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Abstract In this work, the early evolution of low-mass fully
convective stars is studied in the context of DHOST (degen-
erate higher order scalar-tensor) theories of gravity. Although
it is known that the hydrostatic equilibrium equation is mod-
ified for scalar-tensor gravity, the consequent modifications
to the early evolution phases of a star were not explored in
this framework. With this in mind, we consider three evo-
lutionary phases—contraction to the main sequence, lithium
burning and entrance to the main sequence—and investigate
how each of these phases is affected by the theory’s param-
eter. Taking these effects into account, we are able to show,
among other things, that the Hayashi tracks are shifted and
the star’s age is considerably modified.

1 Introduction

As a theory that has successfully passed several tests, it is
safe to say that General Relativity (GR) is currently our best
description of the gravitational interaction [1–3]. However,
these successes did not prevent attempts of modifying gravity
[4–10] which were mainly motivated by the discovery of the
accelerated expansion of the universe [11]. Thus, a modified
theory of gravity should stand as an alternative candidate to
dark energy models on large scales and, at the same time,
reproduce GR’s predictions in Solar System scales [12–19].

Many approaches can be taken in order to modify grav-
ity. One of them consists in adding extra fields to the the-
ory, such as a scalar field (see e.g. [20,21], for more general
fields, see [22]). When working with scalar-tensor theories
that modify GR, usually one considers only those theories
that have up to second order field equations as higher deriva-
tives commonly lead to Ostrogradsky instabilities [23]. The
most general theory obeying this requirement is the so-called
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Horndeski theory [24]. However, theories with higher-order
derivatives which have degenerate Lagrangians can be shown
to be ghost free, giving rise to the Beyond Horndeski class
of theories [25,26], referred further to DHOST (degenerate
higher order scalar-tensor) theories. As already mentioned,
the modifications to GR should agree with standard solar sys-
tem tests. However, in such modifications, the gauge symme-
try of GR is usually broken, which generates new degrees of
freedom. For instance, in scalar-tensor (ST) theories where
the scalar field is coupled to the Ricci scalar, the presence of a
fifth force requires the application of a screening mechanism
in order to suppress its effects at small scales [27–31].

Apart from cosmology, which was extensively studied in
the framework of Horndeski and beyond [32–34], the the-
ory was also studied in the context of relativistic [35–41]
non-relativistic stars and substellar objects. From the find-
ing that the screening mechanism is partially broken in Main
Sequence stars [42], the ST theories have joined the class of
gravity models [43–47] which modify the Poisson and hydro-
static equilibrium equations, which turn out not only to have
a non-negligible effects on the inner structure [48–50] and
evolution [51–57] of stellar and substellar objects, but this
fact also provides tools to constrain those models [58,59]. It
has been showed that modified gravity alters mass limits such
us minimal masses for hydrogen and deuterium burning [60–
64], Jeans and opacity masses [65,66], or Chandrasekhar one
for white dwarf stars [67–74]. Furthermore, light elements’
abundances in the stellar atmosphere seem to be also affected
when other than Newtonian model of gravity is applied [75].

In the presented work we will follow the steps undertaken
previously in [51,75] to examine the early phases of a young
star which is contracting to the Main Sequence (MS). Mainly,
we will focus on the pre-Main Sequence (PMS) tracks which
are given by the effective temperature-luminosity relation,
called Hayashi tracks [76]. In this period of time the PMS
star possesses sufficient conditions in its core in order to
start lithium ignition. Since the lithium abundance is a time-
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dependent quantity, it will allow us to find the age of an object
which just entered the MS phase. Moreover, depending on
its mass, such a star can leave its Hayashi track and develop
a radiative core, which have a further consequence—it will
follow the so-called Henyey track [77–79] instead (see the
picture in [47] for the early evolution’s phases). However,
since this feature also depends on the gravity model applied,
the maximal mass of a fully convective star on the MS may
be different than in the common models based on Newtonian
gravity.

Those phases of the low-mass star’s evolution were not
studied in the context of ST theories. Keeping in mind that
in the nearest future we will be supplied with more accurate
data from different missions such as e.g. James Webb Space
Telescope or Nancy Grace Roman Space Telescope [80–86],
therefore one should be ready to have the most popular the-
ories of gravity prepared for the data release. This will allow
to use statistical methods, as one will be equipped with rich
data samples, to understand them and put constrains on such
gravitational proposals with a great statistical power. Since
DHOST theories do modify internal properties and struc-
ture of stellar objects, the presented findings can be used to
further constrain ST theories. The low mass stars in globu-
lar clusters have been already used to test Standard Model
of particle physics and the dark matter candidates [87,88];
it is expected that when re-analyzing the nuclear processes
in the framework of modified gravity, one will be also able
to bound some models, as it was done in the case of the
dark matter ones [89]. It is also a significant fact in favor
of studying these objects that the low mass stars have long
lifetimes and hence even very small effects as presented in
this work, can accumulate over during evolution’s time, pro-
viding interesting observational outcomes [90]. Apart from
this, understanding low mass stars’ evolution means that we
understand more about galaxies, as about 70% of their stars
are those particular ones.

In what follows, we will start with the introduction of non-
relativistic stars in a general class of ST theories in Sect. 2.
In Sect. 3 we will analyse the PMS phase—we will mainly
focus on the gravitational contraction and lithium burning in
DHOST theories, as well as on the Schwarzschild criterion
widely used in the stellar modelling. In the last section we
draft our conclusions. We will also discuss possible tests of
gravity with the use of fully convective stars.

