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PREFACE

The Proceedings of the Tenth Boulder Summer Institute for Theo-
retical Physics come in two volumes. Volume XA is devoted to lec-
tures in a wide variety of areas of theoretical physics, from quantum
field theory to statistical mechanics, and from group theory to non-
linear differential equations, which were presented during the first
seven weeks of the Institute. These lectures review some of the re-
cent advances made in these fields, and we hope that they will appeal
to a wide audience of physicists.

The second volume, XB, contains lectures delivered during the
Fourth Boulder Conference on Particle Physics. The Conference was
held during the last three weeks of the Institute. Traditionally this
Conference brings together both experimentalists and theorists to dis-
cuss the latest developments in a leisurely and detailed manner.

The Institute was supported in part by a grant from the National
Science Foundation and in part by the University of Colorado.

We thank the lecturers and the participants for their collabo-
ration in the final realizatlon of these Volumes, and Mrs. Ann Cofer for
her conscientious and expert typing of the manuscripts.

A. O. Barut
Wesley E. Brittin

Editors,
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MATHEMATICAL THEORY OF MULTI-PARTICLE
QUANTUM SYSTEMsS'

‘W. Hunziker
Seminar flir Theoretische Physik der
Eidgendssischen Technischen Hochschule
Zirich

1. Construction of Hamiltonians

Formally, a system of N particles interacting by two-body
forces is described by a Hamiltonian

He ) + )V, 6y) = H_+V,
i=1 z

acting on the Hilbert space K=L2(R3N) { labelling the pairs of
particles). However, H generates a one-parameter unitary group
Ult) = e_lHt,

which describes the dynamics of the system only if it is self-adjoint.
To define a model, therefore, means to construct a self-adjoint
Hamiltonian. Once this is achieved, the basic existence theorem is
established: the initial value problem connected with the
Schrodinger equation has a unique solution.

In many cases, the following theorem 1is sufficient for the
definition of a self-adjoint Hamiltonian:

Theorem 1 (Katou}: On a Hilbert space ¥, let A be self-adjoint and
B symmetric and relatively bounded with respect to A, i.e.,
p@)c D(E)F and

[|Bul| < a|Au|| +8]ul] (1.1)

for some a<1, B<= and all u € D). Then A+B (defined on D))
is self-adjoint. Also, if A is bounded below, so is A+B.

tPresented at the THEORETICAL PHYSICS INSTITUTE, University of
Colorado, Summer 1967.

-*D(A) = domain of the operator A; R(A) = range of A.

1



2 ‘W, HUNZIKER

The proof follows from the relations

z-(@+B) = [1-Blz-2)"1(z -A), (1.2)
Bz -a)71 safalz -a)" 1 +8[ -7

= @ sup —X—+B sup

x€0 (3) |z -x| x€0 (B) 1z - x|

which hold for all (complex) z¢€oc (A) = spectrum of A. First, let
z =1ik, K real. Then
||B(z—A)_1|| < a + l—% < 1
for |k| sufficiently large, so that [1 - B(z —A)'l] has range 'K and
a bounded inverse. This implies
R(it - A+B)) = Rk -A) =1,
hence, A+B 1is self-adjoint by standard theorems .2)

To prove the second part of the theorem, suppose that A is
bounded below by 0. Then, for Re z< 0, we have

IBz-A < a+ <1 (1.3)

| Re z|

for Re z sufficiently large negative. Then, by (I.2), the resolvent
(z - (1-\.+B))'1 exists, i.e., z& o (A +B), which shows that A+B is
bounded below.

Applying this theorem, we set A=H,, B=V. Hgand V are
both defined as multiplication operators: Hg in momentum space, V
in x-space, on their natural domains.

Definition:3) Vv is a Kato-potential if it is infinitely small
with respect to Hy, i.e., if for any 0> 0 there exists B{)<  such
that (I.1) holds.

Thus defined, the Kato-potentials form a linear set: If V is
any finite linear combination of Kato-potentials, then Hg+V is self-
adjoint.
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Theorem 2 {Nelsona)}: Let V(}?l X .;N) =U(y1...¥m). Wwhere yi...yy
are m_.linearly independent combinations of the particle-coordinates
X1...xy (m<3N). Then V is a Kato-potential if

)

u(-)e tP®™) + 1I°®™)
with

nNo

"
o
[+]
=)
Q.

™3

A

ke

In the case of a two-body potential we have

X} =V, (xi-xk),

V(xl' N ik

hence m=3 and the condition is
v, ()€ Z2@®3) + 1°®3).

On the other hand, for a k-body potential with k> 2, m=3(k ~ 1) and
the restriction on p is 3/2(k - 1)< p.

*

Singular potentials.

For a two-body potential V(r) ~ r™® (r— 0), the condition V € 12
requires n< 3/2. This excludes potentials with strong repulsive sin~
gularities of the kind employed in statistical mechanics. In such
cases, the potential is no longer bounded with respect to H,. How-
ever, a self-adjoint Hamiltonian can still be constructed by the
method of Friedrichs —extension.z) This Hamiltonian then cannot be
written as Ho+V, since Hpy and V are not defined, in genera], on
all of D(H). For later use, we shall show, however, that HE (or the
momentum operators) is still defined on D(H) and can be estimated in
terms of H.

Let V=Vg+VR, where VR is a Kato-potential and where the
singular part Vg satisfies the conditions

D(VS) n D(HO) = D 1is dense

= - -
a Vs(x1 - .xN) for some real a.

1) This means that Ulyp.. . ¥m) =UP(y . ..yp) +US(yy. . .vy) a.e.,
with UP(-) € LP(R™) and U%(-) € L”R™M).
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Since VR is a Kato-potential, 3 H,+ Vg 1s bounded below, which
implies

0<% (u Hu+@,ws (u, Hy+VR+blu)

for some real b and all u¢ D. Adding on the right the non-negative
form (u, Vgu)~a(u,u), we obtain

0<% (u, Hgw +@,u) < (u, (H' + c)u) (1.4)

for all u€ D, where c=b-a and H'=Hy+V (on D). Thus we can
define:

H + ¢ = Priedrichs-extension of H' + c.
The inequality (I.4) is then preserved in the following sense:
5 "
D((H+c) ) c D\Hg>
and

1 1
FlEZul? + ful®s @+ of uf? (1.5)

for all u€ D(H +c)%).

*

The question of how to treat attractive singular potentials may
not be relevant to physics; it is, however, quite interesting from the
point of view of the correspondence principle.

If Ho+V is still densely defined, it is symmetric and real,
and has therefore always a (generally not unique) self-adjoint exten-
sion. But Nelson3) has shown that the "correct" generator of the
time~-translations U(t) need not be among these extensions. He
treats the case N=2 with

Vi) = -'92— (g>0),
r

which classically leads to capture for sufficiently small angular mo-
mentum (collapse of the pair after a finite time). He constructs the
propagator exp(-iHt) =U(t) by using Feynman-integrals, and shows
that in an (invariant) subspace of sufficiently small angular momen-
tum U(t) 1s no longer a unitary group but a contraction-semigroup.
This means that probability is dissipated —corresponding to the
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classical capture process. Therefore, the Hamiltonian which gives
the correct classical limit is not self-adjoint.

II. Cluster-Properties

Maybe the most characteristic feature of multiparticle sys-
tems 1s that they can break up into parts which move independently,
if they are far separated from each other., It is clear, therefore, that
the dynamics of an N-particle system contairis, as a certain limit,
the dynamics of any subsystem of less than N particles.

To formulate this, let D=(Cj...Cy) be a partition of the set
(1...N) into n "clusters" GCy...Cp. The Dperator Uplay...ap)
which translates each cluster Cp by ap= (ak dk) in space—tlme is

ﬁ —inak + Pkak
e“
k=1

1...an) =

7 (I1.1)
Hk,?' being the energy and momentum of the subsystem Cjp. Let
Ula) be the corresponding operator for the system as a whole (trivial
partition into one cluster). Then the cluster property is expressed
by the following theorem:

4)

Theorem 3: If all the pair-potentials V; are of the form

v, (+)€ 12®%) + 1P®%) (11.2)
with 2< p< 3, then

UD(—a1 o .—an)U(a)U r .an)qr — UD(a. L.aj

p1
as

min Iai—ak| —>

i#k

(|a] =Euclidean distance in R4) , for all ¢ €% and uniformly in a.

*

Remarks.

First of all, since U(o,3)=Uplo,3;...0,3) commutes with
Up (al " .an), we can restrict ourselves to pure time-translations
where the theorem reads

-iHpt

Al —> e U (@ .. .a ¥,

-iHt
e 18y D

UD(a
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with

HD =Z: 1Hk =H minus all interactions linking different clusters.
In other words, if, in any initial state § , we separate the clusters
(by applying Up(ay...a,)) sufficiently far in space~time, then the
subsequent motion will be arbitrarily close to the motion of the sys- .
tem of non-interacting clusters (with the same initial state) uniformly
in t.

This uniformity in t could not be expected from classical
mechanics: consider two particles A,B, where A is at rest and B
has an initial position X and an initial velocity ¥ which will make
it collide with A. If we separate A and B by shifting B from X to
X -va (@> 0), the two particles will still collide after a finite time,
regardless of how large we choose a. In quantum mechanics, how-
ever, the probability of a collision will decrease for increasing a,
due to the spreading of the wave-packets.

Proof of Theorem 3: It suffices to prove the theorem on the dense set
spanned by the states of the form

e, B - (y,-by)
PR = T e T ey (e,

where B'k varies over R3 and . over D(hk) hy being the internal
energy of Cp, and where yk and zp denote the coordinates of the

center-of-mass of Cy and internal coordinates of Cy, respectively.
Now we have

r_-iHt _ ‘iHDt>

& e UD(f'-i1 . .an)lll

t .
- i ~iHpT
= -ie lHtf dt elHTIDe D UD(al. cap,

where Ipy=H -Hp is the sum of all interactions linking different
clusters. (Since V¥ € D(Hp), exp(-1Hpt) Uplaj...an) € D(HL), so
that, by Theorem 1, the integrand is well-defined and continuous in
t. The integral is therefore defined as a Riemann-integral.) There-
fore,
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"(e—th —e_iHDt>UD(a1 r -an)‘l‘" < th dt N(al. . .an,'r) , (11.3)
o

where

iHD'T
Uplay...ap .

N(al. . .an,’r) = || IDe
An elementary calculation of the propagation of free wave-packets
yields

-iHpT
(e P Uy agh) @ Ty)l

. — +—v _5. )2
_ 3/2 Hilygtag-by o 2
=T w'"e oy (T+ag, 21"
k=1

where
=(1+( 0)2 237t
=1+ 0ra?/ )

My =total mass of Cy, and pk(t, -} =exp(-ihytkp . For notational
convenience we now set by =0 and we only estimate the contribution
to N{ay...ap.T) of a pair-potential V linking the clusters Cj and
Cy. Then we obtain

[

2 2
N(aj...a,,7) = const. J dzldzzdxdylcpl('r +a1°,zl)cp2('r +a§,zz)|

2 3/2 -k1(y;-a)é-palygy-ag)
x | V&) | (uluz)/e e Ll
where x is the relative coordinate of the pair linked by V and vy is
the coordinate of the center-of-mass of the subsystem (C;,Cj), so
that

yl =y+ax + Blzl
Y, = y+ (0 -1)x + 2Z9 1

a,By, By denoting constants depending on the masses. Carrying out
the y-integration, we are left with
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[

2
N (al an,T) = const.J dzldzzdx|cp1('r+a1°,zl)| Ic\oz('r+a2°,zz)|2

~uX - (@1-8p) +B1z] +B524)?
. V60| 2u 3/2 Y

with
-1_ -1 -1 _r 012 ynr 2 02 ynr 2
HOEug o, —\2+ (T+a1) /M1 + (T+ag) /M2>.

First, let us assume now that V(-) € 1.2 (R3) . Estimating the exponen-
tial by 1, we then obtain

3/4

N@;...a )= ™ " rconst. lo | Ho,l 1vE, - (i.s)

Hence,

+o +oo ) +a P 2\-3/4
r r /'T+a1 T 32
J ) N(al...an,T)dT < const. J ) 2+\ M, ) +< M2>

o
- 0 for [alo—a2|—‘°°.

This, together with (II.3), proves the cluster-property for purely
time-like separations. On the other hand, for purely space-like
sepalaiion, it suffices to prove N(aj...ay,7) =0 for |al—a£|-' &)
(al ,az ,7 fixed), by (II.5) and by the dommated convergence theo-
rem.?)” But the integrand in (II.4) is bounded by

2 2 2
|qol(T +a1°,zl)| |cpz('r +a2°,zz)| | vi)|

uniformly in 51 , &, and vanishes (pointwise) as | &1 -3 - .
Hence the integral (II.4) vanishes in this limit, again by the domi-
nated convergence theorem. A more elaborate treatment shows, in
fact, that

+
J\ N(ap. ..an,'r)d'r -0
-_—

if only the Euchdean distance |a1—a2| in R* tends to =,

If v(-) € L®3) + LP(R3), 2<p<3, we can choose the
LP-part V.. of V(-) arbitrarily small in the LP-norm. Let Np be the
contribution to N, in (II.4), of V,,. Then it suffices to show that,
for any £€>0,
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+o
j ) Np(al...an,'r)d'r <e (1. 6)

for all aj...ay, provided that ||V ( ()l p is sufficiently small. To
get this, we apply the Hoelder- inequallty to the x-integral in (II.4),
obtaining

3/2

2 2 2
Nj(ag...ap, 1) s 1™ const. Jlpy | fo, I

® =iarl] 1/a
x v ()2 (f dr i ¢ THE .
p P N

with g~! +2p_1 =1 (2<p), or, since the last integral is proportional
to u7°/4q,

2 3/p a2
N (@y...an,7) < const. u ||Vp( )||p

which, for p< 3, implies (II.6).

Cluster-properties in momentum gpace.
The operator which gives each cluster Cy an addltlonal mo-
mentum ak is defined by

- — — — o igk}_;k — —
<UD(a1...an)¢> (Xl"'xN) =kr_[1e PGy .. xyg)

;_I'k being again the coordinate of the center-of-mass of Cy. 8epa-
rating the clusters in momentum space means that they are given
large relative velocitles, and, again, the clusters become dynami-
cally independent as the separation goes to ®:

Theorem 4: TUnder the hypothesis of Theorem 3,

i g —.Ht — — —iHDt
UD(-al. ..may)e ' UD(al. cagt - e

as

min la"i—é'kl = %,
i#k

for any § €X and uniformly in -o<t< +o,
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Proof: Proceeding as in the proof of Theorem 3, we obtain

N“(@y...a .M = const.j‘dzldzzdxlcpl(fr,zl)l Icpz('r,zz)l

| zus/ze-u(‘i'—T (@1/M1)-(@9/Mg) +B 121 +Bz23)2

X |V(x)
where | is obtained from the correspending u in (II.5) by setting
a1°=a2°=0 As before, we conclude that

+ o
j‘ N(al...an,'r)d'r -0

-0

as |aj-ay|-~=, by twice applying the dominated convergence theorem.

*

The rate of convergence in the space-like cluster-properties.

The cluster-properties established so far were based on the
decay of wave-packets, and, as pointed out before, this is why we
obtained results which were stronger than what could be expected
from classical mechanics. However, classical mechanics will show
up in the rate of convergence to the various cluster-limits. This rate
will depend on the directions in which we separate the clusters, and
the directions of fast convergence will depend on the initial momenta
of the clusters. Also, fast convergence cannot be expected for any
initial state §, but only for states which describe well-localized
clusters.

Localized states.5)

The problem is to find a set of states, describing well-
localized particles, which is invariant under time-translations.
Since the Schrodinger equation is parabolic, it is useless to define
localization in terms of the support of wave-functions. What we may
use, instead, are the expectation values of arbitrary monomials in
the coordinates of the particles (i.e., moments of the probability-
distribution in x-space). In order to see what can be expected, we
first look at the case of a free particle in one dimension. There we
find

xne—ipzt/Zm'H _ e-ipzt/Zm « + Bt 2‘|’|
m

1Goe+ B
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Therefore, a suitable set of localized states for this case is

D, = n DuKpb). (. 7)
k+l <n

Dy is invariant under exp(-1(p2t/2m)), and the expectation value of
xK for 0sk=<2n in a state § € D, exists and does not increase faster
than const.|t|k as |t|—‘°°.

For the case of interacting particles, it turns out that a pos-
sible generalization of (II.7) is

D, =, N D&kut), (i1.8)
| k| +4<n
where
xk = xkl-xkz X kN
1 2 """°N

and |k| =k +kg+...+ky, kjinteger= 0. On Dy, we introduce the
norm

k.4
Lol = 2 < sl (1r.9)
| k| +2=n
Since xk, HY are closed, Dy, normed by I Iln, is complete. The

justification for calling the states § € D, localized is the following
theorem:

Theorem 5:5) Let
N pkz
H = Z oo+ VLX)

where V is a Kato-potential. Then )
a) Dp is invariant under the unitary group e~iHt,

b) For any § € Dy, e~iHty is continuous in t in the of
the norm " || n+ and there exists a constant ¢ such that
-iHt n
L™ )< o @+ [t vl

*
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An asymplotic expansion:

The second tool which is needed to estimate the rate of con-
vergence to the cluster-limits is an asymptotic expansion for inte-
grals of the type

_in2 N
glt) = J"d% e P25

in inverse powers of t. Such an expansion can be found by succes-
sive partial integrations:

k+%

alt) = - 4yt Z £ (0) (8%-19)(0)

Zk 1
(11.10)

- w0 (63 Fﬂ{pﬂ (e @),

where Fn(r) is the multiple Fresnel-integral

o« o0 @

Pn(r) = j drl J drz... j\ drn —1rn/2

r n Tn-1

which has the properties

()R (k-3/2)1
Fok-19 = = Ao
IFn(r)l < ¢l +r)™ 8 (r=0)

for some constant cp. This expansion holds for t20; the case t<0
is easily obtained by complex conjugation. The first term is the
usual asymptotic expression obtained by the method of stationary
phase and exhibits the familiar t'3/2-decay.

With Theorem 5 and with the expansion (II.10) as the essen-
tial tools, one can now derive the following estimates for the rate of
convergence in the spatial cluster-properties:

Theorem 6: Assumptions:
(1) For any pair £ and any non-negative integer n, let
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3 2
j{d x| 71 v, @] 2 < .

(2) Let D=(C;...Cp) be a partition of (1.. .N) into n clus-
ters, and choose § of the form

by n ¢k(rk 9y (z))
k=1
with N - N '
¢, € CO(R3) (¢, = Fourler transform of q)k)

and

9, € Do(Cy) = nio D (Cy).

where Dn(Ck) is the set of localized states (1I.8) for the internal
degrees of freedom of Cg.

(3) Let al. an be such that if the supports of the functions
@Sk (considered as free rigid bodies) start to move with velocities
ap/My (Mg=mass of Cy), they will never collide in the future. (Note
that this implies that the \bk have non-overlapping supports.)
Then
-iHt -

Up(-Aay, ... Aape UDO‘al'-')‘an”’ - e ]

as Ao +o, faster than any inverse power of A and uniformly in
0< i< +,
*

111. Time-Dependent Scattering Theory
For any decomposition D=(Cj...Cyp),

& D) (1. 1)
describes a motion of non-interacting clusters Cj...C,. The basis
of scattering theory is the fact that any such motion uniquely charac-
terizes a motion of the fully interacting N-particle system, in the
sense that the two motions become asymptotically the same as t=+«
{or t— -«). Symbolically: to every "asymptote" (meaning a motion
of non-interacting clusters) there exists a unique "orbit" (meaning a
motion of the full N-particle system) having this asymptote for t— +e
(or for t—= ~=), This is the content of the following theorem:
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Theorgm 7 (Hackm}: Under the hypothesis of Theorem 3, the strong
limits

iHt -iHpt
e D

ot um e (I11. 2)

D {iie

exist on all of K.

Corollary: The operators Q]:S are isometric and satisfy

+ + D
o Q =0%e o < + o
D D ( s ).

Therefore, the ranges RB: of QSE reduce the unitary group exp(-iHt)
and the parts of H in R‘E are unitarily equivalent to Hpy.

*

Proof: It suffices to prove convergence on the dense set of states
employed in the proof of Theorem 3. Then we have
+ o . .
+ iHT —1HDT
={ +
QDqI b +1 J\o dTt e IDe v,

provided that the integral converges. But this follows from the esti-
mates of Section II, by which

I Iy exp(-iHT )y | = n(,...,0,7)
is Iintegrable over -«<T<+», The corollary is obtained by going to
the limit s— + in

-iHt iHs -iHps iH(s~t) -iHp(s-t) -iHpt
e e e y = e e e V.

*

Usually, in scattering theory, the asymptotic behavior of the
orbits is characterized more precisely than by (III.1): One is inter-
ested only in the case where the subsystems (Cl - .Cn) are "frag-
ments ," i.e., either single particles or composite subsystems pos~-
sessing at least one bound state. A channel, &, then specifies a de-
composition into fragments Fj.. .F, and assigns a definite bound
state @) to each composite fragment F:
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F,...F
0,=< ) n)t
P1.-Ppn

(npk=l if Fk=single particle). By selecting a maximal set of mu-
tually orthogonal bound states for each possible fragment, we obtain
a countable set of channels. The states in channel @ are defined
as

k
o). Xy = dg(7y. . ¥p) ﬂcpk(zk), (T1.3)
k=1

where ;k' zy are the coordinates of the center-of-mass of Fy and
internal coordinates of Fy, ) =bound state of F) specified by a,
and g (-) € L2 (R31) is arbitrary. It is convenient to normalize the
bound states such that

loll® = [ avy..oavylog @91, (1r.4)

so that the space Dy of channel states (III.4) is essentially LZ(Rsn).
On Dy, Hp reduces to

2
H, = i(zPTkk +e) (1. 5)
k=1

where l;k, M. ey are the total momentum, the total mass and the
bound-state energy of Fy. The system is now said to be in channel
o for t— +« 1f its orbit has an asymptote

e—int% . ¥y € D (II1.6)

for t— +«, Equation (III.6) simply describes a free motion of n par-
ticles Fj.. .Fp with masses Mj...Mp and internal energies
€1...€,, and Theorem 7 states that any such asymptote uniquely de-
fines an orbit having this asymptote for t— + or t— -, namely
-iHt 4 -iHgt
e

e Qq by

o Yo Yo (t~+=),

where Q(f is the restriction te Dy, of QI'J):, D=(F1...Fp).

The remalning part of the scattering formalism is based on the
fact that orbits which are in different channels as t- +o (or t— -®)
are orthogonal:
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Ry LRE if  a#B, (11.7)

where Rai is the range of Qof or, equivalently,

-iH,t ~{Hgt
|l|im <e He, g e P “’B) =0 (111. 8)
t—tm

for a #B and all §o € Dy, Yg€ Dg.

Proof: First, consider the case where the fragments in the channels
o, B are the same, so that a differs from B only in the assignment
of bound states to these fragments. By the orthogonality of bound
states, we then have Dy L Dg and the scalar product in (III.8)
vanishes identically in t. If the fragments in the channels a, B are
not the same, it is convenient to define Hq, g by (II1.5) on all of K.
Up toa r:o_pstan:c., Hy - Hg is then a quadratic form of the particle-
momenta py.. Py _Yvhicll does 1:1’01 vaﬂish identically. By a linear
transformation By -..Py) = (my...my), we can diagonalite this
form:

N

- - z U
(Hg ~Hg)(py...py) = 12 ATy + conmst.,
=1

with )\1 #0. It is obviously sufficient to establish (III.8) for Vg ,wB
in a dense set of . Such a set is spanned by the states

N
7y = T ¥, vWesad,
i=1

and for Jq , yg of this form we obtain

—iH.t - i
(e g, o )

-1x zt ey ——— iy
< const, [J‘dﬂle 11 lb'a{”(ﬂlws(l)(ﬂl)ll

which vanishes like |t -3/2 as |t| - «, as can be seen from the
asymptotic expansion given in Section II.

*



MULTI-PARTICLE QUANTUM SYSTEMS 17
To define the S-operator, we now introduce the Hilbert space

K' =€ D,. (I11.9)
¢}

Note that, in general, X' cannot be viewed as a subspace of I,

since the Dy are not mutually orthogonal subspaces of X. We de-
fine total wave-operators QO mapping ¥' intoX by

Y Qg vy . (111.10)

where y €X' and Y4 is the component of § in Dg. Since the Qa, are
isometric from Dy into 10, with mutually orthogonal ranges, o is
isometric from ' into W. Its adjeint, defined by

+ +*
(@, Q¥ = (@ 9. ¥}
is therefore an operator mapping ¥ onto ', characterized by

+% - +
Qe = @n e  if pe R,

+%* +
Q oo =0 if ¢ 1 R,
where
+ +
R =® R
o o
is the range (in ¥C) of of. Two S-operators can now be defined by
+ %
S =00 = operator mapping ¥ into ¥,
unitary if and only if Rt =R™ =1,
%~ .
S'=0"Q = operator mapping ' into ',

unitary if and only if R¥ =R".

S 1is the S-operator introduced by»]auch,” while ' and S' have first
been introduced by Berezin, Faddeev and Minlos .8) S' has a simple
Interpretation: each element lp={wq} € ' defines an asymptote

-iHyt
ye a
a

i.e.,, a superposition of freely moving fragments. By Theorem 7 there
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exists a unique orbit having this asymptote for t -+ -® , namely,

e_thQ_llI . Z e-iHat ll’a (t= —).

o]

If Q¢ € R* (which is the case if RT=R7), this orbit also has an
asymptote as t— +«;

-iHt -~

e Qv - Ze—iHatW'
a

where ‘l}& is the component in Dy of
b=8Y.

Therefore, S' gives the asymptotic behaviour in the future in terms of
the asymptotic behaviour of the past—and this is precisely what we
observe in scattering experiments. Indeed, from the point of view of
pure S-matrix theory, ¥' is the Hilbert space of the system and S'
the operator characterizing the system, while ¥, H and the
Schrdodinger equation are considered merely as tools for the construc-
tion of S' which one tries to replace by something else.

The conditions R¥=R™ and RT=R"~ =¥, which are equivalent
to the unitarity of §' and S, respectively, are the conditions of
asymptotic completeness. In our symbolic language, R*=R™ means
that every orbit which has an asymptote for t— -« also has one for
t— +%, and vice versa, while RT=R™ =¥ means that every orbit has
two asymptotes: one for t— -« and one for t— +«, It is clear,
therefore, that the unitarity of the S-matrix expresses nontrivial dy-
namical properties of the system and does not follow, as is claimed
sometimes, simply from the conservation of probability. In fact,
there exists so far no general proof of asymptotic completeness for
nonrelativistic multiparticle systems.

*

Roughly speaking, Theorem 7 requires that any pair-potential
V() is less singular than r™3/2 as r— 0 and decreases faster than
r~lat infinity. It can be generalized, however, to cover also the
case of potentials with strong repulsive singularities and the case of
Coulomb-potentials.

Singular potentials.t
Kupsch and Sandhasg) have shown how to treat singular po-

tentials of arbitrary sign in the case N=2. In order to extend their

TAn extended version of this section will be published in Helvetica
Physica Acta.
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method to N> 2, we have to restrict ourselves to the case where the
strong singularities of the potentials are repulsive.

Theorem 8: For any pair €, let v, =VL VL5 where the "regular"
part VL,R gsatisfies the assumptions of Theorem 3 while the “singular"
part V; o satisfies the conditions imposed on singular potentials in
Section I and, in addition, has compact support {(in R3). Then the
assertion of Theorem 7 remains valid.

Proof: Let R be such that VL,S(;) =0 for |x|>R and all 4. Intro-
duce a cut-off F(r) with the properties

F(r) € CL0,»)
0<Flr)<1 (0<r< =)
F)=0 for r<R, F@)=1 for r=2R+1,

Denoting with Fy the multiplication operator F(| ;Ll ), we then have

e e Vo=

{Ht ~Hpt _ Ht T e o ~Hpt,
3
2

(II1.11)

+ eth(l -IJ P&)e_lHth 5

where £ runs over all pairs linking different clusters of D. 0<Fp<1
implies

o<1-Te,= ¥ -5y,
1 T

and from this we obtain the following estimate for the second term on
the right-hand side of (III.11):

I eth<1 _ g Fb>e—iHth I

-iHnpt
<Y la-re Dyl = 0
L

for |t|- =, since 1-F; € C:(R3) and therefore acts like a decent
two-body potential in the non-singular case. On the other hand, we
can write the first term in (II1.11) as
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iHt -1HAt
e n F/(, e D ]
L

(I111.12)

Tf ¢+1jdre1HVﬂ IT B )e Dy,

and
<Hﬂ F, —]'TF&HD> =[5, Me]+Yv.IE . (II1.13)
Y ¢ o ) e

where 4 ,4' both run over all pairs linking different clusters. In
order to show that the integral in (III.12) converges as |t|-'°°, we
estimate separately the contributions from the various terms in
(II1.13): Since

'VL"JP’L' < 1Vl s Vgl

the second term in (III,13) gives a convergent contribution to the
integral, as in the non-singular case. On the other hand,

L=, g F ]

is a sum of terms of the form
T 6.6, 0a
&I

where A=1 or A=total momentum of one of the clusters or A=inter-
nal momentum in one of the clusters, and where at least one Gy,
say Gy , has compact support (being a derivative of Fp). In the first
two cases, A commutes with Hp, hence

—iHD’T

-iH
"ﬂG Ae 41|| < const, ||GLe Ay,

which is integrable over -»<T7<+, since again G acts like a non-
singular two-body potential. Finally, we have to deal with the case
where A is an internal momentum of one of the clusters, say of Cj.
Instead of (II.5), we then obtain the estimate

3/4 -ihyT

N(0...0,7)< u const. ||Ae

oyl ol ey O,



MULTI-PARTICLE QUANTUM SYSTEMS 21

where }.1(’1')3/4 is integrable over -w<r7< 4w, [{ suffices fo show,
therefore, that ||Aexp(—ihl‘r)cp1|| is uniformly bounded in T, But
this follows by applying (I.5) to the internal Hamiltonlan hy (which
is also a Friedrichs-extension):

h -ihyT

-ihyT
lae . cp1|| < const. ||hf%e cp1||

-ihyT
< const. || (hy +c)%e i

o, |
N %
const. || (h; +c) cp1|| ,
where hf’ is the internal kinetic energy of C;.
*

Coulomb-potentialsg .
We give a brief account of the work by Dollardlo) on the
Coulomb potential: Let

N 2
Py eje
=) 2Ty oY Ak
Lo22my L4 L Ixikl
i=1 2 i<k

where the two~body potentials Vy satisfy the conditions of Theorem
3. Let a=(Fy...Fyio1.. .tpn} be an arbitrary channel of the system
and let qj...q, be the total charges of the fragments Fy1...Fy. It
then turns out that the asymptotically "free" motion in channel o is
disturbed by the long-range Coulomb-interactions between these
charged fragments. More precisely, the free propagator exp(-iHgt)
is to be replaced by

e—in,c(t) ) e-i(ch,t+e (t)ras (arag/vyg)log|t|

]

where r,s label the fragments and Vpg i the relative velocity of Fy

with respect to Fg:

S

_ I Msf;r - Mrﬁsl
rs T MyMg '

My, 13'1. being the total mass and the total momentum of F., and where
e(t)=sgn t. Clearly, the propagator exp[ 'iHoc,c(t)] is well~defined
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as a multiplication operator in momentum-space. It is still unitary,
but does not define a one-parameter unitary group.

Theorem 9 (Dollardlo)): If, for some ¢>0, the bound states ¢.(zy)
are in the domain of |er€ , where |Zr| is the Euclidean distance in
the space of internal coordinates of Fp, then

iHt -iHy o(t) +
lim e e ! =0
Fagrivl Vo aVa
exists for all Y4 €Dy .
*

The complete proof of this is contalned in Dollard's thesis .11)
We only give a heuristic argument to make plausible the modification
Hyt~ Ha,c(t) . As in the case of short-range forces, one tries to
prove that

1 & 1y )
(II1.14)

s ejex q,95 - {t)
QL Tm T "L ) bl

I<s

vanishes like |t| 8, s>1, as |t]- «, where (i, k) runs over all pairs
of particles linking different fragments. If propagated by
exp[-iHalc(t)] , the fragments will be far separated for |t| v =, so
that their interaction is essentially the Coulomb-interaction of point-
charges dy...dpt

e q4dg
L%l 4 o
1k[ r<s

+ short-range forces,
r's

where p.g is the distance between the centers-of-mass of F, and Fg.
In classical terms, p.g=vys*|t| as [t|» =, which makes it plausible
that the second and third sums on the right-hand side of (III.14)
cancel as |t|~ =, up to forces of short range.

*

Asymptotic completeness for weak forces:
In the limit of weak forces, the question of asymptotic com-
pleteness can be settled by showing the convergence of the Dyson
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expansion. For N=2, this result is due to Prosser.lz) Prosser's
argument also suffices for N=3, while in the case N2 4 more de-
tailed estimates of the terms in the perturbation expansion are
needed.l3) We shall restrict ourselves to the case N=3. Let

H=Hy+\ ) V, = Ho+AV.
z

If the coupling-constant A is sufficiently small, we expect the fol-
lowing situation: Neither the N-particle-system nor any of its sub-
systems possess bound states. Therefore, in scattering theory
there is only one channel a =0 1In which all particles are asymptoti-
cally free as lt|—~ @, Then Dy=K'=%, and the system is asymptoti-
cally complete 1f rE =%, i.e., if oF is not only isometric but uni-
tary, or, equivalently, if 0* is isometric too. From Theorem 7, we
can only conclude that

Q** = lim eiHote =
=t

(I11.15)

weakly on %, which does not imply that the limit is isometric. This
follows, however, if we can show that the right hand side of (III.15)
converges strongly {(on a dense set), and to establish this we use the
Dyson expansion for Q*(t)= exp (iHot) exp(-1Ht). Starting from the
integral equation

t .
1H At -iHt
a*@) 1—1)\5 e 9lye 1dt1

[e]

toH ot -1H .t
1-1x j e %lye O ]'Q*(tl)dtl,
o]

we obtain by iteration the formal series

Q¥ = ZQ*(H)(t)Xn (II1. 16)
u=0
() n pt t1 -1 iHgt H (t-ty)
a*®™ @) = (1) J'dtljﬂ dtz...j at_ e Ve
(o] [o] #]

-1H,(th~tn~1) -1Hot
¥ o onnlVe on.
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Theorem 10 (Prosser'2)): For each 4, let Vg () € LY R3)nL™(R3), and
let N<3. Then, for sufficiently small |A|, the perturbation series
(II1.16) converges strongly and absolutely on a dense set D, uni-
formly in —<t< +», Moreover, the strong limit of Q*(t) as |t[-=
exists and can be taken term by term.

Proof: Since Vy(-)€ L”(R3), the operators V; are bounded and
Q*(n][l) therefore well-defined. By splitting each Vj into two factors

Vi = M By

A = IVL|%, B, = (sgn VL)|VL|é,
one easily finds the estimate

@ -]

n-1
R*@wels Y Al dt X t)} N ()at,
£ bty klll jo “kbicrl L n

where

{Ht

Kym() = [[Bye Al
~iHt
Ny (1) = ||Be vl
To prove the theorem, it is obviously sufficient to show that, for § in
a suitable dense set, Ky p,(t) and Ny (t) are integrable over 0<t<w,
V()€ LYR3) implies By ()€ L2(R3); therefore, Ni(t) is integrable
over 0<t<= by the estimates of Section III. Also, since the opera-
tors By and A; are bounded, the functions Kp m (t) are uniformly
bounded in t. Therefore, it remains to show that Ky ;. {t) decreases
faster than t~1 as t—w;

-iHgt ~ -iHg 4 t
s, O all = N Oyl

where Ho g s the internal kinetic energy of the pair £, whence
(]

-Hopt o, m
| = —l\Znit>

>_<', m being the relative coordinate and the reduced mass of the pair
4, respectively. Let y be the coordinate of the center-of-mass of

o 3/2 e(im(}?—:?')z)/Zt

'
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the pair £ and z the coordinate of the third particle. Then, for any
e,

_.H t —_ = -
|'<BLe ot Aﬂl) x,v, z)|
< @R 12 [yl v X2

< 1y, @I 1212 vl E e 5,90,

and therefore
3/2
0 < 152 13y, 0l

2. 4Zm: Let £=(12), m=(23). Then

-1Ht
Be CA

I -1H ot
()

= ll B)Le Am" '

mu

when H0 9 is the kinetic energy of the second particle, since the
propagator of particle 1 commutes with A, and the propagator of par-
ticle 3 commutes with By . In the same way as before, one finds

0= 2y, o1t v on?,

2mt

where m is now the mass of particle 2.

*

Remarks.
1. It is easy to see why the method fails for N>3. Then one
encounters terms like

-1H t -iH t ~-iH t
o - 0,34 0,12
Blze A34 e ’ B, A, e ,

12734

where Hg 1o and H0 34 are the kinetic energies of the subsystems
(12) and (34). This implies

K = ||B,. A

12, 34 12 34"
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which 1s independent of t and not integrable, therefore, over
0=t<®, A more elaborate grouping of the factors in Q*(n (t) is then
necessary before taking the norms. 1

2. The condition Vp(-)€ L® is pure luxury in order to make
Q*(n)(t) obviously well-defined. Making use of the smoothing-
properties of the free propagator in x-space, one can include un-
bounded potentials such as, for example, Yukawa-potentials.

IV. Cluster-Properties of the S-Matrix, Cross-Sections

Let D=(Cj...Cp) be a decomposition of (1...N). For the
translation operator which serves to separate the clusters in space-
time we choose

P
_ o - _ k 1)
UD(a1 e .an) = ﬁl exp i Pkak M, ap ), (iv.1)

where ay = (ako,é'k)e R4. This operator translates each cluster Cy by
ap without changing its internal state, i.e., it differs from the
translation-operator (II.1) insofar as we have replaced the internal
propagators for the subsystems Cy by 1. Theorem 3 still holds for
this modified translation-operator, since only the unitarity of the in-
ternal propagators was used in its proof.

Now let &=(Fy...Fyi®)...9y) be a channel of the N-particle
system. Definition: we write (Cj...Cy)S (Fy...Fy) or simply
Dca if (Fy...Fy) is obtained by further partitioning (Cy...Cy) or,
equivalently, if each fragment Fy belongs to a definite cluster. If
this is the case, then 0 reduces to a definite subchannel o} for
each subsystem Cy. For example, if Cy=(F;,Fy, F3), then

Qk = (Fl' Fz,Fs;CPIICPZrCP3)-

Obviously, we then have
n
K= ® K Do = 191 Doy

where 3 and Dg & Ky are the Hilbert space and the space of
channel-states of Cy, respectively. If no interactions between the
clusters are present—i.e., if Hp is the Hamiltonian of the system,
then the wave operators qu can be simply expressed in terms of the
wave operators of the independent subsystems Cy:

n
+
o0 = ® Qq,k-
k=1

Q
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Therefore, we expect this to be the cluster-limit of the wave operator
for large separations of the clusters:

Theorem 114): Under the hypothesis of Theorem 3, we have

+ =
QaUD(al"'an) - kQ;)lQ“kUD(al'”an)
as

min |a,-a, | - =,
ik i "k

strongly on Dy, for all @ and all D<a,

Proof: Let Qg (t) =exp(iHt)exp(-iHyt) and similarly for Qak(t) . Then

n
Lo, (t) - kc:)1 g, (1UL@; ... )i

i iHpt -iH,t
= (- P v, e Ry | - 0

as min| ai—ak| -, uniformly in -»<t<+we, This would follow di-
rectly from Theorem 3 if, instead of exp(-1Hytle , we had a time-
Independent state . However, going through the proof of Theorem 3,
it is easily seen that this time-dependence does no harm. The uni-
formity in t then implies the desired result for the limits of Qq(t) and
of

n
®Qak(t) as t- o,
k=1

*

It is now easy to derive cluster-properties for the S-opera-
tors. For the operator S this is found in Reference 4, while for S'
we find the following:

Theorem 12: Let Sla be the part of S' mapping Dy into Dg, and let
D< a. Then, under the hypothesis of Theorem 3,

n
, ,(@s' U_(a,...a) if DcB
SiUplay--.ap) = /\' k=1 Px%k DT177"n
AN

0 if DZB
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as
min [a; -a,[ = =,

1#k

strongly on Dy, .
*

In the case DC B, this means that for large separations of
the clusters, the scattering process a—B factors into independent
processes QB for each isolated subsystem Cy. On the other
hand, D¥ B implies that one of the fragments in the final channel B
contains particles from different clusters. Therefore, the probability
of production for such a fragment vanishes in the limit of large sepa-
ration of the clusters.

Theorem 12 suggests an expression of Sﬁa in terms of "con-
nected parts" Rgo, by the usual truncation procedure:

Sy = ). Rg ., Rej, -+ R - (v.2)

D
DCca, DCB

Since the trivial decomposition always satisfies Dca, DC B, this de-
fines the connected parts Rgg recursively in terms of the Sfq;

=g - R
Rea Ba DCU.ZDCB Byay---R8ron

n= 2

{This reduces to the usual SBg =8pgq +Rgg in the case where the in-

going channel o contains only two fragments, where 65a=0 for B#o
and 8yq =identity map on D)y .) In terms of the connected parts Rga.r
Theorem 12 then simply reads

R, U_f(

80 U 1...an)—>0 (1v.3)

as
max |a; - ayl—=> =,

i#k
if DEa, strongly on Dy .

Rﬁa maps Dy into DB and still conserves energy and mo-
mentum. Formally, one would therefore introduce scattering ampli-
tudes by
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-

(p'l...pI’n|RBa|p1...pn) =6(P' -P)5(E —E)(p'l.. 'pr;1|TBa|p1"'pn) .

(v.4)

where 1_)'1 e .En and 5‘ - .1.;" are the _rflo_rpenta of the fragments in
channel a and B, respectively, and P, P', E, E' the total momenta
and the total energies in the two channels. Equations (IV.2) and
(Iv.4) then express S' in terms of scattering amplitudes. In this
way, the amplitudes of subsystems Cy appear explicitly in §', de-
scribing the possible disconnected processes.

*

Cross-sections.

We want to define cross-sections, for collisions with an
arbitrary number of fragments in the incident channel, in a way which
clearly exhibits that the existence of cross-sections is a conse-
quence of the spatial cluster-properties of the S-matrix.

First, we define an impact parameter in classical terms,
which parametrizes (up to translations) all possi_l31e co_}lisions of or
ingoing fragments Fj.. .Pn with fixed momenta P1.-.Ppt

Let C be the 3n-dimensional configuration-space of the
particles Fj...F, with coordinates y= (?’1 o3 -3_’.n) . On C, we define
the metric

2

1 =2
dy =3

m;dy e (Iv.5)
1

]

The transition to the center-of-mass coordinates
5 =7,-2) my 1v.6)
i i M k7k
k=1

(mi=mass of Fy. M=m1+. . .+mn) is then the orthogonal projection
onto the 3(n -1)~dimensional subspace

n
C' = {y| z mi;i = 0}.
i=1

The free motion of the incoming fragments Fj.. .Fp is de-
scribed classically by a straight trajectory
y{t) = y(0) + vt (v.7)

in C, where v=(vy...v

n) . v =velocity of F;. or, projected onto C'
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by
y'(t) = y'(0) + wt, (1v.8)

where w; is the velocity of F; in the center-of-mass frame. This
projected trajectory characterizes the collision up to translation.
Since its direction is given by the fixed momenta (5'1 v .ﬁn), we can
use as an Impact parameter a the point of intersection of this trajec-~
tory with any (3n-4)-dimensional plane AS C' not parallel to w. We
choose

A= wl (in C").

Then, in C, A is also orthogonal to v (in the sense of (IV 5), and
therefore characterized by
n n
A= {yl Zlmiyi = 0, z Siyi = 0}. (1v.9)
1= i=1

The impact parameter a is thus simply the (orthogonal) projection of
y'(0) (or y'(t)) onto A, and its length is given by
n
.. M=o
(a,a) = min z 7 7} (t).
t =1

Therefore, a=0 only if y'{t})=0 for some t, i.e., if all the particles
Fy...F, collide simultaneously. In general, (a,a) is a measure of
the closeness the particles could reach in free niotion. True
n-particle collisions therefore happen for small |a| only, while col-
lisions between less than n particles are possible for arbitrarily
large |a|.

In terms of this impact parameter a, a classical cross-section
may be defined as follows: Consider a statistical ensemble of colli-
sions with fixed momenta }5’1 " .ﬁ'n in the ingoing channel o, such
that the impact parameters a are distributed over the plane A with
uniform density n (in the sense of the metric (IV.5)). Let N(Q) be
the total number of events in which the system is finally in channel
B with momenta (f)"1 .. 'pr'n) € Q. Then the cross-section is defined as

- - _ N(Q)
oBa(Q,pl...pn) ==
In order that this is finite, the region Q cannot be arbitrary; it must
be chosen such that N(Q) receives no contribution from processes
which are not true n-particle collisions and which may happen for
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arbitrarily large |a| . There are two types of such processes:
a) Disconnected processes:

Figure 1

b) Rescattering processes:

Figure 2

‘While it is easy to enumerate the possible disconnected
processes (see (IV.2)), we know of no general rule giving the
rescattering processes which have to be avoided. In any case,
however, the processes of both types are restricted by the fact that
energy and momentum are conserved for each single process 1,2...,
and this restricts the final momenta to a set of measure zero on the
energy-momentum shell. It is possible, therefore, to choose Q such



32 ‘W, HUNZIKER

that it does not intersect this set. For the familiar case n=2, this
simply means that 0 must not contain the forward direction.

Let us discuss briefly the relation between this cross-section
and the counting rate in a specific experiment. We consider a target
consisting of v particles F; at rest, and n~-1 beams of particles
Fg...Fy with momenta pl N fin and particle-densities p;...p, con-
verging on this target. The candidates for n-particle collisions are
then all possible combinations (Fl .e .Fn), and the counting rate is
evaluated by assuming that all these combinations behave like iso-
lated N-particle-systems. This simplified picture will predict the
large majority of collisions correctly if the densities of beams and
target are not too high.

Using the coordinates 5—('2 . ';n of Fy...Fp as coordinates in
C', the metric in C' is given by

A
m, 47, )

n
as’ = ) %dyk : ﬁ(

pa

To~is

(CM-kinetic energy!), which yields

=<(1n)M m,m, ..m>

for the determinant of the metric tensor. In the volume-element
d3y2 .. .d3yn of C', there are vpg...0p d3y2 - .d3yn combinations
(Fl ol .Fn); hence the density of these combinations in C' is

p|w| 1s then the flux of these points through the impact-parameter
plane A, where

lwl 2 - CM-kinetic energy
n pl
- LA

with B = p2 +. +pn The counting rate for n—partlcle collisions
producing the fragments of channel B with momenta (pl I'n)E Q is
then

n(Q) = GBG(Q,O,SZ-.-EH)plwl .
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Finally, we define the cross-section in quantum mechanics
gnd relate it to the S-matrix. Instead of fixed initial momenta
Py-- .Dy . we consider a state

o = 2By B [T 9020 € Dy
k=1

normalized to || ‘l’a" =1, and use the expectation values <Ei> of the
ingoing momenta to define the impact-parameter plane A as in the
classical case:

A={y|§mi;i=0' f:(Si)i:O}'
=1 =1

Of course, we cannot attribute a definite impact parameter to the
state y5. However, we can define a variation of the impact-
parameter by a, a€ A, as the transformation

1

<

1.21515'1
by~ T, Th) =e

The cross-section O’Bq(ﬂ ,¢q) is now defined as follows: For given
Pq  consider an ensemble of collisions with initial states T(ag)de,
in which the impact-parameters aj are distributed uniformly over A
with density n. Let Q@ and N(Q) be as in the classical case. Then

- N(@)
CE(X(Q :¢q) = n -

This is easily expressed in terms of the S-matrix:

oL . 2
O(0.0g) = Um ) [ PoSh, Tl ) |
K

n®e

(Iv.10)

[ dallpsg, T@ g%,
A

where Py is the projection operator on DB corresponding to the final
region Q, and da the volume-element on A defined by the metric
(Iv.5). In (IV.10) we could replace Séa by its connected part Rgy,
since N has to be chosen so as to avold contributions from discon-
nected processes. By (IV.3), || RBaT(a)rme”z—- 0 for |a]-«, but not
fast enough, in general, to make this integrable over A. The reason
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is that Rﬁa still contains the rescattering processes, which die out
too slowly as [al increases. However, if {1 also avoids the contri-
butions from these processes, we can expect that ]|PﬁRBaT{a)gﬂa|[2 is
integrable over A. A general proof of this, however, is not available.

Proceeding formally from (IV.10) and (IV.4), we can express
the cross-section in terms of the scattering amplitude:

Ogal08a) = fAda Ldp' [ap ap s @-pns (e -2

x 8 (E-E') 8 (E'-E"){p'| Tgq | P} {p'| Tgg, | P™) (tv.11)
R L RS, —
X exp i (pk-pk)ak] 9o (P) 8y ("),
k=1

with obvious abbreviations. Using the CM-velocities w,w" instead
of p,p", we can express the exponent in terms of the scalar product
corresponding to (IV.5):

n
Z (P -pyla, = 2(w - w", a),
k=1

so that

J" da eZi(w—w ,a) . TT(3n—4)
A

(wp-wy") . (1v.12)

where wp, WA' are the projections onto A of w,w" and where the 8-
function is normalized with respect to integration over A. The §-
functions in (IV.11) and (IV.12) now imply

=P, Wy =W (Iv.13)

Pllz Pz

([ S " " . — s
E 23V, + (w",w") +ey = E oM + {w,w) + ey, (Iv.14)

¢, being the sum of the bound state energies in channel &. In view
gf (Iv.13), (IvV.14) reduces to

=+w,. , (Iv.15)

N N

where w ,wﬁ are the components of w,w" orthogonal to A. In
order that the integral (IV.11) only receives a contribution from the
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points where wN=WIG, we now postulate that
polp) = 0 for (w, ) =< 0. (Iv.16)

This means that the support of the w-distribution is entirely on one
side of the plane A—the side determined by (w) , or, equivalently,
that the spread in the w-distribution is smaller than | {w) l . The &6-
functions then simply imply that p=p", so that only the absolute
squares of (p'|Tgy|p) and of ¢q(p) enter in the cross-section. The
remaining phase-space integral over p" is easily found to be

Jr dp" ) (P _Pl')é[ (WN'WN) . (WIG' ,WIG-)J o) (WA— WPI:)

n
I (2!’!‘11)3/2
i=1

(ZM)3/2 2|WNI

where |wN| is the length—in the sense of (IV.5)—of wyt

n 5’-(5) D)
5 1 i (P
l2=Jw,(w>}2 <i*l 2my )
NT O wd w2 5ot <P>2

i=1 2m;  2M

| w

The result is, therefore,

_ 1 3n-4 1-1
Ogo (Q:Bg) = 57 (zm)3/2 Jﬂ dp' jdp
n (pp? <p> 3
(Z T )

i=1

v pi{py) P<P2

x 8(E-E')6 (B-P")

x 1ot Ty 190 12 o 0] 2

Finally, if we speclalize the momentum-distribution l%, (p)lz toa 6-
function (which is consistent, in view of (III.4), with the normaliza-
tion || ¥, |l =1), we obtain the differential cross-section
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II'I1 (2m 1)3/2

1 3n-4 i=1 = =
== §(P-P')6(E-E")
n 22 2. -
r PK 3 . 2.3, 3,
X\z my _ZM> I(plTBalp)l dp1"‘d Pn-

V. Time-Independent Scattering Theory

As far as scattering theory 1s concerned, this section will be
an exposition of problems rather than of results. To get familiar with
some of these problems, we briefly discuss the case N=2.

The starting point is the resolvent equation linking
G(z)=(z-H)"! and G,(z)=(z —Ho)"lz

Glz) = Gy (2) + Gy (2IVG(2), (v.1)

or the Lippmann-Schwinger equation for the transition-operator T(z):
T{z) = V + VG, (2) T(z), , v.2)
which are connected by

T() = (-H)|[ G@) -Glz,) | (2-H,) v.3)

Gl(z) = Go(z) + Gy (2)T(2)G,(2) . (v.4)

In momentum space, the kernel of the Lippmann-Schwinger equation
is

— — ~ - - 22 -1
(Blve@Ia =Ve-a(z-5) .

where V is the Fourier-transform of V. For V(-) € 1.2 ®R3) and
z € 0 (Hy), this is a Hilbert-Schmidt kernel (HS-kernel):
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3 - - (2
VG, (2) Iis f a*pd’q |<p|VG,(2)| a> |

(v.5)

@
2 -2
el am [ daa®|z-a%/2m] 7 < = .

o

Also, VGg(z) is holomorphic in z € a(H,) (i.e., in the cut plane
avg z # 0? and vanishes in norm as Re z— -« (by (I.3) with B=V,
A=H,), sothat [1 -VG,(2)] -1 exists for sufficiently large negative
Rez. Now we use the following lemma:

Lemma 1: Let A(z) be a holomorphic function of the complex varia~
ble z in an open, connected region G, whose values are compact
operators on a Hilbert-space, and suppose that, for some z5 €G,
[1-A(z, )1-1 exists. Then [1 -A(z)]~! is meromorphic in z € G
(i.e., 1t admits a Laurent-expansion with a non-vanishing radius of
convergence (in the sense of the norm) for every z € G).

*

A proof can be found in Reference 14. Applving this to the
Lippmann-8chwinger kernel, we conclude that [ 1-VG,(2)]~
meromorphic for z f# 0(Hy). Furthermore, if zg E’G{HO} is a pole of
[1 -VGc(z)] ~+, the homogeneous equation

VGo(zolp =@ (v.6)

has nontrivial solutions which form a subspace of finite dimension,
since VGq{z,) is compact. Then § =G,(z ) is a nontrivial solution
of § =Gg(2,)Vy, or of

(zo-H ¥ = V¥, W.7)

and vice-versa: a nontrivial solution § of (V.7) leads to a nontrivial
solution ¢ =(z, ~Ho)¥ of (V.6). Therefore, the poles of [1 - ~VGq (2™ -1
and the eigenvalues of H (in z QG(H )) are in one-to-one corre-
spondence, and so are the bound states and the solutions of (V.6),

It follows that the poles of [1-VG,(2)] =1 are real and that the
elgenvalues of H are of finite multiplicity and cannot accumulate
except at z=0. Furthermore, since

G(2) = Gola) + Gy (2] 1 - VG, (@) | ™ va (2,
these poles are the only singularities of Glz) for z ¢ o (H ), l.e.

the part of o(H) not contained in o (Hy) consists of these eigcnvalues
only. (Note that, by the corollary of Theorem 7, o(H,) = o (H)).
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Now let us look at the Lippmann~-Schwinger equation in the
following way:

(1T(2)|p" = V(--p") + VG, (2){-| T(z)] P, (v.8)

i.e., we look at (- |T(z |p Y as an LZ{RS) -valued function of z and
p'. Since V( )E L2(r3), Y(--p') is sucha functlon depending con-
tinuously on p , and with L%-norm independent of p'. Therefore,
(+|T(z)| P is meromorphic in z & o (Hy), with poles at the eigen-
values of H, bounded in norm by some constant C(z)<« for z & ¢(H)
uniformly in p , and continuous in p 3 R3 Inserting this estimate
on the right side of (\f 8) ~and using the Schwarz inequality, we see
that, (pl'l‘(?}lp Y -V(p-p') is meromorphic in z #alty), continuous
in p,p' and bounded by C(z)<® for z @ ¢ (H), uniformly in p and p'

‘With this information on the T-matrix elements, we can
already justify, to some extent, the usual formulae of time-
independent scattering theory, for example:

{p|Tla /2mFic)|q)
(2m) =1 (g%-p?)F ie

@ E) =¥ @) + lm J"d3q , v.9)
€lo

where, by our estimatgs , the right hand side is well-defined for €>0
if, for example, ¥ € Cg (R3), and where the (strong) convergence for
¢ |10 follows from time-dependent scattéring theory. Similarly, with
R=8'-1:

3 3 &
( ,ch)=lim—21j‘dpdq —
\ clo (B-E")2 +¢e2

- (v.10)
x 4@ (BITGE+E) +2) 500 (),

where again the right hand side is well-defined for € >0 and
v, 9 € CSRS).

As an example, we give a formal derivation of (V.9), omitting
the justification for each intermediate step. By Theorem 7

t
. -iH T

lim i f eiHTVe Oy ar

pe g

oty -y

= -iH T
lim ir e ST T ye 0Ty gr
e—~++o .

in the sense of the norm. To show that the last integral is identical
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with the Integral in (V.9), we use contour-integration:

+o _ e -(e-iz g+izo}T
=i dT...=i(2ﬂ1)2§d219§dzgf dr e el
) T T o

X G(z])VGq(zy) ¥,

where T is a contour circling o(H) in the positive sense, inside the
strip |Imz|<e/2. Carrying out the T-integration first, we obtain a
term (e -izy +izg)” . As a function of z), this has a pole at

z) =29 -1, outside T. Deforming the zj-contour T, we pick up
only the residue from this pole:

P = (2m) ™" SB dz, Gz, -1€)VGy(2z,) ¥ .
T

Now we use the relation G(z)V=G,(2)T(2) and obtain
(| T(zp~ie)| ¥ (@)
(z -ie -p/2m)z -a%/2m)

@) = -(Zni)_ISB dz, j‘ d3‘q‘
T

Since the pole at zj =q2/2m is the only singularity of the integrand
inside T, (V.9) results by taking the residue of this pole. To justify
this formal derivation, one can consider matrix-elements between
suitable states. The formula (V.10) is obtained similarly by starting
from

iHst -2iHt iHt
lim (‘lf,e e e © cp)
t— o

(v ,8'%)

® .
_ ety 1Hgt -2iHt iHt
éﬂ”}) € y e \41 ,e e e cp) ¥
o
*

The main step—and the most difficult one to prove—is to go
beyond (V.10) and to express the S-matrix element in terms of
boundary-values of T-matrix elements as the energy approaches the
continuous spectrum of H. Formally,

lim _eé____z =md(E-E"),
elo (B-E")" +e

so that one obtains the well-known relation:
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35 3 6 BE _RZNySY
(W ,Rp) = -2 jd pap 8 B - 5= ¥ ()

x<p|T(—+1o)|5'>cp<5-). (v.11)

This actually follows from (V.10) if

2 12 —
el GRS DIEY

is continuous in P, € 5 in the region suppy x[O 1] x suppcp and
attains its boundary—value for €40 uniformly in p and p The real
problem of time-independent scattering theory is to obtain this kind
of information on the boundary-values of T-matrix elements.

For the case N =2, this is comparatively easy. We use a
trick similar to the one used in Section IV in the case of weak poten-
tials, and write

T(z) = AU(z)B
- vk B = Ganvvit
so that AB=V, The Lippmann Schwinger equation for U(z) is then
U(z) = 1 +BG,(z)AU(z), (v.12)

and in x-space the kernel of the operator BG,(z)A is

1f__']x~x| .
(4Tr) B(x )‘*—|'—»—_———“|‘—— Ax'). (Im/z> 0) .

The important point now is that this is a Hilbert-Schmidt kernel for
all z in the closed cut plane Im/z2 0, provided that

jﬁx£m|V®.}” <
|5 -x| 2

which we now assume. Furthermore, it is easily seen that BGo(z)A
is holomorphic in the open cut plane Im/z> 0 and continuous (even
in the HS-norm) in the closed cut plane Im/z=0,

The crucial point is now to obtain control over the solutions
of the homogeneous equation
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¥ = BG,(z)AY (v.13)

for In/z= 0, If Im/z>0, one can show again that these solutions
are in one-to-one correspondence to the bound states of H. On the
two boundaries of the cut argz=0, however, the situation is more
involved. There it can be shownl5) that a nontrivial solution of
(v.13) gives rise to a purely (ingoing or & outgoing) radiative solu-
tion of the time-independent Schrodinger equation with energy z.
Conservation of probability then requires that the radiative term of
this solution vanishes, i.e., that the solution decreases faster than
|X|~! as |X|»=. As for the free wave-equation, one can then show
(under some additional assumptions on V) that this forces the solu-
tion to vanish identically, provided that z> 0. (For z=0, there may
be nontrivial solutions of (V.13) not corresponding to § bound states,
but to a "resonance at zero energy.") The upshot of all this is that

Ulz) = 1 +W(z)

where W(z) is a Hilbert-Schmidt operator, holomorphic for z§ o (H)
and continuous in the closed cut plane Imz=2= 0 except for the (nega-
tive) eigenvalues of H and possibly for z=0. Then,

(plT@|p" -V@E -5
- dequrX(S—E)<c‘£IW(z)I?>’§<?-5'),

and if &, B € L2®3) (i.e., v(-) € L1®3)), this is bounded by

IVl ; I W(z)|| gs and continuous in z in the region described above,
uniformly in §, p'. This immediately gives the justification of
(v.11).

In this account of the case N=2, our aim was to point out the
typical problems of time~independent scattering theory in their sim-
plest form. We did not try, therefore, to manage with the least re-
strictive assumptions on V(x). (For spherically symmetric poten-
tials, everything could be based on the conditions

[+
1) Plvi)dr<  for n=1,2,
. )
familiar from partial-wave analysis.)

*

A consistent time-independent scattering theory for general N
does not yet exist, but the situation has been very much improved by
Faddeev'sls) solution for N=3, which represents the simplest case
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with a nontrivial multiparticle structure, and is therefore a big step
towards a solution of the general case. We shall not present here
Faddeev's analysis, but we want to discuss some attempts to gen-
eralize the off-energy shell-part of the preceding argument for N=2
(i.e., the part where z € 0(Hy)) to general N. These results are due
mainly to Weinberg1‘7 and van Winter.

The N-particle Green's function.

In this section, we work exclusively in the center-of-mass
frame of the N-particle system: ¥X= L2(R3N-3) denotes the Hilbert-
space corresponding to the internal degrees of freedom of the system.
H, Hp, etc., are then considered as operators on . Theorem 7 still
holds, with obvious modifications, and its corollary says that
o (Hp)< o (H) for any decomposition D=(Cj...Cp) of the system
(1...N). If we want to indicate the number of clusters in D, we
write Dy instead of D. For n=z2, U{HD ) is continuous, extending
from some real number to 4+, since the relative kinetic energy of the
non-interacting clusters can take any positive values. Therefore,

o (H) contains the continuum

c.= U o(Hp)=L[le+=)
¢ D,.n=2 Pn

for some €< 0. In the following, we always tacitly assume that

z € 0 i that corresponds to the condition z £ g(Ho) in the case N=2.
In order to apply Lemma 1, we want to derive an integral

equation for the N-particle Green's function G(z)=(z-H)"! with a

compact kernel. We start from the resolvent equation

G(2) = Ggyl2) + Go(2) VG(2),

and solve this by iteration:

a2
G(z) = E z GVt 1Go- - -Vt Go- (vV.14)
n=o 4£i1...4p

This is legitimate for sufficiently large negative Re z, since, by
(1.3) for A=Gg. B=V;, there exists an M< 0 such that

v, G (=l 2) for Rez< M and all 4,

because Vy is a Kato-potential. For these z, the series (V.14) is
absolutely convergent and can therefore be rearranged in any way we
please. We now analyze the series in terms of graphs: the term



MULTI-PARTICLE QUANTUM SYSTEMS 43

G0V23GOV12GOV3NG0, for example, is represented by the graph:

Oy

w D~

b

Q

s

.__....__.___..._..._...._-___l'—

Figure 3

Classification of graphs:

1. Each graph g defines a decomposition D(g): two parti-
cles belong to the same cluster if their lines in g belong to the same
connected part of g.

2. g is called D-disconnected if DS D(g), i.e., if D(g) is
obtained by further partitioning D. For Re z< M, we obviously have

y (all D-disconnected graphs) = (z -HD)_]' = GD(z).

3. Let us cut a graph g by a vertical line L (see Figure 3).
Then D(L) denotes the decomposition defined by the subgraph to the
left of L. First, let L be to the left of all interactions; then D(L) is
the finest possible decomposition: Dy=(1)(2)...(N). Shifting now
L gradually from left to right, until it is to the right of all interac-
tions, D(L) takes a sequence of values

s@) =Dy, Dy_; -+ D). (v.15)

where D;;1> Dj, and D, =D(g). So every graph g uniquely defines
a sequence S(g) of type (V.15). On the other hand, a given sequence
S of this type is generally obtained from an infinite number of graphs.
For any such S, we define (for Re z < M)
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Ggl2) = }: @ll g with S(g) = 8).

By definition of S, any graph g with S(g) =S has the form

any interaction

<5 - ~

kil N - s linking different ‘any Dy

[ disconnected disconnected s
clusters of Dy but

{=N graph graph

not of D:{—l

where the factors in the product are ordered from left to right as i de-
creases. Therefore,

= e ' .1
Gg(2) GDN (Z)VDNDN—IGDN—I (z) VDk+1DkGDk(Z) (v.16)

where VDi+lDi=IDi+1 -IDi=sum of all pair-potentials linking dif-
ferent clusters of D;j4; but not of Dj. Next, we define the discon-
nected part D(z) of G(z) by

D(z) = E Gg(2) (V.17)

S=(DN. . Dk)
k=2

(= sum of all disconnected graphs), and the connected part C(z) by

Clz) = Z Gg (). (v.18)
8=(Dy...D7)

Since G(z) is the sum over all Gg(z}, we thus obtain G(2)=D(z)+C(z),
or

G(z) = D(z) +1(z) G(z), (v.19)

I(z) = s=(D%. . .DI)GDN(Z)VDN—lGDN—l(Z)' +-Vp,p, - (v.20)

(This is obtained from (V.16) by noting that GDl(z) =G(z), since Dj
is the trivial decomposition into one cluster.)

Now we note that D(z) and I(z) are holomorphic in z € g4,
if defined by (V.16), (V.17) and (V.20). Therefore, the equation
(V.19), which was established only for Rez< M, extends by ana-
lyticity to all z € o(H).
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The next step is to show that I(z) is a Hilbert-Schmidt opera-
tor for z & 0, provided that Vy (-) € L2(R3) for all 4.

Proof:lg) We consider a single term in (V.20) and write it for short
as

GNVN N- lGN 1°° Gk+1vk+l,ka' ) ’VZI

Let Ay be the product of the first factors up to, and including, Gy,
and let ¥y be the Hilbert space of the decomposed system with the
Hamiltonian Hp, , Dy = (Cq...Ck), without the translational degTees
of freedom of the independent subsystems Ci—il.e., K =1L 2(R _Bk).
We now prove by induction that

A, is a Hilbert-Schmidt operator on ¥y
for zQU(HD ), and v.21)
| A )l HS < const. |Rez| 1 as Rez~ -=,

Por k=N, R3N=3K contains only the vector 0, so J{'N=Hilbert space
of complex numbers and Ay (z) =2z"1, which satisfies (V.21). Now,
let N=k>1 and suppose that (V.21) holds. Let V be a pair-
potential linking the two clusters of Dy—say Cj] and Cg—which are
united to a single cluster in Dy_;. By elementary computation one
finds

o0 2
2 _ 2 2 s P 2
A, @V g = IV, 4m j’o dp p°[lA,{ 2 P ) s (v.22)

where the HS-norm on the left refers to Xj_1. the one on the right to
K. and where u is the reduced mass of the two clusters C;, Cg.
(This is simply the generalization of (V.5).) By (V.21), the integral
converges and vanishes as Rez- -«, Using

Ay @ g = IRV, G @y

we see that Ap_;(z) also satisfies (V.21), since
G _, @l = const. |Rez] =

as Rez— -®, For k=1, (V.22) then shows that I(z) is a Hilbert-
Schmidt operator if z € o,..
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Since I(z) is holomorphic for z E’cc and vanishes {(even in
HS-norm) as Re z— -«, we can apply Lemma 1 to the functional equa-
tion (V.19) and obtain:

Theorem 13:14) The part of o(H) in the complement of o, consists of
eigenvalues only, which are of finite multiplicity and can accumulate
at most at the lower end of o,

Proof: The first part is immediate since, by (V.19) and Lemma 1,
G(z) 1s meromorphic in z € oc (D(z) is holomorphicl). To show the
finite multiplicity, let zo, € o, be a pole of G(z). Then

lim G(z)(z -zo) = P = projection onto the subspace of
z—= 2z
o

elgenstates with eigenvalue Zge

Passing to the limit z—+z; in the‘equation (obtained from (V.19))
(z -25)G(2) = (2 - 25)D(2) + I(z)(z - 25)G(2),
we obtain
P = I(z,)P. (v.23)
Hence P is a compact projection and therefore of finite rank.

*

Remarks.

1. In Reference 14, Theorem 13 is proved if the pair-
potentials are only locally square-integrable and vanish arbitrarily
slowly at infinity. The fact that o,< o (H) then cannot be inferred
from time-dependent scattering theory, but follows from the spatial
cluster properties of the system.

2. Theorem 13 has some applications to the bound-state
problem. First, it provides a basis for the customary perturbation
formalism for bound states, which has been justified, notably by
Kato,zo) for isolated eigenvalues of finite multiplicity. Secondly,
one can derive from Theorem 13 some information about the behaviour
of bound-state wave functions at infinity (in configuration ss)ace);
they can be shown to belong to D (see (II.8)) for any n. 14

*

Faddeev's equations.
Equation (V.23) shows that (z-H)y =0, z £ o5, implies

b= 1(z)y.




MULTI-PARTICLE QUANTUM SYSTEMS 47

The reverse, however, is not true for Nz 3, i.e., the equivalence we
had between (V.6) and (V.7) for N=2 is lost. This 1s quite a serious
drawback, since in the case N=2 we actually used the equivalence
with the (time-independent) Schrodinger equation to obtain control
over the nontrivial solutions of the homogeneous integral equation.
The merit of Faddeev's formulation is precisely that this equivalence
is preserved. 16) He splits the three-particle Green's function into
components:

G(z) = Gyl2) + ) R, (2),
L

where

Ry (z) =z (all graphs with V; as the leftmost interaction)
. GOVLG'

The components Ry then satisfy the linked set of equations

-

R, = GVyGy+ G,V ). Ry
n#,

where G, =(z -H - V{,)-l . This set of equations now has the two
desired properties:

A) The second iterated kernel is connected, and thus defines
a HS-operator for z & Oc (on the direct sum of three identical coples
of K).

B) The homogeneous equation

v, =G @V, ) |
L 4 Lm#m

is equivalent to the Schrodinger equation
(z-H)Y =0,
where | and §, are connected by

llJ& = Gov&q’

b=,
k2
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This allows the application of Lemma 1, which still holds if only
some power of A(z) is compact.

*

Faddeev and Yakubowskizn have found a generalization of
Faddeev's equations to arbitrary N, which has the property that some
power of the kernel is compact and for which the homogeneous equa-
tion is equivalent to the Schrodinger equation. Hopefully, a time-
independent scattering theory for non-relativistic N-particle systems
can be developed with this tool. Some progress in this direction has
already been made by Hepp. 13)
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RIGOROUS RESULTS IN SCATTERING THEORY'

Jean-Paul Marchand¥
Institute of Theoretical Physics
University of Geneva
Switzerland

Abstract

We discuss the energy-dependence of scattering in Jauch's
axiomatic frame of simple scattering theory by means of the simplest
soluble mathematical models.

1. Introduction

Among the phenomena which can be described by (nonrela-
tivistic) Quantum Mechanics the scattering processes are sufficiently
distinguished as to justify a separate axiomatic treatment in accord-
ance, of course, with the general principles of Quantum Mechanics.

A "time-dependent" picture of scattering is that of a wave-
packet which moves freely in the remote past, then undergoes an in-
teraction with some scattering center, and finally again moves
freely, The so-called scattering operator would then relate the past
and the future asymptotically free states, and the main problem of
scattering theory would be to express this operator through the given
interaction (or vice versa).

In the frame of an abstract Hilbert space formulation of
Quantum Mechanics this idea has been expressed as follows: 1) Let
Hp and V be two self-adjoeint operators in the Hilbert space . corre-
sponding to the kinetic energy of the free wave packets and the scat-
tering interaction respectively. Then the system {[—10, H=H0+V} de-
scribes a scattering process (without bound states) if to any | € ¥
there exist two elements g™, %t € % such that

. in
1 [[e e, _ omiHot Loudd | L g, 1.1)
{5}
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This as;hmptotic condition postulates that in norm the physical state
¥, = e 1Yy tends to either of the asymptotic free states

in} —-{H At [in}
cptOUt =e ocpout_

We may then define the two wave operators
nl
9] 4 [V} =0,

and the fundamental problem of expressing the scattering operator

s :Qpin . chUt
in terms of the interaction V is solved if we know how the wave
operators depend on V.

A scattering system is, of course, not entirely described by
the two energy-operators {HO,H} alone. But if we assume that
there exists a set of other operators Aj such that both {Hg,A4} and
[H,Ai} form a complete set of commuting observables (for instance
the angular momenta L and Lj in the case of a spinless particle in a
spherical potential) and that the spectra of A; are discrete (as is the
case for the quantum numbers £, m), then both Hy and H are reduced
by the simultaneous eigenspaces of the operators Aj and none of the
propagators e Hot and e~1Ht can lead the system outside these
subspaces.

So the scattering problem may, in this case, be treated sepa-
rately in each eigenspace of the other variables, the reductions of
Hy and H to these spaces having simple spectra. This holds, of
course, only as long as we are merely interested in the energy-
dependence of scattering.

The actual derivation of the scattering theory is most easily
carried out, not in the abstract space W, but in that space of square
integrable (vector-) functions in which the free Hamiltonian Hg ap-
pears as a multiplication operator, i.e., in the so-called direct in-
tegral of 3} with respect to H,

J 3 0)dn .

In this "spectral representation with respect to Hy" the S-operator
which commutes with Hp reduces to a direct integral of operators
{8(1)} where each S()\) acts on the "energy shell" 1C()\).

If we now assume that the spectrum A, of Hg is simple
(placing ourselves in a subspace with fixed other quantum numbers),
the S-operator becomes a function of Hg alone and acts in 22 as
multiplication by S(\).



SCATTERING THEORY 51

It is this scattering function depending on the energy which
we shall derive in terms of the interaction and this is reached es -
sentially in the following two steps: (1) The so-called scattering
amplitude R(L)=8(1) -1 can be related to the diagonal elements of
the "integral kernel” of the operator V0. (2) This kernel can in
turn be obtained from V alone by means of a singular integral equa-
tion for 0.

What this exactly means will be explained in the first part of
this series of lectures (Chapters III and IV), where the form of S(\)
and the integral equation for Q. will be rigorously derived. In the
second part (Chapters V and VI) we solve the scattering problem ex-
plicitly for the simplest models which have the property that the
kernel of W1, is separable and that the integral equations for the
wave operators become trivially (i.e., algebraically) soluble. This
happens whenever the interactlon operator V has a finite-dimensional
range (so-called finite-rank potentials).

T find these easy explicit solutions of the scattering problem
amusing and I think that, despite the point to be not "realistic,”
they provide a valuable information about the mathematical structure
of the theory as well as about the fundamental ideas underlying its
physical interpretation. In particular, the scattering amplitude and
its analytic construction, the cross-section and the phase-shift may
be discussed explicitly and the concept of resonance be given a
precise meaning. Furthermore, the effect of bound states on these
quantities can be clearly exhibited. The case of bound states in the
free rather than the total Hamiltonian which "decay" under the in-
fluence of V will be given a special attention. We shall see how
energy and life-time of these decays are related to the poles in the
second sheet of the scattering amplitude and to the parameters of the
resonances (energy and line width).

There 1s still another mathematical aspect of these explicit
solutions of the scattering problem which may be interesting: they
link the spectral representations with respect to H, and H together.
We may, for instance, define a particular spectral representation of a
state | € 3¢ with respect to H by putting it equal to the Hg -represen-
tation of the state o™ which con;esponds to it asymptotically in the
remote past. Since then o*"=0,y and Q4 is explicitly known in the
Hg-representation in terms of the interaction V, the H-representation
of ¥ can be explicitly expressed by its H9-representation and V.

This is, of course, a special case of the much more general
mathematical problem of relating the spectral representations with
respect to two arbitrary linear operators with equal spectra. But it is
remarkable that in our particular models the transformation formulae
appear in the form of Stieltjes-type integrals which are frequently
encountered, for instance, in the theory of renormalization.
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II. Mathematics

A. Spectral Representation

Consider a self-adjoint operator A in a Hilbert space W which
has a simple spectrum A. Let E(A) be its spectral measure and g€X
a cyclic element with respect to A, i.e., an element satisfying
E(A)g # 0 for all A's. Then the function o {A) = || E(A)g" 2 is a numeri-
cally valued measure with maximal spectral type (with respect to A),
and the following theorem holds:

There exists an isometric é'napping h between the abstract -
Hilbert space X and the space & (\) of o-square integrable functions
on the spectrum of A

pex o <x|¢:)e£c,2(/\)

such that A becomes a multiplication operator in £02 :
h 2
Ay ex = A0y egS0) .
A function u{A) of A may then be defined by

u@y €% — ubIA|n el

and the square integrable function {\|¥) is called a spectral repre-
sentation of the element | € with respect to the operator A. (For
the proof cf. Reference 2, p. 197.)

The spectral representation with respect to A depends, of
course, on the choice of the cyclic element g. Let gy, gy be two
cyclic elements with respect to A. Then the measures o, (8), o,(8)
are absolutely continuous with respect to each other, i.e., they
admit the same zero-subsets of A, and there exists between the two
corresponding spectral representations a canonical isometry

Al ess ) — ol = /o0 0w esl,

where p(\) is the Radon-Nikodym derivative of o1 (A) with respect to
[0 2 (A) .

If the spectrum A of A is absolutely continuous, then all
so-called distribution functions o(\) = o ((-=,)\)) are absolutely con-
tinuous functions of A and the derivative (do{\))/d\ exists. In this
case we thus obtain a spectral representation in the space £2(I\) of
Lebesgue square integrable functions.
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We should note that the functions of SGZ(A) are defined on A
only up to subsets A,C A of oc-measure zero. This raises the fol-
lowing question: Let y, €% be a sequence of elements in K which
converge strongly to an element ¢ € 3. What can be said about the
convergence of the correspond%ng spectral representations (x]q;n) and
<)t|l]!)? The relevant theorem3) which is a consequence of Fatou's
Lemma is the following:

Let y () be a particular representative of the class of square
integrable functions corresponding to the element ()\H{) of £2. Then
it 1s possible to choose representatives §,()) of the elements () H’n)
such that a subsequence {n, () of §(\) converges almost everywhere
pointwise to ¥ ()A). This theorem constitutes the adequate mathemati-
cal paraphrase of the operation of exchanging limits and "bras" and
gives a precise meaning to the equation

O Js-lim g ) = lim O fyp) .

n—o n—e

We may now ask the question, "How does a linear operator T
in look in a spectral representation with respect to A?" To that
purpose we have to investigate the functional relation between (A|})
and (A|T§). It may so happen that T acts as an integral operator
with a kernel KT(J\ A ') which is an £U"‘)—function in both variables
(i.e., in \ for almost all k" fixed and in A ' for almost all A fixed):

Ofre = [ KOO [)dof)
A

Such an operator is called a Carleman integral operator and we may
use the notation Kp(A,1') ={x[T|\') for its kernel and call

(| T|\"’) the spectral representation of T with respect to A. In more
general cases we may still use Dirac's notation {A| T]x ') but it then
becomes a symbolical short-hand as seen, for instance, when writing
down the "kernel" of the multiplication operator A itself:

Ay =xs(in ).

B. Change of Spectral Representation

One of the fundamental problems in scattering theory is that
of connecting the spectral representations with respect to two dif-
ferent operators A and B which possess the same simple spectrum. A
and B are then unitarily equivalent, i.e., there exist unitary opera-
tors U in 3 such that B = UAU~! = UAU*. 1f U is explicitly
known in the spectral representation with respect to A, we may define
a spectral representation with respect to B in the following natural
way:
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= *
M) = (U™,

It is sufficient to verify that B appears as a multiplication operator in
this new representation:

—_— pa— — * p—
sABY) —A<XIU*Bw)— A(klAU*w) = xA<x|U DERWONR

An analogous relation holds between the spectral representa-
tions of an operator T with respect to A and B. The exact state -
ment is: If T is a Carleman integral operator with respect to B on a
domain D, then U*TU is a Carleman integral operator with respect to
A on a domain U*Dq and the relation

' - * '
B(xlTlx a5 A(XlU TU|A N

holds. In fact, we have

A(XIU*TU-U*IJJ) = AUt = ) =fA M TIN Y KX Jo)do o)

= jA B(xlleB A()\’IU*ll!)dc(K')

for all elements U*lIJ in U*DT.

C. Abstract Integration ini 4)

At any given time t the state of a physical system may be de-
scribed in by a density operator W, or, in simple cases, by a
state vector §; €. The evolution of a state leads thus in a natural
manner to the concept of vector-valued and operator-valued func-
tions in¥. Many results In scattering theory can be formulated and
derived in the abstract space and thus have the advantage of manifest
representation independence. But to that purpose we need the con-
cept of (abstract) integration of vector-valued functions.

Consider the time axis R as a measure space. The o-ring =
of measurable subsets of R are the Borel sets on the real line gener-
ated by countable union and intersection from the intervals, and the
measure is the Lebesque measure generated from the natural lengths
of the intervals. Using the standard concept of measurable numerical
valued functions on R we may now define the integration of vector-
and operator-valued functions in K as follows:
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Definition IT.1: A vector-valued function ¥, is integrable with re-
spect to t iff
(1) (cp,wt) is a measurable numerical valued function of t
for all ® €%,
@ [ "‘”t” dt exists and is finite.

Definition IT.2: An operator-valued function A, whose range contains
only bounded linear operators in ¥ is integrable with respect to t iff
A4 is t-integrable for all § € %C.

