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Excitation Spectra and Edge Singularities in the One-Dimensional
Anisotropic Heisenberg Model for ∆ = cos(π/n), n = 3, 4, 5

Pedro Schlottmann

Department of Physics, Florida State University, Tallahassee, FL 32306, USA; pschlottmann@fsu.edu;

Tel.: +1-(850)-644-0055

Abstract: The T = 0 excitation spectra of the antiferromagnetic (J > 0) anisotropic Heisenberg

chain of spins 1/2 are studied using the Bethe Ansatz equations for ∆ = cos(π/n), n = 3, 4 and 5.

The number of unknown functions is n − 1 for ∆ = cos(π/n) and can be solved numerically for a

finite external field. The low-energy excitations form a Luttinger liquid parametrized by a conformal

field theory with conformal charge of c = 1. For higher energy excitations, the spectral functions

display deviations from the Luttinger behavior arising from the curvature in the dispersion. Adding

a corrective term of the form of a mobile impurity coupled to the Luttinger liquid modes corrects this

difference. The “impurity” is an irrelevant operator, which if treated non-perturbatively, yields the

threshold singularities in the one-spinwave particle and hole Green’s function correctly.

Keywords: anisotropic Heisenberg model; Bethe ansatz; threshold singularities

PACS: 71.10.Pm; 71.10.Fd; 75.10.Pq; 75.10.Jm

1. Introduction

The integrability of the antiferromagnetic Heisenberg chain with anisotropic nearest-
neighbor coupling was shown by R. Orbach [1] by extending Bethe’s solution for the
isotropic case. The ground-state and excited states were studied by J. des Cloizeaux and
M. Gaudin [2], and C.N. Yang and C.P. Yang [3–5] exhaustively discussed the ground-state
properties of the model in a series of three papers. The spin-1/2 XXZ Hamiltonian under
consideration is the following

H = J
N

∑
i=1

{

Sx
i Sx

i+1 + S
y
i S

y
i+1 + ∆

(

Sz
i Sz

i+1 −
1

4

)

}

− 2H
N

∑
i=1

Sz
i , (1)

where whithout loss of generality we can choose J = 1. The ground-state phase diagram
is best represented as ∆ along the x-axis and the Zeeman field H or the magnetization
as the y-axis. Three regions of ∆ have to be distinguished: (i) if ∆ < −1, the system is
ferromagnetic, (ii) if −1 < ∆ < 1, the model is the Heisenberg-XY chain with Luttinger
liquid-like properties, and (iii) for ∆ > 1 we have the so called Heisenberg–Ising chain,
which is gapless (Luttinger liquid) for H 6= 0, and is gapped for H = 0. For ∆ = 1 the
Hamiltonian reduces to the isotropic Heisenberg ring.

The above model has numerous applications, especially in two-dimensional classical
statistical systems, e.g., an array of flexible self-avoiding domain walls extending across a
2D medium that are allowed to bend but not to turn back (solid-on-solid restriction) [6]. Ad-
sorption phenomena in the presence of edge-pinning forces and rupture, segregation, and
order-disorder transitions due to short-range attractive and repulsive interactions between
the domain walls were studied [7]. Additionally, a 1 + 1 dimensional model of n non-
intersecting strings with short-range attractive interactions on a lattice was solved exactly.
Examples for such situations are the wetting transition, the commensurate-incommensurate
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transition, the unbinding transition in membranes, and the statistics of ‘drunken walkers’.
For arbitrary finite n > 2, there is a second-order binding-unbinding transition with the
same critical exponents as for n = 2. In the limit n → ∞, the transition becomes first
order [8].

Most studies of dynamical correlation functions and thermodynamic properties of the
Heisenberg chain involve Bethe’s Ansatz and numerical methods, where the cases |∆| < 1,
∆ > 1 and ∆ = 1 should be distinguished because the methods employed are somewhat
different. Dynamical correlation functions for |∆| < 1 can be found in Refs. [9–15], the
thermodynamics for ∆ > 1 was worked out by Gaudin [16] and dynamic correlation
functions for ∆ > 1 by Caux et al. [17] and Carmelo and Sacramento [18]. The case
of the Néel ordered ground state (∆ > 1 and zero magnetization) was investigated by
Yang et al. [19].

A very detailed analysis of the thermodynamic Bethe equations for |∆| < 1 was
presented by Takahashi and Suzuki [20]. While usually the thermodynamic Bethe Ansatz
equations consist of an infinite set of non-linear integral equations (as for instance for the
isotropic case, ∆ = 1 [21]), this set becomes finite when π/ cos−1(∆) is a rational num-
ber. This remarkable fact for |∆| < 1 will be studied further in this paper with a careful
analysis of the excitation dispersions and the threshold edge singularities for n = 3, 4
and 5. The ground state energy, the low-temperature specific heat and the susceptibility
in zero-field have been calculated by Takahashi using this method [22] and numerically
the temperature dependence of thermodynamic quantities for antiferromagnetic corre-
lations [23]. By extrapolating the numerical solutions for integer n tending to infinity,
Takahashi and Yamada [24,25] obtained the critical behavior for the isotropic ferromagnet.
Similar results were obtained by Schlottmann [26,27] by solving numerically truncated
subsets of the infinite non-linear thermodynamic Bethe Ansatz equations for the isotropic
ferromagnet [21].

Here we study the anomalous Bethe equations for ∆ = cos(π/n) for n = 3, 4 and 5
for which there are n − 1 unknown functions, rather than an infinite set. This difference
makes it interesting to investigate the dispersion relations and the edge singularities of the
spectral functions. In Section 2 we restate the Bethe Ansatz equations that are necessary for
this purpose. In Section 3, we present the magnetic field dependence of the dispersions and
the conformal field theory limit. In Section 4, the effective field-theoretical Hamiltonian
(bosonized model) is introduced, as well as the mobile impurity term representing the
high-energy mode [28–32]. The field theoretical model is diagonalized via a canonical
transformation leading to boundary terms for the bosonic field. In Section 5, we use the
Euler–MacLaurin summation formula to derive the finite size corrections to the ground
state energy using the discrete Bethe Ansatz equations including the high-energy mode.
The relation of the finite size terms to the scattering phase shifts and the critical exponents
of the spectral function is established. Conclusions follow in Section 6.

