homogeneity of both the
Berry curvature and quantum metric in the Bril-
louin zone. Following the development from the
integer quantum Hall effect [2,3] to the fractional
quantum Hall effect [4,5], it seems that a fractional
Chern insulator can in principle be analogously con-
structed from a Chern insulator [6] provided that
proper electron correlation is introduced. Intrigu-
ingly, strongly correlated Chern insulators do not
necessarily lead to experimentally observable frac-
tional quantum anomalous Hall effects, because the
associated momentum-space distribution of quan-
tum geometry [41-43] is usually not as homoge-
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neous as that of the fractional quantum Hall effect
[S5]. Theoretical studies have identified the role of
the momentum-space quantum geometry distribu-
tion in stabilizing the fractional quantum anoma-
lous Hall effect of the strongly interacting Chern in-
sulators [41-43]. This indicates that the stabilized
fractional Chern insulators must be highly tunable
to have appropriate topology, interaction and quan-
tum geometry. Fortunately, these requirements can
be simultaneously satisfied in various Moiré mate-
rials [44-54]. The first reported fractional Chern
insulator is the dual-gated Bernal bilayer graphene
with a rotational alignment to one of the hexagonal
boron nitride-graphite gate [49]. However, such a
heterostructure is not an ideal fractional Chern insu-
lator, because an external magnetic field as large as
30 T must be applied to tune the topology. Magic-
angle twisted bilayer graphene has the correct topol-
ogy and interaction [56-60], but a magnetic field
of ~5T is required to properly tailor the quan-
tum geometry that stabilizes the fractional Chern
insulating phase [48]. Remarkably, the magnitude
of the required magnetic field can be greatly sup-
pressed in multilayer graphene [S0] and transition
metal dichalcogenides [S51-54]. Fractional quan-
tum anomalous Hall effects have been observed in
the rhombohedral pentalayer graphene-hexagonal
boron nitride Moiré superlattice [ S0] and twisted bi-
layer MoTe, [S1-54].

QUANTUM GEOMETRY

In the language of differential geometry, an infinites-
imal distance ds in a given manifold is measured by
the metric n* through

ds* = n®dx,dx;, (1)

where dx, is the infinitesimal variation of the coor-
dinate of the manifold. Formulated as a geometric
theory on the Hilbert manifold, quantum mechan-
ics allows the measurement of distance between two
adjacent quantum states [respectively parameterized
with momenta k + dk and k; see Fig. 1(2)] on the
nth band of Hamiltonian H as [9,10]

ks ai) — |mi)|* = Q) dkdky, ()
where the metric tensor is found through lin-

earization |ng, k) = |nx) + 0,|ni)dk, (8, = 9/0k,
is used for transparency) as

QY = (dni| dpni). (3)

However, under a local gauge transformation |n) —
¢ |n) (¢, is an arbitrary smooth function of k and
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Figure 1. (a) The demonstration of distance between two adjacent quantum states |n.q4x) and |ng). (b) Various types of nonlinear transport associ-
ated with quantum geometry. Nonlinear longitudinal conductivity emerges from band geometry and is observable in the antiferromagnetic topological
insulator MnBi,Tey [27]. On the other hand, the nonlinear Hall effect can be categorized into two groups: (i) the electric nonlinear Hall effect and
(i) the magneto-nonlinear Hall effect. The former may arise from the Berry curvature dipole (e.g. in WTe, [15,16], MoTe; [18,19], WSe; [17], Cd3As;
[20], Ce3Bi,Pds [22] and TalrTe, [21]) or the quantum metric dipole (e.g. in MnBi, Te, [26,27]), while the latter has been observed in the kagome magnet

FE3Sﬂ2 [28]

the notation |n) = |n;) is adopted for transparency),
the metric tensor defined in Equation (3) shows no
gauge invariance

(3an|pn) — (dan|dpn) — 3,5, AL
- ab{nAf, + 8a§nah{ns (4)

where A% = (nlid,|n) is the intraband Berry con-
nection [1]. To avoid this meaningless definition,
it is worth noting that A% is also gauge depen-
dent, A — A% —

(i.e. gauge-invariant) metric tensor, referred to as the

0,¢,. Consequently, a physical

quantum geometric tensor, can be naturally defined as
[8-10]
ab a pb
QF = (9,n|0pn) — ALA, (5)

which, by inserting the projection operator
> . Im)(m| into the first term, can be alterna-
tively written as Q% = D Al AP with
A = (mlid,|n) the interband Berry connection
[1].

The real (symmetric) part of the quantum geo-
metric tensor reads

Re Q% = Re(d,n|dpn) — AAL =g, (6)
which is known as the quantum metric tensor (la-
beled g**). On the other hand, the imaginary (anti-
symmetric) part of the quantum geometric tensor is
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Im Q% = Im(d,n|dyn) = —%ng, (7)
which is exactly the Berry curvature Q% up to a con-
stant coefficient. The quantum metric and Berry cur-
vature together determine the geometry of the quan-
tum states Qflh = gﬁb — %Qﬁh. Furthermore, the two
quantities can be related through the inequalities

[42,43,55]

Trgn 2 Qna

Detg, > %Qi, (8)
where g, is the matrix of the quantum metric with its
elements given in Equation (6); Tr g, and Det g, re-
spectively refer to the trace and determinant of ma-
trix g,; €2, is the magnitude of the Berry curvature
vector whose component is determined by Q¢ =
€2 /2 [ is given by Equation (7) and € is
the Levi-Civita anti-symmetric tensor]. The satura-
tions of the two inequalities in Equation (8) are usu-
ally referred to as the trace condition and the determi-
nant condition, respectively.

Lastly, we remark that, by using the identity
(n|d,H|m) = (gm - 8n)<”|aam)1 the

metric and Berry curvature can be written in the

quantum

more practical forms

(n|0, 'H|m) m|0,H |n)
ey
Y n|8 H|m (m|a,Hlny (9

w— Em )2 ’

m##n
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which avoid the ambiguous U (1) phase produced
from the differentiation of the eigenstate (i.e. |d,m)).