Lemma I1.1: If §; is t-integrable then there exists §,€¥ such that

fR(cp,wt)dt = (p,yo) forall ¢ €K. §, is called the integral of §; and

we write g =IR'J’tdt'

Proof: The functional F(op) Ej‘ {¢,¥4)dt is bounded and linear on .
In fact,

Jtwpat < [l lat< [ floll -Nvat = llol [ v lat <=

the linearity is obvious. According to Riesz'® theorem, there exists a
¥, €% such that Flp) = (p.hy).

Lemma IT.2: 1If A is t-integrable then there exists A, such that
fR Ay dt = Ay forall § €X. A, is called the integral of Ay and we
write Ag =j' Adt.

Proof: The form F(p,y) = I(:p Ag)dt is a bilinear functional on i.
Thus there exists a closed operator A, such that Fyp,y)=(p.Al). If
the functional is bounded, i.e., if ]P(cp W) = Mllell +[lell . then the
closed linear operator A, is defined everywhere and thus bounded,

Lemma II.3: If Uy is t-integrable and T a bounded linear operator,
then T[ydt = [ Tydt.

Proof: First we show that Ty is integrable. From the integrability
of |, it follows that (1" Dby ) is a t-measurable function for all ¢ € ¥ .
So (i, Tyy) is measurable. Furthermore

JUTyelar< JHTl-foelat =T vy llat <=,

and according to Definition II.1 the statement is proved. Now we
have, according to the definition of the integral of Tyi:

[ (0. Tyt = (@, [ Tydt).
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On the other hand, using the definition of the t-integral of

[ (@, Typdt = [ (o, ypddt = (T7p, [ §,dt) = (o, T[ ¢,dt).

So (p,T[ y,dt) = (p,[ Ty, dt) for all @ €3 whence the result.

D. The Spectral Representation of Abstract Integrals

Combining the concepts of spectral representation and ab-
stract integration, the following question arises: In what precise
sense is it true that the spectral representation of the abstract inte-
gral of a vector-valued function equals the integral of the spectral
representation? The answer is given by the following lemma which
we cite without proof {cf. Reference 4).

Lemma II.4: Let {4 be a t-integrable vector-valued function_in X and
and {\ Hr ) its spectral representation in a function space £4 (\). Then
Then thcare exists a numerical valued function y (t,A) on the direct
product R x A such that for any fixed t€é R {{t,\) is a representative
of O‘”’t) and f\lﬁ (t,\)dt is a representative of (A lf‘lftdt)-

This theorem gives the precise meaning to the operation
A fyat) = [ Ola
of exchanging bras and vector-integrals.

[II. The Simple Scattering System

A. Definition
A simple scattering system is according to Iauchl) described
by a free Hamiltonian H, (kinetic energy of the non-interacting parti-
cles) and a total Hamlltonlan H= H +V which satisfy the conditions:
(1) There exist two wave o&rator&; (=asymptotic condition)

*
Qi = s—l_lm VJE UJE
t=§@

where U, = e_1Hot and V; = e_lHt are the free and the
physical propagator, respectively.
(2) There exists the scattering operator

S EQ_Q+

with the same domain as Q.
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Condition (1) exactly expresses the fact mentioned already in
the Introduction that (in the absence of bound states) to any physical
state | there exist asymptotically free states rpin, pOit satisfying
Eq.(I.1),and conversely. If we symbolize the free frajectories U, by
straight and the physical trajectories Vy by curved lines, this may be
pictured as follows:

to-o0

t—voo

The scattering operator as defined in (2) takes then the required
physical significance S :cpin —-q>OUt mentioned in the Introduction.

The following properties of the wave and scattering operators
are easily verified: Let P, and P be two projectors in Hilbert space
which project on the subspaces P i and P corresponding to the ab-
solutely continuous parts of the spectra of Hy and H, i.e., the maxi-
mal projectors reducing the operators Hy and H in such a way that
their respective parts PoHgp and PH have absolutely continuous spec-
tra. Then

(1) Q:t are partial isometries with domain PJCand range Pi,

and we have 00y = Py and 0105 =P.

(2) PH =04 H)¥.

(3) The scattering operator exists on PJ{, commutes with

PoHg and is unitary in P (.

As we pointed out in the Introduction, the energy dependence
of scattering can in many cases be treated in those subspaces of ¥
which are obtained by fixing the value of all other quantum numbers
(e.g., 2 and m). In these subspaces, the reduction of the Hamil-
tonians Hy and H become operators with simple spectra, and this will
permit us to use the concept of spectral representation in the simple
form introduced in Chapter II.
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An immediate consequence is that any operator commuting
with Hg is a function of Hy alone, and this holds in particular for the
scattering operator, as already noted in the Introduction.

For simplicity we shall derive the scattering theory first under
the additional assumption that no bound states exist in either Hy or
H. This means we pose P,=P=]1. The wave operators now become
unitary operators and establish the unitary equivalence of Hy and H,
which now have identical absolutely continuous spectra. This re-
striction will be removed at the end of Chapter IV.

B. Abstract Integral Formulae for the Wave Operators

We shall first derive some preparatory relations of scattering
theory which can be expressed in a representation independent way.
The first lemma relates the resolvent operator R(z) = (H - z-1)"1 of H
to the propagator Vi and the second expresses the wave operators
through the propagators. Their proof may be considered as good
exercises in manipulating the concept of abstract integrals (intro-
duced in Chapter II).

Lemma III.1: CJ .

= U U AL 3 )\ it

RO+ap = 1 [ ot MFIH) v,y dt [u>0],
o

Proof: In order to give a precise meaning to the right hand side, it
is first of all necessary to show that the vector-valued function

frg= eiuH“)tthr satisfies the two conditions for integrability (cf.
Definition II.1). This is easy since, (1) €.} is a continuous func-
tion of t and thus measurable (for all ¢ € %), and (2)

[ oldar = ™ ulae < Hlvl-

o] [e]

Now let Ey be the spectral family of H and let us remind the repre-
sentation

(@, wEN) = [ ulh)d(e Ey\¥)

for the function u(H). The left hand side in the lemma now becomes
. - 1 - ® A\ A-iut
(@ RO+1L)Y) T demn =] [ e d(p,Eyb)at

and the right hand side
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1] oaat =i I v yyat

((p, 1 f: b dt)

S (A +ip)t -t
1I0 dtel( iw) fAe d(p ,ExY).

Both sides coincide if the integrals can be exchanged in the last ex-
pression. But this follows from the fact that the second integral is
bounded by the t-independent number |of - [|¥ | and thus converges
uniformly with respect to t.

A simllar expression may be found for R(\ -ip)

Lemma IIT.2:
I el ® -t __ %
oty = seii;n ejo e UV dt.

—etU

Proof: The vector-valued function §, = e t*Vt\II 1s integrable. In

fact, (cp,q,tt) is measurable for all ® €3 and

[Thvlars 1ol [ e ar =2l

)
Now
<cp, s-lim ¢ [ q;tdt> = lim J‘m e'et(cp,Ut*vtw)dt
€= 0 o evro ©
for the right hand side and
(®.0%) = lim (p,U V)

t—= o

for the left hand side. The equality follows from the observation that
(Abel's theorem):
, ® et
lim f{t) = lm e j‘ e £(t) dt.
t— €0 (o}

*
Similar representations may be found for 0  and Q.. 1)

IV. Spectral Representation of the Simple Scattering System

A. General Remarks
We turn now to the solution of the main problem in scattering
theory, namely that of calculating the scattering operator S from the
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interaction V. (The converse problem consisting of establishing the
so-called phase-equivalent potentials out of a given S-operator is,
though mathematically very interesting, of minor physical importance.)
As we already mentioned in the Introduction, this problem is essen-
tially solved whenever the wave operators are known in terms of the
interaction, S being easily related to the operator V.. Anocther way
of solving the scattering problem consisting of relating S to V and the
resolvents (which themselves are functions of Hy and V) will also be
sketched briefly.

These relations will be expressed in the spectral representa-
tion with respect to H,, and there is no need to search for more ab-
stract formulations since S is a function of Hy alone (for fixed other
quantum numbers). The solution of the scattering problem, i.e., the
knowledge of the wave operators in Hy-representation provides us,
however, immediately with a natural way of passing from an H,-
representation to an H-representation, and conversely. In fact, let
these representations be denoted by o<)‘ |¢) and {\ | V), respectively.
Since the wave operators Q, establish the unitary equivalence of Hy
and H by H=Q;H0Qt, they also establish a change of spectral repre-
sentation either from Hy to H:

Al = O,

iO‘ | ') being, according to Chapter II, two particular spectral repre-
sentations with respect to H, or from H to Hg:

) = o),

+

KA N’) being two particular spectral representatives with respect to

}:Io. The scattering operator clearly relates the two representations
(| by

o)

(s = “adalog = (o) = Tadw)

which may also be written

+ iny, _ - out

o™ = ™).
So the asymptotic in-states look in (+)-representation like the out-
states look in (-)-representation. Furthermore, if T is an integral

; R * s
operator in Hy-representation, Q3 T, are integral operators in the
two H-representations related by

' _ *y 7
0(x|:r|x = i(k|QiTQi|)\)i,

and conversely,
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We shall first derive a basic formula (IV.1) which may be con-
sidered the key to the whole problem.

B. The Key Formula
Let us start from the

Lemma IV.1: oO‘lQ-*W = -i lim ¢ o<)‘[RO‘ +ie ).
€~ 0

Proof: We use the interchange of strong limits and t-integrals inX
with the bras of the spectral representation in the precise sense es-
tablished in Chapter II. According to Lemma III.1 the right hand side
becomes
(o] . '
-ilim e A |RQ+ie)y) =-ilime (A[1f el(“m)tvtw dt)
€= 0 ) o

T i(hHe)
el i€ too\l

lim ej'

vtw)dt
e»o O

and the left hand side, according to Lemma III.2,

et*

SA]s-lim ef UtV dt) = lim e [ et (U vyt
e— 0 €0 o

*
o<x|n_4:)

i()\+1€ )t ()\. |

lim ej d
€0

thll

This establishes the relation. A similar one can be found for Q:
Caonsider now the two Hamiltonians Hgo and H=Hy+V and
their corresponding resolvents Ry(z) = (Ho-z+1)~! and
R(z)=(H - z-I)‘l which are related through the so-called second re~
solvent relation R(z)=Rq(z)({I -VR(z)) =(I+R(z)V)Ry(2z). Using the fact
that Ry(z) is diagonal in H,-representation, we may now recast the
relation of Lemma IV.l and its analogue for Q+ into the following ap-
pealing forms:

lafv) = o) - eli“l, M VR Fie)y) (Iv.1)

There exists a dual equation to (IV.1l), In fact, if (Hgy,H) is a
scattering system, (H,Hg) is one, too, and all relations remain un-
changed provided the substitutions R,—R, V— -V, (1 — Q_,_ are
simultaneously carried out and that the Hg-representation oﬂi is
replaced by the H-representations i(?\| With these substitutions,
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(Iv.1) transforms into

Anage) = ) +§j’; AN VR (L Tie)y). (v.1")

Relations (IV.1) and (IV.1') may be called the key formulae of
scattering theory since they contribute the natural starting point to
the derivation of all the essential results such as the Lippmann-
Schwinger integral equations for the wave operators and the scat-
tering amplitudes. It should, however, be stressed once more that
the form of these relations is essentially representation dependent
and that they cannot be converted into pure operator relations be-
tween resolvents and wave operators, since the parameters A ap-
pearing in the resolvents are explicitly linked to the spectral varia-
ble ).

C. Integral Equations for the Wave Operators

Up to this point all results were derived under the sole as-
sumption that Hg and H form a scattering system, i.e., that the
wave operators (4 exist. Let us now make the additional mathemati-
cal assumption that the operators VQ, and Q;V are Carleman inte-
gral operators in the Hy-representation. This, of course, implicitly
restricts the possible forms of the interaction V and has to be veri-
fied separately in any explicit model.

An immediate consequence is, according to Section (), that
.,V and Vﬂi* are integral operators in the H-representation and that
these different representations are linked by

' — ’ . * ’ — * ’
i<x|niv|x ), = o(xlvnilx >O, Nl‘mi'" ), o(xlnile ) - (@v.2)

From the key formulas (IV.1) and (IV.1') we immediately de~-
rive the following integral relations for the wave operators:

(1) Substituting Qu¢ into ¥ in (Iv.1)

]

Odagy) = ) +um O VROGi€))

€0

]

L) +2m [ va,Ry( Fie)y)
€0

dxvag |,
A =Atde

]

9 + lim [ S pdan’.
€—0
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(2) Translating (IV.1) into the H-representations t(}LI ac-
cording to Section (A):

Salag) = o) +1im  Oa, VRO Tie)y)

ero (v.3)

e VI,
A *elfngTﬁ?—N lan = Oly).

(3) Substituting Qi*w into ¢ in (IV.1'):

RSN D) - lim SAVA RO de )

= V) - 1im i(XIVQ:R()\Iie)W)

€0
L[ var, 7 ‘
- S0 -um [ SSNG Slea

(4) Translating (IV.1’) into the Hy-representation | ac-
cording to Section (A):

afy) = ) -1 o(xlni*VRo(xiie)qy)

i (v.3")
v
. Qo o] ’ _
o(klll!)-elirgj‘ ot M= A,

Relations (IV.3) and (IV.3') are transformation formulae be-
tween the spectral representations A |¥) and {\|¢) ., which are,
however, still implicit in the sense that they are not expressed by
the interaction V alone but rather by the kernels O,V and Q;V where
{1y and 04 themselves depend on V.

D. The Scattering Operator in Terms of the Resolventss)
Consider the operator

R=8-1=004 - I=s-lim 0V U; - I=s-lim U} @ -D)U,.

t— - t—- -

Using Lemma IV.1 and noting that
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i ::i_‘n; MR +1e)) = 1 ]4)

we obtain for the Hy-representation of R:
_ it *
SMRY = Ltm e ] (@2-1DUW)

it
= - lim m i +i - + U
-&_%_m © elio - o()‘lcR()‘ ie) - Ry(h 1€D t¢>

= - 1im M um 1 o(leo(x +i€)VR(A +1€)U.§)

to €-0
= lm ™ lm  (\|VRO +i€) UY).
1 =co €—0 o t

We note that this relation is a rigorous consequence of the
axloms and does not make any use of the additional assumption
about integral kernels. But if we now use once more the second re-
solvent ‘equation and assume that V and VR(\A+ic)V are expressible as
integral operators in Ho—representation, we can develop the expres-
sion further:

Bt yim S \(1 -R(\ +1¢ )\D R (A +ie)Utlll>

(AM|R¥) = Um e
0 - €0

"

m  lm [ V- VRO +ie)V[A)

= Kl 1
'E'—m — A=\ -ie o< [ ¥)en
and using
~L(V =20t
: e ’ ’ R :
tili ::i—‘n; ] oo e )an = -zmieh)

for some class of test-functions ¢, we obtain the known formula

o(leq:) = -2mi o(x|V-VRO\ + 10)V|X)o OO»H;).

The validity-question for these manipulations needs, of course, more
care.
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E. The Scattering Operator in Terms of VQ.

If we substitute (1§ for § in the key formula (IvV.1), we ob-
tain another representation for the scattering operator:

RAED o(xlnfmw) = oy + lim SV VRO +1€)0,49)

KD —61_132 S va R (A -1e)y) + ii_’mo SAVOLR,( +1e)¥),

and if we again assume that VQ, is an integral operator in H,-
representation

= g / 1 1 7 i
SIS0 = i+ lim [ QJva, (T ) e

-2ie <)\'H’)d)\'

(3| ¥) + lim | vag|n —_—
SO+ I [ G fva, v, R

L) =2t vagho - ).

We see that § is diagonal in H, as was to be expected from
the fact that these two operators commute. The above relation may
thus symbolically be written

o(xlslx')o =5(A-A")S(\); s =1 - 2rrio<x|vn+|x>0 (Iv.4)

where S(\) is the S-matrix at energy A. (In our simplification in
which all other variables have been dropped these matrices reduce,
of course, to ordinary numbers.)

F. Scattering Amplitude, Cross-Section and Phase-Shift

We now define those concepts which relate the scattering
"matrix" S(\) to experiments —in principle. They are, like S, func-
tions of the energy alone. Furthermore, since we are mainly inter-
ested in the mathematical structure and merely the general aspects
of their physical interpretation we shall introduce them as dimen-
sionless guantities. Note, for instance, that the dimension of the
total cross-section depends on the dimension of the space in which
the scattering process takes place while our treatment of scattering
should not depend on that dimension. So we define:

(1) Scattering Amplitude:
(not to be confused with the resolvent R(z))
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ROV =800 - 1= - 2m1 (L fvay v . (1v.5a)

(2) (Total) Cross Section:

2 2 2
c(\)=%|RM)|" =m o<x|vn+|x>o| . (Iv.5b)
(3) Phase-Shift:
6(\) = 2% £n S(\). (1v.5¢)

The scattering amplitude and the cross~section are then, in terms of
the phase shift:

oM 1 _ 9168 Meinsn): o) =sms(n).

(1v.6)

R(A)=8(A)-1= 1=2

G. Modifications in Presence of Bound States
In the definition of the simple scattering system we postu -
lated the existence of the two wave operators
Q, = s-lim V.*U_.

+
B Rt

They have the property of being partial isometrics connecting the ab-
solutely continuous parts P,Hg and PH of the two Hamiltonians. We
then supposed for commodity that Hy and H contain no bound states,
i.e., that Po=P=I. We shall now drop this restriction and ask the
question how the scattering amplitude and the cross-section are
modified in the presence of bound states.

In reinterpreting the derivations of Chapter III the following
remark suffices: The domains PJ{ and PIC of the wave operators ),
and Q:: can be extended to the entire space I by postulating that
they should project into zero those components which are orthogonal
to P, and P. Being pedantic, this could be systematically achieved
by replacing Q and o* by PQP, and POQ*P. It is then easily seen
that all abstract formulae of Chapter III remain valid.

The situation becomes less trivial for the relations in this
chapter which have been expressed in the spectral representations
with respect to H, and H.

Any element § €  can be decomposed in two ways according
to

y =Py + (I ~P ¥y =Py + (I~Pl.
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The continuous parts Poy and Py are still spectrally represented by
square integrable functions o<>\ |l|J and (A HJ such that Hg and H act
as multiplication operators, and the interrelation of these represen-
tations is still

A= adafe: v = laes

but no information about the discrete parts of the element | is con-
tained in these relations. In particular an operator T can be an in-
tegral operator with respect to Hy and H only in the continuous sub-
spaces P, and P. In these subspaces we still have the property
that if T is an 1ntegral operator in the H-representation in the space
PJC then QiTQi are integral operators in the H-representations in the
space P, and their kernels are related by

r — * ’
O<X|T|)\ do = Sl Talny .

It follows from this that the integral relations for the wave
operators derived in Section (C) are to be regarded as relations which
hold only between elements of the spaces Py or PX in which the in-
tegral kernels act. This yields an essential change in formulae
(Iv.3) and (IV.3’) which now read

L]0V |an)
A=A tio

Arlape) = Ody) +f Aad = adey) @)

alagvia

e e = Gpgy). @.7)

SrafBgh) = o) - [ 2

Equation (IV.4) for the S-matrix remains formally unchanged,
but the "kernel" L\ | s|x ) should be considered as actmg only be-
tween elements in PIC in accordance to the fact that S=0Q Q+
vanishes on the discrete part of Hy and is unitary only in PJ(.

The natural question which arises here is that of the effect
produced by the bound states in the scattering amplitude. Before
treating particular models, let us remember Levinson's Theorem which
can be proved in the general context of this theory.7) It states that,
for a continuous spectrum of Hg extending from 0 to «

5 (=) - 5(0) =TT(no—n) (Iv.8)

where ng and n are the dimensions of the spaces (I-PylC and
(I-PKC, i.e., the number of bound states of Hyand H. An analysis
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of the scattering amplitude thus indeed furnishes information about
the bound states.

The two main bound-state situations arising in physics are
those where either Hy or H have bound states. Only the second one
corresponds to what usually is called a bound state system, while
the first one may be, in case the eigenvalues \, are imbedded in the
continuum of H,, considered as a system describing the decay of the
Ho-bound states ¥ corresponding to the energies ko through the in-
teraction V. This decay takes place according to a decay law

P(t) = (x. e'ier> (Iv.9)

whose absolute square expresses, for a fixed time t, the probability
that the system it found in the undecayed state X at time t, if it was
created in that state at time zero.

V. A Soluble Model without Boundstate in Hg

A. Definition

We shall now treat the simplest non-trivial model of a scat-
tering system which can be calculated entirely, without any approxi-
mation techniques. The general expression (IV.4) for the scattering
matrix is still implicit insofar as it contains the wave operator Q.
which itself depends on the interaction V. The crux of such a solu-
ble model is to permit a separation of the integral kernel of VQ4 into
the two kernels of V and Q4 such that the integral relation for Q4
established in Chapter IV can be solved.

Let Hg be a free energy Hamiltonian whose spectrum is sup-
posed absolutely continuous and connected (the real axis, for in-
stance). The interaction V will simply be a rank one projection oper-
ator P,, which projects the Hilbert space ¥ onto the one-dimensional
subspace generated by the element ¢ € which we suppose to be nor-
malized. According to a theorem of T. Kato (Reference 8, p. 540),
the system (HO, H =H, + P,) is a simple scattering system, i.e.,
there exist wave operators {1y which are partial isometries con-
necting the absolutely continuous parts of the operators Hgy and H by

*
PH = 0,HQ,

where the operator P projects away the possible discrete eigenspaces
of H. We are thus placed in the case Po=1 and P arbitrary.

B. Solution of the Integral Relations for the Wave Operators
First we prove that our system satisfies the additional mathe-
matical postulate introduced in Chapter IV.
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Lemma V.1l: The operators i, and Q:V are Carleman integral
operators in the Hgy-representation, and their kernels are

éxlvm,lx')o = o) (No) & |Q:V|)\')o=+<)x|('p)o(l'|rp}.
(v.1)

Proof: The Hy-representation of V24§ may be directly calculated:

Swgg) = Olle.auke) = .0,0) (o) = @09 Gle)

J o) (Vlafe) (Vo = [ e A le) 1)

Hence, , ——
O(x|v0+|x e O<XIcp)+(x lo).

The Carleman property of this kernel follows from
7 2 ' 2 2 ) 2 2
JTdva D 1%an = | o) "I o) “an = | 0 o) [l

which is finite for almost all )\’ , and

; 2. 2 ) 2 . 2 2
[l v, 1 2a = |l 2 110 [ 2 = | Gle) [l

which is finite for almost all i .
In order to verify the second part, we may first calculate
V4 Py in the H-representation:

IR = (9.,0P4) (o) = (,0,P0) (o)

= L0019 ST g 0 10ax” =L 0ol o) Q1
hence the kernel
Slvefiy = S o) )

which again satisfies the Carleman properties. But according to
Eq. (IV.2),

*y ., _ * g
+<x|vo+|x P & O<x|n+v|x Pt
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The explicit form (V.1) for the integral kernels still has the
disadvantage to contain the element ¢ in two different spectral rep-
resentations. But Eq. {IV.7) (or (IV.3') since P,=I in our model)
which links the two representations reduces now, for the particular
element ¢, to an algebraic equation. In fact, substituting ¢ for ¥
in (IV.7') and inserting the kernels (V.1) we can solve for X |p):

(1 o)
(N |op) = 2 : (v.2)
+ N )| 2

| L3 @) a’

A=) +io

Inserting (V.2) into (V.1), the integral kernels read now, in terms of
2 ) alone:

) OV (o) , o) gn To)
alva vy = ——C———: Qo) =
o +"% 7o . I]O(x lp)|Zan”" © ° |0 )] © a

) LIPS A=\ +io
v.3)

With this all spectral representations of the wave operators
can now be expressed in terms of the spectral function O(X]cp) which
is explicitly known for the given interaction V=P

Instead of expressing the H-representation of ¢ by its Ho-
representation, we could as well have done the other way around,
using (IV.7) instead of (IV.7'). An analogous calculation would then
lead us, by (IV.2), (IV.3) and (IV.9), to the inverse of the formula
v.2)

o)
AP = i v.2'
Hre) RECEICY .

-\ +io

and substituting one into the other would lead to functional identities
which may be of some intrinsic mathematical interest in the theory of
Hilbert transforms.

C. Scattering Amplitude, Cross-Section and Phase-Shift
The scattering quantities (IV.5) are now immediately ob-
tained when inserting (V.3) into (IV.5):
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2.2
R(x)=——gﬂi—X(Ld>\,-; sinZs (A) = o (A) = i Tx {X)
1+ [ 5— /1+ﬁX“‘ Py HTZXZ(M

(v.4)

where we introduced the notation X()\) for the positive function
[ oM @) 2.

It would be interesting to get an inversion formula for (V.4)
which would yield a procedure of reconstructing a rank-one potential
Py,_out of given scattering amplitudes. This particular mathematical
problem is unsolved, and it is rather improbable that a solution
always exists because this would mean that such a simple potential
as P, could produce a scattering amplitude of arbitrary complexity.

Before going into a discussion of (V.4) let us inquire about
the spectrum of H.

D. Possible Existence of H-Bound Statesg)

Although it will turn out that the above model is not very en-
lightening in the context of the bound state problem, we shall rapidly
review here the question of possible eigenstates ¥ of the operator H.

Lemma V.2: H has a bound state x with energy % Aff

X\ )dx X(\)dx .
fl_?\ (b) f()\_ﬂ):)z <

The (unnormalized) eigenstate ¥ with energy 3: is then given

by
{0 | ep)
(Ox) =2 rf, . .5)
< A=A

Proof: The element ¥ has to satisfy the following eigenstate-
equation:

SAEX) =A%) + (o) o) =3 O x).

This equation makes sense for all A only if (p,x)# 0 and we may
solve for £\ [x):

(ep,5%) £ o)

S = - X =7
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Multiplying both sides by o(xlcp) and integrating, we obtain

(0,x) = ~(o.x) [ X-J—L)\K_i)\x .

The arbitrary phase-factor (p,x) which fixes the length of § drops out
and we are left with the necessary condition (@) on 9. Condition (b)
follows from the postulate that x is square-integrable:

[l fan = I(w,x)lzj%%z<

These conditions are sufficient for the existence of a bound state in
H. In fact,

is square integrable according to (b) and it satisfies the eigenvalue
equation according to (a).

Lemma V.8: If the spectrum A, of Hj is the positive half-axis, any
possible discrete eigenvalue XQ of H is imbedded in A,.

Proof: The contrary: =<0 implies

J\ Xﬂ?\)g‘)\ > 0
A -X

which contradicts condition (a).

Of course, we should verify that a ¢ € actually exists
such that H=Hg+Py admits bound states. According to Lemma V.2
the absolute square of its Hy-representation X(1) = |0(J\!tp)| 2 must
gatisfy conditions (a) and (b) (and J X{r)dxr = Hcp“ 2=1), A necessary
condition for ¥(\) is clearly that it should vanish for some X €/ as
follows from (b). This is, however, not sufficient. But consider the
following example: Let X'()) be a positive non-vanishing integrable
function on Ay and define

0 on an open interval (a,b) <
x0) = { fo

aX'(\) on the rest of Ay [o> 0]

Clearly, & can be so chosen that j'}{{?\]dh =1, Next, (b) is certainly
satisfied for any X € (a,b). In order to show that (a) can also be
satisfied for some X in (a,b), consider the left-hand side of {a) as a
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function of X € (a,b). It splits into the two parts

a &
P X()ax | ~ A)dh
v, (% =[ o Y, (%) = fb Y
[o]

with the following properties: Y; 1s negative, continuous and mo-
riotonously decreasing to -« if X tends to a, while Yy is positive,
continuous and monotonously increasing if X tends to b. So they
add up to a continuous function increasing monotonously from -= to o,
as X moves from a to b, So there exists at least one value X in (a b)
for which condition (a) is satisfied and which is thus a discrete
eigenvalue of H.

So we may recapitulate the essential bound state features of
the model as follows: for the existence of a discrete energy eigen-
value X in H it is necessary that the Hy-spectral representation of ¢
vanishes at X. If such a value exists it is always imbedded in the
continuous spectrum A, of H. There is, in fact, no hope of pro-
ducing an 1solated negative H-bound state by a rank-one potential.

We did not bother about the question as to whether or not in
the spectrum of H there may appear a part which is neither discrete
nor absolutely continuous. It is known that its impossibility hinges
on a certain Holder condition imposed on X(\) which we shall de-
scribe more thoroughly in an analogous situation met in the model of
Chapter VI.

The presence of bound states in H has to be considered as a
rather accidental fact in this model since it supposes that the func-
tion X(\) vanishes in an interval, and its discussion has not much
physical relevance as may also be concluded from the discussion of
the cross-section (V.4) given in the next section.

E. Discussion of the Scattering Quantities (V.4)
In order to interpret formulas (V.4), let us introduce the ana-
lytic function

h(Z)E 1+J‘w M_
o

A -z

Furthermore, we define

h(\) = %(h(x +1o)—h(X—iOD= 1+5F l%‘%k_ *
‘0

In terms of these functions the scattering quantities (V.4) read
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J_XO) 200 oo o X2
ROV = Wiho) | S 6(A)=0(r) = ()2 + 12200

If we assume X(A)#0 on the spectrum Ao, excluding thus bound
states in H, the function sin?6 (\) has the following properties:
{a) It does not vanish on A, except at 0 and «,
(b) It is positive and never exceeds 1, and it reaches this
limit exactly if h(}) = 0.
Consider now the phase-shift

s(\) = % La®() + 1)

and its derivative

s ) =L RO) )N O) =X ()RM)) () +Hmx()

S 2RO AL (120) 4 oni X(OR (M -2 X2 (W) (6 - 17X(0))

(v.6)

&(\) is a multivalued function of o(}) and, according to (a), we may
fix its determination by 6(0)=0. Since sin?6 (}) never vanishes on
Ao+ the values of & (\) remain in elther the interval (0,m) or (0,-m)
and reach, for A -+ =, the points 0 or £m. Furthermore, it admits the
values +1/2 exactly if h(\) vanishes.

In order to establish which alternative actually holds in our
example, we may determine the sign of 6'(}) at that point A where
8()\) crosses |m/2| for the first time, i.e., at the first zero of h(\).
Equation (V.6) reads for these zeros:

a'(x)=%;(((% . Vv.7)

Now it follows from the fact that h(\) is positive at 0 and « that
h()\) admits a pair number of zeros, that h'()\) is negative for the
first zero of h()\), and that the sign of h’{)\) alternates when pro-
gressing from one zero to another.
This establishes now uniquely the behaviour of the phase-
shift.
(a) 6(0)=08(=)=0
(b) 0>6(A)> - for O0< A<
(c) 6(\) crosses the line -m/2, from above and below alter-
natively, exactly at those points where o()\) reached its
upper limit.
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B L St

=T

Note that (a) is in accordance with Levinson's theorem (IV.8).
In the presence of H-bound states some of the above con-
clusions fail. It is still true that

h(x)=1+§ X—if‘—'}‘?;—}‘=o .8)
[o]

is a necessary condition on ¢(\) to reach its maximum, but it is no
longer sufficlent. In fact, if % is an H-bound state, we have,
simultaneously with (V. 8), which is only the first condition of

Lemma V.2
® xS )an
—(——’—2 <o,
j a2z < °
(o]

Hence (using Lemma V.3), X(X) = 0. So sin8 (1) is not 1 at these
points although h(\) goes through zero (in fact, it can be shown to
be 0 rather than 1!), and so is it not true that it never crosses the
line 0 nor that 6 (\) crosses the line -m/2 an equal number of times
from above and below. This can also be inferred from Levinson's
Theorem, which in the case of one H-bound state yields

§(») -8(0) = -m.

We close the discussion of this model here, its aim being
merely a first acquaintance with the subject. Many points treated
here will reappear in a similar form in the model treated in the next
chapter which will, however, be more significant from a physical
view and which will be particularly well suited for a systematic in-
troduction of the concept of resonance.

VI. Soluble Decay Models

A. Definition of a Model with One Decaying Statel0)

Let Hg be a self-adjoint operator with an absolutely contin-
uous spectrum A, extending from 0 to @ and a discrete eigenvalue
Ao> 0 embedded in A,. Let x be the normalized eigenvector of Hg
with energy A, and P, the projector on its orthogonal complement.
Finally, let the Interaction V be a self-adjoint operator which
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satisfies the conditions

(x,Vx) =0; P VP = 0. (VI.1)

In physical terms the first condition excludes a self-interaction of
the bound state ¥, and the second excludes an interaction of the
continuous (scattered) states among themselves.

Lemma VI.l: The range of V is two-dimensional (i.e., V is a rank-
two potential) and the system (Hy, H=Hy+V) is a simple scattering
system.

Proof: Any element § € can be decomposed into the parts Pyl and
(I-Pol = (x,V¥)x. According to (VI.1), VP4l is orthogonal to PoK
and thus lies in the one-dimensional space spanned by ¥, while

V(I -Po)y = (x,¥)Vx lies in the one-dimensional space spanned by
the element V¥. This proves the first part of the lemma. The second
follows again from the theorem of Katos) according to which a system
of two operators Hy and H differing by a potential V which is defined
everywhere and has finite-dimensional range is a simple scattering
system. In particular, the absolutely continuous part of the spectrum
of H coincides with A.

B. Scattering Quantities and Decay Law

Lemma VI.Z: The operators VQ, and Q:V are Carleman integral
operators in the Hy-representation of the space PJC, and their
kernels are

lvagay = v 0T e vivy = v v Tl

where we now denote by X |¥) and &\ |¥) the spectral representa-
tions of Poy and Py with respect to Hy and H respectively.

Proof: From (VI.1) follows

Ve p) = (x.a.P ¥) (A[vx) = (Q:x,Potb)o(Xle)

J ol fafx) (e gnan

=] v A x) TP idn.
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Hence M VQLADo= S0 VX) KA [x). Similarly,

Magfve i) = Ve B) = (VR 9 %)

F 0 0Tvad o1 wans.

Hence A |QLVIN)o = S0 ]x) S0 |Vx The Carleman properties fol-
low as in Lemma V.1 from the finiteness of the norms | Vx| and ||x||
In order to express the scattering amplitude entirely in terms
of the interaction function {\|Vx), we have first to transform «\|x),
which appears in the kernel of VQ,, into Hy-representation. Equa-
“ion (IV.7') which relates the two representations is, however, not
du ~ctly applicable to the bound state X since it i1s defined only on
the continuous states Poy . But here we may now make explicit use of
the first condition (VI.1l) according to which Vy € PJ( After having
inserted the expression of Lemma VI.2 for the kernel of Q+V
Eq. (IV.7’) reads now, for § =Vy:

B X()dr’
+(x|vx) = O(xlvx) - +(x|x)fk, *

A -io

where we have introduced the positive function X(\) = | ()\IVX |
On the other hand, we may write

vy = Ey) - OHHGKD) = (0=3 ) %)

and, solving these two equations for ) | v),
KM Vy)

X" )d N
- +‘J‘)\ -A+io

+(x |x) = (V1.3)

With this and Lemma VI.2, the scattering quantities (IV.5) become

2miX(\)

xgr) SETEE

R(A) = -

2% 2 ()

QH ?rxmcnc) %20

sin®s (\) =a (\) = (VI.4)
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and the decay law (IV.9) for the Hy-bound state X:
pe) =(.e ) = [ ) ?

X(\e Dtgy
(x - +fX(K )dk) +1m X()\)

(VI.s)

We should immediately remark that these explicit results are
a rigorous consequence of conditions (VI.1) alone; in particular, no
a priori assumption has been made on the existence of bound states
in H and thelir validity is independent of the problem whether such
bound states exist or not.

If we insert (VI.3) into the kernels (VI.2) and (VI.2) into
(IVv.7'), we remark that we obtain an explicit transformation formula
from the Hy- to the H-representation of an arbitrary element § € X
which depends only on the interaction function o<)\] Vy). In fact,
(Iv.7') provides the passage Hy~ H for the part Poy of § and (VI.3)
for the part (I-Po)¥ = (X,¥)X. With some effort, the inverse trans-
formation could also be established using such relations as (IV.2)
and (IV.7) where (IV.7) does not take account of the possible H-
bound states which have to be separately considered.

C. Possible Existence of H-Bound States

Lemma VI.3:
(a) If X(\)#0 on the spectrum Ay then there does not exist
any discrete eigenvalue X imbedded in the continuous
spectrum of H.

(b) 1If

then there does not exist any discrete eigenvalue X out-
side the continuous spectrum A of H (i.e., on the nega-
tive real axis).

(c) If X(\)=0 for A =0 (as follows from (b)) and if X(}\)
satisfies the HoOlder condition

HQ) : [x(0) -x0)| s elv'-a M Lo<p<1l,

then there does not exist any singular (i.e., continuous
but not absolutely continuous) part in the spectrum of H.
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Proof: First we write down the action of the potential V in H -
representation. For the continuous part we obtain, according to

(v1.1),

v = GIVa-pOy) = 68) vy

and for the discrete part

(V) = (0, VPGE) = (i, Pow) = [ T e,

The eigenvalue equations for H read in this representation

SATER) =2 ) + 00w) () =X )
(VI.6)
OCHD =3 00w + [ OV Oidh =X (x.¥)

for the continuous and the discrete part respectively. Their solution
is

by g vg) v an
o<)\|\l') S (x,¥) =~ T . (V1.7)

The normalizability condition for | implies

2 _ (2 2 _ 2 X(O)dAN _
el® =1 0w *an+ Toanl® = 1l +f “_ﬂi)2><

If X belongs to Ag the integral diverges and the normalizability can
not be satisfied unless (X ,§)=0 which, however, contradicts the
first equation (VI.6). This proves part (a). Inserting the first equa-
tion (VI.7) into the second we obtain
J« X( )L)
A ~X

1l = A
Ao

and in the case X < 0 this is majorized by

X>\
X

This proves (b). The proof of (c), which serves to exclude a physi-
cally é)athological situation, is more subtle and will be omitted
here.
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D. The Concept of Resonance
We introduce the analytic function

h(z)Ez—)\o+J'—)L(LM
A

A -z
o

which has a cut along the spectrum Ay of Hy with the discontinuity

h(A+io) -h(x-10) =( -A o+ ’%%+ imX(1))

X(A)dr' ,
- - + - =
O no+ B SR - im x(0) = 2mix(.
Furthermore, we again define the real function
= ; F — KOV )dn'
h()) = %(h()\+1o)+h()\ i0)) = A= n + ¥ s

According to (VI.4) the scattering cross-section now reads

2
o)) = sin2 &5(\) =—w
n2(\) +m2x2(\)
This positive function is limited above by the value 1 and admits that
value only for the zeros of h(\).
We first assume that the three conditions of the Lemma VI.3
hold and that the spectrum of H is therefore absolutely continuous,
These three conditions imply respectively that
(a) the vanishing of h(\) is also sufficient for o{\)=sin2s ())
to reach its maximum 1;
(b) there exists at least one zero Ay of h()) with h'())>0;
(c) if the interaction is small enough then this zero is
unique, while for arbitrary interactions there exists
always an odd number of zeros A, and the signs of
h'(\,) alternate.
The first statement follows clearly from the fact that X(\) cannot
vanish on the spectrum. Furthermore, h()\) is a continuous function
tending to ® for A\ —»®, Since on the other hand h{(0)< 0 according to
condition (b) of Lemma VI.3, the statement (b) follows immediately.
In order to prove the first part of {(c), we remark that it follows from
the Holder condition |X(A')-X(A\)| = p|A* -A|H with p< 1 according
to a known lemmall) that its Stieltjes transform
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_ e X()dx
Y(O) = 55

also satisfies a HSlder condition |Y(A') -Y(\)|= p|A’ ~A|" with the
same exponent u. A second zero of h(A) can, however, arise only if
the absolute derivative of Y(\) becomes larger than that of (A -1o),
i.e., if p’>1. But introducing the parameter g in the interaction
(coupling constant): X(A)- gX(}); Y{A)- gY(\}, we see that p (and
thus p’) can be made arbitrarily small. So there exists a limit cou-
pling for which p’=1 and, if g is below, no other zero exists for
h(A). The second part of (c) follows again from h(0)<0 and h(®)=w,

In order to interpret all of this in terms of the phase-shift, we
calculate 6'(\) as in Chapter V. Formula (V.6) obtained there re-
mains formally true and we obtain

X ‘(0 h' (\)

8'(0) = - 1(0) 2 0; signd’()\) =signn—x()\—) = sign h'(}\).

If we choose again the determination 8 (0)=0 for the phase-shift,
which is possible since sin25(0) = 0, we obtain the following proper-
ties for 6(\):

(a) it increases at the origin and stays in the interval (0,+m)
since sinZd (1) never vanishes except at 0 and «;

(b) it crosses the line /2 from below and above, alterna-
tively, every time h(\) vanishes, and, since this hap-
pens in an odd number of points,

(c) it reaches 1 for A—m,

We remark that this corresponds to Levinson's theorem (IV.8)
when applied to the case of one Hgy-bound state and no bound state in
H. If H contains a bound state, condition (b) of Lemma VI.3 fails,
and we now conclude from h(0}= 0 and h(«)=« that h()\) vanishes in
a pair number of points, hence we would infer & (0)=6(»)=0 again
in correspondence to Levinson's theorem.

One might question the physical significance of the signs of
8'()\) appearing in the maxima of a()). In this regard we may invoke
the relation

8°(\) =% Q(\) (v1.8)

which links the derivative of the phase-shift to the so-called delay
time of the physical wave with respect to the asymptotic free wave at
a glven energy. (For a proof in terms of the concepts developed here
see Reference 12.) Since the sign of this quantity depends on the
question of whether or not the potential is attractive or repulsive, we
may finally recapitulate what we obtained in this section in the fol-
lowing natural terminology:
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o()x) has a (true) resonance whenever it reaches its absolute
maximum 1. The corresponding energies (= the zeros of h()\)) are the
resonance energies k. According to relation (VI.8) we call the reso-
nances attractive or repulsive whenever the sign of & (\,) is positive
or negative. In the special case 8'(\;)=0 we say to be in the
presence of a double (attractive and repulsive) resonance.

The previous discussion may then be resumed in the proposi-
tion: for weak enough interactions there exists exactly one atiractive
resonance; for stronger interactions new resonances appear in pairs
of attractive and repulsive ones. The difference in the number of at-
tractive and repulsive resonances equals the difference in the number
of Ho—~ and H-bound states.

The puzzling fact that additional resonances in the one parti-
cle decay cannot be excluded in a model satisfying all the axioms of
a simple scattering system indicates that the latter are incomplete
from a physical sight. The missing point seems to be related to the
guestion of locality. This can be seen as follows: In the case of
local potentials it is known!3) that the delay time Q(\) is limited
below. According to {(V.6)and (VI, 8),it seems therefore that some lo-
cality requirement could provide the necessary lower bound for

h'(A) needed in order to exclude additional resonances.

E. Discussgion of the Decay Law
In terms of the analytic function h(z) introduced in the last
section, the decay law (VI.1l) can be written

1 j-“’ h(A+io) ~h(A-io) _-irt

P(t) 2mi h(\+io)h (. -io)

di

1 1 -t
HIO (h(x -io) _ h()\+io)>  n R (vI.9)

Instead of discussing this expression directly, we shall use the ana-
lytic properties of the integrand in order to deform the integration
path in an appropriate manner. An easy property of h(z) is given by:

Lemma VI.4: If H contains no bound state, then the function h(z) is
regular analytic in the entire z-plane except on the spectrum A, of
Ho (and H) where it has a cut, and it does not admit any zeros in its
first sheet.

Proof: The first part follows from very general features of the Cauchy
integrals and Hilbert transforms. 11) Next we see immediately that
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the function h(z) does not vanish for complex arguments z=\ +i,
since its imaginary part

u(a+f O\X(Tl;g}\ Y

+ 1
vanishes only for u=0. Finally, suppose z=X\ is on the negative

real axis. Now it is the real part of h(z) which cannot vanish. In
fact, suppose it does:

h()) =x-xo+j'i}f§% = 0.

Inserting into this condition (b) of Lemma VI.3:

X(A)dn! X{(n)an
>‘o = JI i ZI V=X

leads to the inequality A 2\, which contradicts the fact that X\ is
negative. This argument shows clearly that the absence of zeros
in h(z) on the negative axis depends essentially on the absence of
H=bound states with negative energy.

Now let us continue h(z) analytically through the cut from
above. We define thus the second sheet hll of h by

hT(x -10) = hl(r +io). (VI.10)

In order to write hll(z) down explicitly, we make at this point the
important additional postulate that the interaction function

X(\)= | LA[Vy)| 2 permits an analytic continuation X(z) which is
regular in the entire open z-plane. With this we verify easily that

II 2 X(Mdr .
h(z) = z -y +j‘——~—}\ == + 2mi X(z)

is the unique analytic function being connected to hI(z) by (VI.10).

The general belief is that hH(z) admits one zero in the nega-
tive hali-plane which approaches z=\, for decreasing interaction
strength. This has been established rigorously for particular choices
of the interaction (e.g., X(A)=g,/% e ® as encountered in the Lee
model). In these particular models the zero of KM moves with in-
creasing coupling constant g along quite characteristic trajectories,
all of which show the common property that the zero reappears on the
negative axis of the first sheet if the interaction becomes strong
enough to produce there an H-bound state. The uniqueness problem
of this zero has, however, not been solved in entire generality.
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and it is doubtful whether uniqueness could be deduced, for instance,
on the basis of the conditions of Lemma VI.3 alone. So we shall
leave this question open here and turn to the physical significance of
these zeros, if they exist, in connection with the decay law.

The reason we discussed the extension of the function h into
the complex plane is that it permits us to rewrite the expression for
P(t) in a new form which is better suited for an interpretation of the
decay in terms of its essential physical parameters—at least in the
limit of weak interaction. This procedure has been known for a long
timel4) and we shall merely sketch it here without going into details.

The integral (VI.9) may be written

oIkt

2mi h(z) dz

and the integration path

(= Ao

may be further transformed as follows (here we assume that h(z) ad-
mits a unique zero 2!l in the second sheet):

PaHu in
——{—.'r.d’ sheet

g

_____ sg.ccmc‘ sheet

7%

This new path clearly consists of three distinct parts: the residuum
at z1, the negative imaglnary axis part, and the great circles. Cal-
culating the first we obtain

dz = — - de =
4 h(Z) 2mi releh '(ZII) h '(ZII)

(vi.11)

- Tirail .
T 1 2m e-—i{zI Hrel)t g e
lim[ MM e 8



SCATTERING THEORY 85

The other two parts depend linearly on X()\) and thus on the coupling
constant g; that means they are of the order of magnitude of the
square norm || Vy ( 2, So they may be considered as corrections
(which become small for weak interactions) of the main, exponential
term e‘iZHt, and it becomes clear that we may call

)‘d Re z!! the decay energy and

VI.12)
II (

1/7 = -Im z'* the reciprocal life-time

of the state X.

Before interpreting this more thoroughly in the limit of weak
interaction, let us have a glance at the question of the "poles in the
S-matrix."

F. Analytic Continuation of the Scattering Amplitude
If we make the additional postulate about the analyticity of
X(z) as stated in the last section, the analytic function

_ 2miX(z)

R(z) = S 7T

is well-defined and may be considered as the analytic continuation
of the scattering amplitude which should now be written (cp. (VI.4))
R(\ +io) rather than R(\).

R(z) is a multi-valued function and, since X(z) is supposed to
be regular in the entire z-plane, the previous discussions of the
zeros of h(z) amounts now to a discussion of the poles of R(z), and
thus of the poles of the analytic continuation S(z) = 1 +R{z) of the
scattering matrix. So we obtain the proposition that the analytic
continuation of the §-matrix S(z) is regular in the entire z-plane of
its first sheet cut along the spectrum Ay of Hy and that its possible
poles zIT in the second sheet have the physical significance (VI.12).

G. The Limit of Weak Interaction

If we replace X by gX (or V by +/g-V) and suppose that the
coupling constant g> 0 is small (g< 1), we may discuss the scat-
tering quantities in various degrees of approximation with respect
to g.

Let us introduce the "line width A" of a resonance by
a(Ay+4) =%0()\,); then the two resonance parameters (A;, &) are
linked to the two decay parameters (Agq, 1/T) by

g 2

g g g
A @ AgS Ao A~ 1/r~ maX(hg)



86 JEAN-PAUL MARCHAND

where a g b means a differing from b by a term of order gH (note
that A and 1/t are themselves already of order g). Furthermore, the
scattering cross-section (VI.4) can be approximated by a so-called
Breit-Wigner resonance

Az

(x —xr)z + Az

0()\)g~2

in a "near resonance" domain |)\ ‘)‘rl of order g, and the decay law
(VI.5) by the exponential

-i(A 4= 1/7T)t

py & 7t~ V)

where we assumed that for small interaction the S-matrix pole
PALE Agq-i/7 is unique.

For the proof see, for example, Reference 15. In writing
down the degrees of approximation we supposed that =1 in the
Holder condition for X{)\) and its Stieltjes transform Y()X). For
arbitrary 0<p< 1l we would have to replace

2 1+l
L by 9L .

H. The Model with n Bound States in Hg

We generalize now the above model in order to describe the
decay of n Ho—bound states. The interest of this consists in
showing how the single resonances and decay laws "interact"
among each other. The procedure used above remains essentially the
same: Let Hg still denote a self-adjoint operator with a continuous
spectrum A, extending from 0 to «, and now let Xy be the n bound
states of Hg with thelir energies A, embedded in A,. With this the
first condition (VI.1)on the potential reads

’

(X s Vy,) =0 for all u,v,

while the second remains unchanged. This system is still a scat-
tering system, the interaction being now of rank 2n.
If we introduce the generalized notation

(A)d

e X
Xuw () = FT) AUl Buyle) = a3, + [ =,

the calculation of the scattering amplitude, cross-section and the n
decay laws Py, (t) = (X, ,e'thx\,) can be carried out along the same
lines stated earlier (for details, cp. Reference 15), and we obtain
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Min h() -10)

R(A) = 2mi z (-1)L1+quv()\) “Det h(x 1o] (VI.13)
[SIAY
b (-1)“+th (A +io)Min _h(A -io)
17 Y \Y MY
o(d) = 7n-Re Det h(x - 10) (VI.14)
_ 1 Miny;,, h(h -i0)  Miny,, h() +io) —int
Py ® 2111 J\ ( Det h(: -i0) ~ Det h()\+1-ovj_u> dx. (VI.15)

Furthermore, if we require the additional analyticity postulate for the
functions X, (z) and if we suppose that to every energy eigenvalue
Ay there exists exactly one pole z,” in the second sheet of the scat-
tering amplitude, the "residual" parts of P,,(t) (cp. (VI.1ll) in the
case of one decaying state) become

iz&lt
res,, _ e . .. __Det h(z)
R =), sl H, (@) = Min, h(z) ° (V1.16)

M

It is easily verified by putting n=1 that our previous expres-
sions (VI.4) and (VI.9) for o(X) and P(t) are special cases of (VI.14)
and (VI.15). For P(t) this is immediate; let us write it down for o(\):

h(\+10) _ 5 5 hZ(\) -n2x2()
. N _, h2(0) -nZx2()) VI.17
a(A) =% -% h(\ -10) 3 h2(0) #1220 ( )
TTZX?‘(U
oy (VI.17")
h2(0) +m 22 ())

For not too strong interactions it can be shown that o()\) has
exactly n true resonances and the scattering amplitude n simple
poles in the second sheet. The interesting point is, however, that
the line form (VI.13) is not merely a superposition of n one-particle
line forms (VI.4), nor are the residual parts (VI.15) of the decay laws
just simple exponentials with the characteristics of the single poles.
Let us look at this in the example n=2.
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I. Coupling of Two Resonances and Decay Laws
With the simplified notation

hiy (M) = by, (h % 10)

the expressions (VI.14) and (VI.16) read for n=2

= o = o
hyyhgy = hyghgy = hapihyg +hgohyy
o(x)=-;-<2—Re 1122 = Migh2 210 ()‘D
hyjhgz = hyghyy

-1z Tt -tz Tt
2
res(t) - e + = = :
1 dr hllhzz"hthZl\(Zn) d(huhzz“ 12h21y 11y
dz \ hy, 17 de hyo 2
—121II —iz%It
Pres (t) - e e e
2 = - .
i(hllhzz h12h21>(zn) _d_(hu"zz “12"21)(211)
dz hll dz h],l 2

(Vv1.18)

The expression for o (\) may be discussed in various orders
of the coupling constant g, starting from the observation that the
cross-terms hjg(z) and hyj(z) are small in order g compared to the
diagonal terms hjj(z) and hyy(z) since, for instance,

Xll{)\}dk
A-z

XlZ()‘)dl

g
A -z L

o 1 4 . N
hll(z) z }\1+gJ\ & Z=hg hlz(z) QI ~

So we would obtain for o(A) in the lowest approximation
+

hit hi h
a(A) ~ (2 Re <h11 hz‘Z) = —(1 RehE) (1—Re hzz

which is just the superposition of two uncoupled one-particle reso-
nances (VI.17), while in the next higher approximation
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292 (X hy, +Xph) )2

o(A) ~
2 2 2 2
T g (X1hpy +Xph1 )" + (hyhyy)

is not the sum of two terms (VI.17').
In the case of the decay laws a similar discussion of higher
order approximations can be done if one takes into account their non-
residual terms which we neglected in (VI.18). We shall not do this
here, but we shall show for weak interaction how the decay laws
P{e3(t) and P4 ©®(t) tend to "their own" exponential laws.
For P®3(t) this consists, for instance, in showing that the
denominator in the second term of (VI.18)
d hiihgg - h121121>( 11y (VI.19)
dz hzz 22 :

tends to infinity if g=0. According to (VI.13) the zeros of the nomi-
nator in (VI.19) are equal to the poles zlu, zy— of the scattering am-
plitude R()\), and they tend to ISTRY) for g—+ 0. FPurthermore, the
unique zero of hpg tends also to Ag. So we find, for small coupling,
a pole of
< hyihso ‘h12h21_>
ha2

in proximity of the zero zZH Whi(ﬂl shows clearly that (VI.19) be-
comes large at z%l (but not at zy ).
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1. Introduction

We are Interested in interactions for relativistic particles,

Are they possible? What do they look like? We will consider these
questions for a classical-mechanical system of a fixed number of par-
ticles, usually two. We will see that even there, these questions
are not entirely trivial and the answers are not exactly what our prej-
udices would lead us to expect.

We want to consider interactions which can be described by a
Hamiltonian. For relativistic invariance, we will have the kinematic
assumption of Lorentz transformations for the particle positions, and
the dynamic assumption that the equations of motion are Lorentz in-
variant.

In view of the difficulty of handling interactions in relativistic
guantum theories of fields or particles, we think it might be worth-
while to learn what Interactions look like in relativistic classical
particle mechanics, For example, relatlvistic quantum theories of a
fixed number of particles have been developed for sc€.°.1:t.'=-,1'ingljl and for
bound states (as in relativistic quark models? ). These theories say
nothing about Lorentz transformations of the particle positions. We
believe that this cannot be justified by invoking the uncertainty prin-
ciple. This suggests investigating the analogous problem in classi-
cal mechanics. We will see that in a classical system, Lorentz
transformations of particle positions are incompatible with canonical
representations of the Poincaré group, and we will see how to cor-
rectly represent the Poincaré group.

Later, when we are in a position to be more precise and go
into more detail, we will outline the history of this subject and say
more about its relation to quantum mechanics.

References.

1. T. F. Jordan, A. J. Macfarlane, and E. C. G. Sudarshan, Phys.
Rev. 133, B487(1964); R. Fong and J. Sucher, J. Math, Phys. 5,
456 (1964); T. F. Jordan, J. Math. Phys. 5, 1345 (1964); F.
Coester, Helv. Phys. Acta 38, 7(1965).

2. N. D, Son and J. Sucher, Phys. Rev. 153, 1496 (1967).

II, Equations of Motion

World~Line Conditions.

In the following sections, we will use the relations which
guarantee that the points which compose the world-line transform as
events—the world-line conditions. 1 .2) These are
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Pixj -51_] gixj = Eij Wk

X, ) H.x, = xv
i i iy 1

]
<

where Pi' J;» H and K; generate infinitesimal spatial translations,
spatial rotations, time translations, and Lorentz transformations, re-
spectively. These operators act upon the position of the particle,
evaluated at a given time, The first three of these relations are the
infinitesimal representation of the familiar effects of translation, ro-
tation and time translation on the particle position, The fourth rela-
tion, governing the Lorentz rotation, is perhaps less familiar although
it is derived in the same manner as the first three. In order to derive
this relation let us consider the transformation properties of the posi-
tion under an infinitesimal Lorentz transformation. Thus we have the
function x(t) in the first frame and we wish to obtain the new func-
tion x{(t') in the new frame. If we consider the particle position at
t'=0 in the transformed frame, we are considering an event with co-
ordinates

X1.=xi(t=0) t'=0,

In the original frame, this event will have coordinates given by

t=t -aX' = -aX'.
i 13

This point is on the world-line in the old frame, so it must be on the
world-line in the new frame. Thus the spatial coordinates of this
point are given by

— — '
Xi = xi(t anJ.).

Given that the position function has sufficient analyticity for a power
serles expansion, we have

—— "N — - _ ' i i
xi(t— oszj) xi(t 0) ajxj l:dt xi(t)Jt=0

= xi(t =0) - arjxjvi(t= 0) = X, - o:jxjvi

where, by comparison with the above expressions, we have
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xi(t'=0) N xi' e }(i = xi(t=0) - ozjxj(t=0)vi(t=0)

or

X{-Xj
H = — =
jxi a’j +xjvi f

Having obtained the transformation of the particle position
under the Lorentz transformation, we now ask how does the particle
velocity transform under an infinitesimal Lorentz transformation.

One may determine this from either of two different approaches. The
most direct, but algebraically complicated, is to make a Lorentz
transformation on an entire world-line, express the world-line in
terms of the new time, and then take the time derivative with respect
to the new time to obtain the new velocity at t'=0 in terms of the
variables in the old frame at t=0. The second, more formal but sim-
pler, method is to use the commutation relations of the generators of
the infinitesimal Lorentz transformations. 3) Thus we have,for t=0,

Xv, = }CiTij = }C}C.ixj + [‘Mi}C]x]_

v f}C(xivj) + Pixj

v.v, +x.a, - 0
i i

j iy

In the same manner, one may obtaln the transformation of the accele-
ration, and so forth,

K.a, =x4 +2v.a, +tayv
i i

) i

X.a x 8 +3vié

+
1% 18 3aia

+3v,.
ij

) )

Note that these are all for the coordinates of a single particle.

Equations of Motion and Poincaré Invariance.

The dynamics of the particle system will be described by
equations of motlon for the position of the particle. The acceleration
of each particle (at time t) is a function of the position and velocity
of all the particles (at the same time t). For two particles, the equa-
tions of motion have the form

sl = f_l(zl M, x'®, L0, 20)

#2 (1) = f_2<x2<t>, 21, X0, scl(t)).
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In a single frame, these equations may be solved as differential
equations in t to obtain the position as a function of time. This is
the coordinate time, not the proper time, and a dot denotes differen-
tiation with respect to time. The latin indices and vector symbols
refer to three vectors.

We now consider the criteria in terms of which the equations
of motion are called invariant. First, we transform into the new frame
each of the points which compose the world-lines. More precisely,
since we employ the passive view, we obtain a new set of coordi-
nates for each point of the world-line, These new points make up a
world-line, from which we may obtain the new transformed position as
a function of the new time. If the new position functions satisfy the
same set of equations of motion (that is, if the acceleration function
has the same functional form in terms of the new position components),
then the equations of motion or the acceleration functions will be
called invariant.

We will find that there are many invariant acceleration func-
tions, that is, this condition for Lorentz invariance is weaker than
one might suppose. This condition eliminates only as many possible
solutions (equations of motion) as the requirement of Galilean invari-
ance eliminates when one considers the non-relativistic equations of
motion,

Einstein Causality,

As is obvious from the previous comments, the acceleration at
a particular time is expressed as a function of the position and veloc-
ity of another distant particle at the same time. That is, the theory
has the form of an action-at-a-distance or a single time formalism.

In this frame the system is causal in the traditional sense—that a
given set of initial conditions specify the entire solution (world-
lines)., Let us now consider the property of Einstein causality—that
is, the requirement that no information be propagated at a velocity
greater than that of light. A very clear and complete discussion of
background ideas of causality has been given by Havas. 4) Our equa-
tions of motion do not satisfy manifest Einstein causality—that is,
from the form of the equations, the requirement of Einstein causality
is not automatically satisfied. Our present approach will be to in-
vestigate first the implications of Poincaré invariance, leaving until
later the consideration of the Einstein causality. The single time for-
malism is particularly interesting in that it permits one to obtain a
Hamiltonian, which in turn may permit a more or less conventional
quantization of the theory in a single frame.

At this point, let us consider how the question of Einstein
causality would be investigated. Since we are watching the interac-
tion of the particles from outside the system, we are not free to arbi-
trarily alter the motion of one of the particles., Thus in order to test
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the assumption of Einstein causality, we permit a testing particle to
interact and alter the world-line of the original two particles. This
interaction may take place through the same interaction which is
being considered between the original particles, or it may be another

admissible interaction. We then ask at what time the modification of
the world-line of the particle affected by the testing particle starts to
affect the world-line of the other original particle. It is clear that the
guestion of Einstein causality requires careful consideration and
definitions, and also requires a knowledge of the form of solutions
which are invariant. Thus the study of Einstein causality is either
the consideration of three-body interactions, or the consideration of
the class of interactions which are compatible with each other.

Of course, there is one class of theories which does possess
manifest Einstein causality, and this class is the local field theories.

The particle theory which would seem to satisfy manifest
Einstein causality is the Feynman-Wheeler clasgical electrodynam-
ics,5) that is, the electrodynamics with the field eliminated, so it is
a direct particle interaction theory. This has the same structure as
classical electrodynamics, in which one has manifest Einstein cau-
sality due to the fact that the interaction is transmitted by the field
which travels at the velocity of light, and the field produces no
forces upon a particle until it arrives, so the theory would seem to
guarantee manifest Einstein causality. This was assumed until Dirac
was able to obtain exact solutions for the motion of a particle in a
field®) with the proper inclusion of the radiation reaction terms. The
resulting equations of motion for the particle are third order in the
time, and for most of the resultant world-lines the particle, after in-
teraction with the field, accelerates to the velocity of light. The
only solutions which do not have this "runaway" property have a
"preacceleration, " that is, they start to accelerate (to react to the
field) before the field applies a force to the particle. Thus this
theory which appeared on inspection to satisfy Einstein manifest
causality, when exact solutions are obtained, is the worst violator.
Quantum electrodynamics is the other theory which should have mani-
fest Einstein causality. It is supposed to limit as fH vanishes to
classical electrodynamics, but the solutions are not yet explicit
enough to comment on this question.

Application of Invariance Conditions to a Specific Example.

We will now consider an example of an interaction and deter-
mine whether or not it is invariant.’ 8 1n particular, we will solve
for the world-lines, then transform each point which composes the
world-line to the new frame, and obtain a new function (new position
as a function of the new time). If this new function is a solution to
the same equations of motion, then the equations of motion will be
called invariant,
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As an example, let us consider the equation of motion7)'12)
given by

= 122 /6d -x?) %P = el -v2)P/xd - x2)

in one space dimension. To simplify somewhat, let us express these
equations of motion in "collective coordinates" defined by

x = (x1-%x2)/2 X = (x1+x2)/2,
and then the collective acceleration functions have the form
a = -vv/x A =0,

These are rather simple differential equations in time which may be
solved by sight, or at least without too much staring, by noting that

2
X .

DO =
&l
&l

0 = ax +vv =

So we have for the solutions of the particle motion
x = Na+bt X = A + Bt

in our given frame where tl=t4=t, For the individual particles the
coordinates are given by

x! = A +8tt +Va+btl  x® = A+ Bt? - Na+bt2

where in our frame t1 =t2=t, To determine the positions as a func-
tion of time in the new frame, we must transform the coordinates of
each point in the world-line so we have

x" = x%cosh @ + 1" sinh a
— -
t = tncosh o +X sinh «
where the bar refers to the new frame. Using the first expression, we
get

-
x n_n

= (x sinh @)/ cosh a,

and now substituting into this the general solution to the equations of
motion, x™(t), we obtain
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= (A +Bt! + Vaebt! <% sinh oz)/cosha

/

)
X

(A + Bt2 -~ a +bt? —Tz sinhoz>/cosha,

and, finally, using the transformation equations to eliminate t® in
favor of EM and X yields

= [A+B{_tncosha +X%sinh o} - (-l)nJa +b{T cosh a+X® sinh a}

- T sinh on/cosh a.

This may be solved for X® to obtain an expression of the form

T =K+80 - (-1)"Na+bm

where the X for n=1 and the A for n=2 are the same, and so on. If
we now take Tl=T2= T, these expressions for the new position in
terms of the new time have the same form as the world-lines in terms
of the old time so they obey the same acceleration functions, i.e.,
an expression of the form

d d —n ===y /T T

] = - t .

+ ZXm = SEOVE/XD

The appearance of the tilded quantities indicates that we have a dif-
ferent set of initial conditions in the new frame. In particular

A= (A cosha - AB sinh oz+bsinha> /}t2

~ 2 . L2 , 2 2

B = {B(cosh® @ +sinh” @) - sinhacosha(l +B4)L/ 2

~ 2 2 . 2 . ;12

a = <a cosho +b sinh” a+Ab sinha@cosha- ABsinh™ «
- 2absinhacoshab /X

b= {b cosha -bBsinha /)t4

where ) =cosha- B sinhoa.

Thus we conclude that this particular equation of motion is
invariant. Note that it is not manifestly invariant—that is, it is not
composed of scalar products of four-vectors.
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We see that invariant equations of motion exist. Further, we
see that the simple requirement of invariance does not guarantee other
properties we might associate with invariance. In particular, this
force law causes the particle velocity to exceed the velocity of light.
To see this, consider the velocity of the individual particles

. _p. bl2_ o= RE
Na + bt Na + bt

v

At the time t=-a/b the velocity of each of the particles is infinite.
On the other hand, the asymptotic velocity of the particles is not in-
finite and, in fact, the asymptotic relative velocity vanishes. Thus
the Lorentz invariance of our equations of motion does not prevent
particle motion at velocities exceeding that of light. The asymptotic
relative velocity vanishes for every set of initial conditions, another
pathology of this model, resulting in the lack of a "complete set of
asymptotic states.”

Differential Invariance Conditions.

As a general method for investigation of the invariance of a
given acceleration function f, the procedure just considered is not
very practical. This is because one must solve the differential equa-
tions for the world-line in order to determine if a given acceleration
function is invariant. We shall now state the conditions for Lorentz
invariance as differential equations which the acceleration functions
must satisfy.

Let us note at this point that we in general also require that
the acceleration functions be invariant under space translation. By
means of a rather obvious calculation, we may show that this implies
that the acceleration functions be independent of the mean position
X= {El +52)/2. Further, we in general require that the acceleration
function be invariant under rotation so that the acceleration function
depends only upon vector dot products of the form

XX, XV, vy, xV, vV, V.V,
Finally, the invariance under time translation requires that the ac-
celeration functions are not explicitly functions of the time. How-
ever, for certain of the following calculations, we will express the
acceleration in terms of the individual coordinates, leaving until a
later time the imposition of the requirement of space translation in-
variance,

‘We have already determined how the acceleration of the ‘nth
particle transforms under an infinitesimal Lorentz transformation,
that is,
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Xa® = x"a +2via + avl.

i) i7j i) i7j

Since we seek a function which depends only upon xf‘ and vin, we
must re~express the terms a " and 4" in this form. The former may
be written as fjn(gc_l ,52 ,gl i 32) and for the latter we have

11 n

4n _ d n_3[1v1+3fjnvz+afj 1 afjnfz
T odt T el 'k 1 Yk 1 2 .

) J %y, 8%y vy, k vy k

Thus we obtain for the transformation of the acceleration

aff afP ot af, !
J(_an = x" —Jvl+—j—vz+—1—f1+-L—f2 +2v.nf.n+f.nan.
i) i 1k 2 'k 17k 4 2k i i
Xy Bxk 3Vk Vx

Now let us consider what happens to the right hand side of the ex-
pression an=fjn. The transformation of the acceleration function is
glven by

S O TR S )
:ycifj = Mifj (x*, x4, vt ,v4)
af af P 9t af
- —’1 }Cixkl +L2 .'}C,xlf s g J{.v]f ,
%, 8% i vy boaplé t

but we have seen that the transformation of the position and velocity
is gilven by
n

R B SRV

n_nn n nn n n n
% L4 1 TV Ve T Oy

X, Vv =x,a, +v, v

X T_5 . =x
ik T ik i'k ik ik " 4

so we have

X k22 vt o6
sv2 L1k " V1% T Pk
K

Setting JCian equal to I}Cifjn, we obtain a differential state-
ment, the invariance conditions, expressing the condition under
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which the acceleration function is invariant under infinitesimal
Lorentz rotations.

Since any acceleration function which satisfies these equa-
tions will be invariant, any solution to these equations will be invar-
iant and to obtain a set including all invariant acceleration functions,
we need only solve this non-linear partial differential equation., The
difficulty in obtaining solutions to such equations is the reason one
does not find a wealth of examples in the usual textbook discussions
of relativistic invariance.

Since we shall later want to use the collective coordmates,

let us write down these invariance conditions in that form.a) 11)
3fj 8fJ
- +
TR R A ol SR Tl GRS A AL v>

A (vkvl 6ki> "oV, <ka1+" V> =0

3 8PJ BF,
2F HEY i~ (B s +vkvi\) a, (\rkv1 Gik>

oF,
: J
+ {Xifj+zvifj+fivj v (f X, +vkv>} = 0.

We can now return to the example considered in the previous
section, namely,

a=f=-vw/x A=F=0

and check that it is a solution to these Lorentz invariance conditions.
We must first "drop the indices" on the invariance conditions and ob-
tain the one-dimensional form:

xVi, + (x1:‘+2vV)f'v+(xf+VV+vv—l)f'V = xvFy +xfF,, +xFF, +3V{+3vF

\Y
XVFy + (xF +2vV) F,+ xE+VV+vyv - l)Fv = xvfx+xffV+Xva +3vf+3VF.

Since F vanishes, all of its derivatives do, thus simplifying equa-
tions. Now simply taking the derivatives of f, and substituting them
in the first relation demonstrates that the first is obviously satisfied,
and the second is satisfied, if we remember that f= —vz/x (the sec-
ond expression in this case contains the real nonlinearity),
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We have again considered this explicit example of an invari-
ant set of acceleration functions. This example is not particularly
physical, due, in part, to the fact that it was obtained by requiring
that the equations have a very simple type of solution. We now con-
sider a few more interesting examples. Again, since they were ob-
tained by putting rather severe restrictions on the invariance condi-
tion in order to solve them, we cannot be particularly unhappy that
these equations of motion are not the most general possible interac-
tion.

Our first class of more interesting examples is the case of
electromagnetic interactions when one of the particles 1s infinitely
heavy, that is, it has vanishing acceleration. We first consider an
interaction which is essentially the Coulomb interaction. When we
calculate the electric field at the "test" charge, that is, our finite
mass charge in terms of the present position of the infinite mass par-
ticle, rather than the retarded position, we obtain

e [ (x-v?) 4 ~3/2

E= XX +——
- 'Jl-vzzi N1 —vlye

where the "2" refers to the infinite mass particle. The magnetic field
has the usual form

E=VZX§.

The Lorentz force now has the form, where we have used v=f,

|
ol ) S
e)Etey XH =~ T (! 1__,{1,_‘{1>

=_f1/"]_ __!l_‘_!l +Vl(zl._fl}/nﬂl—!1-y-1 3.

This may be solved for f to obtain

1 N1-vl.yl g6 212, -3/2
£ = x(-v!v?) - (vloy2) (xey]) e 122 [, Gey)”
TT T T U N1v2.92 g xx l_vz,vz} ¢

If our minus sign finite mass test particle is a magnetic mono-
pole instead of a charge, we may go through the same procedure and
obtain
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s0
V1-vi.vy eqe
i1={xX(v -v2) - v(_v XVZ)} l é 12
-V L & m

(x-v2)% §-3/2
X .
{5 70 —32-32)}

In both cases, we have a term

(x.v2)2

Xex +
1_!2_!2

which, for any choice of the vectors v; and vy, behaves like x-x for
large enough separations. In our present case, this is sufficient to
demonstrate that these forces may be chosen to vanish for sufficiently
large separation regardless of their velocities.

If we return to the Lorentz invariance conditions, a bit of
playing with the Lorentz force indicates that we may write a general-
ized Lorentz force of the form

f_1 - {5 (1 _21.!2)_!(,_(.!1)}% |: .5)(1_5,_2.‘_,_2)+(_,£.!2)2]I
~v v

where we have an arbitrary function g replacing the -3/2 power that
appears in the Lorentz force. To explore some of the properties of
this force, we may turn to the frame in which the infinite mass parti-
cle is at rest. In this frame, the force is then given by

N1 syl pl
fl = {5 - (5'21)!1} ?_l_e_z_m—v_. g(x _‘)
1

which may be written

AR

i.e., an arbitrary central potential.

These examples indicate that the usual external fields may be
properly described within the present discussion of particle interac-
tion, However, we would be more interested in examples where both
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particles have finite mass. One class of examples may be obtained
by making the additional requirement that the multiplicative cou-
pling constant of the force may take on an arbitrary value. This re-
quirement simplifies the Lorentz invariance conditions so solutions of
this simplified condition contain forces of the form

£l = @wl-v = VI s
= W
= Ju vheyl)(1v? 2}-(1—v .v?)

2 g(g),

where the variable [ has the form

_ (- v2)2
B = §'£+ 1-»\;2, 2 .
w2321 ol L 2y 2
(e w2 (192 v2) - 20 v 1) o 92) (gl ) 4 EED Uow )
(1-v2 . 2
(1-v1-v1)2 - (1-yl.vd)?
2 2

For large separations, this variable has the form
{positive coefficient depending on v}(x-x),

so this force may be defined so that it vanishes as the separation
goes to infinity in all frames, as did the Lorentz force.

In order to obtain some feeling for the general solution to the
Lorentz invariance conditions, let us consider a "power series" solu-
tion3 to the Lorentz invariance condition in one space dimension.
We will simplify some of the algebra in these considerations by re-
stricting the interaction to be invariant under parity, and the parti-
cles to be identical. Under the parity transformation, we have

X = -x X=X
vV = -V V- -V
a - -a A - -A,

This requirement of parity invariance is the one-dimensional remnant
of the rotation invariance in three dimensions. The particle identity,
or symmetry under particle interchange induces the transformation
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or
X = -X X=X
v = -V V= -V

a- -a A- -A,

Combining these, we have
X = X X = -X
vV =V V- -V
a-a A- -A,

Now let us expand the acceleration functions in power series in V.
Thus we have

£, v, V) = £ c,v) + £ GV + 1,600V L L
Fix,v,V) = Fo(x,v) +F1(x,v)V + %Fz(x,v)V2 +...

where the translation invariance has removed the X dependence. The
above symmetry conditions imply

0 2 l—Jeven

Now let us substitute into the invariance conditions and use the fact
that the invariance conditions are true to each order in V. Thus we
have for zeroth order in the second invariance condition

2 _ -
(xf0 + v 1)1“1 xvi N +Xf0f0,v + 3vf

0, 0’

which yields for Fl

xvf0 i +xf0f0;v+3vf
Fl(x,v) = .

2
xf0+v -1

For zeroth order expression in the other equation we find an identity
which is the result of our assumption that the particles are identical.
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If the particles were not identical, we would have a restrictive con-
dition on the non-vanishing f,qq and Fgyen.
Now, going to first order in V in the same manner, we obtain

f2 = lE{PlFl +3f0 +3vF1 +xvl=‘1'x+xf0

- eF, +2v)f0’v}/e<f0+v2 : 1>

and an identity from the first order part of the other equation.
To second order, we obtain

l:|1,V_Xf0,x -

- V L 1 s 4
Fo=12 [x(Fl,x+FlPl jvtafFy-avly o -afpfy - zfzfo,v’sz1\,

3. 2
+ 2vF)  -2F -3 vfz_l/<xf0+v -1>.

From the general structure of these relations, we now see that all the
higher order coefficients may be determined as functionals of f0 (x,v).
Thus, fy is the only free “"parameter" entering the theory. It is an
arbitrary function of two varlables and it completely determines the
equations of motion in every frame.

Let us now recall the class of acceleration functions which
are Invariant under the Galilean transformation. In this case we have,
for identical particles,

ag = g(x,v) AG = G(x,v) = 0.
The accelerations are thus specified by an arbitrary function of two
variables. Thus we see that the "number of possible acceleration
functions"” which are invariant under the Lorentz transformation is the
same as the number which is invariant under the Galilean transforma-
tion.

The statements of the preceding two paragraphs are condi-
tional upon the existence or convergence of the expansions which we
have been considering. They might accidentally not converge, except
of course for those classes of examples which we have displayed.
However, the facts turn out to be otherwise. 14) There exists, by the
Cauchy-Kowalski theorem, solutions of these equations of the same
dimensionality as have been displayed in the power series analysis at
every point in x,v,V space. Further, if the acceleration function has
the form

£ = (1 -vovn) 1Tk vl v2);
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where vYx,1,v2) < " 'yz (x,v!,1) <= and > 0, then we can show
that there exists a global solution—that is, the solution at one point
(x,v,V) may be continued for all values of x, v and V., In terms of
the power series, it says that any reasonable fo(x,v) produces a con-
vergent power series in V. Since the class that we have here does
not include the example a= -vv/x, there are obviously somewhat more
solutions than elaborated above, i.e., the condition can be weakened
in some manner. The primary result is, however, to demonstrate the
existence of many invariant equations of motion,

Since we shall shortly go on to a discussion of similar matters
in terms of the Hamiltonian and phase space, let us review the situa-
tion as expressed in terms of the acceleration functions.

First, the equations of motion are called invariant if the re-
sultant world-lines, when transformed point by point, satisfy an
equation of motion of the same form in the new frame.

This requirement may be restated in terms of a differential
equation which acts upon the x, v, and V of the acceleration function

(equation of motion). These are the Lorentz invariance conditions.
A somewhat limited class of closed form examples has been

found of invariant force functions. A power series expression which
is guaranteed to exist has been found for a very large class of solu-
tions.

Let us now consider these invariant equations of motion.
There are several additional properties we will require of them. If we
are to deal with scattering solutions, we might well demand "weak
separability, " that is, stated for two particles, if the particles are
far apart, then a change in the motion of one should scarcely affect
the motion of the other, 3) This property will find reflection in the
Hamiltonian problem when we might ask for strong separability:
that is, we will require that the Hamiltonian for the two particle sys-
tem, for very large separation, has the form of the sum of individual
particle Hamiltonians.

Finally, we would wish to delve into the question of Einstein
causality, and determine the relation between the invariance property
and the Einstein causality,
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[1I. Hamiltonians and Conservation Laws

Conservation of Momentum and Angular Momentum

We will continue to study a classical-mechanical system of
two particles. We have seen how interactions can be described by
relativistically invariant equations of motion which specify the accel-
erations as functions of the positions and velocities. Now we will
explore some of their properties. Most of this investigation will in-
volve putting the equations of motion in Hamiltonian form and seeing
what kind of structure we get. Before we do that, we can learn some-
thing about conservation of momentum and angular momentum by
working directly with the Newtonian equations of motion and their in-
variance conditions.

We will show that if the accelerations are not zero, the con-
stants of the motion include neither the conventional total momentum
nor the conventional total angular momentum as defined for free parti-
cles or for particles in a field—in other words, the kinematic particle
momentum and angular momentum. These quantities could have the
same values before and after a collision by being asymptotic limits of
constants of the motion, The constants of the motion would depend
on the interaction. They could be the momentum and angular momen-
tum which correspond to the generators of space translations and ro-
tations (about which more will be said later).

Let 51 and 52 be the positions of the particles, 11 and 12
their velocities, and let

1
n n nZ\"2
u =m\yv A

for n=1,2, with m; and my positive numbers. Let x=x
g=11 _!2 . Consider equations of motion

1 -52 and

du

o = ¢l

for n=1,2. Translation invariance implies that ¢1 and 22 depend on
the positions of the particles only as functions of the relative posi-
tion x. Rotation invariance implies that ¢1 and 32 rotate as vectors
when y_l,gz, and x are rotated. -
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The conditions for Lorentz invariance are

1
0. on'.n, n' n_ .o\, n2 2\"z
(-1)7x¢ 80 /ou”, + ij@ i\(g tm )

n

1 1
.y o2 2\"2 n n'2 2\2 n'_ ' n
ung +mn> ¢k + xJ,(g +m ,> uﬂaq;k/axﬂ

2. 2\E,.n,n , q2 2\%..n, n
-Qg +m) 8¢k/8uj—(g +mn> 8¢k/8uj = 0

for j,k,£=1,2,3 and n,n'=1,2 with n' different from n (if n=1
then n'=2 and if n=2 then n'=1); the repeated index £ implies a
sum., These conditions are derived in the same way as for the accel-
erations, from the usual Lorentz transformation of space-time coordi-
nates, and from the requirement that for an infinitesimal Lorentz
transformation the change of du®/dt is the same as the change of ¢"
as a function of y_l i gz and x. We use these conditions to obtain the
following.

Theorem 1: The conventional total momentum u +|.12 is not a
constant of the motion unless both ¢! and j1 are Zero.

Proof: Suppose 1.1l+1.12 is a constant of the motion, Then
_ngj «I-Q-'— 0. Let e be any three-vector orthogonal to x, Mul-
tiplying the conditions for Lorentz invariance by e;, summing
for j=1,2,3, and adding the result for n=1,2 yieids

(1 +m ) {(_1 -oDe - @l-e _)i}

+ @22 +m22> _%{(gz'iz)g - (u? -g)ﬁz} =
or

1 L

which means that e Xil is collinear with the relative veloc-
ity
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1 2 2 2 '% 1 2 L
Vi =mvi- v 1= (El +m1> u - (gz +m22> zgz,

If il is not zero, then e is orthogonal to v, which means
that x and v are collinear, and ¢~ is orthogonal to v.