2. Bethe Ansatz Equations for the Anisotropic Heisenberg Ring for |∆| < 1

We assume that there are M down-spins and N − M up-spins. The Bethe Ansatz wave
functions are written as [1,2,20]

Ψ = ∑
z1<z2<···<zM

Φ(z1, z2, . . . , zM)S−
z1

S−
z2

. . . S−
zM

|0〉 , (2)

Φ(z1, z2, . . . , zM) = ∑
P

exp
{

i
( M

∑
j=1

kPjzj +
1
2 ∑

j<l

φPj,Pl

)}

, (3)

where k1, k2, . . . , kM are the quasimomenta, P denotes permutations of the integers 1, 2, . . . , M
and the phase shifts φα,β are defined as

cot( 1
2 kα) = cot( 1

2 θ) tanh( 1
2 θxα) , ∆ = cos(θ) , π/2 ≥ θ > 0 . (4)
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For Sz = (N − 2M)/2 ≥ 0, the eigenvalues of the energy, E, and the momentum, K,
are given by

E =
M

∑
α=1

(

cos(kα)− ∆
)

− (N − 2M)H =
M

∑
α=1

[

− 2π

θ
sin(θ)a1(xα) + 2H

]

− NH , (5)

a1(x) =
1

2p0

sin(π/p0)

cosh(πx/p0)− cos(π/p0)
, p0 = π/θ , (6)

K =
M

∑
α=1

kα =
M

∑
α=1

1

i
ln

sinh[ 1
2 θ(xα + i)]

sinh[ 1
2 θ(xα − i)]

. (7)

The periodic boundary conditions with respect to the M parameters xα in an extended
Brillouin zone yield

{

sinh[ 1
2 θ(xα + i)]

sinh[ 1
2 θ(xα − i)]

}N

= −
M

∏
β=1

{

sinh[ 1
2 θ(xα − xβ + 2i)]

sinh[ 1
2 θ(xα − xβ − 2i)]

}

, mod(2p0i) , α = 1, 2, · · · , M . (8)

The periodicity with mod(2p0i) gives rise to the string solutions [20].
If p0 is an irrational number the string solutions extend to infinity, as for the isotropic

Heisenberg ring [21]. On the other hand, if p0 is a rational number the length of the strings
is finite. In particular, if p0 is an integer n the number of unknown functions is only n − 1.
Details of the solutions can be found in Refs. [20,22]. Each solution of the Bethe Ansatz
equations is characterized by an energy band, ε j(x), or the corresponding Boltzmann factor,
ηj(x) = exp[ε j(x)/T], where T is the temperature.

For ∆ = cos(π/n) the thermodynamic Bethe Ansatz equations are given by [24]

ln
(

1 + η0(x)
)

= 2n sin(π/n)δ(x)/T ,

ln ηj(x) = s1(x) ⋆ ln
{

(

1 + ηj−1(x)
)(

1 + ηj+1(x)
)

}

, for j = 1, 2, · · · , n − 3 ,

ln ηn−2(x) = s1(x) ⋆ ln
{

(

1 + ηn−3(x)
)

(

1 + 2ηn−1(x) cosh(nH/T) + ηn−1(x)2
)}

,

ln ηn−1(x) = s1(x) ⋆ ln
(

1 + ηn−2(x)
)

,

F(T, H) = u − T
∫ ∞

−∞
dxs1(x) ln

(

1 + η1(x)
)

, (9)

where

s1(x) =
1

4 cosh(πx/2)
, s1(x) ⋆ g(x) =

∫ ∞

−∞
dx′s1(x − x′)g(x′) ,

u = sin(π/n)
∫ ∞

−∞
dxs1(x)

sin(π/n)

cosh(πx/n)− cos(π/n)
, (10)

and F(T, H) is the free energy.
In the limit T → 0, the logarithms of the Boltzmann factors reduce to limT→0 T ln ηj(x) =

ε+j (x) if ε+j (x) > 0, while limT→0 T ln[ηj(x)]−1 = −ε−j (x) if ε−j (x) < 0 and zero otherwise.

For H = 0, the set of Equation (9) is then

ε+0 (x) = 2n sin(π/n)δ(x) ,

ε+j (x) + ε−j (x) = s1(x) ⋆
(

ε+j−1(x) + ε+j+1(x)
)

, for j = 1, 2, · · · , n − 3 ,

ε+n−2(x) + ε−n−2(x) = s1(x) ⋆
(

ε+n−3(x) + 2ε+n−1(x)
)

,

ε+n−1(x) = s1(x) ⋆ ε+n−2(x) ,

Egs = u −
∫ ∞

−∞
dxs1(x)ε+1 (x) , (11)
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where Egs is the ground state energy.
Similarly, the density functions of the spinwaves at T = H = 0 are determined by the

set of equations

ρh
0(x) = δ(x) ,

ρh
j (x) + ρj(x) = s1(x) ⋆

(

ρh
j−1(x) + ρh

j+1(x)
)

, for j = 1, 2, · · · , n − 3 ,

ρh
n−2(x) + ρn−2(x) = s1(x) ⋆

(

ρh
n−3(x) + 2ρh

n−1(x)
)

,

ρh
n−1(x) + ρn−1(x) = s1(x) ⋆ ρh

n−2(x) ,

Egs = −2n sin(π/n)
∫ ∞

−∞
dxa1(x)ρ1(x) , (12)

where

a1(x) =
1

2n

sin(π/n)

cosh(πx/n)− cos(π/n)
. (13)

Here the superscript “h” denotes spinwave ‘holes’.
At T = H = 0, the only nonzero energy potential function is ε−1 (x) = ε1(x) =

−2n sin(π/n)/[4 cosh(πx/2)]. Hence, the excitation energy is given by ∆E1(x) = |ε−1 (x)|.
The corresponding density function is ρ1(x) = 1/[4 cosh(πx/2)],while the ’hole’ density
function is equal to zero. For H = 0, the simple spinwave band is then completely filled.
The momentum of a simple spinwave hole parametrized by x0 is then given by

p1(x0) = 2π
∫ x0

0
dx(ρ1(x) + ρh

1(x)) . (14)

The momentum vanishes at the center of the Brillouin zone and at the boundary of
the zone it reaches ±π/2. Dividing this value by π we obtain the band-filling at zero-field,
i.e., M/N = 0.5.

At T = H = 0, both ∆E1(x) and ρ1(x) are determined by 1/ cosh(πx/2) for all n so
that the dispersions are proportional to each other. The elementary excitations are displayed
in Figure 1. The case n = 2 corresponds to the isotropic XY-model or ∆ = 0 and has been
solved in Refs. [33,34].