Two-band systems

To better demonstrate the quantum geometric ten-
sor, it would be instructive to provide a demo calcu-
lation of the quantum metric and Berry curvature in
some simple but nontrivial model. For this purpose,
we first consider a two-band model

H=d-o, (10)

where o = (0y,0,,0,) are the Pauli matrices
and d = (d,, d,, d.) can be arbitrary real func-
tions of k. The eigenenergies of Hamiltonian
H are &4 ==£d with d=|d|, correspond-
ing to eigenstates |t). Thus, the off-diagonal
matrix elements of operator d,7{ are given by
(£|0,H|F) = (8,dy)(E£|03|F), where the Ein-
stein summation convention is adopted. Mak-
ing use of the identities (£|o,|£) =d,/d and
0,0, = i€5.0, + 84, where 68, is the Kro-
necker symbol, it is straightforward to find that
(Elou|FIHFlowlE) = 8ap — dody/d” + i€ged,/d.
Consequently, Equations (9) simplify to

ai 1 l

¢ = E[aad - Opd — ﬁ(aad-d)(ahwd)],
0,d x 0pd) - d

qp = Ol x %d) 4

243
(11)

which are applicable for any two-band systems char-
acterized by Equation (10). The treatment for a
generic n-band system can be found in [61,62].

As a concrete example, we consider a two-
dimensional massive Dirac model

H = vk.0, + vk,0, + mo, (12)

where velocity v and mass m are model parameters.
Vector d is given by d = (vk,, vk,, m) with d =

Jv2 (k2 + kyz) + m?2. According to Equations (11),

the quantum metric tensor and Berry curvature ten-
sor respectively read

. v? I:UZk; +m?> —vk.k, :|7

4d* | —v’kk, 0K+ m?
v’ 0 F2dm
0= 0w [:I:de 0 } ’ (13)
i X v2(d*+m?
which lead to Trgs = gz’% + gviy = %,
Detg, =gi'gl —gigh = o and Qi =
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12 . .
|%Q¥ — %Qﬁc = %. It is straightforward to

check that both inequalities in Equation (8) hold.

NONLINEAR TRANSPORT

The determinants of quantum geometry (i.e. band
dispersions and wave functions) coincide with the
inputs of the Boltzmann transport equation. This
fact implies profound impacts on transport exerted
by quantum geometry. In particular, quantum ge-
ometry has been known to produce various types
of nonlinear transport [Fig. 1(b)] in both transverse
[7,11-28] and longitudinal directions [23,27]. The
former can be further classified into two categories:
(i) the electric nonlinear Hall effect arising from
either the Berry curvature dipole [12-22] or the
quantum metric dipole [7,23-27] and (ii) the
magneto-nonlinear Hall effect [7,11,28]. In this sec-
tion, we review these different types of nonlinear
transport resulting from quantum geometry.

Electric nonlinear Hall effect

Formulating the Hall voltage as a transverse current
J and the driving current as the applied electric field
E, the transport can be formally expressed as a power
series

]a - UabEb + UabchEcv (14)

where the tensor o is the linear Hall conductivity
(for a # b) and o, is the (second-order) nonlin-
ear Hall conductivity (for nonidentical indices a, b
and c). For simplicity, we here do not go to the cu-
bic regime and beyond, which should typically be
less dominating. The appearance of linear/nonlinear
Hall response is subject to the symmetry and quan-
tum geometry [7,12-27].

The electric current can be explicitly expressed as

JR— f (k]2 . (15)

where [dk] represents dk/ (27 )¢ with dimension d,
vy is the electron velocity for the nth band and f is
the nonequilibrium distribution function. In the ab-
sence of a magnetic field, f can be determined by the
Boltzmann equation

S E-f = fo f. (16)

where 7 is the relaxation time and f; is the Fermi-
Dirac distribution. The solution of the Boltzmann
equation can be expressed as a power series of E as
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According to the wave packet dynamics
[1,7,24,25,63-65] and Luttinger-Kohn method
[23], up to second-order in the electric field, the
velocity can be written as

a 1 € a ac
vy = 70+ 37 (B, + QUE,)

+ [3aucﬁf — (0.G + 9,G%) ]EhEC,

e
2h

(18)
where G = 2¢Re Zm# Al AL (e, — &m)
is the Berry connection polarizability related to
the quantum metric through G% = —edg®/de,
[8,63]. Upon substituting v? into Equation (15), the
nonlinear conductivity reads

a1l
Ogbe = _F Z/[dk](aaabacgn)fo

et

+o5 Z / [dk] (3,22 + 3,2%) f

—~ % > / [dk]
x [20.G — (0.6 + 0G2) [ o (19)

where the first term is referred to as the non-
linear Drude weight [23] and the second (third)
term is associated with the Berry curvature dipole
[12,13] (Berry connection polarizability dipole, also
known as the band-normalized quantum metric
dipole [8,24,25]).

Berry curvature dipole—induced nonlinear

Hall effect

In the presence of time-reversal symmetry 7, the lin-
ear Hall response is prohibited. With inversion sym-
metry P broken, the Berry curvature dipole [second
term in Equation (19)] becomes the major source of
transport and results in an electric nonlinear Hall ef-
fect [12-14].

This Berry curvature dipole-induced nonlinear
Hall effect has been proposed in various transition
metal dichalcogenides and semimetals. The first ex-
perimental realizations of the nonlinear Hall effect
adopt dual-gated few-layer WTe, Hall bar devices
[15,16], as illustrated in Figs 2(a)-(d). The effect
has also been observed in MoTe, [18,19], strained
and twisted WSe; [17], the Dirac semimetal Cd3As,
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[20], the Weyl-Kondo semimetal Ce3BiyPd; [22]
and the Weyl semimetal TalrTe, [21].

Quantum metric dipole—induced nonlinear
Hall effect

We now consider a system with both time-reversal
and inversion symmetries broken, but P77 symme-
try preserved. The linear Hall effect and electric non-
linear Hall effect arising from the Berry curvature
dipole [second term in Equation (19)] are both pro-
hibited. However, the electric nonlinear Hall effect
itself can possibly survive [7,23-27], contributed
by the nonlinear Drude weight [first term in Equa-
tion (19)] and quantum metric dipole [third term in
Equation (19)]. The different v dependence allows
us to distinguish the two contributions with a simple
scaling law [23,26,27]

X =m0} + 1o, (20)

where the first and second terms respectively corre-
spond to the nonlinear Drude weight and the quan-
tum metric dipole; and o ~ T is the linear longitu-
dinal conductivity.