2 Non-relativistic stars in ST gravity

2.1 Hydrostatic equilibrium equation for non-relativistic
stars

In this section, we will discuss the equation of state (EoS)
for non-relativistic stars in Horndeski Gravity. Let us begin

by briefly introducing the theory. The Horndeski theory of
gravity is the most general ST theory containing up to second
order field equations and it is described by the following
Lagrangian [92]

L = G2(φ, X) − G3(φ, X)�φ + G4(φ, X)R

+ G4X

[
(�φ)2 − φμνφμν

]
+ G5(φ, X)Gμνφμν

− G5X

6

[
(�φ)3 − 3�φφμνφμν + 2φμνφ

νλφ
μ
λ

]
, (1)

where R is the Ricci tensor, Gμν is the Einstein tensor, φμ :=
∇μφ, φμν := ∇μ∇νφ, X := −gμνφμφν/2, fX := ∂ f/∂X ,
fφ := ∂ f/∂φ and G2, G3, G4, and G5 are arbitrary functions
of the fields φ and X . Any second-order ST theory can be
reproduced from (1) via a suitable choice of functions Gi .
Therefore, we can say that Horndeski theory encloses all
second-order ST theories.
The advantage of working with second-order ST theories lies
in the fact that those theories do not propagate ghostly degrees
of freedom. However, it is possible to have healthy higher-
derivative theories when the system is degenerate because,
in such cases, we can eliminate the higher derivatives in the
equations of motion [93–95]. The set of theories that falls
in this classification is referred as DHOST theories. This
suggests that we can work with theories beyond Horndeski,
i.e., DHOST theories that extend Horndeski gravity and pass
the test provided by the GW170817 event [100,101] (there-
fore, we focus on particular sub-classes of DHOST theories).
Moreover, the only DHOST theories that do not suffer from
instabilities are those that can be connected to Horndeski
gravity by a disformal invertible transformation [102] (see
[103] for a review).

Let us now briefly recall the basic equations describing
a non-rotating star in a hydrostatic equilibrium used in the
further part. Since we are interested in low-mass stars, that is,
stellar objects with masses not exceeding 0.6M�, their con-
vective interior is well-modelled by the polytropic equation
of state with n = 3/2

p = Kρ
n+1
n (2)

where n is called the polytropic index while the parameter
K in the simplest model is a constant. However, as seen in
the next section, K can also include an information about the
gas mixture of the stellar material, and electron degeneracy—
being very important when one already deals with very low-
mass stars.

Before going further, we should discuss the validity of the
polytropic and ideal gas EoS’s in the framework of modified
gravity. Although it was demonstrated (see e.g. Sect. III.3 in
[104]) that one should take into account the effects of (mod-
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ified) gravity in Fermi EoS,1 in the case of low temperatures
and non-relativistic mass and hydrostatic equilibrium equa-
tions those effects are insignificant. In the mentioned paper,
the derivations are general and can be applied to any the-
ory of gravity. However, if one considers relativistic stars,
polytrope should not be used (instead, one should use, in the
simplest case, Chandrasekhar EoS). In our work we consider
the non-relativistic limit of beyond—Horndesky theory, that
is, non-relativistic hydrostatic equilibrium equations, there-
fore the mentioned result also applies to this particular theory
of gravity.

Let us however notice that usually one thinks about the
very simple polytropic EoS, when K is a constant. As men-
tioned above, one can indeed “hide” many interesting effects
in it, such as e.g. the electron degeneracy, crucial in our anal-
ysis of contracting stars, strongly coupled plasma, finite gas
temperatures with phase transition points between metallic
hydrogen and molecular state [105,106], and finite strains
[107], to mention just a few of them. Moreover, a mixture of
different polytropic EoS’s with different polytropic indices n
(and also ideal gas) can be rewritten as polytropic EoS with
n = 3/2 (see e.g. [66,106,108]). Regarding the polytropic
index n, it is a well-known fact that fully convective stars are
described by a polytropic EoS with n = 3/2 if those stars
are not more massive that ≈ 0.35M� [109] and because the
polytropic form can be safely used in modified gravity, we
should also have this mass limit in mind. Indeed, in the fur-
ther part of this work, we will be interested in stars below
that threshold.

On the other hand, the atmosphere of the stellar objects
which we will study in this paper is modelled by the ideal
gas (see eq. (14)), which in the framework of modified or
quantum gravity does not acquire any modifications [110,
111].

The ideal gas is the simplest approximation used to
describe the matter behaviour in the stellar atmosphere. Even
if we take into account ionization of hydrogen and helium
with phase transition points between metallic hydrogen and
molecular state, in the case when degeneracy does not play
so important role as it happens in the atmosphere of the con-
sidered objects, the equation of state reduces to the ideal gas
form [106].

We can now turn our attention to the modifications of
Horndeski theory to the hydrostatic equilibrium equation and
mass function. Taking the Lagrangian (1) into consideration,
it can be shown that the hydrostatic equilibrium equation is
modified as follows [42]

dp

dr
= −GNM(r)ρ(r)

r2 − Υ

4
GNρ(r)M ′′(r) (3)

1 Fermi EoS describes particles with the Fermi–Dirac statistics which
plays a crucial role in the contracting objects such as pre-Main Sequence
stars, brown dwarfs and giant gaseous planets.

while the mass function, given by

dM

dr
= 4πr2ρ(r), (4)

is unaffected by the theory.
The above equation of state (2), together with the modified

hydrostatic equilibrium Eq. (3) and the mass function (4)
provide that the modified Lane–Emden equation (LEE) for
Horndeski gravity is [42,60,61]

1

ξ2

d

dξ

[(
1 + n

4
Υ ξ2θn−1

)
ξ2 dθ

dξ
+ Υ

2
ξ3θn

]
= −θn . (5)

The modified LEE can be obtained by taking the hydrostatic
equilibrium Eq. (3) into consideration and writing the radius
as r = rcξ , with rc = (n + 1)Pc/4πGNρ2

c . The pressure
and density are rewritten in terms the central pressure Pc and
density ρc (which are related by the polytropic equation of
state (2)) as P = Pcθn+1(ξ) and ρ = ρcθ

n(ξ), respectively.
The solutions of the modified Lane–Emden equation (5)

provide the star’s mass, radius, central density, and tempera-
ture via the well-known expressions (see e.g [113])

M = 4πr3
c ρcωn, (6)

R = γn

(
K

G

) n
3−n

M
n−1
n−3 , (7)

ρc = δn

(
3M

4πR3

)
, (8)

Tc = Kμ

kB
ρ

1
n
c θn, (9)

where kB denotes the Boltzmann constant and μ the mean
molecular weight. The constants ωn , γn and δn are defined
as:

ωn = −ξ2
R
dθ

dξ

∣∣∣
ξ=ξR

, (10)

γn = (4π)
1

n−3 (n + 1)
n

n−3 ω
n−1
n−3
n ξR . (11)

δn = −ξR

(
3
dθ

dξ

∣∣∣
ξ=ξR

)−1

, (12)

Let us mention that the parameter Υ has been already con-
strained with the use of data related to different astrophysical
probes [52,64]. In what follows, we will focus on its values
from the range − 2

3 < Υ � 0.3 given by [60,64], where a
similar class of objects were considered. More restrict con-
straints are given in [59], of the order of magnitude 10−4,
which were obtained by studying seismic properties in the
Sun, which is modelled in different way (there are more lay-
ers) that one models low-mass stars. Since the effects such as
rotation, magnetic field and evolution of the electron degen-
eracy are not taken into account there, those bounds are
not definitive. Secondly, the provided bounds (at 2σ ) were
obtained with studying only one object. However, a large
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statistics and the current data can improve the confidence.
Because of that fact, and a similarity to the objects used to
constrain DHOST theory, we will also consider larger bounds
(at 5σ ) given in [64], for which the effects of the scalar field
are more evident.