-0.4 -0.2 0.0 0.2 0.4
p

1
/π

0.0

0.5

1.0

1.5

2.0

∆
Ε

1

H=0

n=3

n=5
n=4

Figure 1. (Color online) Elementary spinwave excitations as a function of the momentum for

T = H = 0 and three values of n: (black, solid) n = 3, (red, dashed) n = 4, and (blue, dash-

dotted) n = 5. ∆E1 and p1 are the energy and momentum of the first band (ground state band), which

is half-filled.

In non-zero field, the n − 1 bands are mixed and the situation is more complicated.
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3. Excitation Energies in Non-Zero Magnetic Field

3.1. Case n = 3

For n = 3, there are two bands to be determined, ε1(x) and ε2(x), which obey the
following equations

ε1(x) = −2n sin(π/n)s1(x) + Ts1(x) ⋆ ln
[

1 + 2η2(x) cosh(nH/T) + η2(x)2
]

,

ε2(x) = ε+2 (x) = s1(x) ⋆ ε+1 (x) . (15)

In the limit T → 0, we obtain

ε1(x) = −2n sin(π/n) + nH/2 + s1(x) ⋆ ε+2 (x)

= −2n sin(π/n) + nH/2 + s1(x) ⋆ s1(x) ⋆ ε+1 (x) ,

= −2n sin(π/n) + nH/2 +
x

8 sinh(πx/2)
⋆ ε+1 (x) ,

ε2(x) = s1(x) ⋆ ε+1 (x) = ε+2 (x) ; ε−2 (x) = 0 . (16)

Similarly, for the density functions and the momenta we have

ρ1(x) + ρh
1(x) =

1

4 cosh(πx/2)
+

x

8 sinh(πx/2)
⋆ ρh

1(x) ,

ρh
2(x) = s1(x) ⋆ ρh

1(x) , ρ2(x) = 0 , (17)

p1(x) = 2π
∫ x

0
dx′(ρ1(x′) + ρh

1(x′)) ,

p2(x) = 2π
∫ x

0
dx′(ρ2(x′) + ρh

2(x′)) = 2π
∫ x

0
dx′s1(x′) ⋆ ρh

1(x′) . (18)

The dispersions for various fields are shown in Figure 2. In the left panel, the low-level
energy dispersion, ε1 is presented. The zeroes of ∆E1(p1) represent the Fermi points of the
dispersions. The states are divided into particle and hole states. For H > 0.75 the states
are all particles and gapped (there is no Fermi momentum), while for H = 0 all excitations
are holes (see Figure 1). The range of the momenta increases with the magnetic field. For
the second band (right panel) at H = 0, the dispersion reduces to a point and all states
are empty.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
p

1
/π

0.0

0.3

0.6

0.9

1.2

1.5

∆
Ε

1

H=0.0

H=0.25

H=0.5

H=0.75

n=3

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
p

2
/π

0.0

0.2

0.4

0.6

0.8

∆
E

2

H=0.75

H=0.5

H=0.25 H=0.0

n=3

Figure 2. (Color online) Spinwave excitations for n = 3 for several fields (H = 0 black solid line;

H = 0.25 red dashed line; H = 0.5 blue dash-dotted line; H = 0.75 green long-dashed line). (left

panel) ∆E1: The Fermi momentum is defined as the zero of ∆E1(pF) for each H. Hole excitations

correspond to −pF < p1 < pF, while particle excitations to |p1| > pF. The range of p1 increases

with H. For H > 0.75 the excitations are gapped and have no Fermi point. (right panel) ∆E2: The

excitation energies are gapped, except for H = 0, where the dispersion reduces to a single point. All

states are empty in this case.
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3.2. Case n = 4

In this case, three bands are to be determined, ε1(x), ε2(x) and ε3(x), which satisfy the
following equations

ε3(x) = s1(x) ⋆ ε+2 (x) = ε+3 (x) , ε−3 (x) = 0 ,

ε2(x) = s1(x) ⋆ ε+1 (x) + 2H + s1(x) ⋆ ε+3 (x)

= s1(x) ⋆ ε+1 (x) + 2H + s1(x) ⋆ s1(x) ⋆ ε+2 (x)

= s1(x) ⋆ ε+1 (x) + 2H +
x

8 sinh(πx/2)
⋆ ε+2 (x) , ε−2 (x) = 0 ,

ε1(x) = −2n sin(π/n)s1(x) + s1(x) ⋆ ε+2 (x)

= −2n sin(π/n)s1(x) +
4

3
H +

sinh(πx/6)

2
√

3 sinh(πx/2)
⋆ ε+1 (x) . (19)

Analogously, the spinwave density functions and the momenta are given by

ρ3(x) + ρh
3(x) = s1(x) ⋆ ρh

2(x) , ρ3(x) = 0 ,

ρ2(x) + ρh
2(x) = s1(x) ⋆ ρh

1(x) +
x

8 sinh(πx/2)
⋆ ρh

2(x) , ρ2(x) = 0 ,

ρ1(x) + ρh
1(x) =

1

4 cosh(πx/2)
+ s1(x) ⋆ ρh

2(x)

= s1(x) +
sinh(πx/6)

2
√

3 sinh(πx/2)
⋆ ρh

1(x) , (20)

p1(x) = 2π
∫ x

0
dx′(ρ1(x′) + ρh

1(x′)) ,

p2(x) = 2π
∫ x

0
dx′(ρ2(x′) + ρh

2(x′)) ,

p3(x) = 2π
∫ x

0
dx′(ρ3(x′) + ρh

3(x′)) = 2π
∫ x

0
dx′s1(x′) ⋆ ρh

2(x′) . (21)

The dispersion functions for n = 4 for various magnetic fields are displayed in Figure 3.
The three panels show the three energy functions, ε j, j = 1, 2, 3. Only the left upper panel (ε1)
has Fermi points (zeroes of ∆E1(p1)) and has particle and hole states. All other excitations
are particle-like, i.e., gapped (This is also the case for ε1 for H > 0.85). Again the range of
the momenta increases with the magnetic field. For the second and third bands at H = 0,
the dispersion reduces to a point and all states are empty.
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Figure 3. Cont.
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Figure 3. (Color online) Spinwave excitations for n = 4 for several fields (H = 0 black solid line;

H = 0.3 red dashed line; H = 0.6 blue dash-dotted line; H = 0.85 green long-dashed line). (left upper

panel) ∆E1: The Fermi momentum is defined as the zero of ∆E1(pF) for each H. Hole excitations

correspond to −pF < p1 < pF, while particle excitations to |p1| > pF. The range of p1 increases with

H. For H > 0.85 the excitations are gapped and have no Fermi point. (right upper panel) ∆E2: The

excitation energies are gapped, except for H = 0, where the dispersion reduces to a single point and

all states are empty in this case. (lower panel) ∆E3: For the third band, the dispersion again reduces

to a point for H = 0.

