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Abstract: We provide a review on the state-of-the-art of gravitational waves induced by primordial
fluctuations, so-called induced gravitational waves. We present the intuitive physics behind induced
gravitational waves and we revisit and unify the general analytical formulation. We then present
general formulas in a compact form, ready to be applied. This review places emphasis on the open
possibility that the primordial universe experienced a different expansion history than the often
assumed radiation dominated cosmology. We hope that anyone interested in the topic will become
aware of current advances in the cosmology of induced gravitational waves, as well as becoming
familiar with the calculations behind.
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1. Introduction

Cosmology with Gravitational Waves (GWs) is a new and unique doorway to the
primordial universe. The furthest in time we can observe with electromagnetic waves
is around neutrino decoupling, roughly one second after the Big Bang and some time
before Big Bang Nucleosynthesis (BBN). Prior to that, we have scarce evidence of the
evolution of the primordial universe. See Ref. [1] for a review on possible expansion
histories of the early universe. Nevertheless, we learned a lot from studies of the Cosmic
Microwave Background ' (CMB). For instance, we know that there are Gaussian primordial
fluctuations with an almost scale invariant spectrum [2,3], which by causality must have
been generated before the Big Bang. This fact provides strong evidence that there was a
period of accelerated expansion in the primordial universe, so-called inflation [4-7]. During
inflation, quantum vacuum fluctuations are stretched out to the largest scales and become
primordial fluctuations [8-12], which we later see as CMB anisotropies and galaxies. Thus,
through the observation of primordial fluctuations we have access to inflation. However,
the CMB only probes the largest scales and, therefore, only a small fraction of inflation.
Any information on much smaller scales,? and the last stages of inflation, is basically erased
by complicated astrophysical processes. In contrast, GWs barely interact with intervening
matter. This means that with GWs we can explore the universe before neutrino decoupling
and even before the Big Bang towards the last stages of inflation. GWs provide a unique
opportunity to complete our picture of the very early universe. A quantitative picture of
the potential of cosmology with GWs can be found in Figure 1.

GWs generated by a cosmological process in the early universe will today appear as
randomly distributed in all directions and with a very large number of unresolved sources.’
The superposition of all incoming unresolved GWs leads to the Stochastic GW Background
(SGWB). Encouragingly, the typical frequency” of such cosmic GWs falls right into the
frequency range of future GWs detectors. For example, Pulsar Timing Arrays (PTA) [13-18],
cover around 10~2~10~7 Hz, LIGO, VIRGO, KAGRA and ET [19], are sensitive roughly for
10~103 Hz. In between, we will have LISA [20,21], DECIGO [22-24], AION/MAGIS [25],
Taiji [26] and Tainqin [27]. For an illustration see Figure 1.
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Figure 1. On the left we show the power-law integrated sensitivity curves [28] in terms of the GW
spectral density for some GW detectors. In the lower and upper horizontal axis, we respectively
show the GW frequency and the associated temperature of the universe at the time of GW generation,
assuming radiation domination. On the right, we show the typical quantities associated to the
cosmological horizon at a particular time, given in terms of 10-folds from matter-radiation equality.
We also show the ranges covered by CMB anisotropies and yu spectral distortions, BBN constraints and
GWs. If PBH form, they can be probed by induced GWs (iGW), emission of <y rays and microlensing.

Typical sources of cosmological GWs in the very early universe include (for more
details see [29]): phase transitions, which may lead to collisions of bubbles or a universe
filled with cosmic strings, resonances during reheating, quantum (gravity) fluctuations
during inflation (so-called primordial GWs) and GWs induced from large primordial
fluctuations. Such large primordial fluctuations may also collapse to form primordial black
holes (PBHs). Out of these cosmological sources, GWs induced by primordial fluctuations,
and to some extend PBHs, are our direct window to the latest stages of inflation. The
information we could gain about inflation by the so-called induced GWs potentially covers
scales around k ~ 107-10'® Mpc~!, otherwise inaccessible by any other probe. Even
the absence of induced GWs will place new constraints on the primordial spectrum in
unexplored regimes, potentially down to Pz ~ 10-#-107° [30]. On top of these very
promising prospects, induced GWs are generated when primordial fluctuations re-enter
the horizon sometime between the end of inflation and BBN. Since we have no evidence
of the content and expansion history of the universe around that time, induced GWs not
only provide access to the last stages of inflation but they also contain information on the
content of the primordial universe. In this review, we will be opening to the possibility that
the universe much before BBN was not dominated by radiation. In the future, information
on the primordial spectrum obtained by induced GWs will complement those from other
probes such as spectral distortions [31,32] in the multimessenger cosmology era [33].

1.1. Induced GWs History

The possibility of having GWs induced by density fluctuations was first noticed, as
far as the author is aware, by K. Tomita in 1967 [34]. They were later rediscovered in the
1990s by Matarrese, Pantano and Saez [35,36] when studying second order cosmological
perturbations in a dust dominated universe. Quite interestingly, in 1997 Matarrese, Moller-
ach and Bruni [37] noticed that induced GWs in a dust dominated universe suffer from
gauge ambiguities. They proceeded to argue that only the oscillating part of the induced
tensor modes were identified as true gravitational waves. We will discuss more about the
gauge ambiguities in Section 7. However, Refs. [35-37] concluded that induced GWs were
too small to be practically observed.

It was not until 20 years later that Ananda, Clarkson, and Wands [38] started to
uncover the potential of induced GWs. In Ref. [38] they proposed to use induced GWs,
generated in a radiation dominated universe, to constrain the spectral tilt of primordial
fluctuations. A blue tilted primordial spectrum even with the CMB normalization might
end up yielding large enough induced GWs. Some months later, Baumann, Steinhardt,
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Takahashi and Ichiki [39] looked into more detail at the transfer function of induced GWs
taking into account the radiation-matter equality at around z ~ 3400 and the anisotropic
stress due to neutrinos (see also [40] on the latter). They found that assuming the CMB
normalisation of an almost scale invariant spectrum, modes with k ~ keq ~ 0.01 Mpc !
were enhanced due to the matter dominated stage. Notably, the peak in the induced GW
background can be larger than the primordial one if the tensor to scalar ratio is < 0.1.
However, the frequency of the peak of such GWs is extremely low, around feq ~ 10~ Hz.
This is only observable perhaps by CMB B-mode polarization experiments or cosmic
shear [41]. Nevertheless, this was an indication that an early epoch of dust domination
might yield interesting results. In the same period, Martineau and Brandenberger [42]
derived a lower bound to induced GWs for various inflationary models and alternatives,
although they referred to it as lower bound from “backreaction” of scalar fluctuations.
Another application of GWs induced by primordial fluctuations in the curvaton scenario,
sourced between the end of inflation and the curvaton decay, was studied by Bartolo,
Matarrese, Riotto and Vaihkonnen [43]. An action formalism for a scalar field acting as
a perfect fluid and its induced GWs was studied by Boubekeur, Creminelli, Norefia and
Vernizzi [44].

An important realization was done by Saito and Yokoyama in 2008 [45,46]: if the
primordial spectrum of fluctuations is large enough on small scales, it does not only
induce GWs but might also collapse to form PBHs. This means that the induced GW
spectrum can be used in the future to place bounds on the PBH abundance. Even more,
if PBHs were found, one should also find the induced GW counterpart. These ideas
were further pursued by Bugaev and Klimai [47—49]. Extending the work of Saito and
Yokoyama a bit further, Assadullahi and Wands proposed induced GWs as probes of the
primordial spectrum [50]. They also considered the early dust dominated case [51] which
confirmed the large enhancement of induced GWs. The same group, now including Arroja,
Assadullahi, Koyama and Wands [52], studied the matching conditions on superhorizon
scales for such GWs induced at second order. Later, in 2012 the induced GWs from
particular models of inflation were studied by Alabidi, Kohri, Sasaki and Sendouda in
radiation [53] and dust domination [54]. Around the same time, a curvaton scenario
with a blue tilted primordial spectrum yielding large induced GWs was proposed by
Kawasaki, Kitajima and Yokoyama [55]. More investigations on the upper bounds of
induced GWs by overproduction of PBHs were done by Nakama and Suyama [56,57].
Other works related to induced GWs include the decay of two curvatons by Suyama
and Yokoyama [58], the impact of anisotropic stress due to free streaming particles by
Saga, Ichiki and Sugiyama [59] and the B-modes due to induced GWs in the CMB by
Fidler et al. [60].

In 2016, LIGO reported the detection of GWs from the merger of a binary black
hole [61] and the amount of new works on induced GWs and their PBH counterpart
exploded. The amount of works is so large that we will not attempt to go through all of
them in chronological order but instead we will classify them into seven main directions
below. We give a more detailed discussion in the corresponding sections.

—  General semi-analytical formulation: Since induced GWs are a second order effect
one needs to integrate in time and momenta over the linear evolution of primordial
fluctuations. The analytical transfer functions for radiation domination are derived in
Refs. [62,63] and later generalized to constant equation of state parameter in Ref. [64];

—  Induced GWs for different expansion histories and different contents of the universe:
Induced GWs may have been generated in a non-radiation dominated universe.
This leaves characteristic signatures in the induced GW spectrum. Studies in early
matter era can be found in Refs. [65-67]. The extension to an early PBH dominated
epoch is investigated in Refs. [68-71]. More general thermal histories are studied
in Refs. [64,72-76]. The impact of additional free streaming particles is studied in
Ref. [77];
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—  Induced GW spectral features: There are cases where the induced GW spectrum
may be investigated semi-analytically. These are for example, the low frequency
tail [74,78,79], the UV tail [80,81] and the log-normal peak in the primordial spec-
trum [82]. Furthermore, the primordial spectrum may also present oscillatory features
which are captured into the induced GW spectrum [83-87]. On top of that, large
primordial non-Gaussianities may have a non-trivial impact on the induced GW
spectrum [81,88-93]. Other effects include: anisotropic non-gaussianities, which may
be a source of superhorizon tensor modes [94], resonances that may occur during
inflation, which enhance the induced GW spectrum [95-98], and non-Bunch Davies
initial conditions in inflation [99], although the latter does not yield an observable
signature;

- Explanations of current observations: Induced GWs have been extensively used as
counterpart of the PBH scenario as a totality or a fraction of dark matter. For example,
the induced GWs from various inflationary models can be found in Refs. [100-118]
and [62,116,119,120] in the context of Higgs inflation. In particular, the large induced
GW counterpart to PBH as the totality of dark matter is studied in Refs. [88,110,121-125].
Other possibilities include an explanation to the LIGO observations [121,126-128] and
the NANOGtrav results [129-135];

—  Current and future GW constraints: It is important to place constraints on the current
absence of induced GWs and also asses future capabilities to constraint/find different
models. A study using current PTA and LIGO data on SGWBs can be found in
Refs. [136-139] and an analysis of future GW prospects in Refs. [33,75,140-146];

—  SGWB anisotropies: In the far future we may not only observe the GW spectrum
but also its anisotropies. The anisotropies due to induced GWs associated to PBH
formation in the case of a monochromatic mass function are investigated in Refs. [122,
123,147,148];

—  The gauge issue of induced GWs: Tensor modes are subject to gauge ambiguities at sec-
ond order due to mode mixing. Since the work of Hwang, Jeong and Noh [149] in 2017
there has been an extensive discussion on the gauge issue of induced GWs [150-162].
The source of the problem and the applicability of predictions is by now well under-
stood, although the gauge issue persists in the strictest sense.

1.2. Structure and Scope of the Review

Induced GWs are the most promising probe of the primordial universe. In this review,
we will revisit and unify the current analytical formulation and main predictions for
induced GWs. Note that the scope of this review is basically limited to the author’s works
on induced GWs [64,70,71,74,81,132,150,161], although we discuss and properly cite the
relevant literature. As interesting as it is, we will not enter in the details of PBH formation
nor on the GW data analysis. Nevertheless, we briefly discuss these relevant topics and
give appropriate credit, when needed.

For convenience, we proceed to briefly explain the organization of the review. In this
way, the reader interested in certain aspects may jump directly to the relevant section. In
Section 2 we present an intuitive picture of the induced GW generation. We estimate their
typical frequency, the spectral shape and we briefly comment on their PBH counterpart for
different expansion histories in the primordial universe. The details of the calculations and
derivation of analytical approximations are reviewed in Sections 3 and 4. The analytical
approximations for the induced GW spectrum for typical primordial curvature spectra
are presented in Section 5. The special case of the dust dominated universe is discussed
in some detail in Section 6. We also include the case where PBH dominate the universe
in Section 6.2. The gauge issue of induced GWs is explained in Section 7. We list other
GW counterparts associated to PBHs in Section 8 and discuss the future observational
prospects in Section 9. We also provide a summary of the main formulas in Section 10.
These formulas are ready for calculating the induced GW spectrum for general primordial
spectra. Thus, the reader interested solely in the final formulas of the induced GW may
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jump directly to Section 5 and/or Section 10. We end with a discussion on future directions
in the conclusions Section 11. We present many details of the numerical factors, formulas
and calculations used in the main text in the Appendices.

We work in natural units where # = ¢ = 1. We keep the reduced Planck mass
My = (87G) ~1/2 in the equations, except in Sections 2.2 and 4 where for simplicity in the
calculations we set it to Mp,; = 1. At the beginning of each section we list the literature
in which the section is based, except for Sections 8 and 9 which are relatively short. We
provide a list of useful related reviews below.

A list of other useful reviews. The context of induced GWs is very broad. It covers
cosmological perturbation theory up to second order, stochastic GW backgrounds, primor-
dial black holes and primordial non-Gaussianity. Unfortunately, all the details cannot be
covered in this review. Instead, we list below existing reviews on topics directly related to
induced GWs, which have been useful in writing this manuscript.

e Cosmological perturbation theory. The classical reviews on cosmological perturbation
theory at linear order are the one by Kodama and Sasaki [12] and by Mukhanov,
Feldman and Brandenberger [163]. A typical reference for second order cosmological
perturbation theory is the review by Malik and Wands [164]. Since then there have
been many other reviews on cosmological perturbation theory. Some that we found
particularly up to date and useful are Refs. [165-168]. For a take on multi-field inflation
we suggest Ref. [169]. For primordial features in the primordial spectrum we refer the
reader to Ref. [170];

®  Stochastic GW backgrounds. Induced GWs are not the only source of GW backgrounds.
Reviews on the different cosmic and astrophysical sources can be found in the review
by Caprini and Figueroa [29] and by Christensen [171]. A useful collection of cosmic
GW spectra can be found in Kuroyanagi, Chiba and Takahashi [172], although it is
technically not a review. A review focused on GWs from inflation is given by Guzzetti,
Bartolo, Liguori and Matarrese [173];

®  Primordial black holes. The literature on primordial black holes is very vast and currently
under refinement. A review that has been used in particular is the one by Sasaki,
Suyama, Tanaka and Yokoyama [174]. Other interesting reviews are Refs. [175-178].
A complementary review on induced GWs with more focus on the PBH counterpart
is given by Yuan and Huang [179];

®  Primordial non-Gaussianity. Although quantum fluctuations during inflation are drawn
from a Gaussian distribution, they can develop small departures from such Gaussian
distribution due to gravitational or general interactions. The reader interested in
primordial non-Gaussianities may check the reviews in the context of inflation and
CMB observations, e.g., [180-183];

o Alternative expansion histories. A recent review encompassing many of the new physics
of a primordial universe which is not filled with radiation is given in Ref. [1].

2. Estimates and Intuitive Picture

In this section we present the intuitive physical picture behind induced GWs. We
do not intend to do a rigorous derivation but to lay out the basic assumptions behind the
calculations. Before we go into the details of the induced GWs themselves, we first review
in Section 2.1 what is considered to be the “observable” quantity for cosmic GWs. This
will also be useful when dealing with the gauge issue in Section 7. We later in Section 2.2
derive intuitively, based on heuristic calculations and order of magnitude estimations, the
main features of the induced GW spectrum in general cosmological backgrounds. Lastly in
Section 2.3, we give the relation between the typical frequencies of the induced GWs with
the corresponding PBH masses also in general cosmological backgrounds.

Main references: Section 2.1 is mainly based on Misner, Thorne and Wheeler’s [184] and
Maggiore’s [185] books, while the original work is essentially due to Isaacson [186,187]. We
follow the notation of, e.g., Ref. [78,161]. Section 2.2 essentially follows from [74] although
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it builds up from previous works in the literature, e.g., [39,63,64,78]. Section 2.3 is mainly
extracted from [64,132,174]. All relevant equations can be found in Appendix E.

2.1. The Spectral Density of GWs in Cosmology

A GW detector, such as an interferometer, measures the GW strain at a given frequency
and time. In the case of the SGWB, one is measuring the time and/or ensemble average
of the superposition of all incoming GWs. For convenience, cosmologists often use the
energy density fraction of GWs as the “observable”. However, it is not an easy task to
theoretically associate an energy density to GWs in general situations. This is because
in general relativity there is no local notion of energy of the gravitational field. By the
equivalence principle, one may always go to a locally flat frame and erase any sign of
gravity. Of course, we know that GWs carry momentum and energy (after all, they have
been detected). Thus, indeed one can define the energy of GWs in some limits of interest.
For instance, when the frequency of the GW is much higher than that of a slowly varying
background [185].

Relevant to the later discussion, let us briefly review the case of GWs propagating
in a Ricci flat spacetime, i.e., a spacetime with no matter sources. We can then split the
total metric as gy = v + h,w where g, is the background metric and hPW < 1 are the
GWs, treated as a high frequency perturbation. Then, by the non-linear nature of gravity,
these GW backreact onto the background metric. Mathematically speaking, if we expand
the Einstein tensor up to second order we will find terms quadratic in 1, which can be
thought of as a “matter” source. This means that, if we somehow “integrate out” the high
frequency perturbation, we can write’

Gu[§w] = Ml;lzt%v[hw] / @
where G, is the Einstein tensor and t%}N is the (pseudo)-energy momentum tensor of GWs.
A way to “integrate out” the high frequency modes is by taking an average. For instance,
we may focus on a small box and take the volume (and/or time) average. The box shall
not be too small, so that several GW wavelengths fit in. In this case, we have that the
(pseudo)-energy momentum tensor of GWs reads [186,187]

M?, 1
ti(liyv - 4p<ayha'gavha,3 o Zg_Wa‘Thaﬁagh“ﬁ> ’ @

where all contractions of indices are done with the background metric.

In cosmology we face the extra difficulty of having a matter source to the Einstein
equations which drives the expansion of the universe. Because of the expansion, we also
have a cosmological horizon roughly given by 1/H where H is the Hubble parameter and
quantifies the expansion rate. For these reasons, the definition of GWs in a cosmological
background is more subtle than in Ricci flat space times. Nevertheless, with some tweaks
we shall write in analogy

Gy = M2 (T + 15V, @3)

where Ty, is the matter energy-momentum tensor. This time, however, we must be more
careful on the averaging procedure. Furthermore, we must introduce a slightly different,
but important, notation. First, in the helicity decomposition of the metric, the transverse-
traceless component of the spatial metric is referred to as tensor mode. A tensor mode with
a co-moving wavenumber k stays constant if its physical size is larger than the cosmological
horizon, i.e., k/a < H. In the opposite limit, a tensor mode behaves as a GW if its physical
size is much smaller than the cosmological horizon, that is k/a > H. Thus, Equation (3)
only makes sense for the high frequency tensor modes deep inside the horizon. This also
means that the small boxes we used to take the average have to be much smaller than the
horizon size but still larger than several GW wavelengths. In addition to that, in cosmology
we often deal with a SGWB and, by ergodicity, we may take an ensemble average over all
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small boxes. Under these assumptions we may use Equation (2) to compute the energy
density of GWs in cosmology. Be aware though that these assumptions are strictly speaking
not enough as we shall argue in Section 7.

Proceeding with the cosmological SGWB, we consider GWs propagating in a Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, namely6

ds? = —dr? +a®(t) (5 + hyj)dx'dx/ , (4)

where a(t) is the scale factor. The evolution of the scale factor is dictated by the Friedmann
equations, which we provide in Appendix E. Using Equation (2) under the ensemble
average procedure, we find that the energy density of GWs (the 00 component of t%’v ) in
Fourier space (see Appendix D for notations) reads

k3 X . k2
pGw = Mél/dlnkw{z<hk,wk,)\>! + L.T2<hk,/\h7k,/\>! } , ®)
A

where " = d/dt, A is the GW polarization and we already used that the coincident ensemble
average of two tensor modes in a homogeneous and isotropic universe is proportional to a
Dirac delta,” namely

(Al ) = (i ah_gp) (2m)36®) (k + k). (6)

The notation "!" in Equations (5) and (6) is to indicate that the Dirac delta has been
factored out, so that (i h_ )" is directly related to the power spectrum, which by
isotropy is a function of k = |k| only. Equation (5) is the total energy density of the GWs
filling the universe. It is often more convenient to use the spectral density fraction, i.e., the
GW power per logarithm of a given wavenumber k (or frequency) over the critical density,
which is defined as

_ 1 dogw _ K
Qew(k) = SMZH2 dink — 124°F2 ;P’“(k)’ @

where H = 4/a. This is often what is used to compare theoretical predictions with current
constraints and future observational prospects. Note that in Equation (7) we used the
definition of the dimensionless power spectrum, concretely

(i ph_ip)' = =5 Pya(k). (8)

We also used the approximation that for a freely propagating wave we have that

. k
hy\ = Ehk,)\ . )

With these ingredients we can use Equation (7) to estimate the amplitude and spectral
shape of induced GWs.

2.2. GWs Induced by Primordial Fluctuations

Let us derive some estimates by considering a rough, yet instructive, toy model for
induced GWs. Take a tensor mode hij in a FLRW background (4) sourced by scalar field
fluctuations d . Its equations of motion, in terms of conformal time dt = dt/a, read

hii + 2Hhi; — W hy; =P { T} = P ;i{0a090p0}, (10)

where’ = d/dt, H = H/a = a'/a, Tjj is the spatial components of the energy-momentum
tensor of a scalar field (see Equation (45)) and pab ij 1s the transverse-traceless projec-
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tor defined in Appendix E. Without understanding much about the evolution of these
fluctuations, we can already see that

Ph=Y Pir P, (11)
A

If the scalar field fluctuations were sourced during inflation, we can relate them to the
curvature perturbation R so that Ps, ~ Pg. Furthermore, the spectral density of GWsin a
radiation dominated universe remains constant, as GWs behave as radiation themselves.
Thus, we can boldly estimate that the amplitude of induced GW spectral density measured
today is given by

‘ 1
OEFh? ~ S Onoh® x P, (12)

where Q, 9 = pro/ (3H5M§1) is the density fraction of radiation, Hy is the Hubble rate

today and h = Hy/(100km/Mpc/s). We have introduced (), to take into account the
dilution of the GWs (as radiation) as the universe expands and goes through the cold dark
matter and dark energy dominated stages. We give more details on this factor in Section 5.
h considers the uncertainty in the exact value of Hy. From the latest Planck 2018 results [2]
we have that Qr,ohz ~ 4 x 10~°. With all the above simplifications, we arrive at

OEN<edn? ~ 107°P% . (13)

The estimate (13) can be now contrasted with future observational prospects. The
sensitivity of future GW detectors after collecting data over several years might reach
Qié“flvucedhz ~ 10716, if we use the power-law sensitivity curves of Thrane and Romano [28].
This optimistic value is for the best DECIGO sensitivity [23,188]. Then, in the absence of an
induced GW detection we can use Equation (13) to place an optimistic upper bound to the
primordial spectrum on the corresponding scales (roughly at 10'°~10'2 Mpc~! ) of about
Pr < 107°. This is already three orders of magnitude better than current constraints from
the absence of PBHs (around P < 1072 [174]), although it is still four orders of magnitude
above the CMB extrapolation which would be around P ~ 10~ [3]. The most interesting
point though is that PBHs which formed by the collapse of large primordial fluctuations,
which requires Pz > 1072, must have an observable large induced GW counterpart. Thus,
the absence of induced GWs completely rules out the PBH scenario from large primordial
fluctuations [189,190]. Note that PBH could have formed by other mechanisms though.
For example, PBH could form in first order phase transitions [191,192], tunneling during
inflation [193], the collapse of Q-balls [194,195] and might also be the result of long range
interactions stronger than gravity [196-198].