To experimentally observe the electric nonlinear
Hall effect, we first require a platform breaking both
P and T, but preserving P7T. Such symmetry re-
quirements could be naturally satisfied in antiferro-
magnets [23-25] such as MnBi, Tey. MnBi, Tey is a
magnetic topological insulator with adjacent ferro-
magnetic layers exhibiting opposite magnetization,
and thus odd- (even-)layered MnBi, Te, realizes fer-
romagnetic (antiferromagnetic) topological insula-
tors. For a dual-gated four septuple-layer MnBi, Te,
Hall bar device [Fig. 3(a)], two types of Néel order,
referred to as AFM-I and AFM-I [insets of Fig. 3(c)
and (d)], can be realized by respectively sweeping
the magnetic field from —7to 0 T and 7 to 0 T [27].
Applying an ac driving current I in the x direction
[Fig. 3(a)], both linear and nonlinear Hall responses
can be measured simultaneously through the stan-
dard lock-in technique. In the linear regime, both
AFM-I and AFM-II exhibit longitudinal response
V?, but vanishing Hall voltage Vy‘“ ,indicating no net
magnetization and thus confirming the Néel order
[Fig. 3(b)]. On the other hand, pronounced nonlin-
ear Hall voltages Vwa are observed for both AFM-
I and AFM-II except for a sign difference [Fig. 3(c)
and (d)], which suggests no contribution from the
Berry curvature dipole [26]. Such an electric non-
linear Hall effect persists up to the Néel temperature
Tneel ~ 20 K. To distinguish the contribution from
the nonlinear Drude weight and the quantum met-
ric dipole, a scaling of the nonlinear Hall conduc-
tivity [Equation (20)] is conducted in the regime
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Figure 2. Electric nonlinear Hall effect in WTe,. (a) Schematic plot of a dual-gated
bilayer WTe, device encapsulated in hexagonal boron nitride electrodes. (b) Nonlinear
Hall (red) and longitudinal (green, purple) voltages V2 versus the driving current /.
Panels (a) and (b) are adapted from [15]. (c) Optical image of a Hall bar device of few-
layer WTe;. (d) Nonlinear Hall voltages. The driving current flows from the source (S)
to the drain (D) and voltages are measured between electrodes A and B. Panels (c) and
(d) are adapted from [16].

T = 2-10K, in which the carrier density is nearly a
constant and thus 0 is approximately proportional
to 7. The 02“’ versus (0’” )? curve exhibits linear be-
havior w1th the intercept (slope) associated with the
quantum metric dipole (Drude weight). The quan-
tum metric dipole is found to dominate the nonlin-
ear transport, which is justified by the flatness of the

curve [Fig. 3(e)].

Magneto-nonlinear Hall effect

In the presence of purely electric fields, the nonlinear
Hall effect is also purely electric and arises from ei-
ther the Berry curvature dipole [ 12-22] or the quan-
tum metric dipole [7,23-27]. With the participation
of magnetic fields, the nonlinear Hall family can be
further expanded to the magneto-paradigm. The re-
sponse reads [7]

]u = 0wEp + XavcEpBc, (21)

where the first term is the ordinary Hall response
(for a # b) and the second bilinear term repre-
sents the magnetoelectric response with xg be-
ing the magneto-nonlinear Hall conductivity (for
nonidentical indices 4, b and ¢). For simplicity, the
purely electric nonlinear response (i.e. 0,,E,E,) is
neglected in Equation (21). The terms associated
with cubic or higher combinations of electric and
magnetic fields are also neglected.

Page 6 of 17

The bilinear term in Equation (21) originates
from quantum geometry [28]. Such a term can be
intuitively understood as the additional Berry con-
nection induced by a magnetic field [7] in con-
trast to the extra Berry connection resulting from
the electric field in the electric nonlinear Hall ef-
fect. Explicitly, this additional Berry connection
reads [7,11,28,66]

Af,l)’h — Ba [FnS,ab 4 FnO,ab] , (22)

where F5(©):4 js the anomalous spin (orbital) polar-
izability. Explicitly, they are expressed as

S.a pb
FS% = —2Re ZM A , (23)

m##n En

MOeAb e
O,ub _ db
E' —2Re m%én Py AL .(24)

where A? s the interband Berry connection in the
absence of applied electromagnetic fields; &, is the
dispersion of the nth band; ann = —g/LpSmy is the
interband spin magnetic moment with s,,,,, the matrix
element of the spin operator, 145 the Bohr magneton
and gthe gfactor [66]; MO = (e/2) 2t (U +
8imv,) X Ay, /2 is the interband orbital magnetic
moment with v,,, the matrix element of the velocity
operator [66]; and g is the quantum metric tensor.
In the presence of a magnetic field, the dispersion of
the nth band is renormalized to

& =6, —B- (M) + M), (25)

where Mi(o) [1] is the intraband spin and orbital
moment. Consequently, the electron velocity up to
quadratic order in the electromagnetic field reads

7 = %aaén - eabC%Eb [Q; + Q,ﬁ”"] . (26)
where Qr(,l)’c is the component of the field-induced
Berry curvature Vj X .A,([l) [see Equation (22)].
Substituting Equation (26) and the distribution
function fo(é,) into Equation (15), the magneto-
nonlinear Hall conductivity can be solved as

2
Xabe = %Z /[dk] [@irabi + @nO,ubc] f(;,
(27)

where @S(O),abc — hthS(O),cu _ hvaFS(O),cb _
sathZMi(o)’c. Analogous to the Berry curvature
dipole and quantum metric dipole, the first two
terms in @i(o)’“bc may be referred to as the anoma-
lous spin (orbital) polarizability dipole, reflecting
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Figure 3. Electric nonlinear Hall effect and longitudinal conductivity. (a) Schematic plot of a six-end Hall bar device of four septuple-layer MnBi,Te,
(green) with a top gate (grey) and a back gate (purple). An ac driving current / is applied along the x direction, while linear/nonlinear voltages are
measured along the x and y directions using the standard lock-in technique. (b) Linear longitudinal (red) and Hall (blue) voltages. (c).(d) Nonlinear
longitudinal (red) and Hall (blue) voltages for the AFM-I and AFM-II phases of MnBi,Te,. Insets illustrate the magnetization of each septuple layer
in the AFM-| and AFM-II phases. (e) Scaling of the nonlinear Hall (red) and longitudinal (blue) conductivities with respect to the square of the linear
longitudinal conductivity. The dashed lines are the linear fits according to Equation (20). All panels are adapted from [27].

the band geometric nature of the magneto-nonlinear
Hall effect. The appearance of f; in Equation (27)
indicates that the magneto-nonlinear Hall conduc-
tivity is a Fermi surface property.

Unlike the detection of the electric nonlinear Hall
effect that requires platforms of appropriate symme-
tries (P breaking but 7 preserving for the Berry cur-
vature dipole [15-22], while P and T respectively
broken but P77 preserving for the quantum metric
dipole [26,27]), the symmetry requirement for the
magneto-nonlinear Hall effect is less stringent [28].
However, the scaling of the magneto-nonlinear Hall
effect is EB [Equation (21)], identical to that of the
ordinary Hall effect resulting from the Lorentz force
[7]. Therefore, one would prefer an in-plane mag-
netic field, with which the ordinary Hall effect is sup-
pressed.