3 Pre-main sequence phase

In what follows, we will consider two processes related to
the PMS phase of the stellar evolution. Roughly speaking, a
PMS star contracts until one of the three processes happens
in its core: radiative core develops (a special case related to
it is discussed in the Sect. 3.3), hydrogen starts being burnt,
or electron degeneracy pressure is already high enough to
stop the gravitational contraction. Before any of the men-
tioned processes happens, the baby star follows the Hayashi
track [76], that is, an evolutionary path placed in the cold
region of the Hertzsprung-Russell (HR) diagram, given by a
curve being almost perpendicular to the MS. The PMS stars
on Hayashi stars are fully convective (apart from radiative
envelopes), therefore their interiors are well described by the
polytropic equation of state.

Depending on its mass, the star can start developing radia-
tive core because of growing luminosity and/or opacity, or
hydrogen ignition starts, as the core’s conditions are suffi-
cient for it. In the first case the star’s effective temperature
grows at almost constant luminosity — the PMS stars enter
the much shorter phase and follow the Henyey tracks [77–
79]. This evolutionary scenario happens for stars with masses
bigger than ∼ 0.6M� for Newtonian gravity; stars with lower
masses reach the MS being still fully convective. The star,
independently if it follows Hayashi or Henyey track, which
have a core hot enough to start burning hydrogen, moves on to
the MS phase. In the case when a fully convective star does
not have sufficient conditions to ignite hydrogen, such an
object will further contract and increase the electron degen-
eracy pressure, which will finally stop the gravitational con-
traction. Since there is no relevant energy production, such
aborted stars, called brown dwarfs, will cool down with time.
Cooling processes of brown dwarfs and giant planets have
been studied in [56] in Horndeski gravity, while the onset
of hydrogen burning in low-mass stars have been studied in
[60,61].

In the following work, we are mainly focused on three pro-
cesses related to the stellar evolution: Hayashi tracks, that is,
the ongoing contraction, lithium burning during that phase,
and a case of a maximal mass of a MS star. Such a star will be
modelled as a ball made of fully ionized monatomic gas with
mean molecular weight μ, surrounded by a radiative atmo-
sphere. Therefore, we will deal with two temperatures: the
one of the interior, denoted by T , and the effective one Teff,
which we assume to be the temperature of the photosphere —
a region of the atmosphere placed approximately at r ≈ R,

where R is the radius of the star. In the atmosphere, one deals
with radiative processes; the most important and difficult part
of atmosphere modelling is related to the absorption process.
In order to be able to carry our studies on a theoretical level,
and to focus only on modified gravity effects, we will use a
Kramer law, which is a simple relation between the opacity,
pressure p, and temperature T :

κabs = κ0 p
wT v, (13)

where κ0, w, and v are constants whose values depend on the
atmosphere composition and temperature range.

3.1 Contracting to the main sequence

For our toy model star modelled as mentioned above, the
polytropic equation of state (2), with the use of the ideal
gas relation (NA and kB are the Avogadro and Boltzmann
constants, respectively):

ρ = μp

NAkBT
, (14)

can be rewritten in a more suitable form for the further pur-
poses

p =
(
NAkB

μ

)1+n T 1+n

K n
, (15)

where K is given by the solutions of the modified Lane-
Emden equation (5)

K =
[

4π

ξn+1
R (−θ ′

n(ξR))n−1

] 1
n GN

n + 1
M1− 1

n R
3
n −1. (16)

On the other hand, we also need expressions which will allow
us to describe the photopshere’s and atmosphere’s charac-
teristics. The photosphere can be defined as a surface with
temperature Teff for which the optical depth τ takes the value
2/3:

τ(r) = κ

∫ ∞

r
ρdr = 2

3
. (17)

Moreover, the photopshere quantities satisfy the Stefan–
Boltzmann law (let us recall that photosphere is assumed
to lie at r ≈ R), since it is a visible surface from which the
radiation is emitted into space (σ is the Stefan–Boltzmann
constant):

L = 4πσ R2T 4
eff. (18)

The atmosphere instead, as already mentioned, is mainly
described by the opacity; in our model we will consider a sim-
ple power-law form (13). The baby stars following Hayashi
tracks can be found in the right hand side region of the HR
diagram—that is, they are cool, gaseous objects with the sur-
face temperatures being in the range 3000 � T � 6000K,
such that its surface layer is dominated by H− opacity [114].
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With hydrogen mass fraction X ≈ 0.7, the H− opacity is
given by

κH− = κ0ρ
1
2 T 9 cm2g−1, (19)

where κ0 ≈ 2.5 × 10−31
( Z

0.02

)
. Then, the usual metal mass

fraction Z lies in the range 0.001 � Z � 0.03. The solar
metallicity is Z = 0.02. Before going further, let us notice
that in the case of the ideal gas, the opacity (19) can be
expressed as

κH− = κg p
1
2 T 8.5 cm2g−1, (20)

where κg = κ0

(
μ

NAkB

) 1
2 ≈ 1.371 × 10−33Zμ

1
2 .