We assume that gl and 92 are functions which are differentiable
enough for the Lorentz-invariance conditions to be meaningful, We
do not consider singular _431 and Qz which are zero for almost all
values of gl,gz and x. Thus if gl and ggz are nonzero only when
the relative position x is collinear with the relative velocity v, we
say that gl and gz are zero.

Theorem 2: The conventional total angular momentum

x1Xul + x24Xu2 is not a constant of the motion unless both

¢! and ¢¢ are zero.

Proof: Suppose x Xg_l +§2X22 is a constant of the motion.
Then x!X¢! + x2X¢% = 0. Let e be any three-vector orthogo-
nal to x. Multiplying the conditions for Lorentz invariance by
ejekﬂmx}}, summing for j,k,£=1,2,3, using

1
n n/ 2 2\ "2
v = g(&“ +mn\> .

and adding the results for n=1,2 yields the mth

component of

(zl°§>_1)§><_>sl + (zz-ﬁz)gxzz - (e z1)$1><§1

- (e P)o?xxt = 0.

Taking the scalar product of this with e, we get
(e-v)x'Xo' e = o.

If g;l is not zero, then e-v is zero, which means that x and
v are collinear.

These techniques can be used to show also that mlll +m2v2
is not a constant of the motion unless the accelerations are zero, 1)
This is an example of a statement which is true for three-dimensional
space but not for one-dimensional space. We have seen a one-
dimensional example of accelerations with the property that vl + 2
is a constant of the motion. In three dimensions these appear as sin-
gular accelerations which are nonzero only when the relative position
X is collinear with the relative velocity v.
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Another statement which is true for three-dimensional space
but not for one-dimensional space is the theorem that the conven-
tional total momentum _gl +32 is not a constant of the motion unless
both gl and gz are zero., For a one-dimensional counter-example,
consider constant functions

dul/dt

[
-
]
on

and

2

duz/dt $" = -b

with b a real number. It is easy to see that they satisfy the Lorentz-
invariance conditions for one-dimensional space. This example vio-
lates the parity requirement that ¢1 and ¢2 change sign when vl, ve
and x change sign. We might expect to get this property from rota-
tion invariance when a three-dimensional system is cut down to one
dimension.

The lack of conservation of ul+u? and x!Xul! + x2Xu2 is one
reason why we do not emphasize the conventional momentum variables
gl and u“. When we put the equations of motion in Hamiltonian form,
we will want canonical momenta p! and p? such that pl+p? and
glxgl + x2Xp? are constants of the motion. Evidently E]' and p?
will not be the same as ul and u%. They could be the same asymp-
totically when the particles are widely separated and not interacting.
This would imply that 21 and 22 are functions of the relative posi-
tion of the particles as well as functions of their velocities.

Generators of Noncanonical Transformations and Thejir Lie Brackets

Now we want to put the equations of motion in Hamiltonian
form, This involves choosing canonical momenta as functions of the
positions and velocities. Then the Poincaré group is represented by
the transformations of positions and canonical momenta which follow
from the transformations of positions and velocities. We expect that
the canonical momenta can be chosen to be invariant under space
translations and vectors under space rotations, so for this part of the
Poincaré group we will have the usual transformations, which are
canonical. But there is no reason to expect the Lorentz transforma~
tions to be canonical. In fact, we will see that there can be no in-
teraction if the whole Poincaré group is represented by canonical
transformations. Therefore, we must learn how to work with infini-
tesimal generators of noncanonical transformations.

Consider a classical-mechanical system of N particles de-
scribed by positions g" and canonical momenta p® for n=1,2,...N.
Suppose we have a one~parameter group of transformations of this
phase space. This means that there are real functions g™(u, g, p)
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and p™(u, g, p) of the phase~-space variables g and p, which depend
also on a real parameter u, such that

n
40, ap=d
n
"0, g, p = p"
g'u+t, g, p = a(u, alt, @, D, plt, g, 2))

p(u+t, g, p) Ran, alt, g, p, plt, g, 2))-

For example, these could be transformations in time, or they could be
Lorentz transformations.

Each one-parameter group of transformations has an infinitesi-
mal generator. Let

2y
7
i

[ag"tw/au) _,

—
ke
=
Ll
]

[9p™(w)/2u] u=0"

These are real functions of the phase-space variables g and p. Let
K denote this set of functions. This is the generator. From the group
property we get

3_qn(u,g,g)/8u = lir(r)l(l/t) gn(u+t,g,g) -_qn(u,g,g)}
t= '

lim (1/t{ q"(u,q(®), pl)) - _qn(u,_q,g)}
t=0

N

{[qj Rlog"(u, _q.p)/Bq +

m.—

+[ pjmlﬁlagn(u,g,g)/apjm}
and similarly

" N
op"(u)/0u = {[q, Riog"(w/oq," + [pf" RIop" (/05"

m—1 j=

The functions g™(u, g, p) and p™(u, q, p) are the solutions of these
differential equations which equal _q “and p at u=0. Thus the
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one-parameter group of transformations is characterized by its
generator,
For a function F(g,g) of the phase-space variables g and p,

let
A=Y, L (o™ R19F/oa " + [p™ RIoF/0p,"} .
m=1 j=1
Then
8q"(w/ou = [q"(w K]
9p"(w)/ou = [p*(w,K]

8F<g(u),g(u? /ou = nljl ]: {[BF(_q_(u) R(u)}/aq (u)]aql?(u)/au

+ [8F(g(u) ,g(u)> /9 p]:‘(U)]ap]?(u)/au}

= g i{[al-"/aq ﬂ [ aqk(u)/aq

m,n=1 j, k=1

+1p™, Rlog () /op OF/8p, (u)
[ R pspta/on) + [or/on o)
‘ <[J }Bpk (u)/aq +[p;n,ﬁ]3p;(u)/ap;n>}

= [F(g(u),_g(u)>, R;l .

The generator R is determined by the set of functions [F,f{] for any
complete set of independent functions F(g,g) of the phase-space
variables.

When we say that a transformation of the phase-space varia-
bles g and p is canonical, we mean that it preserves Poisson
brackets. The transformations generated by R are canonical if and
only if there is a function K(g E) of the phase-space variables such

that
n n
[qk ,R] = ok/op]
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and
n - n
l:pk,K:' = -aK/aqk.
Suppose there is such a function K. Then [F,K] is the Poisson

bracket [F,X] for any function F(g,p) of the phase-space variables.
Using Poisson brackets and the Jacobi identity, we get

[[q;n(u),KJ (u)J [q W, [;(u),xﬂ
a7 p0w] x].

This implies that as a function of u the Poisson bracket [q u),pﬁ(u)]
does not change from the value GmnG]k which it has at u= 0 It fol-
lows similarly that

[q;n(u),q]?(U)J =0 = [p;n(U),p:(u):l.

Thus the transformations are canonical. Conversely, suppose the
transformations are canonical. Taking the derivative of

mey B | =
ERCEC R
with respect to u at u=0, we get
n( m a m( n 2| _
(8/‘(>qk)|:qj ,K] + (8/2p; )[pk,K] = 0.

Similarly, from [qJ (e qk(u)] 0 we get

(B/Bu)tq;n(u) , p]?(u]

o/o8) (a7 % |- /omp a7 R] = 0
and from [p?‘(u),pﬁ(u)] =0 we get
8/3qk)[p K} - (8/8q; )[pk, J = 0.

These are the 1ntegrab111ty conditions for existence of a function K,
Let R, and K, be generators for two one-parameter groups of
transformations. Their Lie bracket [KI'KZ] is defined by
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[p,[gl,f(z]] = [[P,ﬁl],Kz] - {[P,Kz],f(l]

for functions F(g,p) of the phase-space variables. If R; and R, are
two of the generators for a many-parameter group of transformations,
for example, the ten-parameter Poincaré group, then [Kl Kz] is one
of the brackets which characterizes the infinitesimal structure of the
group, This bracket is related to the commutator of the two one-
parameter groups of transformations in the following standard way. 2)
Suppose that to a function F{q p) we apply first a transformation gen-
erated by Kl, second a transformation generated by Kz, using the
same infinitesimal value u for the parameter of both, and then apply
the inverse of the first transformation followed by the inverse of the
second transformation, keeping terms to second order in u, The re-

sult is
F+ uz{{[P,ﬁl] ,ﬁzj . [[P,ﬁz] ﬁlj}

(Terms involving only one of the generators cancel because they just
contrlbute to a transformation followed by its inverse. Also two terms
wl[[ F, Kl] KZI cancel.)

The definition of [Kl ,Kz] looks like a Jacobl identity., Sup-
pose Kl and 1(2 generate canonical transformations. Let Kl and K2
be functions such that [F, KI] and [F, K2] are the Poisson brackets
[F,K;] and [F,K ] for all functions F. Then, because Polsson brack-
ets satisfy the Iacobi identity, we see from the definition that
[F, [Kl K311 is the Poisson bracket [F, [K;.%,]] for all functions F,
with the Poisson bracket [K;,K;] replacing Kl,Kz] Thus all
brackets reduce to Poisson brackets in the case of canonical trans-
formations.

In the general case of noncanonical transformations there are
two kinds of brackets: the derivative [F,K] of a function F(qa,p) for
transformations generated by K, and the Lie bracket [R;,R;] of two
generators. It is convenient to use bracket notation for both. The
definition of the Lie bracket provides a Jacobi identity involving both
kinds of brackets. Both kinds of brackets can be viewed as commu-
tators by using operators on the Hilbert space of square-integrable
functions of the phase-space variables. This is outlined in the next
section.

Operator Formulation

Both kinds of brackets described in the preceding section can
be viewed as commutators in an operator formulation of classical me-
chan.ics.s) Consider the Hilbert space of square-integrable functions
of the phase-space variables g and p. Each physical quantity is a
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function F(q, g) of the phase-space variables. It is represented by
the operator which multiplies every function in the Hilbert space by
F(g,p). All of these operators commute with each other.

A generator of a one-parameter group of transformations is a
Hermitlan operator

2ie 0 § i{[qm ﬁ] o, [pm K}_ﬂ_}
S e | 3 aqjm 1! apj"‘ '

The bracket [‘F,ﬁ]ﬁ for a function F(g,p) 1is the commutator of the
operators F and K:

[F,R] = -i(FR - RP).
[qjm,g] - @1 e qum>
[p;n,K] = -1 (p;nﬁ - ﬁpjm>.

The operators gn and gn are transformed to the operators

In particular

and

gn(u) - e1qune—1uK

and
1uk n -iuk
e pe :

n
p (W=
An operator F(g,p) is transformed to the operator
1uk -iuk
F(g(u),g(u)> =e F(g.ple .7

Then

aP<g(u) A g(uD /8u

-1{F(g<u>,g<u>)ﬁ - RF ﬂ‘“"ﬁ‘”’}
[F (g(u) , pW), R} .

In particular,
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[og™W/ou] _, = [a"k]
and
[op™(w/oul _, = [p"R].

The operators g™(u) and p™(u) are functions of the operators g and p.
We have

g+ = emﬁgn(t)e_1uK = gn(t, q(w), g(u)>
and similarly

prit+u) = gn<t, a(u), _e(u)>.

Just as in quantum mechanics, the Lie bracket of two genera-
tors is their commutator:

[Kl,ﬁz] = -1(K1122-K2K1).

Generators and Bracket Relations for the Poincaré Group

Now we can use generators and Lie-bracket relations for the
Poincaré group to develop a relativistic Hamiltonian formalism with
noncanonical Lorentz transformations. ' This is what we expect to get
by putting the Lorentz-invariant equations of motion in Hamiltonian
form. We will establish a correspondence between invariance of the
Newtonian equations of motion and the Lie-bracket relations for the
Poincaré group. We will see that canonical Lorentz transformations
are not required either for invariance of the equations of motion or for
the relativistic Hamiltonian formalism.

Suppose the classical-mechanical description of a system of
I:I garticles admits the Poincaré group of transformations. Let fI, E
I, K be the generators, of the kind described in the two preceding
sectlons, for time translations, space translations, space rotations,
and Lorentz transformations, respectively. We assume that these
generators satisfy the Lie-bracket relations characteristic of the
Poincaré group. These Lie-bracket relations will be the basic object
of study.

We assume that the positions g@ transform as usual under
space translations and rotations. This means that

n D —_—
[qa ’Pk:l = Oy
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and
n ]1- = ¢ n
9y IAY)

for n=1,2,...N and j,k,£=1,2,3. We assume also that the time-
dependent positions transform as usual under Lorentz transformations,

This means that
ns | _ nlna
5% - 58]

for n=1,2,...N and j,k=1,2,3.

We assume that H generates canonical transformations. This
means that there is a function H(g,p) of the phase-space variables
such that [F,f] 1s the Poisson bracket [F,H] for all functions Fla,p)
of the phase-space variables. We assume that space translations
and rotations also are canonical. This means that there are functions
P and J of the phase-space variables such that [F,P] and [F,J] are
the Poisson brackets [F,P] and [F,]J] for all functions F of the
phase-space variables. Then the Lie-bracket relations involving only
B and [ are the Poisson-bracket relations

(PPl =0

i
(0] = <y
;R = P,

and transformations of the positions gn under space translations and
rotations are characterized by the Poisson-bracket relations

n —

and
n - n
[qj lIk] | ejkﬂqﬂ .

From these it follows that P and J can be put in the standard forms

B:
I

n
P

o2

and
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n n
S a Xp

n

o=

by a canonical transformation which leaves the positions q" un-

changed., 4) Thus without loss of generality we may assume that P
and J are these standard functions.

We assume that the equations

v o= [gm,ﬂ] = 3H/Bgm

have a solution for the canonical momenta p" as functions of the po-

sitions gm and the velocities v™ for m=1,2,...N. With Hamilton's
equations, the motion is determined by the same initial data as for
Newton's equations: the positions and velocities at time zero.

The motivation for these assumptions is the following. We
want equations of motion which specify the accelerations of the par-
ticles as functions of the positions and velocities. We want the
equations of motion to be invariant under the Poincaré group of trans-
formations. We want to put these equations of motion in Hamiltonian
form. This involves choosing canonical momenta as functions of the
positions and velocities. Then transformations of the canonical mo-
menta are determined by the transformations of the positions and ve-
locities. We expect that the canonical momenta can be chosen to be
invariant under space translations and vectors under space rotations
so that the standard functions P and | are suitable for generators. If
there is interaction, the canonical momenta may be complicated func-
tions of the positions and velocities, and their Lorentz transforma-
tions may be complicated. Therefore, we do not assume that Lorentz
transformations are canonical.

We want constants of the motion H, P, J which correspond,
in the usual way, to invariance of the equations_ of motion under time
translations, space translations, and space rotations. We do not
have an equally strong motivation for associating a function of the
phase-space variables with the generator K of Lorentz transforma-
tions. That it is consistent for Lorentz transformations to be non-
canonical, when time translations and space translations and rota-
tions are canonical, is demonstrated in the following example for a
single free particle.

Free-Particle Example: Let the equation of motion dzg/dt2 =0
for a single free particle be described by the Hamiltonian

H= (1/2)22-
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Then the canonical momentum p 1s the velocity v because
v =[qf] =8H/8p = p.

The transformations of q and v under space translations and
rotations are the canonical transformations of g and p gener-
ated by the standard functions

P=p

and

J =aXp.

For Lorentz transformations we have

P

[qj,Kk] = qk[qj,H] = qu =9

3

and
[pj.Kk] = [v].,Kk] = Dy ij = pPy - ij.
The Lorentz transformations are noncanonical. For example,
a[qj.Kl,,]/aqk + 'a[pk,Kz]/apj = 8 ,p; +0,p +0,p,.

For canonical transformations this would be zero. The gener-
ators satisfy the Lie-bracket relations for the Poincaré group,
because they generate the usual transformations of g and v
for a free particle; one can check this explicitly. The free-
particle equation of motion is obviously invariant under the
transformations of the Poincaré group, We will make more use
of this example later,

For the Lie-bracket relations involving H but not K, we have

the Poisson-bracket relations

and

]
(==l

[H,E]

[H,]] = o.

These just imply that H is a function of only the canonical momenta
and the relative positions and is invariant under rotations. 4
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Of those involving K, the Lie-bracket relation
[R.H] = B

is decisive. It is easy to see why. If we apply [Kk,I:I] = f’k to q?,
we get

—
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If we write

and

a’ = [[g“,ﬁ],ﬁ}

for velocity and acceleration, we have

ns)|_nn n.n _
[\/J.,Kk}—qkaj +vjvk ij.

This is just the equation which characterizes the transformations of
velocity derived from Lorentz transformatlons of the time-dependent
position. Now if we apply [Kk,H] Pk to[gq j,H] and use the equa-
tion just obtained, we get

5] 814 ]

] It
= |
w2

r— g

: a <
- B g
mo

L o]

S LA

T <

| I— m)
[l

— !

+ —
[a%]

Q

Q - B
w2
o =

| I oy
7:‘ i

because
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[ 8] = ([ )m] [ [r8 ]| - o

In terms of v, a, and
we have

This is just the equation which characterizes the transformations of
acceleration derived from Lorentz transformations of the time-
dependent position.,

The canonical momenta are functions of the positions and ve-
locities. With [:Ig,ﬁ] =E applied to positions we see that the Lorentz
transformations of positions and canonical momenta generated by g
are just the usual Lorentz transformations of positions and velocities.
The accelerations are functions of the positions and canonical mo-
menta and themforo also functions of the positions and velocities.
With [K,f1] =P applied to velocities we see that the Lorentz trans-
formations of these functions are the same as Lorentz transformations
of accelerations. This means that the equations of motion are invari-
ant under Lorentz transformations.

The other Lie:bracket relations invoelving K follow as a con-
sequence of [ﬁ,ﬁ] =P. For example, we have

IR ICEARY

n n n
= - + = -
T30+ 9% = S pfimT m

n -
1Y [q i’ ]ﬂ}

1
fle]
ol
h
\_l.w)
e
.
| I—
1}

because
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n s ls|_ln[ln 275 ]
I o8 LR = [ e Ly

]
[—
Q
o
e
| I
Q
=
.
o
| E—
+
Ke]
_ s
.1
—
Q
o
=
o
L 1
e
| I

]

and we have

[ -] 5) 4] - [ o)
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because

oo

n
] - ij[q i

o

)

404

qi'

-a,

This i1s the Lie-bracket relation

This 1s sufficient to establish

the Lie-bracket relation because the canonical momenta, and all

applied to positions and velocities.
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functions of the phase-~space variables, are functions of the positions
and velocities. The remaining Lie-bracket relations

(K,
and
& fi] = 4k,

can be verified similarly on the positions and velocities.

Thus we see how the Lie-bracket relations correspond to in-
variance of the equations of motion. Lorentz invariance of the equa-
tions of motion does not require canonical Lorentz transformations
with generators corresponding to functions of the phase-space varia-
bles. In particular, this is not required by the conservation law
which follows, according to Noether's theorem, from Lorentz invari-
ance of the equations of motion.5 This can be seen explicitly in the
free-particle example above where noncanonical Lorentz transforma-
tions are used for the Lorentz-invariant free-particle equations of
motion.

The Hamiltonian determines the equations of motion which
specify the accelerations as functions of the positions and velocities.
Therefore, Lorentz invariance can be considered a property of the
Hamiltonian as well as a property of the equations of motion. We
have assumed that the equations

v = aH/ep"

have solutions for the canonical momenta as functions of the posi-
tions and velocities. Therefore, given the Hamiltonian, we have only
one choice for the generators K of Lorentz transformations. They are
determined by the Lorentz transformations of positions and velocities.
This means that [p K ] are the solution, in terms of the Hamil -
tonian, of the Lie- bracket relation [K H] = P applied to the positions,
which gives the infinitesimal Lorentz transformations of velocities.
Then Lorentz invariance requires only that the Hamiltonian be a so-
lution of the Lie-bracket relation [K H] B applied to the velocities,
which gives the infinitesimal Lorentz transformations of accelerations,
Thus we get differential equations to solve for the possible Hamil-
tonians. These equations were obtained originally from a slightly
different point of view. 6

The Hamiltonlan form of the equations of motion, and the ca-
nonical form of space translations and rotations, do not depend on
the choice of space-time coordinates. Because the equations of mo-
tion are invariant, they can be put in Hamiltonian form in the same
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way with respect to a transformed reference frame. The same Hamil-
tonian function H and the same standard functions P and J can be
used for the generators of time translations and space translations
and rotations with respect to any reference frame gotten by a trans-
formation in the Poincaré group. .If H, P, J are the total energy, mo-
mentum and angular momentum, then the same functions of the posi-
tions and canonical momenta for the transformed frame are the trans-
formed energy, momentum and angular momentum. Thus the cormre-
spondence of generators to energy, momentum and angular momentum
is independent of the choice of reference frame.

For example, consider a Lorentz transformation for an infini-
tisimal velocity ¢ in the z direction. The positions gn and canoni-
cal momenta Bn are transformed to

n n n s
a =g +dg.ks]
and
n' n n s

and H(q,p) is transformed to H(g',p'). Time translations with re-
spect to the transformed frame are generated by

H =8+ e[I:I,IE?’].

.—.
1Q
T
f—
I

- L]+ e|g [RRg) |+ e[[aRg) |

[q", &) + {[g“,ﬁ],ﬁ3j
which is the transform of
(g™, H] = 6H/ap".
Therefore
[¢"', 8'] = oH(g',p")/0p"
and similarly,

-~ '

[En"H-] = ‘aH(g'/B')/ain .
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Thus time translations with respect to the transformed frame are ca-
nonical with respect to the transformed positions and canonical mo-
menta, and their generator corresponds to the same function H of the
transformed positions and canonical momenta., Similarly, space
translations and rotations with respect to the transformed frame are
canonical with respect to the transformed positions and canonical mo-
menta, and their generators correspond to the standard functions

N

2P

n=1

and

N n' n
Ld Xp
n=1

The same is true when this infinitesimal Lorentz transformation is re-
placed by any transformation in the Poincaré group.

No-Interaction Theorem for Canonical Transformations
Now we can state exactly why we do not assume that all the
transformations of the Poincaré group are canonical.

Theorem: If the assumptions described in the preceding sec-
tion are satisfied, for a classical-mechanical system of a
finite number of particles, and if all the transformations of
the Poincaré group ?re canogxical, then the particle accelera-
tions are all zero. 7),8).4).9

Lorentz Transformation of Energy, Momentum and Angular Momentum

One property of canonical Lorentz transformations which might
be defended physically is that the way they transform the Hamiltonian
function H and the generator functions P and ] for space transla-
tions and rotations is the way energy, momentum and angular momen-
tum usually transform. We will see that noncanonical Lorentz trans-
formations need not have this property, and that if we assume it we
can prove again that there is no interaction for two particles.

Suppose we think of H and P as the total energy and momen-
tum. They are constants of the motion and are invariant under space
translations. Under space rotations H is a scalar and P is a vector.
In what has been assumed so far, H and P have no particular proper-
ties under Lorentz transformations. This is illustrated by the example
of a single free particle with H= (1/2)22 in which
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and
[Pj'Kk] = pjpk - ij'
Should we assume that H and P transform as a four-vector

under Lorentz transformations, as is usual for energy and momentum?
This means that

and

for j,k=1,2,3. The Lie-bracket relations

[#,R] = -P

-

and

imply that the generators H and E transform as a four-vector under
Lorentz transformations, Now should we assume the same for the
quantities H and P?

Suppose we think of J as the total angular momentum. It is a
constant of the motion and a vector under space rotations. Under
space translations ] transforms as is usual for angular momentum; we
have

U5 Pd = 4dlye

For Lorentz transformations of T we can investigate various hypothe-
ses:

(a) (7R = - [ 8]
(b) (5,.%1 =0

(c) [[Ii’Kk]'Km:l . _Ejkl,eﬂmnln N 6kaj - ijIk'

None of these is implied by what has been assumed so far; this is
shown by the example of the single free particle with H= (1/2)5)_2 in
which
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(1K) = ¢ plag Rley + e alog Rl
- EjJqukpﬂpm * ejﬂqupmpk - ejﬂmqﬂﬁmk

= Pt &9y

SO []j,ﬁk] is not antisymmetric in the indices jk, in particular Uj ,ﬁj]
is not zero, and furthermore :

[[ Ij,Kk] ,Km} = Ij(pkpm -6, )+ (ijm + ejmlqﬂ)pk * €a%mPy

All the hypotheses (a), (b) and (c) are properties of a representation
of the Lorentz group by canonical transformations, or by unitary trans-
formations in quantum mechanics, because then these brackets are the
same as the Lie brackets., These properties are more or less under-
standable physically. For example, (b) says that the component of
angular momentum in the direction of the Lorentz transformation is not
changed. The combination of (a) and (c) implies that J transforms as
part of an antisymmetric second-rank four-tensor. In particular, (c)
is analogous to

[[H,Kj],KkJ = 0 H
which says that H transforms as part of a four-vector, or to
[[ Pj'Kk] 'Km:l - bjkpm'

The choice of hypotheses is simplified by the following.

Theorem: Hypothesis (a) is true if and only if (b) and (c) are
true. .
Proof: From [K, K] =-¢yy 7, it follows that

{UJ"Kk]’Km] ; [UJ'Km]'Kk] = mksin’n = Om T Oalk
so if [[Ij,Kk] ,Km] = &xgAgm. then

“eePim ~ 9mePox = 9 m T Ymlke

Multiplying by € and summing over j yields

abj
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i R Em e ARnLaE ™ B

h Eamek'
For a=k and b=m but a#b, this is App +Ay,=0 which implies
that A,=0 fora=1,2,3. For b=m but a#k, a#b, and k#m,
it is

Bk = “akm'm’

Therefore

[Uj 'Kk] ’Km:| = _Ejkfﬂmnln'

Thus (a) implies (¢). Evidently (a) implies (b). From (c) it
follows that the part of UJ K ] which is symmetric in the in-
dices jk is invariant under transfmmations generated by K
Then it is invariant under rotations because
2.7 =- o
LKy = ey )y
Therefore the symmetric part of [J; Kk] is proportional to 6,
This must be zero if (b) is true. J[‘hus (b) and (c) imply (a).
This completes the proof.

We will use (a) to characterize the usual Lorentz transforma-
tions of angular momentum,

The parity transformation reflects the positions gn and the
velocities vi=8H/9p". One might assume that H is invariant under
the parity transformation. This implies that the parity transformation
reflects the canonical momenta p®. Then H is invariant under re-

flection of the positions and canonical momenta.

No-Interaction Theorem Based on Transformations of Energy,
Momentum and Angular Momentum

That we should not assume all the properties described in the
preceding section is suggested by the following.

Theorem: For a system of two particles, there are no interac-
tions, no accelerations, consistent with the assumption that
H and P Lorentz transform as a four-vector, hypothesis (a)
for Lorentz transformations of J, and the previous assump-
tions: the Lie-bracket relations for the generators of the
Poincaré group; the transformations of particle positions; ca-
nonical transformations for time dependence and for space
translations and rotations. It is assumed that the Hamiltonian
function H is invariant under the parity transformation and
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that the canonical momenta are functions of the positions and
velocities, 10

Which assumptions are really needed for this theorem? We
doubt that the parity assumption is essential. Relaxing it would
probably not allow interactions.

We expect that interactions will be possible if H, P and J
are not required to Lorentz transform as the conventional four-vector
and tensor. This guess is based on the following considerations. We
have seen how the Lie-bracket relations for the Poincaré group, plus
the transformations of positions, correspond to invariance of the
equations of motion which specify the accelerations as functions of
the positions and velocities, It appears that these invariant equa-
tions of motion allow interactions. We expect that they can be put in
Hamiltonian form, with canonical momenta which are invariant under
space translations and vectors under space rotations. We expect that
the equations of motion can be invariant under the parity transforma-
tion, and that the canonical momenta can be vectors under parity.
This would satisfy all the assumptions of the theorem except that of
Lorentz transformations of H, P and 7J.

For two particles, invariant eguations of motion allow no in-
teractions for which either the total momentum ul +u? is a constant
of the motion, with un=lmngn(1 uy_nz}_l 2, or the total angular mo-
mentum _ql X u! +g2_>< u“ is a constant of the motion. These quanti-
ties could be conserved only in the asymptotic limits of collisions.
Perhaps the physical motivations for the conventional Lorentz trans-
formations of H, P and J, based on energy, momentum and angular
momentum, are meaningful only asymptotically. This might be a rea-
sonable point of view for describing a collision, but it suggests dif-
ficulties in describing a bound system of two particles.

Interactions might be possible with H, P Lorentz transforming
as a four-vector, if only J is not required to Lorentz transform as
usual. For one-dimensional space, there are interactions with H and
P=pl+p? Lorentz transforming as a "two-vector. " An example is
provided by the Hamiltonian

1/2 1/2
H = <p12 +m2\} +<p22 +m2\ - blg! - ¢?)
1, 2
with b a real number, This yields

n n -1/2

p =u = mnvn(l—vnz)

for n=1,2, and
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b

dpl/dt

dp2 /dt

-b

which were mentioned previously as an example showing that the con-
ventional total momentum can be a constant of the motion for one-
dimensional space. From the Lorentz transformations of ql, qz, vl
and v2, one can calculate

[H,K] = -P
and
[P,R] = -H.
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IV, Discussion

History

Now we will trace the history of some of the ideas which have
been presented in these lectures. Our primary aim is to elucidate the
motivation and development of classical particle theories. However,
we shall consider also some of the quantum aspects, since they pro-
vided part of the motivation, and since some of the ideas were stated
originally in a quantum context. Beyond that, most of the classical
work has as its aim a better understanding of the analogous quantum
theory.

The interaction of two particles can be specified by giving the
accelerations as functions of the relative position and relative
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velocity in some particular frame, This yields equations of motion of
the form

a' = fx -x°, v -vY)

(for n=1,2) in that frame. To obtain the equations of motion in a
different frame, we can transform the world lines and then find the
equations of motion which they satisfy. For Galilei transformations,
we find equations of motion of the same form

a” = ! -5'2, vl - z'z)

(for n=1,2) for the variables of the new frame. The Galilei group of
transformations is such that the accelerations remain the same func-
tions of only the relative position and relative velocity. When the
Galilei group is replaced by the Lorentz group, the transformation
properties of the equations of motion become considerably more com-
plicated, primarily because simultaneity is not Lorentz invariant. The
accelerations are not only functions of the relative position and rela-
tive velocity, but depend on the individual particle velocities sepa-
rately. Thus one could easily write down the most general Galilean-
invariant equations of motion, but finding Lorentz-invariant equations
of motion requires non-trivial computation.

Historically, this apparent difficulty was one of the factors
which led to an emphasis on fields to describe the interaction of par-
ticles. Other factors were Einstein causality and the question of
energy conservation in classical electrodynamics. In these lectures
we have considered energy-conserving interactions (as, for example,
Wheeler-Feynman time-symmetric classical electrodynamics), so the
energy argument, which favors fields for the retarded interaction, is
not relevant here. The assumption of manifest Einstein causality re-
quires the dynamic properties of a radiation field; the field at a given
time is not determined by the position and velocity of the source at
the same time. However, while the use of a radiation field is a con-
venient and conventional approach, it does not relieve the causality
difficulties, even in the retarded formulation. In 1938 Diracl) did
the mass renormalization needed to obtain the trajectories of particles
interacting with an electromagnetic field. His exact solutions for the
motion of a ¢harge revealed the difficulties associated with preaccel-
eration. Havas?) has shown that this failure of manifest Einstein
causality is not limited to the scalar electron interacting with the
electromagnetic field, as considered by Dirac; it occurs for particles
with spin and fields with various transformation properties.

At about the same time that Dirac discussed the preaccelera-
tion questions, Wigner3) showed how irreducible unitary
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representations of the Poincaré group can be used to describe ele-
mentary systems, or free particles, in quantum mechanics. In 1941
Dirac?) set up an analogous formalism for classical particles. He
emphasized the representation of the Poincaré group, and did not re-
quire correct Lorentz transformations for the particle positions. (A
similar formalism for fields had been considered earlier by Pryce.s))

Dirac assumed that canonical representations of the Poincaré
group should be used to describe systems of interacting particles.

He introduced this assumption by requiring that Poisson-bracket re-
lations remain invariant under the relativity transformations. He took
this to mean that the transformations must be canonical, as indeed
they must if the Poisson brackets are always computed with the ca-
nonical variables of a single frame. We use noncanonical Lorentz
transformations, and we have a formalism in which Poisson-bracket
relations are invariant, For example, the Hamiltonian and the gen-
erator functions for space translations and rotations are invariant.
The point is simply that after a Lorentz transformation one must use
the transformed canonical variables.

In 1953, Bakamjian and Thomass) developed Dirac’s formalism
for interacting particles by finding a general solution of the Poisson-
bracket relations for the generators of the Poincaré group. They de~
scribe a huge class of interactions for which the total mass (in a rep-
resentation similar to that of a free particle; is a function of suitably
chosen relative variables. In 1961, Foldy7 presented an excellent
discussion of the ideas which lie behind the use of unitary represen-
tations of the Poincaré group in a formalism which says nothing about
Lorentz transformations for particle positions. This kind of relativis-
tic quantum theory of particles has been applied to scattering8 -11
and to bound states (as in relativistic quark models+4/).

The spirit of this kind of theory is to abstract the Poincaré
group from transformations in space-time, and then describe particles
with representations of the group. The description is invariant under
the group representation (for example, the equations of motion are in-
variant) but only the group structure identifies the representation with
the physical relativity transformations. We belleve that the physical
relativity transformations should be identified by their transformations
of a complete set of physical quantities, For two or more particles,
the group representation is reducible, the generators are not a com-
plete set of quantities, and the group structure is not sufficient,
How, then, did it happen that Lorentz transformations of particle po-
sitions were generally ignored in the development of these theories?

It appears that Thomas!3) considered manifest Einstein cau-
sality and Lorentz transformations of particle positions at the same
time and, seeing the difficulty of this combination, gave up the trans-
formation reguirements on the positions. Foldy7 states explicitly
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that there is no manifest Einstein causality in his formalism and that
Einstein causality is a question to consider at a later time, Foldy's
reason for not considering Lorentz transformations of particle posi-
tions is that he works in quantum mechanics where the definition of
the particle position is complicated by the uncertainty principle and
zitterbewegung.

To make a detailed investigation of this question of the posi-
tion and its transformation, we consider the analogous classical sys-
tem. We have seen that with correct Lorentz transformations of parti-
cle positions in classical mechanics, there can be no interaction
when the Poincaré group is represented by canonical transformations,
as in Dirac's formalism. This no-interaction theorem, together with
the realization that canonical transformations are not required, led us
to the point of view described in these lectures, We begin with
Lorentz transformations of particle positions and from them construct
the representation of the Poincaré group. Our Hamiltonian formalism
is developed in as close analogy to quantum mechanics as is possi-
ble, in the hope that it might be quantized in a somewhat conven-
tional manner.

In the past few years several no-interaction theorems have
been proved. Fong and Sucherg) show that conventional Lorentz
transformations of particle momenta allow no interaction in the quan-
tum theory. Van Dam and Wigner14) show that there is no interaction
if the conventional total momentum and kinetic energy are conserved
and the particles are free asymptotically. We proved a similar theo-
rem in these lectures. We do not assume that the kinetic energy is
conserved, and, since we do not use an asymptotic condition, our
result holds for bound systems as well as for collisions. Van Dam
and Wigner do not use equations of motion, and their proof is for 2,

3 or 4 particles, Still ancther kind of no-interaction theorem was
proved by Ekstein15 using manilfest Einstein causality.

We have considered the instantaneous equations of motion
which can be put in Hamiltonian form. There are other ways to de-
scribe interaction in relativistic c¢lassical particle mechanics. One
of the earliest, developed by Fokkerl6) and by Feynman and
Wheeler, 17) was to eliminate the fields from classical electrodynam-
ics. This has the problem of preacceleration discussed in connection
with Einstein causality. Havas and Plebanskil8) have developed
another formalism, a special case of which can be described as fol-
lows. The acceleration of particle 1 at a given point on its world line
depends on the position and velocity of particle 2 at the point on its
world line which has the same time as that of particle 1 in the rest
frame of particle 1. Therefore, the interactions are not simultaneous.
Havas and Plebanski show that the resulting series of iterations is
convergent and yields solutions for the world lines. Ancther formal-
ism is that of Van Dam and Wigner19 in which the aceeleration of
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particle 1 at a given point on its world line depends on the positions
and velocities of particle 2 at all points on its world line which are

space-like with respect to that of particle 1. This can be described
by manifestly Lorentz -invariant equations of motion of the form

my ey op/anf = fanr () 5 ) gy ) o )

where 1-"}L is a function of four-vectors.,

Kernerzo) and HillZI) have proposed a Hamiltonian formalism
in which the physical positions, which transform correctly, are dif-
ferent from the canonical coordinates. The advantage is that canoni-
cal transformations can be used for the entire Poincaré group. The
big disadvantage is that the relation of the canonical variables to the
physical variables will be complicated, and this will make the ques-
tion of quantization that much more difficult.

Questions §till Unanswered

In the following brief review, we will list some of the problems
which are not yet solved.

The spirit of these lectures has been to concentrate on the
particle positions, because Lorentz transformations are defined most
surely for points in space-time. Thus we first study the Newtonian
equations of motion. The reguirement of Lorentz invariance takes the
form of nonlinear differential equations for the acceleration functions.
This is a strong requirement in the sense that it eliminates the use of
canonical representations of the Poincaré group for describing interac-
tions. On the other hand, we believe that there are many Lorentz-
invariant equations of motion. For one-dimensional space, we can
have any acceleration in the center-of-mass frame. The proof of a
similar statement for three-dimensional space is not yet complete.
Beyond that, we need more examples, and phygically more interesting
examples. Solving the nonlinear differential equaticns may not be the
best way to find them; perhaps another approach is needed.

It would be interesting to study in detail the connection be-
tween the instantanecus equations of motion which we use and the
equations of Van Dam and Wigner. 19) This might shed some light on
the questions of Einstein causality. Eventually, however, the ques-
tions of Einstein causality should be studied in a system of three or
more particles.

For given invariant eqéiations of motion, there are generally
many different Hamiltonlans, 2)-24 Is there a physical way to
choose a unique Hamiltonlan? The lack of a decisive answer to this
question is one reason we concentrate on particle positions rather
than canonical momenta. For the same Invariant Newtonian equations




RELATIVISTIC CLASSICAL MECHANICS 137

of motion, there are different Hamiltonians, which means that the
canonical momenta are different functions of the positions and veloc-
ities, satisfy different Hamiltonian equations of motion, and trans-
form differently under Lorentz transformations. The situation is il-
lustrated by the following example.

For a system of two particles, consider the different Hamil-
tonlans

1/2 ;e 1/2
H = <(31+g>\)2+m12> / +({£2‘—g)\)2+m22>/

for different choices of a function )\ of gz (where g=g* —gz). For

any \, the accelerations are zero, so the Hamiltonian describes a
system of two free particles. For the canonical momenta we get

-1/2

1 zl(l N !12) - g\

P

and

2
b

-1/2
v - 2% +

Evidently the canonical momenta are constants of the motion only if
N is zero, and this is the only case in which the canonical momenta
are parallel with the velocities, We can require that the canonical
momenta converge asymptotically to the conventional kinematic mo-
menta. This implies that N decreases faster than l_q_f—l for large
lal. This leaves an infinite number of different Hamiltonians, all of
which are positive. In this case, where there is no interaction, we
can choose the usual Hamiltonian with A=0 by requiring that the
energy H and the total momentum gl +p?4 transform as a four-vector,
but this may not be possible when there is interaction.

One can require, as above, that the Hamiltonian converge
asymptotically to a sum of free-particle Hamiltonians. This would
seem natural for equations of motion which are weakly separable.
Fong and Sucherg) have shown that in their quantum theory this prop-
erty follows from their choice of relative variables. We do not know
yvet whether a similar statement can be made in our Hamiltonian for-
malism.

If we now turn to quantum mechanics, we must first define the
role of position in the quantum theory. An intuitive but incomplete
approach 1s to require that the theory have a sensible classical limit.
To illustrate this, consider at an initial time t=0, a narrow gaussian
wave packet whose width is proportional to Nh. As time unfolds, this
state develops a "world packet," a small region of space about a
world line. This world line is roughly defined as the mean position
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of the particle as a function of time, More exactly, it is defined by
letting H—= 0, in which case this world packet shrinks to a world line
with a well-defined momentum. The requirement on the quantum
theory is that this limiting world line transform properly.

With this definition of the transformation of the position in a
theory with unitary representations of the Poincaré group, it is possi-
blezg to prove that there is no interaction except generalized contact
interactions. In other words, given a classical system which inter-
acts as we have discussed (for example, an arbitrary potential V{x) in
the center-of-mass frame) there exists no quantum theory of the above
type which limits to this classical theory as h goes to zero.
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1. Introduction

The Thirring model describes a self-interaction of a massless
spinor fleld in one-space dimension described by the Lagrangian

Lil’lt = gjpjp‘

The history of this model has been a dramatic one and revealed the
Thirring model as being a rather tricky object. A comprehensive ac-
count of this history is given in Reference 1. We give here only a
short sketch of this history. Thil‘ringz showed that the model is
exactly soluble and constructed the eigenstates of the Hamiltonian.
Glaser3) then solved the field equations. Both authors dealt with
formal manipulations, and it was shown subsequently that these ma-
nipulaticns lead to contradictions. Iohnson4) then started from
scratch, paid careful attention to the definition of the products of
fields which occur in the definition of the currents and in the field
equation and solved the system of coupled equations for the time-
ordered functions. At that point one then asks for the unordered
functions or even an operator solution. The latter was the aim of the
work by Scarf and Wess'.S) This solution was agaln a formal one in-
asfar as nonexistent line integrals of the currents were used. The
algebraic structure of this solution contained a lot of truth, and it was
also possible to obtain the correct n-point functions (corresponding to
Johnson's seolution) in this framework. 7) What was too difficult to
check was the positive definiteness condition.

The purpose of these lectures is to give an operator solution in
a well-defined Hilbert space. We avoid the introduction of an indefi-
nite metric space for the description of the massless scalar field. The
positive definiteness condition is then automatically fulfilled. We

TPresented at the THEORETICAL PHYSICS INSTITUTE, University of
Colorado, Summer 1967,

141



142 BERNHARD KIAIBER

will obtain a two-parameter family of solutions in which the solutions
of Johnson and Schwinger are contained as a subfamily. We will ex-
tensively discuss the properties of the solutions.

II. The Massless Dirac Fleld in Two Dimensions

In two-dimensional space-time, the zero mass Dirac field has
some pecullar features which are the reason for the solubility of the
Thirring model. Let us therefore begin with a discussion of these
features.

The gamma matrices are realized by 2 X2 matrices:

0_,0 1\ 1_/01\ ,5_01_ /10
T =(3 0> v —<_1 o> T =y —<0 1>' (I 1)

‘We will also use the relations

01
=y, g, - <—1 0> e’ =l .2)

One considers a two-component field whose equation of motion and
anticommutation relation are

Po,400 =0 {40), ¥} = £ Sx-y) (I1. 3)

Fourier representation:
060 = 7= § a'fa" Ghe ™ 4 btabe ™ huteh 5= Ipt)
{aeh, a*(@h} = {blph, b*(gh} = 5(pl-ql. (11, 4)

u(pl) is the two-component fundamental spinor satisfles

(ypueh =0 ulpbulp) = 2 5 0P (11. 5)

and can be represented by

ol
u(p}) = (gzpf)) i (11 6)

The interesting ob]ects are the current *(x) = P)YMY(x): and the
pseudocurrent ﬁ(xh“'y ¥(x): = é*Vy (x). Both are conserved in the
Zero mass case:
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[ = oaMe 1Y(x) =
87y, (x) = 8% J7(x) = 0, (1. 7)
and this implies that j*(x) is a free fleld
o*x) = o. (IL. 8)

The situation becomes clear if one looks at the support properties of
Y(x) In momentum space. First note that

1%x)

1)

:441*(36)4)1(}{): + :¢;(X)¢z (x%):

* *
-2y G ) + 200, 6 (11.9)
If we decompose P(x) into positive and negative frequency parts, the

supports in momentum space can be characterized by the following
diagram:

p4pl=0 0_p!

Now the convolution of tpf‘ and Yy, for example, yields again
something with the support po + p1 = 0.

But it turns out that jk(x) 1s even a canonical free field, i.e.,
its commutator is a c-number,

Let us see, in x-space and computing
formally, how this can happen.

A straightforward calculation gives

60, 170 = T BEMSG-y)7 () - FHTS(y-07p60:

-Sp{Y* 8 (x-y)vVSt(y-x)} +Sp{vVs (yx)r*stx-y) .

(11.10)

To show that the two operator parts cancel, one has to show that the
first one is symmetric in x and y. (Symmetry in u and v is obvious
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since YMyPyY = vYyPyM in two dimensions,) To see this, use the ex-
plicit form of the S-function:

S(t) = 1(6@0_&1) . (11,11)

0

0 5(§0+€1)>

and the fact that tIJl, 4’2 do not depend on x°, x! separately but

rather
b, = ¢1(x0 +x1) by = lllz(x0 -x1), (11.12)

This follows from the equation of motion which, in components, reads

(@ -8 )4 =0 (8 +9) ) = 0. (11.13)

So we have to consider terms of the type
:'kljz &0 +x1) 6(x0 +x} -y0 -y ¢1(y0 +yl):,

and this is symmetric.
For a solid consideration, one best goes to momentum space.
One then finds that the current has the representation

By _ b Cakl our g otk w1 dkk) L0 (ol
3 (x) @ﬂgmk {c(k Je c (ke } kU= k'] (11.14)

ckl) = JETFgdpl{e(klpl)[b*@l)b(p1+k1) : a*(p1>a(p1+k1>}

+ e(pl(kl—plna(kl-pl)b(pl)}
[ck]), c*©h] = 6kl-pl) ckbu=0 (I1. 15)

if © is the original vacuum of the a and b.

Equation (II.14) anticlpates yet another characteristic of the
current: The quantity eMV® j, is the two-dimensional analog of the
curl of j ., Its vanishing implies that jp is a gradient, And (II, 14)
invites to the conclusion that it is even the gradient of a canonical
free scalar field of mass zero. But here the trouble begins. In two
dimensions there is no such object. The two-point function would be

dk! -ikx
const. —0 e P
2k
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thus divergent at k=0,

145

If one wants to solve the Thirring model, one has to overcome

this problem.,

But before we have a look at this, let us list the com-

mutators and singular functions of the zero mass spinor field:

(@, 969D = 187 (x-y)

- i - ol
57 = & Sdple ‘pgba,l) i ’)
_ 1/ 0 1/(60+£1-1¢)
N 2ﬂ<1/(€°—§1—16) 0 )
SE) =87 +87(-& =1 0 5@0"51’)
(5(&0—5,1) 0
(11. 16)
(W), by} = %S(x—y)
[F) b)) = (g +e*"¥d)D, (x-y)bly)
&),V = i;D““’(x-y)
D, () = igﬁk (e-ikx4elkx)= Lo [0(:0)0(£2)
v 27 ) 207V 2%y
D,v(§) = 3,D, (&)
For equal times, x0=y0:
3060, 0] = -6 -yh)u(y)
(11.17)

L), wy)]

This means that jO(¢) (resp. j1(x))

-v38(xt-yL)u(y).

is the generator of space-time

dependent gauge transformations (resp. vS —transformations)
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QA0 () o m1QUAYO)_ AWMy QYY)

1 ;0
§x0=y0dx A (x)50 (x)

QA0 ()6 -1RUAIYO)_ IOV ) G(asy0) §0 delA(X)jl(X).
x0=y

For the interacting current J*(x) of the model we will also postulate
relations of the form (II.17) (with general coefficients occurring), in
addition to the conservation equations (II.7). Then T*(x) will again be
a free field, and a relation of the type (1I.17) defines a unique Cauchy
problem (remember that 8010= 8111, aojl =8ljo) . Thus the commutator
between the interacting field and current will essentially again have
the simple structure (II.16).

III. A Substitute for the Massless Scalar Field in Two Dimensions

There is no massless scalar field in two dimensions. This
boils down to the fact that in two dimensions there is no distribution
(except, of course, 6(p)) which has support given by p2=0 poio and
which is positive definite and Lorentz invariant. The candidate would
be, of course, G(po)é(pz). Written in the variables

u=p0+p1 v = pO—P1, (1L, 1)

it is given by

0w L o) + o) > 60,

and
1
6(u) 3,

for instance, is not a distribution. One way out of this difficulty is to
redefine the two-point function as

1 L
(.50 + ()0
where (l/u)_,_ is a regularization of the function 6(u)(1/u). A regulari-
zation of a (nonintegrable) function is defined as a distribution which

coincides with this function everywhere except in the neighbourhood of
the singularities. In our case,

Q(%>+f> - S:du L1 (L 2)
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for all test functions for which f(u)=0 in a nelghbourhood of the ori-
gin, (T.f) denotes the application of the distribution T to the test
function f. Such regularizations are furnished by

% g = wdul £(u) - 0(2x - w)£(0) (111. 3)
()= 3 e )

with k an arbitrary positive parameter (here with the dimension of a
mass), and the factor 2 stands purely for later convenience.

This provides us with a 2-point function which is invariant
but not positive definite. However, it has been shownl) that a (in-
definite) space of states and, in it, a field having this 2 -point func-
tion, can actually be constructed.

This procedure has some drawbacks. If one constructs the
solution of a model in such a space, one then has to show that the
resulting n-point functions are positive definite, or, in other words,
that the subspace generated by the resulting field operator is posgitive
definite. For Schroer's derivative couplings) this has been done, 1)
but for the Thirring model this would probably be more difficult. Then,
there is another problem. We are not dealing with an independent
scalar field (as one does in Schroer's model), but with the integrated
current of a spinor field. A third field in the game is the integrated
pseudocurrent. All three would be Lorentz invariant, but it turns out
that they would transform with different unitary representations of the
Lorentz group. The trouble comes in when one splits the integrated
currents into positive and negative frequency parts. But to calculate
the n-point functions one is seemingly forced to make this splitting.
All this shows that there is no advantage in working with Lorentz in-
variant auxiliary fields. What is important is to ensure invariance of
the final solution.

We will not use the indefinite metric, but the regularizations
which characterize it will, at the end, come in in our solution as well
(through the back door). Let us therefore discuss them in detail. The
light cone consists of four invariant branches I'y I'y":

// r
£y L,

rt rf

On these we can consider the following distributions:
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TCHUR R <ﬁ>+6(v) (GI,f) = S'mdu ﬁ (ftwro)- 9(2K-u)f(o,o)>
(o]

I“f :Gf(u,v) =<%>+6(u) (Gf,f) = Swdv%<f(o,v) —6(2K—V)f(0,0)>
(o]

rf:G (u,v)= (%)_é(u) @I, = S:o dv % (f(o,v) - 6(2K+v)f(o,o)>

I‘!:G?(u,v)=<%>_5(v) (Gf,f) = S_.:du%(f(u,o) = 9(2K+U)f(0,0)>,

(I11. 4)

Here we have also introduced the distribution

((%)_’f> = S_o du Ill' (f(o) -0(2 K+u)f(o)>_ (111 5)

Let us first study the behaviour under Lorentz transformations:

x=Ax A, = KCOSX smx) M= eXu  Av=eXy. (L6)
siny cosy

By definition,
GAu, AV),£(u,v) = (G, v), 67y, A 1y)),

Thus, for example,
(=]

(G.,I:(Au,Av) JE(u,v)) 5} du % G(e_xu,o) - f(o,o)e(ZK-u)\)

S. du %(f(u,o) - f(o,o)e(ZKe_X—u)\
)

S:du %(f(u,o) - f(o,o)e(zx-u>

+ 50 du-lll- 6(2x-u) - 9(2Ke_x—u)>f(o,o)

(G1u,v), £, v) + xflo,0))
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and similarly with the other branches. We get the following table:

Gi(Au,Av) = G{(u,v) + xB(w)b(v)
GiAu,AY) = GHu,v) - X8O
(111, 7)
GH(Au,Av) = GI(u,v) + X8(w)6(v)
clau,av) = G, v) - X6(W)6W).

The most general invariant combination is
r y4 r 2 g —
aG++BG++'yG_+6G_ with ao-B+v-06=0 (I, 8)

Fourier transform:

. 1 e0_ely L s0,¢1
Sdpe'lpgej: 3 %Sdudv o~ ZWE"-E7)-av(ET+E )Gi(U-,V)
_L( g -huEl-g])
= zgdu(u)'_e 8
- %(—loglK(ﬁo N - € 0gh 41 (1))
Introduce now a new mass p.=e'rl(l)l<. Then
2y §ave™6] = 21 (loglue0-61 1+ I e(e0- gl))
= {100 m(E0-g1-1e)) +
(111. 9)

zlvrydp el g 1°glu(€°+é1)l+17”e(g°+s1)>

O,el_. im
47“ log [m(E7+E " -ie)] + 5

Both the sum and the difference of these functions will play a role.
We have
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D (£) ﬁ S dpe_ipg(GI+Gf_) = 4”1

log |nle2 | + 17re(§°)e(g2)}

= =L Jog (-u2£2 +1c£0)

47l
(I11.10)
= .1 -ip§, . r 4y _ _1 £0-g1 i
D (&) = o7 S dpe (G+—G+) = log £0s61_1c

L elygr_e2
47ril°g|§0§l 4 (6)0(-6%).

Transformation properties:

DT(af) = D)) DAL = BT®) +5-x (L1

We get alternative representations for D~ and f)' if we make the
substitution u= 2p1, v=-2 pl in the Fourler integrals:

~(¢) = L (" el 7 -ipt 0) ) = L (4ol /o-ipE g 0
D7(®) = 5§ 925 (e7™-00et) B0 = 28 (7 0eo)).
(111, 12)

Next, define
D(E) = - Sdpe‘ipé@ueheheﬂ (111, 13)
2 + T+ T T ’

and ]5(&) as resulting from D(£) by the operation p0<--p1

x0— x1:

Be) = zﬁfdpe’ipg@j-ef—e_uc;‘f) =p(-§) =",
. ® (111, 14)

or

15'(&) is then the negative frequency of D(£). The positive frequency
Dt = -D(-¢). (111, 15)

It shguld be noted that we are using a somewhat sloppy terminology;

D™, D7, et cetera, contain zero frequencies. The decomposition is

not jnique, and we have adopted the simplest possible definition of
by choosing all four parameters k to be the same. Finally,
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D(€)
D)

D () - D7(-£) = 3e(£0)0(t2)

(111, 16)
- se(e)o(-£2),

An alternative to the method of indefinite metric consists of regu-
larizing not the 2-point function but the field: Define the zero mass
scalar field by

1
0 ) = ﬁg ‘1‘;0 c(k1)<e'”°‘ - e(K-k0>

1
ot60 = = j;%c*(kl)@kx - e(x-k0)>

[c(kl),c*(p!)] = 6(k1-pl). (11I.17)
Then

(Q,(p(x)tp(}’)ﬂ\> %D}K(x,y)

. 1 _
Dyeklx,y) = ﬁg % (e ikx—e(x—ko)\} Giky_e(K_kOm

(111, 18)
[0F6), 0 )] = $DFx,y)  Dhdx,y) = -Dily,®)  (IIL19)

Dykix,y) is a well-defined distribution, but not translation invariant,
To obtain a decomposition we will use later, observe that

(e=ikx - 0) (eiky - 6) = (e71k(c~Y) _ o) _ g(e-ikx_ 1)~ 0(elky-1),

(111, 20)
Therefore,
DL (x,y) = DY (x-y) - atx) + at(y)
if
Ty = o (Cakl oo oy, Fikk_
AT (%) iZW\S‘ZkO 0(x-kY) (e 1) (111, 21)

and DF(£) is the regularized function defined above. This is the
place where the functions of the indefinite metric again come in. As
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to the unwanted A functions, we will have to find means to get rid
of them.

IV. The Thirring Maodel
We conslider first the classical version of the model. The
equation of motion and conservation equations are:

1770, 4(x)

TH(x)

~gJ* (%), ¢ (x)

eIV lx) (Iv. 1)

oM, (%) = a”ew]"(x) = 0.

The current can again be written as a gradient:

Ju&) = q%apl(X). (v.2)

Consider the expression

¢0(x) = e_i(g/\/;r)]-(x)q)(x)

and 1ts current

P = o)V o).
They satisfy the relations

1,45 (x) = 0

(1v. 3)
M) = THG.

The most general solution of (IV.1) can therefore be written in the
form

_ eI 8o

$(x) (IV. 4)

where ¢,(x) obeys the free field equation and j(x) is its integrated
current,

From any solution Y(x) of the free field equation and its cur-
rent J(x), one can construct new ones by forming

. 5~
dol0) = UMYy (1v. 5)

where we have introduced the integrated pseudo-current hj‘(x):
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1 ~
ety (x) = 5 oM. (1v. 6)

(The integrability of the pseudocurrent follows from the fact that the
divergence of the current is the rotation of the pseudocurrent.) Note
that j(x) is the current of ¢,(x) as well as of ¢(x). We find in that
way that, starting from a free field y(x), we get, for every g, a one-
parameter family of solutions:

ol {a (x)+B757 (x) }44 )

$(x) = (1v.7)

a-B = —\% a,B real. (IV. 8)

In quantizing the model, we assume that Y(x) is a canonical

free fleld. This gives us a more general solution than if we chose
$o(x) to be canonical. Now we define

_ 1 »
I x) = V%Sdzio c(kl)G lkx-e(x—k0)>

(Iv.9)
+oy _ 1 (dkb e g/ Hikx 0
j(X)—;]ﬁSRC(k)G ¢(K—k>
where c(kl) is the variable occurring In (I, 14). Then, clearly,
JH(X) = # 9,1(k). . (Iv. 10)

Observing that e(kl)kt=etVk, for k0>0, we define

~ 1 .

T = go= \ J-O 0¥ (kD) (o7 - 00k (v, 11

oH¥),(x) = J=oMT0 .

Another step we have to take to insure the existence of (IV.7) is to
split the currents Into positive and negative frequency parts and to
rearrange the expression in the following way:
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ix*(x) ) X6 oiX (X)—( o -iX" ()

o{x) = o(x) =

(Iv.12)
+ + ~t -t ioc 5~t
X = o ¥ ) + BY° T () X = af ) - BT ).
This object is an operator-valued distribution, To compute its n-

point functions one has to take into account the commutation rela-
tions

(76, 170 = (7760, 7] = 1D, y)

1760, T )]

1~_
1 Dux.¥)
(Iv.13)

[Ji(x) , v -\/—W{Di:(x,y) + 755?{:(}(,},)} Y(y)

[0, viy)

—\/_n{f)i:(x, y) + 7D, y)} W)

The ~DKK function is obtained from D:,L:K by writing a factor e (kl) in
the Fourier representation (III.21):

Db, v) = 5 | 4 (k1)< 9(K-kOD (e“‘y-e(«-kO))
f)KK(xly) = '5;K(Y,X)- (Iv.14)

The Dy functions have only one subtraction,

i Sdkl -ikx oy _iky
L e gle-x0)e

D, (x,v)

(Iv. 15)
+ _ i 1kx w10
Dicbx,y) = 2k0< 0(e-k))e

and ]5:: are again defined by an additional factor e(kl). The decom-
position into wanted and unwanted parts analogous to (III.21) looks
like

D¥x,y) = D¥(x-y) + &5(y). (IV. 16)

The decompositions of the D functions have the same structure as
those for the D functions.

Of course, the n-point functions of ¢(x) turn out to be not
translation invariant, since they are functions of the D, and Dgk.
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(The only exception occurs for oz=B=\/7/r, in which case all n-point
functions are constants independent of x.) We use now a trick
which makes that all the unwanted A terms cancel. The idea is to
introduce operators qi(x) , c~1i(x) which have the property that

(660, 4] = V{1 8% +v, 7 BE0 by (67601 = ¥

[T, ()]

-\/%{Mlzi(x) +p275Ai(X)}LIJ(y) [FE001* = ).

(v.17)
a{x), q(x) are, of course, given by
@60 =V {v,Q 850+, F6} (v.18)
~t ~t ~ t
q {x) =\/_W{HIQA (x) +p, Q& (X)}- (Iv.19)
Q and @ are the charge and pseudocharge:
Q = {axs00 - Sdpl{b*(pl)b(pl) ~a*(pha(p})
(1v. 20)

5 = {axleo (apletol) p* Ll -a*(p1>a(pl>}

[Q, ¥x)] = -¥x)
- (Iv.21)
@, vl = -vYy.
Now replace X(x) in (IV.12) by
) = a3 +aT () +75|:B?t(x)+ qi(x)]. (1v.22)

Let us now look at the n-point functions of ¢(x). Think of a
product of operators ¢(xj) . $(yy) and pick two neighbouring factors,
e.g.,

ix* () X7 ixFxp4) X7 (xy41)
Plx.)e e Ty Je i

o) olxy41) = e j

(xj+l

(1v.23)

One has to move the annihilation operators to the right and the crea-
tion operators to the left until they ultimately reach the vacuum. on
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i +
which they glive zero. To commute elx {xj) and eix (xj"']), one uses
that eAeB=_e[AfB]eBeA if [A,B] is a c-number. Then one commutes
wxy) and X ®541) (and X *3) ang {lej41) by using that, if
[A,B] =AA, M a c-number, then AeB=eMeBA, Having X (xj] and
X" (xj+1) to the right of $(x41) . we commute them wittg_ the next factor,
and so on. At the end of the process we have all elX" to the left, all
elX™ to the right, and the free operators y, ¥ in between, and the n-
point function is the free n-point function muitiplied by an exponen-
tial of D, Dy and A functions. Let us see how it is possible that
for a certain value of wy, up, v1, vy we get a translation invariant ex-
ponent:

Commuting x'(xj) and X"'(xj+1) - D;K(xj,xj_'_l), contains A"(xj), A+(xj+1)

+
Di{xi41,%:), contains A~ (x;)
. + K j+l’ )7 ]
t and i -
Commuting yi(x;) and X" (xj4]) {and AH(xg41),

Dilxi,xi41), ins AY(x,
Commuting X'(xj) and ‘ij+1) _.{ il i J+1) contains (XJ+1)
and A (xj).

(We have listed only the terms which are free of v5 matrices.) The
condition that all &“(xj) and all a"'{xjﬂ} cancel each other gives us
two equations for vy, which happen to be the same. Consideration of
the terms proportional to "’J?j' '\’xj+1 , 'yxj'r,;c’jﬂ give one equation for

each of vy, i1, By. The result is
[e4
1=e(F) = e(-F)

2 B('U%) By = ’3(1'387)'

Taking into account that some of the field operators in the n-point
function are adjoints ¢(y) instead of ¢(x) does not yield new condi-
tions. With the choice (IV.23) for the p. and v, the vacuum expecta-
tion values take on the form

<n, ¢0x) ... x)olyy) .. -$(yn)9>

<
I

(1v.24)

<
]

_ eiP(x,Y)<QI Plxp) o blxg)bly). .$(yn)n\
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F(x,y) = J(k{(a+b7xj o >D x; xk)+)\<vxj+vaD X, —xk)}

j<k{<a+b 7y, 'yyk>D (yj-vi) - (7)5,].""7’}571()5—(371 -yk)}

5 5 = 5,5 \x-
+j 'Zk{<—a+b Yx jvyky D (xj ~yy) + X <-'yx : +'yy}<\ D (x -yk)}

a=a2 - 2N b= BZ -2NmB A= aB -Nra-N7B
(1v.25)

V. Lorentz Invariance

Having arrived at a solution which is translation invariant,
we recognize that in general it is apparently not invariant with re-
spect to homogeneous Lorentz transformations. This comes from the
D- function which is not an invariant. Consequently, one would be
tempted to put A=0, But this would mean losing one of the most in-
teresting features of the model. For the free field y(x) there exists a
unitary transformation V(A) with

v v = oDyl

-(X/Z)w5

vin) " 1Feovia) = Batlx

F(x,y) transforms in the following way:

Fx +—X{Z(’Yx+'yxk\) Z(v},ﬁv),k)
) + Z(’yx +yyk\}

F(Ax,Ay)

]

F(x,y) + —x{ va i Zva} .

Therefore, substituting Xy -ij, Y ~Avyy in the expectation value of
o(x) is equivalent to multiplication with
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n (%+(>\/21r))xv,fj -GHn/2mer),
H e e ,
1 k=1

s

)

and thus, in the subspace generated by ¢ and $, there exists a uni-
tary operator U(A) which transforms ¢(x) in the following way:

- L 5
U reun) = o (z+/2mxy (A~ %) -
V.2

1
U " 360u(a) = Fac e (BHVEZMXYS

In four-dimensional field theories (with finite number of field compo-
nents) the way in which the field components transform under a
Lorentz acceleration along the x'-axls is related to the spin in the
following way: Since this is an abelian subgroup, its irreducible
representations are one-dimensional and of the form e2X, and the
maximym value of the « Is the spin. For example, for a Dirac field,
tpiu-eiixth for an appropriate realisation of the y-matrices, and for a
vector field, AotAl- eiX(Ao +A1). In two dimensions there is, of
course, no spin, since there are no rotations. Eqguation (V.2) shows
that the solution (IV.24) interpolates the parameter « continuously.
This situation cannot arise in four dimensions where the rotation sub-
group glves periodic boundary conditions which make it integer or
half integer. (It is interesting to note that this is not true for the
infinite dimensional fully irreducible representations of SL(2,C) where
the accelerations are independent from the rotations in the sense that
the rotations are parametrized in a discrete way and the accelerations
in a continuous way. +0))

The energy-momentum spectrum of the states ¢(x)2, ¢(x)Q? has
a peculiar structure, as one sees if one looks at the two-point func-
tion:

i 5 5YD (5 - 5y YD (-
( ( )$(y)9> ) -.lel{( atb ¥ ¥ ) D (x-y) + M (-7 2+v2)D" (x Y)}s‘(x—y)
-i{(a+b)D~()+2My5D(£)}
- ile i{{a+b)D7(E)+2Ny°D7(§) 57 (&) (£ =xoy)
(v.3)

since ('y,? +'y}§) 8 (x~y)=0. The decomposition (III.9) gives
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D(¢) = 4% log[ w(E0-£1-1¢)] +1og [ (E0+E1-1¢)] +1‘1r}

V. 4)
BT6) = gar{ios [we0-£1-1e)] - log [w(+¢ ! 10T}
and therefore
(a+b)D"(8) F2AD () = Z,lr—i'{(aw;zx)log [(£0-¢1-16)]
+(a+b £ 2)\)log[ p(E0+E1-1€)] + i1r(a+b)}
_ ~_ atb
o@D @) +2°B7 @) _ o
B _ath-2) a+b+2\ ]
1 47 1 an 0
u(E0-¢l-1¢) WEO+EL -1 ¢)
atb+2\ ath-2)
1 47 1 47
: L(gﬂ—gl—ie)] [u{&.%l—ieJ
L o~
(v.s)

With the explicit form (II.16) for S8 (£) this means that

(@ ee"mn) = e * X
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B atb-2\ a+btan =
r 1 4 1 4m +1
.. S B i 0
_v(e_.%l-ie] Lxg%l- iel
a+b+2\ +1 a+b-2\
1 4 T 1 4T
0 _ ]
I:P{‘;O“ﬁl —ie] L&(ﬁo-l-ﬁl -ie;] {
= —I—S‘dpe_ipgl’(p) (v.6)
27T : :
To get the Fourier transform F(p) take into account that
_ i(w/2) 4 _
Sda(a—ie) ﬁeiac = 2—%5——— G(o-)o'z 1. v.7)

Then, if u=p(£0+¢]), v=p(0-£1),

Fe) = o { age®(2,4000" 0)

i : S‘dudv eiu«po_pl)/mx) eiv((p0+pl)/2+’-)(gl ¢(x)¢*(y)ﬂ\>
e

_ 4 1
= 2p T(a+b-2N)/4mT (a+b+2)\)/47)+1) 6(0+ph)0(p"-p1) X

at+b-2\ at+b+2n

0+ 1 a7 0_ 1 am B
2 2p

a+b+2\ a+b=2\ -1

4w 4n
9 F‘.-O"'El EU_El
L 2p 2 ]

v.8)
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For £ > 0, the function

=t £-1
) 68(c)c

is integrable and defines a tempered distribution. For £- 0, it con-
verges to 0(c) in the space §' of tempered distributions. If we rein-
troduce the original parameters a,B, then a+b-2\=(a-8)2 and
a+b+2h=(a+p -2NmM2 - 47, Unless a=f or a+B=2\/_1r, the two-
point function does not contain a 0-function contribution. The model
then contains no one-particle states, no asymptotic fields, and the
S-matrix cannot be defined. Finally, we note that the set of n-point
functions (IV.24) satisfies the spectrum condition in an obvious way.

V1. Locality

Another property we have tg check 1s the commutation behavi-
our for space-like separation. Look at the product
-iX " (y)

+ - —+
eix x) lIJ(x)elx (x)e-ix (y) Tiy)e )

»(x)oly) =

We have to commute X(x) with X(y), X(x) with $(y) and (x) with
X(y). The A terms again drop out and observing that, for x-y space-
like’, D(x-y)=0, D(x-y)= -5¢ (x1 -vl), one finds

o3y = e PE N Fne00  x-y? <0
Alx,y) = %(v,f—75>e(xl-y1). (V1.1)

In components, this means

4, )0, (v) = -5 (V)¢ ()
8,609 y) = —e bl vy ¥ (e o (v1.2)
¢, ()%, (v) = -ei)“(xl_yl)dkz*(ywz x).

For \= 2Nz (N=0,+£1,+2...), we have
{6,60,0 )} = 0

and for A =(2N-1)7,
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[¢,60,¢ (] = 0. (V1. 3)

The "spin" is |3+ \/27| and is, therefore, IN +%| respectively IN|
for the two cases. The relation between "spin" and statistics is thus
maintained and (VI.1) is a continuous interpolation of it. A similar
structure is displayed by the relation

ox) oly) = —eiB(x’y)¢(y)¢(X) x-y)2<0

B(x,y) = - %(v;:’+7;>e (xl-yl)
¢1(x)¢2(y) = -<1>2(y)¢1(X) (V1. 4)
iNe 1ol
2,690, = g ()0 60
il el
8,600, (5) = -e” T g (116,00
and again
{¢i(x),¢i(y)} =0 for A= 2N7 (VL. 5)
(6,0, 0)] =0 X = @N-Dm. (L)

VII. More Explicit Form of the n-Point Functions

Equation (IV.24) is a rather baroque way of characterizing an
object which has a very simple structure. To see this, one has to
realize that the free n-point function, which is a combinatorial sum
of products of two-point functions, can be summed up to give a sim-
ple expression. For example,

T (uy-up) I (U;-Ug)
1 ek K 1K

yn jl:lk(uj—Uk-ie)

*
<n,¢1(x1)... 1(Xn)¢1*(yl)' 4o (yn)9> - (27

(VII. 1)

0 1 0
u, = X, +x, U, =vy, ty, .
J J J 1 y] yJ
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Look now at the n-point functions of ¢;(x). We have to put

S5 _ 5 _
'ij——l, 'YYk— 1

in F(x,y) of (IV.24). With the form (V.4) for D~ and D, eiF{x,¥)
takes on the form

i &b a+b a+b atb-2)\ atb+2h
SJFGY) (1\ 2T (v vy -te) S O DI
; j<k
atb-2\ atb+2)
H (V -V —1e) arm (Uj—Uk—le) i
j<k
a+b-2\ at+b+2n
: 1 ar 4 1 \ 4w
Tt e
4 (V11, 2)

and therefore

CRIGURRNCA TN ¢1*(yn)n>
_ 2 N\B —in(w/2)(8,+6,-1)1\n(6,+69-1)
= <2m> g 1+92 (u) 1

o]
1 1z
j];' (u uk—le) (U Uk—ie) n(uj—Uk-ie

6 (VIL. 3)
N 29 2
H(V Vi 1€) (V V ie) ﬂ(j-vk-ie
i<k
_ atb+2)\ _ atb-2)\
by ="y *1 S = T4 -

The n-point functions of i, (x) and ¢, (x) follow from those of i (x)
and ¢;{x) by the substitutions u~—v, U=V, For 0; and 83 integer,
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(61+0,9~1)
(n,¢1(x1)...¢1(xn)¢1*(y1)...¢f(y)n\ - (%)n ]

0
(R bea) by g9 ) b)) ' (vIL. 4)

0
(40 e )4 708

and the n-point function of ¢; (x) has the structure of a direct product
of free n-point functions. It is well known that, if A(x) and B(x) are

two fields, one can construct from their n-point functions a new se-

quence of n-point functions by forming

C _ A B
Wn (x1...xp,) = Wn(xl...xn)Wn(xl...xn).

In terms of operators, this corresponds to forming the direct product
HC =HAQHNB of the Hilbert spaces and computing the n-point func-
tions of the direct product of the fields: C(x) = A(x) @ B(x). The
structure (VII,2) is a continuous interpolation (with respect to the ex-
ponent) of such multiple products. For a field with non-vanishing
spin in four dimensions such interpolations cannot occur, since they
would lead to Interpolation of the spin. For a scalar field the gues-
tion is open (the critical point is, of course, the positive definite-
ness).

For the mixed functions

Y/ n £

@I 0] 4] o7t [[ 45099
1 £+1 1 £+1
use that

£ n L2 noo 2(n-0)
@146 T] 400 [0 T] 4 pa) = (1)
1 £+1 1 £+1

£ b n no
B Loy pm) (3. T vl T] 5 rpm)
1 1 £+1 £+1

Therefore, the mixed functions of ¢ split into a product of functions
of ¢; and of ¢y, which is, however, multiplied by a factor which
comes from the summations with 15j=4, £+13k=n and £+1=j=n,
12k=4 in Fix,y) in (IV.24):
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@ H“’ () H ¢2<x,)ﬂ¢l 2 E | o) = (0D

£ n
| (u‘1 - uk—ie) G(VJ —Vk—ie) G(Uj —Uk—is) 5(Vj —Vk-ie) g
=1 k=gl
L n 6 14 5
| H (u -Up-ie) vy -V —1e) H h (u -U, -i¢) (vj—Vk—ie)
=1 k=4+1 j=4+1 k=1
(VL. 5)
4 Y
SIS trye) (2. H 0,050 | 4; Syje)
1 1 L+1
-b
0 = a4_1r.

VIII, Cluster Properties

In a field theory which satisfies the conditions of relativistic
invariance, spectrum and locality, the vacuum is unique if and only
if the n-point functions have the cluster decomposition property, in
our case:

lim (ﬂ Wl +om) . b lepton) by +om). Blygtom) (e p ). ¥ By 49)

p=+0

Ty = (n W) . )Ty ) . <q>n>

@ Yk YO Ty ) Tiy)2), (V1L 1)
if n is a space-like vector, n2= -1,
For the two=-point function, we must have
lim 9,¢(x)$(y+pn)9\) = 0, (V1II, 2)
p-oOO

With formuwla (V.5) this gives the necessary condition

a+b+27r> 0, (VIIL, 3)
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Higher functions: The expression

p n q n .

i . .
(@ T exgren 1T 4,0 Tuttyyron T[4} re)

1 p+l: 1 g+l

goes like
1 \(p-q) 2
(s

for large p. The corresponding object for ¢; goes, therefore, like

[

<L)(p—eo"’((a+1o)/z7r)+1)
p.

and for p;éq this converges to zero as it should, provided (VIII, 3)
holds. The mixed functions give stronger conditions. Look at

£ 4+p3 n
Q?H‘#l(xjﬂm) H ¢1(X) ﬂ b, (x4 +pn) H ¢2(x )ﬂ ¢ (yy+om)

E+q2

Il ¢ (yj)l- ¢, y+pn) H ¢2 (v )9>
q1+1 2

The second and third factor in (VII.4) then go like

9
(py-ap)? ((a+b)/2m)+1)
6) P2 -4q9)“((a+b)/2m)+1 .

The first factor goes like

(pr-ap)® (a+b)/2m)+1)

and

)(a'b)/ﬂ'

»

<%>(p1 -ql)(pz ~q,

The whole object must tend t6 zero unless simultaneously P1=4d1.
p2=d3. This gives the condition
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[(p1 -q, )2 +(p,-q,) _! m+ 1 + (p;-q,)(p,-q,) a—;13> 0

pilqk . 011;21---

unless p; =q; and pp=qy. This is equivalent to

a+7r>0, b+7>0, (VIII, 4)

There remains the case p;=q;y, pp=qy. Consider first
P L N * L *
(@ [0y bom [T ¢ 60 [[o7 tryeom [ &)ty
1 p+l 1 p+l

There is no loss in generality in assuming n0=0, InlI=1. 1f u is
translated and uy 1s not, then Uy -up =y +pn1 -up-ie ~ p(nl-ie) and

- _ml
(uj -up ¥ ol - 15)61 = péle 1rd;6(-n )'

Therefore,

6 62 )
H(u - —1e) (Uj-Uk—ie) (vj-vk-ie) (Vj—Vk-ie)

1<k
6 5
1 1
'j]:[k(uj-Uk—ie_) (vj ~Vk—ie\_

. .\)e-iwﬁle(—nl)p(n-p)e i8;6(nl) p(n-p)

L

(151 ksp .‘<p+1§j ksn
o~17928(n!)pln-p) i7820(-n!) p(n-p)

>( \) o17(61-03)¢ (m1)p(n-p)

I
Vaa

. ( X > (-)Pl-p) ke (1) p(n-p)

which implies that



168 BERNHARD KLAIBER

lim (ﬂ ﬂ ¢, bxy+om) ﬂ ¢, x )ﬁ¢ (yy+pn) ﬂ ¢ (yj)ﬂ>— (-1 p-p)

iMenbp(n- p)( I‘P (XJ)D¢;(yj)Q>< H &) ﬂ ¢ (y,)n>

p+l

Mixed functions: The first factor in (VII. 5) just splits into two fac-
tors relating to the two clusters, and so

Y L+pp n
lim (@, [[¢ o T 4109 [T eglogeen 1 ¢ (x)l'[fb (yyren)
p=o £+py+l
Z+p2

ﬂ oty TT ef Oyren) n % (y,m)

p1 £+py J/ n
_ 2(n-2) JBI k=IIfl+l J=p1+1 k=l+py+l
= (-1 Pl jz**l:':a ﬂ+Pz 91 z n n )

j 1k-17,+1 j +1 k—l j pl+1 k—£+p2+1 j L+pytl k—p1+1

1 !
()PP ey - pl)( H¢ 9]¢ Jopm)

@ pgﬂ«vl (xj)p]:lﬂﬁ(y,m)

+P2 E'I'pz

-£- -ike (n!
(el R Gt T4 T o30099)

n n
@ T 4t [ #ftpa) =

L+pg+l £+py+1
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. (_l)pl(n—pl)ﬂ)z(n-pz)eixe mYipl(s-pl)-py(n-£-py)]

b+py P, b+py

(@ ﬂ¢<x) I ¢2(x)n¢ toy 1] "o tr))

n Y/ n
@ 1] ¢1<x,.) T &% ] o | ¢2*(yj)n>.
p1+1 £+p2+l p1+l ﬂ+p2+l

The phase appearing here is just the one which is produced when one
commutes all the translated fields to the left. We conclude that the
cluster property (VIII, 1) is fulfilled provided the coefficients a and b
satisfy the condition (VIIL, 4). Since

a+nws= (oz-'\/_1r)2, b+7 = (B—'\/;r)z,
we obtain the necessary and sufficient condition
o # N, B # N, (VIIL 5)
IX. Current and Equation of Motion
The current J*(x) of the field ¢(x) shall be defined by the

properties

(1%, ¢(y)] = -@lgw = cze”v75>Dv(x-y)¢(y)

@, M e) = o. (X. 1)
We make the Ansatz
Mx) = q};a“I(X)
J®) = J(x) + qlxioy,0y)

alx) = \frr{plA(x)Q + pZZ(x)é} (1X. 2)

with p1,py to be determined. The commutator of J and ¢ is



170 BERNHARD KIAIBER
060, 6] = {aDyl,y) + BY°B o, v) -NaDlx, y)

N

Ny B (x,y) - Nmp, Alx) - \/_wpzvsz(x)}ﬂy)

- {(a ~NTDx-y) + (B -Nm v D (x-y) + (@ ~NmAly)

+ (B-NmY Aly)- (a+N7p ) ALK~ (B +~f1rp2)2(x)}¢(y) ,

(IX. 3)
and so we have to put
P Tr Pt __\%r'
Then we have
0*o,00 = (1= ) + (1- ) ¢ o e
o) = 7 oM1x) (IX. 4)
60 = 360 +a(x - o -y

The charge of the interacting field is then

fax'%0 = %00 - & fate®s0-0 = (1-F o, w9

differing only by a numerical factor from the free charge.

We have obtained the solution of the model by quantizing the
classical solution (IV.7) instead of quantizing the equation of motion
(IV.1). Our next aim is to determine what the precise form of the
equation of motion is. Differentiation of (IV.12), (IV.22) yields

i3, 060 = -7*2 x*(x)oG0) - $6)72 X760, (IX. 6)

The projection onto positive or negative frequencies is a nonlocal
operation, and therefore the right hand side of (IX.6) is not in an ob-
viously covariant form. We pretend now that (IX.6) can be written in
the following form:
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18,000 = -3 lim 58, x(ek)o00 + 0P a6 (F£OL (26.7)
To prove this, one has to note that (IX.6) can be written as
19,00 = -51im] 13, xFoxr<) 900 + 0670, Gcre)
+ P, lr-e)000) + 2D X (- )} ,

and we have to show that

[¢(x),v“apx—(X+6)] +[*/”apx+(x—6),¢(X)] =0

But this follows from the relation
+ 2 +
['YHBHX ), ¢(x)] = (@-p) 'Y“%D vy -x)ox).
Finally, 'y”apx(x) can be expressed by the current

'YHBPL’YS [BjN(X) +§(x;u1,uz)J = A [\fWBjH(X) + qu(x;ul,uz)_l
and

M l}/;r(a—ﬁ)jp(x) + apq(x;vl-pl , vz-p.zj

H . x(x)

Nr(a-B)vMT, 6.