One ideal platform for the observation of the
magneto-nonlinear Hall effect is the ferromagnetic
semimetal Fe;Sn,, because the ferromagnetic order
makes the anomalous orbital polarizability the
dominant contribution to the conductivity [Equa-
tion (27)] near the band degeneracy [28]. Fe3Sn,
comprises kagome Fe;Sn layers and honeycomb
Sn layers stacked along the ¢ axis [Fig. 4(a)] and
exhibits a mirror plane, labeled M,, perpendicular to
the a axis. For a tilted magnetic field with an angle
0 with respect to z in the x-z plane, one finds that
the Hall resistivity p,, remains intact under angle
inversion & — —6 and completely vanishes along
the x direction [i.e. @ = 90°; Fig. 4(b)]. Such be-
haviors imply that only the out-of-plane component
of the magnetic field plays a role, consistent with the
ordinary Hall effect. By contrast, when the magnetic
field is tilted in the y-z plane, p,, is not invariant un-
der 6 — —0, ruling out the possibility that the
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ordinary Hall effect acts as the sole resource
[Fig. 4(c)]. Remarkably, p,, remains finite for
0 = 90° and thus implies an in-plane Hall effect,
which is prohibited for an x-direction magnetic
field because of the mirror symmetry M,. The Hall
resistivity of such an in-plane Hall effect exhibits a
sudden jump at zero field and linear-in-H behavior
for finite magnetic fields, i.e. o = PyE + Piane
[Fig. 4(d)], where the former arises from the mag-
netization and the latter is related to the spin/orbital
coupling of carriers to the magnetic field [28]. The
conductivity associated with the second term is
o = —Phus/ pL, which is also linear in H and
thus implies a magneto-nonlinear Hall effect.

First-principles calculations have confirmed that
the observed in-plane magneto-nonlinear Hall effect
mainly arises from the dipole of anomalous orbital
polarizability [see Equation (27)], which dominates
other contributions by at least one order of magni-
tude [28]. The anomalous orbital polarizability is
found to be most pronounced at band degeneracies
or around small band gaps [Fig. 4(e)], among which
those close to the Fermi surface will significantly
contribute to the magneto-nonlinear Hall conduc-
tivity [Equation (27)]. The relevant band structures
comprise four pairs of Weyl points, one of which is
approximately located on the Fermi surface and con-
nected by the M7 symmetry. The two Weyl points
serve as hot spots of the anomalous orbital polariz-
ability [Fig. 4(f)].

Nonlinear longitudinal conductivity

Besides the electric and magneto-nonlinear Hall
effects, quantum geometry is also predicted to be
responsible for the nonlinear longitudinal transport
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Figure 4. (a) Schematic atomic structure of FesSn, with gold (blue) balls represent-
ing iron (stannum) atoms. (b) Angle-resolved Hall resistivity for a magnetic field in
the z-x plane. (c) Angle-resolved Hall resistivity for a magnetic field in the y-z plane.
Inset: in-plane Hall resistivity occurs with a y-direction magnetic field. (d) Magnetic
field dependence of Hall resistivity at different temperatures. (e) The yy component of
the anomalous orbital polarizability projected onto the first-principles band structure.
(f) Distribution of the anomalous orbital polarizability dipole on the Fermi surface, where
a pair of Weyl points serve as the hot spots. All panels are adapted from [28].

through a perturbative approach [23]. The existence
of quantum geometry—induced nonlinear longitu-
dinal transport is also justified with density matrix
calculations [67], though the obtained nonlinear
conductivity is quantitatively different from the
perturbative predication. Controversially, nonlin-
ear longitudinal transport seems prohibited in the
framework of wave packet dynamics, if the electric
field correction to the Fermi-Dirac distribution is
also enclosed [7].

The nonlinear transport in the longitudinal direc-
tion has been experimentally observed in MnBi, Te,
with the same dual-gated Hall bar device [27]
[Fig. 3(a)]. For both the AFM-I and AFM-II phases,
pronounced longitudinal voltages of opposite signs
are observed [Fig. 3(c) and (d)]. The same as Hall
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voltages, the observed longitudinal responses per-
sist up to the Néel temperature Tyee ~ 20 K. The
scaling of the longitudinal conductivity reveals a lin-
ear dependence of o,,, on (c)* [Fig. 3(e)], im-
plying the presence of a quantum metric dipole
contribution.

FLAT-BAND SUPERCONDUCTORS

Understanding the properties of unconventional su-
perconductors is beyond the celebrated Bardeen—
Cooper—Schrieffer (BCS) formalism and promotes
a great variety of theories [68]. Amongst them, the-
ories based on quantum geometry have recently
attracted great attention for the explanation of the
enhanced transition temperature in flat-band super-
conductors [29-33]. Because of the band flatness,
one may naively expect the associated inert electrons
to only support a vanishingly small supercurrent.
However, a sizable supercurrent has recently been
observed in twisted bilayer graphene [37], a well-
recognized two-dimensional flat-band superconduc-
tor [69]. It is thus critically important to understand
the origination of this supercurrent.

Quantum geometric theory

The emergence of flat bands in superconductors can
be understood in terms of Wannier function over-
lap, which is governed by quantum geometry. A sin-
gle flat band can possibly arise from well-isolated
Wannier functions [Fig. 5(a)] and can stay robust
against interaction, provided that the interaction
does not create sizable overlap between adjacent
Wannier functions [Fig. S(b)]. Consequently, there
is no transport on the single flat band. Alternatively,
aflat band can emerge in a multi-band system, where
Wannier functions interfere destructively [Fig. S(c)].
Interaction can interrupt the interference and cause
a supercurrent [Fig. S(d)]. A more theoretical justi-
fication on the absence (presence) of supercurrents
in single- (multi-)band systems is presented in the
following.

Single-band model
We first consider a toy model with a single isotropic
parabolic band & = A*k*/2mg. In the large effec-
tive mass limit (i.e. m.g — 00), the band becomes
flattened.

