
LECTURES IN THEORETICAL PHYSICS 

VOLUME X-A 

QUANTUM THEORY AND STATISTICAL PHYSICS 



LECTURES IN THEORETICAL PHYSICS 

Volume X-A 

Quantum Theory and Statistical Physics 

Volume X-B 

High Energy Physics and Fundamental Particles 



lE.CTURES IN TI-IE ORETICAL PHYSICS I IO . 3¢ Gcflu . IQQ1 

Volume X-A 

QUANTUM THEOR Y 
AND 
STATISTICAL PH YSICS 

Edited by 

ASIM .o . BARUT and WESLEY E . BRITTIN 

Department of Physics and Astrophysics 
University of Colorado 

GORDON AND BREACH, SCIENCE PUBLISHERS 
New York • London • Paris 



Copyright ©1968 by The Regents of the University of Colorado 

Library of Congress Catalog Card Number: 59 -13034 

Published by GORDON AND BREACH, Science Publishers, Inc. 
150 Fifth Avenue, New York, N. Y. 10011 

Editorial office for Great Britain: 

Gordon and Breach, Science Publishers, Ltd. 
8 Bloomsbury Way 
London W.C.l 

Editorial office for France: 

Gordon & Breach 
7-9 rue Emile Dubois 
Paris 146 

C/727/65 
Q).&-\.L 

to °<a, 
Q 

4VH»;\0 
55o./ 

EC L 
Distributed in Canada by: 

The Ryerson Press 
299 Queen Street West 
Toronto 2B, Ontario 

A11 rights reserved. No part of this book may be reproduced or 
utilized in any form or by any means, electronic or mechanical, 
including photocopying, recording, or by any information storage 
and retrieval system, without permission in writing from the 
Publishers. . 

Printed in the United States of America 



THE LECTURERS 

D.  G. Currie, University of Maryland 

W .  I-Iunziker, Eidgeniissischen Technischen Hochschule, Zürich 

A.  Isihara , State Univers ity of New York 

T .  F .  Iordan, University of Pittsburgh 

Bernhard Klaiber, Princeton University 

lean-Paul Marchand, University of Denver 

P .  T .  Matthews , Imperial college , London 

Elliott W.  Montroll, University of Rochester 

George I. PapadopouloS , UNiversity of Leeds , England 

G.  L.  Sewell, Queen Mary College, London 

Y. Takahashi', Dublin Institute for Advanced Studies r Dublin 

Ian Tarski, University de Parls 

Iohn G . Taylor , Mathematical Instltute , Oxford 

V 





PREFACE 

The Proceedings of the Tenth Boulder Summer Institute for Theo- 
retical Physics come in two volumes . Volume XA is devoted to lec- 
tures in a wide variety of areas of theoretical physics , from quantum 
f1eld theory to statistical mechanics , and from group theory to non- 
linear differential equations , which were presented during the first 
seven weeks of the Institute. These lectures review some of the re- 
cent advances made in these fields, and we hope that they will appeal 
to a wide audience of physicists . 

The second volume , XB r contains lectures delivered during the 
Fourth Boulder Conference on Particle Physics . The Conference was 
held during the last three weeks of the Institute. Traditionally this 
Conference brings together both experimentalists and theorists to d1s- 
cuss the latest developments in a leisurely and detailed manner . 

The Institute was supported in part by a grant from the Natlonal 
Science Foundation and in part by the University of Colorado . 

We thank the lecturers and the partlclpants for their collabo- 
ration in the final realization of these Volumes, and Mrs. Ann 'Cofer for 
her conscientious and expert typing of the manuscripts . 

A.  O .  Beirut 
Wesley E .  Brittin 

Editors , 
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MATHEMATICAL THEORY OF MULTI-PARTICLE 
QUANTUM SYSTEMS* 

W . I-Iunziker 
Seminar f i r  Theoretische Physik der 

Eidgeniissischen Technischen Hochs chute 
Zürich 

II 
m 

I .  Construction of Hamiltonians 
Formally, a system of N particles interacting by two-body 

forces is described by a Hamiltonian 
2 

Pi + = H 
Zmi O 

1=1 
Z V & )  + V ,  
L 

acting on the Hilbert space T+C=L2(R3N) 1% labeling the pairs of 
particles) . However, H generates a one-parameter unitary group 

U (t) -iHt 
e I 

which describes the dynamics of the system only if it is self-adjoint . 
To define a model, therefore, means to construct a self-adjoint 
Hamiltonian. Once this is achieved, the basic existence theorem is 
established: the initial value problem connected with the 
SchrOdinger equation has a unique solution . 

In many cases , the following theorem is sufficient for the 
definition of a self-adjoint Hamiltonian: 

Theorem 1 {Katol)): On a Hilbert space 'K, let A be self-adjoint and 
B symmetric and relatively bounded with respect to A ,  i . e  . , 
D(A)C D(B)* and 

S IlBuI <1llAull Blull + (I-1) 

for some a< l , 
is self-adjoint. 

B<°° and all u e D(A). Then A + B  (defined on D(A)) 
Also, if A is bounded below, so is A + B .  

RePresented at the THEORETICAL PHYSICS INSTITUTE, University of 
Colorado, Summer 1967 . 

-*D(A) = domain of the operator A; RNA) = range of A.  

l 



2 W .  HUNZIKER 

* 

The proof follows from the relations 

z - (A+B) = E 1 -  B(z-A)'1](z -A) I (I.2) 

ll8(z -A)'1ll so]IA(z -A)l*ll + B I (z -A)l1 I 

a s u p  n X | 

x€0(A) lz al + 8  sup 
x o  (A) 

1 
Z - x I 

which hold for all (complex) zip (A) = spectrum of A .  
Z = i n ,  K real. Then 

lIB(z-A)l1ll S + < 1 a B 
III 

First, let 

for III sufficiently large, s o  that E l 
a bounded inverse. This implies 

B(z -A)'1] has range and TK: 

R(1K - (A+B)) = R(1K - A )  =:K:. 

hence , A + B  is self-adjoint by standard theorems .2)  
To prove the Second part of the theorem, suppose that A is 

bounded below by 0 .  Then, for Re z< 0 , we have 

B(z -A)l1 l$a+ _B » 

I R e z l  
< l (1.3) 

for Re z sufficiently large negative . 
(z - (A+B))'1 exists , i . e . ,  zQ'o(A+B) 
bounded below . 

Then, by (I.2), the resolvent 
, which shows that A + B  is 

* 

Applying this theorem, we set A=Ho,  B==V. Ho and_V are 
both defined as multiplication operators: Ho in momentum space , V 
in x-space, on their natural domains . 

Definlt1on:3) v is a Kato-potential if it is infinitely small 
with respect to Ho, i .e .  , if for any q,> 0 there exists B(a)< °° such 
that (I. 1) holds . 

Thus defined, the Kato-potentials form a linear set: If V is 
any finite linear combination of Kato-potentials , then H0+V is self- 
adjoint . 
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. . .x  (ms 3N). Then V is a Kato-potential if N 

U ( - )  e Lp(Rm) + Lm(R"') 1) 

Theorem 2 {Nelson3)): Let V(X1 . . .xN) = U(y1 . . .yml , where Y1 . . ~Ym 
are m linearly independent combinations of the particle -coordinates 
Xl 

with 

2 s p  and p - <  
m2 

* 

In the case of a two-body potential we have 

X • v( 1 . . - 4  xn) Vik(xi-xkl ' 

hence m =  3 and the condition is 

.2 oo via(-)e L (R3) + L  (R3). 

On the other hand, for a k-body potential with k> 2 
the restriction on p is 3/2(k - 1) < p .  

I m = 3 ( k  - 1) and 

* 

Singular potentials . 
For a two-body potential V(r) r`n (r-» 0), the condition V E L2 

requires n< 3/2. This excludes potentials with strong repulsive sin- 
gularities of the kind employed in statistical mechanics . In such 
cases , the potential is no longer bounded with respect to Ho' How- 
ever, a self-adjoint Hamiltonian can still be constructed by the 
method of Friedrich's-extension. 2) This Hamiltonian then cannot be 
written as Ho+V,  since Ho and V are not defined, in genera , on 
all of D(H). For later use, we shall show, however, that H (or the 
momentum operators) is still defined on D(H) and can be estimated in 
terms of H. 

Let V=V8 +VR, where VR is a Kato-potential and where the 
singular part Vs satisfies the conditions 

D is dense D(Vs) n D(I-Io) 

a S Vs(X1 . . .xN) for some real a .  

1) This means that U(Y1- . .ym) =UP(y1 . . .ym) +Uoo(y1 . . 
with UP( - ) e LP(R'") and Um( - ) e Loo(RM) . 

.ym) a . e .  I 
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Since VR is a Kato-potential , 
implies . 

I-Io+ VR is bounded below, which 

O S  S (u,I-IOu) + ( m u )  Q, (Ho+vR+b)u) 

for some real b and all u p  D. Adding on the right the non-negative 
form (u) VsU) -a(u,u), we obtain 

S OS Q- (u, Hou) +(u,u) (u, (H' + c)u) (I.4) 

for all up  D, where c = b - a  and H'=H0+V (on D). Thus we can 
define: 

H + c = Friedrich's-extension of H' + c .  

The inequality (I-4) is then preserved in the following sense: 

D((H+c)) D(H%) C 

and 

2 11u1 
1 s IIH%l + 

for all up  D(H +<= ) ) .  

2 
S (H + 

1 oF ul 2 (1.5) 

* 
The question of how to treat attractive singular potentials may 

not be relevant to physics; it is , however, quite interesting from the 
point of view of the correspondence principle . 

If HO + V  is still densely defined , it is symmetric and real, 
and has therefore always a (generally not unique) self-adjoint exten- 
sion. But Nelson3) has shown that the "correct" generator of the 
time-translations U(t) need not be among these extensions . He 
treats the case N=  2 with 

V(r) _g_ 
I,2 (g> 0) I 

which classically leads to capture for sufficiently small angular mo- 
mentum (collapse of the pair after a finite time) . He constructs the 
propagator exp(-iHt) =U(t) by using Feynman-integrals , and shows 
that in an (invariant) subspace of sufficiently small angular momen- 
tum U(t) is no longer a unitary group but a contraction-semigroup . 
This means that probability is dlsslpated-corresponding to the 
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classical capture process . Therefore, the Hamiltonian which gives 
the correct classical limit is not self-adjoint . 

"clusters " C1 . 

II. Cluster-Properties 
Maybe the most characteristic feature of multiparticle sys - 

rems is that they can break up into parts which move independently , 
if they are far separated from each other. It is clear, therefore, that 
the dynamics of an N-particle system contains , as a certain limit , 
the dynamics of any subsystem of less than N particles . 

To formulate this , let D =  (Cl . . .Cn) be a partition of the set 
( l .  . .N) into n . 'on The operator UD(a1 . . .an) 
which translates each cluster Co by as= (ago, as) in space-time is 

e-iHkako+1 Pkak 

k=l 
UD(a1. . .an) II (11.1) 

I-Ik,Tlk being the energy and momentum of the subsystem Co. Let 
U(a) be the corresponding operator for the system as a whole (trivial 
partition into one cluster). Then the cluster property is expressed 
by the following theorem: 

Theorem 3'4) If all the pair-potentials VL are of the form 

3 V (  - ) E L (R ) 2 + Lp(R3l (II.2) 

with ZS p< 3 , then 

UD(-a1 . . . -an)U(a)UD(a1. . .an)i1r UD(a . . .a)llr > 

as 

min [ a t  
nile a k  

_ > m  

( al =Euclidean distance in R4). for all 111 GK and uniformly in a .  
* 

Remarks . 
First of all, since U(o,5§) =UD(0,8 ; . . .o,3) commutes with 

UD(al . . .an), we can restrict ourselves to pure time-translations 
where the theorem reads 

-iHt e UD (a 1 
-1HD'£ 

.a n)ll! -> e UD(a]1... ,an)llJ I 
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with 

Hk 
n 

HD minus all interactions linking different clusters . 
k=1 

in t .  

1 state IU , we separate the clusters 
iciently far in space-time, then the 
rarity close to the motion of the sys -  . 
(with the same initial state) uniformly 

in 
i l l  

Th could not be expected from classical 
mechanics; rticles A,B,  where A is at rest and B 
has an init _ d an initial velocity if' which will Make 
it collide with A .  If we separate A and B by shifting B from i' to 
X -va  (a> 0) , the two particles will still collide after a finite time , 
regardless of how large we choose a . In quantum mechanics , how- 
ever, the probability of a collision w111 decrease for increasing a ,  
due to the spreading of the wave-packets . 
Proof of Theorem 3 :  It suffices to prove the theorem on the dense set 
spanned by the states of the form 

-e
- Q
; 

r-
' So

 
2 _ n 

,LL 
_ - l _ ' - P  2 e é'lyk be) 

Cpk(zk) . 

)UD(a1' n)\1' 

varies over over D(hk), he being 
energy of Co, and where Ye and Zn denote the coordinates 
where Be R3 and cps the internal 

-0 of the 
center-of-mass of Co and internal coordinates of Co, respectively . 
Now we have 

f -iHt -iHDt \e - e . . a  

t 
, - '  t 

-1e 1H dr e 
o 

j_H1' '°:i.HDT ID e UD(a1. » .an)¢ , 

where ID=H -HD is the sum of all interactions linking different 
clusters. (Since 'or E D(Ho) , exp(-11-IDt) UD (al . . .an)'ll E D(Ho) , so 
that, by Theorem 1 , the integrand is well-defined and continuous in 
t .  The integral is therefore defined as a Riemann-integral.) There- 
fore , 
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II(e -iHt - e 
_iI-IDt) UD(a1 . . .an)4' 

Vt 
s dT N(a1...an,T) J I (11.3) 

where 

N(a l " '  a n l  T ) =  I D e"iHDTu D (a l " '  a n ml 

An elementary calculation of the propagation of free wave-packets 
yields 

-iHDT 1(@ UD(a1...an)1lID (i01.. 
-\ 2 .xN) 

3/2 *k(Yk+°k'5kl2 
*J.k of e 

k=1 

2 
IQpk(T+ako, zk) I 

where 

Up 1 +  
-1 

(Tk+ako)2/MkZ) I 

Mk=tota1 mass of Co, and Q0k(t, °)=exp(-ihkt)cpk. For notational 
convenience we now set bk=0 and we only estimate the contribution 
to N(&1 . . .an,T) of a pair-potential V linking the clusters C1 and 
C2-  Then we obtain 

NZlal I °°an.T) 
o 2 const. JVdzldz2dxdylt.01(¢ +a1 ,z1)cp2(T +a2°,z2) 

x IV(x) 2 ( » 1 2 ) 3 / 2  

-o '-C -o -I 2 
6'U-1(Y1'&1)2'¥12(Y2'&2) 

r 

where X is the relative coordinate of the pair linked by V and y is 
the coordinate of the center-of-mass of the subsystem (Cl ,C2) , so 
that 

*'1 = y+(I.X + 5121 

YE = Y + ( ( 1 ' 1 ) X + B 2 Z 2  | 

a , B1 , B2 denoting constants depending on the masses 
the y-integration, we are left with 

Carrying out 
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2 2 N ( a 1 . . . a n , T ) =  const.Jldzldz2dxcp1(T+alo,z1) lcp2(T+a2 , z2)  2 

X V(x) 2 3/2 -u(x - (31-52) +81 +82-Z2)2 
II e I (II . 4) 

with 

u -1 -1 -1 *11 +l.J,2 =<2+  (T+alO)2/M12 + (T+a2O)2/M2ZD. 

First, let us assume now that V ( - )  E L2(R3) 
rial by l , we then obtain 

Estimating the exponen- 

3 4 N(a1. . .an ,T)S 1-1 / ~const. will I¢p2I Iv(-H2 (11.5) 

J J 

Hence, 

-l-m +°° + o 2 T+ao 2 -3/4 
V N(a1.. .an,T)d ' rS const. V 2+(¢,111) +( M22) 
- o n  

-| 0 for [ a l  _&2l -c co 

raf'.aé' 
rem.2) But the integrand in (11.4) is bounded by  

2 2 2 |°P1(T+alOIZ1) QP2(T +a2O,z2)l IV(x) 

This , together with (II.3) , proves the cluster-property for purely 
tlme -like separations . On the other hand, for purely space-like 
separation, it suffices to prove N(a1 . . .an ,TJ - 0 for al"a2l" oo 

,T fixed) , by (II.5) and by the dominated convergence theo- 

uniformly in a t  , 52, and vanishes (pointwise) as | 51-a2l -* °°. 
Hence the integral (II.4) vanishes in this limit, again by the domi- 
nated convergence theorem. A more elaborate treatment shows , in 
fact, that 

-l-ex: L N(a1 | .an,'r)dT -| 0 

LLp-part V 
contributi%n to 
for any € 0 , 

If v ( - )  e L2(R3) 
a2 l  in R4 tends to <». if only the Euclidean distance | a 

.L 

+ Lp(R3), ZS p< 3 ,  we can choose the 
of V( - )  arbitrarily small in the LP-norrn. Let ND be the 

N ,  in (II.4) , of VD. Then it suffices to show that , 
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+oo 

- m  .l N 
p 

(a1 . . .an ,T)dT < e (II. 6) 

for all a l -  . .an, provided that llvp(°)llp is sufficiently small. To 
get this , 
obtaining 

we apply the Hoelder-inequality to the x-integral in (11.4) r 

3 2 N2(a l . . .an ,T)s ; .1  / const. 2 2 
"CPI" llw2ll 

xiv(-)II2 dr t U; p 

2 2 e'l~lQT 1/q 
I 

with 
to u' 

-1 p-1 
3/Zq 2 

l (2 S p) , or, since the last integral is proportional 

2 N p (al. . .an,T) 3 2 
S const. al I13"V (-) l ip , 

p 

which, for p < 3 ,  implies (II.6). 

* 

Cluster-pronerties in momentum space . 
The operator which gives each cluster Co an additional mo- 

mentum as is defined by 

<uDQ11 . .sn)¢) (i1. . .>?N) al i6*kY-k _* _o 

e W (XI . I .xN) 
k=1 

I 

ye being again the coordinate of the center-of-mass of Ck-  Sepa- 
rating the clusters in momentum space means that they are given 
large relative velocities , and, again, the clusters become dynami- 
cally independent as the separation goes to °° : 

Theorem 4: Under the hypothesis of Theorem 3 I 

-4 -o -'Ht -9 -o -1HDt UP(-al. . .-an)e 1 UD(a1...an)l1 -Q e lm 

as 
-0 -» at  * a l l  min 

iyék 

for any 111 E'K: and uniformly in -oo < t <  +°°, 

-4 oo 
I 
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Proof: Proceeding as in the proof of Theorem 3 , we obtain 

2 -0 _| N (al • l oanlT) const . 2 
ldzldz2dxlcp1(T,z1)l cp2(T ,z2)  2 

x V(x)I 2u3/2e-u(i'-T ((5|1/M1)-(52/M2)) + ` i  +B2Z2)2 

where u is obtained from the corresponding u in (II.5) by setting 
a1°=a2O= 0 . As before , we conclude that 

-l-oo 

" N(é'l...5'n,T)dT -0 0 
-o f  

as | a1-§ok|-(=>, by twice applying the dominated convergence theorem . 
* 

The rate of convergence in the space-like cluster-properties . 
The cluster-properties established so far were based on the 

decay of wave~packets , and , as pointed out before, this is why we 
obtained results which were stronger than what could be expected 
from classical mechanics . However, classical mechanics will show 
up in the rate of convergence to the various cluster-l1mlts . This rate 
will depend on the directions in which we separate the clusters , and 
the directions of fast convergence will depend on the initial momenta 
of the clusters, Also, fast convergence cannot be expected for any 
initial state Ill , but only for states which describe well-localized 
clusters • 

Localized states .5)  
The problem is to find a set of states , describing well- 

localized particles , which is invariant under time -translations . 
Since the SchrOdinger equation is parabolic, it is useless to define 
localization in terms of the support of wave-functions . What we may 
use, instead, are the expectation values of arbitrary monomials in 
the coordinates of the particles ( i .e .  , moments of the probability- 
distribution in x-space) . In order to see what can be expected, we 
first look at the case of a free particle in one dimension. There we 
find 

n x e  If I I 2 \ 

I(»< 
pt 

+ m  
n 

all 
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Therefore, a suitable set of localized states for this case is, 

Dn n D(xkp ' ) .  
k+l{gn 

(II . 7) 

Dn is invariant under exp(-1(p2t/2m)) J and the expectation value of 
xk for OS kS  Zn in a state III E D1-1 exists and does not increase faster 
than cons t . l t l k  as ltl-°°°. 

For the dose of interacting particles , it turns out that a pos - 
sible generalization of (II. 7) is 

Dn n D ( x k H ) ,  Ik +»LSn 
(II.8) 

where 

k 
X 

k1 k2 in 
X1 -x2  " ' X N  

and kl =k1 +k2  + . . . +kN, Ki integer 2 0 .  On Dn, we introduce the 
norm 

Ill n :  k +1L>;n 

k / t ,  
l l x H ¢  (II.9) 

Since xi, H* are closed, Dn, normed by Hn, is complete. The 
justification for calling the states 111 E Dn localized is the following 
theorem: 

Theorem 525) Let 

H 
2 Pa 

Zmk 

N Q + 
k=l 

V(x1 . . .xN) J 

where V is a Kato-potential. Then 
a) Dn is invariant under the unitary group e-iHt . 
b) For any mY E Day e"iHtI1I is continuous in t in the 

the norm II nI  and there exists a constant Cn such that 
of 

-1Ht 'if be un cn(1 S + [t )" w||n- 

* 
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An asymptotic expansion : 
The second tool which is needed to estimate the rate of con- 

vergence to the cluster-11m1ts is an asymptotic expansion for 1nte- 
grals of the type 

Q (t) 
3 - 1 2 2 -  

d p e p t / f ( p )  

in inverse powers of t .  Such an expansion can be found by succes- 
sive partial integrations : 

n 
-l Z 

k: l 
g(t) = - 4w1 t-(k+é)F2k_1(0) (Ak'1f)(0) 

I (11.10) 

it-(H +é ) 3 
d p FE"";('p (A"f)(5) I 

where F'n(r) i s  the multiple Fresnel-integral 

Fn (r) 
m 

r 
dry I d r 2 - . -  

r l  

m d -irnZ/2 
rn e 

rn-1 
1 

which has the properties 

I2k-1(0) 

S IFn(r) cn(1 +r)-n (r 2 0) 

for some constant Cn- This expansion holds for t o  0; the case t<0 
is easily obtained by complex conjugation. The first term is the 
usual asymptotic expression obtained by the method of stationary 
phase and exhibits the familiar t'3/2-decay. 

* 

With Theorem 5 and with .the expansion (II. 10) as the essen- 
tial tools , one can now derive the following estimates for the rate of 
convergence in the spatial cluster-properties: 

Theorem 6:  Assumptions : 
(1) For any pair 1, and any non-negative integer n ,  let 
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3 -v 2 ad x|x|n|v&(>E)| < o o _  

tens r 

(2) Let D= (Cl .  . .Cn) be a partition of (1, . .N) into n clus- 
and choose q, of the form 

lll(x1...xN)= or ¢k(tk)q)k(zk) 
k=l 

wlth 
Bike C;(R3) ($'k = Fourier transform of (be) 

and 

cps 6 Do(ck) FI 
n"0 

Dn(ck) I 

where Dn(ck) is the set of localized states (II.8) for the internal 

degrees of freedom of Co . __ (3) Let a1...lé'n be such that if the supports of the functions 
(Do (considered as free rigid bodies) start to move with velocities 
as/Mk (Mks-mass of Co), they will never collide in the future. (Note 
that this implies that the r~k have non-overlapping supports . )  

Then 

-o -» -iHt -4 -r UD(-)»a1,.. .  -)~an)e UD(Xa1...Kan)lll 
-iH t 

e DW 

as -0+-I' 
0 S t <  +oo.  

faster than any inverse power of X and uniformly in 

* 

HI. Time -Dependent Scattering Theory 
For any decomposition D =  (C1 . . .Cn) , 

-1H t e D lb (III. 1) 

describes a motion of non-interacting clusters C1 . . ' C n '  The basis 
of scattering theory is the fact that any such motion uniquely charac- 
terizes a motion of the fully interacting N-particle system, in the 
sense that the two motions become asymptotically the same as t-» -I-m 
(or t-» -°°). Symbolically: to every "asymptote" (meaning a motion 
of non-interacting clusters) there exists a unique "orblt" (meaning a 
motion of the full N-particle system) having this asymptote for t-» +°=> 
(or for t-° -°°) . This is the content of the following theorem: 
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Theorem 7 (HackM): Under the hypothesis of Theorem 3 ,  the strong 
limits 

:I: 
Q D lim e 

t -c iao  

iI-It -iH t e D (III. 2) 

exist on all of TC. 

Corollary: The operators QUO are isometric and satisfy 

-iHt :t e QD 
-iHDt 

Q i e D (-<==~< t <  +°°). 

i . . Therefore , the ranges RD of QD reduce the unitary group exp(-1Ht) 
and the parts of H 

i 

in R are unitarily equivalent to HD. 

* 

Proof: It suffices to prove convergence on the dense set of states 
employed in the proof of Theorem 3 .  Then we have 

Q i  Dw in" 
O 

-iI-IDT d iHT 
T e IDe 4' I 

provided that the integral converges . 
mates of Section II, by which 

But this follows from the esti- 

is integrable over 
the limit S-» i t  in 

N ( 0 , . . . , 0 , T )  II ID exp(-iHDT I 
-<=>< ' r< +°°. The corollary is obtained by going to 

-iHt iHs -iHDS 
e e e w iH (s -t) -iHD(s -t) 

e e 
-iHDt 

e 'IJ 
* 

Usually, in scattering theory, the asymptotic behavior of the 
orbits is characterized more precisely than by (III.l): One is 1nter- 
ested only in the case where the subsystems (Cl . . .on) are "frag- 
ments , " i .e  . , either single particles or composite subsystems pos - 
sessing at least one bound state. A channel, OL, then specifies a de- 
composition into fragments Fl . . .Fn and assigns a definite bound 
state cps to each composite fragment Pa: 
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a 
IF1 " 'Fn  
\¢P1.»-CPn I 

(fPk=l if Fe=single particle). By selecting a maximal set of mu- 
tually orthogonal bound states for each possible fragment, we obtain 
a countable set of channels. The states in channel a are defined 
as 

\ll(1.(X1' . .xN) ¢ a ( Y l °  n k 
-Y ) CPk(-'?-k); 

n k=1 
(111 . 3) 

where ye, zk are the coordinates of the center-of-mass of Pa and 
internal coordinates of Pa, cps=bound state of Fe specified by a, 
and ¢a(') e L2(R3N) is arbitrary. It is convenient to normalize the 
bound states such that 

nm 2 

II dye  . 
-» -0 2 

-dyn|¢a(y1 . I -yn) |  I (111.4) 

so  that the space Do of channel states (III.4) is essentially L2(R3N) . 
On Do, HD reduces to 

Ha 

II 

§i(2mk 
k 1 

2 
Pk + ek (III.5) 

where P-k, Mk, e t  are the total momentum, the total mass and the 
bound-state energy of Pa. The system is now said to be in channel 
a for t-» :I=<=° if its orbit has an asymptote 

e 
-tHat 

We I me Da (111 . 6) 

for f;-» i n .  Equation (III.6) simply describes a free motlon of n par- 
ticles F1 . . .Fn with masses Ml . . 'Mn and internal energies 
€ 1 . . . in,  and Theorem 7 states that any such asymptote uniquely de- 
fines an orbit having this asymptote for t-° +°° or t -  -°°, namely 

-iHt 
e Dais - e 

-it lat a U;-»¢or0, 
r 

where Nf is the restriction to Do. of 05, D=(F1. . .Fn). 
The remaining part of the scattering formalism is based on the 

fact that orbits which are in different channels as t-° -l-cn (or t-* -°°) 
are orthogonal: 
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1 RB :I: 
Ra 

i . i where Ra iS the range of Q u  or , 

if m y  I 

equivalently , 

(III.7) 

*of e *e) 
lim /e-iI-Iot '1HBt 

\ al-»°° 

for 0.7413 and all MQ DG, $ 8 €  Ds~ 
II 0 (III. 8) 

Proof: First, consider the case where the fragments in the channels 
a r B are the same , so  that a differs from B only in the assignment 
of bound states to these fragments . By the orthogonality of bound 
states , we then have Don 2 Ds and the scalar product in (III. 8) 
vanishes identically in t .  
not the same, it is convenient to define He 
Up to a constant, I-Ia 'Hs is then .a quad1§" 
momenta al . . -PN which does not vanish? 
transformation . . .PN) - '  

form: 

If the fragments in the channels a , B are 
by (111.5) on all of ac. 

5¢'¥-*of the particle . B55 
lgoTla! (Tr*l . . .r?'N) I 

N 2 
*iTI'i (I-Io-H5)(p1...pN) = H +cons t .  I 

in a dense set of K .  
with *I 940 . It is obviously sufficient to establish (III. 8) for w IWB 

Such a set is spanned by the states 
N 

\ll(Tr1.,,1TN) If (k) 

1=1 
(Tack) . ¢(k) e s(R3) I 

and for ala , We of this form we obtain 

-i:[-lat l(e w. e 
'1HBtqB)l 

S const. up -1)\1 TT 2t ' 
d171e . 1 1 vBlll(w 1) I 

which vanishes like | t -3/2 as t -» °°, as can be seen from the 
asymptotic expansion given in Section II . 

* 
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To define the S-operator, we now introduce the Hilbert space 

x ' =  D .  69 a (III . 9) 

Note that, in general, CFC' cannot be viewed as a subspace of K ,  
slnce the D are not mutually orthogonal subspaces of JC. We de- 
fine total wave-operators Qi mapping IK' into3-C by 

:t :t no Qa'l'a 
a 

I (III. 10) 

where I, ELK' and We is the component of up in Do. Since the 
isometric from Do into TC, with mutually orthogonal ranges , 
isometric from TC' into WC. Its adjoint, defined by 

fig are 
Q is 

(q),<2*¢;K 
II (§2i*cp, I 

is therefore an operator mapping TK: onto K'  , characterized by 

1* -1 
Q QP = (n:h) QQ 
i 

Q *cp = 0 

if 

if 

Q06 Re 

3: 
GP .L R I 

I 

where 
Rd: 

is the range (in K) of Qi . Two S-operators can now be defined by 

.|. _ 
S = Q Q * operator mapping EC into TC, 

unitary if and only if R+ = R' =1-C , 

s '  =Q+*n' II operator mapping TC' into TC' , 
unitary if and only if R+ = R' 

S is the S-operator introduced by-]auch,7) while TK' and S'  
been introduced by Berezin, Faddeev and Mlnlos . 8) 
1nterpretation° each element lb = {¢a }  e 'HT' defines an asymptote 

have first 
S'  has a simple 

y -iHat 

G. 
e 1% I 

i . e .  , a superposition of freely moving .fragments. By Theorem 7 there 
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exists a unique orbit having this asymptote for t -a m 
r namely I 

-° t 
-0 e . H  6-iHtQ- 7 

EE 'la ( t ~ - ° ° ) .  

If Q`llI G R+ (which is the case if R+=R'), this orbit also has an 
asymptote as t*  +°° : 

-iHt _ 
e Q '11 Z -i t 

a 
We (t-» +°°) I 

where ala is the component in Do of 

¢ ' = s ' w .  

Roughly S peaking , 

Therefore , S '  gives the asymptotic behaviour in the future in terms of 
the asymptotic behaviour of the past-and this is precisely what we 
observe in scattering experiments . Indeed , from the point of view of 
pure S-matrix theory, TIC' is the Hilbert space of the system and S '  
the operator characterizing the system , while 'K:, H and the 
SchrOdinger equation are considered merely as tools for the construc- 
tion of S '  which one tries to replace by something else. 

The conditions R+=R' and R+=R' =:K:, which are equivalent 
to the unitarily of S '  and S , respectively, are the conditions of 
asymptotic completeness . In our symbolic language, R+=R' means 
that every orbit which has an asymptote for t-  -oo also has one for 
t-v +°° , and vice versa , while R+=R' =%C means that eve_ry. orbit has 
two asymptotes: one for t-° -°= and one for t *  -l-co . It is clear, 
therefore , that the unitarily of the S-matrix expresses nontrivial dy- 
namical properties of the system and does not follow, as  is claimed 
sometimes , simply from the conservation of probability. In fact , 
there exists so  far no general proof of asymptotic completeness for 
nonrelativistic multiparticle systems . * 

Theorem 7 requires that any pair-potential 
V(r) is less singular than r"3/2 as r-° 0 and decreases faster than 
r"1 at  infinity. It can be generalized , however, to cover also the 
case of potentials with strong repulsive singularities and the case of 
Coulomb-potentials . 
Singular potentials _T 

Kupsch and Sandhas9) have shown how to treat singular po- 
tentials of arbitrary sign in the case N =  2 .  In order to extend their 
tAn extended version of this section will be published in Helvetica 
Physica Acta . 
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method to N> 2 , we have to restrict ourselves to the case where the 
strong singularities of the potentials are repulsive . 
Theorem 8: For any pair 4, , let Vi, :Vt +'*'L.s , 
part Vz,,R satisfies the assumptions of ' leorem 
part Vi, S satisfies the conditions imposed on singular potentials in 
SectioN I and , in addition, has compact support (in R3) . Then the 
assertion of Theorem 7 remains valid . 

where the "regular" 
3 while the "singular" 

Proof: Let R be such that VL,S(X) = 0 for [xl > R  and all L. 
duce a out-off F(r) with the properties 

Intro- 

F(r) e c°m[0,<») 

0 S F ( r ) S  1 (OS r<°°) 

F(r) = 0 for i S  R, F(r) = l for r 2 R + l .  

Denoting wlth Pg the multiplication operator F(l  X ]  ) , we then have 

1Ht -iH t 
e F e D ¢ I ,  

L 

11-It -1H t 
e e Do or 

(111.11) 

+ eiHt<1 ) 
: -  IT -iH t 

FL e D 
L 

If' I 

where /L runs over all pairs linking different clusters of D. OSBLS 1 
implies 

2 (1 - F )  I 

and from this we obtaln the following estimate for the second term on 
the right-hand side of (III. II): 

| elHt -'H t 
1 - U P  e 1 Dull 

L 

S 

L 
II Z (1-We MI -o 0 

for | tl* on , since 1 'FL E CO (R3) and therefore acts like a decent 
two-body potential in the non-singular case. On the other hand, we 
can write the first term in (III. 11) as 
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iI-It e IT -1H t D Fx; e 
ft, 

'If 

TI 
/L 

F II 
t 

+ 1 dT oil-IT<H TI F -g F E D )  e-il-IDT w r 
/L L 

(111. 12) 

and 

( H N F  -g 
or, 1; DH Ho,  gr F ;  v,,.n F L L I (III.13) 

where L ,»EL' both run over all pairs linking different clusters . In 
order to show that the integral in (III. 12) converges as tl-°°°, we 
estimate separately the contributions from the various terms in 
(III.13): Since 

V I I F  s V P ,  
S MRI f 

the second term in (III. 13) gives a convergent contribution to the 
integral, as  in the non-singular case . On the other hand , 

[Ho If pa 
11, 

is a sum of terms of the form 

g G , ( x  ,)A 
L '  

where A =  1 or A=tota1 momentum of one of the clusters or A=inter- 
nal momentum in one of the clusters , and where at least one GL | , 
say Gt , has compact support (being a derivative of R )  . In the first 
two cases , A commutes wlth HD, hence 

- 'H 
l I n G , A e  1 DTI: S const. lIGe 

| 

"'HDT 
1 Awl I 

which is integrable over -°°< T < +°°, since again G acts like a non- 
singular two-body potential. Finally, we have to deal with the case 
where A is an internal momentum of one of the clusters , say of C1 . 
Instead of (II.5) , we then obtain the estimate 

3 4 N ( 0 . . . 0 , T )  ~S p / const. 
'j.h1T lIAe w111 l(02II IG4,(- ) I I2 r 
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where u(T)3/4 is integrable over -r»<T< +<». It suffices to show , 
therefore, that lIAexp(-ihlT)cplll is uniformly bounded Ln T. But 
this follows by applying (I. 5) to the internal Hamiltonian hl (which 
is also a Friedrich's-extension) : 

-`hlT lIke 1 <r)1ll S 
- T 

const. llh§*@ 1}`11 II *°1 

S 
-1h 

const. II (h1 +c) e 1¢<p1I\ 

const. II (h1 +c) 'cp l l l  I 

where of) is the internal kinetic energy of C1 . 
* 

Coulomb-potentials . 
We give a brief account of the work by Dol1ard10) 

Coulomb potential: Let 

N 2 
PI H = + Zmi 

i=1 

e e k  so -v » 
L L i<klXlkl 

I 

on the 

where the two-body potentials Vt satisfy the conditions of Theorem 
3 . Let G = (Fl . . .Fni CD1 . . .(pa) be an arbitrary channel of the system 
and let ii . . °qn be the total charges of the fragments F1 . . °?n- It 
then turns out that the asymptotically "free" motion in channel a is 
disturbed by the long-range Coulomb-interactions between these 
charged fragments . More precisely, the free propagator exp(-iI-lat) 
is to be replaced by 

'aHa, c (t) e e 
-1(Hat +e (t) r23 (q qs/vrs)l09ltl 

where r , s  label the fragments and Vrs is the relative velocity of Fr 
wlth respect to FS : 

V rs 
| MsFr - mr5S I 

M,ms I 

Mr, P*1. being the total mass and the total momentum of Fr, and where 
e (t) =son t .  Clearly, the propagator exp[ -iHa0(t)] is well-defined 
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as a multiplication operator in momentum-space. It is still unitary , 
but does not define a one-parameter unitary group . 
Theorem 9 (Do1lard10)): I f ,  for some e >0 , the bound 
are in the domain of Tzrl € , where | zrl is the Euclidean 
the space of internal coordinates of Fr, then 

in 

11m 
t-' ion 

eiHt e-il-I I C (t) we Ill
 i 

0041a 

exists for all "Ja € Do . 
* 

LL 
dt 

The complete proof of this is contained in Dollard's thesis _11) 
We only give a heuristic argument to make plausible the modification 
Hat-° HaC(t). As in the case of short-range forces, one tries to 
prove that 

-1H0.(t) - t) e ,<, II (H C( ) all H 

(111, 14) 

+ e e k  _ Q qrqs 
| Vik Z l;ikl vrs|t1) 

r<s  

-iH 
e a , C  

(1) wl 

vanishes like \tl - S I  s> l ,  as ltl-. °°, where (i,k) runs over all pairs 
of particles linking different fragments. If propagated by 
exp[-il-IaIc(t)] , the fragments will be far separated for \tl -°°°, so 
that their interaction is essentially the Coulomb-interaction of point- 
charges q1~ . .qn° 

e e k  

hall r< S 

q,qB 
+ short-range forces 

Pro 
I 

where Prs is the distance between the centers -of-mass of Fr and FS . 
In classical terms , Prs =Vrs° | tl as ltl-» °°, which makes it plausible 
that the second and third sums on the right-hand side of (III. 14) 
cancel as It-» °°, up to forces of short range . 

* 

Asymptotic completeness for weak forces • 
In the 11mit of weak forces , the question of asymptotic com- 

pleteness can be settled by showing the convergence of the Dyson 
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expansion. For N = 2  r this result is due to Prosser. 12) Prosser's 
argument also suffices for N = 3  , while in the case NO 4 more de- 
tailed estimates of the terms in the perturbation expansion are 
needed.13) We shall restrict ourselves to the case N = 3 .  Let 

H - H O  +1 Q VL = Ho+xv .  
4, 

°°. Then Do=K'1K 
cally complete if Re ='K:, i .e 
tary, or, equivalently, if 
can only conclude that 

If the coupling-constant X is sufficiently small, we expect the fol- 
lowing situation: Neither the N-particle-system nor any of its sub- 
systems possess bound states . Therefore, in scattering theory 
there is only one channel a = 0  in which all particles are asymptoti- 
cally free as ltl-° , and the system is asymptoti- 

, if Qi is not only isometric but uni- 
is isometric too. From Theorem 7 ,  we Q 

Q** e e (111.15) 

weakly on TC, which does not imply that the limit is isometric. This 
follows , however, if we can show that the right hand side of (III. 15) 
converges strongly (on a dense set) , and to establish this we use the 
Dyson expansion for Q*(t)1= exp(iI-lot) exp(-1Ht) . Starting from the 
integral equation 

t 
Q*(t) = l - i k  I 

o 

iH t - 'Ht 
e 0 1 V e  1 1 dt1 

t 
l y 

o 

lH t -1H t 
e o 1 V €  °1Q*(t1)dt1 I 

we obtain by iteration the formal serles 

m 

r2*(t) = Z n*(")(t))J1 (111. 16) 

u-0 

t 
Hz*(")(t) = ( - i )N"  d l  

o 

*1 
dt . . 2 

wtn-1 

o 

X e 

dt eiHot1Ve-1H (t1't2) n 

-1H t Ve o n  

V . l | 
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Theorem 10 lProsser12)]: For each »{, , let Vi,(°) E L1(R3JnL"'(R2»l, and 
let NS 3 . Then, for sufficiently small III , the perturbation series 
(III. 16) converges strongly and absolutely on a dense set D, uni- 
formly in -°°<t< +°°. Moreover, the strong limit of Q*(t) as lt\ -°° 
exists and can be taken term by term . 
Proof: Since 
Q*(n)(¢) therefore well-defined. By splitting each VL into two 

v&(- )e  Lco(R3) , the operators VL are bounded and 
factors 

Vi; Ax; Br, 

é iv,,l . Br, = (son V»f,)I V»{,lé I 

ll0*(") (of II 

one easily finds the estimate 
n-1 Q 

lIA»¢1ll If I it 
L 1 . . .Ln 

S T' 
L k=1 o 

Kg k '*.k+1 (t) j on(t)dt , 

where 
-1H t 

Kfbmlt) = II BLe o Arnll 

No, (t) 
-1H t II B e  o all 

faster than t`1 

To prove the theorem, it is obviously sufficient to show that, for If in 
a suitable dense set, Km( t )  and Nt (t) are 1ntegTable over OS t< Q. 

v ( ~ )  E L1(R3) implies B ( - ) e  L2(R3); therefore, Not) is integrable 
over OS t<°° by the estimates of Section III. Also, since the opera- 
tors Br. and are bounded, the functions Kgm(t) are uniformly 
bounded in t .  Therefore, it remains to show that 1<¢m(t) decreases 

as t*M: 

-iH t 
l1B,e o Ax. II 

-iH v L t  
||BAe c. Au I 

where Ho ,g is the internal kinetic energy of the pair L , whence 
I 

_. - 'H :Lt _. 
( l e  1 0, Ix ' )  _ . /  m 3/2 

l \2rT it) 
€(im(x-x')2)/2t 

I 

x, m being the relative coordinate and the reduced mass of the pair 
L , respectively. Let y be the coordinate of the center-of-mass of 
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the pair L and Z the coordinate of the third particle . 
\l ETC , 

Then, for any 

| ( B e  

S 

- ' H  t -o -I -0 

1 o.-Y, A )  (x.y,z)l 

-| m 3 l -of -*1 -4 4 

I V ( X ) I  l21Tt | d X IV&(x)l  lllI(x ,K.z)l é' i* 

S l"4,(>?)ll m 3/2 
2Tr t I  llv,L(-)ll% ||q|(- ,g 2)|I 

I 21 

and therefore 

S 
3 2 

KSIz,L(t) l2;'t 1 / llv&(-)l11. 

2 .  mm; Let »r,=(12), m=(23) .  Then 

-iH t II B Q  o Amll -1H 212 II B Q  o, Amll f 

when Ho,2 is the kinetic energy of the second particle , since the 
propagator of particle 1 commutes with Arn and the propagator of par- 
t1c1e 3 commutes with BL . In the same way as before , one finds 

S 
KL m (t) I 

3 2 2I;§t1 / lm(-)||§*||vm(-)||*, 

where m is now the mass of particle 2 . 
* 

Remarks . 
1 . It is easy to see why the method fails for n>3 . Then one 

encounters terms like 

-1Hot 
B12e A34 

-iI-I0 34* e r 
B12A346 

-iI-I0: 12t 
I 

where Ho 12 and Ho,34 are the kinetic energies of the subsystems 
(12) and (34). This implies 

K12,34(t) II B12A34" 
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which is independent of t and not integrable, therefore r over 
OS t< °°. A more elaborate grouping of the factors in Q*(N)(t) is then 
necessary before taking the norms . 13) 

2 .  The condition V4;(°) 6 Lon is pure luxury in order to make 
Q*(N)(t) obviously well-defined . Making use of the smoothing- 
properties of the free propagator in x-space, one can include un- 
bounded potentials such as , for example , Yukawa -potentials . 
IV. Cluster-Properties of the S-Matrix, Cross-Sections 

Let D =  (C1 . . .Cn) be a decomposition of (1, . .N). For the 
translation operator which serves to separate the clusters in space- 
t1me we choose 

UD(a 1 to . a ) -  
n k-1 

exp in -* a P k k  
p13 
Mk ak (Iv.1) 

where as= (as°,ak)€ R4. This operator translates each cluster Co by 
as without changing its Internal state, i . e .  , it differs from the 
translation-operator (II. 1) insofar as we have replaced the internal 
propagators for the subsystems Co by 1 . Theorem 3 still holds for 
this modified translation-operator, since only the unitarily of the in- 
ternal propagators was used in its proof . 

Now let a = (Fl . . .Fm;qJ1 . . .cm) be a channel of the N-particle 
system. Definition: we write (Cl . . .Cn)C (F1 . . .Fm) or simply 
Dca if (Fl . . .Fm) is obtained by further partitioning (Cl . . .Cn) or , 
equivalently, if each fragment Pa belongs to a definite cluster. If 
this is the case, then a reduces to a definite subchannel (In for 
each subsystem Ck-  For example, if Co= (F1 , F2 , F3) , then 

"k 

II (Fl I FE I F3:<01,(;02(;03) ' 

Obviously, we then have 

n 
'FC ®:sck 

k 1  Do 

n 
Do 

k=1 k 

:1: 

:t 
Na 

where *Co and D a k c k  are the Hilbert space and the space of 
channel-states of Co, respectively. If no interactions between the 
clusters are present-i.e. , if HD is the Hamiltonian of the system , 
then the wave operators Qu can be simply expressed in terms of the 
wave operators of the independent subsystems Co: 

n 
® Qin . 

k=1 
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Therefore r we expect this to be the cluster-limit of the wave operator 
for large separations of the clusters : 

Theorem 114): Under the hypothes is of Theorem 3 , we have 

:iz 
QoL UD(a1. . .an) -» 

n 
® 

k=l 

i 
Q@kUD(&1...an) 

as 

min a. -a l l  
iyék 1 

strongly on Do , for all a and all D C  OL. 

-0 oo 
1 

Proof: Let Walt) =exp(iHt)exp(-1H0l.t) and similarly for QC1,k(t) . Then 

l[[Q0(t) 
n 
®Qa 

k 1  k 
(t)JuD(a1. . .an)l|!d. I 

_oil-IDt 
)uD(=1 >e"'*(»*¢l1 | 1 . a -o 0 

as min aj.-Bk -»°=>, uniformly in -°°< t< +~=(), This would follow d1- 
rectly from Theorem 3 i f ,  instead of exp(-1Hot)1lr@ , we had a time- 
independent state cp . However, going through the proof of Theorem 3 ,  
it is easily seen that this t1me-dependence does no harm. The uni- 
formity in t then implies the desired result for the limits of (Mt) and 
of n 

®Q 
k=l "k 

(t) as t-»a=°=>. 

* 

It is now easy to derive cluster-properties for the S-opera- 
tors . For the operator S this is found in Reference 4 , while for S '  
we flnd the following: 

SéaUD(al . . .an) 

Theorem 12: Let sea be the part of S '  mapping DOL into De» and let 
DC a . Then, under the hypothesis of Theorem 3 , 

" k=1 
é SékakUD(a1...an) if DCB 

\ 0 if D¢e 
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as 
m1n la1 -a  I 
1;4k k 

-4 m 
I 

strongly on Do . 
* 

In the case D C  B , this means that for large separations of 
the clusters, the scattering process rx-B factors into independent 
processes ak-'Bk for each isolated subsystem Ck-  On the other 
hand, Def B implies that one of the fragments in the flnal channel B 
contains particles from different clusters . Therefore, the probability 
of production for such a fragment vanishes in the limit of large sepa- 
ration of the clusters . 

Theorem 12 suggests an expression of $50 in terms of "con- 
nected parts " RBa by the usual truncation procedure: 

s . . . R  Z R81°11 R82°'2 5 n°'n 
D 

DCa, DCB 

(Iv.2) 

Since the trivial decomposition always satisfies Dca, DC B, this de- 
fines the connected parts R50 recursively in terms of the Sé0z 

Rs CI. 
= S l  _ XD 

Ba Dca, CB 
n2 2 

R81°'1' » ~RBnan 

(This reduces to the usual SQoL =651 -1-Rea in the case where the 1n- 
going channel a contains only two fragments , where 650 = 0  for Byéa, 
and 6ao.=ident1ty map on Do .) In terms of the connected parts Rliw 
Theorem 12 then simply reads 

R UD(a1. . .an) -->0 (1v.3) 

as 

max ' a t  
ink 

if Dca,  strongly on Do. 

ak'*->&1 

* 

Run maps D into De and still conserves energy and mo- 
mentum. Formally, one would therefore introduce smattering ampli- 
tudes by 
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= 6(1?--§')6(E- (p l - - .pmlRBalp1. . .pn)  -E)<p1. . .Do TB€1IP1' . .Pn) I 

29 

(IV.4) 

the momenta of the fragments in 
and 15', P '  , E ,  E' the total momenta 

Equations (IV.2) and 
In this 

de- 

where PI . . .Hn and P l '  . .pm are 
channel a and B , respectively , 
and the total energies in the two channels . 
(IV.4) then express S'  in terms of scattering amplitudes . 
way, the amplitudes of subsystems Ck appear explicitly in S '  
scribing the possible disconnected processes . I 

* 

Cross-sections • 
We want to define cross-sections , for collisions with an 

arbitrary number of fragments in the incident channel, in a way which 
clearly exhibits that the existence of cross-sections is a conse- 
quence of the spatial cluster-properties of the S-matrix . 

First, we define an impact parameter in classical terms , 
which parametrizes (up to translations) all possible collisions of or 
ingoing fragments F1 . . .Fn with fixed momenta PI . . .pnz 

Let C be the 3n-dimensional configuration-space of the 
particles Fl . . .Fn with coordinates y =  (§tl1. . in) . On C ,  we define 
the metric 

2 do L 
2 

n 

2 1=1 

-»2 lmidyi • (Iv.5) 

The transition to the center-of-mass coordinates 

L 
M Yi = Yi mkyd 

k=l 
(IV.6) 

(mi=mass of Fi, M=M1+. . .+mn) is then the orthogonal projection 
onto the 3(n - 1)-dimensional subspace 

II 

E) 

n 
. 

The free motion of the incoming fragments F1 . . .Fn is de- 
scribed classically by a straight trajectory 

y(t) = y(0) + vt (IV. 7) 

in C ,  where v =  (VI . . .vn) , v =velocity of Fi, or, projected onto C '  
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by 

y'(t) = y ' ( 0 ) + w t ,  (Iv.8) 

where We is the velocity of Fi in the center-of-mass frame. This 
projected trajectory characterizes the collision up to translation . 
Since its direction is given by the fixed momenta (D1 . . .in) , we can 
use as an impact parameter a the point of intersection of this trajec- 
tory wlth any (Sn-4)-dimensional plane Ac C' not parallel to w.  We 
choose 

:>
 

II 51
- 

II (in c ' ) .  

Then, in C ,  A is also orthogonal to v (in the sense of (Iv 5 ) ,  and 
therefore characterized by 

n 
A = { y l 1 ;  miyi = 0 I 

n 

.2 
1=1 

plyi 0 (Iv. g) 

The impact parameter a is thus simply the (orthogonal) projection of 
y'(0) (or y'(t)) onto A ,  and its length is given by 

( a , a )  min 
t 3 

i 1 
512 (t) . l 

Therefore , a = 0  only If y'(t)=0 for some t ,  1.e. , if all the particles 
F1- . .Fn collide simultaneously. In general, (a,a)  is a measure of 
the closeness the particles could reach in free motion. True 
n-particle collisions therefore happen for small al only, while col- 
lisions between less than n particles are possible for arbitrarily 
large al . 

In terms of this impact parameter a ,  a classical cross-section 
may be defined as follows: Consider a statistical ensemble of colli- 
sions with fixed momenta P1 . . .in in the ingoing channel a, such 
that the impact parameters a are distributed over the plane A with 
uniform density n [in the sense of the metric (IV.5)) . Let NOR) be 
the total number of events in which the system is finally in channel 
B wlth momenta (pa . . .pm) E Q . Then the cross-section is defined as 

031(§l2 '*°1. e .Pal N(Q) 
n 

In order that this is finite , the region Q cannot be arbitrary; it must 
be chosen such that N(§l2) receives no contribution from processes 
which are not true n-particle collisions and which may happen for 
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arbitrarily large \al . There are two types of such processes : 
a) Disconnected processes: 

31 

U)  

(2 )  
Figure 1 

b) Rescattering processes : 

(15 
(25 

Figure 2 

While it is easy to enumerate the possible disconnected 
processes (see (IV.2)) , we know of nO general rule giving the 
rescattering processes which have to be avoided. In any case , 
however, the processes of both types are restricted by the fact that 
energy and momentum are conserved for each single process 1 , 2  . . . , 
and this restricts the final momenta to a set of measure zero on the 
energy-momentum shell. It is possible, therefore, to choose Q such 
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that it does not intersect this set. For the familiar case n = 2  , this 
simply means that Q must not contain the forward direction . 

Let us discuss briefly the relation between this cross-section 
and the counting rate in a specific experiment. We consider a target 
consisting of v particles F1 at rest,  and n - l beams of particles 
F2 . . 'Fm with momenta PI . . 'Pn and part1cle-densities P1 . . .pn con- 
verging on this target. The candidates for n-particle collisions are 
then all possible combinations (Fl . . .Fn) , and the counting rate is 
evaluated by as summing that all these combinations behave like iso- 
lated N-particle-systems . This simplified picture will predict the 
large majority of collisions correctly if the densities of beams and 
target are not too high . 

Using the coordinates Y2 . . .yn of F2 . . .Fn as coordinates in 
C' , the metric in C'  is given by 

2 
ds II 

n 

2 
k=2 

Mk 
2 

1 
2M 

n 

(L 
k 2  

Mkdyk)2 

(CM-kinetic energy) r which yields 

g 
( 1 - )  -1 3 <2 " m  m1m2...mnD 

for the determinant of the metric tens or. In the volume-element 
d3y2 . . .daryn of C'  , there are v P2 . . .Pn d3Y2 . . .daryn combinations 
(Fl . . .Fn); hence the density of these combinations in C' is 

-Q p = g v p 2 . . . P n .  

plwl is then the flux of these points through the impact-parameter 
plane A ,  where 

Iwl 2 = CM-kinetic energy 

n 
- 1  

?2 -o 2 Pa 
I 

PA + . • . + Pn 1 with *P = -| The counting rate for n-particle collisions 
producing the fragments of channel B with momenta (pi . . .pm) 6 Q is 
then 

uM) = oBa(n .0 ,p2 . . . 5n )p lw l  

* 
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Finally, we define the cross-section in quantum mechanics 
and relate it to the S-matrix. Instead of fixed initial momenta 
P1 . . .5n, we consider a state 

| M ¢ ( 5 ° 1 .  I .5'n) 
k=l 

normalized to We" = l , and use the expectation values (51) of the 
ingoing momenta to define the 1mpact-parameter plane A as in the 
classical case: 

II 

<1 {al i "mi:7i = 
i=1 

0 I 0 <5i)?i } 

¢b -° T(a)¢& , 

Of course , we cannot attribute a definite impact parameter to the 
state w. However, we can define a variation of the impact- 
parameter by a ,  as A ,  as the transformation 

i i§15ié.i 
T(a) = e . 

The cross-section OBa(0 Ava) is now defined as follows: For given 
nu, consider an ensemble of collisions with initial states T(ak)¢»a, 
in which the impact-parameters as are distributed uniformly over A 
wlth density n .  Let Q and N(Q) be as in the classical case. Then 

0 8 ( Q . ¢ )  
film 

n 

This is easily expressed in terms of the S-matrix: 

03a(Q ,¢@) 
1 lim - 

n~»°° n Z II Pnssa T(ak>¢ II 
k 

2 

(IV.10) 
| 2 5 d.llPQSB T(a )¢ I I  

A 
r 

where PQ is the projection operator on De corresponding to the final 
region Q ,  and da the volume-element on A defined by the metric 
(IV.5). In (IV. 10) we could replace $5 by its connected part REG , 
since El has to be chosen so as to avoid contributions from discon- 
nected processes. By (IV.3). lIR8aT(a)fball2* 0 for al-*°°, but not 
fast enough, in general, to make this integrable over A.  The reason 
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is that RBC still contains the res scattering processes , which die out 
too slowly as al increases. However, if Q also avoids the contri- 
butions from these processes, we can expect that l lpnnBT(a)¢l[2 is 
integrable over A .  A general proof of this, however, is not available . 

Proceeding formally from (Iv. 10) and (IV.4) , we can express 
the cross-section in terms of the scattering amplitude: 

0&(1(n,¢@)= Ada dp' d p d p " 6 ( p - P ' ) 6 ( p ' - p " )  

x a(E-E')6(E'-E")(p'IT8@lp)<p'IT8a p") 

9° -0 * I I  -0 ` 

x (pa~pk)ak] ¢ ( p ) ¢ a ( p " ) ,  
k=l 

ex V1 pL 

(Iv.11) 

wlth obvious abbreviations . Using the CM-velocities w,w" instead 
of p ,p" , we can express the exponent in terms of the scalar product 
corresponding to (Iv. 5) :  

n -4 -D Z lpk"*Dk)ak 

II 2(w - w" ,a )  I 
k l 

so  that y da e2i(w-w" ,a) = 1T(3n-4)6 (WA-wA") 

A 
I (Iv. 12) 

where wA, WA are the projections onto A of w,w" and where the 6 -  
function is normalized wlth respect to integration over A .  The 6 -  
functions in (Iv. 11) and (Iv. 12) now imply 

P II = P 
I WA WA' (Iv.13) 

E l l _  
PIIZ 
2M .|. (w",W") . e a  E P2 

2M + (w,w) + € a /  (Iv. 14) 

€ being the sum of the bound state energies in channel a . 
St (IV. 13) , (1v.14) reduces to 

In view 

Wn = own I (rv.1s) 

where WN'WN are the components of w,w"  orthogonal to A.  In 
order that the integral (IV.11) only receives a contribution from the 
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points where we=wn, we now postulate that 

0 ¢a(p) for (w,(w)) S 0 .  (W.l6) 

This means that the support of the w-distribution is entirely on one 
side of the plane A-the side determined by (w) , or, equivalently , 
that the spread in the w-distribution is smaller than I (w) l . The 6 -  
functions then simply imply that p =p" , so that only the absolute 
squares o_f__( ' THE' p) and of ( Q  enter in the cross-section. The 
remaining phase-space integral over p"  is easily found to be 

JV do " 6 (p - P") 6[ (wn .wN) - (wn ,wN)_]6 (wA- WA ) 

n 
H 

i=1 
(2Mi)3/2 

(2M)3/2 
l 

2lwNI 
I 

where W I is the length-in the sense of (IV.5)-of W : N N 

2 laNI (w,(w))2 

((w),(w))2 

Q S(51) E 
1=l Zmi 

)3 (ism)2 
i=1 Ml' 

sum 2 
2M ) 
<152 
2M 

* 

The result is , therefore I 

05a(Q ma) 

n 
H 

1=l 
(2rn1)B/a 

_:LTT3n-4 
2 (2M)3/2 I dp' dp 

x 6 (E-E') 5 ('§-p*- ) 

n 
2 

1=1 
n 
2 

1 1 

-D 2 (Di) 
21T11 

5 i i >  
Zmi 

(5) 2 
2M 

5(5) 
2M 

x l<p-ITBlp>l2 l¢(p>l2 

Finally, if we specialize the momentum-distribution l¢ ) (p ) l2  to a 6 - 
function (which is consistent, in view of (III.4) , with the normaliza- 
t1on II all = 1) ,  we obtain the differential cross-section 
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" l  - 0 " - U  -0 

doBa(p1. . .pm,pl. . .pn) 

L 
2 

R (zmpa/2 
TI3n-4 1=1 

(2M)3/2 5(15'-1"3|')6(E-E') 

x 
It p'kz 

2 M k 
k= 1 

52 
2M 

-é -) l ( p ' I T 6 l p ) l 2 d 3  ' . . . d3  I pa pm . 

V .  Time-Independent Scattering Theory 
As far as  scattering theory is concerned, this section will be 

an exposition of problems rather than of results . To get familiar with 
some of these problems , we briefly discuss the case N= 2 .  

The starting point is the resolvent equation linking 
G(z) = (z -H)'1 and Go(z) = (z - H0)l1: 

G(z) G0(2) + Go(Z)VG(Z) r (v.1) 

T(z) 

or the Lippmann-Schwinger equation for the transition-operator T(z): 

(v. 2) V + vGO(z)T(z), 

which are connected by 

T(z) = (z-HO)[G(z) -G(zo)l (z-HO) (V.3) 

G(z) : G0(z) + Go(z)T(z)Go(z). 

the kernel of the :Lippmann-Schwinger equation In momentum space , 
is 

(v.4) 

\ 

-l -U -c -o -»2 - 
(p|VGo(2)|q) = V(p-q)<2 - 1 I 

where \7 is the Fourier-transform of v. For V(- )  E L2(R3) and 
z Q' O(Ho) , this is a H11bert-Schmidt kernel (HS -kernel): 
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||VGo(z) 
2 

HS 
ds 3 _. -. I p d q  <p|VGo(z) |q) |  

2 

oo (v.5) 

iv(~)l 54" 2 
d q q  l z - q  2/2m I -2 < 

oo » 

Also, VG (z) is holomorphic in z E'G(H0) (i.e. , in the cut plane 
avg z if 03, and vanishes in norm as  Re z -  -co (by (1.3) with B=V,  
A=1-I0) , so that [ 1 -VG0(z)] exists for sufficiently large negative 
Rez .  Now we use the following lemma: 

Lemma 1: Let A(z) be a holomorphic function of the complex varia- 
ble Z in an open, connected region G,  whose values are compact 
operators on a Hilbert-space , and suppose that, for some Zo G G ,  
[1-A(zO)]  -1 exists . Then [ 1  - A(2)] -1 
(i.e . , 
convergence (in the sense of the norm) for every z e G) . 

is meromorphic in z E G 
it admlts a Laurent-expansion with a non-vanishing radius of 

* 

A proof can be found in Reference 14 .  Applying this to the 
Lippmann-Schwinger kernel, we conclude that E 1 -VG0(z)] -1 is 
meromorphic for z Fo (Ho). Furthermore, if Zo EoL!-I0] is a pole of 
I 1 -VGo(z)] , the homogeneous equation 

VG0(z0)cp II 9- (v.6) 

has nontrivial solutions which form a subspace of finite dimension , 
since VGA(Zo) is compact. Then la' =G0(z0)t,0 is a nontrivial solution 
of II! =G0(z0)W , or of 

(20 - HoN' II v i .  (V.7) 

and vice-versa: a nontrivial solution '11 of (V.7) leads to a nontrivial 
solution up = (zo -HoW of (V.6). Therefore, the poles of [1 -VGo(z)]'1 
and the eigenvalues of H (in z Q' cr(Ho)) are in one-to-one corre- 
spondence, and SO are the bound states and the solutions of (v. 6).  
It follows that the poles of [1 -VG0(z)] -1 are real and that the 
eigenvalues of H are of finite multiplicity and cannot accumulate 
except at Z = 0 . Furthermore , slnce 

G(z) Go(Z) + G0 (z ) l 1  vGo(z)ll1 VGo(Z) , 

these poles are the only singularities of G(z) for z 2'O(HoJ , Le.  , 
the part of o (H) not contained in FE(I-Io) consists of these eigenvalues 
only. (Note that, by the corollary of Theorem 7 f Cl(l-Io) C cr(H)) . 
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Now let us look at the Lippmann-Schwinger equation in the 
following way: 

( ° IT (2 )  p') V ( '  -D') + VGo(z)( - I T(z) p") I (v. 8) 

i . e .  , we look at ( ' I T(z)l p ') as an L2(R3)-valued function of Z and 
p' . Since Gm 6 L21R3J, V(--i5") is such a function, depending con- 
tinuously on 5' , and with L2-norm independent of 13" . Therefore , 
( I 1rs(2)|5") is meromorphic in z li/o(I-I0) , with poles at the eigen- 
values of H ,  bounded in norm by some constant C(z)<°° for z E' f;r(I-I) 
uniformly in p ' , and continuous in p '  E R3. Inserting this estimate 
on the right side of (V.8) and using the Schwarz inequality, we see 
that (p  | T(z)l p ') - M:-pI) is meromorphic in z §!u(I-I0). continuous 
in p,p '  and bounded by C(z)< °° for z E'o(I-I), uniformly in 13' and p' . 

With this information on the T-matrix elements , we can 
already justify, to some extent, the usual formulae of time- 
independent scattering theory, for example : 

(Q¢)(p-0) ¢ ( p ) +  lim 
a g o  

d3q (al T(q /Zm 4= 1e)l g 
l2m}ll(Q2~p2}*is 

I (v.9) 

where , by our estimates on , the right hand side is well-defined for e:>0 
i f ,  for example, II! € Co (R3), and where the (strong) convergence for 
e 10  follows from t1me-dependent scattering theory. Similarly, with 
R=S' - 1: 

(¢,R<r)) lim 
e l o  

21 d3p d3 S 
q 

( - } 3 - ) 2  + 8 2  
(v.10) 

x ¢(p)(13'IT{é~(E+E') -) l5-)@0(p-), 
1e: 

+ 2  

where again the right hand side is well-defined for € 0 and 
w , CP e co (R3). . 

As an example, we give a formal derivation of (V.9) , omitting 
the justification for each intermediate step. By Theorem 7 

Q*l» w 
t _ 1 T -1H 

lim 1 V e H V e  OT 
t -s im Jo 1hdT 

lim 
€ - i : o  

m I . -eT 1HT - H l e e V e  1 0T¢ dT 
o 

in the sense of the norm . To show that the last integral is identical 
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cp 
o 

with the integral in (V.9) , 
*°° -2 -( - '  +` ) 

i dT i(2Tr1) dz1 dz2 dT e e 1Z4 1 z2 T 

T T 

we use contour-integration : 
it 

o 
l i . 

x G(21)vG0(z2)'l1 I 

where T is a contour circling o(H) in the positive sense, inside the 
strip II zl < e:/2 . 
term (ez -121 +1z2)'1. As a function of ZN, this has a pole at 
21 "Zz -in: , outside T. Deforming the z1-contour T, we pick up 
only the residue from this pole: 

Carrying out the T-integration first, we obtain a 

cM?) 

cp 

II -1 (27Ti) go dzz G(z2 --ie)VG0(z2)111. 

T 

Now we use the relation G(z)V=Go(z)T(z) and obtalln 

3 (r»l T(22-1=-2)l cM (Q) 
dz2 I d q* 2 2 

- p  /2m)(z - q  I2m) 
-(21'ri)-1 

(z - j e  

Since the pole at Z2 =q2/2m is the only singularity of the integrand 
inside T ,  (v. 9) results by taking the residue of this pole. To justify 
this formal derivation, one can consider matrix-elements between 
suitable states . The formula (v. 10) is obtained similarly by starting 
from 

(\l'.S'w) lim 
t-i +<=° 

( e  iI-Ior -2iHt 1Hor 
e e 

e e . °° -err 
é1P2> ,l o \l! 

'H t -2'Ht 1H t 
,el O e  1 e Of) 

* 

The main step-and the most difficult one to prove-iS to go 
beyond (v. 10) and to express the S-matrix element in terms of 
boundary-values of T-matrix elements as the energy approaches the 
continuous spectrum of H.  Formally , 

lim e 
e l o  (E-E')2-1-e2 

r r 6 ( E - E ' ) ,  

so that one obtains the well-known relation: 
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12 
2m (W.R@) = -21T1 up d3p' 65 )w(5) 

x (5 T( p2 
2m + i O ) l p ' ) C P ( p ' )  (v.11) 

This actually follows from (v. 10) if 

-» / 1 /D2  P '2  -» 
( P t T \  2 \ 2 m  Zm) ) [ D ' )  

je 
2 

is continuous in 5, e , p '  in the region suppqla x[0 , 1] x supp cp , and 
attains its boundary-value for e l  0 uniformly in 15' and p '  . The real 
problem of time -independent scattering theory is to obtain this kind 
of information on the boundary-values of T-matrix elements . 

For the case N = 2 ,  this is comparatively easy. We use a 
trick similar to the one used in Section IV in the case of weak poten- 
tials , and write 

T(z) = AU(z)B 

A = vl B = (sgnv)lv'5` 

so that AB=V. The Lippmann Schwinger equation for U(z) is then 

U (z) 1 + BG0(z)AU(z), 

and in x-space the kernel of the operator BG0(z)A is 

(v.12) 

-0 v-I1"-I _(4,T)'1 B(X) 61 z X x 
-4 -41 
x - x  

A(x ' ) .  (In/E> 0) 
r 

The important point now is that this is a Hilbert-S chmidt kernel for 
all z in the closed cut plane Im/E 2 0 ,  provided that 

3 3 d x d  x' lv£,2')l lvliwl 
1 x - x 1 2  

< m , 

which we now assume . Furthermore , it is easily seen that BG0(z)A 
is holomorphic in the open cut plane In/-i> 0 and continuous (even 
in the HS -norm) in the closed cut plane Im/E 2 0 . 

The crucial point is now t o  obtain control over the solutions 
of the homogeneous equation 
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w II BGo (z)A it: (v.13) 

for Im/E 2 0 .  If In/E> 0 , one can show again that these solutions 
are in one-to-one correspondence to the bound states of H .  On the 
two boundaries of the cut arg z = 0 ,  however, the situation is more 
involved. There it can be shown15) that a nontrivial solution of 
(v. 13) gives rise to a purely (ingoing or B outgoing) radiative solu- 
tion of the time-independent SchrOdinger equation with energy z .  
Conservation of probability then requires that the radiative term of 
this solution vanishes , 1.e . , that the solution decreases faster than 
lx | -1 as l§l*°. As for the free wave-equation, one can then show 
(under some additional assumptions on V) that this forces the solu- 
tion to vanish identically, provided that z> 0 . (For z =  0 ,  there may 
be nontrivial solutions of (v. 13) not corresponding to a bound states , 
but to a "resonance at zero energy. ") The upshot of all this is that 

U(z) = 1 +W(z)  

where W(z) is a Hilbert-Schmidt operator, holomorphic for z f  o(I-I) 
and continuous in the closed cut plane lm ZN 0 except for the (negs - 
five) eigenvalues of H and possibly for z = 0 .  Then , 

(51 T(2)l5') 
3 

v6-F)  

d3qd rK<5'-(i')(&'lw(z)l?)'§(?-5') .Y J' 

and if-A, To' e L2(R3) (i.e. , v ( - )  e L1(R3)), this is bounded by 
l vll 1 | W(z) II HS and continuous in z in the region described above , 
uniformly in 5, 13" . This immediately gives the justification of 
(v. 11) . 

In this account of the case N = 2 , our aim was to point out the 
typical problems of time-independent scattering theory in their sim- 
plest form. We did not try, therefore r to manage with the least re- 
strictive assumptions on V(x) .  (For spherically symmetric poten- 
tials , everything could be based on the conditions 

oo 

rnlV(r)ldr < oo 
o 

familiar from partial-wave analysis . )  

for n 1 , 2  
1 

| 

* 

A consistent time -independent scattering theory for general N 
does not yet exist, but the situation has been very much improved by 
Faddeev's16l solution for N = 3  , which represents the simplest case 
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( i . e .  

with a nontrivial multiparticle structure , and is therefore a big step 
towards a solution of the general case. We shall not present here 
Faddeev's analysis , but we want to discuss some attempts to gen- 
eralize the off-energy shell-part of the preceding argument for N=  2 

, the part where Z Q' o(H0)) to general N. These results are due 
mainly to We1nberg17) and van Winter . 18) 

The N-particle Green's function . 
In this section, we work exclusively in the center-of-mass 

frame of the N-particle system: 3C=L2(R3N'3) denotes the Hilbert- 
space corresponding to the internal degrees of freedom of the system . 
H,  HD, etc. r are then considered as operators on ;+c. Theorem 7 still 
holds , with obvious modifications , and its corollary says that 
O(HD)C o(H) for any decomposition D =  (Cl . . .Cn) of the system 
(1 . . .N) . If we want to indicate the number of clusters in D,  we 
write Dn instead of D.  For no  2 ,  u{I-lpn) is continuous, extending 
from some real number to -1<== , since the relative kinetic energy of the 
non-interacting clusters can take any positive values . Therefore , 
o(H) contains the continuum 

O' 
C U (H ) = [ . + ° ° )  

Dn,n220` Dn e 

for some e S 0 . In the following, we always tacitly assume that 
z doc ;  that corresponds to the condition z ¢ O(Ho) in the case N= 2 . 

In order to apply Lemma 1,  we want to derive an integral 
equation for the N-particle Green's function G(z) = (z - H)'1 with a 
compact kernel. We start from the resolvent equation 

G(z) G0(Z) + G0(Z)VG(z) , 

and solve this by iteration: 

i G(z) = Z GoV{,1G0. . .V{,nG0. 
1'1=O L 1 s n / n  

(v.14) 

This is legitimate for sufficiently large negative Re Z , since, by 
(1.3) for A=G0,  B = V  , there exists an M< 0 such that 

-1 
llv,@o<z>l C?) < for R e z <  M and all L I 

because V/I, is a Kato-potential. For these z .  the series (V.14) is 
absolutely convergent and can therefore be rearranged in any way we 
please. We now analyze the series in terms of graphs: the term 
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G0V23G0V12G0V3NG0, for example , is represented by the graph' 

L 

4 

2 
3 

N 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

Figure 3 

Classification of graphs : 
1 . Each graph g defines a decomposition D(g): two parti- 

cles belong to the same cluster if their lines in g belong to the same 
connected part of g .  

2 .  g is called D-disconnected if Do D(9). 1.e.  , if D(g) is 
obtained by further partitioning D .  For Re z< M , we obviously have 

-1 (all D-disconnected graphs) = (z -I-ID) III GD(z). 

3 . Let us cut a graph g by a vertical line L (see Figure 3) . 
Then D(L) denotes the decomposition defined by the subgraph to the 
left of L.  First, let L be to the left of all interactions; then D(L) is 
the finest possible decomposition: Dn= (1)(2) . . . (N). Shifting now 
L gradually from left to right, until it is to the right of all interac- 
tions , D(L) takes a sequence of values 

S(g) 
/ D ,  \ N DN-1 Dk I (v.15) 

where Di+13 Di, and Do=D(g) . So every graph g uniquely defines 
a sequence S(g) of type (v. 15) . On the other hand, a given sequence 
S of this type is generally obtained from an infinite number of graphs . 
For any such S , we define (for Re z < M) 
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G5(2) (all g with S(9) = s) . 

By definition of S ,  any graph g with S(g) = S  has the form 

k+1 or 
1=N 

any Di' 
disconnected 

graph 

any interaction 
linking different 

clusters of Di but 
not of Di_1 

any Dk' 
disconnected 

graph 
.| 

where the factors in the product are ordered from left to right as i de- 
creases . Therefore , 

= G  V G ...v G z 
Gs(Z) Dn(Z) DNDN-1 Dn-1(2) Dk+1Dk Dkl ) I (v.l6) 

where VDi.l.1D1=IDi+1 - ID=surn of all pair-potentials linking dif- 
ferent clusters of Di+1 but not of Di- Next, we define the discon- 
nected part D(z) of G(z) by 

D(z) 

S-(Dn . 
GS (2) 

. Do) 

(V.l7)  

kg 2 

C(z) 

(= sum of all disconnected graphs) , and the connected part C(z) by 

S=(Dn . 

II G$(z). 
..D1) 

(V.l8) 

Since G(z) is the sum over all GS(z), we thus obtain G(z)=D(z)+C(z) 
or 

I 

G(z) = D(z) + I(z) G(z) I (v.19) 

where 

I(z) = G (z)V G ( z ) . . . V  
$=(DN...D1) Dn Dn-1 Dn-1 D2D1 

(v.20) 

(This is obtained from (V. 16) by noting that GDP(Zl =G(z) , since D1 
is the trivial decomposition into one cluster.) 

Now we note that D(z) and I(z) are holomorphic in z Q u e .  
if defined by (V. 16) , (v. 17) and (V.20) .  Therefore, the equation 
(v. 19) , which was established only for Re Z < M,  extends by ana- 
lyticity to all z Q' o(H) . 
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The next step is to show that I(z) is a Hilbert-S chmidt opera - 
tor for z QSc ,  provided that V ( - )  G L2(R3) for all L . 
Proofz19) We consider a single term in (v.20) and write it for short 
as 

GnVn,n-IGn-1 • . • Gk+1Vk+1, kGk' . 'V21 . 
Let As be the product of the first factors up to, and including, Go . 
and let 'Kg be the Hilbert space of the decomposed system with the 
Hamiltonian HDk, Do = (CO . . 
of freedom of the independent 
We now prove by induction that 

.Co),  without the translational degrees 
subsystems C1-~i.e. f "fk= L2(R3n-sk) 

As is a Hilbert-Schmidt operator on T&Ck 
for z QUO (I-Ipk), and 
flAk(z)ll HS S const. IRe zl Re Z-» -1 as - m  

a 

(v.21) 

For k=N,  R3N"3k contains only the vector 0 r so 3Cn=-'Hilbert space 
of complex numbers and An(Z) =z"1 , which satisfies (V.2l). Now, 
let NO k> 1 and suppose that (V.21) holds. Let v be a pair- 
potential linking the two clusters of Do-say C1 and C2--which are 
united to a single cluster in Dk_1 . By elementary computation one 
finds 

do A 2 =' 2 II k(Z)V"Hs IIv(-)II2 471 »J2"Ak<z 
211 ) lIsS I (v.22) 

where the HS-norm on the left refers to 3Ck_1 , the one on the right to 
:Klk, and where u is the reduced mass of the two clusters 01 , C2 . 
(This is simply the generalization of (V.5) Q) By (v. 21), the integral 
converges and vanishes as Re 2-o -°°. Using 

II II Ak(z)vk,k-1Gk-1 (z) II Hs 

S 
"Ak(2)Vk,k-1 II HS Ii Gk-1(Z)" f 

We see 

S 

that Ak_1(z) also satisfies (V.21) , since 

-1 II Gk_1(z)ll const. IRez l  

as Re z-o -°°. For k =  1, (V.22) then shows that I(z) is a Hilbert- 
Schmidt operator if Z E' of . 

* 
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Since I(z) is holomorphic for z E' oC and vanishes (even in 
HS-norm) as Re Z-0 -°°, we can apply Lemma 1 to the functional equa- 
t1on (V.19) and obtain: 

Theorem 13:14) The part of o(H) in the complement of cc consists of 
eigenvalues only, which are of finite multiplicity and can accumulate 
at most at the lower end of Go. 

Proof: The first part is immediate since, by (v. 19) and Lemma 1 , 
G(z) is meromorphic in z E' of (D(z) is holomorphicl). To show the 
finite multiplicity, let Zo fo r  be a pole of G(z). Then 

nm G(z)(z-zo) 
z-° Zo 

II P II projection onto the subspace of 

eigenstates with eigenvalue zo . 
Passing to the limit z-» 21 in the equation (obtained from (v. 19)) 

(z - zo)G(z) = (z - z0)D(2) + I(z) (z - Zn)G(Z) . 
we obtain 

P = I(Zo)P . 
Hence P is a compact projection and therefore of finite rank . 

(V.23) 

* 

Remarks . 
1 . In Reference 14, Theorem 13 is proved if the pair- 

potentials are only locally square-integrable and vanish arbitrarily 
slowly at infinity. The fact that GcC Cl(I-I) then cannot be inferred 
from t1me-dependent scattering theory, but follows from the spatial 
cluster properties of the system . 

2 . Theorem 13 has some applications to the bound-state 
problem. First, it provides a basis for the customary perturbation 
formalism for bound states , which has been justified, notably by 
Kato,20) for isolated eigenvalues of finite multiplicity. Secondly , 
one can derive from Theorem 13 some information about the behaviour 
of bound-state wave functions 
they can be shown to belong to Dn (see (II.8)) for any n.  

at infinity (in configuration so>ace) ; 
14 

* 
1`~'addeav's equations . 

Equation (V. 23) shows that (z -HW = 0 , z Koa. implies 

'II = I(z)1lI - 
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F laédeev's 

The reverse , however, is not true for NO 3 , 1.e. , the equivalence we 
had between (V.6) and (V.7) for N = 2  is lost. This is quite a serious 
drawback, since in the case N = 2  we actually used the equivalence 
wlth the (time-independent) SchrOdinger equation to obtain control 
over the nontrivial solutions of the homogeneous Integral equation . 
The merit of formulation is pre cisely that this equivalence 
is preserved. He splits the three-particle Green's function into 
components : 

G(z) Go(z) R ( Z ) .  + 
L 

where 

Rx; (Z) 
v' . . L (all graphs wlth Vi, as the leftmost interaction) 

GOv G . 

Rx, 

The components RL then satisfy the linked set of equations 

= GoV4LGuL + G V  L lgm, 
H# L 

where G = (z - 1-1o- v ) ` 1  . This set of equations now has the two 
desired properties : 

A) The second iterated kernel is connected, and thus defines 
a I-IS-operator for z E' of (on the direct sum of three identical copies 
of K) . 

B) The homogeneous equation 

4'/L GL(2WL I bm 
m 

is equivalent to the Schrödinger equation 

(z HN' II 0 ,  

where 41 and 'M are connected by 

We = G0V,f !~ll 

\U= I'.IL 
L 
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This allows the application of Lemma 1 
some power of A(z) is compact. 

I which still holds if only 

* 

13) 

Faddeev and Yakubowski21) have found a generalization of 
Faddeev's equations to arbitrary n, which has the property that some 
power of the kernel is compact and for which the homogeneous equa- 
tion is equivalent to the SchrOdinger equation. Hopefully, a time- 
independent scattering theory for non-relativistic N-particle systems 
can be developed with this tool. Some progress in this direction has 
already been made by Hepp . 
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RIGOROUS RESULTS IN SCATTERING THEORYT 

lean-Paul Marchand* 
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Abstract 
We discuss the energy-dependence of scattering in ]such's 

axiomatic frame of simple scattering theory by means of the simplest 
soluble mathematical models . 

elements cm , clout E ZH: such that 

I. Introduction 
Among the phenomena which can be described by (nonrela- 

tivistic) Quantum Mechanics the scattering processes are sufficiently 
distinguished as to justify a separate axiomatic treatment in accord- 
ance, of course, with the general principles of Quantum Mechanics . 

A "time-dependent" picture of scattering is that of a wave- 
packet which moves freely in the remote past,  then undergoes an 1n- 
teraction with some scattering center , and finally again moves 
freely. The so-called scattering operator would then relate the past 
and the future asymptotically free states , and the main problem of 
scattering theory would be to express this operator through the given 
interaction (or vice versa) . 

In the frame of an abstract Hilbert space formulation of 
Quantum Mechanics this idea has been expressed as fo11ows:U Let 
HO and V be two self--adjoint operators in the Hilbert space 1c corre- 
sponding to the kinetic energy of the free wave packets and the scat- 
tering interaction respectively. Then the system {I~I0, H=H0+\f] de- 
scribes a scattering process (without bound states) if to any ¢ E LK 
there exist two 

lim 
1~° { al II 

e-1Ht w e 
_ in '1Hot out} II II 0 .  (1.1) 

TPresented at the THEORETICAL PHYSICS INSTITUTE, University of 
Colorado, Summer 1967. 
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' l e t '@ 
This asgnptotic condition 

-1 *Lu tends to either of the asymptotic free states 

_ e-1Hotqf as 1 . 
postulates that in norm the phys cal state 

(xv I arm _ 
t 

We may then define the two wave operators 

{nit} Qi . cp -| If I 

and the fundamental problem of expressing the scattering operator 

in out 
S:q> -4 cp 

in terms of the interaction V is solved if we know how the wave 
operators depend on v. 

A scattering system is , of course, not entirely described by 
the two energy-operators {H0,H} alone. But if we assume that 
there exists a set of other operators As such that both {H0,A1} and 
[H,Ai] form a complete set of commuting observables (for instance 
the angular momenta L and L3 in the case of a spineless particle in a 
spherical potential) and that the spectra of A1 are discrete (as is the 
case for the quantum numbers L , m), then both Ho and H are reduced 
by the simultaneous eigenspaces of the operators As and none of the 
propagators Q-11-I0t and e-11-It can lead the system outside these 
subspaces. 

So the scattering problem may, in this case, be treated sepa- 
rately in each eigenspace of the other variables , the reductions of 
Ho and H to these spaces having simple spectra. This holds , of 
course , only as long as we are merely interested in the energy- 
dependence of scattering . 

The actual derivation of the scattering theory is most easily 
carried out, not in the abstract space TK, but in that space of square 
integrable (vector-) functions in which the free Hamiltonian Ho ap- 
pears as a multiplication operator, i .e.  , in the so-called direct in- 
tegral of TK with respect to Ho 

ex (Udk 

In this "spectral representation wlth respect to Ho" the S-operator 
which commutes wlth Ho reduces to a dlrect integral of operators 
{ s ( x ) }  where each S(>\) acts on the "energy Shell" "*C()~) . 

If we now assume that the spectrum As  of Ho is simple 
(placing ourselves in a subspace with fixed other quantum numbers) , 
the S-operator becomes a function of HO alone and acts in £2 as 
multiplication by S( l )  . 
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It is this scattering function depending on the energy which 
we shall derive in terms of the interaction and this is reached es - 
sentially in the following two steps: (1) The so-called scattering 
amplitude R(l.)=S(l\) - 1 can be related to the diagonal elements of 
the "integral kernel" of the operator VG+. (2) This kernel can in 
turn be obtained from V alone by means of a singular integral equa- 
tion for O . 

What this exactly means w11l be explained in the first part of 
this series of lectures (Chapters III and Iv) , where the form of S()l) 
and the integral equation for 0+ wlll be rigorously derived. In the 
second part (Chapters V and VI) we solve the scattering problem ex- 
plicitly for the simplest models which have the property that the 
kernel of VG+ is separable and that the integral equations for the 
wave operators become trivially (i.e . , algebraically) soluble. This 
happens whenever the interaction operator v has a flnite~dlmens tonal 
range (so-called finite-rank potentials). 

I find these easy explicit solutions of the scattering problem 
amusing and I think that, despite the point to be not "realistic," 
they provide a valuable information about the mathematical structure 
of the theory as well as about the fundamental ideas underlying its 
physical interpretation. In particular, the scattering amplitude and 
its analytic construction, the cross-section and the phase-shift may 
be discussed explicitly and the concept of resonance be given a 
precise meaning . Furthermore . the effect of bound states on these 
quantities can be clearly exhibited. The case of bound states in the 
free rather than the total Hamiltonian which "decay" under the in- 
fluence of V will be given a special attention. We shall see how 
energy and life-time of these decays are related to the poles Ln the 
second sheet of the scattering amplitude and to the parameters of the 
resonances (energy and line width) . 

There is still another mathematical aspect of these explicit 
solutions of the scattering problem which may be interesting: they 
llnk the spectral representations wlth respect to Ho and H together . 
We may, for instance, define a particular spectral representation of a 
state uP E 'IC with res ect to H by putting it equal to the Ho -represent 
ration of the state n * * 
remote past. Since then pin=O+¢ and 0+ is explicitly known in the 
I-Io-representation in terms of the interaction v, the H-representation 
of ¢ can be explicitly expressed by its H°-representation and v. 

This is , of course , a special case of the much more general 
mathematical problem of relating the spectral representations with 
respect to two arbitrary linear operators with equal spectra. But it is 
remarkable that in our particular models the transformation formulae 
appear in the form of Stieltjes-type Integrals which are frequently 
encountered, for instance r in the theory of renormalization . 

which corresponds to it asymptotically in the 
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II. Mathematics 

g AP Din r i ch  
met £5 

13 n 

A.  Spectral Representation 
Consider a self-adjoint operator A in a Hilbert space H: which 

has a simple spectrum A . Let E(A) be its spectral measure and g E  so 
a cyclic element with respect to A ,  i .e .  , an element satisfying 
E(A)g 74 0 for all A's . Then the function O' (A) E |[ E(A)g | 2 is a numeri- 
cally valued measure with maximal spectral type (with respect to A) , 
and the following theorem holds : 

There exists an h between the abstract . 
Hilbert space AC and the space (A) of c-square integrable functions 
on the spectrum of A 

h west -- 2 (xlw) e £0 (A) 

such that A becomes a multiplication operator in £O'2 

Awertc h x(XI4 ' )e . l :2(A) .  

A function u(A) of A may then be defined by 

u(A)llI€C}C o-o u ( k ) ( x l ¢ ) e £ 2 ( A )  . 
and the square integrable function (A | ly) is called a spectral repre- 
sentation of the element kg EH with respect to the operator A. (For 
the proof of. Reference 2 ,  p .  197.)  

The spectral representation with respect to A depends , of 
course, on the choice of the cyclic element Q .  Let go , g2 be two 
cyclic elements with respect to A .  Then the measures c1(A) , o2(A) 
are absolutely continuous with respect to each other, i . e .  , they 
admit the same zero-subsets of A , and there exists between the two 
corresponding spectral representations a canonical isometric 

pa) e £§1(A) 1-4 2(xI¢) Ip0») 1ml¢) es022(/0 

where P (X) is the Radon-Nikodym derivative of c1(A) with respect to 
O' 2 (A) . 

If the spectrum A of A is absolutely continuous , then all 
so-called distribution functions 0 0 )  E c((-°° ,> ) )  are absolutely con- 
tinuous functions of A and the derivative (do (20)/dl exists. In this 
case we thus obtain a spectral representation in the space .£2(A) of 
Lebes gue square integrable functions . 
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We should note that the functions of .£o2(A) are defined on A 
only up to subsets AoC A of c~measure zero. This raises the fol- 
lowing question: Let Un GTE be a sequence of elements in TKI which 
converge strongly to an element II € IK. What can be sald about the 
convergence of the corresponding spectral representations (x Hln) and 
(KiWi) The relevant theorems which is a consequence of Fatou's 
Lemma is the following: 

Let ll'0») be a particular representative of the class of square 
integrable functions corresponding to the element (lLI1ll) of £ 2 .  Then 
it is possible to choose representatives ¢n()\) of the elements (A l¢n) 
s h t h t  s b s q u  wnka) i¢n(>~) r g s  lm st v r y w h  r 
pointwise to MA) . This theorem constitutes the adequate mathemati- 
cal paraphrase of the operation of exchanging limits and "bras" and 
gives a precise meaning to the equation 

(x | s-lim ¢n) 
n-ow 

lim (xlwn) 
n-von 

We may now ask the question, "How does a linear operator T 
in'l£ look in a spectral representation with respect to A ? "  To that 
purpose we have to investigate the functional relation between (AH: ) 
and (lt I Try) .  It may so happen that T acts as an integral operator 
with a kernel KT'(X A ' )  which is an .Io -function in both variables 
(i.e. , in A for almost all X ' fixed and in K ' for almost all A fixed): 

2 

(Mm) ex (m')( )~ ' l¢)do(x '> 
A T 

Such an operator is called a Carleman integral operator and we may 
use the notation K1l(K A ' )  = (x | T lx ' )  for its kernel and call 
(X | Tl)l ' )  the spectral representation of T with respect to A.  In more 
general cases we may still use Dirac's notation (1 i ' )  but it then 
becomes a symbolical short-hand as seen, for instance, when writing 
down the "kernel" of the multiplication operator A itself: 
( x IA l i  ' )  = > 6 ( > _ - > ' ) .  

and B are then unitarily equivalent, l .e . 

B.  Change of Spectral Representation 
One of the fundamental problems in scattering theory is that 

of connecting the spectral representations wlth respect to two dif- 
ferent operators A and B which possess the same simple spectrum. A 

, there exist unitary opera- 
tors U in TC such that B = UAU'1 = UAU*.  If U is explicitly 
known in the spectral representation with respect to A ,  we may define 
a spectral representation wlth respect to B in the following natural 
way: 
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B ( x | ¢ ) - A ( x  U*\u). 

It is sufficient to verify that B appears as a multiplication operator in 
this new representation: I 

B(x Be)  A(x|U*Bw)= A(X|AU*W) xA(x|u*¢) : ABC of) 

/ldi' 
lions of a 
men is: 
domain . 
A on a dl 

use 

Folds between t 
Bspect to  A and 
integral operator 

rleman integral 
lotion 

Ill 
| 

I = - * l 

B ( x l T I > ) B  A( I U T U l  ) A  

holds . In fact, we have 

AQ | U*TU-U*~l1) = AQ | U*T¢ ) 
l 

B(KITll') =f B(x lT lx '>B B(x'l¢)doa'l 

j B(x lT lx ' )  A(x'|U*~1f)do(>J) B 

I 

I 

for all elements U*llJ in U*DT. 

C .  Abstract Integration in AC 4) 
At any given time t the state of a physical system may be de- 

scribed in 3£ by a density operator Wt or, in simple cases , by a 
state vector *lt e 1-(:. The evolution of a state leads thus in a natural 
manner to the concept of vector-valued and operator-valued func- 
tions in}C. Many results in scattering theory can be formulated and 
derived in the abstract space and thus have the advantage of manifest 
representation independence . But to that purpose we need the con- 
cept of (abstract) integration of vector-valued functions . 

Consider the time axis R as a measure space. The o-ring Z 
of measurable subsets of R are the Borel sets on the real line gener- 
ated by countable union and intersection from the intervals, and the 
measure is the Lebesque measure generated from the natural lengths 
of the intervals . Using the standard concept of measurable numerical 
valued functions on R we may now define the integration of vector- 
and operator-valued functions in 'K as follows: - 
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Definition II. 1: A vector-valued function wt is integrable wlth re- 
spect to t i f f  

(1) ( f i t )  is a measurable numerical valued function of t 
for all (go € TC. 

(2) .f lllhtlldt exists and is finite . 
Definition II. 2: An operator-valued function At whose range contains 
only bounded linear operators in 'KZ is integrable with respect to t if 
All): is t-integrable for all or 6-1-C . 

l`R(Q0 ,¢t)dt = 

we write lllc =.oR¢tdt. 

Lemma II.1: If In is t-integrable then there exists ll;o€3£ such that 

(cp ,\lr0) for all up e K .  _qo is called the integral of *t and 

Proof' 
In fact , 

The functional F(cp) E .f (cp ,Alf t)dt is bounded and 11near on3C. 

m»,l»t)dt so l si t )  l d t s t  ufpu -llltlldt = Ilwllf IIwtl|dt< °°: 
the linearity is obvious . According to Riesz' theorem, there exists a 
to  ESC such that F(cp) = (cp,¢10). 

Lemma I_I.2' If At is t-integrable then there exists AO such that 
oR Atl: dt = Ao\l1 for all II e ic. _Ac is called the integral of At and we 
write AC = .J"RAtdt . 
Proof: The form F(cp ,11') §JI(¢r) ,Atilt)dt is a bilinear functional on SC. 
Thus there exists a closed operator As such that F(cp,dr) = (cp.Ao\lr). If 
the functional is bounded, 1.e. , if IFl*3P,¢l)l s M[lcpll -lllllll , then the 
closed linear operator AO is defined everywhere and thus bounded . 
Lemma II.3: 
then Till»tdr = j  Tlutdt. 

Proof: First we show that Tor t is integrable. From the integrability 
of *t it follows that (T*q> ,¢t) is a t-measurable function for all cp 6 SKI . 
So (up, TIll t} is measurable. Furthermore 

III¢tlldtSIllTIl 'llWtlldt = IITIU Ilwilldt < Cor 

If *t is t-integrable and T a bounded linear operator , 

and according to Definition II. 1 the statement is proved. Now we 
have, according to the definition of the integral of Tor is 

I<q>.Ti»t)dr = (<p,l  Twit). 
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On the other hand, using the definition of the t-integral of or t 

t(cp,T'l't)dt =l` (T *w¢ t )d t  ('I~*¢0 ' I w 
tit)

 - - (0 t 
tit )- 

So (cp,T.f 111tdt) (cp ,t Tlf tot) for all up E it whence the result. 

D. The Spectral Representation of Abstract Integrals 
Combining the concepts of spectral representation and ab- 

stract integration, the following question arises: In what precise 
sense is it true that the spectral representation of the abstract inte- 
gral of a vector-valued function equals the integral of the spectral 
representation? The answer is given by the following lemma which 
we cite without proof (of. Reference 4) . 
Lemma II. 4: Let i t  be a t-integrable vector-valued functionzin K and 
and (A 1 wt) its spectral representation in a function space SU (A). Then 
Then there exists a numerical valued function ¢( t ,k )  on the direct 
product R x A such that for any fixed t o  R ¢(t, l )  is a representative 
of (>\llr t) and . H (t,x)dt is a representative of (X tor tot). 

This theorem gives the precise meaning to the operation 

(K I l"¢tdr) 

of exchanging bras and vector-integrals . 
t ( x l w t ) d t  

III. The Simple Scattering System 

A .  Definition 
A simple scattering system is according to Iauchll described 

by a free Hamiltonian Ho (kinetic energy of the non-interacting parti- 
cles) and a total Hamiltonian H = Ho+V which satisfy the conditions: 

(1) There exist two wave operators (= asymptotic condition) 

Qi 
s-lim 
t-».; Q 

V* 
t U t 

(2) 

- '  t 1H are the free and the - 'H t where U t f e  1 o and v i e  
physical propagator, res pectively . 
There exists the scattering operator 

s HI 

* 
Hz _n+ 

with the same domain as Q+. 
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Condition (1) exactly expresses the fact mentioned already in 
the Introduction 'that (in the absence of bound states) to any physical 
state 'If there exist asymptotically free states q>in, Ont satisfying 
Eq.(I. l),and conversely. If we symbolize the free trajectories Ut by 
straight and the physical trajectories Vt by curved lines, this may be 
pictured as follows : 

(t»-~; 

v.(t It-y-ou) 

(t .,.,) 

t'-»ae 

The scattering operator as defined in (2) takes then the required 
physical significance S : c m  -»up°ut mentioned in the Introduction . 

The following properties of the wave and scattering operators 
are easily verified: Let Po and P be two projectors in Hilbert space 
which project on the subspaces PoTC and PAK corresponding to the ab- 
solutely continuous parts of the spectra of Ho and H ,  i .e .  , the maxi- 
mal projectors reducing the operators Ho and H in such a way that 
their respective parts PoHo and PH have absolutely continuous spec- 
tra. Then 

(1) Qi are partial isometrles with domain Pa}Cand range PK, 
and we have D*Qi = PO and GiNs* = P .  

(2) PH =n(poHo)rz;. 
(3) The scattering operator exists on pgc, commutes with 

PoHo and is unitary in Po' . 
As we pointed out in the Introduction, the energy dependence 

of scattering can in many cases be treated in those subspaces of :+c 
which are obtained by fixing the value of all other quantum numbers 
(e.g.  , /1, and m).  In these subspaces , the reduction of the Hamil- 
tonians Ho and H become operators with simple spectra, and this will 
permit us to use the concept of spectral representation in the simple 
form introduced in Chapter II . 
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al 

An immediate consequence is that any operator commuting 
with Ho is a function of Ho alone, and this holds in particular for the 
scattering operator, as already noted in the Introduction . 

For simplicity we shall derive the scattering theory first under 
the additional assumption that no bound states exist in either Ho or 
H.  This nearly; "*°""" wasmmn The wave operators now become 
unitary operate nitary equivalence of Ho and H ,  
which now had. II i continuous spectra. This re- 
striction will of Chapter IV . 

I - - l  . 
B .  Abstract Integral Formulae for the Wave Operators 

We shall first derive some preparatory relations of scattering 
theory which can be expressed in a repre_sentaj;ion_ independent way. 
The first lemma relates the resolvent operator R(z] = (H - z~I)'°1 of H 
to  the propagator Vt and the second expresses the wave operators 
through the propagators . Their proof may be considered as good 
exercises in manipulating the concept of abstract integrals (intro- 
duced in Chapter ii) . 
L a III.l: emm . . R + M ) ¢  j 1()\+1l.1)tVtw it [u> Of 

o 

oo 

i e 

E 

Proof: In order to give a precise meaning to the right hand side , it 
~ 1§Tii"* -s , I  "*"'lassary to show that the vector-valued function 

4' Satisfies the two condltl -"`§§grabllity (of . 
Zllhis is easy since, (1) ,continuous func- 
measurable (for all up E 

J" Iwtl 
O 

-p t 
I d t ~  e II' 

o 

1 
d t s -  u l1w 1 

Now let Ex be the spectral family of H and let us remind the repre- 
sentation 

(Q°,u(H)i1») = j U(>\)d(fPfE)4') 

for the function u(H). The left hand side in the lemma now becomes 

l 
-X-iu (p,R(x+il~L)¢) = j  x, d(q),E¢) 

A 
m°me'"*' 
A o 

-x- '  t lu) d(<p,B)gl1f)dt 

and the right hand side 
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g, 1j0mwtdr) =1I(q),wt)dt = it; ei()»+iu)t 
o 

(up ,Vow )dt 

oo 
i 

o 
dt ei()'+ilJ~)t 

As 
- i t  

d(CPE)Jl1I) 

Both sides coincide if the integrals can be exchanged in the last ex- 
pression. But this follows from the fact that the second integral is 
bounded by the t-independent number llcpll II II: II and thus converges 
uniformly with respect to t . 

A similar .expression may be found for RU - in) 

Lemma III.2: 

Q _*¢ = 
oo 

s-lim by e 
e-»o o 

-et  * 
Ut vow dt . 

Proof: E e 
fact, (cp,1Lr t) is measurable for all cpE [K and 

-et ' The vector-valued function wt Ut*vt¢ is integrable. In 

J";D Ilwtlldts 11w11 Ve -e t dt o e llwll 

Now 
co -et el" e 

e-°o O 

up, s-11m € .is llltdt) = lim 
€-» o 

for the right hand side and 

(up ,Q *¢)  = lim (q) ,Up*vtw) 
t-» CO 

* 
(op,Ut vi¢)dt 

for the left hand side . 
(Abel's theorem): 

The equality follows from the observation that 

_ °° -e t 11m f(t) = nm e uV e f(t) dt. 
t-» oo e --o O O 

Similar representations may be found for Qi and 0+ . 
IV. Spectral Representation of the Simple Scattering System 

1) 

A.  General Remarks 
We turn now to the solution of the main problem in scattering 

theory, namely that of calculating the scattering operator S from the 
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interaction V.  (The converse problem consisting of establishing the 
so.-called phase-equivalent potentials out of a given S-operator is , 
though mathematically very interesting, of minor physical importance .) 
As we already mentioned in the Introduction, this problem is essen- 
tially solved whenever the wave operators are known in terms of the 
interaction, S being easily related to the operator Vn+. Another way 
of solving the scattering problem consisting of relating S to V and the 
resolvents (which themselves are functions of HO and V) will also be 
sketched briefly. 

These relations will be expressed in the spectral representa- 
tion with respect to Hor and there is no need to search for more ab- 
stract formulations since S is a function of Ho alone (for fixed other 
quantum numbers) . The solution of the scattering problem r i . e .  , the 
knowledge of the wave operators in Ho-representation provides us , 
however, immediately with a natural way of passing from an HO' 
representation to an H-representation, and conversely. In fact, let 
these representations be denoted by on II) and ( K W ) ,  respectively. 
Since the wave operators Qi establish the unitary equivalence of Ho 
and H by H=§2i Hoff ,  they also establish a change of spectral repre- 
sentation either from HO to H: 

plum 0<7\ ( l : t ly),  

i I lb) being r according to Chapter II, two particular spectral repro - 
sentations with respect to H ,  or from H to Ho: 

Ho . 
i OM 

i o()~lw) =- ( i ln iw) ,  
:iz QQ W) being two particular spectral representatives with respect to 

The scattering operator clearly relates the two representations 
by 

o-(N 8W) O`(x|Q*Q+»l¢) = (x]n+¢) ; ( l ¢ )  

which may also be written 

+ in 
o(klcp ) 

- out O(?» cp ) .  

So the asymptotic in-states look in (+)-representation like the out- 
states look in (-)-representation. Furthermore, if T is an integral 
operator in Ho-representation, Mimi* are integral operators in the 
two H-representations related by 

o <ltllw> = * I o iM ndzwnlMi I 

and conversely, 
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We shall first derive a basic formula (IV. 1) which may be COI1- 
sidered the key to the whole problem . 
B . The Key Formula 

Let us start from the 
k . I LemmaW.1: on Q_w) = -1 nm e: o 

€-» o 
Proof: We use the interchange of strong 11m1ts an 
with the bras of the spectral representation in the 
tab1lshed in Chapter II. According to Lemma III. I 
becomes 

-i lim e o t 
€-» o 

(}»[R(}\+ie)111)_ 

O(aIR(x+i€)¢) i l im e ( M i t  e i ( x + i @ ) t v d t )  
e-°o o 

- | .  

m ' X + '  t 
lim e .f el( 1e) 0(xlvtl1)dt 
€-»o o 

and the left hand side , according to Lemma 111.2 , 

O()»|¥2*¢) o(1\ | s-lim 
€-» o 

-et * 
Utvtw dt ) 

m 

lim e e 
e-»o o 

-et * o<7\ | Ut Vi~J,v)dt 

on 
11m e / 
€- °o  O 

d1(x+ie)t 
o (A | vim )dt . 

I I  

This establishes the relation. A similar one can be found for Q; . 
Consider now the two Hamlltonlans J-I """" $2g ,+V and 

(Ho their corresponding resolvents Ro(Z) = 
R(z) = (H - z~I]-1 which are related through the second re- 
solvent relation R(z) = Re(Z)(I -VR(z)) =(I+R(z)V.__0 . - .  , fig the fact 
that Ro(Z) is diagonal in Ho-representation, we may now recast the 
relation of Lemma IV. l and its analogue for Q+* into the following ap- 
pealing forms : 

Ul'i 

0(x null) o(xl¢)  - lim o O(xlvR(>~+'ie)l») (Iv.1) 

There exists a dual equation to (IV.l). In fact, if (H0,H) is a 
scattering system, (H,H0J iS one, too, and all relations remain un- 
changed provided the substitutions Ro"" R,  V*-° -V, Q - »  Q *  are 
simultaneously carried out and that the Ho-representation 0(XI is 
replaced by the H-representations i t  . With these substitutions , 
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(Iv. 1) transforms into 
I 

izO" I )  iWlw) + lim 
e-»o 

U vRo(x +ie)¢>. (1v.1') 

Relations (Iv. 1) and (Iv. l ' )  may be called the key formulae of 
scattering theory since they contribute the natural starting point to 
the derivation of all the essential results such as the Lippmann- 
Schwinger integral equations for the wave operators and the scat- 
tering amplitudes. It should, however, be stressed once more that 
the form of these relations is essentially representation dependent 
and that they cannot be converted into pure operator relations be- 
tween resolvents and wave operators , since the parameters X ap- 
pearing in the resolvents are explicitly linked to the spectral varia- 
ble K . 

C.  Integral Equations for the Wave Operators 
Up to this point all results were derived under the sole as-  

sumption that Ho and H form a scattering system, i .e .  , that the 
wave operators Up exist. Let us now ma be the additional mathemati- 
cal assumption that the operators V§2 and ofv are Carleman inte- 
gral operators in the Ho-representation. This , of course, implicitly 
restricts the possible forms of the interaction v and has to be veri- 
fied separately in any explicit model . 

An immediate consequence is , according to Section (A), that 
QiV and Vf2 are integral operators in the H-representation and that 
these different representations are linked by 

X (2 1 = ' , 
I 

( I Jim ) oulvnlm )O, ( ) |vn : t lx )  0(7\IQiVI)\'>o» (IV.2) 

From the key formulas (Iv. 1) and (Iv. l ' )  we immediately de- 
rive the following integral relations for the wave Operators : 

OO lm) 

(1) Substituting Qilb into IN in (IV.1) 

O<7\ll1') +1im () lvR(x; i€)Q m) 
€-o  O i: 

O(x In +1im 
o o(x vQiRo(x1 i€)¢)  

O(xl\p) + nm j 
€ - o  

(5N I vnlw )O 
X'-MA6 o(7»'l\l1)d)~' 
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(2) Translating (Iv. 1) into the I-I-representations Q I 
cording to Section (A) : 

ac- 

i(KIQllI) (xlw) + lim ( x I Q v R ( x  new) 
€-o (1v.3) 

wlw) .l X' - k i t e  +lim :1*:lk'lliI)dK' 
e-°o 

(3) Substituting Qflh into in: in (IV.1'): 

( ) ~ l Q w ) =  u l t )  i(xlv(2 Rm1e)¢) 11m 
e-»o 

o<7\l'lf). 

i<KI¢) nm IM l v Q R ( x  i in)\If) 
e-»o 

:t(xIII) 11m y 
e-»o 

i(\lvn;[x')i 
L '  -}~.j: j_€ 

i(x'l¢)dx' 

(4) Translating (IV.l ' )  Into the Ho-representation oN | 
cording to Section (A) : 

ac- 

O0 Dew) =O(>~lw) lim 0(x N;rVRo(A Iii)lf) 
€-v0 (W.3 ' )  

H O()~l¢) - l im .f 
€-o  

Q(*- l 0 *VIX ' )o  
K '  -A rin: O(l ' I¢)= wlw. 

Relations (W-3)  and (IV.3 ' )  are transformation formulae be- 
tween the spectral representations O() | If) and i(*l if) I which are , 
however, still implicit in the sense that they are not expressed by 
the interaction 'J alone but rather by the kernels Q V  and Qiv where 
Ni and Q* themselves depend on v. 

D.  The Scattering Operator in Terms of the Resolvents5) 
Consider the operator 

R = s - I = Q * Q + - I  s-lim Q * t U t  
t-» -G) 

I s-lim Ut (Q*-I)ut. 
t-» _oo 

Using Lemma IV . l  and noting that 
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I 

i 11 +1e: : m O(7~IR00 w)  oult) 
e:-°o 

we obtaln for the Ho-representation of R: 

o(x I R40 11m 
t-0 -oo 

Ur e on I m_w-nu'tw) 

lim t.. _m 

at  I e 1€ 11m 
e-»o 

on l ( R ( + i € )  - RO()~ +1€D up*) 
I l -  
- 2  

U r  lim e lim 
t-wo Hz-»o 

in o(x I R00 +ie)VR(X +ie)Ut1lI ) 

11m 
t-0 -oo 

U r  e lim 
e-»o 

o(xlvR(x +1e) utw) . 

We note that this relation is a rigorous consequence of the 
axioms and does not make any use of the additional assumption 
about integral kernels . But if we now use once more the second re- 
solvent equation and assume that V and VR(?\+ie)V are expressible as 
integral operators in Ho-representation, we can develop the expres- 
sion further• 

x 

o(1\IRll') 11m e 
t-°-oo 

i t  11m 
e-°o 

0<x | v(1 - RU +1€)\) Ron +ie)Ut¢) 

11m 
t-* -oo 

lim t 0(x v 
€-»o 

vR(x +i€)vl>d) 
. (* '  wow O 

and using 

lim nm l" 2 
t--°° e:-°o 

§CP(?U)d1\' =-211i°p()\) 

for some class of test-functions cp , we obtain the known formula 

: _ _ .|. U 0(xlR¢) ZTT1 0(xlv vM 1o)v No 0()»Iw) 

The vaid1ty-question for these manipulations needs , of course, more 
6 care . 
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E .  The Scattering Operator in Terms of VG+ 
If we substitute 0+11' for II: in the key formula (Iv. 1), we ob- 

rain another representation for the scattering operator: 

oU so) o(1\ll'2 *nm O()~IU+¢) + lim 
6-'O 

0(x vR(x +ie)Q+¢) 

O() If) lim 
6-°o 

0(x I vn+R0(x-iam) + oU vn+Ro(x +ie)¢) 11m 
e-o 

I 

O() so) 

and if we again assume that VG+ is an integral operator in Ho- 
representation 

1 _ | ) '  I 

o lm -1 -Q O( w)dx 
) 1 
o Ik'-1-1 .6 (x  w)+1i0 [ou vn+ )u Q 

o()»la) + lim 
e-°o 

l`o(x v0+|x ' )o  -Zie 
0 -7\)2+€ 2 

O(x'lw)d)u 

o<7\llU) 2rr 1 (A VI x )  
o O O<7\llU). 

We see that S is diagonal in Ho as was to be expected from 
the fact that these two operators commute. The above relation may 
thus symbolically be written 

(x  o 
s wO = 6M-x')s(x): s(x)= 1 2nio<x vi Uo (Iv.4) 

where S(>») is the S-matrix at energy X . (In our simplification in 
which all other variables have been dropped these matrices reduce 
of course , to ordinary numbers . ) I 

F .  Scattering Amplitude I Cross-Section and Phase-Shift 
We now define those concepts which relate the scattering 

"matrix" S(h) to experiments -in principle . They are f like S ,  func- 
tions of the energy alone. Furthermore , since we are mainly inter- 
ested in the mathematical structure and merely the general aspects 
of their physical interpretation we shall introduce them as dimen- 
sionless quantities . Note, for instance , that the dimension of the 
total cross-section depends on the dimension of the space in which 
the scattering process takes place while our treatment of scattering 
should QQ; depend on that dimension. So we define: 

( l )  Scattering Amplitude; 
(not to be confused wlth the resolvent R(z)) 
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R(x)_= so)  1 2ni0<x|vQ+])\>o. (IV.5a) 

(2) (Total) Cross Section' 

o f )  =%IR(1)I 2 = 
2 

or o(xlvII+lx) 
O 

2 
(Iv. 5b) 

(3) Phase-Shift: 

l 
Zi 

6(>.)E &n S ( k ) .  (Iv. 5c) I 

The scattering amplitude and the cross-section are then, in terms of 
the phase shift: 

RW =S(1»)-1 =e2i6(m 1 2iei6()J sin6(k) ;  cr ( ) )=s in26 ( K ) .  