3.3. Case n = 5

For n = 5, the excitation spectra consist of four bands determined by the following
equations

ε4(x) = s1(x) ⋆ ε+3 (x) = ε+4 (x) , ε−4 (x) = 0 ,

ε3(x) = s1(x) ⋆ ε+2 (x) + nH/2 + s1(x) ⋆ ε+4 (x)

= s1(x) ⋆ ε+2 (x) + nH/2 + s1(x) ⋆ s1(x) ⋆ ε+3 (x)

= s1(x) ⋆ ε+2 (x) + nH/2 +
x

8 sinh(πx/2)
⋆ ε+3 (x) , ε−3 (x) = 0 , (22)

ε2(x) = s1(x) ⋆ (ε+1 (x) + ε+3 (x)) ,

ε1(x) = −2n sin(π/n)s1(x) + s1(x) ⋆ ε+2 (x)

= −2n sin(π/n)s1(x) + nH/4 +

[

x

16 sinh(πx/2)
+

sinh(πx/4)

8 sinh(πx/2)

]

⋆ ε+1 (x) .

Similarly, the spinwave density functions and the momenta are obtain through

ρ4(x) + ρh
4(x) = s1(x) ⋆ ρh

3(x) , ρ4(x) = 0 ,

ρ3(x) + ρh
3(x) = s1(x) ⋆ ρh

2(x) +
x

8 sinh(πx/2)
⋆ ρh

3 , ρ3(x) = 0 ,

ρ2(x) + ρh
2(x) = s1(x) ⋆ (ρh

1(x) + ρh
3(x)) , ρ2(x) = 0 , (23)

ρ1(x) + ρh
1(x) =

1

4 cosh(πx/2)
+ s1(x) ⋆ ρh

2(x) ,

p1(x) = 2π
∫ x

0
dx′(ρ1(x′) + ρh

1(x′)) ,

p2(x) = 2π
∫ x

0
dx′(ρ2(x′) + ρh

2(x′)) , (24)

p3(x) = 2π
∫ x

0
dx′(ρ3(x′) + ρh

3(x′)) ,

p4(x) = 2π
∫ x

0
dx′(ρ4(x′) + ρh

4(x′)) = 2π
∫ x

0
dx′s1(x′) ⋆ ρh

3(x′) .

The dispersion functions for n = 5 for various magnetic fields are displayed in Figure 4.
The four panels show the four energy functions, ε j, j = 1, 2, 3, 4. Again only ε1 has Fermi
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points (zeroes of ∆E1(p1)) and has particle and hole states. All other excitations are particle-
like, i.e., gapped (This is also the case for ε1 for H > 0.91). As before, the range of the
momenta increases with the magnetic field. For the second, third and fourth bands at
H = 0 the dispersion reduces to a point and all states are empty.
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Figure 4. (Color online) Spinwave excitations for n = 5 for several fields (H = 0 black solid line;

H = 0.35 red dashed line; H = 0.65 blue dash-dotted line; H = 0.91 green long-dashed line). (left top

panel) ∆E1: The Fermi momentum is defined as the zero of ∆E1(pF) for each H. Hole excitations

correspond to −pF < p1 < pF, while particle excitations to |p1| > pF. The range of p1 increases

with H. For H > 0.91 the excitations are gapped and have no Fermi point. (right top panel) ∆E2:

The excitation energies are gapped, except for H = 0, where the dispersion reduces to a single point

and all states are empty in this case. (lower left panel) ∆E3: For the third band the dispersion again

reduces to a point for H = 0. (lower right panel) ∆E4: Similar to ∆E2 and ∆E3.

3.4. Luttinger Liquid

For a Luttinger liquid, the energy of the low-energy excitations is linearized in the
momentum about the Fermi points. The spectrum can be described by the conformal
tower in terms of four quantum numbers. The correlation functions, determined by the
low-energy excitations of the system and the conformal space-time invariance, display
power-law divergences. Conformal field theory only yields asymptotically exact correlation
functions for long times and long distances, since the curvature of the dispersion is being
neglected. These curvature terms in the Hamiltonian are formally irrelevant in the field
theory [35], but modify the position of the singularity and the critical exponent.

In a series of papers [10,28–32,36–42], it was shown for several models that neglecting
curvature terms in the dispersion leads to incorrect results for the threshold singularities in
response functions. This problem is solved by adding a corrective term of the form of a
mobile impurity that is coupled to the Luttinger liquid modes. Although formally irrelevant
operators, the impurity terms, if treated nonperturbatively, yield the correct threshold
singularities in the Green’s function. The method is not limited to weak interactions. The
procedure is analogous to the X-ray edge divergence in metals [43,44], which arises from
the perturbation of the Fermi surface when a core electron is promoted (the impurity). The
exact critical exponents are determined by the scattering phase shifts off the impurity and
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for integrable models they can be extracted from the Bethe ansatz solution. Previous work
on mobile impurities embedded into a Fermi gas should be mentioned [45–54]. However, in
contrast to the present work, where the “impurity” is just an excitation of the interacting 1D
system, there the impurity refers to a foreign particle dragging through the Luttinger liquid.

3.5. Group Velocities

In the Luttinger limit, where the dispersion of the excitations is linear in the momen-
tum, the group velocity is given by [55]

vF =

(

dε1(x)

dx

∣

∣

∣

x=X

)

/ (

2πρ1(X)
)

, (25)

where X separates particles from holes (Fermi point). The group velocity away from the
linear dispersion regime is

u(x0) =

(

dε1(x0)

dx0

)

/ [

2π(ρ(x0) + ρh(x0))
]

, (26)

where x0 is the impurity rapidity. u(x0) corresponds to the slope of the dispersion in
Figure 1. Note that for hole-excitations in the Heisenberg chain, |u| is always smaller than
the respective Fermi velocity.