The supercurrent of the model in the London
gauge reads

Jo = —D™A,, (28)

where Ay, is the applied magnetic field and D is the
superfluid weight tensor defined as [29]
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in the presence of a nonzero quantum metric ten-
sor, thus justifying the existence of the supercurrent.
To explicitly quantify the supercurrent [cf. Equa-
tion (28)], the superfluid weight has to be evaluated.
Assuming a real and spatially uniform order parame-
ter A; = A, the superfluid weight

D* =% +D (32)
is found to have a conventional part D% and a geo-
. ab .
Figure 5. Schematic plot of Wannier function overlap. (a) A single flat band formed metric part Dge"m [29,31], written as
by well-separated Wannier functions in the absence of interactions. (b) A single flat )
band robust against interaction that does not create sizable Wannier function over- D A [dk] Z
lap. (c) A flat band in a multi-band system formed by the destructive interference of o R -
Wannier functions. (d) Interaction interrupts the destructive interference and causes a
supercurrent. Reproduced with changes from [70]. |: 8 tanh (ﬁf)
X[ = +
¢ 2 cosh? (ﬁE”> E, :|
D% = = [dk](8,0p€) fo. (29) 2
2

It is straightforward to check that the supercurrent x _%8“8” %, (33)

Js = (ne*/meg )A indeed vanishes when the single ) s

band is flattened in the m s — 00 limit. W _ €A

b= S8 [ty
n#m

Multi-band model s e

The fact that a single flat band is indeed insufficient tanh ( 2”) tanh (T">

to carry a supercurrent does not contradict the ob- x E - E

n m

served flat-band superconductors [37], whose char- )

acterization requires a more complicated multi-band « (e "2_ sz) Re A° Afn . (34)

model, generically written as E; —E;

H = ZtiﬁjciT.UCj,U - UZn,‘,¢ni,¢
i,j,o i
~ Zti’jCIUCLo— + Z (AtCiTCii + HC) .
i,j,o i

(30)

where ¢;, annihilates a spin-o electron on the
ith site, t; ; is the spin-independent hopping, U >
0 is the onsite Hubbard interaction and A; =
—U/{c;, | ¢i,4) is the superconductor order parameter
at the mean-field level.

In the presence of time-reversal symmetry,
the solution of the two-body problem associated
with the Hubbard model [Equation (30)] esti-
mates the effective mass of the bound states as
[29-33]

|:m1effi|ab - lg_; /[dk]gﬁb’ (31)

where V is the volume of the unit cell, N is the num-

ber of the sites in a unit cell and g?" is the quantum
metric tensor. Equation (31) suggests a finite mass
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where ¢, is the single-electron spectrum cor-
responding to the wave function |n), E, =

V (e, — pn)* + A? is the quasiparticle spectrum
and B = 1/kgT. We note that D?_ is associated
with the diagonal part of the current operator and
is a combination of the superfluid weight of each
single band [Equation (29)], while Dgi’om relies on
the off-diagonal part of the current operator and
exhibits a geometric origin [29,31,33]. Remark-
ably, in the isolated band limit, where the partially
filled flat band ¢,+ is well separated from the other
bands ¢, (m # n*) by a gap much larger than
A, the conventional term [Equation (33)] van-
ishes, while the geometric term is greatly simplified

to [29,34]

42 A/v(1 —v)

Dgleqom = T /[dk]gﬁb’ (35)
where v is the filling ratio of the isolated flat band.
Similar to the effective mass [Equation (31)], the su-
perfluid weight [Equation (35)] is also determined
by a Brillouin zone integral of the quantum met-
ric. This unambiguously confirms the presence of a
finite-sized supercurrent.
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Figure 6. (a) Lattice structure of twisted bilayer graphene. (b) Band structure of twisted bilayer graphene plotted along the high-symmetry path.
Inset: the Moiré Brillouin zone. The nearly flat bands are highlighted with colors. (c) Superfluid weight versus filling at & = 1.05° and = 1.00°. (d)
Superfluid weight versus the superconductor gap. Thick blue: full superfluid weight. Red: superfluid weight calculated with eight lowest-energy bands
(four dispersive, four nearly flat). Yellow: superfluid weight calculated with four nearly flat bands. Blue: conventional superfluid weight. (e) Longitudinal
resistance versus gate voltage of twisted bilayer graphene. Shade marks the filling where superconductivity occurs. (f) Resistivity in the A-T plane
shows a superconducting dome (dark blue). (g) Resistivity in the /-8B plane shows a superconducting dome (dark blue). (h) Differential resistivity in
the 7i-J plane shows a superconducting dome (dark blue). The dome boundary (red dashed curve) marks the critical supercurrent. (i) Superfluid weight,
calculated with critical supercurrent (red) via Equation (37), is well fitted by including the geometric contribution D = 0.33A(2r e’/ 1 (green) and
dominates over the conventional contribution approximated by D = 7g?/m* (black). Panels (a), (b) and (d) are adapted from [36]. Panel (c) is adapted
from [35]. Panels (e)i) are adapted from [37].

Application to twisted bilayer graphene

One prominent example of flat-band superconduc-
tors is twisted bilayer graphene [69] [Fig. 6(a)],
which exhibits nearly flat Moiré bands at the magic
angle ~1.05° [Fig. 6(b)]. The superfluid weight
of twisted bilayer graphene is bounded from below
by the C,, T Wilson loop winding number arising
from the nontrivial topology of the two lowest flat
bands [34]. In the presence of the nearest-neighbor
pairing mechanism [cf. the onsite pairing in Equa-
tion (30)], nematic superconductivity emerges and
anisotropy is found in the superfluid weight [36].
Since the flat bands of twisted bilayer graphene are
not perfectly dispersionless but have a band width
of several milli-electronvolts [Fig. 6(b)], the con-
ventional contribution D?_ [Equation (33)] can-
not be completely suppressed and may surpass the
geometric contribution D [Equation (34)] at

geom

certain fillings [Fig. 6(c)]. Contribution D can

even dominate Dggom when the twist angle is slightly
tuned away from the magic angle [Fig. 6(c)], sug-
gesting that the geometric effects in twisted bi-
layer graphene sensitively depend on the flatness of

the bands [35]. Moreover, the geometric superfluid
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weight of twisted bilayer graphene grows linearly
with respect to the gap [Fig. 6(d)], consistent with
the prediction of Equation (35).

For a twisted bilayer graphene device with a twist
angle 6 = 1.08° £ 0.02° [37], its longitudinal re-
sistance versus gate voltage exhibits peaks at v = 0,
—1/2,—3/4and —1 [Fig. 6(e)]. The Dirac revival is
found at v = —1/2, where the effective charge den-
sity i = 0 [37]. For —3.5 < /i < 0.3 x 10" cm 2,
which roughly corresponds to the filling regime
—5/8 < v < —1/2,asuperconducting dome is ob-
served in the -T plane [Fig. 6(f)]. The dome is
approximately peaked at the optimal doping iy, =
—1.8 x 10" cm™? with a Berezinskii-Kosterlitz—
Thouless transition temperature T, = 2.2 K. In the
#1-B plane, a similar dome is observed, revealing an
upper critical field B, = 0.1T at optimal doping
[Fig. 6(g)]. The superconducting coherence length
& = /®/27 B, is calculated to be approximately
57nm at 7i,p. This suggests, at optimal doping, a
superconductor gap A = hvg/m& & 0.0037 meV,
where vr & 10° m/sis adopted [37]. Consequently,
the ratio A/kgT, ~ 0.02 is reached, far from the
BCS value 1.764. Alternatively, estimating the ef-
fective mass at optimal doping according to m* =
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hikg Jvp (kp = /27, being the Fermi momen-
tum), the superfluid weight reads D = i, e’ /m* ~
4.12 x 10°H™'. The Nelson—Kosterlitz criterion
[34] then gives an estimate of the transition temper-
ature

wh?
——D ~ 0.05K, (36)
esz

T, <

which is far less than the measured T, = 2.2 K.
Since Equation (36) underestimates the superfluid
weight by neglecting the geometric contribution
[Equation (34)], its pronounced deviation from the
measured T, = 2.2 Kjustifies that the quantum geo-
metric effect greatly contributes to the superconduc-
tivity of twisted bilayer graphene.