(Iv.6) 

G. Modifications in Presence of Bound States 
In the definition of the simple scattering syStem'we postu 

lated the existence of the two wave operators 

= s-lim Vt*U 
t....:F oo 

Qi t .  

to Po and P .  

paw-. 

They have the property of being partial isometrics connecting the ab- 
solutely continuous parts Polo and PH of the two Hamiltonians . We 
then supposed for commodity that Ho and H contain no bound states r 
i . e .  , that Po=P =I. We shall now drop this restriction and ask the 
question how the scattering amplitude and the cross-section are 
modified in the presence of bound states . 

In reinterpreting the derivations of Chapter III the following 
remark suffices' The :-domains Poll and FCC of the wave operators Qi 
and Qi* can ... .n  to the entire space GC by postulating that 
they should 1 zero those components which are orthogonal 

pedantic, this could be systematically achieved 
by replacing Q and Q* by PQPo and pon*p. It is then easily seen 
that all abstract formulae of Chapter III remain valid . 

The situation becomes less trivial for the relations in this 
chapter which have been expressed in the spectral representations 
with respect to Ho and H.  

Any element 41 E IK: can be decomposed in two ways according 
to 

w pow + (1 -POW ==p¢ + (1-pW 
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The continuous parts Poll! and P11 are still spectrally represented by 
square integrable functions 0(1\ \II) and (lt | II) such that HO and H act 
as multiplication operators , and the interrelation of these represen- 
tations is still 

()»lw)= OU Ud:lI): O()»In)= i(7»IQ:l:'II): 

but no information about the dis Crete parts of the element III is con- 
ta1ned in these relations . In particular an QHerat.Qr_T r;aln: be an in; 
teqral operator with respect to 1-10 and 1-1 only in the continuous sub- 
spaces PuTC and F'rC. In these subspaces we still have the property 
that if T is an integral operator in the Ho-representation in the space 
pcgm then rzirn are integral operators in the I-I-representations in the 
space RK, and their kernels are related by 

o0 M) = * I T o i ( x | n i T n | x ) .  

It follows from this that the integral relations for the wave 
operators derived in Section (C) are to be regarded as relations which 
hold only between elements of the spaces P0SC or P3-C in which the in- 
tegral kernels act. This yields an essential change in formulae 
(Iv. 3) and (Iv. 3 ' )  which now read 

i<x Qd:Pl|I) (x  ¢ ) + . f  
i 

:I:(I\l§1iVI7\') 
l -Xrhio i(x' ¢)dx '= o(xlp~u) (Iv.7) 

O ( x | Q p o ¢ ) = O ( m  In - f  
* I oalnvlx >0 

L'  - Ilario o(?\' ll')d?»' (x I pow) . (IV.7') 

Equation (lV.4) for the S-matrix remains formally unchanged , 
but the "kernel" QQ S ) ' ) O  should be considered as acting*only be- 
tween elements in pose in accordance to the fact that S =r2lun+ 
vanishes on the dis Crete part of Ho and is unitary only in pésc . 

The natural question which arises here is that of the effect 
produced by the bound states in the scattering amplitude. Before 
treating particular models , let us remember Lovins on's Theorem which 
can be proved in the general context of this theory.77 It states that, 
for a continuous spectrum of Ho extending from 0 to oo 

6 (°°) 6 (0) 1T(no - n) (Iv.8) 

where no and 
(I-PIK, i . e . ,  

n are the dimensions of the spaces (I -PorK and 
the number of bound states of Ho and H.  An analysis 
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of the scattering amplitude thus indeed furnishes information about 
the bound states . 

l. The two main bound-state situations arising in physics are 
those where either Ho or H have bound states . Only the second one 
corresponds to what usually is called a bound state system, while 
the first one may be, in case the eigenvalues XO are imbedded in the 
continuum of HoI considered as a system describing the decay of the 
_Ho-bound states X corresponding to the energies lo  through the 1n- 
teraction v. This decay takes place according to a decay law 

p(t) II x ,  -11-Ir 
e X (Iv.9) 

whose abs elute square expresses , for a fixed time t ,  the probability 
that the system it found in the undecayed states at time t ,  if it was 
created in that state at time zero . 
V.  A Soluble Model wlthout Boundstate in HQ 

A .  Definition 
We shall now treat the simplest non-trivial model of a scat- 

tering system which can be calculated entirely, wlthout any approxi- 
mation techniques . The general expression (IV.4) for the scattering 
matrix is still implicit insofar as  it contains the wave operator (l+ 
which itself depends on the interaction V. The crux of such a solu- 
ble model is to permit a separation of the integral kernel of Vulg. into 
the two kernels of v and 0+ such that the integral relation for D+ 
established in Chapter IV can be solved . 

Let Ho be a free energy Hamiltonian whose spectrum is sup- 
posed absolutely continuous and connected (the real axis , for in- 
stance) . The interaction V will simply be a rank one projection oper- 
ator PGP which projects the Hilbert space :K onto the tensional 
subspace generated by the element cp ER which we 9 _ to be nor- 
malized. According to a theorem of T .  Kato (Reference 8',-p. 540) , 
the system (HO, H Ho + Pm) is a 1 .  scattering system, i . e .  , 
there exist wave operators Qi whip _ p a r t i a l  1sometr1es con- 
necting the absolutely continuous parts `of the operators Ho and H by 

II 

PH * ninon 

where the operator P projects away the possible dis Crete eigenspaces 
of H. We are thus placed in the case Po = I and P arbitrary . 
B .  Solution of the Integral Relations for the Wave Operators 

First we prove that our system satisfies the additional mathe- 
matical postulate Introduced in Chapter IV . 
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Lemma V .  1: The operators VG+ and Q+V are Carle ran integral 
operators in the I-Io-representation, and their kernels are 

X K '  é lv0+l >o oN to) +(*'l¢p) : o(A §2+v >»')O+(x c 

(v.1) 

(x  
O 

Proof: The Ho-representation of VQ.l.l1' may be directly calculated: 

_ * vi) = o(x ( m m )  = (<:p,Q+»|1)o()~I¢p) - (Q+<;0,¢)o()~ (D) 

IoM CP) (M * 
o @+¢p) (M 1IJ)dl" = ( f 

o IO lw)+(x |¢r>)o(x']¢) . 

Hence r 

0(x vQ+|x >0 on lm) +()U l(;0) . 

The Carle man property of this kernel follows from 

f|0(x|vQ )J)O|2d) I 2 +0 lm) Il0<)~lto) 2 do 2 l+l0ICP)l \cp 2 

which is finite for almost all X r and 

(x vm PU) 2dx '  = | (A up) ZH ()~'l¢p)l2d1\' o i o o + lon (xv) 2-  llp)ll2 
which is finite for almost all x . 

* In order to verify the second part, we may first calculate 
VQ_l_PlLl in the I-I-representation: 

+(x vQ+p¢) (q).Q+pw)+(xIq)) (Q-F¢.p¢)+(x|¢) 

= f+()~ l(;0)+(x' n+(:p)+(x'l¢)dx' =j+(xlq))O()u up)+()U w)d)U 

hence the kernel 

I 

+(x VQ+ )U) =+()\ l@0) 
I u n  I 

which again satisfies the Carle ran properties . 
Et (Iv.2), 

But according to 

* I +(xlv§z+|x >+ ()|Q+v|> >o. 
O 
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The explicit form (V. 1) for the integral kernels still has the 
disadvantage to contain the element up in two different spectral rep- 
resentations. But Eq. ( IV.7 ' )  (or (l'V.3') since PO=I  in our model) 
which links the two representations reduces now, for the particular 
element cp , to an algebraic equation. In fact, substituting up for Ill 

in ( IV.7')  and inserting the kernels (V.l) we can solve for +<l cp): 

0(i cp) 

I (VILE): Z 
I + o I 

A' - A  +io 

+<x cp) |- 

do ' 
(v.2) 

Inserting (V. 2) into (v. 1) 
Of cp) alone: 

I the integral kernels read now, in terms of 

I 

X VQ XI O( + ) o  l 

I 

E I 
0(x|§z+vl)U> o 

. . <_un I 

4 
1 IQ) 

K ' - k + i o  

(v.3) 

With this all spectral representations of the wave operators 
can now be expressed in terms of the spectral function OM lcp) which 
is explicitly known for the given interaction V=Pcp . 

Instead of expressing the I-I-representation of up by its Ho- 
representation, we could as well have done the other way around , 
using (IV.7) instead of (IV.7') . An analogous calculation would then 
lead u s ,  by (IV.2), (IV.3) and (IV.9), to the inverse of the formula 
(v. 2) 

o Pop) 
+(x cp) 

1 l'=p712 dl c 

x' -Ii + lr) 

.r (V.2') 

and substituting one into the other would lead to functional identities 
which may be of some intrinsic mathematical interest in the theory of 
Hilbert transforms . 
C . Scattering Amplitude , Cross-Section and Phase-Shift 

The scattering quantities (IV.5) are now immediately ob- 
tained when inserting (V. 3) into (IV.5): 
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R(x) 
2 

1 +  IA' -A  - t o  

G(1\) 
TT2X2()\) 
( 2 Q+.XI&K \ ')dx'~ 

-.x 4 

2 2  +1TX(?»} 

(v.4) 

-Pep out of given scattering amplitudes 

where we introduced the notation x(i) for the positive function 
I o(7l. l¢r)) 2 - 

It would be interesting to get an inversion formula for (V.4) 
which would yield a procedure of reconstructing a rank-one potential _ . This particular mathematical 
problem is unsolved, and it is rather improbable that a solution 
always exists because this would mean that such a simple potential 
as PQ) could produce a scattering amplitude of arbitrary complexity . 

Before going into a discussion of (V.4) let us inquire about 
the spectrum of H .  

D .  Possible Existence of H-Bound Statesg) 
Although it will turn out that the above model is not very en- 

lightening in the context of the bound state problem, we shall rapidly 
review here the question of possible eigenstates X of the operator H. 

Lemma V . 2 '  H has a bound state X with energy x if 

(a) I X(3.)Cl?L 

ax -'at' 
I 

r (b) l` X(K)d)\ 

(x-')T)2 
< oo 

by 
The (unnormalized) eigenstate X with energy AC is then given 

_ 0()~ltpJ 
OQ X) r e  • (v.5) 

Proof: The element X has to satisfy the following eigenstate- 
equation: 

O() He) )»O()~ x) + (¢p.x) O<7~l(1p) ==- )\ O()~ x) 

This equation makes sense for all K only if (CP .x) 74 0 and we may 
solve for o<7\[X)1 

o(x X) 



72 IEAN-PAUL MARCHAND 

(com) = - ( x )  I 
Multiplying both sides by 0(7\ICP) and integrating, we obtain 

. x (x)d  x 
x - x ' 

The arbitrary phase-factor (cp,X) whlch fixes the length of 11' drops out 
and we are left with the necessary condition (a) on cp . Condition (b) 
follows from the postulate that X is square-integrable: 

2 /|o<»Ix)1 do 
(cp,X) 2 X(1&)d)\ 

I I f -M2 
< as , 

These conditions are sufficient for the existence of a bound state in 
H. In fact , 

O<>~IX) 
00~l*7P) 

A -TC 

is square integrable according to (b) and it satisfies the eigenvalue 
equation according to (a) . 
Lemma V .3 :  If the spectrum A 

X(}\)Ci7~ 2 

A -'i' 

. of Ho is the positive half-axis , 
possible discrete eigenvalue xi of H is imbedded in Ao .  

Proof: The contrary: 'Xs 0 implies \ 

.f 0 

any 

which contradicts condition (a) . 
Of course, we should verify that a cp E TK actually exists 

such that H=Ho+Pq, admits bound states . According to Lemma V . 2  
-the absolute square of its Ho-representation X(1\) = lo{Alrp)l 2 must 
satisfy conditions (a) and (b) (and X(lL)dJ\ = llcpll 2 = 1) . A necessary 
condition for X(k) is clearly that it should vanish for some 'XGAo as 
follows from (b). This is ,  however, not sufficient. But consider the 
following example: Let x ' ( ) )  be a positive non-vanishing integrable 
function on As and define 

x(>) II 

0 on an open interval (a ,b) C AO 

0LX'(A) on the rest of As [0c> 0] r 

Clearly, a can be so chosen that ex(k)dA =1. Next,  (b) is certainly 
satisfied for any To (a,b) . In order to show that (a) can also be 
satisfied for some 'X' in (a ,b) , consider the left-hand side of (a) as a 
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function of 'Xe (a,b). It splits into the two parts 
a 

x(x)dx . 
x -TC ' y1(i') Io Y2 or) of (Udk I *'_~ 

b K X 

with the following properties: nY is negative, continuous and mo- 
notcnously decreasing to -oo if II tends to a ,  while Y2 is positive , 
continuous and monotonously increasing if 'X' tends to b .  So they 
add up to a continuous function increasing monotonously from -m to <==, 
as 'X' moves from a to b .  So there exists at least one value~ 1\ in (a ,b_) 
for which condition (a) is satisfied and which is thus a dis Crete 
eigenvalue of H. 

So we may recapitulate the essential bound state features of 
the model as follows: for the existence of a discrete energy eigen- 
value 31 in H it is necessary that the Ho-spectral representation of cp 
vanishes at 'AC. If such a value exists it is always imbedded in the 
continuous spectrum AO of H .  There is ,  in fact, no hope of pro- 
ducing an isolated negative H-bound state by a rank-one potential . 

We did not bother about the question as to whether or not in 
the spectrum of H there may appear a part which is neither discrete 
nor absolutely continuous . It is known that its impossibility hinges 
on a certain HOlder condition imposed on xi) which we shall de- 
scribe more thoroughly in an analogous situation met in the model of 
Chapter VI . 

The presence of bound states in H has to be considered as a 
rather accidental fact in this model since it supposes that the func- 
tion X()l) vanishes in an Interval, and its discussion has not much 
physical relevance as may also be concluded from the discussion of 
the cross-section (V.4) given in the next section . 

I 

E. Dis cussion of the Scattering Quantities (V.4) 
In order to interpret formulas (v. 4) , let us introduce the ana - 

lyric function 

1.(2)-. 1 + x()J)dx' 
o X'  - Z 

j" 

Furthermore, we define 

1 
E h(>J ( h ( X + 1 o ) - h ( K - i o D  'onx()')dx' 

x' - A  o 

In terms of these functions the scattering quantities (V.4) read 
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R00 2!Ti XO.) 
hQ+io) 

l 

I 

2 sin au )  cr(k) 1T2X2(l ) 

(h(1\))2+1T2X2l7\) 

If we assume X(X)740 on the spectrum As ,  excluding thus bound 
states in H, the function sin26 (X) has the following properties : 

(a) It does not vanish on As except at 0 and °°. 
(b) It is positive and never exceeds 1 , and it reaches this 

limit exactly if h(k) = 0 .  
Consider now the phase-shift 

L 
Zi s o )  »r,n(R(x) + 1) 

and its derivative 

6 ' ( X )  = L  Run 
2i R ( x ) + 1  

11(X()»)h'(K)-X'(>~)h(?~))(h(K)+i1Tx()~)) 
¢ 

(h2u) +2mx(»)h(>~) - w 2  x2(x))(h(x) -inx(x)) 

(v.6) 

<5 to) is a multivalued function of o ( l )  and , according to (a), we may 
fix its determination by 6 (0 )=0 .  Since s1n26 (1) never vanishes on 
As ,  the values of 6 (L)  remain 1.n either the interval (G ,TT) or (0,-1T) 
and reach, for x -| ==, the points 0 or :to . Furthermore, it admits the 
values 1:17/2 exactly if he) vanishes . 

In order to establish which alternative actually holds in our 
example, we may determine the sign of 6 '  (K) at that point l where 
6(>\) crosses In/2l for the first time, 1.e.  , at the first zero of he) .  
Equation (V. 6) reads for these zeros : 

6 ' ( l )  = H e )  
TTX(}xl 

(V-7) 

Now it follows from the fact that h ( ) )  is positive at 0 and °° that 
h(x)  admits a pair number of zeros, that h' (K) is negative for the 
first zero of h()»), and that the sign of h'()») alternates when pro- 
gressing from one zero to another . 

This establishes now uniquely the behaviour of the phase- 
shift . 

(a) 6(0) =6(°°)  = 0 
(h) 0 >  6 ( ) ) >  -IT for 0 < x <  oo 

(c) 6 (K) crosses the line -n/2, from above and below alter- 
natively, exactly at those points where uM) reached its 
upper limit . 
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0 

-TT/2 

-H 

/ 6 ( > )  

\.. 
.I 

--¢""l~. I I 

> X 

Note that (a) is in accordance with Levinson's theorem (IV.8) . 
In the presence of H-bound states some of the above con- 

clusions fail. It is still true that 

h(x) II ; x(x)dm = 
Jo x - K 

0 (v.8) 

I I  I 

is a necessary condition on o ( k )  to reach its maximum, but it is no 
longer sufficient. In fact, if 35 is an H-bound state , we have , 
simultaneously with (V.8), which is only the first condition of 
Lemma V. 2 

co 

o 

x(x')d>U 
(M -UP < m . 

Hence (using Lemma V.3) ,  XG() = 0 .  So sin26(X) is not l at these 
points although h()~) goes through zero (in fact, it can be shown to 
be 0 rather than 1 ! )  , and s o  is it not true that it never crosses the 
line 0 nor that 6 (X)  crosses the line -1T/2 an equal number of times 
from above and below. This can also be inferred from Levinson's 
Theorem, which in the case of one H-bound state yields 

6 ( ° ° ) - 6 ( 0 )  = 'TT 

We close the discussion of this model here, its aim being 
merely a first acquaintance with the subject. Many points treated 
here will reappear in a similar form in the model treated in the next 
chapter which will, however, be more significant from a physical 
view and which will be particularly well suited for a systematic in- 
troduction of the concept of resonance . 
VI. Soluble Decay Models 

A ,  Definition of a Model with One Decaying StatelOl 
Let Ho be a self-adjoint operator with an absolutely contin- 

uous spectrum AO extending from 0 to °° and a discrete eigenvalue 
)\O> 0 embedded in A s .  Let X be the normalized eigenvector of HO 
with energy XO, and Po the projector on its orthogonal complement. 
Finally, let the interaction V be a self-adjoint operator which 
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satisfies the conditions 

(x.v)() 0: P VP = 0 .  o o (vI. 1) 

In physical terms the first condition excludes a self-interaction of 
the bound state X , and the second excludes an interaction of the 
continuous (scattered) states among themselves . 
Lemma VI. l :  The range of V is two-dimensional ( i .e.  , V is a rank- 
two potential) and the system (HO, I-I=Ho+V) is a simple scattering 
system . 
Proof: Any element or ETC can be decomposed into the parts Poll and 
(I -P0)i11 = (X , llf)x. According to (VI. l),  VPoIU is orthogonal to P01-C 
and thus lies in the one-dimensional space spanned by X, while 
V(I -p0)»l» = (X,LII)VX lies in the one-dimensional space spanned by 
the element VX . This proves the first part of the lemma . The second 
follows again from the theorem of Kato8) according to which a system 
of two operators Ho and H differing by a potential V which is defined 
everywhere and has finite-dimensional range is a simple scattering 
system . In particular, the absolutely continuous part of the spectrum 
of H coincides with AO. 

B .  Scattering Quantities and Decay Law 

* . Lemma VI. 2: The operators VG+ and §'2+V are Carle ran integral 
operators in the Ho-representation of the space pélr, and their 
kernels are 

O(> vQ+|)J> 
O 

I » * I o(x vX)+(x X), o<)\|0+v x o ) - (x x) (x'lvx) 
+ o (v1.2) 

where we now denote by o lb) and +(>\ II) the spectral representa- 
tions of Poll; and pip with respect to Ho and H respectively. 

Proof: From (vI. 1) follows 

O(»|vwO¢)= (X,Q,PoW)o(» vi) (Q+X,po¢)o(K|VX) 

.V 0(x vx) 0()u 0+x) 
0<)\I P0~lI)d)J 

I o(xlvx) +()»' x) ou' pOwdx '  
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Hence 0<xlvQ+l>J>o=0(xlvX)+()U X). Similarly, 

77 

0(x|n+*vpo¢) = +(x VPO¢) (X»VPo1l')+<?~|X) 

/+<x|x)0<x'|vx) ou' pOway 

Hence 0(ilf2+*vl)~')0 = o()\IX) 0(i' VX) . The Carleman properties fol- 
low as in Lemma V .  l from the finiteness of the norms Vol and lIllI . 

In order to express the scattering amplitude entirely in terms 
of the interaction function 0(i I V x )  , we have first to transform +l)\IX) , 
which appears in the kernel of VG+, into I-Io-representation. Equa- 
"ion (IV.7') which relates the two representations is , however, not 
dn.. '-ctly applicable to the bound state X since it is defined only on 
the continuous states Poll' . But here we may now make explicit use of 
the first condition (vi. 1) according to which VX E PcIIC. After having 
inserted the expression of Lemma VI. 2 for the kernel of I]4-V, 
Eq. (1v.7') reads now, for 1l1=VX: 

+<xlvX) O(KlVX) +(xix) 

where we have introduced the positive function X(K ) 
On the other hand , we may write 1o()l[VX)l2 

+ ( ) \ l X )  +<*l He) +<x1HOX) = ( -xo)+(x x) 

and, solving these two equations for _,_(?t | II) , 
O(7\IVX) 

xWlcw _ J 

o +'~Vl\ -l~.-I-io 

+(K X) 
K 

(vI. 3) 

With this and Lemma VI.2 , the scattering quantities (IV. 5) become 

2nix(x - 
x()u)dx' 
X'-K - I o  

Re) : -  

x-xO+f  
l 

.I 

sin26 (X) =o(K)  = 
rr2X2{L) 

x(y)d>g 2 ( f  . -,-) + n 2X2 (I) 

(v1.4) 
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and the decay law (IV. 9) for the Ho-bound state X :  

p(t) =((,e`iHx)=/ +<x X ) l 2 e  -ill d l  

X(}\)elD'tdK 

_ } \ 0 +  llX(?L']dIl.' 
A' -L 

2 2 2 + n  X (M 
(vI. 5) 

We should immediately remark that these explicit results are 
a rigorous consequence of conditions (vI. 1) alone; in particular, no 
a priori assumption has been made on the existence of bound states 
in H and their validity is independent of the problem whether such 
bound states exist or not. " 

If we insert (VI.3) into the kernels (VI.2) and (VI.2) into 
(Iv. 7 ' )  , we remark that we obtain an explicit transformation formula 
from the F i - t o  the H-representation of an arbitra""'3'i*"*ent II! E 3{: 
which deign only on the interaction function 0(Hl.'_."-_ l:[n fa ct , 
(IV.7') provides the passage Ho* H for the part Poll; of LI: and (VI.3) 
for the part (1 -P0)lU = (X ,lU)X. With some effort, the inverse trans- 
formation could also be established using such relations as (Iv. 2) 
and (IV.7) where (IV.7) does not take account of the possible H- 
bound states which have to be separately considered . 
C.  Possible Existence of H-Bound States 

Lemma VI. 3: 
(a) If x ( x ) ¢ 0  one 

any discrete 
spectrum of H .  
If (b) 

K 2 
o I 

am AO then there does not exist 
ii' imbedded in the continuous 

xml 1x do 

(c) 

then there does not exist any discrete eigenvalue AC out- 
side the continuous spectrum A of H (i.e. , on the nega- 
tive' real axis) . 
If X(1\)=0 for A = 0  (as follows from (b)) and if xi) 
satisfies the Holder condition 

H(u)  x o )  - x i )  S p K ' - K  *17 l :0<l_i<ll r 

then there does not exist any singular ( i .e . , continuous 
but not absolutely continuous) part in the spectrum of H.  
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Eroof: First we write down the action of the potential V in HO' 
representation. For the continuous part we obtain, according to 
(VI. 1) . 

o(x W) O( x vtr-poW) = (x,4f)o(>»|VX) 

and for the dis Crete part 

(X,VllI) (x.VP0¢~)= (vX.po¢) j oQIVX) o() Wdx. 

The eigenvalue equations for H read in this representation 

x H + . X V =')t x O( I w) (x wo( I X) O( in) x O(xl¢) 

(vI. 6) 

( x ,H¢ )=xo (x ,¢ )  + to(x Ivx)  o(l¢)d»=')T(x,¢) 

for the continuous and the discrete part respectively . 
is 

Their solution 

o<>~l1l') (x,~Ho().|vX) 
x -'x 

• 
.r (X,\ll) 

l" o(x I VX) o(x lwdlx 
xo -'x (vI. 7) 

The normalizability condition for ill implies 

II w 2 _ ~2 2_an 2 Xll\)dk -/|o<»1¢)\ do+l(x,w)I I<)(.»v)1(1+/8)2) < o o  

1 

If 'X belongs to AO the integral diverges and the normalizability can 
not be satisfied unless (X , ¢ ) =  0 which, however, contradicts the 
first equation (VI.6). This proves part (a). Inserting the first equa- 
.tion (vi. 7) into the second we obtain 

xi) t .8x' do 
Ao-'Ji' I 

II 

and in the case '1`C S 0 this is majorized by 

_L 
o 

e X )  d o .  

This proves (b) . The proof of (c) , which serves to exclude a physi- 
cally é>)athological situation, is more subtle and will be omitted 
here . 
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D. The Concept of Resonance 
We introduce the analytic function 

h(z) E T - ) O + f A , o  

.... l , |  '. 

.- 1:- 

. '  | I r 

which has a cut along the spectrum A s  of Ho with the discontinuity 

h(X+io)  -h (7 \ - io )  =@ - ) O + § `  

_ x - x o +  

! +  i1TX(KD 

i n  x(xD = 2niX()\) * 

Furthermore , we again define the real function 

he) E -,28(h(x+io) +h(x- ioD K X + o go 
According to (VI.4) the scattering cross-section now reads 

I 

2 
o(?\) = sin G U )  _1T2X2(kl_ . 

h2(?\) +rr2X2(X) 

This positive function is limited above by the value l and admits that 
value only for the zeros of h(?t) . 

We first assume that the three conditions of the Lemma V1.3 
hold and that the spectrum of H is therefore absolutely continuous . 
These three conditions imply respectively that 

(a) the vanishing of h ( x )  is also sufficient for 0( ) )  =sin26 ()J 
to reach its maximum l; 

(b) there exists at least one zero ltd of h(?\) with h' (kI.)> 0: 
(c) if the interaction is small enough then this zero is 

unique , while for arbitrary interactions there exists 
always an odd number of zeros Kr  and the signs of 
h' (Kr) alternate . 

The first statement follows clearly from the fact that X(X) cannot 
vanish on the spectrum. Furthermore , he) is a continuous function 
tending to oo for lt-'°°. Since on the other hand h(0)S 0 according to 
condition (b) of Lemma VI.3 , the statement (b) follows immediately . 
In order to prove the first part of (c) , we remark that it follows from 
the I-Idlder condition x(>d) -X (K) l  S p l y '  -K  IJ with u< l according 
to a known lemmas 1) that its Stieltjes transform 
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y(x) ( ' )  ' H,X§»`_§" 
also satisfies a HOlder condition y(> ' )  -Y(>\)l S p X'  -al*' with the 
same exponent u. A second zero of h(>») can, however, arise only if 
the abs elute derivative of Y()\) becomes larger than that of (X -X0)  , 
1.e.  , if p '>  1 . But introducing the parameter g in the interaction 
(coupling constant): x ( ) ) - »  gX()\); Y()\)-' gY()t), we see that p (and 
thus p ' )  can be made arbitrarily small. So there exists a limit cou- 
pling for which p' = l  and, if g is below, no other zero exists for 
h()») . The second part of (c) follows again from h(0)S0 and h(°°)=°° . 

In order to interpret all of this in terms of the phase-shift, we 
calculate 6'  (A) as in Chapter V .  Formula (V.6) obtained there re- 
mains formally true and we obtain 

6 ]  (0) 
rrX'(0) 
h(0) sign 6 ' (X) = sign he 

TX()\) sign h'(>\). 

If we choose again the determination 6 (0) = 0  for the phase-shift, . 
which is possible since s1n26 (0) = 0 ,  we obtain the following proper- 
ties for 6( l \ ) :  

(a) it increases at the origin and stays in the interval (0,-MT) 
since §in26 (X)  never vanishes except at 0 and °°; 

(b) it crosses the line rr/2 from below and above, alterna- 
Qvely, every t1me_.hl\_Lv_anlshes , and, since this hap- 
pens in an odd number of points , 

(c) it reaches 'IT for }w°=>. 

We remark that this corresponds to Levinson's theorem (Iv. 8) 
when applied to the case of one H0-bound state and no bound state in 
H. If H contains a bound state, condition (b) of Lemma V1.3 falls , 
and we now conclude from h(0)2 0 and h(°°) =co that he) vanishes in 
a pair number of points, hence we would infer 6 (0) =6  (==°) = 0  again 
in correspondence to Levinson's theorem . 

One might question the physical significance of the signs of 
6 '  (K) appearing in the maxima of Cr()~). In this regard we may invoke 
the relation 

6'(>~) Q u )  (v1.8) 

which links the derivative of the phase-shift to the so-called delay 
tlme of the physical wave with respect to the asymptotic free wave at 
a given energy. (For a proof in terms of the concepts developed here 
see Reference 12 . )  Since the sign of this quantity depends on the 
question of whether or not the potential is attractive or repulsive , we 
may finally recapitulate what we obtained in this section in the fol- 
lowing natural terminology: 
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o(1\) has a (true) resonance whenever it reaches its absolute 
maximum 1. The corresponding energies (= the zeros of h()~)) are the 
resonance energies K r .  According to relation (vI. 8) we call the reso- 
nances attractive or repulsive whenever the sign of 6' (Kr) is positive 
or negative. In the special case 6'(kI»)=0 we say to be in the 
presence of a double (attractive and repulsive) resonance . 

The previous discussion may then be resumed in the proposi- 
tion: for weak enough interactions there exists exactly one attractive 
resonance.; for .s.tron_ggr interactions new resonances appear in pairs 
of attractive and repulsive ones . The difference in the number of at- 
tractive and repulsive resonances equals the difference in the number 
of Ho' and H-bound.states . 

The puzzling fact that additional resonances in the one parti- 
cle decay cannot be excluded in a model satisfying all the axioms of 
a simple scattering system indicates that the latter are incomplete 
from a physical sight. The missing point seems to be related to the 
question of locality. This can be seen as follows: In the case of 
local potentials it is known13) that the delay time Q(l)  is limited 
below. According to (V. 6) and (vt. 8),it seems therefore that some lo- 
cality requ1rement_eo\.L1d provide the neces s a y  lower bound for 
h'()\) needed in order to exclude additional resonances . 
E.  Discussion gf the Decay Law 

In terms of the analytic function h(z) introduced in the last 
section, the decay law (vI. 1) can be written 

P (t) 
l 

harli I 
oo 

o 

h _{)\. +io) - h(k-io) 
h(k+io)h(x -Io) e-1xt d o  

1 
2TTi ( 1 

h(x - Io) h(k l io ) )  
-'it e 1 do (v1.9) 

Instead of dis cussing this expression directly, we shall use the ana- 
lytic properties of the integrand in order to deform the integration 
path in an appropriate manner. An easy property of h(z) is given by' 

Lemma VI.4° If H contains no bound state, then the function h(z) is 
regular analytic in the entire z-plane except on the spectrum AO of 
HO (and H) where it has a cut, and it does not admit any zeros in its 
first sheet . 
Proof: The first part follows from very general features of the Cauchy 
integrals and Hilbert transforms . II) Next we see immediately that 
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the function h(z) does not vanish for complex arguments z = X  +iu , 
since its imaginary part 

p l +  l 
l 

vanishes only for i-1=0. Finally, suppose z=)\ is on the negative 
real axis . Now it is the real part of h(z) which cannot vanish. In 
fact ,  suppose it does: 

he) = x  - x o +  
in 

I 

Inserting into this condition (b) of Lemma VI.3: 

xmqaw XQ1dN 
* 0 2  t x '  2/ V - K  

above . 

leads to the inequality x 2 K 0  which contradicts the fact that l is 
negative. This argument shows clearly that the absence of zeros 
in 11(2) o.n the negative axis depends essentially on the absence of 
H-bound states with negative energy . 

Now let us continue h(z) analytically through the cut from 
We define thus the second sheet h11 of h by 

hII (K -Io)  Ill hI(x +io) . (VI.10) 

important ditional postulate that 
In order to write hII(2) down explicitly, we make at this point the 

the interaction function 
x(i)-= | o(LI_VX)l 2 permits an analytic continuation X(z) which is 
regular in the entire open z-plane. With this we verify easily that 

hII(z) Z 
X(l\)d1L . 

) 0 + . l `  _ Z »  2Tr1 X(z) + 

is the unique analytic function being connected to hI(z) by (vI. 10) . 
The general belief is that hII(z) admits one zero in the nega- 

t1ve half-plane which approaches z=)\0 for decreasing interaction 
strength. This has been established rigorously for particular choices 
of the interaction (e.g.  , X()\)=g~/T e-a7* a s  encountered in the Lee 
model) . In these particular models the zero of he moves with 1n- 
creasing coupling constant g along quite characteristic trajectories , 
all of which show the common property that the zero reappears on the 
negative axis of the first sheet if the interaction becomes strong 
enough to produce there an H-bound state. The uniqueness problem 
of this zero has , however, not been solved in entire generality . 
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and it is doubtful whether uniqueness could be deduced, for instance , 
on the basis of the conditions of Lemma V1.3 alone. So we shall 
leave this question open here and turn to the phys cal significance of 
these zeros , if they exist, in connection with the decay law. . 

The reason we dis cussed the extension of the function h into 
the complex plane is that it permits us to rewrite the expression for 
P(t) in a new form which is better suited for an interpretation of the 
decay in terms of its essential physical parameters -at least in the 
limit of weak interaction. This procedure has been known for a long 
t1me14) and we shall merely sketch it here without going into details . 

The integral (VI.9) may be written 

1 
21Ti 

-in t 
e d h{z) Z 

and the integration path 

» 
( 

II 
may be further transformed as follows (here we assume that h(z) ad- 
mits a unique zero z in the second sheet): 

talLl'h in 

fhrsi' shed: 
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This new path clearly consists of three distinct parts: the residuum 
at zU, the negative imaginary axis part, and the great circles . Cal- 
culating the first we obtain 

1 
21Ti 

r' `- e 
I 

-1zt 
dz 

11(2) 
A 

1 lim 2TTi p-vm 

\Zn 

O 

l..l I 

I .  
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H- P 19 *ire de 
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z I 'HF |. u 

\`l 
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(v1.11) 
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The other two parts depend linearly on X()\) and thus on the coupling 
constant g; that means they are of the order of magnitude of the 
square norm II VxI 2_ So they may be considered as corrections 
(which become small for weak interactions) of the main, exponential 
term e'i2Ht, and it becomes clear that we may call 

*d III Re 211 the decay energy and 

(vi. 12) 
1/T -lm 211 the reciprocal life-time 

of the state X . 
Before interpreting this more thoroughly in the limit of weak 

interaction, let us have a glance at the question of the "poles in the 
S-matrix. " 
F .  Analytic Continuation of the Scattering Amplitude 

If we make the additional postulate about the analyticity of 
X(z) as stated in the last section, the analytic function 

R(z) 21T1X(z) 
h(z) 

is well-defined and may be considered as the analytic continuation 
of the scattering amplitude which should now be written (cp. (VI.4)) 
R(i +io) rather than R(1\) . 

R(z) is a multi-valued function and, since X(z) is supposed to 
be regular in the entire z-plane, the previous dis cussions of the 
zeros of h(z) amounts now to a discussion of the poles of R(z) , and 
thus of the poles of the analytic continuation S(z) = l +R(z) of the 
scattering matrix. So we obtain the proposition that the analytic 
continuation of the S-matrix S(z) is regular in the entire z-plane of 
its first sheet cut along the spectrum As of Ho and that its possible 
poles ZH in the second sheet have the physical significance (VI. 12). 

G. The Limit of Weak Interaction 
If we replace X by gX (or V by ~/"'g.v) and suppose that the 

coupling constant g> 0 is small (g<< 1) , we may discuss the scat- 
tering quantities in various degrees of approximation with respect 
to g . 

Let us introduce the "line width A "  of a resonance by 
o().r+A) ='&0(Kr): then the two resonance parameters (K r .  A) are 
linked to the two decay parameters (Ad ,  1/T) by 

2 xrgxd xo . I 

92 92 
A 1/T ngxuo) 
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where a Qi* b means a differing from b by a term of order gi-1 (note 
that A, and 1/T are themselves already of order g).  Furthermore , the 
scattering cross-section (VI.4) can be approximated by a so-called 
Breit-Wigner resonance 

o(>\)g~ 
A2 

(A -x 2 + A 2  

in a "near resonance" domain 
(v1.5) by the _exponential 

K '?*r of order g ,  and the decay law 

p(t) g e- i (xd-  1/T)t 

where we assumed that for small interaction the S-matrix pole 
iII = *d - i/T is unique . 

For the proof see,  for example , Reference 15. In writing 
down the degrees of approximation we supposed that 1-1 = 1 in the 
HOlder condition for x ( ) )  and its Stleltjes transform Y(1\). For 
arbitrary 0< u< 1 we would have to replace 

Q by Q1+'* 

H. The Model with n Bound States in Ho 
We generalize now the above model in order to des cribe the 

decay of n Ho-bound states . The interest of this consists in 
showing how the single resonances and decay laws "interact" 
among each other. The procedure used above remains essentially the - 1111-1- . ` . a self-adjoint operator with a continuous 

m 0 to °°, and now let Xv be the n bound 
'ergies kg  embedded in As. With this the 

| potential reads 

lun 

J 

(xi,  Viv) 

o II for all ii ,v r 

while the second remains unchanged. This system is st111 a scat- 
tering system, the interaction being now of rank Zn . 

If we introduce the generalized notation 

X\ , ( )» )  E 001 v )  o(>»lvXv); hw(Z) E ( 2 - ) V  + 
X1_N(J\)d)l. 

A - z  r 

the calculation of the scattering amplitude , cross-section and the n 
decay laws Pa (t) r (Xv ,e'1HtX\,) can be carried out along the same 
lines stated earlier (for details r cp. Reference 15) , and we obtain 
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RQ) = 2T1i Z ( - 1 ) # + V x ( x )  
u p  

MinLwh(}\ -Io) 

Det he -Io) (VI.13) 

o f )  = iin- 2: 
Re v 

(-1)**+" h e  + io ) .m inh(x  -Io) 

Det h(1\ -Io) (vI. 14) 

Pv (t) 
l 

21Ti 
M i n d  him ~1o) I C D e t h u - i o )  

A 

Minvv he, +1o) 
Det -.-.-. 

- i t  ... K .  . 1  h(x+1o) De d (VI 5) 

Furthermore, if we require the additional analyticity postulate for the 
functions X,_W(2) and if we supposeI hat to every energy eigenvalue 
iv there exists exactly one pole Zn in the second sheet of the scat- 
tering amplitude , the "residual" parts of PI,(t) (cp. (vI. 11) in the 
case of one decaying state) become 

pvreslt) II 

eizl_lIIt 

v II 
IJ HWzu ) 

I 
r Hv (z) 

Det h(2) 
]v[inVV h(z) (vI. 16) 

It is easily verified by putting n =  l that our previous expires - 
signs (VI.4) and (VI.9) for o ( k )  and P(t) are special cases of (VI.l4) 
and (VI.l5). For P(t) this is immediate; let us write it down for GM): 

0()») é-%Re hlA+1o) 
he -10) % -é* h2(X)-n2x2(M 

h2(X)+n2x2( 
(vI. 17) 

n2X2(k) 

h2().)+712X2(l\) 
(v1.17') 

For not too strong interactions it can be shown that o()~) has 
exactly n true resonances and the scattering amplitude n simple 
poles in the second sheet. The interesting point is , however, that 
the line form (VI. 13) is not merely a superposition of n one-particle 
line forms (VI.4) , nor are the residual parts (VI. 15) of the decay laws 
just simple exponentials with the characteristics of the slngle poles . 
Let us look at this in the example n =  2 . 
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1.  Qoupling of Two Resonances and Decay Laws 
With the simplified notation 

hju) E hmm Io) i 

the expressions (vI. 14) and (vI. 16) read for n = 2  

+ - + - + - + - 
R hnh22 ' 1112.h21 ' h21h12 * !*221'11 _ e _ _ _ _ 

h11h22 - h12h21 
o()») (2 L 

2 
(Q 

res 
P I  (t) 

P295 (t) 

e 21 
f *'11"22 "*'12*'z1 

d z \  h22 yzgl) 

_ II e 1z2 t 

h11h22 h12h21 
"zz 

- i z l t  + e 

_Q h11h22lh12h21 
dz h11 

. 
I 

_ d 
dz 

h 11 

_. Ht e 1Z1 

h 22 
he 

- h  h 12 21)(zlIIl )(zunI) 

(VI.l8) 

The expression for Cr (X) may be discussed in various orders 
of the coupling constant g ,  starting from the observation that the 
cross-terms h12(z) and h21(z) are small in order g compared to the 
diagonal terms h11(z) and }'122(Z) since, for instance , 

h 11 ( z ) I Z  ) \1+g 
X11()\)dX. 

A - z - X  1I h12(2) 
1 Z 

\12(k)d 1 
9 A - z Q 0 .  

So we would obtain for o ( k )  in the lowest approximation 

o ( ) ) ~  (2-Re( = -(1 5 (1 -Re 5 1 
2 

h +  h +  1 1 +  22 
h ] 1  h22  

l 
2 

+ 
h11 -Re  _ 
h11 

L 
+ 2  

hé"2 
h22 

which is just the superposition of two uncoupled one-particle reso- 
nances (vI. 17) , while in the next higher approximation 
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O'() \ ) -  2 
of 

1T2g2(X11'122+X2h11)2 
2 2 

Q (X1h22+X2h11) +(h11h22) 
2 

is not the sum of two terms (vI. 17 ' )  . 
In the case of the decay laws a similar discussion of higher 

order approximations can be done if one takes into account their non- 
residual terms which we neglected in (vI. 18). We shall not do this 
here, but we shall show for weak interaction how the decay laws 
P1re"8(t) and Pres(t )  tend to "their own" exponential laws . 

Pol' PA s(t) this consists, for instance, in showing that the 
denominator in the second term of (VI. 18) 

_CL 
dz 

h11h22 11121121 
hz2 ) (ZzII) (VI.19) 

tends to infinity if g~0. According to (vI. 13) the zeros of the nomi- 
nator in (vI. 19) are equal to the poles z1N, 2211 of the scattering am- 
plitude RU),  and they tend to *1 , X2 for g- 0 .  Furthermore, the 
unique zero of 1122 tends also to *2~ So we find, for small coupling , 
a pole of 

h11h22 `h12h21 
h22 

in proximity of the zero 
comes large at zunI (but not at 

z2II whiqfi shows clearly that (vI. 19) be- 
21 
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1. Introduction 
We are interested in interactions for relativistic particles. 

Are they possible? What do they look like? We will consider these 
questions for a classical-mechanical system of a fixed number of par- 
ticles, usually two. We will see that even there , these questions 
are not entirely trivial and the answers are not exactly what our prej- 
udices would lead us to expect. 

We want to consider interactions which can be described by a 
Hamiltonian, For relativistic invariance , we will have the kinematic 
assumption of Lorentz transformations for the particle positions, and 
the dynamic assumption that the equations of motion are Lorentz in- 
variant. 

In view of the difficulty of handling interactions in relativistic 
quantum theories of fields or particles, we think it might be worth- 
wh1le to learn what interactions look like in relativistic classical 
particle mechanics. 
fixed number of particles have been develops for scatteringll and for 
bound states (as in relativistic quark models ) .  These theories say 
nothing about Lorentz transformations of the particle positions. We 
believe that this cannot be justified by invoking the uncertainty prin- 
ciple. This suggests investigating the analogous problem in classi- 
cal mechanics. We will see that in a classical system, Lorentz 
transformations of particle positions are incompatible with canonical 
representations of the Poincaré group, and we will see how to cor- 
rectly represent the Poincaré group. 

For example, relativistic quantum theories of a 

Later, when we are in a position to be more precise and go 
into more detail , we will outline the history of this subject and say 
more about its relation to quantum mechanics . 
References. 
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II. Bauations of Motion 

World-Line Conditions . 
In the following sections, we will use the relations which 

guarantee that the points which compose the world-line transform as 
events -the world -line conditions. 1 1 2) These are 
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where Pi, Ii, H and Ki generate infinitesimal spatial translations , 
spatial rotations, time translations, and Lorentz transformations, re- 
spectively. These operators act upon the position of the particle, 
evaluated at a given time. The first three of these relations are the 
infinitesimal representation of the familiar effects of translation, ro- 
tat1on and time translation on the particle position. The fourth rela- 
tion, governing the Lorentz rotation, is perhaps less familiar although 
it is derived in the same manner as the first three. In order to derive 
this relation let us consider the transformation properties of the posi- 
tion under an infinitesimal Lorentz transformation. Thus we have the 
function X1(t) in the first frame and we wish to obtain the new func- 
tion xi' (t') in the new frame. If we consider the particle position at 
t ' =  0 in the transformed frame, we are considering an event wlth co- 
ordinates 

X I  
1 

= x '(t' = 0) 1 

In the original frame, this event will have coordinates given by 
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This point is on the world-line in the old frame, so it must be on the 
world-line in the new frame. Thus the spatial coordinates of this 
point are given by 

Given that the position function has sufficient analyticity for a power 
series expansion, we have 

xi(t= -a X.') 
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where, by comparison with the above expressions , we have 
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xi(t'=0) X.' X, - .  x. 
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Having obtained the transformation of the particle position 
under the Lorentz transformation, we now ask how does the particle 
velocity transform under an infinitesimal Lorentz transformation. 
One may determine this from either of two different approaches. The 
most direct, but algebraically complicated, is to make a Lorentz 
transformation on an entire world-line r express the world-line in 
terms of the new time, and -then take the time derivative with respect 
to the new time to obtaln the new velocity at t ' =  0 in terms of the 
variables in the old frame at t = 0 .  The second, more formal but sim- 
pler, method is to use the commutation relations of the generators of 
the infinitesimal Lorentz transformations. 3) Thus we have, for t = 0  , 
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In the same manner, one may obtain the transformation of the accele- 
ration, and so forth , 

J . = . .a 
1 
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Note that these are a1'1 for the coordinates of a single particle . 
Equations of Motion and Poincaré Invariance . 

The dynamics of the particle system will be described by 
equations of motion for the position of the particle. The acceleration 
of each particle (at time t) is a function of the position and velocity 
of all the particles (at the same time t ) .  For two particles , the equa- 
tions of motion have the form 

l (t) 

32 (t) 
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In a single frame, these equations may be solved as differential 
equations in t to obtain the position as a function of time. This is 
the coordinate time , not the proper time , and a dot denotes differen- 
tiation with respect to time. The latin indices and vector symbols 

_ 
called invariant . 

We will find that there are many invariant acceleration func- 
tions, that is , this condition for Lorentz invariance is weaker than 
one might suppose. This condition eliminates only as many possible 
solutions (equations of motion) as the requirement of Galilean invari- 
ance eliminates when one considers the non-relativistic equations of 
motion. 

- -- 

_ - -  
later the consideration of the Einstein causality. The single time for- 
malism is particularly interesting in that it permits one to obtain a 
Hamiltonian, which in turn may permit a more or less conventional 
quantization of the theory in a single frame . 

At this point, let us consider how th' 
causality would be investigated. Since we | 
lion of the particles from outside the system* 
trarily alter the motion of one of the particles 
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the assumption of Einstein causality, we permit a testing particle to 
interact and alter the world-line of the original two particles. This 
interaction may take place through the same interaction which is 
being considered between the original particles, or it may be another 
admissible interaction. We then ask at what time the modification of 
the world-line of the particle affected by the testing particle starts to 
affect the world-line of the other original particle. It is clear that the 
question of Einstein causality requires careful consideration and 
definitions, and also requires a knowledge of the form of solutions 
which are invariant. Thus the study of Einstein causality is either 
the consideration of three-body interactions, or the consideration of 
the class of interactions which are compatible with each other. 

Of course, there is one class of theories which does possess 
manifest Einstein causality, and this class is the local field theories. 

The particle theory which would seem to satisfy manifest 
Einstein causality is the Feynman~Wheeler classical electrodynarn- 
ics ,5 )  that is ,  the electrodynamics with the field eliminated, so it is 
a direct particle interaction theory. This has the same structure as 
classical electrodynamics, in which one has manifest Einstein cau- 
sality due to the fact that the interaction is transmitted by the field 
which travels at the velocity of light, and the field produces no 
forces upon a particle until it arrives, so the theory would seem to 
guarantee manifest Einstein causality. This was assumed until Dirac 
was able to obtain exact solutions for the motion of a particle in a 
f1e1d6) with the proper inclusion of the radiation reaction terms. The 
resulting equations of motion for the particle are third order in the 
time, and for most of the resultant world-lines the particle , after in- 
teraction with the field, accelerates to the velocity of light. The 
only solutions which do not have this "runaway" property have a 
"pre acceleration, " that is , they start to accelerate (to react to the 
field) before the field applies a force to the particle. Thus this 
theory which appeared on inspection to satisfy Einstein manifest 
causality, when exact solutions are obtained, is the worst violator. 
Quantum electrodynamics is the other theory which should have mani- 
fest Einstein causality. It is supposed to limit as To vanishes to 
classical electrodynamics, but the solutions are not yet explicit 
enough to comment on this question. 

Application of Invariance Conditions to a Specific Example . 
We will now consider an example of an interaction and deter- 

mine whether or not it is invar1ant.7 ,8) In particular, we will solve 
for the world-lines , then transform each point which composes the 
world-line to the new frame , and obtain a new function (new position 
as a function of the new time). If this new function is a solution to 
the same equations of motion, then the equations of motion will be 
called invariant. 
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As an example, let us consider the equation of motion7)'12l 
given by 

RELATIVISTIC CLASSICAL MECHANICS 

..1 x -(v1 -v2)2/(x1 -x2 )  
..2 x +(v1 -V2)2/(X1 -x2) 

in one space dimension. To simplify somewhat, let us express these 
equations of motion in "collective coordinates" defined by 

x II (al -x2)/2 X II (xl +x2)/2 , 
and then the collective acceleration functions have the form 

a = -vv/x A = 0 .  

These are rather simple differential equations in time which may be 
solved by sight, or at least wlthout too much staring, by noting that 

o II OJ
 x + < < II 
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I 

So we have for the solutions of the particle motion 

II X Ja + bt X = A + B t  

in our given frame where t1=t2 = t .  For the individual particles the 
coordinates are given by 

v
-1

 X 

1 A + B t  +'va+bt1 2 x A + Bt2 - ~la+bt2 

where in our frame to =to = t .  To determine the positions as a func- 
tion of t ime in the new frame, we must transform the coordinates of 
each point in the world-line so we have 

n x iN cash a +.N sink a 

to = ncosh a + xnsinh a 

where the bar refers to the new frame . 
get 

Using the first expression, we 

n x (xn -T" sink a)/ cash a ,  

and now substituting Into this the general solution to the equations of 
motion, x"(t) , we obtain 
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II 
»

-I 
IX

 

-2 x 

A + Bt1 + ~la+bt1 - 1  sink Q/COSl'1 a 

2 IA + Bt - -2 t Ja +bt2 sink a c o s h a ,  I I !  

and, finally, using the transformation equations to eliminate to in 
favor of En and F yields 

-_-n x 
_ _ n _. . 

[A+B{tncosha +xns1nh a}  - (-1) la+b{tncosha+§nsinh a }  

- to y cash a. 

-11 
X 

This may be solved for iN to obtain an expression of the form 

= A +  Be - (-1) ~/a+bT" 

where the K for n = 1  and the A for n = 2  are the same, and so on. If 
we now take T1 =T2 = T, these expressions for the new position in 
terms of the new time have the same form as the world-lines in terms 
of the old time so they obey the same acceleration functions, i. e. , 
an expression of the form 

_g_ i 
of dt _?Nm = -hmm)/xG). 

Aru 

II 
zen 

DI
 z II I 

The appearance of the tilded quantities indicates that we have a dif- 
ferent set of initial conditions in the new frame. In particular 

IA cos ha -AB sink a+bsinha /my 

2 . 2 , 2 2 B(cosh a +slnh a) - slnhacosha(1+B ) / x  
2 2 z a cosha2 +b sink a+Ab sinhacosha- ABsinh a 

oz
 

II I 

- 2ab sinhacosha} /}t 
4 in cos ha  - bB sin h a  //z 

where x =cosha- B sinha. 
Thus we conclude that this particular equation of motion is 

invariant. Note that it is not manifestly invariant-that is, it is not 
composed of scalar products of four-vectors . 
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v '  - B 

We see that invariant equations of motion exist. Further, we 
see that the simple requirement of invariance does not guarantee other 
properties we might associate with invariance. In particular, this 
force law causes the particle velocity to exceed the velocity of light. 
To see this, consider the velocity of the individual particles 

.b/2 
Ja + bt 

v' B +  b/2 
Ja + bt 

At the time t =  -a/b the velocity of each of the particles is infinite. 
On the other hand, the asymptotic velocity of the particles is not 1n- 
finite and, in fact, the asymptotic relative velocity vanishes. Thus 
the Lorentz invariance of our equations of motion does not prevent 
particle motion at velocities exceeding that of light. The asymptotic 
relative velocity vanishes for every set of initial conditions , another 
pathology of this model, resulting in the lack of a "complete set of 
asymptotic states. " 

Differential Invariance Conditions . 
As a general method for investigation of the invariance of a 

given acceleration function f ,  the procedure just considered is not 
very practical. This is because one must solve the differential equa- 
tions for the world-line in order to determine if a given acceleration 
function is invariant. We shall now state the conditions for Lorentz 
invariance as differential equations which the acceleration functions 
must satisfy. 

Let us note at this point that we in general also require that 
the acceleration functions be invariant under space translation. By 
means of a rather obvious calculation, we may show that thls implies 
that the acceleration functions be independent of the mean position 
X _= (51 -l-£2)/2. Further, we in general require that t'he acceleration 
function be invariant under rotation so that the acceleration function 
depends only upon vector dot products of the form 

>&1 

:>I 
Q al 
>a XI 

>'l 
Z>i 

:Q 
:>l 

>`l 

Finally, the invariance under time translation requires that the ac- 
celeration functions are not explicitly functions of  the time. How- 
ever, for certain of the following calculations , we will express the 
acceleration in terms of the individual coordinates, leaving until a 
later time the imposition of the requirement of space translation in- 
variance . 

We have already determined how the acceleration of the 'nth 
particle transforms under an infinitesimal Lorentz transformation , 
that is , 
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Since we seek a function which depends only upon up and vin 
must re-express the terms 
be written as f1"(§1 ,£2,11 ., 

. . n 
= of 

dt j 
1 8fin 2 afln 

, we 
as" and i N  in this form. The former may 
22) and tor the latter we have 

j 1 aof 2 i V + 1 V + 1 f + 2 f | 

8 xi k Bxs k 8vk k Bik k 
i N  

Thus we obtain for the transformation of the acceleration 

n Jflaj 
n 

] v 1 + 8 f j V 2  
1 k g  2 k 

*k 

n of-" 
x 

**k 

alln 
+ 1 3vk 

a f . 1  
f 1 +  ' f 2  

avg 
+ k 2 k 

o n  n 2 v . f .  + f . a  
1 ]  1 

n 
J 

Now let us consider what happens to the right hand slde of the ex- 
pression asn= f1n. The transformation of the acceleration function is 
glven by 

n n J61fj = Jilfj (x1,x2,v1,v2) 

n1 
k 

f .  _ J 
V 

a 

a 
+ 2 

k x 
1 

J( 

n 
1 a f 

+ 1 
k X 1 :K n1 

k 

f j 
X 

a 

a 2 
k 8 x 

2 
k . .v 

1 
ac n2 

k 

f 1 
V 

8 

a 
+ 1 

1 v 1 K I 

but we have seen that the transformation of the position and velocity 
is given by 

l 

' 
H n 

ixk 
N v n 

k x ,  
1 

K n 
ivk 

a n  nvn 
k k 

n x, + v,  
1 1 

_ n n  n n  65 - x l  fk + v 1  vi 6 11 ' 
SO we have 

aftn 
1 x.v gawk 1 k J c t "  in 

Bfjn 
+ 2 ask 

2 
X . 

1 
V 2  
k 

alln 
+ 1 BVI 

xifk + vivo 6 ik 

+ 
of.r' J 

2 Bik 
2 f 2 2 2 + 

xi k "1 Vk 
6 1k 

Setting Jfiajn equal to Jflfln, we obtain a differential state- 
ment, the invariance conditions, expressing the condition under 
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which the acceleration function is invariant under infinitesimal 
Lorentz rotations . 

Since any acceleration function which satisfies these equa- 
tions will be invariant, any solution to these equations will be invar- 
iant and to  obtain a set including all invariant acceleration functions , 
we need only solve this non-linear partial differential equation, The 
difficulty in obtaining solutions to such equations is the reason one 
does not find a wealth of examples in the usual textbook discussions 
of relativistic invariance . 

Since we shall later want to use the collective coordinates , 
let us write down these invariance conditions in that forrn:3) ' 13) ' 11) 

j 
.F 
1 

x 
j 

. .F 
1 

f + 2 v 
j 1 

+ 2 v 
J 

. ,v 
1 

+ f 
J 

v 1 + F 8 - + Xi Vkxi 3 "k Flexi Vkvi + Vivi 

8 f .  _ J V V  _ 
BVk n k i  6 k 

Bf j  
+ = 

8vk fkxi VkVi 0 .  

2V,F 
1 

8Fj 8Fj 3Fj  
j + F1Vi - - + + - - 3xk Vkxi Bvk Fkxl Vkvi VkV1 8vk Vivi 6ik 

_..l.2 + x 1fl vifj + f1v1 
oF. 

J 
8vk flexi + Vkvi 0 .  

We can now return to the example considered in the previous 
section, namely, 

a f -vv/x A = F = 0  

and check that it is a solution to these Lorentz invariance conditions . 
We must first "drop the indices " on the invariance conditions and ob- 
tain the one-dimensional form: 

xVfx + (xF+2vV)fv + (xf+W+vv - 1)fV = XVFx+XfFv+XFFv+3Vf+3VF 

xVFx+ (XF +2VV)FV+ (xf+W+vv - 1)FV = xvfx+xffv+XFfv +3vf +3VF. 

Since F vanishes, all of its derivatives do, thus simplifying equa- 
tions. Now simply taking the derivatives of f ,  and substituting them 
in the first relation demonstrates that the first is obviously satisfied , 
and the second is satisfied, if we remember that f =  ~v2'/x (the sec - 
and expression in this case contains the re'al nonlinearity) . 
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We have again considered this explicit example of an invari- 
ant set of acceleration functions. This example is not particularly 
physical, due, in part, t o  the fact that it was obtained by requiring 
that the equations have a very simple type of solution. We now con- 
sider a few more interesting examples. Again, since they were ob- 
tained by putting rather severe restrictions on the invariance condi- 
tion in order to solve them, we cannot be particularly unhappy that 
these equations of motion are not the most general possible interac - 
lion . 

Our first class of more interesting examples is the case of 
electromagnetic interactions when one of the particles is infinitely 
heavy, that is ,  it has vanishing acceleration, We first consider an 
interaction which is essentially the Coulomb interaction. When we 
calculate the electric field at the "test" charge, that is ,  our finite 
mass charge in terms of the present position of the infinite mass par- 
ticle, rather than the retarded position, we obtain 

ltd
 II G25 - (393) 

J1 -v§1""' +-/1 -v2v2} 

-3/2 

where the "2 " refers to the infinite mass particle . 
has the usual form 

The magnetic field 

ml 

Ni X 
N

 :> II :J I 
*( 

>I 
II 

1 E S ' V  X H = = 
e1-+ - - dt dt 

The Lorentz force now has the form, where we have used { r = f ,  

dpi  
11 ~J1.-!1_£1 

II 'I 
- . 

H 

¢ + v  
1 1 

T o  
This may be solved for f to obtain 

1 f ;(1 -x1-22) - (11-.£2)(§°!1) 
-\/1 _V1 . VI 
/1 _V2 . V2 

9192 

m 
x - x  + (x-v2)2~'3/2 

1-v2°v2 

If our minus sign finite mass test particle is a magnetic mono- 
pole instead of a charge, we may go through the same procedure and 
obtain 

dp' 
dt 

e V1 1_ el; x ;  = -e1(11-12) X E 
I 
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so 

1 
_f { x (al -y_2) -¥16;-x1 x x2)l 

'JI-11.21 6162 
\f1_y_2.!2 m 

(5-x2)2 x + 
(1 -12-9.2) 

-3/2 

In both cases, we have a term 

+ (5-!2)2 
5-§  1_2 , !2  

which, for any choice of the vectors 21 and X2 , behaves like x - x  for 
large enough separations. In our present case, this is sufficient to 
demonstrate that these forces may be chosen to vanish for sufficiently 
large separation regardless of their velocities. 

If we return to the Lorentz invariance conditions , a bit of 
playing with the Lorentz force indicates that we may write a general- 
ized Lorentz force of the form 

Ph
 l-

.l
 

II IN
 II { (1 -11-22) -xL'!1)} 

J1 -11. 21 

J1 -12' 22 
g §°§)(1 -y_2°!2) +L~!2) 

2 1 I 
where we have an arbitrary function g replacing the -3/2 power that 
appears in the Lorentz force. To explore some of the properties of 
this force, we may tum to the frame in which the infinite mass parti- 
cle is at rest. In this frame, the force is then given by 

1 f II (x-v1)v1 
e1€2\l1 -_v1._v1 

Ml 
Q(§°_s). 

which may be written 

Q 
dt 

@1 `l1_-v1'!1= 
E192 

x Q(x- x) 1 

i .e .  , an arbitrary central potential . 
These examples indicate that the usual external fields may be 

properly described within the present discussion of particle interac- 
tion. However, we would be more interested in examples where both 
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II I ,l _V2) 

particles have finite mass. One class of examples may be obtained 
by making the additional requirement that the multiplicative cou- 
pling constant of the force may take on an arbitrary value. This re- 
quirement simplifies the Lorentz invariance conditions so solutions of 
this simplified condition contain forces of the form 

J1 -y -1-1 '3  g (B) I 
J(1-1l~z1)(l1z2- )-(1-v_1-1212 2 

I 

where the variable B has the form 

B + (x~v2)2 
524. 

1 2 . ! 2  

(>;-z1)2(1-22-12) -2(§-!1)(m2)(1-!1~y_2) + 
(x-v2)2(1-v1-v2)2 

<1-32-22) - * 

(1-11-11) 
1 ~v 

2 
2 - (1-11-12) 

)(1-!2°! ) 
2 

For large separations, this variable has the form 

{positive coefficient depending on v} (x-x)  I 

so this force may be defined so that it vanishes as the separation 
goes to infinity in all frames, as did the Lorentz force . 

In order to obtain some feeling for the general solution to the 
Lorentz invariance conditions, let us consider a "power series" solu- 
tion3) to the Lorentz invariance condition in one space dimension. 
We will simplify some of the algebra in these considerations by re- 
s/tricting the interaction to be invariant under parity, and the parti- 
cles to be identical, Under the parity transformation, we have 

x - -x 

V * -v 

a - -a 

-0- X X 

v - -V 

A A. _. 

This requirement of parity invariance is the one-dimens tonal remnant 
of the rotation invariance in three dimensions. The particle identity, 
or symmetry under particle interchange induces the transformation 
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 x 

Cell x i 
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1 v - 2 v <: N
 

I <1
 1-

4 

or 

- I I  

-I- 

-u 

X -x 

v -v 
a - a 

x - - x  
v - - v  
A - - A .  

Combining these, we have 

x - x  

v * v  

a - a  

-0 

X - -x 
v -v 
A -A . -0 

Now let us expand the acceleration functions in power series in V. 
Thus we have 

f(x, v,V) 0 f (x.v) + f1(x,v)V + -;f2(x,v)v2 + 

F(x,v,V) = F0(x,v) +F1(x,v)V + 2 
épée (x .v)V + 

where the translation invariance has removed the X dependence. The 
above symmetry conditions imply 
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Now let us substitute into the invariance conditions and use the fact 
that the invariance conditions are true to each order in V. Thus we 
have for zeroth order in the second invariance condition 

2 (xf0 + V - 1)F1 - x v f o x  + f f  
'x 0 0 , v  

+ 3 vf0 , 

which yields for F1 

F1(x,v) 
xvfo , x  +Xf0f0 v + 3vf_ 

2 xf0 +v  - 1 

For zeroth order expression in the other equation we find an identity 
which is the result of our assumption that the particles are identical. 
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If the particles were not identical, we would have a restrictive con- 
dition on the non-vanishing food and Feven~ 

Now, going to first order in V in the same manner, we obtaln 

r-
h

 
N

 II ld 1P1 + 3f0 + 3vF1 + xvFlIx + f F 
X 0 1,v -xf 0 , x  

(XF1-|-2V)f0IVl K" 2 
0 + v  - 1  

and_ an identity from the first order part of the other equation. 
To second order, we obtain 

F 3 2 L _1 L i 
, x+F lF l , v+2 f2P l  .. 2V i2 , x ' 2£0£2 ,v ' 2 i2 i0 , v - f2?1  

Q + ZVFLv-2F1 - 2 Vfz 1/ x f 0 + v 2 - 1  

I 

From the general structure of these relations, we now see that all the 
higher order coefficients may be determined as functionals of fo (x,v) . 
Thus, to is the only free "parameter" entering the theory. It is an 
arbitrary function of two variables and it completely determines the 
equations of motion in every frame . 

Let us now recall the class of acceleration functions which 
are invariant under the Galilean transformation. In this case we have, 
for identical particles , 

aG 

II g(x,v) A G 

|} G(x.v) 0 .  

The accelerations are thus specified by an arbitrary function of two 
variables. Thus we see that the "number of possible acceleration 
functions " which are invariant under the Lorentz transformation is the 
same as the number which is invariant under the Galilean transforma- 
tion . 

The statements of the preceding two paragraphs are condi- 
tional upon the existence or convergence of the expansions which we 
have been considering. They might accidentally not converge, except 
of course for those classes of examples which we have displayed. 
However, the facts turn out to be otherwise. There exists, by the 
Cauchy-Kowalski theorem, solutions of these equations of the same 
dimensionality as have been displayed in the power series analysis at 
every point in x ,v ,V  space. Further, if the acceleration function has 
the form 

14) 

fN = (1 -v"vN)1+e'yN(x.v1,v2`); 
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3) 

where '¥1(x,1.v2)<°° , 'Y2(x,v1,l) <oo and e >  0 ,  then we can show 
that there exists a global solution-that is ,  the solution at one point 
( x , v , V )  may be continued for all values of x ,  v and V. In terms of 
the power series, it says that any reasonable f0(x,v) produces a con- 
vergent power series in V. Since the class that we have here does 
not include the example a=  -vv/x, there are obviously somewhat more 
solutions than elaborated above, i .e.  , the condition can be weakened 
in some manner. The primary result is ,  however, to demonstrate the 
existence of many invariant equations of motion. 

Since we shall shortly go on to a discussion of similar matters 
in terms of the Hamiltonian and phase space, let us review the situa- 
tion as expressed in terms of the acceleration functions . 

First, the equations of motion are called invariant if the re- 
sultant world -lines , when transformed point by point, satisfy an 
equation of motion of the same form in the new frame . 

This requirement may be re stated in terms of a differential 
equation which acts upon the x .  v ,  and V of the acceleration function 
(equation of motion), These are the Lorentz invariance conditions. 

A somewhat limited class of closed form examples has been 
found of invariant force functions. A power series expression which 
is guaranteed to exist has been found for a very large class of solu- 
tions. 

Let us now consider these invariant equations of motion. 
There are several additional properties we will require of them. If we 
are to deal with scattering solutions, we might well demand "weak 
separability, " that is , stated for two particles , if the particles are 
far apart, then a change in the motion of  one should scarcely affect 
the motion of the other. This property will find reflection in the 
Hamiltonian problem when we might ask for strong separability: 
that is , we will require that the Hamiltonian for the two particle sys- 
tem, for very large separation, has the form of the sum of individual 
particle Hamiltonians . 

Finally, we would wish to delve into the question of Einstein 
causality, and determine the relation between the invariance property 
and the Einstein causality. 

3 .  
4.  

5 .  

6 .  
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I I .  I-Iamiltoniarxs and Conservation Laws 

Conservation of Momentum and Angular Momentum 
We will continue to study a classical-mechanical system of 

two particles. We have seen how interactions can be described by 
relativistically invariant equations of motion which specify the accel- 
erations as functions of the positions and velocities. Now we will 
explore some of their properties. Most of this investigation will in- 
volve putting the equations of motion in Hamiltonian form and seeing 
what kind of structure we get. Before we do that, we can learn some- 
thing about conservation of momentum and angular momentum by 
working directly with the Newtonian equations of motion and their in- 
variance conditions . 

We will show that if the accelerations are not zero, the con- 
stants of the motion include neither the conventional total momentum 
nor the conventional total angular momentum as defined for free parti- 
cles or for particles in a field-in other words, the kinematic particle 
momentum and angular momentum. These quantities could have the 
same values before and after a collision by being asymptotic limits of 
constants of the motion, The constants of the motion would depend 
on the interaction. They could be the momentum and angular momen- 
tum which correspond to the generators of space translations and to-` 
rations (about which more will be said later) . 

Let go and 222 be the positions of the particles, X1 and 12 
their velocities, and let 
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I with Ml and m2 positive numbers 
Consider equations of motion 
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for n=  1 , 2 .  Translation invariance implies that ¢1 and $2 depend on 
the positions of the particles only as functions of the relative posi- 
tion x.  Rotation invariance implies that (be and ¢2 rotate as vectors 
when go ,!2, and § are rotated. 
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The conditions for Lorentz invariance are 

(-1)"xj¢"£a¢k/aun£ + é jk l  `\ 2 un + m y \  n 

1 
" 2  

un2 
.L n 2 " 2  u + m  n j '*'k + x . 

J 

nl 2 
+ m 2 |  n 

L 
' z  n'8 n 

"z ¢p/8X2 

L .  

A un 2 + m  n 

1 
2 n n W L z n I 

j 
8¢k/8u = 0 

for j , k , 2 = l , 2 , 3  and n ,n '= l , 2  with n' different from n (if n= 1 
then n ' = 2  and if n = 2  then n' = 1); the repeated index II implies a 
sum. These conditions are derived in the same way as for the accel- 
erations, from the usual Lorentz transformation of space-time coordi- 
nates, and from the requirement that for an infinitesimal Lorentz 
transformation the change of dun/dt "' the same as the change of Q" 
as a function of go, _up' and L. We use these conditions to obtain the 
following. 

tiplying the conditions for Lorentz invariance by e- 

Theorem 1: The conventional total momentum go +_u2 is not a 
constant of the motion unless both Q1 and $2 are zero. 
Proof: Suppose 11.1+22 is a constant of the motion. Then 
go +9I..2=0. Let g be any three-vector orthogonal to 5. Mul- 

I summing 
for j =  1 , 2  , 3 , and adding the result for n= 1,2 yields 

2 _ul -I-IT12 1 

1 
' 2  

(H1'$1)§ L1°§)$1 

2 22 
1 

2\ -= + + 
m2 (_u2':1;2)§ - (_ =-12-Q22 II o 

or 

2 .1 
_1 

' z  2 1 + m 1  _u 
( 2 2  -é 

2 2 +m2 2 X ( € X $ 1 )  0 

which means that IQ X21 is collinear with the relative veloc- 
ity 
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say that in and $2 

If in is not zero, then g is Ortho?onal to X, which means 
that X and y are collinear, and Q is orthogonal to X. 

We assume that $1 and QUO are functions which are differentiable 
enough for the Lorentz -invariance conditions to be meaningful. We 
do not consider singular 1 and $2 which are zero for almost all 
values of up, 22 and 2_c_. Thus if $1 and Q12 are nonzero only when 
the relative position § is collinear with the relative velocity x. we 

are zero. 

Theorem 2:  
?£1X21 + §2X9_2 is not a constant of the motion unless both 
Gil and QUO are zero. 
Proof: Suppose __ 
Then Xi + £2X£l12 = 0 .  
nal to 5- 
ej€kiilnxl' summing for j , k , £ =  1 ,2  r 3 ,  

The conventional total angular momentum 

x1X!.1 + £2X_u2 is a constant of the motion. 
Let Q be any three-vector orthogo- 

Multiplying the conditions for Lorentz invariance by 
using 

n V -  2 
_Hen I 

and adding the results for n=  1 ,2  yields the nth component of 

(11~21>§X2s1 + L2°5k2)§X;2 (§_- aM1 xi 
(§'x2)92X.£2 = 0 .  

Taking the scalar product of this with 2, we get 

1 l 
(§°x); Xi - Q  = 0.  

If 21 is not zero, then § -X  is zero, which means that is and 
y_ are collinear. 

These techniques can be used to show also that m111 +m2v2 
is not a constant of the motion unless the accelerations are zero.T) 
This is an example of a statement which is true for three-dimensional 
space but not for one-dimensional space. We have seen a one- 
dimensional example of accelerations with the property that v i  + v2 
is a constant of the motion. In three dimensions these appear as sin- 
gular accelerations which are nonzero only when' the relative position 
;<_ is collinear with the relative velocity X. 
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space 
_ul +22 ' not 

Another statement which is true for three-dimensional space 
but not for one-dimensional is the theorem that the conven- 
tional total momentum is a constant of the motion unless 
both $1 and $2 are zero. For a one-dimensional counter-example , 
consider constant functions 

du1/dt 1 
¢ 

II b 

and 
O

- 
C

 N
 

\ D
- 

|-
* 11 -S
- N

 

II a II I ol
. 

with b a real number. It is easy to see that they satisfy the Lorentz- 
invariance conditions for one -dimensional space. This example vio- 
lates the parity requirement that 4>1 and ¢2 change sign when v1, v2 
and x change sign. We might expect to get this property from rota- 
t1on invariance when a three-dimensional system is cut down to one 
dimension. 

The lack of conservation of _up +22 and §1Xs1 + _x2 X_u2 is one 
reason why we do not emphasize the conventional momentum variables 
_up and 22. When we put the equations of motion in Hamiltonian form , 
we wlll want canonical momenta al and 22 such that 21 +22 and 
§1X.g1 +_1;2X22 are constants of the motion. Evidently _QI and _p2 
will not be the same as _up and g2. They could be the same asymp- 
totically when the particles are widely separated and not interacting. 
This would imply that 21 and 22 are functions of the relative posl- 
tion of the particles as well as functions of their velocities. 

Generators of Noncanonical Transformations and Their Lie Brackets 
Now we want to put the equations of motion in Hamiltonian 

form, This involves choosing canonical momenta as functions of the 
positions and velocities. Then the Poincaré group is represented by 
the transformations of positions and canonical momenta which follow 
from the transformations of positions and velocities. We expect that 
the canonical momenta can be chosen to be invariant under space 
translations and vectors under space rotations , so for this part of the 
Poincaré group we will have the usual transformations , which are 
canonical. But there is no reason to expect the Lorentz transforma- 
tions to be canonical. In fact, we will see that there can be no in- 
teraction if the whole Poincaré group is represented by canonical 
transformations. Therefore, we must learn how to work with infini- 
tesimal generators of noncanonical transformations . 

Consider a classical-mechanical system of N particles de- 
scribed by positions iN and canonical momenta .in for n= 1,2 ,  . . .N. 
Suppose we have a one-parameter group of transformations of this 
phase space. This means that there are real functions 9."(u, g_, Q) 
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and 2"(u. g, Q) of the phase-space variables g. and 2. which depend 
also on a real parameter u, such that 

n 
9. (u+t,g_,.Q) 

gn(0. Q. 2) 
n 

g. 
n 

.Q Qn(0. Q. 2) 

= Qn1.  9.(t, Q., 2). 2(t. g., 2) 

_Qn(u+t, 9.2) Q" 17, g(t. Q.. 2). B(t.g,m 

For example, these could be transformations in time, or they could be 
Lorentz transformations . 

Each one-parameter group of transformations has an 1nf1n1tes1- 
mal generator. Let 

[g.n, K] = [8gn(u)/8u] u= 0 

[pn .  12] [ 8  __PN(u)/aU]u=0, 

IN denote this set of functions . 
property we get 

These are real functions of the phase-space variables g and B. Let 
This is the generator. From the group 

8gn(u.g,p)/Bu = lim(l/t) gn(u+t,g,p) - 9L"(u».<;»£) 
-- t-0 " , 

1im(1/t) g_n(u.g(t).g(t)) 
t-0 0 

anlu.a1a)} 

II 

N 
Z 

m 1 

3 Z{[ qlm . 12] f>_<;n(u,g.g)/Bqjm 
j=1 

+ 

+ [ PjmI I]agN(u,2, ppm 

and similarly 

8 _pn(u)/Bu 
N 
2 

m= 1 

3 Z{[ q;-~ .K1 a§'(u)/aqm + lpj" ,12182"(u)/6p,M}. 
1=1 

differential equations which equal iN and _pn at u=0 .  
The functions qn(u, q, g) and 2N(u, q.  _p) are the solutions of these 

Thus the 



RELATIVISTIC CLASSICAL MECHANICS 113 

[RK] 

one-parameter group of transformations is characterized by its 
generator. 

For a function F(g,Q) of the phase-space variables Q and 2, 
let 

3 I A 

2[qjm.K]3F/Bqlm + [pjm,I7i]3F/8pjm . 
j=l 

N 
Z 

m=1 

Then 

8gn(u)/8u 

8£N(u)/811 1 
Q 

I g.n(u) ,121 

[2N(u) ,121 
N 3 

8Flg(u).£(u/3u = Z kZ[3F(g(u).p(u) /8qk(u) Bqk (u)/8u 
n= 1 

+ [ (SKU) BIn /a pa (u)]8pk (11)/8 up 
N 
2 

m,n=l  

3 

j M a1=/aqk ( u Q ]  ,I28qk (u)/8q 
m 
J 

+ pa .13;l9qk(u)/8p + [ m 
1 6 F/a pa (M 

([quo . a p k t u ) / a q  
+ [p .1?;II9pk(u)/Bpj } rn 

j 

II [F(2(u),_p(u) , 12 . 
The generator 12 is determined by the set of functions [ 1 2 ]  for any 
complete set of independent functions F(g,£) of the phase-space 
variables . 

When we say that a transformation of the phase-space varia- 
bles 3 and _p is canonical, we mean that it preserves Poisson 
brackets. The transformations generated by R are canonical if and 
only if there is a function Key) of the phase-space variables such 
that 

k 'RI II AK/apk 
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and 

-AK/aqk . 
Suppose there is such a function K. Then [F,K] is the Poisson 
bracket [F,K] for any function F(_q_,_p) of the phase-space variables. 
Using Poisson brackets and the Jacobi identity, we get 

(8/Bu)q. (u).pk (u)] 

II 1 U "'(u),K ,pk(u) {quo (u),pk(u),r(H q_ 
1 

II Uqi"'(u) .pk (u) M. 
This implies that as B function of u' the Poisson bracket [quo"(u),pQ(u)] 
does not change from the value émnéjk which it has at u = 0 .  It fol- 
lows similarly that 

[ m(u) . Mk ( o  q. 
J 

II 0 II [ m(u).pk (u>]. 1pj 

Thus the transformations are canonical. Conversely, suppose the 
transformations are canonical. Taking the derivative of 

qyuu) .Pk (Lo 6 6 mn jk  

with respect to u at u = 0 ,  we get 

m + 
j 

(8/8qkll) [ A 
q ,x (8/ap111 

H p k  ,12 II 0. 

Similarly, from [qjm(u) ,qnk(u)] 0 we get 

(8/8p?) (a/apnk) ii ,K II O
 

and from [plM(u) ,p§(u)] = 0 we get 

,R (a/MQ) P ] m 
j (6/5qjm) k II 0. 

These are the integrability conditions for existence of a function K. 
Let 21 and K2 be generators for two one-parameter groups of 

transformations. Their Lie bracket [K1.122] i s  defined by 
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p,[K1,122] II [I F, 121] , [l F,R2] ,J 

group. 

for functions F(g,£) of the phase-space variables. If K1 and K2 are 
two of the generators for a many-parameter group of transformations , 
for example, the ten-parameter Poincaré group, then [121 ,K2] is one 
of the brackets which characterizes the infinitesimal structure of the 

This bracket is related to the commutator of the two one- 
parameter groups of transformations in the following standard way.2) 
Suppose that to a function F(q,p) we apply first a transformation gen- 
erated by XI , second a transformation generated by *<2» using the 
same infiniteslrnal value u for the parameter of both, and then apply 
the inverse of the first transformation followed by the inverse of the 
second transformation, keeping terms to second order in u. The re- 
sult is 

2 F + u  [PUK1] .Kg - [ I P A ]  ,121 

(Terms involving only one of the generators cancel because they just 
contribute to a transformation followed by its inverse. Also two terms 
u2[[F,I 1] ,K2] cancel.) 

The definition of 
pose K1 and K2 generate canonical transformations. Let K1 and K2 
be functions such that [F,K1] and [F.K2] are the Poisson brackets 
[F,K1] and [F.K2] for all functions F. Then, because Poisson brack- 
ets satisfy the Iacobl identity, we see from the definition that 
[F,[K1 ,K2] ]  is the Poisson bracket [F,[K1, for all functions F ,  
with the Poisson bracket [K1 ,K2] replacing K1 ,K2] . Thus all 
brackets reduce to Poisson brackets in the case of canonical trans - 
formations l 

In the general case of noncanonical transformations there are 
two kinds of brackets: the derivative [112] of a function F(g,£) for 
transformations generated by K, and the Lie bracket [go ,K2] of two 
generators. It is convenient to use bracket notation for both. The 
definition of the Lie bracket provides a Iacobi identity involving both 
kinds of brackets. Both kinds of brackets can be viewed as commu- 
tators by using operators on the Hilbert space of square-integrable 
functions of the phase-space variables. This is outlined in the next 
section. 

[21 ,22] looks like a Iacobi identity. Sup- 

3) 

Operator Formulation 
Both kinds of brackets described in the preceding section can 

be viewed as commutators in an operator formulation of classical me- 
chanics. Consider the Hilbert space of square-integrable functions 
of the phase-space variables g and _p. Each physical quantity is a 
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function Hg, p) of the phase -space variables. It is represented by 
the operator v i c h  multiplies every function in the Hilbert space by 
F(g.I-Q) . All of these operators commute with each other. 

A generator of a one-parameter group of transformations is a 
I-Iermitian operator 

12 
N 3 m 

-1 M21 jz1 {[quo I 

A 
I I  K L rn 

p + 

The bracket [F,I2]A for a 
operators F and K: 

function FQ, p) is the commutator of the 

[Re] = -1(p12 - Kg). 

In particular 

[iIm ' K] -1 Mg _ 
qi 

K*~M 
qi 

and 

,of M A  
K 

j 
- i n  

- i p  -Kph • 

gn in) 

The operators gn and _pn are transformed to the operators 

iui n -tuft e 

and 

_pn(\.I) II m
 H

- $2
 

) 
to

 :1
 

m .L
 

c 70
 

An operator F(gi,£) is transformed to the operator 

F g(u), £(u) e _,_) ( q p F 1 u K e U. K 1 

Then 

BF@(u),g(u) /By -1{F gel) , _p(u) 12 

[p (gm), quo , ] 
KF gM) , £(u) 

In particular, 
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[ag"(u)/Bu]u=0 = [an.2] 
and 

[8QN(u)/811] u=0 [52I1] . 
The operators _<;"(u) and _pN(u) are functions of the operators g_ and Q. 
We have 

= iuKgn&)e an(t + u) e -tuft 
gmt. g_(u), He 

and similarly 

_pn(t + u) ( ) q(")'_Pll 
lust as in quantum mechanics, the Lie bracket of two genera- 

tors is their commutator: 

] ' 2 K 1 K [ ) 1 K 2 K 2 K 1 1 ( K 

Generators and Bracket Relations for the Polncaré Group 
Now we can use generators and L1e-bracket relations for the 

Poincaré group to develop a relativistic Hamiltonian formalism with 
noncanonical Lorentz transformations. ` This is what we expect to get 
by putting the Lorentz -invariant equations of motion in Hamiltonian 
form. We will establish a correspondence between invariance of the 
Newtonian equations of motion and the Lie-bracket relations for the 
Poincaré group. We will see that canonical Lorentz transformations 
are not required either for invariance of the equations of motion or for 
the relativistic Hamiltonian formalism . 

Suppose the classical-mechanical description of a system of 
N particles admits the Poincaré group of transformations. Let H, E 
L, g be the generators, of the kind described in the two preceding 
sections , for time translations , space translations , space rotatlons , 
and Lorentz transformations , respectively. We assume that these 
generators satisfy the Lie-bracket relations characteristic of the 
Poincaré group. These Lie-bracket relations will be the basic object 
of study. 

We assume that the positions qn transform as usual under 
space translations and rotations. This means that 

k 1 
6 
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and 

e in jazz /5 

for n= 1 ,2  , . . . N  and j , k , £ =  1,2  ,3 .  We assume also that the time- 
dependent positions transform as usual under Lorentz transformations . 
This means that 

G
M

 
U

' 

II 21 

164 
c: 

'I
-
1

 

I 
U

' 
I 

.M
 

I FM
 

C
-

 
571 

c:.>4 

for n = l , 2 , .  . . N  and j , k = l , 2 , 3 .  
We assume that H generates canonical transformations. This 

means that there is a function I-I(g,£) of the phase-space variables 
such that [1 IN] is the Poisson bracket [F,I-I] for all functions F(g.g) 
of the phase-space variables. We assume that space translations 
and rotations also are canonical. This means that there are functions 
_P and Lo i  the phase-space variables such that [ 1 2 ]  and [Pa are 
the Poisson brackets [l:',§_] and [Fl_1] for all functions F of the 
phase-space variables. Then the L1e-bracket relations involving only 
2 and i are the Poisson-bracket relations 

0 . ] k P 
j 

P [ 

j 
- I  ] = € k I J [ I Z T k E 

_g no = . P k 2 J 
e ] k P 

J [ I 

and transformations of the positions iN under space translations and 
rotations are characterized by the Poisson-bracket relations 

] k P n 
J [ q I 

II 

k 1 6 

and 

n 
j [ q  Jo] e in jo ,e 

From these it follows that _P and _I can be put in the standard forms 

N 
2 n 

_p 
n 1 

and 
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II 
»-I 

c 0~1 
X 

c :al 
Z

K
IT

 c: 

4) 
by a canonical transformation which leaves the positions iN un- 
changed. Thus without loss of generality we may assume that _P 
and CL are these standard functions . 

We assume that the equations 
<: B II l<:

 II [gm,I8] 
m = aH/a_p 

have a solution for the canonical momenta in as functions of the po- 
sitions gM and the velocities aM for m =  1T2, . . .N.  With Hamilton's 
equations, the motion is determined by the same initial data as for 
Newton's equations: the positions and velocities at time zero. 

The motivation for these assumptions is the following. We 
want equations of motion which specify the accelerations of the par- 
ticles as functions of the positions and velocities. We want the 
equations of motion to be invariant under the Poincaré group of trans- 
formations. We want to put these equations of motion in Hamiltonian 
form. This involves choosing canonical momenta as functions of the 
positions and velocities. Then transformations of the canonical mo- 
menta are determined by the transformations of the positions and ve - 
locities. We expect that the canonical momenta can be chosen to be 
invariant under space translations and vectors under space rotations 
so that the standard functions _P and I are suitable for generators. If 
there is interaction, the canonical momenta may be complicated func- 
tions of the positions and velocities, and their Lorentz transforma- 
tions may be complicated. Therefore, we do not assume that Lorentz 
transformations are canonical . 

We want constants of the motion H ,  _P T which correspond , 
in the usual way, to  invariance of the equations of motion under time 
translations, space translations , and space rotations. We do not 
have an equally strong motivation for associating a function of the 
phase-space variables with the generator K of Lorentz transforma- 
tions. That it is consistent for Lorentz transformations to be non- 
canonical, when time translations and space translations and rota- 
tions are canonical, is demonstrated in the following example for a 
single free particle . 

Free-Particle Example: Let the equation of motion d2g/dtz = 0 
for a single free particle be described by the Hamiltonian 

H II (1/2)_p 
2 
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Then the canonical momentum _Q is the velocity 51 because 

[g,II] = 6H/a2 = p, 

The transformations of 3 and 1 under space translations and 
rotations are the canonical transformations of g_ and _p gener- 
ated by the standard functions 

-| I 

O
. 

II 
CL.I 

and 
6. 
X U

' 
II 

|- I I I 
For Lorentz transformations we have 

I = ,H ] J [ q k ] q k K 
j [ q 

and 

[pjik] = [vj.Kk] = vjvk 6 
jk 

pjpk - Gawk. 

The Lorentz transformations are noncanonical. For example , 

8[q1.I?2]/8qk + B[pk, I£] /8pj  6 kepi 
+ éjfapk + 61kP£' 

For canonical transformations this would be zero. The gener- 
ators satisfy the Lie-bracket relations for the Poincaré group, 
because they generate the usual transformations of g. and y_ 
for a free particle; one can check this explicitly. The free- 
particle equation of motion is obviously invariant under the 
transformations of the Poincaré group. We will make more use 
of this example later. 

For the Lie-bracket relations involving £1 but not K, we have 
the Poisson-bracket relations 

[HfF.] 0 

and 

] -1 H [ 

These just imply 
and the relative g 

H is a function of only the I 
*ions and is invariant under ro 

l.j.CB1 momenta 
ms. 4) 
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Of those involving K, the Lie-bracket relation 

IK. H] = E 

121 

is decisive. It is easy to  see why. 
we get 

If we apply [§k fI7I] =- Mk to qjn , 

H q ~ I * ] » k l  

II 

[[q 1»@J»l - [q je] 
[qnk [q 1'H]'&l ' 61k 

q"k[[=1 1,a],&] + [q H) [1"k-H] 6 . jk 

If we write 

< 3 II l<
 II 
I 

l..Q
 5 

* up
 

and 

n 
_Q = _gn,§],§ 

for velocity and acceleration, we have 

II .Q
 

iv
 

:n w 
._

L:
:1

 

+ < :1
 

< D
 

pa
' I 

_A
.of

 
iv

 

This is just the equation which characterizes the transformations of 
velocity derived from Lorentz transformations of the time-dependent 
position. Now if we 
lion just obtained, we get 

apply [Kk»H] = Pa to [ q  1,I-I] , and use the equa- 

[H m n 
q . J {[,H],KAk].] - u p  

qnkm 
_"I . - '  

q 1 ' H ' H J ' H ]  +2[qnk,I-I 

- l m l " » 1 1  
because 
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Hui ,E ,13 l kl II n »~ ' »  -- n - - 
. , p  ,H . I  I-I,P 

U Q J  Ki al [ m II 0.  

In terms of in, in, and 

c: -m
l 

M
 

c: am II 
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M
 

c: ful 
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I 

II 

I I I 
I I FM 

¢£E.' 
or. 

s 

O'l 1 

in 

\ 

¢'»Il 
I 

I 

we have 

a 
n A 

1'K1< 
n 

q ken 
J + 2 vII 

kan 
j + vnan 

j k '  

This is just the equation which characterizes the transformations of 
acceleration derived from Lorentz transformations of the time- 
dependent position. 

The canonical momenta are functions of the positions and ve- 
locities. With [ 8 ]  =§ applied to positions we see that the Lorentz 
transformations of positions and canonical momenta generated by K 
are just the usual Lorentz transformations of positions and velocities. 
The accelerations are functions of the positions and canonical mo- 
menta and therefore also functions of the positions and velocities. 
With [LH] =E applied to velocities we see that the Lorentz trans- 
formations of these functions are the same as Lorentz transformations 
of accelerations. This means that the equations of motion are invari- 
ant under Lorentz transformations . 

The other Liezbracket relations involving K follow as a con- 
sequence of 111] =_P. For example, we have 

n 
q i t  K j '  II II U N A 

q , ,K. 1 J [ 'H ,K.  
J 

n -q .6 
J 

+ 
ik <1 

n 6 
k 1 

n 
-e. e. q Jo 1£rn in 

Z = - . I T 1 
n 

q k Z J 
e 

because 
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[[q"w%]»Kk] = [qni [q"1»§]»*k] 
= qn1'sK]qni'i +qn 

= qnk["n1'i] [ q ]  

= [w-1 [Q [q 
_ qnj ni'p 

= qnk [qni [q"i~f1]+ qni 

+ qnjqn Uqn l f I ]» I ]  - qnjbik . Ik 

] 1[[q"1-H] 
+ q"j[[q"1.1Ek],fa ] 
` qni [°'n1' 

" k [ q " 1 - H ]  

[q -kl 
[q"k-H] [q"1-H] 

F n A 1 

u ml = [[[q"1-HM]-a] - [[[q".1@1],'2k].12,] 
= `["n1 '&]61k + [qnk'&]611 

= "jk.e'1.emL 

= "1k£[ E1"fU]»H] 
= -ak»[[q"-H]-U] ` '1k£["n1'[i£ 

= - , [ [ ] - 1  

`1 
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II 
II 

II 

II 

[[[q"1»1=1]~,]~12k] E lllqa,1»1.»1 . [[w 11»~1 
[[q", [q"1»H]-k] ' [[q'H- §1],12k] 
Hqni [q"-]~ 11] ' [qnj [q"1~H]» [ in- l l  

[[q",~]{q"»] + q",[[q"1-H]~H..]»1] 
- [ q m q n k l  

n [q" A [q" A +q"»[[q"~]] 
' N : [ N i l  [in»]]~ l T 61k[" f ] 
n n - n - +q»[qk[=H*]»H~] 

' "l J»]~°k[q"1»] 
n n n _ +qnj[qnk.5I][qn1.] 

+ qn1"nk[[qn1'']']'i] - [qni 61k 

_ @je[q",a]. 

[q Ki 

[q in J'H.l[q H] 

[Q k[q 1'iH]q PH] 

This is the Lie-bracket relation 

[in r Kkl 

II 

-ejk£I£ 

applied to positions and velocities. This is sufficient to establish 
the Lie -bracket relation because the canonical momenta, and all 
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functions of the phase-space variables, are functions of the positions 
and velocities. The remaining Lie -bracket relations 

] ' k P 

and 

[K`j Jo] EjkzK£ 

can be verified similarly on the positions and velocities . 
Thus we see how the Lie-bracket relations correspond to in- 

variance of the equations of motion. Lorentz invariance of the equa- 
tions of motion does not require canonical Lorentz transformations 
with generators corresponding to functions of the phase-space varia- 
bles. In particular, this is not required by the conservation law 
which follows , according to Noether's theorem, from Lorentz invari- 
ance of the equations of motion.5) This can be seen explicitly in the 
free-particle example above where noncanonical Lorentz transforma- 
tions are used for the Lorentz-invariant free-particle equations of 
motion. 

The Hamiltonian determines the equations of motion which 
specify the accelerations as functions of the positions and velocities . 
Therefore , Lorentz invariance can be considered a property of the 
Hamiltonian as well as a property of the equations of motion. We 
have assumed that the equations 

I >l I 
1. 
> \ -| 
-I D
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II 
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[ a l  Kg] solution, in terms of the I-Iamil ... 

have solutions for the canonical momenta as functions of the posi- 
tions and velocities. Therefore , given the Hamiltonian, we have only 
one choice for the generators K of Lorentz transformations. They are 
determined by the Lorentz transformations of positions and velocities. 
This means that , ;§s~.:r<rs§-" * _ 
tonian, of the Lie-I:irackeigmln:ShlI'I_... [L H] = §  applied to the positions, 
which gives the infinitesimal Lorentz transformations of velocities. 
Then Lorentz invariance requires only that the Hamiltonian be a so- 
lution of the Lie -bracket relation [K,I-I] =E applied to the velocities , 
which gives the infinitesimal Lorentz transformations of accelerations. 
Thus we get differential equations to solve for the possible Hamil- 
"""""iL-""' These eq§"""""""'s were obtained originally from a slightly 

point of v ':_ 
The Hamiltonian form of the equations of motion, and the ca- 

nonical form of space translations and rotations, do not de pend on 
the choice of space-time coordinates. Because the equations of mo- 
tion are invariant, they can be put in Hamiltonian form in the same 

5-l=..*. 
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way with respect to a transformed reference frame. The same Hamil- 
tonian function H and the same standard functions _P and _I can be 
used for the generators of time translations and space translations 
and rotations with respect to any reference frame gotten by a trans- 
formation in the Poincaré group. ,If H,  _P, _I are the total energy, mo- 
mentum and angular momentum, then the same functions of the posi- 
tions and canonical momenta for the transformed frame are the trans - 
formed energy, momentum and angular momentum. Thus the corre- 
spondence of generators to energy, momentum and angular momentum 
is independent of the choice of reference frame . 

For example, consider a Lorentz transformation for an infini- 
tisimal velocity e in the Z direction. The positions iN and canoni- 
cal momenta _pn are transformed to 

n'  n 
2 = g_ 

N A 

+ € [ g  1K3] 

and 
a l  

p _ n _p + 

and I-I(q, p) is transformed to H(q' ,p ' ) .  Time translations with re- 
spect to the transformed frame are generated by 

42",123] 

H I 131 + €[£,123] 
Then 

[ q  ,iii'] = [gnarl] + e  n 
q r m,1<°31j [[§".123],a] + e  

[q" ,H] 
I N A A 

+ e  1H]IK3 

which is the transform of 

[9_n. H] 81-I/6iN. 

Therefore 

[g"',E'] = aH(g',g')/ag" 

and similarly, 

[.Ia"'FI'] = '3H(2':_p')/3§N'_ 
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Thus time translations with respect to the transformed frame are ca- 
nonical with respect to the transformed positions and canonical mo- 
menta, and their generator corresponds to the same function H of the 
transformed positions and canonical momenta. Similarly, space 
translations and rotations with respect to the transformed frame are 
canonical with respect to the transformed positions and canonical mo- 
menta, and their generators correspond to the standard functions 

N 2 al  
p 

n l  

and 

2 
N n'  X Rn' 

The same is true when this infinitesimal Lorentz transformation is re- 
placed by any transformation in the Poincaré group. 

No-Interaction Theorem for Canonical Transformations 
Now we can state exactly why we do not assume that all the 

transformations of the Poincaré group are canonical . 
Theorem: If the assumptions described in the preceding sec- 
tion are satisfied, for a classical-mechanical system of a 
finite number of particles , and if all the transformations of 
the Poincaré group are c n o i c a l  , then the particle accelera- 
tions are all zero. 7 ' 8),4 , 9  

Lorentz Transformation of Energy, Momentum and Angular Momentum 
One property of canonical Lorentz transformations which might 

be defended physically is that the way they transform the Hamiltonian 
function H and the generator functions _P and I for space transla- 
tions and rotations is the way energy, momentum and angular momen- 
tum usually transform. We will see that noncanonical Lorentz trans - 
formations need not have this property, and that if we assume it we 
can prove again that there is no interaction for two particles. 

Suppose we think of H and _P as the total energy and momen- 
tum. They are constants of the motion and are invariant under space 
translations. Under space rotations H is a scalar and _P is a vector. 
In what has been assumed so far, H and g have no particular proper- 
ties """"''"' Lorentz tran"j motions. This is illustrated by the example 
of a free particle; =- H=  (1/2)p2 in which 2 

[H.12k] [Mk] _p° _ (22 1)pk 
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and 
- ofk. 

Should we assume that H and Q transform as a four-vector 
under Lorentz transformations, as is usual for energy and momentum ? 
This means that 

] ,K J H [ J 
-P 

and 
A = _6 

[Pj ,Kk] 1kH 

for j , k=  1 , 2  , 3.  The L1e-bracket relations 

lm = -13 

and 

(3 .M
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(bf. 

C0l'-` 
u 

Imply that the generators FI and F> transform as a four-vector under 
Lorentz transformations. Now should we assume the same for the 
quantities H and g? 

Suppose we think of I as the total angular moment.um. It is a 
constant of the motion and a vector under space rotations. Under 
space translations _J transforms a's is usual for angular momentum; we 
have 

[ ] j  1Pk] = e1k/M' 

For Lorentz transformations of 1 we can investigate various hypothe - 
ses: 

(a) [Ii.12k] = -Uk.Rj] 

(b) 0 . . 1  J 
K 1 [ I 

(c) l[/1.12k], IN m -€jkZe£mnln k . - I m 1 6 
J ml k 6 

of these is implied by what has been . 
by the example of the single free pad 

so far ;  thls is 
H=(1/2)£2 in 

which 
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[I1,12k] = €jlm [ q . K k ] p m  + €j£rn<>1£[pm,Kk] 

+ - 6 
ej/zmqkpzpm 'jzmqzpmpk 'jzmqz ink 

+ 
Ijpk ejkgqg 

so up,I?k] is not antisymmetric in the indices jk, in particular [I .1?~] 
is not zero, and furthermore 

J J 

If IJ ,12 mam k 

II /i (popm _ 6 km) + (Ijpm + ejmzq/z)pk + Ejkzqmpz' 

All the hypotheses (a) , (b) and (c) are properties of a representation 
of the Lorentz group by canonical transformations , or by unitary trans - 
formations in quantum mechanics, because then these brackets are the 
same as the Lie brackets. These properties are more or less under- 
standable physically. For example, (b) says that the component of 
angular momentum in the direction of the Lorentz transformation is not 
changed. The combination of (a) and (c) irnIi§*1i°='; that _J transforms as 
part of an antisymmetric second-rank four-td s_ In particular, (c) 
is analogous to 

[H,121] 
I 

A 

1 6 H 
jk 

which says that H transforms as part of a four-vector, or to 

.12 = 6 m U p1,12k] P • jk  m 

The choice of hypotheses is simplified by the following . 
Theorem: Hypothesis (a) is true if and only if (b) and (c) are 
true . 
Proof: 

A A _ A ' 10W h t From [Km,Kk] ' - f k M  1t fol s t a 

Up ,12k] . im - 11 . im] . in -e mklielljnln = 6 jkTrn 
6 j mlk 

so if [[]`],Kk] ,Km] = 'jkZA£m' then 

A _ = 6 _ 6 . ejo Bm ejmEAlZk jklm jmIk 

Multiplying by eabj and summing over j yields 
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6 akAlbm - 6 A bk am 6 A + 6  am bk A bm ak ' abklm - e abrnlk • 

F o r e = k a n d  b = m b u t a 7 4 b ,  is 
thatAaa=0 f o r a = 1 , 2 , 3 .  Fo rb=mbut  
it is 

0 implies 
a 7 f b ,  and karim, 

this Abb +A a = Which. 
a7fak, 

A ak -e akim ' 

Therefore 

J f I ] k K m K ¢ -ej k£e£mnIn ' 

the part of [In ,Kkl 
Thus (a) implies (c), Evidently (a) implies (b). From (c) it 
follows that which is symmetric in the in- 
dices jk is invariant under transformations generated by 3.. 
Then it is invariant under rotations because 

] » I K k J 
K [ ' E  I • 

]k£Iz 

Therefore the u - 
This must be ' 1 L.-I .= 

This completes the proof. 

part of U-,12k] is proportional to 6ik, 
is true. lfhus (b) and (c) imply (a) . 

We will use (a) to characterize the usual Lorentz transforma- 
t1ons of  angular momentum. 

The parity transformation reflects the positions iN and the 
velocities !N=8H/8_pN. One might assume that H is invariant under 
the parity transformation. This implies that the parity transformation 
reflects the canonical momenta in. Then H is invariant under re- 
flection of the positions and canonical momenta . 
No-Interaction Theorem Based on Transformations of Energy, 
Momentum and Angular Momentum 

That we should not assume all the properties described in the 
preceding section is suggested by the following. 

Theorem: For a system of two particles, there are no interac- 
tions , no accelerations , consistent with the assumption that 
H and _P Lorentz transform as a four-vector, hypothesis (a) 
for Lorentz transformations of I, and the previous assump- 
tions: the Lie -bracket relations for the generators of the 
Poincaré group; the transformations of particle positions; c a -  
nonical transformations for time dependence and for space 
translations and rotations. It is assumed that the Hamiltonian 
function H is invariant under the parity transformation and 
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that the canonical momenta are functions of the positions and 
velocities . 10) 

teractions for which either the total 

Which assumptions are really needed for this theorem? We 
doubt that the parity assumption is essential. Relaxing it would 
probably not allow interactions . 

We expect that interactions will be possible if H, _P and _I 
are not required to Lorentz transform as the conventional four-vector 
and tensor. This guess is based on the following considerations. We 
have seen how the Lie-bracket relations for the Poincaré group, plus 
the transformations of positions , correspond to invariance of the 
equations of motion which specify the accelerations as functions of 
the positions and velocities. It appears that these invariant equa- 
tions of motion allow interactions. We expect that they can be put in 
Hamiltonian form, with canonical momenta which are invariant under 
space translations and vectors under space rotations. We expect that 
the equations of motion can be invariant under the parity transforma- 
tion, and that the canonical momenta can be vectors under parity. 
This would satisfy all the assumptions of the theorem except that of 
Lorentz transformations of H ,  _P and I. 

For two particles, invariant equations of motion allow no in- 
moentum go +_u2 is a constant 

of the motion, with u"=mnyn(l -!n2)`1 2 .  or the total angular mo- 
mentum go X I  + 3 _u2 is a constant of the motion. These quanti- 
ties could be conserved only in the asymptotic limits of collisions . 
Perhaps the physical motivations for the conventional Lorentz trans- 
formations of H,  Q and _I, based on energy, momentum and angular 
momentum, are meaningful only asymptotically. This might be a rea- 
sonable point of view for describing a collision, but it suggests dif- 
ficulties in describing a bound system of two particles . 

Interactions might be possible with H, _P Lorentz transforming 
as a four-vector, if only _I is not required to Lorentz transform as 
usual. For one-dimensional space, there are interactions with H and 
P =  pa +p2 Lorentz transforming as a "two-vector. " An example is 
provided by the Hamiltonian 

ZL. H 
¢ 1/2 

+ in l + + 
1 

with b a real number. This yields 

M2 I 1/2 
b(q1 _ quo) 

'U
 .5

 
II C
 5 II m n Vn(l -vn2)-1/2 

for n = 1 , 2 ,  and 
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l do /dt = b 

2 do /dt = -b 

which were mentioned previously as an example showing that the con- 
ventional total momentum can be a constant of the motion for one - 
dimensional space. From the Lorentz transformations of ql , quo , vi 
and V2 , one can calculate 

[H.I2] = -p  

and 

[ p , K ]  = -H. 
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IV. Discussion 

History 
Now we will trace the history of some of the ideas which have 

been presented in these lectures. Our primary aim is to elucidate the 
motivation and development of classical particle theories. However, 
we shall consider also some of the quantum aspects, since they pro- 
vided part of the motivation, and slnce some of the ideas were stated 
originally in a quantum context. Beyond that, most of the classical 
work has as its aim a better understanding of the analogous quantum 
theory. 

The interaction of two particles can be specified by giving the 
accelerations as functions of the relative position and relative 
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velocity in some particular frame . 
the form 

This yields equations of motion of 
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(for n=  1 , 2) in that frame. To obtain the equations of motion in a 
different frame, we can transform the world lines and then find the 
equations of motion which they satisfy. For Galilei transformations , 
we find equations of motion of the same form 
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(for n= 1 , 2) for the variables of the new frame. The Galilei group of 
transformations is such that the accelerations remain the same func - 
lions of only the relative position and relative velocity. When the 
Galilei group is replaced by the Lorentz group, the transformation 
properties of the equations of motion become considerably more com- 
plicated, primarily because simultaneity is not Lorentz invariant. The 
accelerations are not only functions of the relative position and rela- 
tive velocity, but depend on the individual particle velocities sepa- 
rately. Thus one could easily write down the most general Galilean- 
invariant equations of motion, but finding Lorentz -invariant equations 
of motion requires non-trivial computation. 

Historically, this apparent difficulty was one of the factors 
which led to an emphasis on fields to describe the interaction of par- 
ticles. Other factors were Einstein causality and the question of 
energy conservation in classical electrodynamics. In these lectures 
we have considered energy-conserving interactions (as , for example , 
Wheeler-Feynman time-symmetric classical electrodynamics) , so the 
energy argument, which favors fields for the retarded interaction, is 
not relevant here. The assumption of manifest Einstein causality re - 
quires the dynamic properties of a radiation field; the field at a given 
time is not determined by the position and velocity of the source at 
the same time. However, while the use of a radiation field is a con- 
venient and conventional I the causality 
difficulties, even in the n Q formulation. In §Diracll did 
the mass renormalization needed to obtain the trajectories of particles 
interacting with an electromagnetic field. His exact solutions for the 
Motion of a charge revealed the dif§*"*5"=""'s associated with' . '1cel- 
eration. Havasz has shown that t lure of manifest E 
causality is not limited t o  the scalar electron interacting wlth the 
electromagnetic field, as considered by Dirac; it occurs for particle s 
with spin and fields with various transformation properties . 

A 
tlon ques Wigner3) showed how irreducible unitary 

-n»n.-'-"`~"lh, it does not tell' 

the same time that Dirac discussed the preaccelera- 
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. 

quire correct Lorentz transformations for the particle positions . 

representations of the Poincaré group can be used to describe ele- 
" systems, or free particles, in quantum mechanics. In 1941 

set up an analogous formalism for classical particles. He 
emphasized the representation of the Poincaré group, and did not re - 

(A 
similar formalism for fields had been considered earlier by Pryce.5)) 

Dirac assumed that canonical representations of the Poincaré 
group should be used to describe systems of interacting particles. 
He introduced this assumption by requiring that Poisson-bracket re- 
lations remain invariant under the relativity transformations. He took 
this to mean that the transformations must be canonical, as indeed 
they must if the Poisson brackets are always computed with the ca- 
nonical variables of a single frame. We use noncanonical Lorentz 
transformations , and we have a formalism in which Poisson-bracket 
relations are invariant. For example, the Hamiltonian and the gen- 
erator functions for space translations and rotations are invariant. 
The point is simply that after a Lorentz transformation one must~use 
the transformed canonical variables. 

In 1953, Bakamjian and ThomasS) developed Dirac's formalism 
for interacting particles by finding a general solution of the Poisson- 
bracket relations for the generators of the Poincaré group. They de- 
scribe a huge class of interactions for which the total mass (in a rep- 
resentation similar to that of a free particles is a function of suitably 
chosen relative variables. In 1961, Foldy7 presented an excellent 
discussion of the ideas which lie behind the use of unitary represen- 
tations of the Poincaré group in a formalism which says nothing about 
Lorentz transformations for particle positions . 
tic quantum theory of particles has been ---*'"*-"E to scattering8llll) 
and to bound states (as in relativistic qu__-_-___5-1 "12)). 

The spirit of this kind of theory is to abstract the Poincaré 
group from transformations in space-time, and then describe particles 
with representations of the group. The description is invariant under 
the group representation (for example r the equations of motion are in- 
variant) but only the group structure identifies the representation with 
the physical relativity transformations. We believe that the physical 
relativity transformations should be identified by their transformations 
of a complete set of physical quantities. For two or more particles , 
the group representation is reducible , the generators are not a com- 
plete set of quantities, and the group structure is not sufficient. 
How, then, did it happen that Lorentz transformations of particle po- 
sitions were generally ignored in the r"'""""**l"'""'""of these theories 'P 

It appears that 'l'homas13) cons_____v_m_u-jest Einstein cau- 
sality and Lorentz transformations of particle positions at the same 
time and, seeing the difficulty of this combination, gave up the trans- 
formation requirements on the positions. Foldy7) states explicitly 

'ma 

This kind of relativis- 
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that there is no manifest Einstein causality in his formalism and that 
Einstein causality is a question to consider at a later time. Foldy's 
reason for not considering Lorentz transformations of particle posi- 
tions is that he works in quantum mechanics where the definition of 
the particle pos ition is complicated by the uncertainty principle and 
zitterbewegung. 

To make a detailed inve litigation of this question of the posi- 
tion and its transformation, we consider the analogous classical sys-  
tem. We have seen that with correct Lorentz transformations of parti- 
cle positions in classical mechanics , there can be no interaction 
when the Poincaré group is represented by canonical transformations , 
as in Dirac's formalism. This no-interaction theorem, together with 
the realization that canonical transformations are not required, led us 
to the point of view described in these lectures. We begin with 
Lorentz transformations of particle positions and from them construct 
the representation of the Poincaré group. Our Hamiltonian formalism 
is developed in as close analogy to quantum mechanics as is possi- 
ble, in the hope that it might be quantized in a somewhat conven- 
tional manner. 

In the past few years several no-interaction theorems have 
been proved. Fong and Sucher9) show that conventional Lorentz 
transformations of particle momenta allow no interaction in the quan- 
tum theory. Van Dam and Wigner14) show that there is no interaction 
if the conventional total momentum and kinetic energy are conserved 
and the particles are free asymptotically. We proved a similar theo- 
rem in these lectures. We do not assume that the kinetic energy is 
conserved, and, since we do not use an asymptotic condition, our 
result holds for bound systems as well as for collisions. Van Dam 
and Wigner do not use equations of motion, and their proof is for 2 , 
3 or 4 particles. Still another kind of no-interaction theorem was 
proved by Ekstein15) using manifest Einstein causality. 

We have considered the instantaneous equations of motion 
which can be put in Hamiltonian " -  ere are other ways to de- 
scribe interaction in relativistic particls""'"'*i'*"L. One 
of the earliest, developed by Fd aid by Peg 
Wheeler, 17) was to eliminate the fields from classical electrodynam- 
ics. This has the problem of pre acceleration discussed in connection 
with Einstein causality. Havas and Plebanski18) have developed 
another formalism, a special case of which can be described as fol- 
lows. The acceleration of particle 1 at a given point on its world line 
depends on the position and velocity of particle 2 at the point on its 
world line which has the same time as that of particle l in the rest 
frame of particle 1. Therefore, the interactions are not simultaneous . 
Havas and Plebanski show that the resulting series of iterations is 
convergent and yields solutions for the world lines. Another formal- 
ism is that of Van Dam and Wigner19l in which the acceleration of 

I 
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particle 1 at a given point on its world line depends on the positions 
and velocities of particle 2 at all points on its world line which are 
space-like with respect to that of particle 1. This can be described 
by manifestly Lorentz -invariant equations of motion of the form 

d 2 2 I I Ml x1*(T1)/d'F1 d'r2 F* xl('r1),x1("r1),x2(T2),x2('r2) 
/ 

where FH is a function of four-vectors. 
Kerner20l and I-111121) have proposed a Hamiltonian formalism 

in which the physical positions , which transform correctly, are dif- 
ferent from the canonical coordinates. The advantage is that canoni- 
cal transformations can be used for the entire Poincaré group. The 
big disadvantage is that the relation of the canonical variables to the 
physical variables will be complicated, and this will make the ques- 
tion of quantization that much more difficult. 