3.6. Conformal Towers

In the Luttinger limit, the model has excitations with energy proportional to the
momentum with Fermi velocity vF. The finite size corrections to the ground state energy
determine the energies of the low-lying excitations [56]. The ground state energy, EGS,
is an extensive quantity given by Equation (5). The excitations, on the other hand, are
mesoscopic corrections, i.e., of order 1/N, where N is the length of the system. These
mesoscopic corrections depend on the boundary conditions employed, in our case periodic
boundary conditions. Four quantum numbers determine the finite size corrections, namely,
∆M corresponds to the number of removed or added rapidities and D is the parity variable,
i.e., 2D is the difference between the number of forward and backward movers. In addition,
the quantum numbers n± count the number of particle and hole excitations about each
Fermi point (+ for forward movers and − for backward movers). The ground state energy
with finite size corrections is given by [56,57]

E = EGS +
πvF

2N

[

∆M

z

]2

+
2πvF

N

[

(zD)2 + n+ + n− − 1

12

]

, (27)

and assuming that the momentum of the ground state is zero, the excitations change the
momentum by [57]

∆P =
2π

N

[

D∆N + n+ − n−
]

+ 2pFD . (28)

The quantity z in Equation (27) is the generalized dressed charge, which determines
the interaction between the two Fermi points, i.e., how the energy is affected by a change
of a quantum number, e.g., ∆N or D. The periodic boundary conditions for the discrete
Bethe Ansatz equations restrict the values of the back-scattering quantum number D to
be an integer. The dressed generalized charge is determined by z = Ξ(X), where Ξ is the
solution of

Ξ(x) = 1 −
∫ X

−X
dx′Ξ(x′)

θ sin(2θ)

cosh[θ(x − x′)]− cos(2θ)
. (29)
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Consider now a conformal field operator O characterized by a set of quantum numbers
∆N, D and n±. The conformal dimensions, defined as [58,59]

2∆± = 2n± +

[

zD ± ∆M

2z

]2

, (30)

determine the critical exponents of asymptotes of the O correlation function. Conformal
field theory then yields for the asymptote of 〈O†(x, t)O(0, 0)〉

〈O†(x, t)O(0, 0)〉 ∝
exp[−2iDpFx]

(x − ivFt)2∆+(x + ivFt)2∆− . (31)

The correlation function consists of two factors corresponding to forward and back-
ward movers, respectively. Each of these factors gives rise to a power-law singularity.

4. Field Theory Model for the Luttinger Liquid with Mobile Impurity

The field theory for the Luttinger liquid, i.e., the model with the linear dispersion in
the momentum is parametrized by a Bose field, Φ(x), and its dual field, Θ(x), which satisfy
the commutation relation [35]

[

Φ(x),
∂Θ(y)

∂y

]

= iπδ(x − y) . (32)

The Luttinger liquid Hamiltonian is given by

HLL =
vF

2π

∫

dx

[

1

K

(

∂Φ(x)

∂x

)2

+ K

(

∂Θ(x)

∂x

)2
]

, (33)

where irrelevant operators have been neglected. Here K is the Luttinger parameter, which
determines the strength of the interaction. For a noninteracting system K = 1.

The deviations from linearity of the dispersion lead in general to incorrect results in the
threshold position and the exponents in response functions [10,29,30,32,36,38,39,41,42,60–62].
A high energy excitation from the nonlinear portion of the spectrum can be included by
coupling the Luttinger liquid to a mobile impurity. This mobile impurity, if treated non-
perturbatively, leads to singularities in the response function with the correct energy and
momentum-dependent exponent.

A spinwave with energy ε1(p1) added to the system is emulated by the following
mobile impurity Hamiltonian (see, e.g., Refs. [10,29,30,36,39,41,62])

Hd =
∫

dx d†(x)

[

ε1(p1)− iu
∂

∂x

]

d(x) , (34)

where d† and d are the creation and annihilation operators of the mobile impurity, p1 is
the momentum and u the group velocity of the excitation. The interaction of the Luttinger
liquid with the mobile impurity is linear through coupling parameters VR and VL

Hint =
∫

dx

[

VL − VR

2π

∂Θ(x)

∂x
+

VL + VR

2π

∂Φ(x)

∂x

]

d†(x)d(x) . (35)

In Section 5, the parameters in Equations (33)–(35) are related to quantities from the
Bethe Ansatz.

We now consider H = HLL +Himp +Hint and to eliminate the terms linear in the
fields ∂xΘ and ∂xΦ we apply a canonical transformation U to all operators [10,29,30,32],

U = exp

{

− i

2π

∫

dx

[

−
√

K(ϕ+ − ϕ−)Θ(x) +
ϕ+ + ϕ−√

K
Φ(x)

]

d†(x)d(x)

}

, (36)
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where the parameters ϕ+ and ϕ− are to be determined. The transformed quantities are
denoted by d = UdU†, Φ = UΦU† and Θ = UΘU† so that

∂xΘ = ∂xΘ − 1

2
√

K
(ϕ+ + ϕ−)d

†
d ,

∂xΦ = ∂xΦ +

√
K

2
(ϕ+ − ϕ−)d

†
d ,

d = d exp

{

− i

2π

[

−
√

K(ϕ+ − ϕ−)Θ +
1√
K
(ϕ+ + ϕ−)Φ

]}

. (37)

The unwanted linear terms disappear if [10,29]

− (VL − VR)√
K

= (vF − u)ϕ+ + (vF + u)ϕ− ,

−(VL + VR)
√

K = −(vF − u)ϕ+ + (vF + u)ϕ− (38)

and the transformed Hamiltonian becomes noninteracting

Htran =
vF

2π

∫

dx





1

K

(

∂Φ(x)

∂x

)2

+ K

(

∂Θ(x)

∂x

)2


+
∫

dx d
†
(x)

[

ε1(p1)− iu
∂

∂x

]

d(x) . (39)

As a consequence of the transformation, boundary terms are introduced for the boson
fields, Φ(x) and Θ(x), which are obtained by taking expectation values in Equation (37) [10]

−∆N =
1

π

∫ N

0
dx〈∂xΦ〉 = 1

π

∫ N

0
dx〈∂xΦ〉+

√
K

2π
(ϕ+ − ϕ−) ,

D = − 1

π

∫ N

0
dx〈∂xΘ〉 = − 1

π

∫ N

0
dx〈∂xΘ〉+ 1

2π
√

K
(ϕ+ + ϕ−) , (40)

where 2D is the current quantum number (backscattering) and N the length of the chain.

5. Relation to the Bethe Ansatz Results

We now calculate the finite size corrections to the ground state energy in the presence of
a high energy excitation using the Bethe Ansatz equations. The results for hole and particle
excitations are similar, so that here we consider holes. Removing a rapidity introduces a
small asymmetry in the integration limits, which are symmetric at ±X without excitation.
We denote the new integration limits with X+ and X−.