To scrutinize the quantum geometric effect on
the superfluid weight, it is instructive to examine the
differential resistivity in the 7i-] plane, where a super-
conducting dome is observed [Fig. 6(h)]. The crit-
ical current [i.e. boundary of the dome; see the red
dashed curve in Fig. 6(h)] yields a superfluid weight
[37]

_ 2§
D= F()]CS’ (37)

which also exhibits a dome structure. The dome top
is located at 5 x 10’ H™! [red curve in Fig. 6(i)],
far greater than the estimated conventional con-
tribution [black curve in Fig. 6(i)], and should
be dominantly contributed by the geometric effect
[Equation (35)], which is parameterized as Dgeom =
b%—zz A. The D versus i curve at b = 0.33 [green
curve in Fig. 6(i) ] well fits the experimental data [red
curve in Fig. 6(i)] and in general captures the overall
trend. Such a fit straightforwardly confirms the cru-
cial role of quantum geometry in the superconduc-
tivity of twisted bilayer graphene.

FRACTIONAL CHERN INSULATORS

The quantization of Hall conductivity of two-
dimensional electron gas, 0 = C % , is a prominent
example violating Landau phase transition theory
[2]. This integer quantum Hall effect is characterized
by the topological invariant C, which is known as the
Chern number and originates from the Landau lev-
els produced by the applied magnetic field [3]. In-
triguingly, the Chern number may also arise from the
magnetization or spin-orbit coupling of materials in
the complete absence of Landau levels or magnetic
fields [7]. Such materials, referred to as Chern insu-
lators, also exhibit quantized Hall conductance, be-
cause they share exactly the same topological feature
as the integer quantum Hall effect.
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Strong electron-electron interaction can lift the
degeneracy of the Landau levels in the integer quan-
tum Hall effect and the partial filling of such Lan-
dau levels produces a fractional quantum Hall ef-
fect [4,5]. Observation of the fractionally quantized
Hall conductance in two-dimensional electron gas
requires an extremely strong magnetic field, typically
on the order of several tens of tesla [4], and thus
causes great difficulty in the experimental implemen-
tation. Hence, a natural question arises: can the frac-
tionally quantized Hall conductance be visualized in
zero magnetic field? Or, equivalently, by referring to
the relationship between the integer quantum Hall
effect and the Chern insulator, can one construct
from the fractional quantum Hall effect a fractional
Chern insulator?

Following the construction of Chern insulators
[6], the necessary ingredients of a fractional Chern
insulator seem to be a nearly flat Chern band, which
encodes the strong electron-electron interaction and
possesses the required topology. It is shown that
these two requirements can be simultaneously sat-
isfied in tight-binding models with proper short-
ranged hoppings [38-40]. Such fractional Chern
insulators host nearly flat Bloch bands with C =
=£1, thus highly mimicking the Landau levels in
the fractional quantum Hall effect. However, the
experimental implementation of such a fractional
Chern insulator is challengeable. It is then realized
that the challenge is deeply rooted in the key differ-
ence between flat Chern bands and Landau levels:
the quantum geometry of flat Chern bands (Landau
levels) is in general fluctuating (homogeneous) in
the Brillouin zone; and the stability of the fractional
Chern insulating phase (i.e. the fractional quantum
anomalous Hall effect) sensitively depends on how
uniformly the quantum geometry is distributed in
the Brillouin zone [41-43].

Besides the requirement on the momentum-
space distribution, it is worth noting that the quan-
tum metric tensor and Berry curvature for a given
Bloch band (labeled with ) are governed by Equa-
tion (8). For the lowest Landau level in the fractional
quantum Hall effect, both inequalities adopt equal
signs [55]. We thus expect the flat Chern band mim-
icking the lowest Landau level to act in the same way
or at least approximately satisfies Trg, >~ €2, and
Detg, >~ Q2/4.

To sum up, a stabilized fractional Chern insula-
tor follows these three criteria: (i) a flat or nearly flat
band, whose kinetic energy is overwhelmed by the
electron-electron interaction; (ii) a nontrivial Chern
number that is either intrinsic or interaction in-
duced and (iii) quantum geometry that is almost uni-
formly distributed in the Brillouin zone [41-43] and
approximately satisfies the trace and determinant
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Figure 7. (a) Local inverse compressibility dw/dnin the v-B plane. Here v is the filling per Moiré unit cell and B is the applied magnetic field. (b) The
line trajectories in the inverse compressibility measurement are classified as Chern insulators/integer quantum Hall states (black), correlated insulators
(green), charge density waves (cyan), translational symmetry-broken Chern insulators (yellow) and fractional Chern insulators (red). (c) Enlarged view
of panel (b) in the low-field regime. (d) Enlarged view of panel (b) in the high-field regime. (e) Standard deviation of Berry curvature as a function of
the magnetic field for a realistic magic-angle twisted bilayer graphene with wy/w; = 0.8. Fractional Chern insulating (CDW) phase is observed at
the high-field (low-field) regime. The onset of the fractional Chern insulating phase is approximately located at (¢/¢y). >~ 0.18 and o,(R2) = 1.4.
(f) Standard deviation of Berry curvature as a function of the ratio wgy/w; of twisted bilayer graphene at zero applied magnetic field. The onset of the
fractional Chern insulating phase is approximately at the ratio (wp/w; ), = 0.65. (g) The phase diagram of twisted bilayer graphene in the wy/wi-¢ /¢
plane. The CDW is located in the lower right corner. The transition to fractional Chern insulators occurs in the regime 1.4 < o(€2) < 2.2. All panels
are adapted from [48].

conditions if mimicking the lowest Landau level.
The simultaneous satisfaction of all the three crite-
ria is highly nontrivial and in general requires plat-
forms with great tunability. Fortunately, the Moiré
materials shed new light on the accessibility of such
platforms [44-54].