Questions Still Unanswered 
In the following brief review, we will list some of the problems 

which are not yet solved . 
The spirit of these lectures has been to concentrate on the 

particl " " " " t r a n s f o r m a t i o n s  are defined most 
surely *Mils we first study the Newtonian 
equations of motlox it of Lorentz invariance takes the 
form of nonlinear differential equations for the acceleration functions . 
This is a strong requirement in the sense that it eliminates the use of 
canonical representations of the Poincaré group for describing interac- 
tions. On the other hand, we believe that there are many Lorentz- 
invariant equations of motion. For one-dimensional space, we can 
have any acceleration in the center-of-mass frame. The proof of a 
similar statement for three-dimensional space is not yet complete. 
Beyond that, we need more examples , and physically more interesting 
examples. Solving the nonlinear differential equations may not be the 
best way to find them; perhaps another approach is needed . 

It would be interesting to study in detail the connection be- 
tween the instantaneous equations of motion which we use and the 
equations of Van Dam and Wigner. 19) This might shed some light on 
the questions of Einstein causality. Eventually, however, the ques- 
tions of Einstein causality should be studied in a system of three or 
more particles. 

For given invariant eqzuations of motion, there are generally 
many different Hamiltonians, 2)-24) Is there a physical way to 
choose a unique Hamiltonian? The lack of a decisive answer to this 
question is one reason we concentrate on particle positions rather 
than canonical momenta. For the same invariant Newtonian equations 
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of motion, there are different Hamiltonians , which means that the 
canonical momenta are different functions of the positions and veloc- 
ities, satisfy different Hamiltonian equations of motion, and trans- 
form differently under Lorentz transformations. The situation is 11- 
lustrated by the following example . 

For a system of two particles, consider the different Hamil- 
tonians 

25) 

H 
2 2 1/2 

rnl 
1 (2 + Q) + + Q; _ QUO 2 1/2 

+ mg 
for different choices of a function x of £2 (where 2=31 -22). For 
any x ,  the accelerations are zero, so the Hamiltonian describes a 
system of two free particles. For the canonical momenta we get 
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Evidently the canonical momenta are constants of the motion only if 
x is zero, and this is the only case in which the canonical momenta 
are parallel with the velocities . We can require that the canonical 
momenta converge asymptotically to the conventional kinematic mo- 
menta. This implies that u decreases faster than 1ga1 for large 
Ill . This leaves an infinite number of different Hamiltonians, all of 
which are positive. In this case, where there is no interaction, we 
can choose the usual Hamiltonian with k =  0 by requiring that the 
energy H and the total momentum al +p2 transform as a four-vector, 
but this may not be possible when there is interaction. 

One can require, as above , that the Hamiltonian converge 
asymptotically to a sum of free-particle Hamiltonians. This would 
seem natural for equations of motion which are weakly separable . 
Fong and Sucher9) have shown that in their quantum theory this prop- 
erty follows from their choice of relative variables. We do not know 
yet whether a slmilar statement can be made in our Hamiltonian for- 
malism. 

If we now turn to quantum mechanics , we must first define the 
role of position in the quantum theory. An intuitive but incomplete 
approach is to require that the theory have a sensible classical limit. 
To illustrate this, consider at an initial time t =  0 ,  a narrow gaussian 
wave packet whose width is proportional to \/w. As time unfolds, this 
state develops a "world packet," a small region of space about a 
world line. This world line is roughly defined as the mean position 



138 D.  G.  CURRIE and T.  F .  IORDAN 

the o 

a function of time. More exactly, it is defined by 
ich case this world packet shrinks to a world line 
momentum. The requirement on the quantum 

inviting world line transform properly. 
With this definition of the transformation of the position in a 
with unitary representations of the Poincaré group, it is possi- 

ble2Igl to prove that there is no interaction except generalized contact 
interactions. In other words, given a classical system which inter- 
acts as we have discussed (for example, ah arbitrary potential V(x) in 
the center-of-mass frame) there exists no quantum theory of the above 
type which limits to this classical theory as to goes to zero. 
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THE THIRRING MODEL'f 

Bernhard Klaiber 
Palmer Physical Laboratory 

Princeton University 
Princeton, New Iersey 

Introduction 
The Thlrring model describes a self-interaction of a massless 

spinoza field in one-space dimension described by the Lagrangian 

Lint 
+L. 

Q] up* 

The history of this model has been a dramatic one and revealed the 
Thirring model as being a rather tricky object . 
count of this history is given in Reference 1. 
short sketch of this history. Thirring2) showed that the model is 
exactly soluble and constructed the eigenstates of the Hamiltonian. 
Glaser3) then solved the field equations. Both authors dealt with 
formal manipulations , and it was shown subsequently that these ma- 
nipulations lead to contradictions. ]ohnson4) then started from 
scratch, paid careful attention to the definition of the products of 
fields which occur in the definition of the currents and in the field 
equation and solved the system of coupled equations for the time- 
ordered functions. At that point one then asks for the unordered 
functions or even an operator solution. The latter was the a1m of the 
work by Scarf and Wess. This solution was again a formal one 1n- 
asfar as nonexistent line integrals of the currents were used. The 
algebraic structure of this solution contained a lot of truth, and it was 
also possible to obtain the correct n~polnt functions (corresponding to 
Iohnson's solution) in this framework. 7) What was too difficult to 
check was the positive definiteness condition. 

The purpose of these lectures is to give an operator solution in 
a well-defined Hilbert space. We avoid the introduction of an indefi- 
nite metric space for the description of the massless scalar field. The 
positive definiteness condition is then automatically fulfilled. We 

5) 

A comprehensive ac- 
We give here only a 

Presented at the TI-IEORETICAL PHYSICS INSTITUTE, University of 
Colorado, Summer 1967. 
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w111 obtain a two-parameter family of solutions in which the solutions 
of Iohnson and Schwinger are contained as a subfamily. We will ex- 
tensively discuss the properties of the solutions . 
II. The Massless Dirac Field in Two Dimensions 

In two-dimensional space-t1me, the zero mass Dirac field has 
some peculiar features which are the reason for the solubility of the 
Thirring model. Let us therefore begin wlth a discus sign of these 
features. 

The gamma matrices are realized by 2 X2 matrices : 

10 10 
_ 0 

-1 
1 

'Y 1 
= 'Y 

0 
'Y 

5 
'Y (II. 1) 

We will also use the relations 

W = etv v p. 
e 6 V £ V 9  p 

gn (II. 2) 

One cons iders a two-component field whose equation of motion and 
anticommutation relation are 

v*J.8|,~|»(x)= 0 {~P(x) , x / ) }  = S(x-y) (II. 3) 

Fourier representation: 

41 (x) 
1 1 1 -1 

= l ,  {a*(p1)e Px+b(p1)e px u(p1) p0= 1911 

{a(p1), a*(q1)} = {b(p1). b*(q1)} = 6(p1-q1). (II. 4) 

u(p1) is the two-component fundamental spinoza, satisfies 

= 1 'YP 
2 po (1lp)u(p1) = 0 u(p1)u(p1) (II. 5) 

and can be represented by 

u(p1) 

II 6(-p1) 
<9(P1) 

(11, 6) 

The interesting objects5are the current 1*"(x) '= 
pseudocurrent °iF(x}Y**'Y lIJ(x): = et*"jV(x). Both 
zero mass case : 

;$(x)v**¢(x), and the 
are conserved in the 
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8P'e*wj V(X) alJ. d*L(x) 0 I 

and this 1mp11es that jVL(x) is a free field 

1*"(»<) = 0 .  

(II. 7) 

(II. 8) 

The situation becomes clear if one looks at the support properties of 
LIJ(x) in momentum space. First note that 

(x) : 10(x) = =\l11(x)¢1(x): + =~l»2 (x<)¢2 

1'(»<) = -:411 (x)UH1(X): + =¢2*(x)¢2(x)= . (II. 9) 

If we decompose '~P(x) Into positive and negative frequency parts, the 
supports in momentum space can be characterized by the following 
diagram: 

0 1 
p + 0 

p 

o 9
"\ 

o II 
l-

I Q
. 

I 

Now the convolution of ~vf` and *l'1' for example, yields again 
something with the support PO + pi = 0.  

But it turns out that jP-(x) is even a canonical free field, 1,e., 
its commutator is a c-number. Let us see, in x-space and computing 
formally, how thls can happen. A straightforward calculation gives 

[iV(x), iv(y)] 
1 _ 

=¢(xWJ,S(x-y)'yv¢(y) : =$(y)'y"S(y-x)v'*¢(x) : 

- Sp{°y*J.S'(x-y)y`"S+(y-x)} + Sp{1fVS'(y-x)1fiJ.S+(x-y) }. 

(II. 10) 

To show that the two operator parts cancel, one has to show that the 
first one is symmetric in x and y. (Symmetry in I.i. and v is obvious 
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since 'y|*'y0'y" = 'y"'yP'Y* in two dimensions.) To see this, use the ex- 
plicit form of the S-function: 

s(€) 1 
0 5(€0+€1) 

6(.g0-§1) 0 
(11, 11) 

and the fact that *'1' LIJ2 do not depend on xO, al separately but 
rather 

¢1 = \411(x0 +x1) '!'2 = ¢2(x0 -x i ) .  (II. 12) 

(80 

This follows from the equation of motion which, in components , reads 

(80 +61 )LIJ2 = 0 .  (II. 13) '81)"*1 = 0 

So we have to  consider terms of the type 

=0;2(x0 +x1) 6(x0 +x1 - tO - iI) ¢1(y0 +y1) =. 
and this is symmetric . 

For a solid consideration, one best goes to momentum space . 
One then finds that the current has the representation 

My) 1 
\l"27r Mio '*"{°<*1'e 

-ilex _C*lk1)e1kX} k0=  Ik1 l (II. 14) 

c(k1) /dp1{6(k1p1)b*(p1)b(p1+k1) a*(p1)a(p1+k1) 

+ e(p1(kl-p1))a(k1-p1)b(p1) 

[¢(k1) *(pi)] I c II 6(k1-p1) c(k1)$'2 = 0 (II. 15) 

if sz is the original vacuum of the a and b. 

current: 
curl of 
invites to 
free scalar field of mass zero. 

Equation (II. 14) anticipates yet another characteristic of the 
The quantity 6|J.vVUJ.jv is the two-dimensionM analog of the 
Lu' Its vanishing implies that up, is a gradient, And (II. 14) 

the conclusion that it is even the gradient of a canonical 
But here the trouble begins. In two 

dimensions there is no such object. The two-point function would be 

const. dkl 

2k0 9-ikx 
I 
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thus divergent at k = 0 .  
If one wants to solve the Thirring model, one has to overcome 

this problem. But before we have a look at this, let us list the com- 
mutators and singular functions of the zero mass spinoza field : 

- l _ 
(9,¢(x)¢(y)9) = i s (x-y) 

S-(E) dp1e-ipé i 
27r @(°1) 

S(-p1 
0 

_L 
21r 

0 
1/0;0--;1 -1€) 

1/(€0+§1-i=) 
0 

s(6) = s'(§) +s ' ( -§)  = 1 0 6(€0+§1) 
6(§0-gl) 0 

(11, 16) 

{¢(x),J(y)} S(x-v)  L 
i 

[J*"(x),4U(y)] = -(Q*""+eW'v5)Dv(x-y)~|1(y) 

u*(><),i"(v)] = ;1>»*"(x-y) 

D,,(;) 
1 

21r 
dkl 

2k0 kv(e -ikx_l_elkx)= 8,,[9(§0)6(§2)] _1 
2 

D*_W(€) al.L Dv (g) 

For equal times , x0 = yO : 

[ j0(x)  ,LIJ(Y)] 

[i1(x), *IJ(Y)] 

-6(x1-y1)¢(y) 

-v56(x1-y1)¢(y). 
(II. 17) 

This means that j0(x) (resp. j1(x)) is the generator of space-time 
dependent gauge transformations (resp. y5-transformations): 
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eiQ(A:y0)¢(y)e-iQ(A:y0)= e JA(y)lI»(y) Q(AFY0) dX1A(X)j0(x) 
x0=V0 

e15(A.Iy0)¢(v)e-i6(A;y0)= ei°'5A(Y)\U(y) 5(A:y0) dxlA(x)j 1 (x) . x0=¥0 

For the interacting current I*(x) of the model we will also postulate 
relations of the form (II. 17) (with general coefficients occurring), in 
addition to the conservation equations (II. 7) . Then I*J.(x) will again be 
a free field, and a relation of the type (II. 17) defines a unique caih'lis-~ 
problem (remember that 80j0=81j1,  80j1=81j0).  Thus the comma 
between the interacting field and current will essentially again have 
the simple structure (II. 16). 

III. A Substitute for the Massless Scalar Field in Two Dimensions 
There is no massless scalar field in two dimensions. This 

boils down to the fact that in two dimensions there is no distribution 
(except, of course, 6(p)) which has support given by p2 = 0  p0 2 0 and 
which is positive definite and Lorentz invariant. The candidate would 
be , of course, 6(p0)6(p2). Written in the variables 

c II 1 
p + 0 

p 

II :> 1 
- D  0 p r (111, 1) 

it is given by 
L 
u 9(u) <5(v) + 9(v) -L 5(u) . 

and 

6(u) L 
u I 

for instance, is not a distribution. 
redefine the two-point function as 

One way out of this difficulty is to 

L 
u 6(v) + 

+ 
V +6(u) 

where (1/u)+ is a regularization of the function 9(u)(l/u) . A regulari- 
zation of a (nonintegrable) function is defined as a distribution which 
coincides with this function everywhere except in the neighbourhood of 
the singularities. In our case , 

L 
U +  

, f  = yfdu f(u) 1 
u (111, 2) 
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for all test functions for which f(u) = 0 in a neighbourhood of the ori- 
gin, (T. f) denotes the application of the distribution T to the test 
function f .  Such regularizations are furnished by 

oo 
1 
U +  

, f  II .L 
u § du f(u) - 9(2K -u)f(0) 

O 

(111. 3) 

with K an arbitrary positive parameter (here with the dimension of a 
mass) , and the factor 2 stands purely for later convenience. 

This provides us with a 2-point function which is invariant 
but not positive definite. However, it has been shown) that a (in- 
definite) space of states and, in it, a field having this 2-point func- 
tion, can actually be constructed. 

This procedure has some drawbacks. If one constructs the 
solution of a model in such a space, one then has to show that the 
resulting n-point functions are positive definite , or, in other words , 
that the subspace generated by the resulting field operator is positive 
definite. For Schroer's derivative coupling6) this has been done, 1) 
but for the Thirring model this would probably be more difficult. Then, 
there is another problem. We are not dealing with an independent 
scalar field (as one does in Schroer's model) , but with the integrated 
current of a spinoza field. A third field in the game is the integrated 
pseudocurrent. All three would be Lorentz invariant, but it turns out 
that they would transform with different unitary representations of the 
Lorentz group. The trouble comes in when one splits the integrated 
currents into positive and negative frequency parts. But to calculate 
the n-point functions one is seemingly forced to make this splitting. 
All this shows that there is no advantage in working with Lorentz in- 
variant auxiliary fields. What is important is to ensure invariance of 
the final solution. 

We will not use the indefinite metric, but the regularizations 
which characterize it will, at the end, come in in our solution as well 
(through the back door). Let us therefore discuss them in detail. The 
light cone consists of fou.r invariant branches Fir Fi : 

r,f` 

Pg/ 

to 

L, I 

On these we can consider the following distributions : 
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r r 1"+ :G_l_(u,v) u + ll) 6(v) (GLB 

p+" :G_{(u,v) 
1 
v 

e f) u) (G+' 

= I_)+°' 
1- _r :G_r(u,v)l = 1 

V ( )  6 (u) (Gr,f) = 

BERNHARD IQAIBER 
oo 

1 . 5° du u f(u.0) - 9(2 K-u)f(o,o) 
o 
oo 

1 I dw f(o,v)-6(2K-v)f(o,o) 
o 

o 1 dv ; 
OO 

( 
f(o,v) -6(2K+v)f(o,o) 

1"'e:GB(u,v)= l 6(v) ( )- (G",f) 
Io Soodu L kw. o) - e(2 K+U)f(O, o) 

) 
) 

) 
I. 
(III. 4) 

Here we have also introduced the distribution 

. o  
= I du f(o) _ 0(2 K+u)f(o) 

- t o  

1 
u (09 l_ 

u * 
Q 

(III. 5) 

Let us first study the behaviour under Lorentz transformations : 

x- 'Ax IJ. A v  
cos x sing 
s 1nx COSX A u = e X u  Av = @'Xv. (111. 6) 

By definition , 
(G(Au,Av),f(u,v)) (G(u,v) .f(A'1u,A"1V)) . 

Thus , for example , 

(Gi(Au.Av) ,f(u,v)) 

II 

II 

L (e'xu,o) -f(o,o)6(2K-u) 

I du l ( u , o )  f(o,o)9(2Ke-X-u) 
o 

d L f , - lo u u u o) . 

+ du-L 6(2K-u) -6(2»<e-X-u) f(o,o) 
O 

f(o,o)6(2K-u 

(G+r(u.v) ,f(u,v)) + xf(o,o)) 
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and similarly with the other branches . We get the following table : 

G_{(AU,AV) Go(u,v) + x6(u)6(v) 

Z 
G+(AurAV) 

G r(Au,Av) 

G"(u,v) - X6(u)6(v) 

G'(u.v) + X6(u)6(v) 

(111. 7) 

GElALl,A.v) G£(uIV) X6(u)6(v) . 
The most general invariant combination is 

r r aG_l_ + r2Gf + 'kG_ + AG 

Fourier transform : 

with a - B + 'Y - 6 = 0 (111. 8) 

I due-ipé G; l _ ' 
dud e -  2"('50'€1)'$V(€0+€1)G,u.v) L 

2 

1 §§du 1 
" +  

e-%u(€0-51) 

I 

1)I gIK(&0_~*; 
1 -1° al E 

2 @(€0-€1)+1"(1) 

Introduce now a new mass 9 6 - T " ( 1 ) K _  Then 

i 
2'rr dpe-1P€'G+= 1oQh-(20-€1)l £(60-€1) 

1 
41r1 

+11r 
2 ~( 

{ 1 
41ri 

igor 
1og[»(=;°-el-1¢)l +5-} 

(111, g) 

i 
21r dp e -ip§Gr = 1 

41r1 
igor 1OgIp(€0+E,1)l+ 2 

1 
41r1 

. I 0;0+€1)) 

.{10g[l-(€0+§1-i€)] } . 
Both the sum and the difference of these functions will play a role _ 
We have 
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1:)'(€) _ i 
21r I 1 -1 dpe "§(G++G") 1 

41ri log Men I + i1re(§0)e(§2) 

1 
41r1 log (-\J~2€2 +ie§0) 

i'5'(&) J_ 
21r 5 dpe -1p§ r £ _ 1 

(G+-G+) ' 4'/r1 log F50-E 1-1? 
g0+g1-if 

(III. 10) 

l 
41r1 log €f'-£1 

§0+€1 
_ l 

4 @(€1)6(-i2). 

Transformation properties : 

D'(A€) = D'(.~;) f>'(A»;) = 15'(=5) 1 + 2'.'r X (111, 1 1) 

We get alternative representations for D' and 15' if we make the 
substitution u= 2p1, v =  -2p1 in the Fourier integrals: 

D'(§) 
i 

21r 
dpi 
2p0 

-1p€ - 6(»<-p0) 
6-ip€_ 6(1<_P0) 

(III. 12) 

Next, define 

15(€) 

1 
21r 

r II r 2 G++G++G_+G__ -i 
Dre) = - § d p e  p 

and B(€) as resulting from D(€) by the operation p0-p1 
X0-'X12 

_ _1 

. 

= - d e  Pg c i -GE-G'+G_ i 
27r D(-5) Q.L 

0 'P 

(III: 13) 

or 

e v é v .  

(III. 14) 

1'5'(€) is then the negative frequency of 15(€). The positive frequency 

15+(€) = -f)'(-e). (111. 15) 

D',  15", et cetera, contain zero frequencies. 
not unique, and we Go' 

It should be noted that we are using a somewhat sloppy terminology; 
The decomposition is 

have adopted the simplest possible definition of 
by choosing all four parameters K to be the same. Finally , 
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me) = D'(=;) -D1-6) = §@(»;0)0(€2) 

Bra) = -%e(§1)9(-32).  
(111, 16) 

An alternative to the method of indefinite metric consists of regu- 
larizing not the 2-point function but the field: Define the zero mass 
scalar field by 

qu- (x) 

<p+(x) 

l 
'~/2'/r 
-5 , c(k1) (e 

.I d l  
~/2 k0 

-1kx - 6(K-k0) 

1 
\/21r c*(k1) eikx - e(K-k0) 

£(=(k1),<=*(p1)1 = 6(k1-p1). (III. 17) 

Then 

$M>(x)<v(y)§z = D»<K(x.y) 

D,<K(x,y) 
i 

21r 
-1kx d l  

2k0 
5 Le - 6(K-k0) 1k e Y _ 0((<_k0) 

(III. 18) 

[ sv*'(x) . @*(v)] 
1 _ 
?D,1'K(x.y) D+ 

KKIXIy) = 'D- 
KK(Y'x) (111, 19) 

DKK(XIY) is a well-defined distribution, but not translation invariant. 
To obtain a decomposition we will use later, observe that 

(e-ikx _ 6) (eiky _ 6) (e-1k(x-y) _ e) -.e(e-ikx - 1) - e(eiky - 1) . 
(111, 20) 

Therefore , 

D o = - i m + m  
if 

A+,X) = i i 
27r 

kl  0 ilex 
9(  -k ) (  ; -1) 2k0 K e 

(111, 21) 

and r)*(€) is the regularized function defined above. This is the 
Place where the functions of the indefinite metric again come in. As 
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to the unwanted A functions , 
of them. 

we will have to find means to get rid 

IV. The Thirrinq Model 
We cons der first the classical version of the model. 

equation of motion and conservation equations are : 
The 

1v*J.8,A>(x) -QI*"(x)v*,,<i>(x) 

I**(x) = $(x)'v*J.4>(x) 

8*1(x)  = 8"'mvI"(x) = 0 .  

(Iv. 1) 

The current can again be written as a gradient: 

1 
= T 8 u x )  ' To. (x) (Iv. 2) 

Consider the expression 

¢0(x) = e 
- i(Q/\ l ; f)](X)¢(x) 

and its current 

1*.L(x) = ¢o(><)v+'¢8(x) . 
They satisfy the relations 

v*J.8*¢°0(x) = 0 

(Iv. 3) 
IVJ.(x) = In"(x) . 

The most general solution of (Iv. 1) can therefore be written in the 
form 

¢(x) 
- V' e.(g/ 1r)j(X)¢O(x) (Iv. 4) 

where ¢0(x) obeys the free field equation and j(x) is its integrated 
current. 

From any solution II:(x) of the free field equation and its cur- 
rent j(x) , one can construct new ones by forming 

. 5.~ 
1C x X 

where we have introduced the integrated pseudo-current ~ j(x) : 

=P(x) . (IV. 5) 
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e*wj v (x) a*?(x) . _ 1 
Jn (IV. 6) 

(The integrability of the pse udocurrent follows from the fact that the 
divergence of the current is the rotation of the pseudocurrent.) Note 
that j(x) is the current of ¢0(x) as well as of -l:(x). We find in that 
way that, starting from a free field 41(x), we get, for every g ,  a one- 
parameter family of solutions • 

4>(x) ei {<rJ (x)+6v5T(x) } =l4(x) (Iv. 7) 

°1!§ 

QUO 
I CK a,B real. (Iv. 8) 

In quantizing the model, we assume that \{1(x) is a canonical 
free field. This gives us a more general solution than if we chose 
4>0(x) to be canonical. Now we define 

j-(x) 
1 -it - 9(*<*k0l 

(Iv. 9) 
+ _ 1 d l  

1 (x) - to c*(k1) (+1kx - ¢(<-k0) 

where c(kl) is the variable occurring in (I. 14) . 
1 

= TF 8u1(X) ' 1 ( x )  

Then, clearly, 

(IV. 10) 

T (x) 

Observing that e(k1)k*1.=e*""kv for to > 0 ,  we define 

1 . § dkl. ` ;./r ,Jo . 
2] 

e(k1)¢(k1) 'ik*-e(»<-k0) 

T+(x) 1 _ 'Jin 
I all 

J2k0 
e(k1)c*(k1) 1kx _ 9(K-k0) (IV. 1 l) 

9**VJ,,(x) 

Another step we have to take to insure the existence of (IV. 7) is to 
split the currents into positive and negative frequency parts and to 
rearrange the expression in the following way: 



154 BBRNHARD KLAIBER 

¢(x) = eiX+(X)4:(x)e1X- (x) _ _.-+ _-'- ¢(x) = 9 1X (X)$(x)e 1X (x) 

(IV. 12) 
Xi (x) :t 

of (x) + 6-5?i(>0 ?(*(x) 0,ii:(X) 5-:t 57 J (x) • 

This object is an operator-valued distribution. To compute its n- 
point functions one has to take into account the commutation rela- 
t1ons 

[1-(x). j+(y)] [ T - ( x ) . - I  (oH = D;K(x.y) 

[i'(x),3'*(v)] = i5KK(x,y) 

[ji(x), '~l»'lY)] 

[?*(x). LlJ(Y)] 

-'J-1rDi(x,y) + "/51'5i(x.y) My) 

-~Gfi 15*(x.v) + 'Y5Di(x,y) My) _ 
(IV. 13) 

The B O K  function is obtained from DiK by writing a factor e (kl) in 
the Fourier representation (III. 21) : 

-ike(k1) 
e x _ 9(K-k0) eiky- 6(K-k0) 

~+ ~ _  

DKK(XfY) = -DKK(y.x)- (IV. 14) 

The DK functions have only one subtraction, 

DK(X, y) _ i 
21r 

-ilex d l  
2k0  I Le - <*(K-k°)\eiky 

(IV. 15) 
+ 

DK(X»Y) 
1 

21r 
ilex dol 

2k0 
I Le _ e(»<-k0) -ik e Y 

and 51: are again defined by an additional factor e(k1) . The decom- 
position into wanted and unwanted parts analogous to (III. 21) looks 
11ke 

D*(x, y) II D;(X 'y) + Ailyn 
(Iv. 16) 

The decompositions of the 15 functions have the same structure as 
those for the D functions . 

Of course, the n-point functions of 4>(x) tum out to be not 
translation invariant, since they are functions of the DK and D K K .  
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[q:t(x), 443/)] 

(The only exception occurs for a = B = ,  in which case all n-point 
functions are constants independent of x. )  We use now a trick 
which makes that all the unwanted A terms cancel. The idea is to 
introduce operators q:*:(x) , §i(x) which have the property that 

i 5 - i  = -~/'1r{.vlA (x) +v2'y A (x) MY) 

- i  5 :|: .. 
= -~Gf{»1A (x)+u2y A (x)1MI»(y) [§i(x), LIJ(y)] 

[q*(x)] * = q*l(x) 

la*(x)] * = a'+l(><). 

(IV. 17) 

q(x) , q(x) are , of course, given by 

= N/- 'Ir v1Q A*(X) + v26 §i(X) Qi(X) (IV. 18) 

q*(x) =~Hf »1Q8i(x)+»»-26)*(x) . (Iv. 19) 

Q and <5 are the charge and pseudocharge: 

1 0 
dx 1 (x) = Q 5 dp1b*(p1)b(p1) - a*(p1)a(p1) 

(IV. 20) 

6 I dx1 j1(X) _dplG(p1)  b*(p1)b(p1) - a*(p1)a(p1) 

[Q. ¢(x)] = -Mx) 

16, ¢(x)] = -y5\U(x) 

Now replace X(x) in (IV. 12) by 

(1v.21) 

Xi(X) 
1; 5 'to 

ajax)+q (x) +'Y BJ (x) + ii(x)l _ (IV. 22) 
I 

Let us now look at the n-point functions of 4>(x) . Think of a 
product of operators ¢(x1) r ¢>(yk) and pick two neighbouring factors , 
e . g . , 

¢lxj) (l>(Xj+1) e 
iX-(x-) eiX+(xj+1) J 

ix+("1)¢(xi)e 
'x'( 

(1v.23) 

One has to move the annihilation operators to the right and the crea- 
tion operators to the left until they ultimately reach the vacuum. on 
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which they give zero. 
that ebB= 
~P(x1) and 

BERNHARD KLAIBER 
- - + 

To commute 61X (Xl) and six (Kl+1) one uses 
eg_Af BleBeA if [A,B] is a c-number. Then one commutes 

31X (Xj+1) (and six (xi) and be using that, if 
[A,B] = pA, >. a c-number, then AeB=e'e A. Having X'(xi) and 
x'(x1+1) to the right of *l1(Xl-l-1) , we 'I- 
and so on. At the end of the process we have all 91\ t o  the left, all 
e X '  to the right, and the free operators 41, $ i n  between, and the n- 
point function is the free n-point function multiplied by an exponen- 
tial of DK,  DKK and A functions. Let uS see how it is possible that 
for a certain value of al , no , V I ,  v2 we get a translation invariant ex- 
ponent: 

\I*(1+1)) 

commute them with the next factor, 

Commuting 41(x]) and X+(xj.,.1).. 

Commuting X'(xj) and UH(xj+1) 

Commuting X'(x1) and X+(Xj+1) - DKK(Xj,Xj+1l, contains A"(xj),A+*xj+1) 

D+(x1+1,xj), contains A'(xj) 
and A+lXj+1), 

DKlXj,Xj.l.1), contains A`ll(xj+1) 
and A`(xj). 

-v 

(We have listed only the terms which are free of 75 matrices.) The 
condition that all A"(xi) and all A`ll(xj+1) cancel each other gives us 
two equations for "1» which to be the Consideration of 
the terms proportional to give one equation for 
each of '"2» **1» up. The result is 

hap n same . s Ee s 5 To, | 'Yxi-I-11 'YX{'YX(+1 

v i  - a 1 % = 1 -  
l*1 a 'If 

V I  = B 1 _ 6% H2 -. B 
(Iv. 24) 

Taking into account that some of the field operators in the n-point 
function are adjoints $(y) instead of <1>(x) does not yield new condi- 
tions. With the choice (IV. 23) for the p and v ,  the vacuum expecta- 
tion values take on the form 

Q, ¢(X1). . . ¢(xn)$(y1). . .75(yn)$2 

e1F(x.y) Q, ml). . .¢(x,,)$(y1). . .Q»'(¥n)§\ 
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F(x.y) 
5 D 5 - 5 5 - E {a+b 'Vx Yx (Xj -Xi) + A 'Yx1+YXk lx-xk)} 15 

/ 

5 a+b Yyjvyk 12% O 

_ 5 5 
D (Yj'yk) - K  vyj+'yyk 15 (Ye -ye)} 

*Eli 5 5 .. 5 5 p v -  _a+b v x j v y k D  (xi -ye) + A '"xi + ' yykD (xi -ye)} 
2\l-fra b 52 2~5rfs K = QB -'~f1ra -- 'ruB 

(IV.25) 

v. Lorentz Invariance 
Having arrived at a solution which is translation invariant , 

we recognize that in general it is apparently not invariant with re- 
spect to homogeneous Lorentz transformations. This comes from the 
D' function which is not an invariant. Consequently, one would be 
tempted to put >»=0. But this would mean losing one of the most in- 
teresting features of the model. For the free field 4U(x) there exists a 
unitary transformation V(A) wlth 

V(A)-1~lJ(x)V(A) 
5 

€(X/2)7 Ll:(A'1x) 
(v. 1) 

v(A)"$(=<)v(A) MA-1X)e-(x/2)5 

F(x,y) transforms in the following way' 

F(Ax,Ay) in + _  5 5 + 'yxk 
' yx j  * we( 5 5 +vyk 'Yy1 

+ 

J 

+ ii 1 + Z) 
1)\ 

F(x.y) + 2'rrX E t 5  
J 

Z yak} 

Therefore, substituting XI *Axl , ye-Ayk in the expectation value of 
¢(x) is equivalent to multiplication with 
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n n 
.H H 
]=l k=1 

5 
(§+(>»/2.r))xv 51 -(§+0~/2 w))x~yk 

e e I 

and thus , in the subspace generated by co and 5, there exists a uni- 
tary operator U(A) which transforms ¢(x) in the following way: 

U(A)'1¢(x)U(A) e(§+0~/2vr)x'y5¢(A-1x) 

(v. 2) 

U(A) '1$(x)u(A) A- lx) @-(§+(/21r)X'y5 

In four-dimensional field theories (with finite number of field compo- 
nents) the way in which the field components transform under a 
Lorentz acceleration along the x'-axis is related to the spin in the 
following way: Since this is an abelian subgroup, its irreducible 
representations are one-dimensional and of the form ea/X, and the 
maximum value of the a is the spin. For example, for a Dirac field , 
\Pi*€i§X*lJi for an appropriate realisation of the '7-matrlces, and for a 
vector field, A0iA1" eix(A0 :l:A1}. In two dimensions there is ,  of 
course, no spin, since there are no rotations. Equation (V.2) shows 
that the solution (IV.24) interpolates the parameter a continuously. 
This situation cannot arlse in four dimensions where the rotation sub- 
group gives periodic boundary conditions which make it integer or 
half integer. (It is interesting to note that this is not true for the 
infinite dimensional fully irreducible representations of SL(2 ,C) where 
the accelerations are independent from the rotations in the sense that 
the rotations are parametrized in a discrete way and the accelerations 
in a continuous way. 10)) 

The energy-momentum spectrum of the states <l>(x)Q, $(x)S2 has 
a peculiar structure, as one sees if one looks at the two-point func- 
tion: 

$2 ¢( )$( >n ei{(-a+bv5vy5)D'(x-y)+>~(-yX5+'vY5)D`(x-y)} . x Y L 
i S-(X'Yl 

l . e 
1 

-i{(a+b)DI(E)+2M'515l(§)} _ 
S (g) (E =x-Y) 

(v. 3) 

since (7 5 +'y 5) S-(x-y) = 0 .  The decomposition (III. 9) gives x Y 
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D'(€) 10Q[v»(€0-31-1e)] +10Q[u(€0+€1-ie)] +1Vr 1 
41ri 

(v. 4) 
1 

15'(5) = 41ri of [..~(e,0-€1-im - log [»(€0+e1-i@)]} 

and therefore 

(a+b)D"(&) ;2m5'(€) 
l 

4'rr1 {<a+b ¥ 2k)log [v('f80 -E. 1 -i e)] 

+ (a+bi2))1og[ (€0+&1- i ) ]  + 11f(a+b)} 

e-1{(a+b)D'ce)+2»~5B'(e)} 'Kalb e X 

l 

v(§0-*S1-16) 
1 

a+b-ZA 
41r - 

»(§0+~€1 -:i e) 
1 l 

&+b+21\ 
41r 0 

0 
+4§0-€1-iE) 

1 
a+b+2\ 

41r ` 

11(€0+€1 -i£' 
1 I 

a+b-2>, 
47r 

r 

(v. 5) 

With the explicit form (II. 16) for 8-(§) this means that 

.a+b 
* p -1 4 

$2 $2 = .¢(x)<l> (y) 5 21r1e X 

I 
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l 

.a+b-2X 
47r 

A60-i1-1¢] 

1 l 
a + b 4+ ZR +1 

vi€0+-51- ie] 

1 

l 

0 

0 . 
ma"-a1-1: 

1 

a+b+2\ 
41r 

l 

§+b-2k 
41r 

ydpe-ip€F(p).  (v. 6) 

To get the Fourier transform F(p) take Into account that 
& a i t c h  

P: .2-1 
§do(a-1¢) = 9(0r)0' . -E lac' 

e swwilf 

r 
I 

(v. 7) 

Then, if u=l-(€0+§.1), v=»(€0-€1) 

F(p) = -§d§e1P€ =2,¢(><)¢*(y)n\, 
1 

21r 

I 

I 

= 1 
4'Irl.l.2 I dud e1u((p°-pl)/zp) €1v((p0+p1)/ZM <1>(x)¢*(y)9) 

1 2% 1" ((a+b-2 K)/41r)1"((a+b+2}\)/41r) +1) 9(p0+101)9(p0-91) X 

a+b-2K 
1 41rp04-p 

1 
21¢ 

- 1 -  

P0-p1 
nu 

a+b+2)». 
41r I 

0 

0 

a+b+2K 
an 41r 

&+b'2li. _ 
4 

p0-pI*-l 7f' 
211 

(v. 8) 
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For .Z > 0 ,  the function 

1 re) 9(cr)cr 1G-l 

is  integrable and defines a tempered distribution. For £ -  0 ,  it con- 
verges to 6(<r) in the space S '  of tempered distributions. If we rein- 
troduce the original parameters a,  B, then a +b - 2>~= (a - B)2 and 
a+b+27\=  (a+B -2v-1r)2 -41r, Unless a=l3 or a + B = 2 r ,  the two- 
point function does not contain a 6-function contribution. The model 
then contains no one-particle states , no asymptotic fields, and the 
S-matrix cannot be defined. Finally, we note that the set of n-point 
functions (N.24) satisfies the spectrum condition in an obvious way. 

y1. Locality 
Another property we have to  check is the commutation behavi- 

our for space -like separation. Look at the product 

¢(X)I5(¥) 
e1x+(x) (x)€ix'(x) e-1Y+(y) e-ii'(y) 

We have to commute X(x) with X(Y) I X(x) with LIJ(y) and J,1(x) with 
)L(y). The A terms again drop out and observing that, for x-y space- 
11ke', D(x-y) = 0 ,  D(x-y)= -if (xl -YI ) ,  one finds 

¢(x)$(y) = -e1A(x.y) $(y)¢(x) (x-y)2 < 0 

K 
A(x.y) = 5 v 5-'yy5 £(x1-y1)- (VI. 1) 

In components, this means 

¢1(x)¢2*(v) = -¢2 (y)¢1(x) 

<I>1(x)¢1 (y) = -e'i*'("1'Y1)¢1 (v)¢1(x) (VI.2) 

e l _  l 
¢2(x)¢2*(y) = -en (x Y )¢2 (y)¢2 (x). 

For x= 2N1r (n=0 , i1 , i 2 . . . ) ,  we have 

{¢1(x).¢i*(v)} = 0 

and for K = (ZN-1)1r, 
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[<I>i(x).<1>1*(y)] = 0 .  (vI. 3) 

The "spin" is le  K/2'/rl and is, therefore, I N + § l  respectively In I 
for the two cases. The relation between "spin" and statistics is thus 
maintained and (VI. 1) is a continuous interpolation of it. A similar 
structure is displayed by the relation 

1B( ,y) x <1>(y)¢(x) <l>(x)<'p(y) = -e (X-y)2 < 0  

x 
2 

5 5 B(x,y) = - ' 'Yx+'Yy e (x1-yI) 

¢1 (x) <i>2 (y) -¢2 (y) del (x) (VI. 4) 

¢1(x)¢1(V) = -ei\e(xl-y1) 
¢l(Y)¢1 (x) 

<1>2(x)¢2(V) = -e'iK€(X1..y-1) 
<1>2 (y) '*'2 (x) 

and again 

{(i>i(x),¢i(y)} = 0 for A 2N1r (VI. 5) 

[¢1(x) . <1)i(y) ] 0 A = (2N-1)1r. (vI. 6) 

VII. More Explicit Form of the n-Point Functions 
Equation (Iv. 24) is a rather baroque way of characterizing an 

object which has a very simple structure. To see this, one has to 
realize that the free n-point function, which is a combinatorial sum 
of products of two-point functions, can be summed up to give a sim- 
ple expression. For example, 

Q/llJl(X1). . . 1(Xn)¢1 (Y1)- • . M ( )  = 1 
1 Yn 9 (21ri)n 

TI 
j<k 

17 
J<k 

k("i -Up-ie) 

(up -Up) (Uj -Up) 

. H 
1 ,  

_c
 11 _x
 O

 
+ 

._
.)¢

 1-
1 

J 
. - . Y + 0 

J Y 
J 

U 1 (VII. 1) 
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Look now at the n-point functions of ¢1(X) . We have to put 

5 
'Yxj 

5 
-1. *ye 1 

in F(x,y) of (IV.24). With the form (V.4) for D- and 151 iF(x,y) 
takes on the form 

1Fx,  -in e ( y ) - _ e  
a+b 
4 

I 

l n  
a+b 
2 :or 

a+b-Zh a+b+2 k 
1 . H (Vj -vk-1e) 41r (Up -uk-1e) 47r 

1<k 

H (Vi -vi-ie) 
j<k 

a+b-21 
41r 

B+b+2k _ _ 4'rr (Up Up je) 

H 
L 

Vi -Vk-16. 

a+b-ZA 
41r _ _ 1 \ 

Uj'Uk'1€/» 

a+b+2X 
41r 

(VII. 2) 

and therefore 

¢1(X1) . . ¢1(xn)¢1 (Y1) | | | 'be lyn)n 

n -in('1r/2)(61+62-1)-L n(51+62-1) 
W e IL 

. 61 61 61 . al 11 -uk-1e) (Up -Up-ie) n( 'Uk-1€ 

(VII. 3) 

( - - i ) 6 2 ( v - v  -'¢)62` v] vi e j k 1 \ 

1<k 

62 

6 - 
1 

a+]q+2 X 
41r 

+ 1 6 2 
a+b-ZA 

41r 

The n-point functions of 'P2 (x) and 4>2 (x) follow from those of q11(x) 
and ¢1(X) by the substitutions u-v,  U--V. For 51 and 62 integer, 
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IQ. ¢1(x1) . -<1>1(xn)¢1 (Y1) . • '¢1 (y)9 II ZEAL 
IJ. 

I )I1(61+62-1) 

9, Pa (XII I - -~l»1(xn)¢1 lY1)~ . I (yn)§2 (VII. 4) 

2,~l»2(x1). . . Ua2(xn)\4»2 (y1) 
62 - • . 'l'2 (yn)9 

and the n-point function of ¢1(X) has the structure of a direct product 
of free n-point functions. It is well known that, if A(x) and B(x) are 
two fields , one can construct from their n-point functions a new se- 
quence of n-point functions by forming 

C A B W n (xl. . .xn) = Wn (xl. . .xi)Wn (xl. . .xn). 

In terms of operators, this corresponds to forming the direct product 
lHC=J=lA®34B of the Hilbert spaces and computing the n-point func- 
tions of the direct product of the fields: C(x) = A(x) ® B(x). The 
structure (VII. 2) is a continuous interpolation (with respect to the ex- 
ponent) of such multiple prcduets. For a field with non-vanishing 
spin in four dimensions such interpolations cannot occur, since they 
would lead to interpolation of the spin. For a scalar field the ques- 
tion is open (the crlt1cal point is , of course, the positive definite- 
ness). 

For the mixed functions 
2 H Z n 

n,H¢1(xj)H ¢2(xj)l]<1>1 (ii) U '*'2 (yam 
1 E+1 1 £+1 

use that 

£ n E * n 
raj] ~x1(x1) H ¢2(xi)H\U1 (Yul U ¢2*(v1)Q 

1 £+1 1 £+1 

(_1)£(n-B) 

E Z n n 
=2.H¢1(xi)H¢1 (van Q.  H ¢2(x1) H '*'2 (van 

1 1 ,Z-I-1 £+1 

Therefore, the mixed functions of d,> split into a product of functions 
of ¢1 and of <1>2 , which is ,  however, multiplied by a factor which 
comes from the summations wlth 1 § j 5 £ ,  £ + 1 s k s n  and Z - l - l § j 5 n ,  
l iké l l  in F(x,y) in (1V.24): 
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Z n .Z * n * 
Q2,Hl<1>1(x1) H <l>2(x1)H¢1 (yi) £H1<1>2 (yi)9 (-1) 

£+1 1 

1!(n-Z) 

j"l k-£+1 

6 6 6 6 
J 

.2 n H H (uj-uk-1e)5(vl-vk-ie) (Up-Uk-ie) (Vj-Vk-1e) 
j=1 k=£+1 

.B n 5 6 n B 6 5 H (Llj-Uk-ie) (vi-Vk-ie) g i 1 f u j - U k - l e )  (Vi-Vk-ie) 
j= = 

(VII. 5) 
E JZ * 

Q, Q ¢1(xi)[11 <*>1 (van) I n 

Q, IN <1>2 
£+1 

n 
(xi) H ¢2*(vi)9) 

£+l 

6 a-b 
41r 

VLII. G1 Lister Properties 
In a field theory which satisfies the conditions of relativistic 

invariance, spectrum and locality, the vacuum is unique if and only 
if the n-point functions have the cluster decomposition property, in 
our case | 

lim 
P-.OO 

Q, ¢(x1+pn) . .. 4U(xp+pn)$(y1+pn) . . . $(yq+p"f1)\U(x9+1)--- |J(Xn)(Yq+1) 

...I1=(vn)9\ l9,~P(x1)...¢(xp)$(y1)-..$(yq)9) 

-(2, ~»(»<p+1) ¢(xn)$(yq+1) ...$(vn)9, (VIII. 1) 

if n is a space-like vector, n2= -1. 
For the two-point function, we must have 

nm Q,¢(x)$(y+pn)n 
p-oo 

0 .  (VIII, 2) 

With formula (V.5) this gives the necessary condition 

a + b + 2 1 r >  0 .  (VIII. 3) 
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Higher functions: The expression 

n q 

1 
p 

NI 1 

n 
H¢.(xl+pn) H 4U1(x ) H ¢1 lye+pn) H ¢1 (v1)s2 
1 p+1- 1 q+1 

goes like 
(%(p-q)2 

for large p.  The corresponding object for ¢1 goes, therefore, like 

-. 1 (p-q)2((a+b)/21r)+1) 
p a 

1 P1+1 I4+1 

and for paéq this converges to zero as it should, provided (VIII, 3) 
holds. The mixed functions give stronger conditions. Look at 

P1 E £4-P2 n (11 - * in 4>1(x1+p*l) 11 4>1(x) H ¢2(x1+911) U ¢2(x,)I[ ¢1 (al+pn) 
1 1Z+p2+1 1 

q1+1 £+1 

g * .e+q2 n * 
To <1>1 (y1) 1] '*'2 (ye+pn) H '*'2 (YIM) 

£+q2+1 

The second and third factor in (VII.4) then go like 

. 1 (P1"q1)2 ((a+b)/21r)+1) 

(p 
and 2((a+b)/2 ) 

(92_q2 (9 
The first factor goes 11ke 

1 
p 

(_PI 'q1)(p2-qz) (&-b)/1r 

The whole object must tend tO zero Unless simultaneously P1 =quo , 
p2 =quo. This gives the condition 
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a+b 
2 'or [w1-q1)2 + (p2-q2)2ll + (pl-q1)(p2-qz) 

a-b> 0 
1r 

Pill = 0 , 1 , 2 , . . .  

unless P1=q1 and P2-q2- This is equivalent to 

a + 1r > 0 ,  b + 1r > 0. (vm, 4) 

There remains the case P1 =q1l P2 =quo. Consider first 

p n n 

p+l J 1 

p 
Q=,]]¢1(><j+p~1) H ¢1(x)H<1>1 (ye+pn) U '*°1 ( i n )  . 

1 p+1 

(up 

There is no loss in generality in assuming nO = 0 ,  1711 I = 1. If Uj is 
translated and up is not, then je u - u  -'u-+PT]1-L1 - -P(111-1e) and 1 k J k 

6 -11r6 e -  1 
uk+p'rl1 ~ p 1 e  1 ( T I ) .  i€)61 

Therefore , 

H (u 
1<k 

61 (Uj j-uk-ie) *Uk-i6 ) 
6 
1 (vi °-Vk-ie ) 

62 §2 (Vi -Vi-ie ) 
\ _  

61 
u1-Uk-1e) 

M-Vk-ie 
'H 1 

1.k 

62 

-II 

<1;F.k;pI w( H . 
p+15j,k5n 

I e-1w610(-n1)p(n-p)9 i1r619(n1) p(n-p) 

-e -i1r529(n1)p(n-p)ei1r626(-n1)p(n-p) 

II 
II II \ 

/ 

e11r(51-52)€ (n1)p(n-p) 

(--)*'l"'P)€i*€ (*l1)D(n-p) 

which implies that 
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P n n . m (Xl*'P'l'l) H <¢>1(»<j)§¢1 (ye+pn) U 4>1 (yam = (-1)!>("'P> 
p+1 1 p+1 

-e  
n . 1 ( _  P p n 1>\¢(n )p n '°)=2.H4>1(x1)1;14)1 (v1)9=(s2. H+1¢1(x1) 1;l14>1(y1)sz 

p p 

Mixed functions: The first factor in (VII. 5) just splits into two fac- 
tors relating to the two clusters, and so 

/z P1 
lim (2,]¢1(x1+9n) H 4>1(xj)ZH (x1+F>t1) H '*'2 1 

Z4-P2 n P1 
¢2 (x )l`[¢1 (ye+pn) 

P1+l 1 £+p2+1 1 

Z * .a+P2 * n * 
<t> ( y )  <l> (y +pn) 4> (y >n 

pl-L1 1 1 All 2 I Q +1 2 1 

T1 To . 
j-il k=%+1 

pi 1£+p2 E+p2 £ n 

D1 £+!P Z n 

£(n-Z) . . . j=D+1 k=13Qp2+1 . . . . . . 
' (-1) P1 H _ 

j=1 k=z+1Mj=U+1 ,g--~,=§,. k=£+p2+1Mj=£->2+1 k='1+1 

- _ PI PI - (- 1)P1(»Z'P1)91)\e(1']1)P1(»2 P1)(Qfl-I ¢1(Xj)H ¢1(y1)9) 1 1 
B Z * 

9. ¢ ( x )  <I> (y in pg 1 J pHll-1 1 J 

_ _ _ 1 _ _ 2+-p2 
°(-1)P2(n ,e D2)6 17\e(n )P2(f1 z 92)9, U ¢2(Xj) ¢2(y1)9 

' .e+'1 

n 

£+P2 

,UI 

£ 

r 

n n H ¢2(x1) 11 ¢2(v1)9\ 
Z+P2+1 Z+P2+1 

II 
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II 

(_1)P1("'P1)+P2(N'P2) iM(n1)[p1(1¢-pl)-D2(n-B-p2)] e 

P1 1%+p2 +PA 

1 J 1 12+1 

p £ 
» 2 ,  H<1>1(xi) I* ¢2(x.)Hl4)1(y1) H ¢2*(yj)9 

1 Z+l 

Z n 
Q. H ¢1(Xj) H 

P1'l'1 

Z n 
¢2 (Xjl H ¢1 (Yi) U ¢2*(Yl)9 

£+p2+1 p1+1 2+p2+1 

The phase appearing here is just the one which is produced when one 
commutes all the translated fields to the left. We conclude that the 
cluster property (VIII. 1) is fulfilled provided the coefficients a and b 
satisfy the condition (VIII. 4). Since 

a + 1 r =  (a-'\f-1r)2 I b + 1 r  (B - M2 I 

we obtain the necessary and sufficient condition 

A J ,  B 7€v-1r. (VIII. 5) 

IX. Current and Equation of Motion 
The current I*°*(x) of the field <l>(x) shall be defined by the 

properties 

u Ii 5 [ I  ( x ) .  ¢(y)] = - claw + c 2 e  vy  Dv(x-y)<1>(y) 

(9.I*1.(x)m = 0 .  (Ix. 1) 

We make the Ansatz 

In. (x) QE: 3P"]'lx) 

I (x) 1(x) + q(x:<r1,0r2) 

q (x) I 
I \t1r{p1A(x)Q + p2Z(x)52 (lx. 2) 

wlth P~1»P2 to be determined. The commutator of I and ¢ is 
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U ( x ) ,  ¢(y)] = faDKK(x.y) + B1515'KK(x,v) -v?rDK(x,y) 

-~Hw515K(x,v) -~H~=1A(x) -v-1rp2'y5X(x) ¢(y) 

{(a -~DoD(x-yn + (B - ~f»)'v51'5(x-v) + (0, -~HoA(y) 

+ (B -\l-1r)1'5$(y) - (a +\/-1rp1)A(x)- (B +~l-1rD2);(x) ¢(y) . 
(Do. 3) 

and so we have to put 

'p1 
l 
Jn 02 

.i 
Jn 

Then we have 

u*l(x) ,¢(y)] 1 QI" + 1 
a 

Jar 
re E _Q 

Jn ) Dv (x-y) 

My) 8""I(x) 
1 

v'rr (IX. 4) 

5 X: He) +q 

) =  I(x 

The charge of the interacting field is then 

lIu (x) dxlj0 (x) gds a 
II; 180A(x)°Q - Q. (rx. 5) 

differing only by a numerical factor from the free charge . 
We have obtained the solution of the model by quantizing the 

classical solution (IV. 7) instead of quantizing the equation of motion 
(IV. 1). Our next aim is to determine what the precise form of the 
equation of motion is. Differentiation of (IV. 12) , (IV. 22) yields 

i'y*u.6iJ<1>(x) = -~*J.)(+(><)4>(x) ¢(x)v#8V» '(x) . (Do. 6) 

The projection onto positive or negative frequencies is a nonlocal 
operation, and therefore the right hand side of (IX. 6) is not in an ob- 
viously covariant form. We pretend now that (IX. 6) can be written in 
the following form: 
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wV'8.¢(x) = -~§1im0{v"8vx(x)¢(x) + ¢(x)W8x(x- f  )}. (e2?£0)_ (Ix.7) 

To prove this, one has to note that (IX. 6) can be written as 

- (x+£ ) 1'¢J.av¢(x) = -é1_0J1~/**a*)(+(x+e)¢(x) +¢(><)v**a. 

+ ¢'a* *(x-e )¢>(><) + ¢(x)~**3*J,x'(x- ) I 

and we have to show that 

[<I>(x)."r"a*1.x`(x+e)] +WLaLx*(x - ) ,¢ (x ) ]  = 0.  

But this follows from the relation 

i 2 [~"6x (y),¢(><)] = (Q-3) 'y"8*Di(y-x)¢(x). 

Finally, v*J.6*x(x) can be expressed by the current 
5 . . 

y""8*2"/ [BJ(x) +q(x;+»1,+*2) = -,YH [~f&B1*J.(x) + 8|Jq(x:+L1»|L2).41 

and 

IJ. 'Y 8IJ.X(X) 
`l 

.oH I5r(a-f5*)ji-*(x) + a q(x:v1-l»1,v2-vL2 -] 

II ~/?r(a-B)v"I*(x) • 

The equation of motion assumes then the form 

1v*a<1>(x) -~/}r(0,-5)~/* l im 
e-» 0 

1 
2 - IJ.(x+a¢(><) + <1>(x)/(x-@) (lx. 8) 

It is possible to express In. in terms of co, but we will do this only 
for the case when k=  0 .  

x. The Case ?»=0 and the Currents of Iohnson and Schwinger 
If one postulates that ¢(x) has the same Lorentz transforma- 

t1on properties as the free field Ll»(x), one arrives at the solution 
found by Iohnson. The condition )\= 0 is equivalent to 4) 
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l. 
~/Qf 1 B 

~/'7r 1 1 .  (X. 1) 

This gives the parametric representation 

a = \f-1r(l +p) 8=~/Fr 5 1 1 +  
p (-°°<p<+°°, 9140) 

(X.2) 
a = 1r(p2 1) 

/ 1  
b = 1 r I  

We now want to express the current in terms of the field ¢(x) . 
One way to do this is to define it as a limit of a nonlocal expression. 
For a free Dirac field wlth arbitrary mass , 

up (x) 
1 
2 lim E(x+W*¢(><) 

e* 0 
'w*~l»(x+e)$(x) (x.3) 

Thirring model one has either 
in two and four dimensions. or space-like . In the 

- a spacelike and a time- 
like direction4) or to modify 1 de of Eq. (X.3). 8) The 
introduction of timellke vectors , however, means that one is outside 
the framework of the canonical formalism. We give here a spacelike 
current definition which contains a free paraI'r""*""5"*""' which repro- 

first 

4 

duces the results of both Iohnson4) and schw15sieu}'¢We9l Look 
at the expression 

$(x+@ ) vlJ.4>(x) 9-ii+(x+€) (X+€ )6-ii' (X+e )¥2€ix+(x)» (x)91xl(x) 

e 
-i (01-B)2D' (e)€ _i[§+(x+€) _Y+(x)] $(x+ €)vi*¢(x) 

e-1[X-(x+e ) -x`(x) ] 

Separate the singular part of $a(x+e)\l;B(x) : 

$o(x+)¢B(x) 2- llama(x+ €)\PB(x): + say (-6 ) 

:Ea (x+ 0415(x) : + 1 
21r1 

(ve) Ba 
e2 

and develop 
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- - * .. ' _ e 1[x (x ) X (x)]2- 1 _ iepapx (x) +@(¢2). 
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Then, 
_ 2 - . -  

e1(a B) D l')$(x+¢)~*u.¢(x) = =¢(x)v"¢(x)= 
1 

+ 27r1 
sp{'v*L're)} 

E2 

- _  1 
21r 8 eP8 j*(x)v**} 

- 7 Sp{'y*'e'p8 px'(x)} +(9(e) 

=$(x) w*¢(x) : +11r e2 
_ 1 
2,1r 

et et 
62 sp{'~/vv"8'px(x + (D(&) 

with 

SpJL'yv'v*apx(x)} = 21J.v%a10(x)  +89q(x:v1 : v2 

+ epvep7\ ~f?rBj7\(x) + a?\q(x:v1 »P.2);l 

If we use 
pa K vp pp vi 

e|uve = up' 9 '" 9 9 I 

we obtain 

_ 2 - 
le2 | (0, B) I""4>(x+<)~/*"4>(x) 

= j*'(x) - l VVw01**(x) + 8"q(x:+11.u2) 

l-7f(a'B)j(X) ( L €*'l'€X 

71' z 3 | _ _ + q X/V1 * L l l V z  "2 5] 
Q -o Ju' (x) L ii I ( x )  + 17r e2 + 0 ( e ) .  (X. 4) 

Since e t  < 0 ,  we also have 
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I 2 lm-B)2/4w»¢(x+)$(x) _ E 

l€2 l(alB)2/4"$(x)yl"'¢(x+@ ) Cx.s) 

Jo 
-In Ip. (x) 

GJ eve* 
'IT £2 Ix(X) 1 EP' _ _.|.  o 

nr ez f9(€) 

Averaging over (X. 4) and (X. 5) eliminates the singular part but leaves 
us with a non-covariant expires sign. One gets rid of the non- 
covariant terms if one defines the current K*'"(x) as (g, 0' are coeffi- 
cients to be determined) 

Kg. (x) E nm nm le2 lu1-8)2/4" 
6-0 e-»0 

1{$(x+€ ) 'iv¢(X) p.v (1 + ige)K(x+ 5)) g 2 + 

+ 1tte"Klu.(x+6)l - °yv¢(x+€)(x) [g*""(1 - ig¢*K,(x+6)) 

(x. 6) 

II 

1o'evK*1. (x+5) H 
- I**(x) +2K*J.(x) +1- e x) + 9 K(x)} l im 

e- 0 
we* 

E2 

If the non-covariant term is to vanish we must have 

'\I}f(<1*{3) K)\(x) = 9 I,\.(x) , (x. 7) 

and Eq. (X. 6) then tells us 

K*.L(x) + - IP'(X) . (X.8) 

g and U must satisfy the relation (x.9) 

) 1 1r Q + E Cr =~/-1/(01-B) . (X. 10) 

The equation of motion can be written 

1'¥*8l_\<l)(x) = + <i>(x)K*(x-6 ) p. » '9'Y 11m 
€-0 

L 
2 {1<l. (x+e )¢(»<) (x. 11) 
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We have obtained the result that to any given solution (i. e .  , 
to given a ,  B, a-B740) and any 9% 0 we can find a current definition 
(i.e. r find a 0' from 
occurring in~ 0 ,  and 
if g= 0 ,  G' -Asa 

Solve 
a and B: 

(If a = B ,  then v"8¢(x) 
lq. (X. 9)) such that g is the coupling constant 

of motion. = I 15 infinite.) 
ad (X. 10) yields a parametric representation of 

a \l?r l i 

1. 

(X. 12) 

B 
I 

/ - )  1r 

g+o' 

The parameter p in (X.2) is therefore 

a l  

• 
9-*'O" ._ :t . 

p G'-'tl' 
(x. 13) 

The occurrence of the i sign means that there exist two different 
operator solutions which satisfy the equation of motion with the same 
g and Cr. If one considers only n-point functions, there is no dif- 
ference between the two solutions. We have 

a g 
1r 

0'-'IT 
b g+0' 'IT 

(X. 14) 

The solution of Schwinger corresponds to 0r=0: 

1r(1 rt ~~/1 - Q/ff) 

II B (Q< of) 

B 'IT Qt. 1 - g / w  (x. 15) 

a -Q b g 
l -g / ' r r  

Iohnson defined the current as 

1 
4 I lim ei(CY"f3)2D-(e ) $(x+ )*.L¢(»<) - ~/*'¢(x+)$(x) v - e 

v p. e PI. € 

This leads to 
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a ~/'1r(1 i 1 -  Q/2 
1+g/21r 8 = Jo 1 i ( ii in) 

a g 
1 -g/21r b q 

1 +g/21r 
(x. 16) 

The Iohnson current can be obtalned with our definition with <r= -g/2 . 
It should be noted that these apparently different solutions are only 
different parametrizations of the same family of solutions defined by 
(X. 2). The Iohnson solut1on results from the Schwinger solution by 
the replacement 

g -u q 
1 + g/21r 

The coupling constant is undetermined in the sense that any 
value can be produced wlth an appropriate current definition. Thus , 
being given two solutions, not even the statement that the coupling 
constant of the first one is larger than of the second one is an invari- 
ant one. We arrive at the conclusion that the coupling constant 
should not be defined in terms of the equation of motion. 

10 .  
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manner. The relativistic invariance has traditionally been developed 
through Lagrangian field theory. The two approaches appear to have 
little in common and this has lead to some confusion in attempts to 
combine internal and external symmetries into larger groups. Our 
first objective is to consider relativistic invariance from a purely 
group theoretic point of view, closely parallel to the usual treatment 
of sU(2) and sU(3). 

One of the most important products of Lagrangian quantum 
field theory is the notion of causality, which leads to anti-particles, 
the relation between spin and statistics, the substitution law and the 
C. T. P. theorem. These appear to be experimentally correct. Thus , 
although we do not require Lagrangians , or even equations of motion , 
we require causality. 

From the two requirements of relativistic. invariance and 
causality, we arrive at local causal fields from which we construct 
S-matrix elements. The formalism can be trivially extended to in- 
clude internal symmetries such as SU(2) or SU(3) . It provides a 
framework in which one can understand, criticize and hopefully de - 
velop a great deal of work done particularly in the last three years on 
the combination of internal and external symmetries, and the use of 
non-compact "dynamical" groups . 

In this connection we are led to consider generalised infinite 
component fields which are unitary representations of the homogene - 
ous Lorentz group. We show that for such fields there is a complete 
breakdown of the Pauli Theorem, which for finite fields establishes, 
through causality, the experimentally observed connection between 
spin and statistics. 

II. Groups 

particularly Lie groups and their representations . 
stated without proof but can 
some of which are listed in the references. 

A. Definitions . 
In this section we summarise the rudiments of group theory , 

Theorems will be 
be found in st@;3d8§d3;1t°"p theory texts 

We begin with the definition of a group. Elements a , b .  . . 
define a set, { a ,b ,  . . . c } ,  which becomes a group, G ,  if we impose 
the conditions 

(i) Product: ab=c E G (i.e., contained in G )  for a , b ,  E G. 
(ii) Associativity: (ab)c = a(bc) , 
(iii) Unit element: There exists e E G such that 

ae = ea for every a E G .  
- e :  to each a E G  there exists a'1 E G such that 

a'  a = e.  
(iv) 

I 
_ _ _  

(11, 1) 
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Furtie._we have the following definitions. A group is abelian 
if ab= ba. groups have a discrete set of elements (e.g. , 
reflections) groups can be defined in terms of continu- 
ous, el (e .g .  , the rotation group where the parameters can be taken 
as  the Euler angles). The order of a continuous group is the number, 
N ,  of essential parameters, el.  A continuous group is finite if N is 
finite. A continuous group is compact if the range of the et is finite 
(e. g. , rotations), and not-compact if the range is infinite (e.g. , 
displacements, Lorentz group (£)). A '  ' " ` *f S, is a subset, 
S C G ,  is such that for any s € S, ask _'ac' ._r every a E G. A 
group is simple if it contains no invar-iant subgroup. A group is 
semi-simple if it contains no abelian invariant subgroup. (The 
Lorentz group is semi-simple, but the Poincare group-or inhomoge- 
neous Lorentz group-is not) . 

Representations of continuous groups by linear transformations 
entail the association of each element of the group with a matrix, 

so 

a: 1\7I(a) for every a E G ,  (II. 2) 

such that the group properties , (II. 1) , are preserved by the matrices, 

mal Mb) = 1\7I(0) i f  a b = e ,  

M(al1)  = 1V1°1(a), (I1. 3) 

Mel = I. 
Suppose the vector space in question is spanned by the vectors IQ)  
such that each element of the group induces a transformation 

a: | € ) -  r e )  = M(a ) l€ } .  (11, 4) 

The adjoint space, spanned by (E, I , transforms contravariantly such 
that each a E G induces the transformation 

a: (ea -. ( § ' l  = l*§.l1\7I-1(a). (11, 5) 

A representation is said to be reduclble if the matrices can be 
block diagonalized, e.g. , 

1\7I(a) WM _ 
5 I aw' for every a G G. (II. 6) 

An irreducible representation is one which cannot be reduced. In 



180 P n T.  MATTHEWS 

terms of the vectors -rather than the matrices-an irreducible repre- 
sentation (IR) is a complete orthonormal set of vectors that spans the 
representation and transforms into itself under the M(a)'s. (For 
example, for the rotation group the vectors l j  , j 3 )  , j § j 3  5 - j  , form 
such a set.) The dimension of the IR characterized by j is (2j+1). 
It will turn out that the specification and dimensionality of the IR's of 
the relevant groups is of vital importance in physical applications. 

The following theorems are stated without proof. 
Theorem 1. A finite representation of a compact group can 

always be made unitary by a similarity transformation. That is ,  if 
the M(a)'s are n X  n matrices with n finite then we can choose 
I/I'1(a) = 1\7I+(a). 

Theorem 2 .  Any unitary representation of a non-compact group 
is either one or infinite dimensional. That is, if 1?d'1(&) = l\7l+(a) , 
then the matrices are l X l or ooxoo. (The exceptional finite case 
is called the trivial repre sentation.) 

B. L1e Groups . 
A continuous group is a Lie Group if 
(i) given real et (i= 1, . . .N) there exists an e such that 

ME) NIE) 1?15) Me) = E 
and ?= f(e) is analytic (Note: 1\7I(€) E 1\7I(€1. . ,eN) for N the order of 
the continuous grouo.);Aand _. 11 

= M(€') M(€") then Mk= <l>k(e1...eNe1 ...61{f) is (ii) for M(ei 
analytic . 

Examples of the classical simple Lie Groups are the following: 

Group Representation 

1 .  Compact. 
O(3) - Rotation Group : 

O (n) 

U (n) 

Sp(n) 

All linear transformations that preserve 
x12 +x§ +x32. (Orthogonal 3 X 3 matrices. ) 
All linear transformations that preserve 
x12 +x§ + +xn2. (Orthogonal n X n 
matrices . ) 
A11 linear transformations that preserve 
I-51 P+ l€2|2.+... + 1-2812. (Unitary 
n X n matrices . ) 
All linear transformations that preserve 

SEGY II 9ijxiyj 
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where the metric G satisfies (§= -G. 
Unlmodu1ar matrices, A, satisfying 

AGA = G. ) 

2 .  Non-compact . 
O(3, 1) -Lorentz group 

O(n,m) 

U(n,m) 

U(2 I 2) 

I
I
!

 

* . 

A11 linear transformations that preserve 
X12-l-X22 + x 2 - x 2 .  
A11 linear transformations that preserve 
xi+x§ + ...+xn2 -x§1+1-x§1+z - - x'n+m. 
A11 linear transformations that preserve 
I8,l= +l§2 I2+.,.+l§nI2 .|gn_1-1I2-.._-1gn+ml2. 
All linear transformations that preserve 
W e +  'YO*lJ=|*|*1|Z+|*|*2|z"|'~|*3]z'|'|'4|Z. 

For a Lie group with N parameters , et (1= 1, . . . N) , the ma- 
trices M(e) can be written 

1/'[(€l = eiéj-Fi 
(H. 7) 

where the pi are the infinitesimal generators. If the representation 
is unitary then 

- - 1  M (=) = MM) and F*i = pIT. (II. 8) 

For example, for the rotation group 

. 1"i 
R(e) = e I ei, i =  1 , 2 , 3 .  (II. g) 

The unimodular condltlon, det M(€)= 1, implies 

Tr [FAi] 0 i = 1  2 , . . . N .  (II. 10) 

If the groups listed above are restricted to be unimodular they are 
distinguished by an S; e . g .  , SO(n),  SU(n). For an infinitesimal 
transformation we have 

1?/1(< ) II I-
')

 

+ |-
°-

 
fn

 
,..

. *I:l
> ,_..

 
+ O

 
m

 N
 

'
l
-
I
F

 

. (11, 11) 

The local structure of the group is defined by the alqebra- of infini- 
tesimal generators 

] ' J F 1 F [ 
k. 

i i i  Pa , (II. 12) 

where the £g; are the structure constant; . Two groups are said to be 



182 P . T . MATTHEWS 

I . . 

3 To?` 
l | 1' 

. lun 

locally isomorphic if they have the same algebra (e.g. , SU(2) and 
so(3)). .N 

The rank, r ,  is the number of Fi'S that can be simultaneously 
diagonalized; e A 

only A agonal. 
I 

mute with ATI ofl!Ti-min.. 
all the forms , 

» . notation group r = 1  and of the three I 's  
_ .  

~J~ ; are constructed from the Fl and com- 
n." A s.la!1dard method of construction is to take 

N"II 

@(1"1) II 

12 j3 
1111 1212 f .  f .  

i F 1 _.i 
f .  _ _ _ F n  f . in 11 

1n-1]n-1 lnln 
(II. 13) 

Within an IR the Casimir operators are proportional t o  the unit opera - 
tor (Schur's Lemma); e .  g.,  for the rotation group the Casimir operator 
is 

j~2 ~2 
l 

~2 
2 I + I  +f32 I (II. 14) 

and its matrix representation in a given IR, 

~2 J j(j+1)i`_ (II. 15) 

Thus the Casimir operators provide convenient labels to specify the 
IR. 

The number of labels needed to specify an IR is 

For simple Lie groups we have the followin theorems . 
Ih§0reQ0'1 3 .  The number of independent Gun is equal to the 

rank r .  
ii-» 

alsoihe m'mr'i 
To specify a co Hof a representation on I 

é (N -r) parameters are? These can be provided 
values of the diagonal 'ibr /or Casimir operators of § m u n n m , m . n , .  

Thus, for example, the components (vectors) of an IR may be the state 
Icj.,:fj) where 

j 
. | f i I C 
1 

C ) I 
1 J 

= l I f  
1 

C C ) ,  

j 
. , , f  

1 
I C 

J 
F 

J 
= . . f  

1 
I C 

J 
f ) ,  

(II. 16) 

by I j , j 3 )  

where the c ' s  label the IR and the f ' s  distinguish the components . 
For example, for the rotation group, r =  1, N =  3 and é(n-t) = 1. The 
representation is specified by the eigenvalue of T2 and the compo- 
nents by the eigenvalue of 13, so that the vectors of an IR are given 

with 
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) T211,13 = 1(1+1)Ii.13>. 
(II. 17) 

T31183) = i 3 | i , 1 3 ) .  

The elements of the algebra have the matrices 

(1 ,~ 1" lm '  . 13 I J 33) 1 

J' 

1 ,2 ,3 .  

III. Poincaré Invariance 

A. Representations and Quantum Mechanics . 
In the quantum mechanical description of a physical system 

the set of observables are represented by hermitian operators a, 
which can have the values a ,  specified by the eigenvalue equation 

&la a l a )  (a real) , (III. 1) 

fur al states. If [&i,5/1] = 0  then 521 and 5/j are simultaneously 
and have simultaneous eigenstates. A unique quantum 

is defined Py the eigenvalues of a complete set of commuting 
tors Be. . . BM. The states 

| l31...BM) E l a )  (111, 2) 

are: (i) orthonormal , 
(ii I m ) 6 

lim (602-m) for continuum) I (111, 3) 

and (ii) complete r 

2 I £ ) ( £ l  
2 

I. (III. 4) 

A transformation of coordinate base, such as a displacement 
of the origin or a rotation of the axes, produces a change in the 
states and observables which is induced by an operator of the corre - 
spending group: 

I* IQ) 6 1 2 ) ,  Q
) 

,_
.. I 

I 1.
-1

 

CO
 

m
 Q

 ) 
,_

.. Co
 

in
 

. 

(III. 5) 

To preserve (III. 1)-(III.4), UAe must be unitary, 

( z l 6 1 l m )  = (mrij lm), (111, 6) 
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and the representation I 1Z)- 1s to be called a physical representation. 
If the group is continuous then 

.Ge = ej.€j§j 
I (III. 7) 

where §1 are the infinitesimal generators of the group. In the phys1=- 
cal representations 

and 

> 
I-.

-IU
 

_
*|

' 

II '-i
n 

1'.
l..

 • (111, 8) 

For a discrete group, such as space reflection or particle-antiparticle 
conjugation, a double application takes us back to the starting point, 
so we have" ' ' 

»~2 U~ I/z) = In) .  

Hence for eigenstates of Ii 
(111, 9) 

mM) = f i n ) .  I .(111, 10) 

By considering the diagonal form with eigenvalues al , we se;e 
._ ,._1 - ' 

U = U = UT. (111, 11) 

So to is both unitary and hermlt1an and therefore an observable of the 
system. 

The S-matrix, which specifies the scattering amplitudes of the 
System, is ( m l § l £ ) .  Under a change of coordinate bases , induced 
by Ue, both states and operators transform, and one obtains the 
trivial result 

l m l S l £ ) *  (mIU-1 (USU'1 )U l£ )  = (m ls l z ) .  (111, 12) 

However, if S is invariant with respect to ITe, we have the nontrivial 
statement that 

(m|U;1sUe|/H = <mIsI,e), (III. 13) 

or 

[ U S I  

II 0, (III. 14) 

the algebraic statement of invariance. If g is a continuous trans- 
formation, then we also have for the generators 

I 

] ' 1 S F [ II 0 ,  (III. 15) 
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and a fortiori for the Casimir operators 

[§, &l")] = 0. 

Thus the eigenvalues of the hermltlan operators ,._ for con- 
tinuous groups, and U for discrete groups, canal Isimul- 
.taneously with S when S is invariant under the g"_ .°'t?2;¥=. '€-v group 
of trans formations. We can therefore include these operators in the 
characterization of the state 1/3 ) :  

p l y )  = f 1 z ) .  (III. 16) 

Taking an expectation value of (III. 15) 

( £ I [ F , § ] l m l  0 ( f f m )  ( £ l § l m )  0 .  (111, 17) 

Equation (111, 17) implies that either ( £ l § l m ) =  0 ( i .e . ,  the £ -  m 
transition is forbidden) Q i£=£m~ We have thus established the im- 
portant result that the observables lf'-q enerators of groups with re- 
spect to which 3 is invariant-are conserved in allowed transitions . 
Clearly* the same argument applies to the Casimir operators del 1 and 
for discrete groups ¢ to 15' parity operators) . 

For example the generator of dis placements is the hermitian 
operator for the momentum EX= Px/'h where 

Up' 
1x- e x e (i/f7)§- 18° (III. 18) 

and momentum is conserved for any system invariant under displace- 
ments l 

Further, we see that the operators which label the lR's and 
components of the groups with res pest to which S is invariant are 
just the simultaneously observable, (conserved) physical properties 
of the system described by S. So these operators satisfy the re- 
czuirements of a commuting set and supplemented, if necessary, for 
completeness, provide a .possible (.and usually extremely convenient) 
choice for the operators Be. . .Be, which define a physical represen- 
tation of the states of the system. Hence the extreme importance of 
the IR's. (For those more familiar with quantum mechanics than group 
theory, it is often convenient to invert this above argument and de - 
ermine the irreducible representations of the group by finding a com- 

plete commuting set from among the infinitesimal generators and 
Casimir operators. ) 
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B. The Poincare Group. 
In discussing the Poincare group P the following conventions 

will be used . 
to = c = 1, 

Xv = (x0;x)7 F- 0,1,2,3 ,  

p. i v  x . -  g Xv (x0,-55 for g = (1,-1,-1,-1), 

a a = 
P' 3 x}* 

a 
3X1 J 

a 
8X2 

8 
I 8X3 J 

(III. 19) 

a~b = a*'b = 
p. 

0123 e e0123 +1 , 

a0b0 - a-E, 

_L 

so, e . g . ,  

E EIJvpI1rI 
p.vp'rr 

• - 2 l 6 " ' 6 " ' - 6 " ' 6 "  
1r p 'lr p 

j. 
P can be represented by the group of linear transformations 

that preserve the form 

(><-y)*J.(x-y)*. 

II (xo -v0) (Xo -y0) 62-37) ' (x-37) . (III. 20) 

More precisely 

P = T ( 4 ) " ' £ ,  (111, 21) 

the semi-direct product of translations in four dimension and the 
Lorentz group. A transformation under P paraclete-rised by (a*J., noI.") 

x 
p. 

- x '  = x + a  we" +L ii u +A p.v (1+6)x, (111, 22) 

is generated by (see (IV.24) for the relation between A and n) 

May) 
1 A 1 A 

e1(a"p + 5n|J/I|W) 
I (111, 23) 

whe re 
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n -n • 

The algebra of the generators of P can be obtained by con- 
sidering how a scalar field, ¢(x) , behaves under an infinitesimal 
transformation of variables 

x - x '  = Ax = {l+6)x. (111, 24) 

For 4>(x) a scalar invariant with respect to 63 , the transformed field is 

<l)'(x') II <1>(x) ¢(A-1x') II ¢[(l-5)x'] (I11. 25) 

Further we have the generators, fA(x*,, a ) I  which are defined by the 
property that 

(1 + 163 <1>(x) = ¢'(x) = <1>[(l-6)x] (I11. 26) 

In the final equality we have used (III. 25) dropping the dash. 
displacements, for example , 

For 

( 1 'HE + 1 a  + .)¢(x) = ¢(Xr»'au) 

¢.(x) Ja  <l>(x) + I (111, 27) 

which implies 

f ia 
13 

A = E ..& 
H H TO 

The commutators of E (and hence of 1 )  can then be found trivially 
from the properties opar t ia l  derivatives , i .e .  , 

f v ]  = 0 Pv] = 0.  

(T1=1)- 

5 ,  [ H  or 5 m (III. 2 8) 

Similarly for Lorentz rotations 

E p.v 1 x  * v 
x 8 ) 

v p. 
In, (III, 29) 

and the resultant algebra of P is 

I P .  Pv] = 0 .  

IP I ]  . g, _ 
1[gMJ. v gov I a 

I 
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1 A A 

[ 9 9 I v  + 9v1rI|¢p - I lm] QM VP 9v9 (111, 30) 

The second of these equations is equivalent to the statement that 
under Lorentz transformations Pa transforms, like x*_, as a four 
vector. 

The IR's of P are to be labelled by a complete commuting set 
of operators constructed from §*1 and to. For momentum we have the 
Casimir operator 

2 P II *U
D 1:
 

*O
D 

'F=
 II t .  (III. 31) 

ggmmute with each other and with p2 , we can 
Pa simultaneously with t .  Additional 
edifying the IR's are those components of 

These, by definition, are the generators 
P '  

__ _ _ _ _  _ _ _ j c a t l o n  of the generators of the LG are the 
three independent components of the Pau11-Lubansk1 vector 

AH E _; pvkp- ' W 2 e Pvjkp I (111, 32) 

satisfying 

(III. 33) 

and 
'II A _ 

[ p  ,Wv] "' 0 ,  

A A = » w"pp. [W**,Wv] 1€*LV7rp 

(III. 34) 

(111, 35) 

The various possibilities for the LG are the following. 
1) t=m2 > 0.  (t corresponds to the energy variable in two- 

body scattering, or the mass of a slngle particle.) In the C. M. 
frame 

- 

Pp. = (my 6), 

and 

WA 
p I23 ' ]31 ' I12 I (III. 36) 

and the LG is O(3). 
2) t =  -quo < 0 (momentum transfer in two-body scattering) . In 

the brick-wall frame, Pa. can be cast in the form p*J= (O;0,0,q) and 
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w" = A 'A 4 *  ,O  '*Q12 120 103 I 

189 

(III. 37) 

and the LG is O(2 , 1). 

r 

12 H 520] 

The algebra of the LG is 

= "o r  

= `112 ' 

= +1IA20' 

(III. 38) 

3) t =  0 (the light-like case for a single particle). One can 
choose a frame so that Pa (w, o .  o .  w). 

Now with Pa null , 
w*J .=w _ A  0 -  i A 

112. nz' m13 (111, 39) 

Where 

H1 = 110 ` T13. 

TI 
2 120 I23 I (111. 40) 

[ i 1 'IT A 1? =-1A 1? ii 
1 2 ' [ I12 '  2] H 1 ' [  1 '  2] 0 ,  

and the LG is T(2) "' 0(2)-the Euclidean 
4) PPL: 0.  (Momentum transfer in 

For this case, LG=£. This group is disc 
nection, in more detail below; 

group-t n two dimensions . 
ic forward scattering.) 
, in a different con- 

C. The Single Particle States. 
Single particle states of non-zero rest mass belong to 

Case 1) and can be labeled utilizing the IR's of that LG. The 
Casimir operators for the LG are 

- 2  A A 

W = w!J.w1u. 
A A  ~p. A »~pp. A AV -up p ]  vI + I  I P P  IJ.V p v  I (111, 41) 

and 
T* "p . O = hellclty. 
I31 

In the rest frame, W"2 becomes 

(111. 42) 
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»~2 2 2 W = -m ? I (111. 43) 

which, for single particles , has eigenvalue s 

' 2 -m s(s+1), (111. 44) 

where s is the spin. Instead of the helicity, 1~. we will use $3 
which is related to K by a pure rotation. 'Thus an IR of the Poineare 
group is specified by m2 and s ,  while the components of an IR are 
labelled by T5 and $3.  A single particle state is, therefore , 

2 -9 lm s: p, s s )  
III |p1J.,s,s3). (III. 45) 

The non-compactne ss of the group manifests itself through the infinite 
range of 5. These states are orthogonal and can be covariantly nor- 
malised: 

| | | + I <p*,L,s,s3lp* ,s  , s 3 ) A  (p) = (21r)46 (p-p)6SS.6s3S5,  (111, 46) 

where 

A+(p) = 2 *ii 9 (pO)6(p2 -m2) . 
Parity can be introduced through the operator, §, satisfying 

the physically motivated commutation relations 

[11150] 0 ,  {§,151} - 0 ,  

0 r {§5oi} 0,  (111, 47) 

0 . ] p. P l* R p [ [§,W"W ] = 0 .  
p. 

State : 

Now, since § commutes with the other operators labeling the rest 
frame state and is a discrete transformation such that its unitary rep- 
resentation is also hermitian, it can be included as a state label 
through its eigenvalue, 1r. 

2 S 1l-a '15 s ) I I I 3 

Additional labels can be incorporated provided their operators com- 
mute with those operators labeling the state. Thus , 
*L . "'i°nt under SU(3) each .,|.i»&i&E|.a€ is also in of 

the multiplet beinggii led by twos 

lm 

if the system is 

CHI 5"2§§\nent of some 
operators 
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and 0(2) , 
Casimir operator of the isotopic subgroup i2 : 

and the component by the diagonal generators 13,y and the 

lm2 1r"*s • . p .  3 '  I S r 0(1),c(2): 12, is' y ) .  

(This is a simple application of Theorem 4 Q seq. for the case N = 8 ,  
r =  2 . ) 

D. The Lorentz Group.4)'5) 
Though it is not obvious at this stage it turns out that Poin- 

care invariance of single particle states requires an analysis in terms 
of the Lorentz group, .SZ or O(3, 1) and its covering group, SL(2 ,G). So 
far .in has only been shown to be relevant in forward scattering where 
it was identified as the little group (LG) . However, .s; will eventually 
play a much larger role, so we include here a brief discussion of its 
representation. 

The algebra of 1: is a subalgebra of P given in the final equa- 
tion of (111. 30). 

Introducing 

Iii ein elk and :.. 
<>a 
Ill 'I-4 

O
 

(
I
-

 

(III. 48) 

these commutation relations can be re-written in the form 

] 

] 

] 

1 [ I 

k I I = I I T k J 1 
1 e I J 

K 
J 

K 
J 

1 [ J 

k ' . .  K k J 1 
l e 

1 K [ k - »~ I k J 1 
1 e 

(III. 49) 

The most familiar specification of IR's uses as a basis for the algebra 

II, 
1 

(III. 50) 
M . 

1 $6i - iii) : 
with the commutation relations of so(3)® SO(3) or su(2)® SU(2) , 

] 1 

J 

M 
11 

L 

L 

[ 

[ 

|~
- . II . 
m

 

7V
 a
l)

 
K'

 u §)
 

p
. §»

 
II 0 ,  

i ,  191. e 1jk k 
(III. 51) 
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To "if Ki 
(Thus O(3,l) is locally isomorphic to SL(2,C) with basic generators 

"' "' i0'i.) 
The Casimir operators L2 and M2 have eigenvalues £(£+1) and 

m(m+l) , B ,  m being integer or half integer and providing labels for 
the I. R. From standard theory of angular momentum, it is clear that 
components are labeled by ( j , j3)  with the range , 

s HZ-ml j 5 £ + m ,  
VI] of 
-v

-\ 

VII 
'v

i
 

I 

-
I_

\ (111. 52) 

Since j and is take on only integer (or half integer) values these 
representations are finite dimensional. Since the matrices L ,  M in 
these representations are hermitian, the matrices IN are anti- 
hermitian, so these finite representations , (£ .m)  , of this non- 
compact group are non-unitary, in accordance with Theorem 2 . 

If one is interested also in the unitary representa- 
tions it is more convenient, following 2'.,.,,.m,,,,,,.,,,.3 4) to specify the 
eigenvalues of the Casimir operators, and hence the I.R. ' s  by (k0,c) 
where 

V _.. ..p, 
I V p. 

12 J ) I ) c o ) I k 2 K 2 
( I C 

O 
I k 

,cl  2 2 ( k o + c  -1 ) l kO , 
1 I l ko ,c l  =T -E l koc )  = -ikoclko, : ) .  p.v7rpI 

lJ-V 7fp 
(111, 53) 

It is clear from the definition of ko and c that (-k0,-c) specify an 
equivalent representation. By convention we will restrict ourselves 
to representations having k0§0 .  

For any finite or unitary irreducible representation to can 
take on one of the values 

II o 
_g 0 ,  1/2, 1. 3/2,  (III. 54) 

In all cases components of the representation are labeled by ( j , j3)  
integer (or half integer) r satisfying 

VII o 
.M

 II In 
° (111, 55) 

II r II I IIA
 

(p
l.
4
- 

1|
A • (111, 56) 

The two alternative types of representation are distinguished by: 
(1) Finite Dimensional (non-unitary) . 
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I c l  k o + n  (n Po s votive inte ge r) . (111, 57) 

Then j has the finite range 

S. E 1 k IcI - 1. 
O 

(11) Unitary (infinite dimensional). 

(111, 58) 

Either 

(a) Principle series 

c pure imaginary; (111, 59) 

or 

(b) Supplementary series 

k o = 0 ,  S c r e e l  0 < c  1. (111, 60) 

In both of these latter cases there is no upper limit to j which thus 
runs over an infinite range of integer (or half-integer) values. This is 
in accordance with Cheorem 2 . (Note that the infinite dimensionality 
of the unitary repre sentations of II involve this infinite "tower" of 
spins , whereas for the Poincare Group a particle of single definite 
spin belongs to a unitary representation because it can have an infi- 
nite range of momentum. ) 

For both finite and unitary representations the states are 
written 

Ino, »1.13) (111, 61) 

We introduce the abbreviation 

1 E (k0,¢) = (-k0. -c) 

T (kOI'C)l 

(553). a 

I 

(III. 62) 

Then if the matrix 

(wal121 ITS ) 12 . jaB 
the matrix 
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(%,olx2 lm) _(_1)[1]+U '] K*iaB. (I11. 63) 

where 

[J] 
o 

• 
J Un! 
1-5 (é *' 

s) 
hrs) . (111, 64) 

The parity operator R satisfies 

§(T-K) I T S )  -(?-i)§lw), 

FO
: 

Q
. N

 
I W

; N
 

-1
 

Q
 

\
.
/
 

II \-1
> N
 

I 7<
» n 

pm
 

-1
 

Q
 

(111. 65) 

Now suppose 

l l f r a )  = c('F,a)l'1'a}; (111, 66) 

then consistency with (111, 53) and (111, 65) implies 

j . 
(-1) 1:'tozl. vITa) (I11. 67) 

Thus the parity self-conjugate representations are given by (k0,O) 
and (O,c); for example , 

(o,1), 

(é,0), 

(o,é). 

scalar, 

j = 1/2, 3/2,  . . . (é integer spin tower) , 
j =  0 ,  1, . . . . . . . (integer spin tower). (III. 68) 

Otherwise the inclusion of the space reflection operation with JI, re- 
quires a reducible representation (or and 'r) . 
IV. Poincare Invariant S-Matrix Elements 

A. Statement of the Problem. 
Free particle creation-annihilation operators which transform 

according to IR's of P can be used to generate the scattering states , 

1 particle: 

n particle: 

IPpL,S), 
1 P(1) (1) s :pM (2) 

S :...pa') (n)) Ill) s . 
in in ' 

(Iv. 1) 

when acting on the P invariant i 
by definition a state with plane 

The suffix "in" means wo. 
coming into the scattering 
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region. We assume the vacuum and n-particle states are complete , 

in in I Z l z ) ,  
,Z 

II I-
')

 
• (1v.2) 

The set of 'out' states are defined analogously as states having 
plane beams coming out of the scattering region, satisfying complete - 
ness 

Z 10out e = i .  
out( I (Iv. 3) 

The S-operator is defined 

§ 2 j e )  
B in outs I I (n .  4) 

so that the S-amplitude is 

. (final 1§ l1n1tia1 ) 
in 

_ = (final l1n1t1a1) 
in out . in' (Iv.5) 

The construction of a P invariant § ,  1.e. such that 

[§ .? i ]  = 0 for F (i= l , .  . . 10) the generators of P ,  (Iv. 6) 

entails a particular difficulty that is best illustrated by comparison 
with invariance with respect to an internal symmetry group. Take the 
invariant group to be that of I-spin, SU(2) , with the basis represen- 
tation defined by 

Ina) l p )  
i n ) '  

(N-7) 
/ 

It is convenient to introduce annihilation operators labeled by the 
particles on which they operate . 

N~ P 
a n 

A I Na = (p .5 ) .  

which transform under I-spin rotations parameterised by Et' according 
to 

A 

-I* Na 
1 ( )  . p a ' . .  

N a a I' 

A r'\ I 
1 - hi i - n  a 

-i('r72) • 8 a 
a l  : (IV. 8) 
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and 

¥Q
ro 

do 

~+ 
_ 5 / @  t 

which transform according to 

1rb_. ei(T/2)°d\ 
a 

al 

a 
to b'e-1('t/2)u| al (Iv. 9) 

The I-spin invariant vertex part for the NNII interaction is 

A 

S 
*O A A  *+ 

(DP H + g`N' lTanb = g -on) + p n  up H (Iv. 10) 

In general I-spin invariant amplitudes are very simply formed by satu- 
rating suffixes and it is trivial to check that the exponential factors 
arising from an arbitrary I-sp1n transformation on an expression such 
as (IV. 10) then cancel in pairs . 

Now consider the same problem for Poincare invariance. For 
creation-annihilation operators we have 

§ + ( p . 5 ) > 0 =  | P L , S l ,  é (p , s  ) )  o = 0 , 
with the (anti) commutation relations 

(Iv. 11) 
I I 

1 

{§(p,s), §+(p',s') My) (2'rr)46(4)(P'P')6ss' ' (IV. 12) 

Analogous to Eq. (IV. 8) , the a ' s  transform under JZ 11ke 

p-  p' 
A 1] in*vf -1n9"I , | -u.-0 | A | 

&(p.s) - e *v5(p ,s )€  p1r = (616 T)S a ( p ' , $ ' ) .  S 

(1v.13) 

where (as will be shown explicitly below-(IV. 26)) the spin transfor- 
mat1on is a pure rotation, but 

5 II `6 ( n ,  . p, p') . (IV. 14) 

The difficulty arises from the dependence of in' on the initial momen- 
tum, p,  in (IV. 14). The fact that the momenta associated with d1f- 
ferent particles at the vertex are different prevents the simple con- 
struction of a scalar invariant by a nalve saturation of spin indices , 
in the manner of the I-spin example. The standard solution to this 
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problem, well-known from Lagrangian field theory, is to replace spin 
by a related "splnor" variable so that Lorentz transformations on mo- 
mentum and the new "spinoza" variable factorize. From Lagrangian 
theory we know that the "splnor" labels specify representation of the 
homogeneous Lorentz group II, e . g .  , 

I 

¢a'(v*g6 4»5A*1.. 

From a purely group theoretic point of view, this development is sur- 
prising since the physically relevant symmetry is Poincare and not 
Lorentz, and we have seen that the IR's of the two groups have very 
different structure. Specifically: 

states belong to unitary 1 
of P whiei :it reduced with respect too 
Instead, .. and p and then reduces P l 

the LG (11ittle qrou.-,. e.g. , 0(3) (spin) . 
(2) Furthermore, the finite representations of JL appearing in 

the Lagrangian program are necessarily non-initary, whereas physics 
is normally concerned only with unitary representations . 
B. Auxiliary Group Solution. 6), 7). 8) 

We will now show how the homogeneous Lorentz representa- 
tions get into the theory, from a purely group theoretic point of view. 

We define the single particle state at rest as 

lm ,s ,s3 )  E lm , s3 ) .  

wlth the normalization 

1m,s,s3 l rn,s ' ,s,3)  = 6ss'63353` (Iv. 15) 

Particles not at rest can be described with the aid of the following 
theorem. 

Theorem. The moving states can be obtained from the rest 
frame states by the Lorentz transformation 

Ne _ -139)-i< m I P S 3 )  " I I s 3 ) l  

if coshle(p)I  = pO/m and sinhle(p)l= I p ] /m ,  with 

(Iv. 16) 

2'(p) 
la(P)l 

E 
Ip l  (Iv. 17) 
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Proof. The proof consists of showing that the right hand side 
of Eq. (Iv. 16) is an eigenstate of Pg with eigenvalue PHL- Expli- 
c i t y ,  

p *e -i" -To e(p) lms3) 
-1 4 

e-in(p)~ K 
-p 3 

e1'(p) 'Kg L e  
__ .=> 

-1< .(p)- K lrns3). (Iv. 19) 

Now, take p= (o,o, P3) so that the relevant factor of (IV. 19) be- 
comes 

-in K A ' 12 
e 3 3Pp.ele3 3 

go - _ _ 1 . n ~ ~  - I  E n ! ( - 3 )  [...[p,1<3l.K31.~..K3]. 
n=o 

(IV. 20) 

BY (IIL 30) ,  

15,12 = 1  § L F )  3 gl.L3p0 

Hence, with IPp.,S3) defined by (Iv. 16) I 

15 
p. 

-16313 
I I 9 , s 3 )  - e Pa $3)  lm, 

(.iv. 21) 
) ' 3 S 

p I p P- p 

N.B. E"{p] boosts |rnIs3) Po |p*_Ls3). 

Consider an arbitrary Lorentz transformation, noi(v) §5ni(v) , 
specified by the velocity, V, with 

coshn='y,  sinh'y='~/M, ' y =  (1 -(72) 
1 

' z  (1v.22) 

such that 

'U
 

1:
 I 'U

 
'

g
-

 

II > 
'F

 
< 

-'U
 

< 

(IV. 23) 

If V is in the z-direction 

A V  
W) 

cosign 

0 

0 

sinhTl 0000 

00 

10 

sinhn 

0 

0 

COSh'1'] 

l 
I 

(IV. 24) 

N.B. 'q takes p-p' .  
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The Lorentz transformation of single particle states is 

*1 | -111 - R' , s , s = e , s . 

Using (IV. 16) and 
- el e (p ' ) ,  

we can write 
* C -u a :. .-u 3 

-1E -K -1n~K -1e-K 
I M I s 3 ) l  

_52 
l p , s3 ) '  = e 91€ e e (1v.25) 

pI < m i  p' < p <  m; 

the effect of the various exponential factors (pure Lorentz transforma- 
tions) being represented schematically below the equation. We see 
that the three Lorentz transformations 

.-1 
1€ . e 

3 -0 4 - . 3  
K -i'rl-K -ie-K e e take m - m ,  

and together generate a pure rotation-the Wigner rotation. An effec- 
tive complete set of states between these and the remaining exponen- 
tial factor is 

Z lm, 
so s 3 > ( m , s 3 l  

yielding 

, . _ -1? lp,s3) " 

So 

:. - ¢  4 no a ..s 
» K  i e ' -K  - in-K - ie-K e l m , s 3 ) ( m , s 3 I e  e e l m , s 3 }  

; l p ' . s3 ) (m.s3  Iei6(t 
3 

') 4 
p I p  l lmI$al I  

(IV. 26) 

which establishes the result ant1cipate_ld in (Iv. 13). 
lion, e15'-1, is analogous to  the @(i/2)'r-$ rotation in SU(2). Now, 
however, simple cancellations of phase factors are not achieved by 
saturating spin indices because of the momentum dependence of 
6(n,p ,p ' ) -  

Rather than using states , it is convenient to work with the 
Fock space creation (annihilation) operators. These transform 

The Wigner rota- 
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according to 

11 a(ps)  [a(ps)] '  
ein-K a(ps)e 

-4 3 
-in-K 

II 

l -43 -o 3 I-.1 
1e~K in-K -1e'- 

I e 2 . ( m  s 3 | e  

3 

e i 
Im.s3)a(p ' ,s3) -  (Iv.27) 

This is like the single particle state, with p -p '  and the spin index 
undergoing a pure momentum de pendent (Wigner) rotation. 

To avoid the difficulty we introduce an auxiliary group, Cl, 
which is chosen to provide an explicit representation for the three 
separate exponential factors of the Wigner rotation. Any group 
which contains the generators TZ' and I will be sufficient. The sim- 
plest possibility for G is £ ,  the homogeneous Lorentz group (O(3 , 1) 
or SL(2 ,C)) with basic generators o' and Io'. 

Another possibility is to use U(2 ,2)-(locally isomorphic to 
O(4,2)).  This is the space time part of U(l2)-with basic generators 
the sixteen Dirac matrices . 

Having chosen Cl, we must choose a representation Imp), 
the only requirement being that the j , j 3  , contained in a,  include the 
physical. spins s , s 3  of the particles to be described. For (l=£ the 
representations 'r can be either unitary or non-unitary. If we desire 
l"17,a) to be finite dimené§'*'**"='Ji 'jmin=':05j s Ic l  - l = max) then the 
l 'c,a) representation is r rtary. Thus (La ll2l'r,Bl is not her- 
mitian, and in fact for the examples under consideration will be anti- 
hermitian, 

(Q1121B) = -(oI12+l5>. (Iv.28) 

On the other hand if l'r,a) is infinite dimensional (unitary) then we 
have a spin tower ko s j _  Most of quantum field theory has been con- 
cerned with the first choice . 

If parity is to be included we have seen that we must use both 
l ' r ,a) and l% ,o ) .  The most familiar example of an auxiliary group 
representation is the Dirac spinoza label for which (1=£ and 
T :  (1/2,3/2). ' t=(1/2.-3/2) .  

We drop the label T and specify the representation by la )  . 
For a Lorentz transformation a(p,s3)- a(p,s3) '  where 

... :. ... :. ... S 

5(p,s3)'  = Z (m,s3Ipl lpIe1e'KI6)l6leM'KIB)(Ble-1EKla)(t2lm,s3) 
st 

5(p' ,$3) .  (IV.29) 

Now define the auxiliary operator 
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- iii A Z Idle 1e I6)(B1n 3)a(p.s3)f(ms) 
S l  
3 

201 

(IV. 30) 

Ill 

s '  A E Uo(p) 3a (p ,s3  

$3 

) .  (Iv. 31) 

This has the important property that under a Lorentz transformation 

A'a(p)l [A"a(p)] | Ua(p)S3 §'(p,S3) 

Ua(p)s3<m»s3 l p )  (p je  l~)(~leii~i 1f3)/'-i5(p') 

'Y 1T\°K 6&(v l€  15).5*5(p-) 

( a l e  
15- E 

l5)AI5(p')_ (IV.32) 

(1) The new "spinoza" label (B) undergoes 
. ' rised simply by W. 

is a gon-as5__"--:|='a1s-z-I spinoza. Equation (IV. 31) which 

In (IV. 32) the "splnor" indices a,B have replaced (s,s3) as the spin 
variables. Further we see that, under Lorentz transformations : 

a pure matrix trans - 
formation E"""""'""""'§§nt of p, 

(ii) M , _  

expresses the generalised spinoza explicitly as the auxiliary group 
matrix element of a Lorentz transformation (boost) is the crucial link 
between the field theoretic and group theoretic approaches . 

The dual operator AQ'(p) is defined as 

A -+ _ --'ii 
A"(p) = Za (p.s3)f(1ns')(m,s3le* '  low 

S l  
3 

(IV. 33) 

(with the sign of the boost opposite to that in (Iv. 30)). 
Under a Lorentz transformation, 

Jim ( P) 
TO' 

>[/§a. 
(p)] A6(p ' ) (e Ie ' i °K lo ) .  (Iv. 34) 

If la )  is finite dimensional (non-unitary), then 

A*a'(p) 4 (A`o(p))+ but 

:~ as 
N-=E 11 
f
~

`
 

co. 
~

.r 
B <

¢
 

3° (n. 35) 

Also for spinors , defined by 
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-+ a A*°'(p) (p.s3)Ua(p)S3: (IV. 36) 

for non-unitary representations , 
Q + 

U 94 (ua) . 
le, in the Dlrac representation UQUQ = FU (and not 

- .  is a scalar. 
Under displacements , 

For 5 
(Url 

(IV.37) 

a+(p . s) 
a IP a}J~.. 

> e  l* a+(p.53), 

A a 
a(p,s) 

-ip alJ-__ 
e 1u. a(p.s3);  

(IV.38) 

and the auxiliary field operators transform in the same way , 
- 1P at1. A 

A°'(p) ** Aa(p) . a > e  
(IV. 39) 

a > e  
A -iP*,.a** 
Aa(p) ii a(p) ' 

The introduction of the auxiliary group has solved the problem of 
separating "spin" and momentum variables in the Lorentz transforma- 
tion of field operators. Now invariant factors can be constructed in 
analogy to the isotopic spin by saturating indices . 

Thus , for example, for Dirac operators (which we discuss in 
more detall below) , a four-point sub-matrix of the S-matrix could 
have the form 

re  § AG'(p1) §"(p2)t ,-q" aBéB(p3)A(pA) 

4 4 v 2 
(21r) 6Q>1+p2-p3-p4 iD121r9(p0) 6(p1 

m2 
i \|- 

(IV. 40) 

Under displacements, § transforms 
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A a S > i(p§*+p§*-p§.*-p)a,* -a -1r A t • * Is (p1)B(p2) Q f q  
B 

oz 

§5(p3)/711r(p4)6 p1+p2 -p3-p4 
8 4 

D1A+(Pi) 
j.= I 

i 
I (n,41) 

I 

I 

ii II 

showing very explicitly how translation invariance leads to energy 
momentum conservation in §-matr1x elements. Under Lorentz trans- 
formations of § ,  it is most important that only the auxiliary operators 
transform, and that these transform as densities , 1.e. , that for A°'(p). 
p -  p' in addition to the matrix transformation on a. Consider the 
case 

t l.L . Q  
p. 

B 
a 

= H B 'Y 

q H. a I (IV. 42) 

U
J)

 

FM
 

II 8»&'(pi) 
-in 1 -1~ '<)<~B" ' (p )  

It""»>(""°)§' 

1 
B B P 3 )  A'y(D4) 

4 J i 

Pl + P2 ` Pa - 94 ,HI A+(pi) . 1: 

" 1r 

( ">f- 
€i-E 

lim 

ii 

(IV. 43) 

Now , 

e 
p. 

'Y 
K q 1 1 e v = 'Y 

v 
( n ) p, 

A (IV. 44) 

and 

(n) III
 . v  

q 
p v 

q A 
p. 

One can now make a change from the undashed to the dashed varia- 
bles. Since the Jacobian is unity, the invariance of S is established. 

We will have occasion to consider below pure matrix transfor- 
mations of the auxiliary operators 

(IV. 45) 

A` a(p) -* 

'* 

(p) (IV. 46) 
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(p unchanged). For invariance under such transformations it is evi- 
dent from the example above that the saturation must take place be- 
tween suffixes on auxiliary operators only, and factors such as (qlJ.v|*) 
are excluded from S-matrix elements . 
C. Physical Content of the Auxiliary Field Operators . 

The correspondence of the auxiliary operators to physical par- 
ticles depends on the choice of the constant spinors 

( l3 lm,s3)  E l k O c , j j 3 l m , s , s 3 ) ,  (Iv. 47) _ Hs 
i s  

where (s,s3) are the physical spins and (j , j3 )  are components of the 
='"'* my representation. 1 

go be o(3 , 1). 
For example, take s = E and the auxiliary 

The simplest representation la )  containing spin 

la)  l koc j j3)  = I%.t3/2;é, té) ,  (al. 48) 

which are the four Dirac spinoza labels . 
boosts are just Dirac matrices, 

In this re presentation the 

(oIKilB) B 
(601/2)& = --3g1/2)*B. (Iv. 49) 

whe re 

U' I-uv 
i 
2 [ a m v ]  . H vv}  = 2g1J.V. (1v.s0) 

We have two physical states in the rest frame, lm,s3) (s3  =in), and 
there are four auxiliary states, la) .  This redundancy can be re- 
solved by additional conditions on ( a m ,  $ 3 ) .  

The operator 'Yo satisfies 

[70"'ii] II 0 I (Iv.51) 

and can therefore be simultaneously specified with spin only in the 
rest frame. In fact, for this representation 'Yo plays the role of the 
parity operator [1.e. , has the correct commutation relations with 
"uv/2 =IN.Lv].. Thus specifying the eigenvalue of 'Yo specifies in- 
trinsic particle parity, 

2 = 1 vo , 

so To has eigenvalues :t1. We may impose the conditions 

(Iv. sz) 
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(1) (O1l'Y0II3llBlm,s3l = +(c¥ lm,s3) ,  ) _ L  
- 2  ( s (Iv. 53) 

or 

'yo|m.s3) + l m , s 3 > ,  

defining positive intrincis parity for particles; or 

(IV.54) 

(ii) 'Y0lm,§3) - lm,§3) ,  
-I I 11 

-ilf\l 

11 
lm

 In (Iv. 55) 

defining negative intrinsic parity for particles . 
Either of the conditions reduces the number of independent 

auxiliary states to that of the physical states. By boosting the 'to 
equations, (IV.54) or (IV.55), we have 

late 
w e  » 4  -u 

-1€»K *Y el€°K e o -ie-Klm1 (s/E) ) 

II ¢ ( l e - l e ° ' | m . ( s / E ) ) ,  

or 

late - ie-K in# e Yo K|@)(B|e- i "K|m,(s/Q) = ¢(o1e-i"K|m,(s/Q) I 

or 

P*'Lt*L\ ii 
i ]  rn U5(p.(s/§)) i U ( p ,  (s/§)) . (Iv.56) 

I 

i .e .  , the Dirac equation. 
Gordan equation) always? 
ponents in the auxiliary F 

" v -  -` F*"'*%'""*"'*&°'*'lgmay or 
-. cross-sections since we know a» 

Equations of motion (apart from the Klein- 
--,;.> of el1rninat1ngl§*1Eiiliiil5H"i1wTcom - 

l a ) .  In this I' 
may not exist. In any Gas not 

the spinora expli- 
cm? 

Note that in terms of these states we can write the unit 
matrix in l a )  space as 

i =  2 l s , s 3 ) ( s , s 3 l  I`§,§3>(l§,§3l, + (Iv. 57) 
s3  

and 

Yo Z l s , s 3 ) ( s , s 3 l  
3 

I§,§3)(l§3,§3l (Iv. 58) 

So far we have Started with the physical particles and pro- 
ceeded to the auxiliary representation, with the aid of supplementary 
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conditions to eliminate redundancy. However, we could have 
started with the auxiliary representation and decided from that point 
of view what particles should be physical. For example, physical 
particles Im ,s  , $3 )  could be specified to  
l j  , j 3 )  in a particular representation I o ) .  Dirac 
case AQ,(r1) we can have parity doubling wlgg 
l s , s 3 }  and 1553). In this case there ,(p) 
satisfies no equation of motion, but the spin sum over physical spin 
states is then 

is Q » 

SZ 
3 

Z(ol§,§3)(E,§313> E 
l+  

$3  

113 3 )<S'S 
$3 

1 S '  
(Qf 6 3 .  (IV.59) 

The sum over spinors is extremely important for calculating 
cross sections 

o' 2 ss+ 
spin 

To Illustrate the general features we need below we can consider spe- 
cial cases 

S a 5 :  E (p,s.s3)U5(p.s,s3).  U a 
spins 
(s, $3) 

(IV. 60) 

Formal proofs of the statements made below are to be found in 
Feldman and Matthews. 9) 

(1) la )  finite dimensional (non-unitary); e .  g. r for the Dirac 
case with parity doubling we have (using particularly (IV.49)) 

S B = $ 3  
Ua(p, s f s3)U;(p,s,s3)(vo) B r 

in~§+ Z (ale- i€°KI 'Y)( 'YIm,s,s3)(m,s,s3]<r)(<rIe l.r)(1'rl'yOI5) 
ss's3 

I 

l aIe"j.Ei(0'O1/2) e+i€j.(0';1/2) Yo I 

(Q e'j.ei0'oiyo lm (IV.61) 
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This is a slight variation of the more familiar case with two physical 
states (rio parity doubling) where 

U 55 a 

II 1 
Zm 06+rn)5 I [+ parity] I 

and 

U 05 a 
1 _ 

2m (15-m)B. [ -  parity] 

The important general point is that for finite (non-unitary) representa- 
tions the K matrices are anti-hermitian, so the momentum dependent 
exponentials in the spinors do not cancel but combine to give a mo- 
mentum dependent factor like 15- 

(2) Ia )  infinite dimensional and unitary. We assume a one 
to one correspondence between physical states and auxiliary states 
so that the constant spinors are 

lkOc:1,13|m,s.s3) = 6 6, 1 I 
JS 1333 

(Iv. 62) 

implying an infinite spin tower of physical particles . 
representation implies 

Unitarity of the 

(a]KilBl = (ol1<.lfs), 

Ua(p) = Ua+(p). 
(Iv. 63) 

and the sum over spinors becomes 

sB 
a 2 Ua 

s pin 
(p,s3)u*(p. $3) 

1% 
(a le  1 Kl1r)(1rlm,s3)(m,s3lp)(plek I B )  

loz le  
-i"1'€ Fi E e t  

(MBA = 68. (IV. 64) 

Thus we see that for this case the spin sum has no momentum de- 
pendence . 
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V. Poincare Invariance and Internal Symmetry 
We now consider the problem of combining external with in- 

ternal symmetry. The simplest possibility for an internal symmetry 
such as U(3) is to assume invariance of the theory with respect to the 
direct product P ® U(3) . Let the representations and components of 
U(3) be labeled by the suffix a .  and the generators by *i (i=0, 1,... 8) 
including the unitmatrlx Ko. Thus the Fock space annihilation 
operation is now a(p, s;a) and the auxiliary operator Aoa(p)  . 

Invariant S-matrix elements are again constructed by satu- 
rating independently all the indices of both groups. 

§ lAaa(p1)B" '  b(p2) t(¢i) BBBa(p3 A ) 1r,b (D4) 

d4 pi 

(2104 

4 
(2 )46( + 7r al P2 - Pa - p4 ) A+( -) i l l  PI (v. 1) 

merits pl.L as discussed in (IV. 45)-(IV.45) 
Lorentz transformations operate both on the indices a and the argu- 

f so momentum dependent 
terms t(lé) are allowed in the §. For this it is essential that both AA 
and pp. transform according to representations of O(3, 1). 

If we attempt a more intricate connection between the 
Poincare group and U(3) , we can take the simplest representations of 
the Lorentz group SL(2,C), for which (k0,c) are (3/2 , 1/2) and 
(3/2, -1/2) (dotted and undoubted spinors). These 2 X 2 representa- 
tions give rise to four vectors 

Up = (1 .0)  I (v.2) 

and 

i 
lb

 II (1,-u). Vv.3) 

The simplest possible non-trivial extension of the physical Lorentz 
group JL, which contains Jo U(3) as a subgroup, is to take the 
group SL(6,C) with basic generators given by the outer product 

p. 
0' K (X) 3 6  generators I (v. 4) 

or 

l 
x ® 1.L 

0' 3 6  generators . (v.5) 

Both have to be included for a theory which involves space-reflection 
invariance. If this is to be generalised to an extension of the 
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Poincare group, the vector PH must be a representation of the new 
larger group SL(6,C). But the simplest representation which includes 
four components which transform as a four-vector under Lorentz trans- 
formation is the 72 -component multiplet, transforming like the basic 
generators. One is thus stuck with a 72 -component energy-momentum 
vector. 10), II), 12) 

This is an example of a general theorem established by Michel 
and Saklta. 13) 

Theorem. Any generalisation of P ®U(3) which contains 
P ® U(3) as a subgroup necessarily involves an energy-momentum 
vector with more than four components. 11 

The way around this difficulty ""'*" extend, not the Poincare 
group, but the Auxiliary group. For e 14), 15) 
latter to be U(6 , 6) or U(12) -with basic generators given by the outer 
product of the 16 Dirac matrices with Ki: 

i e.  we can take the 

1. 175 YI* 'Y*L'Y5 a w ,  I I I I L k ® (v. 6) 

The basic auxiliary operator is twelve component 

AA(P) where A = a , a  

a = 1 ,2 ,3 ,4  a = 1 , 2 , 3 .  