The equation of motion assumes then the form
40000 = Nrlap)?* Lim {7, Ger)obd) + o607, b)) (.0

It is possible to express ]p in terms of ¢, but we will do this only
for the case when \=0,

X. The Case A=0 and the Currents of Johnson and Schwinger

If one postulates that ¢(x) has the same Lorentz transforma-
tion properties as the free field Y(x), one arrives at the solution
found by ]ohnson.4 The condition A=0 is equivalent to
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CRDCIE

This gives the parametric representation

Jr(l +p) ¢

Q
1

\ﬁré+%> (-o<p<+ew, p£0)

x.2)
= r(p? -1) b=1r<p%—l>.

We now want to express the current in terms of the field ¢(x).
One way to do this is to define it as a limit of a nonlocal expression.
For a free Dirac field with arbitrary mass,

o
I

#6 = % lim Tlere ) oix) - w¢<x+e>$<x>} X. 3)

in two and four dimensions., € may be time- or space-like. In the
Thirring model one has either to average over a spacelike and a time-
like direction® or to modify the right-hand side of Eq. (X.3). 8) The
introduction of timelike vectors, however, means that one is outside
the framework of the canonical formalism. We give here a spacelike
current definition which contains a free parameter and which repro-
duces the results of both Iohnson4 and Schwinger. 8),9) Look first
at the expression

Plxte)Hlx) = e ~IXCF () Plx+e)e ~iX" Gete) 'y“eix+ G W(x) X G
; 2p- ot —+
_ e—1(a-B) D (E)e—l[X (x+€) =X (x)]'tF(x+e)'y”L|J(x)

e—i[x’(x+e)—x'(x)] .

Separate the singular part of $Q(x+e)t|)3(x):

Toler gl = 3B, b+ Igls + 1 Sop (-e)

_ (ve)
=¢a(X+€)LIJB(X): + 2%1 j&

and develop
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e'i[ X (e ) -x " (x)] =1- iepapx'(x) + 0(52).

Then,
@B D750 4 grtat) = B0 + 5hr gﬁ%@r_eﬂ
- Sp{ZTE epapi*(x)v“}
_ 2—1" sp{‘jzi'y”epapx_(x)} +0(e)
= GG + %ﬂ :—: - 2_11r f:_;e Sp{vvv”apx(x)} +0(d
with

Spivvv”apx(x)} = 2{9“[’\/_” )P (x) +0Palx;v, vz)}

+ et [\ﬁrﬁj)\(X) +8, alxipg '“z)]}'

If we use

v _pN v 128
LA ___gP-gP_gHPg

4

we obtain

2
1621 @B 74T gt o)

# - %[«fwsj“(x) +o%qbam, .uz)}

CL R gy () + 0, qfxive v, -
T <2 X AWV R V2 T

B MM p
(1 -;,%) ™) -0175 Eez Ix(x) +ﬁ Z—Z+o(e). X.4)

Since < 0, we also have
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2
12 @B AT B

2
= 12 (@B AT g e (X.5)
LB g @B 1
= (1-F)Tw -SE e - G 0.

Averaging over (X.4) and (X.5) eliminates the singular part but leaves
us with a non-covariant expression., One gets rid of the non-
covariant terms if one defines the current K*(x) as (g, ¢ are coeffi-
clents to be determined)

L]

_By2
0 = m 1im 121D k) 4 00| 00 #1966 0) +

6+0 e~0

+ 1o KM (x+6)} - 'yv¢ (x+e)$(x) l:gpv(l - ige)‘K)\(x+6))

(X. 6)
. 1¢Eva(x+6)}}
(et e e
If the non-covariant term is to vanish we must have
5 = ﬁ(:_‘mlx(x) ' (X.7)

and Eq. (X.6) then tells us

K0 = (- o+ 5 5 M. x.8)

g and o must satisfy the relation X.9)
- eB . Jale-
@ :%)g +28 o —ia-p). (X. 10)

The equation of motion can be written

170,060 = -g7" Lim %‘{Kp-(xﬂ)nb(x) + QLK (x—e )}. (X.11)
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We have obtained the result that to any given solution (i.e.,
to given @, B, @-B#0) and any g#0 we can find a current definition
(i.e., find a o from Eq. (X.9) such that g 1is the coupling constant
occurring in the equation of motion., (If @=p, then v”a}lqs(x) =0, and
if g=0, a-B#0, Ky(x) is infinite.)

Solving (X. 1) and (X.10) ylelds a parametric representation of

o and B:
@ = Va1 iﬁ) <"?”>_D (. 12)
B =a(1 if:—fc:"ﬂ

The parameter p in (X.2) is therefore

F g ;
p = & s (X. 13)

N

The occurrence of the * sign means that there exist two different
operator solutions which satisfy the equation of motion with the same
g and o, If one considers only n-point functions, there is no dif-
ference between the two solutions. We have

- g = gl =
a=mr——_ b= 1rg+a_1r. (X.14)

The solution of Schwinger corresponds to o=0:

(1 £N1 - g/m g<m

”Qt}l——g/w\’ (X. 15)
2= Sy

Johnson defined the current as

@

W
]

Ho-BY2D ™ - —
Fiim 3 P G ot - pgterrfod e e,

€,

This leads to
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N 1-g/27 _— 1+ g/2%
a—\/_1r<1:l: 1+g/21r> 5-%(11\!%

e P
1 -g/2n 1+g/2n"

(X.16)
a =

The Johnson current can be obtained with our definition with o=-g/2,
It should be noted that these apparently different solutions are only
different parametrizations of the same family of solutions defined by
(X.2). The Johnson solution results from the Schwinger solution by
the replacement

R
1 +ag/2m"

The coupling constant is undetermined in the sense that any
value can be produced with an appropriate current definition, Thus,
being given two solutions, not even the statement that the coupling
constant of the first one is larger than of the second one is an invari-
ant one. We arrive at the conclusion that the coupling constant
should not be defined in terms of the equation of motion,
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I. Introduction

We wish to set up a formalism for relativistic quantum systems
which can incorporate simply internal symmetries such as SU(2) or
SU(3). The latter are normally treated in an explicitly group theoretic
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manner. The relativistic invariance has traditionally been developed
through Lagrangian field theory. The two approaches appear to have
little in common and this has lead to some confusion in attempts to
combine internal and external symmetries into larger groups. Our
first objective is to consider relativistic invariance from a purely
group theoretic point of view, closely parallel to the usual treatment
of SU(2) and SU(3).

One of the most important products of Lagrangian quantum
field theory is the notion of causality, which leads to anti-particles,
the relation between spin and statistics, the substitution law and the
C.T.P, theorem, These appear to be experimentally correct. Thus,
although we do not require Lagrangians, or even equations of motion,
we require causality.

From the two requirements of relativistic invariance and
causalily, we arrive at local causal fields from which we construct
S-matrix elements. The formalism can be trivially extended to in-
clude internal symmetries such as SU(2) or SU(3). It provides a
framework in which one can understand, criticize and hopefully de-
velop a great deal of work done particularly in the last three years on
the combination of internal and external symmetries, and the use of
non-compact "dynamical" groups.

In this connection we are led to consider generalised infinite
component fields which are unitary representations of the homogene-~
ous Lorentz group. We show that for such fields there is a complete
breakdown of the Pauli Theorem, which for finite fields establishes,
through causality, the experimentally observed connection between
spin and statistics.

1I, Groups

A. Definitions.

In this section we summarise the rudiments of group theory,
particularly Lie groups and their representations. Theorems will be
stated without proof but can be found in starsdard :);roup theory texts
some of which are listed in the references, ! 02),3

We begin with the definition of a group. Elements a,b...
define a set, {a,b,.. .c}, which becomes a group, G, if we impose
the conditions

(i) Product: ab=c € G (i.e., contained in G) for a,b, € G.
(ii) Associativity: (ab)c = a(bc),
(iii) Unit element: There exists e € G such that
_ (11. 1)
ae = ea for every a €G.

(iv) Inverse: To each a €G there exists a-! € G such that

aal=ala=e.
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Further we have the following definitions. A group is abelian
if ab=ba. Discrete groups have a discrete set of elements (e.qg.,
reﬂectlions). Continuous groups can be defined in terms of continu-
ous, €! (e.g., the rotation group where the parameters can be taken
as the Euler angles). The order of a continuous group is the number,
N, of essential parameters, ¢!, A continuous group is finite if N is
finite. A continuous group is compact if the range of the el is finite
(e.g., rotations), and non-compact if the range is infinite (e.q.,
displacements, Lorentz group (£)). A subgroup, S, is a subset,

SC G, is such that forany s € S, asa ' €8 forevery a €G, A
group is simple if it contains no invariant subgroup. A group is
semi-simple if it contains no abelian invariant subgroup. (The
Lorentz group is semi-simple, but the Poincare group—or inhomoge-
neous Lorentz group—is not).

Representations of continuous groups by linear transformations
entail the association of each element of the group with a matrix,

a: M(a) for every a €G, (11.2)
such that the group properties, (II.1), are preserved by the matrices,

M(a) M(b) = M(c) if ab=c,
M@™l) = ML), (1L 3)

M(e) = 1.

Suppose the vector space in question is spanned by the vectors |§)
such that each element of the group induces a transformation

a: 1E) = I£') = M(a) ). (11. 4)

The adjoint space, spanned by (€|, transforms contravariantly such
that each a € G induces the transformation

ar (&1~ (&' = (£ 1(a). (1L 5)

A representation is said to be reducible if the matrices can be
block diagonalized, e.qg.,

A A(a)
M = f G. II.6
(a) ( 5 {a)> or every a € (I1. 6)

An irreducible representation is one which cannot be reduced. In

Jurd] Rt
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terms of the vectors—rather than the matrices—an irreducible repre-
sentation (IR) is a complete orthonormal set of vectors that spans the
representation and transforms into itself under the M(a)'s. (For
example, for the rotation group the vectors |j,i3), jZJ32 -], form
such a set.) The dimension of the IR characterized by j is (2]+1).

It will turn out that the specification and dimensionality of the IR's of
the relevant groups is of vital importance in physical applications.

The following theorems are stated without proof.

Theorem 1. A finite representation of a compact group can
always be made unitary by a similarity transformation. That is, if
the M(a)'s are nX n matrices with n finite then we can choose
M~l(a) = M+(a).

Theorem 2. Any unitary representation of a non-compact group
is either one or infinite dimensional. That is, if M~1(a) = M*(a),
then the matrices are 1 X1 or ©X, (The exceptional finite case
is called the trivial representation.)

B. Lie Groups.
A continuous group is a Lie Group if
(1) givenreal ¢ (i=1,...N) there exists an ¢ such that

M) M(®) = M@E) Mg =1

and €= f(¢) is analytic (Note: Mf(e)= M(el. ..ey) for N the order of
the continuous group.); and _

(i1) for M(e) = M(e') M(e") then e = ¢ le]...eppeq oureqd) is
analytic.

Examples of the classical simple Lie Groups are the following:

Group Representation

1. Compact.
O(3) - Rotation Group: All linear transformations that preserve
xZ+x7+x{. (Orthogonal 3 X 3 matrices.)

O(n) : All linear transformations that preserve
xZ+xZ+... +x%. (Orthogonal n Xn
matrices. )

U{n) : All linear transformations that preserve

6, 12+ 16,124 ... + 1€, 12, (Unitary
n X n matrices.)
Sp(n) : All linear transformations that preserve

n
1,71
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where the metric G satisfies G= -G.
(Unimodular matrices, A, satisfying
AGA = G.)

2. Non-compact.
O(3,1) -Lorentz group : All linear transformations that preserve
x2Z+x2 +x?-x2,

Of(n, m) : All linear transformations that preserve
)ittt txE - =K, e ~ Xhime

Uln, m) : All linear transformations that preserve
6 R +1E 124, HEQ 2= 16 1216 ]2

U(2,2) : All linear transformations that preserve

-‘i’_¢=‘4’+ Vo= 1y 24 1,1 2= 1) 2- Ty, )2,

For a Lie group with N parameters, ¢ (i=1,...N), the ma-
trices M(¢) can be written

o =
M) = € P i (il 7)

where the Pl are the infinitesimal generators. If the representation
is unitary then

fr o) = MT(e) and B= FiT. (11. 8)

For example, for the rotation group

-~

i
Re) = e, i=1,2,3. (1. 9)
The unimodular condition, det M(e¢)=1, implies
Tr[F;] =0 i=12,...N. (11. 10)
If the groups listed above are restricted to be unimodular they are
distinguished by an S; e.g., SO{n), SU(n). For an infinitesimal
transformation we have

ME) = 1+ ieif'i + O(2). (11. 11)

The local structure of the group is defined by the algebra of infini-
tesimal generators

B Bl = if F (I1. 12)

where the fﬁ are the gtructure constants. Two groups are said to be
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locally isomorphic if they have the same algebra (e.g., SU(2) and
80(3)).

The rank, r, is the number of Fj's that can be simultaneously
dlagonallzed e.g., for the rotation group r=1 and of the three I s
only I3, say, can be taken diagonal.

The Casimir operators are constructed from the 1 and com-
mute with all of them. A standard method of construction is to take
all the forms,
aln) _ 2 J3 in 5 f_:il o1

n
o i91fip0g B inofii B, (11. 13)

Within an IR the Casimir operators are proportional to the unit opera-
tor (Schur's Lemma); e.g., for the rotation group the Casimir operator
is
2 ~2 A2 A2
= +
J Il + ]2 ]3 ' (11, 14)

and its matrix representation in a given IR,
= j(+1)1. (IL. 15)

Thus the Casimir operators provide convenient labels to specify the
1R.
For simple Lie groups we have the following theorems.
Theorem 3. The number of independent C(n is equal to the
rank r.
Theorem 4. The number of labels needed to specify an IR is
also the rank r.
K To specify a component of a representation on additional
3 (N-r) parameters are needed. These can be provided by the eigen-
values of the diagonal Flig and/or Casimir operators of subgroups.
Thus, for example, the components (vectors) of an IR may be the state
|ci,fj) where

cilci,fj) cilci,fj>,

(1. 16)

Flc,,f) =flc, 1),

Joit i it
where the c's label the IR and the f's distinguish the components.
For example, for the rotation group, r=1, N=3 and 3(N-r)=1. The
representation is specified by the eigenvalue of T and the compo-
nents by the eigenvalue of I3, so that the vectors of an IR are given
by IJ,J3) with
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F15.35) = 30+ 1iig),

= (I1. 17)
NI igligg).
The elements of the algebra have the matrices,

TS T =
(J,J3II|J,13>, 1=1,2,3.

111, Poincaré Invariance

A, Representations and Quantum Mechanics.

In the quantum mechanical description of a physical system
the set of observables are represented by hermitian operators 31,
which can have the values «, specified by the eigenvalue equation

ale = ala) (a real), (111. 1)

for physical states. If [&i,&j] =0 then a; and &j are simultaneously
observable and have simultaneous eigenstates. A unique quantum
state is defined by the eigenvalues of a complete set of commuting
operators Bl' ..Byp- The states

1B, By = 18D (111, 2)
are: (i) orthonormal,
(4lm) = Glm (6(£-m) for continuum), (111, 3)
and (ii) complete,
;Iw(/&l = 1. (1L 4)

A transformation of coordinate base, such as a displacement
of the origin or a rotation of the axes, produces a change in the
states and observables which is induced by an operator of the corre-
sponding group:

-1

12) = Ul8), a,=TeU ", (I11. 5)

To preserve (III.1)-(III.4), ﬁe must be unitary,

167 m) = (4167 1m), (1L 6)
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and the representation |£) is to be called a physical representation.
If the group 1s continuous then

. j“
8, = 0, (I11. 7)

where f'i are the infinitesimal generators of the group. In the physi-
cal representations

o P | ~ .
ol = 6 and E'=F,. (111, 8)

For a discrete group, such as space reflection or particle-antiparticle
conjugation, a double application takes us back to the starting point,
so we have'" - :

1) = 10). (111. 9)
Hence for eigenstates of 1]
TlL) = +14). ‘ (111, 10)

By considering the diagonal form with eigenvalues +1, we see

= =i )

g=0"1=gl (11, 11)

So U is both unitary and hermitian and therefore an observable of the
system.

The S-matrix, which specifies the scattering amplitudes of the
system, is {m!§1£). Under a change of coordinate bases, induced
by U,, both states and operators transform, and one obtains the
trivial result

(m1812)~ (mlu Y usu™Hhule) = (mlSIL). (L 12)

However, if S is invariant with respect to ﬁe, we have the nontrivial
statement that

(mlUE_lSUelﬂ) (mlS12}, (111, 13)

or
[Uc.8] =0, (111, 14)

the algebraic statement of invarlance. If ﬁe is a continuous trans-
formation, then we also have for the generators

(8,.F] = o, (II1. 15)
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and a fortiori for the Casimir operators
(8, &)

Thus the eigenvalues of the hermitian operators, ? and C(n} for con-
tinuous groups, and U for discrete groups, can be measured simul-
taneously with 8 when § is invariant under the corresponding group
of transformations. We can therefore include these operators in the
characterization of the state |4 ):

Flg) = leﬂ). (1IL. 16)

Taking an expectation value of (III,15)

(LI[E,8]Im) =0~ (£, ) (£18Im) = 0. (111 17)

Equation (III, 17) implies that either (£1§Im)=0 (i.e., the 4=m
transition is forbidden) or fy=f;,. We have thus established the im-
portant result that the observables F—generators of groups with re-
spect to which 8 is invariant—are conserved in allowed transitions.
Clearly the same arqument applies to the Casimir operators E:{"}, and
for discrete groups, to U (parity operators) .

For example the generator of displacements is the hermitian
operator for the momentum Dy = B ./t where

Tjgg _ e1x-Dx _ e(l/ﬁ)x-P (II1. 18)
and momentum is conserved for any system invariant under displace-
ments.

Further, we see that the operators which label the IR's and
components of the groups with respect to which § is invariant are
just the simultaneously observable, (conserved) physical properties
of the system described by 3. So these operators satisfy the re-
gquirements of a commuting set and supplemented, if necessary, for
completeness, provide a possible (and usually extremely convenient)
choice for the operators .. 'Em' which define a physical represen-
tation of the states of the system. Hence the extreme importance of
the IR's. (For those more familiar with quantum mechanics than group
theory, it is often convenient to invert this above argument and de-
termine the irreducible representations of the group by finding a com-
plete commuting set from among the infinitesimal generators and
Casimir operators. )
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B. The Poincare Group.
In discussing the Poincare group P the following conventions
will be used.

h=c=1,
¥, = (gi®); p=0,1,2,3,
x” = gp'vxv =) (xOI—Q for g = (]_,_1'_]_,_1)’
8 _L_(_a__' 9 9 9 (11I. 19)
booaxk \Oxp ¥x;’  0x,’ Ox,
a:b=3a"% = ab —-a.-b',
® 070
_ 0123 _ _
0123 = Y1+ € = -1,

(] ' ' ' T
e VAT o -z![&"o" -6"6"_’.
wvor o T o

¥ can be represented by the group of linear transformations
that preserve the form

G-y (x-y), = Gxpoy Gcpoyg) - G- E). (L 20)
More precisely
P =T ~ L, (111, 21)

the semi-direct product of translations in four dimension and the
Lorentz group. A transformation under P parameterised by (aP, niV)

ro_ vV o
xpL Xy = xp+aH+Aw(n)x ~ (1+0)x, (111.22)

is generated by (see (IV.24) for the relation between A and 7)

" (kD 4 LnpvT
Gla,m) = o @ Prtzn* ) (111 23)

where
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Ty = e

The algebra of the generators of P can be obtained by con-
sidering how a scalar fleld, ¢(x), behaves under an infinitesimal
transformation of variables

x = x' = Ax = (1+6)x. (111, 24)
For ¢(x) a scalar invariant with respect to £, the transformed field is
$'(x') = o(x) = (A 1x") = ¢[(1-8)x']. (111, 25)

Further we have the generators, f(xp, 8H) , which are defined by the
property that

(1 +16f) ¢(x) = &' (%) = $[(1-8)x]. (111. 26)

In the final equality we have used (IIl. 25) dropping the dash. For
displacements, for example,

(1 +dakf +..) 0k = dlx, - ay)
= o) ¥, ¢0) +..., (uL27)

which implies

P
£ =18 E;fi(ﬁ=1).

b B
The commutators of f, (and hence of l‘sp) can then be found trivially
from the properties o#partial derivatives, i.e.,
[f‘p, £, =0 or [B,,B] =0, (111, 28)
Similarly for Lorentz rotations
f‘w = ko, -x2) = Ty (111, 29)

and the resultant algebra of f is

0:

—
lav})
o
—
]
T~

[P)\I IP‘V] . 1[ g)\}.LPV - g)\VP}.I.] 1] U
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~ - - - *

Upvaﬂ = ﬂgWJvn+gvap'gpﬂvp'gvﬁﬁnLS (111, 30)

The second of these equations }s equivalent to the statement that
under Lorentz transformations Py transforms, like Xy @s a four
vector,

The IR's of P are to be labelled by a complete commuting set
of operators constructed from '15’L and fp,v. For momentum we have the
Casimir operator

Al

=8P =1, (111, 31)

M

Further, since the ﬁp's commute with each other and with B2, we can
specify their eigenvalues, p,, simultaneously with t. Additlonal
operators available for specifying the [R's are those components of
T,y Which do not alter - These, by definition, are the generators
of the little group (LG) of Py

A covariant specification of the generators of the LG are the
three independent components of the Pauli-Lubanski vector

M= L WVAPS o
wWh = —ge LN (111, 32)
satisfying
13”\7\/’L =0 (I1L. 33)
and
[B*W 1 = o, (111 34)
o wm T0
[wp,wv] = lel-WWPW P (111. 35)

The various possibilities for the LG are the following.

1) t=m2>0, (t corresponds to the energy varlable in two-
body scattering, or the mass of a single particle.) In the C, M.
frame -

p, = (mi 0),

and

W, = m(o; FaeFa1 Tz ) (111, 36)

and the LG is O(3).
2) t=-g4<0 (momentum transfer in two-body scattering). In
the brick-wall frame, P, can be cast in the form Pu= (0;0,0,q9) and
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~ p. _ -~ .A -
W= quz'Izo'Ios'o) (11 37)
and the LG is O(2,1). The algebra of the LG 1s

[§,5:550] = g,

[Ty0dp1) = -y (111, 38)
[Jop:710] = g

3) t=0 (the light-like case for a single particle). One can
choose a frame so that p, (w,0,0,w).
Now with Pu null,

AF, _ _A i -A A~ -
w = W Ilzl Hzlnlll-lz\, (III. 39)
where
f[ ~ -~
1= Tio s
i, = 7,0 - Ty (I11. 40)

T it =.ﬁ T 1 =—A 7 7 =
[IIZ’HJ 12'[%2'“2] H,Il'[nl'nz] o,

and the LG Is T{(2) ~ 0(2)—the Euclidean group in two dimensions.

4) p,=0. (Momentum transfer in elastic forward scattering.)
For this case, LG=4L., This group is discussed, in a different con-
nection, in more detail below/

C. The Single Particle States.

Single particle states of non-zero rest mass belong to
Case 1) and can be labelled utilizing the IR's of that LG. The
Casimir operators for the LG are

A2 _ Apa _ 1sNs sV spps 5 sV
Wh = W, = SRV T B E (IIL. 41)
and
Tl'_;l = \ = helicity. (111 42)

In the rest frame, W2 becomes
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= ES
W2 = —m2 ]2 ‘ (111, 43)

which, for single particles, has eigenvalues
2
-m”~ s(s+1), (I11. 44)
where s is the spin. Instead of the helicity, A, we will use s
which is related to N by a pure rotation. Thus an IR of the Poincare

group is specified by m2 and s, while the components of an IR are
labelled by P and s3. A single particle state is, therefore,

2 - .
Im“s; D, s3) = 1pp,s,33). (111, 45)

The non-compactness of the group manifests itself through the infinite
range of P. These states are orthogonal and can be covariantly nor-
malised:

(pp.s s Ip 18’8y nyat(p) = (2m) 5(4)(p p')8, o0g gr (111, 46)
353
where
A (p) = 278(pg)6(p%-m2).

Parity can be introduced through the operator, ﬁ, satisfying
the physically motivated commutation relations

[R,B,] = o0, {R,B} = 0,

[R.Jyl =0, {R,7,} =0, (111. 47)
- .
[R,P*B,] =0, [RW wp] 0.

Now, since R commutes with the other operators labelling the rest
frame state and 1s a discrete transformation such that its unitary rep-
resentation is also hermitian, it can be included as a state label
through its eigenvalue, =.

State: lmz, s, m '1553).

Additional labels can be incorporated provided their operators com-
mute with those operators labelling the state. Thus, if the system is
invariant under SU(3) each particle is also a component of some (US of
SU(3), the multiplet being specified by two Casimir operators C
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and c(2) . and the component by the diagonal generators i3,y and the
Casimir operator of the isotopic subgroup i2;

2) .2 )

lmz,s,w; p,s C(l),C( piT g, v

3;
(This is a simple application of Theorem 4 et seq. for the case N=38,
r=2.)

D. The Lorentz Group.4)'5)

Though it is not obvious at this stage it turns out that Poin-
care invariance of single particle states requires an analysis in terms
of the Lorentz group, £ or O(3,1) and its covering group, SL(2,C). So
far £ has only been shown to be relevant in forward scattering where
it was identified as the little group (LG). However, £ will eventually
play a much larger role, so we include here a brief discussion of its
representation,

The algebra of { is a subalgebra of # given in the final equa-
tion of (III.30).

Introducing

Ty = apde and T = X (LI 48)

these commutation relations can be re-written in the form

-~

By 50 = teypyds

1

-~

K (II1. 49)

—

TR = ey,

1=

1€,
j ijk

kl

Ty

5

%,
The most familiar specification of IR's uses as a basis for the algebra

2oLt
Li . Z(Ii + lKi)l

(111, 50)

n
N
—

3

1

-
~
—

» L
M, ) DN
i i i

with the commutation relations of SO(3)® SO(3) or SU(2)® SUR),
[L,,L.] = ie,, L M, ,M] = KijkMk'

175 ijk7k’ it
(I11.51)

"
o
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(Thus O(3 1) is locally isomorphic to SL(2,C) with basic generators
Il Ki 10':l )

The Casimir operators L2 and M2 have eigenvalues 4(£+1) and
m{m+1), £, m being integer or half integer and providing labels for
the I.R. From standard theory of angular momentum, it is clear that
components are labelled by (j,j3) with the range,

[4-m!{Sj= 4+m, —j§j3§j. (111. 52)

Since j and j3 take on only integer (or half integer) values, these
representations are finite dimensional. Since the matrices L, M in
these representations are hermitian, the matrices R are anti-
hermitian, so these finite representations, (£, m), of this non-
compact group are non-unitary, In accordance with Theorem 2.

If one is interested also in the (infinite) unitary representa-
tions it is more convenient, following Naimark,4 to specify the
eigenvalues of the Casimir operators, and hence the I.R.'s by (ko,c)
where

JPSNTRY A2 2
ZIWI lkoc) (7 -K)Iko,c>

(kg +c? - Dk ,0),

_1 pvmp o
8¢ Jurp!Xor ¢) = TRk o) = -tk clk_,c). (11L. 53)

It is clear from the definition of k, and c that (—ko,—c) specify an
equivalent representation. By convention we will restrict ourselves
to representations having koZ 0.

For any finite or unitary irreducible representation k, can
take on one of the values

k, = 0, 1/2, 1, 3/2, .... (111, 54)

In all cases components of the representation are labelled by (j ,13)
integer (or half integer), satisfying

k =3, (I11, 55)

'jé

=N (111, 56)

The two alternative types of representation are distinguished by:
(i) Finite Dimensional (non-unitary).
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lel = kg +n (n positive integer). (111, 57)
Then j has the finite range

k
o

A

j £ lel - 1. (111, 58)
(11) Unitary (infinite dimensional).
Either
(a) Principle series
c pure imaginary; (111.59)
or
(b) Supplementary serles
ko =0, creal 0<c=1. (111. 60)
In both of these latter cases there is no upper limit to j which thus
runs over an infinite range of integer (or half-integer) values. This is
in accordance with ‘theorem 2, (Note that the infinite dimensionality
of the unitary repre sentations of £ involve this infinite "tower" of
spins, whereas for the Poincare Group a particle of single definite
spin belongs to a unitary representation because it can have an infi-
nite range of momentum.)

For both finite and unitary representations the states are
written

Iko,c;j,j3). (I11. 61)

We introduce the abbreviation

T = (kolc) T (_kol _c)l
T = (ko,—c), (I11. 62)
@ = (j5,).

Then if the matrix

('ra/lKi |tB) = KiozB’

the matrix
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(t,@lk 17,B) = -(—1)[j]+[jllﬁ

1aB’ (111. 63)
where
o = {1y e . o
The parity operator R satisfies
f{(?-ﬁ)l'm) = -(?'ﬁ)ﬁl'm),
(111, 65)
RG%-2%) 1) = (F2-RARITa).
Now suppose
Rlta) = c(t,a) lta); (II1. 66)
then consistency with (III. 53) and (III. 65) implies
Rlte) = (-1)la). (I11. 67)

Thus the parity self-conjugate representations are given by (kq,O)
and (O,c); for example,

(0,1), scalar,
(2,0), j=1/2,3/2, ... (3 integer spin tower),
(0,3, 3=0,1, ....... (integer spin tower). (III. 68)

Otherwise the inclusion of the space reflection operation with £ re-
quires a reducible representation (t and 7).

IV. Poincare Invariant S-Matrix Elements

A, Statement of the Problem.
Free particle creation-annihilation operators which transform
according to IR's of # can be used to generate the scattering states,

1 particle: Ip,,s),
(v.1)
n particle:

’

lpﬁl)s(l);pff}s(z);...pﬁn)s(n)ﬁn =10y,

when acting on the P invariant vacuum l)o. The suffix "in" means
by definition a state with plane beams coming into the scattering
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region. We assume the vacuum and n-particle states are complete,

f;'“m 8= 1 (Iv.2)

The set of 'out' states are defined analogously as states having
plane beams coming out of the scattering region, satisfying complete-
ness

) (gl =1. (v.3)

out
7 out

The S-operator is defined

§= Lo .8l (V. 4)
£

so that the S-amplitude is

in(fmal }S |initial )in = out(fmal linitial) in’ (Iv.5)

The construction of a £ invariant §, i.e. such that

[§,f‘i] =0 for F (i=1,...10) the generators of P, (1v.6)
entails a particular difficulty that is best illustrated by comparison
with invariance with respect to an internal symmetry group. Take the
invariant group to be that of I~spin, SU(2), with the basis represen-
tation defined by

_ o)
INg) = In)* (v.7)

It is convenient to introduce annihilation operators labelled by the
particles on which they operate.

s P N,
Na_&ﬁ>l Na“ (prﬁ):

which transform under I-spin rotations parameterised by d according
to

4

Ny - (éi(T/z)'a}a‘f\r , N -7 '(6-1(175)—3\)&? ; (1v. 8)

a
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(%) -

which transform according to

;r;a‘(l(’[/z .' ﬁb( -4(7/2)- \:, (v.9)

and

/N2 at \
( T -FO/MN2 |

'
The I-spin invariant vertex part for the NNII interaction is
Nb= {(pp—nn T+pnII +an}‘ (Iv. 10)

In general I-spin invariant amplitudes are very simply formed by satu-
rating suffixes and it is trivial to check that the exponential factors
arising from an arbitrary I-spin transformation on an expression such
as (IV.10) then cancel in pairs.,

Now consider the same problem for Poincare invariance. For
creation-annihilation operators we have

“ _ ~F -
a(p,s)) =0, &(p,8)) 'PWS>: (Iv.11)
with the (anti) commutation relations

(a9, 8t a0}, 8% = @n'e Voo, i

Analogous to Eq. (IV.8), the a's transform under £ like

ap',s"),
(1v. 13)

RTRTE) om
. n in™"y -in"7
p-p':8(p,s) - e HYa(p, s)e T (1P I) a(p'

where (as will be shown explicitly below—(IV.26)) the spin transfor-
mation is a pure rotation, but

g = 8, PP (1v. 14)

The difficulty arises from the dependence of 8 on the initial momen-
tum, p, in (IV.14). The fact that the momenta associated with dif-
ferent particles at the vertex are different prevents the simple con-
struction of a scalar invariant by a nalve saturation of spin indices,

in the manner of the I-spin example. The standard solution to this
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problem, well-known from Lagrangian field theory, is to replace spin
by a related "spinor" variable so that Lorentz transformations on mo-
mentum and the new "spinor" variable factorize. From Lagrangian
theory we know that the "spinor" labels specify representation of the
homogeneous Lorentz group £, e.g. .,

B
T (v, q:BA”.

’

From a purely group theoretic point of view, this development {s sur-
prising since the physically relevant symmetry is Poincare and not
Lorentz, and we have seen that the IR's of the two groups have very
different structure. Specifically:

{1) Physical particle states belong to unitary representations
of P which in general are not reduced with respect to the subgroup £,
Instead, one specifies m? and p and then reduces P with respect to
the LG (little group), e.g., O(3) (spin).

(2) Furthermore, the finite representations of £ appearing in
the Lagrangian program are necessarily non-initary, whereas physics
is normally concerned only with unitary representations,

B. Auxiliary Group Solution. 6),7),8)
We will now show how the homogeneous Lorentz representa-
tions get into the theory, from a purely group theoretic point of view.
We define the single particle state at rest as

Im,s,s4) = Im,s;),
with the normalization

' =
(m,s,s3lm, 5" 85) = 0 .05 g1 (Iv. 15)
Particles not at rest can be described with the aid of the following

theorem,
Theorem. The moving states can be obtained from the rest

frame states by the Lorentz transformation

-i¢(p) Klm,s3), (1v. 16)

Ipu,ss) = Ne
if coshle(p)] = po/m and sinhle(p) |= 1p]/m, with

<(p) _ p_
Tl = Tol (V. 17)
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Proof, The proof consists of showing that the right hand side
of Eq. (IV.16) is an eigenstate of P, with eigenvalue py. Expli-
citly,

-1
Ppe

- 2 - 3 - 2
-ie(p)-K ie(p) ‘K3 e_le'(p)'Klms ), (IV.19)
4 g 3

E(p)'Klmsa) =e

Now, take p=(0O,0,p3) so that the relevant factor of (IV.19) be-
comes

ok eiesﬁs_iL(_-e L IALA AR AR (Iv. 20)

By (III.30),

[Pp ,K3_| e iKgH‘OP3 = gp3P0> 3

Hence, with lpp,33) defined by (IV. 16),

- ~ie 12
303
Pulpp,s:;) e pplm'ss)

(1v.21)

lp ,s.) .
p,lp, 3>

N.B. ¢(p) boosts Im,s3)_to Ipus3).

Consider an arbitrary Lorentz transformation, noi(v) =n;(v),
specified by the velocity, ¥, with
_i
coshn=1v, sinhy=~Ivl, v=(1 -3%) "2 (1v.22)

such that
P, = P, = A:p : (Iv. 23)

If ¥ is in the z-direction

coshn 0 0 sinhn
0 0 0 0

A(m) = 0 0 1 0 (1v.24)
ginhn 0 0 coshn

N.B. m takes p-p'.
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The Lorentz transformation of single particle states is
mn [ -iﬁ'-K.
lp,ss)—>lp,s3) =e lp,sa).

Using (IV. 16) and

we can write

Ip,ss)' =e e e e KIm,s3), (1v.25)

p'<—m<—p'<—p<—m;

the effect of the various exponential factors (pure Lorentz transforma-
tions) being represented schematically below the equation. We see
that the three Lorentz transformations
-8 aea w3
ie'«K -in.K -ie.K
e e e take m-m,

and together generate a pure rotation—the Wigner rotation. An effec-
tive complete set of states between these and the remaining exponen-~
tial factor is

; lm,sé)(m,sy
3

yielding
22 md id
—icl. K K -in-K -ie
e lm s ){(m, s' lele n 1
)

lp,s'3)' |m,s3)

[2]
w

(1v.26)

- =3
] ] 1 ie(nlp:pl)'I
; Ip*,sy)(m, sy le Im,s,),

which esgtablishes the result anticlpated in (IV.13). The Wigner rota-
tion, €19+, is analogous to the ell/2 T-% rotation in SU(2). Now,
however, simple cancellations of phase factors are not achieved by
saturating spin indices because of the momentum dependence of
8(n,p,p').

Rather than using states, it is convenient to work with the
Fock space creation (annihilation) operators. These transform
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according to

- - S

alps) 1 [a(ps)]' = e Ra(ps)e MK

=b

E<m s le 1eK an _ie!

lm s! )a(p sy). (v.27)

1
®3
This is like the single particle state, with p =p' and the spin index
undergoing a pure momentum dependent (Wigner) rotation.

To avoid the difficulty we introduce an auxiliary group, &,
which is chosen to provide an explicit representation for the three
separate exponential factors of the Wigner rotation. Any group
which contains the generators and | will be sufficient. The sim-
plest possibility for @ is £, the homogeneous Lorentz group (0(3,1)
or SL(2,C)) with basic generators ¢ and ic.

Another possibility is to use U(2,2)—(locally isomorphic to
O{4,2)). This is the space time part of U(12)—with basic generators
the sixteen Dirac matrices.

Having chosen @, we must choose a representation |T,a),
the only requirement being that the j,j3, contained in o, include the
physical spins s,sg of the particles to be described. For d=4& the
representations T can be either unitary or non-unitary. If we desire
[T,@) to be finite dimensional (jhin=koSjZ lcl -1 =jpax) then the
|7,a) representation is non-unitary. Thus {t,e|Rl7,B8) is not her-
mitian, and in fact for the examples under consideration will be anti-
hermitian,

(@IR1B) = ~(alRTIB). (1v. 28)

On the other hand if |T,x) is infinite dimensional (unitary) then we
have a spin tower ko=j. Most of quantum field theory has been con-
cerned with the first choice.

If parity is to be included we have seen that we must use both
lt,a) and |7,a). The most familiar example of an auxiliary group
representation is the Dirac spinor label for which ¢=£ and
v=(1/2,3/2), t=(1/2,-3/2).

We drop the label T and spe01fy the representation by |a).
For a Lorentz transformation a{p, sg)~ alp, s3)' ‘where

alp,s)' = ), (m,salp)(pleie'KIGXGlein'KlBXBle'i"K

53

lo)alm, S'3)

a(p',sy). (Iv.29)

Now define the auxiliary operator
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B (p) = Z(ale_ie'KlB)(B]msé)5(D,Sé)f(mS) (1v. 30)
53
= Sé’" '
= SE' Uy(p) °alp,sy). (1v.31)
3

This has the important property that under a Lorentz transformation

-~

A (S (B, = Uym 3 & (p,sy)

(¢4
= U@ (masy lo)(p1e™ Ty (vl N 1B) Byl
= 5 ¢v1e™ K 1BYAL(PY)
- (a]ei“'Km)I\B(p-). (IV. 32)

In (IV, 32) the "spinor" indices «,f have replaced (s,s3) as the spin
variables. Further we see that, under Lorentz transformations:

(1) The new "spinor" label (8) undergoes a pure matrix trans-
formation 111depengent of p, parameterised simply by 9.

(i) Uglp) 3 is a generalised spinor. Equation (IV.31) which
expresses the generalised spinor explicitly as the auxiliary group
matrix element of a Lorentz transformation (boost) is the crucial link
between the fleld theoretic and group theoretic approaches.

The dual operator A%(p) is defined as

(p) = ZS-'—(p,sé)_f(ms')(m,séI(‘eie'Kla) (1v.33)

53

(with the sign of the boost opposlte to that in (IV.30)).
Under a Lorentz transformation,

AQ

-~

8 () oA @] = 3P0 (le T Ria), (Iv. 34)
If |e) is finite dimensional (non-unitary), then

B £ B o0t but A% = K (). (1v. 35)

Also for spinors, defined by



202 P. T. MATTHEWS
- -+
A%p) = &37(p,sp)U%(p)g (Iv. 36)

for non-unitary representations,
+
U® # w,)" . (Iv.37)

For example, in the Dirac representation Uo‘Ua =TU (and not
(Ua)+Ua] is a scalar.
Under displacements,

1P a}*-+
a(p, S)—>e b= 8 (p.sg),

- a —il‘5 a (1v.38)
alp,s) —>e F &lp,sy);

and the auxiliary field operators transform in the same way,

() 2T A%,
- (1v. 39)
B0 2e PR (p)

The introduction of the auxiliary group has solved the problem of
separating "spin" and momentum variables in the Lorentz transforma-
tion of fleld operators. Now invariant factors can be constructed in
analogy to the isotopic spin by saturating indices.

Thus, for example, for Dirac operators (which we discuss in
more detail below), a four-point sub-matrix of the S-matrix could
have the form

5 - 5% F0) (v, 10) Phgtop)8, (o)

(1v. 40)
4,
(2md’

4
4 - 2
(2m)°6 p1+p2—p3-p4> iﬂlzﬂe(po) 5(131 -

Under displacements, § transforms
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~ a (e} +pf - -ph)a, AT B
320 B Bt (e e

- - 4 a4 Py
BB(p3)A”(p4)0<pl+p2 -p3-p4> i];llA+(pi) (2? . (v, 41)

= §,
showing very explicitly how translation invariance leads to energy
momentum con§ervation in S-matrix elements. Under Lorentz trans-
formations of S, it is most important that only the auxillary operators

transform, and that these transform as densities, i.e., that for A%(p),
p=p' in addition to the matrix transformation on @. Consider the

case
t(vu, q“}f = <q”vp>f, (Iv. 42)

3,8 - gﬁ"'(p'l)(e‘iﬁ‘-‘é)a?s"'(p'Z))(e‘ﬁ'—K)J
@ ¥ >B<”‘ K)B BB.(ps)(m K>1r Py (Iv. 43)

d‘qp
6( +Py =Py - p4> Il 4, (py) 2nt

Now,
-in+K 1;E v
e e 2 A , IV. 44
A pL(11) v, ( )
and
v v
“Ap m =q’. (1v. 45)

One can now make a change from the undashed to the Elashed varla-
bles. Since the Jacobian is unity, the invariance of S is established.

We will have occasion to consider below pure matrix transfor-
mations of the auxiliary operators

A (p) = (ei”' K>fﬁ3(p) (1v. 46)
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(p unchanged). For invariance under such transformations it is evi-
dent from the example above that the saturation must take place be-
tween suffixes on auxiliary operators only, and factors such as {(q*v )
are excluded from S-matrix elements. W

C. Physical Content of the Auxiliary Field Operators.
The correspondence of the auxiliary operators to physical par-
ticles depends on the choice of the constant spinors

(Blm,sa) = (koc,jj3]m,s,53), (IV. 47)

where (s,s3) are the physical spins and (j,j3) are components of the
auxiliary representation, For example, take s =% and the auxiliary
?roup to be O(3,1). The simplest representation |&) containing spin
7 is

la) = lkoc;jj3) = 12,43/2;5,£3), (Iv. 48)

which are the four Dirac spinor labels. In this representation the
boosts are just Dirac matrices,

(@IR1B) = oy P = -GEy )P, (1v. 49)

where

- i =
o = 2 e v v =20 (V. 50)

We have two physical states in the rest frame, lm,S3)(53 =:|:§), and
there are four auxiliary states, le}. This redundancy can be re-
solved by additional conditions on {alm,s3).

The operator e satisfies

] =0, (Iv.51)

( Yoo Ui]

and can therefore be simultaneously specified with spin only in the
rest frame. In fact, for this representation v, plays the role of the
parity operator [i{.e., has the correct commutation relations with
Tuv/2 =Ip.V] . Thus specifying the eigenvalue of v, specifies in-
trinsic particle parity,

¥° =1, (Iv.52)

SO Y4 has eigenvalues +1. We may impose the conditions
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1

(1) (alvo!B)(Blm,ss) = +(alm,s3>, (s=2), (Iv. 53)
or
v Im, 8,0 = +lm,s,), (Iv.54)
defining positive intrincis parity for particles; or
(11) Yolm,53) = -Im,5,), §=3, (Iv.55)
defining negative intrinsic parity for particles.
Either of the conditions reduces the number of independent

auxiliary states to that of the physical states. By boosting the Yo
equations, {IV.54) or (IV.55), we have

(ale_k'KYOeie'Ke_ie'Klm,(S/E)) = tlele™ ¥m, (s/5)),

or
(ale—ie'K'yoeie.KlB)(Ble—iE'Klm,(s/E)) = i(ale—iE'Klm,(s/§)>,

or

Py B
( m \'G‘ Uﬁ(p,(S/E)) b an(p:(S/g))r (N.56)

i.e., the Dirac equation. Equations of motion (apart from the Klein-
Gordan equation) always play this role of eliminating redundant com-
ponents in the auxiliary representation |@). In this formalism,
equations of motion may or may not exist., In any case, they are not
needed to calculate cross-sections since we know the spinors expli-
citly.

Note that in terms of these states we can write the unit
matrix in la) space as

1= Z ls,s3)(s,ssl + fs,sa)(s,ssl, (Iv.57)
s
3
and
W = SE Is,sa)(s,sal - Is,sa)(s3,53 5 (1v.58)
3

So far we have started with the physical particles and pro-
ceeded to the auxiliary representation, with the aid of supplementary
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conditions to eliminate redundancy. However, we could have

started with the auxiliary representation and decided from that point
of view what particles should be physical. For example, physical
particles |m,s ,33} could be specified to correspond to all of the

13 ,j3} in a particular representation le). For example, for the Dirac
case Ay(p) we can have parity doubling with four physical states,
Is,s3) and |5,54). In this case there is no redundancy and A, (p)
satisfies no equation of motion, but the spin sum over physical spin
states is then

—— = — .
), {als s Xs,5,18) + ), (als,5,X5,5,18) = 6. (1v.59)
S S
3 3
The sum over spinors 1s extremely important for calculating
cross sections

o= ) sst.
spin

To illustrate the general features we need below we can consider spe-
cial cases

sP= T u pss)ufe,s,s,). (1v. 60)
spins
(Slss)

Formal proofs of the statements made below are to be found in
Feldman and Matthews. 2

(1) {a) finite dimensional (non-unitary); e.g., for the Dirac
case with parity doubling we have (using particularly (IV.49))

B _ + B
8, = _Z Ua(p,s,s3)U1r(P,S,S3)(’Yo)1r,
s5s,

_-;'.:' =~y
), {ale™ Kh/)('ylm,s,ss)(m,s,s3l«r)(trlele K leXmlv 16},

sTs
3

’

( ale'iEi(O'oi/z) e+i€i(0';i/2) 'YO lB)

-leso s Yp,~ B
(ale™%0iy 1g) = (T . (1v. 61)
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This is a slight variation of the more familiar case with two physical
states (no parity doubling) where

UQ—B = i (16+m)f . [+ parity],
and

Uaﬁ = i({’-m)f, {- parity]'.

The important general point is that for finite (non-unitary) representa-
tions the K matrices are anti-hermitian, so the momentum dependent
exponentials in the spinors do not cancel but combine to give a mo-
mentum dependent factor like P.

(2) la) infinite dimensional and unitary. We assume a one
to one correspondence between physical states and auxiliary states
so that the constant spinors are

(koc,'J,13lm,s,s3) =0 {IV. 62)

J‘Saj353 :

implying an infinite spin tower of physical particles. Unitarity of the
representation implies

(alKilB)

(@lK]18),
(Iv. 63)

U(p) = UJ(P),

and the sum over spinors becomes

s B

o4

Z, Ua(p, s3)UB(p, s3)
spin

iR e
€ 18

(ale™ KI7r)(7rlm,s3)(m.53lp)(ple )

(ale—le'Kele'KlB)

(alB) = éf. (1v. 64)

Thus we see that for this case the spin sum has no momentum de-
pendence.
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V. Poincare Invariance and Internal Symmetry

We now consider the problem of combining external with in-
ternal symmetry. The simplest possibility for an internal symmetry
such as U(3) is to assume invariance of the theory with respect to the
direct product P ® U(3). Let the representations and components of
U(3) be labelled by the suffix a, and the generators by *; (i=0,1,...8)
including the unit matrix )‘0' Thus the Fock space annihilation
operation is now a(p, s;a) and the auxiliary operator Aoz,a(p)'

Invariant S-matrix elements are again constructed by satu-
rating independently all the indices of both groups.

5= (2% mn™ )t e, (oA, (0

4 44
4 d'pj +
(27)"3(p, +p, -P5-P,) 1'=ll 2m? A" (py). (v.1)

Lorentz transformations operate both on the indices « and the argu-
ments p, as discussed in (IV.:IS)—(IV.45) , so momentum dependent
terms t(g) are allowed in the S. For this it is essential that both A,
and Py transform according to representations of O(3,1).

If we attempt a more intricate connection between the
Poincare group and U(3), we can take the simplest representations of
the Lorentz group SL(Z,C), for which (ky,c) are (3/2,1/2) and
(3/2, -1/2) (dotted and undotted spinors). These 2X 2 representa-
tions give rise to four vectors

o = (1,;), (V.2)

and

7
N
The simplest possible non-trivial extension of the physical Lorentz
group £, which contains £® U(3) as a subgroup, is to take the
group SL(6,C) with basic generators given by the outer product

(1,-0). (v.3)

v, ® xi 36 generators, v.4)

or

EM ® )‘i 36 generators. (v.5)

Both have to be included for a theory which involves space-reflection
invariance. If this is to be generalised to an extension of the
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Poincare group, the vector pp, must be a representation of the new
larger group SL(6,C). But the simplest representation which includes
four components which transform as a four-vector under Lorentz trans-
formation is the 72-component multiplet, transforming like the basic
generators. One is thus stuck with a 72-component energy-momentum
vector, 10),11),12)

This is an example of a general theorem established by Michel
and Sakita.13)

Theorem. Any generalisation of P X) U(3) which contains

P @ U(3) as a subgroup necessarily involves an energy-momentum
vector with more than four components,

The way around this difficulty is to extend, not the Poincare
group, but the Auxiliarx'group. For example, 14),15) we can take the
latter to be U(6,6) or U(12)—with basic generators given by the outer
product of the 16 Dirac matrices with X;:

. 1
(1, g Nyr Mg zo'pv>®)\i. (v.6)

The basic auxiliary operator is twelve component

a,a

1,2,3,4 a=1,2,38.

AA(p) where A

[

Since the transformations on both indices a and a are pure index
transformations, we can require the S-matrix to be index invariant
under the pure index transformations of the U(6,6) auxiliary group.
This gives rise to a subset of the invariants allowed by invariance
under P Q) U(3). They have the property of being SU(6) invariant, in
the extreme static limit, in which the masses of all particles tend to
infinity, since then momentum dependence is frozen out and the
auxiliary group spinor labels are equivalent to the spin labels. How-
ever, since the index transformations do not operate on the momen-
tum py, index invariance excludes factors like ¢ in S-matrix ele-
ments (see (IV.43)-(1V. 45)).

We must now consider whether index invariance is consistent
with the unitarity of the S-matrix. Expressed in terms of T where

S = 1 +iT, v.7)
this requires that
_ +
2 ImT = TT' . (v.8)

Suppose that T and T* are index invariant and that ImT is defined
by (V.8). The product on the right hand side involves a sum over
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spinors. Writing one such sum explicitly we can put

Tt = Zta Ua(p ,s3)UB(p ,ss)f'B.
53

If |a) is a finite (non-unitary) representation of the auxiliary group,
we have seen that this gives momentum dependent factors—typically
(Iv.61)—

Tt = t"’(ﬁ)ft—B.

But factors 15 are excluded by index invariance. Thus even though T
and TV are index invariant, unitarity of the S-matrix implies that ImT
is not, if the particle multiplets are finite dimensional. This is the
so-called "conflict with unitarity." The escape route has been an-
ticipated in (IV.64). If the physical multiplets are taken in one-to-
one correspondence with unitary representations of the {extended)
auxiliary group, the spin sum is unity, and consistency between in-
dex Invariance and unitarity of the S-matrix is restored. The E§)rice
paid is that we now have infinite particle multiplets.ls)' 17),18)

For a more general and formal statement of the argument of
this chapter, see Feldman and Matthews, 9

VI. Causality—Spin and Statistics

Notice that so far we have made absolutely no mention of
anti-particles, the relation between spin and statistics, or CTP in-
variance, All these concepts arise from the requirement of causality,
which goes beyond Poincare invariance. We turn now to this prob-
lem and find that it leads to further complications for unitary, index
invariant theories.

Causality is best discussed in configuration space, but before
taking the Fourier transform of the auxiliary operators we develop
what will turn out to be the anti-particle formalism., Following
Weinbarg,7) we note that for any rotation there exists a matrix B,
such that

' — vl _if'-e’A
Is,ss) = (s,sslB e Bls,s3). (VIi.1)

A
(s,s3 Ie1I

Thus to construct a creation operator that transforms under the auxil -
iary group like an annihilation operator, we make use of (VI.1) to ob-
tain

4 <1 K MR -1 R, ot

b (p,ss)ﬂ>(53lB o et R T Bls'3)b (p',sé). (Vi.2)

Analogous to the auxiliary field .ﬁa(p) , we introduce
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B,(p) = Y, (ale'“'Kﬁlm,s,ss)g(m,S)5+(p,s,ss) (VI.3)
s, 8
3
EZﬁ(pss)ﬁ+(pss) (V1. 4)
a I ’ 3 ’ 1 3 . .
S,S3

As we have seen, there can be more than one spin occurring in the
sum and the factor g(m,s) allows for a spin dependent mass,20
though we will not consider such fields here. Under a Lorentz trans-
formation

Ea(p) a, (aflem'K

IB) BB(p') , (VL. 5)

i.e., §a is a creation operator transforming like the annihilation
operator Ay(p). N

Under translations, however, ﬁa(p) transforms with the oppo-
site sign from A,(p),

-~

(® = 4" E (o), (VL. 6)

'
o (o3

Thus Ea(p) transforms like a particle creation operator,
We now define the free field in configuration space

R Ca - el a4
b = S{Aa(we P By e o1 A -~ 1;’4. v1.7)
s

Under Poincare transformations, we have
3a00 2 (TR G g, wL.8)
a Ja 7B

q‘;a(x) a, J,a(x+a) , (V1.9)

for quite arbitrary ehoice of f(m,s) and g{m,s) (including zero). The
factorization of transformations on spinor and space time labels fol-
lows from the factorization of transformations on spinor and p labels
in momentum space. In this way we arrive at a local field operator
normally taken as the starting point in Lagrangian field theory.

The causality condition imposed upon such fields is

f:l;a(x)‘%ﬁ(y)}:t = 0 for (x—y)2 < 0 (spacelike).
L . (VI. 10)
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This implies that no mutual distrubance from observation of the fields
travels faster than the speed of light.

This is a stringent requirement which may be stronger than is
physically necessary since it 1s not clear that one need observe the
fields in this sense. The condition does, however, have the enor-
mous advantage of being simple and precise. Applied to finite com-
ponent fields, it has the important consequences, mentioned above,
concerning anti-particles and statistics, which are well borne out by
experiment.

It is the basis of the analytic properties of the S-matrix. In
particular, the procedure for introducing electromagnetic interactions
through the substitution

ap - Bp - ieAM
only leads to causal currents, when it is applied to causal fields.
Only for such fields does the time-ordered product—and hence the
standard Feynman-Dyson S-matrix expansion—have a well-defined
covariant meaning., It is thus a property which one does not lightly
give up.

We have been lead to consider infinite component fields cor-
responding to unitary representations of the Lorentz group. We now
consider what survives of the Pauli Theorem concerning spin and
statistics if the causality condition 1s applied to these generalised
unitary fields. .

If a theory is constructed around the field {, hermitian
operators (e.g., currents) have to be constructed, and the theory
necessarily alsAo 1nvolyes $+. Thus a minimum condition for a causal
theory is that ¢ and ¢% satisfy (VI.10). One must also make sure
that the condition is satisfied by any other pair of operators in the
theory, but this is usually simple.

The causality condition is satisfied by the free field commu-
tator (anti~commutator) if it can be expressed in the form

N .~ o _-ip-(x-y) __ip- (x—y)‘]r +oy 4
= a —
{860,350}, = 1,50 {{e e s*a’p,

' (V1. 11)
where the crucial feature is the relative minus sign between the posi-
tive and negative frequency parts. Now substitute (VI.7) into the left
hand side using (VI.4), (IV.31) and the (anti) commutation relations

(Iv. 12) where

{ }+ denotes (Fermi statistics) anti-commutator,

and
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{ }_ denotes (Bose statistics) commutator.
Then

.(I:a(x),:lﬁ(y) =Lk [ U, (p, 5. 850U (5, 5,5 ye tPx-y)
B + g5 3B 3
3

. ok iplx-y) |, + d4p
£ U, (piis ) Ug(psisyle JA (o) o (V1. 12)

|} -

= S[(al - R 16)(6Im, s, s, )lf(s)l {m,s, isglm

-~

-..:._'_ iy _ =
. (1rle1E S I8)e 1p(x-y) + (ale” ™€ KBlm,_s',sa)

_ 1 i ®t - 4
g 5) (5., IB L e K o ip(x Y)J () —J;
(2m)

(V1.13)

the upper sign referring to Fermi statistics. This is the basis for the
Pauli spin-statistics theorem in that, if finite non-unitary represen-
tations are used, then (VI.10) is satified only with Bose statistics
for integer spin and Fermi statistics for half integer spin particles.
To illustrate this, we consider the spin O and % cases.

(1) S=0O. For the scalar case,

K=0 and U=0%"=1, (VI. 14)

so that from (VI. 13) we obtain

{q’(x)’q’y)} S[Ifl b Y)il ’ 1px Y)JA " (zﬂ,q

(V1. 15)

Thus for agreement with (VI, 10) we must choose Bose statistics
(lower sign) and

2

= lgl® =1, (VI. 16)

lf

i,e., anti-particles must be included. It is further noted that if we
require the parity transform of the scalar field



214 P. T. MATTHEWS
-~ ._1 -~
Rkll(xo’ir)R S :l:llJ(xo' ) (vi.17)
it implies that particle and anti-particle have the same parity; i.e.,
~ndt ~t and ~t
Ra'(p,s)? = $a'(-p.s)) , Rb'(p,s)) = 2b'(-p,s)) ,

taking either both upper or both lower signs.
(2) s = 3. Forthe spinor case,

- ot
=—291= -fi. (V1. 18)

~

Kt:>i
Particle parity is chosen by convention to be positive,

Ra*(p.s,y)) = +5+(-_}3,s) ) (V1. 19)

and will be determined for the anti-particle by the causality condi-
tion

A at ~t
Rb'(p.sg)), = b (-p,sz)) (V1. 20)

The spin sums in (VI.13) are (see (IV.62))

) * - L 1 B2
Z{ U, (p.s,8,) UB(D‘S’SS) = 2m|:(15+m)(7°)‘|alfl .
spin

parity(+)

1 o ~k, . - _l_ ) B 2
sziln Ua(p: SISS) UB(plslsa) - zml:(ﬁim)'yoJa Igl ]

so that we obtain

§,),5 L = EL (Brm)| Bl5(s) |2~ iPE-Y)
B + ot .loz

1 B 2_iplx-y)\ o+ -d%p
g [, |16 e P ) A

(V1.22)
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The causality statement (VI. 10) then requires:
(i) Fermi statistics,
(i) (-) 2parlty for the anti-particles,

(ii1) 1£1 lgl2 =1, (VI.23)
so that
A =i[1 ] -ip(x-y) _ ip(x-y} 4 p_
{Bat0B3o0}, = g (0emiv, | (e )
(V1. 24)

As is well-known, these arguments generalize for all finite non-
unitary fields with the result that:
(i) Pauli spin-statistics theorem is valid;
(ii) Substitution law [pp* -py: particle in— anti-particle out]
1s valid;

(iii) CPT theorem is valid.

Index invariant theorles such as SL(6,C) or U(6,6) with finite
particle multiplets work with local causal fields, which preserves all
of these features and give SU{6) in the extreme static limit [all par-
ticles have m==}, However, as we have seen, they violate uni-
tarity. This was the original motivation for discussing infinite com-
ponent fields, considered at the end of V, which allow for index in-
variance consistent with the unitarity of the S-matrix.

(3) Unitary Fields of index invarilant theorles. For these in-
dex invariant fields we have |} unitary and K=K*. In addition to
satisfy unitarity we required that

(1) f=g=1,

(i) {(j,igls,s3) = 61561'353’
so that
¥ _ s
UgUg = 8,
and
~ ~ % - B
UB =8, (VI.25)
Thus

- -t N -ip(x—y) 1P(x -y) alp
{%‘X%‘PB (y)}i - éaf[e JA (P} oy

(V1. 26)

so causality (VI.10) can only be satisfied for Bose statistics for all
such fields, whether of half interger or Integer spins.
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Notice that there is a very direct conflict between causality
and unitarity with index invariance, since the latter demands

*
g =

while causality for consistence with Fermi statistics requires

Uvu
a

x , oB
UQUB # 6(1'

in order to produce the crucial minus sign in (V1. 10).

Fronsdall®) and Dao and Nguyen16 have suggested that one
can construct infinite fields of the auxiliary group to satisfy index
invariance, but quantise each separate spin component in the con-
ventional manner to preserve the correct spin-statistics relation.
This requires that both a unitary (infinite) and a finite auxiliary repre-
sentation are associated with each physical spin, The relation
between the two is wildly non-local, so that local currents con-
structed from the unitary fields are very a-causal in the quantised
(finite) fields. This brute force approach does not appear to us to
provide a solution to the problem.

Apart from its implications for index invariant theories, this
result clearly shows that the Pauli Theorem connecting spin and sta-
tistics is not valid for unitary fields. We may wonder if any such
connection survives. To this end we consider:

(4) The self-conjugate unitary fields. The two unitary fields
specitied by either

(ko) = (0,3) : §=0,1,2,...

or
,3/2,... (VI.27)

o[

(kg:©) = (3,0) : j=

are parity self-conjugate fields and we now show both can be made
causal using Fermi, instead of the Bose, statistics derived above.
This completes the collapse of the Pauli theorem in that it demon-
strates that not even the wrong spin-statistics correlation results.
In general for unitary causal fields there is no spin-statistics corre-
lation.

For these special representations there exist operators
(Ii_L)a' that transform like four vectors, where

4),5)
. i _ fs L
GaigIT 15 ,1'3) = (J+z)5jj.5j3jé- (VI.28)

The meaning of I"L as a 4-vector is that under a boost,
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€ -le. le.K _ p e
I,—>e T.e i (V1. 29)

~i

Now take the physical states to correspond to the infinite tower such
that

(kolcljlj3lmlslss) = 61861333- (VI.‘30)
so that
= fcal
Iylm,s,8,) = (s+32)Im,s,s,.), (V1. 31)
and T, can be written

), ls,s,)(s +3)(s,5, 1. (VI.32)
SSs
3

The trick that enables one to satisfy causality with Fermi
statistics is to take

1

1£(s) 12 = 1a(s)1% = (s +4). (VL. 33)

Then the (anti) commutator (VI, 13) is, using (VI.32),

-~

o =rdm )
{Jia(x)'i‘g(}/')}i = 5{(vzle_le'fl 5,84 (s+3) (s, 5, [el€’ K+|B)e-1p(x-.y)

- ".A B —-A+ . _
£ (ale”™ KBls,s3)(5+%)(s,s3IB IR 1)etP® Y)}

4
+
A(p)LP_

(2m4
= 5{(ale_i; ﬁl‘ ei;ﬁlﬁ)e—ip(x_y)
o]

—i:-ﬁ 1 +ier ﬁ ip{x-y) _&
ek Farp IB)e }A(H vy

and, with (VI.29), becomes
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{Fat0 8570}, = <5;1i>f e 5 N fﬁ .

(V1. 34)

Thus causality (VI. 10) requires Permi statistics (upper sign) for both
the (0,%)—integer spin—and (§,0)—one-half integer spin—unitary rep-
resentations. Thus there is no spin statistics correlation for unitary
representations. (Note that since the sum over spinors is not unity,
these Fermi fields cannot be used to construct unitary index invariant
theories.)

We have confined this discussion to multiplets of equal mass.
Multiplets with different masses for the different spin have been con-
sidered by Feldman and Matthews. If a unitary field is assumed to

satisfy a linear equation
<ia+*rp+1<>¢ =0,

m_ =-—T
s s+3 '

giving a mass spectrum

it has been shown by Abers, Grodsky and Norton?1) that one can
satisfy causality with either Fermi or Bose statistics, without intro-
ducing any anti-particles. This demonstrates the loss for unitary
flelds of one more of the physically attractive features of finite com-
ponent (non-unitary) fields.

We close with the very negative comment that the difficulties
encountered in combining internal and external symmetries in a non-
trivial way through index invariance are of a subtle nature, involving
as they do problems of causality, CTP and the relation between par-
ticles and anti-particles. It has only been possible to see them be-
cause these theories have been formulated in a very clear and precise
manner.

Similarly, attempts to find reasonably realistic model theories
for current commutators, which have an equally precise basis, lead to
the highly non-local Lagrangians. No light can be thrown on these
fundamental problems by phenomenological non-relativistic quark
models, and the whole question of the connection between internal
and external symmetries remains extremely obscure.
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Summary
Starting from the notion of particles and Poincare invariance,

we have arrived at local fields. In order that these should have sim-
ple transformation properties the spin variable, specifying a repre-
sentation of the Little Group O(3), is replaced by a spinor, speci-
fying a representation of the auxiliary group. This must contain the
homogeneous Lorentz group and is most simply chosen to be isomor-
phic to the homogeneous Lorentz group (Chapters III and IV).

The combination of internal, SU(3), and external, P, symme-
tries is considered in Chapter V. The non-trivial extension of
P ® SU(3) leads—Dby the Michel-Sakita Theorem—to an energy mo-
mentum vector of more than four components. This can be avoided by
extending the auxiliary group to include the internal symmetry—
SL(6,C) or U(6, 6)—and requiring "index invariance" of the S-matrix
under the purely index transformations of this larger group. This
provides a relativistic theory with SU(6) as its static limit, but is in
conflict with the unitarity of the S-matrix unless the particle multi-
plets are infinite unitary "towers."

Causality is considered in Chapter VI. It is shown that index
invariant unitary theories can only be made causal if all particles
satisfy Bose statistics. In general, it is shown that for (infinite
component) unitary causal fields there is no connection between spin
and statistics.

References
1. M. Hamermesh, "Group Theory," Addison Wesley Pub. Co,, Inc.
(1962).

2. R, E, Behrends, J. Dreitlein, C. Fronsdal, B. W. Lee, Rev,
Mod. Phys. 34, 1 (1962).

3, Abdus Salam, "Theoretical Physics," Trieste Summer School,
p. 173, IAEA, Vienna (1963).

4, M. A, Naimark, "Linear Representations of the Lorentz Group, "
Pergamon Press, New York (1964).

5. I. M, Gelfand, R. A, Minlos and Z, Ya Shapiro, Representations
of the Rotation and Lorentz Groups, Pergamon Press, New York
(1964).

6. H. Joos, Portschritte der Physik. 10, 65 (1962),

7. S. Weinberg, Phys. Rev. 133B, 1318 (1964),

8. G. Feldman and P. T. Matthews, Ann, of Physics 40, 19 (1966).
9. G. Feldman and P. T. Matthews, Phys. Rev. 151, 1176 (1966).
10. T. Fulton and J. Wess, Phys. Lett, 14, 57 (1965); 14, 334

(1965).

11. W. Riihl, Nuovo Cim. 37, 301 (1965); 37, 319 (1965).

12, J. M, Charap, P. T. Matthews and R, F. Streater, Proc. Roy.
Soc. A290, 24 (1965).



220

13.

14,

15.
16,

17.
18.
19.

20.
21,

P. T. MATTHEWS

L. Michel and B. Sakita, Ann. Ins. Henri Poincare, 1965. See
also L, O'Raifeartaigh, Phys. Rev, 139, B1052 (1965).

A, Salam, R. Delbourgo and J. Strathdee, Proc. Roy. Soc, A284,
146 (1965).

B. Sakita and K, C, Wali, Phys, Rev. 139, B1355 (1965).

C. Fronsdal, Proc, 1965 Trieste Seminar, IAEA, Vienna (1965);
Phys. Rev, 156, 1657 (1967).

W. RUhl, Nuovo Cim. 42, 619; 43, 171; 44, 572, 44, 659 (1966).
Dao Van Duc and Nguyen Van Hieu, Dubna preprints (1966).

K. Koller, Imperial College Preprint, ICTP/67/25: (Feynman
diagrams for unitary representations of SL(2,C)).

G. Feldman and P, T. Matthews, Phys. Rev. 154, 1241 (1967).
E. Abers, I. T. Grodsky and R. E. Norton, Phys. Rev. 159,
1222 (1967). i



BOOTSTRAPS, FIELDS AND GENERALISED Groupst

John G. Taylor
Mathematical Institute
Oxford, England

Contents
I. Survey of N/D Bootstraps
II. Off-Mass Shell Bootstraps
III. Field Theory for Composite Particles
IV. Composite Potentials and the Jin-MacDowell Cancellation
V. A Composite in the Relativistic Lee Model.
VI. Classification of Particles
VII. A Field Theory of Bootstraps
VIII. Generalised Groups: Definitions and Representation Theory

1. A Survey of N/D Bootstraps

In this series of lectures, I want to set up a field theory of
bootstraps and discuss briefly some of the mathematical problems
arising in such a theory. 1) As an introduction to this I want to start
by giving a survey of the theory and results of the N/D approach to
bootstraps. By doing this, I can tell you in a very simple way what
the bootstrap idea is, at the same time following the historical
method of development, since the bootstrap idea was first developed
in the N/D framework. At the same time you will see how the calcu-
lations indicate the need for a more complete approach to bootstraps
which includes many particles in both direct and crossed channels.
This can be achieved, at least in principle, by means of field theory,
so we will naturally be lead to setting up a field theory of bootstraps.
In the process of doing this we will have first to set up a field theory
of composites, and then make all particles composite. These prob-
lems and their resolution will be discussed in more detail in later
lectures.

So let me begin, then, with the N/D method of bootstrapping
particles .2) The basic idea here is that a particle 'bootstraps’ itself
by being its own potential—that potential caused by the exchange of
the particle. This potential then acts between two other (elementary
or composite) particles to produce the bootstrapped particle as

TPresented at the THEORETICAL PHYSICS INSTITUTE, University of
Colorado, Summer 1967,
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a bound state. To set this up in detail let me consider the elastic
scattering amplitude for two equal neutral scalar a-particles of mass
m. The 4 -th partial wave amplitude is a function t (s) of the invari-
ant energy s of the incoming particles; in the centre of mass system
for the incoming particles, s =4(m2 +K2), where K is the centre of
mass momentum of the particles. Also the elastic scattering phase
shift 8y (s) is related to tp (s) by

b

FY id
k-t (s) = .ot sinb, .

It is to be expected3) that ty (s) map be continued analytically in s
to the whole complex plane except for two real branch cuts: the right
hand cut running from s =4m? to +% and the left hand cut, running
from a value sc(<4m2) to -®, The right hand cut is sometimes called
the unitarity cut, since for s< 4m? the unitarity condition is3

ty (s) - tz(s) 2ik| tg (s)] z/s% + inelastic contributions

210 (s)]y, (s % (1.1)
The physical value tj () is the value of the analytic function ty(z) on
the upper side of the right hand cut, while t{’f(z*) will be the value on
the lower side of the cut. Thus the right hand side of (I.1) denotes
the discontinuity of t; across the right hand cut; this contribution
may be regarded as arising from rescattering through two or more par-
ticle intermediate states.

The left hand cut has a more complicated origin, being the
place where the dynamics of the system becomes evident. If we con-
sider the simplest particle exchange, that of a single ¢ particle of
mass M, coupled with strength g to two a particles of mass m, then
the Feynman diagram for this gives a contribution to the total scat-
tering amplitude equal to

¢*/T oy -py)? - 0™, (t.2)

In the centre of mass system, with scattering angle 8, so that

-

= B, py= vk, K= R,

— -,

P, = (w,k), p, = (w.-k), P,

with
~2 2.3
)'2'

w=(&k“+m")*, cose=}_<.-lz'/|]_<'||]-<"|,

then t=-2k2(1 - cos 8) and the contribution of (I.2) to ty, (s) will be
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+1 . -1
g J P, (cos e)[—2k2(1 -cos8) - uzj d(cos 6). (1.3)
-1

Evidently (I.3) is singular in ]—<'2(or s)-for K2< -u2/4, and E2=—u2/4
is a logarithmic branch point. There will be higher branch points at
K= —n2|_12/4 , with n=2,3,..., due to higher numbers of particles
being exchanged; these will lie along the negative real axis in the s-
plane. Thus the highest branch point s of the left hand cut will be
at sc=4m2 Y

There may also be poles in tp along the real axis between sg
and 4m2 these poles will correspond to bound states. For the boot-
strap situation we are especially interested in showing that the single
¢ particle exchange can produce a c-particle bound state, i.e., a
pole in ty(s) at s =u2 with the correct residue g2

In order to see if such a bootstrap situation is possible, and
more generally to obtain t{/(s) in terms of its discontinuity across the
left-hand cut, we write

ty

= N& /D{,

where we choose Ny and Dy only to have left- and right-hand
branch cuts in s, respectively. We now show constructively how
this may be done.

We apply Cauchy's theorem for Dy (z) to the contour Cj in
the s-plane, which is a large circle together with a contour encir-
cling the right hand cut, all taken counter-clockwise, z is any point
not on the right hand cut; then

! fo, (Z')dZ' 1 |_|oo [D_[.(SIJ “D{,*{Sl)]dsl
PE) =omi |, @-a " 2m Jyo  © 7
1 m

(I.4)

where we are assuming that the contribution from the circular part of
C; to the middle part of (I.4) vanishes as the radius of the circle is
made infinite. If we denote (Dy - I¥) by 2idisc Dy, then

i disc D{,(s
j‘ C(s'-z)

Since we cannot determine each of Ny and Dy to within a common
arbitrary constant, we assume arbitrarily that Dy (so) =1, where
§c< 8o 4m2, Then
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(I.s)

z - i di D;y(s')ds’
DL(z)=1+(Z SO)J‘ ot ol

1 [
m am? (s'-z)(s'~54)
The physical value of Iy is obtained by taking

lim Dy (s + ie) .
€- o+

Similarly, by using the contour Cg (which is identical to C; except
that the left hand cut is encircled in place of the right hand cut) for
Ny, . we obtain

s : V '
1 c discN; (s Jds
e i

Now
s 1 = g -1 _ - } '
disc DL(S ) = N, disct, * = p(s )N{,(S ),
where is g1ven by the unitarity equation (I.1), so is k'/(s é

for 4m <s'< 9m2. Also disc Ny, =Dy, -disc ty, =Dy fp , so

~ (s -sg) p” p(s')Ng (s')ds’
D) =1-—¢ J‘4m3 (s'~s—ic)(s'~s() (1.6)
S ] 1
1 c f,(s')Dy (s')ds
NL(S) =5 I (s'—s——m) y (1.7)

-

Thus if fy (s') is known for s'< s, we may solve the pair of coupled
linear integral equations (I.6), (I.7) to obtain Ny and Dy explicitly.
The bound states arising in t; may be due to poles of Ny or
zeros of D . The form of (I.7) has excluded such poles in Ny; if we
had included them we would not have been able to determine their
position or residue. In other words, they would not be dynamical
bound states; as we switch off the interaction represented by the ex-
change of particles and described quantitatively by the function f
such poles would have remained fixed, contrary to the behaviour ex-
pected from a dynamical bound state. Since we are using the boot-
strap approach we require our bound states to be dynamical, so they
correspond to (positive) zeros of Dy between s, and 4m“.



BOOTSTRAPS, FIELDS 225

Let me first describe how we may determine general condi-
tions on f; so that a zero of Dy may or may not occur. Before doing
that it is necessary to remark that we are not only interested in bound
states but also in resonances. These will correspond to complex
zeros of Dy . We may approximately describe these resonances as
arising from zeros of the real part ReDy of Dy , since at such a zero,
say s,, we have

t, (s)~ NL(sr)/[ (s - sp)Re Dy (s,) +1 ImDy (s;) | (1.8)

which is a Breit-Wigner form for a resonance. For the rest of this
section we will treat resonances as if they were bound states.

Returning now to (I.6) and (I.7) we see that if f; is negative
on the left hand cut, Ny will be positive on the right hand cut. Then
Dy, will vary between the value +1 at s, to -= as s approaches 4m?-,
so must have a zero between s and 4m2. On the other hand, if fy
is positive on the left hand cut then Ny will be negative on the right
hand cut, and Dy will lie between +1 and +« when s lies between
sp and 4m?. 1t is possible that Dy has a zero to the left of Sor if
we choose s, close to s¢ then this will be unlikely. Hence we con-
clude that for negative (positive) values of fy on the left hand cut
there is (is not) a dynamical bound state. This result will enable us
to discuss the bootstrap in a quantitative manner, since we will be
able to determine directly whether the exchange of the c-particle
gives an attractive potential (negative fp) or a repulsive one (posi-
tive fp).

In order to go beyond these purely qualitative results, and
also to be able to discuss cases in which fp is neither strictly posi-
tive nor strictly negative on the left hand cut, we may set up simple
approximate solutions to (I.6) and (I.7). Such an approximation is to
set D4 to be unitary on the left hand cut, so that if f; is the dis-
continuity arising from a set of Feynman graphs with contribution T;
(which only has the left hand cut) then Ny (s) =Ty (s) for all s, and
taking two-particle unitarity,

D,(s) =1 -

L - (1.9)

(S—SO) o k' I TL(S')
j4 (s")® ast (s'-s)s'-sg)

m2

The condition for a zero of Dy(s) at s= uz (a zero of the real part of
Dy(s) if 2> 4m?2) may now be easily written down from (I.9).

We may even approximate (I.8) further by taking Tg (s) =Tg(u2)
on the right hand cut, so that
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s-s0) o= k! ds’
= 2 o]
D&(S) =1- T{/(H ) T j‘4m3 (S')% (sl_ S)(SI_ So) . (I. 10)

We now return to the bootstrap. We wish to obtain a scalar
bound state at s =u2, when f; arises from single particle exchange
with value determined by (I.2). Thus we need

Do(n?) = 0. (1.11)

We also require that the residue at this bound state be gz, or from
(I.8) that

o? = No()/ D). (1.12)

If we combine (I.6) and (I.7) for £ =0 with (I.11), (I.12) and
the fact that fj is the discontinuity on the left hand cut arising from
(I.2), we get a set of non-linear equations for g and @ which in
principle should determine them (though not necessarily uniquely). In
the approximation (I.10) we see that (I.12) becomes

9_ . S
J P -uzyz o 1 (1.13)

with (I.11) given by an evident equation. If we denote the second
order c-particle self-energy bubble by m(s), with s =p2, then

2 d%k
(s) d
T ame j[kz—mzj[(p—k)z—mzl

Thus (I.13) becomes

dm
=1, (1.14)
\dS s=p?

To summarise our position, we may discuss the possibility of
bootstrapping a c-particle of mass ¢ by exchanging it between two
a-particles of mass m to produce the c-particle as a bound state
with mass ¢ and correct residue by



BOOTSTRAPS, FIELDS 227

(a) qualitatively discussing the sign of the discontinuity
function fy(s) arising from the single particle exchange term (I.2);

(b) quantitatively by solving (I.6), (I.7), (I.11) and (I.12)
with f arising from (I.2), or in a weaker approximation replacing
(I.6) by (I.9), or even weaker replacing (I.12) by (I.13).

We may evidently generalise the above analysis to:

(@) the bootstrap of a particle of higher spin than zero;

(b) the bootstrap of a set of particles belonging, say, to an
SU3 multiplet;

(c) the bootstrap of a set of multiplets, having different mass
and spin for each multiplet.

As an example of a bootstrap, let me consider the p bootstrap
in pion-pion scattering. The 21 system has I1=0,1, or 2, and we
suppose that the scattering is caused by the exchange of a single
I=J=1 p-meson. We use the spin 1, isospin 1 analogue of (I.2) and
the crossing matrix ayp which gives the contribution to the channel
with isotopic spin I due to exchange of a particle of isotopic spin I'.
We further use the approximation (I.9). Since single exchange gives
a positive value for To and Ty in the positive region (the suffix de-
noting spin only), and Qo1 is negative, we expect no bound state or
resonance in the isospin 2 channel (due to no zero of the relevant D-
functions). On the other hand ag1 is positive, so that resonances or
bound states are expected in the isospin zero channel with spins 0
and 2. The scalar state is dubious, due to the lack of a repulsive
angular momentum barrier in which a resonance can be trapped; the
spin 2 state may be identified with the f; meson of mass 1250 MeV.

The channel of interest, with isotopic spin 1, has ;) posi-
tive, and since single P exchange gives a positive T; in the physi-
cal region, then the p-meson can appear as a resonance or bound
state in this channel.

If we now turn to a quantitative discussion of the p bootstrap
we meet the difficulty that the p has spin 1, so Tj(s) increases with
s. In general the exchange of a particle of spin £ produces a dis-
continuity function fy (s) which for large s behaves as st -1, Since
DL(s) behaves at least as a constant for large s then the integral in
(I.7) will require at least £ subtractions to achieve convergence.
TFor the p we will need to have 1 subtraction, and the results will
depend on this subtraction constant. Due to this we cannot expect to
obtain separate values for both the mass and width of the p.

Besides this divergence difficulty there are other difficulties:

(@) The threshold behaviour of t; should be t{,(s)~q2{’ as
q~ 9, This can be achieved by writing down dispersion relations for
q_2 tg, . but this introduces difficulties of behaviour at infinity. To
avoid this, one may use qu_Z{'t{, , though this introduces a pole at
s=0,
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(b) The results depend on the value of the normalisation
point sq.

(c) States (bound or resonant) are found with the wrong sign
of residue. These are called ghost states.