Assuming that the surface gravity is constant,

g = GNM(r)

r2 = const (21)

we can rewrite the hydrostatic equilibrium equation as
dp

dr
= −GNM(r)

r2 ρ(r)

(
1 + Υ

2

)
, (22)

which can be integrated with r = R and M = M(R) when
applied to (17). Let us emphasize here that the above assump-
tion is valid as long as we work on the non-relativistic limit
of the theory, as the only modification to the EoS, in this
case, will be parametrized by Υ [42]. In fact, in the relativis-
tic limit, G will be dynamical and the approximation (21)
cannot be used. With the use of the absorption law (20), the
photopsheric pressure has the following form

pph = 8.12 × 1014

⎛
⎝M

(
1 + Υ

2

)

LT 4.5
ph Zμ

1
2

⎞
⎠

2
3

, (23)

where the Stefan–Boltzmann law (18) after identifying that
Teff|r=R ≡ Tph was adopted.

Let us come back to the Eq. (15). Considering the fully
convective case, that is, n = 3/2, and taking it on the photo-
sphere, we find that (we will skip the index N in the further
part in GN )

Teff|r=R =
(

μ

NAkB

)− 2
3
(

4π

ξ(−θ ′) 1
2

) 2
5 (

2G

5

) 3
5

M
1
5 R

3
5 p

2
5
ph.

(24)

To get rid of the radius R in the above equation, let us use
again the Stefan–Boltzmann law; after inserting numerical
values of the constants, the photopsheric temperature can be
expressed as function of the luminosity, mass, and photo-
spheric pressure:

Tph = 9.196 × 10−6

⎛
⎝ L

3
2 Mp2

phμ
5

−θ ′ξ5
R

⎞
⎠

1
11

. (25)

The photospheric pressure must be identified with the grav-
itational pressure taken on the photosphere given by the

Fig. 1 The Hayashi tracks of a star with mass M = 0.25M�, metal-
licity Z = 0.02, and chemical composition μ = 0.618 with respect to
a few values of the parameter Υ , given by the Eq. (26)

derived Eq. (23). Using it in the above equation, we can finally
write the expression for the Hayashi track:

Tph = 2487.77μ
13
51

(
L

L�

) 1
102

(
M

M�

) 7
51

×

⎛
⎜⎜⎜⎜⎜⎜⎝

((
1+ Υ

2

)

Z

) 4
3

ξ5
R

√−θ ′

⎞
⎟⎟⎟⎟⎟⎟⎠

1
17

K, (26)

where L� and M� are the solar luminosity and mass, respec-
tively.

For a given star’s mass M , mean molecular weight μ, and
metallicity Z , the above equation provides an evolutionary
track of the PMS star. Although our derivation suffers a num-
ber of assumptions which allowed us to simplify the equa-
tions to work it out analytically, the obtained result clearly
demonstrates the dependence on an applied model of gravity.
A few curves corresponding to different values of the param-
eter (Υ = 0 gives Newtonian gravity curve) for a star with
mass M = 0.25M�, mean molecular weight μ = 0.618, and
solar metallicity Z = 0.02 are given in the Fig. 1. Unfortu-
nately, our simple relation (26) does not reflect the impor-
tance of the metallicity [115]—in the considered toy-model,
the curves are only slightly shifted for different values instead
of changing the curve’s shape, as it happens in more realistic
models, when one properly treats the atmosphere’s opacity
problem.

3.2 Lithium burning

The lithium burning process, which occurs at the center of
the star, induces a flux of lithium-rich fluid to the center of the
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star and lithium-poor fluid to its outer regions. This process
is possible as long as the mixing timescale is much smaller
than the contraction and lithium destruction times. Moreover,
it is responsible for maintaining the depletion rate constant
throughout the star as the total quantity of lithium reduces
over time. Proton-capture reactions also play a role in the
process and should be taken into account. For a star with
mass M and hydrogen fraction X we can write the depletion
rate as

M
d f

dt
= − X f

mH

∫ M

0
ρ〈σv〉dM, (27)

where the non-resonant reaction rate depends on the temper-
ature range; for the range of temperature appropriate to our
analysis, T < 6 × 106 K, it is given by

NA〈σv〉 = S fscrT
−2/3
6 exp

[
−aT

− 1
3

6

]
cm3

s g
, (28)

with T6 ≡ T/106K, fscr being the screening correction fac-
tor and S and a being dimensionless parameters related to the
proton-capture rate. Considering our temperature range and
the reaction 7Li(p, α) 4He, the proton-capture rate parame-
ters are given by S = 7.2 × 1010 and a = 84.72 [116–118].

We are concerned about low-mass stars, which can be
theoretically described by a polytropic equation of state for
n = 3/2 since they are fully convective. Therefore, the tem-
perature and the density are expressed as T = Tcθ(ξ) and
ρ = ρcθ

3/2(ξ), respectively. Due to the modification in the
LEE (5), δ, ξR and θ ′ will be modified accordingly. Con-
sequently, the central temperature Tc and central density ρc
will be also modified:

Tc =1.15 × 106
(μeff

0.6

) (
M

0.1M�

) (
R�
R

)
δ

2
3

ξ
5
3
R (−θ ′(ξR))

1
3

K

(29)

ρc =0.141

(
M

0.1M�

) (
R�
R

)3

δ
g

cm3 . (30)

If we take into account an arbitrary degeneracy degree η and
a mean molecular weight μeff, we find that the radius is given
by

R

R�
≈ 7.1 × 10−2γ

μeffμ
2
3
e F

2
3

1/2(η)

(
0.1M�
M

) 1
3

, (31)

where Fn(η) is the nth order Fermi–Dirac function.
Changing to spatial variables in (27) and using the reaction

rate (28) together with the polytropic equation of state for the
energy density, we obtain

d

dt
ln f = −4πX

ξ3
R

ρ2
c R

3

M

S

NAmH

(u
a

)2

×
∫ ξR

0
fscrξ

2θ
7
3 exp(−uθ−1/3)dξ

1

s
, (32)

where we defined u ≡ aT−1/3
c6 for convenience. To proceed

further, we will need the solutions of the Eq. (5). In general,
it is not possible to obtain exact solutions to the LEE for the
considered value of the polytropic parameter n. Therefore,
one has to take the approximate near center solution. Such
approximation is justified by the fact that the burning process
occurs at the central region of the star. Some theories with
modified LEE have the same solutions as the original one
[75]. For scalar-tensor theories, however, the approximate
solution to (5) for n = 3/2 is given by [60,61]