Since the transformations on both indices a and a are pure index 
transformations , we can require the S-matrix to be index invariant 
under the pure index transformations of the U(6, 6) auxiliary group. 
This gives rise to a subset of the invariants allowed by invariance 
under P ® U(3) . They have the property of being SU(6) invariant, in 
the extreme static limit, in which the masses of all particles tend to 
infinity, since then momentum dependence is frozen out and the 
auxiliary group spinoza labels are equivalent to the spin labels. How- 
ever, since the index transformations do not operate on the momen- 
tum P*JL, index invar excludes factors like xi in S-matrix ele- 
ments (see (IV.43)- ) ) .  

We must now consider whether index invariance is consistent 
with the unitarily of the S-matrix. Expressed in terms of T where 

S : 1 + i T ,  (v .  7) 

this requires that 

2 ImT ' I T .  (v. 8) 

Suppose that T and T+ are index invariant and that ImT is defined 
by (V. 8). The product on the right hand side involves a sum over 



210 p .  T .  MATTHEWS 

spinors. Writing one such sum explicitly we can put 

+ TT 

III f3 ZtaUa(p,s3)U (p.53 
53 

WB . 

If la)  is a finite (non-unitary) representation of the auxiliary group , 
we have seen that this gives momentum dependent factors-typically 
(IV. 61) - 

+ TT _-  a(16) BT t B' 

But factors al are excluded by index invariance. Thus even though T 
and T+ are index invariant, unitarily of the S-matrix implies that ImT 
is not, if the particle multiplets are finite dimensional. This is the 
so-called "conflict with unitarily. " The escape route has been an- 
ticipated in (Iv. 64) . If the physical multiplets are taken in one-to- 
one correspondence with unitary representations of the (extended) 
auxiliary group, the spin sum is unity, and consistency between in- 
dex invariance and unitarily of the S-matrix is re stored . 
paid is that we now have infinite particle multiplets . 

For a more general and statement of the argument of 
this chapter, see Feldman and i s .  9) 

The laurice 
16),17),1 ) 

VI. Causality-Spin and Statistics 
ice that -so far we have made absolutely no mention of 

anti-particles , the relation between spin and statistics, or CTP in- 
variance. All these concepts arise from the requirement of causality, 
which goes beyond Poincare invariance. We turn now to this prob- 
lem and find that it leads to further complications for unitary, index 
invariant theories . 

Causality is best discussed in configuration space, but before 
taking .the Fourier transform of the auxiliary operators we develop 
wha'5:1 turn out to be the anti- ble formalism. Following 
We§- : f  we note that for any *ion there exists a matrix B ,  
suchatlat¢ 

7) 

iii' ( s , s 3 l e  l s , s 3 )  II 

»._1 _j.:'§- 
( s , s 3 | B  e I B l s ,  3) .  (VI. 1) 

Thus to construct a creation operator that transforms under the auxil - 
1ary group like an annihilation operator, we make use of (vI. 1) to ob- 
tain 

_ 4  3 . 4  -S .-1 
--l 1e-K 1n-K - je  - 

e e e E)*(p, $3) 1, (53 IB kl A+ | 

B l s 3 ) b  (p .$3) .  (VI. 2) 

Analogous to the auxiliary field p) , we introduce 
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3 a(p) 
_....:._ "-l- Z l<2Ie 1e K B l M , S . s 3 ) 9 ( M , s ) b  (p , s ,53)  

s , s3  
(vI. 3) 

S 
Z 5a(p, 

' 3 

~+ 
s,s3)b (p. s .  $3). (vi. 4) 

As we have seen, there can be more than one 
sum and the factor g(m,s) allows for a spin d§_____m.__._... 
though we will not consider such fields here . 
formation 

barring in the 
mas s , 20) 

Under a Lorentz trans - 

n :. ~"-1? 
Ba(p) -> (a le r  IB) §3(p') I (VI. 5) 

i .e .  , Ba is a creation operator transforming like the annihilation 
operator Aa(p) . 

Under translations , however , 
site sign from Aa(p) , 

§a(p) transforms with the oppo- 

§ a(p) 
a > $- a(p) II (D

 H
- *0
 »

 
-p

 w 'F
 

we
 

Q
 

) 

12
 

(vI. 6) 

Thus §0a(p) transforms like a particle creation operator. 
We now define the free field in configuration space 

@a(x) 

II 8 AAo(p) e 
-i - x  i - x  

P + Ba(12>) e P A*(p) 
d4p 

(2104 
(vi. 7) 

Under Poincare transformations , we have 

&a(x)l e 15'-R 5 J13(x'), (VI. 8) 

J»o(x) i> J»(x+a) , (vi. 9) 

for quite arbitrary choice of f(m, s) and g(m, s) (including zero). The 
factorization of transformations on spinoza and space t ime labels fol - 
lows from the factorization of transformations on spinoza and p labels 
in momentum space. In this way we arrive at a local field operator 
normally taken as the starting point in Lagrangian field theory. 

The causality condition imposed upon such fields is 

iu»o(x).¢>@(y) i = 2 (spacelike). 
. (vI, 10) 

0 for (x -y )  < 0 
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This implies that no mutual distrubance from observation of the fields 
travels faster than the speed of light . 

This is a stringent requirement which may be stronger than is 
physically necessary since it is not clear that one need observe the 
fields in this sense. The condition does, however, have the enor- 
mous advantage of being simple and precise. Applied to finite corn- 
ponent fields , it has the important consequences , mentioned above , 
concerning anti-particles and statistics, which are well borne out by 
experiment. 

It is the basis of the analytic properties of the S-matrix. In 
particular, the procedure for introducing electromagnetic interactions 
through the substitution 

l.L 
a - | »  

p. 
a ieA 

necessarily a1s_.o involves lIJA`*`. Thus 

only leads to causal currents, when it is applied to causal fields. 
Only for such fields does the time-ordered product-and hence the 
standard Feynman-Dyson S-matrix expansion-have a well-defined 
covariant meaning. It is thus a property which one does not lightly 
give up, 

We have been lead to consider infinite component fields cor- 
responding to unitary representations of the Lorentz group. We now 
consider what survives of the Pauli Theorem concerning spin and 
statistics if the causality condition is applied to these generalised 
unitary fields. __ 

If a theory is constructed around the field LIE, hermitian 
operators (e. g. , currents) have to be constructed, and the theory 

a minimum condition for a causal 
theory is that Lb and LT' satisfy (vI. 10) . One must also make sure 
that the condition is satisfied by any other pair of operators in the 
theory, but this is usually simple. 

The causality condition is satisfied by the free field commu- 
tator (anti-commutator) if it can be expressed in the form 

41o,(x) . 4*fi (y) f 
dz QB (8) e -1p- (x-y) _ eip- (x-y) A+(p)d4p 

(vi. 11) 

where the crucial feature is the relative minus sign between the posi- 
tive and negative frequency parts. Now substitute (vI. 7) into the left 
hand slde using (VI.4) , (Iv. 31) and the (anti) commutation relations 
(IV. 12) where 

H+ denotes (Fermi statistics) anti-commutator, 

and 
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{ } _ denotes (Bose statistics) commutator. 

Then 

{¢(x). *PB (y) 
d: Z 

8 5 3  

q U * I [ Q(P: S, S3)UB (p, s, s3)e°ip(x-y) 

i Ua(p,s,s3)UB(p,s,s3 )e"""'YliA*(p) 
(2164 

(vI. 12) 

= Le _-13+ 
je K l 0 ) ( e l m , s , s 3 ) l f ( s ) l 2 ( m , s , s 3 l 1 )  

l f r le 15>@'ip(x-v) :t -1?-§ _ 
( a l e  B l m , s , s 3  ) 

- l  IB e - 2 _ i"- TE+ 1Q(s)l (rnlslss G 
IB)e1P(X'Y)l A ;  

(VI. 13) 

the upper sign referring to Fermi statistics. This is the basis for the 
Pauli spin-statlstlcs theorem in that, if finite non-unitary represen- 
tations are used, the*--0" 
for integer spin and 
To illustrate this , we' cons E the spin O and é cases . 

(1) S = O .  For the scalar case , 

. lQ) is satified only with Bose statistics 
optics for half integer spin particles. 

;:<
;»

 
II 0>

 
II w D
 D
- C
o II C
o + II I I »-
1»

 
s 

(vI. 14) 

so that from (VI, 13) we obtain 

( x ) ' ( y ) ¢  = I { 2e-ip- Ill (x-y) i IQ l2eiP(*"Y)'A+(p) 
J 

(vI. 15) 

Thus for agreement with (vI. 10) we must choose Bose statistics 
(lower slgn) and 

1 _ 2 
g 

2 f I I I 1 (vI. 16) 

1.e. , anti-particles must be included. It is further noted that if we 
require the parity transform of the scalar field 
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R §-1- (x0.5€) ' :i:'~l(x01 -50 r (vI. 17) 

it 1mp11es that particle and anti-particle have the same parity; 1. e. 

-+ o , s = :Tb - ,s  , 
.vi Ho . ( P ) ) 0  

-+ 
Ra (£~ s) )0 is+(-p,s) ) 

Aan*- 
Rb (p, 

r 

(2) 
taking either both upper or both lower signs . 

s = é. For the splnor case , 
0' __ of 
A A+ 

0 of 
K of 2 2 (VL 18) 

Particle parity is chosen by convention to be positive , 
"+ s = +5+ - Ra (p. 3))0 ( p , s ) )  

..~. o '  (vI. 19) 

and will be determined for the anti-particle by the causality condi- 
tion 

,...+ .+ = i _ . Rb (p.$3))0 b ( D,s3) lO 

The spin sums in (vI. 13) are (see (IV.62)) 

(vI. 20) 

U a s pin 
parity(+) 

(D. s .  33) UB(p,s,s3) _ 1 
2m 

us+1n) ('y0):l 
2 8lf1 , a 

a Z 5 (p,s.5 )5*(;>.s.s ) 3 B 3 spin 
par1ty(i) 

B 
(16th)o lg  12. 

(vI. 21) 

so that we obtain 

{'a(x) , $6 (w = l{;(15+mwo_l B lf(s) l26-ip(x-y) 

(VI. 22) 

:|: 2m [(;lim)vO] 6lg(s) | 
a 

2 ein(x-y) A+(p) 
d4 p 

(21r)4 
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The causality statement (vI. 10) then requires: 
(i) 

(ii) 
(iii) 

Fermi statistics , 
(-) parity for the ant1-particles , 
I i  = Igloo = 1 , (VL 23) 

SO that 

$(x)¢;(y) + 
1 

2m (1?f+rn)'yOLB I e ip(x y) _ eip(x'y) A+(p) diD . 
(21r)4 

(v1.24) 

6. 
i s  ] 333 '  

As is well-known, these arguments generalize for all finite non- 
unitary fields with the result that: 

(i) Pauli spin-statistics theorem is valid; 
(ii) Substitution law [pl_L* - p :  particle in-- anti-particle out] 

is valid; 
(iii) CPT theorem is valid . 
Index invariant theories such as SL(6 ,C) or U(6 , 6) with finite 

particle multiplets work with local causal f1elds,which preserves all 
of these features and give SU(6) in the extreme static limit [all par- 
ticles have m-°°] . However, as we have seen, they violate uni- 
tarity. This was the original motivation for discussing infinite com- 
ponent fields , considered at the end of V,  which allow for Index in- 
variance consistent with the unitarily of the S-matrix. 

(3) Unitary Fields of index invariant theories. For these in- 
dex invariant fields we have la)  unitary and K=  K+. In addition to 
satisfy unitarlty we required that 

(1) f = Q = 1, 
(ii) ( j , j 3 l 3 , s 3 )  = 6 

SO that 
* 

UQ'UB 65 
a 

and 

E E *  " B  (vI. 25) 

Thus 

A -+  
Ua0(x).¢5 (y) i 65 

a He -1p(x-y) i eip(x-y) 
A+(p) I'\U§.\l\-.EEE; . =» . 

(VI.26) 
or 

so rgugality (VI. 10) can only be satisfied for Bose statistics for all 
such fields, whether of half lnterqer or Integer spins . 
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Notice that there is a very direct conflict between causality 
and unitarily with index invariance, since the latter demands 

U U* = 66 a B a ' 
while causality for consistence with Fermi statistics requires 

B U U* 6 a B f a ' 

in order to produce the crucial minus in (vI. 10). 
Fronsdal16) and Dao and Ng¥1l,m_. have suggested that one 

can construct infinite fields of the auxiliary group to satisfy index 
invariance, but quantise each separate spin component in the con- 
ventional manner to preserve the correct spin-statistics relation . 
This requires that both a unitary (infinite) and a finite auxiliary repre- 
sentation are associated with each physical spin. The relation 
between the two is wildly non-local, so that local currents con- 
structed from the unitary fields are very a-causal in the quantised 
(finite) fields. This brute force approach does not appear to us to 
provide a solution to the problem. 

Apart from its implications for index invariant theories , this 
result clearly shows that the Pauli Theorem connecting spin and sta- 
tistics is not valid for unitary fields. We may wonder if any such 
connection survives. To this end we consider: 

(4) The self-conjugate unitary fields. The two unitary fields 
specified by either 

(kO,<:) (0,é) : = 0 , 1 , 2 , . . .  j 

or 

(kO,c) = (é,0) 1 é,3/2, . - 
I (vI. 27) 

are parity self-conjugate fields and we now show both can be made 
causal using Fermi, instead of the Bose, statistics derived above . 
This completes the collapse of the Pauli theorem in that it demon- 
strates that not even the wrong spin-statistics correlation results . 
In general for unitary causal fields there is no spin-statistics corre- 
lation. 

For ~ these special re presentations exist 
(r, that =§@§¢rm like four vectors , 

operators4l ' 5) 

l r  | " , '  = . ; 6 . , , 6 .  (vI. 28) 

The meaning of iv as a 4-vector is that under a boost, 
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E' F o > e 
p*r p. -Et 1% Foe - m (vi. 29) 

Now take the physical states to correspond to the infinite tower such 
that 

l ko lba j l j3 IM:S. rS3 l  :- 61561383. (vI. 30) 

SO that 

1`olm,s,s3) = ( s+§ ) lm ,s , s3 ) ,  

and FO can be written 

(VL 31) 

Fo Z I s , s 3 ) ( s + § ) ( s , s 3 l .  
553 

(VI.32) 

The trick that enables one to satisfy causality with Fermi 
statistics is to take 

l£(S)I2 k g ( s ) I 2 =  ( s+ i ) .  (vI.,33) 

{`a(x) . $6 (y) 

Then the (anti) commutator (vI. 13) is.  using (vI. 32 ) ,  

-"'-ye' 1'11€+ . - '  - -5 1e 1s ,s3 ) (s+é) (s .s3 le  e IB)e .p(x .y) i . ( a l e  

:t ( o l e  -1 KBls,s3)(s+§)(s,s3 IB -1 1?-T+ e lBl€1P(X-Y)} 

A+(p) 
d4p 

(2 f1')4 

l(ole -12112' Foe 12'-i|B)e-ip(x-y) 

Q ip(x-y) A+(p) 
-0-4 i* -1 .K _1 - . 

i ( a ] e  e B1"0B €+1€ IB)e diD 
(27r)4 

I 

r 

and, with (VI.29), becomes 
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J»a(>0 J5*(y)} »rill.L B -in(x-y) 
T11 a 5% __ ip(x-y) A+( ) dup 

-l-e P (2704 

(VI. 34) 

Thus causality (VI. 10) requires Fermi statistics (upper sign) for both 
the ( O ) - i n t e g e r  spin-and (§,0)-one-haif integer spin-unitary rep- 
resentations. Thus there is no spin statistics correlation for unitary 
representations. (Note that since the sum over spinors is not unity , 
these Fermi fields cannot be used to construct unitary index invariant 
theories. ) 

We have confined this discussion to multiplets of equal mass. 
M "its with diff?-""Ll. masses for he different spin have-" "  con- 
si sae-.;-u by Feldman Matthews. If a unitary field is F ad to 
satlsfy a linear equation 

2 05 

Lia*"r +K ~1x 
p. 0 ,  

giving a mass spectrum 

m 
S 

K I 
S + §  I 

it has been shown by Abers, Grodsky and NortonZ 1l that one can 
satisfy causality with either Fermi or Bose statistics , without intro- 
ducing any anti-particles. This demonstrates the loss for unitary 
fields of one more of the physically attractive features of finite com- 
ponent (non-unitary) fields . 

We close with the very negative comment that the difficulties 
encountered in combining internal and external symmetries in a non- 
trivial way through index invariance are of a subtle nature, involving 
as they do problems of causality, GTP and the relation between par- 
ticles and ant1-particles. It has only been possible to see them be- 
cause these theories have been formulated in a very clear and precise 
manner. 

Similarly, attempts to find reasonably realistic model theories 
for current commutators , which have an equally precise basis , lead to 
the highly non-local Lagrangians. No light can be thrown on these 
fundamental problems by phenomenological non-relativistic quark 
models , and the whole question of the connection between internal 
and external symmetries remains extremely obscure . 
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Summary 
Starting from the notion of particles and Poincare invariance , 

we have arrived at local fields. In order that these should have sim- 
ple transformation properties the spin variable, specifying a repre- 
sentation of the Little Group O(3) , is replaced by a spinoza, speci- 
fying a repre sentation of the auxiliary group. This must contain the 
homogeneous group and is most 35- 'mchosen  to be isomor- 
phic to the he ous Lorentz group (I is III and Iv) . 

The combination of internal, SU(3) , and external, 63 , sym me - 
tries is considered in Chapter V. The non-trivial extension of 
P ® SU(3) leads-by the Michel-Sakita Theorem-to an energy mo- 
mentum vector of more than four components. This can be avoided by 
extending the auxiliary group to include the internal symmetry~ 
SL(6,C) or U(6, 6)--and requiring "index invariance" of the S-matrix 
under the purely index transformations of this larger group. This 
provides a relativistic theory with SU(6) as its static limit ,. but is in 
conflict with the unitarily of the S-matrix unless the particle multi- 
plets are infinite unitary "towers. " 

Causality is considered in Chapter VI. It is shown that index 
invariant unitary theories can only be made causal if all particles 
satisfy Bose statistics. In general, it is shown that for (infinite 
component) unitary causal fields there is no connection between spin 
and statistics. 
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VIII. Generalised Groups: Definitions and Representation Theory 

I .  A Survey of N/D Bootstraps 
In this series of lectures , I want to set up a fieldItheory of 

bootstraps and dis cuss briefly some of the mathematical._ lens 
arising in such a theory. 1) As an Introduction to this I want to start 
by giving a survey of the theory and results of the N/D approach to 
bootstraps . By doing this , I can tell you in a very simple way what 
the bootstrap idea is , at the same time following the historical 
method of development, since the bootstrap idea was first developed 
in the N/D framework. At the same time you will see how the calcu- 
lations indicate the need for a more complete approach to bootstraps 
which includes many particles in both direct and crossed channels . 
This can be achieved , at least in principle , by means of field theory , 
s o  we will naturally be lead to setting up a field theory of bootstraps . 
In the process of doing this we will have first to set up a field theory 
of composites , and then make all particles composite. These prob- 
lems and their resolution will be discussed in more detail in later 
lectures . 

So let me begin, then, with the N/D method of be apping 
particles _2) The basic idea here is that a particle 'boots ii ' itself 
by being its own potential-that potential caused by the exchange of 
the particle. This potential then acts between two other (elementary 
or composite) particles to produce the bootstrapped particle as 

University of tpjfesented at the THEORETICAL PHYSICS INSTITUTE I 
Colorado, Summer 1967 . 
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a bound state. To set this up in detail let me consider the elastic 
scattering amplitude for two equal neutral scalar a-particles of mass 
m .  The L-th partial wave amplitude is a function 'Q (s) of the invari- 
ant energy s of the incoming particles; in the centre of mass system 
for the incoming particles , s =4(m2 +I?-2) , where 1? is the centre of 
mass momentum of the particles . Also the elastic scattering phase 
shift 6 ( s )  is related to tL(S) by 

k ~ t ( s )  II 

'6 
1 L s 1 n 6 .  

s€(<4m2) 

It is to be expected3) that to, (s) map be continued analytically in s 
to the whole complex plane except for two real branch cuts: the right 
hand cut running from s = 4m2 to -I-°° and the left hand cut, running 
from a : f - - m  to -°°. The right hand cut is sometimes called 
the un cut , since for s <  4m2 the unitarily condition is3l 

* . 2 . . . t , (s )  - t/L(s) = 21k to (s) l  /s + inelastic contributions 

= zip ($)|t1¢ (5)] 2 (1.1) 

The physical value is the value of the analytic function t ( z )  on 
the upper side of tl'lm'E,m_ hand cut, while t ' (z*) will be the value on 
the lower side of the cut. Thus the right hand side of (I. 1) denotes 
the discontinuity of Ur, across the right hand cut; this contribution 
may be regarded as arising from res cattering through two or more par- 
ticle intermediate states . 

The left hand cut has a more complicated origin, being the 
place where the dynamics of the system becomes evident. If we con- 
sider the simplest particle exchange , that of a single c particle of 
mass u , coupled with strength g to two a particles of mass m ,  then 
the Feynman diagram for this gives a contribution to the total scat- 
tering amplitude equal to 

2 
I12] 

2 
Q / I  (al - D3) 

In the co-ntre of mass system, with scattering angle 9 , so  that 

(I-2) 

Pl = (w.12'), P2 = (w,-E). r>3=(w, l ' ) .  p4=(w,-l?') 

wlth 

I k*\ = 11?-I I 

W 
_.Q 1 

(k -l-m2)§ I cos 9 =1?-1?-/IEI l131 J 

then t=-2l2'2(1 - COS 9 )  and the contribution Of ( I -2)  to t (s) will be 
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2 
g 

2 
+1 -v -1 

P ( c o s  6) l ; -2k2(1-cosG) - u  
-1 

I d(cos 9). (1.3) 

Evidently (1.3) is singular in }?2(or s)-for 225 -1i2/4, and l?2=-u2/4 
is a¥15i i ' i thmic branch point. There will be higher branch points at 
E2 = ___.._2/4 , with n = 2 , 3  , . . . , due to higher numbers of particles 
being exchanged; these will lie along the negative real axis in the s -  
plane . Thus the highest branch point S c  of the left hand cut will be 
at s€=4m2 -1.12. 

There may also be , 
and 4m2; these poles willli respond to bound states . For the boot- 
strap situation we are especially interested in showing that the single 
C particle exchange can produce a c-particle bound state, i . e .  , a 
pole in to(s) at s =l.12 with the correct residue 92_ 

In order to see if such a bootstrap situation is possible , and 
more generally to obtain t , (s )  in terms of its discontinuity across the 
left-hand cut, we write 

in to along the real axis between Sc 

t/L 

II No; /D 

where we choose Nr, and Dt, only to have left- and right-hand 
branch cuts in S , respectively. We now show constructively how 
this may be done . 

We apply Cauchy's theorem for D (z) to the contour C l  in 
the s-plane , which is a large circle together with a contour encir- 
cling the right hand cut, all taken counter-clockwise, z is any point 
not on the right hand cut; then 

D(z) 1 
21Ti 

01 

D/L (z')dz' 

(z' - z )  
1 

2n1 

_.Q 

1m2 

1 D&{s')  -D;,*(s')]ds' 
(s'  2) 

(1.4) 

where we are as summing that the contribution from the circular part of 
C1 to the middle part of (I.4) vanishes as  the radius of the circle is 
made infinite. If we denote (DL -D)£*) by Zidisc DL , then 

_ L  °° D,(z)  - 'ii I 
4m2 

disc D4,(s')ds' 
(s' -2)  

Since we cannot determine each of N/L and Do, to within a common 
arbitrary constant, we assume = 1 , where 
So S0< 4m2. Then 

arbitrarily that DMSo) 
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DO; (Z) 
( 2 - s )  oo 

1 +  " o  
4m2 

Q (1.5) 

The physical value of D is obtained by taking 

lim DL (s + je ) 
€-» o+ 

Similarly, by using the contour C 2  (which is identical to C1 except 
that the left hand cut is encircled in place of the right hand cut) for 
NL r we obtain 

NL (z) IT 

So d iscN(s ' )ds '  

( s ' -2 )  
-on 

Now 

disc D,L(5') Nr, dj_5€tJ-1 = -o(s')N&(s') I 

-l(S') where is given by the unitarily equation (I. 1) , so  
for 4m < s ' <  9m2. Also discing, =Do, »disc to, =D;£1g, , S O  

is k'/(s-)* 

(s 
D,L(s) = 1 - IT 

- so )  m 

4m2 

D (5')Nr, {s'}ds' 
(s'-s-ie ) (s' -so) (I-6) 

N ( s )  
l 
IT 

So 

- m  

f£(s')D&(s')ds' 
(s' -ITS) (1.7) 

Thus if £g(s') is known for s ' <  Sc we may solve the pair of coupled 
linear integral equations (I. 6) , (I. 7) to obtain No, and DL explicitly . 

The bound states arising in to, may be due to poles of Nr, or 
zeros of Dr, . The form of (I. 7) has excluded such poles in NU if we 
had included them we would not have been able to determine their 
position or residue . In other words , they would not be dynamical 
bound states; as  we switch off the interaction represented by the ex- 
change of particles and described quantitatively by the function if 
such poles would have remained fixed , contrary to the behaviour ex- 
pected from a dynamical bound state. Since we are using the boot- 
s t r a p » r . - i c h  we require our bound states to be dynamical, so  they 
corref to (poslt1ve) zeros of Do, between Sc and 4m2 . 
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Let me first describe how we may determine general condi- 
tions on i s o  that a zero of DL may or may not occur. Before doing 
that it is necessary to remark that we are not only interested in bound 
states but also in resonances . These will correspond to complex 
zeros of Do; . We may approximately describe these resonances as 
arising from zeros of the real part ReD; of D , since at such a zero , 
say So, we have 

t ( S )  ex.: + i  NL (so)/[ (s - sI.)Re D (so) IMD (s,)] (I. 8) 

to -no 

which is a Breit-Wigner form for a resonance. For the rest of this 
section we will treat resonances as if they were bound states . 

Returning now to (I. 6) and (I. 7) we see that if ff, is negative 
on the left hand cut, Nth, will be positive on the right hand cut. Then 
Do; will vary between the value +i at so as S approaches 4m2, 
so must have a zero between So and 4m2. On the other hand, if fr, 
is positive on the left hand out then Nt will be negative on the right 
hand cut, and DL will lie between +1 and +°° when S lies between 
So and 4m2 . It is possible that D has a zero to the left of so; if 
we choose So close to Sc then this will be unlikely. Hence we con- 
clude that for negative (positive) values of ft on the left hand cut 
there is (is not) a dynamical bound state . This result will enable us 
to discuss the bootstrap in a quantitative manner, since we will be 
able to determine directly whether the exchange of the c-particle 
gives an attractive potential (negative f )  or a repulsive one (posi- 
tive fc). 

In order to go beyond these purely qualitative results , and 
also to be able to dis cuss cases in which is neither strictly posi- 
tive nor strictly negative on the left hand cut, we may set up simple 
approximate solutions to (I. 6) and (I. 7) . Such an approximation is to 
set DO, to be unitary on the left hand cut, so  that if f46 is the dis - 
continuity arising from a set of Feynman graphs with contribution T1 
(which only has the left hand cut) then NL (s) =TL (s) for all and 
taking two-particle unitarily , 

S I 

(s " 5 0 )  
D ( S )  = 1 - 'IT j ds' 

4m2 

k '  

(S')- 
. T/L (s') l 

(s ' -s)(s ' -s0) (1.9) 

The condition for a zero of D{,(S) at s ; p.2 (a zero of the real part of 
DAS) if u2> 4m2) may now be easily written down from (I.9). 

We may even approximate (I. 8) further by taking TRI, (s) =T/£,(1-l2) 
on the right hand cut, so that 
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(s "$0) 
D1(s) = l - T ( u 2 )  or j" 

4m2 

kI  Ids' 
(50% ( S I - S ) ( S ' - S 0 )  

(I.10) 

We now return to the bootstrap. We wish to obtain a scalar 
bound state at s =u2 , when fx; arises from single particle exchange 
with value determined by (I. 2) . Thus we need 

D0(u2) 0 .  (1.11) 

We also require that the residue at this bound state be 92 , or from 
(I. 8) that 

2 
g No(u2)/DO(u2) (1.12) 

If we combine (1.6) and (1.7) for 4;=0 with (I.1l), (I.12) and 
the fact that to is the dis continuity on the left hand cut arising from' 
(I. 2) , we get a set of non-linear equations for g and 1.1 which in 
principle should determine them (though not necessarily uniquely) . In 
the approximation (1, 10) we see that (I. 12) becomes 

2 L 
TI' 

on 
ds '  

2 m la 

kl  

(s ' )  
1 (1.13) 

with 
order 

given by an evident equation. If we denote the second 
'Icicle self-energy bubble by  1T(s) , with S = p 2 ,  then 

IT (s) 
92 

(21T)2 
d**k 

[k2-rn2] [  (p - k)2-m2]  

_go 
Tl' 

m 
ds' 

2 (s' 4m 
s) 

k l  

(S-)% 

Thus (1.13) becomes 

FM 
\ ds  s=!-12 1 (1.14) 

To summarise our position, we may discuss the possibility of 
bootstrapping a c-particle of mass al by exchanging it between two 
a-particles of mass m to produce the c-particle as a bound state 
with mass LE and correct residue by 
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(a) qualitatively dis cussing the sign of the discontinuity 
function fo r )  arising from the single particle exchange term (I. 2); 

(b) quantitatively by solving (I. 6) , (I. 7) r (I. 11) and (I. 12) 
with fx, arising from (I.2) , or in a weaker approximation replacing 
(I.6) by (I.9), or even weaker replacing (1.12) by ( I . l3).  

We may evidently generalise the above analysis to: 
(a) the bootstrap of a particle of higher spin than zero; 
(b) the bootstrap of a set of particles belonging , say,  to an 

SU3 multiplet; 
(c) the bootstrap of a set of multiplets , having different mass 

and spin for each multiplet . 
As an example of a bootstrap , let me consider the p bootstrap 

in pion-pion scattering. The 2rr system has I = 0 ,  l ,  or 2 , and we 
suppose that the scattering is caused by the exchange of a single 
I = ] = l  p-meson. We use the spin l ,  isospin l analogue of (1.2) and 
the crossing matrix GH. which gives the contribution to the channel 
with isotopic spin I due to exchange of a particle of isotopic spin I' . 
We further use the approximation (I.9). Since single exchange gives 
a positive value for To and T2 in the positive region (the suffix de- 
noting spin only) r and 0 2 1  is negative, we expect no bound state or 
resonance in the isospin 2 channel (due to no zero of the relevant D- 
functions) . On the other hand a l  is positive, s o  that resonances or 
bound states are expected in the isospin zero channel with spins 0 
and 2 . The scalar state is dubious , due to the lack of a repulsive 
angular momentum barrier in which a resonance can be trapped; the 
spin 2 state may be identified with the to meson of mass 1250 MeV. 

The channel of interest, with isotopic spin 1 , has all posi- 
tive , and since single P exchange gives a positive T1 in the physi- 
cal region , then the p-meson can appear as  a resonance or bound 
state in this channel. 

If we now turn to a quantitative dis cussion of the p bootstrap 
we meet the difficulty that the p has spin 1 , so  T1(S) increases with 
s . In general the exchange of a particle of spin L produces a dis- 
continuity function fL(s) which for large s behaves as  5/L-l . Since 
DL(S) behaves at least as a constant for large s then the integral in 
(I. 7) will require at  least L subtractions t o  achieve convergence . 
For the p we will need to have l subtraction, and the results will 
depend on this subtraction constant. Due to this we cannot expect to 
obtain separate values for both the mass and width of the p . 

S 

. . 'is 4}||1%P'l" -4 . 23 
Besides this divergence difficulty there are other difficulties: 
(a) The threshold behaviour of to should be t»z,(s) quo& as 

q~ . can be .. -. . 8F" -- " - . - .  ion relations for 
q to , this inttri _ .  '-»=:»s -4-.1 . at infinity. To 
avoid this , one may - L l g h  thls introduces a pole a t  

= 0 . 

_..-1. 

'11. L as i ,  \:r 
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(b) The results depend on the value of the normalisation 
point S o '  

(c) States (bound or resonant) are found with the wrong sign 
of residue . These are called ghost states . 

Difficulties (a) and (b) have been avoided by Shaw,4) to 
which I refer you for details . I will ignore the difficulty of the ghost 
states . The final numerical results for the p bootstrap may be given 
either as self-consistent solutions for a given value of the subtrac- 
tion constant, or alternatively as the value of the width of the reso- 
nance in the I = ] =  l channel by exchange of a p meson with the ex- 
perimental mass and width when the subtraction constant has been 
chosen SO that this resonance has mass equal to that of the p meson . 
We use the latter form, so  that the exchange of a p meson of the ex- 
perimentally correct mass and width of 760 MeV and 108 MeV respeC- 
tively gives rise t o  a p meson of mass 760 MeV provided a cut-off A 
is taken on the integration range in (1.7) of 72 Mfr (Mrr =pion mass) , 
the width of the produced p being 600 MeV. This is more than a 
factor of 5 larger than the experimental value . 

We should note that this is only a partial bootstrap. The pion 
still has to  be bootstrapped, and in particular could be cons idered as 
a bound state in p n  scattering caused by single pion exchange . 

The general qualitative agreement but quantitative disagree- 
ment by a factor of 5 or so occurs in other partial bootstraps. An 
example of this is the reciprocal bootstrap in which nucleon exchange 
in TI' - N  scattering generates the n*(3 ,3)  resonance, whilst N* ex- 
change' in or - N  scattering generates the N. In the static limit, N 
exchange in or - N scattering is most attractive in the isospin 3/2 
spin 3/2 channel; N* exchange is most attractive in the I=§ , ]=9§ 
channel, so  there is qualitative agreement with the reciprocal boot- 
strap requirement. However, there is about a factor of two difference 
between the TIN coupling constant and the N* width as predicted and 
known experimentally, assuming a cut-off at about the nucleon mass . 

There is qualitative agreement for other bootstraps . Thus : 
(a) The reciprocal bootstrap for the SU3 octet P of 0' 

mesons , the baryon octet B of é baryons , and the baryon decuplet 
A of (3/2)+ baryons has the property that B exchange in PB scat- 
tering is attractive in the (3/2)ll' decuplet, and A exchange is attrac- 
tive in the i '  octet . 

(b) The K* (891) with I=%. may be bootstrapped by p and K* 
exchange in TK scattering, provided the p coupling is stronger than 
the K* . 

(c) P ,P scattering with the exchange of a vector meson octet 
V is attractive in the I= I= l octet, S O  bootstrapping the V .  

In order to improve the quantitative agreement with experiment, 
attempts have been made to include both further direct channels and 
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i f  

II I' -.. -,»-. 

IJ-| 
. 1  r '  Lb J O  r i 

I I J '  

, . 
*J r I I  

AL.  

, , , -  .exchanged particles have 
6) who have attempted toils 

exchanged channels . The addition of f " ._" _,. "" channels has 
been 1nvestigated5l by adding in further[` ... . nels , e . g .  , in 
i n  scattering the 'ITLO and KE channels have been added in, using p , 
K* and ¢ exchange . Using known coupling constants and adjusting 
the cut-off to reproduce a p with mass 760 MeV, it was found that 
the p width was reduced to 500 MeV. The addition of the KZ: chan- 
nel in the reciprocal bootstrap, with A , Z: and E exchange , however, 
does not .-1mp1 the agreement for the N* width. . 

and co _ , 2' 

change of the complete Regge trajectory on which the p lies and re-  
produce it in the direct channel. This has produced a p width of 125 
MeV (again the p mass cannot be predicted) , though by means of a 
number of approximations . 

Both of these results indicate the need for a more complete 
treatment of the direct and exchange channels . In other words , in- 
elastic effects and multi-particle exchange must be handled more 
satisfactorily before we expect to obtain satisfactory numerical 
agreement for bootstraps . 

red by Plan Nath 
. the p by ex- 

II. Off-Mass Shell Bootstraps 
As a first step to handling many-particle states we use the 

Bethe-Salpeter equation instead of the N/D equation. The ladder ap- 
proximation to the former equation will enable us to take some ac- 
count of many-particle exchange , 
isfy two-particle unitarily exactly . 
from this were first set up by Cutkosky;7) we will see how to gener- 
alise these later s o  as to satisfy higher particle unitarily, and in- 
vestigate the resulting equations . I should also mention that the 
Bethe-Salpeter equation allows higher spin composite particles to be 
considered without introducing further divergences , since the off- 
mass shell vertex functions have then a suitable high energy damping 
(in some sense a Regge behaviour) . 

The Bethe-Salpeter (B.S . )  equation for two-particle scattering 
may be written graphically as 

though we will only be able to sat- 
The bootstrap equations resulting 

it II 

| I : _ 
+ 

I 
1 1 I f .  J- 

I 
I 

I. 2 
(11.1) 

We denote by M1(plp2p3p4) the off-mass shell S-matrix element for 
the scattering of particles of momenta pa ,pg to particles of momenta 
p3 , P4 without a single particle. 'i te  state , this being the 
left hand side of (11, 1) , and v(m the similar quantity wlth no 
one- or two-partlcle intermediate this being the first term in 
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the right hand s de of (II. 1) . Also Di=(p) denotes the complete propa- 
gator for a single particle. Then (II. 1) may be written in the form 

M1(P1P2P3P4) V(P1P2P3P4) 
1 4 ... 6 + _ _ + 2 M1(p1p2p5p6) (al p2 Ps p6) 

, , 4 4 
x V(p5106p3p4)DF(p5)DF(p6)d 95 d Ps' (11. 2) 

When the total energy S = (D1 +D2)2 is near the value for a 
resonance or bound state, say s =M8 , then M1 has a simple pole in 
s r and we may write 

- l  
F(p1D2)F(p3p4) (s -m2) . M1(P1P2P3P4) A.: 

Then for S near MZ.  (II.2) reduces to 

(II. 3) 

L 
2 

4 .|. _ _ I I I F(p3p4) F(p5p6)6~ (p3 P4 p5 196)DF(p5)DF(p6)V(p5p6,p3,p4) 

(11.4) 

We may approximate (11.4) further by taking Di=(p) = (pZ-m2)']' , and 
also take V to be described by exchange of the single particle of 
mass M,  so 

VlP5P6P3P4) 
2 2 -1 M F(p5p3)F(p6p4)[(p3-p5) 

+ F(p6p3)F(p5p4)l(p3-p6)2 - m21 (11.5) 

Then for s near M2 we obtain from (II.4) and (II.5) 

4 -1 
F(p3,p4) = F(p5p6)F(p5p3)F(p6p4)6 (p3+p4-p5-p6)(p52-m2) 

X 
2 2 -1 4 4 - d M d P5 Pe (DBZ-rn2)-1l(p5-D3) (11.6) 

which is a non-linear 'bootstrap' equation for the vertex function F .  
""*"""'*"'"""'""" approximate F by a do""'"'"'"'""'", and take (II. 6) to be valid 

!4va)t (p3+p4)2 =MY» we goethe simplest form of B . S .  

J Before We discuss this bootstrap and its extension to take ac- 
count of corrections to (II.6) when s 74M2 , let me first describe how 
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the B.S . equation reduces to the SchrOdinger equation,8) and pre- 
cisely what the wave function is . We will do this for the ladder ap- 
proximation to the bound state form of the B.S . equation, the ex- 
changed particle having mass u . We replace the F ' s  in (II.5) by a 
constant, gm, (so g is dimensionless), and substitute in (II.4). In- 
serting of (Zn) and i ,  and taking P3 = p + q ,  
D4 =P" q : 

F(p+q , .p- liiacomes 
Yan the centre of mass system, and 

IJ(q) j_g2m2 

(2Tr)4 

d4k Mk) 

uq-k)2 -»2Jup+k)2 -m2J[(p-k)2 -rn2]  
(II. 7) 

-4 pick _up 
(k2 +m2) . 

We retardation denominator in 
(Iii ans replacirii denominator by 
-[G Then U(q,) g and so  the inte- 
gration over to may be done exactly in . . e close the inte- 
gration along the real to axis by a semi-circle in the upper half ko- 
plane , and the contribution from the poles at k0=-p0-w,p0-w , 
with w = Then (II. 7) becomes 

I1(5) g zmz 
.4(2T1)3 

d3l2•n'0E') 
[(¢i0-12+u2]w(p52-Lu2) 

(11. 8) 

The binding energy B of the bound state is defined as 

Zoo 2 m - B .  

We assume _. , also that 
B<<m, so  p02-uJ2~ - B m - k 2 ,  and we replace UJ by m in the denomi- 
nator of (II.8), s o  it now becomes 

that pdf?) is only appreciable if | ,;| << m and 

au?) 
qz 

4(21T)3 
d31Eo flu?) 

uE-1?)2 +u2l (B +?2/m) 
(II. 9) 

If we define UJ(q) a S  

Ink) : (B+q 2/m)w((?) 

then 

(B+<?2/mmq) 
gz 

4(2T1)3 
:PE MEN 

[(<3*-17=')2+u2] 
(II. 10) 

In position space, (II. 10) becomes 
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(-V2/m+B)-Mr) 
92 

4m2 
e r ' l f ( r )  (11.11) 

where -w is the Fourier transform of '11 ; Since rn is twice the reduced 
mass , then (II. II) is the correct SchrOdinger equatlon'for two parti- 
cles of mass m inters cling through a Yukawa potential of range u`1 . 
We now return to the wave function. Using the same technique of 
contour integration, and the approximations preceding (11.9) , 

we?) 2m2 
Tri 

dqoI3(qJ 

up+q)2-m2J[L»=-q)2-m2J 
(II. 12) 

under the assumption that ¢(q) is independent of to . 
the co-ordinate space wave function 

If we define 

f(x1-x3 , x2-x3) II I exP||1lp1x1+p2x2+p3x3)] 

3 4 4 .q d p t ?  (p1+p2+p3)DF(p1)DF(p2)F(D1.p2) 
i=1 

I 

(11.13) 

then (II. 13) may be written in terms of ¢(q) by means of the equal 
time wave function' as 

flt ,t;r2t) exp i\2pot + p -  (r1+r2) +q  - (r1-r2) D1,(p+q)DF(p-q) 

x F(p+q, p-q)dpodqod p d  q 

We use (II. 12) to obtain 

-o -» . f  -v -o -D -0 -I 

f(r1,t:r2t) = (TT1/2m2) exp 1\2pOt+p-G1+r2)+q-(11-r2)W @:p,p0) 

3.. 
x quipO (II. 14) 

where we have included the explicit dependence of it; on the total 
energy and momentum p0,D. Then since ill is the Fourier transform of 
'1' in the variable q ,  we have 
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4'(r1-r2:p,po) 
2m2 V£(r ,t:r 

-Zip0t-ip.(r1+r2) 
TT 1 J 1 2 . t )e dd3(i+q2) 

(11.15) 

which is as expected: the projection with respect to the centre of 
mass variables of the equal time Green's function is equal to the 
SchrOdinger wave function in co-ordinate space . 

r - "  . aw Gijk' 
Eso talc 

L e t "  return to the simplest bootstrap derived from the 
B.S .  equate , Cutkosky bootstrap. 7) I will consider a set of N 
vector mesons with equal mass . The potential of (II.5) can be split 
up into a term symmetric in the space variables and one which is 
antisymmetric, under the approximation that the vertex function F is 

au- "ii"-~'-"gthe i ,  j , k infer to the particular masons 
values 1 , 2 ,  . . . N  and Gijk i s $ " " ' " "  

antisymmetric in i yes . The antisymmetric part o 
is 

.L'al 

/ _ 
\GLrjGmrk Go;rkGmrj 

2 2 -1 - m  2 2 -1 - m  )[(q-k) ] - [ (q+k)  ] 
We take all external momenta to be on the mass shell so that (II.5) 
becomes in this case 

x 
Gin k 

-1 v.. G 1J,&m Lmk (11.16) 

evaluate 
where Vi ,{,m= (Gir1LGjrm 'GirmGjr4',) and X '1  is the triangle function 

on the mass shell: 

-1 x :: 
2 2 - m  2 2 -1 - m  d4k[(p-k) ]'1[(p+k) ] I 

D2 (D-q) 
2 

(D+q)2 
2 m 

Strictly speaking, the triangle function should involve particles of 
spin one on its internal lines and also involve a spin one projection 
on its external lines; I have dropped these complications , since the 
essential part of the argument involves the way the indices on G are 
related by (II. 16) . 

A further relation on the coupling constants Gljk is obtained 
by requiring that self-energy effects due to meson pair formation do 
not alter the meson masses differently. Since these self-energy ef- 
fects are proportional to Hab=GacdGcdb' we require (with suitable 
normalisation) 
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GacdGcdb = 6abl (11.17) 

If we consider V as a matrix with respect to its initial and 
final pair of indices , (II. 16) requires that V have a set of N degen- 
erate eigenvectors belonging to the eigenvalue X . Since there is a 
total of P2-n(n-1) independent asymmetric tensors of rank 2 , then 
there must be *%N(n-3» orthogonal eigenvectors . Let their eigenval- 
ues be K i ,  with degeneracy do, so  that 

2 TrV = NA 2 + Q 2 u 

1 

But by direct computation from the definition of V and (II. 16) r 

(II . 17) , 

d x. 1 1 

2 TrV 2N - NK 

S O  

2 d.x -1 
1 

2 
. N 
l 

X ( 1 + A )  

1 if and only if all *1 and thus XS 1 ,  with A = = 0 .  Suppose there is a 
gauge group with generators @tAb (A running over a finite set,  a , b  
taking the values l , 2  , . . .N) under which the Gink are invariant, S O  

_ a  - a  _ a  _ 
GxbcGxa + GaxcGxb + GabxGxc ' 0 ' (II.18) 

If we multiply (II.18) by Glad and sum on a and b ,  then 

A 
G od V Cd 

- A  
,abGab 

s o  that 51-CAd is an eigenvector of V belonging to the eigenvalue 1 . 
Then either 

(a) -G is orthogonal to al l  the G ' s  , -(§§'bGabC=0, I S C S N .  

Then at least one of the *i is one, and A <  l .  If we assume that in- 
creasing A causes a decrease in the mass of the bootstrapped 
mesons , we see that there will be a set of more massive bootstrapped 
mesons belonging to the eigenvalue 1\i= l . This is inconsistent with 
the idea of bootstrapping the lowest masses first, and extending to 
higher masses , so  we reject this possibility . 

(b) -G is not orthogonal to all the G's  , s o  A and all the 
X1'8 are zero. 

1 f 
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Then we have that V is the sum 

v = x 
._J 

P o n  

where k n  run over the eigenvectors of V ,  Pn the projection onto the 
eigensubspace belonging to )*n' S O  

V : GabrGcdr 

or 

GabrGcdr + GbcrGadr + GcarGbdr 

II 0 (II. 19) 

Equation (Ii. 19) is the Jacobi identity satisfied by the structure con- 
stants of a Lie group and, combined with (II. 17) , we see that the N 
mesons belong to the regular representation of a compact semi- 
simple Lie group . 

We may extend this approach to consider symmetry breaking , 
but I do not want to go into this here , but restrict myself to boot- 
straps . 

The next step beyond the Cutkosky bootstrap is to treat the 
non-linear vertex equation (II. 6) more completely. It is also of in- 
terest to consider more general bootstraps , which include more than 
two particles in the direct channel , one in the exchanged channel. It 
is easy to see how to write down these more general bootstraps by 
taking suitable Feynman diagrams and replacing point vertices by 
complete vertices , where a vertex now may have three or more legs . 
I will return to the study of these bootstraps later, under the heading 
of generalised groups . But first we must obtain a consistent method 
to continue the B . S  . bootstrap (II.6) off the mass shell . 
III. A Field Theory for Ccmrlosite Particles 

In order to continue off-mass shell for bootstraps we will set 
up a field theory of bootstraps . We do this first for a composite par- 
ticle, and obtain a bootstrapped theory by taking all particles to be 
composites . 

We obtain an indication of a basic condition on a particle to 
be a composite if we note that the wave function renormalisation con- 
stant Zo for a particle c is defined by 

II O
 

N
 

2 (bare C physical c) (III. I )  

where bare and 1 physical) denote the bare and physical one- 
particle states; it is the interaction with other particles which 
clothes the bare c-particle , making it physical. Then we have a 
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composite c-particle evidently when there is no bare c-particle , i . e  ' J  

c Z II 0 .  (III. 2) 

This condition (III.2) is an implicit condition relating renor- 
malised coupling constants and masses for the c-particle and other 
elementary and composite particles with which it interacts. We ex- 
pect all renormalisation constants to be unobservable , though we do 
not expect that the consequences of imposing (III. 2) will also be un- 
observable . To see what these consequences are on the field opera- 
tors describing the various particles , let me take the simple model of 
a scalar neutral c-particle interacting with a scalar neutral a -  
particle. If the bare fields and masses for the particles are go, to 
and mo, Mo for the a-  and c-particle respectively, we take the 
Lagrangian density to be 

= 2 2 
L ( 5 * * ° )  +%(5H 0) - ¢ m 2 ¢ 2 - @ m 2  O2+gO,§O+fwO) (111.3) 

where f is any  polynomial in the field go (it is essentially the self- 
interaction which will bind the c-particle in the limit 2c = 0) . The 
equations of motion arising from (III. 3) are 

<m+m2]1?f/ = 2gOSJOWO f 'wo) 

2 
< u + m 2 ) ¢ o =  nuO . 

+ 

We renormalise these equations in standard fashion, intro- 
ducing the renormalised fields IJ, 4' and wave function renormalisa- 
tion constants Za,  Zc by 

HO = zyaf, wo 2*¢ 

and the explicit counter terms in the Lagrangian by 

L = 2 - 1  2 2 2 
%(e,1¢) 'gm K +%(m)  -%m2¢2 + % ( Z a - 1 ) ( a m  -m2g2 l  2 

+%(ZC-1) | (5 l l ' )  
2 2 2 _ M  If 2 2 2 2 +gozaz`¢ w +gm zag +é'm Zclp 2 

+ F 020 

where m2 =m02 + 6  m2 , M2 = M02 +6M2 f p 020 = f(Ff0) . The resulting 

(III . 4) 
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field equation for lil is 

( + M2W = (1-Z0)( +M2)¢ + aM2zcw + goZaZg2  . (1I1.5) 

If we let ZC* 0 in (III.4) , this equation becomes 

2 
= M27 (x) U/ (x) (III. 6) 

where 

x -- 
zc-v 'Q 

0 Oz 
C I 

provided this limit exists . In other words , 41 (x) is a local function of 
We) , evaluated at the same point x ,  in the limit Zc-° 0 .  

We have derived (III.6) in a very sloppy manner, With no dis- 
cussion of the topology to be imposed on the operator equation (III.5) 
or on the operators . Since we do not even know that a solution to 
(III.5) exists , it is not possible at the present time to give such a 
discussion. There are , however, two non-rigorous approaches which 
we may follow to justify (III. 6) with more believability than the dis - 
cussion we just gave . One of these follows Zimmerman, who 
proved that a composite c-particle may be described by an interpo- 
lating Heisenberg field I; which is quasi-local in the elementary par- 
ticle field IJ; we have to impose the further requirement that '11 be a 
local function of IZ( to obtain SIIL 6) , provided this limit is defined 
with suitable counter-terms _9 Then (III.6) may be derived from the 
Lagrangian 

9) 

L a 
2 01' -)~¢2)2 + LOw) (111, 7) 

where LO is the part of the Lagrangian depending on If only, and as -  
sumedly binding the two a-particles to make a composite c-particle . 
L of (III.7) is the limit of L of (III.5) as  zc- 0 ,  in some sense. We 
have not bridged the gap of how to define this limit of Zo approaching 
zero by the arguments of Zimmerman, but only justified the limiting 
result (III.6) . We will see later that this limiting process is a very 
delicate one, and is not yet understood . 

The second approach which I remarked on above is to discuss 
the ZC-* 0 limit by means of the Green's functions equations (GFE's) 
which may be written down from (III. 4) .  10) The approach through 
G.F.E. ' s  has the added advantage that it allows us to set up in a 
simple manner bootstraps which generalise the B . S .  bootstrap which 
we dis cussed in the previous chapter . 

To use the G . F . E . ' s ,  let me first define them for a field 
alone as 
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( 0  1<a(x1) - - . M X H D  0 )  / G \ x 1 , . . . , x n  

and in Fourier space 

I" p.) = .I F1 J 
~ G(p l . . . pn  )64(  

4 d x  [I (of +m2> G(xl 
l=1 

. . .x  n) 

x exp i i  p.x_ j"1 J J 

By the asymptotic condition the S-matrix elements for a 
process involving a total of n particles is ~G(D1» . .pn) ,  f o r p j 2 = m 2  r 

j = l , . . . ,n .  We now extend the definition of the functions G to in- 
clude the c-particles as well. We now wish to consider the equa- 
tions which relate the various Green's functions as  follows from 
(III. 5) . We will write these down in graphical form, since this gives 
the most transparent way of seeing what is happening, and also 
enables a considerable saving of space. We denote the connected 
part of ~G(p1 . . .pn) (that part having no 6 4  functions a 
subset of the PI . . .pn) by On, iDs(a)(p) by -- and by'-. 
The way a c-particle double line is joined to any graph § ,  by 
(Ni. 5):10) 

. n-1 

go( >-; r 

n-r 
+ J* ( ) N + ( - ° ) 6 n 1  

(IIL 8) 

where each line carries a momentum four-vector, which is integrated 
over on internal lines , with energy-momentum conservation at each 
"'°=="'-"=§, the dotted vertex i(2Tr)4g0, there is an extra factor of 

on each internal , and x denotes 

[(l-z€)(p2-mZ) + zC6M2] 

It is easy to see that iteration of (III.8) , together with the analogous 
equation which indicated how a single a-particle propagator is at- 
tached to a graph, produces exactly the Feynman graphs of perturba- 
tion theory, with all mass and wave function renormalisation counter 
terms correctly inserted . 
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If we let Zc' 0 in (III.8) we obtain, for o f  1 I 

+ 
r - 1  

(111 . 9) 

which is 'just a restatement of (III. 6) 
tween Green's functions is 

I since (III.6) as a relation be- 

G c (x 1 I • l - )  = Gaa ( x , x , .  . - )  (111, 10) 

where the subscripts C and a denote which fields are involved and 
the number of times these subscripts appear equals the number of 
fields . Then (III. 10) results in (III.9) , if we use that for a function 
f(X,y) with 

- f ( p ) =  e JV ipxf(x,x)dx 

then 

- f (p )  = 'F(p-k,k)dk 

where' 

~ f ( p , k ) =  e 
i x i k  . JV P + Yt (x ,y )dx  d y .  

have to show that a pole exists 

So far we have not shown that any composite c-particle 
actually occurs in the a-particle scattering amplitude. To do this we 

in awaneaaaiasln.-a»11»alEln===a=nunmw-Witude 

at S = M2 . "'"'*"**'"°"" regard M2 ,gr i - 
start) as th; variables , andi = 0 
in such a way that X is finite and non-zero . 

For the complete c-propagator, which we denote by =1==, it 
follows from (III.9) that 

g 
=|= =il(p2-M2)+6m2zC (zc-l)(p2-MZ) -|- @ .  °] + 

(III. 11) 

Where =O n = -0., Then as Zo' 

t 

0 ,  

i"6M2z + g°] L c 

(III. 11) becomes 

-1 
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or 

-l 
=|= 

I 2 - 1Z06 M i 
go 

0 .  (III. 12) 

r e  At p2  :mZ We require 
and charge renormalisation . 1(p2 -m2)'1 , so  achieving both mass 

Thus we require 

2 g 
ZCISM - - o at p2  M2 

or 

K - 1 a t  p 2  M2 (III. 13) 

and also 

d 
2 do (=;(>g°) 1 at  p2 M2 (III. 14) 

Since the proper self-energy function H(p2) = .__ 
all orders in go), then (III. 14) may be rewrltt§ 

ago (correct to 

1 - n ' (M2)  = 0 .  (11I.15) 

But we see from (III. II) that in order that the residue of the right 
hand side is 1 at p2=M2 it is necessary that ZC=1  - H(M2), so that 
(III. 15) is just a restatement of Z 0 = 0 ,  and is automatically satisfied 
in the 11mit Z0- 0 . Finally (III. 13) , iN the non-relativistic 11mit dis- 
cussed earlier in (III. 13) et seq. , becomes 

(11 1/Zm2k ) 

cc; 
la- II _ II 

-» '3_. 
ll1(q)d q (111 . 16) 

For X finite and non-zero then (III. 13) mg 
F(p+q, p-qi ..I.\...8 nQ;--y,§nisi\ identically in q at -'I so  that the 
pole term has non-zero residue at p =M2 in the a -  
particle scPttéring Thus the composite c-particle is 
actually present . 

_.that 
R 

IV. Composite Potential and the ]1n-MacDowel1 Cancellation 
. . We now turn to a more detailed discussion of the manner in 

which the limit Z0'-' 0 is achieved. In particular we wish to deter- 
mine what the 'potential' is for Z0740. For Z0=0 this potential is 
defined by means of the two-particle exposure 
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( ) 

II ( 
.. .. 
. 

r-1 - _ 
| 

(1v.1) 

where r denotes the complete a-particle propagator, and the rela- 
tivistic potential is the first term on the right hand side of (IV. 1) , 
having no intermediate state involving two a-particles . It is through 
scattering through this potential that the composite c-particle arises 
i . e .  , iteration of (Iv. l) diverges at S =M2_ If we now use (III. 6) or 
its G.F.E.  form (III.9) we will obtain from (IV. l) 

f 

-01< x K + 
2 

+ I (1v.2) 

We see from (IV.2) r by comparison with (III.8) for n = 2 ,  that the ef-  
fective coupling .1\au!a'&I4wier§tI for the c:-particle in interaction with two 
a-particles is A (Q in: 'mL. and is actually zero on the mass shell . 
This is in fact necessary so  that (IV.2) becomes a homogeneous inte- 
gral equation for the composite particle wave function on the mass 
shell, so  is an eigenvalue equation for the bound state mass M .  

We now enquire into the possible form of the potential when 
z05 f0 .  We wish to choose it as part of the a-particle scattering am- 
plitude which is constructed in a straightforward fashion, and which 
has no c-particle pole in it. The only such quantity seems to be the 
potential arising in the B .S  . equation of (II. l) , being the first term 
on the right hand side of that equation (the suffix l now denoting no 
c-particle state) . We will now see that such a natural choice of po- 
tential leads to the impossibility of continuing off-mass-shell in a 
non-trivial fashion . 

To show this , we suppose that the one c-particle irreducible 
amplitude shown on the left of (II. 1) possesses a single particle pole 
at a point s = V2 , when zcyéo (we do not consider the pathological 
behaviour corresponding in-its , 
this pole only arising at 1 
doshed line , we will have 

*-"ole a t  all in the amplitude for zcyfo 
a Then if we denote (92-u2)l1 by 

s = p2 that 

QI) FX.. ;(><r (IV.3) 

so  from (II.l) and (IV.3) at s =  2 

l - F  O I II 

Now the mass-renormalised vertex function equation arising from 
(III. 8) with n =  2 is 
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g 
= .<;+ g 

l 

so near s = u 2  this becomes II II + 
g y o  
x\_ (Iv. 4) 

and we may neglect the last term on the right hand side of (IV.4) . 
Thus the vertex function has a pole at s =p12 , and if we take there 

OI II (Iv.5) 

then 

ge). 

Further, (III.l1) at p 2 =  LiZ becomes 

(=1=) = m- = -%>@ = -=O~-®= (IV. 6) 

s o  that the c-particle propagator is zero at p 2  = V2 . If we combine 
this zero with the poles in the c-particle vertex function , then we 
findlll in the a-particle scattering amplitude at S = p2 <1 II to-) I)-O=€)~-CI + D-CI 0 

grill gozg, where 21 is 

and the pole at s =p2 does not appear physically. This was first 
shown in the two-particle unitarily approximation, and is known as 
the ]in-MacDowell cancellation. 12) 

So far we have kept 2¢:240 , and?] momentary c-particle , 
We now want to make the composite p =: coincide with the 
elementary pole at my, and finally hawk __ _ he at this compos- 
ite pole equal to that corresponding to the physical coupling constant 
gr . 

_ i  . '.L 

To obtain M2 =u2 , we use that go and gr are related by 
= "the vertex function renormalisation con- 

stant. Then we see that near s = M2 and DTI mass shell for the H' 
particles , the left hand side of (IV.4) is Zl-lgr (by the definition of 
gr as  the value of the vertex function when all its external particles 
are on their mass shells), while the right hand side is proportional to 
(MZ -u2)'1 . Thus to obtain M = p , and keep gr finite , we need to 
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take Z1 = 0 
equation 

If we take now the charge renormalised vertex function 

/ -é 
\Zc Zlgr) + =6 ) (l) (Iv.7) 

III .on 

and set 21 = 0 ,  we see that the only solution to (W-7)  for the renor- 
malised vertex function is zero everywhere off the c-particle mass 
shell, and non-zero only on it. Thus there is no non-trivial off- 
mass shell vertex function for the composite particle , in contradict - 
tinction to the non-trivial off-mass shell continuation obtained from 
(Iv.2) . 

We finally turn to the residue condition. We 
obtained by choosing ZC=0 , slnce then from (Iv. 6111 
at s = M 2 .  so  that since ,Q = 'Jr at s=M2 (and t 
on their mass shell) then from (IV.5) the composite wave function 
takes the value gr on the mass shell. Thus we need both 21 = 0  and 
Z € = 0 .  There has been a great deal of discussion of the need for 
'"*H""' '"';@@§nposite particle theory. 1) However, we see that if we 

*" 0 then there is no non-triw'al off mg; ,§§ontinua- 
| we wish to set up a field theory of[1 based on 

we &nnot impose this extra condition in addition to  Zo: 0 . 
Beyond this we notice that the correct limiting form of vertex 

function equation (Iv. 2) has a coupling constant X (p - MZ) which is 
momentum dependent. Evidently to achieve this by a suitable 
limiting process from a theory which, before the limit is achieved , 
has a momentum independent coupling constant, will require a non- 
uniform limiting process . The evident non-uniformity and subtlety of 
this limiting process requires much further discussion before it is 
better understood. It may be better to avoid this subtlety by taking 
(III. 6) directly and attempting to quantise the composite without 
starting from an elementary particle . We will return to this point 
after an example of a relativistic model which has a composite ob- 
tained by taking Z 0 = 0  but z l fo  . 
v. A Composite in the Relativistic Lee Model 

We consider the relativistic Lee model discussed recently b 
Yndurain. 13) This model is identical with the original Lee model , 
except that in the free Hamiltonian the energies of the V and N parti- 
cles are 

l 

EV 6) p (my ) + 

and 
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é , 2 + 52) 

= ('"N EN(P) 
respectively, s o  that the total Hamiltonian now becomes 

= + H Ho Hint' 

Ho 
3-o -|- , -» 3.. + -O p 3.-0 -l~ -» 

d ..v_.E + d -0 -»E d k -s -o k P V  P V(p) j PNpNp N(p) + J a k a (  ) p 

3-» -| 

H . = d 6E -u -0 + K 1nt p V(p)vp+vp 
d35d3E 

(Et (5)sN(5-E) w uM* 
x 

[f(p,l?) Q V5+N5_]-aE.+ ] . 
I 

The local limit of H is for f s  1. The physical one-particle N and e 
states are identical to the bare ones , while the V state will be of 
form 

IV ,p )  z~*(p){v§l 0) + 
|. 

3-o -» -» .|. + 
d k H(k,p) N5_EGE' 0>} (V-1) 

r 

If we solve the eigenvalue equation 

H V.11>) Ev(P) I V ,p) 

by taking scalar products with vgfl 0) and no-faél 0) we find that 

¢(k,p) - 9 (p.k)[nV(p) EN(1> k) w(k)] 

where 

x g(5,E) f(i5'. 1?)[8EV(5) BN(5-I?) w(1?)] -is 

and 

6 Ev(P ) td312' 9(5,1?) 2[EN(5-13 + w ( l )  Ev(5)l 

Further, the normalisation condition on IV,p)  requires 
l 
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-1 z V 
2 1+x -o lf(§..l2•)12d31Ei (v.2) 

We see that in the local limit, or more generally if f ( p , k )  does not 
depend on k , then Zv is finite, whllé 6Ev is logarithmically diver- 
gent. We see, however, that in general ZV will be a function of p 
unless f(p,k) is chosen suitably. We wlll return to the implications 
of this later; it is still true that Zv is the probability of finding a 
bare V-particle in the single V-particle state (v. 1) , since 

v z II 2 l (0 lv +iv,p>l . 
p 

The scattering matrix may be computed as in the standard Lee 
model, 14) and the resulting s-wave scattering amplitude A(s) (the 
only partial wave in which there is scattering) is 

A(s) 

x ( 1  
AS u2 pzdpl f(o,p)l 2 

2MvEn(P)LU cm* "En (D) -w(p)+ 1@1LeN(5')+u» 6)- My] f 
(v.3) 

=Lu (E) + EN (E) _ There 
their 
pa 

where 8% 
s`< MnH.; the integral in 
the denominator can never 
S =MVP, being the expected V-particle .__ _ 
this pole to be the square of the renorxnalised coupling constant so 
that 

l in this theory r since for 
(V.3) is negative, so  

e only one pole in A(s) , at 
I We define the residue at 

_ 2 - v - v  2 ,  m2 °° xr - X  f(0,ko)| . 1 +  my 
o 

I 
p2dxvl f(<i,J.8l 2 . 

EN(p)w(p)[EN(p)+w(D)- Mv] 2 
I 

where 
-.2 _ to 2 2 2 M + - M  v u N 

2 2 2M V - U- I 

and we suppose that f(o,ko) is defined by suitable_.analytic continu- 
ation in k to ko.  We so  this contin- 
uation is trivial, and A(s) will be ! Further A(s) 
will be analytic in the cut s-plane to -l-oo and 

take from now_ on f~(5,k) =f(p) , 
of f(p) . 

(MN +»)2 
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from 0 to -oo (from the square-root function) , with a pole at Mv2 . 
Thus except for crossing, A(s) has all the correct properties of rela- 
tivistic invariance and analyticity (in spite of the non-local form 
factor f(p)) . Further the renormalised coupling constant >'r is finite , 
even for finite bare coupling constant It . 

In order to relate to what was dis cussed in the preceding sec- 
t ion, I will take 

2 -1 
f(p) = (h(p)a ) (v.4) 

where 

h(p) 

II 

3-a 
d k 8E { V (EJEN6-1?)~ u?) [EV(5) -BN6-I?) -(»u?)l 2 -1 

is a finite function of p ,  and a is an arbitrary constant . The n 

-1 Z v 
and Zv is independent of p , while 

2 2 1+1& /a 

2 2 X = X Zv(O) r 
2 2 2 -1 ) . < 1 + A  /a 

If we define the vertex function renormalisation constant 21 as 

2 A = l` ZvX 2 -1 
21 I (v.5) 

then 

= 1 .  Z1 n 
(V.6) 

On the other hand , if we do not choose (V.4) then Zv=Zv(P) 
depends on p ,  and Z1, as defined by'(V.5) will also depend on p .  
In particular, in the local limit f e  l then 

zl(p) Z (D)/ZV V was (v.7) 

We now make the physical V-particle into a composite V-  
particle by taking Zv" 0 . In order to achieve this r even when 2v 
depends on p ,  we take 

PL -0 oo | (v. 8) 
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In this limit , 

- -» -» -0 -| -0 -é 
lv ,p)  p) d 3 k n § _ a §  o)[8Ev(p)EN(p-k)L»(k)] h 

x (5) E V 
-+ -0 -o ~-1 

-EN(p-k) -wool (v. 9) 

and is a linear combination of (N,9) states, as it should be for a 
composite V state. At the same time, either (V.6) persists in the 
composite lim1t, if we choose (V.4),  or in the local limit f s  1, we 
have 

Z 1 
-o [h(ovh(p)l 

which again is non-zero, though p-dependent. The model does not 
possess crossing symmetry (which is automatically violated in any 
model with the Lee model selection rules) , though crossing was not 
explicitly used in our discussion in the last chapter and , in fact , 
could have been dispensed with entirely. Thus this model is a satis- 
factory counter-example to the condition 21 = 0 for a composite . 

We see that the N9 scattering amplitude in the composite 
limit is 

A(s) [2mv(=5 -MJ -1 

2 x p o p  1 [2MVEN(p~) -£NGJ) -w (5) @N(5)+(~ (5)- My 
-1 -1 

s o  that A(s)~ (1ns)'1 as s~°°.  For the elem from 
(V. 3) , A(s)~ 5-é r s o  the model has the usual lty that the high 
energy behaviour becomes worse if the V-pal de is made composite . 

We can attempt to define a composite operator as 

V-particle , 

v+(5)| o) 

II v,5) 
and 

V(x) = elpx 
V(p -D -9; -9 

)[2EV(p)] - d3p  + herm 
A conj 

, it is evident that _.v(x) will be a non-local function of the 
_.__.operators N(>2') , e (x) , due to  the appearance of the fa ctor 

lEv(p) -EN(p-k) -w(k)] -1 in the denominator of (V. 9) . 
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VI. Classification of Farticles 
We now ask the question: can we determine which particles 

are composite, which elementary, by evaluation of their wave func- 
tion renormalisation constants (and using suitable experimental 
quantities , if necessary) ? AS remarked earlier, the Z ' s  are usually 
considered to be unobservable; however, we noted for the relativistic 
Lee model that the value of ZV determines the high energy behaviour 
of N-9 scattering . A difficulty in this is that for any realistic rela- 
tivistic field theory all the Z 's  appear to be zero due to the diver- 
gence of high energy behaviour. For such theories , and assuming the 
Z 's  to be zero due to high energy behaviour even outside perturbation 
theory, we may define a composite theory in this case as that ob- 
tained by imposing a cut-off /\ on the theory and requiring the wave 
function renormalisation constant Zc(A , . . . )  to be zero, regarded as  
a function of A and the renormalised masses and coupling constants . 
We then let A-°° always keeping ZC(A , . . . ) = 0 .  If the theory has a 
limit with a particle of mass M ,  then we term this theory a composite 
theory. This double limiting process is likely to be even more diffi- 
cult to use than the single limiting process , some of whose difficul- 
ties we discussed in Chapter IV. This is a further reason to turn to 
the composite particle defined directly through (III.6) , and avoid the 
limiting procedure through an elementary particle . 

It is possible to  attempt to determine the value of Zc for par- 
ticles in which non-relativistic models may be satisfactory. This 
has been done for the deuteron by Weinberg . 15) He showed that the 
wave-function renormalisation constant Zt for the deuteron may be 
determined from the n-p triplet scattering length at and effective 
range it in the limit of zero binding by 

2(l-Z )/(2-Zt) t at/R 

(vI.1) 
-zV/(1 -zt) II r R 

An alternative evaluation of Zt 

where R is the deuteron radius , related to the deuteron binding by 
R =  (ms)-é , m=nucleon mass . The corrections to (VI. 1) are of order 
(lImn) , where Mrr is the pion mass . The experimental values 
let= 1.75 Ferris , a t = 5  .41 fermi do not allow 21 to~be very large , 
| zxl< 0 .4  . 

an made by Amado and 
co-workers , 16) who showed that even; _ 
alters the triton binding energy considerably-(using n-p scattering in 
length approximation to calculate three nucleon scattering) . The re- 
sults favor Zt=  0 .05 , though the effect of a small admixture of tensor 
forces in the deuteron may affect this result . 

non-zero value for Zt 



BOOTSTRAPS FIELDS I 249 

We may apply (VI. 1) to the anti-bound singlet n - p  state 
which has a 'binding' energy equal to one-thirtieth that of the deu- 
teron. In this case, the singlet effective range and scattering length 
are r 2 = 2 . 7 F ,  a S = - 2 3 . 7 F ,  so  that from (VI.l), Zs<  0 . l ;  since the 
approximation under which (VI. 1) is obtained is more nearly satisfied 
in this case, this anti-bound state is a better candidate than the 
deuteron for a composite particle . 

It should be possible to  extend (vi. 1) to heavier nuclei . 
As I remarked earlier in this chapter, it is difficult to discus s 

the usual so-called "elementary particles" in such a fashion. How- 
ever, we may deduce certain results from our field theory, albeit in a 
non-rigorous fashion . 

(a) The photon is not composite. 17) 
(b) For other particles we do not know the particular form of 

interaction which binds them. But we can dis cuss whether or not a 
particular interaction can do so .  Thus for the n - N system, if we 
suppose the system is interacting through a non-derivative Yukawa 
coupling go? NTT , r = 1  or Y5 , then the extension of (III. 6) for the 
nucleon is . 

N =?\1T-I IN (vI. 2) 

and for the pion is 

Tr = )unrn .  (v1.3) 

So far, we have considered a system of particles in which at least 
one is elementary, so  we take either (VI.2) 91 (VI.3) and not both (we 
will take both in the next chapter, and so  get a bootstrap) . 

We see that if we take l" as diagonal in (VI. 2) we would be 
able to cancel the field N on both sides so  that 11 would be the con- 
stant X -1 . Thus if cancellation is allowed in the field theoretic 
case , then TT would only take a single value at  all points of space- 
time. Evidently the Fourier transform of ii could not have a singu- 
larity on its mass shell s o  it could not describe a particle . (This 
lack of singularity in the Fourier transform would still be so  if TT only 
took a finite number of values in co-ordinate space.) Thus if the 
cancellation hypothesis is valld then (VI.2) can never support a com- 
posite nucleon, whatever the pion field . 

On the other hand, if we take a derivative Yukawa interaction 
g(BuTT) (§YI.lllN) , we now have 

N X ( B H H Y F N )  (VI . 4) 

and it is not possible to cancel N since we cannot diagonalise the 
y*lI"s simultaneously. However, we now expect subtraction 
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constants or other parameters to take account of the high energy be- 
haviour introduced by the derivative coupling . 

I do not want to justify the cancellation hypothesis for com- 
posite fields , but turn to the field-theoretic bootstrap and the prob- 
lem of quantising i t .  We will then return to the cancellation hypoth- 
esis for the bootstrap and see how the conclusions derived from it 
may be justified . 
VII. A Field Theory of Bootstraps 

After the difficulties we have met with in understanding the 
Z-» 0 limit , it is natural to define a field-theoretic bootstrap as a set 
of field equations for fields '111 , . . . Ill'N» arising from some 
Lagrangian density L by taking all the wave function renormalisation 
constants 21 , . . . ,Zn to be zero; the field equations being of local 
polynomial form : 

II .i(x) 
II pi(TV'(x)) r O1i(x),..-). (VII. 1) 

Here III' denotes the vector with components 111 1 , . . . ,¢N.  We choose 
a Lagrangian L as starting point so  that unitarily of the resulting 
theory is assured . 

Our earlier discussion in Chapter III shows that suitable ap- 
proximations to the G.F.E.  ' s  arising from (VII. 1) will lead to the N/D 
bootstrap equations or the B.S . bootstraps which were discussed in 
Chapters I and II. However, if we do not approximate to (VII. 1) , we 
have hopes of determining bootstrap parameters with inclusion of all 
intermediate particle states; we had indications in Chapter I that this 
might improve numerical agreement with experiment . 

So far, it has not proved possible to obtain such improved 
numerical results , due to the complex operator structure of (VII. 1) . It 
is evidently possible to make better approximations than those de - 
scribed in Chapters I and II, but they require development of methods 
for dealing with functions of large numbers of variables; such has not 
yet been achieved. Instead of dis cussing in more detail the difficul- 
ties arising here, I would like to consider the general problem of 
quantising (VII. 1) , and then use the results to rule out certain boot- 
strap systems as not being possible. In the process we will see how 
the results of the cancellation hypothesis are justified . 

The quantisation of the composite field If defined by (III. 6) is 
straightforward if ,U is an elementary particle field. For then the 
commutation relation between lb and its time derivative will be 

U (>2',t) r lU(§s,t)] 

II 

. -1 -v 3 -I -> 
411\Za llI(x,t)6 ( x -y )  (Vu . 2) 

which is the correct limiting form as Z6*0 of the elementary particle 
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canonical commutation relation for the W field: 

[l»(»?.t). ~ll(v,i)] = 
-1  3 -o -0 

1ZC 6 (x-y). (VII. 3) 

Lions which still allow the 21 

Comparing (VII.2) and (VII.3) we see that as ZN-» 0 we must interpret 
Zo 1 as taking the limiting value 4l\za II (§',t) . Thus Zo acquires 
both co-ordinate space and operator-valued dependence; this is 
another aspect of the subtlety of the limiting process Z€- 0 .  In spite 
of this subtlety, (VII.2) is well-defined, provided we do not also 
take Za-° 0 .  But in the bootstrap situation, with all particles com- 
posite , we must do precisely that, so  we cannot use (VII. 2) without 
great care . 

It might be possible to develop suitable canonical transforma- 
- *  0 limit for all particles to be dis- 

cussed without too much difficulty. 18) I will not follow this ap- 
proach here but will attempt to quantise (VII. 1) in a direct manner , 
though one which should agree with a Z *  0 prescription if this can be 
obtained. The 
tory integral' ______-_. ..=_ to quantum field theory. 19) We _.obtai.n the 
Green's functions G(X1 , . . . ,xn) for a system of fields II! with La- 
grangian density L(x) by taking 

sation method we use will be the Feynman 'his- 

G ( x 1 , . . .  ,xn) du ( ) e x p  [1JVL(><)d4x]¢(xl) . . . w ( x n ) .  (vI1.4) 

The measure M )  may be obtained by means of lattice-space inte- 
gration as follows . Space-time is split into a large number N of 
cells , each of volume G: , together with a remainder. We take a rep- 
resentative point Xi in the k-th cell , and take the measure 

H d U J i ( x k ) .  
i , k  

In the limit 9 -  0 , N-°°=*, with the cells filling the whole of space 
time, this measure becomes du(11r) . 

Let me apply this quantisation to the case of a non-derivative 
bootstrap. By this I mean a set of bootstrap equations of the type of 
(VII. l) with no derivatives of the fields entering on the right hand 
side . For the case of bosons we require I..(x) to be even in each 
boson field since, otherwise, we expect the energy to be unbounded 
below, following an argument of Baym . 20) From this evenness and 
the independence of different lattice points , we see that G(Xl ,...,xn) 
is zero unless the xi 's are equal in pairs . Since we require at least 
that G(Xl , . . . ,xn) be a d1str1butlon in its variables we need that it 
be a sum of covariant derivatives of 6 -functions of the differences of 
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pairs of variables xi, Xj . In order that G be a distr ibut ion, the order 
of the derivatives must be finite so  that the Fourier transform of G 
will have no particle singularities . Thus there is no bootstrap . 

When we include spinoza particles we have to be more careful , 
since it is necessary to use anti-commutative integration. This has 
not been completely worked out for the history integral; we will de- 
fine the functional integration over commuting fields , and then per- 
form an anti-symmetrisation of the result over the space and spin 

If we use this method , 
merits of Heber and co-workers21) again lead to Green's functions 
which are 6-functions in the co-ordinate differences of the spinoza 
fields . Thus if the spinoza variables lb and T17 are being integrated 
over (Majorana fields are thus excluded but do not occur in any case 
among the known particles) , we define 

variables of the spinoza fields . then the argu- 

llfu(xk) = tak exp(iI?1'k) 

In a term such as 

I llf&(xk) = Tak exp(-ilifak). (VII.5) 

dlL(¢ ) ° (x1) ' i ' ( x2)exp  [1 I L(x)d4x] 

we will have the term 

1211 

I 

0 

I 

! 0  

2 To 
dgaz exp il:g01 - 

and this will be zero unless x l  =X2  , if L is independent of the argu- 
ments I/tak. We may always choose a suitable angle variable S O  that 
L is independent of it and it enters in the manner of (VII.5) , so that 
the integration over this angle variable will again introduce 6 - 
functions of the differences of pairs of variables xi» Xj  . Thus we do 
not have any bootstrap in a theory with spin é fields; we may extend 
this argument to higher spin fields by using the Raritan-Schwinger form 
of higher spin wave functions . 22) 

If we start with a bootstrap theory of particles , some being 
bos ons , some fermions , we see that the only non-trivial possibility 
is if the S-matrix involving bosons is unitary on the boson subspace , 
after the history integrals over the internal fermion fields is per- 
formed. In order for this to be s o ,  we expect the resulting boson 
bootstrap to arise from a set of equations of the type of (VII. 1) , being 
derived from some Lagrangian. If those new bootstrap equations in- 
volve derivatives then we have a derivative bootstrap, and expect to 
have to introduce new parameters . If the new equations involve no 
derivatives then we have already seen that they cannot bootstrap 
themselves . Thus we have reached the conclusion that it is not 
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possible to bootstrap a system of particles without elther an explicit 
or implicit derivative interaction. Thus the purest form of bootstrap , 
in which all free (dimensionless) parameters are prescribed, is not 
possible . 

This gives the same result as the cancellation hypothesis for 
non-derivative bootstrap equations . It does not actually justify this 
hypothesis; however, since it has justified the result we wished to 
prove by means of the hypothesis , we will not consider it further here . 

It might be possible to obtain particles from non-derivative 
bootstraps by introducing a measure in function space which also de- 
pends on the derivatives of the fields . For example , we might use 
the measure 

If d((1J+m2)¢(><k)). 
k 

However, choosing the new variable 

nr- = (L1 + mM 
leads to terms such as 

X11 do(xk)expli td4x<'(c12+m2)'2u'l 

and momentum space Green's functions will have a zero at p2 =m2 
due to this . It will only be possible to introduce poles in the propa- 
gator by using a measure such as 

He (D Mg)-%g(xk)F + 

this is non-local, so  no longer satisfies the property of statistical 
independence , and s o  will not be suitable as a measure on function 
space. Thus a different choice of measure does not seem to help . 

Thus we are faced with considering derivative bootstraps . 
want to  talk about a general property of such bootstraps . Let me 
consider the derivative interaction Q Y , Y 5 ¢  -51 l ,  with bootstrap 
equations : 

I 

IU = m a I 2 f ) ( y y 5 w )  (vII.6) 

12/ = ) \ ' B ( W Y Y 5 W )  (VII. 7) 

We see that (VII. 7) is just the PCAC model of the pseudoscalar meson 
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lattice'. 

(the vector interaction QTY! would give IJ = G t i i v w )  , so would 
vanish due to nucleon cons :i DL-»i1!'|:§~.'i're) . 

What can we say about the solutions to (VII.6) , (VII.7)? The 
history integral quantisation can be used, but the lattice spa ce meas- 
ure does not separate out independent contributions from separate 

.may Thus we cannot perform the lattice space integration 
in the fashion we used for the non-derivative case . 23) But 
there are certain properties of solutions to the quantised form of 
(VI:[.6) r (VII. 7) which can be derived under the assumption that the 
solutions are suitably well-behaved. In particular, we can derive 
the existence of additively conserved quantum numbers , known as 
kinks . 24) 

To see how these arise , consider (VII.6) in the form 

(I - l~qJLy5aIJ)lb II 0 (Vu . 8) 

At points wlth dl 750 we require det(I - KYuY5 as, IJ) = 0  , 

= _ X - 2 .  (6.¢)2 

or 

(VII. 9) 

Thus the four-vector B H  lies on the non-linear manifold (VII. 9) r 
which, for real A , is a hyperboloid of one sheet. This manifold is 
doubly connected: there is a loop L on the manifold, in the plane 
B 0¢= 0 , which cannot be continuously deformed into a point . 

To see in what way this is important, let us consider the evo- 
lution in time of the system given by the history integral quantisation . 
The state at time t =  0 is a functional of the classical field quantities 
llri(x,o) measured at time t = 0 ;  we denote it by 'l'0[ll1i(x,O)] . Then the 
state at time t is 

wtuvi(x,r)J II du(ll7)exp [1 L(><)d'*><lwOL¢i(>< ,o)] (VII. 10) 

In (VII. 10) the integration is performed over all histories beginning 
with the initial configuration llri( ,o) and ending with Iii( ,t) . We 
assume that only the histories with nq"'i"'*iHro measure are continuous 
i . e .  , only II: ( x , t )  continuous in all vaj3-EE-73€s are integrated over in 
(VII. 10) (this is true for Wiener measure , and if we consider the 
measure l.L in (VII. 10) as some suitable limit of Wiener measures , 
this result should still be true) . 

Let me return to the non-linear manifold (VII. 9) . More gen- 
erally let me suppose that the field variables l'i(x,t) , for a given t , 
lie on a manifold 'P which may be covered by local co-ordinates , so  
has the structure of,  say ,  a differential manifold of dimension n.  
We suppose that the field variables are required to be equal to a 

I 
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given field ¢i(O)(>2') in the limit as x -°°=>. Since the time-develop- 
ment of the field variables for a classical system is continuous then 
this time development will not be able to change the connectivity of 
the field variables , i . e .  , the number of holes in the field variables 
manifold Y . As an example , if the fields variables are lil l, '112 and lie 
on the unit circle 1112 +l1§ = l , and we take l space dimension, then 
at time t = 0  there may be n 'twists' of the field variable in going 
from x = - ° °  to x=+°=*. As the time t increases , the continuous 
classical development of the system cannot break the twists , so n 
conserved. This situation is best described b 
groups; we say that two fields -"If(1)(x) and ii* 
there exists a homotopy (or deformation) between them, this being a 
set -v -» -o , , 
i'(x,o)=w'(1)(x). and ¢(><.1)=¢(2)(><), 

lim 
lx -:on 

of continuous function * \l1(x a) for a E [ 0  1] with 
with 

means of homotopy 
(x) are homotopic if 

l$(x,o») - EF(0)(><)I 

II 0 I 

255 

is 

13 

all a € E 0 , 1] . Then the relation of homotopy between two functions 
is an equlvalenge rela_tion, and_.yve_ma.y_._qi1v1d.e _the field variables 
at into - 

zero say ,  X l  to a 
is the function equal to 41(1) for 

. This multiplication turns the set~of homotopy classes into a 
group which, in our case,  is the l~st homotopy group ii 1('l') (in 
1-space dimension) , and in n-dimensional-space is the n-th ho'- 
motopy group Trn('l'). (rr1('l')=fundarnental group of Y). Evidently 
n1('l')=°° (additive group of integers) with generator equal to a single 
twlst. The case we are interested in has similarly 

a 

u3(Y) II B 

with the generator being the single loop /L . 
We now turn to the quantisation of the system, going back to 

Eq. (VII. 10). If we suppose that YO['li( ,o)] is non-zero only for 
'1'i( ,o) in some homotopy class CO n 3 ( Y ) ,  then since we have con- 
tinuous time development the only homotopy class to which We( ,t) 
can belong to have a non-zero value in (VII. 10) is C , since the only 
continuous histories we sum over in (VII. 10) will lie in C ,  at each 
time t .  Thus the state preserves the homotopy class of the field 
variables , and thus the homotopy number n (the number of 'twists ' 
in C) . This number is called the 'kink' number by lF'inkelste1n.24) 
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We see that our meson field thus carries this conserved quan- 
tum number, and we expect it to be transferred to the fermion by the 
trilinear interaction; it will be an additively conserved quantum num- 
ber in any elementary particle process. We may also have further 
conserved quantum numbers arising from the nucleon field manifold 

'II A '>~¥5yW (@°yvw/5W ) a a u v (VII. I I )  

for which 

(m') -2 -[5u5 (1Fv,y5¢)] 
2 (VII. 12) 

It is much more difficult to analyse the homotopy structure of (VII. 12). 
However, there does not seem to be any conserved quantum number 
arising which may be interpreted a s  a fermion number, such as nu- 
cleon or lepton number. The conserved number obtained already may 
be interpreted as so"""""Hess . though we will have to break i t ,  pos- 
sibly by expandingjqaew Z = 0  . There are other interactions of a 
slightly more general form, which will also give kinks , e . g .  , if we 
do not want to allow characteristics for QI depending on IJ (in the 
Z = 0  limit) we can still take 

pa) 

L . 1nt H e  • ( y y 5 ' l 1 ) 6  IJ 

to obtain 

IJ = ) » a [ F ( , ¢ W y y 5 \ 1 1 ]  

'If x {(ap/5$)($v*v5¢) + p ( $ . ¢ ) y y 5 ¢ } a ¢ .  

For F=aW , s a y ,  we obtain 

)~a(VY5Y¢)Bu of = -az 2 [1 (a u I21) 

, so giving a non-1J'1via1 third homotopy 
1 , 

- :IQ5YVW )611g which cda:.\.m*a.~ranaaamllalnr$ iasmaaraarnsaita- 

a) . Thus. we cannot use the d 

kink to single out a specific form of interaction . 
We remark here that we may regard the bootstrap in our field 

theory approach as the 0-th approximation to a strong coupling solu- 
tion; if all the Z's~ 0 we could expand in the Z 's  about this approxi- 
mation. If this expansion was good this would explain the successes 
of SUM (for when Z = 0  the kinematic terms Yuan are absent, and one 
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can easily write down interaction which are SU6 invariant but not 
kinematic terms which are also SUM invariant) . 
VIII. Generalised Groups 

I now want to turn to a different direction than that of field 
theory to develop bootstraps . I want to return to the approximate 
form of bootstrap embodied in the Cutkosky bootstrap equations . 

Tb it 

\ 
(VIII • 1) 

We consider functions of three variables f(a , b , c ) ;  the right hand side 
of (VIII. 1) suggests the triple product 

h (fg ) i jk  2 
/L,m,n 

f '  h 1mng&jn f,mk 
(vm . 2) 

algebra I 
et cetera) . 

where 2 denotes summation over discrete variables or integration 
over continuous variables . If we denote by G the vector space of 
the functions f(a ,b ,c )  (with suitable smoothness properties with re- 
spect to the variables a , b , c  if they take a continuous range of val- 
ues) then (VIII. 2) defines a mapping of G X GX G* G : ( f ,g ,h)-» (fgh). 
We note that we cannot have a binary map G X  G* G,  but only a 
three-fold map; we thus meet a generalisation of a group (or ring or 

et 2scsatera) which we may denote as three-group (three-ring , 
We may generate a four-fold map if we take functions of four 

variables , and consider the map defined similarly to (VIII.2) with the 
Feynman-type of diagram 

o- - i v  L f~ 1 
Qr U 

We may generalise this to an n-fold map or an n-ary operation in an 
obvious fashion. The Feynman-like form of these mappings shows 
how they would arise in more general bootstrap equations than 
(VIII. l)  , and a number of them may occur simultaneously. Thus it is 
useful to analyse the structure of sets G with n-ary operations on 
them which generalise the group structure . In particular, the 
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representation theory of such objects may enable us to diagonalise 
the n-ary operation and so  enable the solution of equations like 
(VIII. 1) to be found in a simpler fashion on the irreducible subspaces . 
A three-group also arises in calculating higher moments of two-body 
nuclear operators , and a reduction theory would possibly enable much 
simpler calculations to be I""""*""~"" 26) 

Let me now make south defier !ons e 

Definition 1 . An n-groupoid is a set A of objects 
a l  ,as ,a3 , . . . , together with an n-ary operation of An to A which I 
w1l1, as a product, denote by a1a2 . . .an . 

Definition 2 .  An n semi-group is an n-groupoid with an as -  
sociative n-ary operation, s o  that all the possible products of (Zn-l) 
objects are equal, i . e .  , 

(al . . 'an)an+l . . °a2n-l = a1(a2 " ` a  n+1 )an+2 ' ' .a2n-1 
- 

l 1 » 

(a a1a2. . 'an_1 n '  . '&2n_1) . 
p22101 13, An _ object a belonging to an n groupoid A has 

a left ( r i w e r s e  a1(ar) if 

-1 
(ala)n b = b ,  b e G 

-1 (aar)n b = b ,  b e G. 

If al  =ar we say a has an inverse. 
Definition 4 .  An n semi-group for which every element has 

an inverse is an n-group • 

Such objects have been considered in a very general manner else- 
where27) ' 28) though no work on representation theory seems to have 
been done. As examples of these systems : 

(1) The odd integers form a 3-group under addition, but have 
no identity (which would be zero) . 

(2) The negative non-zero numbers form a 3-group under 
multiplication, again having no identity . 

(3) The tensors of rank 3 ,  aijkll i , j , k  N) form a 3-groupoid, 
with 

I 

(abc) i j k  Z 
/f,,m,n 

b c a_ . 1mn /Ljn Lmk 
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However, the 3-product is not associative, (abc)de 74ab(cde). Neither 
is there an inverse to a general element a . In spite of this we may 
try to develop an analysis for a subset of this 3-groupoid closely 
paralleling that for tensors of rank 2 when regarded as matrices . We 
may regard the tensors of rank 3 (3-tensors) as elements of a 3 -  
dimensional cubical array. This will enable us to generalise many 
concepts holding for matrices to the case of 3-tensors , one example 
being that of a determinant. We will not consider this further here . 

(4) The set of n-tensors of dimension N form an n-groupoid , 
with 

(a1a2. . .a n)i1i2 . u . in Z 
ls j l .  . . jnsn . j n  

X az. . . 
111213.- . j n  

_arljl 'in-lin 

As for 3-tensors this n-groupoid is non-associative, nor does a gen- 
eral element have an inverse . 

Embedding ThBorem.29) Every n-groupoid G may be iso- 
morphically embedded in a semi-group (that is r a 2-semi-group) . 

For if L0 denotes the n-ary operation on G ,  let R be the row- 
algebra of GU {UJ] , that is , the set of rows ` R = (al r . . . Ias) with 
at E GU[w] , the product of any two elements of R being just that ele- 
ment of R made up of the two sets of rows joined together: 

,b  t) I . . . a I a s .  I b f o r  u a l o 1 ' 1  I r ( l a$)(  1 ( 1 as  bl 

To each a E G  we associate the operator pa on R by 

b , t )  

a , . . . , a  = a ,  , . . . ,  p a ( 1  S) ( a l  aS) 

and to w we associate of defined by 

c 'w (a1 , . . . , aS )=  (w (a1 , . . . , an ) ,  a n+l .1 . • I ,as) if s m+n, 

a i G  for l s i s n  

( L 0 , a , . . . , a  1 S) otherwise . 
Then 

°uJPa1° ' 'Pan = Pw(al ,  . . .an) 
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i f  a i G ,  ( l s i s n ) ,  and pa=pb  if and only if a = b .  Thus G is iso- 
morphic to a semi-group of 1-ary operators on R. But we have 

f f O' O' I l l  L o u  

w\ @\Pa1 Pa Pan+1 0a2n-1 

p / 
w ( a 1 .  . 'an)an+l . . . a2n_1) DA 

f / 
. P . P --.o o - - - D  

G"V\ a 1uuJ\ az azn-1 an+2 a2n-1 

0 f P W\a1W(a2'"an-I-l)an+2"'a2n_1 B 

and A f f s ,  due to lack of associativity. Thus the associative product 
on R is not the (generally) non-associative n-ary product on G in 
which we are interested. We mainly wlsh to set up a theory of n- 
groupoids which allows us to simplify the non-linear bootstrap equa- 
tions of type (VIII. 1); since the binary product in R cannot in general 
be directly related to the n-ary product in which we are interested, it 
would seem necessary to analyse the structure and representation 
theory of n-groupoids by methods which do not depend on the embed- 
ding theorem . 

We will turn, then, to a direct analysis of the representation 
theory, and start with the very simplest type of n-groupoid, which 
will be a finite Abelian 3-group. We will see very similar results to 
those for finite Abelian groups , as  is to be expected from the embed- 
ding theorem in the associative case; these results may possibly be 
proved directly by this method . However, we hope that it may be 
possible to  extend our methods of proof to the more general non- 
associative case. 

Definition 5 . A representation of an Abelian 3-group is a map 
of G x  G into the set £(V-° V) of linear operators of a vector space V 
into itself; if this map is denoted by La , b f  for a ,bE G ,  then we re- 
quire 

L L L = . La,b c ,d  abc,d a,bcd 

We have used (VIII.3) since we want to have the regular representa- 
tion included in our Definition 5 . This is obtained when we take 
V = G  (when G also has a vector space structure compatible with the 
3-group structure) , and 

(vm . 3) 

L a b c  = abc. 
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Let me consider the one-dimensional representations 

La b =X(a ,b ) I  (VIII . 4) 

where I is the identity operator on V ,  and v is one-dimensional . 
Then x(a,b) is a complex-valued function on G x G with 

x(a,b)x(c,d) = x(abc,d) = x(a,bcd). (VIII . 5) 

a l  "" 
PI - ger I' » w '8- 

of the element a .  
Definition 

distinct elements in 

r I: T | 

we* 

order I 

Q 
Any such complex-valued function on G x G will be called a character 
of G; the set of all such functions is the character group G of G .  

. . . a In any finite Abelian 
.4a given a v G ,  at(n-l)+l 

n-group G. the least inte- 
= a ,  is called the order 

7 .  In any finite Abelian n-group G the number of 
G is the order of G,o(G) . 

Then in any finite Abelian 3-group, every element has finite 
and if the order of G is denoted by n ,  for any a v G  

2n+l a to 

II 

Then from (VIII.5) we have, for any as G,  

1 
x(a,a)n+ = x(a2"+1 ,a) =x(a,a) 

S O  x(a ,a) is an n-th root of unity. Also for any a , b €  G ,  from (VIII.5) 

+ 
x(a,a)2n 2 

2n+l .b) 
= ala b> ) x('ab 

2 

S O  

x (a ,b )  
Zn 1 

and x(a ,b) is a Zn-th root of unity. Then Ix(a ,b)X = l for any X G é, 
s o  that G is a group, with the inverse of each X being the complex 
conjugate function X*, and multiplication of two characters X I  ,X2 
defined by the evident rule 

x1X2(a,b) x1(a,b)x2(a,b). 

DefinAtion'8. An n-group G is generated by the elements 
1; 

each element 
if every element of G may be written as a product of the 

, taken any number (including zero 
of times . 

XI I u | . , X  
re numbers 
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Definition 9 .  A cyclic n-group G is that generated by a 
single element . 

If G is a cyclic 3-group, generated by the element a of 
order n ,  then for any integers r , s  , 

X<a2II+l a2s+l) II X(a ,a)I"!'s+1 

Hence the values of x on G are just the possible n-th roots of 
unity. Also the set of all possible values of G on a are all the 
possible n-th roots of unity, so that there are n different functions 
in G, and o(G)=o(G). 

We may now extend this above result to all possible Abelian 
3-groups which are the direct products of cyclic 3-groups , in the fol- 
lowing sense . 

Definition lQ. An n-group G is the direct product of n- 
grou.ps G1 , . . GN (N odd) if these n-groups are sub-n-groups of G ,  
and any element x of G may be written as 

by 
i=1 

x. 
1 I 

Then for any Abelian 3-group G which is the direct product of a finite 
number of cyclic 3-groups Go, generated by the element xi, any ele- 
ment x E  G is of the form 

where the Go are odd . 
the relation 

X x.ai 
1 

i=1 
Then any character on G can be factorised by 

/ . 
x(x,y) = XQTX.  y) x<»<»»<)»((§ 

J 

a- G. -2 x ,  1-x. J 
1 J 

r 

so we may reduce X(x,y) to a product of powers of x(x1 ,X i ) ,  for 
varfdus j ,  times 

x # xi) X .  f 

1 
1=l 1=1 

I 

which may be easily seen to equal 
N ?1 X(x1,xi) . 
1=1 
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Thus the character group G of G will be the direct product of the 
character groups of the factor groups of G ,  and so  we still have 
o(G) =o(G) . It is not known whether the basis theorem for finite 
Abellan 3-groups is true (this being that every such 3-group is the 
direct product of cyclic 3-groups); the proof for the 2-group case is 
well known. 30) 

Now that we know the possible 1-dimensional representations 
for any direct product of cyclic 3-groups , we turn to the analysis of 
any general representation V on the complex vector space H(V). We 
first derive an elementary property of the characters . Consider 

x(a.b) y 
cT'dEG 

x((=,d)= 2 x(abc,d) 
c , d 6 G  

X(c ' ,d )  (vII1.6) 
c ' , d € G  

where we use the 3-group structure in the last step of (VIIL 6) to 
show that for any c ' €  G there is a C in G SO that abc=c '  r this 
being a'1b'1c1 . Thus 

C 

-I 

[ 1  -x(a.b) ]  x(c,d) = 0 .  
c , d E G  

If X?'1 then 

Z x(0,d) 
c , d € G  

0 .  (VIII . 7) 

then For two : = . 
X1(a ,b )§ ; . b )  

XIX2 
1(a.b)¥' l  S O  

lnct characters X 1  , X2 , 
* = XIX2 I 

is a character, and 

gibe G 
xl(a,b)x2*(a.b) = 0 .  (VIII . 8) 

Evidently (VIII. 8) is an orthogonality property of the characters , s o  
they form a basis for the vector space of complex valued functions on 
G X G.  We also note that slnce 

x(a,b) X (a ,bcc-1) x(a ,b)x(c,cl1) 

then X(c,c'1) = 1 for any co G. 
Finally we note the further identity X*(b"1 ,a'1) = X(a,b) 

analyse the general representation V ,  we define for each XE G ,  
To 

PX = [0(G)] 
- 2  

X*(a,b)va b '  
a , b € G  . 
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Then we have the following properties of P: 

(l) 2 P 
X P . X 

any xéé (VIII . 9) 

(2) 
P X2 al P P = P X1 X2 0 ( x 1 f £ x 2 )  (VIII. 10) 

(3) 
X = I (the identity on I-I(V)) (VIII . l 1) 

(4) 
* 

X ( a ,b)P x I P 
V a ,b x 

To prove (VIII.9) and (VIII. 10) , we have 

all a , b € G ,  XEG.  (VIII.12) 

PXIPXz = [<>(G)]l4 7 
a,1§1¢,deG 

* * 
X I  (a .b)x2 (C'd)Va,bVc,d 

T' 
}' [o(G)J'4 x1(a,b)x2(a,b) 

5 b € G  
Z x2(<=',d)v 

c ' , d € G  c ' , d  

l:o(G)] 
-2 * al (a,b)X2(a,b)PX y 

aT'b€ G 
(VIII. 13) 

where c'=abc in (VIII.l3). If we use (VIII.8) when X1 74X2 we ob- 
tain (VIII.10), and if X1 = X 2 f  since = 1 ,  and txt 

2 
a , b E G  

l = [ o ( G ) ] 2 ,  

then we obtain (vm.9) . 
To obtain (VIII. 11) we have 

V 
_J APa = [o(G)] '2 

x€G 
y x Va,b _ ' A  

a , b E G  xQG 
*(a.b). 

Now for given a , b ,  X(a,b) is a mapping of é- to the complex num- 
bers with abs elute value l and satisfying the property of a character r 
so  is in G.  Thus using (VIII.7) (true also for G as for G) , 
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Q x*(a ,b) = 0 unless X(a,b) E 1 I all xéé. 

X(a,b) E 1 

X E G 

But when G is a direct product of cyclic 3-groups , 
-1 if and only if a,= b 

so  

2 . x  
X E G  

P = [0(G)]"2 Va,a 

a v G  

_la 1. 
xéé 

(VIII. 14) 

Further V _ 1  a , a  = I  (the identity on H(V)) ,  since for any b , c€G ,  

v a v a ,a'1Vb,c ,a'1b,c = Vb,c .I 

and we multiply both sides by the inverse of Vi, C .  Thus the first 
summation in (VIII. 14) gives o(G) , the second summation gives 
o(G)=o(G), so proving (VIII.ll). Finally 

P V a , b  X 
* 2 (C'd)Va,bVc,d 

-2 
[o(G)l X 

c ,d  

[o(G)] 7 -2 
_J 

X*(a . b)x*(abc Id)VabC,d 
c , d €  G 

x*(a . b)p 

so  proving (vm. 12) . 
Le be the range of PX . Th 

(vm. II) ever vector in H is uniquely eal 
vectors , one from each He: 

9), (v11I.10) and 
gras a sum of 

pa p x_g_ 

Also for each IZIQ He I 

= * b V a , b  x (a, WI. 

Then each H defines a sub-representation VX of the form 
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a ,b-° X*(a ,b)I: since 

V II 2 Vx 
Xi(§  

I 

we obtain the primary decomposition of V .  The irreducible represen- 
tations are obtained by taking any basis in each VX, so  that each 
basis element defines a one-dimensional irreducible representation 
(though this decomposition into irreducibles is not unique) . 

Further, the irreducible subspaces of H may be made up by 
taking any subspace of each VX and forming the union over X . 

These results are identical with those for finite Abelian 2-  
groups . I do not want here to go into details about the extension of 
these results to infinite non-Abelian non-associative n-groupoids . 
The removal of the finiteness and Abelian characters can be done , 
provided suitable topological properties (at least local compactness) 
are added . These and applications to bootstraps and nuclear physics 
will be considered elsewhere . 
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FUNCTIONAL INTEGRALS IN BROWNIAN M0TIONT 
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I. Introduction and Summary 
In these lectures we propose to show how the phenomenologi- 

cal theory of Brownian motion could be developed via the techniques 
of functional calculus . The formalism refers to all situations in 
which we are seeking the distribution of a dynamic variable , related 
through an equation of motion to a stochastic Variable of given dis- 
tribution. However, we shall base these lectures on a particular 
situation-that of a particle in a liquid . 

It was Einstein's idea that particles in liquid environment 
suffer perpetually collisions from the molecules of the surrounding 
medium due to the thermal agitation of the latter. l) As a result of 
the thermal kicks , a particle of approximately colloidal size is con- 
tinuously kinking; we say that it executes Brownian motion or simply 
it is a Brownian particle . 

Langevin postulated the following equation of motion for the 
Brownian particle ' 

ii 
dT -Be +`§0('i0,130.T) +?(¢) (I.l) 

where 

5 _  m '  
if? (1.2) 

B-1 is a relaxation time matrix which is symmetric positive definite 
and depends on the viscous properties of the medium and the genome - 
try of the part1cle.2) (The orientation dependence of B will be con- 
sidered averaged.) -Bp 15 the Stokes resistance of the medium to 
the particle. ( r , § , T )  is the external force on the particle, assumed 
to be slowly varying and containing no memory. f (T )  is the force of 

T Presented at the THEORETICAL PHYSICS INSTITUTE, University of 
Colorado, Summer 1967 . 
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l 

_.t 
W[ f (T )] 

to 

II 

collisions assumed random and independent of the kinetic state of the 
particle.3) The forces -BE and F* are called systematic, whereas *f 
is called thermal force . 

Our problem is: Given a functional distribution for ?(T) over 
a time interval [ to , t ]  , what is the distribution of the position r and 
HHHHWWN p of the particle at time _.t, if at an earlier time to the 
. . m I - : I -  ccupied the phase point ( t o ,po )  ? We make for the thermal 
force f the stochastic assumption that its functional distribution over 
[ t0, t ]  is the following continual Gaussian distribution: 

[ H g(T)dT_| 
t ST<t 
o (I.3) 

-1 deter 
1 
5 

t 

exp I o gas (T)fa (T )fB(T)dT} 

Summation convention from 1 to 3 will be understood for repeated 
indices throughout this text. gall is a positive definite symmetric 
matrix. It will be further specified later on in such a way that for a 
free Brownian particle (i .e . , F =0 )  the distribution of the momenta 
after infinite time goes over to the Maxwellian distribution: 

-»2 
[277 MKT] expo §mKTl . -3/2 (1.4) 

Alternatively we may demand of the equation governing the distribu- 
t1on of the particle momentum to admit (1.4) as a solution in the case 
F = 0 .  g thus determined is found: 

-1 
g 

II 4KTMB. (1.5) 

Q; 

The functional distribution (1.3) represents the distribution at 
each time T E [ t 0 , t ]  of the collision forces f (T) on the particles of 
an ensemble of identical Brownian particles . It is easy to deduce 
that the thermal forces at two different times are not correlated. This 
fact is very important for the derivation of the integral Smoluchowski 
equation . 

The statistical description of the Brownian particle is ef-  
fegted through the ensemble average conditional probability distri- 

( r |  t> to, of finding the particle in 
the g) at time t ,  if at time to 
LSB The object of the subsequent sec- 

tions is to develop techniques _ obtaining the ECPD. We shall 
demonstrate the method by concentrating .attention to the case of  

space . For this purpose we or sider only exter- 
. e .  , on momentum and 

In this case we can ask what is the ECPD G(pl po;t to) of 

momentum _. _ 
na forces of the form F(p,t) I i 
time . 

ic 

it 
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rat time to' Iiornentum in the vicinity of p if 
tntum werqi M'he generalization to the case of 

phase space is effected in a _.__manner . 
In Section II we derive the distribution G as a functional 

average of the conditional probability distribution (CPD) in Liouville 
(or deterministic) sense. Furthermore, we exemplify the method by 
(a) calculating the ECPD in the case the external force is a pre- 
scribed function of time, and (b) by finding G when F' = F(5,T) , but 
for (t -to) very short . 

In Section III, using the method for the construction of ECPD 
G ,  we show that G obeys the Smoluchowski (-Kolmogorov-Chapman) 
equation. Also we show that G is a Green function of the Fokker- 
Planck equation . 

In Section IV we represent G as a conditional functional 
integral over Wiener measure in the space of momentum functions . 

In Section V we obtain from the formal representation of G in 
Section IV a compact approximate expression for G .  The method can 
provide solutions to non-linear problems in Brownian motion and re- 
lated topics . It is analogous to the WKB approximation . 
II. Construction of the EcpD Glib.I 18'8£Ibun¥0) 

We deal with the case P' =1?(D ,T). The Langevin equation is 

QE 
dT -Be +F'(IS',1) +?(1). (II.1) 

Let 

18(t) 5/.. -|t 

\P0f [ f (T)D 

tO 

be the solution of the Langevin equation (II. 1) which satisfies the 
initial condition 

Mo) 

This solution obviously depends on all the values of *f(T) with 
T eEto , t ]  . 

The CPD in deterministic sense of finding the particle with 
momentum in the vicinity of 13\ at time t ,  if its momentum at time to 
were p o ,  is given by the 6 -functional: 

6{5 - 15'(§'o,[f(0)])} 
to 

(11.2) 
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4) 

The ECPD is obtained as the functional average of the deter- 
ministic CPD (II.2) with respect to the thermal distribution measure 
(1. 3 ) ,  i .e .  r 

(T)1)} 

(p°' 
° 

V {5 _p 

) = ;alto 
~IT°° GIri 

t 
WI f(T )] 

to 
dTf(T)_ (II.3) 

to ~r<t 

to 

Let us now, before we exemplify the above procedure for the 
construction of the ECPD, state the formula : 

x {x -I Q(T)f (T)dTI W [ f ( ' r ) ]  H 
toST<t 

d?(¢ ) 
to 

t 
det 'IT I 

to 
Q(T)g-1 

]-é 
(T)5(T)d'r exp{-[ I* Q(T)g 

to 
-1(T)df1-1 x 

GLB 
axle 

(II. 4) 

where X is a three-dimensional vector and Q a 3 x 3 matrix. Q 
stands for the transposed of Q . This formula is obtained by writing 
the 6 -functional in (II.4) as a Fourier integral , and SO the problem 
reduces to the functional integration of a linear exponential func- 
tional. (Appendix.) 

As a first example we consider a Brownian particle under the 
influence of a time-prescribed external force F(T) . Furthermore , we 
shall take the matrix B constant, as this 'is the usual case with ap- 
plications . In this case the Langevin equation is 

QE 
dT "BP +F( ' r )  + - ( T ) .  (11.5) 

Its solution satisfying the condition §'(t0) =50 is 

5 (t) 
_. 

t 

to 

expo -B(t-T)] ?('r )dT (II. 6) 

where 

U-| exp[-B(t-to)] P o 
t 

+ 
O 

explz -B(t-T)] 18(T)dT 

Then using formula (II.4) we find for the ECPD in momentum space the 
result: 
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G(5'|13'O;t|to) 6 u-» 
t t -» -| 

expo-B(t-T 0 f(T )dT} W[f(T )] 
to toST<t to 

H d*flT) 

det 2Tr m K T<exp[-2B(r-tO)] - X 

X exp i- l 
2mK T 

/ 
(exp I-B(t-tO)] - o;;<\P8 - UP)} UQ 

(II. 7) 

where we have used (I.5) (to be established later) for the matrix g 
and the symmetry property of B .  For F (T )=0 ,  formula (II.7) shows 
how the Brownian particles settle to equilibrium through the frictional 
force -8E. The particle dissipates energy to the medium through the 
frictional force -BE. whereas through the thermal force f(T) the 
medium does work on the particle. In the state of equilibrium the two 
forces balance each other. 

As a final application , let us calculate the expression for the 
ECPD of finding the particle with momentum p at time t + A t ,  if at 
time t it had momentum ii" . At is taken short enough so  that the 
systematic forces do not change appreciably during this interval . 

From the Langevin equation (II.5) we have for P ( t)  = p ' 

5 (t+At) 5 I 

2: 

t+At 

t 

-O _» t+At 
+ (-BE>'+p(p ,T))dT +I 

. t 

t+At 
5' ' , t A t  + I 

12 
+5(5 

-| f(T )dT 

?iT)dT 

;¢ 

(II.8) 

where we have replaced the time integral of the systematic forces by 
the first non-vanishing term of its Taylor expansion. This is done 
due to the slow variation of the systematic forces . We do not do this 
for the thermal force due to its rapid variation. 3) 

Employing (II.3) for the construction of the ECPD and using 
(II.8) and (II.4), we obtain: 
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G(15'l p ' : t+Atl t)  = [Dem g-1(t)At;|- X 

\ A t  >< e > < p { - g ( t ) ( P + B § "  -F'(i)°',tD - 1 - + B 5 '  - F(5' 
a 

where in (II. 9) we made the simplification 

t+At _1 { ('r)drr = g (t)At . 
t 

-1 
g 

(II . 9) 

,t9BAt} 

Introducing the transformation 

5' = D - As I (11.10) 

formula (II.9) takes the form of a function T(P° -A5O:A5) and repre- 
sents the transition probability density for the Brownian particle 
having momentum p - A p  at time ,t to change by Ap in the short time 
At. We are interested in the! probability distribution for 
the momentum to change frorni t by Ap in the short time At . 
Replacing in (11.9) 5' by 13' M by AS we obtain 

_ -é* 
T(5':A5') = LvdetTrg 1(t)At] x 

x exp{-g( t ) (§+B§° -F-•(§\,tDa'(§+B§ _ 1?(5,tD@At} 

(11.11) 

Defining the average value of a function op(A§`) by 

(up(Ap)> Cp(Ap-o)T(p,Ap)d(Ap), (11.12) 

we obtain, for later reference, utilizing (II. 12) , the results: 

l (1) 

(App) = _Fa(p , t )  (B15»)CI] A t  
(11.13) 

(ApoApB) = é (9-1(t))a5At 

(APP APBAPy) and S O  on are of higher order in At . 
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where a ,  B ,  y , . . .  run from l to 3 .  