In the above estimations we have completely neglected the evolution of the scalar
fluctuations since the end of inflation onwards, which is by no means irrelevant. As
shown in Refs. [51,54,65,66], a period of dust domination might substantially enhance
the amplitude of induced GWs. The amplification is such that GWs induced by tiny
primordial fluctuations might observable [54,66]. This case exemplifies the importance of
the expansion history of the primordial universe. At this point, we would like to emphasise
that contrary to studies of the CMB we have scarce evidence of the content of the primordial
universe. Therefore, when deriving theoretical predictions, and eventually contrasting
them with the data, it would be a good idea to be open and acknowledge our ignorance
by allowing a free equation of state parameter w = p/p and a free propagation speed of
fluctuations cs, which describe the unknown content of the primordial universe. A nice
review on the implications of various expansion histories can be found in Ref. [1]. For these
reasons, let us estimate the general impact of the equation of state w and sound speed c;
onto the induced GW spectrum. To do that, we continue with the toy model of the scalar
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field. This time, however, we will consider the evolution of J¢. Fluctuations of a K-essence
massless scalar field roughly follow the Klein-Gordon equation

S +2H3@) + ko =0, (14)

where for simplicity we considered a constant w and cs. The former implies constant
expansion rate, i.e.,
H 3
€ =—— = ~(1+w) = constant. 15
Such a constant expansion rate implies a scale factor which goes as a power-law of
conformal time, explicitly from the equations in Appendix E we have

1+b 1-3w

h b= .
axT where 130

(16)

We introduced the parameter b for later convenience. b = 0 corresponds to a universe
filled with radiation (w = 1/3). Then, b < 0 and b > 0 respectively correspond to a stiffer
and softer fluid. Note that if we allow w > 1 the range of b goes as —1 < b < oo for
oo >w>—1/3.

For the sake of simplicity, we solve the Klein-Gordon Equation (14) in the super-
(sound)horizon, c;k < H, and sub-(sound)horizon, csk > H, limits. This leads us to

5 5 constant cskT < 1 a7
Pr O a ekt k> 1

where d¢; is an initial value. The above solutions are all we need to solve for the induced
GWs. For analytical viability, let us take that there are fluctuations of the scalar field only
in a single scale kp. Namely the scalar fluctuations are Dirac-delta like in Fourier space, i.e.,

dpi ~ d¢pp x 6(In(k/kp)), (18)

where 6@, is the primordial amplitude, e.g., set by inflation. All the above simplifications
lead to a simple differential equation for the tensor modes given by

¢+ 2H I+ Kl ~ k69, (19)

We readily see that, if we focus on ¢ ¢p = constant and we evaluate h; at horizon
crossing, that is when the mode k is of the size of the comoving horizon, i.e., k = aH, then
the amplitude of induced GWs is proportional to hj ~ 5(p§ for k ~ kp, as used in our
previous estimate (12). Now, to derive the spectral features we can focus on two interesting
limits: (i) the infra-red (IR) tail for modes with k < k, and (ii) the near peak behaviour for
modes with k ~ k.

2.2.1. The IR Tail

If we focus on modes with k < k, there will be no competition between the k?
and k%, terms nor any resonance. Thus, we can peacefully solve the tensor modes in the
superhorizon (kT < 1) and subhorizon (kT >> 1) regimes. First, in the superhorizon regime
we find that

(k,ﬂ)2 cskpT < 1

hkt < 1) =~ (20)

constant + (k,7) -2 cskpT > 1 '

What Equation (20) tells us is that tensor modes initially grow as T2 due to a constant
source. Then, after the scalar source enters the sub(sound)-horizon regime, i.e., at csk, 7, =
1, the tensors developed a constant amplitude. Now, if b > 0 (w < 1/3) the scalar source
decays much faster than the cosmological background, that is 6¢? /H? o (kT) ~b - 0,and
the tensor growth stops. However, for b < 0 (w > 1/3) the scalar source decays slower
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than the background expansion, which yields a second superhorizon growth of the tensor
modes [74]. To follow tensor mode evolution, the second line of Equation (20) has to be
matched at horizon crossing for the tensor mode (kT = 1) with the subhorizon solution. By
doing so, we arrive at

hkt > 1) ~ (kt) 1Pk (constant + (kp/k) _Zb) . (21)

The final ingredient is that somehow the universe transitions to a radiation dominated
universe to recover the standard cosmology. For simplicity, we take an instantaneous
reheating at T = 1,1, with the corresponding reheating scale k;;, = H,,. From that moment
on the spectral density of induced GWs stays constant and we can derive our predictions.
Inserting Equation (21) evaluated at T = 1, into Equation (5) we find that the IR slope of
the induced GW spectrum is in general given by

induced
dIn Q&

Tk (kin < k < kp) =3 —2[b]. (22)

We later find that for § € Z there is a logarithmic correction [74]. Additionally, if
the scalar spectrum of fluctuations is really a Dirac delta, the spectrum slope is given by
2 — 2|b| due to the unphysical divergence of ¢, at k = kj. Note that for tensor modes
which entered during the radiation domination era we have to match the first line of (20)
to the subhorizon solution. This yields a spectral index given by

induced
dIn Q&

which is in agreement with the general results of Ref. [78]. These naive derivations will
be later recovered from the analytical formulas in Section 4. It is interesting to see that for
b >3/2(w < —1/15) the induced GW spectrum peaks at k ~ ky, which is clearly different
than the peak in the primordial spectrum at k ~ k.

The intuitive physical picture behind (22) is the following. In a universe with constant
b, modes of a massless field (e.g., the tensor modes h;; or the scalar field ¢) which enter
the horizon early get more diluted than modes which enter later. For example, consider
that right after horizon crossing, i.e., when k = Hj, we have that the energy density of
the massless field starts to dilute as p « (a;/a)*. Since we have that a; o Tk”b o k170
then p o« af o k=% and p/H? o a=2/(1+1) o k=28, Thus, if the IR tail of induced GWs in
radiation domination goes as k3, we expect Qgws k320 Que to dilution [78]. However,
as we have shown, this is incomplete for induced GWs from a peaked spectrum. For b < 0,
the density fraction of the scalar field p;, grows as a~20/(1+0) This means that induced
tensor modes which are generated later have a larger source and a larger amplitude than
those generated earlier. In other words, for b < 0 small k have a larger amplitude than
large k by a factor ak_4 « k*. Then, for b < 0 the density fraction of induced GWs goes
as Qgws & k320440 o [3+20 [74]. This gives the general formula Qgws o k>~2/! that we
derived in (22). Whether this absolute value of b is unique to induced GWs is something
yet to explore.

Before moving on to the near peak limit, let us comment on the implications of
Equation (22). While the far most IR tail of the induced GW spectrum indeed must go
as k%, we may have an intermediate regime where Qgws k3=2Pl This has interesting
consequences when comparing with GWs from other sources. Let us model a general GW
spectrum by a broken power-law around a characteristic scale k., as done in Ref. [172].
Then, for example, the IR spectrum of induced GWs for b = 2 (w = —1/9) resembles that
of GWs generated by a strong first order phase transition which have Qgws « k*% for
k < ke and Qgws o« k~1 for k > k.. This gives another very good reason to be open about a
primordial universe with a different equation of state than radiation.
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2.2.2. The Near Peak Regime

Looking closely at Equation (19), we might suspect that there could be a resonance if
the wavenumber k of a tensor mode approaches that of twice the scalar mode 2k,. This
resonance may be understood in two ways. First, we know that a harmonic oscillator with
an external force has a resonance when the period of the force matches that of the harmonic
oscillator. If that occurs, the amplitude of the oscillations diverges in time. In short, the
external force is kicking the oscillator at the right times. The second way to see it is that
two scalar modes with physical momentum c;sk, have a preferred window to produce a
tensor mode with physical momentum equal to twice the scalar momenta, i.e., k = 2csk, if
allowed by momentum conservation. To see this mathematically, let us redefine the tensor
modes in Equation (19) to remove the Hubble friction by

hy =vi/a. (24)
With this new variable vy Equation (19) now reads

K2 ,
vllcl + <k2 . b(lr‘: b) > U = zpéq)%ebcskpf/ (25)

where we only focused on the oscillatory behaviour of the scalar field for csk,T > 1. The
particular solution to vy can be found by the Green’s function method (see Appendix B for
the details). Neglecting the term proportional to 1/72 in Equation (25), the homogeneous
solutions to vy are e**T. With such homogeneous solutions, the particular solution by the
Green’s method reads

T . -
U N / At sin(k(t — 7)) T beek T (26)
T

We clearly see from the integrand in Equation (26) that there is a resonance when
the frequency of the sine equals that of the exponential. Then the oscillations interfere
and leave the integral of a power-law. Since we are only interested in how the amplitude
diverges, let us only focus on the divergent part of (26) which is given by

) / de 7 17be Tk=2¢kp) o T[—b] (k — 2¢5kp)P . 27)

We see that when b < 0 the resonance is effective and the amplitude diverges. Note
that for b = 0 the divergence is logarithmic. When b > 0 the resonance is not effective
enough to cause a divergence as the amplitude of the integrand decays faster than 7~ !.
However, since we so far used a Taylor expansion around k ~ 2csk, we expect that for
1 > b > 0 Equation (27) still yields the leading contribution after the constant term. Thus,
for 1 > b > 0 we also expect a peak at around k ~ 2¢skp, albeit not divergent. For b > 1 the
situation is less clear and a detailed analysis is necessary. Nevertheless for b < 1, we can

roughly write that the tensor modes in the near peak regime have an amplitude given by
hy(k ~ 2cskp, b < 1) o constant — (k — 2cskp)”. (28)

This also implies that the induced GW spectrum has a peak near k ~ 2csk, with a
growth rate proportional to

—2|b|

|k — 2csky | b<0

Qingueed (k ~ 2¢5ky) o (29)

constant — |k—2cskp‘b 1>b>0

These estimates will be later checked by the general analytical solutions in Section 4.
Thus, the resonant peak in the induced GW spectrum has information on the sound horizon
cskp by the position of the peak and on the expansion history b by the growth rate around
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the peak. This type of resonant structure is characteristic of induced GWs. Thus, the
observation of such resonant peak could give strong evidence for induced GWs. Then, the
sound speed of fluctuations ¢; and the peak k, could be disentangled by the simultaneous
observation of the PBH counterpart, which we proceed to discuss. Note that in (29) the
radiation domination case b = 0 is “special” because it is exactly when the amplitude of
the source term is proportional to the background density.

2.3. Primordial Black Hole Counterpart

In this section we briefly introduce the PBH counterpart to the induced GWs. It is by
no means a review on PBH formation and it does not intend to be so. A detailed review on
PBHs can be found in Ref. [174]. Other interesting reviews are listed at the Section 1.2. PBHs
from large primordial fluctuations will form in those Hubble patches where the density
contrast 5p/p is above a certain threshold® ¢, [190,203-208], which depends on the EoS
parameter w at horizon re-entry [209-216]. Since fluctuations generated during inflation
closely follow a Gaussian distribution centred around zero, only the tail of the distribution
has a large enough amplitude to collapse to PBH. This means that PBH formation is an
extremely rare event. The fraction of Hubble patches where PBH forms is exponentially
suppressed and sensitive to the root mean squared of the distribution, which is related to the
power spectrum. This is why we generally need Pr ~ 1072 to form a substantial fraction
of PBHs. Precise estimations of the fraction of PBH is an active and ongoing research field,
e.g., see Refs. [202,214-221] and references therein. For our purposes, it is enough to know
that only large induced GWs have a large associated fraction of PBH and, inversely, the
absence of large induced GWs rules out PBHs from large primordial fluctuations.

For simplicity, we continue with the assumptions of the previous section and take
a primordial spectrum with a Dirac delta peak at kj,. This essentially leads to an almost

monochromatic’” PBH mass function. When the peak in the scalar spectrum enters the
horizon, those fluctuations which are above J. collapse into a PBH. By the end of the
collapse, only a fraction -y of the total mass enclosed inside the horizon at horizon crossing
(Heae = kp) will end up as a PBH. We use the symbol ® to refer to evaluation at PBH
formation time. In mathematical terms, we have that PBHs mainly form with a mass equal
to the mass enclosed inside the Hubble sphere, that is

2
47 oo 477’7Mp1
Mpphig = Vo o = —— P (30)
PBH.® 3 H3, He

To grasp the magnitude of the actual PBH mass, let us write it in terms of a solar mass
M, by referring all quantities in (30) in terms of the size of the horizon at matter-radiation
equality, which is very well measured by Planck [2]. The numerical factors and formulas
used to derive this and the following estimates can be found Appendix A. After some
numerical manipulations we arrive at

k —2-b k -2
Mppp e ~ 3.97 x 10712 M, <p> <fh>

o 1012Mpc !
X (l) g*(Trh) 12 g*s(Trh) 2 (31)
0.2 106.75 106.75 ’

where we kept our ignorance on the primordial universe by leaving a free b (or w) (16).
We took v ~ 0.2 in a radiation dominated universe [206] but it may differ for different
expansion histories [209-212]. g.(Ty,) and g«s(Ty,) are the effective degrees of freedom in
the energy density and entropy evaluated at reheating. It should be noted that we also
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assumed an instantaneous reheating. In that case, the horizon scale at reheating k,, can be
related to the reheating temperature by

T T 1/2 T -1/3
_ 12 -1 th g+(Twn) gxs(Ten)
ki = 1.2> 107 Mpe (5 X 104 GeV) ( 106.75 ) ( 106.75 - 62

As we have seen in Section 2.2, the peak in the primordial curvature power spectrum
induces GWs. These GWs have a typical frequency f, associated to the wavenumber k.
Since the typical mass and the typical frequency are related by the same typical scale kj, we
can write one in terms of the other. In this way, the typical frequency evaluated today reads

1 b
k M 2+b f 2+b
P -3 PBH,® rh
= ~ 154 x 107 H . 33
fp 27tag X z (3.97 X 10—12M@ ) <1.54 x 103 Hz) (33)

For a radiation dominated universe (b = 0) we have a one-to-one correspondence
between the frequency and the mass. If we fix the reheating scale, the relation (33) roughly
tells us that PBH with a given mass have an induced GW counterpart with a peak frequency
at around fp. The exact relation between f, and Mppy,s depends on the value of b. For
instance, if b < 0 (w > 1/3) the expansion rate was faster and for a fixed k, corresponds to
smaller PBH mass at formation. The opposite holds for b > 0 (w < 1/3). It should also be
noted that for b > 3/2 (w < —1/15) there is another peak in the induced GWs at k ~ ky,.
This may break the correspondence between the PBH mass and the peak of the induced
GWs if not all of the GW spectrum is seen.

3. General Formalism

In this section we present the general formulation of induced GWs. This includes the
derivation of the equations of motion in Section 3.1 and the general form of the solutions
in Section 3.2. Then in Section 3.3 we include the leading terms due to local-type non-
Gaussianity. In Section 3.1, we derive the equations of motion using the action formalism
and so we do not follow the conventional derivation, e.g., of Refs. [35,38]. The final result
is obviously the same, but the derivation is rather quick and clear. Throughout this section
and on, we shall neglect the effect of vector perturbations as they typically decay. Anyone
interested in the approximations and applications may jump directly to Section 4.

Main references: In Section 3.1 we closely follow Ref. [150] although we work at the
level of the Lagrangian. For alternative derivations starting from the Einstein equations see
for example Refs. [35,38,39]. Then, Section 3.2 is extracted from [64] which is built upon
and uses the notation of Ref. [63] except for the numerical factor 2 involving h;;. Lastly,
Section 3.3 on the primordial non-Gaussianity is mainly based on Ref. [81] updated and
corrected by Ref. [92].

3.1. Derivation from the Action

We need to arrive at the equations of motion for the transverse-traceless component
of the spatial metric at the second order in cosmological perturbation theory. Although it
is a second order calculation, we shall derive it quickly from the action formalism; if we
work in a particular gauge and we only focus on the interaction of tensor with scalars. It
is particularly convenient to work in a gauge similar to the Newtonian gauge'? with the
exponential notation typical of Misner, Throne and Wheeler [184]. With this choice and
assuming a perturbed FLRW universe, the metric reads

ds? = guvdxtdx” = —e*dr? 4 az(t)eM’Yijdxidxj, (34)

where g,y is the metric of our space-time, i = {1, 2, 3} are the spatial components, a(t)
is the scale factor and we have further used the conformal decomposition of the spatial

metric such that i 5
—detY =Y7_Y; =0.
o det 5 Vil 0 (35)
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Note that for a flat FLRW background in Cartesian coordinates we have Y;; = §;;.
The conformal decomposition of the spatial metric is very convenient and simplifies
calculations. It is also used, e.g., in Numerical Relativity [222]. In short, the conformal
decomposition completely splits the trace (volume changing) from the trace-free (volume
preserving) degrees of freedom. In the Newtonian gauge this decomposition directly splits
the scalar and tensor modes of the spatial metric. This means that Yj; only contains the
transverse-traceless degrees of freedom. As we shall see, it also leaves a clean splitting
between Yj; and @ at the level of the action.

To consider a sensible cosmological set up, we include a canonical scalar field ¢ in the
perturbed FLRW metric. We can later generalize it to a perfect fluid quite straightforwardly.
The action, without any decomposition, is given by

1 1
5= [, ﬁ_g{zzz ~ Lgmaug0,0 - V((p)} , (36)

where g is the determinant of g;,, R is the 4D Ricci scalar, 9, = 9/0x" and V(¢) is
the potential of ¢. In the (3+1) conformal decomposition (34), after some algebra and
integration by parts, the action becomes

S= / d3x dt{a e¥t® (;R(” [Y;j] — 2YD;D;® — YID;®D;® — %YijDi(PD]’go

(37)
T i gy . 1
+ 3e30-Y <8Y1/Yklyikyjl _ 3(H + (D)z + 2(p2) _ a3e3<I>+‘I’V((P)} ,

where R©) [Yi;] and D; are respectively the 3D Ricci scalar and the covariant derivative
associated to Yj;. Since we work in Cartesian coordinates, we already used that detY = 1.
In going from (36) to (37) we took a big leap in the (3 + 1) and conformal decomposition of
the 4D Ricci scalar. Some steps can be found in Appendix C. For more details, the interested
reader is referred to E. Poisson’s book [223] for the (3 + 1) or ADM decomposition [224],
and to the appendix of R. Wald’s book [225] for the conformal transformation rules.

Now, we could take the variation of (37) with respect to Yj;, having in mind that the
result should still be transverse and traceless, and obtain the transverse-traceless spatial
component of Einstein Equations. However, this would not be very illuminating. Before
taking the variation, let us use cosmological perturbation theory and expand the action. A
smart way to decompose the spatial metric and to keep the requirement (35) is to take the
exponential matrix, i.e.,

1
Yi]' = (eh)ij = (51‘]‘ + hij + E(sklhikhﬂ + O(hg) , (38)

where h;; < 1 are the transverse-traceless (tensor) modes and satisfy ol hij = aih,-j = 0.
This is used, e.g., in Maldacena’s work on non-gaussianities [226]. For the details of the
expansion in general gauges see [150]. From now on, spatial indices are contracted with the
background spatial metric J;;, for example hii hij = Sii gkt hixhj;. The inverse metric is then
Y = 5?61l (e=7) ;. With this expansion, the 3D Ricci scalar up to second order is given by

RO = — %aihklaihkl +O(h3). (39)

We stopped at second order since we are only interested in scalar-scalar-tensor inter-
actions. We split the other variables as

Y=Y(tx) , ©=0(t,x) , ¢ =3¢t +p(tx), (40)
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where ¢(t) is the background solution and ®, ¥ and ¢ are the perturbations. Using the
perturbative expansions (38) and (40) and only selecting the terms with two scalars and
one tensor, we arrive at

S = / ABx dt{ %h’]hij - %aihkla’hk’ — 2ah13;( + ¥)9;® + ahll9; ;P + %h”ai&pajcs(p} . (41)

where the first two terms correspond to the second order Lagrangian of the tensor modes. By taking
the variation with respect to ;; we obtain the equations of motion of induced GWs, namely

hij + 3Hhy; — a2 Ahjj = a 2P ;;{ —80, (@ + ¥)0, ® + 40, D0, D + 20,099,090}, (42)

where H = i/a is the Hubble parameter and pab ij is the transverse-traceless projector, so that the
equation is consistent with the transverse-traceless degrees of freedom. For the moment, it is enough
to know that it satisfies the requirements of a transverse-traceless object for both pairs of indices.
Also note that in the current case of study, we have no source of anisotropic stress. Thus, for the
sake of simplicity and consistency, we momentarily cheat and use the traceless part of the spatial
component of the linear Einstein equations in Appendix E, which in the absence of anisotropic stress
yields

Y+P=0. (43)

Note that this is not strictly true in the early universe where neutrinos have a large mean free
path and give a tiny contribution to the anisotropic stress [39,40].

Before going to the general solutions of the induced GWs, let us translate the current calculation
to the perfect fluid picture. A perfect fluid with energy density p and pressure P is described by the
following energy-momentum tensor:

Ty = (0 + P)u}tuv + Pguv, (44)

where u is the fluid 4-velocity. The perfect fluid is specified once the equation of state w = P/p
is given. In the perturbative expansion, one takes p = p + dp and u; = 9;v where v is the velocity
perturbation and we neglected vector modes. The energy momentum tensor (44) has to be compared
with the one for the scalar field, which reads

1
Ty = au@vfpfgw(fwa"‘fﬁV((P))~ (45)
The perfect fluid description of the scalar field follows from the identification

o
Uy = —rr 46
s /_alX(Pa“(P ( )

If we simply focus on the spatial component u; we find that
S¢ < v\/p+P. 47)
Thus, in terms of the perfect fluid description we have that
hij + 3Hhy; — a~*Ahjj = a=2P™ ;;{40,99,® + 2(p + P)2,00;0} . (48)

This result coincides with the equations derived in Ref. [38,39]. Note that Equation (48) will
slightly change in the case of a multi-perfect fluid system. We expect contributions from the relative
velocities of the fluids. For a radiation-matter dominated universe, the source term to induced GWs
can be found, e.g., in Ref. [70].

3.2. General Solutions

To solve for the induced GWs, we must solve beforehand the first order equations of motion.
Continuing with the scalar field fluctuations d¢, we find that they are related by the momentum

constraint to @ by [183]
2 P’
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Thus, we must only solve for the only scalar degree of freedom ®, which we will do briefly. For
the moment, we take a general approach and split ® into an initial value ®y and a transfer function
Te as

Pk, 1) = Top(k, T)Py . (50)

If we are considering primordial fluctuations, the initial spectrum for ®y is set on superhorizon
scales (kT < 1) by quantum fluctuations during inflation. However, in general, any source of
fluctuations to the curvature perturbation ® will lead to induced GWs. We will discuss this possibility
later in Section 6. With Equations (49) and (50) we can formally solve the equations of motion for
induced GWs [38,39], which in Fourier space read

WA+ 2HI y 4+ Ky = Sica s (51)
with
_ dq i
Sir =4 [ Gyl (D09 Pe@ucqif (00, Ik —al), (52)
and

f(t.q, [k —q|) =To(q7)To (/k — q|7)

+%(T¢(qr)+%qr)) (T¢,(|k_q|r)+w>, (53)

where we wrote € in terms of b using Equations (15) and (16). To derive Equation (51) from
Equation (48), we used the Fourier transform for ;; in terms of the polarization tensors e;;(k) which
are defined in Appendix D. Then, we used that the projection of ¢;; with the Fourier transform of the
transverse-traceless projector Ppab ij is trivial, i.e., e/ P ij = ¢’ Now, with the Green’s method we
can find a formal solution to (51) given by

o(7) = [ 476, (5,91 (%), (54

where G, (7, T) is the Green's function of the homogeneous solutions to (51) given in Appendix B.
The formal solution (54) is defined such that at the initial time 7; we have Iy, (7;) = Iy, (1) = 0.
Any GW with primordial origin, i.e., generated during inflation, may be simply added to the solution
(54).