5.1. Densities

In close analogy to Refs. [29,59], we start with the discrete Bethe Ansatz equations,
Z(kα) = 2π Jα/N, with

Z(kα) = kα −
1

Ni

M

∑
β=1

ln

{

sinh[ θ
2 (xα − xβ + 2i)]

sinh[ θ
2 (xα − xβ − 2i)]

}

+
1

Ni
ln

{

sinh[ θ
2 (xα − x(h) + 2i)]

sinh[ θ
2 (xα − x(h) − 2i)]

}

= kα +
2

N

M

∑
β=1

arctan
[

tanh
(

θ
2 (xα − xβ)

)

cot θ
]

+ π
M

N

− 2

N
arctan

[

tanh
(

θ
2 (xα − x(h))

)

cot θ
]

− π

N
. (41)

The term with x(h) is the term of the excitation with the removed quantum number
J(h) and Z(k(h)) = 2π J(h)/N. x(h) depends, in principle, on the size of the system, but its
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corrections are of order 1/N2 and hence negligible. With the aid of the Euler–MacLaurin
sum formula the discrete equations can be transformed into an integral form for large M

Z(k) = k(x) + 2
∫ X+

X−
dx′ρ1(x′) arctan

[

tanh
(

θ
2 (x − x′)

)

cot θ
]

+ π
M

N

− 2

N
arctan

[

tanh
(

θ
2 (x − x(h))

)

cot θ
]

− π

N

− 1

24N2 ∑
s=±1

s

2πρ1(Xs)

2 tan(θ)

tan2(θ) + tanh2[ 1
2 θ(x − Xs)]

θ/2

cosh2[ 1
2 θ(x − Xs)]

.(42)

The integration boundaries are fixed by Z(X±) =
2π J±

N , where J± = ±(MGS − 1)/2
with MGS being the number of spinwaves in the ground state.

Dividing Equation (42) by 2π and differentiating with respect to x the integral equation
for ρ1(x) for the finite system of length N is obtained. Expanding ρ1(x) in powers of 1/N,

i.e., ρ
(0)
1 (x) + ρ

(1)
1 (x)/N + ρ

(2)
1 (x)/N2 +O(N−3), where ρ

(0)
1 (x) represents the density of

the bulk, ρ
(1)
1 (x) is the impurity contribution and ρ

(2)
1 (x) contains the finite size effects.

Taking into account that dZ/dx < 0, while dZ/dk > 0, we have for ρ
(0)
1 (x)

ρ
(0)
1 (x) + ρ

(0)h
1 (x) = − 1

2π

dk(x)

dx
−
∫ X+

X−
dx′ρ(0)1 (x′)

θ tan(θ)

cosh2[(θ/2)(x − x′)]

× 1/(2π)

tan2(θ) + tanh2[(θ/2)(x − x′)]
, (43)

where dk/dx is
dk

dx
= − θ sin(θ)

cosh(θx)− cos(θ)
(44)

and for the integration kernel we have [2]

θ tan(θ)

cosh2[(θ/2)(x − x′)]

1/(2π)

tan2(θ) + tanh2[(θ/2)(x − x′)]
=

θ sin(2θ)/(2π)

cosh[θ(x − x′)]− cos(2θ)
, (45)

which in the absence of a magnetic field yields ρ
(0)
1 (x) = 1/[4 cosh(πx/2)].

The integral equation for ρ
(1)
1 (x) is essentially the change in the density function due

to a “hole” excitation, again except for the integration limits, i.e.,

ρ
(1)
1 (x) + ρ

(1)h
1 (x) = 2 tan(θ)/(2π)

tan2(θ)+tanh2[(θ/2)(x−x(h))]
θ/2

cosh2[(θ/2)(x−x(h))]

−
∫ X+

X−
dx′ρ(1)1 (x′) 2 tan(θ)/(2π)

tan2(θ)+tanh2[(θ/2)(x−x′)]
θ/2

cosh2[(θ/2)(x−x′)]
.

(46)

Finally, the last driving terms in Equation (42) determine the integral equation for

ρ
(2)
1 (x), i.e.,

ρ
(2)
1 (x) + ρ

(2)h
1 (x) =

1

48πρ
(0)
1 (X+)

2 tan(θ)/(2π)

tan2(θ) + tanh2[(θ/2)(x − X+)]

θ/2

cosh2[(θ/2)(x − X+)]

− 1

48πρ
(0)
1 (X−)

2 tan(θ)/(2π)

tan2(θ) + tanh2[(θ/2)(x − X−)]

θ/2

cosh2[(θ/2)(x − X−)]
(47)

−
∫ X+

X−
dx′ρ(2)1 (x′)

2 tan(θ)/(2π)

tan2(θ) + tanh2[(θ/2)(x − x′)]

θ/2

cosh2[(θ/2)(x − x′)]
.
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5.2. Energy

In terms of discrete rapidities, the energy of the system with M spinwaves is given by

EM =
M

∑
α=1

(

cos(kα)− ∆
)

− (N − 2M)H =
M

∑
α=1

[

− (2π/θ) sin(θ)a1(xα) + 2H
]

− NH , (48)

where a1(x) is given by Equation (13).
Removing one spinwave of rapidity x(h) and employing once again the Euler–MacLaurin

sum formula this expression reduces to [29,59]

EM−1 = N
∫ X+

X−
dxρ1(x)

[

− (2π/θ) sin(θ)a1(x) + 2H
]

− NH + (2π/θ) sin(θ)a1(x(h))− 2H

+
1

12N

[

sin(θ)/θ

ρ1(X+)

da1(x)

dx

∣

∣

∣

x=X+

− sin(θ)/θ

ρ1(X−)
da1(x)

dx

∣

∣

∣

x=X−

]

= N
∫ X+

X−
dxρ

(0)
1 (x)

[

− (2π/θ) sin(θ)a1(x) + 2H
]

− NH + (2π/θ) sin(θ)a1(x(h))− 2H (49)

+ N
∫ X+

X−
dx
[ 1

N
ρ
(1)
1 (x) +

1

N2
ρ
(2)
1 (x)

][

− (2π/θ) sin(θ)a1(x)
]

+
1

12N

[

sin(θ)/θ

ρ1(X+)

da1(x)

dx

∣

∣

∣

x=X+

− sin(θ)/θ

ρ1(X−)
da1(x)

dx

∣

∣

∣

x=X−

]

.