θ(ξ ≈ 0)≈1−
(

1+ 3Υ

2

)
ξ2

6
≈ exp

[
−

(
1 + 3Υ

2

)
ξ2

6

]
,

(33)

where the boundary conditions θ(0) = 1 and θ ′(0) = 0
were used. In this case, we can clearly see that the solution
(33) depends on the theory parameter Υ . We expect that this
dependency will be present in the lithium depletion rate as
well. Using the solution (33) and applying the numerical
constants to (32), we obtain

d ln f

dt
= −6.54S fscr ξ

2
R

(
X

0.7

) (
0.1M�
M

)2 (
0.6

μe f f

)3

× (−θ ′(ξR))a7u−17/2e−u
(

1 + 7

u

)−3/2 (
1 + 3Υ

2

)−3/2

,

(34)

which confirms that the depletion rate depends on the theory
parameter Υ . From the Stefan–Boltzmann equation and the
virial theorem we can show that the star’s luminosity obeys
the relation

L = 4πR2σT 4
e f f = −3

7

GM2

R2

dR

dt
, (35)

from which we can get the radius and luminosity as functions
of time:

R

R�
= 0.85

(
M

0.1M�

) 2
3
(

3000K

Tef f

) 4
3
(
Myr

t

) 1
3

, (36)

L

L�
= 5.25 × 10−2

(
M

0.1M�

) 4
3
(

Tef f
3000K

) 4
3
(
Myr

t

) 2
3

.

(37)

The contraction time is given in terms of the central temper-
ature Tc:

tcont = − R

dR/dt
≈ 31.17

(
3000K

Tef f

)4(0.1M�
M

)(
0.6

μe f f

)3

×
(

Tc
3 × 106K

)3 ξ5
R(−θ ′(ξR))

δ2 Myr. (38)

We can now rewrite the depletion rate as an integral in u.
For this, we need to notice from (29) and from the definition
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u = aT−1/3
c6 that2

d

dt
ln f ≈ d ln f

du

∂u

∂R
Ṙ = d ln f

du

u Ṙ

3R
. (39)

Therefore, the depletion rate can be rewritten as

d ln f

du
= 5.6 × 1014T−4

e f f

(
X

0.7

)(
0.1M�
M

)3 (
0.6

μe f f

)6

×S fscr a
16u−37/2e−u

(
1 − 21

2u

)

×
(

1 + 3Υ

2

)−3/2 ξ7
R(−θ ′(ξR))2

δ2 . (40)

We can now obtain the depletion F as a function of u, that is,
as a function of the central temperature Tc. For this purpose,
we just need to integrate from u0 = +∞ to u, with the initial
abundance being given by f0. Thus,

F = ln
f0
f

= 5.6 × 1014T−4
e f f

(
X

0.7

) (
0.1M�
M

)3 (
0.6

μe f f

)6

×S fscr a
16g(u)

(
1 + 3Υ

2

)−3/2 ξ7
R(−θ ′(ξR))2

δ2 , (41)

where we defined g(u) = u−37/2e−u−29Γ (−37/2, u), with
Γ (−37/2, u) being the upper incomplete gamma function.
Following the same procedure, it is possible to obtain the
depletion rate for resonant rates [116]

F = ln
f0
f

= 5.6 × 1014T−4
e f f

(
X

0.7

) (
0.1M�
M

)3 (
0.6

μe f f

)6

×S fscr a
18−3 j ḡ(u)

(
1 + 3Υ

2

)−3/2 ξ7
R(−θ ′(ξR))2

δ2 ,

(42)

where j = 2/3 corresponds to a non-resonant reaction and
ḡ(u) = u−41/2+3 j e−u − (68−15 j)

2 Γ
(− 41

2 + 3 j, u
)
. There-

fore, it is possible to have a relation u(F) which allows us
to determine the central temperature Tc for a given depletion
F . Such relation could be solved numerically and fitted to
data, but the approximated value of central temperature can
also be obtained from the time of depletion.

For a star described by a polytropic equation of state with
n = 3/2, the contraction time tcont is comparable to the
destruction time tdest for which lithium is depleted if we
deal with a mild degeneracy:

tdest = mP

Xρ < σv >
= 4.92 × 10−7

(
M

0.1M�

)2 (μe f f

0.6

)3

× T
− 7

3
c6

S fscr
e

a

T
1/3
c6

δ

ξ5
R(−θ ′(ξR))

yr. (43)

2 Let us comment that from now we are interested in stars with masses
> 0.2M� such that the change in the electron degeneracy in negligible
with respect to the change in the star’s size.

Table 1 Numerical values for the central temperature (in 106K), age
(in Myr), radius (with respect to R�) and luminosity (with respect to
L�) for different values of the parameter Υ . The following values were
used for the star’s mass, effective temperature, hydrogen mass fraction,
and mean molecular weight: M = 0.35M�, Tef f = 3500K , X = 0.7
and μe f f = 0.6

Υ Tc/106K t (Myr) R/R� L/L�

− 0.6 2.75 51.65 0.245 0.175

− 0.3 2.86 19.10 0.242 0.170

0 (GR) 2.97 17.21 0.239 0.166

0.3 2.98 11.13 0.239 0.166

0.6 3.03 7.95 0.238 0.164

It was demonstrated [116] that in case when the star is
described by the polytrope with n = 3/2 the equality of
those timescale are indeed comparable if degeneracy can be
neglected, that is, when the change in the electron degen-
eracy in negligible with respect to the change in the star’s
radius, μ̇e f f < Ṙ. In the case when n = 3/2 does not hold
anymore, which happens when the core starts being radia-
tive, those timescales are not comparable. Since we limited
our calculations to stars with masses beyond this threshold,
we can take the approximation tcont = tdest to obtain the
following relation for the central temperature

a

T 1/3
c6

= 28.48 + ln(S fscr ) − 4 ln

(
Tef f

3000K

)

−3 ln

(
M

0.1M�

)
+ 16

3
ln Tc6 − 6 ln

(μe f f

0.6

)

+ ln

(
ξ10
R (−θ ′(ξR))2

δ3

)
, (44)

from which we have also obtained, given in the Table 1,
the age, radius, and luminosity of a 0.35M� star for various
values of Υ .