Since we are interested in the main observable of the SGWB, that is the GW power, let us
compute the 2-point correlation function of the induced GWs which is given by

(hp(k, T)hp (K, 7)) = /OTdﬁ /OTdTZG(T/Tl)G(TrTZ)<SA(krTl)SA(k’/TZ))~ (55)

Here we have neglected any primordial signal but we could add one without further issue. In
fact, this was considered in Ref. [88] where they may have a non-trivial cross-correlated spectrum
by tensor-scalar-scalar couplings during inflation. We will not pursue this possibility further in this
review. Continuing with Equation (55), we can compute the two-point function of the source term by

(Sx(k, 1) SA (K, 1)) =42 dq [ & ¢ (k)qiq:e’l (K )g'q!
AV L) oA, 12 (27‘()3 (27T)3 A\K)gigje, qlq]

x f(r,0, |k — a))f(r2,9" [K = @) (@qPpc_q Py Ppe—q) - (56)

We see that the induced GW spectrum depends on the 4-point function of the scalar fluctuations.
Such a 4-point function may be decomposed in general into a disconnected, i.e., the product of 2-point
functions, and a connected piece [89]. If we consider that the stochastic fluctuations are drawn from
a Gaussian distribution, the connected 4-point function vanishes and we are led to!!

2772 272
q7373c1>(17)w73<b(|k— ql)

< 2m)00(q+q)0P (k+K —q—q)+(qeo k—q).  (57)

<<qu>\k—q\q>q’q>\k’—q’\> ==
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We discuss the case of mildly non-Gaussian fluctuations in Section 3.3. With further manipula-
tions of Equations (55) and (8), integrating one internal momentum using a Dirac delta and writing
the remaining integral in spherical (momentum) coordinates, we arrive at

_ S 1+v 402 — (1 — M2 + 02)2 227
Po=s o [ (O B s s Palk), (58)

where we followed the notation of Kohri and Terada [63]. In Equation (58) we already summed over
polarizations (see Appendix D for the details) and we have introduced for convenience

o “‘;‘1'. (59)

0

Il
B

We also took the oscillation average, i.e., we integrated over half period and divided by 7, to
take into account that observations of the SGWB actually measure an average over many wavelengths.
Furthermore, we have inserted all the time dependence into a “kernel” or “transfer function” defined
by

T
I(t,k,u,v) E/ at G(t, T)f (T, k,u,0). (60)
T

The (averaged) power spectrum (58) is the main quantity needed for the calculations of induced
GWs. Knowing (58) we can compute the spectral density of GWs by Equation (7). Note that the
induced tensor power spectrum (58) is valid for any curvature perturbation regardless of its origin
as long as it is Gaussian. In the next section, we discuss in more detail the case when the fluctuations
@ are generated during inflation.

3.3. Inclusion of Primordial Non-Gaussianity

Primordial fluctuations generated out of quantum fluctuations during inflation are very close to
being Gaussian, although not exactly. Small departures of a Gaussian distribution are expected due
to gravitational interactions [183,226]. These perturbative departures from the Gaussian distribution
are often referred to as Non-Gaussianity (NG).!> Depending on the formation mechanism, e.g., due
to large interactions among fields, we may obtain some significant level of NG. The possibility
of observing NG of primordial fluctuations is very exciting, as it might provide information on
the particle content during inflation. For this reason, the study of NG is sometimes referred to as
cosmological collider physics [227].

For practical convenience, the predictions of primordial fluctuations generated during inflation
are often given in terms of the curvature perturbation R. This is because R is a non-linearly conserved
quantity on superhorizon scales [228]. This makes it easy to set well-defined initial conditions on
superhorizon scales for whatever scalar variable one might want to consider, independently of
what happened previously (e.g., how inflation ended). For instance, since we are working in the
Newtonian gauge, we have to relate R with ®. It can be shown that on superhorizon scales the linear
relation is given by [229]

543w 2b+3
= D 61
3(1+w) b+2 (61)
In the case at hand, we are interested on NGs generated during inflation, i.e., primordial NG.
These primordial NGs are often parametrized by the amplitude and shape of 3-point function or
the bispectrum [180,181]. For simplicity, we usually consider only the local type NG which can be
expressed as a local perturbative expansion around the Gaussian curvature perturbation R8 by

R =

R(x) = R8(x) + 2 fxt (RS (x))2, (62)

where the factor 3/5 is by convention.'® Note, however, that this is just a particular shape of the
NG. Currently though, there is no study on the impact of other shapes of NG on the induced GW
spectrum. Now, if we go to Fourier space the squared term in (62) becomes a convolution. Then, we
can write that for the ®; modes the perturbative expansion is given by

3
s PEPS (63)

_ o8
q’q—q’q+FNL/(27T)3 1 Plq-17
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where to avoid unnecessary numerical factors we have introduced

32b+3

NL = gmfNL (64)

We can then expand perturbatively the 4-point function in (56) as

S g
(PP q Py Ppo—g) = (PFRT_ o PH P o))

=S By (ofofol | @f bt )
NL/ (2n)3/ (2m)3 k—q-1| K —q' V|

+(k—qle g+ (K -dled)+@eq k—ql < K-

+ F AL /dsl/ (DfDf | DFDF o f
NL / 2n)3 ) (@2n)3 a1 kg1

+ (g qik—q| < K —q|)+O(Fy). (65)

o))

The first term on the right hand side of (65) is already computed in Equation (57). If we focus
on the second line in the NG contribution of (65), we see that there are 6 possible non-vanishing
Wick contractions in the first 6 point function of ®¢ which, together with the 4 remaining possibilities
of the third line, makes 24 terms for the first NG contribution. In the fourth line of (65) there are 8
possible non-vanishing contractions, which make 16 possibilities counting the fifth line. The total
is then 40 non-vanishing contractions.'* The NG contribution can be further classified into three
different terms following the notation of Ref. [92]: the “H”, the “C”, the “Z"”. Using Equation (65) in
(8) and (55), these NG contributions to the induced tensor spectrum can be respectively written as

PR =2 Hul Y [ 28 (00a,)” Prrae—a)
Po(q) [ @1 Po(l) Po(lk—q—1)
5 2w P k—qoip ¢ ©®
DC _ 9612 13 a1 ¢l (k
Py =2Fy Lk Z/ o7 €5 )‘71‘713/\( )lle(’r,q,|k—q|)I(T,l,\k—1|)
Po(lk —1]) Po(l) Po(lq —1])
w7
and
PZ =202, kSZ/ Zne;f K)gigie] (L1 1(x, 9, Tk — qDI(, 1, [k~ 1))

Pa(9) Pa(l) Po(lk —q—1])
e e G

These derived formulas agree with those of Ref. [92]. We will assume that we are in the
perturbative regime, so that the NG contributions (66) and (67) should be thought of as a correction
to the Gaussian contribution (58). The first contribution (66) is also referred to as “hybrid” [90].
Additionally, note that the second line in (66) can be reabsorbed into a redefinition of the primordial
power spectrum to include non-Gaussianities. For instance, we could write

3

PRLG) = Prlo) + P [ 3 ) PR, (©9)
which follows from the computation of (®(k)®(k’)) using Equation (63). This is the term considered
by Cai, Pi and Sasaki [89] and acts as a local redefinition of the primordial spectrum. With the form
of Equation (69) it is much easier to compute the induced GW spectrum up to O(F#; ) since it just
accounts for a replacement of Py, in (58) for PgL.The second contribution (67) was first considered
by Unal [90] and the third (68) by Ref. [81]. Unal also considered the terms of O(Ff\jL) [90]. Most
recently, Adshead, Lozanov and Weiner [92] presented a detailed and complete analysis of all the
contributions up to O(Fg; ). The interested reader is referred to Ref. [92] for the detailed formulas.
We discuss the main features of the NG corrections in Section 5. It should be noted that the effect of
primordial NG might compete with the terms due to non-linearities, e.g., from studied third order
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contributions to the source term of induced GWs. The reader is referred to Refs. [143,179] for the
details on the third order expansion. Lastly, it should also be noted that for simplicity we assumed a
scale invariant fy in (62). However, in general situations one expects that fx is scale dependent.
For a recent study on the impact of the scale dependence see Ref. [93].

4. Analytical Transfer Functions

In general situations the kernel (60) and the power spectrum (58) have to be computed nu-
merically. The problem is that the time integral in (60) is extremely demanding for kT > 1, as the
integrand is the product of three oscillating functions with frequencies that depend on the tensor and
scalar mode wavenumbers. In fact, kT > 1 is the range of scales we are interested in. If we extend the
integral until today, say at T = 19 « H ~1 and we look at scales much smaller than the horizon, we
trivially have k1p >> 1. However, there is more we can learn. For instance, scales accessible to future
GW detectors range from k ~ 107 to 10'® Mpc~!. These very small scales entered the horizon much
before BBN, which roughly correspond to the time when modes with k ~ 10° Mpc~! entered the
horizon.'® Luckily, this implies that we can evaluate the kernel (60) some time prior to BBN when
induced GWs are really inside the horizon and in a radiation dominated universe. Then, from that
moment on, we may simply treat these induced GWs as a radiation fluid with w = 1/3. Note that we
will also consider the case that the modes of interest enter the horizon in an epoch where w # 1/3.
In that case, we must follow induced GWs until the universe transitions to the standard radiation
dominated era. We will provide more details later.

Surprisingly, there are relevant regimes where the integrals in (60) can be done analytically. This
is the case of a constant equation of state parameter w and constant propagation speed of fluctuations
¢s. For example, this includes a perfect fluid whether it is made of a scalar field'® or an adiabatic
perfect fluid, which are commonly used in cosmology. Even when there are transitions between one
perfect fluid domination to another, there will be periods in which w and c; are almost constant. Thus,
the constant w and cs limit is a good approximation in a cosmological set up if the modes of interest
enter the horizon outside the transition periods. With these assumptions, we present the solutions
to first order cosmological perturbations in the Newtonian gauge in Section 4.1 and derive a very
simple form of the source term (53) for the induced GWs. In the general situation where w # 1/3,
the integral (60) can be analytically done for modes which either enter the horizon before or after the
transition. In this way, in Sections 4.2 and 4.3 we respectively derive the kernel for modes which are
subhorizon and superhorizon before the transition. When then follow our solutions to the radiation
dominated epoch.

Main references: The whole section is a generalisation of Refs. [64,74] to account for not only
general constant w but general constant ¢;. The notation used here improves and unifies those
of [64,74]. The main base of Refs. [64,74] was started in [39,63] in the radiation dominated universe.

4.1. First Order Solutions

At the moment, the formal solution (54) for the induced tensor modes does not tell us much.
To extract some meaningful information, we have to solve the equations of motion for first order
perturbations, which are given in detail in Appendix E. After some simplifications, the equation
for the Newtonian potential for general w and ¢; and in the absence of isocurvature!” fluctuations
reads'®

@' + (2e — )HD — (;7 +2s<1+e—17—Zs+%))7{2®+c§k2® =0, (70)

where we have also introduced € as in Equation (15) as well as

:i and s = Cs
ane " Hes

(71)

The notation €, 7 and s is typical of inflationary models and simplifies the form of the equations.
One may of course write Equation (70) in a more conventional notation, e.g., that in Mukhanov’s
book [229] which for constant ¢ reads

" +3H (1 + c$u>c1>’ n (2%’ T+ 3c§,,)H2)<1> +RD =0, (72)
where 2, = P/p and ¢ = §P/dp. In the case of an adiabatic perfect fluid one has ¢ = ¢2 = w.
In the case of a canonical scalar field we have c¢;, = w and ¢; = 1. As we already mentioned, for

analytical viability we are mostly interested in the case of constant w and cs. This requirement in turn
implies § = s = 0, so that the Newtonian potential in Equation (70) behaves as a massless field. The
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solution to (70) for general ¢s and w is given in terms of Bessel functions of the first and second kind,
explicitly

D(kt) = (csk) "0 (C1Jp13/2(eskT) + C2Ypsa/2(cskT)) (73)
where b in terms of w is defined in Equation (16). Now, we must give some kind of initial conditions
to ®. If the primordial spectrum was generated by quantum fluctuations during inflation, the initial
conditions are well-defined and constant on super(sound)horizon scales, that is when csk7 < 1. By
picking up the asymptotically constant term in (73), we find that C; = 0 and

D (kt) = Dy 22T (b + 5/2) (cskt) 07372, 5 0 (cskT), (74)

where @, is the primordial (stochastic) value set by inflation. Note that the general solution (73) is
not valid for ¢s = 0 where the gradient term in (70) is absent. Nevertheless, the solution for constant
w is just & = Py on all scales. The case of ¢s = 0 is quite particular as the fact that ® does not
decay implies a constant source to induced GWs. This makes the detailed dynamics of the transition
to radiation domination very important for the final GW spectrum [65,66], when the source term
experiences drastic changes. We dedicate Section 6 to this particular case.

With an exact analytical formula for the first order perturbations, we can attempt to compute
the resulting induced GWs. For that, we first need to know the two independent homogeneous
solutions to the tensor mode equations (51), say #; and hy. For constant w they are given as well in
terms of Bessel functions with one order less than in ®, concretely

h(kt) = (kt) " V2], 1 p(kt) and  ha(kt) = (kt) 07 V2Y, 0 (k). (75)

In Equation (75), hy and h; respectively are the growing and decaying modes. Note that there
is no ¢, since in general relativity tensor modes propagate at the speed of light. This yields a Green’s
function (see Appendix B) given by

T (k’f)b+3/2
G(t,7) = fkm(hﬂ/z(kﬂﬂﬂ/z(kﬂ = Jo+1/2(kT)Yp1/2(KT)) . (76)

This finishes the list of necessary ingredients for our induced GWs calculations. In passing,
since there always appears the combination kt or k¥ we introduce the useful notation

x =kt, (77)

which we will use from now on. Additionally, a tilde on x implies a tilde on 7, i.e., ¥ = kT.

Thus far it seems that we may have to deal with several integrals containing at least three Bessel
functions, which is challenging to do analytically in general. However, the source term to the induced
GWs ends up acquiring a simple enough form after several simplifications. For instance, using the
Bessel functions properties (see Appendix F), we find that Equation (53) reduces to

204312

b+2
< (T2 (o0l sles) + ot hssaleomhsalenn) ), (79

where we used x from (77) and u and v from (59). To arrive at (78) one needs to write the Bessel
function ], 3/, that appears in ® in a combination of J,,1,, and J, 5/, which can be found in
Appendix F. So far, it is not entirely clear whether there is any physical reason behind the simplifica-
tion (78) which turns out to render the source term as a sum of the squared of Bessel functions of the
same order. This simple form of the source term is crucial to obtain analytical formulas for general b
and c¢s that we derive below.

Replacing (77) and (78) into Equation (60) we find that the kernel can be written as

2643, ,

I(x,u,0) =m4’T?[b +3/2] b2 (Ruvx) V2 (Jy 1 /2 () Ty = Ypin2(x)T) (79)
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where we defined for compactness
N .
T = / iz fl/Zfb{]lﬁl/Z(x) }
1= Jo Ypy1/2(%)
N N b+2 . .
X | Jp4172(es0%) Jyg1 /2 (csu%) + = Jp15/2(cs0%) Jpp5/2(csu%) | - (80)
b+1

Unfortunately, we are not aware of a general analytical formula for the time integrals (80)
unless b € Z, in which case the Bessel functions reduce to spherical Bessel functions and can be
written in terms of transcendental functions. This is for example the case of radiation domination
b = 0 (w = 1/3), where the general kernel can be found in Ref. [63]. Nevertheless, we can integrate
(80) in two relevant limits, x > 1 (subhorizon) and x < 1 (superhorizon).

Let us explain the assumptions needed for the approximations before jumping into the actual
calculations. We are considering that right after inflation there is a period when the universe has a
free b (or w) and free c;. However, to recover the standard hot big bang cosmology, such an epoch
must end, and the universe must enter a radiation domination stage. Thus, whatever solution we
find in this section for the induced GWs must be followed until we reach the radiation dominated
stage. For simplicity, we will assume an instantaneous transition. Then, we will refer to the time of
transition as “reheating” time 7, and the comoving size of the horizon at that time as “reheating”
scale ky,. The value of ky, in terms of the “reheating” temperature Ty, can be found in Equation (32).
The assumption of an instantaneous transition might be important for those tensor modes with
wavenumber k ~ k. Namely, those modes which entered the horizon around the transition. If the
transition is gradual, then our approximations will not be very good for modes which entered during
the last stages of the transition. In any case, as we shall see, the instantaneous approximation gives a
very good idea of the shape of the induced GW spectrum even for k ~ k,;,. On top of that, we will
assume that the scale corresponding to the peak of the primordial spectrum enters the horizon well
before reheating so that during and after reheating there is no significant source of induced GWs. In
the case of a top-hat primordial spectrum, this means that the scale corresponding to the IR cut-off
enters the horizon much before reheating. Under these two assumptions, i.e., sudden transition and
“localized” primordial spectrum, we can proceed to derive our analytical formulas. Note that this
does not apply to the case when ¢; = 0 which we discuss in Section 6.

4.2. General Subhorizon Kernel

Let us start with the simplest situation. This corresponds to the case when all modes of interest
entered the horizon much before reheating, that is k > ky;,. Then, we can safely send the upper
integration limit in (80) to infinity, i.e,, x = kt > 1. This is because when we eventually match
our solution at reheating to a free GW propagating in a radiation dominated universe, the upper
limit would be x4, = k1, ~ k/ky, > 1. The integrals (80) for x — oo are derived by Gervois and
Navelet [233] and given in Appendix G. Here we just give the form of (79) after integration, which
reads
2b+3 |1 —y?|/?

b+2  cZuv

X {Cos(x - %”) (Pb’b(y) + %P;ﬁz(y))(@[cs(u +0)—1]

I(x > 1,u,0) =x""14"T%[b +3/2]

+ % sin(x - %ﬁ) (Q;b(y) + %Qg&(ﬁ)@[cs(u +0) —1]

~2ain(x—15) (Qb_h(—y) +2%Q;ﬁ2(—y))®[l el +v)]}, (81)

where ©[x] is the Heaviside function, P, b(y) and Q, b () are the Ferrer’s function of the first and
second kind, valid for |y| < 1,and Q, b(y) is the associated Legendre function of the second kind,
valid for |y| > 1. Their explicit expressions in terms of Hypergeometric functions can be found in
Appendix H. We also defined for simplicity

1-cd(u—0)? __1_1—c§(u+v)2

= 82
2c2uv 2cuv (82)

y=1
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and we Taylor expanded the Bessel functions for large argument. Note that y is related to the area
of the triangle made by the three momenta, cs|k — q|, ¢s|q| and k. The presence of the Heaviside
function in (81) signals the possible resonance we anticipated in Section 2.2 when the wavenumber
of a tensor modes equals the sum of two typical scalar modes 2¢skj ~ k. In more practical terms,
when ¢ (1 4+ v) ~ 1 the three Bessel functions in the definite integral (80) for x — oo conspire (by
rendering their product as coherent oscillations) and yield a divergent integral. Additionally, note
that Equation (81) has the same time dependence as a subhorizon tensor mode propagating in a
constant b and ¢, universe, e.g., see Equation (75). In other words, it decays as a~2 and oscillates
with a frequency proportional to x. This was expected as the source term for induced GWs decays
once inside the horizon and, therefore, induced GWs behave as a freely propagating GW. This does
not apply in the case of a dust dominated universe though.
In the current form Equation (81) is general enough so that it can also be used in the C (67) and
Z (68) NG terms. However, in this review we are more interested with the Gaussian contribution
(58). Thus, we are more concerned about the averaged square kernel. After some simple algebra,
that is squaring (81) and calculating the oscillation average, we arrive at
By o —2(b+1) g2 2b+3)21—]/2|b
I2(x,u,v) =x 47T [b+3/2](b+2 222

2
x { (P + 3P a) ) Olstu+o)—1

2
+ % (Q;b(y) + %ngz(y)) Oles(u+0) —1]
2
+ %(Q;b(_y)+2%Q,ﬁ2(—y)) o1 —cs(u+v)}}. (83)

With the averaged kernel (83) we are ready to compute the induced GWs in quite general
situations. We are only left with the integral over momenta which can be easily computed numerically.
Analytical formulas for the final GW spectrum are discussed in Section 5. Let us note that although
(83) might look technically complicated to implement, it is by far more useful than attempting a
numerical integration of three Bessel functions. Furthermore, the superhorizon approximation is very
good for modes with k > ky, regardless of the shape of the primordial spectrum. This is because
induced GWs with k > kyy, are essentially already free GWs. Thus, soon after horizon re-entry and
thereon they will behave as relativistic particles in an expanding universe. This also means that we
can evaluate (7) and (83) at the instantaneous reheating time, i.e., T = Ty, to estimate the observable
spectral density of induced GWs. We will do this shortly. If the transition is gradual, the kernel (83)
is a good approximation for modes which enter during a period with almost constant b.

In the next subsections, we will have a closer inspection to the kernel (83). After matching to
radiation domination, we will look at the behaviour of the kernel near the resonant point and in the
IR tail.

4.2.1. Matching to Radiation Domination

Let us discuss the matching to radiation domination in more technical terms. After matching
the background quantities at T = T,,, that is the scale factor a and the Hubble parameter H we find
that 2 and H in the radiation dominated period follows the typical solution (found in (16) with
w = 1/3) with a shifted conformal time, which reads

b

- mfrh ’ (84)

T

T

where b is related to the equation of state of the previous epoch by (16). Now, for the matching of
tensor modes it is important to realize that the continuity of h;; and its first derivative imply the
continuity of the kernel (60) and its first derivative. Thus, from now on we simply deal with the
matching of the kernel (60). Since we are dealing with subhorizon scales we have that the kernel
before the transition is

I(x > 1,u,0) ~x 071 (Al,h sin (x - bg) + Ay cos (x - b%)) , (85)
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where the coefficients, not important at the moment, can be extracted from Equation (81). The kernel
after the transition is also for subhorizon modes, which must have the form of a freely propagating
GW in a radiation dominated universe, namely

Irp(x > 1,u,v) =Airp Sl;x + A2rD CO; z. (86)
It is easy to convince oneself that after matching (85) and (86) at T = 7, one finds that
2 2 ktin 2 2 2
Atrp +A2rp = | 7 b (Al,b + AZ,b) : (87)
This implies that although we should be calculating
K> RD
QGW(k >> krth >> Trh) == th 7 (88)

with

_ ) 14+v 2 12 a2\2N\2__
PRO =5 [~ do /‘1 ‘du<4” <14u;‘ +o7) ) 2> Lo,u)Pelku)Poko),  (89)
. P —0

it is equivalent to evaluate

2

k _
QGW(k >k, T> Trh) = Ph

T 12a2H2 (90)

7
T=Trh

with

oo . 2

Pi=8 dv/”v du (4”2 G ”2)2) x> 1,0,0)Po(ki)Po(ko),  (91)
0 [1-2]| 4uv

where the kernel is that given in (83).