Defining ε(0)(x) = −[2π sin(θ)/θ]a1(x) the ground state energy density in the ther-
modynamic limit is

ǫGS(X±) = −2π sin(θ)

θ

∫ X+

X−
dx a1(x)ρ

(0)
1 (x)− (N − 2M)H/N

=
∫ X+

X−
dx ε(0)(x)ρ

(0)
1 (x)− (N − 2M)H/N , (50)

and the energy of the finite system can be written as

E = NǫGS(X±) + (N − 2M + 2)H − ε(0)(x(h)) +
∫ X+

X−
dxε(0)(x)ρ

(1)
1 (x)

+
1

N

∫ X+

X−
dxε(0)(k)ρ

(2)
1 (x)− 1

12N

[

ε(0)(X+)′

2πρ
(0)
1 (X+)

− ε(0)(X−)′

2πρ
(0)
1 (X−)

]

, (51)

where the prime denotes derivative. After a tedious calculation the N−1-terms reduce to
−(2π/6N)vF.

Next we simplify the impurity terms in the expression for the energy. The rapidity
of the “impurity”, x(h), is in principle dependent on the size of the system and can be
expanded in powers of 1/N. The 1/N corrections to x(h) can, however, be neglected. The
terms of order N0, i.e., the third and fourth terms in Equation (51), reduce to the dressed
energy of the hole, ε(x(h)), but with integration limits X±

− ε(0)(x(h)) +
∫ X+

X−
dxε(0)(x)ρ

(1)
1 (x) = −ε1(x(h)) . (52)

The energy of the system is now given by

E = NǫGS(X±)− ε1(x(h))− 2πvF/(6N) . (53)

5.3. Integration Limits

The quantities (X± ∓ X) are of the order of 1/N. We now expand ǫGS(X±) to second
order in these differences. The linear terms vanish, i.e., [δǫGS(X±)/δX±]X±=±X = 0,



Quantum Rep. 2022, 4 455

because the excitations vanish at the Fermi points, i.e., ε1(±X) = 0. Hence, the first term
corresponds to the equilibrium energy density in the ground state and the first corrections
are quadratic,

ǫGS(X±) = ǫGS(±X) +
1

2 ∑
στ

δ2ǫGS(X±)
δXσδXτ

∣

∣

∣

Xσ=σX;Xτ=τX
[(Xσ − σX)(Xτ − τX)] . (54)

After lengthy algebra we obtain

δ2ǫGS(X±)
δXσδXτ

∣

∣

∣

Xσ=σX;Xτ=τX
= δστ2πvF[ρ

(0)
1 (X)]2 . (55)

The δστ arises since the two Fermi points are independent [29,59].
In summary, the corrections to the energy due to the finite size of the system are

E = NǫGS(±X) + NπvF[ρ
(0)
1 (X)]2

[

(X+ − X)2 + (X− + X)2
]

− ε(x(h), X±) + πvF/(6N) . (56)

5.4. Relation of (X± ∓ X) to Quantum Numbers

The change of the integration limits due to the high energy excitation can be related to
the quantum numbers of the excitation. The changes for the density and current density to
order 1/N are obtained as

M

N
=

J+ − J−
N

=
∫ X+

X−
dxρ1(x) =

∫ X+

X−
dxρ

(0)
1 (x) +

1

N

∫ X+

X−
dxρ

(1)
1 (x)

2D

N
=

J+ + J−
N

=
∫ X−

−∞
dx
[

ρ
(0)
1 (x) +

1

N
ρ
(1)
1 (x)

]

−
∫ ∞

X+

dx
[

ρ
(0)
1 (x) +

1

N
ρ
(1)
1 (x)

]

, (57)

where ρ
(1)
1 (x) is related to the impurity. We denote with Mimp and Dimp the quantities

related to the high energy excitations (mobile impurities)

Mimp =
∫ X

−X
dkρ

(1)
1 (x) , 2Dimp =

∫ −X

−∞
dxρ

(1)
1 (x)−

∫ ∞

X
dxρ

(1)
1 (x) . (58)

Note that we replaced the integration limits X± in Equation (58) by ±X and that
Mimp and Dimp do not necessarily vanish at the Fermi level. The shifts of X± with M/N

and D/N to leading order in 1/N are given by ∂X±/∂(M/N) = ±1/[2zρ
(0)
1 (X)] and

∂X±/∂(D/N) = z/ρ
(0)
1 (X), respectively. It now follows that

X± ∓ X = ± 1

2zρ
(0)
1 (X)N

[

∆M − Mimp

]

+
z

ρ
(0)
1 (X)N

[

∆D − Dimp

]

. (59)

Denoting with ∆Ñ = ∆N − Nimp(p) and ∆D̃ = ∆D − Dimp(p), the corrections to the
energy due to finite size take the form

E = NǫGS(X)− ε(x(h)) +
πvF

6N
+ ∑

s=±1

πvF

N

{

zD̃ + s
∆M̃

2z

}2

= NǫGS(X)− ε(x(h)) +
πvF

6N
+

2πvF

N

[

(

zD̃
)2

+
1

4

(∆M̃

z

)2
]

. (60)

All of the above considerations for “hole” excitations are straightforwardly extended
to “particle” excitations.
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Figure 5. (Color online) (left panel) “Impurity” density Mimp and (right panel) current density Dimp

as a function of the momentum for a high energy excitation for n = 3. Note that Mimp is an even

function of the momentum and Dimp is an odd function of the momentum.

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
p

1
/π

-0.1

0.0

0.1

0.2

0.3

0.4

M
im

p

H=0.85

H=0.60

H=0.30

n=4

H=0.00

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
p

1
/π

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

D
im

p
H=0.85

H=0.60

H=0.30

n=4

H=0.00

Figure 6. (Color online) (left panel) “Impurity” density Mimp and (right panel) current density Dimp

as a function of the momentum for a high energy excitation for n = 4. Note that Mimp is an even

function of the momentum and Dimp is an odd function of the momentum.
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Figure 7. (Color online) (left panel) “Impurity” density Mimp and (right panel) current density Dimp

as a function of the momentum for a high energy excitation for n = 5. Note that Mimp is an even

function of the momentum and Dimp is an odd function of the momentum.

5.5. Luttinger Parameter

To parametrize the interaction strength in the field theory model for the Luttinger liq-
uid, we need the Luttinger parameter K in terms of the Bethe ansatz quantities. To determine
K, we consider the equal time spinwave propagator 〈S+(x)S−(0)〉 for which the quantum
numbers are ∆M = −1 and D = 0. The correlation function decreases with a power law
of the distance x, 1/|x|θ∗, where θ∗ = 1/(2z2). This is in analogy to the Bose gas [41,63].
The field-theoretical approach yields through bosonization θ∗ = 1/(2K) [11,12,64], so that
K = z2. The quantity z is calculated via Equation (29) through the Bethe Ansatz as a
function of field. z and K are displayed in Figure 8. The exact result for K at zero-field
is [11,12]

K = [2 − 2 arccos(∆)/π]−1 . (61)
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Figure 8. Dressed generalized charge z (solid lines) and the Luttinger parameter K = z2 (dashed

lines) as a function of magnetic field for n = 3 (black), n = 4 (red) and n = 5 (blue).