III. The Smoluchowski Equation and the Fokker-Planck Equation 
Since the Langevin equation of motion (II. 1) has no memory , 

there follows that for t0< t ' <  t we have 

P Q P o , E f ( ) J )  = p ( p ' , l f ( T ) 1 )  
to 

tl 
(III. 1) 

where 
t l  

(1=)O,[f(T)]) . 
to 

Furthermore, using (III. 1) , it is easy to verify that: 

-a -»/-0 t { ' , f T  } = P PIpO E (t H) 
O 

5' = 13' 

15o QS" ,L¥(¢)J)} 6 p'  P-<5o'l:?(t)]to } dp' . (111 . 2) 

The thermal distribution (1.3) factorizes for any pair of disjoint sub- 
intervals covering [t0,t] , i . e .  , 

t 
W[f(T)]  

to 

II 

- l t l  
w[f (T)] 

to 

-It 
W [ f ( T ) ]  . 

al 
(111. 3) 

Multiplygmg (III.2) and (III. 3) by members and integrating both sides 
over all f (T) with T G [t0,t] , we have 

G(p I po:t| to) 

II I G(plp': t l t ' )G(p'IPO:t ' l ' fO)dD' I (111 . 4) 

where we have utilized formula (II.3) for the construction of the 
ECPD. Equation (III.4) is the Smoluchowskl (-Kolmogorov-Chapman) 
equation for the ECPD. We note that should either the Langevin 
equation of motion contain memory or the thermal distribution does 
not factorize, then the relation (III.4) would break down . 

On the Smoluchowski equation we can base all the calcula- 
tions of the Brownian motion. In particular, we shall go into a dif- 
ferential equation-the Fokker-Planck equation . 

Let us now replace in (III.4) t '  by t and t by t + A t  and in- 
troduce the transformation (II. 10) . Then, utilizing (II.9) , we obtain 
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T(p -Ap:Ap)G(p-Ap:t| to)d(A1r>) (I11.5) 

The Fokker-Planck | 

obtained through the 
'*"*i*~ ~ for the probability distribution Q (p , t )  is 

integral equation (III.5) , i . e  . , 3) 

<§ (p , t +A t )  II T(p -Ap;Ap)¢ (D -Ap.t)d(Ap) - (III.5a) 

Expanding the left hand side of (III.5a) in power series of At and the 
right hand side in power series of App by Taylor's theorem and 
making some rearrangements , then we have 

2 § + a t A t + 0 ( ( A t )  ) 

a 
B Pa 

Q T A p a +  l_ 
2 QQ T ADGAP5 + 

g 
. d(Ap)  (III. 6) 

where we have denoted by Q and T the functions <I>(p,t) and T(p;Ap) . 
Dividing (III. 6) by A t  and taking into account the results (II. 13) , and 
passing to the limit as A t  -o 0 ,  we obtain the Fokker-Planck equation 
in momentum space : 

{ + 5 p [ 1 = ( 5 , r )  - ( B E ) ]  L a2 
4 apaaps (9 -slaB} Q - 0 .  (III. 7) 

F 0) 

that (for t> to) G i 

Demanding of this equation to admit the Maxwellian distribution for 
Qle momenta (I.4) in the case of the free Brownian particle ( i .e .  r 

= , we establish for g the relation (I.5): 9-1 
Since for ¥!i'§-*"\~Me EGPD G satisfies (III.5a) , there follows 

I equation (II1.7). Further- 
mignd p '  by *pO in ( I L ) ,  it 

'"* 6 (p - pO) 

the Fokker 
more, by replacing to ,  t + A t f 1  
is easy to see that as A t *  0 we have' 

G(p|po:t to) 

= 4KTmB . 

as t > t O + 0 .  (111 . 8) 

From property (III. 8) and the fact that G satisfies the Fokker-Planck 
equation (III. 7) , there follows that the ECPD G defined in (II.3) is a 
Green function of the Fokker-Planck equation. In particular, it is 
the Green function satisfying the integrability condition . 

The ECPD G has the property to propagate the solutions of 
the Fokker-Planck equation. In other words , given the distribution 
for the momenta <§0(§') at time to ,  the distribution Q (P|,t) at a later 
time t ,  which solves the Fokker-Planck equation and satisfies the 
same boundary conditions as G w . r . t .  P' is given by'  
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¢ ( p , t )  

II I G(1o I p-0ztl to) <5 (Po)dpo - (111 . 9) 

This is the propagation equation. That Q defined in (III.9) solves 
the Fokker-Planck equation is easily seen, since G w . r . t .  ;'50,t 
satisfies this equation. The same applies for the boundary condi 
ions . The initial condition requirement follows from property (III.8) . 

We have . 

@(x>,t) :» 6(p-p0)@0(p0)dp0= @0(p) as t--> t o + 0 .  

IV. The ECPD G(p | P o : o )  as a Conditional Functional Integral in 
Momentum Space 

:orn 
Consider an fine subdivision of the interval [t0,t] : 

I t I t I ' | ' I t } l 2 n t0 

with 

ii
' 

o 
A

 
1-1

- 
I»

-'
 A rf
' 

no
 A

 

A
 

r0
- 

:J
 II F
t'

 

Repeated application of Smoluchowskl's integral equation (III.4) 
gives 

G(p I Do: al tO) 
II lG@4| p(n-1);tl tn-1)G(P(N-DI §§n-2);tn_1l tn-2) x 

G(p(2)|130(1):t2| tax G<p(1)l §0o;t1| to)dp(n-1)dp(n-2). - - 
do (2)dp (1) . 

x 

(Iv.1) 

Employing formula (II. 9) for the ECPD between two neighboring times 
we have 

I 
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-4 _. (n) n-l 
G(p|po:t|to) M G = [H 

j=0 

_ n-1 
deter Q-1(tj)Atj -é* Ulex,,{- gaB(j) 

i=0 

x 

F(j)+B(j)1O(jD a 

l :- 

| . .  1F'o)+B(f)p(jDB } Ate x 

6 (p(0) Po) 6 (D (H) 
n 

.H J=0 
dp( j ) ,  (Iv. 2) 

where we have denoted 

J 
. = o - t  + 1 J 

t 
J 

A t I D (1) P (to) , 3(i) ) ' J ) t J 
( t ( p F 

0 I 

={ U toST<t 

Passing to  the limit as n-» m provided max.Atj-° this limit (when 
it exists independently of the choice of the sequence of subdivisions 
{8n}) defines a conditional functional integral in momentum space , 
representing G,  which we denote in the following suggestive manner: 

-4 -v 50 (t}=i5` 
G(p 1r>O:tltO) _. exp~{- 

-*L* 
det TT g (T)dT;l lp(t0)=pO 

t 

908(T) x 

to 

Id5h) 
\ d T  F (p(T),T) +B(T)P(TDa F(p(T),T) + B(T)P(TDBdT} X 

H t0sT<t 
dp(T) 

(IV, 3) 

Notice the difference in the normalization factor from that of (1.3) for 
the thermal force distribution. The normalization factor in (IV.3) is 
such that one could express this integral as a conditional integral 
over the Wiener measure : 

dP dpi r 
gaB h expl 

t 

(T) dT dT dT 
to 

where h is the symbolic quantity in front of the integral sign in 
(1v.3) e 
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We also remark that one could arrive at the representation 
(Iv. 3) for the ECPD G through transformation theory by employing the 
original definition of G (II. 3) and the transformation (ILS) . It is 
also possible to express G as a conditional functional integral in 
the coordinate space . 
or.. . Approximation Methods for the Green Function 

The functional integral representation (IV.3) of the Green 
function of the Fokker-Planck equation (III. 7) is not only a formal 
expression, but its practical importance lies in the fact that it is of- 
fered to various approximation procedures . By employing (Iv. 3) , one 
could devise these techniques by introducing various transformations 
of p(T) , which transform part of the integral into a functionally- 
known integrable form. The rest is treated as a perturbation . 

One particular procedure , which usually picks up most of the 
Green function in the zero order approximation, is analogous to the 
WKB approximation in Quantum Mechanics .5 )  We wish to demonstrate 
this technique by treating in detail the case of one-dimensional mo- 
mentum. The extension to three-dimensions is trivially effected by 
replacing the scalar quantities involved with the corresponding ma - 
trices and vectors . Furthermore we shall take g constant as this is 
the usual case for applications . 

We begin with writing down (Iv. 3) in one -dimensional form in 
the momentum . 

G(p|D0:tItO) == [ U -1 
rig dT x 

toST<t 

X 
p(t)=p exp{-lt og[ 

P (too=po 

dp(T ) 
dr -I'(p(T),T)+Bp(T)2dT} H do(T)~ (V-1) 

t0sT<t 

Since g is positive, there follows that the definite integral in the 
exponent of (V. 1) is positive for every path p(T). For smooth F(p ,T)  
there exists a certain path through (t0,p0.) and (t,p) for which the . 
definite integral is minimized and hence the exponential functional is 
maximized. Then most of the contribution, from the integrations over 
p(T) to the functional integral (v. 1) , comes from a neighborhood 
around this path . 

To find this path we apply the usual methods of the calculus 
of variations . We have for the required path: 

it 
6 gr -(LH 

_d'r 
to 

l'(D.T) +Bp;\ 
2 

dT 0 (v. Za) 
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together with the conditions 

P (to) po, p ( t ) = p  (v. zb) 

from which there follows that the required path is the solution of the 
second order ordinary differential equation: 

dz i /Be 
dT2 \a¢ + B2p) + (BP - p) Be 

Go 0 (v.3) 

which passes through (to,po) and (t,p) . This equation, although in 
general non-linear, nevertheless is an ordinary one and it is easier 
to handle numerically than a partial differential equation. 1 

Let p*(T) be the path solving (V.3) and passing through 
(t0,p0); (t,p) . Upon introducing the transformation 

I 

p(¢) p*(T) +k(T)  . (v.4) 

we have 

'ut .. l 15(T)-F(p,'r)+Bp('rD 
to 

2 t 
/ - 2  d T = A + j  \k 

to 

(T) +a (T )k(T )l2(T) +y(T)k2('rDdT 

+ terms of higher power in k (v.5) 

that 'the term first order in k vanishes since the first variation (V. 2) 
where we have denoted differentiation w . r . t .  T by a dot. Notice 

of the left hand side of (V.5) is taken zero. We have denoted by 

* * 2 
-F'(p , T ) + B P )  dT = V 

J 
dp* 
dT 

t 
A -  to( 

a(T)  = 218 -/"D 
\Bp 

A(p .po:t , to) 

*I = (L(p.po:T) (V.6) 

* . 
y-(T) =[a2(T) -(do - F(pw,T) + Bp*) \ap'§)p=p*] = y(p,po:'r). / 0 2  

The Iacobian of the transformation p-k is: J(p-° k) 
(v. 2b) it follows 

l and due to 

k(to) = k(t) = 0 .  (v.7) 
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Therefore we have for the Green function : 

G(p p0:t l t0)~ Go(Dlpo:t to) 

_ -1 e QA( H H Q  
tO§T<t 

k(t)=0 t 
'Q 

to 
{ (1&2+ 

-Q dl ~k(t0)=0eXP (v. 8) 

+ @('r)k1& + y(¢)k2) d»'} H dk(T). 
tosT<t 

The approximation slgn in (V. B) is due to the omission of powers 
higher than 2 in k .  

To calculate the continual Gaussian integral in (v. 8) we pass 
to the discrete form. Let us consider a subdivision of the interval 
[ t o  ,to : 

t O f  t t 1 2 r r 1 1 l r t N 

wlth 

H
- 

O
 A 1-1

- 
»

-|
 A

 
|'
|'
 

N
 A A

 

II II 1-
I' 

I-1
' 

Z 

For simplicity we take agln isometric, i . e  . , tj+1 -to? for 
(j = 0 ,  l , 2  , . . . r N-l). Then we form the expression ;.._ by re- 
placing the integrals and symbolic products in (V.8) by sums and 
products over the points of the subdivision Qn. Denoting by S the 
integral in the exponent of (V. 8) , we havelfor the discrete form the 
sum : 

SN 

N-1 

Z J o 
+aik(j)[ k(j+1) -k( j ) ]  +Yjk2(j)At} 

2 

(v.9) 

» jA t+y j (A t )2 ]  k2o)  + 211 -£aj (MH k(j)k(1+1)} 

where in (V. 9) we have taken into account the condition (V. 7) 
in the discrete case reads 

| which 

k(0) = K(N) = 0 .  

Here again we have denoted G.(tjl, y(t j )  and k(tj) by as, Ye and k( j ) .  
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Let us now transform (V.9`) through a principal axis transfor- 
mation as fo11ows:6l We cast (V.9) in the form 

_ l 
At 

N-1 
SN i;1[k(j) -bi+1k(j+1)]Al|k(j) -bj+1k(l+1)l (v. 10) 

where k(N)=0. In case k is a three-dimensional vector then b and 
A are 3 x 3 matrices and the quantity in the first square brackets of 
(v.10) is transposed. 

Now comparing the right hand side of (V.9) and (v. 10) we ob- 
rain 

2 + A  - - aj+1At + yj+1(At) 

= 1 - p a ; A t  

2 A j+l jbj+l 2 

A7bj+1 

(j = 1 , 2 ,  . . . ,n -1)  (V.1l) 
wlth 

, 2 A1  ' =  2 - a  1At + y1(At) 

From (V.11) we obtain 

-1 b. = A 1 
J+l j ( 

- 'QajAt) 

(v.12) 
A 

-1 * 2 
-A - U..At é J ) +I 1+lAt 1+1= J (1 

2 - a  +Yi+1(Ar)2J' 

We make a further substitution: 

ii = k(J) - bl+1k(j+1) 

( j = 1 , 2 , . . . , N - 2 )  (V. l3)  

€N_1 = k(n-1). 

Again the Jacobian ](k-»§)=1. Employing (V.13), we write for (V.l0): 

-1 1 2 = - A • Sn As Jgj 
j=1 

With the a1d of (v. 14) the discrete form of (V.8) becomes: 

(v.14) 
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G (N) 
o 

- A  e g  Fl 'IT g'1At]- I" -1 k 
j=1 

A.€ 21 
J J I  

N-1 
H 

5=1 
dl; . 

J 

1% (v.15) 

r A t  ` .h 'As 

m What we need now for passing to the limit as N-' is to find: 

N-1 
lim At  AS(= let D(t ) )  = D(p,po;t,to). 
N-vcm J=l 

(v.16) 

To do this let 

D. At . 
n J 

n HA 
j l  

(V.l'7) 

then 

D n+1 A D u n+1 (V.l8) 

Employing (v. 18) and the second relation of (v. 12) 
finite difference equation for Dn . 

I we obtain the 

D - 2 D n + D n -  1 

(At)2 

Dnan+1 ̀Dn¢1a'n 
At 

a 2 1 - D  D 4 n-l n + nYn+1 

(V. l9)  

Passing to the limit as At-° 0 , 
the differential equation: 

we obtain for D(t) defined in (v. 16) 

d2n + _  d 
dT iT (emf) + [ a 2 ( T )  - ¥(T)] D II 0 .  (v.20) 

The required D(t) is the solution of (V.20) satisfying the initial con- 
ditions : 

D(0) 0 f 15(0) = 1 (v.21) 

since 

Dl Atl:2-a1At +y1(A t )2 ]  -» 0 as At - °0  
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and 

D2-D1 
At 1 -o as A t - ' 0 .  

From (v. 15) and (v. 16) we obtain the following approximate result for 
G: 

lim G(N)=G0(p po;t to) 
N-wo 

51% e -9A(p I port ,to) 

(v.22) 

This result can be taken as zero order approximation to G.  
We can further improve the approximation by expanding the rest of 
the exponential functional in (v. 1) in power series of k and subse- 
quently in ii and employ the measure in (v. 15) for the averaging over 
§ . Dr. Tarski has given in his lectures formulae for such averages . 

The present work originated from a series of lectures on func- 
tional integration which I gave at the Mathematics Department of the 
University of Salford in October, 1966. I would like to thank Pro- 
fessor S .  F .  Edwards , F.R.S . , Manchester University, and Dr. S . 
Sampanthar, University of Salford for many useful discussions . 
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Appendix 
We wish to evaluate the functional integral: 

n t 

O 

Q(T)?(¢)d}[ H deter-lg(T)dT 
toST<t 

. 

(A.1) 
r 'at -o 

exp -J l t  GB(T) f (T) fB(T)dT}  H df (T)  
O t0sT<t 

x ,  f can be n-dimensional vectors but for our purposes will be taken 
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as three-dimensional. For the same reason Q(T) is a 3x3 matrix . 
We recall that g(T) is a 3 x 3 positive definite symmetric matrix . 

For the evaluation of the functional integral (A. 1) , it is con- 
venient to express the 6 -functional involved in Fourier form. We 
have 

In l exp i ) \ ( rxa  1 
(2n)3  J 

t 3 
ika t Q y ( T ) f  (T)dT} U dka x 

o Y a 1 

x[ H deter 
toST<t 

t .1  
`1 g(T)d¢f exp{- l  gaB(T)fa('r)f8(T)dT} H 

to 

d? (T) . 
t0sT<t 

(A-2) 

To evaluate (A.2) we consider a sequence of subdivisions {6'N} of 
the interval [ t0 , t ]  

To, T1 ,T2 ,  . l a I Tn 

with the property: 
Let us associate with each N 

. . . < T N = t  and maxATj-°0 as  N-°°°. 
the N-tuble integral: 

18N 
1 Eon 

- m  .N Li (2w)3 

n _.1 3 

i `) y Q y ( 1 ) f ( 1 ) A T j }  
yH1 x do 

Y 
1K oXy 

Fo 
vN-1 

X L H detlT 
j=o 

-1 

j*o 

é . N-1 N-1 
g(1)A'r1_l e ;  gBu)f(1)fB(j)z=1j} .H d u )  

J=o 
0.=1,2,3 

(A-3) 

where we have denoted Q(i)=Q(Tj),  fq(i)=fa(Tj). g(i)=Q(Tj) 
introduce at this stage the formulae 

Let us 

3 
f d o  exp{- gag f i B }  

a=1 
I' 
' LdetTr 

_19]" '  

3 
i ' b f - '  df = d t l T  expa  l a m  gaB Ill a L e Q 

f pa 
. b b -1 

(A.4) 
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i n  

where g' is a 3 X 3 positive definite matrix. With the aid of formulae 
(A .4 )  we perform the integration over all fq(j) in (A. 3) and obtain: 

-1 w 3 . ' ' II X AT 1l;o[gm1 Qya(J)QyB(J) 6 .t H l 

(2u)3 I II x 
Y Y 

L n-1 
4 Y do . Y J Y=1 (dB 

\ 

(A.5) 

Utilizing the fact 

F -1 
QyaLg BQQSB Qg-1 61 

Y6 

and passing to the limit as N-° +°° r we find for the functional integral 
(A. 1) the result 

] 
l 

(2w)3 
L 
4 5 { i ) \YxY-  5 exp 

t | -  . l 
3 

LQ(T)Q' l ( )Q(T)  )~Yx6}H div. (A.6) 
to Y6 y=l 

y 

It is desirable to get rid of the ammeter *y . Upon performing the 
integration over in (A.6) , H1. zing the second formula of (A.4) , 
we establish formula (II.4), i . e .  , 

] =  I detrt I Q(»f)g'1(T)'(5(T)d¢l 

to 

t 
(T)Q -[»* 

0@ 

e 
-1 

`1(¢)5(T)dT1 x"6}. 
as 

(A- 7) 

We shall close the appendix by stating the result of a gener- 
alization of formula (A. 7) for the functional integral of products of 
6 -functionals of the form appearing in (A. 1) . We have 

n 

J I < n " - " D L n  
to t0sT<t 

é 
det 1T-1g(T)dT expo 

H )dT} f (T)fB (T 
It gas (To 

0. to 

d?(T) 
tO5T<t 

t 
de G(T)dT 

to 
1-éexp{- 

_| 

r,s=1 

t -1  
|- I I G(T)dT] xrxs 

to is  
(A.8) 
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where 

f 

X<1+3(i-1) 
Xo) (a l , 2 , 3 ) ;  ( j = l , 2 , . . . , n )  

and G(T) is a 3nx  3n (positive definite matrix given in the parti- 
tioned form: 

(1)9-1~(n)- 1 - 1 ~ 1  
Q ( ) g  Q ( ) _ _ _ Q  Q 

1. 

G(T) 

Q (n) - l ~ l  Q Q( ) (n)g-l-(n) 
Q Q 

Formula (A.8) is particularly useful if one is looking for joint 
conditional probability distributions . 

I 





NON-EQUILIBRIUM STATISTICAL MECHANICS: 
IRREVERSIBILITY AND MACROSCOPIC CAUSALITY* 
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VII. Parametrised Master Equation and Markofficity Conditions 

VIII. Phenomenological Law 

* * * 
I. Introduction and Discussion 

The subject-matter of this course will be concerned with a 
statistical mechanical formulation of macroscopic dynamical laws . 
The existence of such laws (e.g. , hydrodynamics, heat conduction) 
is an empirical fact. In general the laws are expressible in terms of 
a set of macroscopic (extensive) variables, {a}  = (al , . . . ,am) ,  ap- 
propriate to the system under consideration. These variables then 
constitute a description of the macrostate. Their dynamics corre - 
spend to a self-contained set of equations of motion, describing an 
irreversible approach to equilibrium: 

(a) 
day 
dt ' *Di 

These equations represent a causal macroscopic law in the sense 
that the initial values of the variables at determine their later 
values. 

The characterisation of a set of macros copic variables con- 
forming to such a law presents a serious problem. It is evident from 
elementary phenomenological considerations that the set depends not 

(1.1) 

_ * 
Presented'at the TI-IE ORETICAL PHYSICS INSTITUTE, University of 
Colorado, Summer 1967. 
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only on the system under consideration but also on its thermodynamic 
phase . For example, in the case of an insulating crystal, the varia- 
bles { al could be chosen to be energies of macroscopically small 
subvolumes each containing an enormously large number of  atoms- 
these variables would then change in time according to the law of 
heat conduction. On the other hand , in the case of a fluid, addi- 
tional macroscopic variables (mass currents , energies , energy cur- 
rents of the subvolumes) would be needed in order to obtain a closed 
macros copic law (hydrodynamics) . 

The principal tasks of our statist1cal-mechanical theory will 
be to answer the following questions : 

(i) How is it possible that a set of macroscopic variables 
can evolve according to a closed causal law, that determines their 
values at time t (> 0) from their initial values, despite the fact 
that these variables provide only an incomplete kinematical de- 
scription of the system? 

(ii) How is it possible that the macroscopic law constitutes 
an irreversible evolution of {a}, despite the fact that the micro- 
scopic equations of motion for the system, whether classical or 
quanta, are invariant under time reversals ? 

(iii) What are the special properties of a set {a}  that leads 
to a closed, time-irreversible law ? 

(iv) What are the forms of the functions tpj{a}, in Eq. (I. 1) , 
which determine the explicit form of the macroscopic law for a 
specified system? 

(v) What is the relationship of phenomenological quantities , 
such as transport coefficients , that occur in cps(a),to microscopic 
properties of the system? 

In connection with the paradoxes raised by questions (i) , (ii) , 
we shall show that the variables {a} can evolve according to a 
closed , time-irreversible law only in an approximation which is , 
however, extremely good for suitably chosen macroscopic varia- 
bles . To be more specific, we shall show that tal may evolve 
according to such a law only to zero order in a very small dimension- 
less parameter, 1"1 , where r represents a certain characteristic 
ratio of macroscopic to micros coplc quantities . Thus , as l` is enor- 
mously large , the actual evolution of a suitably chosen set of varia- 
bles {a ]  is insensibly different from that described by the closed , 
time-irreversible law (I. 1). Higher order corrections will be seen to 
correspond to fluctuations and to 'memory effects , ' i .e . , to effects 
whereby é depends not only on the instantaneous value of a but 
also on its values at earlier times . 

Our formulation of macros copic laws will be based on a treat- 
ment of the Liouville equation (classical or quanta) for the system , 
which is assumed to be initially prepared by measurement of a set of 
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"'-#in 

copiC variables { at . The treatment proceeds in four principal 
Firstly, an exact, generalised master equation, 1).2) gov- 

verning the evolution of the macroscopic variables , is derived from 
the quantum-mechanical Liouville equation. This master equation 
takes the form of an integro-differential equation for a well-defined 
distribution function, P ,  governing the macroscopic variables: V dpt 

dt dt'G(t')Pt_t, 
* o 

(1.2) 

Q' 

where G is an operator on P .  The form of G depends on the micro- 
structure of the system and on the variables {a ]  . It is important to 
note that this master equation is , of itself, too general to provide 
any answer to our above questions (i)-(iii) . This may be seen from 
the fact that the equation is derived for an arbitrary set of variables , 
[al , which may or may not conform to a closed causal law, and 
which might not even be macros c 

The second stage is to int11:g__ a characterisation3) of the 
macroscopic variables in terms of general properties that these varl- 
ables possess as a result of their many-particle structures . This 
characterisation will be expressed in terms of the very large dimen- 
sionless size parameter, F ,  referred to above. Specifically, it will 
be designed to evince the l`-dependence of the variables pertinent to 
the master equation; in this connection it is important to realise that 
the kernel G contains microscopic as well as  macroscopic variables . 
In view of the tremendous complexity of many-body problems , our 
formulation of the 'essential' characteristics of macroscopic and 
other variables rests inevitably on a number of assumptions , which 
are dis cussed fully in Section VI. 

The third stage of the theory3) is to incorporate these charac- 
teristic properties of the variables into our formulation of the kernel 
G. 
for which the kernel G(t) decays in 
are eliminated from the master equa_"'us.~to lowest order in I"1 . 
Under these conditions , which depend crucially on. the many-particle 
structures of the macros copic variables r the master equation reduces 
to a Markoffian form 

In this w a y ,  we are able to obtain conditions on these variables 
:-a way that 'memory effects ' 

dpt 
dt Ep : t E= ;drG(t ) .  (1.3) 

In general , this Markoffian equation describes an irreversible ap- 
proach to equilibrium . 

The final stage of the theory is to analyse the Markoffian 
master equation7l and thereby to obtain conditions on E, and thus on 
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negligible at all times-i.e . , under which the dispersion is of the 
order of an appropriately low power of l`. Under these conditions the 
master equation yields a closed, causal law of the form (I. 1). The 
funfl5**'l*l=\= epj r which appear in this law, are expressed in terms of 
mic ac properties of the system . 
II. Microstates and Macrostates 

We shall be concerned with a description of an arbitrary sys - 
tem composed of a very large number of particles . It will be assumed 
that, in the situations considered , only a relatively few of the varia- 
bles of the system are subjected to measurement. Consequently, the 
values of the complete set of compatible microscopic variables can 
be specified only in statistical terms . This means that we must de- 
scribe the microscopic properties of the system in terms of mixed , 
rather than pure states . In other words r we must represent the micro- 
state of a classical system by the Liouville distribution function for 
the full set of its coordinates and momenta; and that of a quanta sys - 
tem by its F""'-'5"-wimatrix. Wer"'*"'"'use a formalism , constructed by 
Emch2) form '! systems , in the mixed states are represented 
by vectors i aN appropriate Hilb'ert space-needless to say ,  this is 
not the Hilbert space of the pure states , but an associated space. I 
shall find it useful , for pedagogical reasons , to present not only the 
quantal formalism but also its classical analogue in which a mixed 
state is likewise represented by a vector in an appropriate Hilbert 
space. This will serve the purpose of demonstrating that the classi- 
cal and quantal statistical theories possess the same mathematical 
structure-the essential difference between the two theories lies in 
their descriptions of pure states . 
Classical Case . 

Denote the full set of Cartesian coordinates and momenta for 
the particles of the system by x , p .  The space of this set of continu- 
ous variables is the phase space. Z: , for the system. A pure micro- 
state corresponds to a point in Zi , while a mixed one is represented 
by a single -valued function on E-namely, the Liouville distribution 
function f .  It will be assumed that this function is real, non- 
negative , square-integrable over Z: so  that 

f d x d p  1 .  

z 
Accordingly the microstates , which we shall henceforth take to be 
mixed, correspond to elements f of a Hilbert space Q , defined as the 
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space of complexT square-integrable functions , g ,  on 2, with inner 
products defined by 

| (91 lq2) r 
J dx dP g1(x,p)92(x,p). (11.1) 
2 

We shall refer to .s as the Liouville space . 
Corresponding to each state f ,  there is a tlme reversed state 

Sf ,  the t1me-reversal operator 3' belng defined by 

3g(x .p )  = g(x,-p)- (II. 2) 

In order to define the macrostates of the system we introduce 
a set of macroscopic variables (observables) 

A(x,p) III
 

(A l (x ,p ) , -~ - ,Am(x ,p ) ) .  

These are single-valued functions , defined everywhere on E. In 
general they will represent extensive variables-but this property 
will not be invoked until a later stage of the theory (Section vI). It 
will be assumed that each As is either an odd or an even function of 
the momenta p ,  i .e .  , 

X . (  J 
A -p ) ) » . ,p  ( x 

J 
A 

J (11.3) 

J' 

the values of 
G(r) on sp 

(as ~ébj , El; +§;A1) 
the 

r 

one' 

where ea h Tj is i t  . Th1§ lon is satisfied for the macro- 
scopic variables of usuals . g .  , masses , energies , mass 
currents , energy currents in subvolumes of a system . 

We idealise a macroscopic measure t of B -  galyq 
which establishes that the value of that 
defined i terval, sa 
deftly, A- represents experimental Q 
A- In order to obtain a geometrical red 
men ,  we divide the phase space E in 
which is bounded by 2m hypersurfaces 

_ (r) As as i ,J8 As 1 

a1(r), for given j ,  being spaced at intervals As. Hence 
ds th s t  f i t r v l s  

Be 

for j = 1 , . . . , m ,  

assqg 

tThe Hllbert space needs to Include complex functions on Z in order 
to be large enough for a full description of our operations . 
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(aj(r) J 
~_%A 

I 
( )  a i r  +-§A1), for j = 1 , . . . , m .  

Consequently, a measurement of the variables {A] may be idealised 
as one 
point for the system 

For notational convenience we shall henceforth denote the 
phase cells by C(a) rather than 0(r) , where 

that determines which of the cells (](t) contains the phase 

a = ( a l  I . • . ,am) - .  (a r) 1 ,a (r)). (11.4) 

The space of the discrete variables a w11l be referred to as the mac- 
rospace and denoted by M .  

As a macromeasurement determines C(a) precisely, it consti- 
tutes an exact measurement of a set of variables 'A= (Al , . . . ,Am) , 
defined so that A takes the value a throughout C(a). Thus 

X(x,p) 

II Z aD(a:x.p) 
a 

(II.5) 

where D(a) is the characteristic function for C(a); i .e.  , it is unity if 
the phase point 11es in C(a) , and is otherwise zero. We shall hence- 
forth refer to A ,  rather than A ,  as the macroscopic observables , 
since it is the former set of variables that are precisely measurable , 
at least in our 1dealisat1on. It may be seen that the value of A at 
any phase point approximates to that of A ,  within an accuracy 
A = ( A 1 , . . . , A m ) .  

It follows from our definition of the Liouville space and of 
D(a) that this latter function (on Z)  is an element of Q.  It also fol- 
lows from Eq. (II. 3) and our definition of D(a) that 

D(a;x, -p) = D(aT:x,p) (II. 6) 

with 

aT = (Tlal"" 'Tmam ) (II . 7) 

Hence, by Eq- (II.2'), 

r.rD(a) = D(aT). 

The probability that -A takes the value a ,  when the microstate 
is f ,  is glven by 

(11 . 8) 
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P(a) = f(x.p)dx dp i  (D(a), f ) .  

C(a) 

(II. 9) 

This function P , on M,  is therefore the probability distribution for 
the macros copic observables . We shall henceforth represent the 
macrostate by this function. It follows then from Eqs . (II. 8) and 
(II. 9) that the macrostate which corresponds to the time-reversed 
microstate LTf is given by 

(D(a), rtf) III
 

(UD(a),f) (D (aT) .f) P (aT) . (11.10) 

Thus we shall henceforth refer to P(aT) as the time-reversed macro- 
state . 

As macroscopic measurements identify phase cells rather than 
points , the properties of the system pertinent to these measurements 
are naturally expressed in terms of a coarse-graining operator (on B ) 
whose application to g serves to replace the value of that function 
at a phase point by the average of the function over the cell con- 
taining the point. Thus the coarse-graining operator P is defined by 

I Q(x.p)/W(a) Pg.(X,P) =§ D(a:x.D) 

a C(a) 

(11.11) 

This definition is equivalent to where W(a) is the volume of C(a). 

Pg =§ D(a) (D(a),9)/W(a). (II. 12) 
a 

It is readily seen that P is a projection operator, i . e .  

* 
P = P 92  

I 

(11.13) 

It follows now from Eqs . (II.9) and (II. 12) that the applica- 
tion of P to f yields 

Pf II 2 D(a) P(a)/W(a) 
a 

(11.14) 

Since , by the definition of D(a) , the inner product (D(a) , D(a')) is 
equal to  W(a)6aa. , it follows from Eq. (II. 14) that 

(D(a), m) = P(a). 

Consequently, by Eqs. (II.14), (II.15), P is in one-to-one 

(11.15) 
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correspondence with Fi; and therefore the macrostate can be repre - 
sented equivalently by P or (Pf. Further, it follows from Eqs . (II. 8) , 
(II. 10) and (II. 14) that the application of P to the time-reversed mic- 
rostate yields 

pzrf E 2l'pf (11.16) 
a a 

and hence 

(D(a),p3f) E (D(a),:rlpf) E p(aT). (11.17) 

Consequently the time-reversed macrostate P(aT) is in one-to-one 
correspondence with 3'PfE P 3'f; and therefore the macrostate may be 
equivalently represented by P(aT) or 3'5Pf= Pitt. 

Quantal Case . 
In quantum mechanics , the pure states of a system are repre- 

sented by vectors , 111 , of a Hilbert space 9; . These vectors corre- 
spond to wave -functions I lL' (X) I of the configuration coordinates x 
and r if necessary, the spins , of the particles of the system . 

The mixed states are represented by operators (density ma- 
trices) on Q . These operators are Hermitian, non-negative and 
possess the property that 

2 T r f  S T r f  1 .  (II. 18) 

Consequently, the states f may be represented as vectors in a 
second Hilbert space , B , whose elements are the operators g r 

which act on 55; and for which Tt¢,(9*9) is finite. Inner products in 
S! are defined by 

(91.92) = Tr?(91 QUO). (II. 19) 

We shall refer to Q as  the Liouville space , as in the classical case 
The formal equivalence between our descriptions of microstates f ,  
for the classical and quanta cases , is now self-evident . 

The tirqi""'""$fersed states may be formulated according to the 
Wigner8) presq-.-.:=Dn. Thus as the elements of 53 correspond to  
operators on So-,-the state f transforms under time-reversal t o  S f ,  
where 

-1 
UQ = T g T (II. 20) 

and T(=T"1) is the time-reversal operator (on Sn) . defined by 
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w®=V'w. (11.21) 

to within A = (A l f  ,Am) 

It is a simple matter to include spin in this prescription, if neces- 
sary . 

The macrostates are defined analogously to the classical case. 
Thus, we start by introducing a set of macroscopic observables [A]  , 
operators on $.  We then idealise a macroscopic measurement as one 
that specifies the value of [A] to limited accuracy, but which deter- 
mines the value of an associated set {A} both precisely and simul- 
taneously. It follows from the basic principles of quantum theory 
that ill must form an intercommuting set of operators on b , even 
though the primitive set {A} might not do so.  As in the classical 
case, [ii] is so defined that a measurement of this so 

. . . . This can be arranged (of .vi* 
van Kampen5)) provided that the quantities A exceedll§iI§Iil§t|,,,., 
uncertainties involved in simultaneous specifications of {A} . 

Thus , as in the classical case, we represent the macroscopic 
observables [Yi] as possessing simultaneous eigenvalues 

= (al , . . . m) , {a} ,a 

L. 

J: 

where the values taken by as , say, are spaced at intervals As . The 
subspace of Q ,  spanned by the eigenvectors of {A] with eigenvalue 
[al , will be denoted by C(a)  . This subspace corresponds to a phase 
cell of classical statistics , and will sometimes be called by the 
same name. Denoting the projection operator for C(a) by D(a), it 
follows that 

' 15 = Z aD(a), 
a 

(IL 22) 

in precise analogy to the classical case . 
The probability that the set [A} takes the value { a }  is given 

by 

P(a) = To$(D(a)f) I 

1.e. I 

P(a) = (D(a),f) (II. 23) 

as in the classical case. We again designate the macrostate by this 
function P(a)-also we refer to the space , M ,  of the variables { a }  as 
the macros pace . 

Further properties of the quanta description follow by analogy 
with the classical case. Thus , if each of the macros copic variables 
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As is either odd or even within 
analogy with (II. 10), we find 
given by 

act to t1me-reversals . Then, by 
'the time-reversed macrostate is 

P(aT) = (D(a). of),  (II. 24) 

provided that the phase cells are suitably chosen. 'A lso,  by analogy 
with Eq. (II. 12), we define the coarse-graining operator P by 

PA Q 
1 2 D(a) (D(a).g)/w(a), 

a 
(11.25) 

wlth 

W(a) = "in (D(a)) (11.26) 

Hence , again we have 

of Q D(a) P(a)/W(a) (11.27) 

and 

(D(a), Pf) = P(a). (II.28) 

We also have again that the time-reversed macrostate can be repre- 
sented by P(aT) or, equivalently, by 

lp 3'f 3'Pf. (11.29) 

III. The Irreversibility Problem and Initial States 
We shall formally demonstrate that the principle of m1cro- 

scopic reversibility forbids the macrostate to  evolve according to a 
closed law independently of the initial microstate . 

We first note that the time-dependent microstate , f t ,  evolves 
according to the Liouville equation 

dft ]J! + I f 
dt t 

II 0 (III . 1) 

where 

.c i{H, }pa 
LH, J - 

(classical) y 
(quanta) F 

J 

(111 . 2) 

Thus the evolution of the microstate from to at t =  0 to ft at time t 
is given by 
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t f II . f  Ut o (111 . 3) 

where it=e-i£t is the unitary operators generated by JJ. 
The essential content of the principle of micros copic reversi- 

bility can be stated as follows: If the microstate evolves from to to 
ft in time t ,  then a state which is initially to = 
ft' = 
have 

Uft will evolve to 
:ofo in the same time . Thus , corresponding to Eq. (III.3) , we 

o :r f lJ,t3'ft . (111 . 4) 

This equation can readily be derived from Eq. (III.3) for the micro- 
scopic revers ibility does apply. 

We shall now show that the time -dependent macrostate , 
which will be represented by Pft, cannot evolve according to a 
closed, non-reversible law 

Pft iI''tpfO (III.5) 

tor it is independent 
pa law, for the moment, we see 

of f o '  For " s  
frog,,' 

where the i 
validity of in 

(I11.5) that 

ssume the . (III.3) and 

t u 63 P t u o f o f (111 . 6) 

for all to. Hence 
P Ulf 

and thus, replacing f by Delft, 

P :of Ut t 

u (P f t 

Ut PU' . ft 

(111 . 7) 

(I11. 8) 

Jr Strictly speaking , although Ut can be formulated as a bona fide 
operator on 9 , its generator .E does not act on the whole Liouville 
space-at least it does not do so in the classical case . This can be 
seen from the fact that the application of £ to certain elements of Q ,  
namely, square-integrable but dis continuous functions , leads to di- 
vergences . This is irrelevant to the theory of the present section, as 
this is formulated in terms of Ut- As will be shown in Section IV, .S 
can be formulated as an operator on so in the quantal case , provided 
that the system is insulated so that its energy is continued to a re- 
stricted range . 
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It follows from this equation and Eq. (III.4) that 

P U' fo = u- t P 3' ft , (III . 9) 

i . e . ,  by Eq.  ( I I .29) ,  

3'Pf 
O o 3' P f t u (III.10) 

which means simply that the macroscopic law given by Eq.  (III.5) 
must be time-reversible . 

Hence a statistical-mechanical theory of irreversibility must 
limit itself to a restricted class of initial microstates fO.  It must 
have, then, some prescription for formulating fO. The prescription 
could be designed to correspond, for example , to  situations where 
the system is prepared in a specified manner; and could thus purport 
to give a 'realistic' formulation of the initial microstate . One thing 
which emerges from our above analysis is that, if to is a 'realistic' 
initial state that leads to an irreversible evolution of the macrostate 
then Ufto (t0> 0) is not . I 

Pt: 

IV. Generalised Master Equation 
We shall employ the projective method of Zwanzigll and 

EmchZl to derive a so-called generalised master equation for the 
evolution of the macrostate, _ , of a closed system that is initially 
prepared by measurement of A .  This method constitutes an exact 
treatment of the microscopic equations of motion for the system r 
together with a statistical assumption concerning the initial state . It 
is important to note that the method is free from any further statisti- 
cal assumptions (e .g .  , Boltzmann's stosszahlansatz) concerning the 
actual dynamics of the system-this is a distinct merit of the method 
since assumptions of the latter type can conflict with the microscopic 
dynamical laws . 

Our formulation of the theory will henceforth be restricted, for 
the sake of definiteness , to quanta systems . It will be assumed 
that the system under consideration is thermally insulated, so that 
its states are confined to an energy shell (E, E+AE) .  The Hamil- 
tonian governing the dynamics of the system can them be represented 
as a bounded operator according to the following prescription: -We 
first denote the full Hamiltonian for the system by HO, and the 
Hilbert space of its eigenstates by bo .  We then define Sip as the 
subspace of 850 corresponding to the energy shell (E, E + A E ) .  Thus , 
if H is the projection operator from BO t o  So , then the dynamics of the 
system, when confined to this shell , will be governed by the trun- 
cated Hamiltonian HHOH =H .  This is a bounded operator on So r with 
eigenvalues in the range (E , E-I-AE) . The boundedness of H is 
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I I 
! important, since it ' the cc 

.c , is also bounded. .E221-.a:r: enables us to =: 

valving £ with full mathematical justification . 
We note also that "A and, for that matter, other observables of 

the system, may likewise he represented by operators on Q . 
The system is assumed to  be initially prepared by measure- 

ment of {A} . In order to formulate the initial microstate, to, we as - 
some that the macromeasurement does not dis criminate between the 
(pure) state vectors within a cell. Thus we assume equal probab1l1- 
ties and random phases for the vectors wlthin each cell. Hence we 
obtain 

Liouville operator , 
our operations in- 

f o 2 D(a)PO(a)/W(a) 
a 

(Iv.1) 

This formulation of the initial state constitutes the basic statistical 
assumption of the theo °""""""""" phasised that we are not 
claiming this to be they for to, since other initial 
preparations are quite F where some additional ob- 
servables are also measured. 

The microstate evolves according to the quantum-mechanical 
Liouville equation 

! 
I 
I 

df 
' dt 

t + a  _ 7 . £ f t - - 0  (Iv. 2) 

where 
4: = [ H ,  ] (Iv.3) 

lion for the rnacr 
the L1ouvi11eg8§ 

a l  the 
complements 
for of 

oiiale - 

in units where h =  1 . 
As mentioned above, the boundedness of H ensures that .C is 

a bounded operator on 58, as is necessary for the operations that will 
be considered . 

We now use the projective method to obtain the master equa - 
Thus we apply the operators P, (I- P) to 

by obtain a pair of coupled equations 
ting the macrostate, and (I- P)f t ,  the 

was 
d . EE +1P.-SIP P f t  + iP.5:(I-P)ft = 0 (Iv. 4) 

and 

2 +  
dt 

+ Q i(I- P ls (1- P Du- p)ft 1(I-p')£ (pft) 0 (1v.5) 
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where we have used the projective property P2 = P . 
may be formally integrated to yield 

t 

dt' Le(t-t') (1- p)£ P ft, 

o 

(I-PP)ft ult) (1- p)fo i 

Equation (IV.5) 

(Iv. 6) 

where 

Lf(t) = e><p{ -i(I-p).s:(I-n=)r} . (Iv. 7) 

ft2 
part of 

We now insert the formula (IV.6) for (I- P)ft into Eq. (IV.4) and 
thereby obtain the following equation for Pit, the "relevant' 

d t 
( + i l P £ P )  aves 1r(t-t')(I-P).£-(tPft.) = 

O 
:(IV.'8D 

pft + -is u(t)'(I- P)fo . 

Moreover, it follows from our formulae (II. 27) , (1v.3) and (IV. 1) for 
P, .S and to that both P O P  aNd (I-P)fo vanish. Hence, Eq. (IV.8) 
reduces to 

t 
d - P f  + 
dt t dt' is Lf(t-t')(I-lp).£ IP ft, 

o 
0 (1v.9) 

On expressing Pf.t'in terms of P t '  by means of Eq. (II.27) 
equation takes the form 

r this last 

a 
wlth 

D(a) 
W(a) 

d 
dt 

{-pt(a) -Z tdt'G(a,a'lt-t ')pt,(a')} = 0 
o a 

(1v.10) 

,| 

G(a,a ' l t )  = -(D(a) , £1.r(t)(I-6°)£D(a'D/W(a') . (1v.11) 

The master equation for Pt is now obtained by taklng the inner prod- 
uct of Eq. (IV.10) with D(a): 

dt Pt(a) 

II 

t 2 I dt '  G(a,a ' l t - t ' )Pt , (a ' ) ;  
o 

(IV.12) 

or, as  we shall sometimes wrlte it , 
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dpt 
dt 

II 

t 
dt' G(t-t')Pt, 

o 

t 
dt '  tI P (1v.13) 

where G is the matrix kG(a,a ' ) ]  , and corresponds to an operator 
acting on functions on M . 

We may express the master equation (Iv. 12) in a slightly 
more convenient form by noting that, as the set of cells C(a) com- 
prises the space So, 

2 D(a) 17 
a 

\ 

and therefore; by Eq.  (IV.l1),  

a 

G(a,a ' l t )  = (I, £U(t)(I-P)£D(a'D/W(a') 

= (u(t)(1-p).cD(a-), .c1]*/w(a-) 

0 ,  

dpt(a) 
dt 

since £1 = 0 . Hence the master equation (Iv. 12) may be written in 
the gain-loss form 

t 
= I" I it-[ 

an o 
G(a,a' l t - t ' )Pt.(a')  - G(a' ,alt-t-)1>t,(a)] . 

(1V.14) 

Finally, we note that, by Eq. (IV.l1), the properties of the 
kernel G depend not only on the microstructure of the system, as rep- 
resented by the Liouville operator .E , but also on the macroscopic ob- 
servables and the construction of the phase cells , as  represented by 
D(a) and P . The central problem now is to delineate those properties 
of the macroscopic observables which can result in a kernel G that 
generates a Markoffian, causal law. Clearly, such properties have 
to be considered in relation to the microstructure of the system, as 
represented by H or JI. 

V.  The Interaction Representation 
In order to express the properties of G in terms of the micro- 

scopic properties of the system, we start by splitting H into two 
parts , Ho and V ,  where the matrix elements of Ho are all intracellu- 
lar and those of V are intercellular. Thus 

H H o + v  (v.1) 
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with 

Ho 2 D(a)HD(a) 
a 

(v. 2) 

and 

V = V(a,a') 

aifa' 

(v.3) 

where 

V(a,a') = D(a)HD(a'). (v.4) 

As V is the part of H governing intercellular transitions , it repre - 
sents the interaction that engenders changes in the macrostate . 

Corresponding to Eq. (V. l), we split the Liouville operator 
into two parts 

.sz sO+s (v.s) 
where 

-to [ H O .  J (v.6) 

and 

S = [ v ,  ] (v. 7) 

It follows from Eqs . (II. 22) 
possesses the properties 

I (IL27), (Iv.3), (v.2) and (v.6) that so 

£0D(a) = 0; .coli = 0 (v. 8) 

(ma),  809) =- (Q. .l:oD(a))* = 0 (v.9) 

pa0 = .QOp II 0 (v.10) 

Consequently, by Eqs . (IV.7) and (V. 10) the propagator l:(t) , that 
occurs in the kernel of the master equation, may be written in the 
form 

U(t) = exp -i(£o +S1)t (v.11) 

with 

31 = ( I -p)s(1-p) .  (v.12) 
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Using a well-known formula ,9) we may expand this equation for lr(t) 
in the form 

t1 

o 

m t 
ult) = UO(t)(1 (-1)" I dry d r y - .  

n=1 O 

tn-1 
drns1(t1)...s1 

o 
(tn)) 

(v. 13) 

where 
-is t 

\»O(t) = e o (v.14) 

and 

sl(t) = LO(-t)s1uo(t) 

1 . e . ,  by Eqs. (V . l0 ) ,  

s t 1 ( )  (I-p)s(t) (I-P) (V.15) 

with 

sit) = nOt-t) suo(t) . 
Hence, by Eqs. (v.13) and (v.15), 

t ntn-1 
Vu) = drn(1-p )s'(r1)(I- p)s (r2). uo(t) l1+I (-1)n 

n=1 o o 

(V.16) 

(I-P)3 (tn)(I~ °°)] • (v.17) 

On substituting this formula into Eq. (IV. 17) and using Eq'. (V.9) , we 
obtain the following formula for the kernel G: 

co t 
G(a,a ' l t )  = Go(a,a'|t) + (-Un dt1... dtnGn(t,t1,... ,tn) 

n=1 o 

tn-1 

o 
(v.18) 

where 

-) (a W .>)/ (a FD (t) (I' s3 
)» (D'" 

I = a Gola SUD (V.l9l 

and 
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Gn(a ,a ' l t , t1 , .  . . ,to) 

-[Do s uo(r) (I-p) s(t1)(I- p) s(t2) (I-p) s(1;n)(I- m SD(a | W(a') 

(V.20) 

We aim to express these components of G in terms of corre- 
lation functions of the type used extensively in many-body theory . 
For this purpose we shall now make a slight digression and introduce 
the concept of a reference system, SOl whose Hamiltonian is Ho . 
Our reason for doing this is that we will be able to express the com- 
ponents Gn as t1me-correlations for fluctuations of Heisenberg 
operators of So about equilibrium states of that system. This will be 
useful as these are precisely the kind of correlations studied in 
many-body theory; and s o  we hope to be able to draw on some results 
of general character that have been obtained from studies of such 
correlations | 

We shall now express some relevant properties of Heisenberg 
operators for S o '  and of correlation functions for that system, in 
terms of the Liouville space formalism. Thus , by Eqs . (v. 6) and 
(v. 14), we may express Heisenberg operators for So in the two 
equivalent forms 

Q (t) 
_ iHot 

Uo(-t)9 = e 
-iI-It 

g e  o (v.21) 

Hence, by Eqs. (V.7), (V.14), (v.16) and (V.2I),  the interaction 
Liouville operator S(t) may be expressed in terms of the Heisenberg 
operator V(t) (for So) by the relation 

S(t) = [v(t) J I C (v.22)  

It follows from Eqs . (V. l4) ,  (V.21) and (V.22) that 

D E \91' 1"0(t)92> 
f (go (r), Q (v.23) 

and 

(go, sMgz) <S(t)Q1,QD (v.24) 

In order to formulate correlations for N 

we note that, in view of Eqs . (v. 8) , the obs§.m,§es A are constants 
of the motion and the states D(a)/W(a) are equilibrium states for So,  
the latter states corresponding to microcanonlcal distributions for 
which A takes the values a .  Averages over these distributions will 
be denoted by 

Librium states in SO 
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Q(a) (g)a (D (a) .Q)/W(a) • (v.25) 

Likewise , correlation functions for these microcanonioal states will 
be denoted by 

@a(glFg2) 

II * 
g l  - 51 l&l>(g2'§2 (aD) 

a 
(v.26) 

It follows from Eqs. (II.25), (V.25) and (v.26) that these correlation 
functions are related to matrix elements of (I-P) , between elements 
of 2 , by the equation 

f , -p Z) \91 (I )Q 

III ( ( I - P ) 9 9 z >  

Ill Z w ¢  a say. 
a 

(v.27) 

Thus the inner product Q is determined by the correlations between 
fluctuations of go..r QUO about their mean values for the various equi- 
librium states, D'(a)/W(a), of So. 

Returning now to the properties of the kernel, G ,  we see tom 
Eqs . (V.24) and (V.27) that its components Gn may be expressed in 
terms of correlation functions for So as follows : 

Go(a , a ' l t )  ¢(F(a,t): F(a'))/W(a') (v.28) 

and 

Gn(a ,a ' | t , t 1 , - - - , r n )  

= _@Q"(r) (al to I tr-1 I • • • ,t1,t); F(n-r)(a'|tr_+1, . . . ,tn'0D/ W ( a ' ) ,  

(v.29) 

where r may take any value from 0 to n. 

F(a) = SD(a) E Z (V(a',a) -V(a ,a ' ) )  I (V.30) 
al 

F(a,t) E F0(a.t) UP(-t)F(a) 

is the corresponding Heisenberg operator, and 

8(t)D(a,) (v.31) 

F l j ) a l t 1  , ,;1+1> E 8(tp(I- p)s(t2)... (I-p)s(rj)(I-p) F(a,tj+1) 

(V.32) 

for any set (to , . . . ,to . 
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It is evident from Eqs . (V.30) and (V.32) that F(a) corresponds 
to a 'force' leading to transitions between .C(a) and other cells and 
that FU) corresponds to a 'higher order force. ' Thus , Eqs . (v. 28) and 
(V.29) serve to express the components of G in terms of time- 
correlations between such forces . Other equivalent expressions for 
these components are 

Go(a ,a' | t) _(F(1)(al o,t));l 
and (v.33) 

l = _ (n+l) * Gn(a,a t , t 1 , . . . , t n )  ( F  (a|0,tn,...,t1,t))a, . 
' It will be useful for us to express Gn in terms of correlations 

between simple products of Heisenberg operators , since many-body 
theory is generally formulated in terms of such correlations . Thus we 
note that, by Eqs. (II.25) and (V.4), PV(a,a' l  t) = 0 and thus that Go 
may be expressed in the equivalent forms 

Go(a,a ' | t )  = 2 RelV(a' ,al t)V(a ,a'))a, 2 Re §a,(V(a,a'|t);V(a',a)). 

(v.34) 

form of Gm\.. for n> 1, we note that, by Eq. (V.32) 
, . . . ,tj_*_1) is a sLim of contributions 

In considering the~ 
the 'force' F 1)(a t l , t 2  

A 6 ° A P . . . A P A  ,"t. , 1 2 k k+1F(a ]+1) 

r 

(v.35) 

each A being a product of operators S(t) . It follows from Eq. (II. 25) 
that this expression (V.35) is a sum of terms 

8&i> - - SEk')F(a" '~tk+1) X (0-number) 

where t 1 , t  k belong to (t 1 r N'  , . . .  Hence, by Eqs. (V.3) 
(V.22) and (V.30), pa)  is a sum of terms , 
c-number and an operator VK1 (t13- . 
a pair of a ' s ,  say (ar,a'r), and VK (t) is the Heisenberg" 

is a sum of terms 

,~tj+1) • I 

each being a product of a 
.Vm (to): where each §,*.g.q2&§s 

V(aI',a"'|t). Thus, by Eq. (V.29), E;n 
as factors, correlation functions 

.r 

¢<VK 
1(t1) .-.VK L I 

( t )  VK 
1'(t1). ,VK 

m(tI I
 m') (v .36)  

where the times t '  , t "  belong to the ranges (tr,t) and (0,  tr+l) 
spectively . .r re- 
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VI. Chara cterisation of Macros copic Observables 
TTn t o  this n i t  our .§g;_malism contains no reference to the 

a = (An10.1 A n a m )  f . l a f 
(v1.1) 
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where the 1'1j'S are integers , which we shall sometimes term the cel- 
lular quantum numbers . The parameter A is chosen so  that its mag- 
nitude lies in an intermediate region between T and 1 , i . e .  , 

r >> A>> 1 (v1.2) 

We shall later express A as a suitably chosen positive power of l`. 
We now have three different scales for the specification of'K. 

These are the macroscopic, cellular and microscopic scales for 
which the respective units are Fa, AA and a .  

It follows from Eq. (vI. 1) that the eigenvalues of A,  as 
specified in ratio to the macroscopic units Fa , are given by the 
intensive variables x =  (xi , . . . IXm) where 

X1 
ai 

Tal 
21 
Q (vI.3) 

and 
Q =I`/A. (VI . 4) 

Q - 1  
It is evident from Eqs . (VI.2)-(VI.4) that the values of Xj are spaced 
at extremely small intervals , , and therefore the infens Ive varia- 
bles X are almost continuous . 

The form of the interaction V ,  as defined by Eqs . (V.3) and 
(V.4), depends on the construction of the phase cells . Its strength , 
corresponding to the state D(a)/W(a) , may be represented by the 
dimensionless quantity 

x = w  <v2>% a a I (vI.5) 

where (11 is a characteristic energy for a microscopic quantum, e .g .  , 
a Debye quantum in the case of an insulating crystal. We now make 
an assumption which is abs olutely essential if the system is to fol- 
low smooth macroscopic laws . This assumption is that the relative 
change, Asia/ka, in X a ,  due to a sma]l1 x ,  is of the 
order of 6 x ,  up to a factor dependent 1. variables . 
The significance of this assumption my he fact that 
its alternative would be that M a / l a  were o'f the-order l"6x, say,  or 
My. This would mean that an infinitesimal change in the intensive 
variables for the macrostate ( éxj  <<l ) could' lead to a change by an 
enormous factor (ISA a/\a>> 1) in the strength of the interaction 
leading t o  macroscopic changes , which would clearly preclude the 
possibility of smooths macros copic laws . _ 
T For example, if one of the macroscopic variables were the energy of 
a subvolume V of crystal, this alternative would mean that an 
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It follows from our assumption concerning 6K a/xa that 

Mp(x) (VI.6) 

!........§..... 
. 

- . F - H  u 
"I . 

where cp depends on the intensive variables x only, and A is a con- 
stant, representing a strength parameter for v. In general, A will 
depend on both l` and A . We shall formulate its dependence on 
these quantities with the aid of further assumptions that will be made 
below . 

Our next assumption is that the phase cells are s o  con- 
structed that V possesses a typical property of interactions in many- 
particle systems, namely, that it contains only matrix elements be- 
tween state vectors that differ from one another by only a few (=0(l11°)) 
particles , or quanta. This is another way of saying that V leads to 
macroscopic changes by elementary processes (e .g .  , collisions) , 
each involving only a few quanta. Formally, * it means that v has 
only matrix elements between pure states | ) and QI ) 
a product of a 'few' creation and annihilation operators , 
for th 
Thus, -: 

opera 

, where Q is 
C* and C , 

'-or, more generally, Q could be a sum of such products. 
l have Q=C1C2C3*C4, but not a product of ,  say, I"§ 

It should be appreciated that this assumption concerning V is 
far from innocuous . For, although the primitive interactions between 

infinitesimal change in the temperature (or specific energy) of V 
could lead to an enormous relative change in the rate of energy trans - 
fer between V and the rest of the crystal . * This assumption can be easily justified in simple cases . Consider , 
for example, a system S ,  composed of parts $1 and $2» with Hamil- 
tonians H1 and Hz- Then the Hamiltonian for S is H1 +H2 +U, where 
U is the interaction between $1 and $ 2  . Let the macroscopic ob- 
servables be coarse-grained energies for 31  and Sz- Then the pro- 
jection operators , D(a) , for $1 are direct products of those for the 
energy shells of $1 , $27 i . e .  , D(a)=D1(E1)® D2(E2). It follows from 
our definition of V that 

V II D(a) UD(a ' ) .  

a'9L'a 
contains only matrix elements between 
~quanta r e .g .  . l )  and C*1;01kC2*4,C2m , 
bn and annihilation operators for So; and 
aerators for Sz- It follows from our formula 
i U and D(a) that v has also only matrix 
differing by a few quanta, the role of D(a) 

Beingio provide an energy selection rule . 
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the particles of a system are generally two-body forces and therefore 
have matrix elements only between states differing by a few quanta , 
the same will not be true of V unless the cells are suitably con- 
structed . 

In view of the way the cells were constructed in relation to 
the 'fine-grained' observables A ,  we shall assumed that state vectors 
which differ from one another by a few quanta , in the sense specified 
above , belong either to the same cell or to neighbouring cells for 
which the values of the respective quantum numbers Nj differ by~ 1: 
we take the symbol to signify equality up to a factor, for order l"O , 
dependent on intensive variables only. Thus , as the matrix elements 
of V are intercellular (by definition) and connect only states differing 
by few quanta (by assumption) , it follows that V has only matrix ele- 
ments between states in neighbouring cells (And l) . 

We now aim to  obtain the dependence of i , the strength of V ,  
on the parameters A and l". Of course, if we were working with a 
tractable model, we would be in a position to evaluate Kg directly 
from explicit formulae for V and D(a) . As we are formulating the 
theory in general terms , however, we have no explicit formulae for V ,  
D(a); and so we shall employ a kinetic argument, based on assump- 
tions which lead to a self-consistent theory, in order to obtain the 
dependence of A on l` and A . Thus , as A is the strength of the in- 
teraction governing the dynamics of the macrostate, we first relate A 
to A and l" by an elementary kinetic argument based on the assump- 
tion (among others) that the macrostate evolves according to a 
Markoffian, deterministic law. This leads to the conclusion that A 
may be rendered extremely small, equal to a negative power of l`, by 
constructing the phase cells to be sufficiently large, i . e .  , by 
choosing A large enough. We then show, in Sections VII and VIII , 
that for such small A and a suitable choice of macroscopic variables , 
the generalised master equation yields a Markoffian, deterministic 
law. Thus the whole procedure constitutes a self-consistent theory 
of closed dynamical laws for suitable macro-observables . 

In order to formulate our elementary kinetic argument, we 
introduce parameters representing characteristic times for changes at 
the microscopic, cellular and macros copic levels; by a characteristic 

4"~...a 

tThe essential reason why this should be justified is that As pro- 
vides a specification of the fine-grained observable As to within 

nrsn _ Now the difference between the mean values of As , for 
st  _ that differ by a few quanta from one another, will be~ (la . 
Consequently, the difference between the values of As for these 
states will lie within -Ali of one another, as :'l>>1 . Hence the 
states must lie either in the same cell or in neighbouring cells , 
which And l .  

for 
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time for a process , we mean one that represents its duration up to a 
factor dependent only on intensive variables . Thus we choose u to 
represent the duration of a typical microscopic process (e.g.  , a col- 
lision) . This time , an intensive quantity, may be suitably chosen as 
the reciprocal of the energy quantum (= frequency, as h =  1) w , i . e .  r 

T II 
-1 w (vI. 7) 

The parameter representing a characteristic time taken for an inter- 
»-=-*FM-E--JI---prion will be JL'--"lad by FC . 

nsitlons are§If ordered by V ,  this time . 
Hence, by Eq§. (V.5) and (V.6) ,  

-i 
For a Markoffian s y s t e m  in 

w/(v ) a  (of. 
we may choose 

_. _ 2 " l  
T c  - (L i l  ) (v1.8) 

The parameter representing a characteristic time for a macro- 
scopic change , 
mutate an expression for TM , we _.___*...._- van Kampen's5) precept that 
macros copic observables are slowly-varying quantities . We formal- 
ise this by assuming that m is greater than the microscopic time F 
by a factor which is very large , specifically because of the macro- 
scopicality of A ,  i . e .  , because of the largeness of l". Accordingly, 
we shall assume that TM/ Fu is a function of F which takes large 
values when 1" is large. For simplicity, we shall state this function 
to be a positive power of F , as it may readily be shownt to be in 
usual cases of phenomenological laws . Thus we assume 

Fa, in A will be by ?M. In order to for- 

T-M 
q T F  Lu with q >  0 .  (vI.9) 

Our formulae for the time ? enable us to obtain X as a func- 
tion of l` and A . For it follows from our definition of T M  that the 

l"a/ T M .  On the other mean rate of change of the variables -A is 
hand, as V is assumed to cause 
cells in time FC, this mean rate 
Hence I 

s between net 
of A is also 

TConsider, for example, the escape of gas , through a small hole , 
from a container of volume V .  The mass , M ,  of gas in V will (pre- 
sumably) change at a rate depending on an intensive variable , namely 
the density M/V, and the geometry of the holes Thus , defining l` as 
a characteristic number of molecules in V ,  M- dM/dt=r'1 x an in- 
tensive variable . It follows that T M  is proportional to r .  
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Fa 
TM 

A.; Aa 
T 4' 

C 
(VI.l0) 

i . e . ,  by Eqs. (VI.8) and (VI.9) I 

A 2 al QA 1 (vI.11) 

The requirements of this relation and the inequalities (VI. 2) 
may be fulfilled by choosing 

X F '  

A I`1+2r-q 

and (vI. 12) 
Q = 1.,q-2r 

with 

2 r + 1 > q >  2 r>  0 .  

K 
Thus , constructing the cells to be sufficiently large , we can render 

and Q - 1  extremely small , equal to negative powers of l`. It 
should be noted, however, that further restrictions on the value of 
the index r may be imposed by the Markofficity conditions (of. dis - 
cussion at the end of Section VII) . 

Finally, we shall use our assumptions to formulate the 
l`-dependence of the kernel G .  We shall restrict our consideration to 
times t<< To, the Poincaré recurrence period. In view of the enormity 
of up r this restriction is only a formal device , irrelevant to any 
experimentally observable process . 

We see from Section V that G is a functional of V(t) and its 
components , V(a ,a ' l t )  . The properties of these time-dependent in- 
teractions may be conveniently expressed in terms of their spectral 
functions . Thus we divide the full range of possible energy dif- 
ferences between eigenvalues of Ho into intervals (e,s + As) , chosen 
so  that (of. Reference 10) 

t .  
-1 _ 

D (As) >> Tm . 
The former inequality ensures that each interval contains an enormous 
number of eigenstates of Ho. We now resolve V into components r 
Ve , with matrix elements between eigenstates of HO whose energy 
differences lie in the respective intervals (e, € +A€) . Thus , denoting 
eigenstates and eigenvalues of Ho by i i  , Et , we have 

(v1.13) 
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}
'\l cu 
II 
:> (0 
> (vI. 14) 

where 

C @we)=(wj,v¢k)x@ . , V  
$1 

(VI.15) 

where Xe 
(e ,e +Ae:). 

• u.\.°:|»-- 

1 or 0 ac 
The spec 

fig to whether or not 
function Cr is then d 

5) lies in 
by 

of(e)Ae = (v€*vs) 
By Eqs. (vI.14)-(vI.16), thls function satisfies the sum rule 

2 = (>»w<p(x)) . o a(e)Ae: 
S 

(VI.16) 

(v1.17) 

Thus (cra(€)/(Xwcp(x))2) is a normalised function . . .A ez 
e 

1 . 

representing the strength of the interaction V corresponding to the 
transition energy € . Accordingly, we may formalise our assumption 
that V contains matrix elements only between states that differ from 
one another by a few quanta , i . e  . , by energies Lu , by postulating 
that the various moments of this relative strength function are given 
by appropriate powers of up , apart from I`-independent numerical 
factors. Hence 

2 ua(6) = K w €(f/w) 

where the function §(s) is dimensionless and contains no 
I`-dependence . 

Hence, by Eqs. (v.21), (v1.13) and (v1.15), 

._ / 
(lr'Ve(tl!l's) - \*MV@*s)e 

It follows from Eqs . (vI. l4)-(VI. 16) that the spectral function O` is 
related to the autocorrelation function for V(t) by the formula 

ist 
a(t)e As . 

je t 

iv(t)v) a o 
e 

T" 
L 

(vI.18) 

(VI. l9)  

Assuming 0 to be a smooth function of e 
an integral in this equation. Thus 

I we can replace the sum by 
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(v(t)v) 
' t = de O' (e:)e1€ ; a a (vi. 20) 

and,  consequently, by Eq. (VI.18) 

(v(t)V) a ()\w)2 n(wt) (V'I.21) 

where the function 'q(T) is dimensionless and F-independent. It is 
important to note that the replacement of the sum, in Eq. (vi. 19) , by 
an integral, in Eq. (vI. 20) , opens up the possibility that the result- 
ant function n decays to zero as t - » o o _  Clearly this possibility has 
arisen only through our formal elimination of Poincaré cycles . It 
will be assumed that these cycles are similarly eliminated from all 
correlation functions relevant to the theory . 

In the formula (vI. 21) for the autocorrelation function for V(t) , 
an It l_ only in ratio to the micros copic: time F = Lvll . 

is natural to express V(t) in torms of the time, T ,  
:unit is uI-1 , i . e .  , 

T = u l t .  (VI.22) 

Likewise it is natural to express V in ratio to a characteristic value r 
Mu r of its root mean square . Thus we define a dimensionless reduced 
interaction v ( T )  by 

V(t) = X L U V ( T ) .  (VI.23) 

S(t) by 

Correspondingly we define reduced forms of the interaction compo- 
nent V(a a '  t) , the 'force' F(a,t) and the Liouville interaction opera- 
tor 

v (a ,a '  T) = (MJ) -1 V(a,a '  t )  (vI. 24) 

f (a,T) = (Mv)-1 F(a,t) (VI.25) 

and 

s(T) = ()»(»J)l1 8(t) (VI.26) 

It follows now from Eqs . (vI. 21) and (vI. 24) that the autocorrelation 
function (v(T)v)a is a I`-independent function of T r as it was ob- 
viously designed to be. This means that v ( T )  simulates an intensive 
variable , at least in the context of its autocorrelation function. We 
shall assume that both this interaction and its derivative reduced 
operators f(a,T) and L (T) behave likewise in the context of the 
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various correlation functions in which they appear; the validity of 
this assumption will depend on the microstructure of V .  

Inserting these assumptions into Eqs. (V.32) and (V.33) , 
we see that the components of the kernel G may be expressed in the 
forms 

G o(a,a ' l t )  (A w)2g0(a,a' lT) (VI.27) 

and 

n 2 
Go(a,a' t , t 1 . . . . , t n )  = (MJ) + Qn(a,a'l¢,'r1, • . • Iv .r To) 

(VI . 28) 

where the functions in are intensives variables . Hence , by 
Eq. (v. 18) , the kernel G may be expressed in terms of the interaction 
parameter X and these intensive variables by the equation 

G(t) II (KLv)2g(T:)~) (vI. 29) 

where 

g(T:)\) = Z (--K)nQn(T) (v1.30) 
O 

and 

gn(T) 
T 

o 

Tn-l dT1...j dTngn(T,T l , . . . , ' rn) ,  for n > 0 .  
O 

(VI.3l)  

No confusion should result from our use of the symbol in to refer 
both to a function of T and to a function of T , . . . ,Tn-  

VII D Parametrised Master Equation and Markofficity Conditions 
On expressing the kernel G in the parametrised form of 

Eq. (VI.29), the master equation (Iv. 12) becomes 

dpt 

dt 

2 wt 
X UJ g(T';?\)P 

o t'UJ'1,.rldT' - (VII. 1) 

T Here one should not be misled by the dependence of on on a ,a '  
since , in this context, these symbols are merely labels for the cells 
C(a), C(a').  
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We now express the time-dependence of P on a temporal scale of 
which the unit is the cellular time Fc; this is clearly a 'natural' 
scale for the evolution of P . Thus we define the time of this scale 
as 

0 - t / T c  , (VII . 2) 

i . e . ,  by Eqs. (vI.7) and (v1.8), 

2 2 
O' = url t = X T .  (VII . 3) 

Correspondingly we express Pt as a function of G 

Hence by Eqs . (VII. 1) 
takes the form 

I 

p(0). (VII . 4) P = 
t 

(VII.3) and (VII.4), the master equation now 

dp(o) 
do 

u/A 2 dT'('r';>~)p(0 -k2T') .  (Vu . 5) 

This is the parametrised master equation in which g and p are ex- 
pressed in terms of their respective 'natural' time-scales . The fact 
that the units for these scales differ by an enormous factor, X -2  , is 
crucial to the possibility of Markoffisation . 

The problem concerning the reducibility of the master equa- 
tion, in an appropriate sense, to Markoffian form is best studied by 
the method of Laplace transforms . Thus we define the transforms of 
p ,  g and in as 

BW) = . do e-vo p(o) 
o 

(VII . 6) 

5(2) = I d T  e-zT g(T) 
o 

(VII . 7) 

and 

6n(z) = I dT e-zT gn('r) 
o 

I (VII . 8) 

the transformation variables y , z  corresponding to reciprocal times on 
the 0 and T scales , respectively. It follows from these definitions 
and Eq. (vi. 30) that the tran.sform of the parametrised master equation 
is given by 
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YNY) - 10(0) = §()~ 2y:)»)l13'(y) (VII . 9) 

with 

§0»2y:)») = i(-mnEnu2y). (v11.10) 
O 

We shall be concerned with the evolution of the system as 
'time-smoothed' over an interval X , on the o-scale. The duration 
of such an interval lies in an intermediate region between the charac- 
teristic microscopic and cellular times , To and T o ,  whose values on 
the T-scale are X 2 and l , respectively. The time-smoothing over 
an interval It may be achieved by treating the transformed master 
equation (VII.9) on the basis of an approximation which is valid, to 
lowest order in AL , when yS  }\'1 . Thus we treat the variable )\2y , 
which appears in the kernel of the transformed master equation, as 
being of first order in X . Hence r as the normalized functions §'n(z) 
contain no expnwmf "~dependence, it follows from Eq. (vii. 10) that 
the kernel EU in zero order in X , to the y-independent 
quantity §O(0) * (a) the functions §n(z) tend to finite 
limits as Z-\ 0: and (b) the increment in §n(z) , due to a small change 
(S K)  in z from 0 to 6 z ,  is 0(6 z) .  We shall discuss the microscopic 
significance of these conditions a little later, following Eq. (vii. 17) . 
For the moment we observe that, if the conditions are fulfilled , the 
kernel 502y:>») of the transformed master equation may be replaced 
by the y-independent quantity 

oo 

k = 5o(0) E I dT 90(T)- 
O 

In this case the transformed master equation (VII.9) reduces to 

(VII. 11) 

y5(y) - p(0) = k5(y) (VII. 12) 

which is simply the transform of the Markoffian master equation 

dp(o) 
do kp(0) I (VII. 13) 

1 . e . ,  

Z k(a,a ' )p(a ' ,0)  
al 

I (VII . 14) 

or equivalently (of.  procedure from Eq.  (IV.l2) to Eq. (IV.l4)), 
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dp(a.o2 = 
d o  2lk(a,a')p(a-,@) - k(a' .a)p(a,@)1 . 

al  

the matrix k(a' ,a) being defined in correspondence with Eq. (VII. II): 

(VII.15) 

k(a',a) V 
J 

oo 

o 
dT go(a',a 'r) I (VII . 16) 

i . e . ,  by Eqs. (v.34),  (v1.24) and (v1.27) 
oo 

k(a',a) = 2 Re dT (v(a,a' T)v(a',a)) 
o 

dT . a (VII. 17) 

In general, the Markoffian master equation (VII. 15) describes an ir- 
Hii=*i"*'=i'§.ble law. One can even define a macros copic entropy function 

under this law, will increase monotonically. II 
We see, then, that (a) and (b) constitute :sufficient condi- 

tions for Markofficity. In order to relate these conditions to micro- 
scopic correlations in the system, we first make a change of varia- 
bles 

g n ( T , T 1 , . . . , T l n ) = y n ( T ' , T 1 , . . . , T n ) ,  for n >  0 
.I 

wlth 

' * T - ' r  T ' = T  - 
T 1 '  1 1 T2 I 

I . . . , T T TI (VII.18) = T . 
n-1 n-l n n' 

- T  NI 

and 

90(T) Y0(T). 

I 

in (z) 

Hence , by Eqs . (VII.8) and (VII. 18) 

j n-1 

O 
iT e'ZT 'T 

Mo 1•  T -  , -T dTnyn( T 1  T 1  2 r . • l r 

_ T I 

T n-1 T o I  n) (VII. 19) 

This reduces , by the Faltung theorem, to 

5n(2) = V n ( z . z , - - - , z )  ((n+ 1) variables z) (v11.20) 

where vn is the multiple Laplace transform, defined by 
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Y-nlZ'z1 , . . . , z n )  
m 

I dT I dT 1 
O 

oo .ad 
O 

I I | 
T T . . . . . ' r  nvn( , 1 . n) 

(VII.21) 

X exp - (zT '+z1T1 + - - - + z T ' ) .  
n n  

_ 

II:il 

I 

iuniuuns 
I-sal 

a' 

I-v-11 

V k (t ) 
=ruf..~tnr """ lll.lnL.-4 'liluii.§1\r.r-eauull.al 

in 

l . 

- 

that the above conditions (a) and (b) will 
slightly stronger ones , are satisfied: 
. . IZN) tend to finite limits as z ,  21 . . . f le= and (b') the increments in YnI  corre- 

to 6 z , 6 z j  (S K )  in z ,  z j ,  are 
, Iii) _ _ , _ -  _*) constitute sufficient conditions for 

Markofficity. It is evident from Eq. (VII. 21) that these conditions 
correspond to the requirement that the functions Yn(T' , T  1 r . . . ,To) 
decay to zero with increase of each of the variables T '  ,To , . . . , T o  
in some characteristic microscopic time , i . e  . , in a time whose dura- 
tion depends only on intensive parameters . By Eqs . (VI.27) , (VI.28) 
and (VII. 18) this decay condition for Yn is equivalent to the one that 
the function Gn(t,t1 , . . . ,to) decays to zero with each of the temporal 
differences (t-tl) , (t1-t2) , . . . r ltn_l`tn) , tn in some characteristic 
microscopic time "FO, whose ratio to UJ 
variables. Hence , as the t . . . | 3' _ _ 
seer " ` .. ' " f 
cay -t 
vario 
ally mi 
their ra 
by ; 

f 
-1 depends only on intensive r e .  g v m u n u u n u s  

. 

I In order to interpret these decay of many- 
body theory we shall express them in te between 
Heisenberg operators Vk(t)E V(a,a '  t) for s.ystem So'  
Thus , as  Gn is composed of contributions of the form (V.36) , we see 
that the above decay conditions are fulfilled if the interaction compo- 
nents simulate random forces , in the sense that products 

-M.i|=i|!m"""""*""tm) become unconelated with 
-w Trever their respective 'temporal 

al.: 
up 

ii' 

5 
1'1!HI"l1F'*ll> 

ry;1z) 

t s  

r 

these conditions , we note the 
correlations between fluctua- 
Such correlations between 
rates of a system, have been 

where it is found that r 
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in a large class of cases, the correlations do decays in microscopic 
times , corresponding to 'lifetimes' of quasi-particles in the system . 
This supports our contention that, in principle, the functions Gn can 
decay in accordance with our conditions . 

Finally, we recall that the form of V ,  and therefore that of G, 
depends on the construction of the phase cells . Our conclusion , 
then, is that the system will be the cells are S O  con- 
structed as to render the interaction QE.___.__ents V(a ,a ' l t )  both weak 
(K =I"II<< 1) and random, in the sense specified above. This combi- 
nation of requirements might impose restrictions on the coarseness 
parameter beyond those specified in (vi. 12) . For example, it might 
turn out that such restrictions arise through a dependence of the de- 
cay properties of G on the index, r ,  of the formulae (VI.l2). 

VIII. Phenornenologlcal Law 
We have seen that the procedure from the micros copic to the 

cellular level of description of the system has led, subject to  speci- 
fied conditions, to a statistical law of Markoffian form. The final 
stage of the theory wlll be to proceed from the cellular to the macro- 
seopic level and thereby to obtain a phenomenological law, together 
with a description of fluctuations of the macroscopic variables . In 
this way we shall obtain a condition that these fluctuations remain 
sufficiently small for the phenomenological law to be regarded as de- 
terministic. 

5) 
Jan 

The phenomenological law may be extracted from the Markof- 
fian master equation by m' Q. of a method due originally to van 
Kampen. This method, _ :the one we have used to  Markoffise the 
master equation, depends on expressing all relevant variables in 
suitable units . In order to employ this method, we first express 
k(a' , a ) ,  the transition rate for a jump from C(a) to C(a') , in terms of 
the value, a ,  o f A  in the former cell, and the change, (a ' -a),  in this 
value, due to the jump. Thus 

k(a,a ' )  E T<(a Aa) 

with (VIII . 1) 

As = a ' - a .  

On comparing this equation with Eq. (VII. 17) , we observe two things . 
Firstly, as the interaction components v ( a , a ' )  engender transitions 
only between neighbouring cells , the function k depends on Aa only 
through the change An (= Aa/Q) in the cellular quantum numbers n, 

t We should add,  though, that except in simple cases,  the decay 
properties are obtained only by means of certain truncated per- 
turbative expansions . 
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defined in Eq. (vI. 1). Secondly, as microcanonical averages ( ) a  
are equal to corresponding canonical averages, expressed in terms of 
intensive variables rather than a ,  the function k depends on a only 
via the intensive variables x .  Thus we may write 

T<(alAa) = w(xlAn) (VIII . 2) 

where the function w contains no explicit I`-dependence. Expressing 
the distribution p in terms of x ,  rather than a ,  i .e .  , 

p(a,0) f (x ,  0 )  I (VIII . 3) 

it follows from (VIII. l)-(VIII.3) that the master equation (VII. 15) now 
takes the form 

d 
do -f(x,0:) [w(<+ <* 

L 
An 

An) f \x+ LL , Cr - w(xlAn)f(x,G)l . 
Q 

This equation may be expressed in a more convenient form by noting 
that its right-hand side will be unchanged if An is replaced by -An 
in the first product wf of the summand. Thus we rewrite the master 
equation as  

_EL 
do f(x,o) = Z[w<x - l"v fix \ 

An 

L 
Q I u) - w(xlAn)f(x,@l] . 

(vII1.4) 

for the case of only one intensive variable x .  

For simplicity we shall treat this master equation for the case 
of only a single macros copic variable, other than the energy; i .e . , 

The result will not 
differ in any es serial way from the one we have obtained elsewhere3) 
for the general case of several variables . This latter result will be 
quoted at the end of this Section . 

We shall treat x as a continuous variable in the master equa- 
tion (VIII.4), since, as f Eq. (VI.3) , the spacing between 
its eigenvalues is the ini :quantity (To . Thus we expand 
the right-hand side of the 'master-e-quation (VIII.4) in a Taylor series : 

I 

df(x ¢Cr) 
do 

(-1FQ 'I' 
r !  

at 
Bxr 

(wI_(x) f(x , 09 (vIII.5) 

where 
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Wr (x) w(x An)(An)r 
n 

I (VIII . 6) 

which is an intensive variable . We now transform from a cellular to 
a macroscopic time scale , for which the temporal unit is Fm. The 
time on this latter scale is therefore 

s =t /Fm =o/O. (VIII . 7) 

We also make a transformation 

x §(s) + 0-é y (VIII . 8) 

where x(s) is the mean of x for the distribution f(x,s) , and y is 
designed to be a suitable reduced variable to represent the fluctua- 
tions of x8Fa"£  its mean. Thus anticipating that the fluctuations 
of x haveei so Eion of order 9-1 , we shall treat y as a variable of 
order (2o in our treatment of the master equation; and then we shall 
obtain a self-consistency condition for the justification of this treat- 
ment-the condition will be that for which the analysis leads to the 
conclusion that the dispersion in Y is indeed 0(§20). 

On expressing the distribution function in terms of y and s , 
1 

f(x,c) = §FF(y,5) (VIII . 9) 
l 

where the factor QUO ensures that .ferdy= 1 . It follows from Bqs . 
(VIII. 7)-(VIII.9) that the master equation (VIII.5) transforms to 

PLE 
B s  

0% d§(s) at 
ds b y  

Q 
of 
* r 

Q Z (-l) r !  r=l 

-r a: 
Gy 

r(x(s) + Q - é y ) F .  (VIII. 10) 

We now expand the sum on the right-hand side of this equation in 
powers of Q '  . Thus 

E _  
B s  13 \Q§i§) - w1(>T(s)) Q ds 

l 
2 

2 
-w2(>?(s))5 F - 5w1(Y(s)) 

6(}T(s)) 
a 

a Y 

Equating the coefficient of 

_ 1  
2 - ( y F ) + 0 ( Q  ) .  

G y  

9% , the leading power of Q , to zero, we 
obtain the phenomenological law governing the time-development of Y: 

(VIII . I1) 
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d§(s ) 
ds w1(§(s))- (vm. 12) 

equation, we see that Eq. (VIII. 11) reduces 
to the form 

In view of this 
in zero order in Q '  » , 

I 

Qi 
B s  é US) - m(s) (oF) 

a 
B y  

(VIII. 13) 

where 

MS) = w2(x(s)) (VIII. 14) 

and 

m(s) 
"| 

L 

I 

. 
I 

Q so 

(VIII. 15) 

are intensive variables , of order OO. Equation (VIII. 13) evidently 
governs the fluctuations of x about its mean, x(s) . This equation 
will now be used to obtain the time-dependence of the dispersion of 
these fluctuations . Thus , denoting the dispersion of y by 

2 do y F ( y , s ) ,  A(s) II (vm. 16) 

it follows from Eq .  (vIII.13) that 

dA(s) 
ds 

*>(s) + 2m(s)A(s) . (VIII. I7)  

It will be assumed that the initial measurement of -A is sufficiently 
precise to ensure that A is zero, or at most of order OO, at s = 0  . 
The:I~:r'a5aa"5tion we seek to answer is: Does A(s) r""'""""'""'§lently remain 
bou'_WM_. to values of order QUO or does it grow to_."-._. Br values? If 
the answer is affirmative , then the fluctuations in x are always 
0(QI1), which means that the phenomenological law (VIII. 13) is (al- 
most) a deterministic one. It also means that our treatment of y as 
a variable of order Qo is self-consistently justified. On the other 
hand, if the answer is negative , the macros copic variables A evolve 
according to a stochastic law, as in hydrodynamical turbulence . 

In order to answer this question regarding A(s) , we first note 
that, by Eqs . (VIII.6) and (VIII. 12), HS) is the second moment of the 
transition probability w ,  and is therefore always positive . It fol- 
lows from sq. (vm. 17) that Ms) will 1ncr&'--Wo"-"w-*elf rf1(5} is 
positive, but will remain bounded to valL1§§ .!» is nega- 
tive . Consequently a the dispersion in y i ... "".lf|_.:.-=all times 
if m is negative . Hence , our condition for macroscopic causality is 
that m(s) should be a negative quantity. 
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It is interesting to observe that this causality condition is 
exactly the same as the condition for stability of the phenomenologi- 
cal law given by Eq. (VIII. 12) . For it follows from this latter equa- 
tion and Eq. (viii. 15) that a disturbance 6x(x) in x(s) will evolve 
according to the law 

£_ 
ds 6x(s) - m(s)6§(s). (VIII. 18) 

1 

i 

Consequently, the disturbance 6§  will be amplified or damped out in 
time according to whether m is positive or negative . Therefore, the 
condition for stability of the phenomenological law is simply that 
m< 0 , 

Finally, 
and the condition for ""'°' ' ' ` '11 
variables x are give 3101 natural in nalisation3) of the results 
we have obtained for one variable. Thus , reverting to the notation 
we have used for a description of several variables , the phenomeno- 
logical law corresponds to the m equations 

which is the same as the macroscopic causality condition . 
we remark that the form of the phenomenological law , 

pic ca""°.M15y, for the case of several 

w ( x ( s ) ) ,  for j= l , . . . ,m (VIII . 19) 

where 

W1 (x) 

II 

T* . n 
w(xl An) An), . .r (vm . 20) 

while the condition for macroscopic causality is the same as that for 
the stability of this law. This means that the causality condition 
may be investigated by analysis of the stability of the phenomeno- 
logical law, as given by the set of ordinary differential equations 
(VIII. 19) , without further reference to the more complicated partial 
differential equation from which it was extracted. It should be noted 
that Eq. (vI11.20), together wlth Eq.s. (v111.1), (vIII.2) and (vIII.17), 
serves to express the functions WI] , which determine the form of the 
phenomenological law, in terms of the micros copic properties of the 
s system . 
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I .  Introduction 
The object of these lectures is to discuss some quantum field 

theoretical methods for the density matrices or the distribution func- 
tions . Recent progress in the quantum field theoretical methods in 
statistical mechanics is reflected in the publication of many articles r 
review papers , monographs and the lectures at various summer 
schools such as Montroll's at Boulder in 1960 or de Domlnicls' at les 
Hooches in 1959. 1) While most of them emphasize the evaluation of 
partition functions or the energies of many-body systems , it is well- 
known that distribution functions also play important roles in the 
evaluation of average quantities , spatial correlation and the inten- 
sity of scattered electromagnetic waves . In this connection, die - 
gram methods for the distribution functions will be discussed; how- 
ever, since there are many distribution functions , attention will be 
limited to equilibrium systems . 

Roughly speaking , the investigation on the density matrices 
and the distribution functions has been developed in three stages . 
In the first ten-year period between 1932 and 1942 the pioneering 

T Presented at the THEORETICAI.. PHYSICS INSTITUTE, University of 
Colorado, Summer 1967. 
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works by Wigner and Uhlenbeck on quantum systems and b Mayer on 
classical systems are to be mentioned. In 1940 I-Iusimi3 published 
his well-known thesis on the formal structure of the density matrices 
and introduced the resolvent solution of the Bloch equation. Con- 
cerning a more specific theory, the work by London) published in 
1943 may be cited. In this work London investigated the spatial cor- 
relation of particles in a Bose gas in connection with the Bose- 
Einstein condensation . 

It seems that the most significant achievement in the next ten 
year period between 1942 and 1952 was on classical distribution 
functions . Needless to mention, we find in this period the important 
contributions by Bogolyubov, Kirkwood, Born and Green, Mayer and 
others . 5) 

In the last stage , namely since about 1952 , quantum field 
theoretical methods have been applied to statistical problems . How- 
ever, it is surprising that most of the review articles and monographs 
did not give credit to the pioneering work by Gcldberger and Adams5} 
published in the Iournal of Chemical Physics in 1952 . I think that 
they were the first to introduce the Feynman propagator technique to 
the Bloch equation for the density matrix. Actually, this is the 
reason why the year 1952 has been designated as the beginning of the 
last stage . However, they did not apply their formalism to specific 
problems nor introduce diagrams , although it was clear that one could 
introduce Feynman diagrams in a reciprocal temperature and coordi- 
nate space . 

Thus, it took a few more years until physicists started devel- 
oping the new diagrammatic methods in statistical mechanics . It is 
very interesting to observe that significant and sudden development 
was made almost simultaneously in 1957 by many physicists in dif- 
ferent countries, although preceded by important articles by Schwinger, 
Brueckner Watson, Mat3"'£*'°n-lu'n' Bogolyubov and other Russian col- 
leagues .75 For instance, :are the papers by Goldstone and 
Hubbard in the Proceedings of Royal Society, the articles by Gell- 
Mann and Brueckner, Brueckner and Sawada , Lee , Huang, Yang and 
Luttinger, Bardeen, Cooper and Schriefer, et cetera , in the Physical 
Review, those by Landau, Galitzkii and Migdal , Beliaev and others 
in the Soviet Physics , IETP, and so  on.8) As a consequence, very 
rapid development in the methods and techniques resulted. It might 
be mentioned that counting from the year 1957 this is the tenth anni- 
versary for the new statistical mechanics . 

We have now quite a few papers on many subjects . Thus , 
let us pick up a few important subjects which will be related to the 
present talks . 

First, we have an electron gas . Its treatment is of prlme im- 
portance and connected with the investigation of metals , plasmas and 
ionic solutions . There are important contributions on the evaluation 



DENSITY MATRICES 331 

. 1........lHn.l.l-. 

of the correlation energy or the equation of state expanded in linked 
clusters . Particular mention should be made of the fine work by 
Montroll and w a r d )  who further developed the Goldberger and Adams 
formalism to the evaluation of the correlation energy. At the same 
time , in a Belgian journal , Fujita, Isihara and Montroll developed a 
general linked cluster expansion theory of the distribution func- 
tions . 10) This theory is discussed in the next section, while in sub- 
sequent sections emphasis will be placed on its applications and 
further developments . 11) 

Another important subject of interest is liquid helium. It is 
indeed very strange that the nature has provided us with twin ideal 
objects of investigation, liquids I-Ie4 and I-Ie3 . These particles are 
physicists' particles: Their chemical structures are simple but their 
condensed phases are fascinating. They look similar, yet one obeys 
Bose statistics and the other Fermi statistics and differs from the 
other . 

The investigation of superfluidity in liquid Her has made good 
strides since l Landau introduced intuitively the well-known energy . 12 

. 

| a more microscopic theory. 13) However, his s 
summed that the interactions are weak. Thus . Lee , Huang and Yang14) 
considered a hard-sphere Bose gas as an idealized model for liquid 
helium . 

The treatment of a hard-sphere system is important not only 
for liquid helium but also for nuclear matter. Theoretically, it is 
significant since the usual perturbation expansion in potentials 
breaks . Therefore , modification of the standard many-body theory 
based on perturbation is required . 

For this purpose, Lee, Huangl i introduced the pseudo- 
potential method. 1 ) This method is § _ _ | - j  introducing a new con- 
tinuous potential which is equivalent to the hard-sphere potential if 
one uses it in the Schroedinger equation with suitable boundary con- 
ditions . Lee and Yang developed another method known as the binary 
kernel method. In this method a two-body problem is solved first 
and is used in a many-body problem. In the sense that all the two- 
body interactions are taken into consideration, this binary kernel 
method is analogous to the t-matrix method developed by Brueckner . 

The pseudo potential and the binary kernel methods are dif- 
ferent. In practice , however, both require certain approximations . 
We shall apply these methods to the evaluation of the distribution 
functions and compare the subtle differences . 

The development of the investigation on liquid I-Ie3 has been 
remarkable . This liquid was obtained only twenty years ago by the 
devoted efforts of Los Alamos people overcoming various difficulties 
such as  producing low enough temperatures and obtaining the isotope . 
There were good reasons for the development, of course. Since the 

It was Bogolyubov who first derived the pa'*"**'* ||isa-A-"..- 

14) 
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particles obey Fermi statistics , one might expect an independent 
proof of Sommerfeld's theory of the electronic specific heat, an inde- 

nfirmation of the essential role of statist .. ,. ; transi- 
iid I-1eq. One could even be ambitious anal £a tran- 

...,.__.___ a new phase due to formation of Cooper pa§i%i It is not 
possible to spend more time here to discuss the details of the re- 
search on liquid I-1e3 , but we shall later discuss the spatial distribu- 
tion in a hard-sphere Fermi system and its difference from the case of 
a Bose gas . 

Thus , we have at least three important systems of our concern: 
(1) an electron gas, (2) a hard-sphere Bose gas, and (3) a hard- 
sphere Fermi gas . For convenience sake , we shall use the units 
such that h = l  and 2m= l in these talks . 
II . The Propagator Formalism 

We start with the density matrix for an N particle system: 

( r '  p l r )  Z¢§(? ' )e 
n 

_ H _, 
B 1l1n( r) f (II. 1) 

where r is for the N particle coordinates, B = l/kT and {Llfn(r)} is 
an orthonormal complete set of eigenfunctions . The density matrix is 
useful in many-body theories since the right hand side of this ex- 
pression may be expressed in terms of any orthonormal set of func- 
tions and since the Hamiltonian is usually given. On the other hand , 
the partition funct-ion 

Z N 

II 

-8 En 
e (II.2) 

n 

requires to evaluate the energies En solving the Schroedinger equa- 
tion. This step i s ,  of course, not necessarily simple . 

Once the density matrix is known, one obtains the partition 
function by taking the trace 

( r  p l r ) d r  = Zn. (11.3) 

The diagonal elements of the density matrix are the probabili- 
ties of finding particles in a given configuration r and B= 1/kT. 
Therefore r the dlstributlon functions will be defined in terms of the 
diagonal elements . 

We rewrite Eq. (II. 1) as follows : 

(Fw I )  = § w § ( 0 , r - ) w n ( e . r ) ,  (11.4) 
n 
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where Y(B ,r) is defined by 

Y(B ,r) 
e-5H4 (r) (1I.5) 

Formally, this new wave function defined in the coordinate-reciprocal 
temperature space satisfies the Bloch equation' 

-HY - (11.6) 

When we take the conjugate complex of this function indicated by the 
asterisk, we treat B like a complex quantity . 

The form of the right hand sum of Eq. (II.4) reminds us of an 
integral equation: 

Yn(B,r)  
q 

K(1" Be" B')'l'n(B' ,r')dr' . (II. 7) 

Here, it is remarked that the B-integration is not performed in the 
right hand side . _lt looks a bit strange that one can get B '  . pend- 
ent function 'l'(B , r )  in the left hand side , but this is due to arti- 
ficial nature of the differential equation (II. 6) . -»-u 

The kernel or the propagator function K(rB;r'B') may be ex- 
panded in terms of the eigenfunctions of the integral equation: 

i . .  

|Lhp 

K(rB;r'B') = ZY; (B ' , r ' )Yn(B , r ) .  (II.8) 
n 

Thus , we may establish the relation 

) = K(rB:r0) - ( (11 . 9) 

This relation gives a new rule to evaluate the distribution fun 
we evaluate the total propagation of particles from (0 , r) to (B,.... _._ 

The propagator is supposed to satisfy the Green's function 

s: 

equation corresponding to Eq. (II.6): 

+ H K ( 2 , 1 )  = 6 ( 2 - 1 )  I 

Ag 
where we have used 2 for the set of coordinates (B, r). Thus, in 
case the total Hamiltonian is split into two parts : 

(II. 10) 

= + H HO H1 I (II.11) 

we may divide the propagator correspondingly into two parts: 
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K = K + O K1 (II. 12) 

such that Ko satisfies 

+HOKO = 6 ( 2 - 1 ) ,  (11.13) 

Then we find from Eqs . (II. 10) 
lowing integral equation: 

I (11.11), (11.12) and (11.13) the fol- 

K(2, 1) 2 K0(2, 1) K0(2, 3)I-11(3) K(3, l)d3 I (II. 14) 

where the numbers represent ( r .B)  coordinates as before, and the 
integration is over the entire volume with respect to r and from 0 to 
B concerning B . Thus , assuming that H1 is small, one obtains a 
perturbation series : 

K(2, 1) KO(2 I Ko 1) - (2 ,  3)H1(3.KO(3,1)d3 + .(I1.15) 

This series determines the propagator . 
particles may be defined by 

The distribution function of g; 

in) of' ) l -  
-»n K(r .-»N -D -o 

B , r  0)dIf;+1°° - drn, (II.16) 

where 

L r r 
al, 

-a 
I I 2 

-e 
r I 1 

-| 

r 

The definition (II. 15) corresponds to the normalization 

(n) L -»L 
Pf, 

_ . . . ( r  )dr = N(N 1) (N-U. (II. 17) 

In many-body theories we find the grand ensemble definition: 

-fig _ 0° 

Pa ) - E I 
N=/L 

P ( N  ) -| N (r)Znz (11.18) 

more convenient. Here E is the grand partition function: 
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L 
z 

II III ' z 
N

 
Z N

 (11.19) 

The normalization of 911, is then the expectation value : 

D (r»')d?' (n(n- 1)- - - (n-&+1))  (11.20) 

III. Linked Cluster Expansion 
The propagator must have the same symmetry property as the 

original wavefunction Y as one can see from the structure of 
Eq. (II. 7) . In particular, if YO is given by the Slater determinant 
(or permanent) , the corresponding propagator KO will be an N by N 
determinant . 

Generally, if we expand a determinant of N rows and columns 
we get terms composed of N elements by cyclic permutation of parti- 
cles . When L particles form a closed cycle in such terms , we say 
that they form an JO-toron. We expect torons of all order in the ex- 
pansion in accordance with splitting of an integer N into sub-groups : 

N »{',m 

L 

(III. 1) 

where My; is the number of L-torons . 
It is remarked that Ko in the determinant-form appears only 

once in the perturbation series (II. 15) . Although we have used the 
same notation, K0(3 , 1) in the second term, for instance, must be 
the diagonal term of the determinant. This is simply because the 
variable 2 is supposed to carry the symmetry property of the wave- 
function . 

For this reason, the right hand side members of Eq. (II. 15) are 
obtained by connecting the torons from the first propagators in all 
possible ways . The resulting diagrams are , however, not necessarily 
connected because H1 is generally a sum of pair-interactions . So,  
the right hand side may be regrouped in terms of the number of parti- 
cles in connected graphs . We then observe that the summation over 
N in Eq. (II. 18) removes the restriction which arises from a constant 
N. Thus , in the grand ensemble we are able to discuss the evalua- 
tion of the distribution functions only in terms of connected graphs , 
forgetting from which determinant they have been brought about . 

Suppose now we take the steps in accordance with Eqs . (II. 3) 
and (II. 9) . In the integration process all the particles are treated 
equally, and the result of integration must be constant. It is then 
natural to introduce the constants bf, which arise from the terms 
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corresponding to connected graphs of x, particles. The Br might ap- 
pear my, times. We expect 

l ZN 2 b "  Q Ma l I (III. 2) 

where the factor m in the denominator is due to' the splitting of an 
integer N as in Eq. (III.1) and 1/N attached to the determinant Ko . 
Thus , the grand partition function of Eq. (II. 19) is given by 

In 'E-.' »f, I (III . 3) 

BnlhMa 

yl 
<11 

p2(r1,?2)d?1a,»2 is the 

the so-called linked cluster expansion . 
: us now consider to determine the pair di.str1but1on--1.1'unctlon 
* ~ a similar cluster expansion form . 
of finding two particles F1 and t2 in the volume element 
.r2) . We are now going to distinguish the two particles 

st of the particles . Correspondihgly, all the connected 
graphs are classified as follows : 

00 
.l . 

I 

In 

0 0 ) 
• 
I 

.2 

Figure 1. Three possible types of diagram . 
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1) Graphs which are independent of l and 2 .  These con- 
tribute terms such as be appeared in Eq. (III. 2) , and altogether com- 
pensate EI in the denominator of Eq. (II. 18) . 

2) Graphs which include either 1 orl_2.. These contribute 
terms such as Lb/v since all the integrands depend on the differ- 
ence of coordinates and the integration over l or 2 must bring Br, . 
The factor »% is necessary since there are L possible positions for 
l (or 2) in the /L connected graphs . Altogether, the graphs contrib- 
ute no to the pair distribution function. This is easy to see because 
n is the probability t o  find a particle in a uniform random mixture and 
because from Eq. (I:[I.3) 

:s II 
<:

 [»
-* 

II 

'g
 '5

 
N

 
III

 

II 

< 
|»

-' 

PA
 

<"
° 

U
 Ne
~=

 

(111 . 4) 

3) Graphs which include both 1 and 2 .  The corresponding 
contribution will be of the form Br, go ,}'2) . Here it (?1 ,?2) may be 
interpreted as the probability to find the particles l and 2 in con- 
nected graphs ` -. .. - .,s . Since the probability of collecting L 
particles in an; /L , we arrive at 
z&b(r1 in) . 

Consideration of these three contributions in the integrations 
of Eq. (II. l 6) gives 

system may be given by z 

-O -| 
2 

p 2 ( r 1 , r 2 )  = It + L -a * XI b ( r 1 , r 2 )  

4; 

I (III.5) 

where the summation should start with JL = 2 .  Equation (III.5) is what 
we call the linked cluster expansion of the pair distribution function . 
From the normalization condition for P2 we find 

b&(?1,?2) £1 d?2 = am -1)b, (III.6) 

By a similar consideration we can expand higher order distribution 
functions . 
IV. Boltzmann Qhains 

Equation (II.8) suggests that the free particle propagator 
Ko(?l3;1-'l3) is given by 

KO(Y`-vB:Y0'B') I -(B-B')p2-15-(Y-E~") l n e 

(2rT)3 
do. (IV.1) 

We use this expression in the unit process illustrated in Figure 2 . 
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r1]B +B1 

al #v\./\/A'v\A»'v,/~ 

B 2 '2 

r1,0 

Figure 2 . The propagation of G1 . 

We find 

F1(r2B2:r1B 1) 
j 

-z KO(?1 , B +817 ?'e2)¢(r2 -?') 

x (?'l32;?l0)d?'d?q'. K o (IV-2) 

After integrating over the intermediate coordinates r '  we find 

_. .. iq-'(r2-rl) 
3 G1(q:B2 -B1)L1(q)e p1(?2e2:I»'1s1) = -1 

(21T) 
dpi . (Iv.s) 

Here 

2/5) 
- )  q 

(-G (B 
__3 exp 

K z , | )  = 
l,_B 

_ o IB q l  G1 ( 
I (IV-3) 

where 
B" 

u(q) 

a ~B ' l :  

¢( r )e1qrd r  f (IV. 4) 

¢ ( r )  being the potential . 
It is to be remarked that the particle coordinates appear in 

Eq. (IV.3) only on the exponential factor. T h e  W s h a v e  another 
similar process represented by F 1G"3B2:Y'o2B2) , ' the process 
F1(?'2B2;}l1I31) and if the intermediate coordinh " integrated , 
we find the total process represented by the f 

F2(r3B37r1B 1) 

II 1 

(21T)3 

q 

J 1q» 
G1 (q:B3 _B2) G1 (q7B2 -B 1)8 (r3-r 1)u (q) Zdq _ 

(n. 5) 
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I 

Repeating the same processes and expanding G1(q:B2- Bl) in a 
Fourier series : 

GI(q;B"-B') | * 11 Z jwjce )wj be ) (Iv. 6) 

wlcs-) = 8-é exp 2wi1e"/8 

one arrives at (after performing the B-1ntegratlons) 

I (Iv. 7) 

F*(r2B2;r1B1) FN.) 2 1 

B(2W)3 
J 

do[-u(q)] 
L-1 »{', ` j  (q) 

x eiq-(r2-r1)e21Tij(B2 -B1)/3 
(Iv. 8) 

Multiplying this expression by Hz, 
up with 

and summing over all JL , we end 

02(r) -nz l 
j B(2u)3 

j u(q)>~ I2 
1 +u(q))\ I 

i-Olr -o e t  dq I (Iv. 9) 

where 

K . 
J 

_g_ 
X3 

B 
n e-q2<1(1-G/B) 2TTija/B do . e 
o 

(Iv. 10) 

v. Electron Gas 
Let us apply the formula (IV.9) to an electron gas at high tem- 

peratures . The Fourier transform of the potential is 

4ne2 2 . 
q 

u(q) 

II (v.1) 

The eigenvalues *i are given by 

r=B 2 
>~ l expl-q (MB-G)/B - znija/B] do . 
I o 

At high temperatures one finds 

.L 
X3 (v.2) 

"é II -. 

m
, 

co 
I 

O
 

-is
 

IO
 (V_3) 



340 A . ISIHARA 

Thus, 

@2(t)-n2 
2 

ZK 

x3 (2rr)3 

in'-? * 

2 2 do 
q +K 

n K2elKr 
41Tr I (v.4) 

where the screening constant K is 

2 
K 

2 4nne 
kT (v.5) 

It is remarked that Eq. (V.4) is due to one chain. Namely, the 
effect of having a linear array of interacting particles between the 
two particles 1 and 2 is to have the Debye screening. If the two 
particles are connected by many chains we would obtain in the same 
approximation the following result: 

92(T`) n2 exp(-Q/kT) I (v. 6) 

where 
Kr Q e2  e 
r (v. 7) 

In other words , Eq. (V.4) is the first expansion term of the exponen- 
tial function in Eq. (V.6) . 

As temperature is reduced it becomes necessary to take quan- 
tum exchange effects into consideration. The particles forming a 
toron may be considered to be bound by pseudo-statistical forces . 
Thus , one can show that a factor 

( 1 - e  -rZ/25) (v.8) 

appears from the combination of the Boltzmann chain and free particle 
diagrams , X being the de Broglie wavelength. Also, one can show 
that the first order exchange diagrams yield a contribution 

ex.: 
e-t2/25 1n(I`/)\ ) (v.9) 

for large distances . 
Note that temperature dependences come in now. It becomes 

necessary in such cases to evaluate higher order eigenvalues. A 
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systematic expansion for fermion hard-sphere particles has been 
given by Isihara and Gupta. 16) 

VI. Hard-Sphere Boltzmann Gas 
In view of our interest in liquid helium, let us consider the 

The eigenvalues *1 lowest temperature limit . for such a case are 

X 
j 

2nB 
Bq2+  (21Tj)2/BqZ 

(VI . 1) 

Lee , Huang and Yang showed that the hard sphere potential may be 
replaced by the pseudopotentlal which is in the first order in the hard 
sphere potential 

¢(r) = 81Ta6(r). (VI. 2) 

This gives 

u(q) = farra. (v1.3) 

The summation over j may be 

X 2  

2TT2 
x J 

replaced by an integral: 

3 

dx . (vI. 4) 

Thus, we end up with 

92(r" 
2 n 4an2 

TT3 

-4 2i-5~r d q e  q 
" 

dx 4 
q (q4+x2) (q4+x2+¥q2) 

4an2 
IT 2Y 

dEle 216-E' 11- 1 
(1+Y/q2)*] I (VL 5) 

where 

Y 4nan (v1.6) 
t 

The rlght hand side integral has been evaluated in the following 
formzll) 2 4a , . 

D2(r) = n 11 - r g(x)_|, (v1.7) 

where 
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G1(X) 
Q(x) = Go(X) - x I 

I 

Gi(X) - I0(x) Li(x): 

Z r .  X 

(vI.8) 

Ii(X) Li(X) are the modified Bessel and the Struve functions . 
variable It is to be remap 

are 
The result obtained in Eq. (VI.7) is a s m m i f '  varying func- 

of the reduced that the result 
_ l d  not be used for x ~  2 as it becomes new any to take higher 
order terms into consideration. As a matter of fact, the pair distribu- 
tion function vanishes at r = a .  The result gives correct long distance 
values for the pair distribution function. To find the behavior, one 
may use the known asymptotic expressions of L and I functions, or 
adopts 7) 

Zn 
in 

oo 

be I q [ 1  - q(q2+y)'%] exp Ziqr dq 
o 

21TY 
r 

T7/2 
I 2 

s1n e exp ( -Zy  sin 9)d9 (VI.9) 

H J  

4TrY 
rx3 

Namely, we find a decay of the pair distribution function to no in 
proportion to I'-4 . 

The large distance behavior of the pair distribution function is 
related to the phonon spectrum. To see this we use the Feynman- 
Bijl expression: 

€k 
k2 

s (k) (v1.10) 

where the structure factor S(k) is obtained from 

1k°r I Q - 1) e S(k) l+;:1 
D2(r) 
nz 

-+ 
1 . dr (v1.11) 

One finds 

Sk k( kz + 161Tan)-é (VI.12) 
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which is the result Lee, Huang and Yangl4) obtained by a different 
method. Thus , for small momentum we have a phonon spectrum: 

Mk = ck, J (vI. 13) 

where the phonon velocity c is 

C 4(1Tan) (vI. 14) 

Note c-* 0 as a-' 0 .  It is also to be remarked that the phonon spec- 
trum has been obtained for a Boltzmann hard-sphere gas . 
VII. Hard-Sphere Bose Gas 

When particles obey quantum statistics we must start with the 
zero order term, namely, the ideal gas term. The free toron diagrams 

' Qglabeled with l and 2 .  Generally, we may have s a . | | | u | | * " " l ' - ' * * b e -  

and 2 ,  in as between 2 and 1. The correi 
function 1 with L = S +t  is given by 

O -» -o 

be, ( r1 , r2)  
1 

(2fr)6 

2 _. 
expo-sBp  + i p  °(r2 - r l  Di? 

X leap[ 2 -to q + i f '  (Fl -Q dq . (VII. 1) 

This yields the following contribution to the pair distribution function 

-8p29-ip°(r2-rI)  1 

(2T'r)3 

T' L O-0 -o ze 
) z b&(r1,r2) = 

1 - z 
L 

where z is to be determined by 

2 do 
exp(-BD ) 

I (Vu . 2) 

n 1 

(2n)3 

- z 
Ze BD -0 2 dp . 

1 - ze'Bp 
(Vu . 3) 

the condensation takes place we must separate out 
from the 5= 0 in these expressions . Thus , 
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/L O 4 

L 

[93/2(z.r)]2 I (T0< T) 

[N0+g3/2(1-T)l2 " DOG, (T0> T) 
(VII . 4) 

where no is the number density of the particles in the lowest state , 
and To is the degeneracy temperature : 

T o 
Q 

k 
n 

92,/2910) 
. 2/3 l (VII . 5) 

In these expressions, we have used 

93/2(z,r) = K 
- or, -3 2 by z L / exp(-rrr2/JL1»2). (VII. 6) 

The contribution from the interaction graphs is also reduced 
into the evaluation of the eigenvalue * j  . Separating again p = 
we find 

0 term, 

K i(q) II (Zn -nO)[q2 + (2wj/Bq)2 ] (VII . 7) 

for T< To'  
Thus I at large distances , we end up with 

2 = l 02(r) n [ - 5 x Q( /1 
r \ 

no 2 
2n I (VII . 8) 

where g(x)  is given by Eq. (VI.8) . 
It is very interesting to observe that the effect of condensa- 

tion appears in the~ lowering of the first peak near r = a  
the decay P2 I'-°v= n the 
condensation E3 sl' the pay# 
function of a ! gas; to 2 `  
approaches 1 in proportion tri-1 curve indicates the 
effect of condensation . 

Because of condensation, the phonon spectrum is also 
changed. One can show that 

II o 4(nan)% (1 n0/Zn) . (vII.9) 

1 
Thus , the sound velocity becomes temperature dependent . 
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( r ) 2 
P 

/ " \  
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. r  

\ 
\ \ 

"-_._...- 

a r 
Figure 3 . The Pair distribution function of a hard-sphere Bose gas . 

of, 

Zr'b .{(l l '2'I I1) 
(L - 2 ) I  

1 

(21T)3 

"1 -2'q»-l 
N(q)e 1 r Di' . (vm . 1) 

In view of the time, however, it is remarked here only that a general 
method to evaluate this function N(q) has been given. The results 
corresponding to short distances are as follows : 

In view of the nuclear spin of HeS let us introduce a spin 
eigenvalue I for this case. The non-interacting term yields for T-» 0: 

(2I+1) kor COS kor sin kor z 
2 r 

z{'b&0(r) I II 

4Tr4r2 i L 

(vm . 2) 

I 

The terms to first order in the interaction are approximately 
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Z ZL b1(t) 
2a](2I+1)ko3 

3Tr5 

sin kou(sin kor - kor cos kor) 
r 4  

L 
4a](2]+1) 

47T4 

(sin kor 2 kor COS kor) 
r7 (vm . 3) 

These results are characterized by the Fermi momentum k0 
high degeneracy. We see that the pair distribution 

slowly to n2 oscillating around a curve which is de- 
as r-3.  