It is important to note that our subhorizon approximation is valid for modes with k7 > 1.
Later, we may try to join the subhorizon approximation with the superhorizon approximation valid
for k1, < 1by extrapolating up to k1, ~ 1. Let us call such scale k;,,. However, there is an important
subtlety in joining the two approximations. If we look at the scale that last crossed the horizon at
reheating, namely

1+b
keh = Hn = ’ (92)
Tth
we see that if we compare with k;;, we have that
km 1
L —— 93
ke 140 (93)

For b > 0 we have that k;;, < kyy,. This means that our subhorizon approximation is even valid
for k ~ k;, and, therefore, we expect a good matching with the superhorizon approximation at
k ~ ky, (since for k < k,, the modes are superhorizon before the transition). However, for b < 0 we
find ki, > kyp,. This time the subhorizon approximation breaks down for k > k,;, and so we expect
the matching with the superhorizon approximation to be at k ~ k. This is what we eventually find
in Section 4. In addition to the above, we have that the subhorizon approximation has corrections of
O(x'+t) [74]. So for b < 0 the corrections quickly become important for x ~ 1. A detailed studied for
b < 0, perhaps with numerical methods, is needed to clarify the exact shape of the GW spectrum.
Nevertheless, our results should be a good order of magnitude estimate.

Let us remind the reader that when implementing (83) inside the tensor spectrum (58), we
must bear in mind that if we are considering primordial curvature fluctuations from inflation, we
have to rescale the spectrum of ® accordingly, namely

[ b+2)\?
Po = <m> Pr. (94)
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4.2.2. Resonances

Here we focus on the general behaviour near the resonant point for the averaged kernel (83)
that we discussed in Section 2.2. We start by noting that we have three vectors, the one from the tensor
mode k and the two scalar modes, q and k — q, which of course satisfy momentum conservation.
Recall that from Equation (59) g corresponds to v and |k — q| to u. This means that our three variables
satisfy a triangle inequality, that is

k—ql <|k—q| <k+q or |k—q|—g|<k<|k—q|+g, (95)
which translates into
l1-v<u<l+v or |lu—v|<l<u+v. (96)

The area A of the triangle made by k, g and |k — q| is related to the angle between k and q by

2A
sinf; = T 97)
This means that the projection with the polarization tensor (see Appendix D) is proportional to

the area, namely
ei{q,'qj o sin? B ox A2 (98)

This implies that the saturation of the triangle inequality at # + v = 1 corresponds to zero area
and, therefore, does not contribute to the integral (58). Now, from the arguments in Section 2.2 we
expect a resonance when

cs(u+v)=1. (99)

Thus, if we have c2 = 1 the resonant point coincides with the saturation of the triangle inequality
and, thus, has vanishing contribution. In this way we see that, by momentum conservation, there
is no resonance for ¢2 = 1 in the induced GW spectrum. Nevertheless, for 2 < 1 we do have a
resonance inside the integration region (see Figure 2).

q 0 u
1< cs(u+0)

k l1<u+vo

Figure 2. On the left, relation between the three vectors involved in the integrals of induced GWs for
the Gaussian part. On the right, illustration of the triangle inequality. We see that when 1 < ¢ (u + v)
and ¢s < 1 we are below the triangle inequality and the resonance is allowed by momentum
conservation.

We can confirm these expectations by expanding the kernel (83) around ¢ (1 4+ v) ~ 1 which
corresponds to y ~ —1, where the associated Legendre functions might have a divergence. The
asymptotic behaviours around y ~ —1 are given in Appendix H. Focusing first on the case b < 0, we
find that the kernel diverges as

8  csc?(bm)

12 U, /b 0) ~ 72(b+1)42b1-4 b+5/2
fes (X, 14,0, < 0) ~x [b+5/ }c‘sluzvzl"2[3+b]

1= Iyl (100)

This recovers Equation (29) which showed that a very peaked primordial spectrum, so that
u ~ v~ ky/k, leads to

Givs (b < 0) o [1— [y[[? oc [k — 2csky [ (101)
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The case b = 0 is explicitly given in Equation (209). In the case when b > 0, we arrive at

—_—  _ 32 1+ b+ b2 T[b 2
2 (x,u,0,b > 0) mx 2+ 43074 4 5/7] i ((é D0t ;) r[zb[i 3]) , (102)
S

which is independent of y. Thus, as expected there is no resonance for b > 0. Nevertheless, as shown
in [64] for 1 > b > 0 there is still a peak at k = 2cskp, in the induced GWs spectrum for a peaked
primordial spectrum. We can roughly understand the peak by noting that since Q;b(y) ~(1-y)?,
the next leading order must be Q- b(y) ~ (1 —y)~? 4 constant since b < 1. Then, inserting this into
the kernel (83) we find that

resis(1 < b < 0) « constant — |1 — [y||” o constant — [k — 2cskp|”. (103)

For b > 1 and ¢ # 1 there is no detailed study of the kernel (83). Nevertheless, by looking at
the explicit expression for b = 2 (213) we see that there is nothing special at ¢s (1 + v) = 1. Before
ending this section, note that the kernel is symmetric around the resonant point cs (1 +v) = 1. It
displays the same behaviour when approaching from both directions, cs(u +v) — 1%.

4.2.3. Infrared Regime

Here we show the behaviour of the kernel when u ~ v >> 1 which is the relevant regime for the
IR tail of the GW spectrum as v ~ k, /k and k < kj. This limit means that, if there is any peak in
the spectrum of scalar fluctuations, we are looking at scales much larger than the scale of the peak.
Thus, such limit of the kernel (83) is relevant for wavenumbers ky, < k < kp, where we included
k., since it is the limit of the subhorizon approximation. The cases b < 0 and b > 0 exhibit different
behaviours as anticipated in Section 2.2. In the limit y — 1, the average kernel (83) is respectively

given by
_ 8 csc?(bm)
2 ron—2(b+1) g2b14 2b
IIR(x > 1,u,v,b< 0) =X ( )4 T [b+5/2] CéuZUZ mu - ]/| ’ (104)
forb < 0and
_ 32 (1+b+b2) T \°
If 1u,0,b > 0) ~x 20D [p 4 5/2 ( > ,
(x> Lu,0b>0) ~x [b+5/ ]7r2c§1u2212 (b+1)(b+2)T[2b+3] (105)

for b > 0. They are actually very similar to (100) and (102), except for the fact that we are now
looking at u ~ v >> 1, so that 1 —y ~ v~2. Evaluating (104) and (105) at the time of reheating
and taking into account the factor k? in (58), we see that whatever the IR scaling in the radiation
dominated universe (which for localized sources is k® [78]) we have to correct the exponent by a
factor —2|b|, i.e., to 3=21%! for a localized sourced. This is the same result as in Section 2.2. The
absolute value is due to an extended superhorizon growth of tensor modes for b < 0, as explained in
Section 2.2.

4.3. Superhorizon Kernel Approximation

In the previous subsections we have studied in detail the subhorizon kernel. However, there
are modes which are still superhorizon at the time of reheating. Thus, for such modes we cannot take
the upper limit in (80) to x — co as x < 1 at reheating. In addition to the approximation x < 1, we
will use the assumption that the peak in the scalar spectrum Pg is on scales kj >> ky,. This means
that we are only concerned with the region of integration of (80) around the peak in Py, where we
have that v ~ kj,/k > 1 and therefore u ~ v > 1. Using this fact we can expand the first Bessel
function for a small argument in (80) and integrate in the limit of # ~ v. By doing so we arrive at
Equation (20) but for the kernel, namely

I(x < 1,u,0) ~Byy + Byyx 2, (106)

where the exact coefficients are given by

B (3+2b)%(1+b+b?) 411072 4+ 5/2]
1,b = =

P marary @0 B e gl 107
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The details on the integrations can be found in Appendix G. Thus, we have found the kernel for
modes which are superhorizon before reheating. However, these induced tensor modes are not yet
GWs so we must follow them after they enter the horizon in the radiation domination era.

4.3.1. Matching to Radiation Domination

The kernel (106) is valid for superhorizon modes during an arbitrary b = constant period.
After this period ends with a sudden reheating, we shall assume that the source term is shut off and
tensor modes evolve as freely propagating massless tensor mode. As explained in Section 4.3 the
continuity of h;; implies continuity of the kernel. This means that the kernel goes from (106) to the
kernel of a superhorizon tensor mode in radiation domination, which reads

IRD(X < 1,u, U) zBl,RD + BQ,RD(k’l_')_l with T=1-— (108)

_b
1+b ™
where we introduced T from the continuity of the background FLRW metric, i.e., we imposed
continuity of 2 and H at T = 7,. Matching (108) and its first derivatives with (106), we find that

2b -
3 Bay (k)2 (109)

1-b _
Birp = Bip + —— Bop(kt)™® , Borp = a+op

1+b

Thus, we have effectively continued the superhorizon kernel from the b = constant era to the

radiation era. We can now follow the kernel down to subhorizon scales, which must behave as a

tensor mode in a radiation dominated universe as there is no source, that is Equation (75) with b = 0.
Then, taking the averaged square kernel yields

1
Ijp(k <k, T>> Tn) ~oa (B%,RD + B%,RD) - (110)

After picking up the most relevant contributions, that is the leading terms for v > 1, we
arrive at

2
1 (3+20)?
Trp (K <hin T Tn) % 57 (m)

_ 2
X ((1 b4 b?)(csv) "2 — 4102 (b + 3 /2] (1 ; b) (csv)2(140) ((1 + b)%) 2b> . (111)

This is the kernel squared that should be used in the induced GW spectrum (58) for scales
k < ky,. In this way, the kernel (111) yields the right IR scaling for localized sources in a radiation
dominated universe, i.e,, Q. o k3 [78]. The matching between the superhozion (111) and sub-
horizon (83) approximations at k ~ kg, has shown to be very good in the instantaneous reheating
case [74]. Note that for a gradual transition, the superhorizon approximation should still be good
enough except for those modes which enter during the transition. We can then calculate the spectral
density of induced GWs by

k2 RD
Qcw (k >k, T> ) = mph , (112)
with
_ 0 1+0 2 (12 .22\2__
PRD :8/0 dv/ll ‘du(4v (14ml)4 +?) ) B, (x> 1,0,u)Po(ku)Po(ko),  (113)
-0

and using Equation (111). Nevertheless, it is worth noting that for a Dirac delta or a fairly sharp
peak and b > 0 a good approximation to the full induced GW spectrum is to stop the subhorizon
spectral density (90) at k ~ 3/4ky, and match with a power-law Qgw = Qgw,m (4k/ 3k )? [74]. The
amplitude of Qg can be found by matching the two.

It should be noted that Equation (111) does not recover the logarithmic correction typical of
induced GWs in a radiation dominated universe [79]. The main reason is that we assumed the source
term to stop at reheating and, therefore, that superhorizon tensor modes at that time behave as free
tensor modes. This is a good approximation taken for simplicity. However, the precise matching
would require to first match the Newtonian potential ® from a b = constant universe to radiation
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domination and then continue the kernel (60) after reheating with the matched ®. This would give a
more accurate calculation and would most likely recover the logarithmic correction in the IR tail.

5. Typical Induced GW Spectra

In Section 4 we derived analytical approximations for the kernel (or transfer functions) of
induced GWs. However, we still have the integral over the scalar momenta. While the kernel was
not so sensitive to the shape of the primordial spectrum, i.e., the approximation is valid as long as all
the relevant primordial spectrum enters the horizon before reheating, the integral over momenta
crucially depends on the shape of the primordial spectrum. In this section, we will present the final
form of the induced GW spectrum and discuss their main features. We will not be so concerned in
the series of approximations to achieve analytical formulas of the GW spectrum, which can be found
in the papers. Before doing so, we will carefully derive in Section 5.1 what is the spectral density of
induced GWs measured today. Then we will focus on the simplest types of motivated primordial
spectra. These are a very sharp peak Section 5.2, a log-normal peak Section 5.3, a broken power-law
Section 5.4 and a scale invariant spectrum Section 5.4.2. We will also comment on possible oscillatory
features Section 5.5 on top of the basic shapes and the impact of primordial NG on the final GW
spectrum Section 5.6.

Main references: Although there are many studies on the induced GW spectrum for various
primordial spectra, we focus on the cases where analytical formulas have been derived. In this
way, Section 5.1 can be derived using the formulas in Appendix A and can also be found in [64,74].
Section 5.2 is mainly based on [74]. Section 5.3 follows [74,82]. Then, Section 5.4 is based on [81].
Section 5.5 briefly describes the results of Refs. [84,87]. Lastly, Section 5.6 reports the main findings
from Refs. [89,90,92].

5.1. The GW Spectral Density Today

To find the power of GWs that we would observe we have to evaluate (7) today, namely

1 d
Qowo = 33 5 k- (114)
pl 70
However, our computations in Section 4 were done up to and including the transition to a
radiation dominated universe. Since deep inside the horizon we have that pgw & pr o a~* then after
reheating we have that Qgw = Qgwh = constant. To relate Qg 1 with Qgwo we can make use of
the fact that GWs behave as radiation and write

1 dpcwy
Qcewoh? = Q, gh? — LWl
GW,0 7,0 0r0 dink

2 —4/3
—1.62 % 10—5< Q0 oh ) <g*(Trh)> (g*S(T‘h)) QGwh - (115)

418 x 10~> 106.75 106.75

where Qr,0h2 ~ 4.18 x 1077 is the density fraction of radiation today given by Planck [2]. We also
traced p, o and pgw ¢ back to the reheating time taking into account that the effective degrees of
freedom change with temperature. In the case that the induced GWs are generated during a radiation
domination era we should replace the subscript “rh” for the evaluation at a time when the induced
tensor modes start to behave as a GW. This is denoted with a subscript “c” by Inomata et al. [126].

5.2. Dirac Delta Peak

The simplest case is that of a very sharp peak in the primordial spectrum. While this type of
spectrum is not possible to generate during single field inflation [103,109,234], it may be achieved in
multi-field models of inflation [95,235-241,243]. If the peak is extremely sharp, it is often modelled
by a Dirac delta as

Pr(k) = Ard(In(k/k,)) . (116)
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Although this might be an unrealistic situation, it captures the essence of sharp peaks and
gives insight on the kernel. We discuss a more realistic situation in Section 5.3. Now, for the power
spectrum inside the integral (58) we have

k k
Pr(vk) = Agd(In(vk/kp)) = AR%J (v - 7”) , (117)
and similarly for u. Recall, however, that the integral over u is bounded by momentum conservation
to |1 —v| < u <1+ v. So, when we integrate over v and u using the Dirac delta, the range is now
|k —kp| < kp < k+kp. This translates to a range in k given by 0 < k < 2k,. After taking this finite
range of k into consideration, we may simply evaluate at v = u = kj/k the integrand (89) (and
(113)) and insert it into (88) (and (112)) to arrive at

2/ kp\? K2 G
Qcwm(k) = 7 (ﬁ) <1 - 41{%,) Iy (k/ ke, K/ Kp) ©(2kp — k). (118)

Note that we are being general by allowing a b = constant phase before the standard radiation
domination. Since we are assuming an instantaneous transition at T = 7,3, from the b = constant to
radiation domination, we have to include the scale k;, corresponding to the last scale that entered
the horizon at the transition. In more detail, k, is related to 74, by

ki = Hop = 1jh b (119)
T

Thus, we have that x;, = k7, = (1+ b)k/ky,. If we are considering the induced GWs in a
radiation dominated universe we may simply replace k;, — kj and recover the standard formula [63].
In Figures 3 and 4 we see the GW spectrum for different values of b and respectively for ¢Z = w and
cZ = 1, so that the resonance is evident.

— b= —0.46(w = 0.9)

ERRAER

Logo[Qcw ./ A%]
o

|
g
o

I
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-1.0 -0.5 0.0
Logm(k/kp)

Figure 3. Induced GW spectral density for a Dirac delta primordial spectrum, in terms of wavenum-
ber k/kp. We restricted the plot to k > ky,. We show the induced GW generated in a radiation
dominated universe (red line), in a stiff fluid domination with w ~ 0.9 (purple line) and in a soft
fluid domination with w = 1/9 (orange line). All cases have ¢ = w and, thus, the spectrum presents
the resonant peak at k ~ 2c2k,. We see that for softer w, the position of the peak moves to the left. We
also see that stiff w enhances the overall amplitude of the induced GW spectrum and has a sharper
resonant peak.
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Figure 4. Induced GW spectral density for a Dirac delta primordial spectra, in terms of wavenumber
k/kp. This time we chose cg = 1 and, therefore, the resonant peaks of Figure 3 are absent. We show
inred w = 1/3, in purple w ~ 0.9 and in orange w = 1/9. We see how the stiffer the w, the larger the
overall amplitude of the induced GW spectrum.

Despite the fact that (118) is already a completely analytical formula, the functional complica-
tion does not provide much insight yet. Nevertheless, we can check one interesting limit, which is the
IR tail of the spectrum. Expanding (118) for k < k, we arrive at a general analytical approximation
for the low frequency tail of the GW spectrum. First, for b < 0 we have that

2
AR (224 b)T2[3/2 48]\ (kg \ T
Ocwn (b <0,k < kp) = < 2(1+D) 1+b < k )

TTCs (1+0b) P

T 12
23+2b k 2 <
= (= k<kgyp/(1+D

7T(1+b)2b(krh) (kS k/ (14))

(smlm;r[zw])z<ki)2+2b (k2 ken/ (1+D))

where we set the broken power-law knee at k ~ ky, /(1 4+ b) since it is when the subhorizon approxi-
mation breaks down for b < 0. A more detailed discussion can be found in Section 4.2. Second, for
b > 0 we find

. (120)

Ocwm(b > 0,k < kp)

A <(2+b)(1+b+b2)>2<krh)2

24w 2b(1 + b)> kp
2
() (k < k)
rh
. a2
12T +3/2] 2< k)zzb (k> k)
2\ (1 1p)ttt [ ~ o

where this time the matching is roughly at k ~ ky,. The above formulas agree with those in Ref. [74].
The difference between b > 0 and b < 0 is the continued superhorizon growth in the case of b < 0
which is explained in Section 2. The most important aspect of Equations (120) and (121) is that it
clearly shows how the IR spectral tilt of the induced GW spectrum is directly related to the equation
of state parameter at the time of induced GW generation. Thus, the observation of the IR tail gives
insight on the expansion history of the primordial universe. Interestingly, for b > 1 (w < 0) the
spectrum has a peak at k ~ ky, which is larger than that at k ~ k. This means that induced GWs for
b < 1 peaks at a different scale than the peak of the primordial spectrum. This has been used, e.g.,
in [132] to fit the NANOGrav results [18] and at the same time predict PBH with a mass smaller than
the solar mass. If instead one assumes induced GWs in radiation domination to fit the NANOGrav
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frequency range, the associated PBH counterpart must be of the order of solar mass. We discuss more
about these possibilities in Section 9. Another important point is that the amplitude of the spectrum
at k ~ kjp strongly depends on the ratio ky, / kp and often mildly on b. We thus see that the smaller the
ratio ky, /kp, the more suppressed is the spectrum at k ~ ky,. This is because the main induced GW
generation occurs when the scalar mode k, enters the horizon. Then, since the modes with k ~ ky,
have been superhorizon until the transition they can only grow by a factor (ky, /kp )2. For b < 0 the
argument is slightly different because of the second superhorizon growth and so the suppression is
minor compared to b > 0 with a power index that depends on b.

5.3. Log-Normal Peak

We now turn to a more realistic situation where the peak in the primordial spectrum has a finite
width. Inspired by several models of multi-field inflation the peak of the primordial spectrum may
be parametrized by a log-normal [82], namely

A In?(k/k
PRl = R exp| -0 (122)

where A is the dimensionless width of the peak. Note that the power spectrum (122) is normalized,
ie, [* dInkPgr(k) = Ag. The log-normal parametrization includes sharp peaks where A <
1[95,235-243] and broad peaks where A 2 1 [62,85,102,128,238,244-255]. For A — 0 we recover the
Dirac delta case.

In this review we are mainly interested in the case of a narrow peak (A < 1). The reasons are
its simplicity and that we can use our results for general b of Section 5.2. The interested reader for
analytical approximation in the broad peak case (A 2 1) in radiation domination is referred to the
work of Pi and Sasaki [82]. Here we may directly borrow their result for A < 1 which reads

Oaw a (k) = erf( L sinh ™ =) Qg 5 (), (123)
, A 2%, '

where erf(x) is the error function and Qgw (k) is the GW spectrum induced by a é-function peak
given in Section 5.2. Then, Equation (123) provides the correction to the Dirac delta spectrum of
Section 5.2 due to the small but finite width of the spectrum which leads to the k® IR scaling in

radiation domination [78]. The most important effect then appears when the ratio of scales k/ky, is
smaller than the width A. Indeed, when k <« kp we have that

k
Qcwalk) = f(m) Qcws(k), (124)

which gives a correction of erf (k/(2k,A)) ~ k/(2k,A) when A > k/(2k}). Thus, due to the presence
of A our IR tail of Section 5.2 changes respectively for 2k,A < kg, and 2kpA > ky, to

k 3
(E) k < 2kpA < ke,
k 2
QGWs(k < kp,kaA < krh) & A%Q <k7) kaA <Lk <K krh , (125)
4
k 2-2|b|
(E) k< 2k,A < ky

or

3
( > k < kg,

3-2|p|
Qcws(k < kp, 2kph > k) o< AR ( ) kp < k < 2kpA . (126)

2-2|8|
> 2%k,A < k < ky
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Note that since ky,/kp < 1 the case 2kpA > ky, still allows for a very sharp peak with
ke / (2kp) < A < 1. See how the inclusion of the finite width increases the richness of the induced
GWs spectrum. We illustrate this in Figure 5. Additionally, note that if b = 0 then the induced GW
spectrum only has two different slopes and k;;, becomes meaningless.

Before ending this subsection, we briefly discuss the case when A > 1. It is shown in Ref. [82]
that in the induced GW spectrum in radiation domination for A > 1 and near k ~ k, is well
approximated by

2 12 (k/kp)

QP (A > 1) ~ 0.125“2—72%* . (127)

This means that the GW spectrum induced by a log-normal peak in the primordial spectrum
also follows a log-normal peak but with a shallower width given by A/ \/2. The factor 2 is a reflection
of the secondary nature of induced GWs [82].
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Figure 5. Induced GW spectral density for the log-normal primordial spectrum. We used ¢ = 1, so
there is no resonant peak. We also chose b = 3/2 (w = —1/15) to show that for b < 1 the largest
peak of the induced GW spectrum for a Dirac delta is at k ~ kg,. In purple we show A = 10~° which
for the range of k shown in the plot is effectively the induced GW spectrum of a Dirac delta. For
k < kyp, the GW spectrum goes as k2. In red we show A = 1073 so that the effects of the finite width
occur within the plot range. Around k/k, ~ 5 x 1072 the GW spectrum goes from k? to k°. Lastly,
we show in orange A = 10~!. The finite width becomes important now for ky, < k < ky and the GW
spectrum transition from k=20 = k=1 to k3-20 = k0.

5.4. Broken Power-Law

In Section 5.3 we have studied the log-normal sharp peak which is inspired in multi-field
models of inflation. However, if the curvature perturbation is enhanced during single field inflation it
often takes a broken power-law shape [103,109,234,256]. The induced GWs counterpart for a broken
power-law primordial spectrum have been studied in Refs. [80,81,105,141,220]. Here we present the
results of Ref. [81], which contain analytical approximations for the amplitude and spectral tilt of
both the IR and UV tails of the induced GW spectrum. A detailed discussion on the approximations
used can be found in [81]. At the end of this subsection, we also briefly discuss the case of a scale
invariant primordial spectrum.