On the other hand, in the case when degeneracy cannot be
neglected, the contraction time is longer than the destruction
one. Let us notice that tdest strongly depends on the central
temperature. It is so because the reaction rate is very sensitive
to even slight changes in the central temperature, at the same
time being insensitive to small uncertainties in the constitu-
tive physics. For Tc high enough the element can be depleted
before reaching the Main Sequence, so then tdest �= tcont. As
demonstrated [116], although contraction (shrinking radius)
increases the central temperature at the beginning, in the case
when degeneracy becomes significant, it has a non-trivial
effect on the central temperature (it decreases Tc). Because
of that fact, we limit our consideration to the stars with masses
M > 0.02M�.
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3.3 Reaching the main sequence as a fully convective star

In our assumption we treat the star as a fully convective ball
surrounded by a radiative atmosphere. Since we expect that
the heat transfer changes from the convective process to the
radiative one in the neighbourhood of the surface, we may
write the hydrostatic equilibrium equation there as (22)

dp

dr
= −GNM(r)

r2 ρ(r)

(
1 + Υ

2

)
. (45)

The heat transport with respect to radiative/conductive pro-
cess is given by

∂T

∂M
= − 3

64π2bc

κrcL

r4T 3 (46)

which can be rewritten with the use of (22) as

∂T

∂p
= 3κrcL

16πGMbcT 3

(
1 + Υ

2

)−1

, (47)

such that the temperature gradient

∇rad :=
(
dlnT

dlnp

)

rad

is given by3

∇rad = 3κrcLp

16πGMbcT 4

(
1 + Υ

2

)−1

. (48)

Using the Kramers law (13) for the total bound-free and free-
free opacities [114] for which w = 1 and v = −4.5, while
κ0’s are given by

κbf
0 ≈ 4 × 1025μ

Z(1 + X)

NAkB
cm2g−1, (49)

κ ff
0 ≈ 4 × 1022μ

(X + Y )(1 + X)

NAkB
cm2g−1, (50)

respectively, and together with the Eq. (15) one can write

∇rad = 5.9 × 10−3 N 5
Ak

5
Bκ0L

bcG4μ5M2R3T 3.5

ξ5
R(−θ ′(ξR))(

1 + Υ
2

) . (51)

The homology contraction argument and the Eq. (9) for the
central temperature allow us to write

Tc = 6.679 × 10−16
μδ

2/3
3/2

ξ
5/2
R (−θ ′(ξR))1/3

M

R
, (52)

3 Let us notice that this relation works only for fully convective stars
with a radiative envelope, for which the boundary lies at r ≈ R. In the
case of higher masses, when one deals with a more complicated internal
structure, one should use the Eqs. (3) in (46).

which we apply, together with the Boltzmann law, into the
gradient ∇rad :

∇rad = 2.79 × 10−148 k
8.5
B N 8.5

A ξ10.83
R (−θ ′(ξR))2.167κoL1.25

bcG7.5δ2.33
3/2 μ8.5M5.5−1Teff

×
(

1 + Υ

2

)−1

, (53)

where we have introduced M−1 = M/0.1M�.
The Schwarzschild criterion is given by [119,120]:

∇rad ≤∇ad pure diffusive radiative or conductive transport

∇rad >∇ad adiabatic convection is present locally.

The adiabatic gradient ∇ad depends on the properties of the
gas. In the case of an ideal gas model, the adiabatic gradient
is a constant, that is, ∇ad = 0.4.

Considering a case when a fully convective star reaches
the MS, that is, its interior conditions are sufficient to burn
hydrogen in a stable way, one may find a maximal mass of a
fully convective star on the MS. To do so, one needs to com-
pare the luminosities of the hydrogen burning LH and the
one responsible for the onset of the radiative core’s devel-
opment (we assume that opacity does not change); that is,
when ∇rad drops to ∇ad. The luminosity of hydrogen burning
in Horndeski gravity was obtained in [60,61]

LH

5.2 × 106L�
= δ5.487

3/2 M11.973−1 η10.15

ω3/2γ
16.46
3/2

(
1 + 3Υ

2

)3/2
(η + α)16.46

. (54)

Writing 0.4 = ∇rad and equaling it to (53) gives us the
minimum luminosity for a star to develop a radiative core:

Lmin

5.2 × 106L�
= 2.66 × 1084

× μ6.8δ1.86
3/2 G6(bcTeff)

0.8M4.4−1

(kBNA)6.8ξ8.66
R (−θ ′(ξR))1.73κ0.8

0

(
1 + Υ

2

)
, (55)

where we normalized it by 5.2×106L�. Comparing the min-
imum (55) luminosity with the hydrogen burning luminosity
(54) and solving for the mass, we obtain

M−1 = 1.41 × 1011

×γ 2.17
3/2 μ0.9ω0.13

3/2 (bcTeff)
0.11G0.79(α + η)2.17

(kBNA)0.9δ0.48ξ1.14 (−θ ′)0.23 κ0.11
0 η1.34

×
(

1 + Υ

2

)0.11 (
1 + 3Υ

2

)0.2

. (56)

We can relate the modified mass Mmod with the GR mass
MGR as

Mmod =
(

γ3/2

γ GR
3/2

)2.17 (
δGR

3/2

δ3/2

)0.48 (
θ ′GR

θ ′

)0.23
(

ξGR
R

ξR

)1.14
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×
( ω

ωGR

)0.13
(

1 + Υ

2

)0.11 (
1 + 3Υ

2

)0.2

MGR.

(57)

For instance, the modified mass for Υ = −0.6 and Υ = 0.2
are, respectively, Mmod

Υ =−0.6 = 0.7 and Mmod
Υ =0.6 = 1.15.

4 Uncertainties analysis

In what follows, we will investigate the uncertainties which
our modelling can carry because of the crude assumptions.
To do so, we will base this analysis on the one performed in
[59].

To recall, we model the pre-Main Sequence star as a fully
convective sphere of mass M and radius R with a thin layer of
atmosphere at r ≈ R. Therefore, the matter inside the star is
well described by the polytropic EoS (2). The weakest part in
our modelling is opacity whose relation is given by different
forms of the Kramer law (13). Moreover, in our results we
have used the constant values of the hydrogen and helium
fractions, as well as metallicity.