Difficulties (a) and (b) have been avoided by Shaw,4) to
which I refer you for details. I will ignore the difficulty of the ghost
states. The final numerical results for the p bootstrap may be given
either as self-consistent solutions for a given value of the subtrac-
tion constant, or alternatively as the value of the width of the reso-
nance in the I=J=1 channel by exchange of a p meson with the ex-
perimental mass and width when the subtraction constant has been
chosen so that this resonance has mass equal to that of the p meson.
We use the latter form, so that the exchange of a p meson of the ex-
perimentally correct mass and width of 760 MeV and 108 MeV respec-
tively gives rise toa p meson of mass 760 MeV provided a cut-off A
is taken on the integration range in (I.7) of 72myq (mr =pion mass),
the width of the produced p being 600 MeV. This is more than a
factor of 5 larger than the experimental value.

: We should note that this is only a partial bootstrap. The pion
still has to be bootstrapped, and in particular could be considered as
a bound state in pm scattering caused by single pion exchange.

The general qualitative agreement but quantitative disagree-
ment by a factor of 5 or so occurs in other partial bootstraps. An
example of this is the reciprocal bootstrap in which nucleon exchange
in m - N scattering generates the N*(3 ,3) resonance, whilst N* ex-
change in m - N scattering generates the N. In the static limit, N
exchange in m -N scattering is most attractive in the isospin 3/2
spin 3/2 channel; N* exchange is most attractive in the I=%, J=%
channel, so there is qualitative agreement with the reciprocal boot-
strap requirement. However, there is about a factor of two difference
between the MmN coupling constant and the N* width as predicted and
known experimentally, assuming a cut-off at about the nucleon mass.

There is qualitative agreement for other bootstraps. Thus:

(a) The reciprocal bootstrap for the SUjg octet P of 0~
mesons, the baryon octet B of é baryons, and the baryon decuplet
A of (3/2) baryons has the property that B exchange in PB scat-
tering is attractive in the (3/2)% decuplet, and A exchange is attrac-
tive in the % octet.

(b) The K (891) with I=% may be bootstrapped by p and K*
exchange in mK scattering, provided the p coupling is stronger than
the K*.

(c) P,P scattering with the exchange of a vector meson octet
V is attractive in the I=J=1 octet, so bootstrapping the V.

In order to improve the quantitative agreement with experiment,
attempts have been made to include both further direct channels and
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exchanged channels. The addition of further direct channels has
been investigateds) by adding in further closed channels, e.g., in
7T scattering the m® and KK channels have been added in, using p,
K* and ¢ exchange. Using known coupling constants and adjusting
the cut-off to reproduce a p with mass 760 MeV, it was found that
the p width was reduced to 500 MeV. The addition of the KX chan-
nel in the reciprocal bootstrap, with A, £ and E exchange, however,
does not improve the agreement for the N* width.

Additional exchanged particles have been treated by Pran Nath
and collaborators, 6) who have attempted to bootstrap the p by ex-
change of the complete Regge trajectory on which the p lies and re-
produce it in the direct channel. This has produced a p width of 125
MeV (again the p mass cannot be predicted), though by means of a
number of approximations.

Both of these results indicate the need for a more complete
treatment of the direct and exchange channels. In other words, in-
elastic effects and multi-particle exchange must be handled more
satisfactorily before we expect to obtain satisfactory numerical
agreement for bootstraps.

II. Off-Mass Shell Bootstraps

As a first step to handling many-particle states we use the
Bethe-Salpeter equation instead of the N/D equation. The ladder ap-
proximation to the former equation will enable us to take some ac-
count of many-particle exchange, though we will only be able to sat-
isfy two-particle unitarity exactly. The bootstrap equations resulting
from this were first set up by Cutkosky;7 we will see how to gener-
alise these later so as to satisfy higher particle unitarity, and in-
vestigate the resulting equations. I should also mention that the
Bethe-Salpeter equation allows higher spin composite particles to be
considered without introducing further divergences, since the off-
mass shell vertex functions have then a suitable high energy damping
(in some sense a Regge behaviour).

The Bethe-Salpeter (B.S.) equation for two-particle scattering
may be written graphically as

EONEENORNOXONEEY
1 1'2 1 1'2

We denote by Ml(p1p2p3p4) the off-mass shell S-matrix element for
the scattering of particles of momenta pj,pg to particles of momenta
P3. Py without a single particle intermediate state, this being the
left hand side of (II,1), and V(pjpyp3py) the similar quantity with no
one- or two-particle intermediate states, this being the first term in
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the right hand side of (II.1). Also Dip(p) denotes the complete propa-
gator for a single particle. Then (II.1) may be written in the form

- 1 4
Ml(p1p2p3p4) = V(p1p2p3p4) +3 ‘[Ml(plpzpsps)é (p1+p2—p5—p6)
x V{p.p.p,p0,)DL{p )DL (p )d4p d4p (11.2)
5767374’ p s/ VP’ Pg Y Pge :

When the total energy s = (pj +p2)2 is near the value for a
resonance or bound state, say s=M?, then M; has a simple pole in
s, and we may write

‘ -1
5 ! - M2
M, (p;p,P4p,) ~ Flp;p)) Fipgp,) (s -M*) . (II.3)
Then for s near M2, (II.2) reduces to

= l 4 - ] ]
Flogp,) =7 [ Flogpe)s (p4#04-pg-pe) Do) DL BV (ppg Py )
(I1.4)

We may approximate (II.4) further by taking D (p) = (p2-m2)~1, and
also take V to be described by exchange of the single particle of
mass M, so

4-1
V(p5p6p3p4) = F(p5p>3)F(pGp4)I:(ps-ps.)Z - MZJ

2 27-1
+ Flpgp, )PP )| (0,-pg)* -M" | . (11.5)
Then for s near M2 we obtain from (I1.4) and (I1.5)
F(p,,p,) = | Floep )FP.p)F(p. 0 )6 (0, +p,-p, -p.) (p2-m2)~!
3'%4 56 5 13 674 374 %5 %6 5

2 g1 2 21-1.4 4
X (pZ-m2) I:(ps—p3) MJ ap, a’p, (11.6)

which is a non-linear 'bootstrap' equation for the vertex function F.
If we now approximate F by a constant, and take (II.6) to be valid
other than at (p3+p4)2 =M2, we obtain the simplest form of B.S.
bootstrap. 7

Before we’discuss this bootstrap and its extension to take ac-
count of corrections to (II.6) when s ZMZ2, let me first describe how
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the B.S. equation reduces to the Schrddinger equation,e) and pre-
cisely what the wave function is. We will do this for the ladder ap-
proximation to the bound state form of the B.S. equation, the ex-
changed particle having mass u. We replace the F's in (I1.5) by a
constant, gm, (so g is dimensionless), and substitute in (II.4). In-
serting the correct factms of (2r) and i, and taking p3=p+q,
pg=p-4q, with p=(p, ,0) in the centre of mass system, and

Flp+q, p-a) =#(q), (11.4) becomes

{g2m?2 4y g0
gl = T d kA ) (1I1.7)
em?* J [g-k)? - (p+k) 2 -m?1[ -k -m?]

We neglect the retardation effects in the exchange denominator in
(II.7), which means replacing [(q-k)% - M 2] in the denominator by
-[(@-K)%+M2]. Then @(g) is independenl of qg, and so the inte-
gration over k, may be done exactly in (II.7). We close the inte-
gration along the real kg axis by a semi-circle in the upper half ko-
plane, and plck p the contribution from the poles at ky=-po-w,po—w
with = (k2 +m®)¥. Then (II.7) becomes

. J a’k g(k)
4(zn)3 (@82 +u2]w(p2-w?)

2@) = (11.8)

The binding energy B of the bound state is defined as
Zpo = 2m ~ B.
We assume that @(k) is only appreciable if | ]_<'| <« m, and also that

B<Km, so pg—wzfv -Bm -k 4, and we replace w by m in the denomi-
nator of (II.8), so it now becomes

2 3—» —
- g d°k @)
= P 11.9
P 4(2m)3 J[(& K)2+u2] (B +K2/m) -9

If we define LII((;;) as

#@) = B+q%/m)y (@
then
a3k (k)
)2 +L.!2_]

2
B+q2/m)y (@) = ——
amival = em? ft(q

(11.10)

In position space, (II.10) becomes
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2 ~oy g .
(-v4/m+B)y(r) =4—'_'w(r) (I1.11)

where W is the Fourler transform of §. Since m 1is twice the reduced
mass, then (II.11) is the correct Schrodinger equation for two parti-
cles of mass m interacting through a Yukawa potential of range u_l 5
We now return to the wave function. Using the same technique of
contour integration, and the approximations preceding (II.9),

- ziz‘ dqoﬁ(q}
b =y J‘[(p*'q)z"mzl[m—q)z—mz] .

(I1.12)

under the assumption that #(q) is independent of q5. If we define
the co-ordinate space wave function

- ) = r -
f(xl Xg 0 X,y x3) fexpLi(plxl+p2x2+p3x3)J

3 .
4 4 ‘ .
['[ d’p,b (p1+p2+p3)DP(pl)DP(p2)F(pl,pz),
i=1
(I1.13)

then (II.13) may be written in terms of #(g) by means of the equal
time wave function as

g - _ ‘/ —0. - = —o. - _—' _
f(r) . tiryt) = exp i 2P t+p (rytry) +a-(r)-rp) DF(p+q)DP(p a)
! 3.3
x F(p+q, p-q)dp dq d"pd q.

We use (II.12) to obtain
- o _ 2 !"/ —v. — —0- _2 =
£(F) 4T t) = (m1/2m )J\expL1\2pot+p (F,+7,) +q- () =T, ¥ (@:p,p,)

FS (II.14)

3—0
x d qdpod
where we have Included thg explicit depegdence of § on the total
energy and momentum pg,P. Then since | is the Fourier transform of
{ in the variable q, we have
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2 -2ip t-ip. () +19) -
e R _2mé o= = Pot —ip.(rj+rp 3, -
w(rl—rz,p,po) = Jf(r tir, ,t)e dtd (r1+r2)

172
(11.15)

which is as expected: the projection with respect to the centre of
mass variables of the equal time Green's function is equal to the
Schrdodinger wave function in co-ordinate space.

Let me now return to the simplest bootstrap derived from the
B.S. equation—the Cutkosky bootstrap.7) I will consider a set of N
vector mesons with equal mass. The potential of (iI.5) can be split
up into a term symmetric in the space variables and one which is
antisymmetric, under the approximation that the vertex function F is
the constant Gy, where the i, j, k refer to the particular mesons
considered, so take the values 1,2,...N and Gjjx is completely
antisymmetric in its indices. The antisymmetric part of the potential
is

e -1 2 27-1

\GLermrk Lrk mr]>[ a- k) J -I:(q+k) o= }

We take all external momenta to be on the mass shell so that (II.5)
becomes in this case
-1
=X\
Gyk iy tm Cemk (1.16)
where V;; am= (GlrLGer GlrmGJrL) and A~! is the triangle function
evaluated on the mass shell:

J‘d k[p -k) ]_1[(p+k)z—m2J_l.

p = (p- q)2 = (p+q)

Strictly speaking, the triangle function should involve particles of
spin one on its internal lines and also involve a spin one projection
on its external lines; I have dropped these complications, since the
essential part of the argument involves the way the indices on G are
related by (II.16).

A further relation on the coupling constants Gijk is obtained
by requiring that self-energy effects due to meson pair formation do
not alter the meson masses differently. Since these self-energy ef-
fects are proportional to g} =GaoqGedp+ We require (with suitable
normalisation)
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G .G

acd “cdb = 6ab' (I.17)

If we consider V as a matrix with respect to its initial and
final pair of indices, (II.16) requires that V have a set of N degen-
erate eigenvectors belonging to the eigenvalue \ . Since there is a
total of $N(N-1) independent asymmetric tensors of rank 2, then
there must be $N(N-3) orthogonal eigenvectors. Let their eigenval-
ues be A, with degeneracy dj, so that

Trv? = NA 2 +Zdlx12.
1

But by direct computation from the definition of V and (II.16),
(11.17),

v = 2N - NA
SO
2. -1
Z-ZdiXiN = A(L+1)

and thus A< 1, with A =1 1if and only if all )\i=0. Suppose there is a
gauge group with generators Gab (A running over a finite set, a,b
taking the values 1,2,...N) under which the Gijk are invariant, so

becG +G + GapxG

wa * GaxcCxb 0. (I1.18)

xc =
If we multiply (II.18) by Gpaq and sum on a and b, then

—A —A
Ged = Ved,ab%ab
so that G(I}d is an eigenvector of V belonging to the eigenvalue 1.
Then either

(a) G is orthogonal to all the G's, _GaAbGabc=0: 1<c<N.,
Then at least one of the A is one, and A< 1. If we assume that in-
creasing A causes a decrease in the mass of the bootstrapped
mesons, we see that there will be a set of more massive bootstrapped
mesons belonging to the eigenvalue Aj=1, This is inconsistent with
the idea of bootstrapping the lowest masses first, and extending to
higher masses, so we reject this possibility.

(b) G is not orthogonal to all the G's, so A =1, and all the
Ai's are zero.
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Then we have that V is the sum

v=Yrrp
' 'nn
where )‘n run over the eigenvectors of V, P, the projection onto the
eigensubspace belonging to A, so
vV=aG

G

abrYcdr

or

Gaercdr + G'bchadr + Gcaerdr = 0. (I1.19)

Equation (II.19) is the Jacobi identity satisfied by the structure con-
stants of a Lie group and, combined with (II.17), we see that the N
mesons belong to the regular representation of a compact semi-
simple Lie group.

We may extend this approach to consider symmetry breaking,
but I do not want to go into this here, but restrict myself to boot-
straps.

The next step beyond the Cutkosky bootstrap is to treat the
non-linear vertex equation (II.6) more completely. It is also of in-
terest to consider more general bootstraps, which include more than
two particles in the direct channel, one in the exchanged channel. It
is easy to see how to write down these more general bootstraps by
taking suitable Feynman diagrams and replacing point vertices by
complete vertices, where a vertex now may have three or more legs.
I will return to the study of these bootstraps later, under the heading
of generalised groups. But first we must obtain a consistent method
to continue the B.S. bootstrap (II.6) off the mass shell.

II1. A Field Theory for Composite Particles

In order to continue off-mass shell for bootstraps we will set
up a field theory of bootstraps. We do this first for a composite par-
ticle, and obtain a bootstrapped theory by taking all particles to be
composites.

We obtain an indication of a basic condition on a particle to
be a composite if we note that the wave function renormalisation con-
stant Z, for a particle c is defined by

Zc = |(bare c|physical c) | ) (I11. 1)

where |bare) and | physical) denote the bare and physical one-
particle states; it is the interaction with other particles which
clothes the bare c-particle, making it physical. Then we have a
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composite c-particle evidently when there is no bare c-particle, i.e.,
Z =0. (111.2)

This condition (III.2) is an implicit condition relating renor-
malised coupling constants and masses for the c-particle and other
elementary and composite particles with which it interacts. We ex-
pect all renormalisation constants to be unobservable, though we do
not expect that the consequences of imposing (III.2) will also be un-
observable. To see what these consequences are on the field opera-
tors describing the various particles, let me take the simple model of
a scalar neutral c-particle interacting with a scalar neutral a-
particle. If the bare fields and masses for the particles are IJO, Uo
and mg, Mg for the a- and c-particle respectively, we take the
Lagrangian density to be

L=3(, 07 +4 0 40" -#m20% -#M2y 2 +a g2y +1(0,) (11.3)

where f is any polynomial in the field Qfo (it is essentially the self-
interaction which will bind the c-particle in the limit Zo = 0). The
equations of motion arising from (III.3) are

<D +m§>ﬂo = 2900, + £1(@,)

2
9, .

B+

We renormalise these equations in standard fashion, intro-
ducing the renormalised fields #, § and wave function renormalisa-
tion constants Zy, Zg by

g, =220, 4, - zdy
and the explicit counter terms in the Lagrangian by
= 20" 30’ 130,07 A 132,007 -0 ]
2Dy -MA? | +0,2,250% +amiz 0" viMPzcy”

+ F(@) (I11.4)

where m2=m2+sm%, M2=MZ+6M2, F(@) =£(d,). The resulting
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field equation for § is

O + M2y = (1-2)0 + M2y +6M2Z ) + 9,Z2502 . (1I.5)
If we let 2,~0 in (III.4), this equation becomes
2
§x) = ag"(x) (I11.6)

where

1
A= dim (-g,2,/6M%28),
Z:0

provided this limit exists. In other words, ¥ (x) is a local function of
F({x), evaluated at the same point x, in the limit Zo~0.

We have derived (III.6) in a very sloppy manner, with no dis-
cussion of the topology to be imposed on the operator equation (III.5)
or on the operators. Since we do not even know that a solution to
(III.5) exists, it is not possible at the present time to give such a
discussion. There are, however, two non-rigorous approaches which
we may follow to justify (III.6) with more believability than the dis-
cussion we just gave. One of these follows Zimmerman,9 who
proved that a composite c-particle may be described by an interpo-
lating Heisenberg field § which is quasi-local in the elementary par-
ticle field @; we have to impose the further requirement that ¥ be a
local function of @ to obtain SIII.G), provided this limit is defined
with suitable counter-terms.d) Then (I11.6) may be derived from the
Lagrangian

2
L= %(11, A g2)% + L, #) (111. 7)

where Ly is the part of the Lagrangian depending on # only, and as-
sumedly binding the two a-particles to make a composite c¢c-particle.
L of (I1I.7) is the limit of L of (III.5) as Z,~ 0, in some sense. We
have not bridged the gap of how to define this limit of Z. approaching
zero by the arguments of Zimmerman, but only justified the limiting
result (III.6). We will see later that this limiting process is a very
delicate one, and is not yet understood.

The second approach which I remarked on above is to discuss
the Z;~ 0 limit by means of the Green's functions equations (GFE's)
which may be written down from (III.4). 10) The approach through
G.F.E.'s has the added advantage that it allows us to set up in a
simple manner bootstraps which generalise the B.S. bootstrap which
we discussed in the previous chapter.

To use the G.F.E.'s, let me first define them for a field
alone as
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0| T<ﬁ(xl) e IZf(an |oy = G(xl, o 'Xn>
and in Fourier space

4 Foa |l
Goy...p )0 (J};pj 1d4xu1<5 +m?)| Gy x)

X exp |i X

By the asymptotic condition the S-matrix elements for a
process involving a total of n particles is 'é(pl. 5 .pn), for3j2=mz,
j=1,...,n. We now extend the definition of the functions G to in-
clude the c-particles as well. We now wish to consider the equa-
tions which relate the various Green's functions as follows from
(III.5). We will write these down in graphical form, since this gives
the most transparent way of seeing what is happening, and also
enables a considerable saving of space. We denote the connected
part of é(p1 ...Pp) (that part having no 84 functions involving a
subset of the py...pp) by On 1DF( ) (p) by — and iDFC (p) by —.
The way a c—partlcle double line is joined to any graph is, by
(111.5):10)

—Or- Oy, =<+ ==0n+ =

=1
(111.8)

IIL

where each line carries a momentum four-vector, which is integrated
over on internal lines, with energy-momentum conservation at each
vertex, the dotted vertex denotes 1(2m)4g,, there is an extra factor of
(2rr}'4 on each internal propagator, and x denotes

[(1-Zo) 2 -M2) + 28 M%) .

It is easy to see that iteration of (III.8), together with the analogous
equation which indicated how a single a-particle propagator is at-
tached to a graph, produces exactly the Feynman graphs of perturba-
tion theory, with all mass and wave function renormalisation counter
terms correctly inserted.
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If we let Zg~ 0 in (III.8) we obtain, for n#1,

n-1
=On=On+ ) x@r (111..9)
r=1

n-r

which is just a restatement of (III.6), since (III.6) as a relation be-
tween Green's functions is

Gc(xl"") = Gaa(x,x,...) (I11.10)

where the subscripts ¢ and a denote which fields are involved and
the number of times these subscripts appear equals the number of
fields. Then (III.10) results in (III.9), if we use that for a function
f(x,y) with

Fp) = Jr eipr(x,x)dx

then
Tip) = j?(p-k,k)dk
where

T,k = Jr e1px+1kyt (x,y)dx dy.

So far we have not shown that any composite c-particle
actually occurs in the a-particle scattering amplitude. To do this we
Have to show that a pole exists in the a-particle scattering amplitude
at s =M2. We will regard Mz,grz (the renormalised coupling con-
stant) as the basic variables, and approach the curve ZC(M2 ,grz) =0
in such a way that A is finite and non-zero.

For the complete c-propagator, which we denote by ===, it
follows from (III.9) that

-1
= =i[(p2—M2)+6MZZc + (Zc-l)(pz-MZ) i =’Q> gO]

(I11.11)

where =O n= =O-n, Then as Z,~ 0, (III.11) becomes

-1
== = i[éMZZc + =®g°]
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or
90

-1 2 _
=="" -iZ M -1 =f{J>  =0. (I11.12)

At p2 =M?2 we require == ~ i(p2 -M2)~!, so achieving both mass
and charge renormalisation. Thus we require

2 _ 90 2 _ 1s2
z M —-=€> at p¢=M

or

{1 =1 at p2= M2 (1I1.13)

and also
- go - 9 = e
o7 (H3>"°)=1 at p? = M2, (I11.14)

Since the proper self-energy function H(pz) = ={> g, (correct to
all orders in gg), then (III.14) may be rewritten as

1 - 1n'(M2) =o0. (II1.15)

But we see from (III.11) that in order that the residue of the right
hand side is 1 at p2=M2 it is necessary that Ze=1- n(M2), so that
(III.15) is just a restatement of Z;=0, and is automatically satisfied
in the limit Zo~ 0. Finally (III.13), in the non-relativistic limit dis-
cussed earlier in (III.13) et seq., becomes

(mi/2m®) =F@ = fw(&’)de'o?.‘ (II1. 16)

For A finite and non-zero then (III, 13) requires that
F(p+a, p-q) does not vanish identically in q at p2=M2, so that the
pole term has non-zero residue at pz =M?2 in the a-
particle scattering amplitude. Thus the composite c-particle is
actually present.

IV. Composite Potential and the Jin-MacDowell Cancellation

© " We now turn to a more detailed discussion of the manner in
which the limit Z~ 0 is achleved. In particular we wish to deter-
mine what the 'potential’ is for ZC%O. For Zg=0 this potential is
defined by means of the two-particle exposure
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O = KDZZ +:O:’,ID2: (v.1)

where —— denotes the complete a-particle propagator, and the rela-
tivistic potential is the first term on the right hand side of (IV.1),
having no intermediate state involving two a-particles. It is through
scattering through this potential that the composite c-particle arises,
i.e., iteration of (IV.1) diverges at s =MZ2. If we now use (III.6) or
its G.F.E. form (III.9) we will obtain from (IV.1)

=CF Y +X<Dz: +@ﬂ; =X . :Ciqzz . @.2)

We see from (IV.2), by comparison with (III.8) for n=2, that the ef-
fective coupling *constant’ for the ¢-particle in interaction with two
a-particles is A (p2~ Mz), and is actually zero on the mass shell.
This is in fact necessary so that (IV.2) becomes a homogeneous inte-
gral equation for the composite particle wave function on the mass
shell, so is an eigenvalue equation for the bound state mass M,

We now enquire into the possible form of the potential when
ZC#O. We wish to choose it as part of the a-particle scattering am-
plitude which is constructed in a straightforward fashion, and which
has no c-particle pole in it. The only such quantity seems to be the
potential arising in the B.S. equation of (II.1), being the first term
on the right hand side of that equation (the suffix 1 now denoting no
c-particle state). We will now see that such a natural choice of po-
tential leads to the impossibility of continuing off-mass-shell in a
non-trivial fashion.

To show this, we suppose that the one c-particle irreducible
amplitude shown on the left of (II.1) possesses a single particle pole
at a point s = “2 , when Zc7-‘0 (we do not consider the pathological
behaviour corresponding to no pole at all in the amplitude for ZC%O,
this pole only arising at Z.=0). Then if we denote (p%-u2)"! by a
dashed line, we will have near s= uz that

___CDl: ~ OO (.3)

so from (II.1) and (IV.3) at s= uz

—O = -y

12

Now the mass-renormalised vertex function equation arising from
(III.8) with n=2 is
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{Z = =g.o<+ %
i
this becomes
g g
O - <O +—=< (1. 4)

and we may neglect the last term on the right hand side of (IV.4).
Thus the vertex function has a pole at s =u2, and if we take there

%) == (1v.5)

SO near s =L12

then
g
- = = --

Further, (III.11) at p?=u2 becomes
-G - OG- -G wee

so that the c-particle propagator is zero at p2 = uz . If we combine
this zero with the poles in the c-particle vertex function, then we
findll) in the a-particle scattering amplitude at s= uz

O - B + I ~ D=0+ D0 -

and the pole at s =u2 does not appear physically. This was first
shown in the two-particle unitarity approximation, and 1s known as
the Jin-MacDowell cancellation,12)

So far we have kept Z.#0, and have an elementary c-particle.
We now want to make the composite pole at uz to coincide with the
elementary pole at Mz, and finally have the residue at this compos-
ite pole equal to that corresponding to the physical coupling constant
gr-

To, obtain M2=p2, we use that g, and g, are related by
grZ1 =gOZC , Where Zy is the vertex function renormalisation con-
stant. Then we see that near s=M?2 and on mass shell for the a-
particles, the left hand side of (IV.4) is Zl_lgr (by the definition of
gy as the value of the vertex function when all its external particles
are on their mass shells), while the right hand side is proportional to
(M2 —uz)'l. Thus to obtain M =y, and keep gy finite, we need to
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take Z1=0. If we take now the charge renormalised vertex function

equation
. - =< (z}tz0 )+ 0O w.7)

and set Z; =0, we see that the only solution to (Iv.7) for the rencr-
malised vertex function is zero everywhere off the c-particle mass
shell, and non-zero only on it. Thus there is no non-trivial off-
mass shell vertex function for the composite particle, in contradis-
tinction to the non-trivial off-mass shell continuation obtained from
(1v.2).

We finally turn to the residue condition. We see that this is
obtained by choosing Z,=0, since then from (Iv.6) we have £)--~=1
at 5=M2, so that since =gy at s =M2 (and the a-particles are
on their mass shell) then from (IV.5) the composite wave function
takes the value gy on the mass shell. Thus we need both Z; =0 and
Zz=0. There has been a great deal of discussion of the need for
Z1=0 in composite particle theary. 1) However, we see that if we
require Z) =0 then there is no non-trivial off mass shell continua-
tion. Since we wish to set up a field theory of composites based on
(I1I.6) we cannot impose this extra condition in addition to Zo=0.

Beyond this we notice that the correct limiting form of vertex
function equation (IV.2) has a coupling constant A (p2 - Mz) which is
momentum dependent. Evidently to achieve this by a suitable
limiting process from a theory which, before the limit is achieved,
has a momentum independent coupling constant, will require a non-
uniform limiting process. The evident non-uniformity and subtlety of
this limiting process requires much further discussion before it is
better understood. It may be better to avoid this subtlety by taking
(I11.6) directly and attempting to quantise the composite without
starting from an elementary particle. We will return to this point
after an example of a relativistic model which has a composite ob-
tained by taking Zo=0 but Z; #0.

V. A Composite in the Relativistic Lee Model

We consider the relativistic Lee maodel discussed recently b
Yndurain.13) This model is identical with the original Lee model,l‘g
except that in the free Hamiltonian the energies of the V and N parti-
cles are

@ = (g +57)

and
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- 2 o2N\%
Ey(P) = (mN +p ) .
respectively, so that the total Hamiltonian now becomes

 H=H_ +H

int’
3= + d - 3-_ + -, 3= + -
= = Vo + 2 N- + - —
H jd prVpEV(p) Id pr NpEN(p) er kagaz (k)

a3p a3k
(By (P)Ey (G-F)w ()

_ 3= -
Hing = Id péEv(p)ypivﬁ' i Jx
I o+
. —IN—= = + fCo )
Lf(p,}() VpN 2R h c]
The local limit of H 1s for f= 1. The physical one-particle N and 9

states are identical to the bare ones, while the V state will be of
form

_ ok + 300 o o+
V.0 = 25 @) (V3o + J"d KB P NS pall O} v.1)
If we solve the eigenvalue equation

H|V.p) = E, )| V.0

by taking scalar products with VS"| 0) and Ngo_gaﬂ 0) we find that

¢* (6,9 [B, ®) - By G-K) -w(®]™

-

#(K,p)

where

9@ R = 1 £6. B[ 8e, BB G-Hw@]

and
s 2,0) = [a°K|9@.0I TEy6-0) + w®) - 2,67

Further, the normalisation condition on |V,p) requires
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=1 2 L£(p, k)] 2 3K
Z. 0 = 1+) . {v.2)
g J\BEV(p JEp (6K (R) (Ey () - Epg (5-8) -w (R)] 2

We see that_'in the local limit, or more generally if f(f).,]z) does not
depend on k, then Zy is finite, while 6EV is logarithmically diver-
gent. We see, however, that in general Zy will be a function of p
unless f(p k) is chosen suitably. We will return to the implications
of this later; it is still true that ZV is the probability of finding a
bare V-particle in the single V-particle state (V.1), since

+ 2
. 0 — 0
| ¢ |Vp|V p) |

The scattering matrix may be computed as in the standard Lee
model,14 and the resulting s-wave scattering amplitude A(s) (the
only partial wave in which there is scattering) is

2] £a 2yl 2
Als) _ I\ | £{o, k)|

My (s? - My)

. {1_ A% 2 p2up| (o, p)| 2 }—1
2M, By (P st ~Ep (B)-w(p) + 1] E g (B)+w () - My ]

(v.3)

where 8% =@ (E} +EN(E) There are no ghosts in this theory, since for
g2 < MN+u the integral in the denominator of (V,3) is negative, so
the denominator can never vanish. There is only one pole in A(s), at
s =MVZ, being the expected V-particle pole. We define the residue at
this pole to be the square of the renormalised coupling constant so
that

= 2 a°® 2 = =12 -1
\, = \2E6.K )|2{1+”2)‘—M _2”dpl £(6,p) |~ 2}

= <M\?+ uz-MNZ>/2MVZ =

and we suppose that f(o,k )} is defined by suitable analytlc continu-
ation in K to k We take from now on f(p k) f{p), so this contin-
uation is trivial, and A(s) will be independent of f(p). Further A(s)
will be analytic in the cut s-plane, cut from (MN +L1)2 to +® and
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from 0 to -« (from the square-root function), with a pole at M\;.
Thus except for crossing, A(s) has all the correct properties of rela-
tivistic invariance and analyticity (in spite of the non-local form
factor f(p)). Further the renormalised coupling constant A is finite,
even for finite bare coupling constant A,

In order to relate to what was discussed in the preceding sec-
tion, I will take

2N\-1
£p) = (nipa™) (v.4)
where
ho) = [’k {8E, BB, G-Ru @[ B, 6) -Ey (-8 -u(® | -
A N Y N
is a finite function of p, and a is an arbitrary constant. Then

ZV—1 =1+ )\z/az
and Zy is independent of p, while

79 o 22, 2NL
xr_xzv(o)—x\lm/a).

If we define the vertex function renormalisation constant Z; as

\2 =321y xz, (v.5)

then

z, =1. (v.6)

On the other hand, if we do not choose (V.4) then Zy=Zy(p)
depends on p, and Zp, as defined by (V.5) will also depend on p.
In particular, in the local limit f=1 then

2,6 = [7,6)/2,(0)]*. w.7)

We now make the physical V-particle into a composite V-
particle by taking Zy=0. In order to achieve this, even when Zy
depends on p, we take

Ao, (v.8)
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In this limit,

vy =172 [ @R | ofoE, GIE 5 a7

— - = - “1
x [By®) - By -K) -w (i) | (v.9)

and is a linear combination of (N,0) states, as it should be for a
composite V state. At the same time, either (V.6) persists in the
composite limit, if we choose (V.4), or in the local limit f=1, we
have

z, ~ [ hlo)/h(p) |

which again is non-zero, though p-dependent. The model does not
possess crossing symmetry (which is automatically violated in any
model with the Lee model selection rules), though crossing was not
explicit]ly used in our discussion in the last chapter and, in fact,
could have been dispensed with entirely. Thus this model is a satis-
factory counter-example to the condition Z; =0 for a composite.

We see that the N6 scattering amplitude in the composite
limit is

A(s) = [21\/[\,(5’%—1\/1”'1

-1
2 " /% - -, -, -1
X {Ip dp[ZMVEN(p) (s"-En(p) w(ﬁ) @N(p)w(p) Mv)J
so that A(s)~ (lns)_1 as s~», For the elementary V-particle, from
(v.3), A(s)~ s‘%, so the model has the usual property that the high
energy behaviour becomes worse if the V-particle is made composite.
We can attempt to define a composite operator as

V)| o) = |V,B)

and

Vix) = J‘ lpr(p)[ZEV( )] i dsﬁ. + herm. conj.

However , it is evident that V(x) will be a non-local function of the
~wspa ce operators N(}-(‘) B(x) due to the appearance of the factor
[Ev(p) —EN(p k) ~w(k)]~1 in the denominator of v.9).
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VI. Classification of Particles

We now ask the question: can we determine which particles
are composite, which elementary, by evaluation of their wave func-
tion renormalisation constants (and using suitable experimental
quantities, if necessary)? As remarked earlier, the Z's are usually
considered to be unobservable; however, we noted for the relativistic
Lee model that the value of Zy determines the high energy behaviour
of N-8 scattering. A difficulty in this is that for any realistic rela-
tivistic field theory all the Z's appear to be zero due to the diver-
gence of high energy behaviour. For such theories, and assuming the
Z's to be zero due to high energy behaviour even outside perturbation
theory, we may define a composite theory in this case as that ob-
tained by imposing a cut-off A on the theory and requiring the wave
function renormalisation constant Zo(A,...) to be zero, regarded as
a function of A and the renormalised masses and coupling constants.
We then let A~ always keeping ZC(A ,...)=0. If the theory has a
limit with a particle of mass M, then we term this theory a composite
theory. This double limiting process is likely to be even more diffi-
cult to use than the single limiting process, some of whose difficul~
ties we discussed in Chapter IV. This is a further reason to turn to
the composite particle defined directly through (III.6), and avoid the
limiting procedure through an elementary particle.

It is possible to attempt to determine the value of Zg for par-
ticles in which non-relativistic models may be satisfactory. This
has been done for the deuteron by Weinberg.ls) He showed that the
wave-function renormalisation constant Z; for the deuteron may be
determined from the n-p triplet scattering length a; and effective
range ry in the limit of zero binding by

2(1-2,)/(2-2,) = a,/R

(v1i.1)
—Zt/(l—Zt) = rr/R

where R is the deuteron radius, related to the deuteron binding by
R= (mB)'%, m=nucleon mass, The corrections to (VI.1l) are of order
(1/mp), where mp is the pion mass. The experimental values
ry=1.75 fermis, a;=5.41 fermis do not allow Z; to be very large,
|Z¢|<0.4.

An alternative evaluation of Z; has been made by Amado and
co-workers , 16) who showed that even a small non-zero value for Zt
alters the triton binding energy considerably (using n-p scattering in
length approximation to calculate three nucleon scattering). The re-
sults favor Z;y=0.05, though the effect of a small admixture of tensor
forces in the deuteron may affect this result.
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We may apply (VI.1) to the anti-bound singlet n-p state
which has a 'binding’ energy equal to one-thirtieth that of the deu-
teron. In this case, the singlet effective range and scattering length
are rp=2.7F, ag=-23.7F, so that from (VI.1), Zg<0.1; since the
approximation under which (VI.1) is obtained is more nearly satisfied
in this case, this anti-bound state is a better candidate than the
deuteron for a composite particle.

It should be possible to extend (VI.1) to heavier nuclei.

As I remarked earlier in this chapter, it is difficult to discuss
the usual so-called "elementary particles" in such a fashion. How-
ever, we may deduce certain results from our field theory, albeit in a
non-rigorous fashion.

(@) The photon is not composite. 17)

(b) For other particles we do not know the particular form of
interaction which binds them. But we can discuss whether or not a
particular interaction can do so. Thus for the m -N system, if we
suppose the system is interacting through a non-derivative Yukawa
coupling gNT Nm, T'=1 or yg, then the extension of (111. 6) for the
nucleon is

N =Am- TN (VI.2)

and for the pion is
m = \A'NTN. (v1.3)

So far, we have considered a system of particles in which at least
one is elementary, so we take either (VI.2) or (VI.3) and not both (we
will take both in the next chapter, and so get a bootstrap).

We see that if we take T" as diagonal in (VI.2) we would be
able to cancel the field N on both sides so that m would be the con-
stant A ~!. Thus if cancellation is allowed in the field theoretic
case, then m would only take a single value at all points of space-
time. Evidently the Fourier transform of m could not have a singu-
larity on its mass shell so it could not describe a particle. (This
lack of singularity in the Fourier transform would still be so if m only
took a finite number of values in co-ordinate space.) Thus if the
cancellation hypothesis is valid then (VI.2) can never support a com-
posite nucleon, whatever the pion field.

On the other hand, if we take a derivative Yukawa interaction
g(d,m) (I\TY“TN), we now have

N =1, m(y,IN) (VI.4)

and it is not possible to cancel N since we cannot diagonalise the
Y“I"s simultaneously. However, we now expect subtraction
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constants or other parameters to take account of the high energy be-
haviour introduced by the derivative coupling.

I do not want to justify the cancellation hypothesis for com-
posite fields, but turn to the field-theoretic bootstrap and the prob-
lem of quantising it. We will then return to the cancellation hypoth-
esis for the bootstrap and see how the conclusions derived from it
may be justified.

VII. A Field Theory of Bootstraps

After the difficulties we have met with in understanding the
Z—- 0 limit, it is natural to define a field-theoretic bootstrap as a set
of field equations for fields {;,...,yyy, arising from some
Lagrangian density L by taking all the wave function renormalisation
constants Zj,...,Zy to be zero; the field equations being of local
polynomial form:

b6 = FTED, T, (vII.1)

Here | denotes the vector with components V1/.+..0yy. We choose
a lLagrangian L as starting point so that unitarity of the resulting
theory is assured.

Qur earlier discussion in Chapter III shows that suitable ap-
proximations to the G.F.E.'s arising from (VII.1) will lead to the N/D
bootstrap equations or the B.S. bootstraps which were discussed in
Chapters I and II. However, if we do not approximate to (VII.1l), we
have hopes of determining bootstrap parameters with inclusion of all
intermediate particle states; we had indications in Chapter I that this
might improve numerical agreement with experiment.

So far, it has not proved possible to obtain such improved
numerical results, due to the complex operator structure of (VII.1). It
is evidently possible to make better approximations than those de-
scribed in Chapters I and II, but they require development of methods
for dealing with functions of large numbers of variables; such has not
yet been achieved. Instead of discussing in more detail the difficul-
ties arising here, I would like to consider the general problem of
quantising (VII.1), and then use the results to rule out certain boot-
strap systems as not being possible. In the process we will see how
the results of the cancellation hypothesis are justified.

The quantisation of the composite field | defined by (III.6) is
straightférward if @ is an elementary particle field. For then the
commutation relation between | and its time derivative will be

[V&0,iF0] = anz 60 6-y) (V1. 2)

which is the correct limiting form as 7.—0 of the elementary particle
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canonical commutation relation for the § field:

(V&0 iw.n] = 1276 =), (VII.3)

Comparing (VII.2) and (VII.3) we see that as Zo— 0 we myst interpret
Zs '~ as taking the limiting value 4xZ5 "y (X,t). Thus Zs~ acquires
both co-ordinate space and operator-valued dependence; this is
another aspect of the subtlety of the limiting process Z,— 0. In spite
of this subtlety, (VII.2) is well-defined, provided we do not also
take Zy— 0. But in the bootstrap situation, with all particles com-
posite, we must do precisely that, so we cannot use (VII.2) without
great care.

It might be possible to develop suitable canonical transforma-
tions which still allow the Z;~ 0 limit for all particles to be dis-
cussed without too much d1fflculty 18) I will not follow this ap-
proach here but will attempt to quantise (VII.1) in a direct manner,
though one which should agree with a Z— 0 prescription if this can be
obtained. The gquantisation method we use will be the Feynman 'his-
tory integral' approach to quantum field theory.lg) We _obtain the
Green's functions G(xl, - ,xn) for a system of fields § with La-
grangian density L(x) by taking

ey, .. jdu ll!)expl: Lo % ¥ 6ey) -4 6. (VILL9)

The measure u(i;) may be obtained by means of lattice-space inte-
gration as follows. Space-time is split into a large number N of
cells, each of volume €, together with a remainder. We take a rep-
resentative point x) in the k-th cell, and take the measure

”dllli(xk).

i,k

In the limit €-0, N-®, with thg cells filling the whole of space
time, this measure becomes du(y).

Let me apply this quantisation to the case of a non-derivative
bootstrap. By this I mean a set of bootstrap equations of the type of
(VII.1) with no derivatives of the fields entering on the right hand
side. For the case of bosons we require L(x) to be even in each
boson field since, otherwise, we expect the energy to be unbounded
below, following an argument of Baym.zo) From this evenness and
the independence of different lattice points, we see that G(x] ,...,xn)
is zero unless the x; 's are equal in pairs. Since we require at least
that G(x;,...,Xp) be a distribution in its variables we need that it
be a sum of covar1ant derivatives of & -functions of the differences of



252 JOHN G. TAYLOR

pairs of variables xj, Xj - In order that G be a distribution, the order
of the derivatives must be finite so that the Fourier transform of G
will have no particle singularities. Thus there is no bootstrap.

When we include spinor particles we have to be more careful,
since it is necessary to use anti-commutative integration. This has
not been completely worked out for the history integral; we will de-
fine the functional integration over commuting fields, and then per-
form an anti-symmetrisation of the result over the space and spin
variables of the spinor fields. If we use this method, then the argu-
ments of Heber and co-workers again lead to Green's functions
which are 6 -functions in the co-ordinate differences of the spinor
fields. Thus if the spinor variables § and | are being integrated
over (Majorana fields are thus excluded but do not occur in any case
among the known particles), we define

wa(xk) = rakexp(i k) L|J;(Xk) = Tgk exp(-ifly).  (VII.S)
In a term such as

fdu(q, ) T b (xy) exp[ijL(x)d“x]

we will have the term

2m 2m
J dfey J‘o dfy, exp i[%l ‘gaz]
0

and this will be zero unless x] =xp, if L is independent of the argu-
ments ﬂak. We may always choose a suitable angle variable so that
L is independent of it and it enters in the manner of (VII.5), so that
the integration over this angle variable will again introduce 8-
functions of the differences of pairs of variables xj, xj. Thus we do
not have any bootstrap in a theory with spin 4 fields; we may extend
this argument to higher spin fields by using the Rarita-Schwinger form
of higher spin wave functions. 22

If we start with a bootstrap theory of particles, some being
bosons, some fermions, we see that the only non-trivial possibility
is if the S~-matrix Iinvolving bosons is unitary on the boson subspace,
after the history integrals over the internal fermion fields is per-
formed. In order for this to be so, we expect the resulting boson
bootstrap to arise from a set of equations of the type of (ViI.l), being
derived from some Tagrangian. If those new bootstrap equations in-
volve derivatives then we have a derivative bootstrap, and expect to
have to introduce new parameters. If the new equations involve no
derivatives then we have already seen that they cannot bootstrap
themselves. Thus we have reached the conclusion that it is not
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possible to bootstrap a system of particles without either an explicit
or implicit derivative interaction, Thus the purest form of bootstrap,
in which all free (dimensionless) parameters are prescribed, is not
possible.

This gives the same result as the cancellation hypothesis for
non-derivative bootstrap equations. It does not actually justify this
hypothesis; however, since it has justified the result we wished to
prove by means of the hypothesis, we will not consider it further here.

It might be possible to obtain particles from non-derivative
bootstraps by introducing a measure in function space which also de-
pends on the derivatives of the fields. For example, we might use
the measure '

MM a(o+m?) i)
k

However, choosing the new variable
# = (U+m2)g

leads to terms such as
f/;[ dﬁ'(xk)exp[i fd4x g(? +m2)_2ﬂ':|

and momentum space Green's functions will have a zero at 1:>2 =2
due to this. It will only be possible to introduce poles in the propa-
gator by using a measure such as

Mao+ m2)~%g(xk)7
k

this is non-local, so no longer satisfies the property of statistical
independence, and so will not be suitable as a measure on function
space. Thus a different choice of measure does not seem to help.

Thus we are faced with considering derivative bootstraps. I
want to talk about a general property of such bootstraps. Let me
consider the derivative interaction gll’_YuYs‘lf el qu, with bootstrap
equations:

=
]

A A (v, vsi) (VII.6)

g =23 (Fy,vs¥). (vi1.7)

We see that (VII.7) is just the PCAC model of the pseudoscalar meson
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(the vector interaction gjy pbd uf would give g= au('lu'yqu) , so would
vanish due to nucleon conservation).

What can we say about the solutions to (VII.6), (VII.7)? The
history integral quantisation can be used, but the lattice space meas-
ure does not separate out independent contributions from separate
lattice points. Thus we cannot perform the lattice space integration
in the trivial fashion we used for the non-derivative case.23) But
there are certain properties of solutions to the quantised form of
(ViI.6), (VII.7) which can be derived under the assumption that the
solutions are suitably well-behaved. In particular, we can derive
the existence of additively conserved quantum numbers, known as
kinks. 24)

To see how these arise, consider (VII.6) in the form

(T -ryyyse, 0 = 0. (VII.8)
At points with § #0 we require det(I - MY, Ys53y, 2)=0, or
(BMIJ)'2 = 72, (VII.9)

Thus the four-vector 3, lies on the non-linear manifold (VII.9),
which, for real A, is a hyperboloid of one sheet. This manifold is
doubly connected: there is a loop 4 on the manifold, in the plane
el oﬂ= 0, which cannot be continuously deformed into a point.

To see in what way this is important, let us consider the evo-
lution in time of the system given by the history integral quantisation.
The state at time t=0 is a functional of the classical field quantities
¥ i(x,0) measured at time t=0; we denote it by ¥ [§;(x,0)]. Then the
state at time t is

vl 6] = [auexe[ s [ Looas ¥ Tytx,0. (V1. 10)

In (VII.10) the integration is performed over all histories beginning
with the initial configuration ¢;( ,o) and ending with ¢;( ,t). We
assume that_.only the histories with non-zero measure are continuous,
i.e., only ¥ (X,t) continuous in all variables are integrated over in
(VII.10) (this is true for Wiener measure, and if we consider the
measure K in (VII.10) as some suitable limit of Wiener measures,
this result should still be true).

Let me return to the non-linear manifold (VII.9). More gen-
erally let me suppose that the field variables ¢i(>—<',t) , for a given t,
lie on a manifold ¥ which may be covered by local co-ordinates, so
has the structure of, say, a differential manifold of dimension n.
We suppose that the field variables are required to be equal to a
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given field wl-(o)(;c) in the limit as I}—('I—'m. Since the time-develop-
ment of the field variables for a classical system is continuous then
this time development will not be able to change the connectivity of
the field variables, i.e., the number of holes in the field variables
manifold ¥. As an example, if the fields variables are ¥, {9 and lie
on the unit circle §Z+y2=1, and we take 1 space dimension, then
at time t=0 there may be n 'twists' of the field variable in going
from x=-® to x=+=, As the time t increases, the continuous
classical development of the system cannot break the twists, so n is
conserved. This situation is best described b ‘means of homotopy
groups; we say that two fields @'(1)(;) and ¢( ) are homotopic if
there exists a homotopy (or deformation) between them, this being a
set of continuous fungtion qf(x a) for €[0,1], with
T&,0) =715, and § Gk, 1) = § (2)F), with

m [7&0 -7 = o,

'y
|x|—0m

all o €[0,1]. Then the relation of homotopy between two functions
is an equivalence relation, and we may divide the field variables,
at t into equivalence classes following this relation. We may fur-
ther define a multiplication on the sel of homotapy classes {} by
saying that the product of Hr(l } and {Jl( 1 is the homotopy class
which has as a member the function 1|J which is obtained by
'sewing' ¢(l) and 111(2) together as follows q:“-) is homotopied to a
function which is zero for, say, »x1>0, l|r '(2) 6 a function zero fur
x1< 0, and w(:n is the function equal to 1|J 1) for x1<0, 4'( ) § or
x1> 0. This multiplication turns the set.of homotopy classes 1nto a
group which, in our case, is the 1-st homotopy group rrl{‘k‘) (in
1-space dimension), and in n-dimensional-space is the n-th ho-
motopy group T, (¥). (m()=fundamental group of ¥). Evidently
rrl{'L‘) = (additive group of integers) with generator equal to a single
twist. The case we are interested in has similarly

with the generator being the single loop 4.

We now turn to the quantisation of the system, going back to
Eq. (VII.10). If we suppose that ¥ [§;( ,0)] is non-zero only for
y;( ,0) in some homotopy class C¢€ mg(Y), then since we have con-
tinuous time development the only homotopy class to which y;( ,t)
can belong to have a non-zero value in (VII.10) is C, since the only
continuous histories we sum over in (VII.10) will lie in C, at each
time t. Thus the state preserves the homotopy class of the field
variables, and thus the homotopy number n (the number of 'twists'
in C). This number is called the 'kink' number by Finkelstein .24
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We see that our meson field thus carries this conserved quan-
tum number, and we expect it to be transferred to the fermion by the
trilinear interaction; it will be an additively conserved quantum num-
ber in any elementary particle process. We may also have further
conserved quantum numbers arising from the nucleon field manifold

¥ o=X%ygy ¥-d2 Gy yYs¥) (VII.11)
for which
02 = -2, @ryvsn | (Vi 12)

It is much more difficult to analyse the homotopy structure of (VII.12).
However, there does not seem to be any conserved quantum number
arising which may be interpreted as a fermion number, such as nu-
cleon or lepton number. The conserved number obtained already may
be interpreted as strangeness, though we will have to break it, pos-
sibly by expanding about Z=0. 3) There are other interactions of a
slightly more general form, which will also give kinks, e.g., if we
do not want to allow characteristics for § depending on @ (in the
Z=0 limit) we can still take

= F(y.4) - (yv,vsh R,
to obtain

=23, [P 0Ty, vgh ]

=2 {er/aD Gy + v v}, 0.

For F=aj}, say, we obtain
12
[1-raGvsy, i3, 8] = 2%,

which still has (B ,@’} <0, so giving a non-trivial third homotopy
group (unless 1= J\a(L‘WSY W)Buﬁ which can be avoided by a suita-
ble choice of a). Thus we cannot use the existence (or not) of a
kink to single out a specific form of interaction.

We remark here that we may regard the bootstrap in our field
theory approach as the 0~th approximation to a strong coupling solu~-
tion; if all the Z's~ 0 we could expand in the Z's about this approxi-
mation. If this expansion was good this would explain the successes
of 8Ug (for when Z=0 the kinematic terms Yy 9, are absent, and one



BOOTSTRAPS, FIELDS 257

can easily write down interaction which are SUg invariant but not
kinematic terms which are also SUg invariant).

VIII. Generalised Groups

I now wan! to turn to a different direction than that of field
theory to develop bootstraps. I want to return to the approximate
form of bootstrap embodied in the Cutkosky bootstrap equations.

—() -—(X § (VIII. 1)

We consider functions of three variables f(a,b,c); the right hand side
of (VIII.1) suggests the triple product

(fgh)ijk = z fi'mng,“nh,cmk (VIII.2)
L, mn

where ¥ denotes summation over discrete variables or integration
over continuous variables. If we denote by G the vector space of
the functions f(a,b,c) (with suitable smoothness properties with re-
spect to the variables a,b,c if they take a continuous range of val-
ues) then (VIII.2) defines a mapping of Gx Gx G-~ G: {f,g,h)- (fgh).
We note that we cannot have a binary map Gx G- G, but only a
three-fold map; we thus meet a generalisation of a group (or ring or
algebra, et cetera) which we may denote as three-group (three-ring,
et cetera).

We may generate a four-fold map if we take functions of four
variables, and consider the map defined similarly to (VIII,2) with the
Feynman-type of diagram

We may generalise this to an n-fold map or an n-ary operation in an
obvious fashion. The Feynman-like form of these mappings shows
how they would arise in more general bootstrap equations than
(VIII.1), and a number of them may occur simultaneously. Thus it is
useful to analyse the structure of sets G with n-ary operations on
them which generalise the group structure. In particular, the
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representation theory of such objects may enable us to diagonalise
the n-ary operation and so enable the solution of equations like
(VIII.1) to be found in a simpler fashion on the irreducible subspaces.
A three-group also arises in calculating higher moments of two-body
nuclear operators, and a reduction theory would possibly enable much
simpler calculations to be performed.

Let me now make some definitions.

Definition 1. An n-groupoid is a set A of objects
aj,az,a3,..., together with an n-ary operation of A" to A which I
will, as a product, denote by ajag ...ap.

Definition 2. An n semi-group is an n-groupoid with an as-
sociative n-ary operation, so that all the possible products of (2n-1)
objects are equal, i.e.,

a_) ) =

(al... N TR Tl I CPRRL N

an+2. . 'aZn-l

]
9]
[*]}

139+ .an_l(an. i 'aZn—l)'

Definition 3. An object a belonging to an n groupoid A has
a left (right) inverse aj(a,) if

)n—l

(ala b=b, beaG

Py - b, bea.

(aar
If a; =a, we say a has an inverse.
Definition 4. An n semi-group for which every element has
an inverse is an n-group.

Such ohjects have been considered in a very general manner else-
where27) ,28) though no work on representation theory seems to have
been done. As examples of these systems:
(1) The odd integers form a 3-group under addition, but have
no identity (which would be zero).
(2) The negative non-zero numbers form a 3-group under
multiplication, again having no identity.
(3) The tensors of rank 3, aijk(l i,j,k N) form a 3-groupoid,
with
abe) iy = Z 3y mn% nCmk *
2, m,n
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However, the 3-product is not associative, (abc)de #ab{cde). Neither
is there an inverse to a general element a. In spite of this we may
try to develop an analysis for a subset of this 3-groupoid closely
paralleling that for tensors of rank 2 when regarded as matrices. We
may regard the tensors of rank 3 (3-tensors) as elements of a 3-
dimensional cubical array. This will enable us to generalise many
concepts holding for matrices to the case of 3-tensors, one example
being that of a determinant. We will not consider this further here.
(4) The set of n-tensors of dimension N form an n-groupoid,
with
- y N

(a,a,...a = 1. . )
i 1§y SN J1J2+++dn

n)iliz. oodp

Xaz,,, , «osedpn, . e
j1igig...ip o PRI P Y

As for 3-tensors this n-groupoid is non-associative, nor does a gen-
eral element have an inverse,

Embedding Theorem .29) Every n-groupoid G may be iso-
morphically embedded in a semi-group (that is, a 2-semi-group).

For if w denotes the n-ary operation on G, let R be the row-
algebra of GU {w}, that is, the set of rows R = (aj,...,ag) with
aj € GU{w}, the product of any two elements of R being just that ele-
ment of R made up of the two sets of rows joined together:

:b).

(al""’as)(bl""‘b) = (al,..-.,as,bl,... h

t

To each a€ G we associate the operator pz on R by

pa(al,. ..,as) = (a,al,. .. ,as)

and to w we associate gy defined by

ow(al,...,as)= (w (al,...,an), an+l,...,as) if s=m+n,
aiGG for 1<i<n
= (w,al, .,as) otherwise.
Then
o]

wpal' . 'F’an = Pufay,. ..ap)
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if aj€G, (1<i<n), and py =py if and only if a=b. Thus G is iso-
morphic to a semi-group of 1-ary operators on R. But we have

(5 =
Cw\ow\pal' -Pa pan+1 o 'paZn—1>

=) p e _
w\w(al...an)anH aZn—l) =P

- r
Cw\Pa1%u\Pay 'paZn—1>pan+2' ’ 'pf“Zn—l>

p =p
w(alw(az...an+l)an+2...a2n_1> B

and A#B, due to lack of associativity. Thus the associative product
on R is not the (generally) non-associative n-ary product on G in
which we are interested. We mainly wish to set up a theory of n-
groupoids which allows us to simplify the non-linear bootstrap equa-
tions of type (VIII.l); since the binary product in R cannot in general
be directly related to the n-ary product in which we are interested, it
would seem necessary to analyse the structure and representation
theory of n-groupoids by methods which do not depend on the embed-
ding theorem.

We will turn, then, to a direct analysis of the representation
theory, and start with the very simplest type of n-groupoid, which
will be a finite Abelian 3-group. We will see very similar results to
those for finite Abelian groups, as is to be expected from the embed-
ding theorem in the associative case; these results may possibly be
proved directly by this method. However, we hope that it may be
possible to extend our methods of proof to the more general non-
associative case.

Definition 5. A representation of an Abelian 3-group is a map
of GXG into the set £(V—V) of linear operators of a vector space V
into itself; if this map is denoted by Lg b for a,b€ G, then we re-
quire

La,ch,d - Labc,d - La,bcd' (vIiz. 3)
We have used (VIII.3) since we want to have the regular representa-
tion included in our Definition 5. This is obtained when we take
V=G (when G also has a vector space structure compatible with the
3-group structure), and

La ,bc = abec.
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Let me consider the one-dimensional representations
Ly p = x(@.b)I (VIII. 4)

where 1 is the identity operator on V, and V is one-dimensional.
Then ¥ (a,b) is a complex-valued function on G x G with

¥ (@,b)x(c,d) = x(abc,d) = x(a,bcd). (VIII.5)

Any such complex-valued function on Gx G will be called a character
of G; the set of all such functions is the character group G of G.

Definition 6. In any finite Abelian n-group G, the least inte-
ger r for which, for a given a€ G, al n-1)+1 = 5 is called the order
of the element a.

Definition 7. In any finite Abelian n-group G the number of
distinct elements in G is the order of G,o(G).

Then in any finite Abelian 3-group, every element has finite
order, and if the order of G is denoted by n, for any a€G

2n+l
a

Then from (VIII.5) we have, for any a€ G,

)n+l

x(a,a = x(a?n*l a) =x(a,a)

so x(a,a) is an n-th root of unity. Also for any a,b€G, from {VIII.5)

2n+2

X (a,a) = x((ab)2n+1

a,b) = X(a.b)2

e

)2n=1

xfa.b
and x(a,b) is a 2n-th root of unity. Then |x(a,b)x=1 for any x € G,
so that G is a group, with the inverse of each X being the complex
conjugate function X*: and multiplication of two characters X1:%X2
defined by the evident rule

XXy @, b) =x,(a,b)x,la,b).

Definition 8. An n-group G is generated by the elements
X] 1 e e Xy if every element of G may be written as a product of the
elements xy,...,%y, each element taken any number (including zero
or negative numbers) of times.
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Definition 9. A cyclic n-group G is that generated by a
single element.

If G is a cyclic 3-group, generated by the element a of
order n, then for any integers r,s,

+s+1
X<32r+1'a25+1> _ x(a,a)r s+l

Hence the values of ¥ on G are just the possible n-th roots of
unity. Also the set of all possible values of G on a are all the
posgible n-th roots of unity, so that there are n different functions
in G, and o(G)=0(G).

We may now extend this above result to all possible Abelian
3-groups which are the direct products of cyclic 3-groups, in the fol-
lowing sense.

Definition 10. An n-group G is the direct product of n~
groups Gp,.. Gy (N odd) if these n-groups are sub-n-groups of G,
and any element x of G may be written as

X = ﬁ X x, € G;.
« 1 i i
=
Then for any Abelian 3-group G which is the direct product of a finite
number of cyclic 3-groups Gy, generated by the element x;, any ele-
ment X€G 1s of the form

i=1
where the o are odd. Then any character on G can be factorised by
the relation

= 3 - o oy, 042
X, y) = XX ,y> x(% ,xj>x< S %, ,y)
1#)
so we may reduce ¥ (x,y) to a product of powers of X (xy ,xj), for

varidus j, times
N,
X( ’T Xy ﬁ"i) ‘
i=1 i=1

which may be easily seen to equal

—

X (xq.%,).

i=1
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Thus the character group G of G will be the direct product of the
character groups of the factor groups of G, and so we still have
o{G) =0(G). It is not known whether the basis theorem for finite
Abelian 3-groups is true (this being that every such 3-group is the
direct product of cyclic 3-groups); the proof for the 2-group case is
well known.

Now that we know the possible 1-dimensional representations
for any direct product of cyclic 3-groups, we turn to the analysis of
any general representation V on the complex vector space H(V). We
first derive an elementary property of the characters. Consider

x@mb Y  xle,d) =)  x@be,d) = )  x(c'.d) (IIL.6)
cHEG Gaea cldea

where we use the 3-group structure in the last step of (VIII.6) to
show that for any ¢'€ G there is a ¢ in G so that abc=c', this ¢
being a~lb-1lcl, Thus

[1-x(,b)] z x(c,d) = 0.
c,de€G

If x#1 then

z x(c,d) = 0. (VIII.7)
c,deG

For two dwtinct characters X1/Xg. then xlxz is a character, and
Xl(a b)xz (@/b) =x1xg la, b)#l, so

z xl(a,b)xz*(a,b) = 0, (VIII.8)
a beG

Evidently (VIII.8) is an orthogonality property of the characters, so
they form a basis for the vector space of complex valued functions on
G x G. We also note that since

"1y = y@,b)xle,c™h

x(a,b) = x(a,bcc

then x(c,c”l)=1 for any c€G.

Finally we note the further identity ¥ (b 1, _1) = x(a,p) . To
analyse the general representation V, we define for each x€G,

= Lo(@] AN

a,beG !
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Then we have the following properties of P:

(1) PXZ =p, any x€G (VIII. 9)
(2) '
PXlPXZ = PXZPXl =0 (Xl #xz) (VIII. 10)
(3)
Z P, =1 (the identity on H(V)) (VIII.11)
XE€G

(4)

—_ * o
va,be =X (a,b)PX, all a,b€G, x€G. (VIII.12)

To prove (VIII.9) and (VIII.10), we have

-4 =
P, P, = [o(G)] ) X3 (@, b)) (c,d)V
X1 X2 a,l?fc,dGG 2 abcd

-4 <
=lo@ ™Y xf@bx,eD) ) x A,
a,beG c',deG !

= [o(@]72 Y xl*(a,b)xz(a,b)P (VIII.13)
asbeG X

where ¢'=abc in (VIII.13). If we use (VIII.8) when x; #x, we ob-
tain (VIII.10), and if x; =X, since x| =1, and

Y 1=[o@)?
a,beG

then we obtain (VIII.9).
To obtain (VIII.11l) we have

z PX = [O(G):l_2 Z Va b 7 x*(@,b).

—_

x€G a,b€G  yeG

Now for given a,b, y(a,b) is a mapping of G to the complex num-
bers with absolute value 1 and satisfying the property of a character,
so is in G Thus using (VIII.7) (true also for G as for G),
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~

E x*@,b) = 0 unless x{@,b) = 1, all x€G.

X € é
But when G is a direct product of cyclic 3-groups,
x@,b) =1 if and only if a = b_1
SO
¥y B, = [o(@)] 'ZE Va1 ) L (VIII. 14)
X€G aeG XE€G

Further V, a-1°T (the identity on H(V)), since for any b, c€G,

\Y \ =V

a,a"lvb,c ~ Va,a"lp,c b,c’

and we multiply both sides by the inverse of Vb,c‘ Thus the first
summation in (VIII.14) gives o(G), the second summation gives
o(G) =0{@), so proving (VIII.1l). Finally

_ -2 *
V. pPy = [o(@)] z x"le.dv, v,
c,d

= [o(G&)] e z x*(a.b))(*(abc,d)vabc J
c,d€G '

= x*(a,b)P
so proving (VIII.12).
Let Hy be the range of Py . Then from (VIII.9), (VIII.10) and

(VIII.11) every vector in H is uniquely expressible as a sum of
vectors, one from each HX:

g =

L~

P 2.
" Xﬁ
X €G
Also for each IZ(EHX,
_ %
va,bg =X (a:b)g-

Then each H defines a sub-representation VX of the form
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a,b~ x*a,b)I; since

X € G
we obtain the primary decomposition of V. The irreducible represen-
tations are obtained by taking any basis in each VX, so that each
basis element defines a one-dimensional irreducible representation
(though this decomposition into irreducibles is not unique).

Further, the irreducible subspaces of H may be made up by
taking any subspace of each VX and forming the union over y.

These results are identical with those for finite Abelian 2-
groups. I do not want here to go into details about the extension of
these results to infinite non-Abelian non-associative n-groupoids.
The removal of the finiteness and Abelian characters can be done,
provided suitable topological properties (at least local compactness)
are added. These and applications to bootstraps and nuclear physics
will be considered elsewhere.
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FUNCTIONAL INTEGRALS IN BROWNIAN MOTIONT
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England

1. Introduction and Summary

In these lectures we propose to show how the phenomenologi-
cal theory of Brownian motion could be developed via the techniques
of functional calculug. The formalism refers to all situations in
which we are seeking the distribution of a dynamic variable , related
through an equation of motien to a stochastic varlable of given dis-
tribution. However, we shall base these lectures on a particular
situation—that of a particle in a liquid.

It was Einstein's idea that particles in liquid environment
suffer perpetually collisions from the molecules of the surrounding
medium due to the thermal agitation of the latter. 1) As a result of
the thermal kicks, a particle of approximately colloidal size is con-
tinuously kinking; we say that it executes Brownian motion or simply
it is a Brownian particle.

Langevin postulated the following equation of motion for the
Brownian particle:

98 - _pg +F(T,B.1) +T0) .1)
where

— d_’
p =m d_'; . (1.2)

B"1 is a relaxation time matrix which is symmetric positive definite
and depernds on the viscous properties of the medium and the geome-
try of the particle.z) (The orientation dependence of B will be con-
sidered averaged.) -Bp is the Stokes resistance of the medium to
the particle. (T, p.T) is the external force on th_g particle , assumed
to be slowly varying and containing no memory. f(7) is the force of

T Presented at the THEORETICAL PHYSICS INSTITUTE, University of

Colorado, Summer 1967.
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collisions assumed random and independent of the kinetic state of the
particle.3) The forces —Bﬁ' and F are called systematic, whereas 7
is called thermal force.

Our problem is: Given a functional distribution for T (T) over
a time interval [ty.t], what is the distribution of the position r and
momentum p of the particle at t1me t, 1f at an earlier time t, the
particle occupied the phase point (ro,po)'? ‘We make for the thermal
force f the stochastic assumption that its functional distribution over
[to,t] is the following continual Gaussian distribution:

t ) t

witael = ] detn‘lg(rr)mf exp{ J 9up ME, W)EMdr} .
to tsT<t 5 )

I.3

Summation convention from 1 to 3 will be understood for repeated
indices throughout this text. 908 is a positive definite symmetric
matrix. It will be further spe01f1ed later on in such a way that for a
free Brownian particle (i.e., F =0) the distribution of the momenta
after infinite time goes over to the Maxwellian distribution:

[ 2T myT] =3/ exp{ 2T ) (I.4)

Alternatively we may demand of the equation governing the distribu-
tion of the particle momentum to admit (I.4) as a solution in the case
F=0. g thus determined is found:

g'1 = 4¢TmB, (1.5)

The functional distribution (I.3) represents the distribution at
each time Tt €[t,,t] of the collision forces f(r) on the particles of
an ensemble of identical Brownian particles. It is easy to deduce
that the thermal forces at two different times are not correlated. This
fact is very important for the derivation of the integral Smoluchowski
equation.

The statistical description of the Brownian particle is ef-
fected through the ensemble average conditional probability distri-
bution (ECPD) G(T|T t|to), t>to, of finding the particle in
the vicinity of the phase point (r p) at time t, if at time t, it
occupied the phase point (?D.ﬁ'oj . The object of the subsequent sec-
tions is to develop techniques for obtaining the ECPD. We shall
demonstrate the method by concentrating attention to the case of
momentumn space. For th1s purpose we shall consider only exter-
nal forces of the form F(p t), i.e., depending on momentum and
time. In this case we can ask what is the ECPD G(f)‘l So;tlto) of
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finding the particle at time t with momentum in the vicinity of 5 if
at time t, its momentum were pg. The generalization to the case of
phase space is effected in a similar manner.

In Section II we derive the distribution G as a functional
average of the conditional probahbility distribution (CPD) in Liouville
(or deterministic) sense. Furthermore, we exemplify the method by
(@) calculating the ECPD in the case the external force is a pre-
scribed function of time, and (b) by finding G when F=F(p,7), but
for (t~-t,) very short.

In Section III, using the method for the construction of ECPD
G, we show that ‘G obeys the Smoluchowski (-Kolmogorov-Chapman)
equation. Also we show that G is a Green function of the Fokker-
Planck equation.

In Section IV we represent G as a conditional functional
integral over Wiener measure in the space of momentum functions.

In Section V we obtain from the formal representation of G in
Section IV a compact approximate expression for G. The method can
provide solutions to non-linear problems in Brownian motion and re-
lated topics. It is analogous to the WKB approximation.

II. Construction of the ECPD G(p | EQ:J_to)
We deal with the case F=F(§,7). The Langevin equation is

& - By +F 1) +T(0). (. 1)

Let

be the solution of the Langevin equation (II.1) which satisfies the
initial condition

This solution obviously depends on all the values of ?(T) with
Telt ,t].

The CPD in deterministic sense of finding the particle with
momentum in the vicinity of p at time t, if its momentum at time to
were 50, is given by the & -functional:

6 {5 -F(F,.L1mI)} . (1r.2)
t

(o]
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The ECPD is obtained as the functional average of the deter-
minist410 CPD (II.2) with respect to the thermal distribution measure
(1.3),* i.e.,

t t
G | Byitlty) = J'a{ﬁ’ —F(po,[?t(Z)D} w[f(trro)] togrq df(r). (w.3)

Let us now, before we exemplify the above procedure for the
construction of the ECPD, state the formula:

t
(M1 [ df@) =

t
Jé {?« -f Q(T)?(T)dT}w [t
to to  toST<t

= [det T JttoQ ('r)g_l (T)a('r)dTJ—% exp{-[ IttoQ(T)g_l(T )dr ;;quﬁ}

(I1. 4)

where ; is a three-dimensional vector and Q a 3 x 3 matrix. 5
stands for the transposed of Q. This formula is obtained by writing
the 6 —functional in (II.4) as a Fourier integral, and so the problem
reduces to the functional integration of a linear exponential func-
tional. (Appendix.)

As a first example we consider a Brownian particle under the
influence of a time-prescribed external force F(r). Furthermore, we
shall také the matrix B constant, as this is the usual case with ap-
plications. In this case the Langevin equation is

9 - g +F @) +TM0). (ir.5)

Its solution satisfying the condition f;(to) =60 is

t
1;.(t) = U+ J\ expl -B(t-r)] f{r)dr (11.6)
to
where
- - t -
U = expl-B(t-ty)lp, + J exp[ -B(t-1)] F(r)dr.
t
o

Then using formula (II.4) we find for the ECPD in momentum space the
result:
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I

= t - —ot —
GE|P oitlty) fé {5-0- fexp[—B(t—T)]f(T)dT} Wil ] dit)
t

o to  tosT<t

-3
X

[det 2T mK T<exp[—28(t—to)] - I)_l

, -1
: 1 _r 7
X €XP =gt \(eXPL-Blt-ty)] - I>as<p°‘_ UoD\pB . Ua)}
(11.7)

where we have used (1.5) (to be established later) for the matrix g
anid the symmetry property of B. For F(r)=0, formula (II.7) shows
how the Brownian particles settle to equilibrium through the frictional
force -Bp. The partmle dissipates energy to the medium through the
frictional force -Bp , whereas through the thermal force f('r) the
medium does work on the particle. In the state of equilibrium the two
forces balance each other.

As a final application, let us calculate the expression for the
ECPD of finding the particle with momentum p at time t+4t, if at
time t it had momentum p'. At is taken short enough so thal the
systematic forces do not change appreciably during thig 1nterval

From the Langevin equation (II.5) we have for P (t)=

= t+At . tHAt
P (t+it) = p' +5 (-Bp +F (p ,7))dr +j\ f(r)dr =
t : t
==5'+|:—B5"+P(p',t)JAt+j f(r)dr
t

(11.8)

where we have replaced the time integral of the systematic forces by
the first non-vanishing term of its Taylor expansion. This is done
due to the slow variation of the syslematic forces. We do not do this
for the thermal force due to its rapid variation. 3

Employing (II.3) for the construction of the ECPD and using
(11.8) and (II.4), we obtain:



274 GEORGE J. PAPADOPOULOS

G{E|pit+atft) = ,’:detn g_l(t)At]_% X

(11.9)
p_L =g .f&ﬂ gt} =
x expi{-g(t) +BB'-F (" t) +Bp' - F(p',t)) At
{ ( >0, \ At >B }
where in (II.9) we made the simplification
tHAt o
f g (t)dr=g ~(t)At.
Yt
Introducing the transformation
B =p -bp, (11.10)

formula (II.9) takes the form of a function T(p -Ap;Ap) and repre-
sents the transition probability density for the Brownian particle
having momentum f)' —Af)’ at time t to change by Aﬁ in the short time
At. We are interested in the transitmn probablhty distribution for

the momentum to change from P at ttme t by ﬁp in the short time At,
Replacing in (I1.9) p' by p and p p by Ap we obtain

T(E;AP) = [detﬂ g_l(t)At]_% X

X exp{ -g{t) <—2+Bp -F@.1) -(%tﬁ+BS—F'(1S',t)>BAt}.

(I1.11)
Defining the average value of a function @ (Ap) by
@) = [9(05) TG 45) (85, (1.12)
we obtain, for later reference, utilizing (II.12), the results:
(1) =1
(Apy) = [Fa(x_;,t) B (BE)QJ At
(I1.13)

(bpgbpg) = % (g_l(t))qBAt

(ApaApBApY) and so on are of higher order in At.
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where 0., 8, Y,... run from 1 to 3.
1I1. The Smoluchowski Equation and the Fokker-Planck Equation

Since the Langevin equation of motion (II.1) has no memory,
there follows that for to<t'<t we have

t t
E’(Eo,t‘f’irn) - p(ﬁ-,[?(;)]) (1r.1)
o]

where
tl
B = ¥(p,Lem])
to
Furthermore, using (III.1), it is easy to verify that:
— —/ = t
o{s - #(p, i)} =
t

- [of5-FG 120D} -off - FGy EoD} i . amo
t! tO

The thermal distribution (I.3) factorizes for any pair of disjoint sub-
intervals covering [ty ,t], i.e.,

t Lt Lt
WEM)] = WEm)] - W) . (I11.3)
175 to t!

Multiplying (III.2) and (III.3) by members and integrating both sides
over all £(r) with 7€ [ty,t], we have

G| pyitlty) = j G|t t) GE' | pyit'|ty)dp', (1. 4)

where we have utilized formula (II.3) for the construction of the
ECPD. Equation (III.4) is the Smoluchowski (-Kolmogorov-Chapman)
equation for the ECPD. We note that should either the Langevin
equation of motion contain memory or the thermal distribution does
not factorize, then the relation (III.4) would break down.

On the Smoluchowski equation we can base all the calcula-
tions of the Brownian motion. In particular, we shall go into a dif-
ferential equation—the Fokker-Planck equation.

Let us now replace in (II1.4) t' by t and t by t+At and in-
troduce the transformation {I1.10). Then, utilizing (II.9), we obtain
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G | pit+bt]ty) = jT(p -bp8P) G -bpitlt )d(bp) . (UL.5)

The Fokker-Planck equation for the probability distribution & (S,t) is
obtained through the same integral equation (II1.5), i.e.,3

3(p, t+At) = fT(E—AE:AS) %(p-Ap,t)d(sp). (I11.5a)

Expanding the left hand side of (III.5a) in power series of At and the
right hand side in power series of Apy by Taylor's theorem and
making some rearrangements, then we have

9% 2y —
) +at At +0((at)=) =

2
- - L _9a”
_I{QT S TR Y 5

3 Pgd Pg ?T Apyhpg * "'}d(Ap) (111.6)

where we have denoted by & and T the functions #(p,t) and T(;_)';Ap—;).
Dividing (III.6) by At and taking into account the results (II.13), and
passing to the limit as At - 0, we obtain the Fokker-Planck equation
in momentum space:

_ 2
9,290 o3 > 1 _ o -1 -
{5t "5 LFal® 8 - B0)g] - 5 TR dag) ¥ = 0 (. 7)

Demanding of this equation to admit the Maxwellian distribution for
the momenta (I.4) in the case of the free Brownian particle (i.e.,
F = 0), we establish for g the relation (I.5): g~!=4xTmB.

Since for t>t, the ECPD G satisfies (III.5a), there follows
that (for t>t,) G solves the Fokker-Planck equation (I11.7). Further-
more, by replacing t by t,, t+At by t, and p' by ?’o in (I1.9), it
is easy to see that as At - 0 we have:

Gl lpyitlty) —>6(-p,) as t—>t +0. (111.8)

From property (III.8) and the fact that G satisfies the Fokker-Planck
equation (III.7), there follows that the ECPD G defined in (II.3) is a
Green function of the Fokker-Planck equation. In particular, it is
the Green function satisfying the integrability condition.

The ECPD G has the property to propagate the solutions of
the Fokker-Planck equation. In other words, given the distribution
for the momenta @O(ﬁ') at time tqy, the distribution &(p,t) at a later
time t, which solves the Fokker-Planck equation and satisfies the
same boundary conditions as G w.r.t. p is given by:
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8(p.t) = JG(plSo;tI t) 2 (p,)dpy. (II1. 9)

This 1s the propagation equation. That & defined in (III.9) solves
the Fokker-Planck equation is easily seen, since G w.r.t. S,t
satisfles this equation. The same applies for the boundary condi-
tions. The initial ¢ondition requirement follows from property (III.8).
‘We have )

2p,t)—> Jt&(p Pl 2, (P )dp, = 8 (p) as t—>t +0.
IV. The ECPD G(p|pyit|t,) as a Conditional Functional Integral in

Momentum Space '
Consider a fine subdivision of the interval [tg,t]:

K= {to, £ t2,---,tn}

with

< < v e e = R
t0<t1 t2 < tn t

Repeated application of Smoluchowski's integral equation (III.4)
gives

G | pyitlty) =
=fG(E;I5(n—1):t|tn_1>G<5(n-1)|5{n=2)7tn-1|tn-z> 0§ R

a(p@| Bt |t )xG(PWI B it |, ) dpn-1)dpla-2)- + - x

dp (2)dp (1). (Iv.1)

Employing formula (II.9) for the ECPD between two neighboring times,
we have
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v (n) n-1 -1 -1 n-1
Glolpitlt) ~ G = [j];[o detm g (tj)Ath J\exp{— zo gaB(J‘) X

—.

pG+)-p () _ = a2 PG =BU) | = L o2
s - F 00 (Pt FG) +BO)PU) 0} ¢
n
5 (0(0) - po) 8 () - H 1v.2)
where we have denoted

My=t -t RO =BE), FO) = FEE).1).

Passing to the limit as n— « provided max.At;~ 0, this limit (when
it exists independently of the choice of the sequence of subdivisions
{8n}) defines a conditional functional integral in momentum space,
representing G, which we denote in the following suggestive manner:

t
exp{-jt 9up () x
(o]

(- F 60 +30050 ) (B - FGmm + BF]) o} »

_ -3 (P (t)=p
G(P|po,t|t) L H detmg l('r)d'r:I JL

tST<t P(ty)=Pg

d;(T) .
tosT<t (1v.3)

Notice the difference in the normalization factor from that of (I.3) for
the thermal force distribution. The normalization factor in (IV.3) is
such that one could express this integral as a conditional integral
over the Wiener measure:

dp de
h expl j T)— ar d’r}

where h is the symbolic quantity in front of the integral sign in
(Iv.3).



BROWNIAN MOTION 279

We also remark that one could arrive at the representation
(IvV.3) for the ECPD G through transformation theory by employing the
original definition of G (II.3) and the transformation (II.5). It is
also possible to express G as a conditional functional integral in
the coordinate space.

V. Approximation Methods for the Green Function

The functional integral representation (IV.3) of the Green
function of the Fokker-Planck equation (III.7) is not only a formal
expression, but its practical importance lies in the fact that it is of-
fered to various approximation procedures. By employing (IV.3), one
could devise these techniques by introducing various transformations
of plr), which transform part of the integral into a functionally-
known integrable form. The rest is treated as a perturbation.

One particular procedure, which usually picks up most of the
Green function in the zero order approximation, is analogous to the
WEKB approximation in Quantum Mechanics .5) We wish to demonstrate
this technique by treating in detail the case of one-dimensional mo-
mentum. The extension to three-dimensions is trivially effected by
replacing the scalar quantities involved with the corresponding ma-
trices and vectors. Furthermore we shall take g constant as this is
the usual case for applications.

We begin with writing down (IV.3) in one-dimensional form in
the momentum.

Gl |pytlte) =[ T1 ﬂg—ld'r} ®

tOST<t

(t)= E
% J‘pt Y exp{—jt gl:g%f:—) -F(p(T),T)+BP(’T):lZdT} H dp(t). (v.1)
(o]

pltg)=p, 1 ST<t

Since g is positive, there follows that the definite integral in the
exponent of (V.1) is positive for every path p(r). For smooth F(p,T)
there exists a certain path through (to,po.) and (t,p) for which the
definite integral is minimized and hence the exponential functional is
maximized. Then most of the contribution, from the integrations over
p(t) to the functional integral (V.1), comes from a neighborhood
around this path.

To find this path we apply the usual methods of the calculus
of variations. We have for the required path:

At 2
rdp _ _
GJ 9 & P(p,'r)+Bp] ar =0 (v.2a)

to
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together with the conditions

plt)) =py:. pl)=p (V. 2b)

from which there follows that the required path is the solution of the
second order ordinary differential equation:

d% /B_F _
) +‘B p) KBp F) (v.3)

which passes through (to,po) and (t,p). This equation, although in
general non-linear, nevertheless is an ordinary one and it is easler
to handle numerically than a partial differential equation.