Since"the pair distribution function depends on the density , 
one must carefully approach the lowest temperature . If we reduce the 
density first and then the temperature, we will have a dilute system . 
In this case it is not difficult to recover the phonon spectrum which 
we discussed before. The above results correspond to the reverse 
process where we reduce the temperature first . 
IX. Concluding Remarks 

We have discussed that chain diagrams are important to find 
many-body effects on the spatial correlations of particles . In con- 
clusion , it is remarked that for degenerate fermions or bosons con- 
siderations only of simple chain diagrams are not good enough. As 
indicated in Section VI, we need to take Into consideration of more 
complicated diagrams arising from exchanges of particles.18l Since , 
however, the time has come , I simply conclude these talks men- 
tioning that such a consideration has been made and a very general 
formula has been obtained. According to this , the pair distribution 
function is expressed by essentially two eigenvalues which come 
from conjugate diagrams . These conjugate diagrams cancel each 
other's contribution at r = 0  for fermion cases . 6) For bosons their 
contributions are added together . 
Note that (AS) is a separated d 
The diagrams (A), (A*) and (As ) " .  
function through the eigenvalues: 

Figure 4 illustrates typical one effective interaction diagrams . 
` - . ` .does not appear in b E 1 2 )  . 

h to the pair distribution 

1\j(q,r,z) 

up(q,r,z) 

1 

(21T)3 

1 

(21T)3 

- 0 - +  Q, 2 _ * * 2  _ . -0 . -o  2 "Q, _o f(p)[l+f(D+q)]e {p (p+q) } €  1r P e  Trl] /B do DP 

f(p)f(p+q)[1+f(p+q)]31{92-(p+q)2} - i r 'p  
e (D<.1) 

2rri'a x e J /Bda 
for bosons . f(p) is the Bose distribution . 

do 



DENSITY MATRICES 347 

2 

-vm NV we NDF 

I 
(A) 

2 I 
(A') 

2 

I 2 2 I 

I 
(As) 

2 I 
(AU 

2 

I -.n. - ' I - _ /vvvv + + 
#UMM I 

| I + II l C 

II + m + 

4 Figure One Effective Line Diagrams . (A) and (A*) are conjugate to 
each other. The conjugate diagram (AS) to (Ag) is unconnected and 
involved in the no term in the pair distribution function. A wavy line 
with a box represents an effective interaction which is a series of 
interactions . An effective propagation illustrated by a bold line is 
composed of many torons . 
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We have used for hard-sphere systems the simplified pseudo- 
potential. This is just for slmplicity's sake., and caution is neces- 
sary in using this approximation. On the other hand , one could use 
the binary kernel method. It is defined by 

I 
I B = -go exp(-BH2) I (Ix. 2) 

where H2 is the Hamiltonian for two particles. Because the expo- 
nential factor B can be finite, even the potential QUO is divergent . 
Actually, the binary kernel B assumes the following expression in 
which al does not appear explicitly: 

a U 
2 + as B II HO , 2 U2 ax. 3) 

where 

U2 = exP(-BH2) - exp BH1(r1D GSI-Il(r2D exp (Do. 4) 

Thus , use of the binary kernel is convenient for hard-sphere 
systems . Moreover, at short distances the pair distribution function 
may be approximated by U2 . Then, one finds a self-consistent result 
P 2 (a) = 0 - . 

Nevertheless , the structure of B in higher order terms in the 
hard-sphere potential is complcated. The situation is analogous to 
the exact pseudopotential when this is compared with the approximate 
one . Indeed, we can show that the first order binary kernel is equiv- 
alent to the first-order pseudo potential. Use of the first order ex- 
pressions is convenient, but it must be remembered that they are not 
divergent at the hard-sphere boundary at r = a  . Thus , use of these 
may be considered to be equivalent to assuming a weak repulsive po- 
tential. Therefore , it is not surprising that the results agree with 
what Bogolyubov obtained based on the assumption of weak repulsive 
potentials . 
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I .  Introduction 
Let us briefly indicate our approach and the material to be 

covered . 
Our ultimate aim is to evolve a unified approach for quantizing 

fields of arbitrary spin. We shall find that such a unified approach is 
possible for a large class of fields which satisfy a certain set of con- 
ditions (to be explicitly stated in due course) . It turns out that most 
fields of physical interest actually do fall in this class . Not included 
are the Maxwell field and massless fields of arbitrary spin-these 
must be treated separately. Subsequently whenever we speak of 
fields in general , it is to  be und at the Maxwell field and 
massless fields of arbitrary spin ded from the dis cussion . 
peculiar case is that of the neut -component neutrinos are 
excluded from the aforementione hile four-component neutri- 
nos are included . 

A 

If one uses the ordinary Hamiltonian formalism for quantiza- 
one obtains equal-time commutation relations which are not co- 

This procedure for quantization is quite tedious and 
...--...1.. the canoni- 

*1ified ap- 
Ne approach . 
l role is 

lion r 
variant in form . 
one must consider each case separately. In oth" 
cal formalism does not lend itself easily for eve! 
preach to quantization. So we try to develop an 

In our quantization procedure the most fur? 
played by the equation 

I 

- i5()b(x) [ ¢ ( x ) . p J ,  (1.1) 

which is the covariant generalization of the Heisenberg equation of 
motion 

i a®(t )  
a t  

II [@(t), HJ,  (1.2) 

where @(t) is any dynamical variable . We regard (I. 2) as the most 
fundamental relation and the reason for doing SO is that one can de - 
rive from it Bohr's frequency-energy relation which has a firm experi- 
mental basis . This is in sharp contrast to the purely canonical ap- 
proach. We shall take the following interpretation of ( I .2) :  Suppose 
the time evolution of ('9(t) is known. Then we can determine both H 
and the commutation relations . However, there are too many un- 
knowns in this equation so that our determinations of H and the 
C.R.  ' s  may not be unique. In other words , there may exist a number 
of possible quantizations . The unknowns can be eliminated by im- 
posing physically meaningful requirements on the solutions . Use of 
(I. 1) then leads to commutation relations which are covariant in form , 
and the P} determined turns out to be unique as we shall prove . 
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In our approach the knowledge of an explicit Lagrangian is not 
required. However we do assume that a Lagrangian must exist even 
though its explicit form may not be known. This is necessary for the 
conservation laws to follow from the invariance properties of the field 
equations . 

First we study the classical field theory for relativistic free 
fields from a unified point of view. In Section II we review the wave 
equations for the various spin fields . In each case the field equation 
and the associated subsidiary conditions (if any) can be cast into the 
general form 

II 0 I (1.3) 

where OL ,B = l  ,2 r v . . , n ( s )  . Here n(s) is a positive integer depending 
on the spin. Even though we cannot prove the pre ceding statement in 
general it is possible to verify it for all the known fields . Common 
properties of the various fields are discussed next. In the following 
two sections we develop the tools to be used later. In Section III we 
introduce the "first identity" which is essentially the configuration 
space version of the generalized Ward identity. Conservation laws 
are studied making use of the first identity but without reference to 
any explicit Lagrangian. The Klein-Gordon divisor and the second 
identity are introduced and discussed in Section IV. A discussion of 
how to construct the Klein-Gordon divisor is also given. Making use 
of these tools a unified treatment of the normalization and closure 
conditions for the c-number solutions of the general wave equation 
(for arbitrary spin) is presented in Section V .  

Quantization is carried through in Section VI using the proce- 
dure already indicated above . In this connection the raising and 
lowering operators are introduced and the connection between spin and 
statistics is also discussed briefly. Simple examples are given and 
the uniqueness of Pa and M N  is proved . 

In Appendix A we have set down the notation and conventions 
used in this course. Appendix B discusses how one can construct ex- 
plicit wave functions for arbitrary spin fields . 
Q_,.__t\Nave Equations for Relativistic Free Fields 

In this section we shall review the wave equations for various 
spin fields . In our discussion we shall often digress to point out cor- 
respondences between different spin fields and features common to 
various fields in order to provide clues as  well as motivation for 
evolving a unified approach to arbitrary spin fields . 

We shall see that for each known case the field equation and 
the associated subsidiary conditions r if any, can be cast into the 
form 



354 y.  TAKAHASHI 

AB(a )¢8 (x )  II 0 I (11.1) 

2) 

where G. ,B run from 1 to n(s) , and n(s) is a positive integer which de- 
pends on the spin of the field. We shall also sort out other proper- 
ties which the various fields share in common . 

For a fuller discussion of the various wave equations than 
presented here we refer the reader to the books by Corsonl) and 
Umezawa I 

A.  The Klein-Gordon Field . 
The Klein-Gordon (to be abbreviated as K-G hereafter) equa- 

tion is written 

(r j-m2)¢(x) = 0 ,  (11, 2a) 

where m is a real constant . 
joint field ¢ t  (x) as 

We write the K-G equation for the ad- 

¢+(x)(5 -m2) 5 (u-rn2)¢*(x) = 0 .  (II. zb) 

The four-current defined by 

ju(x) = i¢*(x)Q5* )¢(x) 

is conserved since 

3 u 
I 

(11.3) 

. = . 1/ as Jo 10) \86 +|- ' a  - a  
L1 au)\u ii/ 

i¢+<E1 l'fl ¢ 

2 )-( )]» o- 2 - m  C l - m  

0 r (11.4) 

by virtue of (II.2) . 
Let us present here some of the standard formalism in order to 

familiarize the reader with our notation. We introduce two auxiliary 
fields ¢(+) and ¢(-)  via 

(1) (*) (x) 
1 

21Ti 
QL I T l b ( x ; n T ) ,  

C+ 
(11.5) 
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where 'r is a parameter and n is a unit time-like vector with positive 
time component, i . e .  , 

we -1, n > 1.  o (II. 6) 

The contour C+ runs along the real axis in the T-plane from T =  -°° to 
T =+°° and is indented below the origin to avoid the :?'"'*"'5*l*`0,arity. We 
can show that (D (+) (x) contains positive frequencies&m.mwhile ¢("') 
contains negative frequencies only: Since (Mx) is a solution of the 
K-G equation, we can write 

¢(x) 

II dank eikx6 (k2 +m2)8> (k). (II. 7) 

Consider ¢(+)(x) first. If we substitute (II.7) in the definition (II.5) 
for ¢(+>(x) , we get 

¢(+)(x) = d4k6 (k2+m2)6s(k)eik" 
1 

21Ti 
dT G -i(kn) T 
T 

C+ 

d4k6 (k2+m2) e(-kn)eikX$) (k) r (11.8) 

where we have used the well-known formula 

1 
2 n1 

QL jeT e 
T 

C+ 
e(x) ={ 1 if x > 0 ,  

0 if x < 0 .  (II. 9) 

Now we can write 

-kn kOno 1 Isa 
keno 

I 

and for time-like k ,  the factor 

1 

is positive in virtue of (II.6) , so that 

S(-kn)6 (k2+m2) = 9(kOn0)6 (k2+m2) = e(kO)a (k2+m2). (11.10) 

Using (11.10) in (11.8) we get 
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lb.(+)(X) 

II 

Y .  TAKAHASI-II 
4 A 

d k 6(ko)6 (k2+m2)¢(k) ilex e (11.11) 

It is now clear that ¢(+))x) contains positive frequencies only. In a 
similar fashion one can show 

¢(-)(x) = dank eikxe(-ko)a(k2+m2)§`a(k). (11.12) 

It may be remarked that the separation into positive and negative fre- 
quencies is consistent with relativistic invariance. From (II. 7) , 
(II. II) and (II. l 2) it follows that 

(2) (x) II ¢l+)(x) + <25 (-)(X) . (II. 13) 

The familiar invariant singular function A(x) is defined by 

A (x) dank eikx e (ko) as (k2+m2) . -i 

(21T)3 

It satisfies the K-G equation , 

(u-m2)A(x) = 0 ,  

(II. 14) 

(II. 15a) 

is Lorentz invariant under all proper Lorentz transformations and has 
the properties : 

A(x) = 0 for x 2 >  0 ( i . e . ,  space-like x).  (11.15b) 

A( x) -A(x) I (II.15c) 

and 

6 (xO) 
a 

Bx0 A(x) -64(x)_ (II.15d1 

We can 
writing 

separate Mx) into positive and negative frequency parts by 

+ A(-) A(x) = Al*l(><) (x) . (11 . 16a) 

where 

A (+)(X) -i 

(27T)3 

4 'k  d k 61 Xe(0o)6(k2+m2) I (II. 16b) 
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A(-)(X) +1 

(21T)3 
dank eikx e(-k0) 6 (k2+m2) . (II . 160) 

Now we can prove 

¢(x) = l" (1ox(x')/>(><-x-(ax - ) ¢ ( > < ~ ) ,  
Q' 

(II.17) 

where o is an arbitrary space-like surface. It is readily seen that 
the right-hand side of (II. 17) is independent of the particular choice 
of U , since if we take its functional -derivative at the point x '  and 
make use of (A.2) of the Appendix A ,  we get 

6 
-6cI{x'} dol(x')A(x-x')<5x -*5')¢(x') 

ai[A(x-><')(ai -IQ¢(><')] 

= A(x-x')<5i +8i)(©i - S)¢(>< ' )  

A(><-><')(m' -¢i')¢(><') 

<»<-( »-m2)-(~- wx- )  m 

II \ 

o (11.18) 

in virtue of (II.2a) and (II.l5a). 
xo=const.  = x 0 ,  then 

So we choose the space-like surface 

d0>\(x') = (0,0,0,-1d3x') .  

We then have 
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j do)(x')A(x-x')<5 )¢(x') 
o ii 

I do4(x')A(x-x')@4 ¢(x ' )  
X0=X0 

.5 | 

4 

ds L _ x o c O  

x'A(x-x')( a 
exO ' )  

3 d x '  I [ ( x - x - ) 1  V 
I* L 

Xo Xi 

a 
BxO ¢ (x' 

I 

x0=x0 

+ d~3x'l' B _5 xO mx-x')l ¢' f X )  
Xo=Xo 

0 + j d3x '  [ 3(x-x') ¢ 95- ,x4) 

¢ ( x , x 4 )  E ¢ ( x ) ,  

where we have made use of (II. l5b ,c  and d) . 
Next we want to study the transformation property oflthe K-G 

field under infinitesimal Lorentz transformations . Recall that under 
an infinitesimal Lorentz transformation 

x -| x' = a X , u 1-1 uv v 
where am, has the form 

(II. 19a) 

= 6 + au up eno I (11 . 19b) 

and it satisfies 

a p a v e  = akpakv = 6p.v 

hence sum is antisymmetric , 
I (II.19c) 

s o  + CV = 0 , 
in virtue of (II. l9c) as we neglect bilinear and higher terms in sum . 

(II. 19d) 
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Note that the inverse of (II. I9a) is 

x ' a  . 
uucp 

(11. 19e) 

New 

a 
a ;  

aXe B a ;  Bxv 

a B 
I-iv BXv I (11, 20a) 

so that 

CI' a a I 

xi Be a B a 5 L l véxv  p l x é x  

auvau a a 
x v  BX 

6 a a 
vi BX BX E] . (11 . 20b) 

In view of (II.20b) , invariance of the field equation under infinitesi- 
mal Lorentz transformation follows from the fa ct that the field ¢(x) 
transforms according to 

¢(x) -4 ¢)'(x') = ¢ ( x ) .  (II.21) 

B .  The Dirac Field . 
The : ivac field q;(x) satisfies the field equation 

[ Y B  +m]i11(x) = 0 .  (I1.22a) 

In our notatiouan the v-matrices are all hermitian and they satisfy the 
convmuatatiorm lrelaailion 

I v ,  ,,y.\,}~ I' + = YuY, yvvu 26 (II. 23) 

The adjoint field We) is defined as 

we) = ¢*(x)y4. (II. 24) 

and its fiend equation is 
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-iS + m 0 .  WX) K (11 . 2 zb) 

The four-current defined by 

joe (x) IM) y (X) (II. 25) 

is conserved, since 

1a  .... ) W y WWe + y § ) ¢  

i ( -m+m) l l1  = 0 ,  

using (II.22). 
If we write 

A(B) - (YE + m )  I (II.26a) 

then (II.22a) does indeed have the form (II. 1) . We want our fields to 
satisfy the K-G equation irrespective of their spins . This is certainly 
true for lb (x): If we define 

d(B) = - (YB - m ) ,  (11.26b) 

then we have 

d(a)A(a)  = A(a )d (é )  = U - m 2  I (II.27) 

so  that llr(x) will automatically satisfy the K-G equation if it satisfies 
(II.22a). As we shall see later, it is possible to find A(a)  and d(b ) 
satisfying (II. 1) and (II.27) for most known cases. This is obvlously 
true for the K-G field . 

Recall that for the Dirac case the charge conjugate field 

ill c(x) 

II co * (x) (II. 28) 

also satisfies (II.22a) . 
property 

The charge conjugation matrix C has the 

-1 C YIC t 
gl.1vYv r (11.29) 

or equivalently , 
t -1 = y.  C yj_C 

1 _ l  C c Y4 (II.29') 
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One can then show that 

+ y4(yB m ) t  
- l  

-C y 4 ( y a  +m)C. (11.30) 

Later we shall introduce charge conjugation matrix for arbitrary spin 
fields which satisfies a condition which is a generalization of (II.30). 

Next, by defining in the usual way 

S(x) = (YB -m)A(x) .  (II.31) 

we can prove 

~if(x) = d o  (x')S(x-x')y>¢ (x') 
o 

(II.32) 

in the same fashion as we proved (II. 17) . Comparing (II.32) with 
(II. 17) for the Dirac case, we note the correspondence: 

f I _.- 
\UK at 

l A (x - x'  ) 

is now replaced by YA , 

is replaced by S (x -x ' )  . 
(11.33) 

We shall see that this correspon_dence leads to a natural generaliza- 
tion for arbitrary spin fields . 

Under an infinitesimal Lorentz transformation the Dirac field 
transforms according to 

U/@(x) '* ¢'a(x') = Lx6\l'a(x) r 

where L is a 4 x 4 matrix whose most general form may be written as 

(II.34a) 

Las 

II l. 1 + 2 e S 
LJ.\) uv GLB 

I (II.34b) 

her terms in 'in . 
4 x 4 

since we neglect bilinear and r 
ant1-symmetric tensor whose;1_g__ element is a 
actually doing the algebra , we find 

S n  is 
On 

an 

S = L - Y uv 4i Yuyv Ye 11 

Let us give a brief outline of the derivation of (II.34c) . Upon trans- 
formation the field equation (II.22a) becomes (in matrix notation) 

(II. 34c) 
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( ya~+m)¢ ' ( x - )  = 0 .  

We write this as 
a Y + 

IN E x  m) LII (x) 0 .  

USing 

a 
ex 

axe a 
B x s  Bxv 

a a 
up Eaxv I 

and multiplying from the left by L-1 I we get 

- l  L 
YI-i 

a 
L a v a  U Xv + m)¢ (x) II 0 .  

If the field equation is invariant under infinitesimal Lorentz transfor- 
mations , then we must have 

-1 L L a  = . YU IJV Yv (II.35) 

If we multiply both sides of (II.35) by a )  and use (II.19c), we get 

L -1 
L Ye a)»vYv' (II.36) 

Upon substituting the explicit forms (II.34b) and (II. 19b) for L and 
all , respectively, we find that (II.36) reduces to the following con- 
dition for S o  : 

YA 
I" 

-1 , = a - 6 . _Suv ul\yv v)YpL 

The explicit form (II.34c) for Sum can then easily be derived from 
(11.37) n 

If we write 

(II. 37 .) 

81 = 823 '  $ 2  = 831 

then from (II.34c) and (II.23) we have 

I $ 3  8 1 2 '  (II.38) 

S l  
L 
Zi Y2Y3 I 82 

L 
2i  Y3Y 1 I S 3 

L 
Zi YlY2. (II. 39) 
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SO that 

N
 

m
 

I_
' 

N
 

N
 

+ in
 + m
 

N
 

O
J 

II 
»

b
l»

-'
 

+ 
»b

|»
- 

+ 
»J

> 
|»

-' 
II 

»>
l<

,o
 

II 
lo

p
- 

/
'\

 
la

>l
l-»

 
+ |- (11.40) 

The factor %% +l) is of the familiar formff, (L + 1) for the spin-vector 
squared from quantum mechanics . 

It should be clear that the general way of writing the transfor- 
mation property of an arbitrary spin field ¢a(x) , a = 1 , 2  , . . .n(s) , 
under an infinitesimal Lorentz transformation, is the same as in 
(II.34a) and (II.34b) where a , 3  now run from l to n(s).  The S i s  , 
which are now n(s) x n(s) matrices , can be found in each case-at 
least in principle. With the definitions (II.38) , one can compute 
(S +S22 +S32) and expect to obtain L (L + 1) . This seems to be a 
reasonable way for constructing higher spin fields . 

As a parenthetical remark, we note here that Sl~N==0 for the 
K-G field as one would expect. (See (II.2l).) 

c.  Tmu 

of this 
s/ector field UU (x) . CJ= 
Ethe K-G equation 

(Q - m2)UU (x) = 0 

I 

1, . . . , 4 . Each co*1ponent 

i 
d\I.41} (c=1,2 ,3 ,4) .  

Since Uo (x) is a four-vector, under infinitesimal Lorentz transforma- 
t1ons it must transform in the same way as x1-1, i . e .  , 

Uo.(x) -o U O'lX' )  a U x up p (  ) 

+ € f \60'p cp)Up(x). (II.42a) 

On the other hand, according to ( I I .34a,b)  we should be able to write 
it as  

U G(X) -» UG'(x') = p + L 
2 e w (S*_L\))o_p Up (x) . (II . 42b) 

Comparing these two forms , we find at once 

= -i 6 - 6 6 
110 VD UD vo 

(SpV)0P 
l (11.43) 

According to (II.38) , we then have for the vector field: 
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- 1 81  323 
0 01 

.r 

$ 2  = 831 = i 

0 
0 

-1 LE 00 
000 I0

 _1 
00 

I 

and 

$3 - $12 - i 

0100 1000 0000 0000 

So one gets 

2 2 2 81 + 82 + 83 r 

where the factors 2 come from l(1 + l ) ,  while 0 comes from 0(0+1),  
i . e .  , we have spin 1 and spin 0 associated with U0(X) . We can get 
rid of spin 0 by imposing the auxiliary condition BoUG(X) = 0 . Then 
the equations 

(U-m2)UO'(x) = 0 I 

(11.44) 
BoUG(X) = 0 I 

describe a pure spin 1 field . 
bined as 

The two equations above can be com- 

-Bob 0 0 .  _ 2 6 lm m ) Go ]uplx) 

The spin l field U(/(X) satisfying (II.44) or (II.45) is called the 
Proca field . 

One easily shows that (II.45) is equivalent to (II.44): If we 
apply 5O' to (I1.45), we get 

(II.45) 

_ 2 _ = (re m ) 5  pup l]5pUp 0 | 
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or , 

2 -m 6 U 
p p 

II 0 

If m 750 , we obtain 69U3 = 0  whlch is the | of equations (11.44) . 
Substituting this in (II.45) we obtain the .511 equation in (II.44) . 
We note that (II.45) is of the form (II. 1) . By studying the invariance 
of (II.45) under infinitesimal Lorentz transformations we can confirm 
(11.42) and (I1.4s). 

To summarize, we have learned that a spinoza index carries 
spin 5 while a tensor index carries spin l and spin 0 .  Now we are 
ready to  construct fields of higher spin . 

hue. 
D. The Bargmann-Wigner Fields . 

Suppose we want to construct a field with spin s . Consider 
the field We 1q . . .02$(x) w Ana' 2s spinoza indices . In general, 
this will contain spin s and-.. ., » . spins . This is S O  because we 
know from quantum mechanics that vector addition of spin i with 
Spins- yields spin l and spin 0: 

0% ® 9 1  
E 

9 0 ® 9 1  

If we add another spin ;~ , Ive get 

80  ® E = 8 . é é 
® .sl " AS G) "So . 

2 

Thus it is clear that ll11<I.2, . .<12 (x) will have spin s and lower 
spins . If we construct this fields in such a way that it is totally sym- 
metric in all its spinoza indices , then this field will carry spin s only 
since total symmetry with respect to the spinoza indices means that 
all the 2s spin 5 vectors add in parallel . Also the Dirac equation 
with respect to any spinoza index must be satisfied . In other words , 
the field \IJa 10.2 . . .G.25(X) satisfying . 

6 +  I I 

( y  M)°"1'11¢'11°2---°"2s(X) 
°°1 = 1 , 2 , 3 , 4 ,  

II 0 ; 

totally symmetric (1112. . 'O°2s(X) I 

in CI.1,0.2, . . ,oL25 

I (11.46) 
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carries spin s .  The field equations (II.46) are called the Bargmann- 
Wigner equations . 

This way we can construct any spin field r integer or half- 
integer . 

The above construction of the Bargmann-Wigner field equa- 
tions implies that the Bargma on-Wigner field transforms according to 

Was ...a23(X) " Was ...a2$(XI} 

L s IN ( )  2 €IJV 1..l\) 1'l1...G2$IB1...B25 3 1 " " 9 2 s X  I 

(II.47a) 

with 

Q) S . = /3 .. .6 lU-\))G,1,..G.2S,El...B2S \ u\;Dq,1B 16@2B2 a2s52.5 

/S g + 6618 1\ IN.\) G2526°°303. n l6a2SB2S + . . 

6 . . . 6  Q + 'H31 °125-1825-1 s 
(%) 

uv 2s82s 
I 

(II . 47b) 

where S )  is the matrix appropriate to the Dirac field: 

s c )  
IJ.V 

L 
4i (YJ v 'YvYu) (II.47C) 

Explicit form of the Lagrangian density for the Bargmann- 
Wigner fields is known for SS 3/2 but not for higher spins . For de- 
tails we refer the reader to the paper by Kamefuchi and Takahashi. 3) 

E .  The Paul1-Fierz Fields . . 
If we want to construct a higher spin field of integral spin s , 

then we can do so by using tensor indices exclusively; i .e .  , we con- 
sider U P  ..,1J.5lX) . However,""'a tensor i n d e x - '  spin 1 as 
well as spin 0 ,  in general an 1 alike U 1  ...U-53 
s and lower spins associated : __ . 
tary conditions to eliminate all other spins except the spin S . The 
field Ul_l1...IJ5(x) satisfying 

have spin 
One must impose supplemen- 
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/ 

\ m x = 0 t-ll».»*-ls( ) I 

U (x) : totally symmetric in indices u1...us I 

(x) U = 0 U1¥J~1U3-.-Us (II. 48) 

5|~*1UP*1*12.•~*1s(X) = 0 ,  

**i = 1 , 4 :  I l • 2 

is called the Pauli-Fierz field and it is a pure spin s field. Let us 
check this for s = 2 .  The appropriate field; then is U ,  (X) which, ac- 
cording to (II.48), satisfies 

f 
\ m 2) H.V(x) 0 I 

(x) U = U 
}J.V Vu (x)  . (6 conditions) 

U 
II-lJ» (x) = 0 ,  (1 condition) 

a U H W(x) 0 .  (4 conditions) . 
These eleven conditions on Um, (x) leave only five out of its sixteen 
components independent-which is exactly (2s+1) independent com- 
ponents corresponding to s =  2 .  To see this in more detail, recall 
that each tensor index carries spin 1 and spin 0 .  So we get : 

(u) (v) 
nO ® so = no 

so ® ml = al 

'91 ® no = ml 

*91 so = 8 o ® 8 1  
.J  

These are slim 

supplementary II. 
® 9 2  

l 
> This is What we get. 
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Under infinitesimal Lorentz transformations the Pauli-Fierz 
fields transform according to 

U01 ...05(x) '° U01 ..;o5(X') 

II l +L 2 S 
S up 01.~°.Os7Pl°~°F's U r o 1.l.95(x) 

(II.49a) 

wlth 

(S V) u 01_0s501 ...ps (so) 60292 0191 
, 6  

O'sis 

( )  
+ (s 15% 60191 up 6 . . . 6  + . . . +  

0393 gaps 
l 

l (1) 
(s )asPs + 6  . . . 6  

0191 05-1Ps-1 IN 
(11 . 49b) 

where the 
namely | 

matrix sdél 

(1) 
. (Sum Lp 

is the one we dis covered for the Proca field , 

-i 6 6 
L10 VP 

6 6 
up vo 

. (II.49c) 

11' 

II 
I 

| 

Lagrangian density for the Pauli-Fierz 
For details , see the article by 

Baggligit form of the 
s is for i s  2 • 
Java? be.4) 

F.  The Rarita-Schwinger Fields (of. II.H) . 
' Now we dis cuss' a method for constructing half-integral spin 

fields due to Rarlta and Schwinger. The Idea is simple: one uses 
( s - Q )  tensor indices (here s is a half-integer) and one spinoza index . 
One needs to symmetrize with respect to the tensor indices and 1m~ 
pose supplementary conditions to get rid of the unwanted lower spins 
of course. The field must satisfy the Dirac equation with respect to 
the splnor index. For the sake of concreteness , consider s =3/2 
first. The appropriate Rarita -S chwinger field then is ¢au(X), where a 
is a spinoza index and u is a tensor index. We take this field to 
satlsfy ` . 

I 

(YB +rn)BUlB(x)  = 0 I 

(1,B,u = 1 .1 • l 2 I 4 : 
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5 u\1'w(x) = 0 

(y )B ' l 'Bu(x)  = 0 

I 

I 

(II.50) 

which are the Rarita-Schwinger equations for spin 3/2 field . 
It is quite straightforward to generalize (11 .5§N lmiialf- 

integral spins greater than 3/2. The field 'Pap1u2...wi' satis- 
fying the Rarita -Schwinger equations 

(YB +L)0.B`|'B|-11...uS-..(X ) 

II 0 I 

a,B,u1 = 1 .4: I I • | 

l|r&*1.I_us_%(x) : t.ota1ly symmetric in **1 . . .u$_% , 
. (11.51) 

<¥P*1>a88u1u2--.u5_'1'(X) 
0 

6u14'ap1l.L2...u$_%(X) : 0 ,  

I'°P*11*21**3---*J.'s-';(X) = 0 

carries spin s .  
Under infinitesimal Lorentz transformations the Rarita- 

Schwlnger fields transform according to 

w l . . . o S _ % ( x )  ~»o1...oS-&(x')» 

L 
+ 2 uvsuv 1 € _ llfBp1.up _ (x), 

><101»..05-5:891..ps_% é 
(II.52a) 

with 
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(é) 
(81~1V)0o1...0I$_..75D1...p5_,i. -(Sum >08601D1` ' '60S_%PS_ 

f (1) 
+ 6aB\suv D 60' . . . 6  + p 

0191 2 2 °s~%°s-§ 

+ 6  6 as o101 
/ (1) . °\Sllv )os-é0s_é (11 . 5 2b) 

S chv 
Kaw 

where sfé) and S I  are the same as in (II.47c) and (II.49c) . 
Explicit form of the Lagrangian density for the Rarita- 

'"""f1e1ds is known for SS s/2 . For details see the paper by 
and Kamefuch1.5) 

G. The Duff if-Kemmer and Harish-Chandra Fields . 
By the Duffing-Kemmer field we mean a 16-component field 

'l'g(X) satisfying the equation 

[9 a 
le IJ- \1' (x) 

En T] 

II 0 ,  (II.53a) 

where B ' s  ( u=  1 , . . . ,4) are 16 X 16 matrices satisfying 

3uBBv + 3v5 B = éuk8v + 6vk5u - 
If we write 

('II.53b) 

a Q Be *II 

by applying Bubv8 to (II.53b) we find 

3 Q = EIQ. 

(II . 54a) 

(II . 54b) 

Suppressing the indices € , 'n , we can rewrite (II.53~a) as 

(Q +rn)lI (x) 

II 0 .  (I1.53'a) 

If we multiply this equation from the left by Q2 and make use of 
(1I.54b) we get 

(UQ +mQ2)'l1(x) = 0 .  

In view of (II.53'a) we can replace Q by -m in the last equation to get 
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-m( -m2)\l'(x) = 0 ,  

371 

or 

( -m2)¢(><) = 0 I 

if m;£0. We have shown that each component of the Duffin-Kemmer 
field does indeed satisfy the K-G equation-a necessary requirement 
for any relativistic free field . 

By studying the algebra of the B-matrices , 1.e . , 
Eq. (II.53b) , one can show that the B-matrices are reducible into the 
form 

'm
 

7:
 II 

I 

1' 

I 1 1 x 
0 5 x 5  

0 0 

0 

\ 

0 

10 x 1 0  

(11.55) 

The 1 x 1 representation is a trivial one since we get 8u==0, which 
leads to IJ; = 0 .  The 5 x 5 representation corresponds to the spin 0 
case. Historically, Kemmer arrived at the equation (II.53) with 5 x 5 
B-matrices in his attempt to find a first-order matrix differential 
equation for the scalar field . The five-component field Mx) in this 
case really has only one independent component, namely the K-G 
field cp(x)7 the other four are derivatives of cp(x): 6 lap, . . . ,B 4cp . 
Lastly, the 10 x 10 representation corresponds to the spin l case. 
In other words , if one tries to find a first-order matrix-differential 
equation for the Proca field, one arrives at (IIr¢i"" 10 X 10 B -  
matrices . For details , see , for example , they -.. Umezawa . 

Under infinitesimal Lorentz transformations the Duffin- 
Kemmer field transforms according to 

2) 

l~I»!§(X) -» ¢g(XI) 1 + S Ly (X) L 
2 env . ) ,  n I (11 . 56a) 

where 

( s o n  = (B uSe + BvI; 
*in 

I (II . 5 eb) 

full  = 1 , . . . , 4 .  

\ €  ,n = l 16 . I I | • ,f 

Harish-Chandra has generalized the Duff if-Kemmer equations 
(II.53) to the field with maximum spin s as follows : 
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+m] w (x) = 0 ,  
in To 

(II.57a) 

where B-matrices satisfy the relation 

B . . .B  8 B 
ZBIJ1 **2 **2s-1[ U25 l*25+1 
(D) 

- 6  1 
*"12 s IJ'2 S-l~1 

II 0 .  (11 . 57b) 

Here K and up run from 1 to 4 , while '§ and n run from 1 to n ,  where 
n ~is a positive integer which depends upon the spin. In (II.57b) sum 
over all permutations of the indices **i is to be taken . 

If we write Q=BB , we find from (II.57b) the relation 

2 +1 2 -l 
Q s = Q s 13. 

n -me!u-m--= 

Then we can prove easily that each component of *H in (II.57) sat1s- 
fies the K-G equation, just as in the Duffin-Kemmer case . 

The equations (II.57) reduce to the Duffin-Kemmer equations 
if we set s =  l , n=  16 . (We actually end up with Proca as well as 
K-G fields . )  The Dirac field equation is' g S = 5 , 
n=  4 . In principle , all higher spin field 

The form of the matrix (SW) wh! ansforma- 
tion property of the Harish-Chandra field under infinitesimal Lorentz 
transformations is known for spins up to 3/2 only. For s = 0  and l , 
it is give ` % it is given by (II.47c) , while for 
s =3/2 it,i y complicated. The form (II.56b) does 
not work F' 

_ 
i 1 " j 1  

I 

equation follows from the simple 

r 

Lagrangian density 

.£(x) = -M16 +m)lI 

However, things have not been worked out explicitly for S > 3/2 . For 
further details of spin 3/2 field we refer the reader to the papers of 
K. K.  Gupta6) and S .  N. Gupta." 

As a final remark, Bhabha has suggested writing the field 
equation for arbitrary spin in the form (II.57a) and further demanding 
the matrix (SW) to have the form (II.56b) . For s > l one gets the re- 
sult that the individual components of if (x) do not satisfy the K-G 
equation. One has to then resort to a multiple mass formulation . 
However, we shall not pursue this any further here . 
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H . Some Remarks on Higher Spin Field Formulations and the 
Quantization Problem . 

We have seen that the Klein-Gordon, Dirac, Proca and 
Harish-Chandra field equations are easily written in the form (II. 1) . 
We would like to be able to do the same for the Bargmann-Wigner , 
Pauli-Fierz and Rar1ta-S chwinger equations . However, we cannot 
prove this in general. Therefore , we shall be content here to show 
that we can arrive at the form (II. 1) for a specific case. For slm- 
plicity, let us take the Rarita -Schwinger field for spin 3/2. Sup- 
pressing the spinoza indices , the appropriate equations are 

(YG +rn)¢|_1(x) = 0 ,  (II.58a) 

Yu$u(x) 0 r (II.58b) 

a u ¢ ( x )  0 . (II. 580) 

We remark here that, in fact, only two of the above equations are in- 
dependent. Using the first two we can derive the third. To prove 
this , we multiply the second equation by (YB) and then use the com- 
mutation relations for the y-matrices and the first two equations . In 
detail' 

0 = (Y6)Y III* I 

I 

+MY1b + zalr I (using (II.58a)) 

II 2au''u I (using (1I.58b)) 

which proves our assertion . 
Next, it can be easily shown that the equations (II.58) can 

be put Into the form 

AG,.,(a)¢p(x) = 0 ,  (II . 59a) 

where 

+ 1 
3 

yobp + Y p 6 0  A w )  = -(ye +m)6o9 [ I [ Y o m - m ) y p .  (II.59b) 

Lest the reader be misled into believing that in (II.59a) we already 

1 
3 
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have the desired form (II. 1) 
restored: 

I let us rewrite it with the spinoza indices 

[ A , p ( a ) ] B ¢ B p ( x )  = 0 .  (II.59'a) 

We indicate briefly how one shows that (II.59) is equivalent to 
(1I.58). If we apply ao to (II.59a) we obtain 

2(Y5)80 -» m(y5)yp + swap] lVp(x) II 0 ,  

while multiplying (II.59a) by Yo gives 

[-2% lll'p(x) = 

If we assume m;~40, these two equations imply 

+ map 0 .  

You 

II 0 I a o'*'o 

II 0 I 

which are just (II.58b) and (II.58c). Substituting these in (II.59a) we 
obtain (II.58a). Therefore, (II.59) and (II.58) are indeed equivalent . 

(It seems that the m # 0  condition plays a rather important 
role always . This is the reason that we have to exclude the Maxwell 
fleld from our discussion.) 

In order to bring the Rarita -S chwinger equations into the 
Harish-Chandra form, define : 

l` H/UP - 6 Yucro 
1 
3 Yo 6 6 ) + Go +Y0 PI-1 

l g y 0 v y p .  (II. 60a) 

/ 
I 

BuD = -(bop -%YoYo  

With these definitions , (II.59) may be rewritten as  

\Fp,0p8p + Bop) \l1F9(x) = 0 .  

One can find a set of matrices B09 having the property: 

(II.60b) 

(II.60c) 

B -1 
TGBGD 

6 
TP 

U -1 . If we multiply (II. 60c) by BTu and define 

8 -1  F 
TO' I-MCP 

II Bump I 

the equation (II.60c) becomes 
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6 m6 
(BU/VP Ll + T p  

III ( ) =  QB B p s  0 r (11.61) 

where we have restored the hitherto suppressed spinoza indices . Now 
we combine the two indices B , p  into a single index n = (Bp)= 1,...,16; 
s1rn11arly, we write € =-' (aT) = 1 , . . . , 16 . This enables us to write 
(11.61) in the Harish-Chandra form 

Spay, + m  w ( )  *Sn " X  
II 0 

It can be shown that the B ' s  arrived at this way turn out to have the 
correct properties appropriate to spin 3/2 Harish-Chandra equation . 
So we have succeeded in reducing the Raritan-Schwinger equation for 
spin 3/2 into the form (II. 1) . 

We have studied various higher spin field formulations . 
One may ask if the various formulations for a given spin are equiva- 
lent. It would seem that the answer is yes r though it is not possible 
to prove it in general. Anyway, we have shown the equivalence be- 
tween the Rarita -Schwinger and the Harish-Chandra equations for 
spin 3/2 above . One can also construct the Bargmann-Wigner field 
¢aBy(x) for spin 3/2 from the Rarita-S chwinger field: 

GBY m [WB -m}yy4(-Tl aB'l*y*(x) I (II .62)  

where C is the charge conjugation matrix: 

-1 
Y 

t c C = u gpvyv 

3) 

The field !llG.BylX) as constructed above can be shown to satisfy the 
Bargmann-Wigner equation and to possess the correct symmetry prop- 
erty wlth respect to a ,B ,Y  . 

A few words on the quantization problem are in order now . 
The usual method for quantization is based on the Hamiltonian for- 
malism. Since our aim is to evolve a unified approach to quantiza- 
tion, the Hamiltonian formalism is not very helpful for the following 
reasons : 

(l) Straightforward application of the Hamiltonian formalism 
works only for the Klein-Gordon field . 

As an example, consider the Duff if -Kemmer equation: 

(Ba +m)¢(x) = 0 I (II.53a) 

= + 6 v B A II 
6 u 8 K B v B + 

\) B x B u B v K Li 
B (1I.53b) 
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Setting aL=)\ = V = 4  in (II.53b) we get 

3 64 - 
which 1mp11es the condition 

/ 2 _ 1  
34\54 ) 

54'  

0 . (II.63a) 

Next, if we set 1 \ = v = 4 ,  p = i ,  we get 

51542 + 8 4 8 1  2 = i i  

which can be written a s  

0 . 2 
{si ,234 ` ii 

The adjoint field We) is defined by 
- T if (x) = w (XM J 

(11.63b) 

(II.64a) 

where 
2 

'rl = 2B 4 

The Lagrangian density is written as 

= -Wxuwa + m)\l1(x) 

1 .  

.s: 

(1I.64b) 

(II. 65) 

Then the canonically conjugate field 1T(x) is 

'IT (x) 1V(x)e4 I 

[l (x) . iwwe4 l o = y o  

s o  that we get the canonical commutation relation 

_ ' _ -63 
: [w (x) ,w(y)1 ..- 1 (x-y) 

X0=Y0 

/ ' 
I 

If we multiply this by (542-l) and use (II.63a) , 
2 3 = _ 6 _ 0 \54 1) (x y) , 

(Note that of# 1 in view of which is a contradiction I 
(II . 63a) . ) 

we get 
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The straightforward application of the Hamiltonian for- 
malism failed in this case as not all the components of 1l1(x) 
are canonically independent. So one must separate the ca- 
nonically independent components before applying the 
Hamiltonian formalism. Schwingerg) has done this. How- 
ever, the procedure is quite complicated and what we finally 
obtain is : 
(2) Equal time commutators only . 
From the relativistic invariance viewpoint it is desirable to 
be able to write the commutators for arbitrary times . 
We do not wish to imply that the Hamiltonian approach to 

quantization is no good. However, one must be careful in its appli- 
cation which often turns out to be quite tedious . Besides that, it 
yields only equal time commutation relations aNd does not seem to 
lend itself easily to treating fields of arbitrary spin in a unified man- 
ner. Because of these reasons we try to find a quantization procedure 
without using the canonical formalism . We have already discussed 
the basis of our approach in the Introduction. We proceed to discuss 
the common properties of the fields for which our approach works . 
I .  Common Properties of Field Equations . 

We have already made it plausible that the free field equa- 
tions and the supplementary conditions , if any, can be brought into 
the form 

A B(a)¢B(x) = 0 I (II. 1) 

where OL ,B run from l to new whlch is a positive integer depending on 
the spin associated with the field. From now on we shall assume that 
the form (II. 1) is true for fields of interest to us-we shall point out 
any exceptions as we go along. In matrix notation (II. 1) is simply 
written as 

A(a)¢(x)  = 0 .  (I1.1') 

Further, we assume A(B) to satisfy the following conditions : 
(A) There exists a non-singular matrix n such that 

t [n 1\(8)] = n A ( - 8 ) .  

Making use of this assumption we can construct the 
Lagrangian 

.s: -Wx) A (a)¢ (x) r 
with 
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T 
= (2) (x)"l - We) 

This Lagrangian leads to the f1eld equation 

'0/\(6)'l1(x) = 0 I 

which is the same as 

I\(5)'l' (x) = 0 I 

since 'iI is non-singular. Of course , other Lagrangians may 
be constructed which lead to the same equation of motion . 
However, this Lagrangian and the condition (A) imply the 
desirable property 

.sz II t .C + 4-divergence. 

Recall that most of the familiar field equations do have these 
properties . For example, for the Dirac field we have 

.sz 

A w )  = -(YE + m )  

n = YE l 

= -WEB +m)llf . 
.lx = -'U - a  ( y  w) U u . 

The assumption that 'rl exists is equivalent to the assumption 
that a Lagrangian exists . 

(B) A(B) is of the form 

A118 (6) ` ( / \ 0 ) 8  + A a ( !°*)aB Ii <AU1P12>o(88u18l~12 
+ • • • I 

where 
/ 
\AIR 1 -°-*-*&)a B 

is symmetric in all pairs of indices **1 ...He, , and independent 
of x .  We assume there is only a finite number of terms on 
the right hand side . 

Obviously this form is true for all cases that we know . 
(C) From A (8)16 (x) = 0 , we should be able to arrive at the Klein- 

ordon equation, ( - m2)¢(x) = 0  , by a finite number of 
operations . We can state this condition in an alternate form: 
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The Klein-Gordon divisor d(B) exists such that 

A(a)d(5) = d(B)A(8) = - m2 . 
The K-G dlvis or satisfying the above condition must be de- 
r1vable by a finite number of operations . 

For the Dirac case we have 

A (B) 

d(al 
I - (YE + m )  

-(YE - m). 

For the Duffin-Kemmer equation: 

A(B) = - (Ba +m)  I 

-lion -m21+ee (HUH 5 = d( ) m 

The Maxwell field does not satisfy this condition . 
(D) r A ( e ) . J  = 0 ,  where , . 

= 5 (MJLV)aB (Xii v Xvi u 6 D all + i(s1N)a8 

This is just a statement of the Lorentz invariance require- 
ment . 
Proof: 

The field equation A(B)¢(x) = 0 ,  under infinitesimal 
Lorentz transformation, becomes 

A(5 ' )¢ ' (x ' )  = 0 ,  

which is the same as 

Il(6)¢'(x) = 0 .  

Here 

¢ ' ( x )  

I I / i ¢ ( X )  ' 1 +  2 @IJ.vS*J.VD¢(X). 

Wlth x '  = x + 6 x ,  and uslng Taylor's expansion 

= (1+35eWsW)¢(x-ex) 

I f  
1+2`\X ) ] ¢ ( x ) ,  - X 8 v a iS 

u p  H+ up Sum 
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where we have neglected terms of second order and higher in 
e )  . In terms of Lev : 

¢'(x) 

II 1 
2 1+-e :  L 

}J.V up QQ) (X) 

Going back to the transformed field equation 

= /  - l f  A 1+  0 \1 2 uv€uv) (G)< 
1 al, 
2 e 

l..lV IJ.\) 
)¢ (x) 

1 
+ 2  A (?))(2) (x) et) A(6),L*N ¢(x) 

€ = _L 
2 up 

so that 

[A(6 ) ,L  ] IJ.v Mx), 

[Am ' l - 1  0 ,  

as asserted . 
(E) There exists a unitary, symmetric matrix C such that 

t _ 
[11 A(5)] = p C  lnA(-E5)C, 

where 

p 
+l 
-1 

for fields with integer spin , 
for fields with half-integer spin . 

In the Dirac case C is simply the charge conjugation matrix . 
The significance of this condition will become apparent later . 
The two-component neutrino does not satisfy this condition 
and is therefore excluded from our discussion . 

If any of these conditions (A)-(E) is not satisfied by a particular field , 
then our quantization procedure is not directly applicable to that field. 

III. Conservation Laws and the First Identity 
In this section we shall discuss the derivation of conserva- 

tlon laws directly from the field ` "Mans without reference to any 
Lagrangian. 9 As we have emph_..__... earlier, we do have to assume 
the existence of a Lagrangian from which the field equations are de - 
livable . This is necessary for the conservation laws to arise from the 
invariance properties of the field equations . The explicit form of the 
Lagrangian need not be known and , indeed , we never use the 
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Lagrangian. In our approach the assumption of the existence of a 
Lagrangian is expressed by the condition (A) of the last section which 
says that a non-singular matrix T] must exist which has the property 

t 
[Tl/\(6)] 

II NA (-5) (III. 1) 

First, we shall present a configuration spa ce version of the general- 
ized Ward identity which is a relation between the propagator anvil the 
vertex. Then we shall make use of this identity in deriving the con- 
servation laws . 

Recall that A (B) has the form E condition (B)l : 

A ( a ) = A 0 + A a  + A v a a v  + . | . 
r (III. Za) 

then 

A (35) _A 1- +A 4- 1- AO pop uvauav * I . 
|- (III. zb) 

If we define 

1"*iL5 .-5) A +A - 4 -  
u I-iv(a\) 6 v ) + A  / - * + " 5  + uv 5v8k 5 vick av I 

(111 . 3) 

then from (III. 2) and (III.3) it easily follows that 

a +5 P a ,-'5 u II I (  ) MB) - A(-5). (III. 4) 

We shall call (III.4) the "first identity" and it will play an important 
role subsequently. For the Dirac field Fu = 'Yu and the momentum 
space form of (III.4) becomes 

i ( p - q ) y  = S?1(p) - S F i ( q )  I 

which is the generalized Ward identity. So our first identity is the 
configuration space version of the generalized Ward identity for arbi- 
trary spin case. This identity basically follows from condition (B) . 

We list some properties of l " ( 8  , -°§): 

I" ( -'§,a), 

T 

F a,-E ( ) 

[ N F u ( a " )  = -gvnfv( -6 ,b) ,  

(III . 5) 

(III. 6) 
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_1 o- 
olnl (-a ,S ]t I (111 . 7) 

The 
the 

.. . ,,._ 
i 

* l 1  
I 

-u\a. 
'I' I 

4 
2 

J . 1 
L 

,`foLlows directly from (III.4); (III.6) follows from 
ile (III.7) follows from the condition (E) . 
our free field ¢(x) satisfies the field equation -... .I- 

/\(6)¢(x) = 0 ,  

while the adjoint field We) =¢T(x)'n satisfies 

¢T(><)A(-E) = 0 .  

(111 . 8a) 

(111 . 8b) 

Suppose that Fix] and Gfx] are functionals of (D .5  and 
their derivatives . Then 

GA(a)F - GA(-8)F. 

If G=6`, F=¢ , then because of (III.8) 

6#[5I`1l¢] 

II 0 ,  

| 
r that 5`III_,¢ is a conserved current. We shall consider two 

of situations in which we get conservation laws • 

(I) If G[x]n(B)F[x] - 
To cal 

(II) If G[x]A(a}r[§] - §[x]A(-a)p[x] 
In (x) : Gfxl up (B J -5}F[x] 
current » 

.c;[x]/xl-'SJpExJ = 0 ,  then 
G[x]F (B, -B)F'[x] is the conserved current . 

=3uKI-113] , then - KHKXJ is the conserved 

The conserved quantity is written in covariant form as 

= J I" do m) , JIJ- (X) Q (III. 9) 

where o is a space-like surface. Clearly 

_to 
60 Q a 0 • #Jo 

Then choose d 0) = (0,0,0,-1d3x) to get 

I? 3 "in d Q xI4(x) (I1I.9') 
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IH, etc. 
Now we come to the question as to how one constructs F ,  G,  
Suppose that the field equation 

A(B)¢(x) = 0 

is invariant under some transformation 

-o (My) ¢ ' ( x ' ) ,  

x - °  x ' ,  

so that 

A(B')¢'(x') = 0 ,  

which implies 

A(E))¢'(x) = 0 

laws . 

Since ¢(x) and ¢ ' ( x )  both satisfy the free field equation, so does the 
quantity 6¢(x) =¢'(x)F*'*ii- If we take G=5, F=6¢  , we have the 
conserved current To* 6¢ . This construction is , of course, not 
unique. There are many'bther possibilities . 

Now we shall consider several examples of conservation 
First we take the situations of type (I) where 

GA (a)F GA (-`5)p II 0 .  (III. 10) 

There are two possibilities within this type . 
when 

The first one is the case 

A(a)1=[x] = 0 and GExJA(-E) = 0 I (IIL 11) 

i . e .  , the functionals F and G satisfy the free field equations. The 
second one is the case when F and G do not satisfy the free field 
equations but the weaker condition (III. 10) holds . Of the examples 
that follow, the first five satisfy the stronger condition (III. 11) while 
the sixth example satisfies the weaker condition (III. 10). The 
seventh and the last example is of the type (II) where 

GA(B)F d l  GA (-5)p BHK!-1° (III. 12) 

Example (1): Phase transformation. 
Suppose the field equation is invariant under infinitesimal 

phase transformation 
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¢ ® * W M ) = U - M M M .  

m m - & @ w = ( 1 + w W m »  

If we choose 

G i v  6¢ iC1¢ I F 6¢ imp I 

then both (III. 10) and (III.11) are satisfied. We get the conserved 
current 

I*(x) 

Example (2): Space-time translation . 
Suppose the field equation is invariant under infinitesimal 

coordinate translation , 

-i¢T(x)r (a ,-5) ¢ (x) . 

I x - # x u  = o H + € u l  

¢(x)-' ¢ ' (x ' )  = ¢(x) ,  

5(x)* 5'(x') - ¢(x),  

6¢(x) = (1)'(x) - ¢ ( x )  

= ¢ (x -6 )  - ¢ ( x )  

= -e* l5v¢(x) ,  

65(x) = -€uBu(x )  E -euE(x)5# . 

If we take the combination proportional to 

t 

(Mr (a I -8) 6(1) (x) - ©$(x)r, (a , -8) Q) (x) . 
which satisfies (III.10) and (III. I I ) ,  and write it as 

Q - Ho- -1- - - 2 ¢(x)I`(8, aM a#)¢(x), 

where 

e 1 for non-Hermitian fields (¢ #6) 
for Hermitian fields (QS = (T) , 1 

*z 

we can show that t;l_1 as defined above is Hermitian and is the usual 
energy-momentum tensor to within a divergence term . The continuity 
equation 



HIGHER SPIN FIELDS 385 

Pa 

B>tMJL(x) = 0 

expresses the conservation of energy-momentum vector 

J do (x) t )*(x)  

e 
2 J /d0(x)$(x) r (a , -8) (a  -'5,)¢(><). 

The factor -e/2 can be understood only after quantization has been 
carried through . 
Example (3): Infinitesimal Lorentz transformation . 

The invariance of the field equation under infinitesimal 
Lorentz transformation gives 

co (x) -» + L  0)'(x') = <1 2 Suv€uv)¢(X)' 

6 ( x ) ~ $ - ( x ' )  = ¢'(><)(1 S i - e 
2 }J-V UV I 

if ¢'¢ is a scalar. One finds 

6¢(x) = ¢'(x) -(Mx) 

= §euv! ,*N¢(X),  

Sim) = $'(x) -Wx) 

= -%€*N¢T(J¢)•£uv I 

where 
= a - a uv Xi v Xv 11 

1, + . 1Sv-v 
v- = _ ¢- |- + 1 

Lev x1-16V + Xv8u 1 S1-N . 
I 

From these results one can write down the conserved angular momen- 
tum density as 

MMJ.v(X) 'é - €¢(x)1">(aI-8)/L 

'é et 
1-1v¢ (x) 

u F - 
V , a  I'B)¢ (x) I 
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a = 0 .  
X\)»I-1v(X) 

M up JV dcr>\(x) Mkpvlx) is conserved. 

The factor e is the same as in the previous example . 
Example (4): Frequency-dependent phase transformation . 

The positive and negative frequency parts of a field satisfy 
the same wave equation: 

A(a)¢l*l(><) = 0 ,  

¢(:*:)(X)A (15) = 0 '  

Invariance under frequency-dependent infinitesimal phase transforma- 
t1on implies 

Du) (x) -» ¢(*)'(x) (1 =F in )¢(* )  (x) . 
or 

) (x) I i ¢ ( t )  (x) . (a :real) 

So we can take , for example , 
. i 

F ~  .T- 1CL(23( ) I G~ ¢l*) 

The currents 

. (  ) 
Gui (x) = ; i¢)(*5(><)r(a,-E)¢(*)(x) 

are conserved, that is 
quantities . I a u )  0 .  to%(x)j,f*>(x) are conserved 

Example (5): Space reflection. 
If the field equation is invariant under space reflection , 

_ * XH' x -4 ' u X i  

then the field transforms according to 

P I ¢(x)  * (D (x ) = P(2)(x) I 

where P is some appropriate matrix. We have 
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0 = A(a')¢P(x-) 

= A(a)¢P(x). 

joe (x) 

Let us take F=¢?,  G=$. Then the relevant "conserved current" is 

= (?(x)ru(e .-'5)¢P(x) 

. Q5-(x)1"u(5 .-3)p¢(-x*). 

Then the quantity 

S = J d 0 u ( x ) j u )  

is conserved . 
Recall that in the Dirac case 

F IJ 'Yu' 

P = 1Y4,  

ll'P(x') = 1y4\i'(x). 

so that in this case 

s = -1 Judo(x)wx) YY4¢ (-x*) . 
If we define 

p = ei(TT/2)S 
I 

~|1P(x)- 

we can show that for the quantized theory 
-1 . * 

Pal(X)P = 1y4¢(-x ) 

It is a peculiar feature of our approach that we have a con- 
served current for a discrete symmetry such as space reflection. We 
can also wrlte a conserved current associated with charge conjuga- 
tion. On the other hand, we can also find many other "conserved 
currents " by our method which have no physical significance . 

The following two examples concern conservation laws for 
interacting flelds : 
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Example (6): Dirac field interacting with an electromagnetic field . 
The fleld equations are 

-A(B)'l1 = (ye+m)llf = ieyuAIJ*" I 

I 

-FA (-8) W-yl5+m) = 1 e y A u .  

If we choose F=llI and G=$', then (III.11) obviously does not hold . 
However, the weaker condition (11I;10) does hold : 

-GA (aw + GA (-`5)1= l1l(y6+mNf v(-vo5+m)w 

II 1@Yl\ l 'AP 1 e Y L ¢ A  

II 0 .  

So the conserved current is 

joe -1eGr (a ,-'5)1= 
p, iellTy*l1IJ r 

as we know quite well . 
Example (7)° Charged scalar field interacting with an electromagnetic 

field I 
The field equations are : 

m2)¢ a) r la _ ( u u 

We -m2) = -21e¢+8 A 

2 
2 i e A B ¢ + e A * * 1 A  

2+  e A A  
u +  ¢ U-I-1 

I 

0 u A u a 

Here 

A = (EI-m2) .r 

F = a -'S . u L1 LE 

If we choose G=¢*" and F"=¢ 
satisfied but (III.12) is ' 

I then both (III. 11) and (III. 10) are not 
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GA(a)F - GA(-•5)1= Mm -m2)¢ -(Mi -m2)¢ 

21e¢*(a +`§)q5 'Au = a#E21e¢*¢A*]  I 

so that 

Ku = 2 i @ ¢ * A ¢  . 
Therefore , if we write 

joe je[Gl"(B ,-`5)F - Kg 

je l<a)*<5-81,)¢ 2ie¢tAIJ.¢] I 

we have the well-known conserved current for this case . 
Since the interaction of a matter field with the electromagnetic 

field is introduced by the replacements 

a - '  A > u 1e u 

> Et. +i.Alu. 

in the free field equations , the first identity can be generalized to the 
case of matter fields interacting with the electromagnetic field: 

(a +'§)rU.(a - ieA,  -'5 - ieA) A(a-19A)  -A(-'S - i e A ) .  

This is a further generalization of the generalized Ward identity in 
the configuration space . 

IV . The Klein-Gordon Divisor and the Second Identity 
The Klein-Gordon divisor, d(3) , is defined by 

I\(6)d(8) = d(a)A(a) 2 
in (Iv.l) 

We shall call the relation (Iv. 1) the second identity . 
From the conditions (A) and (E) [see Section II] on A(B) and 

the second identity, we obtain 

1 t ad(a)n ] II d('8)'f'I-1 I (1v.2) 
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[d(a)n'1 |* II 

_1 - 
PC d(-B)Tl a c .  (IV.3) 

In our formalism, when considering particular cases , knowl- 
edge of the explicit form of d(B) is required. So we would like to dis - 
cuss methods of obtaining d(B) when A(6) is known: 

The most naive way is to assume 

d(B) d o + d o  + d v a a V  + • • . 
I (1v.4) 

and substitute this in the second identity and determine 
do, du , do, , . . . by equating coefficients on both sides for each par- 
t1cu1ar derivative term. As an example , consider the Dirac case: 

A w )  = - ( Y B  + m ) ,  (1v.5) 

so we write d(B) as 

d(B) = a + b y B  + 0 r j  + 

Then 

(El '1T12) = I\(6)d(6) 

-am - (a+rnb)y6I - (b+cm)EI + 

S O  that 

a m,  b - - 1  | c 0 ,  d 0 

and we get 

d(B) = - (YB  - m ) -  (Iv.6) 

As another example , consider the Proca field (spin 1): 

Aop(a) = (  - m2)6U9 -a0a9, (Iv.7) 

and we write 

+ co pal + 

The n 
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( m2) 6ok Age (5)d91 (B) 

'M266ok + 6036ol - oak)  I 

2 -m (bsO'rj + c a o )  + • • 1 
| 

on equat1ng coefficients 

-mea = _m2 > a = 1 

a - bm2 = 1 > b - 0  

- a ' C I T ' l 2 = 0  °"\» 
r C _.L me 

We get 

d of (a) II 6 1 - a pa m 2 a p k  (Iv.8) 

The nal've method discussed above, even though of general 
applicability, can get very tedious in many cases . On the other hand , 
it is possible to Invent tricks for individual cases to make the deri- 
vation of d(B) easier. We consider a few typical cases . 

First consider the Harish-Chandra case for which 

A (5) '(5x6x + in) "(QUO +rn), 
(1v.9) 

Q1 = e 
Recall that from the relation (II.57b) for the B-matrices , 
that (s=maximum spin) 

it follows 

(@1)2s+1 2 -1 fII(Q1) s I (Iv.10') 

or, equivalently , 
(u - Q3>Q§S-1 0 .  (IV.10) 

Now 
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d(B) ( _ m2) A'1(8) 

= -(u - (Q + QUO -m2)(Q +»~)°1 

-C - QIZXQ1 + m)'1 -G# ' m2>(Q1 + "D 

\ 

-(QUO - "D C 
m Q1 

-( - )<Q + ) - 1  -(Q -m)(Q1+m)(Q+m)-1 

-QD(1+&)l1 

- ) l 1 - + '  

1 +(-1)*('"1)" + 

-@- ( ) [1 -  +<- 

+ m 

m - Q 1  QUO 
m + 

+ 2 s-2 Q1 2s-zil 
(-1) (Y) 

I 

(1v.11) 

since 

II 0 2 3_ /L (u - Q1 m) 
for /L 2 2s-1 because of (Iv. 10) . Note that the highest order deriva- 
tive in the expression (IV.1l) for d(5) is 5 2 5 .  

We apply (IV.11) to the Duffing-Kemmer case,  for which 

3 ; (IV.12) 

that is to say s = 1 .  We obtain 

d(5) = m - Q 1 - -  (Q-Qi). (Iv. 13) 

To check (IV.l3), we have 
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A(a)d(e) = - ( m + Q Q [ m - Q <  ~Q5)1 
2 -m +~ +(m+Q)( -Qi) 
2 -m +L 

m + Q 5 + @ - )  Q ( @ - ( >  

II I a N
 

Consider the case where A(3) takes the form 

A(a) AO + A  uvau a V J  (Iv. 14) 

(Iv. 14a) 

A 2 Q a v u v a 1-1 (Iv, 14b) 

We have the identity 

2 - m ("0+Q2) - (m2+Ao)+(  - (22)- (Iv.15) 

Now we can write 

d(a) ( 
l 

- m2)A'1(a)  

( m 2 + ) ( +  QQ* +(@ - <»)(~, + Q2)- 

2 1 1 _ / -1 
- -\M + A o ) A c  - A o  QUO + 

+(= -Q2)A;1 l1  
- 1  . . . +  

A o QUO + (--)L(A0 1Q2DL] I 

(IV.16) 

assuming that the highest derivative appearing in d(B) is of order 
2(L+ l ) ,  i .e .  , 

2 L 1 de) a ( + ) .  

In our previous example we had found that 
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d(a) a 2s , (IV.17) 

so  we conjecture now 

L :  S * 1 .  (IV.18) 

The relation (Iv. 18) can at best be regarded as an empirical law and it 
seems to hold when A(E)) has the form (IV.l4). Consider, for in- 
stance, the Proca (spin 1) case: 

- 2 Aopw) - ( E I - m  mop - 6 o a 9  r (IV. 19) 

which implies 

(Q2)oD 
6 _ 

Up 6060 

2 -m 6 A ( O)up Q'p . 
Since s = 1  we set L = 0  in (Iv. 16) to obtain I 

I (1 .19a) 

(Iv. 19b) 

d a - - 
o f (  ) 6 "  lM2""°)"o1l1-Ao1Q2U [m - Q  )A '1 ]  2 o + 

pa pa 

(1'V.20) 

The second term in the right hand side of (Iv. 20) vanishes because 
A0+i2 = 0 from (IV.l9b). Also we have 

A -1 
O 

1 _ 
m2 I 

so the third term can be simplified as 

-1 [(m "Q2)Ao  I A (111 'Q2)  
p 

l 
m2 pa 

_ l 
2 m 

Ana I 

where in the last step we made use of (IV.19a) . We get 

l d B = 6 - - "  a B , ml ) ox m2 0 K 

a result which we obtained in (IV.8) using a different method . 
(1v.21) 
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Finally, if A(5) has the form 

A(B) A 0 + A * _ p + A * n 5 u a v  I (IV.22) 

we are not able to find a general formula for d(E5) and also the em- 
pirical rule d(B)~B ZS does not hold . 

Now we discuss a few important properties of the K-G divisor: 
(a) If 

A(a) = - (BB+m)  E "(Q1+M) (IV.23a) 

then we have 

( ) d(5)d(5)A (x-y) 

on the mass shell . 
K-G equation . 

Proof: 

- - (x-y) . (Iv. 23b) 2m d(6)A( ) 

Here A( )(x-y) is any solution of the 

-(Q1+m)d(a)Al )(x-y) = ( -m2)Al  )(x-y) 

0 .  

which implies 

Q1d(a)A( ) (x-y) = -m d(6)A( )(x-y)- (IV.24) 

(x-y) 

Now making use of (IV.1l) and (IV.24), we have 

( ) d(6)d(B)A 

[ m - Q l  +L ( E I - Q ) { 1  + Q .. 1 o f .  .l.(_1) 

. d(5)A( ) 

=[m+m+1 (U -rn2)[2s-1}]d(a)A( )(x-y) 

28-2(@1>2s-2}] 

(x-y) 

2m + (2s-1) 
m (re -my)] d(a)A( )(x-v) 

2m d(a)A( )(x-y). 

since A( )(x-y) satisfies the K-G equation. 
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(b) If 
A w )  = / lO - I -Q2  I QUO = Auvaav (Iv.2sa) 

then 

(c) 

(x-y) I (Iv. 25b) d(a)d(a)A( )(x-y) = -m2Ao1d(a)A( ) 

on the mass shell . Here again Al )(x-y) is any solution 
of the Klein-Gordon equation . 
Proof of (IV. 25) is s1rn1lar to that of (IV.23) , and we leave 
it to the reader . 
Because of the second identity 

Ala)d(a) = I] - m2 I 

it is very simple to construct the Green function corre- 
sponding to any field equation . 
Suppose AG(x-y) is the Green function appropriate to the 
K-G equation: 

4 
(cm - m2)AG(x-sr) = 6 (x-y) . 

We define for the case under consideration , I 

(IV. 26) 

(1v.27) 

Then this G(x-y) is indeed the appropriate Green function 
because 

A(B)G(x-y) = 64(x-y), 

V .  Normalization and Closure Conditions for the Wave Functions 
In this section we want to discuss the c-number solutions of 

A(6)u(x) = 0 .  (v.1) 

We have already learned how to calculate Fu (5,_'§) and d(B) when 
A (Et) is given. Making use of these quantities we shall obtain nor- 
malization and closure conditions for wave functions corresponding to 
arbitrary spin in a compact, universal form . 

Since the equation (V.l) is homogeneous , normalization is at 
our disposal. As the wave functions satisfy the Klein-Gordon equa- 
tion also, decomposition into positive and negative frequencies is 
Lorentz invariant. We shall denote the positive frequency wave 
functions by u(x) and the negative frequency wave functions by v(x) . 
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we 
Let us discuss the positive frequency wave functions first. 

For the sake of simplicity wet. Jf the momentum representation and 
write our wave functions as , with 

uk'tl(x) = ul'lo<)fk(»<) , (V. Za) 

where 

fk(x) 
1 

(2rr)3/2 eik'x'1w(k)t 
I (v. zb) 

w(k) = + - ,  +m (V.2c) 

The supers cript r is the spin orientation or helicity. We have 

r (v.3) 

where h is the helicity operator 

h ( k - S ) / l k l .  (V-4) 

Here S is the spin operator with [recall (11.38)] 

31  = 3 2 3 '  82 = 831 

so that (V.4) may be written as 

I $3 $12 I (v.5) 

elk' e:ijkki81 
Jk '  (v.6) 

From (V.l) and (V. 2) it follows that 

A(ik)ul'llk) = 0 .  (v.7) 

We claim that 

[A(ik),h]  = 0 .  (V-8) 

Proof: From the Lorentz invariance requirement we have 

[A(a),»t , ,J = 0 .  

which, in momentum space, becomes 
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a 
+ 1  S o  = 0 .  1 [A(1k), Ku as ` 'W Mk (v.9) 

Let us set u = J ,  v = k :  

[A (in) , Q<. B 
J a kg k a 

k é k j ,  + i S .  
1 

II o (V.9') 

Note that 

a 
eijkki(kj a kg k a 

k a k .  
J 

0 (v.10) 

because of the anti-symmetry property of silk. Therefore , multiplying 
(v.9') by 

k ilk 1 I 

-1 e 

2 L5I 
and making use of (V.10) and (V.6),  we obtain 

[A(1k),h] = 0 ,  

as we had claimed . 
We define the adjoint wave function by 

- (  ) u r  (x) = (x)'n - 
Now consider the quantity 

up(r)+ (v.11) 

-i nggk) = JV d o  (x) Eel")(x)r(a,-E) ukl'l(x) . (v.12) 

First we show that it vanishes for k' 74k or r '  r .  From (V.2b) we 
have 

-iaukl'l(x) = k,u,§l(x), (v.13a) 

- (  ' )  \ " l  ') - i b u k r  (x) = k u k u  (x) . 
If we multiply (V. 13a) by 

_ (  -J upr (x) To (a . 
from the left and (V. 13b) by 

(V.13b) 



HIGHER SPIN FIELDS 399 

l` )(a I -5) url"l(x) 

from the right and add the two relations , we obtain 

I k _ u "H ) aklfl (x) m (a . -5) uk(r) (x) 

tau [Hal")(><) Fx (a , -3) up(")(x)] . (v.14) 

From the last relation we easily deduce 

(r'r) kI - k  N = ( u ) k'k JV do} (x)a[Gkl")(><) a ,-E) ug)<x,1_ (v. 15) 

In Appendix A we have shown that 

V J do  (x)5*f(x) Ii J[dO'u(X)a)f(X). (V.16) 

In proving (V.16) one has to assume that f(x)-° 0 for lx - o n  . This is 
not true for the term in square brackets in (V. 15) with our plane-wave 
wave functions . However, in a more careful treatment one would use 
wave packets rather than plane waves s o  that the condition of 
vanishing at large distances would be satisfied .. Therefore , the use 
of (V.l6) in (V.l5) is quite justified. We obtain 

(")(x)r,(a,-8) u,§t)<x>] (k - k g r k )  = JVdo*J.(x)6) [as, 0 ,  

where we make use of the first identity in the last step . 
we have the result 

Therefore , 

if k ' ¢ k .  (r'r) Nklk - 0 
I 

Next we want to show that nénz' vanishes also when r'74r. First, 
note that 

Vic (x)f* (x)6 f (x) J A k '  u k 

which means that in (V. 12) we can replace -6  by a or vice versa~ 

JV do (x)fk. (x)8fk(x) , 

(v.17) 

(v. 18) 
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( '  ) 
Nkrk -i JV d "A -aklI')(x) e , -5) uk(r) (x) (v.12) 

-i JF d@Ekl")(x) Rx (a) uklflm) (V.19a) 

-i JV do Hk"')(x)R(-8) ukl'l(x) , (V.19b) 

where 

R B )  O l g a )  BA lik) 
a i r  ik=a 

(V.19c) 

In order to study the dependence on r , r '  .._ __ 
the subscript k on the wave functions for convenience. We know 

) 
(r ( x ) .  S3ulr)(x) = ru 

we set k = k '  =0 and drop 

(s1+i82)u(T) (x) II 9(r,S)u(r+1)(x 
) ,  

(Sl-j|S2)u(r) (x) II 

glr'1:S)U(r-1l(x) 

i("l(><)(s1+is2) 9(r-1,3)i(r-1)(X) 

El" (x) ($1 - i s )  g(r , s)§(f+1) (x) 

El" (x)S3 r i(r) (x) . 
where 

g(r,S) = /s(s+1) - r(r+1) r 

and r takes the values -s , -s+1 , - - - ,s-1 , s  . 
system we have from Lorentz invariance 

In a general coordinate 

[A(ik), L11j = 0 .  

If we apply B/B ik4 to this relation, we get 

[R4(ik) /LU] 

which, in the frame where k = 0  , takes the form 

0 



HIGHER SPIN FIELDS 401 

ER4(1k) ,So] 

Choose k = 3  and sandwich thls relation between €(r')(X) and u(r)(X). 

0 .  

0 i(r') i1ll"')(x)R4(1k)s3u(r) (x) - 
(r-r')'LT(rI) (x)R4(ik) u(r) (x) 

(r-r')0(rI) (x)R4(B) u(r) (x) . 

(x)S3R4(ik)ulr) (x) 

I 

(v.20) 

That N (r_k) is independent of o 
6/60(x( to (v. 12) and making use of the first identity . 
xo=constant surface , 

can be easily shown by applying 
Choosing the 

I 

do>\(x) = (0,0,0,-1d3x). 

we have 

Nklfkl = - JV d3x akl"l(xlR4(a) ukl')(><) 

II 

o if r ' 7 ' r ,  (v.21) 

from .(v.20). 
Next, we show that nM ' is independent of r .  From 

. r r 1 (So +1S2)u( )(x) = g(r,s)ul + )(x). 

We have 

g(r,s)0(r+1)(x)R1(E)) ul'*"(»<) '6('+1)(x)R)(a) (s1+1S2) u(r) (x) 

(r) U (x) (S1+is2)R(?)) u (x) 

II g(t,s)H")(x)R(a) ul'l(x) . 
Hence, we obtain 

(r+1 ,r+l) 
Nk' , k  

(run) N . kI , k  

Finally we have to show that mW is a real number. From 
Eq. (V.12): 
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V i c  *(x)u (t)(x)*[nr (E -ally (r')(X) J A k K ' k' I 

where we have replaced 1")(5.-5) by FEE, -B) because the wave 
function originally standing to the right (left) now stands to the left 
(right) . Recalling that 

[ t  (5 K 

dQ'* 
1 (x) = 

gm 

f -a l f  
Vol 0vlx) I 

- 1 * - ' 5 , a ,  she  ( + )  

F-*5,a ( ) 

p, 

1* (a,-5), le 

we get immediately 
( | ) * | 

IbInr I = Nkkl I (v.z2) 

which implies 

Nk(k) is real. (V.23) 

In view of (V.17) , (V. 21) and (v. 23) we can write the normalization 
condition for the positive frequency wave functions as 

-i -€)ukl'l(x) = 6n_,6 (k-k'). JV do (x) Gkl"l(x)1" (5 , (v.24) 

Other equivalent forms are 

-1 JV d o ( x )  Hk(I')(x)R)(B) up&)(x) 6 
i i  ' 6 (k-k') | (v.24')  

and 

-i JV d o f )  Eel"l(x)R,(-Sl ukl')(><) II 6 k-k'  6 ii' (.»~ m )  r (v.24") 

where RMS) is given by (V.19c). 
We apply (V.24) to the K-G and Dirac cases . For the K-G 

case, 

(EI-m2)u(x) = 0 

_Ex ]j`7\(5 ,-5) ax 

I 

I 

and there is no spin. We get 
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-1 Judo(x)Ek, (x) (a-E)  uk(x) = 

which is the familiar orthonormality relation for the K-G wave func- 
t1ons . 

6 ( k - k ' ) ,  

For the Dirac case 

- ( ye  +m)u(x) = 0 .  

1 . e . ,  

MB) = - (Y6+m) ,  

then 
r = _ , u Yu 

so  we obtain 

i JV d o ( x )  ulf' )(x) Yuulr) (x) 6 r r ,6 (k -k ' ) .  

To examine this more closely, choose the xo=constant surface to get 

JV dux Hal")(><) Y4ug>x, 6 6 k - k '  i i '  (__ _ )  

or 

JV d3x uk(ru)+(xl uk(r) (x) = 6 r r .6 (k -k ' ) ,  

which is correct . 
We should point out here that the normalization condition 

fixes the sign of A(5) , and therefore that of Fu and d(B) , which the 
homogeneous wave equation does not. For example , if we write for 
the Dirac case 

A ® ) = y a + m ,  

we get the wrong result 

J x J(xl u(x) 6 6 - ' .  H. ( k )  

Now we prove the closure condition 

3 Vol kul')(x)ultl<y) = 1d(a)A(+) r J k k 
v' 
.L ( x - y ) -  (v.25) 
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cies , 
Since the quantity id(E1) N 

we can expand it in terms of E 
has only positive frequen- 

EVS' 

mm) A(+)(x-y) Jr dank' url")(><) cal"l(y) . v' 
L 
al 

(V.26) 

If we apply 

V 
J 

-i do (x) uklfl) e ,-8) 

to (V.26) and make use of (V.24) ,  we get 

Ck JV d o}\(x)0kl"(x) I`7\(6 , -15)d (5) A(+)(x-y) . (v.27) 

One easily shows that this relation is independent of G by applying 
6/6o(x) . One makes use of the first identity and the equations of 
motion: 

Hkltl(x)n(-E) = 0 ,  

(cu-m2)A(*l(x-y) 5 A(a)d(a)A(")(x-y) = 0 .  

W? hall FI 
:Iii lie! -a) Ii 

MB); 

age (V.27) at the . 
S) as we did in go 
ing with 

;e x0=y0 .  First replace 
5) . We need to calculate 

A(a)d(a) = EI - m2 I 

we get 

A(1k)d(ik) = - (k2+ m2).  (V.28) 

Applying a/aik to (v.28) I 

_of M1 (in) 
+ 

.k)d RIG 2ik I 

or 

R ( a ) d ( a )  = [ Zik 
or' 

1:*-Llj§l 
A (ik)" -I 

..-I I." 
l r  - - - i  a k a  

(v.z9) 

We can now evaluate C1§r)(y) explicitly . 
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V 
J Ck(r)(y) = 

X0=Y0 

do(x)Ekl'l(x) R,(6)d(B) A (+) (x-y) 

V 
J 
Xo Yo 

d05)\(x) Hklfl (x) [2i -A(ik) g )  1 1- A(+)(x-y) . 
j.k=a . =°'5)\. 

But up(rl(x)A(ik) = 0  , since §klr)(x)A(-3) II 0 Therefore , 
(1-)(Y) Ck 

II V 
J 

Xo Yo 

dcr4(x)0klr)(x) za 4 Al+)(x-y) 

JI" d3x ukl')(><)[6 A (+) (x-y)] a 
Xo xo=yo 

_ -(r) - "k (y) I 

where we have made use of the well-known result 

(v.30) 

a A(+) (x_y) 

X0=Y0 
E x p  - é  6(x-X). (V.31) 

Substituting (V.30) in (V.26) we 
The negative frequency 

closure condition (v. 25).  
are given by 

I 

vkl'l(x) 

II c ukl'l*(x) , (V.32a) 

with the inverse trans formation 

cvkl"l*(x) = uk(x)- (V.32b) 

Using the transformation properties of the various quantities with re-  
spect to charge conjugation, one can easily write the normalization 
and closure conditions for the negative frequency solutions . 

From the relation 

C 
_ 1  ._ 

l` a,-a C U ( ) P QW [HR (B l -5) 
* 

p (v.s3) 
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the relations (V.32) and (V.24) , we get the normalization condition 

ii ' -i JV do1(x)-vk(II)(x)1`)(B , -E) vklr)(x) = _ p 6 6 (k - k') 

where l")(6 ,-8) may be replaced as before. Recall 

I (v. 34) 

p 
+1 
~1 

for integer spin 
for half-integer spin.  

The closure condltlon turns out to be 

I JVd3k vkof) (x) vklflw) 
r 

-i P d to) D(-)(x-y) I (V.35) 

as the reader can readily prove . 
to read 

We can combine (V.25) and (V.35) 

Y Vd3 J k{ukl')(x)Ekl1°l(Y) - pvt(r)(x);(r)l )} 
k Y 

II 1d(a) A (x-y) - (v.36) 
r 

VI. Quantization 
In this section we shall present a quantization procedure 

which does not make use of the canonical formalism . 
First, we discuss the raising and lowering operators . Next , 

we carry out the quantization procedure and in this connection we 
establish the relation between spin and statistics . Simple applica- 
tions are discussed. Finally, we discuss the uniqueness of Pa and 
My, v . 
A .  Raising and Lowering Operators . 

Consider operators a ,aT satisfying 

[ a , a + ]  III
 

acT - aTa l (v1.1) 

For this case everyone knows that the operator 

N = ata (vI. 2) 

real . 

has the eigenvalues 0 , 1 , 2 , . . . and is therefore called the number 
operator. We shall briefly go through the proof as it is instructive . 
This is just a mathematical exercise and no physics is involved . 

The operator N is Hermitian, n=n* , so  its eigenvalues are 
Suppose IU is an eigenstate of N with the eigenvalue K , i .e  ., 
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No" al, I 

where K is real. Then 

( w e )  = l ( \ U ¢ ) ,  

and , again 

(¢ .nw)  = ( ¢ . a T a ¢ J = ( a ¢ . a ¢ )  I 

so that 

(alma lf) =*(\|m\l')- 

Since the norm of a state is positive definite, it follows that i is 
non-negative. The statement 

N N t 2 0  (v1.3) 

integers 

summarizes the fact that N is Hermitian and its eigenvalues are non- 
negative real numbers . We have yet to show that the eigenvalues are . We work in a representation where N is diagonal and de- 
note by | n) the eigenstate corresponding to the eigenvalue n ,  thus 

Nln) - n n )  (w.4) 

Consider the state al n) , then 

naln) = ataaln) 

= (aalt-1)aln) 

a n n )  - a n )  = (n-1)aln) I (VI.5) 

that is to say that al n) is also an eigenstate of N with the eigen- 
value (n-1) . By repeating this process , we obtain 

L Na In) = (n~f»)a*' | n) (vI. 6) 

According to (VI.3) , 
fore, we must have 

the eigenvalue (n-&) cannot be negative; there- 

a [ n )  0 for L > n .  (vI.7) 

In other words , if t o  is the integer satisfying 

n 1 <  L o a n ,  (VI . Ba) 
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the n 
L a ° l n )  # 0 ,  (vI. 8b) 

but 
ac + a o 1ln) = 0 .  (VI . 80) 

Applying at to the last relation, we have 

»f ,+1 0 = a t a  0 In) L JE, Na oin) = (n-*,o)a 0ln) I 

which leads to 

n II L . o (vI. Bd) 

in vlew of (VI.8b). Therefore, n is restricted to integral values only, 
including zero. Thus the eigenstates are | 0) , | 1), ..., | n) , . The 
state | 0) satisfies 

a l0 )  = 0 ,  

NIO) = 0 .  

(vI. 9a) 

(vI. 9b) 

Using the commutation relation (VI. 1) , 
following: 

one easily establishes the 

na+I0) l 0 )  . t a (vI. loa) 

n(a*)"l0) = n(a*)"l0) (vi. 10b) 

[a,N] = a ,  (vI. 1 la) 

[ d T , N ]  
T -a (vI. l ib )  

If we sandwich the relations (vI.11) between states (n ' l  and in) , 
we obtain 

(n ' la l  n) (n-1-n') 

(n'laTln)(n+1-n') 

0 ,  

0 ,  

so that (n ' la ln)  survives only when n'=n-1, and (n'la+ n) survives 
only when n' =n+l . If we write 
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a n )  = ~/-nln-1) I 
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(vI. 12a) 

) n I T a ~/n+1l n+1) , (vI. l2b) 

it can easily be checked that these relations are consistent with all 
the equations above. In an obvious matrix notation we can write the 
lowering and raising operators as 

1000 

00 
= 

000 

a 

~/2' 
Jer 

0 

000 

000 000 
I (VI . 1 as) 

| 

l 

l 

oh 

and 
0 

l0000 

T a 

00200 

J 
J? . 

0 

0000 

0000 

-111 

(vI. 13b) 

In a similar fashion we can handle the operators a ,a sat1s- 
lying 

{ a , a l  T aa 
t + a a = 1, (vI. 14a) 

{ a , a }  E aa + aa = 0 .  (VI . 14b) 

In this case we find 

r = = = o a 0 t a T N N 1 (vI.15) 

The raising and lowering operators characterized by (vI. 1) or 
(vI. 14) are not the only such operators . However, we shall not dis - 
cuss the other possibilities here . 

Now we are ready to quantlze . 
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B .  Quantization . 
We shall regard the Heisenberg equation of motion , 

ap(t) ' h  1 at = lm) ,H] v 

as the most fundamental equation in quantized field theory. Here F(t) 
is any dynamical variable . 

Let us explain why we consider (vI. 16) so  fundamental. Since 
1=*(t) is also a dynamical variable , it too satisfies (vi. 16) , 1.e. , 

'(VI. 16) 

i aFt (t) 
Bt [H (t) I 

where we have set h= 1 . 
(vI. 16) , we obtain 

If we take the Hermitian conjugate of 

i as* (to 
Bt [p1(r), H+] . 

From these two equations we get 

[ (t) ,  H - I ]  0 ,  

which implies 

H -Ht = c-number . 
This means that H is essentially Hermitian . 
ize H so that 

Then we can diagonal- 

HIE) II E E) I (VI.17) 

and the eigenvalue E is real. If we sandwich the equation (VI. 16) 
between (B'  and | E) , we get the relation 

(E-E' ) (E ' lp( t ) IE> 
a 

' - E' t 1 a t  ( F( ) |  E) 

If we introduce the Fourier transform 

(vI. 18) 

(E'l1=(r) E) JPdwe -1wt(E_ I F" (w)I E) I (vI. 19) 

then (vI.18) yields 

w = E - E' I (v1.20) 
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since F is arbitrary. This is just Bohr's frequency-energy relation 
(with h= 1) , if we can interpret E as energy. Since Bohr's frequency- 
energy relation has a firm experimental basis , it is eminently reason- 
able to regard (vI. 16) as a most fundamental equation . 

There are a number of possible interpretations of the equation 

I 

l e t )  = [F(r) ,HI . (VI. 16) 

For example: 
(i) The time-evolution of l"(t) and H are known, then the 

above equation will determine the commutation relations 
of F(t) . 

(ii) The commutation relations and H are known, then the 
above equation will determine the time-evolution of F(t) . 

However, the interpretation that we shall use differs from the above 
two and we state it as 

(iii) From the knowledge of the time-evolution of F(t) , the 
commutation relations as well as H can be determined . 

According to this interpretation there are too many unknowns in the 
equation. As a consequence , there exist a number of possible quan- 
tizations . For example , one can include parastatistics and hyper- 
quantization within the framework of this approach. We shall not 
dis cuss parastatistics and hyperquantization in this course, however. 
Suffice it to say that this approach is much more flexible than the 
canonical formalism . 

The relativistic generalization of (vt. 16) is 

["(x) , P ]  °"iaH.Flx) 

as a particular case of which we have 

I (v1.21) 

-in (x) [so (x) , P I  (v1.22) 

Since au is a four-vector, Pa must be a four-vector too . 
a trivial statement in field theory as we shall see later . 
to find the commutation relations and Pa when 

This is not 
So, we try 

/\(5)¢(x) 

II 0 (VI.23) 

is given . 
As we have mentioned earlier, when we take the interpreta- 

tion (iii) for the equation (vi. 16) , there are too many unknowns . In 
order to arrive at a physically meaningful theory, we restrict our- 
selves to those solutions only which obey the following conditions : 
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1) PI and Hai are Hermitian . 
2) H is n o n i v l  ve ~(for it to be the energy) . 
3) Only bosons and fermions exist in nature . 

the parastatlstlcal particles from our conslj 
4) Pa is a four-vector. . 
5) All physical quantities at flnlte distance exterior to the 

null-cone are commutative. (This is just microcausality.) 
We expand ¢ (x) in terms of c-number wave functions as 

excludes 
bn . ) 

¢(x) Z JV d3k{al')(k)ukl')(x) + b(r)'t (k)vk"l(x)} 
r 

I (vI. 24) 

where, at this stage, a(")(k) and bit)*(k) are just the relevant expan- 
s1on coefficients . Then 

-15u¢ (x) 2 
1A 

JV ask (t)(k)ukl"(x) _ b(r)T (k)vkl'l(x)} 
I (VI,25) 

due to 

-1al_ukltl(xl = k W  , 

-i5uvk(r)(x) = -k,vkl'l(x). 

If we substitute (VI.24) and (VI.25) in (VI.22), we get 

r r a( )<k>,p] = kua( )(k), (VI.26a) 

[b(r)*(k)fP,J -kub(1l)(k) . (VI.26b) 

If we make the guess 

P u (r)(k) + b(tl1(k)bl')(k)} V 3 (r)+ = Z J d k k { a  k . ( ) a  (v127) 
r 

which is consistent with conditions 1) and 2) , then the possibilities 
are 

I 

o--- _ .  1 + | 

alt)(k)a(') (k-) - p'a(t )*(k-)alr)(kl = 5rr,s(k-k') I (VI . 28a) 

b(')(k)blt')+(k') - p'blt')+(k')b(t)(k) = 6r1..6(A1;-k'), (VI . 28b) 
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where p' may be either +1 or -1 . 
they are excluded by the condition 3) 

other possibilities is'-' 
psh1.10)) Here p '  $1 

There are other possibilities but 
. (The reader interested in 

*"*"Fred to the paper by Kamefuchi and 
as the statistics : 

al 1 for bosons 
-1 for fermions . (VI.28c) 

Since Pa has the eigenvalues 

P 
IJ, 

k H 
0 , 1 , 2 , . . .  
0 ,1  

for 
f or 

p I 
p I 

l 
-1 (VI.29) 

for each mode , 
vidual particles . In particular, we have ko= +m2 so that m is 
indeed the mass and the relativistic relation between energy and mo- 
mentum is satisfied. The origin of this relationship can be traced to 

k is interpreted as the energy-momentum of indi- 

( -m2)¢(x) = 0 .  

Next we want to study the commutation relation of ¢(x) . First 
note that 

(TW) ¢+(v)n 

= Q JV d3k{a (1')+(k) Eklflw) + blr)(k)%"klr) (y)} 

r 

Then from (VI.26), (VI.30) and (VI.28) one shows 

¢(x)$(y) - p~?(v)¢(x) 

(v1.30) 

Z V d3k{uk('l(x)Ekl")(y) - ¢)'vkl')(><)'kl') (v)} 
r 

(v1.31) 

Now we make use of the closure conditions (V.25) and (V.35) to re- 
write this as 

¢(x)$(y) - o | p6(y)¢(x) 

II 1d(a) Al*l(x-y) + of '  id(a) All)(x-y) 

1~d(a){Al*l(x-y) + pp'Al')(><-y)} I (VI.32) 
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where p specifies the spin: 

p 
1 

-1 
when spin is an integer 
when spin is a half-integer . (VL 33) 

In order for the condition 5) to be satisfied, the right-hand side of 
(VI.32) must be zero for (x-y) space-like. For this to be true , we 
must have p p '  =+1 , i .e .  , 

p I  Q ,  (VL 34) 

which is the relation between spin and statistics . 
the commutation relation 

Then we obtain 

¢(x)§5l(y) - p'E)-(y)¢(x) = 1d(a)A(x-y). (vI.35) 

We assume p ' = p  from now on. 
We want to see how Pa looks in configuration space . 

sider the quantity 

O V - _  I- 1- -1J d0>(x)(2)(x)1`>\(6,-B)(?)-B)¢(x)- 

Con- 

If we make use of the expansions (VI.24) and (VI.30) and the normali- 
zation conditions for the c-number wave functions , we find 

I r 0- |- - . J  do?\(x)¢ <x)F,(a, -a)(a*-a)¢(x)  

+ 2i Z JVd3k k»{alt)(k)a(tl(k) pbl'"l(k)b(t)(k)} 
r 

+ C-number = Zi Pa 

therefore, we can write 

l 

r 

Pa 
l 
2 JVdg15(X)r(5,-'5)(8-l5u)¢(x) 

lVI.36) 

+ 
4_ l 0 )  )¢(X) ( )r,(a,_l5)@**_ 

_ X 
1 V 0,50 ¢ md 

Again, by making use of the expansions for ¢(x) and 55-(x) and the 
normalization conditions for the C-number wave functions , one can 
easily verify the following expressions for the lowering and raising 
operators : 
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a (r)(k) = -i Jr de (x) Et(")(x)r(a . -5) ¢ (x) . 

415 

(vI. 37a) 

a(1t)*(k) = -i JVduX(x)$(x)r (a,-5)uk(")(x), (v1.37b) 

b(r)(k) 1 p JV do ( x ) ( x )  I ` (6  , -8)vk(I)(x) , (VI.3'7c) 

bit)+(k) i p  J[doX(x)?]r)(x)llX(B, -8) ¢(x) . (VI.37d) 

If we substitute the above expressions for 6(r)(k) and b(t)*(k) back 
Into 

(2l(x) =§ JVd3k{ukl')(xlal')(k) +vkl")(x)b(tl*lk)} 
r 

I 

and make use of the closure conditions , we obtain 

-(><'=a 

( `) g 

¢(x) = Jfdft a(a)A(><-x ' ) r `a-  r -'S')¢(><-) . 

and a similar relation for x) . Note that for the Klein-Gordon case r 

{ d(5) =*_1 4- } 

(VI.38) reduces to (II. 17) , and for the Dirac case,  

= -(yB-m) } 
= "Yr (a,-5) 

(vI.38) 

it reduces to (II.32), as one should expect . 
Now we indicate a few applications briefly. One easily 

shows that 

( 0  ( V  ¢»q,X (D8(Y)l 0) = Jld3kuk(r)(x)E (1%) 

KB _ . |  

I' 

ida B (a) &(+)(x-y) (VI.39a) 

and,  similarly , 
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(0I6B(y)¢(x)l 0) -i o dQ. B (a) Al'-) (x-y) - (v1.39b) 

From these 

(0I¢(x)68(y) + D ¢T5(v)¢(x)l 0) = Esma) M1) (x-y) I (VI.40a) 

where 
A(-) A(l)(x) = 1{A(+)(x) (><)} (v1.40b) 

Next 

(OI T [¢ (x )  , 58 (y l0) 

=- 9 (xo-yo)(0 l¢(x)Z»T8 (ii 0) + D 9 (vo-><o)<0l58(v) ¢@(x)l 0) 

= . 16 (xo-v0) da8(5) A(+)(x-y) - 19(y0-x0) daB(B) Al°l(x-y) 

= idalal A(+) (x-y) 9(xo-.yJ - i d s )  A(-) (x-y) 9(yO-xo) 

+ 1[9(x0-yo), d05(a)l A(+)(x-y) - 1[@ (y0-x0), da5(5) A(l)(x-y) 
II idle (B) Ac(X-Y) + Nail (x-y) I (VI.41a) 

where 

Ac(X) = e (xO) M" (x) - 9 (-xO) A(')(x) , (vI.41b) 

and 

has (x) 1[e (xO) , d s  (a)] A(+) (x) - ~1[@ (-x0) ,daB(a &(-)(X) 

= Q (xo), da8(a)]A(x). 

It can be shown thatll) 

(VI.4lc) 

oc NaB(x) 64(x)_ (vI.410') 
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Recall that the K-G divisor for the Duffin- Kernmer case is 

do) = -[ - m 2 )  + Q1 QQ . 1 
` m 

It turns out that, in general, one has 

d(a) = d'(a) + d"(a) (m - m2). (V`[.42) 

Then the commutation relation may be written 

[Qs (x) , w] = de) A(x-y) 
zi: 

= 1d'(B)A(X'Y) . 
that is to say, d"(B) does not contribute to the commutation relation . 
However, the Green function is 

(0IT[¢(><)$(y)] lo) = 1d(8)AC(x-y) +N(x-y) 

id'(a)Ac(x-y) + N'(x-y) . 
where 

N'(x) = §-[+=(xo), d'(a)lA(x-y). 

In the Yang-Feldman formalism the interaction Hamiltonian has the 
form 

Kint .c 1nt + (term depending upon the normal nu) . 
In the S-matrix the normal-dependent term of the interaction Hamil- 
ton1an cancels N but not N' . In other words , we can neglect the 
normal-dependent term and N at the same time . In the Feynman rule 
we have to put 

1d(a) AC(X-Y) 

and not 

id' (a) Ac(X-Y) . 
use, of the two, only the former is the a 

.u*--.... ~' We refer the reader to the works of Kat 
for the details . 

lie Green as 

and Um I 
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Now we shall prove the uniqueness of Pa and Mud when the 
commutation relation is given . 
C.  Uniqueness of Pa and M*J|.\) . 

Since the commutation relation 

[¢(x), 6(v)l = 1d(B)A(x-y) 

l 

is relativistically invariant , 1.e . , 
Les' (x'), Wwji : : id(a") A(x'-y') I 

it implies that 

[¢'(x) , 6' ml ¢ : id(B)A(x-y). (VI.43) 

Now we can write 

-1 
| = ¢ (x) GL (D(x)GI, 

where for an infinitesimal Lorentz transformation we have 

= + i - ' e GL l 2 Mplv€uv 1Pm u '  

(vI. 44) 

(vI.45a) 

-1 1 GL 
L + 2 Muveuv 1P#€: (vI.45b) 

From (VI.44) and (VI.45) we get 

¢'(><) = ¢(x) + [ ¢ ( » < ) .  ] i [¢(x),p]e,,  M )  e ,  (VI.46) 

On the other hand , 

1 + ¢'(x') = [ §s,W@W]¢(x) I (VI.47a) 

where f '  

' =  + e  x + e  . Xi X i  up v 1.1 (VI.47b) 

Thls yields 

¢' (x) (D(x) + ¢ ¢  ( x ) € v  - a s )  (xi . (VI.48) 
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Comparison of (v1.4e) and (VI.48) gives 

-iBu¢(x) = [ ¢ ( x ) , p l  I (VL49) 

and 

-1»f, 
L1v¢(x) = x) 

,My  (v.t.50) 

From the integrability condition of Lorentz transformations , we have 

O
 II s (VI.5l) 

Pm I My] = i ( 6 P  - a u ?  (v1.52) 

and 

V 
LMAK ' MI-w_ 

'es ?NMpK + 6M»1MKv + 5 KvMM,1 + 6 K p M v ) \ °  (VI.53) 

Now we show that Pa and M y  are unique when the commutation re- 
lation is given. The proof of the theorem is based on the assumption 
that ¢(x) forms an irreducible ring, i .e .  , any quantity that commutes 
with (Mx) and 5(x) at all times is a C-number. 

If there are two P l ' S  , let us call them p and PV(2), then 

-in*_ (D(x) II [lb (x). P r 

by) -i51_l¢(x) = [¢(><). l I 

so  that 

0 Iv) (x) ,p (1)-P»(2)] , 

which implies that 

Ll 
_ = 0  ) 2 ( 

IJ- 
P ) 1 ( 

Ll 
P r (VI.54) 

where Co is a C-number . 
Similarly, if there are two M n ' S  , they also differ by a 

C-number 
(l)~ (2) MW - my c (vI.55) 
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Now 

w»m:1)] -w 'ZH , M  

1(° 6 6 6 ?Lv0l.1K + M.1CKv + KvClu + C 
KH vi ' (VI.56) 

and, again, 

(1) (1)~ (2) (2) 
. E M C  'Ml .1v_ l -MXK 'Mph 

(1) (2) < ) (2) (1) [m `MXK ' m  1 +[mm M ( )  
up 'Mu2 l I 

C me I 
M("ams" 

I C ]  
= 0 .  

From (VI.56) and (VI.57) one concludes that 

c ,  = 0 ,  

(vI.57) 

(VI.58) 

so that Mm, is unique. Next , 
(1) (1) P ,M = 1  6 P [ K J ( W e  u 

(15 6 P MY v 

and 

IP (2) (25 , = 1 6 P - 6 P Muv C vi +1 MY v 

Subtracting the second relation from the first, we get 

0 [ c o ]  = 1(6vhCu-6)p.Cv)' 

which implies 

C u 0 ,  (vI.s9) 

so that Pa is also unique . 
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Appendix A.  Notation and Conventions 
In this course we use the so-called natural units in which 

t1=c = 1 . Greek letters , when employed as tensor indices , run from 1 
to 4 ,  while Latin letters s1milarly employed signify space components 
only and run from 1 to 3 . In our convention the fourth component of a 
four-vector is pure imaginary, thus 

Xi  = ,1x0), i . e . ,  x4=1x0, 

where **0 is real. Unless explicitly stated otherwise, sum over re - 
pealed indices is to be understood, e . g .  , 

1 Q 1 P Q = P  

p-9 

dx 
.or 

?m@1J. =P°Q.+P4Q4  -POQO. 

As typical examples of volume elements , we have 

4 
d P = dpodp, dxldx2dx3 . 4 d x = d x 0 d x ,  etc . 

The symbol au stands for the differential operator 

au 
a 

B x s  
a 

-1 b x  I 

f (x)*B 1.1 9 (x) 

and it acts on functions standing to its right, while g is a similar 
operator which acts on functions to its left. Thus 

[arm] Q(x) , II 

£(x)()*l+8)g(X) [f(x)9(x)l au I 

for arbitrary functions f(x) and g (x ) .  The four-dimensional Laplace 
operator, called the D'Alembertian, is written 

b e  II 2 v 
8 2  

2 Bxo 

The symbol gull whenever it appears , stands for the 4 x 4 matrix* 
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1000 

r 
l 

v u g 

0100 0010 

000 

A space -like three-dimensional hyper-surface in Minkowski 
space (for brevity we simply call it a space-like surface) is denoted 
by o , or by c(x) when we wish to emphasize that this surface passes 
through the specific point x .  We denote by do*l(x) the four-vector 
differential surface area at the point x and define it to be 

duu(x) = (dx0dx2dx3, dx0dxldx3 , dx0dxldx2 , -idxldx2dx3) 

where the Levi-Civita symbol Suva has the property 

1 if I Els an even permutation of (1234) 
-1 1f l  1 is an odd permutation of (1234) , 

0 otherwise . 
II 

€url P 
I 

A convenient way of 
think of it as  being a 

Qbering the explicit form of day (x) is to  
"Et . For example , 

dOI2(X) dux 
dx2 

dxDdx1dx2dx3 

doz 
dx0dxldx3 

The symbol Nu is used to denote a t1me-11ke unit vector with a 
positive t1me-component: 

n.J.n I > nO 1 .  

It is convenient to introduce here the notion of a functional derivative 
and give a couple of useful rel-ations involving the same . We denote 
by PEG] some functional of a space-l1ke surface O' . Let o '  be 
another space-like surface which overlaps with 0 everywhere except 
in the infinitesimal vicinity of the point x .  Let 6V(x) be the volume 
enclosed between the surfaces c and 0 '  . The functional derivative 
of FEc] at the point x is then defined by 

I 

I 

I 
I 
I 

lim 
6V(x) -»0 

F[o'] - Fro] 
.. 6V(x) (A»l) 

If F[o] is given by 
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Flo] = JVdo(x) f x )  . 
O' 

then, by making use of Gauss' theorem, one can easily show that 

(A- Za) 

a f l x l .  (A.2b) 

Two other useful relations are 

V d0}\.(x) 9(x) 
6 

6o(x) J B g (x) I (A.3)  

and 

JV d o ( x ) B f ( x )  = JF dctu (x)5>kf(x) (A.4) 

Proof of (A.4):  

606(x)[ JVdu (x )a f ( x )  - J/d@ua,f(x)]  = a a f ( x )  - - a a f l x )  

cs 

II 

s o  that (A.4) is independent of the choice of the space-11ke surface 
o .  Choose t=constant surface: 

do7\(x) = (o ,o ,o ,  -id3x). 

Now we consider all possible choices of K and u .  

A = 1. u = j: 

V V 0 0 0 .  

V -. V 

Q
 II + 1 f 

1 X a 3 d F 
J 

0 ,  
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since f is assumed to vanish at very large distances . Similarly , 

| u j :  

d o  a of d o u a f  

-1 I .f 0 
J 

x a 3 d 

0 I 

and finally for p, =1~ = 4 both sides of (A.4) are equal . 
(A.4) for arbitrary IJ. , v  . 

Our matrix notation is as follows : 

This proves 

t : Hermitian conjugation, 

* : complex conjugation, 

t : transposition. 

As we shall have occasion to do contour integrals in the com- 
plex plane , let us recall the well-known Cauchy formula 

1 
27T1 a d z  f ( a ) ,  flz) 

z _ 
' c 

(A.5) 

where the symbols have their usual meanings . 
Appendix B.  

In this EJ--.-.-..--.- 
functions for at 

Lxplicit Construction of Wave Functions 
we shall discuss how 

case. Recall that upr (x) 
construct the wave 

satisfies 

ma) ukl'l(x) 

II 0 ,  (B.1) 

where r takes the values 1 , . . 
is 

l r 2s+1 . The normalization condition 

-1 d@X(x)T.1'k(I)(x)II)(5,-§) url"l(x) = 6 6 
i i '  (k (B.2) 

and the closure condition is 
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3 _ +. y ld k ukl'l(x) up(r)(y) = id(E5)A( )(x-y) . 
r 

Once u(x) has been found, then making use of 

425 

(B.3) 

vol"(x) = Cut(r)*(x) 

Gkl'l(x) = uklr)T(x)n 

I (B . 4a) 

(B.~4b) 

T 
vklr)(x) = vk(r) (x)11 (B.4c) 

one can obtain v ,  u and V.  
Let us put 

uk(r) (x) u (r) (k) fk(x) | (B . 5a) 

1 
3/2 

f ( ) = eikx 

e x  (211) 
(B.5b) 

§(r) 

The normalization condition now becomes 

(r') _ (k) ' '6nl1 (k)1"4(ik, ik)u I (B.6) 

while the closure condition takes the form 

r 

d(1k) 
2 w (k) r (B.7) 

where k is now on the mass-shell, k2 +m2 = 0  , and the equations of 
motion are 

A(1k)ul'"l(k) = 0 ,  

(k)A(1k) = 0 .  u (r) 

(B ;8a) 

(B . eb) 

The equations (B .8) suggest writing 

u('l(k) = d(1k)@('l(k). 

(kg = Ec*l(k)duk), -(r) 

(B. 9a) 

(B . 9b) 
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with 
- _  T 
§(")(k) = a l l  (k)'f1 , (B.9c) 

which follows from the relation 
T 

[d(ik)n'1] = d(ik)n 

It should be clear that the wave functions u(r)(k) and §(r) (k) as de- 
fined in (B.9) satisfy the equations (B.8) because of the mass-shell 
relation 

A(1k)d(ik) = d(1k)A(ik) = - (k2+m2) = 0 .  (B.10) 

Since 

[A(ik).h] = 0 ,  (B.11) 

we have 

[d(1k),h] = 0 .  (B.12) 

Therefore , if 

h;(')(k) = h(r)g(r)(k) 
I (13.13) 

then we have 

hut(r)(x) = h(1r)uk(r)(x) . (13.14) 

In other words , in constructing the functions 5 (I°)(k) one should make 
sure that they satisfy (B. 13) so  that (B. 14) may hold true . 

If we multiply (B.6) by u(r)(k) from the left and 
from the right and sum over r and r '  , we get 

by §("kk) 

d(ik)II4(ik,ik)d(1k) *2 w (k) d(ik) I (13.15) 

where use has been made of the closure condition (B. 7) . With the 
help of (B. 15) we can now write the normalization condition in terms 
of g(r)(k) and FElt)(kl= . 
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_ 6  n'\ = E(I°)(k)r4(1k,ik)u 
(r")(k) 

€(') (k) day) r4(ik , in) d(1k) 13 (r')(k) 

-2 L0 (k) E (k) day) f; (")(k) , 
which we rewrite as 

I`2 w (k) E(')(k) d(ik) 1; (r') (k)/2w(k5 6 I ii 
(B.l6) 

I 

The closure condition reads 

day) = 2Lu(k) ul'l(k)El')(k) 
r 

11 d (in) /" 2 w (by E (r) (k) E(')(k) /2 w (k) dual . (13.17) 
r 

Recall that on the mass-shell d(ik) is a projection operator 

d(1k) d(ik) a d(ik) I (B.18) 

where a is a constant independent of k .  Referring back to (IV.23) 
and (IV.25) we see that this statement is certainly true for the cases 
we studied. We take it to be true in general. Then (B. 18) implies 
that a similarity transformation exists such that 

-1 _ (B) sw(k)dGp(1k)spB(k) _ ease I (B.19a) 

where 

a ( B) a 
0 

for 
for  

B = 1 , 2 , .  
B>  2S+1. 

• • I 2S+l 7 (B.l9b) 

If we define a matrix I such that 

ras 1 
0 

if a = B = l , 2 , .  
otherwise, 

• • I 2s+1: 

we can rewrite (B.l9) as  
-1 

S (k)d(ik)S(k) = a l  I (B.20) 
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or 

d(1k) = a s(k)1 s'1(k), (B . 21a) 

SO that 

dG.5ak) = a 
2_+1 

r=1 

-1 
Sar (k) Sr B (k) . (B.21b) 

\ 

Again, if we multiply (B.2la) by d(ik) from the right as well as the 
left and make use of (B. 18) , we get 

a2d(1k) a d(1k)s(k)i s`1(k) d(1k), 

or 

d(ik) = d(1k) §7_ (§) i S-1(k)d(ik). t (B.22) 

Now by comparing (B . 20) to (B . 16) 
we can take 

I and (B.22) to (B. l7) ,  we see that 

i 
g ( ) at (k) 

II I (B. 23a) 

(B . 23b) 

Since We have §=€T'n | the relation 

, T  _ -1 
8rQN0B - SrB I (B. 24) 

CL 

or, equivalently , 
» A -1 I sin = I s I (B.24') 

must be satisfied. So it must be checked as an intermediate step . 
In view of (B. 13) we also need 

hG-BSB1° i s a r  . (B.25) 

Because of the (2s+l)-fold degeneracy we can always rearrange S so 
that it satisfies (B.25) . 
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.of (B. 20) we can write u(r)(k) and 0lrl(k) in terms 

429 

u,,f')<I<) = daslikl a 
I 
I 

a Sarlk) 
/za w(k) 

~/2 was) Sir (k) . (B.26a) 

and r 

if (r)(k) = d B n k )  

a I 

I A -1 
2w(k) Srd. s 

-| 

(k) • (B.26b) 

As a concrete example of the application of our method as 
prescribed above, consider the Dirac case. Here (we use Pauli rep- 
resentation) 

I AGE = -Gyk+m) 

diM = - G Y k - m L  

(B.27a) 

(B.27b) 

One finds 

d(1k)d(1k) = 2md(1k) I (B.28a) 

on the mass-shell. So we have 

a = Zm. (B. 28b) 

Recall that the boost 

L(k) w(k) + m 
2m 

on 1 k YlY4 1 _ I (B.29) 

has the property 



430 y .  TAKAHASHI 

-1 L (k) d(ik) L(k) lim d(ik) 
*k-»0 

m(1 +y4) 

2m (1 +2Y4> 
(B.30) 

In the Pauli representation 

i 
'1 

1 

\o 0 

Of 
0 l 

1+Y4 
2 (13.31) 

Keeping in mind (B.28b) and (B.31), if we compare (B.30) and (B.20) 
it would seem that we can identify L(k) with S(k) . Since 

TO Y4 (B.32) 

and 

L-1 (k) .J J (B.3 a) 3 

L*(k) = *1J(k) +m i v - y  k. 1 
1 4 1,/zmlw{k)+mJ I (B . 33bi) 

it is clear that the condition (B.24') ,  namely , 

A A -1 
I LtT] = I L I (B.2.4) 

is satisfied. So L(k)=S(k) is the correct choice . 
According to (B.26) we have , therefore , 

ul'l(k) = l w ( k )  k) 

p [ +.m -iii y4 ki] 
at 

1 
Y 

./2w(k)(uJ(k) +m) K 4w 

1 . . , 

/2oJ(k)(w(k)+ml [~1vk+m] 

i wiki n] 

I 

at 

at 
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where 

a = 1 , . . . , 4 ,  

r =  , l 2 .  

Note that above we replaced w 'iyiy4ki by y a w  -iyiki to make our 
expression covariant. Since we restrict r to the values l and 2 , 
this is justified because 

<y4) = war 
Similarly, one finds 

if r = 1 , 2 .  

E(r) (k) _ 1 
~/2Lv(k)(Lv(k)+m) 

[-1yk+m] 
r e  

Then 

v (y) (k) - * was u 6(r) (k) 

1 
'x/NU] (k) (w (k) +!'l1)- 

l<1yk+t**)C]m 
f 

1 
- »/§uJ(k)(w(k)+m)[ 

V(rl(k) = C (1yk+m)l . 
r e  

We refer the reader to the paper by Takahashi12) for more 
examples . 
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I .  Intl _oduqtiQn 

A .  Preliminaries . 
These notes are from a series of lectures which were devoted 

to functional methods in physics . We emphasize two functional in- 
tegrals , namely, the Wiener Integral and the commutative Hilbert 
space integral. We also include functional derivatives and other 
examples of functional integrals . 

The applications emphasize quantum field theory. We can of- 
fer two reasons for this choice . The first is the interest of the author 
in such applications . The second is the fact that quantum field 
theory provides a rich variety of situations where functional methods 
can be applied . 

We may note in this connection that we listed several appli- 
cations in the table of contents . However, a number of other short 
applications are included as  well . 

Let us make a few brief historical remarks . Significant early 
work on functionals was done by Volterra beginning in the 1880's . 
The Wiener integral dates back to 1923 . The commutative Hilbert 
space integral was constructed in the 1950's by Friedrich's and 
Shapiro and by Segal. As we shall see,  these two integrals are re- 
lated in a simple way. 