Therefore, looking at our results, we clearly see that the
main variables to be analysed are temperatures, opacities. and
composition. As it will be clear from the following analysis,
fractional changes of those variables are functions of the frac-
tional change of density, mainly. Because of that fact, let us
analyse the density solution for the modified density which
was given in [59] (z := r/R):

ρ(z, Υ ) � ρ(0) + ερ(Υ )(z), (58)

where ε ∼ Υ � 1 and ρ(Υ )(r) is the contribution of scalar
field to the density profile while ρ(0)(r) is the solution of
the Newtonian hydrostatic equilibrium equation, given by,
respectively, by the Eqs. (14) and (10) in [59]. Since the
fractional change of density

δρ

ρ
= ρ(0) − ρ(z, Υ )

ρ(0)

(59)

is singular for z = 1, we may expand it around the surface
to get

δρ

ρ
= −0.21Υ − 10.1Υ

(
r − Rcz

R�

)
+ · · · , (60)

which is provided for the base of the convective zone being
placed at Rcz = 0.99R. As demonstrated below, all crucial
ingredients which can carry uncertainties are dependent on
the above fractional change.

It is easy to see that the fractional change of temperature
(9) is

δT

T
= δμ

μ
+ 1

3

δρ

ρ
, (61)

where δμ
μ

= − δZ
(5X−Z+3)

since we keep the hydrogen mass
fraction X = 0.7 and helium Y = 1− Z − X constant, while
the metallicity Z varies from 0.001 to 0.03, and the mean
molecular weight is

μ = 4

5X − Z + 3
(62)

for a fully ionised gas. The fractional change of central tem-
perature is given as

δTc
Tc

= δμ

μ
+ 2

3

δδn

δn
, (63)

where δn is a numerical solution of the modified Lane–
Emden equation, so it is also a function of (60).

Moreover, the fractional change of the H− opacity for the
surface layer (19)

δκ

κ
≈ 9

δT

T
+ 1

2

δρ

ρ
+ δZ

Z
≈ 7

2

δρ

ρ
+ δZ

Z
+ 9

δμ

μ
(64)

Therefore, the main uncertainty is related to the metallicity.
Let us now consider some reference values which we were

using through the paper. For the solar metallicity Z = 0.02,
the fractional changes in μ are about 10−3 while in Z , when
we vary it the solar value, they are about unity. On the other
hand, the fractional change in density for −0.6 < Υ < 0.391
[64] are, respectively, 0.17 and 0.12 for the boundary limits.
For −10−4 < Υ < 5 × 10−3 [59] we have respectively
∼ −10−5 and ∼ −10−3. The fractional changes of δn for
Υ = ±0.3 are of order 10−1 while for, for instance, for
Υ = ±10−4, it of order 10−4.

5 Discussion and conclusions

In this work we have studied the early evolution of low-
mass stars within the framework of scalar-tensor extensions
of gravity. As a working example, we have used the frame-
work derived for Horndeski and beyond gravity, such that
the modification to the hydrostatic equilibrium and other rel-
evant equations are governed by the parameter Υ . Conse-
quently, several features of the early evolution of low-mass
fully convective stars are modified, such as their temperatures
at the photosphere, lithium abundances, and heat transfer pro-
cesses.

We start by investigating how the temperature–luminosity
relation is altered in ST gravity. It was already demonstrated
in various works [51,53] that the Hayashi tracks are shifted
in the case of modified gravity, therefore a similar result was
also expected for non-zero values of Υ . Our rough results—
let us recall that the considered model lacks the appropriate
atmosphere description, such that we do not get the realistic
temperatures—are given in the Fig. 1. We see that the Hayashi
track method can bound the positive values of the parameter
Υ , although the simplified model we have used do not allow
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to distinguish the curves which are given with the restrictive
constraints obtained with the use of the helioseismic analysis
[59].

When a PMS star follows its Hayashi track, light ele-
ments, such as deuterium and lithium for instance, can be
already burnt if the core conditions are sufficient to start
the corresponding reactions. In this work we have focused
mainly on the lithium one, since this result has serious con-
sequences, as discussed in [75] and in the further part of the
conclusions. Therefore, we proceed to calculate the lithium-
to-hydrogen ratio as a function of time, given by the Eq.
(41), and this depletion rate could be also easily gener-
alized to non-resonant reactions, which is given by (42).
Those results can be subsequently fitted to the observational
data, however, since most of the low-mass stars with masses
≈ 0.35M� > M > 0.2M� have consumed lithium just
before reaching the Main Sequence (so we could deal with
comparable destruction and contraction times), we could
obtain the age, central temperature, radius, and luminosity of
such a star, presented in the Table 1. It was done by equalling
the lithium destruction time (43) with the contracting time,
that is, the time the stars stays on the Hayashi track (38),
such that the resulting Eq. (44) could be solved together with
(29), (31), and (35). It is evident that those results are depen-
dent on the theory of gravity, as observed already in [75].
We notice that although Tc, as well as radius and luminos-
ity do not change too much with respect to GR values, one
observes a significant change in the age. The positive values
of Υ provide younger objects, however their biggest values
can be probably discarded, since with increasing Υ we are
approaching already the forbidden Hayashi zone. The neg-
ative values, on the other hand, provide that the star stays
longer in the PMS phase such that it could happen than
the whole evolution, from the proto-star to the white dwarf,
would also be prolonged, providing that the age of very low-
mass white dwarf stars would be greater than the age of the
Universe [121,122].

Finally, we have reexamined the Schwarzschild crite-
rion which is also affected by the ST modifications, as evi-
dent from (48). This property, together with the previously
derived luminosity of hydrogen burning in Horndeski grav-
ity [60,61], allowed us to find the mass of a fully convective
star on the MS (56). Similarly as for Hayashi track, we have
used analytic opacity models, (49) and (50), which does not
provide realistic results. However, we can see from the mass
ratios that the differences can be significant for higher values
of the parameter Υ . Nevertheless, even a small difference
will provide a slight change in the evolution of a particu-
lar star: in order to model its distinctive phases one uses the
Schwarzschild criterion. When working in a theory of grav-
ity which provides additional terms to the non-relativistic
structure equations one should take those modifications into
account in the modelling of the stellar evolution.