Let p*(’r) be the path solving (V.3) and passing through
(to:Po): {t.p). Upon introducing the transformation

p(r) = p*@) + ki),  W.a)

we have
_‘t

. 2 [ . '
Jt \ﬁ(T) -Flp,T) +Bp('rD dr=A +j\ (kZ(T)+(!.(T)k(T)k(T)+Y(T)kZ(TDdT

0 o
+ terms of higher power in k (v.5)
where we have denoted differentiation w.r.t. T by a dot, Notice

that the term first order in k vanishes since the first variation (V.2)
of the left hand side of (V.5) is taken zero. We have denoted by

rt dp* * 2
A= Jy ~Flp .7) +Bp> dr = A(p,pyit,ty)

dr
(o]
- (E = .
alr) = z[B 10 p=p*J = a(p,pgim) (v.6)
vir) =[o%0) - (6*.7) ZD
T)=[|a -Flp",7} +B Ny o /PoiT) .
i P T p) T p_p*] Y{p/poiT)

The Jacobian of the transformation p-k is: J(p—~k) =1 and due to
(V.2b) it follows

k(ty) = k) = 0. w.7)
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Therefore we have for the Green function:

Gp| poitl ty) ~ Golp] Poit] to) =

k(t)=

= e_gA[ H TTg-ldTJ éj exp{—ngt<l.<2+ (v.8)

toST<t k(to)=0 to

+ q,(T)kk +y(r ) d"l’} H dk(T).

t ST<t

The approximation sign in (V.8) is due to the omission of powers
higher than 2 in k.

To calculate the continual Gaussian integral in (V.8) we pass
to the discrete form. Let us consider a subdivision of the interval

[ty t]:
}\J/N ={to£t1't2""'tN}

to tl t2<... tN t.

with

For simplicity we take ”8;\1 isometric, i.e., tj+1 -tJ- = At for
(j=0,1,2,...,N-1). Then we form the expression Gg N) by re-
placing the integrals and symbolic products in (V.8) by sums and
products over the points of the subdivision @’N. Denoting by S the
integral in the exponent of (V.8), we have for the discrete form the
sum:

{ k<j+1) k()12

SN=

||L\/J

, . . /AP

Otjk(J)[ k(+1) -k ()] +ij (J)MJL =
v.9)
1 N-1 27.2 .

= o JZ=1 {[2 ~a Bty (a8) LR 2[1 ~#a,(t) Jk(;)k(;+1)}
where in (V.9) we have taken into account the condition (V.7), which
in the discrete case reads
k(0) = K(N) = 0.

Here again we have denoted a(tj), Y(tj) and k(tj) by @y, vy and k(j).
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Let us now transform (V.9) through a principal axis transfor-
mation as follows:°/ We cast (V.9) in the form

1 N-1

Sy = Ir jzl[k(j) -bj+1k(J'+1)JAj[k(J')—bj+1k(j+1)} W.10)

where k(N)=0. In case k is a three-dimensional vector then b and
A are 3 x3 matrices and the quantity in the first square brackets of
(V.10) is transposed.

Now comparing the right hand side of (V.9) and (V.10) we ob-

tain
Mo +Ajlojz+1 =2-a 0ty @)
/\;bj+1 =1-4a;At
G=1,2, ...,N-1) (v.11)
with v 2
Al’ =2 - a.lAt + yl(At) .
From (V.11) we obtain
by = Aj_l(l -#a )
v.12)
My = -Aj_l(l -s}ajm)2+|:2 -y, 0t +Yj+1(At)2J.
We make a further substitution:
€j = k@) - bj+1k(j+1)
g=1,2,..., N-2) (v.13)
Eno1 = k(N-1).

Again the Jacobian J(k—E)=1. Employing (V.13), we write for (vV.10):

-1
- L 2
Sy = Bt :21 Ajéj . (v.14)

With the aid of (V.14) the discrete form of (V.8) becomes:
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N-1 -% -1 N-1
(N) _ _-oA -1 {_ g 2)
=e I:H mg At:l Iexp at L. Ajgj s H d’ij
j=o =1 =1
= V.15
_ -aA[__a 7? v.19)
= e -
N-1
mat 11 A]
=1
What we need now for passing to the limit as N—« is to find:
N-1
lim At ]'[ Ay(= let D(t)) = D(p,pyit,t,). (v.16)
N—mo J 1
To do this let
n
D = At H A, v.17)
j=1
then
Dn+1 = DnAn+l' (v.18)

Employing (V.18) and the second relation of (V.12), we obtain the
finite difference equation for Dy,.

Dn+1_2Dn+Dn—1 - _ Dp%p+1~Dp-1%

2
+
Dn— lqn DnYn+1

n

N

(v.19)

Passing to the limit as At— 0, we obtain for D(t) defined in (V.16)
the differential equation:

dD

- + @) +[ go’m -y ] D = 0. (v.20)

The required D{t) is the solution of (V.20) satisfying the initial con-
ditions:

D(O) =0, D) =1 (v.21)
since

3 -0 2——0 —_
Dl—At[Z oclAt+Y1(At)J 0 as At—- 0
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and

Dy-Dy
At

- 1 as At- 0.

From (V.15) and (V.16) we obtain the following approximate result for
G:
. N) - . -gA(p,Poit.to)
lim GCE )—Go(p| po,t|to or=rrol,

[WD{p Poitity J
N—QW

(v.22)

This result can be taken as zero order approximation to G.
We can further improve the approximation by expanding the rest of
the exponential functional in (V.1) in power series of k and subse-
quently in & and employ the measure in (V.15) for the averaging over
€. Dr. Tarski has given in his lectures formulae for such averages.

The present work originated from a series of lectures on func-
tional integration which I gave at the Mathematics Department of the
University of Salford in October, 1966. I would like to thank Pro-
fessor S. F. Edwards, F.R.S., Manchester University, and Dr. S.
Sampanthar, University of Salford for many useful discussions,
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Appendix
We wish to evaluate the functional integral:

ﬁé {; - EIOQ(T )I‘. ('r)dT}[t];Lthetrr—lg(T)de%
(a.1)

ot —
exp{\—j}E gaB(T)fa(T)fB(T)dT} H af (r).

o tosT<t

—

X, I can be n-dimensional vectors but for our purposes will be taken
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as three-dimensional. For the same reason Q(r) is @ 3x3 matrix.
We recall that g(T) is a 3x 3 positive definite symmetric matrix

For the evaluation of the functional integral (A.1), it is con-
venient to express the 6 -functional involved in Fourier form. We

have

- [_1_ r {-)\ - A N (T)f()dT} : dA :lx
I‘f (2m)3 J TPV % l“thQ“Y vy Il

1
-1 12 "t —
detm “g(r)dr | expi- g ()i (r)f (T)dr df (1).
] { 'Jto aBt ot B }t(I;[ST<t

dl
toST<t

@a.2)

To evaluate (A.2) we consider a sequence of subdivisions {EfN} of

the interval [to,t]
‘%/N B {'ro, T Ty ...,TN}

to<TI<To< ... .<Ty=t and maxA'rj—'O as N-wo,

with the property:
N the N-tuble integral:

Let us associate with each

=h\ 110 NJ‘ }aJ‘ p{ vy -1 E-l YQYa(j)fa(j)ATj} ﬁ de:I X
=0 y=1

By
x[qudetﬂ_lg(j)AT .J%expi;— z_lg 0)f, AT} ﬂ df_ ()
% ) = oB
c(.—l,Z 3
(A.3)
where we have denoted Q@) =Q(7;), fy (i) =fy (r;) =g(ry). Letus

introduce at this stage the formulae

, 3 ]
Jexe{- gyatutsh 11 ar, = [aetn'q] ;

a=1

. & S1 "%
Iexp {:E ibafa —gchfc,fB} q_l;[ldfo‘ = Il:detrr 1g J exp{—%(g OLB q B}
(a.4)
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where g' is a 3x 3 positive definite matrix. With the aid of formulae
(A.4) we perform the integration over all fy(j} in (A.3) and obtain:

J = -1 J‘exp{ik X —LNS':][g_lJ Q. (). A A AT ) ﬁd)\
N @em3 Yor T4 L L 0Mgp Ty Eye Y J‘fY=1 &

(&.5)

Utilizing the fact
n =l PN B
Qg 9 LBQéB - [o78

and passing to the limit as N— +», we find for the functional integral
(A.1) the result

e 3
1 1 r -1, .~ ‘
]= exp{ilyxXy - & [ QMg “(MQ)Y]| A x d.,. (A.6)
)3‘]‘ { YTY T 4 LOL JYGY G}YH=1 Y

2m

It is desirable to get rid of the parameter )‘Y . Upon performing the
integration over )‘Y in (A.6), utilizing the second formula of (A.4),
we establish formula (II.4), i.e.,

7= [detnj Qg™ )T | exp{[j Qg™ (T)Q(T)dTJ xmxﬁ}
e @.7

We shall close the appendix by stating the result of a gener-
alization of formula (A.7) for the functional integral of products of
& -functionals of the form appearing in (A.1). We have

T -1 %
J ]11 { (T)f d'r})l_t ST<tdetn g('r)dTJ exp{_
t g
= ‘LOQOLB (r), ()i (T)dT}tollT<tdf (t) =

- t -1

= [detn I:OG(T)dTJ H exp {— ri;l{ j‘toG (’T)dTJ . xr'x;} (a.8)

’
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where

X(;+3(j—l)=xdfj) (q‘zllzla); (j:l’ 2,...,1’1)

and G(t) is a 3nx3n (positive definite matrix given in the parti-
tioned form:

W 150

o l)g—1~(n)*

-Q( Q

. . . -

. . - . .

LQ<n)g—15(l) L Q(n)g_la(n)

Formula (A.8) is particularly useful if one is looking for joint
conditional probability distributions.
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NON-EQUILIBRIUM STATISTICAL MECHANICS:
IRREVERSIBILITY AND MACROSCOPIC CAUSALITY*
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I. Introduction and Discussion

The subject-matter of this course will be concerned with a
statistical mechanical formulation of macroscopic dynamical laws,
The existence of such laws (e.g., hydrodynamics, heat conduction)
is an empirical fact. In general the laws are expressible in terms of
a set of macroscopic (extensive) variables, {a}= (al, ....8p), ap-
propriate to the system under consideration. These variables then
constitute a description of the macrostate. Their dynamics corre-
spond to a self-contained set of equations of motion, describing an
irreversible approach to equilibrium:

Sk

T cpj(a) (f.1)
These equations represent a causal macroscopic law in the sense
that the initial values of the variables 3y determine their later
values,

The characterisation of a set of macroscopic variables con-

forming to such a law presents a serious problem. It is evident from
elementary phenomenological considerations that the set depends not

1"Presented'at the THEORETICAL PHYSICS INSTITUTE, University of
Colorado, Summer 1967,
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only on the system under consideration but also on its thermodynamic
phase. For example, in the case of an insulating crystal, the varia-
bles {a} could be chosen to be energies of macroscopically small
subvolumes each containing an enormously large number of atoms—
these variables would then change in time according to the law of
heat conduction. On the other hand, in the case of a fluid, addi-
tional macroscopic variables {(mass currents, energies, energy cur-
rents of the subvolumes) would be needed in order to obtain a closed
macroscopic law (hydrodynamics).

The principal tasks of our statistical-mechanical theory will
be to answer the following questions:

(i) How is it possible that a set of macroscopic variables
can evolve according to a closed causal law, that determines their
values at time t (>0) from their initial values, despite the fact
that these variables provide only an incomplete kinematical de-
scription of the system?

(ii) How is it possible that the macroscopic law constitutes
an irreversible evolution of {a}, despite the fact that the micro-
scopic equations of motion for the system, whether classical or
quantal, are invariant under time reversals ?

(ii1) What are the special properties of a set {a} that leads
to a closed, time-irreversible law?

(iv) What are the forms of the functions cpj{a} , in Eq. (1.1),
which determine the explicit form of the macroscopic law for a
specified system?

(v) What is the relationship of phenomenological quantities,
such as transport coefficients, that occur in ij(a),to microscopic
properties of the system?

In connection with the paradoxes raised by questions (i), (ii),
we shall show that the variables {a} can evolve according to a
closed, time-irreversible law only in an approximation which is,
however, extremely good for suitably chosen macroscopic varia-
bles. To be more specific, we shall show that {a] may evolve
according to such a law only to zero order in a very small dimension-
less parameter, 1"'l , where I represents a certain characteristic
ratio of macroscopic to microscopic quantities. Thus, as I is enor-
mously large, the actual evolution of a suitably chosen set of varia-
bles {a} is insensibly different from that described by the closed,
time-irreversible law (I.1). Higher order corrections will be seen to
correspond to fluctuations and to 'memory effects,' i.e., to effects
whereby & depends not only on the instantaneous value of a but
also on its values at earlier times.

Qur formulation of macroscopic laws will be based on a treat-

ment of the Liouville equation (classical or quantal) for the system,
which is assumed to be initially prepared by measurement of a set of
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macroscopic variables {a}. The treatment proceeds in four principal
stages. Firstly, an exact, generalised master equation, 1),2) gov-
verning the evolution of the macroscopic variables, is derived from
the quantum-mechanical Liouville equation. This master equation
takes the form of an integro-differential equation for a well-defined
distribution function, P, governing the macroscopic variables:

dPy

t
=2 L drG(tP, 1.2)

where G is an operator on P. The form of G depends on the micro-
structure of the system and on the variables {a}. It is important to
note that this master equation is, of itself, too general to provide
any answer to our above questions (i)-(iii). This may be seen from
the fact that the equation is derived for an arbitrary set of variables,
{a}, which may or may not conform to a closed causal law, and
which might not even be macroscopic.

The second stage is to introduce a characterisations) of the
macroscopic variables in terms of general properties that these vari-
ables possess as a result of their many-particle structures. This
characterisation will be expressed in terms of the very large dimen-
sionless size parameter, I, referred to above. Specifically, it will
be designed to evince the I'-dependence of the variables pertinent to
the master equation; in this connection it is important to realise that
the kernel G contains microscopic as well as macroscopic variables.
In view of the tremendous complexity of many-body problems, our
formulation of the 'essential' characteristics of macroscopic and
other variables rests inevitably on a number of assumptions, which
are discussed fully in Section VI.

The third stage of the theory3) is to incorporate these charac-
teristic properties of the variables into our formulation of the kernel
G. In this way, we are able to obtain conditions on these variables
for which the kernel G(t) decays in such a way that 'memory effects'
are eliminated from the master equation, to lowest order in T~ -,
Under these conditions, which depend crucially on the many-particle
structures of the macroscopic variables, the master equation reduces
to a Markoffian form

dp -
-t GP: G=J' dt G(t). (I.3)
o]

In general, this Markoffian equation describes an irreversible ap-
proach to equilibrium.

The final stage of the theory is to analyse the Markoffian
master equation7 arid thereby to obtain conditions on G, and thus on
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negligible at all times—i.e., under which the dispersion is of the
order of an appropriately low power of I'. Under these conditions the
master equation yields a closed, causal law of the form (I.1). The
functions ;. which appear in this law, are expressed in terms of
microscopic properties of the system.

II. Microstates and Macrostates

We shall be concerned with a description of an arbitrary sys-
tem composed of a very large number of particles. It will be assumed
that, in the situations considered, only a relatively few of the varia-
bles of the system are subjected to measurement. Consequently, the
values of the complete set of compatible microscopic variables can
be specified only in statistical terms. This means that we must de-
scribe the microscopic properties of the system in terms of mixed,
rather than pure states. In other words, we must represent the micro-
state of a classical system by the Liouville distribution function for
the full set of its coordinates and momenta; and that of a quantal sys-
tem by its density matrix. We shall use a formalism, constructed by
Emchz) for quantal systems, in which the mixed states are represented
by vectors in an appropriate Hilbert space—needless to say, this is
not the Hilbert space of the pure states, but an associated space. I
shall find it useful, for pedagogical reasons, to present not only the
quantal formalism but also its classical analogue in which a mixed
state is likewise represented by a vector in an appropriate Hilbert
space. This will serve the purpose of demonstrating that the classi-
cal and quantal statistical theories possess the same mathematical
structure—the essential difference between the two theories lies in
their descriptions of pure states.

Classical Case.

Denote the full set of Cartesian coordinates and momenta for
the particles of the system by x,p. The space of this set of continu-
ous varlables is the phase space, X, for the system. A pure micro-
state corresponds to a point in ¥, while a mixed one is represented
by a single-valued function on £ —namely, the Liouville distribution
function f. It will be assumed that this function is real, non-
negative, square-integrable over ¥ so that

J‘fdxdp =1,
z

Accordingly the microstates, which we shall henceforth take to be
mixed, correspond to elements f of a Hilbert space ¢, defined as the
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space of complex* square-integrable functions, g, on ¥, with inner
products defined by

(@..9,) = | dxdpg*t,plg, 6x,p). (1. 1)
P el 1 2
x

We shall refer to £ as the Liouville space.
Corresponding to each state f, there is a time reversed state
Jf, the time-reversal operator 3 being defined by

Jgx.,p) = gkx,-p). (II.2)

In order to define the macrostates of the system we introduce
a set of macroscopic variables (observables)

Alx,p) = (Al(x,p),. .. ,Am(x,p)).

These are single-valued functions, defined everywhere on Z. In
general they will represent extensive variables—but this property
will not be invoked until a later stage of the theory (Section VI). It
will be assumed that each Ay is either an odd or an even function of
the momenta p, i.e.,

Aj {x,-p) = TjAJ. x.p) (11.3)

where each Ty is +1. This assumption is satisfied for the macro-
scopic variables of usual interest, e.g., masses, energies, mass
currents, energy currents in subvolumes of a system.

We idealise a macroscopic measurement of Aj , say, as one
which establishes that the value of that variable lies in a well-
defined interval, (aj w%n‘.\j, ay +é_bj}. say (cf. van Kampensl). Bvi-
dently, A; represents the experimental error in the measurement of
A:. In t)rc]ler to obtain a geometrical representation of the measure-
ment, we divide the phase space I into cells CY/, each one of
which is bounded by 2m hypersurfaces

Aj =aj(r):t%Aj, for j=1,...,m;

the values of aj(r), for given j, being spaced at intervals Aj . Hence
C carresponds to the set of intervals

1'The Hilbert space needs to include complex functions on ¥ in order
to be large enough for a full description of our operations.
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o) _ () -
(aj %Aj, 3, +%Aj>, for §=1,...,m.

Consequently, a measurement of the variables {A} may be idealised
as one that determines which of the cells CV/ contains the phase
point for the system

For notational convenience we shall henceforth denote the
phase cells by C(a) rather than ck), where

a=fa;,....ap)= @®, .5, (11.4)

The space of the discrete variables a will be referred to as the mac-
rospace and denoted by M.

As a macromeasurement determines Cfa) preciiely, it consti-
tutes an exact measurement of a set of variables X= (Al R
defined so that A takes the value a throughout C(). Thus

Eix,p) = ) aDix,p) (11.5)
a

where Df(a) is the characteristic function for C(@); i.e., it is unity if
the phase point lies in C(a), and is otherwise zero. We shall hence-
forth refer to A, rather than A, as the macroscopic observables,
since it is the former set of variables that are precisely measg\gable :
at least in our idealisation. It may be seen that the value of A at
any phase point approximates to that of A, within an accuracy
A=(A1, ..., 0p).

It follows from our definition of the Liouville space and of
D(a) that this latter function (on %) is an element of ¢. It also fol-
lows from Eq. (II.3) and our definition of D(a) that

Da;x, -p) = D@";x, p) (11.6)
with
a’ = (rqag,. ., m 8, ). (I1.7)
Hence, by Eq. (II.2),
ID@) = DET). (11.8)

The probability that R takes the value a, when the microstate
is f, is given by
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P@) = j £6c,p)dx dp= (D), 1), (1r.9)
C)
This function P, on M, is therefore the probability distribution for
the macroscopic observables. We shall henceforth represent the
macrostate by this function. It follows then from Egs. (II.8) and

(11.9) that the macrostate which corresponds to the time-reversed
microstate Jf is given by

(D@), Jf) = (ID@R),.f)= DET).{) =PE". (11.10)

Thus we shall henceforth refer to P(a”) as the time-reversed macro-
state.

As macroscopic measurements identify phase cells rather than
points, the properties of the system pertinent to these measurements
are naturally expressed in terms of a coarse-gralning operator (on ¢ )
whose application to g serves to replace the value of that function
at a phase point by the average of the function over the cell con-
taining the point. Thus the coarse-graining operator f is defined by

Pgx,p) =z D(a;x,p)y g(x,p)/w(a) (1I.11)
a Cfa)

where W{a) is the volume of C(a). This definition is equivalent to

Py =z D) (D(a),g)/W(a). (11.12)

a
It is readily seen that P is a projection operator, i.e.,
P =P = P, (I1.13)

It follows now from Eqs. (II.9) and (II.12) that the applica-
tion of f to f yields

Pf =z D) P(a)/W(a). (11.14)

a

Since, by the definition of D(a), the inner product (D{a), D@")) is
equal to W(a)6,4:, it follows from Eq. (II.14) that

(D(@@), Pf) = Pla). (11.15)

Consequently, by Eqs. (II.14), (I1I.15), P is in one-to-one
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correspondence with f; and therefore the macrostate can be repre-
sented equivalently by P or Pf, Further, it follows from Eqs. (II.8),
(II.10) and (II.14) that the application of # to the time-reversed mic-
rostate yields

- _ D)e@") _ DE")P(a
PIf = IPf= z S - z _(_l_(_lw(a) (I1.16)
a a
and hence
(D(a), P3f) = (D(@), 3P£) = P(a"). (I1.17)

Consequently the time-reversed macrostate P(aT) is in one-to-~one
correspondence with IRf=R Jf; and therefore the macrostate may be
equivalently represented by P(a") or IPf=PIf,

Quantal Case.

In quantum mechanics, the pure states of a system are repre-
sented by vectors, {, of a Hilbert space $. These vectors corre~
spond to wave-functions, § (x), of the configuration coordinates x
and, if necessary, the spins, of the particles of the system.

The mixed states are represented by operators (density ma-
trices) on ©. These operators are Hermitian, non-negative and
possess the property that

TrfzS rf = 1. (11.18)

Consequently, the states f may be represented as vectors in a
second Hilbert space, ¢, whose elements are the operators g,
which act on % and for which Trg (g¥g) is finite. Inner products in
Q@ are defined by

(9,.9,) = Tr?)(gfgz). (i1.19)

We shall refer to g as the Liouville space, as in the classical case.
The formal equivalence between our descriptions of microstates f,
for the classical and quantal cases, is now self-evident.

The time-reversed states may be formulated according to the
Wigner8) prescription. Thus as the elements of ¢ correspond to
operators on §, the state f transforms under time-reversal to Jf,

where

-1
g = TgT (I1.20)

and T(=T'1) is the time-reversal operator (on §), defined by
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Ty (%) = ¢ (). (I1.21)

It is a simple matter to include spin in this prescription, if neces-
sary.

The macrostates are defined analogously to the classical case.
Thus, we start by introducing a set of macroscopic observables {A},
operators on $. We then idealise a macroscopic measurement as one
that specifies the value of {A} to limited accuracy, but which deter-
mines the value of an associated set {A} both precisely and simul-
taneously. It follows from the basic principles of quantum theory
that {&} must form an intercommuting set of operators on §, even
though the primitive set {A} might not do so. As in the classical
case, [A}] is so defined that a measurement of this set specifies [A]}
to within A= (A1 Ao ,am) . This can be arranged (cf. von Neumann ,4)
van Kampens)) provided that the quantities A exceed the Heisenberg
uncertainties involved in simultaneous specifications of {A}.

Thus, as in the classical case, we represent the macroscopic
observables {&} as possessing simultaneous eigenvalues

fa} = @y...ap),

where the values taken by aj, say, are spaced at intervals 4j. The
subspace of ©, spanned by the eigenvectors of { A} with eigenvalue
{a}, will be denoted by C(a). This subspace corresponds to a phase
cell of classical statistics, and will sometimes be called by the
same name. Denoting the projection operator for C(@@) by Df@a), it
follows that

1 = z aD(@), (Ir.22)
a

in precise analogy to the classical case.
The probability that the set {A} takes the value {a} is given
by

P(a) = Trb(D(a)f) '

P@@) = (D@).H) (11.23)

as in the classical case. We again designate the macrostate by this
function P(a)—also we refer to the space, M, of the variables {a} as
the macrospace.

Further properties of the quantal description follow by analogy
with the classical case. Thus, if each of the macroscopic variables



298 G. L. SEWELL

Aj is either odd or even with respect to time-reversals. Then, by
analogy with (II.10), we find that the time-reversed macrostate is
given by

P@") = (D), I9), (11.24)

provided that the phase cells are suitably chosen. Also, by analogy
with Eq. (II.12), we define the coarse-graining operator P by

Pg = ) De) (D(a),g)/w@), (I1. 25)
with :
W(a) = Trg (D@)) - (11.26)
Hence, again we have
Pf =) D@a)Pl)/Wa) (11.27)
and
(DR, Pf) = Pla). (11.28)

We also have again that the time-reversed macrostate can be repre-
sented by P@") or, equivalently, by

P3f = JPf. (I1.29)

III. The Irreversibility Problem and Initial States

We shall formally demonstrate that the principle of micro-
scopic reversibility forbids the macrostate to evolve according to a
closed law independently of the initial microstate.

We first note that the time-dependent microstate, f;, evolves
according to the Liouville equation

L R 0 (11.1)
dt t :

where

i{H, }pp (classical)

&= [H, ]_ (quantal)

\
L (11 2)
)

Thus the evolution of the microstate from f, at t=0 to ft at time t
is given by
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f =y f (111. 3)

where ut=e‘i‘£t is the unitary operatorT generated by £.

The essential content of the principle of microscopic reversi-
bility can be stated as follows: If the microstate evolves from fj to
f; in time t, then a state which is initially fJ= 3£ will evolve to
fy = 3f, in the same time. Thus, corresponding to Eq. (III.3), we
have

ﬂ’fo = utﬂ’ft. (II1.4)
This equation can readily be derived from Eq. (III.3) for the micro-
scopic reversibility does apply.
We shall now show that the time-dependent macrostate,
which will be represented by #f,, cannot evolve according to a
closed, non-reversible law

Pft = u,tPfo (I11.5)

where the operator Et is independent of f,. For if we assume the
validity of such a law, for the moment, we see from Eqs. (III.3) and
(I11.5) that

Puf =uef (I111.6)
for all fo‘ Hence

Putf = utP f (111.7)

and thus, replacing f by ZIft,

Pu,tth . utP 3’ft. (I11.8)

+ Strictly speaking, although Ut can be formulated as a bona fide
operator on ¢, its generator £ does not act on the whole Liouville
space—at least it does not do so in the classical case. This can be
seen from the fact that the application of £ to certain elements of @,
namely, square-integrable but discontinuous functions, leads to di-
vergences. This is irrelevant to the theory of the present section, as
this is formulated in terms of Ut. As will be shown in Section IV, £
can be formulated as an operator on @ in the quantal case, provided
that the system is insulated so that its energy is continued to a re-
stricted range.
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It follows from this equation and Eq. (III.4) that

P'J’fo =uthrft, (I11.9)

i.e., by Eq. (11,29},

IPf =U. JPf (I11.10)
e} t 0

which means simply that the macroscopic law given by Eq. (III.5)
must be time-reversible.

Hence a statistical-mechanical theory of irreversibility must
limit itself to a restricted class of initial microstates f,. It must
have, then, some prescription for formulating f5. The prescription
could be designed to correspond, for example, to situations where
the system is prepared in a specified manner; and could thus purport
to give a 'realistic' formulation of the initial microstate. One thing
which emerges from our above analysis is that, if f, is a 'realistic’
initial state that leads to an irreversible evolution of the macrostate,
then Jfy {to> 0) is not.

IV. Generalised Master Equation

We shall employ the projective method of Zwanzigl) and
Emchz) to derive a go-called generalised master equation for the
evolution of the macrostate, Py, of a closed system that is initially
prepared by measurement of A, This method constitutes an exact
treatment of the microscopic equations of motion for the system,
together with a statistical assumption concerning the initial state. It
is important to note that the method is free from any further statisti-
cal assumptions (e.g., Boltzmann's stosszahlansatz) concerning the
actual dynamics of the system—this is a distinct merit of the method
since assumptions of the latter type can conflict with the microscopic
dynamical laws.

Our formulation of the theory will henceforth be restricted, for
the sake of definiteness, to quantal systems. It will be assumed
that the system under consideration is thermally insulated, so that
its states are confined to an energy shell (E, E+AE). The Hamil-
tonian governing the dynamics of the system can them be represented
as a bounded operator according to the following prescription: —wWe
first denote the full Hamiltonian for the system by H®, and the
Hilbert space of its eigenstates by $°. We then define $ as the
subspace of §° corresponding to the energy shell (E, E+AE). Thus,
if II is the projection operator from $° to ©, then the dynamics of the
system, when confined to this shell, will be governed by the trun-
cated Hamiltonian IH®I=H. This is a bounded operator on £, with
eigenvalues in the range (E, E+AE). The boundedness of H is
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important, since it ensures that the corresponding Liouville operator,
&£, is also bounded. This enables us to carry out our operations in-
volving £ with full mathematical justification.

We note also that & and, for that matter, other observables of
the system, may likewlse be represented by operators on 9.

The system is assumed to be initially prepared by measure-
ment of {A}. In order to formulate the initial microstate, f,, we as-
sume that the macromeasurement does not discriminate between the
(pure) state vectors within a cell. Thus we assume equal probabili-
ties and random phases for the vectors within each cell. Hence we
obtain

= z D(a)Po(a)/W(a). (v.1)
a

This formulation of the initial state constitutes the basic statistical
assumption of the theory. It should be emphasised that we are not
claiming this to be the only possible form for f,, since other initial
preparations are quite conceivable—e.g., where some additional ob-
servables are also measured.

The microstate evolves according to the quantum-mechanical
Liouville equation

o . iLf, (1w.2)
dt
where
£ =[H, ] (1v.3)

in units where h=1.

As mentioned above, the boundedness of H ensures that £ is
a bounded operator on 2, as is necessary for the operations that will
be considered.,

We now use the projective method to obtain the master equa-
tion for the macrostate. Thus we apply the operators P, (I-#) to
the Liouville equation and thereby obtain a pair of coupled equations
for Pft* the part of f; representing the macrostate, and (I- P)i;, the
complementary part. Thus

]
o

d
4 P . -
(——dt +1P£P> £+ IPE(1-P)E, (Iv.4)

and

|
o

<—+11 PIL(-P))I-P)E, + LI-PIE(PE,) (1v.5)
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where we have used the projective property 2=, Equation (1v.5)
may be formally integrated to yield

t
(I-P)f, = u(t)(I—P)fo —ij dt' ut-t") (I-P)E P £ (1v.6)
o]
where
vt) = exp{ —1(I—P)£(I—P)t}. v.7)

We now insert the formula (IV.6) for (I- P)f; into Eq. (IV.4) and
thereby obtain the following equation for #f;, the 'relevant' part of
ft: £
d )
(e pr+ [are s vh-e)a-9)2 (P5,) = -1PE VO-PE,

o
{1v.8)

Moreover, it follows from our formulae (II.27), (IV.3) and (IV.1) for
®, £ and f, that both P £f and (I-P)f, vanish. Hence, Eq. (iV.8)
reduces to

5 t

., ' -t! = =

It Pft+f dt'PL u(t-t') (I P)SPft, 0. (1v.9)

0]

On expressing Pf;in terms of Py, by means of Eq. (II.27), this last
equation takes the form

t

Z\]/Dv(aa) c?_tpt(a) ‘Z j’dt'G(afa'lt-t')Pt.(a')} =0 (Iv.10)
a a' ‘o
with
Gla.a'|t) = -(D(a),SU(t)(I-P)ED(a'))/W(a-)' (v.11)

The master equation for P; is now obtained by taking the inner prod-
uct of Eq. (IV.10) with D(a):

t
dp@ =Y Ldt'G(a,a'It—t‘)Pt,(a'); (1v.12)

a'

or, as we shall sometimes write it,
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t t
= I at' G(t-t)P,, = J at' GE)®, _, (1v.13)
Io) (o]

where G is the matrix [ G(a,a')], and corresponds to an operator
acting on functions on M.

We may express the master equation (IV.12) in a slightly
more convenient form by noting that, as the set of cells C(a) com-
prises the space &,

2 D@) = I;

a

and therefore, by Eq. (IV.11),

z Gla,a'lt) =(1, £U(t)(I—P)£D(a‘)>/W(a')
a

(U(t)(I—P)SD(a'), £I>7W(a‘)

= 0,

since £1 = 0. Hence the master equation (IV.12) may be written in
the gain-loss form
dPt(a)
dt

t
= E L dt'[G(a,a'|t—t')Pt.(a') - G(a',alt—t')Pt,(a):l.
: (Iv.14)

Finally, we note that, by Eq. (IV.11), the properties of the
kernel G depend not only on the microstructure of the system, as rep-
resented by the Liouville operator £, but also on the macroscopic ob-
servables and the construction of the phase cells, as represented by
D(a) and £. The central problem now is to delineate those properties
of the macroscopic observables which can result in a kernel G that
generates a Markoffian, causal law. Clearly, such properties have
to be considered in relation to the microstructure of the system, as
represented by H or £.

V. The Interaction Representation

In order to express the properties of G in terms of the micro-
scopic properties of the system, we start by splitting H into two
parts, Hgy and V, where the matrix elements of H, are all intracellu-
lar and those of V are intercellular. Thus

H = Hy+V (v.1)
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with
H, = Z D(a) HD(a) v.2)
a
and
v= ) Via.a) v.3)
af#a’
where
V(@,a') = D@)HD('). (vV.4)

As V is the part of H governing intercellular transitions, it repre-
sents the interaction that engenders changes in the macrostate,

Corresponding to Eq. (V.1), we split the Liouville operator
into two parts

£=4%£,+8 (v.5)
where
£o =[Hy, 1 (v.6)
and
8=1(v, ] v.7)

It follows from Eqs. {II.22), (1I.27), (Iv.3), (v.2) and (V.6) that &,
possesses the properties

£,D@)=0; £A =0 (v.8)
D), £,9) = (g, £,DEN* =0 (v.9)
PE =L,P =0, (v.10)

Consequently, by Eqs. (IV.7) and (V.10) the propagator U(t), that
occurs in the kernel of the master equation, may be written in the
form

U(t) = exp -ilf, +8))t (v.11)
with

8, = (1-)s (1-P). v.12)
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Using a well-known formula ,9) we may expand this equation for U{t)
in the form

& t 5] th-1
u(t) = Uo(t)<1 +z )" Jdtl J dtz--.f dtnsl(tl)...sl(tnD
o o] o]

n=1
(v.13)
where
Uglt) = o Fot W.14)
and
8, = u (-t u (.
i.e., by Egs. (v.10),
Sl(t) = (I-P)8(t) (1-9) (v.15)
with
8(t) = u (-t) suy(t). (v.16)
Hence, by Egs. (V.13) and (V.15),
@ t th-1
) = u, @ 1+) (-1)" jdtl...f dt, (1-P )81t ) (1- P8 (t,). .
n=1 o o
(-P)8 ) (1-P)]. (v.17)

On substituting this formula into Eq. (IV.17) and using Eq. (V.9), we
obtain the following formula for the kernel G:

i t th-1
- _nn
Gl,a'lt) = Gyla,a'|t) + z (-1) jdtl...j dtnGn(t,tl,... ,tn)
n=1 [e] o]

{(v.18)
where

Gola.a'|t) = -(Dla), 8u, () -P) 8D@") )/ W(a') (v.19)

and
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1 p—
Gpl.a'lt ity ..,t) =

-(Dla), 8,0 1-P) 8())(1- P) 8 (t,) ... (1-P) 8(t, 1= ) 8D(a' )/ Wia')..
(v.20)

We aim to express these components of G in terms of corre-
lation functions of the type used extensively in many-body theory.
For this purpose we shall now make a slight digression and introduce
the concept of a reference system, So' whose Hamiltonian is Hy.
Our reason for doing this is that we will be able to express the com-
ponents Gp as time-correlations for fluctuations of Heisenberg
operators of S, about equilibrium states of that system. This will be
useful as these are precisely the kind of correlations studied in
many-body theory; and so we hope to be able to draw on some results
of general character that have been obtained from studies of such
correlations.

‘We shall now express some relevant properties of Heisenberg
operators for S, and of correlation functions for that system, in
terms of the Liouville space formalism. Thus, by Egs. (V.6) and
(V.14), we may express Heisenberg operators for So in the two
equivalent forms
e1Hot o iHnt )

gt) = u(-t)g = (v.21)

o]

Hence, by Egs. (V.7), (V.14), (V.16) and (V.21), the interaction
Liouville operator $(t) may be expressed in terms of the Heisenberg
operator V(t) (for S,) by the relation

8@ = [vk), J1. (v.22)

It follows from Egs. (V.14), (V.21) and (V.22) that

(6,0, 9,) = (g,. uyl)a,) (v.23)

and

Cgl, S(t)ga E(S(t)gl,ga. (v.24)

In order to formulate correlations for equilibrigvm states in S
we note that, in view of Eqs. (V.8), the observables A are constants
of the motion and the states Dfa)/Wf(a) are equilibrium states for S,
the latter states corresponding to microcanonical distributions for
which A takes the values a. Averages over these distributions will
be denoted by
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gh) = (g, = (DR),9)/Wh). (v.25)

Likewise, correlation functions for these microcanonical states will
be denoted by

¥ _(gyi9y) = <(gf-§f(a)>(gz-§2(a)>>a. (v.26)

It follows from Eqs. (II.25), (V.25) and (V.26) that these correlation
functions are related to matrix elements of (I-%), between elements
of ¢, by the equation

(gl g (I—P)gz> = ((I—-P)gl ,gz> = EWa@anl:QZD = @@l;gz) say.
a
V.27)

Thus the inner product ¢ 1is determined by the correlations between
fluctuations of gy, gp about their mean values for the various equi-
librium states, Df@)/W), of Sq.

Returning now to the properties of the kernel, G, we see from
Egs. (V.24) and (V.27) that its components G, may be expressed in
terms of correlation functions for S, as follows:

Gola,a'lt) = - &(Fa,t); Fl@"))/Wk") (v.28)
and

Gpla,a'ltity, oo, ty)

= -a(Flt, t et 0 FO T ,tn,oD/w(a'),

(v.29)
where r may take any value from 0 to n,
F@) = 8Df@) = Z (via',a) - vi,a'), (v.30)
al
Fla,t) = F°@,t) = U (-)F@) = S()D() (v.31)

is the corresponding Helsenberg operator, and
(j) i ' v
F -Qaltl, ,th)

for any set (t},... ,t;) ;

8(t{) 1~ M8 (ty) - 1-P)8 () T-P) Fla, 1y )
(v.32)
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It is evident from Eqs. (V.30) and (V.32) that F(a) corresponds
to a ‘force’ leading to transitions between _C(a) and other cells and
that F(j) corresponds to a 'higher order force.' Thus, Egs. (V.28)and
(V.29) serve to express the components of G in terms of time-
correlations between such forces. Other equivalent expressions for
these components are

Gola,a'|t) —<F(1)(a|o,t)>;.
and (v.33)

1 = - (n+1) had
Gn(a,a |t,t1,...,tn) (F (a|0,tn,...,t1,t)>a.-

It will be useful for us to express Gp In terms of correlations
between simple products of Heisenberg operators, since many-body
theory is generally formulated in terms of such correlations. Thus we
note that, by Eqs. (II.25) and (v.4), PV(a,a't) = 0 and thus that G,
may be expressed in the equivalent forms

Go(a,a'lt) = 2 Re(V(a’ ,alt)V(a,a'))a, =2 Re Qa,<v(a,a'|t);v(a',a)>.

(V.34)

In considering the form of G, for n>1, we note that, by Eq. (vV.32),
the 'force' FU)(a|t g ,tj+1) is a sum of contributions

MPAP oA PA L FaT), (v.35)

each A being a product of operators §(t). It follows from Eq. (II.25)
that this expression (V.35) is a sum of terms

k+1) X (g-number)

8{ty) ... sltp)F@" ¥
where AtJ'l /.t belong to Gl g T ,Tj+1). Hence, by Egs. (V.3),
(v.22) and (v.30), F0) is a sum of terms, each being a product of a
c-number and an operator Vg, {t'l}. . VR (ti]; where each K, denotes
a pair of a's, say @',a'), and Vg (t) is the Helsenberg operator
v(al,a't|t). Thus, by Eq. (vV.29), E;n is a sum of terms containing,
as factors, correlation functions

8 (Vg (]) -V, (): Vig () = Vit (&) (v.36)

where the times t', t" belong to the ranges (t;,t) and (o, ty4y), re-
spectively.
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VI. Characterisation of Macroscopic Observables

Up to this point our formalism contains no reference to the
fact that the observables A are macroscopic—only in verbal state-
ments have we asserted that they are so. We now aim to formulate
the characteristic properties of these observables, and also of the
interaction V, that stem specifically from the many-particle structure
of the system and the macroscopicality of A. This will entail a num-
ber of assumptions, of general character, that are designed to corre-
spond to properties of systems composed of many-particles. The as-
sumptions are formulated so as to be self-consistent; and some of
them are readily justified for particular models. However, it is clear
that a deeper justification for the full set of assumptions, other than
by empirical means, would have to rest on the study of models that
are both fully tractable and non-trivial. iy

We start by assuming that the observables A correspond to
extensive variables. Thus, each of these variables may be expressed
as a product of an intensive variable and a dimensionless size pa-
rameter: For example, if the extensive variable were the energy of a
subvolume, v, of crystal, then the size parameter could be chosen as
the number of atoms in v, and the intensive variable would then be
the energy per atom of that subvolume. Tt will be assumed , for sim-
plicity, that the size parameters for the observables A can be sulta-
bly chosen to have the same value, T,

The introduction of this parameter, which is always enor-
mously large by comparison with unity, will serve the crucial purpose
of providing a natural ratio between the scales appropriate to macro-
scopic and microscopic descriptions of the system. It will be our
aim, from now on, to classify the quantities relevant to the theory in
terms of their I'-dependence. In this way, we aim to obtain condi-
tions under which the macroscopic variables follow a Markoffian,
causal law, to lowest order in r-1,

Our next step is to introduce a set of parameters @ = (@g)00es®pm)
whose magnitudes are of the order of characteristic (eigen) values of
the intensive variables X/T': for example, if Aj were the energy of a
subvolume, v, of insulating crystal, then a; could be chosen to be
the Debye energy quantum. In general, the parameters o and T'a
provide 'natural’ units for the scales respectively appropriate to the
intensive variables A/ and the extensive variables A.

Next, we introduce a dimensionless 'coarseness' parameter,
A, defined as the ratio of the spacing, Ay, between eigenvalues of
A;, to the microscopic parameter ¢y. For simplicity, it will be as-
sumed that A takes the same value for all the observables A, Con-
sequently, the elgenvalues of A may be expressed as

a = (/\nlal,...,l\nmc,m) (VI.1)
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where the nj's are integers, which we shall sometimes term the cel-
lular quantum numbers. The parameter A is chosen so that its mag-
nitude lies in an intermediate region between I and 1, i.e.,

T>» A> 1, (VI.2)

‘We shall later express A as a suitably chosen positive power of T".
‘We now have three different scales for the specification of X.
These are the macroscopic, cellular and microscopic scales for
which the respective units are T'a, Aa and a. .
It follows from Eq. (VI.1) that the eigenvalues of A, as
specified in ratio to the macroscopic units T'a, are given by the
intensive variables x=(x1,...,xy) where

. B &
X‘1 = l“c,j =3 (VI.3)
and
Q=T/\. (Vv1.4)

It is evident from Eqs. (VI.2)}-(VI.4) that the values of xj are spaced
at extremely small intervals, Q™+, and therefore the intensive varia-
bles x are almost continuous.

The form of the interaction V, as defined by Egs. (V.3) and
(V.4), depends on the construction of the phase cells. Its strength,
corresponding to the state Dfa)/W(a), may be represented by the
dimensionless quantity

2;
Ay =w VD Z, (VI.5)

where w 1s a characteristic energy for a microscopic quantum, e.g.,
a Debye quantum in the case of an insulating crystal. We now make
an assumption which is absolutely essential if the system is to fol-
low smooth macroscopic laws. This assumption is that the relative
change, 6Xa/ka, in A5, due to a small charge, 8x, in x, is of the
order of 6x, up to a factor dependent only on intensive variables.
The significance of this assumption may be seen from the fact that
its alternative would be that 8\ /A5 were of the order I'x, say, or
Ad, . This would mean that an infinitesimal change in the intensive
variables for the macrostate (| 6xj|<< Ij could lead to a change by an
enormous factor (A 3/A 3> 1) in the strength of the interaction
leading to macroscopic changes, which would clearly preclude the
possibility of smootht macroscopic laws.

t For example, if one of the macroscopic variables were the energy of
a subvolume v of crystal, this alternative would mean that an
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It follows from our assumption concerning 6\ a/)‘ . that

Ay = rok) (VI.6)

where ¢ depends on the intensive variables x only, and A is a con-
stant, representing a strength parameter for V. In general, A will
depend on both T' and A. We shall formulate its dependence on
these quantities with the aid of further assumptions that will be made
below.

Our next assumption is that the phase cells are so con-
structed that V possesses a typical property of interactions in many-
particle systems, namely, that it contains only matrix elements be-
tween state vectors that differ from one another by only a few (=0(°))
particles, or quanta. This is another way of saying that V leads to
macros copic changes by elementary processes (e.g., collisions),
each involving only a few quanta. Formally, ¥ it means that V has
only matrix elements between pure states | ) and Q| ), where Q is
a product of a 'few' creation and annihilation operators, C* and C,
for the system—or, more generally, Q could be a sum of such proj(_iucts.
Thus, one cou]d have Q= 01020304, but not a product of, say, I'Z
operators er ,C.

It should be appreciated that this assumption concerning V is
far from innocuous. For, although the primitive interactions between

infinitesimal change in the temperature (or specific energy) of v
could lead to an enormous relative change in the rate of energy trans-
fer between v and the rest of the crystal.

* This assumption can be easily justified in simple cases. Consider,
for example, a system S, composed of parts 81 and Sy, with Hamil-
tonians H; and Hy. Then the Hamiltonian for S is H); +H2 +U, where
U is the interaction between S and Sp. Let the macroscopic ob-
servables be coarse-grained energies for §; and S9. Then the pro-
jection operators, Df{a), for S are direct products of those for the
energy shells of §1, Sg; i.e., D{a)=Di1(E1)® D3(Ep). It follows from
our definition of V that

vV = z D) UD(@").
a'#a
For typical couplings, U contains only matrix elements between
states differing by a few quanta, e.g., |) and c“clkcuc;gm,
where Cj;Cjy are creation and annihiiation aperators for 81; and
C3y, and Cpy, are such operators for . It follows from our formula
expressing V in terms of U and Df(a) that V has also only matrix

elements between states differing by a few quanta, the role of D(a)
being to provide an energy selection rule.
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the particles of a system are generally two-body forces and therefore
have matrix elements only between states differing by a few quanta,
the same will not be true of V unless the cells are suitably con-
structed.

In view of the way the cells were constructed in relation to
the 'fine-grained' observables A, we shall assume’ that state vectors
which differ from one another by a few quanta, in the sense specified
above, belong either to the same cell or to neighbouring cells for
which the values of the respective quantum numbers ny differ by~ 1;
we take the symbol ~ to signify equality up to a factor, or order I'°,
dependent on intensive variables only. Thus, as the matrix elements
of V are intercellular (by definition) and connect only states differing
by few quanta (by assumption), it follows that V has only matrix ele-
ments between states in neighbouring cells (Aan 1).

We now aim to obtain the dependence of A, the strength of V,
on the parameters A and I'. Of course, if we were working with a
tractable model, we would be in a position to evaluate Ay directly
from explicit formulae for V and Df{a). As we are formulating the
theory in general terms, however, we have no explicit formulae for V,
Df(a); and so we shall employ a kinetic argument, based on assump-
tions which lead to a self-consistent theory, in order to obtain the
dependence of A on T’ and A. Thus, as A is the strength of the in-
teraction governing the dynamics of the macrostate, we first relate
to A and T by an elementary kinetic argument based on the assump-
tion (among others) that the macrostate evolves according to a
Markoffian, deterministic law. This leads to the conclusion that A
may be rendered extremely small, equal to a negative power of I', by
constructing the phase cells to be sufficiently large, i.e., by
choosing A large enough. We then show, in Sections VII and VIII,
that for such small A and a suitable choice of macroscopic variables,
the generalised master equation yields a Markoffian, deterministic
law. Thus the whole procedure constitutes a self-consistent theory
of closed dynamical laws for suitable macro-observables.

In order to formulate our elementary kinetic argument, we
introduce parameters representing characteristic times for changes at
the microscopic, cellular and macroscopic levels; by a characteristic

T The essential reason why this should be justified is that A pro-
vides a specification of the fine—-grained observable A; to within
~ fAtt;. Now the difference between the mean values of AJ-, for
states that differ by a few quanta from one another, yill be ~ 9%,
Consequently, the difference between the values of Aj for these
states will lie within ~/\<xj of one another, as A=1. Hence the
states must lie either in the same cell or in neighbouring cells, for
which Anj~ 1.
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time for a process, we mean one that represents its duration up to a

factor dependent only on intensive variables. Thus we choose T—u to
represent the duration of a typical microscopic process (e.g., a col-
lision). This time, an intensive quantity, may be suitably chosen as
the reciprocal of the energy quantum (= frequency, as h=1)w, i.e.,

T, =W . (VI.7)

The parameter representing a characteristic time taken for an inter-
cellular transition will be denoted by T_C. For a Markoffian system in
which such transitions are engendered by V, this time ~ w/{V*) ; (cf.
van Hovel0)), Hence, by Egs. (V.5) and (V.6), we may choose
= 9,~1
T = (W) . (VI.8)
The parameter rep’{’esenting a characteristic time for a macro-
scopic change, ~ Ty, in A will be denoted by Ty;. In order to for-
mulate an expression for 'TM, we invoke van Kampen's5) precept that
macroscopic observables are slowly-varying quantities. We formal-
ise this by assuming that ’l_"M is greater than the microscopic time ?Ll
by a factor which is very large, specifically because of the macro-
scopicality of A, i.e., because of the largeness of I, Accordingly,
we shall assume that T/ T,, is a function of I' which takes large
values when T' is large. For simplicity, we shall state this function
to be a positive power of I', as it may readily be shownf to be in
usual cases of phenomenological laws. Thus we assume

Ty = LY = o lIr%  with q> 0. (VI.9)

Our formulae for the time T enable us to obtain A as a func-
tion of ' and A. For it follows from our definition of Ty that the
mean rate of change of the variables A is ~ 'a/ Tpf. On the other
hand, as V is assumed to cause transitions bgtween neighbouring
cells in time T, this mean rate of change of A is also ~ ha/Tg.
Hence,

TConsider, for example, the escape of gas, through a small hole,
from a container of volume V. The mass, M, of gas in V will (pre-
sumably) change at a rate depending on an intensive variable, namely
the density M/V, and the geometry of the hole, Thus, defining T as
a characteristic number of molecules in V, M~ dM/dt=I‘_1 X an in-
tensive variable. It follows that T_M is proportional to I".
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r
-2 _ la (VI.10)
TM ’I'c

i.e., by Eqs. (VI.8) and (VI.9),
y2 iyt (VI.11)

The requirements of this relation and the inequalities (VI.2)
may be fulfilled by choosing

-r

A =T
e E 1,1+2r—q

and (VI1.12)
Q0 = 1_\q—Zr

with
2r+l1>qg> 2r> 0,

Thus, constructing the cells to be sufficiently large, we can render
A and Q! extremely small, equal to negative powers of I'. It
should be noted, however, that further restrictions on the value of
the index r may be imposed by the Markofficity conditions (cf. dis-
cussion at the end of Section VII).

Finally, we shall use our assumptions to formulate the
I"'-dependence of the kernel G. We shall restrict our consideration to
times t< T—p, the Poincaré recurrence period. In view of the enormity
of Tp: this restriction is only a formal device, irrelevant to any
experimentally observable process.

We see from Section V that G is a functional of V(t) and its
components, V(a ,a' [ t). The properties of these time-dependent in-
teractions may be conveniently expressed in terms of their spectral
functions. Thus we divide the full range of possible energy dif-
ferences between eigenvalues of H, into intervals (e,e + be€), chosen
so that (cf. Reference 10)

-1 —
rrp>> (Ae) ~ > ™ t. (VI.13)
The former inequality ensures that each interval contains an enormous
number of eigenstates of H,. We now resolve V into components,
V. . with matrix elements between eigenstates of H, whose energy
differences lie in the respective intervals (¢, € +A€). Thus, denoting
eigenstates and eigenvalues of Hy by 'l’j: EJ-, we have
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v=Y v (v.14)
€

where
Qv ) =Coy vy ) x, (VI.15)

where X, =1 or 0 according to whether or not (Ej-Ej) lies in
(¢ ,e +Ae). The spectral function o is then defined by

*
o (8)e = (V. V). (V1.16)
By Eqs. (VI.14)-(VI.16), this function satisfies the sum rule

ZGa(e)Ae = (hwcp(x))z. (V1.17)
P

Thus (ca(e)/()\wcp(x))z) is a normalised function (Z ..he= 1),
5

representing the strength of the interaction V corresponding to the
transition energy €. Accordingly, we may formalise our assumption
that V contains matrix elements only between states that differ from
one another by a few quanta, i.e., by energies ~ w, by postulating
that the various moments of this relative strength function are given
by appropriate powers of w, apart from I'-independent numerical
factors. Hence

oa(e) =20 € (f/w) (VI.18)

where the function §(s) is dimensionless and contains no
I"~dependence.
Hence, by Egqs. (V.21), (VI.13) and (VI.15),

— 7 iet
@r've (t)¢s> - \wr’ve¢s>e '
It follows from Eqs. (VI.14)-(VI.16) that the spectral function ¢ is
related to the autocorrelation function for V(t) by the formula
Ve =) o ®e ae. (V1.19)
€

Assuming o to be a smooth function of €, we can replace the sum by
an integral in this equation. Thus
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VW = Jde oa(e)eiEt; (V1. 20)
and, consequently, by Eq. (VI.18)
wow, = 00 1w (v1.21)

where the function n(r) is dimensionless and I-independent. It is
important to note that the replacement of the sum, in Eq. (VI.19), by
an integral, in Eq. (VI.20), opens up the possibility that the result-
ant function n decays to zero as t—«. Clearly this possibility has
arisen only through our formal elimination of Poincaré cycles. It
will be assumed that these cycles are similarly eliminated from all
correlation functions relevant to the theory.

In the formula (VI.21) for the autocorrelation function for V(t),
the time t occurs only in ratio to the microscopic time ?“ = w_l :
Consequently, it is natural to express V(t) in terms of the time, T,
for a scale whose unitis w™ ", i.e.,

T = wt. (VI.22)

Likewise it is natural to express V in ratio to a characteristic value,
Aw, of 1ts root mean square. Thus we define a dimensionless reduced
interaction v(t) by

Vi) = rwv(T). (V1. 23)
Correspondingly we define reduced forms of the interaction compo-

nent V(a,a'| t), the 'force' F(a,t) and the Liouville interaction opera-
tor 8(t) by

vi@,a'lt) = (Xw)-lv(a,a'lt) (VI.24)
fa,m) = (w) ! F@,t) (VI.25)

and
str) = ()t sw). (VI.26)

It follows now from Eqgs. (VI.21) and (VI.24) that the autocorrelation
function (v(m)v), is a T -independent function of T, as it was ob-
viously designed to be. This means that v(T) simulates an intensive
variable, at least in the context of its autocorrelation function. We
shall assume that both this interaction and its derivative reduced
operators f(a,t) and 4 (7) behave likewise in the context of the
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various correlation functions in which they appear; the validity of
this assumption will depend on the microstructure of V.

Inserting these assumptions into Egs. (V.32) and (V.33),
we see that the components of the kernel G may be expressed in the
forms

G @.a'lt) = (wly @.a'lm) v1.27)

and

n+2

Gn(a,a'|t,t1, conity) = (w) gn(a,a'|'r Lo T

(v1.28)
where the functions gy are intensiveT variables. Hence, by

Eqg. (v.18), the kernel G may be expressed in terms of the interaction
parameter A and these intensive variables by the equation

Gt = (w)iglra) (v1.29)
where -
g(ra) =) (-10)7g,(r) (VI.30)
o]
and =
T n-1
g, (T) = fodTl...j; dTngn(T,’Tl,...,Tn), for n>0.
(v1.31)

No confusion should result from our use of the symbol gy to refer
both to a function of T and to a functionof 7,...,Ty.

VII. Parametrised Master Equation and Markofficity Conditions

On expressing the kernel G in the parametrised form of
Eg. (VI.29), the master equation (IV.12) becomes

dp; 9 pwt
— =2 wf g(T";A)P dr'. (VII. 1)
dt t-w

(o]

T Here one should not be misled by the dependence of gpona,a'
since, in this context, these symbols are merely labels for the cells
C), c@").
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‘We now express the time-dependence of P on a temporal scale of
which the unit is the cellular time T; this is clearly a 'natural’
scale for the evolution of P. Thus we define the time of this scale
as

o= t/Tg, (VII.2)

i.e., by Eqs. (VI.7) and {VI.8),

o = w)\zt e )\z'r. (VII.3)

Correspondingly we express P; as a function of ¢

Pt = p(o). (VII. 4)
Hence by Egs. (VII.1), (VII.3) and (VII.4), the master equation now
takes the form

2
dplo) _ o/ dr'(r'0)plo -A%r). (VII.5)
do

This is the parametrised master equation in which g and p are ex-
pressed in terms of their respective 'natural' time-scales. The fact
that the units for these scales differ by an enermous factor, A "2, is
crucial to the possibility of Markoffisation.

The problem concerning the reducibility of the master equa-
tion, in an appropriate sense, to Markoffian form is best studied by
the method of Laplace transforms. Thus we define the transforms of
p. g and g, as

o

ply) = j\ do e ¥ p(o) (VII.6)
o]
glz) = f dr e %" g(r) (VII.7)
[o]
and
9,(2) = j ar e g _(r), (VII.8)
o]

the transformation variables y,z corresponding to reciprocal times on
the 0 and T scales, respectively. It follows from these definitions
and Eq. (VI.30) that the transform of the parametrised master equation
is given by
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yo(y) - plo) = g 2y:VB(y) (VII.9)
with

g0 2yn) = ) (10" 5,05, (VI1.10)
o]

We shall be concerned with the evolution of the system as
'time-smoothed' over an interval ~ A, on the o-scale. The duration
of such an interval lies in an intermediate region between the charac-
teristic microscopic and cellular times, 1, and Ty, whose values on
the T-scale are xE and 1, respectively. The time-smoothing over
an interval ~ X may be achieved by treating the transformed master
equation (VII.9) on the basis of an approximation which is valid, to
lowest order in A, when y< A~Ll. Thus we treat the variable Xzy,
which appears in the kernel of the transformed master equation, as
being of first order in A . Hence, as the normalized functions gp(z)
contain no explicit I'~dependence, it follows from Eq. (VII.10} that
the kernel g(A ‘ay;k) reduces, in zero order in A, to the y-independent
quantity g5(0), provided that: (a) the functions gp(z) tend to finite
limits as z-0; and (b) the increment in gy (z), due to a small change
(£X)in z from 0 to 6z, is 0(62). We shall discuss the microscopic
significance of these conditions a little later, following Eq. (VII.17).
For the moment we observe that, if the conditions are fulfilled, the
kernel g 2y;)x) of the transformed master equation may be replaced
by the y-independent quantity

0

I dr gofT). (vi1.11)
o

k = g,(0)

In this case the transformed master equation (VII.9) reduces to
yp(y) - p{0) = Xkply) (VII.12)

which is simply the transform of the Markoffian master equation

ddcc = kp(o) , (VII.13)
l.e.,,
. darxlq} = Z k(a,a")pla'.0), (VII.14)
al

or equivalently (cf. procedure from Eq. (IV.12) to Eq. (Iv.14)),
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dpfa.o) 2 = Y [k(@,a')pa’,0) - k@' a)pla o) |, (VII.15)
al

the matrix k(a',a) being defined in correspondence with Eq. (VII.11):

k(a',a) = JF dar g,@@’,alr), (VIL.16)
[¢]

i.e., by Egs. (vV.34), (VI.24) and (VI.27)

©

ka',a) = 2 Rej dr {v(a,a'|T)v@@"',a) 47 (ViI.17)
o

In general, the Markoffian master equation (VII.15) describes an ir-
reversible law. One can even define a macroscopic erStropy function
which, under this law, will increase monotonically. 1

We see, then, that (a) and (b) constitute sufficient condi-
tions for Markofficity. In order to relate these conditions to micro-
scopic correlations in the system, we first make a change of varia-
bles

gt Ty ) =y Ty, T), for n> 0
with
T T T T ST STy TL L S Th "Tye Ty =T (VILL18)
and )
g, (m) =y ().

Hence, by Egs. (VII.8) and (VII.18),

© - T Tn-1
gn(z) = 5 dr e 5 dTl...‘P dTnYn('r—'rl,'rl—'rz,...,

o o o
Tn_l—Tn,Tn). (VII.19)
This reduces, by the Faltung theorem, to
En(z) = Vn(z,z yeen:2) (n+1) variables z) (VII.20)

where ?n is the multiple Laplace transform, defined by
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100 de j\ dT o ‘[d'ry( 1,...,11;)

1 )
% exp ~(zt'+z. 7.+ ..tz T ).
p = 11 Bt

(zz

(ViI.21)

1t follows from Eq. (VII.20) that the above conditions (a) and (b) will
be fulfilled if the following, slightly stronger ones, are satisfied:
(a') the functions yp{(z,z1....,2pn) tend to finite limits as z, z;..
Zp tend independently to zero; and (b') the increments in y,, corre-
sponding to increments for 0 to 6z, ézj €A) in z, zj, are
0z, ézJ-). Thus (a') and (b') constitute sufficient conditiens for
Markofficity. It is evident from Eq. (VII.21) that these conditions
correspond to the requirement that the functions 'Yn(’l' T 1, o ,TI;)
decay to zero with increase of each of the variables T' Tl 0o ,'rr;
in some characteristic microscopic time, i.e., in a time whose dura-
tion depends only on intensive parameters. By Eqs. (VI.27), (VI.28)
and (VII.18) this decay condition for y, is equivalent to the one that
the function Gp(t,ty,...,t,) decays to zero with each of the temporal
differences (t-t;), (tl—tz) (tp-1-tn) .ty in some characteristic
microscopic time TO, whose ratlo to w~ 1 depends only on intensive
variables. Hence, as the times t,tj,...,tn,0 are arranged in de-
scending order, it follows from Eqs. (vV.28), (v.29) that Gp will de-
cay in this way, and thus the system will become Markoffian,if the
various ‘forces’ FO)(t,...,t) and FP T (t41,...,0) become mutu-
ally uncorrelated, in the microcanonical states D(a)/W(a), whenever
their respective temporal ranges (t,,t) and (0,t.;) become separated
by & T—o 5

In order to interpret these decay conditions in terms of many-
body theory we shall express them in terms of correlations between
Heisenberg operators Vi(t)= V(a,a '|t) for the reference system So
Thus, as G is composed of contributions of the form (V.36), we see
that the above decay conditions are fulfilled if the interaction compo-
nents V. (t) simulate random fcn.eb, in the sense that products
Vki (tl) Vi (t{,) and Vkl(ll) Vkm (tyn) become uncorrelated with
one another, in states D(a]/‘w{ . whenever their respective temporal
ranges are separated by ZTs

As regards the fulfillability of these conditions, we note the
functions (V.36) represent equilibrium correlations between fluctua-
tions of Heisenberg operators for S;. Such correlations between
Heisenberg operators, in equilibrium states of a system, have been
studied extensively in many-body theory;12 where it is found that,
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in a large class of cases, the correlations do decay’r in microscopic
times, corresponding to 'lifetimes' of quasi-particles in the system.
This supports our contention that, in principle, the functions Gy can
decay in accordance with our conditions.

Finally, we recall that the form of V, and therefore that of G,
depends on the construction of the phase cells. Our conclusion,
then, is that the system will be Markoffian if the cells are so con-
structed as to render the interaction components V(a ,a'lt) both weak
(A =I' T« 1) and random, in the sense specified above. This combi-
nation of requirements might impose restrictions on the coarseness
parameter beyond those specified in (VI.12). For example, it might
turn out that such restrictions arise through a dependence of the de-
cay properties of G on the index, r, of the formulae (VI.12).

VIII. Phenomenological Law

We have seen that the procedure from the microscopic to the
cellular level of description of the system has led, subject to speci-
fied conditions, to a statistical law of Markoffian form. The final
stage of the theory will be to proceed from the cellular to the macro-
scopic level and thereby to obtain a phenomenclogical law, together
with a description of fluctuations of the macroscopic variables. In
this way we shall obtain a condition that these fluctuations remain
sufficiently small for the phenomenological law to be regarded as de-
terministic.

The phenomenological law may be extracted from the Markof-~
fian master equation by means of a method due originally to van
Kampen.5 This method, like the one we have used to Markoffise the
master equation, depends on expressing all relevant variables in
suitable units. In order to employ this method, we first express
k{a',a), the transition rate for a jump from Cf(a) to C(a'), in terms of
the value, a, of & in the former cell, and the change, (a'-a), in this
value, due to the jump. Thus

k{a,a'} = T((alAa)
with (VIII. 1)
Aa = a'-a.
On comparing this equation with Eq. (VII.17), we observe two things.
Firstly, as the interaction components v(a,a‘)gngender transitions

only between neighbouring cells, the function k depends on Aa only
through the change An (= Aa/) in the cellular quantum numbers n,

t We should add, though, that except in simple cases, the decay
properties are obtained only by means of certain truncated per-
turbative expansions.
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defined in Eq. (VI.1). Secondly, as microcanonical averages (),

are equal to corresponding canonical averages, expressed in terms of
intensive variables rather than a, the function k depends on a only
via the intensive variables x. Thus we may write

k(a]bsa) = wix|an) (VITI. 2)

where the function w contains no explicit I'-dependence. Expressing
the distribution p in terms of x, rather than a, i.e.,

pla.c) = fx,o), (VIII.3)

it follows from (VIII.1)-(VIII.3) that the master equation (VII.15) now
takes the form

d iy s A 1
Ef(x,o) = z [WGH-En | - an f\x+6n',c> - w(x|An)f(x,0)_\.
An

This equation may be expressed in a more convenient form by noting
that its right-hand side will be unchanged if An is replaced by -An
in the first product wf of the summand. Thus we rewrite the master
equation as

——f(x a) 7[w - %‘Mn} f{ x - %,0) - w(xlAn)f(x,o);] .
(VIII. 4)

For simplicity we shall treat this master equation for the case
of only a single macroscopic variable, other than the energy; i.e.,
for the case of only one intensive variable x. The result will not
differ in any essential way from the one we have obtained elsewheres)
for the general case of several variables. This latter result will be
quoted at the end of this Section.

We shall treat x as a continuous variable in the master equa-
tion (VIII.4), since, as follows from Eq. (VI.3), the spacing between
its eigenvalues is the infinitesimal guantity Q~l. Thus we expand
the right-hand side of the master equation (VIII.4) in a Taylor series:

M Z = rQr :—rr<wr(x)f(x,0)> (VIII.5)
X

where
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w, (x) = Z w(x| An) (an)", (VIII. 6)
n

which is an intensive variable. We now transform from a cellular to
a macroscopic time scale, for which the temporal unit is T_M. The
time on this latter scale is therefore

s = t/’l'_M =ag/. (viiI. 7)

We also make a transformation

x = x(s) +Q %y (VIII. 8)
where x(s) is the mean of x for the distribution f(x,s), and y is
designed to be a suitable reduced variable to represent the fluctua-
tions of x about its mean. Thus, anticipating that the fluctuations
of x have dispersion of order Q'I , we shall treat y as a variable of
order Q° in our treatment of the master equation; and then we shall
obtain a self-consistency condition for the justification of this treat-
ment—the condition will be that for which the analysis leads to the
conclusion that the dispersion in vy is indeed 0(Q°).

On expressing the distribution function in terms of y and s,

f(x,0) = Q%F(y,s) (VIII.9)

2
where the factor Q2 ensures that IF dy=1. It follows from Egs.
(VIII. 7)-(VIII.9) that the master equation (VIII.5) transforms to

— o -
3F % dx(s) dF N rot ar -4
2L - — -1y e = + : :
Sl e - QrLI( VS el +a y)F|. (VL. 10)

We now expand the sum on the right-hand side of this equation in
powers of Q72 . Thus

dF % ~dxl(s) AFN _
3s "\ as 'Wl(’?(s))ayD‘

2p dwylx
%wz&(s))z—z—%v%(;l ga;(yP)+0(Q_%). (VIIr.11)
y

Equating the coefficient of Q%, the leading power of Q, to zero, we
obtain the phenomenological law governing the time-development of X:
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dxls) _ w, (X(s)). (VIII.12)
ds 1
In view of t&his equation, we see that Eq. (VIII.1l) reduces,
in zero order in °<, to the form
2L = 3065 - ms) = P (VIII. 13)
ds oy :
where
1(s) = w,(x(s)) (VIII.14)
and
aw | (s))
m(s) = 3 &6)) (VIII.15)

are intensive variables, of order 0°. Equation (VIII.13) evidently
governs the fluctuations of x about its mean, x(s). This equation
will now be used to obtain the time-dependence of the dispersion of
these fluctuations. Thus, denoting the dispersion of y by

A(s) = fdy yZP(y,s), (VIII.16)

it follows from Eq. (VIII.13) that

d—géﬂ = 2(s) + 2m(s)d (s). (VIII.17)

Tt will be assumed that the initial measurement of A is sufficiently
precise to ensure that A is zero, or at most of order Q°, at s=0.
The question we seek to answer is: Does A(s) subsequently remain
bounded to values of order 0° or does it grow to greater values? If
the answer is affirmative, then the fluctuations in x are always
O(Q_l), which means that the phenomenological law (VIII.13) is (al-
most) a deterministic one. It also means that our treatment of y as
a variable of order Q° is self-consistently justified. On thgvother
hand, if the answer is negative, the macroscopic variables A evolve
according to a stochastic law, as in hydrodynamical turbulence.

In order to answer this question regarding &(s), we first note
that, by Eqs. (VIII.6) and (VIII.12), £ (s) is the second moment of the
transition probability w, and is therefore always positive. It fol-
lows from Eg. (VIII.17) that A(s) will increase indefinitely if m(s) is
positive, but will remain bounded to values <|{’-/2m| if m is nega-
tive. Consequently, the dispersion in y will be D(Qo} at all times
if m is negative. Hence, our condition for macroscopic causality is
that m(s) should be a negative quantity.
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It is interesting to observe that this causality condition is
exactly the same as the condition for stability of the phenomenologi-
cal law given by Eq. (VIII.12). For it follows from this latter equa-
tion and Eq. (VIII.15) that a disturbance 6X(x) in x(s) will evolve
according to the law

ad;s;(s) & e BEEk (VIII.18)

Consequently, the disturbance §xX will be amplified or damped out in
time according to whether m is positive or negative. Therefore, the
condition for stability of the phenomenological law is simply that
m< 0, which 1s the same as the macroscopic causality condition.
Finally, we remark that the form of the phenomenological law,
and the condition for macroscopic causality, for the case of several
variables x are given by the natural g_eneralisation3 of the results
we have obtained for one variable. Thus, reverting to the notation
we have used for a description of several variables, the phenomeno-
logical law corresponds to the m equations

dx;(s) P .
_XEE_ = wf(x(s)), for j=1,...,m (VIII.19)

where

wi ) = 2 wix| n) an, ; (VIII. 20)
n

while the condition for macroscopic causality is the same as that for
the stability of this law. This means that the causality condition
may be investigated by analysis of the stability of the phenomeno-
logical law, as given by the set of ordinary differential equations
(VIII.19), without further reference to the more complicated partial
differential equation from which it was extracted. It should be noted
that Eq. (VIII.20), together with Eqs. (VIII.1), (VIII.2) and (VIII.17),
serves to express the functions wlj, which determine the form of the
phenomenological law, in terms of the microscopic properties of the
system.
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I. Introduction

The object of these lectures is to discuss some quantum fleld
theoretical methods for the density matrices or the distribution func-
tions. Recent progress in the quantum field theoretical methods in
statistical mechanics 1is reflected in the publication of many articles,
review papers, monographs and the lectures at various summer
schools such as Montroll's at Boulder in 1960 or de Dominicis' at les
Houches in 1959.1) While most of them emphasize the evaluation of
partition functions or the energies of many-body systems, it is well-
known that distribution functions also play important roles in the
evaluation of average quantities, spatial correlation and the inten-
sity of scattered electromagnetic waves. In this connection, dia-
gram methods for the distribution functions will be discussed; how-
ever, since there are many distribution functions, attention will be
limited to equilibrium systems.

Roughly speaking, the investigation on the density matrices
and the distribution functions has been developed in three stages.,
In the first ten-year period between 1932 and 1942 the pioneering

T Presented at the THEORETICAL PHYSICS INSTITUTE, University of
Colorado, Summer 1967,
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works by Wigner and Uhlenbeck on quantum systems and by Mayer on
classical systems are to be mentioned.z) In 1940 Husimi3 published
his well-known thesis on the formal structure of the density matrices
and introduced the resolvent solution of the Bloch equation. Con-
cerning a more specific theory, the work by London4) published in
1943 may be cited. In this work London investigated the spatial cor-
relation of particles in a Bose gas in connection with the Bose-
Einstein condensation.

It seems that the most significant achievement in the next ten
year period between 1942 and 1952 was on classical distribution
functions. Needless to mention, we find in this period the important
contributions by Bogolyubov, Kirkwood, Born and Green, Mayer and
others .5

In the last stage, namely since about 1952, quantum field
theoretical methods have been applied to statistical problems. How-
ever, it is surprising that most of the review articles and monographs
did not give credit to the pioneering work by Goldberger and Adams®
published in the Journal of Chemical Physics in 1952. I think that
they were the first to introduce the Feynman propagator technique to
the Bloch equation for the density matrix. Actually, this is the
reason why the year 1952 has been designated as the beginning of the
last stage. However, they did not apply their formalism to specific
problems nor introduce diagrams, although it was clear that one could
introduce Feynman diagrams in a reciprocal temperature and coordi-
nate space.

Thus, it took a few more years until physicists started devel-
oping the new diagrammatic methods in statistical mechanics. It is
very interesting to observe that significant and sudden development
was made almost simultaneously in 1957 by many physicists in dif-
ferent countries, although preceded by important articles by Schwinger,
Brueckner, Watson, Matsubara, Bogolyubov and other Russian col-
leagues.75 For instance, there are the papers by Goldstone and
Hubbard in the Proceedings of Royal Society, the articles by Gell-
Mann and Brueckner, Brueckner and Sawada, Lee, Huang, Yang and
Luttinger, Bardeen, Cooper and Schriefer, et cetera, in the Physical
Review, those by Landau, Galitzkii and Migdal, Beliaev and others
in the Soviet Physics, JETP, and so on.8) As a conseguence, very
rapid development in the methods and techniques resulted. It might
be mentioned that counting from the year 1957 this is the tenth anni-
versary for the new statistical mechanics.

We have now quite a few papers on many subjects. Thus,
let us pick up a few important subjects which will be related to the
present talks.

First, we have an electron gas. Its treatment is of prime im-
portance and connected with the investigation of metals, plasmas and
ionlc solutions. There are important contributions on the evaluation
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of the correlation energy or the equation of state expanded in linked
clusters. Particular mention should be made of the fine work by
Montroll and ward?) who further developed the Goldberger and Adams
formalism to the evaluation of the correlation energy. At the same
time, in a Belgian journal, Fujita, Isihara and Montroll developed a
general linked cluster expansion theory of the distribution func-
tions. 10) This theory is discussed in the next section, while in sub-
sequent sections emphasis will be placed on its applications and
further developments. |

Another important subject of interest is liquid helium. It is
indeed very strange that the nature has provided us with twin ideal
objects of investigation, liquids He? and Hed. These particles are
physicists' particles: Their chemical structures are simple but their
condensed phases are fascinating. They look similar, yet one obeys
Bose statistics and the other Fermi statistics and differs from the
other.

The investigation of superfluidity in liquid He? has made good
strides since Landau introduced intuitively the well-known energy
spectrum.12) It was Bogolyubov who first derived the phonon spec-
trum from a more microscopic theory. 13 However, his treatment as-
sumed that the interactions are weak. Thus, Lee, Huang and Yang14)
considered a hard-sphere Bose gas as an idealized model for liquid
helium.

The treatment of a hard-sphere system is important not only
for liquid helium but also for nuclear matter. Theoretically, it is
significant since the usual perturbation expansion in potentials
breaks. Therefore, modification of the standard many-body theory
based on perturbation is required.

For this purfose, lLee, Huang and Yang introduced the pseudo-
potential method.1 ) This method is based on Introducing a new con-
tinuous potential which is equivalent to the hard-sphere potential if
one uses it in the Schroedinger equation with suitable boundary con-
ditions. Lee and Yang developed another method known as the binary
kernel method. 14) In this method a two-body problem is solved first
and is used in @ many-body problem. In the sense that all the two-
body interactions are taken into consideration, this binary kernel
method is analogous to the t-matrix method developed by Brueckner.

The pseudopotential and the binary kernel methods are dif-
ferent. In practice, however, both require certain approximations.
We shall apply these methods to the evaluation of the distribution
functions and compare the subtle differences.

) The development of the investigation on liquid He?3 has been
remarkable. This liquid was obtained only twenty years ago by the
devoted efforts of Los Alamos people overcoming various difficulties
such as producing low enough temperatures and obtaining the isotope.
There were good reasons for the development, of course. Since the
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particles obey Fermi statistics, one might expect an independent
proof of Sommerfeld's theory of the electronic specific heat, an inde-
pendent confirmation of the essential role of statistics in the transi-
tion in liquid Hed. One could even be ambitious and look for a tran-
sition into a new phase due to formation of Cooper pairs, 5) 1t is not
possible to spend more time here to discuss the details of the re-
search on liquid He3 , but we shall later discuss the spatial distribu-
tion in a hard-sphere Fermi system and its difference from the case of
a Bose gas.

Thus, we have at least three important systems of our concern:
(1) an electron gas, (2) a hard-sphere Bose gas, and (3) a hard-
sphere Fermi gas. For convenience sake, we shall use the units
such that h=1 and 2m=1 in these talks.

II. The Propagator Formalism
We start with the density matrix for an N particle system:

n

(r'o| T =Z¢:(?')e_BH¢ (r), (I1.1)
n

where T is for the N particle coordinates, B =1/kT and {wn(?)} is
an orthonormal complete set of eigenfunctions. The density matrix is
useful in many-body theories since the right hand side of this ex-
pression may be expressed in terms of any orthonormal set of func-
tions and since the Hamiltonian is usually given. On the other hand,
the partition function

_BEn
Z —Z e (I1.2)
n

requires to evaluate the energies Ep solving the Schroedinger equa-
tion. This step is, of course, not necessarily simple.

Once the density matrix is known, one obtains the partition
function by taking the trace

I<?|p[?>d}' =z.. (11.3)
N
The diagonal elements of the density matrix are the probabili-
ties of finding particles in a given configuration r and B=1/kT.
Therefore, the distribution functions will be defined in terms of the
diagonal elements.
We rewrite Eq. (II.1) as follows:

(Flelty =) ¥ 0.y 6.1), (11.4)
n



DENSITY MATRICES 333

-,

where Y(8,r) is defined by

vy@. = e PRy, (11.s)

Formally, this new wave function defined in the coordinate-reciprocal
temperature space satisfies the Bloch equation:

i‘%%ﬂ = -HY. (11.6)

When we take the conjugate complex of this function indicated by the
asterisk, we treat B like a complex quantity.

The form of the right hand sum of Eq. (II.4) reminds us of an
integral equation:

Y @ T) = JK(?B;?B')Yn(B',?')d?'. (I1.7)

Here, it is remarked that the B-integration is not performed in the
right hand side. gt looks a bit strange that one can get B'-independ-
ent function ¥Y(8,r) in the left hand side, but this is due to the arti-
ficial nature of the differential equation (II.6)._. .

The kernel or the propagator function K(rB;r'_B") may be ex-
panded in terms of the eigenfunctions of the integral equation:

K(r8:r'8") = Z ¥ e )Y 6. (11.8)
n

Thus, we may establish the relation

(T]p|7) = K(xB:ir0). (I1.9)
This relation gives a new rule to evaluate the distribution functjons:
we evaluate the total propagation of particles from (0, 1) to (8,r).

The propagator is supposed to satisfy the Green's function
equation corresponding to Eq. (II.6):

“_K.d%ihm(z,l)ﬂ(z-l), (11.10)

where we have used 2 for the set of coordinates (B,?), Thus, in
case the total Hamiltonian is split into two parts:

H = HO+H1, (Ir.11)

we may divide the propagator correspondingly into two parts:
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K = Ko +K; (11.12)

such that K, satisfies

3K,4(2,1)

35 T HoKo = 8(2-1). (I1.13)

Then we find from Eqs. (II.10), (II.11), (II.12) and (II.13) the fol-
lowing integral equation:

K(2,1) = KO(Z, 1) - jKO(Z, 3)H1(3)K(3, 1)d3, (I1.14)

where the numbers represent (?,B) coordinates as before, and the
integration is over the entire volume with respect to T and from 0 to
B concerning B. Thus, assuming that Hj is small, one obtains a
perturbation series:

K(2,1) = KO(Z, 1) - J\KO(Z, 3)H1(3)K0(3,1)d3 + 00, (11.15)

This series determines the propagator. The distribution function of £
particles may be defined by A

N 4y _ -
Py (r) N -1)1Z- {.)'Z K(r B T O)dJL+1 -drN,(II.16)
where
—f, - — -
r SRR PYARENT /S

The definition (II.15) corresponds to the normalization
J' MGt - NN-1)--- -y, (L17)

In many-body theories we find the grand ensemble definition:

y (N)(r) 2N (11.18)
N=t

p, (F4) =

I =

more convenient. Here = is the grand partition function:
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5 =zzNzN. (I1.19)
N
The normalization of p; is then the expectation value:
i AV
ij(r Jart = (N(N-1) -+ (N -L+1). (11.20)

III. Linked Cluster Expansion

The propagator must have the same symmetry property as the
original wavefunction ¥ as one can see from the structure of
Eq. (I1.7). In particular, if Yo is given by the Slater determinant
(or permanent), the corresponding propagator K, will be an N by N
determinant.