5.6. Relation of the Bethe Ansatz with the Field Theoretical Quantities

We can now establish the relation between the field-theoretical and the Bethe Ansatz
approaches. For simplicity we are going to consider spinwave “holes”, for which ∆M = −1,
D = 0. In Equation (40) the overlined quantities are proportional to ∆M̃ and D̃. It
follows that

Mimp(p) +

√
K

2π

(

ϕ+ − ϕ−
)

= 0 , −1 + Dimp(p) +
1

2π
√

K

(

ϕ+ + ϕ−
)

, (62)

or inverting these equations we have

ϕ+ − ϕ−
2π

= −
Mimp(p)√

K
,

ϕ+ + ϕ−
2π

=
√

K(1 − Dimp(p)) . (63)

According to Refs. [39,62], the critical exponent for the hole excitation is

µ = 1 − 1

2

(

2√
K
+

ϕ+ − ϕ−
2π

)2

− 1

2

(

ϕ+ + ϕ−
2π

)2

= 1 − 1

2K
(2 − Mimp(p))2 − K

2
(1 − Dimp(p))2 , (64)

while for a particle excitation

µ = 1 − 1

2

(

ϕ+ − ϕ−
2π

)2

− 1

2

(

ϕ+ + ϕ−
2π

)2

= 1 − 1

2K
Mimp(p)2 − K

2
(1 − Dimp(p))2 . (65)

The critical exponents for particles and holes, µ and µ, can now be evaluated and are
shown in Figure 9.

Note that the exponent for the particles in the regime p ≥ pF (close to the Fermi point)
is always positive indicating a divergence of the spectral function, while the one for the
holes is negative for −pF ≤ p ≤ pF and the spectral function tends to zero. For particles
with p ≫ pF, the exponent may change sign. Note that at the edge at pF the holes and
particles are joined by an imaginary vertical line.

The spectral function is then proportional to the following general form

∣

∣

∣

∣

1

ω − ε1(p)

∣

∣

∣

∣

µ

, (66)



Quantum Rep. 2022, 4 458

where ε1(p) > 0 with µ = µ for particles and ε1(p) < 0 with µ = µ for holes. As
noted by Imambekov and Glazman [62] the exponents show markedly non-Luttinger
liquid behavior in the immediate vicinity of the edges. For the Luttinger liquid µLL =
1 − 1/(4K) and ε(p) = vF(p − pF). Note that the conformal towers cannot give rise to a√

K dependence [62]. The difference between the exact results and the Luttinger liquid
arises from the fact that Nimp and Dimp are not zero at the Fermi surface.
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Figure 9. (Color online) Critical exponents of the spectral function of spinwaves as a function of

momentum for particles (p ≥ pF, dashed curves) and holes (−pF ≤ p ≤ pF, solid curves) for n = 3

(upper left panel), n = 4 (upper right panel) and n = 5 (lower panel). The same magnetic fields as

in previous figures are considered. The exponents for holes are always negative and the spectral

function tends to zero. On the other hand, the exponents for particles are positive at the edge and

hence the spectral function diverges. Away from pF µ may change sign and become negative.

6. Conclusions

We considered the excitation spectrum and edge singularities of the one-dimensional
anisotropic Heisenberg chain for ∆ = cos(π/n) with n = 3, 4 and 5. Here n = 2 corre-
sponds to the X-Y chain (rotator model). The excitation spectrum consists of n− 1 excitation
bands. The model is integrable and the complete Bethe Ansatz solution was constructed
by Takahashi and coworkers [20,22,24,25]. When θ/π is a rational number, the number
of unknown functions in the Bethe Ansatz becomes finite, while if θ/π is an irrational
number the Bethe Ansatz consists of an infinite number of unknown functions. This holds
for antiferromagnetic exchange J > 0 as well as for ferromagnetic coupling, J < 0. In
the present paper we dealt with the antiferromagnetic case, while the critical behavior of
the ferromagnetic situation was studied in Refs. [24,25]. The numerical solution of the
isotropic ferromagnetic Heisenberg model (using a truncation method for large number
of equations) yields a critical exponent of γ = 2 with logarithmic corrections [26,27]. The
approach employed by Takahashi and Yamada [24,25] consists of the numerical solution
of the Bethe Ansatz equations for ∆ = cos(π/n), n = 3, 4, · · · , and its extrapolation to
∆ = 1. The results are γ = 2 and α = −1/2, in agreement with Schlottmann [26,27], except
for the logarithmic corrections. Between rational numbers for θ/π are plenty of irrational
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numbers, which contain logarithmic terms and are skipped by the extrapolation method by
Takahashi and Yamada. The validity of the extrapolation method is then questionable.

Using a combination of the Bethe Ansatz solution and field theory methods, we
derived the spectral function for spinwave particle and hole excitations with high energy.
In analogy to other models investigated previously [10,12,29,36–39,60–62], we consider
an effective model consisting of the Luttinger liquid coupled to a mobile impurity to
obtain the time-dependence of the single particle Green’s function. The parametrization
of the high energy excited state as a mobile impurity allows to incorporate the exact
excitation energy. Linearly coupling the impurity to the Luttinger liquid is analogous to
the x-ray-threshold problem [43,44] and the arising power-law singularity in frequency
or time is then the consequence of Anderson’s “infrared orthogonality catastrophy” [65].
As in Refs. [10,29,30,32,41], the mobile impurity is justified via the exact Bethe Ansatz
solution of the model. The phenomenological parameters of the field theoretical model
are this way determined from the Bethe Ansatz. The Luttinger liquid parameter K is
related to the generalized dressed charge z (K = z2). In addition, we obtain from the Bethe
Ansatz solution the exact energy of the excitation, and the momentum dependent scattering
phase shifts.

We employed a procedure consisting of calculating the O(1/N) terms of the energy
using the discrete Bethe Ansatz equations. The finite size corrections are evaluated for
the system in the ground state including a high-energy particle or hole excitation. The
conformal towers describe the low-energy excitations in a Luttinger liquid about the Fermi
points. The present procedure extends the standard finite size terms to arbitrary excitations
and consequently goes beyond the bosonization of spins and conformal field theory.
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