Magic-angle twisted bilayer graphene

Magic-angle twisted bilayer graphene has been
known to exhibit nearly flat bands and can thus sup-
port strong electron correlation effects [71]. The
correlated Chern insulating phase further confirms
the required nontrivial topology for the fractional
Chern insulator [56-60]. In the chiral limit (i.e. the
same sublattices are decoupled across the two hon-
eycomb layers), the flat bands of magic-angle twisted
bilayer graphene acquire ideal quantum geometry
(43]

ab 1
8 = _5abnnv (38)

2
which means that both inequalities in Equation (8)
adopt equal signs, the same as the lowest Landau
level in the fractional quantum Hall effect [55]. Con-
sidering that the realistic magic-angle twisted bilayer
graphene does not qualitatively differ from its chiral
limit [72], one naturally expects magic-angle twisted
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bilayer graphene to have nearly ideal quantum geom-
etry, thus in principle satisfying all the three afore-
mentioned criteria for a fractional Chern insulator.

It has been predicted that fractional Chern
insulating states occur in devices comprising
magic-angle twisted bilayer graphene aligned with
hexagonal boron nitride [44-47]. Performing local
electronic compressibility measurements on such
a device (with a twist angle of ~1.06°) using a
scanning single electron transistor [48], the inverse
compressibility du/dn can be obtained and plotted
in the v-B plane [Fig. 7(a)], where v is the Moiré
band filling factor and B is the applied magnetic
field. The applied magnetic field is used to properly
tailor the distribution of quantum geometry, as
will be analyzed later. A variety of incompressible
states are visualized as linear trajectories in Fig. 7(a)
and (b). These trajectories follow the Diophantine
equation [73]

v=t£+s,
0

(39)

where ¢ is the magnetic flux per Moiré unit cell, ¢
is the flux quantum and (¢, s) is a parameter pair.
The values of (t, s) determine the nature of the in-
compressible states [Chern insulators/integer quan-
tum Hall states, correlated insulators, charge den-
sity waves (CDWs), translational symmetry-broken
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Table 1. Classification of incompressible states in magic-
angle twisted bilayer graphene aligned with hexagonal
boron nitride [48].

Incompressible states Values of (¢, s)

Integer quantum Hall states Integert # 0,5 =0
Integert # 0, integer s # 0
t = 0, integers # 0

t = 0, fractional s

Chern insulators
Correlated insulators
Charge density waves
TS-broken Chern insulators Integert # 0, fractional s

Fractional Chern insulators Fractional t, fractional s

Chern insulators, fractional Chern insulators, etc.],
as detailed in Table 1.

To scrutinize the incompressible states, we first
examine the low-field regime near v = 3. Two
Chern insulating states (£1, 3) and a correlated in-
sulating state (0, 3) emanate from v = 3 at zero
magnetic field [Fig. 7(c)]. A symmetry-broken
Chern insulating state is observed on the left with
(1, 8/3) [Fig. 7(c)]. Besides the insulating states,
two CDW states with (0, 7/2) and (0, 11/3) are
found. Remarkably, these two CDW states termi-
nate around B & 5 T, which coincides with the on-
set of the two fractional Chern insulating states with
(2/3,10/3) and (1/3,11/3) [Fig. 7(d)], imply-
ing competition between the CDW and fractional
Chern insulating states [44,74]. This competition
arises from the fact that fractional Chern insulators
are stabilized by a uniform distribution of quantum
geometry, while the CDW is facilitated by fluctuat-
ing quantum geometry [44], e.g. strongly localized
Berry curvature at the center of the Brillouin zone
[75]. Therefore, it is instructive to study the transi-
tion from the CDW to fractional Chern insulators by
checking the momentum-space distribution homo-
geneity of Berry curvature, characterized by its stan-
dard deviation o (£2).

To figure out the critical value of o (), we
note that the interplay between the CDW and frac-
tional Chern insulators in twisted bilayer graphene
has already been found to rely on the ratio wo/w;,
where wy (w;) is the interlayer tunneling between
identical (different) sublattices of the twisted layers
[44,46,47]. For twisted bilayer graphene, wy/w; >~
0.8 [76] and o (£2) decreases with increasing mag-
netic field [Fig. 7(e)]. This reveals that the effect of
the magnetic field here is to tailor the quantum ge-
ometry, making it more uniformly distributed in the
Brillouin zone, as mentioned above. As illustrated
in Fig. 7(d), the onset of the fractional Chern in-
sulator occurs at B>~ ST, ie. (¢p/¢h). = 0.18, so
the critical value of o (£2) can thus be read off from
Fig. 7(e) as 0.(2) >~ 1.4, which marks the transi-
tion from fractional Chern insulators to the CDW
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phase. In the absence of magnetic fields, o' (2) hasa
positive dependence on the ratio wo/w; [Fig. 7(f)].
The transition 0.(2) ~~ 1.4 is approximately lo-
cated at (wo/w;). = 0.6, implying that a chi-
ral (normal) magic-angle twisted bilayer graphene,
labeled by wo/w; = 0 (wo/w; = 0.8), is in the
fractional Chern insulating (CDW) phase. From a
more generic view, a phase diagram of twisted bi-
layer graphene can be constructed in the wo/w;-
@ /@o plane, where the CDW phase is located near
the lower right corner with large wo/w, values but
small ¢ /¢y values [Fig. 7(g)]. Field-free magic-angle
twisted bilayer graphene belongs to this regime, but
can fortunately be tuned to the adjacent fractional
Chern insulating phase with a moderate magnetic

field B>~ ST.

Other Moireé platforms

Prior to magic-angle twisted bilayer graphene
aligned with hexagonal boron nitride, fractional
Chern insulating states were proposed, for the first
instance, in a dual-gated Bernal bilayer graphene de-
vice [49], where a rotational alignment of ~ 1° was
prepared between the Bernal bilayer graphene and
one of the gates. Measurement of the penetration
field capacitance distinguishes the incompressible
and compressible states and reveals the fractional
Chern insulating states, which arise from the
Harper-Hofstadter bands produced by the inter-
play between the Moiré superlattice potential and
the applied magnetic field [77]. However, the re-
quired magnetic field is quite strong, B ~ 30T,
because its effect here is creating appropriate topol-
ogy rather than slightly tailoring the quantum
geometry as in the magic-angle twisted bilayer
graphene [48].