Generally, if we expand a determinant of N rows and columns
we get terms composed of N elements by cyclic permutation of parti-
cles. When 4 particles form a closed cycle in such terms, we say
that they form an 4 -toron. We expect torons of all order in the ex-
pansion in accordance with splitting of an integer N into sub-groups:

N = z Lm, (I1r.1)
1

where m, 1s the number of £ -torons.

It is remarked that K, in the determinant-form appears only
once in the perturbation series (II.15). Although we have used the
same notation, Ko(3 , 1) in the second term, for instance, must be
the diagonal term of the determinant. This is simply because the
variable 2 is supposed to carry the symmetry property of the wave~-
function.

For this reason, the right hand side members of Eq. (II.15) are
obtained by connecting the torons from the first propagators in all
possible ways. The resulting diagrams are, however, not necessarily
connected because Hj is generally a sum of pair-interactions. So,
the right hand side may be regrouped in terms of the number of parti-
cles in connected graphs. We then observe that the summation over
N in Eq. (II.18) removes the restriction which arises from a constant
N. Thus, in the grand ensemble we are able to discuss the evalua-
tion of the distribution functions only in terms of connected graphs,
forgetting from which determinant they have been brought about.

Suppose now we take the steps in accordance with Eqs. (II.3)
and (II.9). In the integration process all the particles are treated
equally, and the result of integration must be constant. It is then
natural to introduce the constants by which arise from the terms
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corresponding to connected graphs of 4 particles. The by might ap-
pear my times. We expect

— (111.2)

where the factor my in the denominator is due to the splitting of an
integer N as in Eq. (1II.1) and 1/N attached to the determinant K.
Thus, the grand partition function of Eq. (II.19) is given by

ms=$é%, (I11.3)
2

the so-called linked cluster expansion.

Let us now consider to determine the pair distribution . function
92(1 rz} in a similar cluster expansion form p?(rl T )drldrz is the
probabj_lity of finding two particles "1 and r2 in the vnlume element
drldrz at ("1 ,rz) ‘We are now going to distinguish the two particles
from the rest of the particles. Correspondingly, all the connected
graphs are classified as follows:

Figure 1. Three possible types of dlagram.
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1) Graphs which are independent of 1 and 2. These con-
tribute terms such as ly appeared in Eq. (111.2), and altogether com~
pensate = in the denominator of Eq. (II.18).

2) Graphs which include either 1 or 2. These contribute
terms such as JLbL/V since all the integrands depend on the differ-
ence of coordinates and the integration over 1 or 2 must bring by .
The factor £ is necessary since there are £ possible positions for
1 (or 2) in the 4 connected graphs. Altogether, the graphs contrib-
ute nZ to the pair distribution function. This is easy to see because
n 1s the probability to find a particle in a uniform random mixture and
because from Eq. (III.3)

ELbLz . (I11. 4)
h

3) Graphs which include both 1 and 2. The corresponding
contribution will be of the form by (] ,ry). Here by (f1,F5) may be
interpreted as the probability to find the particles 1 and 2 in con-
nected graphs of £ particles. Since the probability of collecting £
particles in an interacting system may be given by Z , we arrive at
ZLb(?l ,?2) .

Consideration of these three contributions in the integrations
of Eq. (II.16) gives

pz(rl,rz) = n" + Lz b)(l(rl,rz), (111.5)
r

where the summation should start with £ =2. Equation (III.5) is what
we call the linked cluster expansion of the pair distribution function.
From the normalization condition for py we find

JbL(rl,rz) drldr2 =1t -1)b . (111.6)
By a similar consideration we can expand higher order distribution
functions.
IV. Boltzmann Chains

Equation (II.8) suggests that the free particle propagator
Ko(T8;T'B) is given by

Ia} _(R_p! 2_,—0. ]
K (FBiTBY) = — | e B-80% -1 - (1) g, (v.1)

@gm)3

We use this expression in the unit process illustrated in Figure 2.
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1f1,13+B1

r' L it r

2 2

r1,0
Figure 2. The propagation of G1 .
We find
n N -
F, (7, B,ir B, = J Ko(Tp B+B i TR, )0 (r, ~T")
X Ko(r'Bz;rIO)dr'dq. (Iv.2)

After integrating over the intermediate coordinates T we find

iq-(rg-r1)

-1 o o
F CB ,r B)) = —— | G,@B,-B )u@e dq. (Iv.3)
(2m)
Here
G, 18"-8']) = 21 % exp(-a () a2/8), (1v.3)
where
o = IBu__Bll;
am= J s(D)eI T, (1v.4)

¢ (r) being the potential.
It is to be remarked that the particle coordinates appear in

. {Iv.3) only on the exponential factor., Thus, if we have another
simllar process represented by F 1F3B i rZB 2), following the process
F]‘:QBZ' rlﬁl} and if the intermediate coordinates 1'2 are integrated,
we find the total process represented by the function:
ige(ry-r —
163 1)u(q)qu-

1 e}
F, (T 8.: B) — | G, (@B, -B,) G, (q:B, -8 )
2¥3F3T (211)3J 1'97Pg ~Pp) &y aiby —FJe ey
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Repeating the same processes and expanding Gj(q;By-8;) in a
Fourier series:

Gy (@B -B) = ) Ay B *B") (1v.6)

6_% exp 2T 1jB"/B, (w.7)

‘llj(B')

one arrives at (after performing the B-integrations)

g B )~ — IR 2 Ny
FylrpBpimiBy) Sam? %qu[ w(@l” A (@

iq-@c,r;) 2mij®, -B, )/B .
x e 2 lg 27T (1v.8)
Multiplying this expression by z{’ and summing over all £, we end
up with

2
2 R S LS R -
poft) =n" = - e dq , (Iv.9)
2 XJ s(zﬂ.)3 l+u(q))~.j
where
AR 2 s
by = ;%J o0 (10/B) 2mif/B o av.10)
o]

V. Electron Gas
Let us apply the formula (IV.9) to an electron gas at high tem-
peratures. The Fourier transform of the potential is

2
4
ulg) = - v.1)
q
The elgenvalues >‘j are given by
aB
A = X%J expl-g%a (B)/8 - 2mijn/B] do. v.2)
o

At high temperatures one finds

-3
A, = 2\ B8, . :
§ 8 G (v.3)
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Thus,

(r)_nz - ZKZ eiq.r d—v
P2 NI

where the screening constant K is
2a_ 41'rne2

b KT

(v.5)

It is remarked that Eq. (V.4) is due to one chain. Namely, the
effect of having a linear array of interacting particles between the
two particles 1 and 2 is to have the Debye screening. If the two
particles are connected by many chains we would obtain in the same
approximation the following result:

0@ = n’ exp(~8/kT), (v.6)

where

-Kr
¢ = e2 eT : V.7)

In other words, Eq. (V.4) is the first expansion term of the exponen-
tial function in Eq. (V.6).

As temperature is reduced it becomes necessary to take quan-
tum exchange effects into consideration. The particles forming a
toron may be considered to be bound by pseudo-statistical forces.
Thus, one can show that a factor

(1 - eT2/28) (v.8)

appears from the combination of the Boltzmann chain and free particle
diagrams, A being the de Broglie wavelength. Also, one can show
that the first order exchange diagrams yield a contribution

~ o T?/28 In(r/2) (v.9)

for large distances.
Note that temperature dependences come in now. It becomes
necessary in such cases to evaluate higher order eigenvalues. A
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systematic expansion for fermion hard-sphere particles has been
given by Isihara and Gupta. 16)

V1. Hard-Sphere Bollzmann Gas
In view of our interest in liquid helium, let us consider the
lowest temperature limit. The eigenvalues )‘j for such a case are

A= 2nf . (VI.1)

I Bq?+(2n1)%/Bq?

Lee, Huang and Yang showed that the hard sphere potential may be
replaced by the pseudopotential which is in the first order in the hard
sphere potential

o) = 8mad(r). (V1.2)

This gives
u(g) = 8ma. (V1.3)

The summation over J may be replaced by an integral:

A2 op
A, —> — j dx. (VI.4)
] 2m
Thus, we end up with
2 p oo Som
-~ : - -1
pz(r)—n2 = —4% J dg 219" j dx g% (q?+x2) " gt +x2 +ya?)
il .
4an? - 23T 1
= -, jdqe I:l____ﬁ]' (VI.5)
mey (1+y/q*)
where
Yy = 4man, (VI.6)

The right hand side integral has been evaluated in the following
form:ll) .
p,(r) = nz[l -2 560 | (VI.7)
2 r _I’

where
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G]_(x)
glx) = Gy&) -~
Gilx) = I (x) - Lyx); (v1.8)
X = Z%r.

Ii(x) are Li(x) are the modified Bessel and the Struve functions.

The result obtained in Eq. (VI.7) is a smoothly varying func-
tion of the reduced variable x. It is to be remarked that the result
should not be used for x~ 2 as it becomes necessary to take higher
order terms into consideration. As a matter of fact, the pair distribu-
tion function vanishes at r=a. The result gives correct long distance
values for the pair distribution function. To find the behavior, one
may use the known asymptotic expressions of L and I functions, or
adoptl 7

(o]

2m - .

L q|:1 - qla®+y) ’b] exp 2igr dq =
d o]

/2
= Z—TrT—Y— J‘ sin29 exp (-2 Y% sin8)d8 (VI.9)
o

4my

e

rx3

Namely, we find a decay of the pair distribution function to nZ in
proportion to r—4.

The large distance behavior of the pair distribution function is
related to the phonon spectrum. To see this we use the Feynman-
Bijl expression:

kZ
% = 30 (VI.10)
where the structure factor S(k} is obtained from
Po(r) .
2 ik-r
= + -
8(k) = 1 nj( 5 e " ar, (VI.11)

One finds

- 2 -3
5, = k(k +16Tran> (VI.12)
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which 1s the result Lee, Huang and Yang14) obtained by a different
method. Thus, for small momentum we have a phonon spectrum:

€ = ck, (V1.13)

where the phonon velocity ¢ is
c= 4(1Tan)% ; (I.14)

Note c~ 0as a— 0. Itis also to be remarked that the phonon spec-
trum has been obtained for a Boltzmann hard-sphere gas.

VII. Hard-Sphere Bose Gas

When particles obey quantum statistics we must start with the
zero order term, namely, the ideal gas term. The free toron diagrams
may be labeled with 1 and 2. Generally, we may have s cycles be-
tween 1 and 2, and t cycles between 2 and 1. The corresponding
cluster function bf{rl ,rp) with £ ==s8+t is given by

o~ - _ 1 n 2 —.. — _—. —
bJL (rl,rz) = (—_211)6 fexp[ sBp  + ip (r2 rl)J dp
x | exp[ -t8a® + 13- -?)_ld—' (V11.1)
p{ -tBa” +iq- () -1,) | da. .

This yields the following contribution to the pair distribution function

2 TR
- TS -pp® -ip'(rp-r;)
f) z{'bz(rl,rz) = L 3 I 28 e 2 dp, (VII.2)
; (2m) 1 -z exp(-Bp“)
where z is to be determined by
o -Bp?
n = — 3J ze > dF. (VII.3)
(2m) 1 - ze PP

However, when the condensation takes place we must separate out
the contributions from the p=0 in these expressions. Thus,
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C 012, To< T
Y b F) Ty = 93/2(% )] ) e (VII.4)
" [no+93,,,01% - nd, (1> 1)

where ng is the number density of the particles in the lowest state,
and T, is the degeneracy temperature:

in L a2/3
T, = __ﬂ_ﬁg3/2{1,UJJ . (VII.5)

In these expressions, we have used
_,°3%y 1,-3/2 — )
gs/z(z,r) =2 Z z % exp(-mr/LX %), (VII. 6)

The contribution from the interaction graphs is also reduced
into the evaluation of the elgenvalue )\j . Separating again p=0 term,
we find

4-1
Ml = (Zn-no)[q2+ (ZHJ‘/Bq)z] (V1I1.7)

for T< T,.
Thus, at large distances, we end up with

n. .. 2
p ) = nz[l ¢ -52) a0 (VII.8)
where g(x) is given by Eq. (VI.8).

It is very interesting to observe that the effect of condensa-
tion appears in the lowering of the first peak near r=a. Due to this,
the decay |:a-z_l[r}—'n2 for r-+= becomes slower than the case without
condensation.18 Figure 3 shows schematically the pair distribution
function of a hard-sphere gas. 02{1')/112 is close to 2 near r=a and
approaches 1 in proportion to r~4,  The dotted curve indicates the
effect of condensation.

Because of condensation, the phonon spectrum is also
changed. One can show that

c = 4(rran)% (1 - ny/2n). (VII.9)

~Thus, the sound velocity becomes temperature dependent.
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Pz(r)

a r

Figure 3. The Pair distribution function of a hard~sphere Bose gas.

VIil. Hard-Sphere Ferml Gas

The guestion of whether or not liquid He3 shows superfluidity
is extremely interesting. In 1964 Peshko\rlg reported an anormaly
in specific heat, and early this _grear a very similar anormaly was
found by Osgood and Goodkind. 0) However, according to the
author's personal conversation with Dr. Goodkind and Dr. Atkins at
the last New York meeting, the anormaly might have been due to
experimental errors of unknown sources.

The author has recently developed a general theory for a
fermion system of hard-sphere potentials., According to this, the
pair distribution function is obtained by a Fourier transform of a func-
tion N(q):

2b, (Ir5 -1 ]) : ==
L 2 1 _ 1 -ZIQ'I' -
Z @ -2)1 = &nﬂ‘]Nhk dq . (VIII.1)

In view of the time, however, it is remarked here only that a general
method to evaluate this function N(q) has been given. The results
corresponding to short distances are as follows:

In view of the nuclear spin of He:3 let us introduce a spin
eigenvalue J for this case. The non-interacting term yields for T- O:

(2741) - k.r cos k.r - sin k.r ;2
=2 9 2 ] . (V. 2)

4114‘r2 I— 2

YZ{'bo(r) = -
[ L .

L

The terms to first order in the interaction are approximately
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z L1 2a](2]+1)k§ sinkgr(sinkgr -kor cos kor)
z b () =
() 3nS 4
£
4aJ(2]+1) (sin kor - kor cos kor)2
= 7] 7 : (VIII.3)
am T

These results are characterized by the Fermi momentum ko
and correspond to high degeneracy. We see that the pair distribution
function decays slowly to n? oscillating around & curve which is de-
creasing roughly as r=3

Since the pair distribution function depends on the density,
one must carefully approach the lowest temperature. If we reduce the
density first and then the temperature, we will have a dilute system.
In this case it is not difficult to recover the phonon spectrum which
we discussed before. The above results correspond to the reverse
process where we reduce the temperature first.

IX. Concluding Remarks

We have discussed that chain diagrams are important to find
many-body effects on the spatial correlations of particles. In con-
clusion, it is remarked that for degenerate fermions or bosons con-
siderations only of simple chain diagrams are not good enough. As
indicated in Section V., we need to take into consideration of more
complicated diagrams arising from exchanges of particles.ls) Since,
however, the time has come, I simply conclude these talks men-
tioning that such a consideration has been made and a very general
formula has been obtained. According to this, the pair distribution
function is expressed by essentially two eigenvalues which come
from conjugate diagrams. These conjugate diagrams cancel each
other's contribution at r=0 for fermion cases. For bosons their
contributions are added together.

Figure 4 illustrates typical one effective interaction diagrams.
Note that (Ag) is a separated dlagram and does not appear in by(f; ).
The diagrams (&), A*) and (As) contribute to the pair distribution
function through the eigenvalues:

- . 2_ —o+-4 2 —.—o.—v . -
Nz =~ [ @t eT Pr T i 2 g g

J (2m)

1 = S rEeey QP2 - ()2 -irtp

b@nz) =~ [ EeEIN s El e e (x. 1)

] (2m)

X eznija/sda d

for bosons. f(p) is the Bose distribution.
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2 2

I g I

2 2

(A) Ty
r 2 2 |
2 [, 2

(Ag) (A%)

o kb

O NORERUES

Figure 4. One Effective Line Diagrams. (A) and (0*) are conjugate to
each other. The conjugate diagram (Ag) to {AS*} is unconnected and
involved in the n? term in the pair distribution function. A wavy line
with a box represents an effective interaction which is a series of
interactions. An effective propagation illustrated by a bold line is
composed of many torons.
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We have used for hard-sphere systems the simplified pseudo-
potential. This is just for simplicity's sake, and caution is neces-
sary in using this approximation. On the other hand, one could use
the binary kernel method. It is defined by

B = —¢ exp(-BHjy), (IX. 2)

where Hjy is the Hamiltonian for two particles. Because the expo-
nential factor B can be finite, even the potential ¢ is divergent.
Actually, the binary kernel B assumes the following expression in
which ¢ does not appear explicitly:
U
2 o
= — +
B Y H2 U2 ] (IX. 3)

where
U, = exp(-BH,) - exp‘(—BHl(rID exp (—BHl(rZD . (IX.4)

Thus, use of the binary kernel is convenient for hard-sphere
systems. Moreover, at short distances the pair distribution function
may be approximated by Ugy. Then, one finds a self-consistent result
Py (@)=0. .
Nevertheless, the structure of B in higher order terms in the
hard-sphere potential is complcated. The situation is analogous to
the exact pseudopotential when this is compared with the approximate
one. Indeed, we can show that the first order binary kernel is equiv-
alent to the first-order pseudopotential. Use of the first order ex-
pressions is convenient, but it must be remembered that they are not
divergent at the hard-sphere boundary at r=a. Thus, use of these
may be considered to be equivalent to assuming a weak repulsive po-
tential. Therefore, it is not surprising that the results agree with
what Bogolyubov obtained based on the assumption of weak repulsive
potentials.
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I. Introduction

Let us briefly indicate our approach and the material to be
covered.

Our ultimate aim is to evolve a unified approach for quantizing
fields of arbitrary spin. We shall find that such a unified approach is
possible for a large class of fields which satisfy a certain set of con-
ditions (to be explicitly stated in due course). It turns out that most
fields of physical interest actually do fall in this class. Not included
are the Maxwell field and massless fields of arbitrary spin—these
must be treated separately. Subsequently whenever we speak of
fields in general, it is to be understood that the Maxwell field and
massless fields of arbitrary spin are excluded from the discussion. A
peculiar case is that of the neutrino: two-component neutrinos are
excluded from the aforementioned class while four-component neutri-
nos are included.

If one uses the ordinary Hamiltonlan formalism for quantiza-
tion, one obtains equal-time commutation relations which are not co-
variant in form. This procedure for quantization is quite tedious and
one must consider each case separately. In other words, the canoni-
cal formalism does not lend itself easily for evolving a unified ap-
proach to quantization. So we try to develop an alternative approach.

In our quantization procedure the most fundamental role is
played by the equation

-13,¢(x) = [¢x).P ], (1.1

which is the covariant generalization of the Heisenberg equation of
motion

i%@ - [ew), H], (1.2)

where 6(t) is any dynamical variable. We regard (I.2) as the most
fundamental relation and the reason for doing so is that one can de-
rive from it Bohr's frequency-energy relation which has a firm experi-
mental basis. This is in sharp contrast to the purely canonical ap-
proach. We shall take the following interpretation of (I.2): Suppose
the time evolution of 6(t) is known. Then we can determine both H
and the commutation relations. However, there are too many un-
knowns in this equation so that our determinations of H and the
C.R.'s may not be unique. In other words, there may exist a number
of possible quantizations. The unknowns can be eliminated by im-
posing physically meaningful requirements on the solutions, Use of
(I.1) then leads to commutation relations which are covariant in form,
and the Py, determined turns out to be unique as we shall prove.
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In our approach the knowledge of an explicit Lagrangian is not
required. However we do assume that a Lagrangian must exist even
though its explicit form may not be known. This is necessary for the
conservation laws to follow from the invariance properties of the field
equations.

First we study the classical field theory for relativistic free
fields from a unified point of view. In Section II we review the wave
equations for the various spin fields. In each case the field equation
and the associated subsidiary conditions (if any) can be cast into the
general form

Nop (@06 = 0, (1.9)

where o ,8=1,2,...,n(s). Here n(s) is a positive integer depending
on the spin. Even though we cannot prove the preceding statement in
general it is possible to verify it for all the known fields. Common
properties of the various fields are discussed next. In the following
two sections we develop the tools to be used later. In Section III we
introduce the "first identity" which is essentially the configuration
space version of the generalized Ward identity. Conservation laws
are studied making use of the first identity but without reference to
any explicit Lagrangian. The Klein-Gordon divisor and the second
identity are introduced and discussed in Section IV. A discussion of
how to construct the Klein-Gordon divisor is also given. Making use
of these tools a unified treatment of the normalization and closure
conditions for the c-number solutions of the general wave equation
(for arbitrary spin) is presented in Section V.

Quantization is carried through in Section VI using the proce-
dure already indicated above. In this connection the raising and
lowering operators are introduced and the connection between spin and
statistics is also discussed briefly. Simple examples are given and
the uniqueness of B, and My is proved.

In Appendix A we have set down the notation and conventions
used in this course. Appendix B discusses how one can construct ex-
plicit wave functions for arbitrary spin fields.

II. Wave Equations for Relativistic Free Fields

In this section we shall review the wave equations for various
spin fields. In our discussion we shall often digress to point out cor-
respondences between different spin fields and features common to
various fields in order to provide clues as well as motivation for
evolving a unified approach to arbitrary spin fields.

We shall see that for each known case the field equation and
the associated subsidiary conditions, if any, can be cast into the
form
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hypl®)egx) =0, (1@.1)

where o ,8 run from 1 to n(s), and n(s) is a positive integer which de-
pends on the spin of the field. We shall also sort out other proper-
ties which the various fields share in common.

For a fuller discussion of the various wave equations than
presented here we refer the reader to the books by Corson!) and
Umezawa .

A. The Klein-Gordon Field.
The Klein-Gordon (to be abbreviated as K-G hereafter) equa-
tion is written

(0-m?)p&x) =0, (11. 2a)

where m is a real constant. We write the K-G equation for the ad-
joint fleld ¢t (x) as

st )T -m?) = (D-mptx) = 0. (11. 2b)
The four-current defined by
6 = 19763, -8, ) ) (11.3)

is conserved, since

- 85 +5 )5 -5
uly = \au+au>\au au)“b

i¢f<l:| =)L

W [O-)-( -}

= 0, (11.4)

by virtue of (II.2).

Let us present here some of the standard formalism in order to
familiarize the reader with our notation. We introduce two auxiliary
fields ¢(+) and ¢(') via

00 =gt [ ez, (11.5)

Cy
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where T is a parameter and n is a unit time-like vector with positive
time component, i.e.,

nn, = -l n,> 1. (I1.6)

The contour C_ runs along the real axis in the 7-plane from T=-= to
7=+« and is indented below the origin to avoid the singularity. We
can show that ¢ +) (x) contains positive frequencies only while ¢(")
contains negative frequencies only: Since ¢(x) is a solution of the
K-G equation, we can write

Bx) = fd‘lk 5 (k2 +m2) (k). (11.7)

Consider ¢(+)(x) first. If we substitute (II.7) in the definition (II.5)
for ¢ +)(x), we get

_ 4 2 o ikx _1 dr -i(kn)T
) = Jd k6 (k24+m2) ¢ (k)e o .f — e
B C+
= J\d4k5(k2+m2)6(—kn)eikx$§(k), (11.8)

where we have used the well-known formula

1 [ dr ixr _ _ (1 if x>0,
2l J T € T8 =10 i x<o0. (I1.9)
+
Now we can write
ken
-kn = kono<1 - I:,:E ,
and for time-like k, the factor
k-n
(1 - k0n0>
is positive in virtue of (II.6), so that
8(-kn)s (k2+m2) = 0(kgng)6 (k2+m2) = 8(k,)s (k2+m2). (I1.10)

Using (II.10) in (II.8) we get
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6 = J"d“k ™™ 8(k,) 6 (2 +m2)3 (k). (I.11)

It is now clear that ¢(+)(x) contains positive frequencies only. In a
similar fashion one can show

# ) = fd“k e 9k )6 (k2 +m2)d (k). (ir.12)

It may be remarked that the separation into positive and negative fre-
quencies is consistent with relativistic invariance. From (II.7),
(II.11) and (1II.12) it follows that

‘ N K

60 = 060 +0 ). (11.13)

The familiar invariant singular function A(x) is defined by
b = 5 o'k e ks (Pem?). (1r.14)
. (2m)3

It satisfies the K-G equation,
@-m2)a) = 0, (II.15a)

is Lorentz invariant under all proper Lorentz transformations and has
the properties:

Alx) = 0 for «2>0 (i.e., space-like x), (I1.15b)
A(-x) = -a(x), (I1.15¢)

and
5 (x,) a—f{: A = 5760, (I1.15d)

We can separate A(x) into positive and negative frequency parts by
writing
(=)

ol

Ax) = 0% 'x) + & T(x), (II.16a)

where

b Gl Id4k eikxe(ko)é(k2+m2)l (11.16b)
2m
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gy = —H g4 tkx g 242
8760 = 3 jd k ™% (k) 6 (kZ+m?). (1. 16)

Now we can prove
)= [ e 60603y -5 s, (1r.17)
[}

where 0 is an arbitrary space-like surface. It is readily seen that
the right-hand side of (II.17) is independent of the particular choice
of o, since if we take its functional .derivative at the point x' and
make use of (A.2) of the Appendix A, we get

st ) 4o b8y 5 o ix)
bi[b(x—x')(bx' —%\')qb(x')J

beex)(33 +31)(3x - & ) &)

Bex-x){0" - 5o ')

A(x—x')[([]' - m2> - <EI' - m2>J¢(k')

=0, (I1.18)

in virtue of (II.2a) and (II.15a). So we choose the space-like surface
x5 =const. =Xy, then

do, (x') = (0,0,0,-1d3x").

We then have
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Idc X)A(x—x)/a' -3)\>¢

]

I do ()b bex') (3 -5, )9tc)
X

o Xo

d x'A(x-x' )(a——:i*).’) (x')

, axo
Xo¥o

n

- J d3x-[A(x-x-)J r . 9 6c') |
Xp=Xg 0 !

XO_—'XO

Jdl x' L A(x -X )J o (x' xy)

1 —.
xO xO

0+ J'dsx'[+63(§-§“)J¢g<' Xg)
= plx,x,) = ¢x),

where we have made use of (II.15b,c and d).

Next we want to study the transformation property of the K-G
field under infinitesimal Lorentz transformations. Recall that under
an infinitesimal Lorentz transformation

- g =
X, "X 3%y (I1.19a)
where y has the form
auv = duvtenys (I1.19b)
and it satisfies
330 = Ry T 6uv , (IT.19¢)

hence e, is antisymmetric,

euv+evu=0, (I1.19d)

in virtue of (II.19c) as we neglect bilinear and higher terms in €y -
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Note that the inverse of (II.19a) is

_ 1
x, = xuauv. (II.19e)
Now
S _ OXv 3
axk'l ax‘; 3x,
d
=ay T (I1.20a)
so that
) d _ 9 9

= 7T = a —/ a o

ax“ axu MV 3x, A ax)\
- - EE - I
B (ap.\)ap)\ > bxv ax)\

o 3

6 e m T =
VA 3%y dxy (I1.20D)

In view of (II.20b), invariance of the field equation under infinitesi-
mal Lorentz transformation follows from the fact that the fleld ¢ (x)
transforms according to

px) - ¢'x') = px). (I1.21)

B. The Dirac Field.
The Dirac field | (x) satisfies the field equation

[yd +mly(x) = 0. (I1.22a)

In our notatiom the y-matrices are all hermitian and they satisfy the
commuiation relation:

T owd = vyt = 28, (11.23)
The adjoint field § (x) i® defined as

T = v ey, (I1. 24)

and its field equation is
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V(x)[-y'a’+m] = 0. (II.22b)

The four-current defined by

60 = 1y (%) vy ¥ &) (II. 25)

is conserved, since

12 (Fy,0) = F(vd +v5)y

Wf(-m+m)y = 0,

using (II.22).
If we write

A@R) = (Y3 +m), (II.264&)

then (II.22a) does indeed have the form (II.1). We want our fields to
satisfy the K-G equation irrespective of their spins. This is certainly
true for ¢ (x): If we define

d(@) = -(yd -m), (II. 26Db)
then we have
dERAPB) = A(d)AB) =1 -m“, (11.27)

so that | (x) will automatically satisfy the K-G equation if it satisfies
(II.22a). As we shall see later, it is possible to find A(3) and d(3)
satisfying (II.1) and (II.27) for most known cases. This is obviously
true for the K-G field.

Recall that for the Dirac case the charge conjugate field

b &) = Crtx) (11.28)

also satisfles (II.22a). The charge conjugation matrix C has the
property
clyo = i (11.29)
Yy Yy .
or equivalently,

-1
C YiC =y

-1 _ .t ,
C7v,C = -y, (11.29')
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One can then show that

1

I:Y4(Y3 + m)]t =-C Y4(ya +m)C, (11.30)

Later we shall introduce charge conjugation matrix for arbitrary spin
fields which satisfies a condition which is a generalization of (II.30).
Next, by defining in the usual way
Sx) = (y3 - mjax), (I1.31)

we can prove

yx) = J' doy (x')S(x—x')Y)\lIJ(x') (I1.32)
5

in the same fashion as we proved (II.17). Comparing (II.32) with
(I1.17) for the Dirac case, we note the correspondence:

<a)'\ -é—)l) is now replaced by ¥, ,
} (11.33)

{A(x—x') is replaced by S({x-x').
We shall see that this correspondence leads to a natural generaliza-
tion for arbitrary spin fields.

Under an infinitesimal Lorentz transformation the Dirac field
transforms according to

Vo () = Vg ') = Lygly &), (I1.34a)

where L is @ 4% 4 matrix whose most general form may be written as

i
= + =
LocB (l 2 euvsu\))as ! (I1.34b)

since we neglect bilinear and higher terms in NE Clearly Su\) is an
anti-symmetric tensor whose each element is a 4x 4 matrix. On
actually doing the algebra, we find

_ L _
Suv = 45 (Yqu Yqu> : (11.340)

Let us give a brief outline of the derivation of (II.34c). Upon trans-
formation the field equation (II.22a) becomes (in matrix notation)
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(ya'+mhy'(x') = 0.

We write this as

o
(YH ax. *t m) Ly ()
v
Using
o _ O%Xy 3
1 = ]
ax}_1 ax“ va
= a S
(S8 axv !

and multiplying from the left by L_l, we get

CRRIIE PRI

If the field equation is invariant under infinitesimal Lorentz transfor-—
mations, then we must have

_1 -
L YuLauv =v,- (I1.35)

If we multiply both sides of (II.35) by a,, and use (II.19¢c), we get
(I1.36)

Upon substituting the explicit forms (II.34b) and (II.19b) for L and
a)\y , respectively, we find that (II.36) reduces to the following con-
dition for Suv:

=
—1|_sw,yxj = 6%y = SyaVu- (I1.37)

The explicit form (II.34c) for Suv can then easily be derived from
(I1.37).
If we write

Sl = SZ3' S2 = S3l' S3 = SlZ' (11.38)
then from (II.34c) and (II.23) we have
S L S, = L S, = .1 (I1.39)
17 21 Y2¥3r P2 T g5 Ya¥ir B3 T a1 V1Yo y
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so that

1 = —_— = - -
toty=gs +1>. (11.40)

W =

2.2, .2
S, +8, +8, =

The factor % (% +1) is of the familiar form4 (¢ +1) for the spin-vector
squared from quantum mechanics.

It should be clear that the general way of writing the transfor-
mation property of an arbitrary spin field ¢4 ), a=1,2,...n(s),
under an infinitesimal Lorentz transformation, is the same as in
(I1.34a) and (II.34b) where & ,B now run from 1 to n(s). The Suy's .
which are now n{s) X n(s) matrices, can be found in each case—at
least in principle. With the definitions (II.38), one can compute
(82 +82 +52) and expect to obtain £ (¢ +1). This seems to be a
reasonable way for constructing higher spin fields.

As a parenthetical remark, we note here that §,,,=0 for the
K-G field as one would expect. (See (II.21).)

C. The Vector Fleld. :
Consider the vector field Uy (x),0=1,...,4. Each co*ponent

of this field satisfies the K-G equation \
O-mA)y =0 ©=1,2,3,4). (1. 41)

Since Ug(x) is a four-vector, under infinitesimal Lorentz transforma-
tions it must transform in the same way as x,, i.e.,

UG(X) - Uc'r(x') angp(x)
= <60p + e0p>Up ). (II.42a)

On the other hand, according to (II.34a,b) we should be able to write
it as

] r i ’
— Y = + = .
U, 60 = UG =6 * e 6 | UG (11.42b)
Comparing these two forms, we find at once

L IIF :
oo = L 8ucdve BupévoJ' (11.43)

According to (II.38), we then have for the vector field:

(5uy)
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"0 0 o o]
B N 0 0 -1 0
57583 =110 1 o ol
[0 0 0o ol
[0 0 1 0]
" _ 0 0 0 0
S0583151 14 o o ol
Lo 0 0 o]
and
[0 -1 0o 0]
2 n 1 0 0 0
S35, 1 o 0 0 o
0 0 0 o]
So one gets L .
2
' 0
2. .2 .2 _ 2
Sl +S2 +S3 B 2 .
0 0

where the factors 2 come from 1(1 +1), while 0 comes from 0(0+1),
i.e., we have spin 1 and spin 0 associated with Ugs(x). We can get
rid of spin 0 by imposing the auxiliary condition 3;Ugx) = 0. Then
the equations

(0- mZ)UCI x) = 0,

(11.44)

35U (x) 0,

describe a pure spin 1 field. The two equations above can be com-
bined as
- 2 - =
[ -mdeg,-3,3,]U,6) = 0. (11. 45)
The spin 1 field Ug(x) satisfying (11.44) or (II.45) is called the
Proca field.

One easily shows that (II.45) is equivalent to (II.44): If we
apply 3, to (II.45), we get

- m2 = =
(3 m)BpUp DBpUp 0,
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or,

2
m apUp =0,

If m#0, we obtain 9pUp =0 which is the second of equations (I1.44).
Substituting this in (II.45) we obtain the other equation in (II.44).
We note that (II.45) is of the form (II.1). By studying the invariance

f (I1.45) under infinitesimal Lorentz transformations we can confirm

(I1.42) and (II.43).

To summarize, we have learned that a spinor index carries

spin 3 while a tensor index carries spin 1 and spin 0. Now we are
ready to construct fields of higher spin.

D. The Bargmann-Wigner Fields.

Suppose we want to construct a field with spin s. Consider
the field Ygia s( x) which has 2s spinor indices. In general,
this will conta n spm s and lower spins. This is so because we
know from quantum mechanics that vector addition of spin # with
spin# yields spin 1 and spin 0:

80 ® ﬂ%_ = .\9{5_ )
H. ® H; = H;, DS,
1 ® 8y = 8 ®f
Thus it is clear that waqz (x) will have spin s and lower

spins. If we construct this f1eldsm such a way that it is totally sym-
metric in all its spinor indices, then this field will carry spin s only
since total symmetry with respect to the spinor indices means that
all the 2s spin# vectors add in parallel. Also the Dirac equation
with respect to any spinor index must be satisfied. In other words,
the field Yaaq. ..0q4(x) satisfying

a+m) ' 1 (X = 0;
(v ool Yaja,. . ag & >

o, =1,2,3,4;

! (11.46)
q’alaz. . .onzs(x) : totally symmetric

RN ¢
in o (xz, 925
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carries spin s. The field equations (II.46) are called the Bargmann-
Wigner equations.

This way we can construct any spin field, integer or half-
integer.

The above construction of the Bargmann-Wigner field equa-
tions implies that the Bargmann-Wigner field transforms according to

l1l’(I.]_...(:(.ZS(X) - 'l’('x,l _,,a,zs(X')

i (II.47a)
= (1 +E eHVSLlV>a1...GZS;BI...BZS¢51...st(x)'

with
(Suv)al...azs;'sl- \ IJ\J) 181 GZBZ 0‘25625
ro &
¢} ..0 +
OL131\ WV JagB o 0igBa " Raghy
(%)
8
o o0 '
1P1° """ %25-1B2s- 1< 0y Bog
(I1.47b)
where SL&%) is the matrix appropriate to the Dirac field:
& _ 1
8y = 1 (YHY\,-YVYM>. (I1.47¢)

Explicit form of the Lagrangian density for the Bargmann-
Wigner flelds is known for s< 3/2 but not for higher spins. For de-
tails we refer the reader to the paper by Kamefuchi and Takahashi.3)

E. The Pauli-Fierz Fields. .

If we want to coristruct a higher spin field of integral spin s,
then we can do so by using tensor indices exclusively; i.e., we con-
sider UH}---HS(X)' However, since a tensor index carries spin 1 as
well as spin 0, in general an object like Ul-'-l ___uﬁ(x) will have gpin
s and lower spins asscciated with it. One must impose supplemen-
tary conditions to eliminate all other spins except the spin s. The
fleld Uy, ,..uq () satisfying
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p
CELDL MNP

U“l"‘“s(x) : totally symmetric in indices,
Uuﬂqu3.”usk) =0 (I1. 48)
5H1UH1H2-~HS(X) = 0y

My = 1,004,

is called the Pauli-Filerz field and it is a pure spin s field. Let us
check this for s=2. The appropriate field then is Uyy (%) which, ac-
cording to (II.48), satisfies

O - me -
\D m )Uu-v x) =0,
qu(x) =U,, &), (6 conditions)
U““(x) =0, (1 condition)
3 U (x) =0. (4 conditions).
MY

These eleven conditions on Uyy(x) leave only five out of its sixteen
components independent—which is exactly (2s+1) independent com-
ponents corresponding to s=2. To see this in more detail, recall
that each tensor index carries spin 1 and spin 0. So we get:

(1) v)

8, ® 8, = 8,
8, ® J@l =8 These are eliminated by
) 8, = 5, supplementary conditions.

9, ® 8 = 5, ® 8,

@Tz

———> This is what we get.
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Under infinitesimal Lorentz transformations the Pauli-Fierz
fields transform according to

" o= i
o) = Ug g s0) <1+2>ew uv>01 3010090010

(I1.49a)
with
(1)
S 5 .8
(“V)crl...os;pl...ps (UV 0101 T2P2 GgPg
1 By o +aes *
0191< 0909 So3p3’ " UgPs
‘ )
+6 .8 . (11.49b)
o1P1 Us—lps'—1< HY. “5gpg

where the matrix Sp(l) is the one we discovered for the Proca field,
namely,
(1) . !
= -i| & -8 6 : .
(8.3 i[ LN v | (I1.49¢)

Explicit form of the Lagrangian density for the Pauli-Fierz
fields is known only for s< 2. For details, see the article by
Bhargava and Watanabe. 4

F. The Rarita~Schwinger Fields (cf. II.H).

Now we discuss a method for constructing half-integral spin
fields due to Rarita and Schwinger. The idea 1s simple: one uses
(s-%) tensor indices (here s is a half-integer) and one spinor index.
One needs to symmetrize with respect to the tensor indices and im-
pose supplementary conditions to get rid of the unwanted lower spins,
of course. The field must satisfy the Dirac equation with respect to
the spinor index. For the sake of concreteness, consider s =3/2
first. The appropriate Rarita-Schwinger field then is 'l’cxp.(x): where O
is a spinor index and u is a tensor index. We take this field to
satisfy ’

x)

|
[=)

(yo +m)aB ll!SH

]
—
>

G’IBIH
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x) =0, (11.50)

3
H%«H

(Ydyg¥p, &) = 0.
which are the Rarita-Schwinger equations for spin 3/2 field.

It is quite straightforward to generalize (II.50) to half-
integral spins greater than 3/2. The fleld wauluzmus_%(x} satis-
fying the Rarita-Schwinger equations
]

(Y3 +m) ) =0,

aB Bul-..us_g(x
a‘;B/p-i = 11-0-14;

lb““l"'“s-é {x) : totally symmetric in My .us_%,

(11.51)

(YH1>aB¢ﬁu1u2-..us_%(X) £

aulwauluz"-us_é (x) = 0,

) =

|
o

(x
|l"’.‘“1“1“3---“'s-5‘
carries spin s.

Under infinitesimal Lorentz transformations the Rarita-
Schwinger flelds transform according to

‘I’acl...cs_%(x) - w&cl...cs_é(x')‘

- <1 +%€uvsp )

¥8py.p _g &
v A0y ...05 4iBpL..P5_ 3 1 %

(I1.52a)

with
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_((®)
(S“V)(IO'I. Og_ % Bpl. Pg- % < >G'B 0']_‘:’]_ “605—%95_%

ral) : ..

+ 8 S )
aB\uv g0, 92P2 95-3Ps-d

o)
6§ 6 « %ol S i (I1.52b)
o
ag 91f; Ny Og-3Ps-}
where S (é) and Su(,) are the same as in (II.47¢) and (I1.49c).
Explicit form of the Lagrangian density for the Rarita-
Schwinger fields is known for s< 5/2. For details see the paper by
Kawakami and Kamefuchi.5)

G. The Duffin-Kemmer and Harish-Chandra Fields.
By the Duffin-Kemmer field we mean a 16-component field
Ve (x) satisfying the equation

[s 3+ mJ w &®) = (11.53a)
where B“'s (u=1,...,4) are 16 x 16 matrices satisfying
BHB)\B\, + B\)B)Lsu = 6%8\) + 6\»\&“ . (I1.53b)
If we write
Q = B“a“, (I1.54a)

by applying 3,3,9) to (II.53b) we find
Q3 =dQ. (I1.54b)
Suppressing the indices &, mn, we can rewrite (I1.53a) as

(Q+mly (x) = 0. (11.53'a)

If we multiply this equation from the left by Q2 and make use of
(II.54b) we get

@Q + mQ2)y &)

In view of (II.53'a) we can replace Q by -m in the last equation to get
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-m(0 -m?)y (x) = 0,

or
O -m2)yx =0,

if m#0. We have shown that each component of the Duffin-Kemmer
field does indeed satisfy the K-G equation—a necessary requirement
for any relativistic free field.

By studying the algebra of the B-matrices, 1.e.,
Eg. (II.53b), one can show that the B-matrices are reducible into the
form

Nx1] o 0
B, = 0 [5x5] o (I1.55)
o | o Jiox1o

The 1 x 1 representation is a trivial one since we get B“=0, which
leads to y =0. The 5X5 representation corresponds to the spin 0
case. Historically, Kemmer arrived at the equation (II.53) with 5x 5
B-matrices in his attempt to find a first-order matrix differential
equation for the scalar field. The five-component field | (x) in this
case really has only one independent component, namely the K-G
field ¢ (x); the other four are derivatives of @ (x): d319.,...,340.
Lastly, the 10x 10 representation corresponds to the spin 1 case.
In other words, if one tries to find a first-order matrix-differential
equation for the Proca field, one arrives at (II.53) with 10x10 B-
matrices. For details, see, for example, the book by Umezawa.

Under infinitesimal Lorentz transformations the Duffin-
Kemmer field transforms according to

Vi i
be 6O = ¥y G = (1 3050 gnwn(x), (I1.56a)

where
Sulgy = 1(8.8, +Bvﬁu>z—;n’ (1. 56b)
(u,v =1,...,4.
gEm = 1,...,16.)

Harish-Chandra has generalized the Duffin-Kemmer equations
(I1.53) to the field with maximum spin s as follows:
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[Bxax +m]gn¢n(x) = o0, (I1.57a)

where f-matrices satisfy the relation

B, B, ...B B B -5 =0, 1I1.57b
Z M1H2 “23-1[%5 Hogel  M2s “23+l] ( )

(p)

Here A and yy run from 1 to 4, while § and n run from 1 to n, where
n 1is a positive integer which depends upon the spin. In (II.57b) sum
over all permutations of the indices Hy is to be taken.

If we write Q=B3, we find from (II.57b) the relation

2s+l _ _2s-1

Q Q d.

Then we can prove easily that each component of wn in (II.57) satis-
fies the K-G equation, just as in the Duffin-Kemmer case.

The equations (II.57) reduce to the Duffin-Kemmer equations
if we set s=1, n=16. (We actually end up with Proca as well as
K-G fields.) The Dirac field equation is obtained by setting s=%,
n=4. In principle, all higher spin fields can be obtained.

The form of the matrix (Sp.v) which specifies the transforma-
tion property of the Harish-Chandra field under infinitesimal Lorentz
transformations is known for spins up to 3/2 only. For s=0and 1,
it 1s given by (II.56b); for s =% it is given by (II.47c), while for
s=3/2 it is known but is very complicated. The form (II.56b) does
not work for higher spins.

The Harish-Chandra equation follows from the simple
Lagrangian density

£(x) = -§(Bd +m)y.

However, things have not been worked out explicitly for s > 3/2. For
further details of spin 3/2 field we refer the reader to the papers of
K. K. Guptas) and S. N. Gupta.7)

As a final remark, Bhabha has suggested writing the field
equation for arbitrary spin in the form (II.57a) and further demanding
the matrix (S,)) to have the form (II.56b). For s >1 one gets the re-
sult that the individual components of | (x) do not satisfy the K-G
equation. One has to then resort to a multiple mass formulation.
However, we shall not pursue this any further here.



HIGHER SPIN FIELDS 373

H. Some Remarks on Higher Spin Field Formulations and the
Quantization Problem,

‘We have seen that the Klein-Gordon, Dirac, Proca and
Harish-Chandra field equations are easily written in the form (II.1).
‘We would like to be able to do the same for the Bargmann-Wigner,
Pauli-Fierz and Rarita-Schwinger equations. However, we cannot
prove this in general. Therefore, we shall be content here to show
that we can arrive at the form (II.1) for a specific case. For sim-
plicity, let us take the Rarita-Schwinger field for spin 3/2. Sup-
pressing the spinor indices, the appropriate equations are

(ya +m)¢u(x) = 0, (I1.58a)
YHlIIH(X) =0, (I1.58Db)
3,4, &) = 0. (I1.58¢)

We remark here that, in fact, only two of the above equations are in-
dependent. Using the first two we can derive the third. To prove
this, we multiply the second equation by (y3) and then use the com-
mutation relations for the y-matrices and the first two equations. In
detail:

0 = (v ¥,.
= -y, (YN, + B,
= +mYH¢H + Zbuwu, (using (II.58a))

= zauq;u, (using (II.58b))

which proves our assertion.
Next, it can be easily shown that the equations (II.58) can
be put into the form

Ao (@) () = 0, (1r.59a)
where
Mop(@) = (v +mlgy, +2[ V2, + Y25 | - 3[¥,(v - mly, |. (t1.59b)

Lest the reader be misled into believing that in (II.59a) we already



374 Y. TAKAHASHI

have the desired form (II.1), let us rewrite it with the spinor indices
restored:

[Ac,p(a)__]qswsp(x) = 0. (11.59'a)

We indicate briefly how one shows that (II.59) is equivalent to
(I1.58). If we apply 3, to (II.59a) we obtain

[20R, - m(v2)y +3my, |4, = 0,

[
while multiplying (II.59a) by v, gives
= + ’ 3 .
[ 2, mprq;p(x) 0
If we assume m#0, these two equations imply
Yo¥p = 00 3k = 0.
which are just (I1.58b) and (II.58c). Substituting these in (II.59a) we
obtain (II.58a). Therefore, (II.59) and (II.58) are indeed equivalent.
(It seems that the m#0 condition plays a rather important
role always. This is the reason that we have to exclude the Maxwell
field from our discussion.)

In order to bring the Rarita-Schwinger equations into the
Harish-Chandra form, define:

1 1
= - —_ + - —
Thop = “Yubop *3 (Ypﬁcu _YoémD 5 Yo¥uYp - (I.60a)

= -1
Bop = ~(8gp =¥ Yo¥p)- (11.60b)

With these definitions, (II.59) may be rewritten as

7
(Tu ou +m80p> b6 = 0, (II.60c)
One can find a set of matrices B;g having the property:
-1
BTCBCp = 6Tp'

If we multiply (II.60c¢) by BT_OI and define

_1 _
Brolu,op = Pu,ro

the equation (II.60c) becomes
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(Bu,Tpau +m6'rp>aB¢Bp(x) s (1l=,61L)

where we have restored the hitherto suppressed spinor indices. Now
we combine the two indices B,p into a single index n={8p)=1,...,16;
similarly, we write § =(at)=1,...,16. This enables us to write
(II.61) in the Harish-Chandra form

(suau +m §n¢n(x) = 0.

It can be shown that the B's arrived at this way turn out to have the
correct properties appropriate to spin 3/2 Harish-Chandra equation.
So we have succeeded in reducing the Rarita-Schwinger equation for
spin 3/2 into the form (II.1).

We have studied various higher spin field formulations.
One may ask if the various formulations for a given spin are equiva-
lent. It would seem that the answer is yes, though it is not possible
to prove it in general. Anyway, we have shown the equivalence be-
tween the Rarita-Schwinger and the Harish-Chandra equations for
spin 3/2 above. One can also construct the Bargmann-Wigner field
%LBY(X) for spin 3/2 from the Rarita-Schwinger field:

1
¥ i 5[(\(8 -m)YuY4CJaB¢Yu(X), (II.62)

aBy

where C is the charge conjugation matrix:

The field ll!aBY(x) as constructed above can be shown to satisfy the
Bargmann-Wigner equation and to possess the correct symmetry prop-
erty with respect to @ ,B,Y.

A few words on the quantization problem are in order now.
The usual method for quantization is based on the Hamiltonian for-
malism. Since our aim is to evolve a unified approach to quantiza-
tion, the Hamiltonian formalism is not very helpful for the following
reasons:

(1) Straightforward application of the Hamiltonian formalism
works only for the Klein-Gordon field.
As an example, consider the Duffin ~-Kemmer equation:

(B3 +mly(x) = 0, (I1.53a)

B . (I1.53Db)

BUBAB, *BUB\B, = 8B 6 B
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Setting =\ =v=4 in (II.53b) we get

3

84 = 84;

which implies the condition
Fa2 N\ =
BB, 1) 0. (II. 63a)
Next, 1f we set A =v=4, u=1i, we get

8,87 +B28; = B,

which can be written as

2 —
{828, -1} = 0. (11.63b)
The adjoint field §(x) is defined by
Te) = ¥ Gom, (11.64a)
where
n=27-1. (11. 64b)

The Lagrangian density is written as
£ = (B +m(x). (11.65)

Then the canonically conjugate field m(x) is

T = ST = {8,

3y (x)
so that we get the canonical commutation relation
. | 5 3
[ve0. e, | =[vemm]| _ =8 6.
Xo Yo Xo™Yo

If we multiply this by (642-1) and use (II.63a), we get
a2 3
0= \54—1>6 (x-y).

which is a contradiction! (Note that Bf‘% 1 in view of
(I1.63a).)
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The straightforward application of the Hamiltonian for-
malism failed in this case as not all the components of y(x)
are canonically independent. So one must separate the ca-
nonically independent components before applying the
Hamiltonian formalism. Schwinger8) has done this. How-
ever, the procedure is quite complicated and what we finally
obtain is:

(2) Equal time commutators only.
From the relativistic invariance viewpoint it is desirable to
be able to write the commutators for arbitrary times.

We do not wish to imply that the Hamiltonian approach to
quantization is no good. However, one must be careful in its appli-
cation which often turns out to be quite tedious. Besides that, it
yields only equal time commutation relations and does not seem to
lend itself easily to treating fields of arbitrary spin in a unified man-
ner. Because of these reasons we try to find a quantization procedure
without using the canonical formalism. We have already discussed
the basis of our approach in the Introduction. We proceed to discuss
the common properties of the fields for which our approach works.

I. Common Properties of Fleld Equations.

We have already made it plausible that the free field equa-
tions and the supplementary conditions, if any, can be brought into
the form

hog (3 )¢B(x) =0, (Ir.1)

where o ,B run from 1 to n(S) which is a positive integer depending on
the spin associated with the field. From now on we shall assume that
the form (II.1) is true for fields of interest to us—we shall point out
any exceptions as we go along. In matrix notation (II.1) is simply
written as

ARMWEK) = 0. (Ir.1')

Further, we assume A(d) to satisfy the following conditions:
() There exists a non-singular matrix  such that

[na@1t = na(-2).

Making use of this assumption we can construct the
Lagrangian

£ = -dNQRB &),
with
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— il
gx) =9 (xnm.
This Lagrangian leads to the field equation
nA@RN &) = 0,
which is the same as
AW E) =0,
since 1 is non-singular. Of course, other Lagrangians may
be constructed which lead to the same equation of motion.

However, this Lagrangian and the condition (A) imply the
desirable property
£ = Sf + 4-divergence.

Recall that most of the familiar field equations do have these
properties. For example, for the Dirac field we have

A@) = -(v3 +m)
N =Y,
L= J(va +my,
£ =2" -3, by,

The assumption that n exists is equivalent to the assumption
that a Lagrangian exists.
A(3d) is of the form

Mag@® = (Mol + (Mg + (Muguy g% Pyt

h
where . )
N'H1- Mo /g g

is symmetric in all pairs of indices Hpee-bt and independent
of x. We assume there is only a finite number of terms on
the right hand side.

Obviously this form is true for all cases that we know.
From A(3)¢(x) = 0, we should be able to arrive at the Klein-
Gordon equation, (O - m2)¢(x) =0, by a finite number of
operations. We can state this condition in an alternate form:
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The Klein-Gordon divisor d(d) exists such that
A(®)d(d) = d(®)A(R) = O - m2.
The K-G divisor satisfying the above condition must be de-

rivable by a finite number of operations.
For the Dirac case we have

A(3)
d(a)

_(Ya + m)l

-(Yd -m).
For the Duffin-Kemmer equation:

AR) = -(Bd +m),

d@@) = —[# (O -m2) +8d -i (Ba)ZJ ]

The Maxwell field does not satisfy this condition.
(D) [AR).A, 0] = 0, where '

)y g = (xuav - Xv%)%g + 1) yp -
This is just a statement of the Lorentz invariance require-
ment.
Proof:
The field equation A(3)¢ (x) = 0, under infinitesimal
Lorentz transformation, becomes
APRYe'(x') =0,
which is the same as

AQR)g'(x) = 0.

Here
1 —_ / 1_ )
16 = {1+ 5euySyy ) o).
With x'=x+6x, and using Taylor's expansion

060 = (145 iy ) 8 b -6%)

N [“%’("uav -x2, + iSu\))euVJ ¢ (x),
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where we have neglected terms of second order and higher in
€uy- Interms of 4yt

?x) = (1 2 2 pv uv)‘“x

Going back to the transformed field equation

/1 1
0=_1-3 "uveuv) A(a)<1 +5 &wew>¢(x)
= hER () +5e [0 060
=2 uv[A(a) L“\)]q)(x),
so that

[A@ .y, ] =0,

as asserted.
(E) There exists a unitary, symmetric matrix C such that

[naEl" = pclna(-2)c,
where

- { +1 for fields with integer spin,
-1 for fields with half-integer spin.

In the Dirac case C is simply the charge conjugation matrix.
The significance of this condition will become apparent later.
The two-component neutrino does not satisfy this condition
and 1s therefore excluded from our discussion.

If any of these conditions (A)-(E) is not satisfied by a particular field,
then our quantization procedure is not directly applicable to that field.

III. Conservation Laws and the First Identity

In this section we shall discuss the derivation of conserva-
tion laws dir?ctly from the field equations without reference to any
Lagrangian. As we have emphasized earlier, we do have to assume
the existence of a lLagrangian from which the field equations are de-
rivable. This is necessary for the conservation laws to arise from the
invariance properties of the field equations. The explicit form of the
lagrangian need not be known and, indeed, we never use the
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lLagrangian. In our approach the assumption of the existence of a
Lagrangian is expressed by the condition (A) of the last section which
says that a non-singular matrix 7 must exist which has the property

[nA @t = nA(-3). (TIr. 1)

First, we shall present a configuration space version of the general-
ized Ward identity which is a relation between the propagator ars the
vertex. Then we shall make use of this identity in deriving the con-
servation laws.

Recall that A(3) has the form [ condition (B)]:

AE) =AM g+ ARy +A,R 3y + -+ -, (ITI.2a)
then
AD) =A -AS +A §§ .., (111. 2b)

If we define

3 = -3 € -3 % 3 .
TL.-3) = A + A, (3, =3) +A (32, -33, +3.3)) + ,

SR} VoA v
(111.3)
then from (III.2) and (III.3) it easily follows that
(au +au> I (2,-3) = A(@) - M-2). (I11.4)

We shall call (III.4) the "first identity" and it will play an important
role subsequently. For the Dirac field 1"“ = -Yu and the momentum
space form of (III.4) becomes

. C -l -1
l(p_Q)uYu = 5p (©) - 8p (a},

which is the generalized Ward identity. So our first identity is the
configuration space version of the generalized Ward identity for arbi-

trary spin case. This identity basically follows from condition (B).
We list some properties of F“(a ,=0):

T (3,-9) =T (-3 X
Ll(3, 3) u( ), (I11.5)

Iznru(a,-'é)_'l’r = -gwnrv(-a,‘é), (III. 6)
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"L 3,56 = o[t (=33
c e, @ ,-3)C = p[n (-3, ] ] (I11. 7)

The relation (I1I.5) follows directly from (III.4); (III.6) follows from
the condition (A) while (III.7) follows from the condition (E).
Recall that our free field ¢ (x) satisfies the field equation
AR (x) = 0, (I11. 8a)
while the adjoint fleld ¢ (x) =1 (x)n satisfies
FEIA(=3) = 0. (111. 8b)

Suppose that F[x] and G[x] are functionals of ¢,¢ and
their derivatives. Then

3 LG F] = Gy +3 )T F

GA(3)F - GA(-93)F.

If G=3¢, F=¢, then because of (III.8)
3,[eT,21 = o0,

which says that Efff‘uq) is a conserved current. We shall consider two
broad types of situations in which we get conservation laws:

() 1f GIxIAQ)Fx] - GIx]A(-3)F(x] =0, then
Jubx) = GlxIT}, (3, -3)Fx] is the conserved current.
() 1 QLA GIF] - QLA (-3)Fx] =3,K (], then
I“{x) G['x]f' (3,-3)Fx] - Ku[x] is thc conserved
current .

The conserved quantity is written in covariant form as
=0
J d"u(x”u(x)' (111.9)
where o is a space-like surface. Clearly
8 - _
50 @ =2l
Then choose doy = (0,0,0, —id3x) to get

ier x]4(x) (I11.9")
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Now we come to the question as to how one constructs F, G,
Ju. etc. Suppose that the field equation

AR (x) = 0
is invariant under some transformation

¢ x) - o' (x'),

x- x',

so that
AR (x') =0,

which implies

AR)W'(x) = 0.

Since ¢(x) and ¢'(x) both satisfy the free field equation, so does the
quantity 8¢ (x) =¢'(x) -¢ (x). If we take G=¢, F=56¢, we have the
conserved current Jy =§F“6¢ . This construction is, of course, not
unique. There are many other possibilities.

Now we shall consider several examples of conservation
laws. First we take the situations of type (I) where

GA®)F - GA(-3)F = 0. (111.10)

There are two possibilities within this type. The first one is the case
when

AR)E[x] = 0 and GIxIA(-3) = 0, (I11.11)

i.e., the functionals F and G satisfy the free field equations. The
second one is the case when F and G do not satisfy the free field
equations but the weaker condition (III.10) holds. Of the examples
that follow, the first flve satisfy the stronger condition (III.11) while
the sixth example satisfies the weaker condition (III.10). The
seventh and the last example is of the type (II) where

GA(3)F - GA(-3)F = 3Ky - (111.12)

Example (1): Phase transformation.
Suppose the field equation is invariant under infinitesimal
phase transformation
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B (x) - ¢'x") (1 -ia)p ),
P - P x') = (1+ia) ).
If we choose

G~ 8¢ = iap, F ~08p = -lag,

then both (III.10) and (III.11) are satisfied. We get the conserved
current

1,60 = =BT, (3 ,-3)p ).

Example (2): Space-time translation.
Suppose the field equation is invariant under infinitesimal

coordinate translation,
XH._'XI-Il = XU«+€H'
pix) -~ 8'x") = ox),
g~ ¢'(x') = px),
6p(x) = ¢'(x) -9 (x)
= ¢lx-¢) - ¢ (x)
= —e, 3,00,

8 (x) = —eubua-(x) ] —eu_d (X)SM‘
If we take the combination proportional to
BT (3,-0) 69 () = 66 ()T (3,-0)¢ (),
which satisfles (IIT.10) and (ITI.11), and write it as
ty, = -5 P60 (2,-3)(@, -39 (),
where

1 for non-Hermitian flelds (¢ # ¢)
%4 for Hermitian fields (6=9) .,

we can show that t) as defined above is Hermitian and is the usual
energy-momentum tensor to within a divergence term. The continuity
equation
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B)\t)\“(x) =0

expresses the conservation of energy-momentum vector

Pu = erc)\(x)t)\u(x)

. ero (B (IT, (3, -3) (3, - 3,)060).

The factor ~¢/2 can be understood only after quantization has been
carried through.

Example (3): Infinitesimal Lorentz transformation.

The invariance of the field equation under infinitesimal
Lorentz transformation gives
7 i

'\1 + ESIJVQ N @ (x),

¢ (x) — @' (x')

¢ (x) - 5' x') a(X)C 2 Sp\) u\))

if Eﬁb is a scalar. One finds

bp(x) = ¢'(x) - o)
= de,t, 0 &),
8¢ (x) = #'(x) - &)
= -%e B60T,, .
where
Luv = Xuav - x\)aLl + iSuv
{‘pv = —xubv +xvau +isuv'

From these results one can write down the conserved angular momen-
tum density as

M, 00 = ~3e T, (3,34 060

~#ep)L T, (3,-91x),

SRR
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o] = 0.
XMXuv Ge) :
_ I .
Muv = Jdcx(x)M)\uv(x) is conserved.
The factor € is the same as in the previous example.
Example (4): Frequency-dependent phase transformation.
The positive and negative frequency parts of a field satisfy

the same wave equation:

A8 E & = o,

25 o)A (<3) = 0.

Invariance under frequency-dependent infinitesimal phase transforma-
tion implies

o~ 660 = (17 1060,
or

6660 = 7100w, (@ :real).
So we can take, for example,

Fr 1 10, G o),

The currents
369 = 250@ 0, 6,-510 60

(=)

are conserved, that is, dydp = 0. fdou (x)ju(i)(x) are conserved
quantities.

Example (5): Space reflection.
If the field equation is invariant under space reflection,

xu-*xH = %y

then the field transforms according to
sx) - oFx) = Po),

where P 1s some appropriate matrix. We have
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A" F(x")

[=]
[

AR ).
Let us take P=¢P, G=¢. Then the relevant "conserved current” is
. - 4P
Iy x) = ¢ x) l“u(a ,=3) @ " (x)
= F6IT, (3, -0)Po (™).
Then the quantity
-
8 J dc“(X)ju(X)

is conserved.
Recall that in the Dirac case

T, = Yy
P = 1Y4I
WPy = 1y, 460,

so that in this case
§ = -i ‘ero‘_L )} () YuY4¢ (—x*).

If we define
P = ei(1'r/2)Sr

we can show that for the quantized theory
-1 \ P
PYEIPT =1y, ¥ (=x") =¥ &).

It is a peculiar feature of our approach that we have a con-
served current for a discrete symmetry such as space reflection. We
can also write a conserved current assoclated with charge conjuga-
tion. On the other hand, we can also find many other "conserved
currents" by our method which have no physical significance.

The following two examples concern conservation laws for
interacting fields:
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Example (6): Dirac field interacting with an electromagnetic field.,
The field equations are

-AR)Y = (Y3+m)y = ey, AV,
-FA(-3) = Y (-y3+m) = ieTY“Au-

If we choose F=y and G=1U, then (III.11) obviously does not hold.
However, the weaker condition (III.10) does hold:

~GAR)F + GA(=3)F = T(yd+m)y - T (~y3+m)y

ley Y“\I’A‘u -ley YH‘J’AH = 0.
So the conserved current is

= - T _._ = 1 T R
ju ieG u(a ,-9)F 1e¢Y“¢

as we know quite well,

Example (7): Charged scalar field interacting with an electromagnetic
field.
The field equations are:

~m2)p = 2ieA 3 ¢ +e’A A
O -m%¢ = 2ieA d ¢ +e \ A2

P om?) = 210675 A +el0t
' (3 -m*) leg uAu e¢AHAu,

Here

Il
a
1
3
s

A

I‘:a—a.
H V!

1f we choose G=¢1 and F=¢, then both (III.11) and (III.10) are not
satisfied but (III.12) is:
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GAQRIF - GA(-D)F = ¢T (O -m2)p -7 -m?)g

2197 (3, +3,)0 A, =3 [21epTon,],
so that
K, = 2tep’a 9.
Therefore, if we write
i

L= ie[eru(a,_-'é)}* - Ku:l

iefoT(0,-3,)8 - 21e8"au0 ],

we have the well-known conserved current for this case,

Since the interaction of a matter field with the electromagnetic
field is introduced by the replacements

—9 -1
a“ au ie Au

- — .
au —> au + 1eALl
in the free field equations, the first identity can be generalized to the
case of matter fields interacting with the electromagnetic field:

(au+'a'u)ru(a -ieA, -3 -ieA) = A(d-ieA) - A(-3 - ieA).

This is a further generalization of the generalized Ward identity in
the configuration space.

IV. The Klein-Gordon Divisor and the Second Identity

The Klein-Gordon divisor, d(3), is defined by

2

A@R)A(3) = dAPB) = O-m". (Iv.1)

‘We shall call the relation (IV.1) the second identity.
From the conditions (A) and (E) [see Section II] on A(d) and
the second identity, we obtain

[a@m™]" = ac-am7L, (Iv.2)
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[d(a)n‘ljt = pc'ld(-a)n'lc. (1v.3)

In our formalism, when considering particular cases, knowl-
edge of the explicit form of d(3) is required. So we would like to dis-
cuss methods of obtaining d(3) when A(3) is known:

The most naive way 1s to assume

d(d) = do +duau +duvauav + 0., (Iv. 4)

and substitute this in the second identity and determine
do. d“, duv . ... by equating coefficients on both sides for each par-
ticular derivative term. As an example, consider the Dirac case:

A(®) = -(yd +m), (v.s)
so we write d(9) as

d(d3) =a +byd +cl +

Then

(O -m2) = A(d)d(3)

-am - @+mb)y3d - (b+cm)d + + *

so that

and we get
d(d) = -(yd -m). (Iv.6)
As another example, consider the Proca field {spin 1):

Nyp(d) = @ -m*)og 5 -353,, (v.7)

and we write

dp)\(a) = aép)\ +b6p)\D +capa)\ +

Then
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@ - 26 = A, @), ()

'mzaéc)\ +a(db5) -349)

-mz(bec'xu+cacak)+- ce,

on equating coefficients

-m2a=-m2 — a=1
a-bm2=1—> b=0
-a-cm?2 =0 — c=_——lE.
m
We get
dpy (3) = 8 -;17 JO (v.8)

The nalve method discussed above, even though of general
applicability, can get very tedious in many cases. On the other hand,
it 1s possible to invent tricks for individual cases to make the deri-
vation of d(d) easier. We consider a few typical cases.

First consider the Harish-Chandra case for which

A(9)

-(Byd) *+m) = -(Q +m),
(Iv.9)
Q= B9y -
Recall that from the relation (II.57b) for the B-matrices, it follows
that (s =maximum spin)

2s+1

@) = D(Ql)zs'l, (1v.10")

or, equivalently,
2 2s-1"_ -
(@-@} )/ =o. (V. 10)

Now
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d() = (D - m2> 2y
= '(G = le * le B m2><Q1 N "D—l
= '(D B Q12><Q1 * m>_l '(le - m2><Q1 * m>_l

= -(@-o/ (0, +m ™ - (o -m)(Qy +m)(Q; +m)

RGEDRIGE o2><1+"1 i

=m-Q - (D Qz>[l—Q1+ i
REACOREN

<m0y 3@-el)- R (3

. 1)25 2<Q1 25~ 2:\’

since

G- - o

(iv.11)

for L= 2s-1 because of (IV.10). Note that the highest order deriva-

tive in the expression (IV.11) for d{3) is 328,

We apply (IV.11) to the Duffin-Kemmer case, for which

3 _
Q]. - DQll
that is to say s =1. We obtain
- 1 2
d@) =m-Q, -z (@-0,).

To check {IV.13), we have

(Iv.12)

(Iv.13)
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~(m+ap[m-0,- 50 - <))
n”+ Q)+ (m+0, )@ o))
n’+ Q) +(3-0)) + 5 o3 -ep)

=I:l—m2.

=
—~
X
~
Q.
—
%
-~
[

Il

]

Consider the case where A(3) takes the form

A@R) = SR TN -ICNY (1v.14)
o /\0+Q2, (Iv.1l4a)
Q, = Awa“av. (1Iv.14b)

We have the identity

B e =<I\O+Q2> —<m2+AO>+<D—Q2>. (Iv.15)

Now we can write

4@ =(@-n*) 1" @)
! '<m2 +Ao><Ao+ Qz>-1 +<':’ - Qz)(’\o * Q2>_1

! _(mz +Ao>"c:l[l _Ao—lQZ & S ('I)LH(AO_IQz)LHJ

YCEN IS PR SRTS o)
(Iv.16)

assuming that the highest derivative appearing in d(3) is of order
2(L+1), i.e.,

a(d) ~ 2 2(L+1).

In our previous example we had found that
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a(d) ~ 328, (Iv.17)

SO we conjecture now
L=s-1, (Iv.18)
The relation (IV.18) can at best be regarded as an empirical law and it

seems to hold when A(3) has the form (IV.14). Consider, for in-
stance, the Proca (spin 1) case:

Aop@) = (D -m?)85, =253, (1v.19)
which implies
(Qz)crp =05, =3,9,, (Iv.19a)
i)l += =mb (IV.19b)
s oo .

Since s=1, we set L.=0 in (IV,16) to obtain

o - [mPeagagta- AO_IQZ)Jp)\ +[@-gnt] o

(1v.20)

The second term in the right hand side of (IV.20) vanishes because
l\0+m2 =0 from (IV.19b). Also we have

so the third term can be simplified as

[(O-Qn5t] s

1
- {({0O-Qy)
mz 2p)\

=" T2 %%
m

where in the last step we made use of (IV.19a). We get

dpk (3) = 8

1
oA _mz prk, (1v.21)

a result which we obtained in (IV.8) using a different method.
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Finally, if A(3) has the form
M) = Mg+ A3, +A 22, (Iv.22)

we are not able to find a general formula for d(3) and also the em-
pirical rule d(3)~d 25 does not hold.
Now we discuss a few important properties of the K-G divisor:
(@) If

AR) = -(B3 +m) = -(Q) +m) (1v.23a)
then we have
a@d8 Yx-y) = 2m a@ ' ) ix-y), (1v.23b)
on the mass shell. Here Al )(x-y) is any solution of the

K-G equation.
Proof:

-, +md(@) 8 Yx-y) = @ -m?) e\ Vx-y)
= 0'
which implies

Q,d@) ! Nx-y) = -m a(®)a N x-y). (V. 24)

Now making use of (IVv.11) and (IV.24), we have

a@)d@ 8¢ x-y)

= [m-Q1+Iln(D-Q12){1 —Q—ml TNy +(—1)ZS'2(Q—,DZS'Z}]
- a@ 8l pemy)

=[m+m+%l(|:| —mZ){2s—1}]d(a)A( ) oe-y)

= [om + £ (@ n2)] a@) 80 ) ix-y)

2m d(3) A( )(x—y),

since A( )(x—y) satisfies the K-G equation.
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(b) 1f
AQR) = A +Qy, Qp = ApO 0y (1v.25a)
then

2

4@ 8 x=y) = -m Ac:ld(a)A( ) -y) (IV.. 25b)

on the mass shell. Here again A( )(x—y) is any solution
of the Klein-Gordon equation.
Proof of (IV.25) is similar to that of (IV.23), and we leave
it to the reader.

(c) Because of the second identity

A(®)d(3) =0 - m?2,
it is very simple to construct the Green function corre-
sponding to any field equation.
Suppose Ag(x-y) is the Green function appropriate to the
K-G equation:
4
@ - m?) g be-y) = 87 k-y). (1v. 26)
We define, for the case under consideration,

Ggg (x-y) = dgg(®) b x-y). (v.27)

Then this G(x-y) is indeed the appropriate Green function
because

AR Gl-y) = 6% @-y).

V. Normalization and Closure Conditions for the Wave Functions
In this section we want to discuss the c-number solutions of

ARu&x) = 0. (v.1)

We have already learned how to calculate r“(a,-%) and d(d) when
A(d) is given. Making use of these quantities we shall obtain nor-
malization and closure conditions for wave functions corresponding to
arbitrary spin in a compact, universal form.

Since the equation (V.1) is homogeneous, normalization is at
our disposal. As the wave functions satisfy the Klein-Gordon equa-
tion also, decomposition into positive and negative frequencies is
Lorentz invariant. We shall denote the positive frequency wave
functions by u(x) and the negative frequency wave functions by v(x).
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Let us discuss the positive frequency wave functions first.
For the sake of simplicity we take the momentum representation and
write our wave functions as uy"/(x), with

(

w g = w60, (v. 2a)

where

1 eiE.f-}i -1w (k)t
(21_|_)3/2

wk) = + -!E2+m2 . (V.2¢)

The superscript r is the spin orientation or helicity. We have

£, x) = (V.2b)

) = nFuP g (v.3)
where h is the helicity operator
h=(k-8)/1k|. (v.4)

Here S is the spin operator with [recall (11.38)]

Sl = 323, SZ = S31' S3 = SlZ’ v.5)
so that (V.4) may be written as
h =L k.S (.6)
2[k| CUKjk ‘
From (V.1) and (V.2) it follows that
Ak ) = 0. v.7)
We claim that
[A(ik),h] = 0. (v.8)

Proof: From the Lorentz invariance requirement we have
[A@) 2,1 = 0,

which, in momentum space, becomes
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[A(ik) kuak\, l\)m+is J = 0. v.9)
Let us set p=j, v=k:
[A(ik) (kl T kak +1s]k] = 0. v.9")
Note that
le i( j 9 BT k aaT]> e v.10)

because of the anti-symmetry property of €jjk- Therefore, multiplying
(vV.9') by

-1
— k ;
z|~15| €ijk i

and making use of (V.10) and (V.6), we obtain
[A@k),h] =0,

as we had claimed,
We define the adjoint wave function by

.y _ . Of
uy x) = Uy x)n. v.11)
Now consider the quantity

e = = (a0 38000 6,900, v

First we show that it vanishes for k'#k or r'#r. From (V.2b) we
have

12,060 = k06, (v.13a)

-19 u(r )

x) = '"(r ). (V.13b)
If we multiply (V.13a) by
5560, (2,-9)

from the left and (V.13b) by
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5y, @)
I, (0,-3)u, ")
from the right and add the two relations, we obtain

(e ) 58060, 0,910 P 6

= 12, [T8 %01, 0.3 0] (v.14)

From the last relation we easily deduce
1 (r r) —=(r") 5. @
G owX ()3, T 60Ty (@ -3 w6 | (v.15)

In Appendix A we have shown that

ero)\(x)a“f(x) = erou(x)a)\f(x). (v.16)

In proving (V.16) one has to assume that f(x)- 0 for |35‘|-'°° . This is
not true for the term in square brackets in (V.15) with our plane-wave
wave functions. However, in a more careful treatment one would use
wave packets rather than plane waves so that the condition of
vanishing at large distances would be satisfied. Therefore, the use
of (V.16) in (V.15) is quite justified. We obtain

G )5 = Jaout0, [58%0r, 0,910 6] = o,

where we make use of the first identity in the last step. Therefore,
we have the result

(r r) _

kk 0 if k' # k. v.17)

{r'r)

Next we want to show that Nk vanishes also when r'#r. First,
note that

eroX ()£, (x)3, ) () = —erc)\ (I}, 63 £, (), (v.18)

which means that in (V.12) we can replace -3 by 3 or vice versa:
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wi = = a0, 5500 0,80 b0

= -1 [, 58 0R, 0w

\

= -i [ do, @ )(x)R (- B)u(r)(x)

where

R\@) = T)(3,) = aii(;—kl
A | k=3

(v.12)

(v.19a)

(V.19b)

(V.19c)

In order to study the dependence on r,r' we set k=k'=0 and drop

the subscript k on the wave functions for convenience.

S 34 (r) (x) = ru (r) =),

(Sl+isz)u(r)(X) = otr,su" o,
81-18u 60 = gte-1, 50 Vo),
E(r)(x)(slﬁsz) = g(r-1 S)u(]r 1)(x)
78 60(5,-185) = g, Vo),

E(r) x)s g =T ﬁ(r) (x),

We know

where
glr,s) =/s(s+l) - r(r+l) ,
and r takes the values -s, -s+1,-+:,5-1,s. In a general coordinate

system we have from Lorentz invariance
[A(k), 23] = 0.

If we apply a/Bik4 to this relation, we get
[R k) 25 = 0.

which, in the frame where L<=0, takes the form
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ER4(ik) ,sk] =0,

Choose k=3 and sandwich this relation between ﬁ'(r')(x) and q(r)(x):

0 = 50, 1008 ,u 7 60 - T 60s R, @00 D0

= 605 por (110 u P g

= 7 R, @00 60 ’ V. 20)
(r r

That N is independent of 0 can be easily shown by applying
6/6c(x}( to (V.12) and making use of the first identity. Choosing the
X, = constant surface,

d0>\ x) = (0,0,0,—1d3x) i

we have
o Pl g &Y @)
Nyw ' = - J d™x T, (x)RLl(B)uk x)
=0 if r'#r, v.21)
from (V.20). (
Next, we show that Nkr 0 '1s independent of r. From

(8, +18,) u(r)(x) = gfr,s) u(r+1)(X) .

We have
0,97 o0r, 00w Ve0 = T oor, (215,418 u 6o
- 76 g (81+iS,)R, (3) w® )
= 96,9 (X)RK(B)u(r) ).
Hence, we obtain

Finally we have to show that Nk(lg) is a real number. From
Eq. (V.12):
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<N](:I';) i - '.Jr do)k* (X) u]ir)(X)T I:n r)\(s ‘ _a)_] f uk(lr')(x) '

where we have replaced ma,—'S) by 1")\(.5,-8) because the wave
function originally standing to the right (left) now stands to the left
(right). Recalling that

do')\*(x) gXVdOV(X)’

[n0,G.-)]" nT,(-3,43),

_gx“

T (-2, T (3,-3),
H( d) u( )

we get immediately

('r) 1% _ __rr'
[Nk'kJ g U v.22)
which implies
N s real. (v.23)

kk

In view of (V.17), (V.21) and (V.23) we can write the normalization
condition for the positive frequency wave functions as

-i erc)\ (x)H]ff')(x)r)\(a,—S)uf)(x) =5 .8 (k-k!). (v.24)

Other equivalent forms are

-t [ a0, 0T oom, 00 = 5o ek, (v.24)
and
-t [0, 0078 d0my 31w = 5o ek, v.24")

where Ry(9) is given by (V.19c).
We apply (V.24) to the K-G and Dirac cases. For the K-G
case,

(0 -m?)ux) = 0,
r _4— - _0—
)\(a, 3) ak a)\,

and there is no spin. We get



HIGHER SPIN FIELDS 403

-1 erox(x)ak,(x)(ax-sx)uk(x) = 6(k-k'),

which is the familiar orthonormality relation for the K-G wave func-
tions.
For the Dirac case

-(yd +m)ulx) = 0,
i.e.,

AQR) =-(yd+m),

then

1—‘“ = _‘Y“l

so we obtain

")

eovuPeo = 5k,

To examine this more closely, choose the x,=constant surface to get
r 3 —-(rl) (I') _ _ 1
J d x T, (X)Y4Uk x) = 6rr'6 (]ﬁ k')

or

')t

Jaten Mo = o sk,

which is correct.

We should point out here that the normalization condition
fixes the sign of A(3), and therefore that of T}, and d(3), which the
homogeneous wave equation does not. For example, if we write for
the Dirac case

A(R) = yd +m,

we get the wrong result
(3, .t B '
J d'xu (x)ux) = arr‘BQE ,.]fv)‘

Now we prove the closure condition

b [k uPeife = weee-y. (v.25)
T
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+
Since the quantity id{c‘l)A( )(x— ) has only positive frequen-
cies, we can expand it in terms of uk{r (x)'s:

4@ s ey) = Y [¥kud oo, (v.26)

r

If we apply

!

-t | agy 0w, 0,-5)

to (V.26) and make use of (V.24), we get

o) = [aowufleor @, -5ae ey, .27

One easily shows that this relation is independent of ¢ by applying
8/60(x). One makes use of the first identity and the equations of
motion:

Ek(r)(x) A(-3)
@ - m2)aP-y) = a@aE) s M-y = 0.