When we examine the Hayashi expression (26), we can

easily notice that the presence of the term
(
1 + Υ

2

) 4
3 will

slightly increase or decrease Tph depending on whether Υ >

0 or Υ < 0. However, this term is not the sole responsible for
the shifting as θ ′ and ξR also get modified as we change the
parameter Υ . The radius and luminosity depend on the age
which, in turn, depends implicitly on Υ through ξR , θ ′ and δ.
The same applies to the central temperature, given by (44).
What we observe from Table 1 is that, for negative values
of Υ , the central temperature decreases, while age, radius
and luminosity increase. For positive values of Υ , we have
the opposite effect. Usually, negative values of Υ are related
to an enhancement of gravity. Strengthening gravity means
that other physical processes, as for example light elements’
ignition in the stellar core can happen in lower temperatures
than the ones obtained by assuming Newtonian model.

Let us now briefly discuss the consequences of our find-
ings. As already discussed [75], the light elements abundance
at the photosphere, especially lithium, is an age-dependent
quantity, allowing to determine young clusters’ age and indi-
vidual stars [116,123–125]. The lithium depletion method
has been believed so far to be the most reliable technique
for young globular clusters’ age determination and individ-
ual stars such as white dwarfs. Since it also depends on the
theory of gravity in use, it can contribute to the explanation
of “too old” white dwarfs by reducing the PMS phase by
a few Myr [75]. Moreover, the different phases of the stel-
lar evolution can be shorter or longer, therefore one deals
with a different number of stars in the pre- and MS phases,
giving diverse impact to the distant galaxies brightness in
comparison to the GR prediction [126]. Subsequently, the
lithium abundance may also be a tool to test theories of grav-
ity: theories which prominently prolong the low-mass stars’
lifetimes in comparison to the current accepted models would
rise doubts on those which introduce such an effect.

This finding has also something to say about the cosmo-
logical lithium problem, and the big bang nucleosynthesis
(BBN) [127]. Primordial nucleosynthesis is a probe of the
very early universe as well as of the standard model physics
and beyond, providing strong constraints on them. This is so
because the light elements’ abundances are sensitive to the
few minutes old universe’s conditions, thus different cosmo-
logical scenario, provided by modified gravity, influences
their theoretical values [128–131]. These results are then
compared to the observed abundances, that is, light element to
hydrogen ratios which are estimated by observing halo stars
of Milky Way. These stars are the oldest stars in our galaxy
and they are believed to contain the primordial lithium in
their atmospheres [132]. It turns out that there is a significant
discrepancy between the predicted and observed values in the
lithium abundance, named as “lithium problem” [133,134].
However, as demonstrated in this paper and the previous one
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[75], these ratios depend on gravitational theory which one
uses to get the ratios. Therefore, in order to examine the
lithium problem in cosmology, one should not only take into
account the modified gravity effects affecting expansion rate
used for obtaining the relic abundances of light elements,
but one also should apply the considered modified gravity
theory to lithium abundances in the halo stars. Currently, the
common approach is to modify the BBN abundances only
with respect to a particular theory of gravity, and then to
compare them to observed ones, which were obtained by
assuming Newtonian gravity. But, as already noticed, many
theories of gravity modify the Newtonian physics, therefore
this approach is not consistent. The works in these lines is in
progress and will be presented somewhere else.

On the other hand, we have also discussed how modified
gravity changes the scenario of the radiative core develop-
ment. Therefore, if one studies an evolution of a given star in
modified gravity, one should remember to take into account
the effects on the convective imbalance. Moreover, if one is
able to clearly distinguish low-mass stars on Henyey tracks
[77–79] from the ones following Hayashi ones, it could also
be an opportunity to constraint a theory parameter: modified
gravity also alters the maximum mass of a fully convective
star on the MS, as discussed in the Sect. 3.3.

Let us now discuss the uncertainties. We see that in the case
of the temperature profile (4) and its central values, the mod-
ified gravity effects are more important (they are two order
of magnitude larger) that changes in the compositions for
the less restrictive values given in [64] while for the restric-
tive ones the composition is one order of magnitude larger
than the contribution ruled by Υ . On the other hand, in our
modelling of the atmosphere, the main source of the uncer-
tainties is the metallicity, dominating over composition and
modified gravity. Definitively, without improving the atmo-
sphere modelling to reduce this uncertainty, one cannot use
the Hayashi tracks and fully convective stars on the Main
Sequence to constrain this model of gravity. Apart from it,
one should also improve the microphysics description such
as an equation of state, electron degeneracy, phase transition
points and ionization, to numerate just a few of them. More-
over, since it was demonstrated that the microscopic quan-
tities are dependent on a given theory of gravity [104,135–
139], very likely the presence of the scalar field will also
have a non-negligible effect to their forms and the processes
happening in the stellar interiors. For further modelling, we
should also consider rotating objects in modified gravity as it
also influences the density profile and other physical proper-
ties [140]. Moreover, as shown in [56,106], the evolution of
the electron degeneracy plays a crucial role in the contract-
ing low-mass stars, therefore this fact should be also taken
into account in the improved modelling. It is so because as
demonstrated in this work as well as in [55,56], the modi-
fied gravity effects are more relevant for the older stellar and

Table 2 Numerical values for the central temperature (in 106K), age
(in Myr), radius (with respect to R�) and luminosity (with respect to
L�) for different values of the parameter Υ . The following values were
used for the star’s mass, effective temperature, hydrogen mass fraction,
and mean molecular weight: M = 0.5M�, Tef f = 3500K , X = 0.7
and μe f f = 0.6

Υ Tc/106K t (Myr) R/R� L/L�

− 0.6 2.94 44.18 1.413 2.69 × 10−2

− 0.2 3.01 17.67 1.402 2.64 × 10−2

0 (GR) 3.05 13.05 1.395 2.62 × 10−2

0.2 3.10 10.11 1.388 2.59 × 10−2

0.6 3.16 6.31 1.378 2.56 × 10−2

1.0 3.23 4.13 1.369 2.52 × 10−2

1.4 3.28 2.8 1.362 2.50 × 10−2

substellar objects, since those effects accumulates with time
[141]. We will leave this analysis for the future work.

As a last comment, let us notice that in spite of the fact
that modified gravity alters the stellar description on many
different levels, there are not enough studies and methods
developed for using stellar and substellar objects to test the-
ories of gravity. As clearly demonstrated in [142], there is a
still not tested region corresponding to stars and galaxies
(with the curvature-to-gravitational potential parametriza-
tion) between the problematic region—cosmology—and the
regions in which GR provides a satisfactory description, that
is, the Solar System and compact objects.
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