Let us parametrize the primordial curvature power spectrum as a strict broken power-law

given by
k nR
— <
(kp) K<ty

PR = AR k —huv
() e
kP

, (128)
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where npgr, nyy > 0 respectively are the IR and UV spectral tilts of the spectrum which peaks at
k = kp. In single field models one often finds that ng ~ 4 [103]. If the enhancement of the curvature
fluctuations is due to a bump in the inflationary potential, then nyy can be related to the second
derivative of the potential at the bump [80,256]. In such models nyy is also related to the local
non-gaussianity parameter fyy [256]. In what follows, we will only focus on induced GWs in the
radiation dominated universe and later discuss its generalisations to other values of the equation of
state parameter. Currently, only analytical approximations for radiation domination are available.
Now, using (91) and (128) we can compute the associated induced GW spectrum. Doing so for the
IR tail, i.e., for modes with k <k, we find that

~ 1242 1 1 kN ok
QGW,rh(k<<kp)N12AR(2nIR7 R T— K In k) (129)

Equation (129) is valid for njg > 3/2 and nyy > 0 and gives a good approximation of the IR
tail. The condition njg > 3/2 comes from requiring convergence of the integral at large internal
momenta (4 ~ v > 1).

The UV tail of the induced GW spectrum presents two different behaviours. If 0 < nyy < 4
the integral converges even in the strict limit v — 0. This means that we can pull out of the integral
(91) all the k dependence in Py and have that Qg p ~ 73723. The remaining piece is just a numerical
factor. In this way, we find that the induced GW spectrum in the UV reads

1 ., k o\ 2
Qo (k> ky oy < 4~ Ak Foon) (1) (130)
p
where F(nyy), for 0 < nyy < 4, is given by
2

o) 1+ 2 _ 2 2\2
Flwy) = o [ 77 an (S ) oy Plagy o, (13)

and converges everywhere. The range of nyy for which this approximation is valid depends on the
value of b. We discuss this after presenting the results for radiation domination (b = 0). Since (131)
has to be computed numerically, we present here a numerical fit for nyy < 4, which reads

F(TIU\/) ~ 41 + (132)

The form of (132) has been found noting that the integral diverges in the exact limit nyy — 4.
After several trial and error attempts, a reasonable fit was found to be (132). A detailed study of (131)
might yield better analytical insights than (132). For the moment Equation (132) gives a good order
of magnitude estimate. Note that when nyy = 4 the induced GW spectrum present a logarithmic
divergence [80,81]. Lastly, for nyy > 4 the primordial spectrum has a sharp decay and, in analogy
with the sharp peak, we do not expect that Qg 1, ~ P%. Instead, there should be a fast fall off at
around k ~ 2k, by momentum conservation. Indeed when nyy > 4 we find that

1

6 1 1 ko Ao
Qcwh (k> kp,nyy > 4) = gAR("UV —+ = +4) (E) . (133)

We show the analytical estimates against the numerical results in Figure 6. See how even if the
approximations are extrapolated to k ~ kj, they still yield a sensible order of magnitude estimate of
the induced GW spectrum.
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Figure 6. Induced GW spectral density for a broken power-law primordial spectrum with njg = 4
and nyy = 2. In orange we show the result of numerical integration. In red we show the IR
approximation (129). In purple we show the UV approximation (130). See how the analytical
estimates fit well the numerical integration for k < kj, and k > k;,. They even give a good order of
magnitude estimate of the amplitude of the GW spectrum around k ~ ky,.

With the above analytical estimates for the amplitude and the spectral tilt in the IR and UV
limits we conclude that the induced GW spectrum has the following broken power-law shape

k 3
(E) k<ky

k 7A
() ©=n

Equation (134) tells us that the UV spectral tilt of the induced GW has information the UV tail
of the primordial power spectrum. This is to be contrasted with the IR spectral tilt, which does not
tell us much about the inflationary model unless we measure the amplitude very well . Lastly, if we
focus on the UV tail of the induced GW spectrum (134), we see that for example it may be degenerate
with the GW spectrum from the sound waves in a first order phase transition [172].

2nyvy 0<nyy <4

. (134)
44 nyy nyy > 4

Qgws (k) & A% , with A= {

5.4.1. Alternative Expansion Histories

Here we briefly present the spectral tilts of the induced GW spectrum if instead of radiation the
universe was dominated by another perfect fluid. In this case, we find that (134) changes to [81]

3

<k£) k< krh
4
§ N\ 3-21

O (k) o« Ay <1?) ke < k <Ky, (135)

p
k —A—-2b

<k7) k> kp
p

where b is defined in Equation (16) and this time

2 0< b<4
_ { nyv nyy + (136)

4 + nyy l’lUv+b>4.

Previously, in Sections 2.2 and 4, we derived the IR broken power-law behaviour of the induced
GW spectrum for general equation of state parameter. Now, in this section we have a power-law
UV tail in the induced GW coming from the UV tail of the primordial spectrum. The additional
factor —2b with respect to (134) in the UV tail can be understood as follows. All modes with k >> k,
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entered the horizon deep inside the b = constant era and before the scalar peak at k ~ k. After that
the induced tensor modes effectively behave as free GWs irrespective of whether b < 0 or b > 0.
Thus, the free GWs experience the typical relative redshift with respect to the background, which is
the factor k=2, Note that if b < 0 the UV tail might have a blue tilt.

5.4.2. Scale Invariant Spectrum

A limiting case of the broken power-law studied (128), setting nyy = nig = 0, is a scale
invariant spectrum typical of slow-roll inflation. In this case, it is easy to convince ourselves that the
induced GW spectrum for general expansion histories is given by

k —2b
Qoman = A7 06) () - (137)
rh
where
2 [ 1+ov 402 _ (1 _ u2 + 02)2 227
Flb,cs) = 5/0 dv/‘Hl du< — ) (b, cs,k,0,1), (138)

and I2 is given by (83). Another explicit formula can be found at the summary Section 10. The
integral (138) converges everywhere for any value of b and ¢s. However, note that (138) with (83) is
only valid for k > k,;,. Nevertheless, since deep inside the radiation domination we expect a scale
invariant induced GW spectrum it is reasonable to assume that for scales k ~ k,;, we can match the
k=2 behaviour to the constant spectral density. A more detailed, perhaps numerical, analysis is
needed to determine the spectrum for k ~ ky, as induced GWs are being sourced before and after the
transition.

5.5. Oscillatory Features

In the subsections above we have discussed the GWs induced by the simplest shapes of the
primordial spectrum, that is a log-normal peak and a broken power-law. However, in some situations,
it is expected that the primordial power spectrum presents a series of oscillations usually referred to
as “primordial features”. For recent reviews on such features see, e.g., [257-259]. These oscillations
can be classified according to the k dependence in their frequency. If the frequency is linear in k, the
oscillations resulted from sharp dynamics during inflation. For example, a step in the potential in
single field inflation [260-267] or a sharp turn in field space [84,86,254,255,268-270]. This case is also
known as a sharp feature. If the frequency is logarithmic in k, the oscillations are called resonant
features. They are due to resonances during inflation on subhorizon scales. For instance, resonances
occur if the potential in single field inflation has wiggles or a massive scalar field is oscillating at the
bottom of the potential [87,170,271-277]. In more general cases, such as general interactions [278,279]
or alternative scenarios to inflation [280], the frequency of the oscillations in the primordial spectrum
could be a power-law of k.

Remarkably, despite the induced GWs being a second order effect, oscillations are not completely
washed out. The main difficulty is to derive analytical approximations to the induced GW spectrum.
In this respect, Fumagalli, Renaux-Petel and Witkowski [84,87] and also Braglia, Chen and Hazra [86]
did a detailed numerical analysis of the induced GW spectrum and derived motivated semi-analytical
templates. Perhaps the most interesting case is when the oscillations in the primordial spectrum
are O(1). For example, this is the case when a sharp feature is responsible for the peak in the
primordial spectrum [84,255]. Now, if the oscillations are large and separated linearly in k, we can
gain intuition by looking at the sum of Dirac delta peaks [83,84]. In this case if we call wy, to the
frequency of the Dirac delta peaks in the primordial spectrum, then the frequency in the induced
GW spectrum is wlci;rYVS = wyin/¢s [83,84] (in radiation domination cs = 1/+/3). Interestingly, in the
more realistic situation studied [84] the induced GW spectrum follows an envelope as if there were
no oscillations and, on top of that, oscillations appear near the resonant peak at k ~ 2¢skp and reach
at most an amplitude of about 20% in radiation domination [84]. We illustrate this possibility in
Figure 7. Another example are O(1) oscillations due to a resonant feature in the primordial spectrum.
In this case, if we call Wiog the frequency of the resonant feature, the resulting induced GW spectrum
exhibits two oscillatory components with frequencies wjog and 2wjog. The relative amplitude of such
components depend on both the frequency and the envelope of the primordial spectrum [87]. For the
analytical templates and a more detailed discussion, see Refs. [84,87].
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Figure 7. Primordial spectrum and induced GWs from a sharp turn in the inflationary trajectory from
the model of Ref. [84], courtesy of L. Witkowski, J. Fumagalli and S. Renaux-Petel. Left: Normalized
primordial spectrum in terms of wavenumber k/kp. The solid line is the power spectrum resulting
from the sharp feature. The dashed line is the envelope of the oscillations. They are respectively given
by Equations (25) and (26) of Ref. [84] with 6 = 0.5 and 17, = 20. Right: Induced GW spectral density
normalized by A . The solid line is the induced GW spectrum of the oscillatory power spectrum
while the dashed line is the induced GWs from the envelope properly normalised. The oscillations
have an amplitude of about 20% larger than the envelope around the induced GW spectrum peak.

5.6. Impact of Non-Gaussianities

Here we briefly discuss the effects that primordial non-gaussianities may have on the induced
GW spectrum. We will not dwell on the details, which are well explained in Refs. [89,90,92]. The
leading formulas for local-type non-gaussianity can be found in Section 3.3. We describe the main
effects of local-type non-gaussianity below.

First, let us focus on the very sharp peaks of Section 5.2 and 5.3. In this case, the most relevant
effect is that the induced GW spectrum does not stop at k ~ 2k, but continues until k ~ 3k,. This
is roughly because when including primordial non-gaussianity, the source term to induced GWs
has three scalars. Thus, we have a cut-off at k ~ 3k, by momentum conservation. Note that this
effect is characteristic of the sharp peak in the primordial spectrum. For large non-gaussianity, that
is Fyp > 1in Equation (63), the spectrum does not have the clear resonant peak of Section 5.2 but
presents a few peaks with similar amplitude instead [89,92]. Second, in the case where the peak
is broad or a broken power-law, the non-gaussian contribution typically has the same IR and UV
spectral tilts [81,92]. For large enough Fyp, 2 1, the induced GW spectrum also shows an additional
peak/bump at around k ~ 3k,. If the non-gaussianity is large enough, i.e., ARFZ%JL > O(1), the
non-gaussian contribution starts to dominate over the gaussian one [89,92]. However, it is not so
clear whether one can achieve ARFI%TL > 1 in inflationary models as in this case the non-gaussian
expression (63) cannot be regarded as a perturbative expansion [81]. A more detailed and general
analysis is necessary. It should be noted that if we include third order perturbation theory terms, the
induced GW spectrum for a Dirac delta peak has three resonant peaks instead of one [143,179].

The primordial non-gaussian contribution to the induced GW spectrum, as we have just pre-
sented it, might not yield much information on inflation. For example, one may design a gaussian
primordial spectrum such that the resulting induced GW spectrum is exactly as that of a primordial
log-normal peak with large non-gaussianities. Although this may be a very complicated task, it is in
principle possible. In this sense, there is no telling primordial non-gaussianity apart just from the
induced GW spectrum [179]. Nevertheless, the story becomes more interesting when considering the
PBH counterpart. Since PBH formation is highly dependent on the tail of the distribution of primor-
dial fluctuations, any tiny deviation from a normal distribution could have an exponential impact
on the fraction of PBHs. For the details see the recent discussions in Refs. [217,219-221,256,281-284].
Then, ideally one may use the two observations, the PBH mass function and the induced GW
counterpart, to perhaps disentangle the primordial non-gaussianity from the primordial spectrum.

6. The Dust Dominated Universe

In previous sections we have derived intuitive and analytical formulas for the spectrum of
induced GWs under the assumption that the universe was not dominated by a pressure-less perfect
fluid with vanishing propagation speed of fluctuations, i.e., w = ¢2 = 0, so-called dust. The
particularity of a dust dominated universe is that the Newtonian potential is constant on all scales. As
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can be seen from Equation (70) with ¢2 = 0, ® = constant is a solution. This also implies that density
fluctuations of the dust fluid grow. In fact, they grow as ép/p  a. This is the typical behaviour of a
CDM dominated universe. This also means that there is a scale below which density fluctuations
grow so much that they become non-linear, i.e., larger than O(1). This occurs for modes with [51]

35—
k> ke ~ \@%”‘%Trh)%(rrh). (139)

Note that it does not mean that if there are fluctuations on k > ky there will be no production of
induced GWs. It means that we cannot completely trust our calculations since non-linear dynamics
might be important, e.g., due to GWs from mergers. Nevertheless, we quite often have ® < 1 and
thus perturbation theory for @ is sensible.

In Section 6.1 we show and discuss the subtleties of the dust dominated universe and derive
analytical estimates for the amplitude of induced GWs in the case of an instantaneous transition. We
apply our results to PBH dominated epoch in Section 6.2 and use overproduction of induced GWs to
place stringent constraints on the scenario.

Main references: Section 6.1 is based on Inomata et al. [65,060] with the notation of Refs. [70,71].
These works are built upon previous papers by Assadullahi and Wands [51] and Kohri and Terada [63].
Then, Section 6.2 follows the pioneering work by Papanikolau, Vennin and Langlois [69] further
extended by [70] to account for the transition to radiation domination. Lastly, Ref. [68] contains
useful details on the transition of the PBH dominated universe to radiation domination.

6.1. General Dust Domination

Let us now derive the kernels and some estimates for the induced GWs. First we note that the
fact that ® = constant in an early Matter Dominated (eMD) era seemingly makes naive calculations
of induced GWs easier. Just take a transfer function equal to unity in (53), which yields

fralk-a) =3, (140)

where we took b = 1 (w = 0). Now we have to simply integrate (60) with a constant source. In
the limit where x > 1, we have that the averaged kernel squared is just a constant [51,63]. In our
notation we have

- 20\?
Lup(x> L lk—ql)~ (75 ) - (141)

We can then use (58) to give a naive estimation of the induced GW during the early matter era.
However, this is far from being a complete picture. As first realised by Inomata, Kohri, Nakama
and Terada, induced GWs from a dust dominated are more subtle and depend on the nature
of the transition to radiation domination [65,66]. If the transition is gradual, the induced GW
spectrum is actually suppressed [65]. The suppression can be understood from the fact that the initial
enhancement in the dust dominated universe found in Ref. [51] is due to the constant ®. If ® decays,
the enhancement is not as efficient. Instead, if the transition from dust to radiation is instantaneous,
the induced GW spectrum gets amplified very much [66]. We will shortly explain the source of the
amplification. Let us first note that the reason why we did not find such behaviour in Section 4
comes down to the particular behaviour of ® in dust domination. In Section 4, due to the fact that we
assumed c? # 0, the general solution to ® in a w = constant universe is a decaying and oscillating
function. After the transition to radiation domination, ® is also decaying and oscillating, albeit with
different frequency. Thus, the matching between the two periods is well described within the WKB
approximation. In this case, only those scales close to k ~ ky, might receive at most a O(1) correction.

What is special about the instantaneous reheating in the dust dominated universe is that we
are suddenly going from @' = 0 to @’ # 0. Since ® did not have time to decay and the frequency
of the oscillations is proportional to the ratio of the largest wavenumbers k with the reheating scale
ke, the amplitude of @’ right after the sudden reheating will be huge. A more physical picture was
presented in Ref. [66] and it goes as follows. Density fluctuations grow as édp/p o a and attain a
“large” amplitude by the end of the dust dominated era. These large fluctuations suddenly evaporate
and are converted into fluctuations in a radiation fluid, which create strong pressure waves. These
waves generate spacetime oscillations and are the source to induced GWs.
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Let us explicitly show that @’ becomes very large right after reheating. To do that, we first
consider that ® has an arbitrary amplitude during the eMD of ® = ®,p (k). Then, the eMD ends
abruptly and we enter a late Radiation Domination (IRD). Matching the general solution (73) and its
first derivative for b = 1 and b = 0 we arrive at

®irp = (csk?) 73/2(C1J3/2(cskT) + CrY3)2(csk)), (142)

where ¢s = 1/+/3 since we are in a radiation dominated universe, T is defined in (84) and comes
from requiring continuity of 2 and ‘H and we defined

7T [ cskTen 5/2 CskTin
Cy = —q>eMD§( s 2r ) y5/2<57r), (143)
7T [ cskty \ /2 cskT,
G :cbeMDE( szrh) ]5/2< Szrh>- (144)

If we now compute the variation of ®jgrp per Hubble time we find that the leading contribution
for x > xy, > 1is given by

dd Cs X2 . L
Tﬂ? ~ — DD erh sin(cs (X — %)) - (145)

Thus, we see that the amplitude of the time derivative is roughly

d®;rp k2
DIk o (H) . (146)

This means that if there are fluctuations on scales k >> ky;, the amplitude of @[y, is very large
and so it will produce induced GWs with a large amplitude.

Let us move on to the GWs induced after the sudden transition. For simplicity, we only focus
on the largest contribution to the source (53), which comes from the time derivatives and reads

_1dTa(g7) dTe |k — q7)

feak=a)~ " dint (147)

Inserting Equations (145) and (147) into (60) we arrive at the kernel during the IRD, namely

24 7 s (= =
C3X X — ~ ~
ik (%,1,0) ~ Pdyp—>tuo [ d w sin(cso(% — %)) sin(csu(F — %)) . (148)
frh

The integral in (148) may be done analytically in terms of sine and cosine integrals but it is
not so illuminating. The interested reader is referred to Ref. [66]. Using our experience of Section 4,
we know that the integral often diverges when cs(u + v) ~ 1. Thus, within our order of magnitude
estimates, we shall focus solely on the neighbourhood of the resonance. In this case, the divergent
piece is the cosine integral Ci[x] and the kernel is approximately given by

24
o2x
IIRD res (%, 4, 0) = d>§MD 58;1 uv Ci[|1 — ¢s (1 + v)|T] sinx. (149)

The calculation of the averaged kernel squared is straightforward and yields

458
P pes (5 1,0) ~ Dy 12;;2 120? C2[|1 — cs(ut + 0)| %] - (150)
For other approximations regarding the IR tail, such as the large momentum contribution
u ~ v > 1, we refer the reader to Refs. [66,68].
With the analytic approximation for the kernel (150) we shall turn our attention to the dominant
contribution to the tensor spectrum (58). For clarity, let us explicitly insert (150) into (58) to obtain
the resonant part of the tensor spectrum, which leads us

4-8 oo 1+v 2 (121 .2\2\ 2
P ~ Lxrh/ dv/l ldu(4v (=u”+0) ) Poy (ku) Py (ko)
0 —v

16x2 1 4uv
u?0? Ci?[|1 — cs(u 4 )| %] - (151)
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Before carrying out the integral, let us analyse some of the assumptions. First, we are assuming
that (151) yields the dominant contribution. This will be the case if there is integration support for
large k. This means that Pg (k) should peak at large k. We also argued that there might be a limit to
the magnitude of k due to non-linearities given by (139). We should use such a limit if there are no
stronger motivations to consider k > kyr. However, as we shall see, if PBH dominate the universe,
there must be fluctuations above kyp, [69]. For these reasons, let us parameterize the scalar power
spectrum as power-law with a UV cut-off k7 given by [71]

k —n
Po = Ao (m) O(kyy —k), (152)

where Ag is the amplitude and # the spectral tilt. Looking at (151) we see that the integrand peaks
at large k if n < 2. This includes an almost scale invariant spectrum (1 ~ 0) and the PBH density
fluctuations (n ~ 1) [69,70].

With these assumptions we shall proceed to perform the integral in (151). We shall use the fact
that Ci[z] is divergent for z ~ 0 to evaluate the integrand at the resonant point except for Ci[z]. For
simplicity, let us switch integration variables to

z=(1-cs(u+0))%y, and s=u-v, (153)

which have a Jacobian given by |J| = 1/(2¢s%,). Replacing (u,v) for (z,s) in (151), evaluating
integrand at z = 0 except for Ci[z] and maintaining the s dependence we arrive at

_ 77 3 B
o5 ., “rh 2 2/50( 232 1+4css 1—cgs
P~ s (1-2) [y 250 = PPa (k2 )P (k) 159

where we already integrated the cosine integral around the divergemce]9 and we have defined [66]

-1
1 kuy/k > H%
= kyv -1 e S kv S 6

so(k) = 28w — ¢, s> kv > 6 (155)
! kuy
0 T2

These bounds on s come from momentum conservation, i.e., \1 - v\ < u <1+ v, evaluated at
the resonant point z = 0. To have an order of magnitude estimate of the amplitude of the peak of the
induced GW spectrum, we can evaluate (154) at s = 0. By doing so, the amplitude of the induced
GW spectrum at k ~ kyy due to the sudden reheating is roughly given by

7
peak __ 7T ) 20 o\"( kuv 2
ot~ s (1-8) (42)" (R ) 4, (156)

where we used that %, = k7, /2 = k/ky, and we used that the numerical evaluation of the integral
in s roughly yields an extra factor 1/2 [70]. Let us remind the reader that cs = 1/1/3 since we are in
radiation domination. From (156) we see how if kyy > ky, the amplitude of the induced GWs is
tremendously large by a power of 7. Thus, not to backreact, we either need Ag to be extremely small
or we restrict the value of kyy not to be too large. Now, knowing the amplitude of the peak (156) we
can approximate the induced GW spectrum by

7-2n
Qoo (k ~ ko) ~ OFs () Olkwy —h), (157)
where, although we used the cut-off in the induced GWs, which is at k = 2kyy, the decay after
k ~ kyy is so fast that we can safely neglect it.

The resonant peak is not the only contribution after the sudden reheating induced GWs. There
is also the IR tail which corresponds to the u ~ v > 1 region of integration. Nevertheless, this
contribution is always suppressed by a factor ky, /kyy. The interested reader can find the corre-
sponding formulas in Refs. [66,68]. In addition to that, there is the contribution of the GWs induced
during eMD, i.e., using the kernel (141) into (58). In the case of the sudden transition, we can take
the amplitude of the induced GWs as initial conditions for the subsequent radiation domination
era. Then the total spectrum is well approximated by the sum of the two contributions [66]. This
contribution will be small compared to the resonant part (157) but since it may present a large
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plateau [51,66,69] it may dominate on the very low frequency band. The case of the gradual transition
requires a more careful treatment which can be found in Ref. [65]. We shall proceed with a very
interesting application of (157).