We mention the following as some of the more prominent con- 
tributions to the development of functional methods in quantum field 
theory: (1) Feynman's path and history integrals r (2) Schwinger's ex- 
ternal field and variational techniques , (3) Segal's investigations of 
free fields and of canonical systems , and (4) Symansik's analysis of 
generating functionals and his more recent work on functional tech- 
niques in Euclidean field theory . 

The essential prerequisite for these notes , from the physical 
side , is some acquaintance with quantum field theory. On the mathe- 
matical side, we presuppose general background rather than specific 
knowledge . (Some references to measure theory are made , but they 
are generally not crucial for following the arguments . )  

As to the rigor, the material covers a variety of topics , and 
the discussion is rigorous in some places but heuristic in others . 
(For some of the topics , like the time -ordered generating functional , 
a rigorous discussion is as yet impossible.) Moreover, we empha- 
size manipulations and applications , while long and detailed proofs 
are avoided . 

We made no attempt to be complete or consistent in citing 
references . In a number of cases we gave only one reference r which 
is neither the original work nor a comprehensive recent review. How- 
ever, much of the material can now be considered classical, and we 
felt that this justified in part the aforementioned neglect . 
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B.  Generalities Concerning Functionals. Notation. (1) 

We are all familiar with the real- and complex-valued func- 
tions on the Euclidean n-space Rn: 

Y = f(x) x € R n ,  y e l l  or c1 

Let us generalize this by letting x range over a linear space S of 
functions , or over some related space or set ( e . g .  , a space of distri- 
butions , or an abstract linear space) . Then f will be a functional . 

We will usually take for S a linear space of functions defined 
on a region of Rn. The usual notations for a functional will be 

F(x) or F( - )  or F ,  f['rI] , etc. r where x/V] E JZ. 

Let us now give a few examples of functionals . 
(a ) Fl{n} II j`dnuw(u)'n(u), 

where the functions w and T] must be such that the product is inte- 
grable (e .g .  , in the sense of Riemann or Lebesque) . 

We w111 discuss the restrictions like these (on W and "iI) more 
fully in Section II. For the present, such questions will be largely 
ignored • 

(b) F2[n} E exp d u  dnv K( 
L1 I V) 'al (l.1)fn (v 

I 

(c) F3{n} TO (vo) I 

(d ) F4{n} Eo{n} r 

where BoW is the ground state energy of a hydrogen atom in the ex- 
ternal potential 'rl . 

For investigating various properties of a function, a basic tool 
is the derivative. For functionals , the analogous concept is that of a 
functional derivative. Let us approximate the functional F1 above by 
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a discrete sum , 

P1{n} Fling : w(ui)1t1(ui)(Au1)- 

Then 

5-P-1 _ 
Aui a[tl(uil] 

w(ui) I 

and for the functional F1 , we set 

6s1/t)n(u) = w(u) . 
More generally, one can define 

61='ln} 
6T](u) 

+ e 6  
de F T ]  i J .r 

e-o 
(1.1) 

where 6u(v) =6(u-v) , the Dirac delta function. The usual rules for 
differentiation remain valid for functional derivatives , and we find , 
e . g . , 

6F2/6n (u) div = - t  1<(u,v)n(v)lr2 . 
if K is symmetric. Next we find 

6'f1 (V)/6T}(U) = 6(u-v) . (1.2) 

We can also set 

6 
611 (u) (v)] 

a 
Bui 

6 (u-v) , 

provided the contribution from the endpoints (in integration by parts) 
vanishes n 

A few words about the notation may be appropriate . We use 
a variety of different notations . However, the following points are 
generally followed . 

(i) The_.po1nts in Rn are denoted by u ,  v ,  etc. , sometimes 
by u .  etc. In particular, for a relativistic four-vector 
we write u=(u°,u). We use x ,  y ,  also To, X ,  f ,  etc. , 
to denote functions , vectors in a Hilbert space , and the 
like . 
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(ii) 
(iii) 

Function spaces are denoted by capital script letters . 
The coordinates in Rn and in Hilbert spaces are denoted 
by superscripts , e . g .  , 

u = (u1,. . . ,ur*) I x =  ( x 1 , x 2 , . . . ) .  

(iv) 

(v) 

Subs cripts normally indicate distinct points or vectors . 
field under consideration is denE°*"¥"",]' 

apart I D) 
A scalar glpntum 
by up . I 
is as !Id the :~a:-.nisramuz 
The metric is time-favored . 

I 

1'.': 
free fi *Zu The 

part ! 

C . Simple Applications . 
(1) (To quantum field theory . 

relations of quantum mechanics , 
2)) The canonical commutation 

I 

provide a heuristic basis for the field-theoretic relations . 
scalar field, the latter may be expressed as 

[up (t ii) ,up (t ,ml i`16({1-v) . 

For a 

(1.3) 

This relation may be realized by ta king a suitable space of func- 
t1onals with cp a multiplicative operator and co a functional deriva- 
tive, of .  (LZ) .  Explicitly, we plck a fixed time t ,  and let 

[<p(5) p] {n} 11(u)F{11} . [q5(v)1=l{n}=1'16F{n}/6n(v). (1.4) 

W1th this convention, however, one has the problem of identifying co 
as Btcp . 

(2) (To classical particle mechanics . ) The equations of 
motion of a particle moving under the influence of a potential V are 
determined by Hamilton's principle r 

3) 

6s{x]/6x1(t) II 0 r J =  1 ,2 ,3 .  (1. Sa) 

Here the xi (t) define a hypothetical path of the particle, with the 
initial and the final points x(to) , 3'<(t1) not subject to variation . 
Further, S is the action 

S[x} II 

t , 1  I it 

to 

(Tlx(t)} -V{34<(t)}) (I.5b) 
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(3) (To the calculus of variations .4)) The last example is 
typical of the calculus of variations , where we usually want to mini- 
mize or maximize a certain functional. For example , we may want to 
find a closed curve of given length and greatest area . For this prob- 
lem, it is convenient to take the arclength s as the independent 
variable . The curve must clearly be symmetric with respect to,  say, 
the u-axis . (Otherwise, the area could be increased by symmetriza- 
tion.) Hence QA =.fduy or 

%A{y] 

II d 
L 

o 
ids [1 -(§g>z y .  

For the maximum, we set 

6A{y}/6y(G) = 0 ,  y(0) : y(L) = 0 .  

This yields an ordinary differential equation whose solution describes 
a semicircle . 

We should like to point out that manipulations such as in the 
foregoing can easily lead to anomalies. We give two examples ; 

First, consider the functional 

Hy] II 2 1 
du Y (u) . 

o 
where y(0') = 0 ,  y(1) = 1 , and y is a real continuous function. It is 
clear that I can be made arbitrarily small (and positive) , but it can 
never take the value zero as long as y remains continuous . 

For the second example, consider the operator 

' 2 2` 6 /6[n(v)] E D. (I. 6) 

This corresponds to the frequently encountered term -q32~(v) in the rep- 
resentation (I-4) . Let us consider the following two functionals : 

I1{n] d"up(u)n4(u), (1. 7a) 

12 n} .t dnu1...dnu4w(u1 , ,u4)n(u1) ...T1(u4) . (I. vi; 

Then 

DI1{n} 12 p(v)'f]2(v)6(v-v). 
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The quantity 6 (0) is undefined (even though it may sometimes be 
given the value infinity) . 

On the other hand , it may be unnecessarily restrictive to say 
that the operator D is meaningless. We have in fact,  if w is sym- 
metric , 

DJ2 Ml 12 I dnuldnu2w(u1 IU2 ,v,v)'f°l(u1)n (112) , 

(iii) 

II. Several Kinds of Functional Derivatives 

an unambiguous expression for continuous integrable functions . 

A.  Examples of Function Spaces . 
We will now develop a mathematically precise formulation of 

the foregoing notions . We start with a review of some commonly em- 
ployed function spaces . 

(l) A Banach space 05 is def1ned5) by the following properties 
valid for all x,y€03 and a ,B € R1 or C1 (depending on whether a real 
or a complex space is desired): 

(i) 03 is a linear vector space' ax+By E 03 , etc. 
(it) There is a norm function, llxll € R1 , such that 

(ii-1) l x [ 2 0  and llxl =0¢>  x = 0 ,  
(ii-2) l<1xII = III lull , 
(ii-3) llx+yl S xI + al - 
Completeness: every Cauchy sequence in 03 has a limit 
in 03. (Only strong limits, e.g., Hxn-xll* 0, interest us . )  

A Hilbert space can be defined as a Banach space, equipped 
with a Herrnitian form ( x , y )  such that (x.x) = llxll 2 .  We use 
physicists' convention, (x,0y) =a(x ,y )  =(a*x,y) . We confine our- 
selves to separable Hilbert spaces, i .e . ,  having a countable basis . 

(2) Some other examples of Banach spaces are as follows . 
(Za) The space of functions x(u), u 6 S o  Rn, such that 

X Ill dnuw(u) x(u)l P < 
S 

m 
I (II. la)  

where w e  0 .  We set 

lx 1 
X / p .  (II. lb) 

This space is variously denoted: £P(S,w), Lp, etc . 
(2b) C -the space of bounded continuous functions on 

Rn, with the norm xl °° supulx(u)l . 
(Zo) Co-the space of continuous functions on Rn, with 

compact support (equivalently, with bounded support) . The 
norm is 
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II X supp x(u)l + Msupp x) I 

where the last term indicates the measure of the support of x .  
(Zd) 'KU-the space of HOlder continuous functions over 

an interval I c  R1 , with the index satisfying 0< l.1< 1. Here 

I I I  supulx(u)| + $;;5 lxlu} - x(u')l 
lu-u'l*' 

(II. 2) 

Properties (ii-3) and (iii) can be verified. 6) 
(3) We mention two basic spaces of test functions _7) 

(Sa) 19- infinitely differentiable functions on Rn with 
compact support . 

(Sb) S-infinitely differentiable functions on Rn which , 
together with all their derivatives , approach zero at infinity 
faster than the inverse of any polynomial. The following is 
the classical example of an element of D and of S:  

x(u) = expl-1/1.12 1/(1-u)2] for 0<u< 1 I 

o II otherwise . (II. 3) 

i . e . ,  

(4) If V is a linear vector space, the space of linear func- 
tionals f defined on elements X E v is the dual space V'  . We give 
two examples . 

(4a) For a Hilbert space TC one canlidentify 'KZ and 'aC'; 
given f 6 ZK:', H y ETC such that5) 

f(x) = (y ,x )  for all xGTC.  (11 . 4) 

(4b) S '  is the space of tempered distributions , and 
91 D SI . 

B . Functional Derivatives . 
Suppose that F is a functional on a function space 36 such 

that for !§ Grow H and for all T1 GM r 

F { € + e n l  ~1={€] eF1{*§,T1l + 0(6) 

where F1 is linear in n . Then for the given € , 

I 

F1{§ , -}  e ac' (11.5) 

We may write symbolically , 
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F1{€.n} dNuh1{€:11}u(u)- 

441 

(II . 6a) 

We call *11 the Volterra derivative of F .  This 
to the heuristic one of Section I ,  and we write 

derivative corresponds 

h1{€:u} 6F{€}/6§(u) .  (11 . eb) 

One may define similarly higher derivatives, e . g .  , 

h2{l§;u,vl II 62Fl€]/6§(!~l)5§(v)- 

Note that the he need not be functions in the usual sense . 
For example, if M = S ,  then the he define elements of S' (of. the 
examples in Section I) . 

It is often convenient to work wlth abstract Banach spaces 
without referring to  any specific spaces of function. One then con- 
siders , quite generally, mappings from an open subset of a Banach 
space into another Banach space , 

_ 'E . F°R1->N32 where R1 031 (II. 7) 

The case 632 = C  1 gives functionals such as considered previously . 
Since R1 is open , 

x i  R,1 and h6031 - x + e h E  6?,1 I 

for all € , real and sufficiently near zero. We construct, if possible I 

hF(X) 6 (d/de)p(x+€h) e=o' 

If we now keep x fixed, then we can define a map A :031*'B2 as fol- 
lows , 

(II. 8a) 

Ah 6hF(x) . (II. 8b) 

If A is a bounded linear operator, defined for all h€tI31 L then we say 
that F is Frechet differentiable at x ,  and 6hF is called the Frechet 
d1fferential.5)l10lNote that vhF is a map, in general nonlinear, from 
some sq C R1 into 652. 

If 031 is given as a function space, then we may relate the 
Pre Chet and the Volterra derivatives as follows : 

6hF (x) GF dnuh(u) . (11.9) 
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The Volterra derivative 
F e 01 . I of course, is not restricted to the case 

If the operator A is unbounded, or not defined on all of 631 
then one is led to the notion of the Gateaux differential. We shall 
not be concerned with such cases . 

| 

One of the most basic of these is the implicit function theorem . 

C .  The Implicit Function Theorem . 
The concept of the Frechet differential enables us to extend 

various standard theorems of classical analysis to Banach spaces . 
We 

can now give it the following formulation.9)'10) 
Theorem. Let lI3x,rBy, and 032 be Banach spaces , let (9 be an 

open subset of Bxxniy containing (x0,y0), and let f ° ( 9  -'B2 be a map 
such that 

(1) f(XO,YO) = 0 ,  
(ii) f is continuously Fréchet-differentiable in S ,  

(iii) for all (x,y) e 19, the differential 

6 2  of(X,Y) (d /d€) f (x ,y+eh)  € = O  (II. 10) 

has a bounded inverse as a function of h: i . e .  , as a map By*U3z . 
Then there exists a map from So " lF3x to did, to be denoted by y(x) , 
which is the unique solution of f(x,y) = 0 in a neighborhood of  
(xo,yo) . In particular, y(xo) = Yo- The map Y can be extended until we 
reach the boundary of (9, and is continuously Frechet differentiable . 

A function F (as in (II.7)) is continuously Fréchet differenti- 
able if for every h (in 031), 6hF is a continuous function of x .  

This theorem is of interest primarily for nonlinear functions . 
However, it is also instructive to see how it includes the standard 
result for Fredholm equations as  a special case. Consider 

f [ a , b }  lil b(u) + dv K(u,v)b(v) -a(u) II 0 I (11.11) 

where a , b ,  and f are elements of a certain Banach space 
seek to find b in terms of a .  We have 

r and we 

6 2  of{a,b] II (d /de) (b+eh+Kb+eKh-a)  (I+K)h. 

The implicit function theorem tells us that , if I + K  has a bounded in- 
verse , then the equation can be solved for arbitrary a .  On the other 
hand, one knows that if I +K  does not have a bounded inverse, then 
the equation cannot be solved for some a .  

This example illustrates the need for condition (iii) in the 
statement of the theorem. In the finite-dimensional case, this con- 
dition can be replaced by that of non-vanishing of the Jacobian. 
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D .  

te r r  
A ill 

Application to Dispersion Theory. 9) 
Let A(s) be a partial wave amplitude for a two-particle scat- 

'"'"'""'ss, s being the center-of-mass 
_ _.__ _ f  the phase shift 6(0)(s) and an " 

(0<  T] S 1) as follows : 

. 
I • 

i ty  paramet a- 

R e A  E x = in sin 26(0) I (11 . 1 Za) 

I m A E  Y='§l(1- 'r1cos26(O))u (II. 12b) 

We assume that A satisfies a once-subtracted dispersion re- 
lation, that there are no bound states , and that the contributions from 
the left-hand cut can be neglected. Let So be the physical thresh- 
old , let 

6(°)(sO) : x(so) = 0 .  (II. 13a) 

frm. rmore , let the functions approach definite limiting values at 
I 

6 (o) (°°) 

II 0 I x(°°) 0 I n( ° ° )#0 .  (II. 1 sb) 

The condition 6(0)(<=>) = 0 is somewhat special; normally one would al- 
low 6(0)(°°) =é l'l'IT , where n is an integer. We will comment on this 
later. In order to avoid centrifugal fa ctors k2»f, , we suppose the 
scattering to be s-wave . 

We remove the kinematic singularities , as  usual, by sepa- 
rating a factor p(s) such that 

p(s) (s -sO)% near s = s o ,  p(°°) #0- (11.14) 

For example , for n -Tr scattering, p =[(s - s 0)/4s] . 
A convenient way of taking the conditions at infinity into ac- 

count is by means of the transformation 

S > v(s) = (s -s0) /s  . (II. l a )  

so  that v(so) = 0  , v(°°) = l . 
transformed according to 

The factors in dispersion relations are 

ds ' l s / s ' ( s  -s')_|| II dv'(v' - v)l1 (I1.15b) 

For brevity, we shall use the notation x(v) for x(s(v)), etc . 
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The once-subtracted dispersion relation now is 

l 
X 

?[6(o)} = 0 
o 

x (v) 0.p(v) + o(v) I (11.16) 

where a is a subtraction constant. We may ask if the perturbed 
equation 

F{6}(v) - Q(v) 

HI F1lg ,6 ]  (V) II 0 ,  (II. 17) 

SI 

Fri;  

where g is a given function, has a solution 6(v) r and whether this 
solution is unique . 

To formulate such a question properly,  we have to require all 
the given functions to belong to specified spaces , and to seek the 
solution 6 also within a definite space. For our problem, a suitable 
s _ of real HOlder continuous functions olil¢EQ8v§}§l 
at .r (Note that could not be Incorporater 

i v = 0 . )  For the perturbation g and the Q' 
we require a stronger condition, namely that g, 6 E B  where 

.JO-AllWlll.. 

p Et 

03 II {f E am" : f (0)  = f(1) = 0} (II. 18) 

Clearly, IB is a Banach space if it is equipped wlth the same norm as 
ztcv, 1 . e . ,  (11.2). ' 

In analogy with the example of the Fredholm equation, we 
compute 

(62  AF1l9,6})(v) [ (v) cos 26(v) A (v) 

u 
D (v) 

TT 

l 
P 

dv'[Tl[v') sin 26(v')] 
D(v')(v'-v) A(v')  -= (LAl(v ')-  

(II. 19) 

a 

The question now is whether or not the operator L has a bounded in- 
verse. To investigate this question, we consider the equation 
L A  =h where h is arbitrary in IB . (We also restrict the solution A to 
B . )  We arrive this way at singular integral equation of a kind for 
which there is an extensive theory available. 6) 

The conclusion is:9) There is a unique A for a given h,  and 
the map h-*A is bounded. Consequently, by the implicit function 
theorem, there is a unique solution 6 to F'{6} - g  = 0 ,  
continuously on g and reduces to 6(0) if g = 0 .  

If we had assumed 6(0)(s ===») =92 n1T , not necessarily zero , 
then two complications would develop. First, we could not utilize a 

which depends 
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space like no so  easily. Second, the equation L A  = h  would have an 
n-parameter family of solutions if n> 0 , and if n< 0 , then (-n) sup- 
plementary conditions on h would be required . The implicit function 
theorem of'Section II.C would no longer apply. We refer to  the cited 
work of Lovelace9) for further dis cusslon . 
III. Generating Functionals 

A.  Concept of a Generating Functional . 
Now that we have the Volterra derivative 

sider the following expansion of a functional: 
I it is natural to con- 

i P{IO+ZI} -p{/O} + 
k=l 

ii 
k !  dnu1 dnukfk(u1 , .. .,uk)I(ul)...](uk) . 

(III. 1) 

The functions fk will be assumed symmetric. This is a power series 
in z , and we call such an expansion a Volterra series . We see that 

fk(U.1 _f • . . I lk)  = Is k/6 
I(L

l l)-. 

6I (Uk)pO+] - I  
JO 

(III. 2) 

The functional Fl U consequently contains the information contained 
in the infinite sequence of functions 

to F{IO} , f].(U1_ I f2(u1 ,  112) I • 1 • g (III. 3) 

and is called a generating functional of the sequence . Conversely, 
given a sequence of symmetric functions , we can construct the func- 
tional . 

We assumed implicitly in the foregoing that the series (III. 1) 
converges for z ,  I ,  and Io suitably restricted. However, such series 
may be useful even when they do not converge . 

A special case of generating functionals is the generating 
functions , which are familiar from the study of the special functions 
of mathematical physics. In fact, if ](u)=6(u-t) (u, t€  RI),  then 
(III. 1) reduces to 

F(t,z) 2 
k=0 

k z 
' 9k(t) .  (III . 4) 

w 
Usefulness of generating functions may be illustrated 

simple example. Suppose that F depends only on the quantity 
22 - 2tz . Then 

a 
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z6F/Bz = (t-z)a 1=/at, (111.5) 

and this equation implies a prototype recursion relation , 

(III. 6) 

This argument applies in particular to the Legendre and to the Hermite 
polynomials , 

(22 -2t2+1)'% Z a k / k : ) r k !  pk(t)] , (III. 7a) 

exp(-zZ +2tz) : Y. (Mk/ks) Hsu) . (III. 7b) 

Both of these expansions have non-zero radii of convergence . 
B . Digression on Vacuum Expectation Values . 

In quantum field theory we encounter various sequences of 
is (strictly speaking, " 55*'""'butions) . In particular, one 
<:e512) (i) Wightman i , i . e .  , the vacuum expectation 

values of products of field funct!-oIE q0(uj) , 

W n(L1l,... ,Llnl (cp(u1),, -<0 (un) ) o I (III. 8) 

and (ii) time -ordered functions I 

Tn(Ul/ '~° ,un) (up (u1)...(0(un9+) I 

o 
(III. 9) 

where 

(v(u1)...q>(unD+ = <p(uil)...(;0(uinl I 

O u .  2 
11 

O u. 2 
72 

. . . Z  O 
Ulna 

Both the Wn and the To are usually assumed to be distributions in S '  . 
Among other important functions are the retarded functions in , 

of which we note a special case , 

r2(u,v) = i 9 (u-v)([cp (u) ,cp (Vu) O. 

[Here 6 (u )= l  if u0> 0 ,  = 0 if u'S 0.] We shall not consider the 
question as to whether or not the existence of ,  for example, the To 
can be derived from other assumptions . 

For the free scalar field of mass m , all the 
cah be expressed in the following way. We recall , 

(III . 10) 

(0) ) ndtheTri 
a who 
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( 
)) )(u2 

)(u1)q> 
o 

(o (QP 
) =  

( 
rUn 

)Jul 
) E  wzn 2 

( l(l ' wzn 
l 

(2 rr)3 
d31;* 

2ko e-ik(u - 1 UQ) 
(III. l l a )  

Then 

¢§°)(1,2) E T;0)(u1,u2) = e(u1-u2)w°) (1 ,2)  + e(u2-u1)w 0)(2 , 1) , 

(III. I lb) 

(o) _ 
W2k+1 ` 0 .I 0 I 

( ) 
T 2k+1 

Tgml , ...,2n) = Z T 0)(i1 ,i2) . . .T 0)(i2n_1 , i2n) I 

(111 . 1 lc) 

(HI. 11d) 

where the 511111 extends over all 
For the W2no , we replace the 

'fl0)(l ,2)  

lurlitions of {1,...,2n} into pairs . 
T 2 0  by W 2(0) in (III.11d). 

Equation (In. l ld) gives in particular, if we write 
E (1,2). 

T4(0)(1, .. .4) II (1,2)(3,4) + ( l ,3)(2,4) + (1 ,4) (2 ,3) .  

This function corresponds to the trivial scattering matrix , 

( p . q l S l p ' . q ' )  6(p-P')6(q-q') +6 (p-q') 6(q-p') . 
For interacting fields, we are usually interested in what remains when 
this trivial effect is subtracted off. We therefore define recursively 
the truncated functions , as follows (as usual, we assume Wl=T1=0)2 

T TO (1.11 ,u2) II T2l1.l1,U.2) I (III . 12a) 

T T n (up ,... ,un) : T o  (111 , . . .  lun) 

1 

T T ZTm1(u1,...,uiml) Try(uin,... ,un) I (III . 1 zb) 

where N=n-mk+ l  
{ l ,~ - ,n } .  

The 
analogous way. 

f and where the sum is over all partitions of 

truncated Wightman functions We are defined in an 
For the free field functions we have , in particular , 
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w(O)T II 0 and T (o)T 
:n 

II 0 ,  if n > 2 .  (III. 13) 

proved . For the functions 
13) Take n point 

purely space-like. v=  

T/ W n\U1 

F 
(0 ,a 

I I \ . 

Qollowing cluster property can be 
crimes, , let V be 
Het Jo e R1 , and Consider 

o 
I l l  : Uno 

+I. 
'"k'"k+1 v ,  , u n  + R  . (III. 14a) 

Then as K-»°°, the arguments of WHO separate into two clusters, and 
asymptotically 

W T  
n < e  A.:  

- K M m  (III. 14b) 

-so) 
I 

Here rn is the lowest mass of the theory, assumed non-zero. It also 
follows that the corresponding function Wn factorizes in the limit 
A 

w - >  n We(ul | . . .  ,\.la) Wn_kluk+l , . . .  Illnl . (111.15) 

(We made use of translational invariance . )  

C . The Time-Ordered Generating Functional. 
Of the vacuum expectation values introduced in the foregoing , 

the Wightman functions are not symmetric, but the t1me-ordered func- 
tions are . Hence the latter can be used to construct a generating 
functional. We should emphasize, however, that in view of our 
meager knowledge of interacting fields , the material of this part 
(III.C) is strictly heuristic . 

The generating functional T can be given in closed form, 14) 

4 ad u (;0(u) I(u))+) . 
. o 

Ti I] II xp i (III. 16) 

The factor i was supplied to improve the chance of convergence and 
to make the operator unitary ( i .e.  , heuristically) . We shall see be- 
low [Eq- (III.26) and also Section XII] that I has a natural interpre- 
tation as an external c-number source. The time-ordered exponential 
is defined as a suitable limit of the product 

expo I 
U0 stl 

4 d MPI) QxDQ tlsu°srQd4 uqo 
/. exp 1 t Su 

n 
Od4u ii) . 

(III. I7) 
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It follows that 

6 
16](V) T{ In II 

, 4 cp 
eltd u I ( v 9 +  

o 
(III . 18) 

Indeed, one may argue that if, for example, t1< v°< t2 , then the dif- 
ferentiation will bring down cp(v) just before or just after the second 
factor in (III.l7) to a good approximation. Then, in the limit, one 
should get the expression in (III. 18) . We conclude also that 

2 .2 . -  [6 /1 6I(vI)6I(v2)l Tin I=0 : T2(V].lV2) I (III. 19) 

and similarly for the other functions T o .  ' 

One may also construct the generating functional To{ In for the 
truncated time-ordered functions . It is a matter of easy combine - 
tonics to show that 

l 

T{ U exp T0{ I] v (111.20) 

for T .  
We next want to construct a functional differential equation 
Suppose that the field cp satisfies 

(la - u2)Q0 

II 

M°93)ren ' (11I.21) 

For the renormalized interaction term we can take the following form 
(which has been established in perturbation theory15)): 

(¢p3)ren(u) lim 
§-'o 

[mu-€)¢(u)¢(u-§)5 -p(€)(;(>(-H/[1 +G(§)1 

(111. 22) 

Here Ii is to be space-like, the functions F and (1+G)'1 may be 
singular as Q 0 ,  and 

=ABC= = ABC A(Bc)o B(Ac)o c(AB)O. (111.23) 

However, the detailed structure of (cp3)ren is of no consequence for 
us c 

We also assume the canonical commutation relations 

[q3(t ,u) , op(t,v)l = 1-1 6(u-v) (111.24) 
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'O I 

act on T .  
an extra term , 

1 
it 

(e1j`d4u<p] 

In general, one has [camp] =i'1Z3'1 6 , where Z3 may be zero. It is 
1»»~n»=nE-wiéfor us that €$§&H, and then it can be made unity by a scale 
_ _ _ _ i t i o n  of the (In perturbation theory, Z3> 0 for the cp4- 
coupling in two-dimensions and in three-diménsions of space-time . )  

Now, from (III. 18) it may appear that we will obtain an iden- 
t1ty by replacing op(v)-° 6/i6 I(v) in (III.21) and by letting each member 

Actually, differentiation with 
as the following arguments' al 6) 

1f°°d4ucp] 
(°(vD+ t + + 

to time gives rise to 
(here t=v0)° 

> 
at 

t 4= 
' d ) (;0(v)<e1I'co up 

cp u 
4 d ft 1 (e +{cD(v)+i Jpo_ u -t 

d3G' [<p(v), Q 1 ( u ) } ( e  
if-t..d*u(;0I> 

+ 

cei fd uq0/§6(VD 
+ (III. 25) 

apply a/at On the other hand, when we n ,  the commutator 
[op,cp] = 0 will be replaced by [cp ,op ]= i  This will give a term 
proportional to I(v)T- One then obtains the equation 

( _ 2 l  6 
u ) i  6I(v) T{ n IM] To 13 (III. 26) 

We shall return to this equation in Section XII. C .  

D. Molecular Distribution Functions . 
We consider a system of N identical classical particles , 

which is described by the phase-space probability distribution func- 
t1on, called the molecular distribution function,17) 

N D N D q.1lpll°l l IqnIPn or I ` l , . . . , I IN  I 

where re = (quo ,pa). This function sill be assumed symmetric, and of 
course it depends on the various parameters of the system such as 
volume and temperature . 

In the typical cases of interest, DN depends on a very large 
number of variables . More useful functions are the reduced d1str1- 
bution functions is (or DsN, below), which describe the correlations 
of a small number of particles (like molecules) . To define these , 
we first integrate DN (N> s) over the phase space of all but S mole- 
cules I 

(111. 27) 
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N D s ( r 1 , . . .  Js) 
s 6 6 N d D V Id rs+1 'n ('1' ,iN) . (III. 28) 

Note the following dependence on the volume V ,  

-N V r D N ~  s constant . 
(III. 29) 

It is now reasonable to let N-°°° , with the intensive quantities 
like the density and the temperature kept constant: 

f 
S 

I N 11m DS . 
N-'°° 

(III. 30) 

is 

The functions fn have some analogies with the vacuum expectation 
values . In particular, the in are Euclidean invariant (provided there 
are no external fields and the interaction is Euclidean invariant) . The 
fn are a1so§§'***"'-'**§ed to have the cluster property: If to =re +X(q ,0)  , 
where q g then and non-zero r 

Ct is 1 .1 I . | I f IIk'!k.|.1""'Is -> k ' 1  I • . | lrk 

x f s-k rk+1 ,rs |' I • I I (HL 31) 

in the limit K-' m , i .e  . , for infinite spatial separation of the two 
groups of points , in analogy with (III. 14) and (III. 15). The validity 
of (III. 31) of course depends on the behavior of the potential at large 
separations . 

We may note that we confine ourselves here to a heuristic 
discussion, even though various rigorous statements can be made .18) 

Let us introduce the generating functional for the is , 

6 
. d  rSfS(rl.,...,rn)X(r1)...X(rS). 

(1II.32) 

As far as we know, there is no direct interpretation for F , in contrast 
to the case of the functional T of Section III.C. We comment below 
on possible limitations for the argument X . 

The functional F can be utilized in various ways . For exam- 
ple r if the system is not in equilibrium, then the in are time- 
dependent. This time dependence can be described by a single 
equation for F ,  which we will give presently. 
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We start with Liouville's equation , 
a n  
Bt 2 

G.=l,2,3 
k=l,...,N 

dHN 6Dn SHe' BDn 
cc' - a' - 

Bik 81% Bpg' éqg 
(111.33) 

For the Hamiltonian we assume 

HN 

II 52/2m + §@(la. qj I). (III. 34) 
i<j 

The procedure is now straightforward, even though the equations are 
somewhat lengthy. We iIiIE*'""te both members of (III.33) as in 
(IIL 28) . This yields an r',.mlrpn relating DsN and D§i.1 , which is 
valid for all N, and hence also in the limit. The resulting hierarchy 
of equations is then seen to be equivalent to 

8F{X} 
Bt 

II 

-»2 ad"tl, 6X(r)] x(r) + L 
2 d6rd6[' {x(r))((t') + 

+ 0x(r)+ox(r ')} [ I (III. 35) 

where o is the density ( i .e. , N/V) and the brackets are Poisson 
brackets . 

Let us now suppose that the system is time-independent and 
that it has a Maxwellian velocity distribution for ea oh N and in the 
11mit. Then the foregoing equation can be reduced to the following 
for PIN , C, being a function of three-vectors q : 19) ,20 )  

a 
Bqc' 

H 3-° t+B d q '  am (l<=1-51"l) 
Eiqa FJ 

621' _. |- 
(?:i)+5Q(q'l L c(<i") "J 0 .  (III. 36) 

The constant B = 1/kT corresponds to the assumed Maxwellian distri- 
bution . 

At this point it seems natural to make the substitution 

QE) > C ( q )  Q(<T) + 0  (III. 37) 

However, we see from (III.3l) that the functions f do not vanish at 
infinity. Consequently the argument function X in (III. 35) must be 
restricted (for example, to compact support) and a similar restriction 
must be made on g . (In the field-theoretic case, Section III.C, if 
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the functions T o  are assumed to be in S '  , then the source I must be 
in S . )  _ 

It follows that the substitution Q-'Q cannot be effected in 
(III. 36) . However, we can introduce the analogue to the truncated 
vacuum expectation values . The desired functions have the gener- 
ating functional G which satisfies, of.  (III. 20) and set F {0]= l , 

p{Q} = exp Glcl. (111 . 38) 

The transformation F *  G is nonlinear, and the equation for G 
can be obtained from (III. 36) by replacing 

*u 
4*  

6G 
6;(Ei) r 

_ 62F_ 
5c@)6Q(q') 

> 6 2 5  
'5§(E1) 6.€{5I~|»') 

+ KG 6 6  _ 
65(5) E-§(<1l') 

(III.39) 

In the resulting equation for G ,  the substitution Q-#E is admissible 
for potentials which vanish at infinity sufficiently rapidly. This sub- 
stitution can be used, for example , for finding a solution in closed 
form , see Section VIII.A. 

IV. _The Wiener Integral 
The present section, except for Part D ,  is based largely on 

the review article of Gelfand and Yag1om.21) 

A .  Basic Notions . 
One interpretation of the Wiener integral is as an expression 

for the average value of a quantity for a particle or particles under- 
going Brownian motion. For the one-dimensional case, let in (t,u) be 
the probability density that such a particle at the time t will be found 
at the point u .  This function satisfies the diffusion equation 

aw/at II Do 21l'/8112 I (Iv.1) 

where D is a constant. We will take D =  for the remainder of Sec- 
tion IV. (But we note that one also often takes D =  . )  

If the particle is known to have been at u = 0  at time t = 0  , 
then we have the initial condition 

1 
4 

$(0.1.1) = 6 ( u ) ,  (Iv. 2) 

and the solution 

lbltfU) 
1 

(21Tt)'§e -u2/2t 
(1v.3) 
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Similarly, the probability density that the particle , 
passes through the points 

initially at u = 0 , 

"1 , 

respectively, is 

/ T , , . . . ,  M 1 "1 

,u at times m 0 T < , , , < T  < 1 m ,  

Tm,um) = l(21T)MT1(T2-T1)... (Tm'Tm_1)] -é 

X exp 
1 
2 H 

z -u1) 
2 

(u2 
_TO 

u1 + 
T2 T 1 

+ 

(IV. 4) 

Let us now consider the probability that the coordinates 
up=x(Ti) of such a particle satisfy 

for i at S x(Ti) S bi 

This will clearly be given by 

be I 
6 1  

I iN; 
du l ' a  

m 
dumllr1,u1; 

1 , 2 , . . . , m .  

I Tm :Um 

(Iv. 5) 

(Iv.6) 

This integral is also the expectation value of the following functional 
defined on the spa ce of particle paths : 

NX] II l 1 
0 

if (IV.5) is fulfilled , 
otherwise . (Iv.7) 

This suggests that the expectation of more general functionals 
FIx] can be found as follows . Suppose that x('r) is continuous for 
OS T S  t ,  and x(0)=0.  We then select m - 1 interior points , 

0< T1< . . . <  Tm-l< T m t ,  

and consider, in place of x (T )  
mined by the vertices 

I the polygonal function x ( T )  deter- 

X(Ti) c(Ti) E "1 

We then approximate F{ x} by 

for i = 1 ,  ,m 
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Ffxl E F n ( u 1 , . . . , u m ) ,  

and form the expectation value 

du . . .dum Llr(T1 ,u17 . 
l • • f 

/ T 
M'Um)Fn\U1' Hum (IV.8) 

Finally, we pass to the limit 

m > ° ° ,  max(Tk+l To -> 0 .  (Iv. 9) 

ions 
it by 

I 

If this limit exists and is independent of the choice of parti- 
we call it (provisionally) the Wiener integral of F ,  and denote 

dHw(X) F[x} or k W ( x ) e (  ,x') F{x] (Iv.10) 

(or tdliwl:', etc.) . The first notation reflects the fact that the Wiener 

integral is a measure-theoretic integral. Consequently, the standard 
theorems , like the Fubini theorem and the dominated convergence 
theorem, remain valid . 

The second notation shows the Wiener integral as the (commu- 
tative) integral over the Hilbert space of real functions x(T) on [0 ,al , 
satisfying x(0) = 0  and 

(x ,x>  II (1v.11) 
t j dT x`2(T) < =°. 

O 

We may note in this connection that the exponent of lJI(T1 ,ul...um) 
gives 

lim 
max ( A kT)- 0 

l 
2 

AkX 
AkT ) 2 A k T ]  = -%(>z,x°) (Iv.12) 

I 
I 

We also note that two functions such that X1 - x 2  =constant are 
equivalent with respect to the norm (Iv. I I)  , and hence the condition 
x(0) = 0  removes an inherent ambiguity . 

The measure-theoretic aspect and the Hilbert space aspect of 
the Wiener integral will be dis cussed more fully later on. In particu- 
lar, we shall see some drawbacks to  the present definition in 
Section IX. C . 
B.  Two Examples . 

We will now describe the evaluation of the Wiener integral for 
two kinds of functionals. We will assume a special choice of the 
subintervals [Tk,Tk+1] and, in the second example , a variant to the 
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polygonal approximation. It will follow from the dis cussion in Sec- 
t1ons VI, VII and IX that functionals of the two kinds are in fact inte- 
gralile , and that a variety of approximating sequences may be em- 
ployed for evaluating the integrals . 

First, let 
f{ x] c(t1) {(to) (1v.13) 

Let the points to be among the points Ta . Then the approximating 
expression (Iv. 8) becomes exact and can be evaluated in closed form . 
If k is odd, then one encounters integrals like 

to 

-oo 

- u 2 s 2 ' 1  due / u p  

I as factors and the result is zero. For k = 2 n ,  one obtains 

v 
L dLJlW(x)x(t1).-.x(t2%) b(ti1 ,tip) " 'b(t i2n_l It12n) . 

Uv.14a) 

where the sum is over all partitions of { 1 , . . . ,2n} into pairs , and 

b(ti,t j) = Min(ti,tj) dIJ.W(x) X(ti) X(tj) . (IV. 14b) 

For the second example , let 

h{ x] e x p  
=t 2 

d T  p ( T ) x  
o 

where p is continuous and 2 0 . We let AT =t/m , 

(T) ]  I' 

To jAT, also 

(Iv.15) 

T . p 
J p ) ] ( ) J ( T . - X 

J 
u 

and we approximate h by 

1 
2 exp(_ AT D 112 i i  

The approximating integral (Iv. 8) now has the form 

C du ...du e-Zajkujuk 1 n 0w%N ldetlaikll -é v (Iv. 16) 

where 
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(ask) 
1 

ZAT 

a l l  -1 

-1  adz - 1  
(1v.17) 

- l  
-1 mm a 

a 1 mm 
2 

(AT)  pm, a . .  2 
11 

2 
(AT) Pi 

for i< m .  The evaluation (IV. 16) may be obtained by diagonalizing 
the quadratic form with the help of an orthogonal transformation . 

We next set 

D(Tk) d t . n  . e (a1J)i,j=k+1,...,m 

The expansion of a determinant in terms of its minors yields a recur- 
sion relation for D ,  and in the limit IN-»GO one gets 

2 2 d D(T)/dT - p('r)D(T) = 0 .  (IV.18) 

The Wiener integral of h may then be expressed in terms of a solution 
of this equation. In conclusion we should say that the details of this 
particular solution are not especially important, but Gaussian func- 
tionals like (Iv. 15) occur constantly. 

C .  Two Generalizations . 
One obvious way of generalizing the Wiener integral is to 

take the underlying space to be n-dimensional. Then, in place of the 
basic relation (Iv. 3) we have 

Llln(t,L1) 

Similarly, in Eq . (IV. 8) we replace due by dnllk, and the functionals 
depend on the vector-valued functions x(T) .  Except for other obvious 
modifications , the construction remains unchanged . 

Note that if the functional factorizes 

(2nt)``"e`i"2/2t 

I 

(IV. 19) 

1={3'<} = q1=k{xk] I 

then so  does the Wiener integral , 
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duwmim = H j`d»W(xk)1=km<k1 (Iv.20) 

Another generalization depends on specifying the final end- 
point as well as the initial one. Thus for n dimensions we may re- 
quire 

x(t1) x(t2) -4 , h r t t , V2 W e e 1< 2 (1v.21) 

and we allow, in general, t1 740 and v1;¢TJ'. The resulting integral is 
called the conditional Wiener integral . In order to glve an explicit 
definition, we can take the approximating integral (Iv. 8) and make the 
obvious modifications implied by (IV. 21)-in particular, we integrate 
over d u  1 "°dNUm_1 but not over drum . 

We will indicate the conditional Wiener integral subject to 
(W.2l)  by C(V1 , ' / '2),  with the dependence on the to usually sup- 
pressed. We have , for example, the evaluations - - - - 2 2 t - t  dl.,LW(x) = l2TT(t2_t1)] one (Vg V1) / ( 2  1) 

"cWi »72> 
] ,  

(IV.22) 

l" d u ( x ) x ( t )  = [(f-t1)<0t2 + (t2-t)v1](t2-t1)l1I, 
0(§'1 A72) 

(IV.23) 

Iv for the unrestricted integral. In 
Etwo limiting cases give v11 and 
'E directly from the contraints 

in place of go. 23) we 5-i 
v2/ .  respeB,@§ ' i  . 

The following relation is obvious (for integrable functionals) r 

du (x)F{x} 
Jc(G'1n7'2) W 

dl~lW(x)F{x} , (1v.24) 
~£é(t1)=G'1 

and so  is the composition law, for t1< t< t2 I 

d F 
c ( 8 2 )  ' n  

II d *'w d"G' j -o 
Xlt1)=V1 
5'<(t)= u 

dI.1wF. (Iv.25) 
§(t)=§ 
-o x(t2)=\; 

In particular, if F depends only on the single value x(t) 
right hand side becomes 

I then the 
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d"E1=(E) I d l . / V (  ) 
( - . - )  

do (Iv.26) 

a generalization of (Iv. 23) . 
(Iv. 22) . The two conditional integrals are as in 

D. The Diffusion Equation with a Potential . 
Suppose that Q(t,u) is the solution to the equation 

aQ/at = F A Q  - V(u)Q , GV.27a) 

with the initial condition 

Q(0,u. = 6(u). (Iv. 27b) 

Conditions on V will be specified presently. Now, it is a remarka- 
ble and basic fact that for t> 0 r Q can be expressed as a conditional 
Wiener integral: 

Q(t,u) 
II 

':?(0)=(T 
§o(t) =E' 

d x e x  H W ( )  P [- tdfr Vli*(T)}l 
O 

(IV.28) 

This formula is known as the .Feynman-Kao formula . . 
A simple proof can be given along the following lines . 22) Let 

us assume that 0 5  V(u)S M . Then we can expand the exponential and 
justify term-by-term integration. suit is also valid if only 
OS V< °°, but then additional argum must be provided. We also 
assume for simplicity that V is continuous . One can,  however, al- 
low V to depend explicitly on time, without additional complications . 

We now convert the differential equation into an integral 
equation 

Q(t.u) 1l1n(t,u) 
t -° -» -a -o -| 

dT d"§ in(r-T,u-§)v(§)Q(T,§),  (1v.29) 
O 

where in is the solution for V = 0  (see (IV.l9)). We take Q=-ln as 
the zero-order approximation, and iterate. For the term linear in V 
we find 

do-€V(E) [412(-T>] -in e-(u-€')'V2(t- T)e-g2/2 T 

UV.30a) 

On the other hand r 

linear term , 
the expansion of the Wiener integral gives , for the 
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t 

due(x)v{x(T)} 
dT ~lc(b',E) 

al dT d "Ev(§ ) "  - o - o  

C(0,€) 

(1v.30b) I , 
N C(€,u)  w 

where we used Fubini's theorem and the discussion of Section IV.C.  
If we evaluate the conditional integrals as in (IV. 22) , we then obtain 
agreement with (IV.30a) . 

The higher-order terms can also be shown to agree . Conver- 
gence is no problem of OS VS M , as  we already stated. Hence the 
series for Q satisfies the integral equation (IV.29),and also the dif- 
ferential equation (IV.27a) with the initial condition. The proof of 
the F . -K .  formula is complete . 

The foregoing proof presupposed the measure-theoretic basis 
of the Wiener integral (for example , we used F'ubini ' s theorem. Note 
also that the foregoing proof gives no clue as to how the formula 
might have been discovered . In Section XI we shall describe another 
way of arriving at this formula . 

An immediate consequence of the F .  -K. formula is 

Q(t ,u)> 0 for t >  0 r 

which is not obvious from an inspection of the dig 
Strict inequality follows from QUO e'Mtj (of. (Iv.? 
from measure-theoretic considerations in Section 

Qtial equation. 
o:r,if M"o°, 

For future reference we note that the Feynman-Kac formula can 
also be wrltten as:  

-r -t -I 

( u l e  H l v >  II -»duw (x) exp<- d Tv) . 1; L§'(0)=u 
>?(t)=*v 

(IV.3l)  

E .  The Partition Function . 
We derive here , without a detailed justification of the argu- 

ments , a representation for the partition function which will be 
needed in Section V.  

Let us ;""'""°'§ 
Hamiltonian Hs 

erlan N-particle system which is governed by the 
5)' A +v with a discrete spectrum , 

H X -  = E. . 1  
J ] X ]  

Then the partition function of statistical mechanics is 

j 0 1 2 r I I' . l . l 
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-B ET where B = l/kT, Z = y e 
j 

and may be written, if the eigenfunctions are normalized I 

(IV.32) 

Z 3N-» -. -. -BE- 
d u x j ( u ) x j ( u ) e  J 

j 

Next we observe that 

Q§'J(B .u) = 
_| . 

J 

*-+ 
. ) . 
] ( V  X J  

(u)e 'B
Ej (IV.33) 

is the solution to 

aQ/aB = lam) A -v]Q, (IV.34a) 

I which satisfies the "1n1t1a1" condition 

Q(0,u) = 6(u-v) . (1V_34b) 

N
 

By applying the Feynman-Kac formula (IV. 28) we obtain 

B 
diV{x(T)} ]  II d . I d W (x) exp {- 

O 
I 

I (IV.35) 

which is the desired representation. (Here we use units where m =  1 . )  
Note that for a free particle, V =  0 ,  the Wiener integral is 

positive and independent of u .  Consequently, we get Z=°°, as we 
should, for an infinite volume . 
V .  Inequalities and Their Applications . 
A.  Preliminaries. Convexity. 

There are, relatively speaking, few functionals whose Wiener 
integrals can be evaluated in closed form. The best-k'=*wn of such 
functionals are the polynomials , the Gaussians , and ear expo- 
nentials , and we saw examples of the first two types lion IV . 
However , the integrals which occur in the study of interacting sys - 
rems with an infinite number of degrees of freedom ordinarily cannot 
be handled s o  easily . 

The Wiener integral can be valuable also in such cases , as it 
may clarify and simplify some derivations . Moreover, significant 
conclusions can be obtained with the help of inequalities , as we 
shall see in the remainder of Section V .  

V n 
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We note, first of all, that the standard inequalities for inte- 
grals over finite-dimensional spaces carry over to the limiting case of 
the Wiener integral. This follows from the fact that ansbn for all n 
implies 

lim an  S lim in . 

To give an example, the Minkows ki (triangle) inequality for finite- 
dimensional integrals implies that 

S llfl f 11 +QIlp p in + I p 
where 

II fll = { d u ( x ) l  f{xllp} 
p 

1/p 

We now turn to convexity. This notion gives rise to many 
powerful inequalities . We recall that a real-valued function Mu) on 
an interval I of the real line is convex if for all u , v i  I ,  

S ¢@(u+vD %l1I(u)+é"l'(v)- (v.1) 

One can show that a convex function is necessarily continuous . 23) 
However , it need not be differentiable . 

If '11 is in fact differentiable, then the inequality (V.l)  is 
equivalent to each of the following (in the sense of validity for all 
u , v € I) : 

Mu) - ¢(v) 2 (11-v)¢'(v) 

\11'(u) 2 II"(v) if 112 v.  

I (v. Za) 

(v. zb) 

If LL' is twice differentiable, (V. 1) is also equivalent to 

2 \II"(v) 0 .  (V.3) 

In particular, the real exponential function is convex on the 
whole line since 

(d2/du2)eau 2 au a e 2 0 .  

The exponential function w1l1 be basic for what follows 
take R1 as the interval I .  

I and we will 
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B.  Two Important Inequalities . 24) 
Suppose that 11 is a compound function, 4' =1l(x(u)), where 

up RN and x(u) € R1 . We define averages with respect to a non- 
negative weight function D: 

Ul(X) = 
I 

similarly for i, etc. Now, if we replace in (V.2a) v by i and u by 
x ( u ) ,  and average both sides , then the right hand side gives zero , 
and we obtain (for a convex function W) 

W we?) . 

dnu D(u) II# (x (u)/dnu o(u) . 

2 

(v.4) 

(v.5) 

For the particular case il1(x) =eX,  x(u) =logf(u) (where f 2  0: 
the limiting case f = 0  causes no difficulties) , (V.5) yields 

? exp(1og f ) .  2 (v.6) 

2 

We call this the inequality of generalized arithmetic and geometric 
means . If up  0 , f(u) =u,  g) , which corresponds to taking 
p =6(Ll-Lll) +é5(L1-1-12) , then reduces to the more familiar result 

%(u +u ) (u u It . 1 2 1 2 

Suppose now that f is a function of two variables u and v .  
We will denote averaging with respect to u and v by a bar and a 
tilde, respectively. From (V. 6) we obtain by averaging over v ,  and 
by replacing f~' f .| respectively , 

iv 

Iexp(1og f ) ]  , f 2 exp(1og f ) .  ?2 

(v.7) 

(V.8a,b) 

By Fubini's theorem , °? =Y. It is significant that the two smaller 
members can also be related. One has 

exp(1og~f) i!exp(1og n . 2 (v.9) 

This is called the generalized I-I51der inequality . 
To prove this inequality, replace f-» f /T' in (v. 6) and use 

g+h=g+l'1I 

2 f/iB' exp(log f) exp(-log T) . 
Now transpose the last factor to the left hand side , apply tilde- 
averaging, and use <85 = cE, where c is constant. Then the left 
hand side becomes 
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[(f/F) exp(1og 'f')]~ = (f/?)`- exp(1og -f) . 
and (v. 9) follows from 

(f /¥)"" = (f/-f)'"' = of/if = 1. 

We can easily obtain the usual Holder inequality as a special 
case of the generalized one. Let u take the values l , 2 ;  let 

f(1 ,v) IQ(v ) lP ,  f(2,v) h(v) q I 

where 
-1 1 p + q  1 ( p , q 2 l )  (V.lOa) 

For any function F(u,v),  let 

- F(v) = D F( l ,v)  + q-1F(2,v), 

Fm) dnv Fllv) F(u 'V J` dnv pa) . 

where p a  0 .  Now evaluate both sides of (V.9) 

exp(1og Y) =~f 1'/P(1)~f1/q(2) 

I 

= IQI p 

[expuog f)_l" = [al/pu ,v) f 1//(2,v)l- 

Ill q I 

I I h . 9 1 

Thus (V.9) implies the standard result , 

oh S I II h g 1 IN) q 
(v. 10b) 

This lasts 
form . If g ality can be easily put into a slightly more general 

""1 =r"1, where p ,q , r2 ' l  , then 

II oh r I g p heq. (v.11) 

C .  The Polaron Problem.25) 
An electron moving slowly in an ionic crystal (like NaCl) 

polarizes its own immediate neighborhood in the crystal. The system, 
electron and its polarization cloud , behaves like a single particle , 
and is called the polaroid. Its effective mass is , of course, larger 
than that of an electron. The calculation of this mass , as suggested 
by Feynman , is an interesting application of the Wiener integral . 
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The real problem is , of course , extremely complicated , but it 
becomes manageable if we make the following approximations • 

(1) All modes of vibration in the crystal have the same fre- 
quency UJ . 

(ii) The electron interacts with the crystal as if the latter 
were a continuous dielectric . 

We refer to the cited literature for a fuller discussion of the physical 
ideas and of the manipulations . 

Now, let S'< be the coordinate vector if the | 11 and let 
qk* be the amplitude for the mode with the wave NUMEm:-JETIl', We set 
l'1=m=uJ= l (then cybil , but this is in'e1evant here). The effective 
Lagrangian becomes 

L ( I l - A  2 
Q12 quiz 

+a' ) ) 
-| 

_.|  k* 

.- _o 

q 2 € 1  Ilk 
(v.12) 

The constant G' depends on the volume and on the dielectric proper- 
ties of the crystal , while Q" below depends on the dielectric proper- 
ties only. . 

We assume a given electron path i'(t) . Then each amplitude 
qlg satisfies the equation of a forced harmonic oscillator, and can be 
found explicitly in terms of the path §(t) . 

Let us specify that the oscillators be in the ground state ini- 
tially and finally (t=t1 , t2 respectively, and the ground state de- 
pends on the path x) . Then the resulting action of the electron, i . e  ., 
the time integral of T-V, is 

S 1 
'E 

t o  

1 

42 d T x  (T)  + a " i  do l § (T )  - x (o )  
til 

-1 9-11 T-ol I 
(V.13) 

where we took the limit of infinite volume. We see an effective po- 
tential which is nonlocal in time. This is not surprising, since S 
describes only a part of an intricately coupled system . 

We saw in Section IV.E that for an ordinary potential system I 
we obtain the partition function from the quantum-mechanical wave 
function which corresponds to imaginary time , i . e .  , we replace 
t -  -it. For the polaroid problem this means that the effective interac- 
t1on in (v. 13) has to be modified, since it involves two times T and 
O' rather than T alone . 

One can show that the partition function for this problem be- 
comes 
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Z 
'v 

du Go -F[x] 
JC(-'v,v) W G 

I (v. 14a) 

F[x} = (I-iI" 
o 

dT do lx (T) -X(0)  T-0l  -1 e (v. 14b) 

(Here V is the volume, see below.) One may also write Z as 

. B 
= I 

o 
Z _ 

Jv 
* B  (x)e 

JC(v,v) W 

-self  , Sett 
:.2 d'r X + P .  

(V.15) 

Now , 
Z 

-BE. Xie J I 

and for large B only the ground state is significant, i . e .  I 

- E Z ~  e B O as e > m . (V. l6 )  

If we could evaluate the integral (v. 14a) , our problem would be 
solved. However, we have to content ourselves with obtaining some 
estimates . (See Section V.D. )  

We may point out that the restriction to os cillators in the 
ground state is now justified by (V. 16). 

We indicated a finite volume for the integral over d3v. In 
fact, the integrand is translation-invariant so that Z°= V and Z-» oo 

with volume. For quantities like Eo, the dependence on volume will 
of course disappear. One may, however, accuse us of inconsistency 
in taking the infinite volume limit in (V. 13) . But here the llmit is 
finite , and we may regard the limiting value as an approximation to 
an already oversimplified problem . 
D.  Estimates for Z .  

We first construct an action for which the integral (V. 15) can 
be evaluated, 25) for example r 

Sl 2 dT;'< +% § d T  do  §('r) -x(o) 2e-n T-ol H r (v.17) 

where the parameters 5 and 'n can be varied so  as to yield the best 
value for the ground state energy. We will now use e as the 
basic weight for computing averages . For translation-invariant 

_Sl 
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functionals , as in (V. l4b) and in (V. 17) , 
over V for a unit volume , and then 

we can take the integral 

(G) 
1 

Zl .0 (*) '8'{"}G{"} c G )  W x e x I (V.18a) 

where 

II 

k 8 (x)e 
C(v,v) W 

-S'lx} (v. 18b) 

Now, e-S=eS'-Se-S' [where we wrote S in place of Self of 
(V. 15)] and it follows that Z=Z'(e8"S) . The inequality (V. 7) now 
yields 

Z N  Z'e(s'-s) (v.19) 

If EO is the ground state energy corresponding to S '  
finally, in view of (v. 16) , 

I then we obtain 

E s E '  o o ( s ' - s ) /B  (v.20) 

The expectation (s) can be evaluated by employing a Fourier trans - 
formation and thus we get an upper limit for EO . 

Suppose now that we are dealing with a system governed by a 
Hamiltonian H =H0+V0+AV, which can be approximated by the solu- 
ble Hamiltonian Ho +V9. Then the actions S and S '  are single inte- 
grals , and not double g" - as in the polaroid problem. In this 
case (V.19) can be trail 

""als 
med t024) 

Z N  z,e-BAV (v.2l) 

where 

Z = To e-B(H0+v0+Av) 
I 

- + 
Z '  = Tre B(Ho VO) I (v.22) 

AV Tr(e ̀ BlH0+V0)Av)/z | (v.23) 

and by using (1v.25) (IV.26) and (Iv.31) 
To establish (v. 21) , note that by interchanging integrations 

, , we obtain 
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(s'-s) _ l 
ZI 

8 
d o  ac (§,'§,°) 

_. 
B 

d»lJw (x) exp[- jod T Vofx ( T AV {x (o) ] 

L -z I 
B 

d o  d3u (YE G-o(H0+v0)l u) 

( u  e-(B-u)(HO+VO) v)AV(u) 

- B  d3G(ii e-B(Ho+Vo) 5)Av(u) 
1 

Z1 -REF. (v.24) 

An upper bound for Z can be obtained just as easily. We use 
the inequality (V.8a) as follows : 

Z = (exp log f )-  S (of  (?)° 
with 

g = _ "  (5 d 
B 

o 

1 
B g 

exp I f [ x , o }  [ -sAy£x(o) l l  

g = n 'J n -  

'Jo(GZ¥}) 
dew (x) exp(- y" 

. o 
d T V o  g ,  

We proceed as before and obtain 

Z s  BAV Tr(e-B(H0+V0) e 

We can express the two bounds as follows : 

_ 5 -  _ 
Z'e B V S  Z S  Z 'e  BAV (v.25) 

Note that if we had used the generalized Holder inequality (v. 9) in 
place of (v. 8a) , a sharper upper bound would have resulted . 
VI. The Commutative Hilbert Space Integral 

In this section we introduce another approach to functional 
integration. Here the integral is , in effect, over an abstract Hilbert 
space TC, and the realization of 'K as a function space is irrelevant . 
However, this integral is closely related to the Wiener . The 
present approach is based on the work of Friedrich's and SE >26)27) 
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this . author . 
29) 

See also Karpacz lectures of 
prehensive recent review of Segal . 

28) Finally, we note a com- 

A .  Cylinder Functionals L 
Let 'K be a real Hilbert space . A functional F over 'KI is 

called a tame or§""'L'!""' functional if (i) there exists a subspace E 
of dimension n< °° such that 

F (x) F(PEX) I (v1.1) 

."L'--1l 

X 

where PE is the 1 .. projection onto E ,  and if (ii) the function 
F is measurable =: . act to the Lebesque measure on E, 1.e.  , 
dx1 . . .dxn, where-the are the Cartesian coordinates . 'Under these 
conditions we say that F has a base in E.  

We now introduce the orthogonal invariant measure in E ,  

dL1E(X) = (2 rTo ) -ndx l  . . .dxn exp l -z  (><j)2/2o]. (vI. 2) 

Here O' is an arbitrary positive parameter, called-1liql.§ which 
will usually be suppressed in the notation. This ch'Oice_o¥ measure 
can be justified in several ways. For example, it is not difficult to 
show that it is a consequence of (i) finiteness and normalization , 
u(Rn) = l , (ii) orthogonal invariance, and (iii) factorizability , 

I 

du(x) = dF1(x1). . .dFn(xn) I (vI. 3) 

which corresponds to probabilistic independence . 
Let C be the set of all cylinder functionals on 'K:. 

a base in E ,  and is in Ll with respect t o  dug, we set 
If F E C  has 

IE(P) II`dUE(X)F(PEX) (vI. 4a) 

If E: E ,  then F also has a base in § ,  and integration over1each re- 
dundant coordinate gives unity, in view of the factor (2no)'§ . Con- 
sequently, I§(F) =IE(F) . 

Now, if F has a base in E and in E'  , it follows that 

I£(1=) IE+E'(P) = IE.(F). 

Thus we may define an integral over 'S-C by 

I(1=) = IEW) , 
and this definition does not depend on the choice of the base E .  

(VI . 4b) 
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We also define for 0 2  1 f I 

< ) } to • . (I. CG. F € C . LE pI 

These spaces may be equipped with the respective norms I 

(VI.5a) 

r IIFII =[ex\ 1=l°')]1/°' 0. I (vI. Sb) 

and may be completed in the usual way. 

{Ye] 

B.  Integration of Invariant Functionals . 
The next problem is to extend the foregoing integral to more 

general functionals . One way to go about it is tlIF"*i"W""'*""'71g. Let 
be an orthonormal basis and let Pn be the p' onto the 

linear span of lye , . . . ,yn] . A system like lpnJ §&lled a 
basic system. 

For a given functional F ,  we define poP (x) = F(Pnx) . The Fop 
are cylinder functionals , and they might form a Cauchy sequence in 
the space Cc (with respect to the a-norm) . If s o ,  we could try to 
identify F with an element of the Compo*ii~'"" of Ca . The difficulty is 
that another basic system {Qm} might give us another ele- 
ment of the completion of Ca . 

We are thus led to the following definition. A functional F is 
a-invariant if for any two basic systems [pal and {Qm] , 

(i) F P ,  FmQ E Ca for all n ,  m sufficiently large , (VI. 6a) 

and 

(up lim n Im-~ oo 
P Q -- | | 1=n - -Fm| |a -0 .  (VI . eb) 

£ . 
|10i||B 

The space of i 
It follows easily 

for all 8 2 1 ,  that 

ant .functionals will be denoted by 
" s  inequality (V. 11) and the fact that 

F E £ 0 = >  FE£y  for all Y r I S Y S G .  (vI. 7) 

In particular, if FE-ta then F 6 £ 1  , and we may define the basis - 
independent integral I}C(F) , which will also be denoted by 

lac (P) I 8(x)e-<X'X>/20 F ( x ) ,  etc. (v1.8) 

Invariance of the integrand is sufficient to establish inde- 
pendence of the integral of the basis used in the approximations , and 
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for various other desirable properties . But for some purposes it is 
convenient to introduce a more restrictive notion. We say that F is 
.completely a-invariant if conditions (i) and (ii) above are satisfied 
for arbitrary systems of projections {pn] , {Qm} such that 
Pn, Qm*1 as  n ,  m *  °°. 

_Theorem.. Every functional in Ca is completely a-1nvariant . 
We do not prove this theorem, but illustrate it by an example . 

Let G. = 2 , bE}C, and F('r\) =(b,'r1) . For any projection P , 

F(Pn) = (b,pn) = (Pb,n) . 
The cylinder functionals are now easily integrated , 

P F n I (  -FmQ)2) = 1 ( ( p n b - Q m b ,  . ) 2 )  

ct ||Pnb - 2 Qmbll > 0 ,  

. 2 . and we also find I3{(F2) = all bll . We note a slight generalization , 
G _ = lm: (F11=2) - 0(b1,b2) . Fj(n)  (vI. 9) 

One can also give anti 
Let 'EC be the space of squares 
and let 

l of a non- 
ble sequel I 

I 
I 

.riant functional . 
x =  (x1,x2,...), let 

G(x) II J 2 I I X 

l 
X 

J 1 
c (VI . 10a) 

If 9i1(x)=x1x1. then I3K£(9ii)=06i1 by (VI.9), and it follows that 

lm (G) Gy 
_| 11 o Tm(cij). (VI . 1 ob) 

But the trace is not, in general, basis-independent. Consider the 
two following operators which are related by an orthogonal transfor- 
mation, and are in fact Hilbert-Schmidt: 
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/ 

1 
a 

I 

- D 
\ (iv -Q 1 

3 
l-_ 

' S  

(v1.11) 

The trace of the first vanishes 
rate . 1 and that of the second is indetermi- 

c .  Connection with the Wiener Integral. 
We mentioned earlier that the Wiener integral for, say ,  the 

interval [0 ,t] with x(0) = 0  r is in fact the integral over the Hilbert 
space of functions x ( T )  which satisfy 

x(0) 0 and <>z,x> III 

t 
d T  x 2 ( ¢ ) <  oo (V'I.l2) 

as  

and are necessarily continuous . 
The identification can now be seen as follows . We can in- 

troduce projection operators {p,,} which transform a function X into 
the polygonal approximations as described in Section IV.A. In view 
of continuity of x .  Pn- l n-°=°. Hence, if F is a completely in- 
variant functional over the space defined by (vI. 12) , these approxi- 
mations converge, independently of the chosen set {pn] .  We then 
have convergence of the Wiener integral (in the sense of Section IV.A). 

We shall not consider the possibility of existence of func- 
tionals which are integrable in one sense but not in another-for 
example r invariant but not completely invariant . 

If we make the change of variable X = y ,  then we have y(0) 
unrestricted, ( X , X )  =felT y 2 ,  and we can express the identification 
of the two integrals as  

a§W(x)e-(} ' {>/2oFlx} =@(v)e'<*"*'>/2°Gfy} r (vI. l3a) 

G{y} = F{HwY' . (HWy)(T) 

where 9T(T') =9 (T -T ' )  
more general. 

< 9 T y ) ,  (vI.13b) 
t j dT'E3(T -T ' ) y (T ' )  : 

o 

In Section IV we took o =='§ , but now we can be 



FUNCTIONAL INTEGRALS 473 

Let us verify the foregoing relation for the functionals 

Flxl =x(t ' )x( t" )  

For the functional G ,  
(VI . 9) , 

I G l y n  ( 9  y) . tl I y) (Stn r 

the Hilbert space integral was evaluated in 

TEC 
=1 I o = (G) al a l l  

in agreement with Eq. (Iv. l4b) for .f'dl.1WF . 
( e  ,e ) = min(t ' , t"), 

D. Some Related Integrals . 
. We can put the foregoing discussion into a more general con- 

text as  follows . Suppose that we have a functional integral which is 
characterized (in some sense) by the Gaussian weight €-% Tl ,Be ) ,  
with B positive and symmetric. Then, by a linear change of variable 
of integration, we can transform the integral into the Hilbert space 
integral in canonical form: 

»(n)e'*(" 'B")Fml~ s(x)el%<X'X>p{B'%x] (vI. 14) 

This relation is only heuristic, and should be examined for each case 
as needed. Sometimes one can use the right hand side to define the 
left hand side . 

Such relations arise in different ways . 
lens relating to noise, 25) 
given in terms of integrals with kernels , 

For example, in prob- 
one finds Gaussian weights which are 

<U.Bn) 

II dnudnv ( 
'rl \l)blL1,V)T](V) - < 

= TTY) B .  (VI.15) 

Then the integral can be naturally interpreted as the integral over the 
Hilbert space KB, defined by the inner product (Tl ,'f]) B- (We repeat , 
B is assumed positive and symmetric.) 

One should not confuse an integral over 'KB with an integral 
over the space "EC, defined by (n /Q) . The two integrals differ by a 
factor' 

JV »\9(x)e 
*CB 

"é(x,BX> 
F(x) = L s(xle~%(x,X>P( 

B'  x) 
I (vI. l6a) 

I . \9(x)e-<X'BX)F(x) = (det B) 
TC 

-é' JV E ( x ) e - < X ' X > F ( B ' x )  , 
so (VI.l6b) 
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e 
that B 

where the left hand side of Eq. (vI. l 6b) has as the actual integrand 
- x ,  (B-l)x)1:-(X) . The determinant 

- 1 is of the trace class 30 by the equation 
is defined for operators B such 

det B = exp(Tr log B) . (vI. 17) 

Other examples of analogous functional integrals arise in 
quantum statistical mechanics. One starts with 31) 

-BV e expf-B u d3v Wu) w (u) Q (u-v) w *(v) II m] I 
where Q is the two-body potential . 
form this expression to 

It can be advantageous to trans- 

(const.) ,g(T])e'<Tl,A'r]) 3 exp d u H lf*(u)w(u)n(u)], (vI. 18a) 

where A is an operator, in general integro-differential , satisfying 

AQ - 6 (vi. 18b) 

In order to give a Precise meaning to the integral (VI. 18a) if A 
involves d i f f e r e n t i a * ~ ~  one has to specify the boundary conditions . 
For example, for A =  _._..._..._12 , with T](0) = 0 ,  'r](t) unrestricted, we have 
the Wiener integral, and the corresponding transformation was dis - 
cussed in Section VI.C. 

If we also impose 'rl(t) = 0 ,  then we have a special case of the 
conditional integral, and in place of HW, Eq. (VI.l3b) , one should 
use 

I 

(HUNT) V d 1 6  _ 1 - t n  I Jo T | _ T T  T T t " (  ) /l ( ) (VI. 19) 

Then HHT has as  its kernel the Green's function G for -d2/du2 and 
for the prescribed boundary conditions , 

G(T ,T') = min(T ,'r') - T T'/t . 
On the other hand, for HwHwT we find 

GW('r,T') min(T , T' ) .  

(vI. 20) 

(vI.21) 
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VII. Evaluations and Transformation Laws 
In this section we give formulas primarily for the Hilbert 

space integral. They can be adapted to the Wiener integral in ac- 
cordance wlth Section VI.C.  (See also Section rx.) The transforma- 
tion laws include those for modifying an integral, and also functional 
Fourier transforms . Further dis cussion of these and related toplcs 
can be found in Reference 28 . 

From now on, we will usually omit the word "commutatlve" 
when referring to the Hilbert space integral of Section VI. However , 
in Section XII we shall acquaint ourselves with the anti commutative 
integral, and there the qualification will be necessary . 
A .  Explicit Evaluations . 

We give here a list of functionals whose integrals can be 
given in terms of other familiar operations . 

(1) Integrable cylinder functionals reduce to finite- 
dimensional integrals (in view of invariance, Section VI.B) . In par- 
ticular, for the linear exponential we find 

JP8lx)e-(X,X)/2GeC(X.Y) e1l»oc2(y.yl (VII.1) 

Here C is a constant, which can be complex, and then we cannot 
write cy=y '  ETH: . 

(2) A polynomial functional is one of the form 

p(y) = p(0) +§ + j C Y  
j 

i1 C .  . J1...JmY 
1m ...y (VII. 2a) 

If 3C=L2 (RN) , the terms of a given order k can be combined into 

Pk{'l']] d u  1 ...dnukpk(u1 ,...,uk)'r] (up) ...'q (up) , (VII. 2b) 

where pa is symmetric. The functional Pa is a sum of monomials 
such as shown in (VII.2a) . Each monomial is a cylinder functional 
whose integral can be readily found . 

We observe that I}Q(P2n+1) = 0 .  The integral I}Q(P Zn) can be 
expressed in terms of the trace of an operator defined by the function 

92% ' 
We may also recall that special cases of polynomial func- 

t1onals were treated in Sections IV.B and VI.B. 
(3) Gaussian functionals were encountered in Sections IV.B 

and V.C.  A general integrable Gaussian functional is 

F(x) = exp(- (x,Ax)/Zo) I (v11.3) 
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where A is a symmetric trace-class operator, such that 1+A is 
strictly positive. Then 

In (F) JIB(X)€-<XI (l+A)x)/20 _ V 8(x)e<(1+A)%x,(1+A)%xY2o 
- J 

[der(1+A)l'% (VII . 4) 

We obtained this result by making a linear change of variable . 
We shall turn to this topic presently. First, however, let us verify 
that the foregoing conditions on A are fulfilled for the example of 
Section IV.B , where 

(x',A>2) II 
t 

d T p ( T ) x 2 ( T ) .  (v11. 5a) 

This form defines implicitly a symmetric Positive operator A.  
We may construct A eXplicitly as follows. Let 

(BUT) = p*(T)x(T) rt . J dT'K(T,T')x(T') 
o 

I 

K(T,'r') = p%(T)6(T-'r') 

KA('r,'r') V 

Then A=BTB (note that B is not symmetric). The kernel of BT is 
KT(T,T')=K(T' ,T), and that of A ,  

t T , 

= dTllK (T,T")K(T" ,T') = 
Jo 

V 
J 

t 

o 
dT"p(T") 6(T"-T) 9(T"_T') 

V t J dT"  p(T" ) .  
max('r,T') 

We see that A is a trace-class operator: 

Vt 
Jo 

Vt Ft 
T r A =  dT KA(T,'r) = dT dT" p('r")< (v11.5b) J J 

on 
I 

B .  Transformations of the Integral . 
(1) Linear change of variables . Let L be a trace-class 

11near operator such that (1 +L)'1 exists . Then 
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o _ - , 2 I%F[ (1+IL  -1) = detl1+L 1JlB(x)e ( x  x)/ O' F (x) 
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x exp -1 x ,  x )  { - ( (1+L) ' l  (1+L) _(X 
. (VIL 6) 

,x>]/2o}. 
Wept that both Duals are in £1  . Then this 

lion may be ad in a n y § s y s t e m .  We set 
(2) Translations. If y€TK:, and - 

translational invariance of the approximating integrals yields 

e u a -  
BI =(B*B)1 2_ 

l'V(x) -F(x+y) is in £1  , then 

G _ lac (FY) - e 
_Ly ,y ) /Zo  Jo*g(x)e-lx ,x)/2Gelx,y)/cHx) . (VII.'7) 

second integrand. Let F Ella 
- First we observe that 

In this ease we can be quite explicit about the integrability of the 

E(y)(X) =e (X  f y)/G satisfies 

IElYllB< oo for all B 2 1 .  (VII . 8a) 

Next, HErder's inequality (V.1l) states that 

S Fil ]E(Y)ll 5 for a + 5  -1 - - l  
Y 

We can choose B '1  arbitrarily small but positive. It follows that 

FE (y) Y I l s y < a .  < on for all 
Y 

It also follows easily that FE(Y) is y-invariant, i . e .  , in Joy . 
However, in general one cannot take Y =0 . We give a simple 

counterexample for one dimension. Let 

2 -1 F(L1} = eu I2°(1+12) . 

(VII . sb) 

(VII . 9a) 

Then F E  Ll (with reference to the Gaussian weight) r but 
r°° 

1 - J-.oo l FE (v) du(l +ll2) - l  euv/0 oo 
1 (VII . 9b) 

. A historical remark may be of interest here . Cameron and 
Martin carried out extensive investigations on the Wiener integral . 
They showed in particu1ar32) that for suitable functionals one may 
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translate F(x)* F(x+y) ,  provided dy/dT is of bounded variation . 
(That is , provided one may write dy/dT =2_*_- z - ,  with Zi(T) mono- 
tonic and finite . )  This was before the theory of the Hilbert space in- 
tegral was ""§'"'§1oped. We now see that only a weaker condition has 
to be impq -33) 

t 
dT 92 < oo . 

O 

In Iparticular, y' may become infinite near zero l i ke ,  for example 
T 'z , and then it is not of bounded variation . 

(3) Integration by parts. The basic formula is 

I 

JVs(x<e'<X'X>/2"(a/axj - xi/G)F(x) 0 v (VII. 10a) 

provided the integrands are in So . This is a consequence of 
lion by parts in the xi-coordinate , and the Gaussian exp[- 
of course has to be in the integrand. Note that E3- 
not be bounded, and we cannot identify thls as a Frechet dif- 
ferential . 

In functional notation (VII. 10a) becomes, for any h 6L2 , 

J F  might 

31- 

Jf 19rule-(u,'r])/Zo Jd"uh(u)|6h6lu) - L  
O' n w f l n l  0 .  (VII . 10b) 

We can adapt this for the Wiener integral as follows . Let n = 1  and 
[0,t l  be the basic interval; let h (T ' )=9 (T -T ' )  (with T fixed), and re- 
place T] by y'. Then the inner integral becomes 

t 

Jo d-T'Q(T ' )L6 /69(T ' )  9(T~)/u] . 

first to a derivative with respect to 
The second term integrates to y(T)/0 , and we want to convert the 

y ,  
The chain rule for functional derivatives takes the form 

II 

' t  

J df) 
6F  E>y(p} 

6v(o) GET) 
(VII. l 1) 

In view of the condition x(0) = 0 I 

J 
Vt 
o 

y (p )  = dT"9(P-T" )  §?(T"). 6y(F>)/69(T') = 9 ( p - T ' ) _  

By putting all of this together we obtain 
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t t r d V 
P T Jo [ dT'9( 'r-T')6/65}~(T')  l 
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and,  fina11y,34l 

t V 
Jo 

o do MiN(D,T)JVdlJw(Y)6F{Y}/6Y(P) -1JVduw(y)y(T)p{y}. 

(VII.12) 

We recognize the kernel rnin(p ,T)  as the Green's function associated 
with the Wiener integral, Eq. (vI. 21) . 

(4) Uniform convergence. A basic result is the following . 
Let S be a set of real numbers of finite measure. Let FS be func- 

FS E $80 for almost all s 6 S . Suppose that for arbitrary basic 
{Pnl | IQbal and e >  0 we may find N ,  M ,  and C such that 

IFs(Pn °) la < C I (VII. 13a) 

IFs(Pn - )  - FslQm °)llq < Q I (VII. 13b) 

where N, M ,  and C are independent of s .  Then: 
(i) We may interchange integrations , 

[ d s  JV89(x)e'<X J 
, x ) /2  oF f ( x l  = 

Jl8(x)e-<X ,x)/20 JI" ds Fs(X) . 
(VII. 14) 

(ii) We may differentiate a Hilbert space integral under the 
.f-sign if the resulting integrand satisfies the foregoing conditions 
(for some 0l,) . 

An integral I1C(Fs) satisfying the foregoing conditions is ap- 
propriately called uniformly of-convergent . 
C .  Functional Fourier Transforms . 

We shall refer in this way to functional transforms of the 
general type 

Fin]-> 'fill II JV dl-l(T1) exp<i.fdnux )11' in] (VII. 15) 

The differential du(n) is symbolic. It is supposed to include the 
basic weight, like the Gaussian, but no measure is implied here . 
[Perhaps a more suitable notation for such differentials would be 
sum) .J 
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A basic property of such transforms is that they allow one to 
replace differentiation by multiplication. If P is a polynomial func- 
tional , then one expects to conclude that under suitable conditions , 

p{5/i6x}'15"{x} V p{n}p ln}  '(x ,n) = du(n)e1 J 
Let us give some formulas for he Hilbert space integral . It 

is convenient to replace' e t (x ,y)  be. e x . y )  so  as to bypass the com- 
plex numbers . Then 

(VII . 16) 

Fill = 1 '1(x) elroy ,x) (VII . 17) 

We can now express the integral of sultable polynomials by 

O' = p[6/6x]9£' lx,x) . 
X=O 

IK (p) (VII. 18) 

The essential condition on P is that one can interchange dif- 
ferentiation and integration. Hence the theorem of Section VII.B on 
uniform convergence is relevant. It is easy to see that (VII. 18) ap- 
plies in particular to integrable cylinder polynomial functionals . 

Let us return to the transform (VII. 15) . It can be used some- 
times as follows . Suppose that we are interested in functions 
£n("1 , . . . ,un) which are the expectation values: 

fn(u1, . . . ,un) Jo dl.1(x)x(u1). . .x(un). (VII. 19) 

Then a generating functional F for the in can be constructed simply 
as follows , 

F {y} II J/du(y)ei<x'y> (VII. 20) 

These considerations apply at once to the Wiener integral . 
The expectations fn are known, Eqs . (Iv. 14) (where o = 1) , and the 
generating functional can be readily found , 

Jf'd|_W(X)ei<y,x> 
e x p - é  tot dT'  dT" m1n(T' ,T")y(T')y(T")} 

(v11.21) 
l _ 1  

[This evaluation follows, e .g .  , from I3€(e1(T0 ' >) = e §(1'1 frm) . ]  
Fourier transform as in (VII.2l) is also called the characteristic 
fLlnc .§Qp_a_1 of dl-Lw. 

The 
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The foregoing observations on the generating functional can 
also be adapted to the Hilbert space integral. Here r however, one 
encounters integrals which require a distribution-theoretic interpreta- 
tion , e . g . r 

J[8(X)e-Q-lx,x) x(u)x(v) = 6(u-v).  (VII. 22) 

We conclude with two remarks . First, the maps of? 
times are not very convenient, since they do not preserve the 
2-norms . In general , 

V 2 2 2 2 Jduwip ¢ . I , § € ( F I  ) ¢ I K ( l p l ) .  Jpdklwl 

some- 

(VIL 23) 

We note for reference that there are related maps which do preserve 
the 2-norms . They are the Fourier-Wiener transforrn,35) 

F(y) -° G(y) 

II (Vu . 24a) 

and the Wiener transform , 
W Fw) -0 F (y) 

II J/l*9(X)€-(x,x)/Zo F(/Ex+iy). (VII.24b) 

The exponential factor exp(-i(x,y) I»/Zo), or with (x',§'), appears if 
we make a translation, as described in Section VII.B. 

As our second remark, we observe that one sometimes intro- 
duces heuristic functional Fourier transforms and 6 -functions r which 
are supposed to satisfy the familiar relations for finite-dimensional 
spaces. Symbolically , 

F(x) -> FW) re.: JrJ9(x)ei(x'Y) F(x) I 

JV as (X)€i<x ' y) 

JV" (x) 6 (x) F(x) 

(const.) 6(y) J 

F w ) .  

(VII. 25a) 

(vII.25b) 

(VII. 26) 

To the best of our knowledge , there is no rigorous basis for manipu- 
lations such as in Eqs . (VII.25a) and (VII.25b) . 
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VIII . Functional Differential Equations 
The equations in question provide an interesting field of ap- 

plication of functional integrals . Our present interest is in exact 
solutions to such equations , rather than in approximate solutions , or 
in manipulations such as in Sections III.C and III.D. However, the 
study of this subject is still in its infancy. In fact, only a few spe- 
cific equations have been investigated. These studies (with very few 
exceptions) have not been at all systematic . 
A .  Simple Examples . 

We start with several equations which can be discussed inde- 
pendently of functional integration. All except the first relate to 
statistical mechanics . 

( l) The most elementary functional differential equation is of 
the form 

6F[I]/6I(u) = HU:u} I (VIII . 1) 

where H is a given u-dependent, sufficiently smooth functional. If a 
twice-differentiable solution F exists , then commutativity of func- 
tional derivatives implies 

6 H{I;u]/6I(v) = 6H{I ;v} /6I (u) .  (vm. 2) 

It turns out that this condition is not only necessary but also suffi- 
cient for solubility . 

To solve the equation, we start with the definition of the 
functional derivative and (VIII. 1): 

(d /d€ )F {€+€ 'n }  e=0 JV dnv'r] (v) H l €;v} 

Let € = s ] ,  'r]=J. Then 

(d/ds) Fisll JV dnv I (v) H { SI :vl I (vm . 3) 

and by integration , 
F{I} = F { 0 }  + 

V1 
JO ds 

J d n  
vI(v) H{SI:V} (VIII . 4) 

Equation (VIII. 2) is needed in order to verify that F is indeed 
a solution. In evaluating the functional derivative of the right hand 
side, we use moreover (VIIL 3) with F replaced by H ,  and H by 
6H/6 s ] ,  and integrate by parts . 
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If for suitable arguments I ,  H has a Volterra expansion (see 
(III.1)), then so  does F ,  and we may write the solution immediately 
in the form 

f 
f n+1\" 1 u ' n + l ,  h n Ql , . . . ,u ,u n U=L1n+.1 (VIII . 5) 

Symmetry of the fn+l follows from (VIII.2) . 
(2) Our next example is due to Brittin and Chappell,36l and 

refers to the vibrating string. Suppose that we have m coupled os cil- 
lators , described by the variables 

t :  Ya I Ya = Va I where 0 L = 1 , . . . , m .  

We can introduce a statistical distribution function fm depending on 
t ,  Ya ,va , and which satisfies the equation of continuity , 

( 
o f r n +  
Bt J 

G. 

Bfm Va eye 
+ . éfm 

VG. Ava 

II Q
 (vm . 6) 

In the limit of a continuous distribution, You and Va become 
functions y(u) and v(u) respectively, satisfying 

• 2 2 
V = c bU.y. Y v I (VIII. 7) 

Furthermore, fm becomes a functional f [y ,v; t ]  which satisfies , in 
place of (VIII.6) and in view of (VIII. 7) , 

L V 2 

Jo 
We now recall that for (VIII. 7)` the general solution is 

B t  
+ du fv lu)  of + 

6 y(1_1) 
C y "  (u) I o II (VIII . 8) 

Y = Q(u+ct) + h(u-ct) I 

where g and h are arbitrary twice-differentiable functions 
also verify that (VIII.8) has the solution 

One may 

f II Q {v(u-¢6) + cy'  (1.1-ct) , v(u-I-ct) - Cy' (u+ct) I (vm . 9) 

where Q is an arbitrary differentiable functional. It can, in fac t ,  be 
shown that this is the general solution, under the additional assump- 
tion that v .  y '  , and also f are analytic. This solution has not 
proven useful s o  far . 

(3) Let us con-sider the generating functional F lx] of Sec- 
tion III.D. Suppose that the potential Q vanishes. Then Eq. (IIL 35) 
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reduces to 

aF{x] 
Bt + l d6 r  2 

a=l J 
i / a .  
ITl \5qO. 

§((r) = 0 .  (vm . 10) 

This equation has solutions of the form 

6 
Jd F i x ]  =exp  r f(t.r)x(1r) (VIII . I1) 

where f is any solution of the equation of continuity , 

Q 
B t  

+ 12 o f  
m bqol' 

II 0 (VIII. 12) 

(Since Q = 0 r the terms 15% f/a pa do not contribute.) 
The reduced distribution functions implied by (VIII. 11) fac- 

torlze | or S 

1 f ( t ,Tj)  1 
f . fs\t,rl , . . . ,rs 

in agreement with physical intuition. Similar factorizations have 
been encounleredS ) in various attempts to solve equations such as 
(III.35) . 

Since Eq. (VIII. 10) is linear, one can obtain other solutions 
as llnear superpositions of the elementary solutions (VIII. 11). We 
leave open the question, whether every solution can be obtained in 
this way. 

(4) Let us take the differential equations 1 9)' 20) for F in] and 
G, 'as  described in Section III.D. We introduce the notation 

(VIII. 13) 

_ m Hq1...qm{Q] - 6 H{Q]/6Q(q1) 

For o = 0 ,  Eq. (III.36) can be written as 

.6Q(qm) (VIII . 14) 

V F qo+B d ql 
o a 3 anlq-fri) 6>q{;} 

aq°1 J aqa~ 6£(q ' )  

This equation is similar to (VIII. 10) , and has solutions for which Fro 
has the form 

Q(q') = 0 .  (vI11.15) 

Fq{Q} (const.)exp q' h(q,q')€(q') 
3 

Jd 
Compare now Eq. (VIII. 1) . The corresponding distribution functions 
is are proportional to the Boltzmann factors 

- e t ]  qi'qj[ ) e 
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Next, the equation for G,  with o 7£0, is 

aGe/aq0" + BJVd3q'(5>/5q)(Gqq.+GqGq-)[€(q')+0] = 0 .  

(VIII.l6) 

In this equation, we recall, the shift Q =E-o is permissible. The 
solutions to the zero-density equation are of the form G0=Log FO , 
and for o 750 we then find 

G{Ql  = log F°{a(Q +o)} + b .  (VIII . I 7) 

The arbitrary constants (a 
physical considerations . , b ,  and those in FO) are determined by 

38) 

B .  Applications of Functional Fourier Transforms . 
Among the basic tools for the solution of ordinary and of par- 

tial differential equations are the integral transforms , especially 
those of Fourier and Laplace . For example , an ordinary equation with 
constant coefficients can be transformed in this way into an algebraic 
equation . 

One may expect that functional Fourier transforms will become 
similarly important for functional differential equations . We describe 
several examples in the remainder of Section VIII. In two of these , a 
part of the problem is to find an equation which is satisfied by a 
given functional, as  a preliminary to more general investigations . 

(1) For completeness we mention here that variants of 
Eq. (III.26) for the time-ordered generating functional can be solved 
by a Fourier transformation. We postpone further discussion to 
Sections XII.A to XII.C. There we shall also encounter another 
functional differential equation, which however is rather trivial . 

(2) of Hopf 
to hydrodynamic turbulence . ,40) near deter- 
ministic equation , 

39) 
Our second exam apple is based on the apps"-`-"' 

7) We start with as 

Be(t ,u)/Bt = P ( n ) ,  (VIII. I8) 

where P is a polynomial functional in T] , not depending explicitly on 
time. We consider the space spanned by the solutions T] . Suppose 
that we have an integral defined on this space, and that we introduce 
the expectations and their generating functional F' as in Section VII.C : 

F{x:t} V -U 
- 

Jdu (T1 )exp i \ ] `  d 3 u x ( G ) T ( t , u )  (VIII . 19) 
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[We would like to have a measure which is ergodic, 1.e . , conserved 
along the motion, but for our purposes Eq. (VIII. 19) is sufficient.] 

Let us find the equation of motion for F .  We will not concern 
ourselves with the detailed justification of the steps . Thus 

5 _E 
a t  

V -» 
Jdumlfi fd3ux ) (if dalfxn) 

exp 

JVd36'iX JVdu(n)p(n) exp<illd3 Tim). 

and the desired equation is 

V 3-»_ 6 . Jd u X P (  I16X)F{x , t l  BF/B t  (VIII. 20) 

For stationary turbulence, we set ar/at=0. One particular 
equation of interest is : 

JFd3k. 
Jd 

3 tr 6 11 I I  '+ II k ks Xa (k k ) 6X3 (Ku) F{x] 0 I (VIII. 21) 

where k '  and k "  are the Fourier transform variables, X=)? is a 
vector-valued function, and xtr its transverse part: 

_,t _, -o * -a -0 -a -U -0 

x ' ( k )  = x ( k )  - [ k -x (k ) /kZ ]  k . 
(We do not consider the familiar ambiguity which arises if X is the 
gradient of a harmonic function. ) 

Equation (VIII. 21) has solutions of the form 
3-.-.t -» -O -0 

Q { x }  = Jd k x r ( k ) ~ x t r ( - k ) .  Fix]  =f (Q{x})  I 

(vm . 22) 

(vm. 23) 

where f is any 
solution, howe 
characterize 3. 

(3) _ 
follow these-. 

twice-differentiable function defined on E 0 ,°°) . This 
ver ,  does not have the singularities which should 

- mple is due to Donsker and Lions _41) We 
d consider the solution y{q;t ,v}  for t> 0 to 

2 2 a y / a t - i a  Y/Bv . 2  - i v y  + ivy(t)y, (vm . 24a) 

Y -0 0 as  V -v i M I (VIII . 24b) 

y lq : t=0 .  v] = 6(v) (VIII . 240) 
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We recognize (VIII. 24a) as the diffusion equation with the harmonic 
oscillator potential, and with another term involving an arbitrary 
function q.  We express y as in the Feynman-Kac formula (IV.28). 
The resulting Wiener integral over x has the form of a functional 
Fourier transform , in view of the factor exp(ifd Txq) . 

Our plan now is to express 6 y/6q in terms of the Wiener in- 
tegral, and to transform this expression so  as to obtain a functional 
differential equation for y .  The procedure may be clarified by the 
following example. Consider 

f(u) 
oo 

- .o f  

r 
J dp e eipu I 

f'(u) = -%iJld(e )tip1u = '5iJVd(eiPu)e = -% uf(u). 

More generally, if V(p) is a polynomial of an even degree wlth 
leading coefficient positive, and 

Q(u) Jfmdp e-v(p)eipu 
I (VIII.25a) 

then we obtain the differential equation 

V' (i`ld/du) g(u) = iug(u) . (VIII . 25b) 

Let us return to the Wiener integral. We derive the differen- 
tial equation in a heuristic fashion. We first convert the conditional 
integral into an unrestricted integral containing the factor 

6 Ev-x(t)] 

II 1 
21T 

co 

_oo 

f 
J du Liu Ev-x(t)J 

I (VIII . 26) 

and obtain for the derivative 6y/6q , 

-1 l'ico 
6y{q:t,v]/6q(T) = (21T) 

1uv du e JldlJ-w(X) ix(¢)1= [ x }  r 

F{x] = expl-12 
Vt 

J dpx2(p )  m1 Jo dux(p)q(p)  - iuxuy] 

With the help of (VII. 12) , with o = 1 , 6y/6q can be transformed to 
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6y 
6q(T) 

1 
Zrr 

oo 

- m  

F 
J 

inv du e 
Vt 
J do  m1n(v,T) I } Jr duw (x) ZF' (35) 

The last derivative gives three terms , each of which may be ex- 
pressed in terms of y or 6y/6q .  The following equation results : 

6ylq;t,v} 
6q{T) 

V =-[ J 
Vt 

J 
6Y ) lm) éqlv 

in do m 

may/av.  (VIII. 27) 

A question of interest now is the following. What further con- 
ditions must be imposed on y in order that the solution be unique , 
and that it be characterized by (VIII. 24a)-(VIII.24c) ? The cited 
authors give the following subsidiary conditions as a possibility: 

limT_.t_ 6y [q : t , v } /6q ( ' r )  = ivy, (VIII . 28a ) 

and for q 0 I 

2 -*3 v y ,  by /B t  -%62v /6v2  = 

y {0 ; t=0 ,v }  = 6(v), 

(vm . 2 as) 

(vm . 28c) 

The uniqueness can be shown in two ways: first, by em- 
ploying the functional Fourier transform and , second, by utilizing a 
Volterra expansion, as in example (1) of Section VIII.A. The second 
method is in a sense the more natural one, since the problem as ex- 
pressed by Eqs . (VIII.27) and (VIII.28) makes no reference at all to 
the Wiener integral. But the first seems easier to adapt to other 
situations . 

For future reference we also make the following remark. Sup- 
pose that we had in (VIII.24a) in place of -é v2 a polynomial -V(v) , 
of even degree, and v large for large \vl . Then Eq. (VIII.27) should 
be modified by replacing 

-6y/6q(v) by -iv'[i'16/6q(v)] Y~ (VIII. 29) 

C .  Static Model of Quantum Field Theory . 
The preceding example may be summarized as follows . We 

started with a given differential equation; we modified it by intro- 
ducing a term with an auxiliary function, and then we investigated 
the functional derivatives with respect to this function. This kind of 
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procedure was used extensively by Schwinger in quantum field theory . 
The auxiliary functions can then be thought of as external sources or 
fields . 

For instance, the nucleon Green's function S ,  in case of in- 
teraction with pseudoscalar neutral mesons , satisfies the equation 

+ m  iY**5*1 -gy5n(u)+1gy5fd'*u~B(n,-u,u-)@/©n(u')] S(11:u,v) 

= 6(u-v). (VIII. 30) 

Here 'rl is a given external field, and Zx is the meson Green's func- 
tion . 
equation for the meson field I 

There is also a second equation, which is derived from the 
and which likewise contain.s A and S . 

Thus together we have a coupled system. Since S and A occur mul- 
tiplied together (in each equation) , the system is nonlinear. The 
field T] has no known physical interpretation, and should be set equal 
to zero at the end of the calculations . 

We will now solve a simplified problem, which is adapted 
from the work of Edwards and Peierls _42) We assume , first, that the 
mesons are scalar, and we neglect the nucleon recoil. Then only the 
time dependence is relevant for interaction , and we set 'r](u) =1'l(u0) . 
We restrict 'r] to be real and sufficiently smooth, e . g .  , continuous . 
Our next assumption is that 

8(u:u,u') i6 (u  -u')A(u°-u'°) I (v111.31) 

where A is a given function, which is sufficiently smooth . 
We present two methods of solution. For the second, which 

has heuristic elements , we will also assume that A E 11 and is real , 
even, and of positive type , i . e .  , 
negative. We introduce the real Hilbert space Kg with the norm 

I`°° 

J _oodue C (w)E(-u»)/ A(w). 

that the Fourier transform -A is non- 

(Q ,Q)A (VIII. 32) 

If K vanishes over an interval, then €(L0) and K(-w)=E*(») must 
vanish there likewise , and we set the quotient equal to zero. We 
will also assume, for the second method, that ('rl ,'f1>A< °°. 

The factor i in (VIII. 31) eliminates oscillatory behavior in 
the interaction, and will enable us to use the Hilbert space integral . 
The net effect is analogous to what would be obtained by continuing 
analytically, t *  i t ,  and then smearing the interaction to remove di- 
vergences . 
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Schwinger's equation now becomes r of 

J_ m 
l 1at+4rl -9rf1(t) - g  do A(t-o)6/6n(o)] S(U:t. T) 6( t -T ) .  (vIIi 33) 

Ordinary and partial differential equations of this type can be s1mp1i- 
fied by familiar transformations, and this also applies to the equation 
at hand . 

The terms mS and 6 may be eliminated by introducing as a 
factor the free-field function 

G(°)(t-T) 1-1 0(t 'T)eim(t'T) 
I (VIII.34a) 

which satisfies 

(ia t+m)G(0)(t -~r) = 6(t - T )  . (VIII . 34b) 

Thus , let 

s(n:t, T) = G(o)(t-T)S1(11:t. T) 

where S1.'f1;T,T)=1 and 

[ slm(t) i t  - Q JV-» dctA(t - ul6/6sw)l 81 

0 

o II 

Next we eliminate the term gngl by setting 

S = S ' Vt expl-1g 1 2 JT do *1 un] 

2 

Then again S2(1'1;T,T)=1, and 

Vt 
[ i5t+ig JT d o A ( t - c ) - g J _ m  

V dc rA ( t -o )6 /6n (c ) IS2  0 » 

(VIII.35a) 

This equation has a solution independent of T] , 
.t 

V do A(p -o)] |' 2 
82 

Pt 
expL'°% g JT do J S 2 ( t - T ) .  

T 
(VIII . 3 sb) 

We assumed here that A is even. Otherwise (VIII.35b) has to be 
trivially modified. We have nothing to say about the uniqueness of 
the solutions of (VIII.35a). 
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If we now put together the various factors , we obtain 

t 
S(YI:t,T) = exp~ iQ  JF don(p);l s2( t -T)G(°)( t -T) .  

T 
(vm . 36) 

The previous solut1on42) to this problem made extensive use 
of heuristic Fourier transforms , and is also of interest. There one 
first removes the term g'r]S be introducing G1 r 

S = G exp/-é' (T) Tl) 1 \ ' A (vm . 37) 

Next one sets 

V 
J G 2 ( Q : t . T ) ~  JV=0(71)exp 1 d o n ( p ) c ( @ )  G1(n:t,¢) 

oo 

_ o o  

Then in place of the term involving 6/6"1 we get another, proportional 
to Edo A(t-o)g(o) so). 

One is led in this way to the equation 

[ a t + m - g Q ( t ) G ( Q ; ¢ , ¢ )  = 6 ( t - T ) ,  (VIII . 38a) 

and G may be interpreted as the one-particle Green's function in the 
external field Q . For our problem, we easily find: 

. _ . (o) G(Q,t,T) - exp -1g do 9(0) G ( t - T ) .  J 
Ft 

(vm . 3 so) 

One now goes back to the original function S by integrating G func- 
tionally. The result can be written as follows , 

S('f1:t,T) r 
*A Mme-%(Q ,Q)A G(Q+n:t /T) • (vm . 39) 

The functional integral can be easily evaluated 
with (VIII » 36) . 

r and shown to agree 

D{. Measures Associated with the Integrals 
We introduced both the Wiener integral and the Hilbert space 

integral as limits of sequences of finite-dimensional integrals . Now 
we are about to discuss measure-theoretic bases for these integrals . 
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These bases clarify some paradoxes , and are otherwise useful as 
well. We have already referred , for example , to the measure for the 
Wiener integral . 

The approaches which we introduce have the virtue of simplic- 
i ty, and of not requiring an extensive background. We should say 
that other approaches are usually adopted in the current literature . 
A .  The Hilbert Space Integral and Product Measures . 

Let us first point out that it is impossible to construct a fi- 
nite , orthogonal (or unitary) invariant measure in a Hilbert space . 
Consider a ball of radius é around each element of an orthonormal 
basis . All balls should have the same measure by orthogonal invari- 
ance, and are d i s j o i n t ,  s o  the total measure is Elms :ao if e > 0 .  
(Re call that by definition a measure must be countably additive.) But 
E e: :oo contradicts finiteness and, in particular, we cannot have 
I3,C(l) = l .  

This non-existence of a finite and invariant measure leads to 
paradoxes like the following. Consider the functional 

F(x) = e-(x,x)/D __ l [_(xj)2/pl exp (D(.1) 

One sees that 

I n )  = Nj C 

where c< 1 ,  hence this product diverges to zero . 
and positive everywhere on :}C. 

One "gg-K# constructing a measure for the Hilbert space inte- 
gral is the to ng_25)-28) (of course , this measure will not be 
orthogonal-.,__.,__._ nt.)  We fix an orthonormal basis, and consider the 
space of all sequences (xl ,x2 , . . . )  without the restriction 2(xi)2< °° . 
This space is called a corona of in, and is the infinite Cartesian 
product of real lines , 

But F is smooth 

oo 1 
X5=1(R )i 

(Ix.2) 

On each line Rl j  we have the normalized Gaussian measure , 
l.1j(Rlj)=1 . Fubini's theorem gives a measure on the Cartesian 
product of a flnlte number of factors . It is significant for us that 
this theorem extends to an infinite number of factors , if the measure 
of each is unity . 

We recall a few definitions . A measure space is a triple 
(Y ,S ,  IJ) where S is the family of measurable subsets of Y ,  i . e .  , 
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wit# 
S = 

AX 

Lan 

IJ.(B) is defined for BE S . The family S is a o-ring. For us suffices 
the case where S is a o-algebra, 1.e.  , closed under complements 
and "'*=":£"di1q un s . We now have the ffilhwing reisialt 43) 

If 

A is a measurable subset of Y 

:bra 

) ( x 
oo 

u x 1=N+1Y1 u1 X x un) (A) . (D<.3) 

_ an rbitrary deerea I 
quence LE(])} of cylinders such that lim U =¢. then 1lmu(E(-1 

Sets of this type are called cylinders , and we denote the 
class of all cylinders by C .  Clearly, II as given by (]X.3) is a finite, 
non-negative r and flnltely additive function on C . For 1-1 to be a 
measure, it suffices to show that u is continuous from above at the 
null set ¢ . This means that if 'we have sin se- 

) =  0 . 
An equiv..-§@.l.ent ,,§'~ts.tgJ1eHt is , if 0< s:su{E ( )  for all j , then OE if) #vi . 

scan be proved fairly easily by actually exhibiting 
a polnt 1 gale n E 1), if 0< e<l.l(E(j)). We refer to the cited 
book o f f  for details . 

We recall that a set A has measure zero if for every € > 0 , one 
can cover A with a denumerable family of sets whose total measure 
is S e. Let us show that for the infinite product measure II on R , we 
have l.1(1K) = 0  . 

_ 2 
u /20 E €0< m1n(é€.é'). 

Given e > 0 ,  let 6 be such that 

6 -é V 
J_§ 

(reTro) du e 

We construct the following cylinders I 

C1 x€6% l»<1l < @} I 

C2 x € 6 ? ,  l»<2 , lx31<6} I 

and , in general , 

Cn {xes=a» xN l l  I 

+1 enl 
I . • l .I IX"2 <6} l (IX.4a) 

1xJ1 < 6 except 
But 

where T11 =i.»n{n-1)+1 and n2=§n(n+l). Since each x E K  has 
for at most a finite number of components r JCC UCI . 
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= €or»~°llJ'(CNl = eon g . . . 1 

and 

Z+Jl(Cn) tO + +eon+ I . 1 eo/(1 O) < € (Ix.4b) 

It follows that MIN) 
of the integral of F(x) = 
if (x.x)<°°. i . e . ,  

Note that this resolves the dilemma 
This functional is nonzero only 

= 0 . 
6-(x,x)/P . 

only on a set of measure zero . 
B .  Measure for the Wiener Integral . 

In the discussion of Section IX.A, we circumvented the possi- 
ble realization of the underlying Hilbert space , as a space of func- 
tions . Moreover, we do not know if elements of the corona 6% can be 
identified as functions on Rn. It is therefore instructive to see 
another construction of a measure, where the function-theoretic as-  
pects of the underlying space are very much in the foreground . 

The construction which we outline depends on establishing a 
correspondence between "quasi-intervals" of a function space and 
subintervals of the unit interval. Then the Lebesque measure du im- 
plies a measure for the function space. We should point out that 
this approach, while simple in principle, does not easily adapt to 
other related problems . 

This construction was by Wiener in his or 
the integral, and a detailed »"=r!v~6l" t appeared recently 
confine ourselves to indicating the main points . 

For each positive integer n,  we construct the following . 
first subdivide the real axis into two semi-infinite intervals and 
(2n)2" intervals of length 2'N: 

1 
on 
we 

We 

(-°°,-n] , (-n,-n+2'N] , ,(n-2IN,n] , (n,°°). (D<.5) 

theft. 
We ca l l  these into 
also subdivide 
define the quasi-intervals 
on E 0 ,t] by 

E? ) lSkS(2n )2N+2 .  the given n ,  we 
.[0,t] by the points to = jt/2". We now 
in the space 3 of all real-valued functions 

( ) .sok { x € 3  : x(tj(nl) E A (Ix.6) 

We replace j and k by the slngle index L , 
one to E (2n)2N+2] Zn. For the .9/(XN) , we have the probability function 
P given by integrals like (IV.6) . Obviously, 

which ranges from 
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UJ(I1) = 3 L, P <°9't,(n) D 1 (1x.7) 

For 
tervals , andl 
must assoc:ifI8§ 

'n' into 5335* 1 
We JL 

Va intern) . To JL 

J(N)<- L&(n) 5 n . I  u{,(nll . f ( ) _ P\J%N ) - u&(n) - u; . 
(Ix.8) 

The details of this correspondence are not significant, except that we 
must have 

.%(n+1) (n) 
USE HL' = I*(n+l) ( ) Us,-exif,-n I 

so that to a shrinking sequence of quasi-intervals there corresponds a 
shrinking sequence of intervals . 

Consider now a continuous function on E 0 ,t] . It defines a 
shrinking sequence of quasi-intervals as n*°°, hence a shrinking se-  
quence of intervals , and hence a real number. Conversely, to every 
real number except for a set of measure zero, there corresponds a 
unique continuous function. The points to be excluded are , first, the 
endpoints of intervals , to which there may correspond two functions 
(defined by shrinking sequences of intervals from left and from right) . 
Second, one has to exclude points for which the sequence of quasi- 
intervals does not define a continuous function. In f ac t ,  one can 
have two (completely distinct) sequences of binary rationals such that 
lim to =lim To, and a sequence of quasi-intervals such' that, e . g .  , 

x(tj) > 1 , x ( T k ) <  0 for all j ,  k .  

The crux of the construction is to show that such points (in 
[0 ,l] ) indeed form a set of measure zero. The precise statement that 
one has is the following . 

Theorem. Given € 0 ,  Elh such that all functions on [0, t]  
which satisfy 

> I (IX.9) 

where the to are binary .. tlmes t ,  and where u is fixed , 
0 S u < % , belong to qL1aL_..._ a s  whose total probability is < e. 

To-.. , ;'.- ..._,-;;;;'.. ';.' T.".., '.'.'i.,;,: ';1t.,,;';` 1; :;::_,;'.*"1..t., -1 

the space g}(j|J- of H 61der continuous functions . For simplicity, one 
often takes the space 0[0,t] of all continuous functions on [0 ,t] 

;;1 
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(corresponding to u = 0 ) ,  and which satisfy x(0)=0,  as the space of 
integration . 

We now present a sample calculation, to give an idea how the 
foregoing theorem can be proved. Let 

_ .  n 
t 1 - J t / 2  J t2  = (i+1)r/2" , s o  - t  t2 

= n 1 t/2 I 

and consider the functions x (T )  for which 

U- 
lx( t2)  -- x(t1)l > h(t/2N) . 

where h also satisfies ht"( '-Ll) 2 " z  l (see Eq. (lX.l2c) below). 
Functions satisfying (D(. 10) can be classified ac(crdingly as  

x(t1) or X(t2) lies in a finite or in an infinite interval Am" , for the 
given n (see (IX-5)) . Suppose that X(t1) lies in the first finite in- 
terval from the left, and X(t2) in any finite interval. Then the probe - 
ability of the quasi-intervals which include all the functions x in 
question, is 

(1:x.10) 

=f 2 
P \ 41T 

_ V-n+2'N 

J-,, 
jt2/22nD dule  

_ n -u§2n 1/t V 
J -n+2INk 

du e- (112 "UI )2 2 n -1/t 
2 I 

(IX.11) 

where k is the least integer such that h(t/2n)**> 2' 1k. 
Let us obtain an estimate for the integral over 112 , which we 

call Po.  We set "2 -up =u,  and observe that 

2-n u 2 h(t/z'*)l* Uo' 

We treat the interval [uO,uo+2'N] separately. Thus 

(IX.l2a) 

P < r1oo 

J -up Zn' 

uo 
1/t du e o 

_Ve < f(h,n) O dve V 
J 

oo 

+ c  
Vo 

r (Ix.12b) 

_ a - 
f(h,n) = 2 uo2.n 1/t -n e I 

= -%(n-1)té' v 
' o C 2 o 

=ht-(é-m2-é2n(é-u). 

(D{.12c) 

The need for u<% is now apparent. This is needed in order to have 
vo* °° with n.  
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Let us find more explicitly the dependence of the last integral 
on h and n .  In view of the condition on h made previously, v> l in 
the range of integration, S O  

P 0 <  f(h,n) +A-. co JV d(v2)e-V2 
2 

Vo 

f (h ,n)  +% 
2 

C G-V0 
O 

(IX.l2d) 

We see that the second term, as well as the first, decrease very 
rapidly with increasing h and n.  The proof of the theorem is now a 
matter of combinatorics and of additional calculations of this sort . 

6[0,t] 

C . Consequences of the Wiener Measure . 
The existence of the measure for the Wiener integral allows us 

to use the full apparatus of measure theory, e . g .  , Fubini's theorem , 
et cetera . We should also like to point out some more specific con- 
sequences of this measure . Various of these consequences were pre- 
supposed in the previous sections . 

(1) One can define a measure for the conditional Wiener inte- 
gral by a similar construction, or in terms of the Radon-Nikodym de- 
rivative due/d [X(t)] . Then the Wiener measure is the product meas- 
ure. of .  Eq. (IV.24). 

(2) It follows directly from the foregoing construction that a 
Wiener cylinder functional 1.s__}/viener measurable . [We refer here to 
functionals flx(t1) , ,. such that f is in RM.] 
Moreover, one can show that any conti tonal g lx} 
on i .e .  , depending continuously on continuous functions x(T), 
is Wiener measurable _45) The second assertion, or both, applies in 
particular to the following functionals which we encountered previ- 
ously: 

I 

X(t1) . . .X(tk) I e 
-l`d¢v{x} 

I 
ei.fdTxy 

(D<.13) 

(3) By way of recapitulation, we observe that we have availa- 
ble three ways for defining the Wiener integral: (1) dire ctly as a limit, 
as in Section IV.A; (it) as a Hilbert space integral over the space :S-Cw , 
and (iii) as a measure-theoretic integral. Still another way, (iv) in 
terms of sem1groups,will be indicated in Section XI.B.  

For some functionals , these definitions are not equivalent . 
However, in various important cases , at least the first three are . 
Consider, e .g .  , methods (i) and (ii) . For a given functional F,  they 
define approximating functionals FS . Suppose that all such FS are 
bounded by a functional which is integrable in the measure-theoretic 
sense . Then the dominated convergence theorem implies that 
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JPdUwFsM-- JFdLJ.wF 

01% 

if Fsmfx]-~ F{x] for all x € C [ 0  t ]» and the definition (iii) agrees with 
(i) and (ii) . This applies obviously to the last two functionals in 
(IX.l3), for which F , | FBI S l (if VI 0) ,  and for which a variety of 
other approximating sequences could also be employed. See, e . g .  , 
Section IV.B. For the functional X(t1). . .'{(to) , we may argue simi- 
larly . 

However, one can give an example45) of a functional for 
which (i) and (iii) give unambiguous but different results . Therefore , 
the term ` ' , is reserved by convention for the measure- 
theoretic s . 

an gq»?ra1 theorern46) implies that the characteristic func- 
tional .fduwfxlei X,y )  depends continuously on y ,  where y may 
range over the dual to 'C[0,tl. (This dual includes all measures over 
[0  ,t ]  . )  This fact is confirmed by the evaluation (vii. 21) . Another 
result is the following . 

If F is bounded and continuous on C [ 0 £ ]  and 

JI" dLlw (x)ei ( x  ' yl F ix 0 (IX.14) 

for every VEC [0, t l  , 1~hen41) 
were to; replace in (lx. 14) 
tegral , then the functional C -  

*HP 
l l = (J  (on CU] ,dl . We note that if we 

integral by the Hilbert space in- 
would give a counterexample . 

x. Some Related Measures 

A .  

V 
J 

bm 

Examples Based on the Smoluchowski Equation . 
In the remainder of these notes we shall modify the two func- 

tional integrals in various ways . The first possibility that we dis - 
cuss is to generalize the construction of the Wiener integral. In par- 
ticular, we proceed as  in Section IV.A, but do not insist on the con- 
nection with the diffusion equation . 

Thus , for the probability that ais x(Ti)s bi' we generalize 
(iv. 6) to 

bl 
due 

a t  
1*.2: U1 

.PC .6 ul' 
dum P \  am 

T 2 - T l  

T P Um-llum' m ' T m - l  (X-1) 
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The function P defines the conditional probabilities , and it will be 
assumed positive and continuous for Tj+1 -To 0 .  It must, moreover, 
satisfy the compatibility condition for all T,  0 < T <  t ,  

P (vi u; t) 
of 

_ o o  

V 
J d u P ( v l § : T ) P ( § l u ; t - T ) .  (x.2) 

This equation is known as the Smoluchowski equation. 22) 
If we have such a function P , we can compute expectations of 

integrable cylinder functionals , and can also try to define a func- 
tional integral. See the remarks at the end of this section CX.A) , and 
also Section X .B .  

We now give two examples of functions P .  First, let 

PQ (vI ui t) II (ZH) -1 Jf; d § exp p €(u-v) 
a al , 0<.3) 

One can show47l that Pa is positive for 0<0  s 2 ,  and (X-2) follows if 
we recognize the Fourier integral for the 6-function. For a = 2  , we 
get the solution to the diffusion equation and also the Wiener inte- 
gral . 