The bilayer graphene-based fractional Chern in-
sulators require magnetic fields to tune the topology
or the quantum geometry [48,49], and thus cannot
support the fractional quantum anomalous Hall ef-
fect. By contrast, Moiré materials based on transi-
tion metal dichalcogenides have been predicted to si-
multaneously host proper interaction, topology and
quantum geometry [78-81] and may thus be poten-
tial candidates for fractional Chern insulators at zero
magnetic field. In particular, twisted bilayer MoTe,
has been confirmed to exhibit the fractional quan-
tum anomalous Hall effect [S1-54]. The incom-
pressibility measurement of twisted bilayer MoTe,
has revealed both integer and fractional quantum
anomalous Hall states respectively at 1 and 2/3 hole
fillings [S2] [Fig. 8(a)], while the same states are
also visualized with trion photoluminescence and re-
flective magnetic circular dichroism measurements
[51] [Fig. 8(b)]. Moreover, the direct transport
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Figure 8. (a) Incompressibility measurement of twisted bilayer MoTe,. Integer (blue) and fractional (black) Chern insulators are respectively observed for
hole fillings v = 1 and v = 2/3. Adapted from [52]. (b) Trion photoluminescence exhibits blueshifts at v = —1and v = —2/3, respectively indicating
integer and fractional Chern insulating states, which are also observable in the reflective magnetic circular dichroism measurement. Adapted from [51].
(c) Longitudinal and Hall resistances versus the magnetic field in twisted bilayer MoTe,. Plateaus are observed at i, = £3h/2€?, corresponding to
fractional filling v = —2/3. Adapted from [53]. (d) Hall conductance versus filling/displacement in twisted bilayer MoTe,. Fractional Hall conductance
o,y = 267 /3h s the smoking-gun evidence of fractional Chern insulators. Adapted from [54].

measurements have unveiled fractional Hall re-
sistance [53] [Fig. 8(c)] and conductance [54]
[Fig. 8(d)], providing smoking-gun evidence of frac-
tional Chern insulators at zero fields.

CONCLUSIONS

We present a comprehensive review of the quantum
geometric effect on the transport, superconductiv-
ity and topology of condensed matter. These three
subjects are also nicely reviewed in [82,83], [70] and
[84,85], respectively.

First, we review the fact that quantum geome-
try yields a variety of types of nonlinear transport,
such as the electric nonlinear Hall effect [7,11,28],
magneto-nonlinear Hall effect [8,28] and nonlin-
ear longitudinal conductivity [23,27]. The electric
nonlinear Hall effect may arise from the dipole mo-
ment of either Berry curvature [12-22] or the quan-
tum metric [8,23-27], depending on the symmetry.
The magneto-nonlinear Hall effect is contributed by
the spin/orbital magnetic moment and anomalous
spin/orbital polarizability [ 7,11,28,66]. The longitu-
dinal nonlinear conductivity relies on the quantum
metric and may thus co-exist with the electric non-
linear Hall effect [23,27].

Second, we examine the quantum geometry in
flat-band superconductors, paying close attention to
the superfluid weight [29-33]. Even though the elec-
trons on the flat bands are inert, transport is still
possible and arises from the quantum metric of the
bands. The measured critical supercurrent greatly
surpasses that estimated in the BCS formalism [37].
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The difference results from the interband quantum
metric, which gives rise to a geometric superfluid
weight [29,34]. The geometric superfluid weight can
even survive when the bands become completely flat
and is responsible for the enhanced transition tem-
perature of flat-band superconductors.

Lastly, we summarize the important role of quan-
tum geometry in the fractional Chern insulators. Be-
sides the interacting Chern bands, fractional Chern
insulators also require almost uniformly distributed
momentum-space quantum geometry, which is re-
sponsible for the stabilization of the fractional Chern
insulating phase [41-43]. The simultaneous con-
straints on interaction, topology and quantum ge-
ometry indicate that fractional Chern insulators may
only be realized in highly tunable platforms. The rise
of Moiré materials has presented several candidates
of fractional Chern insulators [44-54]. While the
Bernal bilayer graphene-hexagonal boron nitride
Moiré heterostructure [49] and magic-angle twisted
bilayer graphene [48] require a magnetic field to re-
spectively tailor the topology and quantum geom-
etry, rhombohedral pentalayer graphene-hexagonal
boron nitride Moiré devices [S0] and twisted bi-
layer MoTe, [51-54] do exhibit fractional quantum
anomalous Hall effects.

OUTLOOK

The area of quantum geometry is rapidly expanding,

leaving many new directions to be further studied.
In nonlinear transport, disorder has been known

to interplay with quantum geometry [14,86,87,88].
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In particular, Berry curvature can enter certain
parts of the electric nonlinear Hall conductivities
arising from side jump and skew scattering [14]. It
will thus be interesting to check how the disorder
interacts with the quantum metric and affects the
electric nonlinear Hall and longitudinal conductivi-
ties. The interplay between disorder and the anoma-
lous spin/orbital polarizability should lead to a com-
prehensive understanding of the magneto-nonlinear
Hall effect and thus deserves a careful study. More-
over, it may be instructive to examine the role of
quantum geometry in nonlinear transport beyond
the electric and magneto-regimes (e.g. spin regime
[89,90]) and in higher-order nonlinear transport
[64,91,92], in which new types of quantum geomet-
ric quantities may be engaged.

In flat-band superconductors such as magic-angle
twisted bilayer graphene, evidence of the quantum
geometric effect has been confirmed in a quali-
tative fashion. A more quantitative check is pre-
terred. A more extensive check on quantum geo-
metric effects other than the geometric superfluid
weight (e.g,, anomalous Hall effect [93] may also
be favored. Moreover, One could investigate the
quantum geometry in other Moiré superconductors
such as twisted trilayer graphene [94] and twisted
double bilayer graphene [95]. Additionally, Moiré
superconductors are playgrounds of novel pairing
symmetries (e.g. d + id pairing in twisted cuprates
[96,97]). Studying how such pairing symmetries
interplay with quantum geometry could be cru-
cial for understanding the nature of the hosting
superconductors.

In the context of fractional Chern insulators,
one of the most important applications is topolog-
ical quantum computation. For such a purpose, a
great variety of platforms, especially Moiré materi-
als, have to be explored to identify a suitable non-
Abelian candidate [98]. Such non-Abelian fractional
Chern insulators should have appropriate quan-
tum geometry requiring no further tuning by mag-
netic fields (e.g. twisted MoTe, [51-54] and pen-
talayer graphene [50]), but preferably operate at
a higher temperature. Furthermore, Moiré materi-
als like twisted MoTe, can host additional many-
body states, exemplified by the anomalous compos-
ite Fermi liquid [99,100]. The interplay between
such many-body states and the fractional Chern in-
sulating states had better be settled. Furthermore, a
quantum geometric theory unifying all these states

is highly preferred.
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