6.2. PBH Dominated Era

An early matter dominated period could have been due to PBHs. Once formed, PBHs basically
behave like a dust fluid, i.e., a fluid with no pressure and no propagation speed of fluctuations,
like non-relativistic matter. Furthermore, their energy density practically redshifts as that of non-
relativistic matter. You can see this from the following. Since the number density of PBH, nppy , is
conserved (unless they substantially merge or evaporate) we have that nppy « a=3. The total energy
density contained in these PBHs is ppgyy = Mppynppy. Then in periods where PBH evaporation is
negligible we have that pppjy o« a~3. For concreteness, let us assume that PBH formed in a radiation
dominated era, with an initial fraction of PBH given by

B= PPBH,i ., PPBH,i (158)

~N ——

. 2a02 7
pri BHIMZ,

where in the last step we used the first Friedmann equation (A28). If S is large enough, then PBH
will eventually dominate the universe since we have that p, o« a=*. Now, for simplicity, let us
assume that these PBHs formed by the collapse of large primordial fluctuations with a very peaked
primordial spectrum at a scale kp. This has two implications. First, the PBH mass function is almost
monochromatic. Then, we can use Equation (30) to estimate the peak mass in terms of the peak scale
kp by using that H; = kj,/a;. We refer the reader to Section 2.3 for more details. Second, the initial
fraction of PBH B is determined by the amplitude of the primordial spectrum. In this section, we take
for convenience Mppy and B as the free parameters of the model. One can then relate the scale and
the amplitude of the primordial spectrum to Mpgy and B, if necessary. Interestingly, in this situation
the PBH evaporation occurs almost instantaneously [68] and, therefore, we can use the estimates we
derived in Section 10.2 with some corrections that we describe below. It should be noted that the
results we will derive here only apply to a sharply peaked PBH mass function. If we considered an
extended PBH mass function, induced GWs would be very much suppressed [68].

A remarkable fact is that, as first realised by Papanikolaou, Vennin and Langlois [69], due
to the inhomogeneous distribution, PBH themselves create density fluctuations which might later
source induced GWs. To see this, note that PBH formation by the collapse of large fluctuations is a
rare event [174] and so each PBH form uncorrelated of the others. Additionally, clustering is often
negligible. This means that, as a good approximation PBHs will be randomly distributed uniformly
in space. In other words, PBHs are distributed according to Poisson statistics. Such Poisson statistics
are dictated by the mean inter-PBH co-moving separation. If PBH follow a monochromatic mass
function, the mean inter-PBH co-moving separation at formation is given by

3 1/3 1

Note that in Equation (159) we identify the co-moving inter-PBH separation as the UV cut-off
in Equation (152). This is because the fluid description of the PBH gas is valid only for k < kyy,
i.e., at distances much larger than d;. In this coarse grained regime the initial dimensionless power
spectrum of PBH density fluctuations reads [69]

3
Ps,peH = 3% <kULV) O(kuy — k). (160)

We have shown with Equation (160) that PBHs give rise to density fluctuations. However, in
the current model, PBHs form in an early Radiation Dominated stage (eRD) and, therefore, such
density fluctuations correspond to isocurvature fluctuations. Thus, they do not source induced GWs
yet. Induced GWs are mainly generated by curvature fluctuations. If one is interested in the latter
aspect, the general source term in a two fluid system can be found in Ref. [70]. The isocurvature
nature of the PBH density fluctuations can be understood from the following [70]. PBH formation in
the fluid picture may be regarded as a transition of a fraction of the homogeneous radiation fluid
into dust. Yet, the total energy density of radiation remains homogeneous, while PBH are distributed
randomly. Thus, the inhomogeneity due to PBHs must be isocurvature as the total energy density is
homogeneous. Interestingly, such isocurvature is converted into curvature fluctuations when PBH
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dominate the universe. This type of transition from radiation to dust was studied analytically in
detail by Kodama and Sasaki [285,286]. Thus, we can directly borrow their results which provide the
transfer function for a vanishing initial curvature perturbation ® and non-zero isocurvature deep
inside the eMD era as

1
) g k< keq
TeRD-semp (K; @ > deq) = 3 (keq 2 . (161)
(7))

The subscript “eq” refers to the early radiation-PBH equality. For an intuitive re-derivation,
see Ref. [69]. Equation (161) tells us that the initial isocurvature has been transferred to a constant
curvature perturbation. Modes which entered the horizon before the early radiation-PBH equality
have decayed substantially and, hence, the suppression factor (keq / k)2. This means that the curvature
power spectrum due to early PBH fluctuations in the eMD on the smallest scales, i.e., (kyy > k > keq)
is given by

3 [ keq \* [k
Porant = o (12 ) ("2 )@y - Ok~ k). (162)

It is the curvature perturbation spectrum given by (162) which sources induced GWs during
the eMD. However, we are most interested in the induced GWs generated right at the start of the
IRD. As we shall see, since PBH evaporation has a finite duration even for the monochromatic case,
we must take into account an important suppression. Then we shall use our estimate Equation (156).
Before that, we need to understand and quantify the PBH domination a bit further.

Let us derive the conditions to have a PBH dominated era in the early universe allowed by
current observations. We start with our PBHs given an initial mass Mppp ; (30) and an initial fraction
B. After formation, these PBHs will evaporate emitting Hawking radiation. This means that g cannot
be too small, otherwise PBH evaporate before they dominate. To quantify this requirement it is
enough to look at the evaporation time which for a non-spinning black hole reads [68,189,287]

160 Mgy
teva & -, 163
" 3.87gn (Tepn) Mg (163)
where ¢y (Tppy ) are the spin-weighted degrees of freedom and
— A2 9 Mpgpis '
Tpgu =M I/MPBHi ~ 1.06 x 10°GeV | ——— . (164)
P ’ 10%g

If we assume only the standard model of particle physics we have that for PBHs which evap-
orated before BBN then gy (Tppy) =~ 108. If we include a possible PBH spin the evaporation time
decreases, reaching a factor 1/2 for the extremal BH case [288-292]. Thus, we can take into account
the PBH spin by replacing teva — teva/2. This effect is considered in the induced GWs by Ref. [71].
We will not consider PBH spin in what follows. From Equation (163) we see that the “reheating”
temperature, i.e., the temperature of the radiation fluid which dominates the universe after PBH
evaporate, is given solely in terms of Mpgy; ;. Using the current cosmological parameters, which are
given in Appendix A, we find that the evaporation temperature can be written as

Mppig; \ 22 (Tope) \ 2/ g (Tova) \ "4
~ 4 PBH,i 8&H\1PBH s Lleva
Tova ~ 2.76 x 10 GeV(7104g ) ( o ) ( e > , (165)

where g, are the effective degrees of freedom in the energy density of radiation [293,294]. Here we
find our first constraint on the model: PBH cannot evaporate too late if they are to reheat the universe.
For a successful BBN the reheating temperature must be Teya > 4 MeV [295-298]. This puts an upper
bound on the PBH mass as

Mppp; < 5 x 10%g. (166)
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Using Equation (165), the co-moving scale corresponding to the horizon size at the time of
evaporation is given by

k %47)(10111\/[ C71 M 1/2 g*(Teva) 1/4 g*,s(Teva) -1/3 MPBH,i —3/2 (167)
eva % P 108 106.75 106.75 10%g ’

where g, s are the effective degrees of freedom in the entropy. With the above formulas we have that
the end of the PBH domination era is fixed by the PBH mass. The second constraint on the model
comes from requiring that PBHs dominate before they evaporate. This is a constrain on the initial
fraction of PBHs in terms of the PBH mass, which is found to be [68,70]

1o gr(Tesr) \ 2 v \ 172 ( Mpps\ 7
B> 635 x 10 <W> (ﬁ) 07g : (168)

Before we compute the final amplitude of the induced GW spectrum, it is very important to
estimate the effects of the finite duration of the evaporation to the perturbations. Although the
transition to a radiation dominated universe takes place within less than 1/4 of e-fold, perturbations
in very small scales are very much affected by the finite width of the transition, as was discovered by
Inomata et al. [65,66,68]. The main reason is clear if we neglect the expansion of the universe, which
is justified as we are interested in very subhorizon scales. As PBHs evaporate their energy density
decays as [68]

pPBH & MppH & (1 —; ) : (169)
eva
Now, we are interested in any effect that this decay may have on ®. The Newtonian potential is
related to fluctuations by the Poisson equation which in Fourier space reads

k2
2;2“1’ ~ opBHOPBH + 0r0r , (170)

where 5o = dpg/pg is the density contrast. We will do a big step here that can be easily confirmed
by looking at the formulas in the appendix of Ref. [70] or in Ref. [68]. If we completely neglect the
expansion of the universe we find that dpgy ~ constant is a solution to the equations of motion
of PBH density fluctuations. With this solution, we can estimate the size of the fluctuations in the
radiation fluid sourced by the evaporation. With the Green’s method to solve the equations of motion
of radiation fluctuations, we find that

a21?
5y ~ ‘%TQ(SPBH, (171)

where I’ is the evaporation rate of PBHs and it is given by

. dIn MPBH 1
dt t— tova

r= (172)

What (171) tell us is that fluctuations in the radiation fluid 6, with k/a >> T are very suppressed
with respect to dpgyy due to radiation pressure. This means that for such modes the dominant contri-
bution to ® is given by dpgy, even when PBH do not dominate the universe. Then by Equation (170)
we see that ® o« pppyy until I' ~ k/a, at which point the fluctuations in radiation dominate and
perturbations behave as in a radiation dominated universe. The temporal decay of ® due to the
decay of pppy yields a relative suppression given by [68]

-1/3
_ 2 k
S (k/keva) = o ~ <\/;keva> , (173)

where ®jgtant refers to the value of @ if the transition is instantaneous.
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Now, we can use our estimate for an instantaneous transition (156) but taking into account the
suppression of ® until the transition to radiation domination is completely achieved. This yields a
spectrum of curvature fluctuations at the start of the IRD given by

Pao,rD = S (k/keva) Po,ppH

3 2 *1/3 kUV *2/3 keq 4 k *5/3
-53) () () () etv-wew-ko.  am
Comparing (174) with (152) we see that n = 5/3 and
3 2\ V3 (kov ) 23 keq \*
w-g(3) () () 7

The final ingredient to derive the induced GW spectrum is the hierarchy of the scales involved.
First, note that the ratio between the cut-off kyy and kev, is independent of § and it is given by [70]

kuv o gu(Tesrn)\ /% ( Mppm,i \*/
fl & 23 10°( B T . (176)

The B independence of the ratio is due to the fact that Heva only depends on the PBH mass and
Aeva/; ”11’]/3?{1‘ because it is a dust dominated universe. The hierarchy is closed with the second
and third relations respectively given by [70]

k k
—L = /2913823 and - = V2. (177)
kov ky

Now, inserting Equations (174), (176) and (177) into (157) yields an amplitude of induced
GWs at the peak of approximately

- 34/9
e sxio2( B\ 3( ) (g (Teons) 777 ( Mrsi ) (178)
GWs,eva . 106 0.2 108 104g ’

Note that the estimate Equation (178) is the amplitude of induced GWs right after evaporation.
It should also be noted that (178) is valid for very sharp PBH mass functions. As the mass function
widens, the induced GW counterpart gets suppressed [68]. On top of that, we have that scales k > k.
(139), specially for k ~ kiy, PBH density fluctuations épgy become O(1) or larger. However, our
estimate (178) has been derived in the linear regime and might receive corrections due to non-linear
effects. Nevertheless, we expect it to be a crude order of magnitude estimate since the main source
of induced GWs, the curvature perturbation, remains always smaller than uni’cy,20 ie., & <« 1.
Numerical relativity simulations are needed to derive a preciser estimate of the induced GWs
generated in the non-linear regime. We show the resulting induced GW spectrum in Figure 8. Using
(167) and (176) we find that the peak of induced GWs today lies at a frequency given by

f ~17 x 103HZ gH(TPBH) 1/6 g*(Teva) /4 g*,S(TeVa) 13 MPBH/i /6 (179)
= 108 106.75 106.75 10%g '

Quite surprisingly, the frequency of the peak enters the observational range of LISA, DECIGO
and LIGO for 5 x 108 g > Mppp,; > 2 X 10* g. Thus, this scenario is testable in the future.
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Figure 8. Induced GW spectral density after PBH evaporation normalized by £'%/3 and in terms
of co-moving wavenumber k/kyy. The dashed red line shows the resonant contribution from
Equation (154). The dashed orange line is the large momentum contribution which can be found
in [70]. The purple line is the total GW spectrum. Due to the almost sudden transition the GW
spectrum is amplified. This implies a very small initial fraction B of PBH not to overproduce
induced GWs.

To compute the amount of induced GWs measured today we must consider the redshift of
GWs until today. We did this in Section 5 with Equation (115). However, if we want to evaluate the
amplitude of induced GWs at BBN, we only need to know the fraction of GWs that compose the total
radiation after reheating. This can be done by considering the degrees of freedom of the standard
model, which leads us to

—4/3
_ g*(Teva) g*s(Teva) 4
Qcween = 0.39 ( 106.75 106.75 Qcweva: (180)

Since these induced GWs act as additional radiation, they contribute to the effective number of
relativistic species N at BBN. The contribution of GWs to N is by convention?! written as [29]

7/ 4 4/3
QGW,BBN = g ﬁ ANeff < 0.05, (181)

where in the last step we used that BBN [299,300] sets an upper bound AN < 0.2.%% In this way,
we can constrain the amplitude of GWs from existing BBN bounds. Note that to be precise the
BBN bound is a constrain on the total energy density of relativistic particles. Thus, we should
have actually integrated our induced GW spectrum over Ink and then compare it with the bound
(181). However, since the GW spectrum is very peaked and we are already working with order of
magnitude estimates, it is justified to just look at the peak of the GW spectrum. If we use the current
constraints from BBN, then we obtain that

15 x 106 Mewmni ) 7 182
pers 0t (T) e

This is a new constraint on early epochs of PBH dominations which cannot be obtained by any
other means.

Interestingly, PBH evaporation also emits “gravitons”, i.e., very high frequency GWs. While
these gravitons are not observable by GW detectors, they might be seen as effective relativistic
particles at BBN [288-292]. Future CMB probes such as CMB-54 [303] will be able to improve
current bounds down to ANgg ~ 0.02. Unfortunately, the graviton contribution of non-spinning
PBHs to N is out of reach for future CMB probes. Nevertheless, if PBH have a large spin (and
dominate the universe at some point), the graviton contribution to N will be accessible to future
experiments [291,292]. This signature from graviton emission together with induced GWs will be
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an interesting probe of PBH dominated eras. While the graviton contribution to N tells us about
PBH spin, the induced GW counterpart has information on the formation mechanism [71]. As a
clarification, note that the graviton emission and induced GWs are two very different effects. While
the former is emitted by Hawking evaporation, the latter is generated by the time dependence of
density fluctuations. The composition of such density fluctuations is not important, e.g., if a fraction
are gravitons, as long as it behaves as fluctuations of a radiation fluid.

Before ending this section, we should note that we also have the induced GWs generated in the
PBH dominated stage by using the Kernel (141). This is studied in detail in Ref. [69]. However, as
we discussed at the beginning of this section this contribution is sensitive to the detailed transition
to radiation domination. In the present case, where the transition is almost instantaneous, we can
continue the tensor mode amplitude build up during eMD to the IRD. Nevertheless, this contribution
is always subdominant compared to the one after reheating [66]. Thus, our estimate (178) provides
the dominant peak of the induced GW spectrum.

7. The Gauge Issue

Despite the large amount of research on induced GWs, there is still the open question of what
we really observe. This was made explicit in 2017, when Hwang, Jeong and Noh [149] showed
that the induced GW spectrum generated in a dust dominated universe depends very much (by
orders of magnitude) on the gauge chosen. Although the gauge issue was mentioned earlier by
Matarrese, Mollerach and Bruni [37], it was not until [149] that it received more attention. From
then and on, there has been a big activity to understand the problem [150-162]. For example in
Refs. [151,152] other cosmological backgrounds rather than dust were studied. They found that the
gauge dependence is in general present. Later studies [153-162], proposed partial solutions and
investigated in which situations the spectrum of induced GW might be well defined. We dedicate
Section 7.1 to explain the origin of the gauge issue. Then, we discuss these approaches in detail in
Section 7.2.

Main references: The discussion in Section 7.1 is mainly based on [150,161]. Then, in Section 7.2 we
revisit the main arguments of [153,154] and explain the improved results of [161].

7.1. The Origin of the Issue

To understand the source of problem, we must distinguish between what we call tensor modes
and GWs. On the theoretical side, we define tensor modes in a homogeneous and isotropic universe
as the transverse-traceless fluctuations of the spatial metric.”> However, this definition must depend
on how one chooses the spatial hypersurface. Although tensor modes are gauge invariant at linear
order, they fail to be so at second order in cosmological perturbation theory. This is reflected by
the fact that tensor, vector and scalar modes mix at second order [37]. This may pose a problem
when we want to relate the tensor modes in a given slicing to the observational effect, which are the
GWs. Note that this is not necessarily an “issue”. If the quantity related to observation is clear and
calculations are done properly (perhaps in a reasonable coordinate system), one should get proper
results. For example, in studies of the CMB the temperature anisotropies and the polarization patterns
of the CMB are well defined at second order. The interested reader is referred to Refs. [306-308] and
references therein.

The trouble with GW observations is that we only know the GW detector response to linear
GWs. Only at first order the relation between the tensor modes and GWs in the linearised theory
is clear, since tensor modes are gauge invariant at that order. There is a subtlety, though. A tensor
mode whose wavelength is larger than the horizon is frozen, does not evolve. So it acts as a constant
anisotropy or shear and, as such, it has nothing to do with actual GWs. Furthermore, since the
wavelength of the tensor modes is larger than the curvature scale, the averaging procedure used to
derive the (pseudo) energy momentum tensor of GWs in Section 2.2 does not apply. For these reasons,
we will be only concerned about tensor modes on subhorizon scales. These tensor modes have a
wavelength smaller than the horizon and behave as a wave, which are the GWs we could observe.

In the absence of the GW detector response at second order, we face the problem that we do not
know the relation between tensor modes and the true GWs. In most situations though this should
not really be a problem, unless one is choosing a very strange coordinate system to describe the
observations. For instance, to describe the GWs measured by a GW detector today we usually do not
need to consider second order terms as the amplitude of the GWs is already tiny enough. However,
this issue is particularly relevant for induced GWs due to their secondary nature. Now, there are
two important aspects of the problem. First, we have that the derived tensor spectrum depends on
the gauge choice. Second, we expect that once the source term in (48) is absent, i.e., its amplitude
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decayed enough, such previously induced tensor modes behave as a freely propagating GWs. From
that moment on we should be able to relate the induced tensor modes to GWs. Thus, we must
reconcile our physical intuition with the fact that tensor modes are gauge dependent. To arrive to
that, there are two points that we would like to make as clear as possible. The first one concerns
the tensor modes /1;; themselves and the second one to the actual observable, which in Section 2.2
we decided it would be the energy density of induced GWs (5). We present them in the following
subsections and we later discuss the current state of the issue in Section 7.2.

7.1.1. The Definition of Tensor Modes Is Gauge Dependent

When working at second order in cosmological perturbation theory, it is very important to be
clear about our convention. Here we will use the conformal decomposition from Equations (34) and
(38) which in a general gauge reads

ds*> = a?(1) (—derz +eXY;; (dxi + Nidr) (dxf + der)) , (183)
where N and N’ respectively are the lapse and shift vector. We then perturb the variables as follows

N=1+4a , N;=0;8 (184)
Y]y = hij+2(9,9; — 168 ) E, (185)

where we only focused on the tensor and scalar components and ¢ is already a perturbation. Our
convention differs from the common expansions, which expands the metric linearly in the pertur-
bation variables instead of exponentially. Nevertheless, our choice considerably simplifies calcula-
tions. To relate the two different conventions we refer the reader to the appendix of Ref. [161]. We
also use the exponential mapping for a gauge transformation (e.g., see the review by Malik and
Wands [164]) which naturally follows from the Hamiltonian flow (see e.g., [150] for the application to
second order cosmological perturbations). To be more concrete, let us do an infinitesimal coordinate
transformation by

gt =xt — ' with & = (T,d'L), (186)

where we focused only on the scalar component of the spatial vector & Thena quantity Q in one
gauge is related to the same quantity evaluated in another gauge Q by the exponential mapping

0 =0, (187)

where £¢ is the Lie derivative along ¢. With this convention, we find that the tensor modes at second
order change according to

fij = hij — TTy; ”b{ — 204 (B — E')0T + 20,9 L, E + 9, T, T + agakLahakL} . (188)

Equation (188) is the first cause of the gauge issue for induced GWs. Since the source to
induced tensor modes acts at second order in perturbation theory, the actual gauge in which we do
the calculations might drastically change the form of the solutions for ;; [149]. The reader interested
in the gauge transformations particularly related to induced GWs might go to Ref. [161]. General
reviews of cosmological perturbation theory are listed at the Section 1.2.

7.1.2. The Definition of GW Energy Density Is Gauge Dependent

Once we showed that the tensor modes h;; are gauge dependent, let us look at the definition of
the “observable” energy density of GWs. Using (2) we have that

M2 .
oGW = tg;()w = §g<h”]h:] + E)kh”akhi]-> . (189)

Now, looking at (188) and (189) the first question that comes to mind is: /;; in (189) is evaluated
in which gauge? Indeed, if we naively apply the gauge transformation (188) to (189) we see that

paw ~ (W) = pow + (T, THTIT) + ..., (190)
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where we neglected other terms to illustrate the main point, which is that the term quartic in T in
(190) does not vanish in general. This shows something that we were expecting in Section 2: the
energy density of GWs (189) in analogy of the Ricci flat result (2) is strictly speaking not well-defined
on a cosmological background at second order in perturbation theory. Furthermore, it does not
matter when you evaluate the energy density, e.g., today. In principle, we can find a coordinate
transformation in which pgy is very different from the usual estimate. For example, if we go to a
frame where the detector is wildly oscillating, Equation (189) might not yield sensible results. This is
the second and the most important cause for the gauge dependence of induced GWs.

7.2. Current “Solutions”

In view of the current lack of a description at second order in cosmological perturbation theory
of the detector response to passing GWs, all we can do is to try to argue when Equation (189) yields
sensible results. Before we start discussing the details, it is important to realize that a gauge invariant
formulation of the equations of motion of induced GWs (48) does not help at all. There are infinitely
many ways to define gauge invariant variables, each definition corresponding to a particular gauge
choice. Thus, the same question remains, although with a slightly different language: which gauge
invariant definition of the tensor modes goes into (189)? Similarly, if one tries to find a gauge
invariant formulation of (189), which implies going to fourth order in cosmological perturbation
theory (and it is clearly not the point), it is not clear what is the relation with the real observable. So,
what can we do?

An interesting direction, first explored by [153] and later corrected by [154], is to argue what is
the gauge (or coordinate frame) which best describes the GW detection. According to Ref. [153], based
on the analogy with asymptotically flat spacetimes, the best gauge is the so-called transverse-traceless
(TT) gauge where the metric reads

ds® = —dt + (8jj + hyj)dx'dx! (191)

In Minkowski spacetime, there are only two degrees of freedom, the ones in hl-]-, since there is no
source to the energy momentum tensor. In this gauge and in the linearised theory, the GW detector
is at rest, even for passing GWs, which makes the physical interpretation (and calculations) much
easier [184,185]. The closest gauge to the TT gauge in a cosmological background is the synchronous
gauge, which is a coordinate system spanned by a family of geodesics. In our convention the metric
in the synchronous gauge is given by

ds* = a?(1) (—dT2 + ez‘PYijdxidxj) , (192)
where we set &« = § = 0in (183). Let us remind the reader that
InY;; = hy +2(3,2; - 168 ) E, (193)

and therefore we have two more variables, ¢ and E, than in (191). In the end, only one of them is
dynamical. Thus, although at linear order (193) resembles the TT gauge (191) it is certainly not
the same. At linear order and if we neglect the drift due to the expansion 4, the metric (193) does
describe a fixed detector. However, at second order the detector will not be fixed and will feel the
influence of E. Another “problem” of the synchronous gauge is that it is not a completely fixed gauge.
There is a residual gauge ambiguity which corresponds to a change of the reference geodesics. This
gauge ambiguity turns out to be very important in the final spectrum of induced tensor modes. If
one does not properly fix the synchronous gauge, then induced tensor modes could be very different
than, e.g., in the Newtonian gauge [158]. This is because if we start with a family of geodesics defined
in the very early universe and we use the same geodesics to describe the GW detection, it is very
possible that these geodesics do not match the rest frame of the detector. The resulting induced
tensor spectrum might be singular if those geodesics happen to have focusing singularities near the
detector [161]. Nevertheless, by properly fixing the gauge one finds that the induced GW spectrum
in the synchronous gauge and in the Newtonian gauge yield the same prediction in a radiation
dominated universe [153-155,158]. This also holds for any cosmological background with a constant
equation of state [161] if it is not dust, i.e., cg # 0. This result provides evidence that perhaps the
energy density of GWs (189) computed in the Newtonian gauge, which we do for simplicity of the
calculations, yields meaningful results. However, it does not explain why these two predictions
coincide. Furthermore, the original issue raised in [149] in a dust dominated universe persist.
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Here is where the direction explored in Ref. [161] becomes relevant: when and why does the
energy density of GWs (189) yield the same predictions and for which gauges? The physical intuition
is that the analogy with Ricci flat spacetimes should work well if:

(1) we look at really subhorizon scales (k > ), where cosmology should be less relevant;

(ii) there is (barely) no source of induced GWs (48), so that induced tensor modes are freely
propagating GWs;

(iii) we use a coordinate system suitable for small distances calculations, so that we are not

confused by strange coordinate artefacts.