F o r m  1 I the integral (X.3) is elementary , 
_ r- 2 P1(vlu;t) - t/1TLt2+(u-v) (X-4) 

The cylinder functional x(t1)x(t2) is not integrable now. For 

_- 2 f i x }  = €1B1x(t1) _ e 1£32x("2)\ 
r (X.5a) 

we easily find the expectation E .  If t1< t2  , 

mf) = 2 - 2 e x p l - l 8 2  ( t z - t 1 ) - l s 2 - 8 1 I 1 1 .  (x.5b) 

The second example that we mention corresponds to the 
Brownian motion of the one-dimensional harmonic oscillator. In 
the presence of an external force, the diffusion process is described 
by the Fokker-Planck equation, here 

48) 

all/at 2 
DEJ2W/5 u f '1a(F¢)/au, IX-6) 

where F is the external force and -fv is the force of friction, V 
being the velocity. For F=-w2mu, we may write 



500 JAN TARS Kr 

all/at = DB 2II/B111 + k g  (ugh)/Bu, (x.7) 

where k=w2m/f, k > 0 . For the fundamental solution Pk satisfying 

k . _ _ P (vlu,t-0) - 6(u-v), 

we find 

Pa(vlu; t) = k*~zTrDl1 -@-2kr)]-=8% 

x expl-(k/2D)(u _ 2 - V e  kt) (1_€-Zkt )  - l  
(X-8) 

We see a Gaussian distribution. The mean is also the expec- 
tation value of X(t1), 

f i x }  Xltl) - E(f) = be-kt I (x.9) 

provided we redefine the probabilities E CX. l )  , et cetera] , s o  that the 
paths satisfy x(0) = v .  

In order to  verify (X.Z) ,  we first set P = Ee . Then we ob- 
serve that the integrand can be put into the same form as  for the dif- 
fusion equation, with the time t replaced by e-zkt  . 

Now let us consider the functional 

-kT 

f i x }  = IX(t1)  
-kt ve 1 l[x(t2) 

-kt- 
ve a I (X.lOa) 

i .e .  , we subtracted the mean values . To find the expectation of f 
we make some obvious changes of variables , and obtain 

E(f) = (D/k)(e'klta-tll -k(t+t1)D 
e (x.10b) 

but modified by a hard core . 

Note that as k *  0 this reduces to 2Dm1n(t1 ,t.-2), in agreement with 
(Iv. 14b) . 

This example relates to the solution of a model for a one- 
dime signal many-body system. There the basic potential is 
_e-yrtUl1"ugl 49) 

One would still like to know if the Pa and the Pa in fact de- 
fine measure-theoretic integrals . The answer is yes . For Pa, CI.< 2 , 
one integrates over the space of functions with jump discontinui- 
ties.22) Note, however, that the expectation (X.5b) does not reflect 
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space50) C[0,t] 

any discontinuity. On the other hand r for the Pk one can easily re-  
late the integral to the Wiener integral, and it suffices to take the 
Wiener 

B .  Product Measures. A Theorem of Kolmogorov . 
The theorem of Section D<.A on infinite product measures al- 

lows us to  construct, quite generally , 

dl1(x) =Tfdxjpj(><j) I (x.11) 

where p 2 0 and tdxj pa ~1. We give two examples . 
First, let 

Dj (xl) (2rr0)-  expf-(xl 2/2 of . _a j )  (x.12) 

If each as = 0  , then we obtain the measure of Section IX.A. This 
example relates to the question of uniter equivalence of the two sets 
of canonical systems of operators:28l'33 

2 
y F I q 

2 
p 

1 
q 

1 
p and 1 

p q ' 1 ° . . .  where J q 
J I q J + a (X.13a) 

and where 

j p , q  
k'l =II:pj,q,k;l -1 'k 

i 61 . (x.13b) 

For the second example , we take 

p j(xj) = 6(x j  -as)  r (X,l4a) 

which in fact corresponds to the limit 0f-' 
0 0 of Do . Then 

ld.(x)F(x) = F(a) I (X,14b) 

similar way:51) 

where a =  (al ,a2 , . . . )  , and a is not restricted TC. 
The following theorem of Kolmogorov can be considered a 

generalization of the theorem on product measures , and can be proved 
in a 

r oppose that we have an index set S (which need 
not be . and for any finite set of indices in, ,it E S 
there exists a real-valued function Fi1...im 
functions must be non-negative, non-decreasing, continuous from the 
rlght, and must satisfy: 

(up, ...,uM) on Run. These 
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(i) Fik(u)* 1 as u-'°== and F /u 1 11---1k+1\ I l . . Iukluk-I-1 )~ 0 

-» _ o o  
I 

k+1 as u 
.. 1 

(11) F11...ik+1(" 
k k+1 , . . . , u  ,u -u 

r 1 
F11...1k\u I ,u 

k 

as uk+1-° m 
I 

1 (iii) F11...im<*' I 
m , u  II I0(1) 

F1cr(1)°°°io(m)\U "' . u 0 ( m ) )  

where O is any permutation on l 1 f ,ml . Then there exists a meas- 
ure du(x) on the (perhaps non-denumerably infinite) product space 

R. II 1 X1eslR )i (x.15) 

such that 

F11...im\ I l 1 • V du(y) , 
P J 0(.16a) 

where 

P 
i ,  . 

y € 6 i ; y J s u ]  for l s j s m  (x.16b) 

The product measure corresponds to the factorizations 

Pi1 
/ 1 

...it\" 
m , . . . ,u ) = Fil(u1)... Fim\1lm>. (x.17) 

/ V FT1 ••uTM\b1l....bm 

This theorem also applies to the integrals of P(v u ;T)  as in (X . l ) ,  
bit b1m 

= J_m dvl V 
J l . • _ oo 

dvmp<0lv1;Ti1) 

/ » _ a 

P\Vm-1IVm'T1m T1m-1)' (x.18) 

where the To ,...,Tim are now in oh 11 order,`"' &j+1 . In 
this case, (11) is equivalent to the wskl equ . However , 
the measure implied in the present theorem is then over the space of 
all functions, without regard to continuity [but satisfying x(0) =0 ] .  
Often, and for us , this is not the measure of Interest. 
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We make a final observation. Let us take the integrals of 
P(vl u ;T)  for the case of the Wiener integral, and restrict T to binary 
rationals , multiplied by t .  Kolmogorov's theorem then allows us to 
bypass the correspondence with subintervals of the unit interval , in 
the construction of the Wiener measure . 
XI. Representation of Operators of Evolution 

The interrelation between the diffusion equation and the 
Wiener integral has been prominent in the previous sections . We 
also saw in Section X.A that a functional integral may be associated 
with the Fokker-Planck equation for the case of a spring force . 

In this section we will dis cuss the possibility of relating cer- 
tain other partial differential equations to functional integrals . Our 
special interest is in the SchrOdinger equation . 
A .  Parabolic Equations of Higher Order.52l 

The complications which occur with the SchrOdinger equation 
can be seen, perhaps more easily, if one examines 

+1 2 2 
(-1)r" a 'w/au r .  5 ' ' / 5 t  II (xI.1) 

where r e  2 . 
edition 

The fundamental solution p ,  defined by the initial con- 

p(t=0, u) = 6(u) I 

can be expressed as follows I 

V 
J 

m 

-on 

p(t,u) = (211) do e x p e u - t a 2 ' >  I (XI . 2) 

and satisfies , in view of the Fourier integral for the 6-function , 
r°° 

J_ oo 
dup(t,u) = l all  t 2 0 .  I (x1.3) 

We could try to use p to define measures of quasi-intervals 
as in Section ]:X.B: 

I 

MJ) 
b I* 1 

Ja1  

pk -- P\  k 

b 
d u . , . l M  1 Ja 

m 

m 
dum of Pa | 

k=1 

' tk-1 I "k ' "k-1  I 

(XI . 4a) 

(xI. 4b) 

and we set t0~ =0 , u 0 = 0 .  We could then hope to express solutions to 
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equations like 
all/at = (-1)I+1a2r¢/au2r +v\U (xI.5) 

wa-i"i1H1;i:l][g& (1 DT r ,  the 

by means of functional integrals constructed in this way . 
However, the difficulty is that p can take on negative values . 

In  fact ,  the integral (XI.2), with 52r replaced by l§la, is positive for 
0 < 0  S 2 ,  but not for a >  2 (of. SectionX.A). We do not know of any 
elementary proof of thi.s.fact, but one can easily see that for suffici- 

"5-5*.I"!Fw'i11 become negative . Indeed , if t 
land r~°°= r than Zr) becomes the step-function 
' , whose Fourier ' is 

p 1 i§u  

J-1 
d u e  II 2(sin u)/u . (xI. 6) 

This evaluation will be changed by arbitrarily little if r is suffici- 
ently large . 

One might try to remedy this situation by writing (see (XI.4a)) 

MJ) u+(=$) 'Ll J) L r (XI.7) 

where the two contributions correspond respectively t o  the two re- 
gions of Rm where Ups is positive and negative. Then, if *~L+ and 
u_ should define independent functional integrals , the procedure 
could be essentially unchanged . 

We could use such a decomposition if each of the two meas- 
ures pi defined a finite measure on the space of all functions . (Then 
we would say that u is of bounded variation, in analogy with the 
finite-dimensional theory.) But this is not the case , as the following 
argument shows . 

Consider u_l_(=9) + 1_1Q(J) . 
Ups by H \ p k  in (xI.4a). 
all functions , J 
over each up yields the factor 

JV due p(t,uj) 
-oo 

This quantity results if we replace 
Furthermore, let J now be the space 3 of 

i . e .  , let (as . b - ) *  (-°°,°°) for all j .  Then the integral 

(21T)-1 V 
J 

oo 

- o o  
dv d'rle'T'l2+iT]v V 

J 
oo 

- o o  

C >  1 • (XI.8) 

We changed variables, v=L1t'1/2 I' 
that c does not depend on t .  
p becomes negative. Thus 

and TO =§t1/2t and have thus shown 
Moreover, c> 1,  since fdLl jp=l ,  and 

u+(3) + u _ ( 3 )  = CM I (xI.9) 

-»oo and cM as m*°°.  Consequently, our previous constructions of 
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functional integrals cannot be easily adapted to the present 
circumstance o 

,A similar argument applies to the modified SchrOdinger equa- 
tion, 53 

aw/at = ( i+e)a 2¢/au2 CxI.10) 

We included the real and positive increment s . At one time it was 
hoped that the presence of € would enable us to use an integral 11ke 
the Wiener integral, and we could let €- '  0 at the end of the manip- 
ulations . 

Let us return to Eq. (XI.5) with the potential V .  It is possi- 
ble to construct the analogue to the Feynman-Kao formula (IV.28) , and 
we turn to this problem presently. However, one can also study the 
"generalized measure" defined by (xI. 1) and show, e . g .  , that it is 
concentrated on a space of HOlder continuous functions . 
B.  Semigroups of Operators . _ _ 

First, we give an example from ordinary differential equations . 
Suppose that we have a system of equations 

dy/dt II A(t)y I (x1.11) 

where A(t) is a matrix depending smoothly on time t .  If 

[A (T1) ,  A('r2)] - 0 for 0 $ T 1 , T 2 $ t ,  (xl. 12a) 

then we have the solution 

y(t) ' exp 
t 

d T  
o 

A(T)]y(0). (xr. 12b) 

In the general case, we can use a familiar procedure . We 
break the interval [ 0  , t ]  into m equal parts r set At=t /m,  and the 
solution is given by 

y(t) lim m- co 
[1 + As Am] [1 + At A((m-1) Au] ...[1 + ATA(At)l} y(0) 

exp 
t 

JV dTA(TD+y (0 ) ,  
o 

(xI.13) 

(of. (III.l5} and (III. l'7)) . This time-ordered exponential is also 
called a multiplicative .i.rEQQ.ra1.. 54) It has various useful properties 
analogous to those o f ,  say,  the Riemann integral . 
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The remainder of Section XI.B is based largely on an article 
by Nelson. 55) 

In the case of the SchrOdinger equation , 
-1 at = 1l(2u) Au -v]w I ¢( t=0 ,u )=  f(u) I (XI.14) 

the situation is somewhat different from GCI. I I )  . 
equations I 

For the two simpler 

I -1 Box = 1(2IJ.) Aux, Boy = -iV(1.)y, (x1.15a,b) 

we can write the solution immediately , 

x(t,E) = e-itk *{(0,k) I y(t,u) 
- t V  -o 

e y(0 ,u), (xI.15c,d) 

where x is the Fourier transform of x .  
Since A and V do not commute , we again have to use a- 

11miting relation. We have the following. If 

t P exp(it A/2 H) . Qt exp (-itV) , (XI.16a,b) 

then, under suitable restrictions on V ,  

\let lim (pt/"'Qt/M m -v m 
m 

'lt=0 . (XI.16C) 

We have here an example of Trotter's formula. Its applicability to 
the SchrOdinger equation will be discussed in Section XI . C .  

Let us now give a more precise and also more general formula- 
tion of such relations . A contraction semigroup on a Banach space 
no is a semigroup {Kt} , t 2 0 ,  of bounded operators mapping 08-'03 and 
satisfying 

Ko = 

for all wen. 
1 r 

t s K K  Kt+s 
I t | a l ,  (x1.17) t K 1' K iIJ=l11 , 1m t_*0 

The infinitesimal generator A of {K*} is defined by 

AilJ=11m t`1(Kt¢- l l ) ,  
t-»0 

(XI.18) 

and its domain D(A) consists of all lIe EIB for which this limit exists 
In particular, if A is a self-adjoint operator on a Hilbert 

space , then the ut=e1tA form a unitary group, and a fortiori a con- 
traction semigroup. However, semigroups rather than groups 
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ordinarily apply to the diffusion equations , where , e .g .  , the initial 
condition '11t=0(u) = 6  (u) does not define a solution for t <  0 . 

We can now state a weak form of Trotter's theorem . 
Theorem. Let A,  B ,  and A+B  be the infinitesimal generators 

of the contraction semigroups [Xt] , lyt} , and {Zt ]  1 respectively , 
acting on the Banach space B.  Then for all \II E B ,  

t Z w = lim m-0 m(xt/myt/mbm u p (x1.19) 

This theorem can be proved in an elementary fashion. The key 
step is t o  use the principle of uniform boundedness in order to show 
that 

lim h-1 
h-.0 

h h Y zh)zT 'IJ II 0 ,  

the limit being uniform in T for 0 S T S t .  
This theorem applies in particular to the diffusion .equation 

with a potential VG) 2 0 . If we take L2(RN) as the basic Space, then 
clearly V 2 0 ,  HoE - A  2 0 ,  and V+I-I02 0 .  Recall that 

A 2 0  @ ( ¢ , A ¢ ) 2 0  for all 4 ' € L 2 .  (xI.20) 

Hence 

II e 
-iv I . e-tHoI I Ie-t(H0+V) | S 1. (or. 21a-c) 

C .  

Remploy the space L1(RtI}I. Then (XI.21a) re- 
e , are implied in lxI.2lb-c), in fact 

However, we 
mains obvious r 
Section IV . 

For the diffusion equation with potential, the successive ap- 
proximations in (xi. 19) correspond just to the approximations used in 
the construction of the Wiener integral in Section IV.A (except for in- 
tegration over the final endpoint) . Now, as we implied in Section 
IX.C r Trotter's formula might serve to give still another definition of 
the Wiener integral. Such a definition would be much more limited in 
scope than the previous ones . Moreover, it might possibly lead to 
different results , e . g .  , for some functionals which depend on X as 
well as on x .  

Finally, we note that the foregoing theorem also applies to the 
higher order parabolic equations like (XI. 5) . 

The Path Integral. 25),55) 
Let us now apply Trotte1~'s formula to  the Schrödinger equation . 

The solution (XI.l5c) in coordinate space, in n dimensions , takes 
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the form 

x(t,u) 

JAN TARS KI 

(2TTit/l.1)-N Jo in  
-» -a 
u v e x p ( - i n  -v l2 / t )x(0,v)  I 

.151 b i r r  . . 
where 1 = e . This equation is va11d for x € L 1  H L2 . However , 
the operator here represented is unitary, and so  can be extended to 
all of 12 . The m-th approximation in (XI. 16c) becomes 

w (M)(t,u) = <2'1i At/ l i )-nm JV d"6'1 ...dnvmeiSm lb (0 ,vi) , 

(xI.22a) 

Sm 
m 

j-1 
E [ l  

Vj+1 _V j l z l  

(6-U2 
v(vi)] as, (x1.22b) 

with Vm-i-l =E . 
In the limit m*°° ,  Sm tends to  the classical action S {x] f 

Eq. (I.5b) (we suppress the t-dependence) . We now denote the limit 
of the approximation (XI. 22a) as follows : 

lI(t.u) - r dnv  V 
Jc(¥},H) 

8F(x)eiS £21 
\l1(0,v) (xI.23) 

The integral here introduced will be called the Feynman path integral 
(or simply, the path integral) . We c o f t o  use the symbol 
C(v,u) , but no relation to continuous 'R _ ons is implied here . 

If we recall the definition of the propagation kernels , 

w(t,H) JVd""1<(V G,-t )¢(0,v) ,  V (XI.24a) 

we see that 

K(vlu;t) V 
Jc(G',E) 8F(;{)eiS £?<} 

(XI . 24b) 

and in particular contraction iimmgroups 

A basic question now is , for what potentials are these formu- 
las valid. In view of the fact that Eqs . (xl. 15a-d) already define 
unitary groups , this will be 
the case if (2 u)llA - V  is self-adjoint. Wegm-E.3'one set of criteria 
due to Kato. Let V be a real multiplicative operator, with V(u ) 
measurable. Then V will be self-adjoint on a domain D(V) . 

Theorem . If DUP D(A) and there exist constants a< l and 
b such that 

I 
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lvwll S 
-1 

<3(2lJ-) I A ¢  +bl¢Il, (XL 25) 

for all lb E D (A) ,  then. (2 u)'1A - V  is self-adjoint. 
Note that if v is bounded, then we can take b=maxM , and 

the theorem will apply. 
However, this theorem does not apply to various functionals 

of interest. For example , if V-=-k/r2, with k sufficiently large , 
then (2 u)'1A - v  is not unambiguously defined. In particular, it 
might not be a self-adjoint operator. In such a case, Zt in (XI. 19) is 
not unitary, and s o  cannot be approximated (in the sense of strong 
convergence) by unitary operators . Moreover, some functionals , like 
F txt =x(t0) , are not associated with con1:ractlon semigroups in a 
natural way . 

We therefore mention two other possibilities for defining the 
path integral. First, we may start with the measure-theoretic integral 
for an imaginary mass , i/u> 0 , and continue analytically in u. Sec- 
ond, we may define the path integral directly as a limit,53l as in 
Section IV.A. We do not consider the questions , which functionals 
would then be integrable and when do the various definitions agree . 

For evaluating the path integral , the following formula may be 
useful: 

I ( ` , ' )  
J8plX)e1 U x x F {x}  = JV»W(x)e'* LL(x•,x•)F 'EX} . 

(x1.26) 

This formula is valid if x (0)=0,  x(t) is unrestricted, or if x(0)=x(t)=0 . 
Other conditional integrals may be brought to this latter form by a 
change of variables . (Suitable restrictions on F are understood.) 

In the remainder of Section XI we describe some applications 
of the path integral . 

Suppose first that AV is a perturbing potential, and let 
f=exp(-illdT AV). Then the probability of transition from 111 at time 
t = 0  to X at time t will be the following matrix element , 

<f>X (l1!lflX) 

J d n  
V -I -> I" 11-0 -o 

x ( u )  d If( ) _ » - o  (x)e U J V V JC(VIU) F s iS[xlf{x} . (x1.27j 

If we expand f in powers of AV, we can easily obtain the familiar 
perturbation series . Equation (xI.27) also can give a convenient rep- 
resentation for other matrix elements , e . g .  , of x ,  p ,  et cetera . 
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We now indicate some heuristic manipulations . For suitable 
functionals F we should have, as in the examples of Section VII.B r 

V 
Jc(6',U) 

SF (x) 
QMpIXQ 6 e 

6x°(T) L 
0 I (xl. 28a) 

and 

(617/6Xfi.(Tl) X -1(p6s/6x°1( ' r ) )X.  CxI.28a) 

One can interpret 6s/6x°'(¢) with the help of Green's functions / as 
in (VII. 12), or by using the rules of Section I .B.  

Equation (XI.28b) is a special case of Schwinn 
principle.56) This principle asserts that, quite gene' 

action 

( 6 F>x -. F 68 . 1< )¢X (xI.29) 

blple 
-n • 

For 
pow 

I let F and S depend on a suitably-behaving function of 
Then also n('r)= n ( x ( T ) ) ,  and the chain rule 

q 6 I 
6u(o) = .Y d'r J 

I! 
I 

!1 

6 
6x°"('r} 

(x1.30) 

implies (XI.29) for variations with respect to n . 
We can also give an example from quantum field theory. If 

we have an electromagnetic field which depends (at least partially) 
on a given external current T o '  and 

4 , I = S(0) + Jed V'A*J'(V')]*l(v ) ,  S (x1.31) 

where 3(0) does not depend on T o '  then 

Et 
( u  ) =  -1(A"(u)§ I ) = -1(A"(u)A*l(v) ) GxI.32) 

The expectations refer to arbitrarily chosen states . 
D. Classical Limit of Quantum Mechanics _57) 

The path integral elucidates the nature of the stationary 
phase (or WKB or ]'WKB) approximation in quantum mechanics . We 
start with Eq. (xl. 24b) for the propagation kernel , but we do not set 
h= l :  
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K(v l  u;t) V 
Jc(<7', 

1S[X]/h *9F(x)€ 
Ti) 

(x1.33) 

We are interested in deriving an approximation for K ,  which is 
valid if h is small compared with other parameters of the system . 
Now, for small h, the exponential will oscillate rapidly, and the 
principal contribution will correspond t o  minimal os cillations . These 
are the paths near the classical path X(T )  , which of course satisfies 

- | _ »  6Slx } /6x°¢w) 
x=X 

0 .  (x1.34) 

Let We therefore proceed as follows . 
x = ac + h e  , 

where x(0)=X(0)=v and x(t)=X(t)=u. 

x(0) = x(t) = 0 .  

Thus 

lXI.35a) 

lx1.35b) 

Let us assume a Volterra expansion for S and take the first two non- 
vanishing terms : 

s{x}  ~s{x]  +é*hS2{x} | (XI.36a) 

s2{x} = T d r  J 
Ft 
o a,B 

a2T 
\6>2aB>25 x=X(T) 

. a .B  
X x x a2v a B 

a B x Bx Bx X=X(T) 

..t B(Tl;I 
O.(T)X B(T)X 

_ qu 
; ,2(T l  X | Jo (XI.36b) 

Cali is a known function insofar as we can solve the classical 
am, i . e . ,  find X ( T ) .  

We now insert (XI.36a) into (XL 33) and define the approximate 
kernel , 

K2 = e is{>?}/h /` 
Jc(6°,6°) 

8F(xle i%s2 {x} E e iSl<}/T1I. (XI.37) 

Note that the two integrals , in (XI.33) and (xI.37) , refer to different 
variances , h1.l'1 and 1.1'1 respectively (aside from factors i). Still , 
the formal manipulations lead to a correct expression . 

The integral I is independent of h. 
to be a correction to K2 of order but this is an I 

manifestly 
h 1/2 I 

appears 
1 of an 
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odd functional, hence zero. Consequently, K - K 2  is of order h. 
Let us look at the integral I more closely. Equation (xI.26) 

implies 

I I as ( x )e  
Jc(6',E) W 

-% u( i i )  .t exp(j 
o 

G. 
d T q a B x  X 

B 5. 
lXI.38a) 

1(1) 

For simplicity, let us now consider one-dimensional motion, and let 

,,t 
exp(é d T  qx2\ . 

O 

-%u(x'»)Z) V 19 (x )  
J c ( 0 , 0 ) W  e 

(XI.38b) 

As a typical example, we may have 

4 V = Ku q(T)  = 12l \X2(T) 2 0 .  I (XL 39) 

This is in contrast to (iv. 151, where we specified q=-ps  0 .  How- 
ever, Six] has a minimum3 at x = X ,  s o  8 2  is positive definite . 
With reference t o  (v11.3)-(vI1.4), this means that 1 +A> 0 ,  as  re- 
quired there. The fact that perhaps A< 0 is of no consequence . 

In Section IV.B we described the evaluation of an integral like 
1(1) in (xI.38b) , but unrestricted. The method used there can also be 
adapted to the conditional integral, and the answer is as follows . 58) 
If 

f " ( T ) + q ( T ) f ( T )  = 0; f a) = 0 I f ' ( t)  = -1 I (xl . 40a) 

then 

In" = [11 f(0)] 
1 

- 5  (xI.40b) 

The expression (XL37) for K2 is in agreement with the results 
of the stationary phase approximation. There one writes , with an 
error of order h, 

iS Q h S 2 = e I V e . . 
. . . S 

In the cited reference ,57) indirect arguments were given that I=e  l 

It does not seem easy to compare the evaluation (XI.40b) with the 
standard time-independent solution r 

S (e 1)(u) = const. E-V(u) 
_:L 
4: 

(xI.41a) 

lxI.41b) 
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x _I_1..._ Two Special Functional Integrals 
In this section we describe the Feynman history integral and 

an anti commutative integral. Both of these have been introduced pri- 
marily to deal with situations which so  far are peculiar to quantum 
field theory. However, it is not at all unusual to introduce an inte- 
gral which be of a rather limited;"""'"*ability. We may quote , in 
this conne , the title of a recent; 
devised for special purposes . " 

art1c1e:59) "Integrals 

A .  A Simple Model. 
We are interested in constructing a functional integral repre- 

sentation for time-ordered vacuum expectation values . Here we pre- 
sent a trivial model , and the treatment that follows can easily be 
made rigorous . 

We consider a system with a denumerable number of excita- 
tions , e . g .  , an oscillator. We employ the standard annihilation and 
creation operators , 

a 

0 1 
0 

0 
to 
0 /E' I 

II 
+ m

 

0 
1 

0 

0 
/'2 0 

0 
.u 

| (XII. la) 

la I a 
*J _ 1 

I (XII. lb)  

which are supposed to relate to the excitations in the usual way. We 
now define 

cp(T) a Ta+ (XII.2) 

Here T has the interpretation of imaginary time , i'lr, and 
various standard field-theoretic relations should be modified ac- 
cordingly. As a result, we will be able to use the Wiener integral 
rather than the Feynman path integral, and for the former a more ex- 
tensive theory is available 

We see that co) and that the equation of motion and the 
"equal tlme" 

_ +' _ _a I 

commutation relations are as follows r 

¢ ' = 0 ,  [<f3»opJ=1- (xII.3a,b) 

The T-dependence , or evolution, of cp can be described in terms of a 
"Euclidean Hamiltonian, " 

2 
H = % ¢  =%@U2 I IXII . 4a) 
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<p(T) 
TH e cp(0)e-TH (XII . 4b) 

Of course, we are dealing here with unbounded operators , and ques- 
t1ons of domain should be carefully considered . 

Let us determine some vacuum expectation values : 

(CP(T 1)CP(T2))0 

II - + 
(a  T2a 0O=T2  I (X`II.5a) 

and with reference to "Euclidean time ordering, " 

((q0(T 1)<p(r2))+) = min(T1,T2) 

q 
I JduW(71)n('r1)'n('r2), (xII.5b) 

in view of (IV.14b) . (There and here we take c =  1 .)  One may verify 
the corresponding relation for higher order vacuum functions . We 
conclude that for functionals restricted to a suitable class , 

._ V ((F{<p})+)o - J d u w ( n ) F { n } -  (xI1.6) 

We note that we may take [0.°° )  as the basic interval for the Wiener 
integral . 

As in Section III.C, we can construct the generating func- 
tional , 

mill (e~t'°')>o ( 
I 

exp mi; dT'dT"m1n(T' ,  'r ")I('r')I(T") 

(xII.7a) 

(see (v11.21)). 
(IIL26), 

This functional satisfies an equation analogous to 

(dz/dTz)[6n U3/6I(T)] II ]'(T)Q {].} (xiI . 7b) 

B.  The History Integral . 
We will now adapt the foregoing considerations to the free 

scalar field. We will be led in this way to an integral, whose mathe- 
matical structure is as yet imperfectly understood . 

Here we present a heuristic discussion, which is 
approach of Bogolubov and Shirkov.39) Our short s u m m a r y . _  
regarded as a supplement to the clear and concise exposition in the 
cited text . 

1 on the 
ld be 
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First we evaluate the vacuum expectation value which is the 
free field generating functional, of. Section III: 

T(0){]} 

II ( (exp 1 Vd4 (0 
J PCP )(p)1(-,,,) + )O. (xII.8) 

(We suppress the tildes which would indicate Fourier transforms . )  In 
general, a time -ordered product can be reduced to the normal form by 
replacing , in momentum space , 

-o ¢I>(0)(k) iAC(k) 6 / 6  <()(0>(-k) I (XII. 9a) 

2 k A°<k) = -( - u 2 + i  -1 = AC(-k). (XII . 9b) 

More precisely, if (F1{cp(°)}).,. 
t lon,  

:F2lcp(°)]:, then, in an obvious nota- 

p2{£k} {Qk-1Akc6/6g_k} Fl  1 .  0c11 . 9c) 

This rule may be verified directly for polynomial functionals . 
Such rules express the combinatorial features of the ordering 

prescriptions . We can give a-nother example. Suppose that we have 
a free field whose annihilation and creation parts are so adjusted that 
they satisfy 

( u ) . x  6 ( u  - v ) .  (-) (+) -» IX ( a m  

Let F {X(-) , X(+)) be an arbitrary functional. If we want to reduce F 
to the normal form, F =  :H:, then we set 

(XII_ 10a) 

H {@`»@+} F {@' + 6/t) @+, @+} . 1. (XII. 10b) 

Let us return to T(0) . We introduce 

QJICM] 

and T 
differs 

exp . l  {1)~ JV d4p[Q (p) -iAC(p) 6 / 6  C(-p I(jp)} (XII. lla) 

= @I{0;1} (since, in general, (~F {¢p(°)}:)o==F {0]) . We 
with respect to K :  

a 
BX (§l_lQ;)\} - [ `d4 *J D[C(p)-mclpl 

]I(-D) QIIQNJ (XII. 11b) 
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We see a differential equation, which resembles those that we solved 
in Section VIII. We find QI, by trial and error, or otherwise , and ob- 
tain 

T(0){I} = exp [ V  dup I(p) Ac(p) I(-M] - (xII.12) 

Thus the vacuum expectation value of a linear exponential 
gives a Gaussian. This is in analogy with the formulas for the two 
basic integrals . We therefore write T(O)[ ] }  (heuristically) as  a func- 
tional integral, with a suitable Gaussian weight. Explicitly, 

I 

( (6i/d4p(;0(°)(p)I(-p)) 
+ 0  

t o  
V8(T)eiA(°){T1] i,fd"'DT1(p)I(-p) 

J e | 

(XII. 13) 

where A(O) is the free-field action , 

A(o){'n} d V 
J 4 pT1(p)(p2 - W W ( - p ) .  (XII. 14) 

As in (XII.9b), the prescription I42-' +12 - i n  near p 2 =  112 is implied. 
Moreover, the obvious normalization of the functional integral is to 
be understood, i . e  . , to unity for I= 0 .  We call the new functional 
integral the Feynman history integral. More generally , 

( (p {<p(°>]) +>0 r a j  

- (O) JV»(n)e"A Whelm (xII.15) 

The history integral has the basic form of the Hilbert space 
integral with a modified weight, as  in the examples of Section VI.D. 
To see more clearly the interrelation of the various integrals r the fol- 
lowing diagram may be helpful: 

Commutative Hilbert 
s pa ce integral 

-4' 

JL 

Comm. H .  s . integral 
with modified weight 

Weiner integral 

> h /ristory integral 

> path integral 

The two arrows on the left indicate specialization, and we re- 
fer to Section VI. The horizontal arrows indicate analytic continua- 
tion. See Sections XI.C and XII.C, where we mention continuation in 
ll and in t ,  respectively. Finally, one can try to interrelate the two 
Feynman integrals as follows.60) We choose an orthonormal basis for 
the one-particle sector of {p(0) .r and in this way separate the degrees 
of freedom. For each degree of freedom, we describe the time 
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evolution by means of the path integral . 
combined, one obtains a history integral . 
to  be worked out more fully . 

When the path integrals are 
But this approach remains 

C .  Time-Ordered Functions and Functionals . 39) I 61) We can now de- 
rive easily (but of course heuristically) some interesting formulas for 
interacting fields . We consider the Lagrangian 

(0)(V) L(v) = L + L1(v) I (XII. 16a) 

where, e .g .  , L1(V) 
ignored here . = M04(v) . All questions of renormalization will be 

The total action is 

A = A(o) + A 1  (XII . 1 eb) 

We also write I.(CP) I Afcpl 
Ll is given by 

I et cetera. The S-matrix corresponding to 

(XII. 17) 

For the time-ordered function T2 = ( (cp cp).l.)0 we have the ex- 
pression 

T2(u-v )  = ((cpl0l(u)cp(0) (v)s)+ )O/ (s) o (XII . 18a) 

N 
_ l  

J 
8 ( l e i A l n l  n(u)'f1(v) I (XII. 18b) 

in view of (XII. 15)-(XII.17). Here N =  (S)0. More generally, we see 
that we can construct the generating functional T ,  Eq. (III. 16) ,  as 
follows , 

T{I] 
-1 N Vs(n)e'LA*']e><p[1JV d4v n(v)1(v)l. J (XII. 19) 

If we combine the two exponents , we can think of the sum as 
determined by a new Lagrangian , 

LI(V) = L(0) (v) + L1(v) + CP(v)I(v) (xiI. 20a) 

It follows that TU] is the vacuum-to-vacuum transition function for 
the field which satisfies the equation 

( l12)<0(v) 

II (L1'(<p))(v) + I(v) I . [I.20b) 
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We thus see that the function I ,  which was introduced merely as the 
argument for a functional, in fact has the natural interpretation as an 
external source • 

It is remarkable that the strictly heuristicvq 
can be given afFE 8""' meaning (for, e .g .  , 11 = -at 
cations are ma* 'in 

assign (XII. 19) 
if three modifi- 

(i) A transition is made to  the Euclidean region, t- ' i t ,  so  
that the integral becomes a commutative Hilbert space 
integral, with a modified weight . 

(ii) The Klein-Gordon operator is replaced by a product of 
such operators so  that the Green's function 

G(u-v) 
vd4k erik(u-v) 1 

(2Tr)4 J (XII.21) 

is everywhere finite . The Lagrangian and the action must 
be modified accordingly. 

(iii) The system is restricted to a finite volume of space-t1me . 
Under these modifications , the integral analogous to (XII. 19) 

converges to a generating functional for Euclidean time-ordered func- 
tions . This functional satisfies the analogue to Eq. (III.26) . Hope- 
fully, one could continue analytically the Euclidean functions and 
functionals to the Minkowski space-time . But at present this is of 
secondary interest, s 1nce the solution t o  the Euclidean problem is 
still s o  incomplete. [In particular, one would like to be able to dis - 
pense with modifications (ii) and (iii) .l 

We make another comment about the integral (XII. 19) . This 
integral is the Fourier transform of an exponentiated polynomial, if 11 
is a polynomial in cp. It may be worth noting that we encountered 
several times before the Fourier transforms of such functions or func- 
tionals and the corresponding differential equations . Compare with 
(vm. 25) , (VIII. 29), and (xi. 2) . 

Let us now consider, again in (XII. 19), the two terms in Afnl. 
By interchanging operations , we can obtain 

Till II N-1exp A1{6/ i6N T 
(o)l]} (x11.22) 

See (XII. 12) for TWO) . We have here one form of solution to the field 
theory defined by L1 . Unfortunately, this solution st11l contains all 
the standard divergences , and it is not easily manageable otherwise 
(except by an expansion in series) . 

For the case of the trilinear boson-fermion couplings , it is not 
difficult to  derive the following expression for the two-point fermion 
time-ordered ( i .e.  , Green's) function: 

I 
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(XII. 23a) 

Vs(Q)eiA(o)M] (s)0 . N _ 
1 (xII.23b) 

Here G(Q;u,v) is the one-particle Green's function, and (S)Q is the 
vacuum expectation value of the S-matrix, both in the presence of the 
external field Q .  

If one assumes a given external field n , then he should re- 
11*' by Q+n in G and in (s)0 .  I f ,  moreover, there are no anti- 

__ _E in the theory, then (S)Q+n = 1 , and we obtain an expression 
analogous to (VIII.39). 

D. Exterior Algebras . 62) 
It is natural to try to extend the functional approach of the 

preceding section to fermi fields . We can only make a very modest 
beginning in this direction. To start with, we will develop some 
techniques for handling antisymmetric tens ors . 

We recall that the exterior algebra (or Grassmann algebra) 
over Rn, which we denote by E,(RN) , is the algebra of skew- 
symmetric tensors . If (el , . . . ,en) is an orthonormal basis for Rn , 
and in, . . . ,in are any integers with I S  1 js  n ,  we define 

-1 oil A eek = ( k l )  A son o 60l(i1) ® .  . . ®  e0(ik) I (XII.24a) 

where we sum over all permutations . 
algebra. Then such elements for 

We also adjoint the unity to the 

1 S i 1 < . . . < i k S n ,  k = 0 , 1 , . . . , n ,  (XII . 24b) 

where the unity corresponds to k = 0  
gebra . It is obvious that 

I form a basis for the exterior al- 

91 f \ 9 2 = ' € 2 A € 1  I e /\ = 0 , e t c .  1 e l  

The normalization of the vectors (XII.24a) is as  follows 

-1 
l I | I ._ I (ell A .  . . / \  elk, ell A .  . .A elk) (k.) 

I 

(XH.240) 

The total dimension of the algebra is 

1+n+ ; -n (n -1 )+ . . .  + n + 1  = Zn (xII.25) 
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The 
by 

re' Er(R") has a natural complex extension, which we denote 

Suppose that we have an antisymmetric function , 
- t s . F(s,t) y1(s)y2(t) y1 ( )¥2(  ) (x1I.26) 

A natural way to  look at F is as a functional, which is also a skew- 
symmetric tensor in the space of functions Yi- Let us restrict our- 
selves for the time being to  an n-dimensional space of functions , 
n< '=>. Then we may identify F as an element of the a1§aI§a.-1 E(RN) . 
The most general such functional depending on x = 2 5  I 

A(x) = A(0) + Z i A . x e .  1 1 A d j  
T' i j + L. Aijx x el + -  

1<J 
I 

1 
X ...n + . e • N • Al x el  A o f  A en ; (XII. 27a) 

or, if xi=xiei (do not sum), then 

= A(0) 2 A(x) + A.x. + 
1 l 

w 

I J 
Aijxi 

i < j  
A . 

XJ 
+ " ' + A l . . . n X 1 A " ' A X n '  

(XII. 27b) 

We have here a very close analogy with the polynomial func- 
tionals (VII. Za) . In fact, the latter may be identified with the sym- 
metric tensors over TK, or over its complex extension. One has the 
natural correspondence (do not sum): 

k 
y J y :- 

J 
_( J e y 12 e y ® k e k 

Y + 
k e k 

Y ® 
J 

1 (XII. 28) 

We now introduce three new operations . First, we define a 
linear map on E(RN) by its action on the elements (XII. 24) of the 
basis , 

e i l A e i 2 A . . . A e i k  
I 

eek A - - A  612/\ Gil 
k 1 (-1) + @it/\ .A Gin 1 

(XII.29) 

for k > 0 ,  and (1)' = 1 for k = 0  



FUNCTIONAL INTEGRALS 521 

Second, we define left and right differentiation: 

a pxq ' § = 6  , 
x o p  pq 

l p a p a I (XII.30a) 

apx i  Aw] A 6piA(x) - xi A BpA(x) .r (A A XI 'S = 6  
p 

A Pa x . .  
J 

(XII.30b) 

It follows that 

A J 
a 1 a 

J 
a A 1 

a 
J 

A a ) pa \ A J (xIL 31) 

let x , y  6 Rn, let (x,y) Third, (x1,y1,x2, . . . ,yN) .  We de- 
fine Gaussian functionals as elements of E(R2n1 by their expansion: 

exp(x,y) = exp<, . xi A Ye exp(-sux) 

1 +  x1Ay1  + + X1 AY1 A x2 A V2 + +/ln ( j =1x j  A ye) 

(XII.32a) 

As exp(xj A Yj) (XII . 32b) 

We may obs erve that the functional 
be brought to the form lXII.32) by a suitable choice of basis . exp(% Ei jc i lu i  A up) can always 

E . The Anti commutative Integral . 62) 
We outline here the construction of the anti commutative ana- 

logue to the commutative Hilbert spa ce integral. Various extensions , 
like to the history integral, must await future developments . 

Our discussion is based on exterior algebras , and follows the 
presentation of Berezin. Another possibility is to use Clifford alge- 
bras63) (see below) . There has also been an attempt to construct a 
functional jlnlkiiillal for spinoza fields in terms of the more familiar com- 
muting fund _ 64) 

We now define the formal rules of integration for antisymmet- 
r io functionals as  in {XII.27): 

l x , d x ,  
J J J 

1" 
J dx .x ,  

J J 

II 1 I (XII.33a) 
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JFA(x)dxk = 0 if A is independent of xi . (xI1.33b) 

We emphasize that these rules are formal, and no summations or 
limits are implied here. The first o-f these means , in particular r 

J , ,  . . d x 
J 

A x 
1 

X 
J 1 

A V 
J 1 

. . x  
J 1 A 

J 1 A 
J 

d V 
J C . e t I J 

A X 

Note that it is consistent to set ,  for #J , 

dxidxj = -dxjdxi I dxixj = -xjdxi. (XII. 34) 

could also write dxj. A xi , 
to the expansions (XII.27) 

V N-o _ JA.d X = 

et cetera, if he desired.) With ref- 
r we have 

Adx dx dx = A J n'  • • 2 1 1...n' (XII.35) 

We do not investigate here the detailed properties of the in- 
tegral, e . g .  , the transformation implied by a change of basis . How- 
ever, we give a rule for integration by parts to  indicate the analogy 
with the commutative integral: . 

JVA(x) eds (ml in >E' 
q 
I 
J {A(x)§p] B(x)d">E' . (XIL 36) 

Let us now consider Gaussian integrals I 

JI" exp(x,y) C ( x ,  y)dyndxn_ . .dyldxl . (xII.37a) 

It is easy to see that those terms of C will contribute which contain, 

j 
for each j , either (1) both Xi and Ye , or (ii) neither Xj nor Yj . A 
consequence of this is the formula 

, A *  j' d ~ d . =  A* . B .  . .  exp(x y) [  (x) B(y)Tf YJ XJ 11....k .1....k 
(xII.37b) 

The final sum is the scalar product of the elements inlEt") which we 
may associate with the functionals A and B respectively, e .g .  , 
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+ A(x)->a=A(0) 2 Aiei + S 

A 
+ A,.(2!)ée1/\ej  .i<i 11 

+ (n1)%A e A A e C 

I 1.. .n 1 - ° ° °  n '  (XII.38) 

corresponding to an orthonormal basis for R2 v 
elements obey the rule 

(Compare the normalization (x11.240) . )  
The exterior algebra , as well as the integral, can be extended 

to Hilbert spaces . We will not discuss such an extens ion in detail , 
except to point out the following. For the product of the Gaussian 
factor and a cylinder functional , the integral will become finite- 
dimensional, as in the case of the commutative integral. The 
Gaussian factor alone will integrate to unity . 

We will now make some remarks about the Clifford algebra 
c(R2 V) . For the moment we assume even dimensionality 2 v and v<  an 

for the basic space . The algebra is to be over the complex numbers . 
We recall that this algebra is generated by elements f1,...,f2 V :  

The products of these 

[fi  ] , f .  
J 

2 6 . .  + 1J 
(XII.39) 

The elements of c(R2 V) can be represented irreducibly by CV X CV 
matrices . 

In terms of such a representation, we c'an define on C(R2V) 
the following linear form: if g 6 C(R2V) .r 

T(g) 

II - v  2 t r g .  (x11.40a) 

This functional satisfies 
(if irreducible): 

I independently of the specific representation 

T(l) l I T ( f i 1 _ . . f i k )  = 0 (x11.40b) 

if the J 
of the unit element . 

Suppose that we now have an antisymmetric functional A(x) as 
in (XII.27). There A was a map into E(RN). We may also introduce a 
map Into c(R*')= 

i -  are all different. Thus , T picks out from g the coefficient 

Ac(X) 
\ 

z 
A(0) + Aixifi + ' i < j  A..xix'f.f, 1J l J 

+ 

+ A 1  X1 
. . . n  

n .x f 1 . . . f n  (XII.41) 
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(n can be assumed even, but this is not essential here) . 
We shall not attempt to construct rules for integrating 

however, we note the following. If, in analogy to a bE(RN) , 
we define 

I 

aC = A ( 0 ) +  2 f . . . f  . . . .n n 
. . + . . . +  A1f1 A1 l (XII.42a) 

and be refers similarly to B(x) , then we can recover the evaluation 
(x11.37b) by utilizing the trace form: 

T(aCbc) II T(bcac*) II * 
A11 . . . ikBil . . . ik '  (XII.42b) 

As in the case of the exterior algebra and the anti commutative 
integral, the foregoing construction extends to infinite-dimensional 
Hilbert spaces . In particular, the trace form T satisfying (xII.40b) 
can be defined . 
F .  Free-Field Vacuum Expectation Values . 

We flrst consider the boson field cp(o) 
of functional form , let cp(0) <33 

. For definiteness 
on three-vectors p ,  so that 

(prO) =q,(o.+) +§0(0.-) 
I [@0(°")(E5), =0(°f+)(8)l 6 ( p - q ) .  

(XII.43) 

An arbitrary vector in the Fock space of q,(0) can now be written in 
two ways r 

F {cp(0I+) l 0 )  and f { ( o ) }  l 0 )  (XII. 44) 

two forms in 
commutative 

The correspondence of the two few 
fermion fields is analyzed in de 

bnal forms , for boson and for 
, :in two theorems of Sega1.63)'65) 

For the boson fields r the scalar products corresponding to the 
| "44) may be'"' . m§1v represented in terms of the 
a art space Ni "°§62) For the first form r 

< ( o ~ ~ ) m ( o + ) }  >o JV@(n')»(n+)e'l"' .*'+lp1m-1 F2W} . 
(XII.45) 

Here we integrate over a complex Hilbert space , 
over the real and over the imaginary components . _ * n =(n+) , s o  that 

i . e  . , separately 
Furthermore I 

p 
3 d I 

J I dz 
1 0 > 2 I I 

i 
for To 740, 
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Second, we have 

<f{Q0(0)}>0 = n (n)e ' '< " 'T l> f {n }  
la 
J (XII. 46a) 

The quantity (f)0 can also be expressed as follows 

(0) f 6 6 (f{@0 no { n +  / n }  'r1=0 , 

| 

(XII . 46.b 

in view of (XII. 10b) . It is a remarkable fact that in (XII.44) the func- 
tion f can be obtained from F by a Weiner transform, Eq. (VII.24b) . 

For the free spinoza field, the situation is analogous . We con- 
sider a neutral field , 

¢(o)(5) 

II ¢ l ° l ( B ) + ¢ ( ° " ) ( B )  

II [¢(°>(i>')] 
* 

¢§°l 

The discussion of Sections XII.D and XII.E does not include the func- 
tional formalism, and restricts us to using coordinates . Therefore , 
we assume an orthonormal basis for L2(R3) , and then 

,+ I - = o ) +¢jl° ) , I- ( )  L¢§°'~»ko ] = 2 6 .  , + Jk 

(XII.47a,b) 

|* ( , - )  
-41 O ' £;°~>1, 6, I Jk 1pj(0'*l, ¢k(o.»=)].. = 0 .  (x1I.470,d) 

Again, a vector in the Fock space of 41(0) may be written in 
two ways I 

H{¢(°'*) } l 0 )  and h{¢(°)}I0) (XII.48a) 

The corresponding scalar products may be represented as follows , 

(H1{qf(°I ' )  }H2{¢(°I+)} ) o 

j exp(Q- ,C+)H1{Q- I  H2l;+}lTdQj d g  I (XII.48b) 

(h{¢(° )}>o  T(h). (XII.48c) 

cliff0rd 
EQ 

that, in view of {XII .E 
+algebra over 

= ( Q  ) , s i n  (xI1§ 

, h {l11 (0)} can be taken as an element 
§). In (xII.48b) , it is natural to iden- 
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The two functionals H and h can be related simply as A and 
AC respectively in Eqs. (XII.27a) and (XII.42a). There is also an 
analogue to (XI:[.46b) , 

(h{¢§°) 
I " ) o . +-o +-» h{;1 5 1 ' § 2  52 

l 
¢ | 1- |- 1 . all Ci=0 

(x1I.49) 

The last equation is an example of the realization of a Clifford 
algebra , say c(R2 V) , as operators on functionals in E(R*') . In par- 
ticular, we take the (left or right) multiplicative and differentiation 
operators , and observe that 

l- O . k + X . 
J 

(XII . 50a) 

Thus we may realize (XII.39) by setting, for I S  j s  v ,  

-1 f = i j + v  J f ,  
J 

x.+8. 
J J r (x .  -81). (XII . 5 ob) 
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LECTURES ON NONLINEAR RATE EQUATIONS I ESPECIALLY THOSE 
WITH QUADRATIC NQNLINEARITIEST* 

3 

Elliott W .  Montroll 
Department of Physics 

University of Rochester 
Rochester, New York 

I. Introduction 
This is a discussion of a number of rate equations which ap- 

pear in a variety of dis ciplines , chemistry, physics , population dy- 
namics , fluid dynamics , et cetera , and which have been selected 
because of their nonlinear character. In trying to develop some ex- 
perience in the relation of nonlinear equations to qualitative process 
such as growth to saturation, competition, diffusion, and stability, 
it was decided to emphasize quadratic nonlinearities with the hope 
that, after enough examples are investigated, some features of a 
general theory will become evident . ' 

While our main interest will be in partial differential equa- 
tions and integral equations governing rate processes , the presenta- 
tion starts with some examples which are ordinary differential equa- 
tions . Some interesting ideas already appear in these cases r and in 
some solvable partial differential equations the solution finally 
evolves from solving ordinary differential equations which come from 
Fourier transforms or after other schemes are used • 

A prototype of a nonlinear rate process of the class which will 
interest us is that which describes a chain of chemical reactions 

A. A. 1 +  J Ax, 1 2 3 I 

1 | ,Q . a . 

where i ,  j , and L run over an appropriate set of integers which are 
used to identify the various species . The appropriate rate equations 
might be written 

t Presented at the THEORETICAL PHYSICS INSTITUTE, University of 
Colorado, Summer 1967.  

*This work was partially supported by the Air Force Office of 
Scientific Research Grant No. AF OSR 1314-67. 
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dcj 
dt 

+ (j) 
»z,,m°fr,cm 

C . 
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-k(i) Z' k 

»f,,m 

C L 
(J ̀) 7 kg, 

L 
J 

C (1) 

where Cj is the concentration of the nth species . The first term on 
the right hand side represents the rate at which species As disapg .... 
without participating in the chain of reactions . The second termini 
resents the growth of species j through the interaction of all species 
»L and m which might lead to the formation of j r and the third term is 
the loss of species j through the combination of species L . 

Once one has the confidence that equations such as (1) are 
appropriate to describe some process of interest, there are two prob- 
lems . One is to find the appropriate rate constants and the other is 
to solve the nonlinear equations . The two are sometimes intimately 
connected because experimental data might be given in terms of some 
function of the solution of the equations so that without the solution 
the rate constants cannot be deduced from the data . 

In a few cases the rate constants can be determined from first 
principles . For example , the Navier-Stokes equation for the flow of 
a viscous fluid is 

ut + (u-V)u - l  
-p VP + \)v 2U (Za) 

where u(r,t) is the velocity vector at point r at time t ,  p the pres- 
sure a t  space-time point, p the density and v the vis cosily. This 
equation is to be combined with the continuity equation which, in the 
case of an incompressible fluid, has the form 

v-u = 0 .  (Zb) 

In the case of an incompressible fluid, the pressure term can be re- 
moved by taking the curl of (Za) . The resulting equation has a quad- 
ratic nonlinearity and the viscosity is the only quantity which must 
be determined from an auxiliary experiment or calculated by statisti- 
cal mechanics . In the final rate equation the appropriate "rate con- 
Stants" are completely determined. 

The lectures will be concerned with both the construction of 
the nonlinear equation to fit various situations , as  well as with the 
solution of some of them. It should be emphasized at the beginning 
that it is seldom that the equations are derived from first principles . 
They are usually produced out of thin air to be used as a model of 
some phenomenon . 
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II. Some Ordinary Differential Equations of Population Growth 
and Demise 

We trust that the physical scientist will allow us to start our 
mathematical discussion with ideas concerning population growth . 
Actually many of the nonlinear equations of physics describe the vari- 
ation of occupation numbers in various energy levels associated with 
some system and the chemist is often interested in the population of 
various atomic or molecular species in the course of some reaction . 

The pessimist, Malthus , in 1798 was concerned with the ex- 
ponential population growth (and linear growth of resources) and , 
therefore, with the rate equation which describes such a growth 

on/dt = kn . 
The more optimistic Belgian, Verhulst, introduced a "coeffi- 

cient of retardation" which would limit the population growth to a 
saturation level N so that the growth rate of the population would be 
given by 

QUO 
dt kn(N - n) (3) 

which has the solution 

n(t)/n(0) 

II n{n(0) +[n-n(0)] -<t} e -1 
(4) 

I r 
I 

valve the competitive process between individuals or groups . 

In words , Eq. (3) states that the growth rate is "urtional to the 
population and to the resources that remain for 1* tune population . 

The population growth of the United States is fitted by a lo- 
gistic curve in Figure 1 . Now Eq. (3) can be considered as an equa- 
tion for the first moment in some random process which would be de- 
rived from the as yet unknown dynamics of human behavior. In ex- 
periments on the growth of bacteria, fruit flies , rats , et cetera , on 
limited media a good agreement with (4) is also obtained. However , 
there are occasional experiments in which the population starts to 
oscillate in time as saturation is reached. One can argue that the 
members of the population are not identical. As saturation is reached, 
it is harder for the individual to find sustenance. Aggressive mem- 
bers of the society are worried and stock pile resources; more timid 
members give up the fight. The population then declines and oscilla- 
tion might start . 

The more detailed equations of population growth should in- 
A 

number of models of competition have been investigated by Volterral) 
and Lotka. 2) Volterra's work was motivated by observations made by 
D'Ancona in his statistical study of the Adriatic fisheries over the 

gm 



534 ELLIOTT w. MONTROLL 

1 

- |  

S
'9'V

Z 

o 
I 

I I 
D. 
K 
U 
m 
<r 
N 
N 
+ 

II /+" `__, 

z 

I 

1 I. 

2
0

5
0

 
l 

| 
I I 

I 

2
0

2
O

 
! 

l 
1

9
9

0
 

I 
l 

| 

1
9

6
0

 

o 
m 
o 

I 
I 

I 

1
9

0
0

 
| 

I 
I 

1
8

7
0

 

| - |  

i I 

O 
¢ 
O 

I I 

O 
| \ " '  '- m 

I I 

l l 1 l l 1 l l l l 1 l I I 

2
6

0
 o 

Ni 
N 

O 
o 

I 'I ̀ l 

o 
m 

s N O 

O 
o 
N 
r N ) q, ( 

O 
v 
N 

O 
<r 

O 
N 

O 
m 

O 
O 

I w N I N O I .|_ v ̀l n 

O 
O 

d o d 

O 
¢ 

O 
Of 

Y
E

A
R

 
F

ig
u
re

 1
. 

P
o
p
u
la

tio
n
 o

f 
U

.S
. 

lo
g

is
ti
c
 c

ur
ve

 f
it
te

d
 s

o
 t

h
a

t 
ob

se
rv

ed
 p

o
in

ts
 a

t 
1

8
4

0
, 

19
00

 a
n

d
 1

96
0 

a
re

 
e

x
a

c
t.

 
P

o
in

ts
 r

e
p

re
se

n
t 

ce
n

su
s 

d
a
ta

 . 



NONLINEAR RATE EQUATIONS 535 

period 1905-1923 . It seemed that members I 
preyed on smaller fish to the extent that the go 
pended on a plentiful supply of the smaller. 
shed, the population of the larger species 

more of the smaller prey could grow and reprDdL1%9F*Vll>1 
terized this process in the following manner . 

If N1(t) is the population of the prey and N2 (t) that of the 
predator,  then this process can be described by the rate equations 

a lcnarac- 
I 

dn1/dt k N 1 l x1n2n1 (5a) 

dn2/dt l _ 
2NlN2 k2N2 (5b) 

In the absence of predator (N2 =0 )  , the prey population would grow 
exponentially while , in the absence of prey (No = 0 )  , the predator 
population would decrease in an exponential manner with rate con- 
stant kz . Since the eating process is the result of a binary encounter, 
the rate of loss of N1 is proportional to N1N2 as is the rate of in- 
crease of the predator . 

For convenience we let 

f l  (t) x 2n1(t)/kz ; f2(t) A 1N2 (r)/kl (6) 

Then 

df1/dt (7a) 

d f2/ dt f 1-f kzz( l )  (7b) 

so  that 

dt 
df1 

k l f l  (1-i21 (8) 

from which we see that 

- / 1/k1 
\f1e fee "f2)1/ka constant I (9) 

the value of the constant depending on the initial conditions . 
The periodic character of the solution of Volterra's equations 

can easily be seen in terms of the relation between f l  and fz ac- 
cording to (9) through the aid of the four diagrams in Figure 2 . 
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Figure 2 . Geometric scheme used to prove the periodicity of the so- 

lution (10) of Volterra's equations (5).  The discussion of 
the scheme is given in the text. 

Let 

u . 
J 

with j = 1 , 2 .  (10) 

Then (9) is equivalent to the hyperbola 

u1u2 constant (11) 

which is plotted in Figure Za.  Figures 2b and Zc show the behavior of 
up plotted as a function of f j  . An important feature of Eq. (10) and 
these two figures is that L11 and L12 attain maximum values which are 
identified by Ml and M2 in the figures . Hence the relevant region 
of the hyperbola (II) in Figure Za is bounded by points A and B in the 
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figure. Note that a typical point 0 between A and B corresponds to 
two values of fz (a and b) ,  and to two values of f l , a'  and b ' .  
Hence, on the graph (Zd) which relates fi and f 2 ,  it is clear that the 
point 0 corresponds to  the four points C ,  D ,  E ,  F.  As one goes from 
A to B in (Za) , one traces out the closed curve in (Zd). The end 
points A and B correspond respectively to extrema in fz and f l  , re- 
spectively, on (2d). 

A family of closed curves exists , each member of which is 
related to a possible set of initial values f1(0) and f2(0)• The points 
on the closed curve can be identified with the time by integrating (8)' 

Jvf1(t) 

f1(0) 

t II df l-f  a 1/klf1( 2) (12) 

Since fz is given as a function of al on the curve (ad), one could 
start at the initial values (fl (0) , f2(0)) , integrate numerically along 
the curve a short distance to a pre-chosen point fl(t) and, from the 
value of t determined by (12) , one would identify the time appro- 
priate for that value f1(t) . The period would be determined as the 
time required to return to the starting point (fl (0) , fz (0)) . 

Lanchester's3l equations of combat between two opposing 
forces 

enl/dt = `°.1N2 -x1n1n2 (13a) 

dn2/dt - - 12N1 - K  zNINz (13b) 

are similar to the Volterra equations except that the strength of both 
forces [Ni(t) being the strength of the ith force] diminishes with 
time. Lanchester emphasized two cases. When each side is visible 
to the other and every man on each side is able to fire on any op- 
posing individual, the loss rate is proportional to  the number of indi- 
viduals firing. Hence, if reinforcements arrive at rates Pj(t) ,  these 
equations reduce to 

dn1/dt = _ 01n2 + p1(t), - dn2/d t = -a  2n1+p2( t ) . (14) 

Some examples of this case are aerial dogfights , naval battles and 
open land battles of the classical type. When each side is invisible 
to the other and each fires into the area occupied by the other, the 
loss rate on one side is proportional to the number of men on the 
other and to the number of men in the area under fire . 
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dn1/dt II I *1N1N2 and dn2/dt = -x2n1n2. (15) 

Artillery attacks are examples of this type of combat . 
Mixed cases can also be described in which part of the force 

is hidden and the remainder is in the open. The ambush situation in 
which one side is hidden and administers an attack from ambush to 
the other who is in the open leads to the equations 

dn1/dt = '*1N1N2 and dn2/dt = `°°2N1 (16) 

The relationship between N1 and N2 for these various combat 
models can be obtained by equating various expressions for dt.  For 
example , in the first case in the absence of reinforcements 

01 = dnl/ ln2 dN2/02N1 (17) 

s o  that 

Nw@W _ ~  1st 
lag 

combat force . This § 
It is to be noted that force z is 

a2N12 - Q1NzZ = 02N120 - a1N220 = constant, 

»the initial strength of the it** 
rf3é_3a . 

n Q CLI' N20 . 
In Lan=é`hester's second case characterized by (15), the popu- 

lation of the two forces are linearly related : 

(18) 

an 
- 

K 1N2 - 2N1 II ) _ 
1N20 *2N10 

<l II constant (19) 

dicity ( 

which is plotted in Figure 3b.  
The mixed case (16) has been discussed by S .  Y. Deitchman.4l 

glad analysis of the Battle of Iwo Lima has been made by I. 
15 

Autocatalytic chemical reactions20) ,21)  are also characterized 
by equations such as (5) . Let an infinite reservoir of material So 
exist and suppose that it decomposes slowly into 31 with 51 being a 
catalyst necessary for its own formation. Let us also suppose that 
$1 is connected to 82  with $2 also being the catalyst required for 
its own formation. Finally, suppose that $ 2  is withdrawn from the 
system at a rate proportional to its concentration. Then variation in 
the concentration of $1 and $2  is governed by (5) . 

A good review of the topological theory ( i . e .  , stability, perio- 
et cetera) of equations in two variables 

. 
X P(x,y)  I Y = Q ( x , y )  1 
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of which the above are examples, is given in Reference 6 .  L .  Markus7) 
has developed an algebraic theory for the case of P ( x , y )  and Q ( x , y )  
being quadratic forms and has sketched extensions to more than two 
variables . 

(a) (b) 

1 
Nia22 

a2n1o-¢,n§o> o 
b 2 _ 2 
*'*2Nlo°'*IN2o 

nFo-a,n§o>o 

a Nga, 

2NI 

A ) O  

Z\<o 

N, 

Figure 3 . Schematic solutions of Lanchester's equation of combat . 
The numbers N1 and N2 represent the strength of forces on 
each side; the a 's  and i t 's  are parameters which depend on 
firepower, accuracy of firing , et ceter . Case (a) corre- 
sponds to the situation in which each side is invisible to  
the other and the firing is random into a region. Case (b) 
corresponds to the situation in which ach side is visible 
to the other and each man on one side can fire on any op- 
posing individual . 

III. S 111 Ex mpl s 
Nonlinearities 

f p  re 1 Diff r ii 1 Eq ii swith Q dr t1 

1 . Population Growth and Diffusion . 
In this section we list a number of typical nonlinear partial 

differential equations which correspond to a variety of physical situa- 
tions l 

We start with a generalization of the growth equation (3) . One 
way a growing population can fight the saturation which is inherent in 
(3) is to diffuse into neighboring unoccupied space . 
which des c:r1beq.*. . 
was first propo _ In 

Petrovsky, and V`" 

The equation 
on of population gr wth and diffusion 

§1sher8) (see, also, Kolmogorov, 
I 
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B B2n = DBx2 +kn(9-n)/9 I (20) 

G representing the saturation population per unit length . This equa- 
tion was introduced in the context of a virile mutant which appears in 
a population and finally saturates it. Of course , the two-dimensional 
and three-dimensional generalization of (20) are 

Q 
a t  DV2n +kn(8-n)/9 (20a) 

where 9 is now the saturation population per unit area (or volume in 
the 3D case) and D the diffusion constant. 

If the two competing species whose population variation de- 
velops according to Volterra's equation (5) are allowed to  roam , a 
diffusion term should be added to (5a) and (5b) 

6 N1 
as 2 + -x  Div N1 k1N1 1N1N2 (2la) 

BNC 
a t  

2 + _ D2V N2 X2N1N2 k2N2' (21b) 

2 . Clannish Random Walkers . 
An equation similar to (20) can be derived for the motion of 

two interacting populations which tend to be clannish and wish to live 
near those of their own kind. We discuss only the one-dimensional 
case here . 

Consider two species A and B of random walkers whose walks 
are limited t o  a line. Let p be a uniform stationary distribution of 
walkers (of either species) on the line. The line might be divided 
into a set of equal length segments , each of length a . The number of 
walkers per segment is then N=pa . If T is the average time required 
per step of length a , we define N(ia:v'r) as the number of walkers of 
species A on the jth segment at a time VT after the walk begins and 
f(ja; VT) as the fraction of walkers on the nth segment which are A's . 

We postulate the "home" of the A's to be segments of large 
positive j and that of the B 's  to correspond to  large negative j ' s  . 
The clannishness is characterized by a parameter II! , which on our 
segmented line we wrlte as 

If aa/T.- (22) 

We choose a so  that the probability of an A walker at segment k 
stepping to segment kg: 1 is 
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2 i a {1 [1 n`1n(ka:vT)]} 

A walker who finds himself completely surrounded by members of his 
own group [such that N(ka; VT) =n] steps wlth equal probability in 
either direction. One in the midst of strangers steps toward his home 
region wlth a probability %(1+a) and in the opposite direction wlth 
probabi11tyQ*(1-a) . The number of A's on the nth segment after (v+1) 
steps is 

N key; [v+1] T) = %n([ k-1]a;vT){1 +a[1-NI1N(1:k-l]a; T)]} 

+ '5°N@k+1]a: ¢){1 -p -N-1N([k+1]a; v T)]} I 

(23) 

{n(ka, l:V+1]T) - n(ka;vT)}/T = 

(a2/2 T){n@<-1Ja,- w)- 2N(ka; VT)  +n@k+13a; T)}/a2 
_ (GalT) {n@k+13 a,- vT)(1 -n'1n@k+1]a; ) 
- no k-1]a;w)(1 -n`ln(I[k-1]a;vfrD}/2an. 

This equation becomes a differential equation in the limit 
T =dt-°0,  a = d x - 0 ,  a-°0 if the limit is taken s o  that D and If de- 
fined by 

D aZ/2 1' and 1 J = a a / T  (24) 

are finite. It is convenient to introduce the density of A's at x and 
T 

f(x,T) = n`1n(x,T) (25) 

to obtain the nonlinear partial differential equation 

a f = - - + - l . {D Bx lllf(f )} of 
aT 

a 
B x  

(26) 

: 
a 

y exists between the walk of species A and that of B .  The 
B's  , 1-f, can easily be shown to satisfy exactly the same 
s f provided that X is replaced by -x. 
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This equation can be reduced to one without parameters by 
letting 

t = Tlhz/D, y = x ¢ / D ,  and q = f - % -  (27) 

The n 
6g/Bt = B/Byl:Bg/6y+g2], (28) 

3 .  Separation Cascades . . 
A physical application of (26) is in theiiq of separation 

cascades . 10)-12) Such a cascade is sketched g_ _mnatically in 
Figure 4 .  A mixture of two materials A and B is separated by an 

¥n+I EI 

°~+~ 

Vn-I 1 
0fl-I 

2n+2 

w:(n+1) wl(h Yn 

Cn 

Yn-2 

n+l 
xT4-dx 

n kg" 

x 
n-l 

Figure 4 . Schematic flow chart for cascade separation process . The 
input mixture of concentration in of component A flows into 
the n-th black box and is separated into two streams; the 
enriched one of concentration yn of A flows upward in the 
cascade and the depleted one of concentration Cn in A 
flows downward. The w's represent flow rates in the di- 
rections indicated. - 
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operation performed in the black boxes of the figure. I f ,  for example , 
the mixture is fed into the nth black box through the feed inlet in , 
two streams of material are emitted from the black box, one somewhat 
enriched in A in concentration in Yn' the other somewhat depleted in 
A in concentration Cn' When components A and B are very similar, as 
is the case in isotopic mixtures , one stage of separation does not do 
very much so  that a cascade of separators must be employed. In the 
cascade of Figure 4 , the depleted material from the (n+1)-st separator 
is combined with the enriched material from the (n-1)-st to  feed into 
the nth one. I believe the first cascade separation of gases was done 
by Lord Rayleigh employing a triangular array rather than a linear 
set  of separators to separate argon from nitrogen in his investigation 
of the gases of the atmosphere . His elementary separation process 
was the passage of the gas through dried clay or rubber membranes , 
his clay membranes being flower pots and clay tobacco pipes and the 
lighter gas component passing more easily through the membrane . The 
membranes used in isotope separation processes at Oak Ridge and 
elsewhere are undoubtedly somewhat more sophisticated . 

We will use Rayleigh's separation formula to relate Cn to yn: 

[yn/(1 - vn)]/[cn/(1 - up] exp Y. (29a) 

When the separation factor 'Y is very small, we find` 

yn= +\1f cn(1-¢n)+0( \ t2) .  C . 
n (29b) 

We also let W1 (n) represent the flow rate 
to the (n+1)-st, and, w2(n) that of  the d'r_,_- 
stage downward to the (n-1)-st . 
from the top of the cascade , 
is also P so  that 

from the nth stage 
.stream from the nth 

If material is withdrawn at a rate P 
then the net flow upward past each stage 

P = w1(n) -w2(n+l). 

The rate of accumulation of component A at the nth stage is then 

(30) 

Hn8 on/BT = Yn-1W1(""1) + cn+112(n+1) cnw2(n) Ynw1(n) • 

(31) 

We limit ourselves to the special case in which all flow rates W1 and 
W2 and all stage holdups Hn are independent of n and in which the 
separation factor Y is very small so  that many stages are required for 
the separation process . The length of a stage becomes short com- 
pared to the total length of the cascade . If the nth stage is at point 
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x ,  the (n+1)'st is at x + a  and we let 

(on - cn_1)/a -o a c(x,T)/5 X as a - 0 0  

Then, after substituting (29) and (30) into (31) with w1(n) 
all n, we find 

"w1 for 

Bc/BT = D(a/ax){a¢/ax- i|"'('l-c) - pa} (32a) 

where 

2 D = I-L/wla , q' = \l1'/a and p=P/aw1.  

This can be transformed into (26) by making the substitutions 

(32b) 

c = f (p+w' ) / l f '  and i I I= D(l|1'+p)- (33) 

Equation (26) is also valid for continuous separation proc- 
esses such as thermal diffusion and distillation processes . Similar 
equations exist for centrifugal separation and chromatographic analy- 
sis . 
4 .  Equation of Burger's Model of Turbulence and Those of Molecular 

Re combination . 
The main equation of Burger's model of turbulence 14) also has 

the form (28) He considers the one-dimensional version of the 
Navier-Stokes equation (Za) after omitting the pressure term and the 
continuity equation (Zb): 

u + u  = Vu t Ux xx (34) 

which can be transformed into (28) by the substitutions 

x = = -Zgv  . l-. 
ye2 and u (35) 

The growth equation (20) can be turned into an equation for 
spreading of particles by diffusion and loss b-y recombination. Let 
a = k / 6  and take the 11m1ts k-* 0 and 9 *  0 in such a manner that the 
ratio remains a .  Then (20a) becomes15) 

Bn 
Bt Dv2n - and . (36) 

An example of the recombination processes is the recombination of 
free radicals . If an electric arc is passed through a gas such as 02 
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or N2 , the free radicals 0 or N are formed which diffuse away from 
the arc and which also recombine by collision. Equation (36) gives a 
description of the process if n(r,t) represents the free radical den- 
sity at point r at time t .  

5 . Introduction of Mobility Into Lanchester's Equations of Com lm. 
Mobility can also be introduced into Lanchester's equations 

(l3a) and (l3b) by adding a diffusion term. The existence of speci- 
fied points that are to be attacked and defended can be treated 
through attractions and repulsions from fixed points or regions . 
form of generalization of (13) is then 

an1/at = div D1 grad N1 +B1N1 grad U1 1 - °°1N2 - AL 1N1N2 +P1(t,r) 

A 

(37a) 

: ' + . -a  )\ + . an2/at div D2 [grad No B2N2 grad up] 2N1 2N1N2 P2(t,r) 

(37b) 

The diffusion "constants"' may vary with position of population in a 
more complicated model. For ground or naval warfare , these equa - 
lions would have two space variables . Military strategy is the proper 
choice of the quantities B grad U1 and B2grad U2 and choice of the 
reinforcement functions Pa (I ,r) . 
6 .  Two-Dimensional Navier-Stokes Equation. 

The last example of a nonlinear partial differential equation 
which we shall exhibit in this section is the two-dimensional version 
of the Navier-Stokes equation (2) . The velocity has two components 

u 

Bu1/Bt + u1bu1/Bx1 +u25 u1/6x2 = - p 

(111 ,112) 

which satisfy three equations derivable from Eq. (2): 

-1 2 a a + v + 
(38b) 

(38a) 

a u / a t +  u1bu2/6x1 +u2Bu2/5x2 2 -1 p Bp/Bx2+ w u2+5L2(r,t) 

(380) 

5 u1/5x1 +6u2/5x2 = 0 (38d) 

where is a driving force acting in the ith dlre ction . 
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The pressure term can be eliminated by taking the derivative 
of the first equation with respect to x2 and the second with respect 
to  X1 and subtracting the second resulting equation from the first. 
These equations can be simplified through the introduction of the 
scalar potential QUO which is related to the flow velocities by 

"1 = -eq)/ax2 and "2 = all/axl. (39) 

Then 

1 2 
` a t v ¢  

+ v 2 ( v 2 ¢ )  

a V2qb_ 
B Xl 

as) 
ex 1 

6v2¢ 
Exe  

a¢ 
5 x 2  

+ 
a 512 
ex l (40) 

This equation can be put into a form which looks more like equations 
with which one has had experience by defining a new function f such 
that 

f (1) 
2 v (41) 

which has the appearance of the Poisson equation of electromagnetic 
theory while (40) has the form 

B t  
2 et) o f  

V V  f +  BX2 8 x i  
as) at 
BX1 8 x2 + 

a 
8 x i  (42) 

When the viscosity v is very large, one would expect the first term 
on the right hand s de of (42) to dominate over the second so  that in 
the absence of a driving force r the resulting equation would be the 
diffusion equation. Its solution would be substituted iNto (41) to find 
lb as the solution of "Poisson's equation." 

iv. A Cheap Trick for Manufacturing Nonlinear Differential Equations 
with Built-In Solutions 

1 .  Transformation of Dependent Variables . 
One way of solving certain nonlinear equations is to construct 

them from linear equations . For example , let us generate several 
classes of nonlinear equations from the diffusion equation 

ft = Dfxx . 
Let g(u) be an arbitrary function of a new dependent variable L1 whose 

(43) 
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appropriate derivatives exist. Then let 

f g(u) (44) 

s o  that 

ft 

f xx 

Q' (u)ut I f x = g'(u)ux 

2 
gI (u)uxx + g"(u)uX 

(45) 

(46) 

where 
x 

g'(\-1) E dg/du . (47) 

Then the diffusion equation becomes 

2 Ut = Duxg"(u)/g'(u) . Du + 
XX (48) 

If we wished to solve the differential equation 

+ u 2 , 
X 

ut = Duxx F(u) (49) 

we would set 

Dg"(u) = g'(u)F(u) 

and solve for g(u) . For example, if F(u) = K , then 

f = g(u) = (D/l\)exp(1\u/D) 

(50) 

(51) 

so that 

u = (D/?~)1og()»f/D)- (52) 

Generally , 
u -1 f = g(u) = exp D V 

J {§'" P(u2)du2} du . (53) 

We see then that the solution of the nonlinear equation with 
quadratic nonlinearity ux2: 

- 2 Ut - Duxx + 7\uX 

is given by (52) where f(x,t) is the solution of the diffusion equation . 
(54) 
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If the initial conditions of u(x,t) are known in an unbounded space 
then 

r 

f (x,0) = (D/x)exp{xu(x,0)/D} (55) 

and 

f(x,t) 
1 

1 
2(T1't]:)l'§ 

(D/)»)exp[7~u(x' ,0)/D - (x-x')2/4Dt]dx' (56) 
m 

_ o f  

F 
J 

s o  that 

u(x,t) (D/)~)1o9~§ exp[?\u(x' , 0)/D - (x-x')2/4Dt N do-} . 
(57) 

2 .  Exponential Integral Transformation of Dependent Variable . 
Another class of nonlinear equations can be generated from the 

diffusion equation by the trans formation 

where g(u) 

f = e x p  
VX 

J g(u)dx 

is again an arbitrary function. Here 

(58) 

t f II 

VX 
kJ utg'(u)dx and f x  = fg(u) (59) 

f i x  fg'(u)ux + fg2(u) . (60) 

Hence 

V 
J 

x 
utg'(u)dx = Dg'(u)ux + g2(u)_ (61) 

If this is differentiated with respect to x ,  one finds 

ut D[Uxx + Q"(u)u 2/g-(u)] + 2g(u)ux (62) 

As a special case let 

g(u) u .  (63a) 

Then we have the equation with quadratic nonlinearity 
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= + ut Duxx uu X (63b) 

Ja... ._-.ilL. .-*.......Jim 
which is equivalent to the equation which described our friendly ran- 

u as the Burgers equation. The linearization of 
E first accomplished by E .  I-lopfle) and I. Cole.17) 
diffusion equation by m a l u r m &  of separa- 

tion cascades with production by Montroll and ;_.w21:=.. ! 
The solution of this equation can be expressed in terms of f ,  

the solution of the diffusion equation by observing that (58) implies 

u = 2(1og f)X. (64) 

Consider first the case of an infinite range of x and an initial rela- 
tion between u and x: 

I u(x,0) = uo(x) (64a) 

Then the initial dependence of f on X is 

x 
f(x,0) = exp L1O(x')dx' 

XO 

I 
J (64b) 

Since f(x, t)  is a solution of the diffusion equation, on our unbounded 
line 

f (x , t )  1 ["°° 
2(Tr tD) J_m 

f(x" ,0)  exp (x-x")2/4Dt dx" (65a) 

m [3 
E 

now:-I' *-lr.:a;41 l\ J 
I; 

-u m 

Rx" 
JXo exp-(x-x" )2 /4Dt  + uo(x')dx'}dx" 

(65b) 

and 

1 
B x  

ogive 
_ 2 t) _ 

u(x 
-T--- JV" exp-(x-x")2/4Dt + 

+ JVX L1O(x')dx-} dx-9] (66) 

Notice that xo can have any convenient value since , if it is changed 
from xo t o  xo ,  the change in the value of the integral is a quantity 
which is independent of x .  say I(xo,xO) . It yields a factor 
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I(Xo,XO)} in the integrand of the x integral. After one takes the 
'ithm and differentiates with respect to x ,  one sees that u(x,t) is 

independent of I(x2,,x0) and, therefore, of x .  

3 .  Fq ulation Growth and Diffusion. 
St111 another class of equations follows from transforming the 

diffusion equation withlg) 
I 
I 

f e-ktg(u) (67) 

so that 

f t -ke -it g(u) + g'(u)e 
-kt u 

t (67a) 

_ -kt f xx - e {g'(u)uxx + g"(u)u 2} u (67b) 

Then 

u t Dluxx + Q"(u)u 2/9'(u)] + kg(u)/g'(u) (670) 

If we wish the term proportional to k to have the form F(u) , theii 

ut { x x  E1 §L€"' ] u 2} D +- + kF(u) (68a) 

with 

9 (u) N du/F(u) . (68b) 

By choosinglg) 

F(u) = u(6-u)/9 I (69) 

the right hand term becomes the same as Fisher's 
tlon has the form 

I but the full equa - 

ut 
D{uxx 2u 2/(9-u)} + ku(9-u)/9 + (70) 

where g(u) was chosen to be 

g(L1) = u/(9-u) (71) 

and u is related to  the function f which satisfies the diffusion equa- 
tion through 
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u(x,t) -kt + 9 f ( x t ) / e  f(><,t)l (72) 

It is interesting to note that while Eq. (70) differs from Fisii 
lion by the term involving ux2 , one might expect initial disk_.___._..__..._. 
of a certain type to develop in essentially the same way according to 
(70) as  they would have according to the Fisher equation . 

Suppose that initially u(x,0)<< 0 for all x .  Then as 0-»°° 
both the Fisher equation and ours have the form up==Duxx+ku, which 
corresponds to unlimited growth. On the other hand, we know that as  
t-°°° the solution u(x,t) (72) of our equation approaches saturation at 
all points , as would be the case with (20) . Hence , at both early and 
late times (70) and (20) are equivalent under the initial condition 
given above . We will show at the end of this section that for certain 
initial conditions , the solution of (70) is practically the same as  
Fisher's equation. 19) 

We now solve Eq. (70) subject to several initial conditions . 
If u(x,0) is known, one can employ (72) to find f(x,0) (the function 
f(x,t) is , of course, the solution of the diffusion equation (43)) . 

The first initial distribution which we discuss is one in which 
saturation exists on the negative half line to within a distance of 
about l/B from the origin and no mutant population exists at points 
beyond a distance of about 1/B to the right of the origin. A represen- 
tation of such an initial distribution is 

I- 

L1(x,0) = 9/(1+@0x) (73) 

Then 

f (x ,0)  Bx e * (74) 

If this is substituted in (65a) one finds that 

- - Dr f(x,t) = e B(x B ) (75) 

and 

+ u(x,t)  = 9 / { 1 +  expsfx - ( B D  k/0)t ]  (76) 

The rate at  which the mutant front propagates is 

do/dr = (BD + k/B) (77) 

In this case in which saturation exists behind the mutant front, the 
shape of the diffusion front remains invariant as the wave propagates . 
It is interesting to note that the propagation rate is determined by the 
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initial slope at x = 0 .  If the initial front is sharp ( B  large) , the pro- 
pagation is dominated by diffusion while , i f  i t is broad (small B) , it 
is dominated by saturation development. When both processes make 
the same Contribution, the propagation velocity has a minimum value 
which is 

(dx/dwm1n = (2kni3 (78) 

1 

corresponds to Ba: A similar result 
in .connection with * He found that 

the form p=f(x-wt) could be *(20) for which 
As a second example we dis cuss an initial distribution of 

mutant which is peaked at the origin at a fraction TO of the saturation 
level e , and which extends over a length a . Then 

u(x,0) rl + T19/n (1 -'r1)exp(x2/2a2)] I (79) 

so  that 

f (x,0) = [11/(1 -vi] exp(-x2/2a2), K8oa) 

and from (65a) 

f(x,t) pa expo -x2/2 (52 + 2Dt)] 

(1 -u)(a2 + 2Dr)i 
(80b) 

Therefore r from (72) 

u(x,t) = 9nana+ (1 -1'1)(a2+2Dt)% exp{-kt+x2/2(a2+2DtH (81) 

_1 
When x << [ 2kt(a2 +2Dt)P the exponential term in the de- 

nominator can be neglected and one has saturation. The propagating 
population front at any time can be identified with the value of X 
which makes the argument of the exponential vanish, i . e .  , 

x = i{2kt(a2 +2Dt)}% (82a) 

s o  that with increasing t the velocity of propagation approaches 
1 

do/dt = 1 2(kDF (82b) 

independently of a;  i .e  . , of the dispersion of initial distribution . 
This case differs from (77) in which a saturation region exists 

initially, for in that case the propagation velocity depends on the 
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initial shape of the wave while in the everywhere unsaturated case it 
becomes independent of the initial distribution. It is interesting to 
note that (82b) is just the minimum propagation velocity which can be 
achieved by an initial distribution which has a saturated region (see 
Eq. (78)) . 

The manner in which the initial distribution (79) propagates 
seems to be typical of that of any initial distribution of h(x, 0) whose 
Fourier transform exists . For further discussion of this , see 
Reference 19 . 
4 . Using the wrong Equation to Find the Right Solution . 

Even when a transformation cannot be found t o  linearize a 
nonlinear equation, one can sometimes find another nonlinear equa- 
tion which has an extra term which does not appear in the equation of 
interest, but which can be transformed t o  a linear one. This new 
equation might have the feature that, for certain initial conditions , 
the extra term is always very small so  that the solution of the new 
equation under those initial conditions is in all space time a good ap- 
proximation to  the original one . 

While no one has succeeded in finding a scheme for linear- 
izing Fisher's equation, the solution of our more complicated Eq. (70) 
mimics that of Fisher's equation when the initial condition is such 
that no region is near saturation. We demonstrate this possibility 
through a detailed examination of the solution (81) which corresponds 
to the almost Gaussian initial condition (79) . 

Equation (81) will be substituted into the right hand side of 
(70) and the contribution of each term to the rate Ut of increase in . our extra 
terra 2Dux2/( 8-u) will be small compared to the sum of the other two 
contributions to  Ut . 

First, at early times in the growth process before saturation 
develops , the linearized versions of both our equation and Fisher's 
are valid. However, the linearized versions are identical s o ,  in the 
early stages of the population buildup , the solutions of both equa- 
tions are identical . 

Now let us consider the later stages of the process when 
2Dt>> a2  . We examine the contribution of each of the three terms on 
the right hand side of (70) as determined from (81) to by/at ,  in the 
three regimes 

population will be calculated In all space-time regimes I 

x N
 

I 

2 4Dkt >> 4Dt; 1 x2 4Dkt2 I 2 2 
<< 4Dt; X << 4Dt . 

In all three regimes at all times 
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(a) -F {no [1 "xx m I v 
" ; l § l  

+ (1-n)(a2+2Dt)% 

X l hn- 

* 

_ . J  
I 

| * '  | .  

1 
.f I l 

]E} . (83a) 

(b) 2112/(9-1.1) F{2anx2/(a2 + 2 Dt)} , 

(c) ku(6-u)/9 = F{(a2 +2Dt)na+(1-T])(a2+2Dt) E]k/D} , 
(830) 

(83b) 

where E and the common factor F are defined by 

E exp{-kt + x2/2 (as + 2 Dt)} (83d) 

and 

F (1-n)(a2+ 2Dr)%B} (83e) 

Since we postulate 2Dt>> as, the a2 can be neglected com- 
-|QDt in all the formulae above . In the first regime with 

f 4Dt 

E l"\J exp { (X2 - 4Dkt2)/4Dt]» (84) 

with the regular diffusion term (a) . The ex- 

is very large so  the non-exponential terms in (a) , (b) and (c) can all 
be neQ»1eQte* Since our..extra diffusion term (b) does not contain E,  

com ' 
(a) pa factor x2/4Dt2 to be compared with 

(c) . The definition of our regime then implies that the 
I term is the most important contribution to Ou/Bt.  
F is proportional to E'2/(2Dt)2, Bu/Bt is very small 

As we move toward the center of the population wave with 
lx2-4Dt2 << 4Dt, E*  1 so  that 

(a) Uxx °' F(1-'rl)(2t)3/2kD1/2 
I (85a) 

(b) 21.1 2/(9-u) °' 4 naktF, (85b) 

(c) ku(9-u)/6 - (1-T1)1=k(2r)3/251/2 (850) 
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Hence , in the regime where the action is , (a) and (c) contribute the 
same amount to Bu/Bt .  Since both exceed our extra term by a factor 
to, our extra diffusion term becomes less and less important with in- 
creasing time . 

Finally, let us examine the influence of our extra term in our 
saturation region behind the population wave . In this regime with 
X2<< 4Dkt2 the exponential term E is negligible . The main contribu- 
tion comes from the growth term (c) which is of order 2FnaDt com- 
pared with F'r]a , the main term in (a) , and Fa'r]x2/:Dt in our extra dif- 
fusion term. However, all terms are small in the regime . 

In conclusion, we see that in each of the regimes considered 
the extra diffusion term contributes very little to Ut compared with the 
effe ct of either normal diffusion or population generation. Hence , it 
seems that as long as a region is not initially saturated , the genera- 
tion and diffusion of an initial distribution as described by our rate 
equation (70) should be essentially the same as that which would be 
derived by solving Fisher's Equation (20) . 
v. Integral Equations with Quadratic Nonlinearities 

We now show how certain of the partial differential equations 
discussed in the last section can be converted to integral equations . 
Those differential equations which are solvable then correspond to 
integral equations which are also solvable . 

Let us consider the two-dimensional analogue of (54) 

C
 

p+
' 

II DV211 + 2 +112 
X y 

(86a) 

whose solution 

u(r,t) = log f(r,t) (86b) 

is related through f to the solution of the 2D diffusion equation 

2 f = D V  f .  t 
(860) 

If we define 

L1(r,t) JV J' U(k,r)e'ik"d2 k ,  (87) 
_ t o  

then 
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2 u x (r,t) JV JI" kxkxU(k' ,t)U(k" ,t)e'i(k"+k'l - r  dank" dank' 

JV JV kx(kX-kX)U(k' ,t)U(k-k' ,t)e - ik-rd2k, 2 d k (88) 

while 

uxx(r ,t) VF 
J J  

2 -`k- 2 k xU(k,t)e 1 r d  k .  (89) 

If we substitute these expressions and the corresponding y deriva- 
tives Into (86a) , we find 

m oo 

V I1 - ik-r  2 2 V | e d k{u +Dk U +  k J J t J J _ -co 

V -(k-k')U(k,t)u(k-k' ,t)d2k'} 0 

('90) 

Hence , our original differential equation (86a) is equivalent to the 
integral equation 

8».. 
a t  U(k,t) = -Dk2U(k,t) JV JV k'-(k-k')U(k,t)U(k-k' , t )d 2k,. 

(91) 

The solution of the integral equation is then 
oo 

U(k,t) V[1og f(r,t)] 1 V 
211 J - J  

2 exp i k - r  d r (93) 

where f(r,t) is the solution of the diffusion equation (860) . The lD 
and 3D generalizations of this equation are clear . 

An equation similar to (91) , but with a simpler kernel is that 
which occurs in Smoluchowski's theory of coagulation of colloids and 
Schumann's theory of cloud formation. In these theories it is as - 
summed that two particles , one of mass k and the other of mass k' , 
collide and form a new one of mass (k+k'). If n(k)dk is the number of 
particles of mass between k and k+dk at tlme t ,  then the rate equa- 
tion, which describes the growth of particles , is 

B n(k , t) p k 
a t  Jo -2an(k,t)n(t) +G. n(k-k', t)n(k', t)dk' (94) 
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The first term on the right of (94) represents the rate at which parti- 
cles of mass k are lost through collision and combination Of other 
particles . The collision rate is proportional to  the total number of 
particles 

n(t) II V 
J 

oo 

o 
n (k , t)dk (95) 

with which any one of mass k might collide . The factor 2 is included 
because either of the two particles which collide might be of mass k .  
The integral term on the right of (94) represents the gain in the number 
of particles of mass k due to collisions of those of mass k '  and 
k-k' . The constant cu is a rate constant for the process . 

Instead of solving (94) , we solve a more complicated equation 
from whose solution that of (94) can be deduced. Let k now be a 
vector, say a 2D one, and let CL(t) be an arbitrary function of t .  Then 
consider (with K constant) 

-a(t)n(k,t) + K n(k' ,t)n(k-k' ,t)d2k' or 
J J  (96) 

If initially n(k ,0 )=0  unless kX>0 and k y > 0 ,  then, through colli- 
sions , the resulting k ' s  can only increase so  that at all times 
n(k, t )=0 if kg 0 and ky> 0 .  'these circumstances r the inte- 
gration limits in (96) could be 1 
view of the Faltung form of the Bitegrand of (96) r we multiply both 
sides of (96) by 

over the range (0 , 0;kX , ky) . In 

exp i k - 9  E exp [ i (k-k ') '9]  exp(ik'-9). 

Then 

-a( t )n(9, t )  +kN2(9, t )  (97) 

where 
co 

n ( 9 , t )  J Jan(k,t)eik' 
9 2 

d k .  (98) 
- t o  

If we let 

g ( 9 , t )  = l /n (@, t )  I (9 go) 

then 

*dg/dt + U,(t)g = K (99b) 
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Since 

{g I exp 
Ft 
Jo dt g(t ' )dt ' l  & ( t ' ) d t }  ={- QQ + ¢(t)g} exp[-JVt 

Vt 
JT 

I-.11 

Jo 
t 

g ( 9 , t )  = g (9 ,0 )exp  a(T)dT [exp a(t ' )dt~]dT K V 
Jo 

so  that finally 

n(9 , t )  
n(e,0) 

expll;@(r)dT - xn (e  ,0)llot[exp j:a(t')dt']d¢ 
(100a) 

and 

n(k,t)  1 rnov 
(2 ft)2 J J 

nu; 1 0)@'i6 °kd2k 

_ c o  rexpllot(»(¢)dm -me ,0)tt[exp.fTta(t')dt'] dT 

(100b) 

dn(t) 
dt 

The solution of the Smoluchowski equation is obtained by first 
integrating (94) with respect to k so that 

co k V r 
Jo JO -2O.N2 (t) + Q dk n(k-k' ,t)n(k' ,t)dk' 

-2aN2(t) n(k',tldk' n(k-k',t)dk = -aN2(t) + G  v v" 
Jk. 

and 

n(t) no)/[ 1 + atN(0)] (101) 

Then (94) is the 1D equivalent of (96) if one sets 

a(t) = 2aN(0)/[1+atN(0)] and A = a .  (102) 

From the lD analogue of (100) we find the solution of Smoluchowski's 
equation to be 

n(k,t) 
1 P" 

(21T) J _,  
N(6  , 0) exp(-i6k)dk 

[1 + taN(0)] 2 - atn(9 ,0)[1 + toN(0)] 
(103) 
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Several special Initial size distributions are of interest. 
Schumann used the initial Poisson distribution in his theory of cloud 
format1on24l / 25 ) 

n(k,0) = { N(0)€-Bk 
0 

if k > 0  
if k < 0  (104a) 

Then 

n(e ,0 )  = BN(0)/(B-19) (104b) 

so that 

n(k,t) 
Bn(0) [`°° eiekde 

21'r[l +atn(0)]2 J_,,, BE1 +atn(0)] '1 -10 
(105a) 

II 

en(0) exp[- sku +atN(o)°'1]` 

277[1 +atN(0)]2 

0 

if k > 0  

if k < 0  

(105b) 

Hence an initial Polsson distribution retains its Poisson character at 
all times . Similarly, one can show that the initial exponential distri- 
bution 

n(k,0) = é Bn(0)e' BI kl 
also retains its character. One finds25)'26) 

(106a) 

n(k,t) _ _ - . . . g  W i n  
l ' l  \ al' l 

¢ °  . | Q 

e.. r "  

1. : to Q 
r Ii-T 

n 
exp[-  B I kl/(1 +atn(0))%] (l06b) 

Of course, since particle sizes cannot be negative (106a) is not a 
possible Initial distribution for the Smoluchowski problem . On the 
other hand, one can define a stochastic process which is character- 
ized by the integral equation (94) such that variable k ranges from 
- m  to co. 

It can also be 
n(k,0)=n(-k,0),  with 

that any 1n1t1a1 d 
rial second moment 

notion such that if 

l*2 = [n(0>]'1 V J k2n(k,0)dk (l07a) 

then, as t-°° 
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- exp 

ELLIOTT W. 

n(k,t)~ (@t)'3/2[2n(0)u2] { -1k l lé(»tn(0)»2] '%}.  

(107b) 

An initially unsymmetrical distribution with first moment 

oo 
_1 l"\ 

J_,, *II [ N ( 0 ) ]  kn(k ,0)dk 7' 0 (1083) 

approaches the Poisson distribution as t-°°°: 

-1 [at(l +(nn(0))] 

0 

exp[ -k/atu1n(0)] 
n(k,t) A. ;  

if k > 0  

if k <  0 .  

(108b) 

The momentum representation of Burger's equation has two 
equivalent forms 

aU(k,t)/at = -vk2U(k,t) + i  (k-k')U(k' ,t)U(k-k' ,t)dk' 
v" 

J 
(109a) 

or 

BU(k,t) /at = -vk2U(k,t) + i  k'U(k't)U(k-k' ,t)dk' 
v" 
J oo 

(109b) 

a 
a t  

The solution of these equations is known because it is essentially the 
Fourier transform of (66) . 

The momentum representation of the 2D Fisher equation is 

rcsr 2 -U(k, t )  = -(Dk2-i)u(k,r) - (K/G)J J U(k',t)U(k-k',t)d k ' .  
_.of  

(110) 

VI. 2D Integral Equation for Incompressible Flow 
The Navier-Stokes equations for a 2D incompressible fluid 

were written in Eqs . (41) and (42) in the form 

o f  
611 V V 2  

o f  as) o f  5¢ f - + - + 5 x 1  5x1 8 x i  6 x2 5 x2 BX1 ( I l l a )  

2 
v i )  f .  ( l l l b )  
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In the case of an unbounded fluid, these equations can be converted 
to an integral equation through the introduction of the Fourier trans - 
forms 

F(k, t )  JV f(r,t)e1krd2'r (112a) 

§(k,t) = F J¢(r ,t)e1krd2r (112b) 

s(k,t) = JV5l(t,t)eik°'d2t (l l2c) 

SO that 

f(r,t) 
-1k- 2 F(k,t)e r d  k 1 

(2H)2 J 
(l 13a) 

¢(r,t) 

5'(Ir.t) 

V¢(k.t)e-1k'"d2k 
1 

(27T)2 J 
1 

(2102 J 
3'(k,t)e-ikrd2k. 

(l13b) 

(l13c) 

Th'en (lllb) is equivalent to 

2 -k ®(k,t)  = F(k,t) I (l14a) 

if we substitute (112) into (Illa) 

-ik-r 2 BF(k)+ 2 + d k{ a t  vk 1=(k) 

and, 

roTe 
J _.. 

I we find 

V (k2ki - k1kj2)1=(k') Q (k-k')d2k' + in x k)Z} 1 
+ (2,,,2 J J 0 

so that 

Vk2F(kl (2wl)2 JV JVEkxk']z1=(k')Q(k-k')d2k' + i ( k x 3 ) Z .  

(1 l4b) 

If we employ (llama) the resulting equation for the poteNtial is 
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a 
B t  Q(k,t) 2 -Mk §(k,t)  + 

no 

+ ( 2 1 2  8' (k'2/k2l[kxk']Z@(k' ,to <§(k-k' ,t)d2 k '  - i ( kx  a)Z/k2 

(115) 

which, in the absence of the driving force 3 ,  is a continuum exam- 
ple of the chemical rate equation dis cussed in the introduction. The 
"rate constants" are (k'2/k2)[k xk']Z/21T2 . 

In the case of a driven disturbance , it iS useful to extend the 
definition of the various relevant Fourier transforms so  that 

F(k ,w)  
q 

J~ f(r,t)ei(k""JJt)d2r dt (116) 

¢(k,  w) r d t  Jl'¢(rt)ei(k°r-wt) d2 

' k -  - t 3(k,Lv) = Jx'(tI )et( r Lu ) d  

with the appropriate inverses so  that 

2 
r d t  

(117) 

(118) 

f ( r , t )  l - '  k -  - w t  2 
3 Jap(k,w)e 1( r ) d  k 

(21T) 

Then the analogue of (115) is 

dw, etc. (119) 

<I>(k,Lu) + 1 VFP 
(2 n)3 J J J k2(iL»+vk2) 

l_ 

2 x §(k' ,Lu') <I>(k-k' ,uJ-w')d k '  dw' . (120) 

VII. 2D Incompressible Fluid Driven by Two Fourier Exponentials 
Let us now see if we can find some driving force for which we 

can solve this integral equation . 
The simplest driven disturbance which we might consider is 

5'(r.t) = A exp i(tuJO-1°-q) (121) 

However, as we see from (41) and (42) the response of the scalar po- 
tential to such a disturbance is 
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I -2 , . 
Q) = 1A-(qy-qx)k (1wO+vq2) exp1( two-r»q)  

with 

2 - k  (1) 

Since this driven disturbance does not create a shear f l ow ,  the non- 
linear term in (42) vanishes identically under its influence . 

The simplest driving force which induces a shear flow is the 
sum of two Fourier exponentials 

which I 

A ajexp 
2 

55(r,t) Z i ( twO- r -q j )  

j=l 

in (Lu,k) space, yields the term 

(kxA)z 6(L0 -wO)[a1@(k-ql) +(»26(k-q2) . ( k x 3 ) z  

( l22a) 

(122b) 

»f. 
Through the nonlinearity in (116) we expect to  be able to  generate 
vectors of the form 1q1 + l2qz by successive combinations of quo 
and Q2- The first combination of U11 and quo is (CII +Q2) which corre- 
sponds to the lattice point (L l  ,L2)=(1 .1) in Figure 5 .  Then, (q1+Q2) 
can combine with C11 to form (2 ,  1) and with quo to form (1,2). By 
continuing this process the whole lattice of wave vectors (4.1 ,-L2) 
with /L1 ='1, 2 ,  . . . and & 2 = 1  , 2 ,  . . . can be generated. The lattice 

quo 
al 

. • . .,@ . 
• • . . . . . . . . . 

• Le • • • • . • . . . . • . • 
Figure 5 . Lattice of wave numbers (t1q1 ,»L2q2) for excitation of a 2D 

fluid driven by two Fourier exponentials . Through the non- 
linearity in the Navier-Stokes equation, any two wave 
vectors combine and form a new one which is the sum of 
the two . 
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points (L ,0) and (0 .*>) with <L> l do not carre spend to possible wave 
vectors because of the term [ k  X k ' ] 2  in the integrand of (120); two 
vectors in the same direction cannot combine since 

Efbql x Vqll 

The frequency of the wave vector (/Llql + 1L2q2) is 

0 

II 3 ml +&2)wO.  (123) 

Notice that a given wave vector L1q1 +&2q2 can only be ob- 
tained by combining pairs of wave vectors closer to the origin since 
no negative wave vectors are included in our driving force . Hence we 
can expect to be able to find the amplitude associated with a given 
wave vector in terms of those closer to the origin through a re curs ion 
formula. This will be done in detail in the next section . 

Before proceeding with that analysis it should be pointed out 
that the driving force (122) does not lead to a real physical flow since 
contrary to the technique used in the investigation of linear equations 
we cannot associate the real part of the response potential of the 
fluid with the real part of the driving force . To obtain a physical flow 
we would have to use a driving force 

(kx3 )Z  (k xi)z{a (w -wO)[(1l6(k -quo) + @26(k-q2)]  

+ @(w+wO)@l@(k+q l l  + a26 ( k + q 2 ) }  (124) 

Such a driving force would yield a feedback mechanism such that one 
would no longer have a simple recurrence formula for the amplitude of 
the various wave numbers . We will make a few remarks about this 
more complicated case after our investigation of the response to (124), 

On the basis of our observation of the formation of large wave 
vectors from smaller ones we seek a solution of (116) (with (122) in- 
serted into the driving term) of the form 

@(k,Lu) I 
421-0 

T a(L1,%2)6(k 

&2=0 
L, - 1q1 -&2q2) 6(Lu - [ L l  +/;2] to) 

(125) 

Then our problem will be to determine the amplitudes a(&1 ,L2) . Let 
us define 

ii -(quo x A)Z/qj2 G. 
J 

(126) 

and 
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X (quo x q2)z/(2T')3 

565 

(127) 

In order to reduce later complications we make the following abbre- 
viations for a number of combinations of »f,1 ,422 ,ql , q2 ,v  and to will 
appear at every stage of our calculations . 

£'f»1*>2 E (&1q1+"2q2)2 (128a) 

9»1',1,&2 i<*°1 +j¢2)LU (*;1q1 + 2 q 2 > 2  + V  o (lz8b) 

2 
`[*'1q1 +(1l,2-1)q2 

2 2 
qz f 31 /L2-l (1280) 

k l " z  

III
 2 

quo 
~2 _ 2 

' [ ( * °1 l l )q1 l2q2_ l  `q1l£*>1'1/L2' 
(l28d) 

Then if we substitute (125) into our fundamental integral equa- 
tion (120) with the driving term (122), we find 

1 Y a@1 » 2 D © ( k  `£'1q1 ̀ £2q2>6<"' - Lil +!L2]LuO> 

_i(kxA)Z[a16(k-ql) + a26(k-q2)/k2(iLo+vk2) 

+ 1 Foo 
(21T)3 J_m 

dank' do '  aQ; i ,L§)a(k ' -& iq1-v2q2)  
»f,1,»f',2 

X 6  (w' -[L1+JL]Lu0> a<»f,1 , 6 ( k  - k"*'1'q1'*2q2) 

Q [»L1+4;2]wO)(kxk')Zk'2/k2(iw+vk2) X 6  w - w ' -  (129) 

If we set k=I 
of 6(k - l i l l i  
definitions of 

2q2 and] 
on both 

' s  and A 

and equate the coefficients 
, we find , remembering the 

and (127), 
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4; 

= ' i 5 1 % 1 , 1 % 2 , 0 / 9 1 0  - i B - 6 » ¢ 1 , 0 % 2 , 0 / 9 0 1  

L 

+A f ( n2)aQ1 
I'1l=0 n2=0 

n l  "Nl , 1L2-n2 

/ / 2 
' L  -4; + ) X \  1n2 2"1)\"1q1 Nzqz * , l ' l 9 / ; 1 f *2  (130) 

We have used the fact that negative values of neither L1  nor £2 can 
be achieved from our initial conditions . 

Certain scaling factors are immediately apparent from the 
quadratic form of (130). Suppose that (Ll ,&2) is neither (1 ,0 )  nor 
( 0 , l ) .  Then it is clear that we can express a(/L1 ,&2) in the form 

4, 
a L1/L2) = [ a ]  1[a(0,  1 ) ] 2  b//L ) \ 1 4; ' 2 (131) 

where 

b(1 ,0) II b(0 ,1) II 1 .  (132) 

£ 1  2 I12=0 

For (&1,!,2) vectors other than (0 , l )  and (1 , 0 ) ,  b(&1/L2) satisfies 

£ 2  
4, = b , b/L - , _ b( 1'*;2) K (Nl nz) \ l "1 2 nz) 

/ x 4, -/L f \ 1"2 2N1) 111112/£&1*2g&1»*f2 (133) 

b(*»1/¢z) = Z Z _ 2 b@1'"2 T11-0 n2-0 

An alternative form for this equation can be obtained by making the 
change in variable ni=&i- Ili in the summation, then removing the 
prime and averaging the resulting expression with (133) . Then 

£1  L 2  

b / t  -n ,L -n 5 ) \ 1 1 2 2 

X [»¢1(2n2-&2) - » L 2 ( 2 n 1 - L ]  l:(2n1-/¢1)q1 + (znz-L2)q2] 

x (&1q1 +*¥f2Q2)]/3»{,]l. ,L2 (134) 
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which has the vector form 

b(JL) 1 
2 L. b(n)b(»L-n)[x, x 

o 
(2n-x;)]zxZ - (25-/Z)//Z -z gm 

(135) 

where 

A E + L  -L L L1q1 2q2 and /4, 4; t \ 1 '  2) so  the I L xm]z =»L 1M2 -ft, 2M1° 

(136) 

For later reference we note that 

a(1,0) , 0  61/91 -181/QwvqlZ) = -(B1/wo) /(1 -mi)  
(137a) 

a(0 ,1)  
' 1/90,1 = `1B2/Q"'o+"qz2)= '<82/W0> /(1 - 1R2 1) 

(l37b) 

where RJ is the Reynolds number defined by 

RJ = (wO/Iql|)(1/Iqj l) /v =to/vqjz (138) 

when &1=&2=1, (133) and (132) yield 
I 

b(1,1) if .r` W 11. °W I 1 ~<q1 xq2)z/(21T)3 (139) 
_ 

I 
*I \. | 

When &1> 1 and &2> l , Eq. (133) can be written in a manner 
in which its being a recursion formula is clear. We must remember 
that b(»¥,,0) and b(0,/L) both vanish when 4L> 1 . Then 
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x 

My; »f, = \ 1 '  2) 
{&1b(»z,1,2-1)h&1 '2b(1 '1»2lk: , l , f l ,2}  4;1,»L29x;1/L2 2 

451-1 L2-1 
+A y 

n1=1 H2 1 

( )b(n x b  n1,n2 -b ,L  -n + 1 2 2 "1q1 n2q2 D2Q'1n2"r'2n1)/fL1,{,291[2 

(140) 

This is a recurrence formula from which we can systematically find 
each a(&1 JL2) from those which are closer to the origin of our lattice 
of Figure 5 . 

e to ,1{...;l;.i*€8FI3;1_;_a_,Q;1;i;:a1 5p1_ut1Qn-.Q; 
E by :be 
I1u1aE€ . ._ Parekh for 
Som" its can be 

gmd 6 rs in these 
ons are respectively, 

E a ( 1 , 0 ) J 4 = [ a ( 0 , 1 ) J 4  k { 0 . 4  X10 '1  
0 . 3  X l0" l  

case a 
case b I 

2 
q l  10, 2 

qz 20 ,  2 R1 - we/vql 10 ,  _ 2 v =  5 x10 Smeter / sec ,  

2 
L0 Rvql 5 x 10-3/sec 

and the angle chosen between ii and quo is 90°. The absolute values 
of the amplitudes a(&1 ,&2) are exhibited in the figures through the 
lines of constant la(4L1 ,»l',2)l . 

Certain topological features of these lines of constant 
l a(L1 ,JL2)l are immediately apparent and can be understood in terms 
of the manner in which various wave vectors combine to form new 
wave vectors . First we know that as L1+L2l -o m for any finite 
Reynolds number la(/L1 ,&2) l  -° 0 since viscosity and dissipation into 
heat takes over at the very small eddy sizes , i . e .  , large wave num- 
bers . Hence, if a minimum exists near the origin and la (%1 f 2 ) l  I 

gets small for large la(!,1 ,=L2)l , there must be at least one maximum 
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T";¢;., 

_ 

"'-r _ . - 1  

Figure 6a. An example of curves of constant amplitude associated with 
various wave numbers r choice of parameters given in text . 
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of a (&1  ,&2 ) l  in some intermediate range. Such a maximum is clear 
in Figures 6a and 6b. 

Now, in order to put a semblance of rigor into further remarks 
we should consider a(q11Z,1+q2L2)l to be a continuous function of 
continuous variables XI  = *>1lq1l and X I=  *>2lq2l . This would cor- 
respond to a physical situation in which the driving amplitudes a l  

Iqbal ripely, 

peaks occur at such great IL, 

both become very large while the lengths of the driving | quo | 
and U so  that the lattice points become dense or, i  
the viscosity v becomes very small (large Reynolds numbers) so  that 

J. as from the origin compared with 
(l0I1+0I2 2)'2' that for all pg purposes our lattice can be con- 
sidered to be a continuum . 

As is evident from Eq. (140), the lattice point (L1,&2) can be 
occupied through the combination of any other pair of lattice points 
(no ,I'12) and (11-n1,L2-n2). Indeed, the weight b(JF,l ,{,2) is a sum 
over all "marriages " of pairs of wave numbers which add up to . We can ask which "marriages" are most fruitful in their 
contribution to b({.1 L2) :  AI§?i`ihi-,,:n3,,,,,-,, involving almost like cou- 
ples (n1,n2) : : Ml z) or _-,,.,,.-.se of unlike couples such as 
(2 ,L2-2) and (Ll -2,2)  ? An analytical discussion of this question is 
given in Reference 27 where it is shown that when 1,1 and L2  are 
large , the greatest contribution comes from almost alike pairs (identi- 
cal pairs do not contribute since , in that case r the cross-section 
factor (t ln2-L2n1) in (140) would vanish if D2 =£2/2 and no =»l',1/2), 
with very dissimilar pairs contributing practically nothing . 

This optimum pairing rule implies that if a first peak appears 
at (/61 ,L2) , another subsidiary peak should appear at (2 L1  ,2!,2) , 
another a t  (4&1 ,44';2) , et cetera. The peaks more distant from the 
origin than the first may not be noticeable if the viscosity and dissi- 
pation cause such a rapid drop in the amplitude that, while the second 
peak exists , it is so  small that it cannot be noticed. This is the case 
in the choice of the parameters used to calculate the curves in 
Figure 6b. The first peak in Figure 6b is near the point (II , I I )  and 
the second near (21 ,21) as  expected. In Figure 6a,  the peak at (8 ,7 )  
is very flat and one does not yet seem to be in the "large" (L l  ,!,2) 
regime in which our argument is valid . 

I 

VIII. Some Remarks on the Influence of Two Periodic Driving Forces 
on a 2D Incompress_1ble Fluid 

While we have not yet made any detailed calculations or 
analysis of the response to the physically interesting driving force 
(124), we can make a few conjectures about the nature of the lines of 
constant energy in our wave number space (k-space) . In this case we 
must consider the amplitude a(»t',1 ,-L2) at all lattice points on the in- 
finite lattice. Here 
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_ - 1  . 

I I  

Figure 6b . A second example of curves of constant amplitude asso- 
ciated with various wave numbers , choice of parameters 
given in text . r 
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a(L1,{,2) = a*( -L1,-a2)  

the ( L l  ,/L2) component of the velocity is related t o  a(4L1 ,»L2) by 

U1(4', .w) -1/L2q2@ (L ,up) 

U2(&,Lu)= w1q1@(»¢,w). 

Hence the energy associated with that wave number is 

l 
2 

__ 2 2 2 2 2 (*>,w) - (Llql + 2 2 q 2 ) l ® ( & , w ) l  

1 
2 

2 2 2 2 quo + L 2 q 2 ) l a ( © 1 , f » 2 ) l  
2 

Ii 

HUUHUNIUH 
"*!""!"!""'i 

it 

The curves of constant energy are the objects we now examine 
rather than a(£,1 ,&2) . However, the qualitative remarks about both 
are essentially the same. We can imagine two possible situations 
developing, one in which some is elated peaks develop in the manner 
in which they did in Figure 6b. - - - - 

If a peak exists at (Ll ,{.2) then, if of! 
still valid here, several higher wave number Ll 
(4&1 ,4{.2).  et cetera, again would develop. 
= " " - * * *  * *'-' qxhibited in Figure 6b. A second possibility is 

to where one finds a closed curve of maxima . In 
of further rings of maxima would appear, as in 
the last section. These higher wave numbers 
might not show themselves when dissipation 
st  after the first maxima . 

of the lines of constant energy 
it which appears in the theory 

stions , as well as a search for 
pussed elsewhere. An 

2D Nav1er-Stokes equation has d*e 
..- 

is 
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