As shown in [161], if points (i)—(iii) are satisfied then (189) is gauge independent up to
corrections of O(H?/k?). Note that conditions (ii) and (iii) yield some restrictions respectively on
the type of cosmological background and on the class of gauges. In order to show such approximate
gauge independence, Ref. [161] argued that a good gauge choice to start with is the Newtonian gauge.
The physical reason for that choice is that on small distances the Newtonian gauge reduces to the
well-known Newtonian gravity. The practical reason is that calculations are simpler. Nevertheless,
the argument provided in [161] does not strongly depend on the initial choice provided that it is
suitable for subhorizon calculations. For example, one could have started with the synchronous
gauge or the uniform Hubble gauge.

Starting from the Newtonian gauge we can relate the curvature perturbation ® in any gauge,
say ®C, with that of the Newtonian gauge, say ®N, by (187) which yields

O; = Py + HT + AL (194)
Then, the class of suitable gauges for subhorizon physics is defined as those gauges in which
Dg(k>H)=0(@DN(k>H)). (195)

This means that the curvature perturbation need not be the same but have the same qualitative
behaviour. We shall see that although this is a requirement on the scalar variable ®, it yields the
gauge independence of /1;;. Using (195) into (194) we find conditions on the gauge parameters Tg
and L. For example, the gauge time parameter must be

Tg(k > H) = O(H '®y(k > H)) or higher order. (196)

Note that this abstract condition (195) actually includes most of the commonly used gauges
such as the synchronous, the flat and the constant Hubble gauges [161]. However, it excludes the
comoving slicing gauge [161]. The main reason for such exclusion is that the comoving slicing gauge
is a choice where the spatial hypersurface is orthogonal to the flow lines of the fluid. This is a good
choice for superhorizon scales where the flow lines are slowly changing with time, but it is a poor
choice for subhorizon scales where fluid velocities oscillate. To convince ourselves of the gauge
independence of (189), take the solution to ®N (74) and hf}’ (83) for constant w, which read

N k —2-b k —1-b
P (ﬁ) and hkN S (ﬁ) . (197)
For such solutions, the condition (196) translates into
Tg = O(hYY) or higher order. (198)

Then, using (188) with Lg = 0 and in Fourier space we have

=Y [ ol To)To ke —al (199)
k k) (am)3t 11 G G ’

where we used that in the Newtonian gauge we have E = B = 0. So when substituting (198) in (199)
we conclude that for all gauges which satisfy (195) we have that

W (k> H) = Y (k> H) + O(H?/k?), (200)

which proves the approximate gauge independence of pgw (189). It should be noted that while the
work of [161] is not a solution per se, it shows when and why the predictions for induced GWs are
well-defined and gives strong evidence that the calculations in this class of gauges are meaningful. In
any case, the final word would be to find the GW detector response at second order.
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Before ending this section, let us place some more attention to point (ii), i.e., that the source
term to induced GWs is not active. This means that the amplitude of scalar fluctuations has decayed
enough so that they are no longer a significant source of induced GWs. This is often implied by
taking the subhorizon limit k > H since induced GWs are mainly generated at horizon crossing, i.e.,
k ~ H, and not afterwards. However, there is one exception: the dust dominated universe studied
in Section 6. In a dust dominated universe, the Newtonian potential ® is constant on all scales and,
therefore, is constantly sourcing induced GWs. This is the reason why Ref. [149] finds such large
gauge dependence of induced GWs in a dust dominated universe. Yet, we learned in Section 6 that
the final spectrum of induced GWs is very sensitive to the transition from dust to radiation, where ®
changes from a constant to an oscillating function. Thus, one must follow the induced tensor modes
generated in the dust dominated universe until they are deep inside the horizon in the radiation
dominated era. It is from that moment on that the conditions (i)—(iii) of [161] apply. Then we know
that the spectrum of induced GWs is approximately gauge invariant.

8. Other GW Sources Related to PBH Formation

So far, we have focused on the GW induced by large primordial fluctuations. These large
fluctuations collapse to form PBH if their rms amplitude is large enough. Once PBH form they may
source other GWs independent of the induced GWs. Let us anticipate that the other GW counterparts
are from PBHs mergers and graviton emission by Hawking evaporation. We briefly comment on
these possibilities below.

On one hand, PBHs will form binaries in the early universe and eventually merge. The formation
of such binaries is mainly due to the three body interaction with the nearest PBH [309]. These PBH
binaries can be detected by the observation of resolved or unresolved merger events. In the former
we would see the full GW waveform, e.g., as in the LIGO detections [310], and the latter will appear
as a stochastic GW background. These make two additional possible GW counterparts to PBHs. Note
that if PBHs are lighter than 1015 g they evaporated by today and, therefore, we most likely cannot
observe any resolved merger. PBHs heavier than 10'° g have not yet evaporated and their binaries
could be merging in the nearby universe. The GW spectrum from the unresolved mergers is studied
in Refs. [142,311,312] while the estimates for the merger rates can be found in Refs. [174,309,313-316].
A very rough order of magnitude estimate of the frequency at which the GWs from the mergers of
PBH binaries will show up is given by the frequency of the GWs emitted at the Innermost Stable
Circular Orbit [185]

Mo
feawmax  2fisco ~ 4.4 kHZ( 7 > p (201)

where M is the total mass of the binary and Mg, is a solar mass. For a monochromatic PBH mass
function then M = 2Mppyy ;. This may change by a factor of a few depending on the redshift at the
time of merger, so that fowmax,0 = fGWmax/ (1 + z). For PBHs with Mppgpy; > 1015 g wWe can assume
that most of the mergers occur in the nearby universe and so the frequency (201) already gives a
good intuition of the position of the peak in the SGWB from mergers and the chirp frequency of the
GW waveform, see for example Ref. [142]. However, PBHs with Mppp; < 5 X 108 g have merged
and evaporated long before BBN. In this case, we can assume that most of the mergers occur close to
the evaporation time and, if PBH dominated the universe as in Section 6.2, we can take into account
the redshift of the frequency (201) until today. A quick estimate yields

fmerger%1015HZ MpgH,; 172 g*(Teva) 1/4 gs*(Teva) 1 M e (202)
peak,0 104 g 106.75 106.75 108 ’

which gives the right order of magnitude estimate for the position of the peak. For the detailed
spectral shape in this case see Ref. [68]. The peak frequency of this SGWB is unfortunately too high to
be observed by current laser interferometers. Note that the PBH mass range 10° g < Mppn,i < 1014 g
is subject to tight constraints from entropy production, changes in the abundance of light elements,
the extragalactic photon background and damping of CMB temperature anisotropies. For a detailed
review see Ref. [176].

On the other hand, when PBHs evaporate they also emit “gravitons” by Hawking radiation. The
typical frequency of such gravitons can be estimated by assuming that Hawking radiation follows a
black body spectrum. Then, the peak frequency is roughly at fyeax = 2.82 Tppp,; Where Tppp i is given
in Equation (164) in terms of the initial PBH mass Mppp;- Note that the frequency fpeax is the peak
frequency of the spectrum when PBH evaporate. Thus, we have to take into account that frequencies
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redshift proportional to a ! to calculate the frequency of these gravitons today. To do that, we will
use the calculations of Section 6.2 which considers the case that PBH dominate the universe. Then,
we can compute the evaporation temperature Teya in terms of Mppyy; by Equation (165). Inserting
all numerical coefficients, we find that the graviton peak frequency today is given by

fgravitonzlowHZ MPBH,i 1/2 g*(Teva) 1/4 gs*(Teva) -1/3 gH(TPBH) 12 (203)
peak,0 10%g 106.75 106.75 108 '

A more detailed derivation of the graviton spectrum and the frequency range can be found
in Ref. [68]. Unfortunately, these are very high frequency GWs which are not observable by direct
detection with the current capabilities. Nevertheless, they might be within range of future CMB
experiments by looking at the contribution of these gravitons to the effective number of relativistic
species at BBN [288-292]. Very interestingly if PBHs have a large spin, their imprint on the effective
number is within range of the CMB-54 experiment [291,292].

It is also important to notice that in some inflationary models involving axions coupled to gauge
fields the enhancement in the primordial curvature perturbation is accompanied by an enhancement
in the primordial tensor spectrum [88,100,317]. In this case the primordial GW signal is in general
larger than the induced GW one. Thus, in this scenario the induced GW signal may be buried
inside the primordial GWs. It is possible that a detailed observation of the spectrum and the PBH
counterpart helps to distinguish such scenario.

9. Current and Future Observational Prospects

In this section, we briefly discuss the future observational prospects regarding induced GWs.
We will not focus on the prospects for PBHs, although they are equally interesting. Nevertheless,
let us mention the most interesting PBH windows as they provide good motivation to look for
induced GWs in particular ranges. The first one is the LIGO binary black hole mergers [309,313—
315]. Notably, although some models are already ruled out by current data [318] there seems to be
evidence for a small fraction of PBHs in addition to astrophysical ones [319,320]. Interestingly, the
corresponding induced GWs to the PBHs in the LIGO window fall in the PTA band.?* Coincidentally,
the NANOGtrav collaboration reported a possible SGWB in such range [18], but is yet to be confirmed.
We discuss more on NANOGrav a bit later. Another interesting window is the planet mass PBHs [321]
where the OGLE collaboration reported few microlensing events of planet mass objects [322]. Future
microlensing observations such as with Subaru/HSC [323] will be able to confirm the results from
OGLE. If we assume that radiation dominated early universe, planet mass PBHs have an induced
GW counterpart that falls in between PTA and LISA. The last promising window is for PBHs in
the asteroid mass range where there are practically no observational constraints yet [174,176] and
therefore PBHs can make up for all dark matter. In this case, the induced GW counterpart falls right
inside the LISA band. Thus, induced GW will be an essential probe of PBH as dark matter. For a
review see Ref. [179]. Additionally, see Ref. [142] for a detailed discussion.

Let us now turn to the observational prospects of induced GWs. Although there are weak
constraints from LIGO [324] on the induced SGWB [312,325,326], the most interesting part is the
future prospects. On one hand, the absence of induced GWs directly translates into bounds on
the primordial spectrum [30]. In this way, assuming radiation domination, we see from Ref. [30]
that the bounds are roughly Pz ~ 10~ for k ~ 10° — 108 Mpc ™! in the PTA band, P ~ 10~ for
k ~ 10" — 10" Mpc ! in the LISA band and P ~ 1073 for k ~ 10 — 10'® Mpc~! in the ET band.
CMB spectral distortions will probe down to Pg ~ 10~8 for k ~ 10 — 10° Mpc’1 [32,33]. However,
one of the problems is that such future bounds depend on the shape of the induced GW spectrum.
For example, if we only see part of the induced GW spectrum, e.g., the UV or IR tail but not the peak,
then in order to extract information on the amplitude of primordial fluctuations we must extrapolate
the results beyond the range of the GW detector by assuming some template [172]. On top of that,
we have the issue that some induced GW templates might degenerate with other sources. As a good
example for these potential problems, we proceed to discuss the various induced GW explanations
of the NANOGrav results [18].

The NANOGtrav collaboration reported a common process signal in the time residuals of the
frequencies of pulsars [18]. While no quadrupolar nature of the signal has been found, it is interesting
to consider the possibility that the signal measured is in fact the SGWB of induced GWs. The
main features of the reported spectrum [18], in cosmologists terms, are that it has an amplitude of
QGW,OhZ ~ 107 at a frequency of 2 x 10~?Hz and a spectral index, that is Qgwy « k", that ranges
fromn ~ 1/2 ton ~ —3/2 within the 1-c bounds. This means that the NANOGrav data seems
to prefer a rather flat GW spectrum. This is illustrated in Figure 9. Using the very rough estimate
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of Section 2, that is QGW’Oh2 ~ 10*6737%, we find that if the peak of the induced GW spectrum lies
around f ~ 2 x 10~2Hz then the amplitude of primordial fluctuations that sourced such induced
GWs is about P ~ O(1072). Such amplitude of primordial fluctuations is right at the value when
PBH formation is interesting, and their masses are in the LIGO window.

NANOGrav 11yr

II|IIII|IIII|IIII|IIII|IIII|IIII
=
«
&)

1077

—
9
©
—
9
e 4]

Figure 9. NANOGrav results on the possible SGWB [18] in terms of spectral density. The orange
dots are the data points from the timing residuals with their error bars. We only show the first five
data points which are the most relevant. The points in the orange shaded region were compatible
with white noise and not considered for the fit. In light purple we also show the NANOGrav 11-yr
sensitivity curve from [327]. In solid lines we show the allowed slopes within the 1-o contours. In
blue and purple we respectively show the upper and lower limits on the slope, k'/2 and k~3/2. In
magenta we give the approximate best fit for the data, which is a scale invariant spectrum.

The main complication is that the NANOGrav GW spectrum is rather flat and the induced
GWs from a sharp peak are very peaked and decay as k? in the IR. This means that there are two
possibilities: either the GWs were induced by a broad peak in the primordial spectrum (including a
flat spectrum) [129-131,133,135] or the GWs were induced in non-radiation dominated universe with
w < 1/3[132]. Below we list the main results of these works:

- Ref. [129] found a negligible amount of PBH in LIGO region but the PBH could be the seeds of
supermassive black holes.

- Ref. [131] found a larger amount of PBH in the LIGO band than [129] and also pointed out that
the SGWB from unresolved mergers could detectable in the future by LISA and ET,;

- Ref. [130] showed that the induced GWs from a flat primordial spectrum could explain all
dark matter;

- Ref. [134] proposed a particular inflationary model with an axion-like curvaton which could
explain the NANOGrav result as well as the LIGO events due to primordial non-gaussianities.
Similar claims appear in Ref. [135] with a Higgs-like inflation with non-canonical kinetic terms.;

- In a different direction, Refs. [132,133] studied the induced GWs from a peaked primordial
spectrum in a non-radiation dominated universe. They both find that a soft equation of state
seems to be preferred. In particular, Ref. [132] use the IR tail of the induced GW spectrum from
a very peaked primordial spectrum (see Section 5) to fit the NANOGrav results. They found
that the 1o contours on the spectral tilt translate to bounds for the equation state parameter as
—0.1 < w < 0.05;

—  Ref. [81] uses the UV tail of the induced GW spectrum from a broken power-law primordial
spectrum. They concluded that the NANOGrav results imply a small non-gaussianity parameter
fnL <0.7;

It is important to note that the induced GWs are not the only explanations of the NANOGrav
results. For example, among many others, possible candidates are cosmic strings [328-331] and first
order phase transitions [332-339]. Within the next decades, we expect to have more information from
PTA experiments. We also expect the GW detector LISA to launch. In order to distinguish these
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candidates to the NANOGrav data, we will need better resolution for a better Bayesian analysis [336]
but crucially we will need other discriminators of cosmic GWs. In the case of induced GWs, if some
of the LIGO binary black hole mergers are found to be PBHs, the NANOGrav signal would have a
strong case to be induced GWs.

10. Summary of Main Formulas

We dedicate this section to recollect the main formulas scattered around the review and present
them so that they are ready for use. We first give the GW spectrum measured today Qg in terms
of the spectral density of GWs at a pivot scale Qg ;- The subscript “rh” stands for reheating and
refers to the time of instantaneous transition to the standard radiation dominated era. In the case
where GWs are induced during radiation domination, the pivot time “rh” refers to the time when
induced GWs of given wavenumber k are sufficiently inside the cosmological horizon to be treated
as a radiation fluid in an expanding universe. With these clarifications, we can use the results of
Sections 4 and 5 to write

Q, gh? (Tip) (T)\ %2
2 -5 7,0 8xUrh &xs(Lrh
Ocwpoh” = 1.62x10 <4.18 X 105> < 106.75 ) ( 106.75 ) Qewm- (204)

We give the detailed expression of Qg 1, for a general equation of state in Section 10.1 and for
the particular case of a dust universe with an instantaneous transition to radiation domination in
Section 10.2.

10.1. General Equation of State

We studied in detail the derivation of Qgw 4 for general expansion histories in Section 4. The
main approximations used are the following: (i) there is an epoch of constant w and c; after inflation,
(ii) the peak (or plateau) in the primordial spectrum enters the horizon during such era and (iii)
the transition to radiation domination is instantaneous. Note that in the case of standard radiation
domination these assumptions are unnecessary. The presence of a transition to radiation domination
introduces another relevant scale k;,, which is the last co-moving scale that entered the horizon at
the transition. The GW spectrum for scales k > k,, takes a general form given by

k PISS 1+ov
Q =(— d d ,0,b,¢5 k kv), 205
o= (=) o [ duT (0,0 Pr(iuPr (ko) (205)

where we defined the transfer function as

42 — (1—12 +02)2\?
T, =N (bye) (=0T )

2
X { (Pib(y) + %P;fz(y)) Oles(u+v) —1]

2
+ 200 + ) Oletu+o) -1

b+2

4 (4 b 2
+;(Qb (—y)+2me+2(—y)) Ol —c(u+o)y,  (206)

and the numerical coefficient is given by

42 b+2\2 _
N(b,cs) = Eﬁ [b+%} (ﬁ) (14 b)20+0) (207)

In Equation (206) we have introduced the following notation for convenience:

1—c2(u—0)?

2c2uw

b71—3w

T 143w (208)

and y=1-—

These equations are general enough for k >> ky, that can be used for any shape of the primordial
spectrum as long as the main feature, whether it is a peak or a plateau, enters during the w = constant
epoch. If the transition to radiation domination is gradual, then we only expect a change in the IR
tail of the spectrum for modes which entered during the relevant stages of the transition. Following
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with the instantaneous transition, it is important to note that for b > 1 the IR tail has a red tilt and
the spectrum for k < ky, becomes important. Nevertheless, a good approximation is to stop the
spectrum at k ~ ky, and match it to the typical IR scaling in radiation domination, i.e., Qg o k°.
Details on the spectrum for k < ky, can be found in Section 4. It should be noted that (206) is not
valid for ¢; = 0. The case of ¢; = 0 is studied in detail in Section 6 and a quick estimate is presented
below in Section 10.2.

The transfer function (206) is expressed in terms of Associated Legendre functions which are
provided in Appendix H in terms of Hypergeometric functions. This general form, while very
useful, might be a hindrance to a quick implementation. For this reason, we present below particular
examples of the transfer function (206). We choose the cases where b € Zand b € Z + % since then
the associated Legendre functions (and the Hypergeometric functions) reduce to polynomials. Note
that only when b € Z logarithmic terms appear. We will first check the standard case of radiation
domination (b = 0, w = 1/3) and we will later turn to other situations. We give the transfer function
for a stiff fluid b = —1/2 (w = 1), a soft fluid b = 1/2 (w = 1/9), a pressureless fluid b = 1 (w = 0)
and negative equation of state fluid b = 2 (w = —1/9). We keep the sound speed c; arbitrary. For an

adiabatic perfect fluid, we have ¢2 = w and for a canonical scalar field ¢Z = 1.

10.1.1. Radiation Domination
The transfer function (206) for b = 0 (w = 1/3) reads
_3?

Trp(u,v,c,w =1/3) =
Ro(0,e,w=1/3) =2

42 — (1—u? +02)2\>
4u20p?

2 1
X {4y2®[cs(u +o0)—1]+ (1 — Eyln

1+y]\?
ﬂ) } (209)

where we kept the variable y as it simplifies considerably the expressions. This recovers the result of
Kohri and Terada [63] after taking into account all numerical factors in (7).

10.1.2. Stiff Fluid (Kinetic) Domination

Another notable case of interest is a stiff fluid with b = —1/2 (w = 1). This is for example
typical of quintessential inflation scenarios [340-343]. For a kinetic dominated period, the transfer
function (206) is given by

7}(1)(11, U/ CS/w = 1)

B 4 42— (1—u? +02)2\?
31— 2 4u2v?

X {(1 +3y2)®[cs(u +0)—1]+ <1 —3y% +3y/[1 —y2|)2®[1 —cs(u +v)]}. (210)

This coincides with the formulas derived in Ref. [64,74]. It has also been studied numerically in
Ref. [75].

10.1.3. Soft Fluid Domination

The next case is that of a soft fluid with b = 1/2 (w = 1/9). This could be due to a scalar field
rolling down an exponential potential. After some algebra, we find that

2

8 2 2 2\2
T 0,000 = 1/9) 2 <4v (1 u+v))

387rcd 4u?y2

X { (4 + 45y2)®[c5(u +o)—1]

+ (y(3 — 10y2) +(2+ 1Oy2) /11— y2|>2®[1 —cs(u+ v)}} . (211)

10.1.4. Pressure-Less Fluid Domination

We turn now to the case of a pressure-less fluid with b = 1 (w = 0). Note that this is not dust in
the sense that ¢; # 0. So that even though the fluid has no pressure, perturbations still propagate at a
finite speed. This is the case of a scalar field rolling down an exponential potential and might also be
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close to the coherent oscillations of a scalar field around the bottom of the potential [344]. The kernel
for b = 11is given by

2

352 2 2 212
T(u,U,Cs,ZU:O):3 5 <4v (1-u +v))

2144 44202
12 _2\2 2\2 _
X 1—y7)*(14+3y°)Olcs (1 +v) — 1]

4
2y 1 2 o | 1Y)
4 (y(lfSy )~ 2(1+27 3" In WD . (212)

10.1.5. Negative EoS Fluid Domination

The last case we are interested in is a negative EoS parameter. When —1/3 < w < 0 the universe
is decelerating very slowly, which yields to interesting slopes in the IR tail. For convenience we
present the kernel for the case b = 2 (w = —1/9), which reads

T(u,0,c5,w =—-1/9) =

P72 (402 — (1— 12 +02)2\°
28394 4u?v?

2
+(y(9+35y2_3oy4)+§(1—3y4+zy6)m'%‘> } (213)

10.2. Dust Domination

Here we provide a useful order of magnitude estimate for the following situation: (i) the
universe is dominated by dust w = ¢ = 0 when induced GWs are generated, (ii) the transition
to radiation domination is instantaneous and (iii) the spectrum of fluctuations for the Newtonian
potential @ is given by

k —n
Po = Ao (—) O(kyy — k), (214)
kuv
where n < 2. This power spectrum includes a power-law generated during inflation and the case
of PBH density fluctuations. The details of the derivation can be found in Section 6. With these
assumptions, the spectrum of induced GWs is approximately given by

7—2n
k[ k
Ocwern(k ~ kov) mfgw(ki:) Okuy — k), (215)

where the amplitude of the peak reads

A" (kov \
Pk L(f) ( UV) A2 216
GWs 9216\@ 3 krh D ( )

We can then use Equation (157) together with (204) to estimate the induced GW spectrum
today. Note that if the UV cut-off kyy is at very small scales, i.e., kyy > ky,, the amplitude of induced
GW is very much enhanced and strong constraints apply. It is important to clarify that if kyy is
very large (larger than ky, in Equation (139)), some density fluctuations would enter the non-linear
regime. Thus, the above result must be considered as a rough estimate. For detailed discussion we
refer the reader to Section 6.

11. Conclusions

Gravitational waves induced by primordial fluctuations, so-called induced GWs, have been
shown to be a very promising tool to complete our picture of inflation and the early universe.
Although this effect was first pointed out 50 years ago, induced GWs together with primordial black
holes are receiving serious attention since the first GW detection by LIGO [61]. They are even more
interesting after the NANOGrav collaboration recently reported a possible stochastic GW signal [18].



Universe 2021, 7, 398

54 of 74

Within the next couple of decades, LISA will launch, and we will have a new data on stochastic
backgrounds of gravitational waves in a wide frequency range. Even in the worst-case scenario,
where no conclusive induced GW signal is found, we will obtain new constraints on the physics of
inflation and the early universe in completely unexplored regimes.

The field of cosmology with induced GWs is relatively new and still developing. In this review
we have focused on the current analytical techniques and estimates to compute the induced GW
spectrum. We believe they will be most useful in analysing future SGWB data. We have not dwelled
on the details of PBH formation nor on the observational forecasts for future GW detectors, both of
which deserve a separate review. In the next years there will be more studies on induced GWs; new
and better analytical and numerical results might be developed. Until then, particularly interesting
and important directions are: (7) the impact of primordial non-gaussianities, not necessarily in the
local shape, (ii) possible discriminators of induced GWs to distinguish them from other sources, (iii)
the GW detector response at second order and (iv) GWs from the non-linear regime in an early matter
dominated stage. We hope this review will be useful to the next advancements in the cosmology of
induced GWs.
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Abbreviations

The following abbreviations are used in this manuscript:

GW Gravitational Wave

PBH Primordial Black Hole

SGWB Stochastic Gravitational Wave Background

CMB Cosmic Microwave Background

FLRW Friedmann-Lemaitre-Robertson-Walker

ADM Arnowitt-Deser-Misner

WKB Wentzel-Kramers—Brillouin

LIGO Laser Interferometer Gravitational-Wave Observatory
KAGRA  Kamioka Gravitational Wave Detector

LISA Laser Interferometer Space Antenna

PTA Pulsar Timing Array

DECIGO  Deci-hertz Interferometer Gravitational wave Observatory
AION Atom Interferometer Observatory and Network

MAGIS Matter-wave Atomic Gradiometer Interferometric Sensor
ET Einstein Telescope

OGLE Optical Gravitational Lensing Experiment

rms root mean squared

NG Non-Gaussianity
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Appendix A. Useful Formulas and Numerical Values

In this appendix we present the numerical values and formulas used to derive the parameters
in the main text. First, we used the following values from the Planck results [2]: keq ~ 0.0104 Mpcfl,
Zeq ~ 3400, Ty = 2.7255K. We also used the value for the reduced Planck mass Mpl ~ 4.235 x
10" GeV a2 4.34 x 107% g and the solar mass Mg, &~ 2 x 103 g. A useful relation between units (in
the Planck units) is the following:

1K~ 862x10°eV ~434cm ! ~ 1.31 x 10! Hz. (A1)

On the effective degrees of freedom that we used for radiation at temperature T, the energy
density is given by

2 . 7
o= %g*(T)T“ with  ¢.(T) =) g+ 3 ng' (A2)

where g;, and g are respectively the degrees of freedom of bosons and fermions. The entropy can
then be calculated by

2
5= g (A3)
The different values of g, and g« in the standard model are reviewed in Ref. [293]. At very
high temperatures, i.e., T > 100GeV one has g, ~ g«s ~ 106.75. At the time of matter-radiation
equality and at present we took g« (Teq) = gx(Tp) ~ 3.38 and gus(Teq) = gxs(To) ~ 3.94.
The Hubble parameter in the radiation dominated universe can be related by the Friedmann
equations to the temperature as

T
3V IOMplg (T (Ad)

Another important relation is that since the entropy is conserved, which in an expanding
universe means s « a3, there is a direct relation between the scale factor and the temperature. In
particular we have that

L) &
&+s(T)

More detailed explanations can be found, e.g., in Baumann'’s lecture notes as of August 2021
http:/ /cosmology.amsterdam/education/cosmology/.

Appendix B. Green’s Function Method

In this appendix we present the Green’s method to find particular solutions to a differential
equation where the homogeneous solutions are known. In the main text we found that the induced
GWs have the following equations of motion:

WA+ 2HI ) + Pl ) = Sich - (A6)

Assuming that we know the two homogeneous solution, say iy and &y, we can check that the
following Green’s function,

Gt ) = iy (Dal®) = I (D), (A7)
is a solution to
G (T, %) + 2HGy (T, 7) + K Gia (T, %) = 8(T — 7). (A8)

In Equation (A7) we have defined the Wronskian as

Wy, ho, %) = hy (D)o (T) — hn (£)h(T). (A9)
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Then with the Green’s function (A7) we have that the particular solution to i , with initial
conditions Iy 5 (7;) = Iy, (T;) = 0is given by

hr = [ d2G(T, H)Sia (7). (A10)

T

Appendix C. ADM Formalism

In this appendix we briefly give the ADM or (3+1)-decomposition of the Einstein-Hilbert action,
that is

M2,
S= /d4x\/ngpR. (A6)
More details can be found in Ref. [223]. First, the line element is parametrised by
ds? = —N2dP + Iy (dx" + N"dt) (dxf + Nfdt) , (A7)

where N is the lapse and N' is the shift vector and describe the foliation of our spacetime. In this
decomposition the Einstein-Hilbert action, after integrating out boundary terms, is given by

~ M? )
S= / PNV =2 (RO [1] + KK — K2, (A8)
where
1 .
Kij = ﬁ <hzj — DiNj — D]NZ) P (A9)

is the extrinsic curvature, K = hi/ Kjj and D; is the covariant derivative of h;;. Explicit expressions of
the metric, its inverse and all the Christoffel symbols can be found in Appendix A of Ref. [345].

Appendix D. Fourier Conventions and Polarization Tensors

In this appendix we specify the conventions used for Fourier transforms and the polarization
tensors. First, we define the Fourier transform of a scalar mode as

a3k .
v,k = [ T OO, (A10)
and of a tensor mode as
&Pk, o
hij (T, k) = ;/ 2y 0 A (D), (A11)

where A are the polarization, e.g., + and X, and ef} (k) are the polarization tensors. Such expansion is

valid for real polarization tensors. Then, reality conditions® of h;; imply [29] e{} (k) = ef}(fk) and
Iy , = h_x - We define the polarization tensors in terms of polarization vectors as follows:

[ei(K)e; () — & (k)2(k) | (A12)
e (1) = — = [e(1)g (k) + & (Ke; (k) (A13)

Then, using that ¢; (k)k' = &;(k)k' = 0 and ¢;(k)e’ (k) = ¢;(k)é' (k) = 1, we arrive at the usual
properties of the polarization tensors, namely

eh1)et ) =1, ef(k)e i) =1, ef(Keii(k) =0,
zSi]»e*if(k) = 5,‘j€><ij(k) = k,‘eJrij(k) = kieXij(k) =0. (A14)
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Appendix D.1. Spherical Parametrisation

When calculating the projection of polarization tensors with the scalar momenta we choose
spherical coordinates for convenience. Then, one can write in general that the wavenumber of a
tensor mode is given by

k = k(sin 6 cos ¢, sin 0k sin ¢, cos 6 ) , (A15)

where 6 and ¢y respectively are the polar and azimuthal angles. With this choice, a pair of orthonor-
mal polarization vectors are

e(k) = (cos b cos @y, cos 0y sin ¢, — sin ), (A16)
é(k) = (— sin @y, cos ¢, 0) . (A17)

We parametrize two scalar momenta q and 1 as
q = q(sin; cos @4, sin 6 sin ¢, cos ;) , (A18)
and
1 = I(sin 6; cos ¢;, sin 0 sin ¢;, cos 6;) . (A19)

In the calculations of the tensor spectrum of Section 3.1 we considered general local primordial
non-gaussianity. In this case, due to the symmetry between 1 and q, we find it the most convenient to
choose k in the z-axis, namely we set

=0 , ¢r=0. (A20)
Then one has that
|k —q|* = K>+ ¢* — 2kq cos by, (A21)
|k — 1> = k* 412 — 2kl cos 6}, (A22)
|q — 11> = g% + 1> — 21q(cos 8 cos 6, + cos(@g — ¢;) sinf sin ) . (A23)

Note that the azimuthal dependence is only in |q — 1|. The projections of q and 1 with the
polarization tensors then read

A 1, _
ey(k)qqu = \ﬁf sin? 0 cos(2¢) e; K)g'q = \ﬁqz sin? 0 sin(2¢,) (A24)

y 1 . » 1 . .
e;(k)lllf = ﬁlz sin? 0; cos(2¢;), e; (K'Y = \ﬁlz sin? 6, sin(2¢y;) . (A25)

Lastly, what we need to derive the induced GW spectrum are the following results:

SN2 SN2 4
(e 00d'a’) + (e tg'y)” = L-sint 6y, (A26)
and

. y . y 212
63 (k)q’q/eg (K)I' + e; (k)q’q/e; (K'Y = % sin® 0 sin” 6) cos(2(@4 — ¢1)) - (A27)

Appendix E. Formulas in a General Gauge

In this appendix we present the explicit expressions for Einstein equations in a perturbed
flat FLRW universe filled with a perfect fluid. We present the results in a general gauge. The
convention for the perturbed metric is given in Equation (183) and the energy momentum tensor in
Equation (44).
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Appendix E.1. Background

At zeroth order in perturbation theory we have the two Friedmann equations and energy
conservation equations. These are respectively given by

3M§1H2 =a%p, (A28)
M (7—[2 +2H’) = %P, (A29)

and
o' +3H(p+P)=0. (A30)

Appendix E.2. First Order

At first order we find that the Hamiltonian and momentum constraints yield [164]

6H(¢' — Ha) +28(¢ + Ho) = M3a’p, (A31)
29/ — 2Ha = M3 (0 + P) (v + B) - (A32)

The remaining Einstein equations are

29" +4Hg' — 2Ha' — (4H' +2H?)a = —Mpa*6P, (A33)
o' +2Ho+¢p+a=0. (A34)

We assumed that there is no anisotropic stress for matter and we defined
c=p-F, (A35)

which corresponds to the scalar shear of the metric [164]. The energy and momentum conservation
equations can be derived from the Einstein equations.

Appendix E.3. Second Order

Here we only present the second order equations for the tensor modes with a scalar squared
source. In the source terms, there are in general vector and tensor components as well, although
they are often subdominant [151]. After a long algebra, the equations of motion for tensor modes are
given by [150]

A

—~ab
(Dr — A)hij =TT Sap, (A36)

~ .. __ab
where Dy = a*zaT(uZaT), A =6 8,-8]- is the flat three-dimensional Laplacian. TT?j is the transverse-
traceless projector, which is given by

1

Ty = (6"~ ") (6 —99"a™1) — 2 (6 — a8 ") (o —a%a'a™1),  (A37)

where the parenthesis in the indexes denote normalised symmetrisation. The source term in a general
gauge can be written as

Sap = 40,D,® +2a%(p + p)3, VI,V — (Dr — A) [aaaaba + aaakEakabE} ) (A38)
where we defined for convenience
¢E¢—%AE+U , V=v+E. (A39)

The source term (A38) reduces to the result of Section 3.1 in the shear-free or Newtonian gauge,
thatisc = E = 0.
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Appendix F. Bessel Functions

In this appendix we write useful formulas and relations of the Bessel functions. First, the
asymptotic expansion for small argument is given by

-V

T1+v]

Ju(x < 1) = x¥ +0(x"h) , Y(x<1)~ —%F[v]x‘” +O(x7V . (A40)

For large arguments we have that the Bessel functions oscillate periodically as

]V(x>>1)%1/%(:05(2(—%—%)—!-0&71), (A41)

and

(x> 1) ~ 1/%sin(xf%fg) Lo, (A42)

Lastly, useful relations between derivative and Bessel functions of similar order are respectively
given by

OxJu(x) = Ju—1(x) = (v/x)]u(x), (A43)

and
Jo—1(x) + Jug1(x) = (2v/x)]u(x). (A44)

Appendix G. Integrals with Two and Three Bessel Functions

In this appendix we give the expression for the integrals used in Section 4. Most of the formulae
can be found in [233,346].

Appendix G.1. Superhorizon Approximation

The integrals (80) in the kernel (79) for the superhorizon approximation (x < 1) of Section 4.3
involve an integral with two Bessel functions of the same order. Then, the relevant integrals necessary
for Section 4.3 are

[ dexax) = 322 (3 (@x) = Jy-1(ax)fya(ax)) (A45)
and
_ x—2y+2
/ dxx 22 (ax) = m(ff,(ax) + P2y (a)). (A46)

By using the above formulas it is straightforward to show that the integrals (80) reduce after
integration to

342 270712y

I~ T T3/ o (A7)
Tym A3yt geen G 1Ebil (A49)
Y ~ b(1+b)csw o [b+3/2] 1+b

Appendix G.2. Subhorizon Approximation

The integrals (80) in the kernel (79) for the subhorizon approximation (x > 1) of Section 4.2
involve definite integral of three Bessel functions. The relevant integrals necessary for Section 4.2
can be found in Ref. [233]. Here we review their main results. On one hand, they find that for
|a — b| < ¢ < a+ b the integrals (80) read
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I]/Y = O°° dzz'f {ip wa) }]v (”f)]v (bf)

p(cX)
TS —p+1/2
o—1 ~pr (cos )
—Q, )3 (cos 9)
where
16A% = <02 —(a— 5)2) <(a +b)? - c2) , (A50)
and
a2+ —c? . 2A
s¢=——p— , sing=_r. (A51)

On the other hand, if ¢ > a 4 b the integrals are instead given by

Zﬁ/Y'—(Arodfflp{;?écfi}]?(af)h(bf)

pr

-1 —sin[(v —
— l\/gi(abc): (sinh 4;)*’*1/21“[1/ —p+1] ;ff/g/z(cosh cp){ I p)ﬂ.’]} ,  (A52)

T cos[(v — p)7]
where

1652;(c2—(a—b)2)(c2—(a+b)2), (A53)
and

g CEE) -

To use these formulas in the main text, we identify
c=1, a=cv , b=csu. (A55)

Then, the range |1 —v| < u <1+ v canbe splitinto1l > ¢;(u+v) (c > a+b)and 1 < ¢s(u +v)
(c < a+ b). In the latter case we always have that cs|u — v| < 1 by momentum conservation and so
the formulas presented above cover all ranges of interest.

Appendix H. Associated Legendre Functions

In this appendix, we present useful formulae for the associated Legendre functions that can be
found in Ref. [346]. We begin with the definitions of the associated Legendre functions of the first
and second kind in terms of hypergeometric functions, which read

1—x

n/2
Pl(x) = (1+x) F(V—&-l,—v;l—y;%—%x), (A56)

/2
I _ 7T 1 +x B 1.1 1
Qy (x) 772sin(y7r) (cos(yﬂ)(l 79{) F(v+1, v;il—u;5 2")

T(v+u+1)/1—x\M?
_FEV—£+1§(1+X> F(v+1,—v;1+y;%—%x> , (A57)
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and

/2
U _ 7T x+1 # 111
QV(X)2sin(y7t)1"(v+y+1)<(xl> F<V+1' vil=piz 2x)

T(v+p+1) (x—1\"?2 -

- Flv+1, -1+t —1x)]. A

Tv—pu+1)\x+1 <V+ vt 2x> (A58)
Note that P}/ (x) and Q! (x) are also called the Ferrer’s functions and are valid for |x| < 1. Then,

Ol (x) is also known as Olver’s function, which is real for |x| > 1. In the above definitions we have

used the compact notation

ﬁlf(a, bicix), (A59)

with F(a, b; ¢; x) being the Gauss’s Hypergeometric function.

F(a,b;c;x) =

Appendix H.1. Asymptotic Limits

We write down the asymptotic behaviour of the Associated Legendre functions near the singular
points x ~ 1 and x — co. It should be noted that the formulas below are valid for y ¢ Z. Relevant
cases with y ¢ 7Z are given in Section 10.

The limit x — 17 : First, the Ferrer’s function of the first kind asymptotically goes as

t~— L (2) A6
Pl ~ e (5 ) (A60)
Second, the Ferrer’s function of the second kind goes for y > 0 as
- C(I(v—p+1)( 2 \"?
By
Q) ~ Srn s \iox) (A61)
while for u < 0 behaves as

1 /2

Q) ~ geosumr(25) wA 12, (A62)

The limit x — 17: Since |x| > 1, this case only concerns the Olver’s function of the second kind.
In the limit x — 17 we have that

) 2 \"?
Qg(x)wzr(v+y+1)(x—1) ' (A63)

The limit x — oo: This case also applies only to the Olver’s function of the second kind. The
asymptotic behaviour is then given by

7.[1/2

)~ r(v+3)@oet

(A64)

Appendix H.1.1. Useful Relations

In order to apply the asymptotic limits of Appendix H.1 we have to evaluate the functions for
negative argument and negative order. This can be done by the useful relations below:

P,o(—x) =P, (x) , PylL(—x)=P,l(x), (A65)

Ql(—x) = - (x) , Qly(—x)=-Q (), (A66)
and

QM (x)=Qh(x) , Qul(x)=Qh,(x). (A67)
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Appendix H.1.2. The Resonance Limit

Using the formulas in the Appendix H.1 we can compute the terms that appear in Section 4.2 in
Equation (83) near the resonant point y ~ 1. In this way, we have that on one hand fory — —17

_ b+2_ 3420 1 2\ 2
b vTe b ~
P+ P~ T F[1+b}(1+y) ’ (A68)
and
r[b} 2 b/2
14+b4+1) e [ —— b>0
Q) + LE2qr ) o 2 E 2 (1+b+ )F[2b+3]<1+y) ~ (A69)
b V)T We2Y 1106 )4 y b2
On the other hand, for y — 11 we find
F[b} 2 b/2
(1+b+b2)7<— b>0
_ b+2 _ 3+2b I2b+3]\1—y
b b

1 2 -b/2

Notes

10

11

12

13
14

Observations of the first photons that decoupled from the thermal plasma after neutral hydrogen formed.

To have a quantitative idea, the comoving wavenumber corresponding to the size of Hubble horizon at the time of neutrino
decoupling is roughly k ~ 10* Mpc~!. CMB observations constraint the primordial fluctuations roughly on scales k ~ 10™* —
5 x 10~ 'Mpc 1. Any information on much smaller scales, that is for k > 10* Mpc ™!, is erased by complicated astrophysical
processes. On the largest scales we are limited by cosmic variance. CMB spectral distortions might probe down to k ~ 10° Mpc ™.

Take one source per Hubble patch and count how many Hubble patches at a given redshift fit the current universe. The number
actually grows as (1 + z)3 and we are talking about GWs generated at z > 10'°. On top of that, the angular resolution of GW
detectors is not enough to pinpoint cosmic GWs generated in tiny Hubble patches.

For example, GWs generated when the universe had a temperature of around 1 GeV and 1010 GeV, respectively have a typical
(peak) frequency roughly around 10~8 Hz and 100 Hz.

We have that the linear terms in the perturbative expansion in h,, vanish after averaging.

Note that sometimes in the literature there is an additional factor 1/2 in front of h;;, e.g., in Refs. [38,63]. This slightly changes the
numerical factors in different steps of the calculations but, of course, yields the same results in the end.

We are assuming that the tensor modes are drawn from a Gaussian distribution. This is essentially the case when they are
generated by quantum fluctuations during inflation. Then, the expectation of a two-point correlation function of a random
variable that follows a Gaussian distribution is proportional to the Dirac delta.

Here we define the critical threshold in terms of dp/p. However, it may also be defined through the peak of the so-called
compaction function [199]. See Refs. [200-202] for recent studies.

From the critical collapse we know there will be some dispersion in the masses. For simplicity, we neglect it here.

Although we will abuse the notation “Newtonian gauge”, the Newtonian gauge is actually defined as the shear-free slicing at the
linear level. Our gauge choice reduces to the definition of the Newtonian gauge at first order but there might be some subtleties if
one wants to relate them at second order.

As in the tensor modes we have that the dimensionless power spectrum is given by

272

<(1>kq>k’> = F,Pq)(k) X (27’[)3(53(,( +k/) .

Although the name is not informative at all, as strictly speaking any distribution which is not a Gaussian is non-Gaussian, in
cosmology the term "non-Gaussianity" is often used to indicate small departures from a Gaussian distribution, e.g., by a small
but non-vanishing 3-point correlation function. For a detailed explanation, I recommend to read E. A. Lim’s notes on primordial
NG as of August 2021: https://nms.kcl.ac.uk/eugene.lim/AdvCos/lecture2.pdf.

This factor is actually to compensate the factor in (61) for w = 0 since the original definition [230] was in terms of ® not R.

Since there are more possible contractions in the non-gaussian case with respect to the gaussian one, the numerical factors of the
NG contribution will be larger.


https://nms.kcl.ac.uk/eugene.lim/AdvCos/lecture2.pdf
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15 For reference note that the radiation-matter equality corresponds to k ~ 10~2 Mpc~!. This means that at the transition to the cold
dark matter dominated epoch such induced GWs are already freely propagating GWs and can be treated as radiation.

16 For instance, one has arbitrary constant w and ¢; = 1 for a canonical scalar field in an exponential potential [231].

7 Isocurvature fluctuations are fluctuations that leave the total energy density of matter homogeneous. Thus, they are only possible
in multi-fluid systems where the density fluctuations of one fluid can be compensated by the density fluctuations of another.

18 Actually to derive Equation (70) we used the equations of motion for the curvature perturbation R for general w and c; as can be
found, e.g., in [183,232] and then we changed variables according to Equation (61).

19" We used that [*_dzCi?[z] = 7.

20 For example, this is also the case of a matter inhomogeneity in the universe, such as a galaxy, where the matter density is
clearly larger than the mean density of the universe but the gravitational potential can be considered as a perturbation. In this
perturbative expansion one recovers Newtonian gravity which is very accurate in galactic scales.

21 It is parametrised as the effective number of neutrinos below the electron-positron annihilation temperature. In this way, the
factor 7/8 is the relative factor of the energy density of fermions with respect to bosons. The factor 4/11 is the relative factor of
the entropy of neutrinos and photons. Since T « s'/3 and p « T* we get a power of 4/3. This is well explained in Baumann’s
lecture notes as of August 2021 http:/ /cosmology.amsterdam/education/cosmology /.

22 Note that one obtains similar bounds from studies of the CMB [301,302]. However, these CMB constraints consider gravitational
waves as a dark radiation component and depend on the initial conditions of such dark radiation fluctuations. As an order of
magnitude estimate we limit ourselves to the BBN constraints [299,300] on the fraction of extra relativistic particles. We thank an
anonymous referee for clarifying this point.

23 Without the symmetries of an FLRW background the definition of tensor modes is more subtle. For example, in anisotropic
inflation they are constructed from the 2D scalar and vector perturbations [304,305].

b That is assuming an early universe dominated by radiation and using the estimates of Section 2.3.

% In case of doubt about conventions and normalisation conditions, it is advisable to treat /;; as a field operator and express the
Fourier expansion in the Fock representation. If the polarization tensors are complex, such as in circular polarization, the general
normalization conditions are e?}(k) (e)‘if (k)) " oMV, where an asterisk refers to complex conjugate. We thank M. Sasaki for
explaining this point.
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