We shall evaluate (v.27) at the surface x5=y,. First replace
[ {o -a) by Ry (3) as we did in (V. 19a). We need to calculate
Rl(a}d(a) Starting with

AR)d(3) =0 - m?,

we get
Aik)d(ik) = -(k2+ m2), (v.28)

Applying 3 /3ik) to (V.28),

R, (i) (ik) + (1K) %ﬁﬁ = 2k,

or

R, )d(3) = [Zlk - A(iK) _‘i-f(&J . (v.29)

We can now evaluate Ckr)(y) explicitly.
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oy = [ 0,07 P r, @ra@s M ieoy)
e

k
o Yo
=T T ; 10y 2d (ik) +
= ] dcy)\(x)uk (X)[Zlk)\ - A(ik) a1k, ]ik)\=a)\=—3)\A( )(x—y).
X0 Yo

But Ekr)(x)A(ik)=0, since Elgr)(x)/\(-g) = 0. Therefore,

cf)(y) = Jr do 4(x)ﬁér)(x)26 4A(+)(x—y)

X0~ Yo

= -2 JF a0 ﬁ]fr)(x)[a—i—o A(+) (x—y)]

Xo=Yo
—(r
B u]f )(y), (v.30)
where we have made use of the well-known result
3 +
=y a¢ )(x-y) = -%8(x-y). (v.31)
X0 . -
Xo=Yo

Substituting (V.30) in (V.26) we get the closure condition (V.25).
The negative frequency solutions are given by

*
v (r)(X) = Cu ) (), (V.32a)
k k
with the inverse transformation

CVIE”*(X) = u, ). (V.32b)

Using the transformation properties of the various quantities with re—
spect to charge conjugation, one can easily write the normalization
and closure conditions for the negative frequency solutions.

From the relation

L 3,3 T (3,-3)]"
C I (,-3)C = pg, [0, (.-3)] (v.33)
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the relations (V.32) and (V.24), we get the normalization condition

r')

-t [0, 607, 60m, 0,819, = o080k, (v.34)

where FX(B,-S) may be replaced as before. Recall

+1 for integer spin
-1 for half-integer spin.

The closure condition turns out to be

z er3k vk(r)(x) vk‘r)(y) = -ipd(a)A(')(x—y), (v.35)

r

as the reader can readily prove. We can combine (V.25) and (V.35)
to read

d e u,) ) - pvk(r)(x)v]fr)(y)} = 14()Alk-y). (V.36)

VI. Quantization

In this section we shall present a quantization procedure
which does not make use of the canonical formalism.

First, we discuss the raising and lowering operators. Next,
we carry out the quantization procedure and in this connection we
establish the relation between spin and statistics. Simple applica-
tions are discussed. Finally, we discuss the uniqueness of P“ and

M-

A. Raising and Lowering Operators.
Consider operators a,a’t satisfying

(a,at] = aat -a%ta = 1. (vV1.1)
For this case everyone knows that the operator
N = afa (VI.2)

has the eigenvalues 0,1,2,... and is therefore called the number
operator. We shall briefly go through the proof as it is instructive.
This is just a mathematical exercise and no physics is involved.
The operator N is Hermitian, N=nt , so its eigenvalues are
real. Suppose | is an elgenstate of N with the eigenvalue X, i.e.,
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Ny = Ay,

where A is real. Then

W Ny) = My.v),

and, again

(W, N9 = (y,aTay) =@y,a¥),

so that
@@y,ay) =2y, ¥).

Since the norm of a state is positive definite, it follows that A is
non-negative. The statement

N=nNT=20 (VI.3)
summarizes the fact that N is Hermitian and its eigenvalues are non-
negative real numbers. We have yet to show that the eigenvalues are
integers. We work in a representation where N is diagonal and de-
note by In) the eigenstate corresponding to the eigenvalue n, thus

N|n) = n|n). (Vi.4)

Consider the state a|n), then

Na|n) = ataa|n)

@@at-1)aln)

aN|n) -a|n) = (n-1l)a|n), (VI.5)

that is to say that a{n) is also an eigenstate of N with the eigen-
value (n-1). By repeating this process, we obtain

Na'|ny = (n-t)a’|n). (VI.6)

According to (VI.3), the eigenvalue {(n-4) cannot be negative; there-
fore, we must have

a{'ln) =0 for 4>n. (V1.7)
In other words, if £, is the integer satisfying

n-1<4,<n, (Vi.8a)
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then

{’O

a%ln) # o0, (VI.8b)

but
a{’°+1|n) = 0. (VI.8¢c)

Applying at to the last relation, we have

0 = aTa&oﬂln) = NaLoln) = (n—’fao)a{'°|n) ,

which leads to
n=4_, (V1.8d)
in view of (VI.8b). Therefore, n is restricted to integral values only,

including zero. Thus the eigenstates are |0),[1), ...,|n),.... The
state |0) satisfies

aloy =0, (VI.9a)

Njoy = 0. (VI.9b)

Using the commutation relation (VI.1), one easily establishes the
following:

Nat|0) = & |0y, (VI.10a)
N@aH 0y = n@hH™ o) (VI.10b)
(aN] = a, (VI.1la)
[af N = -a'. (VI.11b)

If we sandwich the relations (VI.11) between states (n'| and [ nY,
we obtain

(n'|a]n) (n-1-n') = 0,

(n'|aT|n)(n+1—n') 0,

so that (n'|a|n) survives only when n'=n-1, and {(n'laf|n) survives
only when n'=n+l. If we write
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aln} =/n|n-1), (Vvi.12a)
afln) = ./n+l|n+l), (vi.12b)

it can easily be checked that these relations are consistent with all
the equations above. In an obvious matrix notation we can write the
lowering and raising operators as

(01 0 000 ...
00/2 0 O
1000 43O
a=l000 0 4 (VI.13a)
0
and
0 0 0 0 0.
1 0 0 0
0 /2 0 0
t = 5 VI.13b
=0 0o v3 0 . (atsh)
0 0 0
0
In a similar fashion we can handle the operators a ,a* satis-
fying
{a,a*} = aal &+ aTa =1, (VI.1l4a)
{a,a} = aa + aa = 0. (VI.14b)
In this case we find
N = NJr =aa=0 o l. (VI.15)

The raising and lowering operators characterized by (VI.1) or
(VI.14) are not the only such operators. However, we shall not dis-
cuss the other possibilities here.

Now we are ready to quantize.
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B. Quantization.
We shall regard the Heisenberg equation of motion,

) iha—gt@ =[P(t),H:‘, (VI.16)

as the most fundamental equation in quantized field theory. Here F(t)
is any dynamical variable.

Let us explain why we consider (VI.16) so fundamental. Since
rT(t) is also a dynamical variable, it too satisfies (VI.16), i.e.,

I

B[]

where we have set h=1. If we take the Hermitian conjugate of
(VI.16), we obtain

i ap_;ftm = [P*(t), H*_].

From these two equations we get
I:PT @), H-H*] =0,
which implies
.'.

H-H = c-number.

This means that H is essentially Hermitian. Then we can diagonal-
ize H so that

H|E) = E|B, (VI.17)

and the eigenvalue E is real. If we sandwich the equation (VI.16)
between (E'| and |E), we get the relation

i-aa—t (E'|F@W)|E) = (E-E'WE'|FW|E. (VI.18)
If we introduce the Fourier transform

(E'|F)|E) = erwe_iwt(E'lf(w)lE), (VI.19)

then (VI.18) yields

w =E-E', (VI.20)
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since T 1is arbitrary. This is just Bohr's frequency-energy relation
(with h=1), if we can interpret E as energy. Since Bohr's frequency-
energy relation has a firm experimental basis, it is eminently reason-
able to regard (VI.16) as a most fundamental equation.

There are a number of possible interpretations of the equation

1—8.6%9 = [F(t),H]. (VI.16)

For example:
(i) The time-evolution of F(t) and H are known, then the
above equation will determine the commutation relations
of F{t).
(ii) The commutation relations and H are known, then the
above equation will determine the time-evolution of F(t).
However, the interpretation that we shall use differs from the above
two and we state it as
(iii) From the knowledge of the time-evolution of F(t), the
commutation relations as well as H can be determined.
According to this interpretation there are too many unknowns in the
equation. As a consequence, there exist a number of possible quan-
tizations. For example, one can include parastatistics and hyper-
quantization within the framework of this approach. We shall not
discuss parastatistics and hyperquantization in this course, however.
Suffice it to say that this approach is much more flexible than the
canonical formalism.
The relativistic generalization of (VI.16) is

—iB“P(x) = [F&).By]1, (vi.21)
as a particular case of which we have

13,8 (x) = [9(x),P,]. (VI.22)
Since b“ is a four-vector, Py must be a four-vector too. This is not

a trivial statement in field theory as we shall see later. So, we try
to find the commutation relations and Py when

AR)x) =10 (VI.23)

is given.

As we have mentioned earlier, when we take the interpreta-
tion (iii) for the equation (VI.16), there are too many unknowns. In
order to arrive at a physically meaningful theory, we restrict our-
selves to those solutions only which obey the following conditions:
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1) P, and H=-iP, are Hermitian.

2) H 1s non-negative (for it to be the energy).

3) Only bosons and fermions exist in nature. (This excludes
the parastatistical particles from our consideration.)

4) P, is a four-vector.

5) All physical quantities at finite distance exterior to the
null-cone are commutative. (This is just microcausality.)

We expand ¢ (x) in terms of c-number wave functions as

Bx) = z Jr dsk{a(r)(k)uér)(x) + b(r)1L (k)vlfr)(x)} , (VI.24)
r

where, at this stage, a(‘”)(k) and b(r)T(k) are just the relevant expan-
sion coefficients. Then

13 b6) =) Jr 6k k, {aP V) - @ v P}, w1.25)

T
due to

0 = k0%,

12,90 = -, 0.

If we substitute (VI.24) and (VI.25) in (VI.22), we get

[a(r)(k) 'Pu] = kua(r)(k), (V1.26a)

[b (rﬁ(k),PuJ -kub(r)f(k) . (VI.26b)

If we make the guess

3 t t
) [ @, {20 w020 + o0 00}, w1.27)

which 1s consistent with conditions 1) and 2), then the possibilities
are

s _é(r)(k)a(rl)f(k') - ptal)t (k')a(r) (k)

Otk -k, (vI.28a)

b(r)(k)b(r')* k") - p'b(r').r(k')b(r)(k) =8 .8 (k~k"), (VI.28b)
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where p' may be either +1 or -1. There are other possibilities but
they are excluded by the condition 3). (The reader interested in
these other possibilities is referred to the paper by Kamefuchi and
Takahashi.lo)) Here p' specifies the statistics:

v - [ 1 for bosons

-1 for fermions. (V1.28¢)
Since P, has the eigenvalues
- 01112|-|- fOr p'=
Pp‘ kp‘ 0,1 for p'= _1} (v1.29)

for each mode, k; is interpreted as the energy-momentum of indi-
vidual particles. In particular, we have ko=«/._l§ +m? so that m is
indeed the mass and the relativistic relation between energy and mo-
mentum is satisfled. The origin of this relationship can be traced to

@ - m2)gtx) = 0.

Next we want to study the commutation relation of ¢(x). First
note that

8T

1|

é(y)

z JF d3k{a O Ek(r)(y) + b(r)(k)vk(r) (y)} . (V1. 30)
r

Then from (VI.26), (VI.30) and (VI.28) one shows

$(x)8(y) - p'T (v) B(x)

- ¥ I a®e{uPem o - ovPear P} (VL.31)
r

Now we make use of the closure conditions (V.25) and (V.35) to re-
write this as

o) Bly) - p' P (y)Bx)

1a(3) 8 Pix-y) + ppr 1a(0) 4 T ix-y)

10@ {8 tey) + 0018 Dx-i} v1.32)
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where p specifies the spin:

T { 1 when spin is an integer

-1 when spin is a half-integer. (V1.33)

In order for the condition 5) to be satisfied, the right-hand side of
(VI.32) must be zero for (x-y) space-like. For this to be true, we
must have pp'=+1, i.e.,

p' = p, (VI.34)

which is the relation between spin and statistics. Then we obtain
the commutation relation

p)F(y) - p'oly) o (x) = 1d(d)A(x-y). (VI.35)
We assume p'=p from now on,

We want to see how Py looks in configuration space. Con-
sider the quantity

-1 [ do, GIBLIT, (0, -8)(0,,-5,)06e) .

If we make use of the expansions (VI.24) and (VI.30) and the normali-
zation conditions for the c-number wave functions, we find

-1 a0, 60760 T, (0, -5)(3,75,) 260

2i z ersk k“{a(r)f(k)a(r)(k) +p b(r)(k)b(r)f(k)}

r

21 P“ + C-number ;

therefore, we can write

P, = - ero)\a(x)l")\(a,—g)(au—gu)qﬁ(x)

(V1.36)
+1 Jrdc)\<0|¢7(x)1“)\(8,-S)(BH-SHM(X)l 0.

Again, by making use of the expansions for ¢(x) and @{x) and the
normalization conditions for the C-number wave functions, one can
easily verify the following expressions for the lowering and raising
operators:
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ay = - Jr a0, 6T, 0, -3)9 ), (VI.37a)
2@ = 4 ercx(x)a(x)rx(a,-'é)uf)(x), (VI.37b)
b = 1o erc)\(x)a(x)I‘)\(a,—S)vk(r)(x), (VI.37¢)
p@t(k) = ip ercx(x)vlir)(x)r)\(a,—S)¢(x). (V1.37d)

If we substitute the above expressions for a(r)(k) and b(r)f(k) back
into

060 = | a*k{ 0,020 +v 00" 00},
r

and make use of the closure conditions, we obtain
x) = ero)\\(x'?)'d(a) AMx-x")T} (3", =3")p(x") , (VI. 38)

and a similar relation for ¢{x). Note that for the Klein-Gordon case,

d(B)=‘ ._}
L, (3, -3)=23) -3, J "

(VI.38) reduces to (II.17), and for the Dirac case,

d(d) = —(Yb—m)}
L@, -3) = Y, 2

it reduces to (II.32), as one should expect.
Now we indicate a few applications briefly. One easily
shows that

(r)

(0], 0x) Ba(y)| 0) z dku (x)u 2y)
r

1dg 5 (3)6M-y) (VI.39)

and, similarly,
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01742 601 0 = ~1pdy 528 ey, (V1.39b)

From these
(0194 Fgly) + 0By 0| 00 = dyg@) 6P ex-y), (VI.40a)
where
8Weo = 1{a% 60 -6} (V1. 40b)
Next

<0] T[9g,0), Fg (v) ] 0}

8(xy-¥o)(0le e, ()85 ()| 0 + p 8 (y,—x )<0|Bg(y) dqx)| 0)

18.6c5-) dop® A c-y) = 160057 ) dp2) 8 c-y)

1640 8 6e-y) Blx=y,0) - 1lg3) 8 (ey) By ~x)

+ 1 8t,=vo) « dggf® |8c-y) = 18 (ygx), dag@] o xy)

1daﬁ (B)AC(X_Y) + NaB (X'Y): (VI.41a)

where
b6 = 8™ ) - 0(x)aTho0,  wr.aip)
and

Nop ) = 1[6 (XO)’d“B(a):l 8 —,il:e(_xo)'donﬁ(a):l A(_)(x)

= 2o be) . dggl@ |86 (VI.41c)

It can be shown thatll)

Nggl) = 6%, (v1.41c")
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Recall that the K-G divisor for the Duffin-Kemmer case is
= X2 .2 Ll a7
d@) = -[5@-m) +Q -5/ ].
It turns out that, in general, one has
a(@) = d'(@) +d"(d) (@ - m2). (VI.42)

Then the commutation relation may be written

[cb ), (IT(Y)] .

1d(3) A (x-y)

1d' (3) & (x-y),

that is to say, d"(3) does not contribute to the commutation relation.
However, the Green function is

OIT[peT ] 10 = 14E)Ab-y) + Nix-y)

id'(3) A ,(x-y) + N'(x-y),
where

N'G) = [ebkg). d'()|bGemy).

In the Yang-Feldman formalism the interaction Hamiltonian has the
form

Kint = sint + (term depending upon the normal nu).

In the S-matrix the normal-dependent term of the interaction Hamil-
tonian cancels N but not N'. In other words, we can neglect the
normal-dependent term and N at the same time. In the Feynman rule
we have to put

1d(3) 8, e-y)

and not
10" (3) &, (x-y),
because, of the two, only the former is the appropriate Green func-

tion. We refer the reader to the works of Katayamall and Umezawaz)
for the details.



418 Y. TAKAHASHI

Now we shall prove the unigqueness of PH and Myy when the
commutation relation is given.

C. Uniqueness of P, and Myy.
Since the commutation relation

[06). Bly) |, = 1d(2) bx-y)

is relativistically invariant, i{.e.,

[0 6, By, = 163" 86c'-y")
it implies that

[0, 7" ()], = 100) 8 c-y). (V1. 43)
Now we can write

. _ -1
$'(x) = Gy ¢(X)GL, (VI.44)

where for an infinitesimal Lorentz transformation we have

i
=1+3

0]
]

MMVGHV _iPHSIJ.’ (VI.45a)

=1 _4i
Gl = 1-5Me., tiRe, . (VI.45b)
From (VI.44) and (VI.45) we get
» i i i
B') = 86 +5[060, My, |epy - 1[26) B ey (1.46)
On the other hand,
) = 1 .
#i) = [1+58,,0,,]06, (v1.47a)
where 2

xL'i =x, te X, T€ (VI.47b)

M KV M

This yields

360 = D) + 54,8 00, - 3,0 604, (V1. 48)
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Comparison of (VI.46) and (VI.48) gives
-12,0() = [@ )2, ], (VI. 49)
and

~1b 06 = [o60,M ] (v1.50)

From the integrability condition of Lorentz transformations, we have

[r.2] = 0. (VI.51)

[Po My = (B 0R, -8Ry (V1.52)
and

r .
MM ] = (M +8 My, + 8 My, + 8 My ). (VIL53)

Now we show that P, and M, are unique when the commutation re-
lation is given. The proof of the theorem is based on the assumption
that ¢(x) forms an irreducible ring, i.e., any quantity that commutes
with ¢(x) and @(x) at all times is a C-number.

If there are two Pu's , let us call them Pu(l) and Ppgz) , then

[060, 2. V]

[260, 2.2].

-13,, ¢(x)

—ia“¢(x)
sa that
. (1) (@)
0 =[ot.p, 7 -p," ],
which implies that

=C , (v1.54)

where C, is a C-number.
Similarly, if there are two M
C-number

“v's , they also differ by a

w1 _ 22 o o

n L oy (VI.55)
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Now

U R EAEON

=i(d +
i( chuK GXuCKv élcv A GKu vk)

and, again,

1\, @) (@) 4, (2)
_[M)\K' _I [MXK.' KV

I:M 1) _ (2)1 (I)J I:M @) v (1)

o1 [ )

From (VI.56) and (VI.57) one concludes that

Cuv =0,

so that M, 1s unique. Next,

[Px(l)’ qu = 1<6v)\ u(l) )\uP\()l

(2) - (2) (2
[P 'Muv i<6vx o _ékupv

and

Subtracting the second relation from the first, we get

s [Cu’Muv:l = i<6vxcu_5xucv C

which implies

so that Pu is also unique.

(V1.56)

(VI.57)

(vI.58)

(V1.59)
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Appendix A. Notation and Conventions

In this course we use the so-called natural units in which
h=c=1. Greek letters, when employed as tensor indices, run from 1
to 4, while Latin letters similarly employed signify space components
only and run from 1 to 3. In our convention the fourth component of a
four-vector is pure imaginary, thus

XIJ' 3 ('v}‘slixo)l i-e-, X4=ixo,

where x, is real. Unless explicitly stated otherwise, sum over re-
peated Indices is to be understood, e.g.,

P,Q, = B'Q.
PuQu = BrQ+PQp = PrQ-PQ,.

As typical examples of volume elements, we have

) 4 4
q‘)’cv = dxldxzdx3, dx = dxodzc_‘, dp = dpoqg, etc.,

The symbol au stands for the differential operator

and it acts on functions standing to its right, while .5“ is a similar
operator which acts on functions to its left., Thus

16030 96) = [2,160) | 9be),

f(X)@mSu g(x) = Bu[f(X)g(X)],

for arbitrary functions f(x) and g(x). The four-dimensional Laplace
operator, called the D'Alembertian, is written

The symbol Yy / whenever it appears, stands for the 4 x 4 matrix:
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1 0 0 ©
lo 10 o0
%9v Tlo 0 1 o
0 0 0 -1

A space-like three-dimensional hyper-surface in Minkowski
space (for brevity we simply call it a space-like surface) is denoted
by o, or by o(x) when we wish to emphasize that this surface passes
through the specific point x. We denote by dcu (x) the four-vector
differential surface area at the point x and define it to be

= ( dx =
dcu(x) \dxodxzdxs, dxodxldx3, dxodxldxz, 1dx1dx2dx3>

-1
= 5 Ie“v)\p|dxvdx)\dxp,
where the Levi-Civita symbol €V p has the property

1 if (uvip)is an even permutation of (1234),
€up = {—1 if (VA p) is an odd permutation of (1234),
0 otherwise.
A convenient way of remembering the explicit form of day (x) is to
think of it as being d‘qx/dxu . For example,

4 dx_.dxqdx,dx
dolx) = 9% = ZLT273 . 4y g dx
2 dxg dxg o 1

3°
The symbol n, is used to denote a time-like unit vector with a
positive time-component:

nl-lnl-l=_1' ng > T

It is convenient to introduce here the notion of a functional derivative
and give a couple of useful relations involving the same. We denote
by Flo] some functional of a space-like surface . Let o' be
another space-like surface which overlaps with ¢ everywhere except
in the infinitesimal vicinity of the point x. Let 8V(x) be the volume
enclosed between the surfaces ¢ and ¢'. The functional derivative
of Flo] at the point x is then defined by

6F[o] _ Flo'] - Flo]
50 ayggeo | VR

. (a.1)

if Flo] is given by
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Flo] = LercJA(X) £, (), (a.2a)
a

then, by making use of Gauss' theorem, one can easily show that

6F[o]

500 = B)\f)\(x). (A.2b)
Two other useful relations are
S | 4w ek = 2960, (2.3)
and
erc)\(x)a“f(x) = dec“(x)akf(x). (A.4)

Proof of (A.4):
L[ (o, 603 6 - [do. 16| = 3,2, 560) - 3,2,£60)
sala)l J ~ ATTH J OO AH LA

=0’

so that (A.4) is independent of the choice of the space-like surface
o. Choose t=constant surface:

dox(x) = (0,0,0, -idsx).
Now we consider all possible choices of A and u.

)‘=11“=J:
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since f is assumed to vanish at very large distances. Similarly,

A=4, wp=4
J\dc)\auf . j‘doua)\f
= Id3xajf -0

=O'

and finally for p=A = 4 both sides of {A.4) are equal. This proves
(A.4) for arbitrary u,v.
Qur matrix notation is as follows:

1t : Hermitian conjugation,

* complex conjugation,

t : transposition.

As we shall have occasion to do contour integrals in the com-
plex plane, let us recall the well-known Cauchy formula

e g () R (A.5)

2mi z-a
C

where the symbols have their usual meanings.

Appendix B. Explicit Construction of Wave Functions

In this appendix we shall discuss how 8:? construct the wave
functions for a particular case. Recall that ukr (%) satisfies

M) = o, (8.1)
where r takes the values 1,..., 2s+l. The normalization condition
is

i (oG T 1 6, -3) u ) = 5 60—k (8.2)
A k A k! rr' e e :

and the closure condition is
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y jd3k u)f)(x) 5. = 10008 x-y). (B.3)
r

Once u(x) has been found, then making use of

v = 0760, (8. 4a)
.r
5% = 0 Gan (B,4b)
Vlfr)(x) = vlfr)Jr (x)n (B.4c)
one can obtain v, u and V.
Let us put
w6 = P 60 (8.5a)
k k< '
fk(x) = (2—111)3/—2 eikx. (B.5Db)

The normalization condition now becomes

ﬁ(r)(k)f‘4(ik, w0 = -6, ®.6)
while the closure condition takes the form
Y uPwatl - 28 .7)

r

where k is now on the mass-shell, k2 +m2=0 , and the equations of
motion are

raou® ) = o, (B:8a)

7@ aaK) = o. (8.8b)
The equations (B.8) suggest writing

W = awogP, (5. %)

704 = %09 aux), (B. 9b)
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with
04 = £® g, (8.50)
which follows from the relation
[d(ik)n‘lle = d@Kknt.
It should be clear that the wave functions u{)(k) and Tl) (k) as de-

fined in (B.9) satisfy the equations (B.8) because of the mass-shell
relation

A(k)d(ik) = d(ik)A(k) = - (kZ+m?) = 0. (B.10)
Since
[A(ik),h] = 0, (B.11)
we have
d(ik).h] = 0. (B.12)
Therefore, if
ng Wy = n®e P, (6.13)
then we have
b ) = 0 o, (8.14)

In other words, in constructing the functions & (r)(k) one should make
sure that they satisfy (B.13) so that (B.14) may hold true.

If we multiply (B.6) by u(r)(k) from the left and by ﬁ(r')(k)
from the right and sum over r and r', we get

d-(ik)l“4(ik,ik)id(1k) = -2w(k)d(ik), (B.15)

where use has been made of the closure condition (B.7). With the
help of (B.15) we_can now write the normalization condition in terms

of E@K) and EO)K): '
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-6, =TT, (1k, 10 ()
=ty 4k, 1K) d(1K) & ) )

= -2m(k)E(r)(k)d(ik)g(r')(k),

which we rewrite as

/2o T 0 a7 )/ 2u = 8 - (B.16)
The closure condition reads
dlk) = 2w(k) ? w® 07

r

AN Y5(r ©E%./Zat0dik).  (@®.17)

Recall that on the mass-shell d(ik) is a projection operator
d(ik) d(ik) = ad(ik), (B.18)

where a is a constant independent of k. Referring back to (IV.23)
and (IV.25) we see that this statement is certainly true for the cases
we studied. We take it to be true in general. Then (B.18) implies
that a similarity transformation exists such that

-1 _ )
Su,c (k) dcp(ik)spﬁ(k) = GaBa s (B.19a)
where
) _(a for B=1,2,..., 28+1;
B {o for B> 28+1. (B.19b)
If we define a matrix f such that
s _ (1 if a=8=1,2,...,28+1;

af L0 otherwise,
we can rewrite (B.19) as

sl dK sk = al, (B.20)
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or

dlk) = asIis ), (B.21a)
so that
' 28+l o
dO.B(ik) = a W S(I,r(k) SrB (k). (B.21b)
r=1

Again, if we multiply (B.21a) by d{ik) from‘the right as well as the
left and make use of (B.18), we get

a2dlk) = ad(k) sk i s (k) d(ik),

or

~ a-1
dlik) = d(ik) %_35) ; §‘fgﬁd(ik). ®.22)

Now by comparing (B.20) to (B.16), and (B.22) to (B.17), we see that
we can take

€a(r)(k) = _Sﬁ%iu;ﬂ , (B.23a)
?‘r)(k) = —S‘:il_(k__—) (B.23b)
N JZaw (k)

Since we have E=ETn, the relation
Y 8longe = sr'ﬁ1 , (B.24)
a

or, equivalently,

istn = 157!, (B.24")

must be satisfied. So it must be checked as an intermediate step.
In view of (B.13) we also need

_ 0
hogSgy = 1 Sqy- (B.25)

Because of the (2s+1)-fold degeneracy we can always rearrange S so
that it satisfies (B.25).
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Making use of (B.20) we can write u(r)(k) and E(r)(k) in terms
of S and d as follows:

(i) 2
da‘Bl J2aw (k)

Sqr (k)

= ® Raak)

a
2 w(k)

)

Sar(K) (B.26a)

and

=), _ Srgk
uy (k) = dB(x(ik)

 2aw(k)

Sl
T rae®

a -1
= /7w Sra - (B.26b)

As a concrete example of the application of our method as
prescribed above, consider the Dirac case. Here {(we use Paull rep-
resentation)

A(tk) = ~({ivk+m), (B.27a)
d(ik) = -(iyk-m). (B.27b)
One finds
d{ik) d(ik) = 2md{ik), (B.28a)
on the mass-shell. So we have
a = 2m. (B.28b)

Recall that the boost

- [uk)l+m I SR
L(k) 2m iYiY4k% ot e (B.29)

has the property
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£ (k) d(ik) Lk)

lim d{ik) = m(l+\(4)
k=0

2m<1+2Y4> . (8.30)

In the Pauli representation

I= = . (8.31)
Keeping in mind (B.28b) and (B.31), if we compare (B.30) and (B.20)
it would seem that we can identify L(k) with S(k). Since
n=v, (B.32)

and

-1, [olk+m) | . 1 .
L (k) = am iV Yek ————m , (B.33a)

T _ fw(k)+m , 1 : :
L'(k) = - VY Ak e | {B.33b,
(k) J om 1Y, Yqk; YIRS ( )
it is clear that the condition (B.24'), namely,

Ity = 1177, (B.34)

is satisfied. So L(k)=S(k) is the correct choice.
According to (B.26) we have, therefore,

)
w0 = [ 1,00

- B e Totm-iyvg]
W) S Zm(o rm) TN ]

1 e A
T e Tkl

- TR L]
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where

2

a=1,...,4,
r=1, 2.

Note that above we replaced w -1ivivaky by y4qw -iyik; to make our
expression covariant. Since we restrict r to the values 1 and 2,
this is justified because

(Vg)y, = Bqr if r=1.2.

Similarly, one finds

=)y 1 »

ug (k) sz(k)(m(k)m)[ 1Yk+m:|ra '
Then

vy = CunB(r)*(k)

1

- J 2w (k) (w(k) +m)[(iYk+m)Cqu !

) S PR i ;
Vo, (k) 2Lu(k)(tu(k}+m)[c (lYk+m)Jra .

We refer the reader to the paper by Takahashil?) for more
examples.
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I. Introduction

A. Preliminaries.

These notes are from a series of lectures which were devoted
to functional methods in physics. We emphasize two functional in-
tegrals, namely, the Wiener Integral and the commutative Hilbert
space integral. We also include functional derivatives and other
examples of functional integrals.

The applications emphasize quantum field theory. We can of-
fer two reasons for this choice. The first is the interest of the author
in such applications. The second is the fact that quantum field
theory provides a rich variety of situations where functional methods
can be applied.

‘We may note in this connection that we listed several appli-
cations in the table of contents. However, a number of other short
applications are included as well.

Let us make a few brief historical remarks. Significant early
work on functionals was done by Volterra beginning in the 1880's.
The Wiener integral dates back to 1923. The commutative Hilbert
space integral was constructed in the 1950's by Friedrichs and
Shapiro and by Segal. As we shall see, these two integrals are re-
lated in a simple way.

We mention the following as some of the more prominent con-
tributions to the development of functional methods in quantum field
theory: (1) Feynman's path and history integrals, (2) Schwinger's ex-
ternal field and variational techniques, (3) Segal's investigations of
free fields and of canonical systems, and (4) Symansik's analysis of
generating functionals and his more recent work on functional tech-
niques in Euclidean field theory.

The essential prerequisite for these notes, from the physical
side, is some acquaintance with quantum field theory. On the mathe-
matical side, we presuppose general background rather than specific
knowledge. (Some references to measure theory are made, but they
are generally not crucial for following the arguments.)

As to the rigor, the material covers a variety of topics, and
the discussion is rigorous in some places but heuristic in others.
(For some of the topics, like the time-ordered generating functional,
a rigorous discussion is as yet impossible.) Moreover, we empha-
size manipulations and applications, while long and detailed proofs
are avoided.

‘We made no attempt to be complete or consistent in citing
references. In a number of cases we gave only one reference, which
is neither the original work nor a comprehensive recent review. How-
ever, much of the material can now be considered classical, and we
felt that this justified In part the aforementioned neglect.
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B. Generalities Concerning Functionals. Notation. (1)
We are all familiar with the real- and complex-valued func-
tions on the Euclidean n-space R:

y = f(x) x €RM, yeR! or cl.

Let us generalize this by letting x range over a linear space £ of
functions, or over some related space or set (e.g., a space of distri-
butions, or an abstract linear space). Then f will be a functional.

We will usually take for £ a linear space of functions defined
on a region of R™. The usual notations for a functional will be

F(x) or F{:) or F, fn}, etc., where x,n € &£.
Let us now give a few examples of functionals.

@) F.in} = [ dMuw(u)ntu),
where the functions w and N must be such that the product is inte-
grable (e.g., in the sense of Riemann or Lebesque).

We will discuss the restrictions like these (on w and 1) more

fully in Section II. For the present, such questions will be largely
ignored.

®  Fyin) =exp[-7 [MudvE@vntnm)].
(c) Ffn} = ntvy),
@) F,in} = E i},

where Eo{n} is the ground state energy of a hydrogen atom in the ex-
ternal potential 7,

For investigating various properties of a function, a basic tool
is the derivative. For functionals, the analogous concept is that of a
functional derivative. Let us approximate the functional F; above by
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a discrete sum,

Fin} ~ Fylnd =) wlunte)(su).
Then

1 3F

N Afef.N T ( ')I
buj aln(u)] ~ M

and for the functional F;, we set
SF1/n(u) = wi).
More generally, one can define

8F{n} _
Gn(u) de

(1.1)

where &,(v)=6(u-v), the Dirac delta function. The usual rules for
differentiation remain valid for functional derivatives, and we find,
e.g.,

_ n
OF,/ 61 () = U"d v K@, v)n@ ],
if K is symmetric. Next we find

bnw)/onu) = 8(u-v), (1.2)

We can also set

an -1
) g (V)] =l 8 (u-v),

provided the contribution from the endpoints (in integration by parts)
vanishes.

A few words about the notation may be appropriate. We use
a variety of different notations. However, the following points are
generally followed.

(i) The points in RP are denoted by u, v, etc., sometimes
by u, etc. In particular, for a relativistic four-vector
we write u=(u°,u). We use x, y, also 1, X, f, etc.,
to denote functions, vectors in a Hilbert space, and the
like.
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(ii) Function spaces are denoted by capital script letters.
(1ii) The coordinates in R™ and in Hilbert spaces are denoted
by superscripts, e.g.,

w=(ul,....u", x= @&, %x2,...).

Subscripts normally indicate distinct points or vectors.
(iv) A scalar quantum field under conslderation is denoted
by, and a free field by ©'®/. The creation part of tp(o)
is ©©.*), and the annihilation part is ¢{©. =),
(v) The metric is time-favored.

C. Simple Applications.
(1) (To guantum field theory.z)) The canonical commutation
relations of quantum mechanics,

[¢,d"] = i7telk,

provide a heuristic basis for the field-theoretic relations. For a
scalar field, the latter may be expressed as

[0 ,00.9)] = 178G (t.3)

This relation may be realized by taking a suitable space of func-
tionals with ¢ a multiplicative operator and ¢ a functional deriva-
tive, cf. (I.2). Explicitly, we pick a fixed time t, and let

[e@F|in} = n@rin}, [$(IF]ini= 17 erinl/on6). @.4)

With this convention, however, one has the problem of identifying ¢
as opQ.
(2) (To classical particle mechanics .3)) The equations of
motion of a particle moving under the influence of a potential V are
determined by Hamilton's principle,

ss{x}/6x’@) = 0, §=1,2,3. (I.5a)

Here the xJ (t) define a hypothetical path of the particle, with the
initial and the final points ?{(to) , ?c(tl) not subject to variation.

Further, S 1s the action ¢

|
s{x} = J CECIRET)Y (1.5b)

to
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(3) (To the calculus of variations .4)) The last example is
typical of the calculus of variations, where we usually want to mini-
mize or maximize a certain functional. For example, we may want to
find a closed curve of given length and greatest area. For this prob-
lem, it is convenient to take the arclength s as the independent
variable. The curve must clearly be symmetric with respect to, say,
the u-axis. (Otherwise, the area could be increased by symmetriza-
tion.) Hence %A =J‘duy or

2A{y} = j\{ldsg—: = J‘&ds[-l -C%széy
) )

For the maximum, we set
8A{y}/6ylc) =0, y(0) = y(£)=0.

This yields an ordinary differential equation whose solution describes
a semicircle.
We should like to point out that manipulations such as in the
foregoing can easlily lead to anomalies. We give two examples.
First, consider the functional

1
7i{y} = du y2@),
J

where y(0)=0, y(1)=1, and y is a real continuous function. It is
clear that J can be made arbitrarily small (and positive), but it can
never take the value zero as long as y remains continuous.

For the second example, consider the operator

52/8mw)1% = D. (1.6)

This corresponds to the frequently encountered term -q')zv(v) in the rep-
resentation (I.4). Let us consider the following two functionals:

1t = [ ewntw, (1.7a)
7,n} = deul...dnu.4w(ul,..,,u4)n(ul)...n(u4). (I.7D)

Then

Dy, {n} = 120 ()% ()6 fw-v).
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The quantity 6(0) is undefined (even though it may sometimes be
given the value infinity).

On the other hand, it may be unnecessarily restrictive to say
that the operator D is meaningless. We have in fact, if w is sym-
metric,

Djz{n} = 12 \Y dnuld“uzw(u1 u, VL V) T’l(ul)n (uz) ,

an unambiguous expression for continuous integrable functions.

II. Several Kinds of Functional Derivatives

A. Examples of Function Spaces.

We will now develop a mathematically precise formulation of
the foregoing notions. We start with a review of some commonly em-
ployed function spaces.

(1) A Banach space 8 is defineds) by the following properties
valid for all x,y€f and a,B€ Rl or C1 (depending on whether a real
or a complex space is desired):

(i) ® is a linear vector space: ax+By € B, etc.
(i1) There is a norm function, |x] € R!, such that
(ii-1) ||x/l =0 and ||x|| =0 <= x=0,
(ii-2) |lox| =la| x|,
(ii-3) flx+yll < Il + |yl .

(iii) Completeness: every Cauchy sequence in 8 has a limit

in B. (Only strong limits, e.g., [lxp-x|[~ 0, interest us.)

A Hilbert space can be defined as a Banach space, equipped
with a Hermitlan form {x,y) such that {x,x) = [|x[|2. We use
physicists' convention, {x,0y) =a{x,y) ={a*x,y) . We confine our-
selves to separable Hilbert spaces, i.e., having a countable basis.

(2) Some other examples of Banach spaces are as follows.

(2a) The space of functions x(u), u € S R, such that

X = J’d“uw(u)|x(u)|p< @, (. 1a)
S

where w=0. We set

Il = x'/P. (II.1b)
This space is variously denoted: £P(S,w), Ly, etc.

(2b) € —the space of bounded continuous functions on
R1, with the norm || x| = sup,|x(u)]| .

(2¢) Co—the space of continuous functions on R, with

compact support (equivalently, with bounded support). The
norm is
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I x|l = supy|x(u)| +ulsupp %),

where the last term indicates the measure of the support of x.
(2d) H—the space of Holder continuous functions over
an interval 1< R! , with the index satisfying 0<pu<1l. Here

x() = x(')

x|l =sup,lx@)]| + sz (I1.2)

uFu [u-u'|H

Properties (ii-3) and (iii) can be verif.ted.s)
(3) We mention two basic spaces of test functions 7

(3a) ®— infinitely differentiable functions on R? with
compact support.

(3b) S—infinitely differentiable functions on R" which,
together with all their derivatives, approach zero at infinity
faster than the inverse of any polynomial. The following is
the classical example of an element of ® and of S:

x(u) expl:—l/u2 - 1/(1—u)2:l for O<u<l,

0 otherwise. (11.3)
(4) If V is a linear vector space, the space of linear func-
tionals f defined on elements x €V is the dual space V'. We give
two examples.
(4a) For a Hilbert space K one can’identify 1 and K';
i.e., given f€X', I y €K such that5)
fx) = (y,x) forall x€1. (1I.4)

(4b) 8' is the space of tempered distributions, and
' o8,

B. Functional Derivatives.
Suppose that F is a functional on a function space ¥ such
that for §€¥,S K and for all n€X,
F{€+en} - F{8)} = eF,{E.n} +0(e),
where F; is linear in n. Then for the given g,

Fl{ﬁ,-} € X'. (11.5)

We may write symbolically,
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Fl{fé,n} = jdnuhlfi;u}n(u). (II.6a)

We call hy the Volterra derivative of F. This derivative corresponds
to the heuristic one of Section I, and we write

hl{‘i;u] =6F{E} /8E(u). (11.6b)
One may define similarly higher derivatives, e.g.,
h{&u,v) = 82F{E}/8EPEW).

Note that the hj need not be functions in the usual sense.
For example, if ¥ =8, then the hj define elements of & (cf. the
examples in Section I).

It is often convenient to work with abstract Banach spaces
without referring to any specific spaces of function. One then con-
siders, quite generally, mappings from an open subset of a Banach
space into another Banach space,

. c
F,Rl——> 8, where Rl_ﬂ'ﬁl. (I1.7)

The case 82 =C1 gives functionals such as considered previously.
Since R is open,

xERl and héﬁl = x +e¢h € Rl,

for all €, real and sufficiently near zero. We construct, if possible,

éhP(x) = (d/de)F(x+eh) : (11.8a)

=o.
If we now keep x fixed, then we can define a map A:8~8y as fol-
lows,

Ah = 6,F(x). (11. 8b)

If A is a bounded linear operator, defined for all h€®87, then we say
that F is Fréchet differentiable at x, and 8,F is called the Frechet
differential.B)-10) Note that buF is a map, in general nonlinear, from
some R} SR into By.

If 8, is given as a function space, then we may relate the
Frechet and the Volterra derivatives as follows:

6 F() = J‘dnuh(u)%ﬁ)}. (1.9)
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The Volterra derivative, of course, is not restricted to the case
rFecl,

If the operator A is unbounded, or not defined on all of 81,
then one is led to the notion of the Gateaux differential. We shall
not be concerned with such cases.

C. The Implicit Function Theorem.

The concept of the Fréchet differential enables us to extend
various standard theorems of classical analysis to Banach spaces.
One of the most basic of these is the implicit function theorem. We
can now give it the following formulation. 1

Theorem. Let nax,nay, and 8, be Banach spaces, let 6 be an
open subset of fix XBy containing (xo,yo), and let f:6 »8, be a map
such that

(1) fxg,vo) =0,
(i) f is continuously Fréchet-differentiable in 6,

(1ii) for all (x,y) € 6, the differential

69 nflx,y) = (d/de) f(x,y+ch) == (I1.10)

has a bounded inverse as a function of h; i.e., as a map 8,8,
Then there exists a map from 63 S @y to#,,, to be denoted by y(x),
which is the unique solution of f(x,y) = 0 in a neighborhood of
(Xg:Yo). In particular, y(xo)=yo. The map y can be extended until we
reach the boundary of &, and is continuously Frechet differentiable.

A function F (as in (II.7)) is continuously Fréchet differenti-
able if for every h (in8;), 8,F is a continuous function of x.

This theorem is of interest primarily for nonlinear functions.
However, it is also instructive to see how it includes the standard
result for Fredholm equations as a special case. Consider

f{a,b} = b(u) + jdv Ku,v)blv)-a) = 0,  (I.11)

where a, b, and { are elements of a certain Banach space, and we
seek to find b in terms of a. We have

5, hf{a,b} = (d/de)(b+eh+Kb+eKh-a) = (I +K)h.

The implicit function theorem tells us that, if I+K has a bounded in-
verse, then the equation can be solved for arbitrary a. On the other
hand, one knows that if I+K does not have a bounded inverse, then
the equation cannot be solved for some a.

This example illustrates the need for condition (ili) in the
statement of the theorem. In the finite-dimensional case, this con-
dition can be replaced by that of non-vanishing of the Jacobian.
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D. Application to Dispersion Theory. 9)

Let A(s) be a partial wave amplitude for a two-particle scat-
tering process, s being the center-of-mass energy. We can express
A in terms of the phase shift 6(0)(5) and an elasticity parameter 7|(s)
(0<m=<1) as follows:

Re A = x = &7 sin 26(0), (I11.12a)

y = % (1-ncos 25 (0)), (II.12b)

Im A

We assume that A satisfies a once-subtracted dispersion re-
lation, that there are no bound states, and that the contributions from
the left-hand cut can be neglected. Let s, be the physical thresh-
old, let

6(0)(50) = x(sy) = 0. (I1.13a)

Furthermore, let the functions approach definite limiting values at
infinity,

6(0)(°°) =0, x(=) =0, n(=)#0. (I1.13b)

The condition 6(0)(m) =0 is somewhat special; normally one would al-
low 8'©(=)=% nm, where n is an integer. We will comment on this
later. In order to avoid centrifugal factors k24 , we suppose the
scattering to be s-wave.

We remove the kinematic singularities, as usual, by sepa-
rating a factor p(s) such that

p(s) ~ (s—so)% near s=sg, p(=)#0. (I1.14)
For example, for m -m scattering, p=[(s - so)/4s]% .
A convenient way of taking the conditions at infinity into ac-
count is by means of the transformation

s—> v(s) = (s-sp)/s, (I1.15a)

so that v(sg)=0, v(®)=1. The factors in dispersion relations are
transformed according to

ds'[s/s'(s —s')J = dv'(v' - v)~L. (11.15b)

For brevity, we shall use the notation x(v) for x(s(v)), etc.
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The once-subtracted dispersion relation now is

x(v) - aply) + A2 R‘%{;‘—L = s =0, (r.16)

where a is a subtraction constant. We may ask if the perturbed
equation

F{s}(v) - g(v) = Fl{g,é}(v) =0, I1.17)

where g is a given function, has a solution 6(v), and whether this
solution is unique.

To formulate such a question properly, we have to require all
the given functions to belong to specified spaces, and to seek the
solution & also within a definite space. For our problem, a suitable
space is WH, that of real Holder continuous functions on [0,1] with
an exponent 1<%. (Note that p could not be incorporated if u>%,
since p~ near v=0.) For the perturbation g and the solution &
we require a stronger condition, namely that g, 5 €8 where

B = {fET}C“ L £(0) = £(1) = 0}. (I1.18)

Clearly, B 1s a Banach space if it is equipped with the same norm as
WM, ie., (11.2).

In analogy with the example of the Fredholm equation, we
compute

( 2,A Filg, 5}> [n(v) cos Zé(v)JA(v)_

1 o s
pv) dv'[nfv') sin2s(v")] = '
oo PI o) A = @A),

(I1.19)

The question now is whether or not the operator L has a bounded in-
verse. To investigate this question, we consider the equation
LA=h where h is arbitrary in 8. (We also restrict the solution A to
B8.) We arrive this way at a singular integral equation of a kind for
which there is an extensive theory available. 5

The conclusion is:g) There is a unique A for a given h, and
the map h—4 is bounded. Consequently, by the implicit function
theorem, there is a unique solution & to F{6} -~g = 0, which depends
continuously on g and reduces to § (o) if g=0.

If we had assumed 6(0)(5 =w)=% nm, not necessarily zero,
then two complications would develop. First, we could not utilize a
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space like B so easily. Second, the equation LA=h would have an
n-parameter family of solutions if n> 0, and if n< 0, then (-n) sup-

plementary conditions on h would be required. The implicit function
theorem of Section II.C would no longer apply. We refer to the cited
work of Lovelace?) for further discussion.

III. Generating Functionals

A. Concept of a Generating Functional.
Now that we have the Volterra derivative, it is natural to con-
sider the following expansion of a functional:

=k
Figtl} =FlIp) + ) & J\dnul...dnukfk(ul,...,uk)I(ul)...](uk).
k=1

(111.1)

The functions f) will be assumed symmetric. This is a power series
in z, and we call such an expansion a Volterra series. We see that

B g e uy) = l:é k/é](ul)...él(uk)J F{ 7 +7} (I11. 2)

J=0

The functional F{]J} consequently contains the information contained
in the infinite sequence of functions

fo =FlI ), £l fluy, ), ..., (I11. 3)

and is called a generating functional of the sequence. Conversely,
glven a sequence of symmetric functions, we can construct the func-
tional.

We assumed implicitly in the foregoing that the series (III.1)
converges for z,J, and J, suitably restricted. However, such series
may be useful even when they do not converge.

A special case of generating functionals is the generating
functions, which are familiar from the study of the special functions
of mathematical physics. In fact, if J{u)=6(u-t) (u,t€ Rl), then
(III.1) reduces to

F(t,z) =E wT gk(t). (III.4)
k=

Usefulness of generating functions may be illustrated with a
simple example. Suppose that T depends only on the quantity 1
z2 - 2tz. Then
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zdF/d3z = (t-z)dF/3t, (111.5)
and this equation implies a prototype recursion relation,

kg, (t) = tg.(t) - kg, _,(t). (111.6)

This argument applies in particular to the Legendre and to the Hermite
polynomials,

(22 -2t2+1)°F = ¥ kD ke, @0, (111 7a)

exp(-z2 +2tz) = ) (2K/kD)H, (. (111. 7b)

4
Both of these expansions have non-zero radii of convergence.

B. Digression on Vacuum Expectation Values.

In quantum field theory we encounter various sequences of
functions (strictly speaking, of distributions). In particular, one
introduces!2) (i) Wightman functions, i.e., the vacuum expectation
values of products of field functions cp(uj) ,

Wn(ul,...,un) e (cp(ul)...cp(un))o, (111.8)
and (ii) time-ordered functions,
'rn(ul,...,un) = <Gp(u1)...cp(unD+> R (I11.9)
o

where

o o o
Gp(ul)...cp(un)>+ & cp(uil)...cp(uin), uilz uizz ez ui -

Both the Wy and the Ty are usually assumed to be distributions in 8'.
Among other important functions are the retarded functions ry,
of which we note a special case,

ry(w,v) = 10 w-v){ [ (w) o)1) g (111.10)

[Here 6(u)=1 if u®>0, =0 if u®<0.] We shall not consider the
question as to whether or not the existence of, for example, the T
can be derived from other assumptions.

For the free scalar field of mass m, all the Wn(o) and the T,§°)
can be expressed in the following way. We recall,
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w,2) = w2y up) = (0 agl® (g
1 a3k -ik{u; -uy)
= —— | = & . (I1I.11a)
(2m)3 J 2x°
Then
2 0,2) = 7 Oy up) = 0w w V1, 2) + 0w iz, 1),
(III.11b)
(o) _ .
W2k+l =0, 2k+1 =0, (I11.11¢c)
(o) (o) (0) f .
T (L, 20) = ) 7% dg) e Ty iy g dp),  (IL110)
where the stjri'l extends over all p rt)nions of [1 ..2n} into pairs.
For the Wy, ', we replace the T, by Wz in (III 11d).

Equation (ITII.11d) gives in particular, if we write

t49(1,2) = (1,2),

T4(°)(1,...,4) = (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3).

This function corresponds to the trivial scattering matrix,
(p.alS|p'.q" =8(p-p')8(q-q') +8 (p-q') 8(q-p').

For interacting fields, we are usually interested in what remains when
this trivial effect is subtracted off. We therefore define recursively
the truncated functions, as follows (as usual, we assume W;=T;=0):

T
Ty (ug.ug) = 7,(uy,uy), (111.12a)

T =
LN (uy e sup) = Tn(ul oo ,un)

T T
-szl(ul,...,uiml)...ka(uiN,...,un), (I11.12b)

where N=n-my+1, and where the sum is over all partitions of
{1,...,n}.

The truncated Wightman functions Wn are defined in an
analogous way. For the free field functions we have, in particular,
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(0)T

=0 and T 0, if n> 2. (I11.13)

()T _
el

For the functions Wt;f, the following cluster property can be
proved.13 Take n points at equal times, ur' = ... =ur?, let v be
purely space~like, v=(0,v), v#0, let X € Rl , and consider

L'e ) 0
Wuy ey FAY e+ v). (1. 14a)

Then as A »®, the arguments of WE separate into two clusters, and
asymptotically
T < -A[v]
< e vim,

Wz (III.14b)
n

Here m is the lowest mass of the theory, assumed non-zero. It also
follows that the corresponding function Wy, factorizes in the limit

)\—»ool

W= W, () e ) W (g oene o). (111.15)

(We made use of translational invariance.)

C. The Time-Ordered Generating Functional.

Of the vacuum expectation values introduced in the foregoing,
the Wightman functions are not symmetric, but the tlme-ordered func-
tions are. Hence the latter can be used to construct a generating
functional. We should emphasize, however, that in view of our
meager knowledge of interacting fields, the material of this part
(I11.C) is strictly heuristic.

The generating functional T can be given in closed form,

{1} = <<expi jd‘lu cp(u)I(u)>+>o. (111.16)

The factor i was supplied to improve the chance of convergence and
to make the operator unitary (i.e., heuristically). We shall see be-
low [Eq. (III.26) and also Section XII] that J has a natural interpre-
tation as an external c~number source. The time-ordered exponential
is defined as a suitable limit of the product

exp(i J;ostl d4ucpj> exp(i J d4ucpI> exp(i j\t od4u CPI) .

tsu’st nY

14)

(111.17)
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It follows that

i (g
i@?(v) (5} = <<e1.r UCPIQP(VD+>O. (111.18)

Indeed, one may argue that if, for example, t1< vO< tp, then the dif-
ferentiation will bring down o(v) just before or just after the second
factor in (III.17) to a good approximation. Then, in the limit, one
should get the expression in (III.18). We conclude also that

[62/12 83(v)) 570w, | 7073

= = Tz(vl,vz), (111.19)

and similarly for the other functions Tp.

One may also construct the generating functional To{ J} for the
truncated time-ordered functions. It is a matter of easy combina-
torics to show that

\

T{J} = expTo{T}. (I11.20)

We next want to construct a functional differential equation
for T. Suppose that the field ¢ satisfies

@ -ude = Mco?’)ren. (III.21)

For the renormalized interaction term we can take the following form
(which has been established in perturbation theory!®)):

(@) o) = lim [0 @=8)pl)p(u-5): -r(e)ei)] /[1+a(®)].

(111.22)
Here £ is to be space-like, the functions F and (1+G)"1 may be
singular as £~ 0, and
IABCI = ABC - A(BC), - B{AC) - C{aB) . (111. 23)

However, the detailed structure of (cp3)
us.

ren is of no consequence for

We also assume the canonical commutation relations

[Cﬁ (t, ) ,cp(t,?'r)J =471 6(3—3). (III.24)
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In general, one has [¢,0] —1'123'16 where Zg may be zero. It is
important for us that Z3>0, and then it can be made unity by a scale
transformation of the field. (In perturbation theory, 23>0 for the cp -
coupling in two-dimensions and in three~diménsions of space-time.)

Now, from (III.18) it may appear that we will obtain an iden-
tity by replacing o(v)-58/i8J(v) in (III.21) and by letting each member
act on T. Actually, differentiation with respect to time gives rise to
an extra term, as the following argument showsls) (here t=v9):

@ t "
> ifdue] 3 4] d uep] f i d'up]
a(e cp(v)>+ B g@ i >+ Plv) e >+

el -
-, s I td31?[CP(V)/CP(u)]I(u)}(eif'“’d ",

u =
. d4
= (elf qua(v)>+. (I11. 25)

On the other hand, when we apply 3/dt again, the commutator
[¢@,0] =0 will be replaced by [q’),cp]=i'16. This will give a term
proportional to J(v)T. One then obtains the equation

2 _ _ 8
(O-p )1 5]( T{I} [ <13.f,13(g}>ren —I(V)] {7} . (II1.26)

We shall return to this equation in Section XII.C.

D. Molecular Distribution Functions.

We consider a system of N identical classical particles,
which is described by the phase-space probability distribution func-
tion, called the molecular distribution function,17)

DNC&’I,EI;...;&'N,SN> or DNCrl,...,rN>, (I11.27)

where ry= (Efj ,}'_J.j). This function sill be assumed symmetric, and of
course it depends on the various parameters of the system such as
volume and temperature.

In the typical cases of interest, pN depends on a very large
number of variables. More useful functions are the reduced distri-
bution functions fg (or DEN, below), which describe the correlations
of a small number of particles (like molecules). To define these,
we first integrate DN (N> s) over the phase space of all but s mole-
cules,




FUNCTIONAL INTEGRALS 451

6

N _ S 6 N
Ds (rl, v ,rs) =V Id rs+1d rND (rl, v ,rN). (I11.28)
Note the following dependence on the volume V,
6 6 N-s N -N N _
J"d Topl .d rN ~ V , D~V ™, DS constant.

(111.29)

It is now reasonable to let N—«, with the intensive quantities
like the density and the temperature kept constant:

f =1lm DY (I11.. 30)
s N—-oo

The functions f, have some analogies with the vacuum expectation
values. In particular, the f; are Euclidean invariant (provided there
are no external fields and the interaction is Euclidean invariant). The
fn are ilso expected to have the cluster property: If rJ! =1 +)\(c_f ,0),
where q is fixed and non-zero, then

fs<rl"" Ty r]'<+1,...,r's>—> fk<r1,...,rk>

x £ (ppyre iy ) (I11.31)

in the limit A»®, i.e., for infinite spatial separation of the two
groups of points, in analogy with (III.14) and (III.15). The validity
of (II1.31) of course depends on the behavior of the potential at large
separations.
We may note that we confine ourselves here to a heuristic
discussion, even though various rigorous statements can be made .18)
Let us introduce the generating functional for the fg,

F{x} =1+ Z lrderl...dsrsfs(rl,...,rn)x(rl)...x(rs).
s=1 (111. 32)

As far as we know, there is no direct interpretation for F, in contrast
to the case of the functional T of Section III.C. We comment below
on possible limitations for the argument X.

The functional F can be utilized in various ways. For exam-
ple, if the system is not in equilibrium, then the f, are time-
dependent. This time dependence can be described by a single
equation for F, which we will give presently.
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We start with Liouville's equation,

BDN _ y dHN GDN BI'IN aDN> D)
ot a=T.23 qu apk apk aqk
k=1,....N
For the Hamiltonian we assume
A — sy
= + [ -q.l ). .
ij /2m+ Y (13, qJ|> (I11. 34)

i<j

The procedure is now straightforward, even though the equations are
somewhat lengthy. We integrate both members of (III.33) as in
(IT1.28). This yields an eguation relating DsN and DSI\_I,.l, which is
valid for all N, and hence also in the limit. The resulting hierarchy
of equations is then seen to be equivalent to

BI-‘{ J’d o’ 5X ‘rd rdGr JLx(r Yx (r')
. 2
g cx(r)+cx(r')}[¢(|&'—q'|), ™ f)ﬁp )J (I11. 35)

where 0 is the density (i.e., N/V) and the brackets are Poisson
brackets.

Let us now suppose that the system is time-independent and
that it has a Maxwellian velocity distribution for each N and in the
limit. Then the foregoing equation can be reduced to the following
for F{C}, ¢ being a function of three-vectors q: 19),20)

2 er(g) , 28 ([g-q"]) 6%F . .
o e P ) T R ey (6@ 0] = 0. @ae)

The constant B=1/kT corresponds to the assumed Maxwellian distri-
bution.
At this point it seems natural to make the substitution

¢d) = C@) = ¢ +o. (I11. 37)

However, we see from (III.31) that the functions f do not vanish at
infinity. Consequently the argument function ¥ in (III.35) must be
restricted (for example, to compact support) and a similar restriction
must be made on (. (In the field-theoretic case, Section III.C, if
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the functions T, are assumed to be in §8', then the source ] must be
in §.) _

It follows that the substitution (—{ cannot be effected in
(II1.36). However, we can introduce the analogue to the truncated
vacuum expectation values. The desired functions have the gener-
ating functional G which satisfies, c¢f. (III.20) and set F{0}=1,

F{¢} = exp G{(}. (111.38)

The transformation F—~ G is nonlinear, and the equation for G
can be obtained from (III.36) by replacing

5F 5G 62 5%G el T
0@ 5 sC@oC@) - sCi@oc@) T bC@ oC@n

(I11.39)

In the resulting equation for G, the substitution 5-42 is admissible
for potentials which vanish at infinity sufficiently rapidly. This sub-
stitution can be used, for example, for finding a solution in closed
form, see Section VIII.A.

IV. The Wiener Integral
The present section, except for Part D, is based largely on
the review article of Gelfand and Yaglom.21)

A. Basic Notions.

One interpretation of the Wiener integral is as an expression
for the average value of a quantity for a particle or particles under-
going Brownian motion. For the one-dimensional case, let ¥ (t,u) be
the probability density that such a particle at the time t will be found
at the point u. This function satisfies the diffusion equation

3¢/3t = Da%y/au?, v.1)

where D is a constant. We will take D=% for the remainder of Sec-
tion IV. (But we note that one also often takes D=1,

If the particle 1s known to have been at u=0 at time t=0,
then we have the initial condition

YO, =38, (Iv.2)

and the solution

-u?/2t

P = @y Fe (V. 3)
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Similarly, the probability density that the particle, initially at u=0,
passes through the points

u o at times O0<T,<...<T

170" 1 m’

respectively, is

-k
l|J<T1 U e T U )= [(er)m'rl(TZ—'rl)... (’I’m—Tm_l):l

2 (Uz"U]_}?‘
B exp{ I:Tl Tp=Ty

+ Um ~Vm- (i =) J} (V. 4)

T™m ~Tm-1

Let us now consider the probability that the coordinates
u; =x(7;) of such a particle satisfy

a; < x(Ti)Sbi for 1=1,2,...,m. (Iv.5)

This will clearly be given by

b, bm
dul...J; dumllJ(rl,ul;...;Tm,um) . (Iv.6)

ajy m

This integral is also the expectation value of the following functional
defined on the space of particle paths:

1 if (Iv.5) is fulfilled,

0 otherwise. (v.7)

8{x} =
This suggests that the expectation of more general functionals
F{x} can be found as follows. Suppose that x(7) is continuous for

0st<t, and x(0)=0. We then select m -1 interior points,

0<rT1,< ...<

< ]
1 . Tm_l Tm t,

and consider, in place of x(T), the polygonal function %(7) deter-
mined by the vertices

gc(Ti)=x('ri)Eu. for i=1,...,m.

‘We then approximate F{x} by
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F{x} = Ppluy,....uy),

and form the expectation value

.. 7
Jdul...dumw Tl’ul""'Tm’um>Fn\u1""’um> . (1v.8)

Finally, we pass to the limit
m—>e , max(Tk+1 N Tk>—> 0. (1v.9)

If this limit exists and is independent of the choice of parti-
tions, we call it (provisionally) the Wiener integral of F, and denote
it by

duw(x) F{x} or L]ljﬁvv(x)ei%}-{’}‘() F{x} (Iv.10)

(or fduWF, etc.). The first notation reflects the fact that the Wiener

integral is a measure-theoretic integral. Consequently, the standard
theorems, like the Fubini theorem and the dominated convergence
theorem, remain valid.

The second notation shows the Wiener integral as the (commu-
tative) integral over the Hilbert space of real functions x(T) on [0,t],
satisfying x(0)=0 and

t
(%,%) = j‘ ar %2(1) < ®. (Iv.11)
(o]

We may note in this connection that the exponent of ¥(T1,uy...up)

glves . Akx 9 )
i - = -3(x,% . .12
maxl(nAnk'r)—'Ol: ) Z<AkT> AkTJ B (w12

We also note that two functions such that x; -x =constant are
equivalent with respect to the norm (IV.11), and hence the condition
x(0) =0 removes an inherent ambiguity.

The measure-theoretic aspect and the Hilbert space aspect of
the Wiener integral will be discussed more fully later on. In particu-
lar, we shall see some drawbacks to the present definition in
Section IX.C.

B. Two Examples.

We will now describe the evaluation of the Wiener integral for
two kinds of functionals. We will assume a special choice of the
subintervals [Tlek+1] and, in the second example, a variant to the
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polygonal approximation. It will follow from the discussion in Sec-
tions VI, VII and IX that functionals of the two kinds are in fact inte-
grable, and that a variety of approximating sequences may be em-
ployed for evaluating the integrals.

First, let
f{x} = x(tl)...x(tk). (Iv.13)

Let the points ty; be among the points Ty . Then the approximating
expression (IV.8) becomes exact and can be evaluated in closed form.
If k is odd, then one encounters integrals like

@®
- 2 '+
I due /suZJ !
-0
as factors, and the result is zero. For k=2x, one obtains

N
du Gx(t)) e xly,) = ) bty sty,) e Bl ity )

w
(Iv.1l4a)
where the sum is over all partitions of {1,...,2«} into pairs, and
blt;,t) = mintty,t) = [duy 60x(t)x(t). (1v. 14b)
For the second example, let
1t 2
h{x} = exp[—E j dtp(T)x (T)J, (Iv.15)

[e]

where p is continuous and 20, We let AT =t/m, Tj=jA'r, also
Py = p(Ty), u, =x(ry,
and we approximate h by
- 2
exp\ 2 ATZ pjuj 3
The approximating integral (IV.8) now has the form

=Dis .o
C‘[dul...dune Ak = Cﬂ%n[det(ajk)_] o wae

where
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ay, -1
-1 a -1
1 22
@) =557 S (Iv.17)
4 -1
-1 a
mm
N 2 _ 2
agm = 1- (AT) Ppy a; = 2 - (A7) P

for i<m. The evaluation (IV.16) may be obtained by diagonalizing
the quadratic form with the help of an orthogonal transformation.
‘We next set

D('rk) = det(aij)i,j=k+1,... m

The expansion of a determinant in terms of its minors yields a recur-
sion relation for D, and in the limit m—« one gets

dzD(T)/dT2 - p(r)D(r) = 0. (Iv.18)

The Wiener integral of h may then be expressed 1in terms of a solution
of this equation. In conclusion we should say that the details of this
particular solution are not especially important, but Gaussian func-

tionals like (IV.15) occur constantly.

C. Two Generalizations.

One obvious way of generalizing the Wiener integral is to
take the underlying space to be n-dimensional. Then, in place of the
basic relation (IV.3) we have

- — _—.2
b (e = (2m) #n W /2t (Iv.19)
Similarly, in Eq. (IV.8) we replace duy by dnﬁk, and the functionals
depend on the vector-valued functions x(T). Except for other obvious

modifications, the construction remains unchanged.
Note that if the functional factorizes,

F(Z) =] F x5,

then so does the Wiener integral,
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fduw(?c)l-‘{?c} =] fduw(xk)Pk{xk}. (1v. 20)

Another generalization depends on specifying the final end-~
point as well as the initial one. Thus for n dimensions we may re-
quire

;t(tl) = vy where t. <t

xlty) = v,, 1<%

1 (1v.z21)
and we allow, in general, t17‘0 and Vl%ﬁ. The resulting integral is
called the conditional Wiener integral. In order to give an explicit
definition, we can take the approximating integral (IV.8) and make the
obvious modifications implied by (IV.21)—in particular, we integrate
over dMuj...d™iy_; but not over d™i

We w_i.ll indicate the conditional Wiener integral subject to
(Iv.21) by Clv; ,?72) , with the dependence on the tj usually sup-
pressed. We have, for example, the evaluations

J‘ dH I:er(t -t ] %n =(vz-vy) /2(’Cz-'E1)E I,
C(Vllva)
(1v.22)
I _'d“W( X(t I:(t—t )v +(t t)v :l(t t) L
C{ . V,)
(1v.23)

in place of 1 and ¥ vy, respectively, for the unrestricted 1ntegra1 In
(IV 23) we assume tp=tsty. The two limiting cases give v1] and
vzj, respec:tively, as also follows directly from the contraints
x(tj} =

'I‘he following relation is obvious (for integrable functionals),

J‘d“" J uW(x)F{x} = J’ Ay ®F(x}, (v.24)
C(V, .v,) %*(t,)=v,
and so is the composition law, for t;<t<ty,

J A F = Id“&f du j diL. F. (IV.25)
o W Xw=n "V IRm=g "

x(t)=w

#(D)=1 R(t)=7,

In particular, if F depends only on the single value %(t), then the
right hand side becomes
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J‘dnﬁp(ﬁ)j( )duwj'( )duw, (IV. 26)

a generalization of (IV.23). The two conditional integrals are as in
(Iv.22).

D. The Diffusion Equation with a Potential.
Suppose that Q{t,u) is the solution to the equation

3Q/3t = $4Q - VQ, (Iv.27a)
with the initial condition
Q(0,u) = 5(). (1v.27b)
Conditions on V will be specified presently. Now, it is a remarka-

ble and basic fact that for t> 0, Q can be expressed as a conditional
Wiener integral:

- — t i
Qft,u) = J'i(o):ﬁduw(x)exp[-jom V{x(T)}]. (1v.28)
X(t) =0

This formula is known as the Feynman-Kac formula.

A simple proof can be given along the following lines .22) Let
us assume that 0<V(Q)< M. Then we can expand the exponential and
justify term-by-term integration. The result is also valid if only
0< V<, but then additional arguments must be provided. We also
assume for simplicity that V is continuous. One can, however, al-
low V to depend explicitly on time, without additional complications.

We now convert the differential equation into an integral
equation

-

t
Q6 =y, - [ ar [PEy,0-13-Bv@owd), @.29)
o]

where Y}, is the solution for V=0 (see (Iv.19)). We take Q=1y, as
the zero-order approximation, and iterate. For the term linear in V
we find

t o - 22 =22
_f art fdnEV(E)[4ﬂ2(t—T)TJ %ne-(u_g) /Z(t_T)e_g /ZT.
o}
(Iv.30a)

On the other hand, the expansion of the Wiener integral gives, for the
linear term,
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_f

(o]

= w

dTJ\ S duy GVix(r)} =
c(0,u)

(IV.30b)

-szrr Id“Ev(E)f qqduwjﬂ @ dhd

7 ) U

where we used Fubini's theorem and the discussion of Section IV.C.
If we evaluate the conditional integrals as in (IV.22), we then obtain
agreement with (IV.30a).

The higher-order terms can also be shown to agree. Conver-
gence is no problem of 0=<V< M, as we already stated. Hence the
series for Q satisfies the integral equation (IV.29),and also the dif-
ferentlal equation (IV.27a) with the initial condition. The proof of
the F.-K. formula is complete.

The foregoing proof presupposed the measure-theoretic basis
of the Wiener integral (for example, we used Fubini's theorem. Note
also that the foregoing proof gives no clue as to how the formula
might have been discovered. In Section XI we shall describe another
way of arriving at this formula.

An immediate consequence of the F.-K. formula is

Q@t,u)>0 for t>0,

which is not obvious from an inspection of the differential equation.
Strict inequality follows from Q2 e MY (cf. (IvV.22)) or,if M-,
from measure-theoretic considerations in Section IX.

For future reference we note that the Feynman-Kac formula can
also be written as:

t
(ale—tHR/) = I duw(;c)exp.(— ‘YodTV>. (Iv.31)

E. The Partition Function.

We derive here, without a detailed justification of the argu-
ments, a representation for the partition function which will be
needed in Section V.

Let us gonsider an N-particle system which is governed by the
Hamiltonian H=-(2m) ~ A +V with a discrete spectrum,

HX, = EX,, J=0,1,2,....
S LS

Then the partition function of statistical mechanics is
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Z = y e_BEj, where B = 1/kT, (Iv.32)

i

and may be written, if the eigenfunctions are normalized,
z = [NEY e
J

Next we observe that

—_ 'l — — - B.
Qg8 W) = ) % @)x e *H (1v.33)
J
is the solution to
-1 u
3Q/38 = [(Zm) s-v]Q. (IV.34a)
which satisfies the "initial" condition
Q(0,1) = 8(u-v). (IV. 34b)

By applying the Feynman-Kac formula (IV.28) we obtain

Z = fd?Nﬁ jﬂc_. LAk, &) exp[— J: dTV{x(T)}], (Iv.35)

(u,u)

which is the desired representation. (Here we use units where m=1,)

Note that for a free particle, V=0, the Wiener integral is
positive and independent of a. Consequently, we get Z=«, as we
should, for an infinite volume.

V. Inequalities and Thelr Applications.

A. Preliminaries. Convexity.

There are, relatively speaking, few functionals whose Wiener
integrals can be evaluated in closed form. The best-known of such
functionals are the polynomials, the Gaussians, and the linear expo-
nentials, and we saw examples of the first two types in Section IV.
However, the integrals which occur in the study of interacting sys-
tems with an infinite number of degrees of freedom ordinarily cannot
be handled so easily.

The Wiener integral can be valuable also in such cases, as it
may clarify and simplify some derivations. Moreover, significant
conclusions can be obtained with the help of inequalities, as we
shall see in the remainder of Section V.
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We note, first of all, that the standard inequalities for inte-
grals over finite-dimensional spaces carry over to the limiting case of
the Wiener integral. This follows from the fact that a,<b, for all n
implies

lim ap € lim by.

To give an example, the Minkowski (triangle) inequality for finite-
dimensional integrals implies that

< I f + .
lerall < el + Dol

where
el = { JawyuolaP}P.

We now turn to convexity. This notion glves rise to many
powerful inequalities. We recall that a real-valued function y{u) on
an interval I of the real line is convex if for all u,ve€l,

(EICDERTIORTTIOR v.1)

One can show that a convex function is necessarily continuous. 23)
However, it need not be differentiable.

If ¢ is in fact differentiable, then the inequality (V.1) is
equivalent to each of the following (in the sense of validity for all
u,vel):

Y) - §v) = u-v) ), (v.2a)
¥') 2 y'(v) if uzwv. (V.2b)

If ¥ is twice differentiable, (V.1) is also equivalent to
y'(v) = 0. (v.3)

In particular, the real exponential function is convex on the
whole line since

(dz/duz)eau e aZeau = 0.

The exponential function will be basic for what follows, and we will
take R! as the intervalI.
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B. Two Important Inequalities. 24)

Suppose that | is a compound function, ¥ ={{c(u)), where
u€RM and x(u)€ Rl. We define averages with respect to a non-
negative weight function p:

W6 = [aast) s et/ Pt v.4)

similarly for X, etc. Now, if we replace in (V.2a) v by X and u by
x(u), and average both sides, then the right hand side gives zero,
and we obtain (for a convex function V)

V) = ). (v.5)

For the particular case (x)=e*, x(u)=logf(u) (where f=0;
the limiting case =0 causes no difficulties), (V.5) yields

T = exp(log f). (v.6)
We call this the inequality of generalized arithmetic and geometric

means. If uz0, f(u)=u, f=%4(uj;+uy), which corresponds to taking
p=%6(u-uq) +%8(u-ug), then (V.6) reduces to the more familiar result

%-(u1 +u,) = (uluz)%. v.7)

2

Suppose now that f is a function of two variables u and v.
We will denote averaging with respect to u and v by a bar and a
tilde, respectivgly. From (V.6) we obtain by averaging over v, and
by replacing f—f, respectively,

~

f = l:exp(log f)] , T = expllog 7). (vV.8a,b)

By Fubini's theorem, T =TF. Itis significant that the two smaller
members can also be related. One has

exp(loghf) = [exp(log f)J . v.9)

This is called the generalized Holder inequality.
_ To prove this inequality, replace f- f/F in (v.6) and use
gt+th=g+h:

f_/? = exp(log f) exp(-log T).

Now transpose the last factor to the left hand side, apply tilde-
averaging, and use ¢g = ¢g, where c¢ is constant. Then the left
hand side becomes
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~

[@/F)explog®)] = (t/D)7" expliog T),
and (V.9) follows from
&H ™ = /1) = F/F) =1.

We can easily obtain the usual Holder inequality as a special
case of the generalized one. Let u take the values 1,2; let

£1,9) = [g@|®, £(2.v) = |hw)| 9,
where
p +q =1 (p,qz1l). (V.10a)

For any function F(u,v), let

Fv) = p TF(L,v) + 4 TF@,V),
Flw) = jdnvpm Fla,v) / jd“v o(v) .

where p= 0. Now evaluate both sides of (V.9),

expllog T) =¥ VR0 ¥Y %) = ol Il .
[exptios D] = [P0.9tY%.v)]" = llanl,.

Thus (V.9) implies the standard result,

hif, = hil . .10b
EXRIFINTR .10

This last inequality can be easily put into a slightly more general
form. If p~ +q_1 =r'1, where p,q,r21, then

hf s h| . 11
lonli, < llall Jlnl, (v.11)

C. The Polaron Problem.25)

An electron moving slowly in an ionic crystal (like NaCl)
polarizes its own immediate neighborhcud in the crystal. The system,
electron and its polarization cloud, behaves like a single particle,
and is called the polaron. Its effective mass is, of course, larger
than that of an electron. The calculation of this mass, as suggested
by Feynman, is an interesting application of the Wiener integral.
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The real problem is, of course, extremely complicated, but it

becomes manageable if we make the following approximations:
(1) All modes of vibration in the crystal have the same fre-
quency w.
(i) The electron interacts with the crystal as if the latter
were a continuous dielectric.
We refer to the cited literature for a fuller discussion of the physical
ideas and of the manipulations.

Now, let x be the coordinate vector of the electron, and let
qig be the amplitude for the mode with the wave number k. We set
h=m=w=1 (then c¢#1, but this is irrelevant here). The effective
Lagrangian becomes

= 3'.<2+%z <Q-—qk +<1'ﬂq 1kx/|k|
K

(v.12)

The constant &' depends on the volume and on the dielectric proper-
ties of the crystal, while a" below depends on the dielectric proper-
ties only. '

We assume a given electron path X(t). Then each amplitude
ag satisfies the equation of a forced harmonic oscillator, and can be
found explicitly in terms of the path x(t).

Let us specify that the oscillators be in the ground state ini-
tially and finally (t= ty, tp respectively, and the ground state de-
pends on the path X). Then the resulting action of the electron, i.e.,
the time integral of T-V, is

ta . ta L, -1 -]7-
S = %I dez(’T) +a"ij\j drdo|x(7) ~x(a)| le g 0),
= 1 (v.13)

where we took the limit of infinite volume. We see an effective po-
tential which is nonlocal in time. This is not surprising, since S
describes only a part of an intricately coupled system.

We saw in Section IV.E that for an ordinary potential system,
we obtain the partition function from the quantum-mechanical wave
function which corresponds to imaginary time, i.e., we replace
t— -it. For the polaron problem this means that the effective interac-
tion in (V.13) has to be modified, since it involves two times T and
o rather than T alone.

One can show that the partition function for this problem be-
comes
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= J‘ I dhy, Gye Flx] (V.14a)
c(v.v)
B
F{x} = ocj‘j dr do[;c(T)—;((o)|_1e_|T_ol. (V.14b)
(o]

(Here V is the volume, see below.) One may also write Z as

J\d v\‘r (x)e seff{X}, S "%J d'rx +F.
v g (v.15)
Now,
z =z ¢ PEj,
j
and for large B only the ground state is significant, i.e.,
7~ e_BEO as B— o, (V.16)

If we could evaluate the integral (V.14a), our problem would be
solved. However, we have to content ourselves with obtaining some
estimates. (See Section V.D.)

‘We may point out that the restriction to oscillators in the
ground state is now justified by (V.16).

We indicated a finite volume for the integral over d3 In
fact, the integrand is translation-invariant so that Z«V and Z- «
with volume. For quantities like Eg, the dependence on volume will
of course disappear. One may, however, accuse us of inconsistency
in taking the infinite volume limit in (V.13). But here the limit is
finite, and we may regard the limiting value as an approximation to
an already oversimplified problem.

D. Estimates for Z.
We first construct an action for which the integral (V.15) can
be evaluated, 25) for example,

s' =% J\d'r LY Ej IdT do|%(7) S| 2T g

where the parameters £ and n can be varied so as to yiqld the best
value for the ground state energy. We will now use eS' as the
basic weight for computing averages. For translation-invariant
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functignals, as in (V.14b) and in (V.17), we can take the integral
over v for a unit volume, and then

1 — —S'{;(} o
(& =5 8., xe cix}, (vV.18a)
z IC@';) w
where
o -8'{x)
VARES L9 x)e i (V.18b)
j‘C(;./,v) L

Now, e S=e8'-8¢=8" [where we wrote S in place of Seff of
(v.15)] and it follows that Z=%'(eS'-S) . The inequality (V.7) now
yields

L
7270688 (v.19)
If E§ is the ground state energy corresponding to S', then we obtain
finally, in view of (V.16),

E s E) - {(s'-8)/B. (v.20)

The expectation {(S) can be evaluated by employing a Fourier trans-
formation and thus we get an upper limit for E,.

Suppose now that we are dealing with a system governed by a
Hamiltonian H = Hy +Vo +AV, which can be approximated by the solu-
ble Hamiltonian Hy+V,. Then the actions 8 and S' are single inte-
grals, and not double integrals as in the polaron problem. In this
case (V.19) can be transformed to24

7 = Z'e_BAV v.21)

where
7 = 1 o PHWVotY) 51 gy  BlHOHVO) W.22)
BV = Tr(e‘B(H°+V°)Av>/ ' (vV.23)

To establish (V.21), note that by interchanging integrations
and by using (IV.25), (IV.26) and (IV.31), we obtain
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(8'-8) = —, dcfd v‘y G duwx)ex IdTV{x :['AV{X(O
Cv,v

B — — = —-
-%j‘ dofd3vfd3u(v|e U(Ho-wo)lu)
o

e~ (B-ONHHO) 5y v )

z, B fd“ (@|e PEVO) [y av@E) = -av. (v.24)

An upper bound for Z can be obtained just as easlly. We use
the inequality (V.8a) as follows:

7 = (exp l/og\f)~ <) = (D
with

fix,o} = exp[—B AV {X(c)}J ]

B
~ _ 1 ~
g—BJIOdog, g—j J\(_Hdu (xexp(fd'rV)g

We proceed as before and obtain
i + -
7 < Tr<e B(H,o vo)e BAV)

We can express the two bounds as follows: -

Z.e—BAV <7< Z.euﬁtw . . 25)
Note that if we had used the generalized Holder inequality (V.9) in

place of (V.8a), a sharper upper bound would have resulted.

VI. The Commutative Hilbert Space Integral

In this section we introduce another approach to functional
integration. Here the integral is, in effect, over an abstract Hilbert
space K, and the realization of W as a function space is irrelevant.
However, this integral is closely related to the Wiener integral. The
present approach is based on the work of Friedrichs and Shapi.ro.zs)27)
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28)

See also Karpacz lectures of this author. Finally, we note a com-

prehensive recent review of Segal.

A. Cylinder Functionals.

Let ¢ be a real Hilbert space. A functional F over K is
called a tame or cylinder functional if (i) there exists a subspace E
of dimension n<e« such that

F(x) = F(Pgx), (vi.1)

where Pp is the orthogonal projection onto E, and if (ii) the function
F is measurable with respect to the Lebesque measure on E; 1.e.,
dxl...dx", where the x) are the Cartesian coordinates. Under these
conditions we say that F has a base in E.

We now introduce the orthogonal invariant measure in E,

duE(x) = (210) %n ...dx exp[ Z /20 (VI.2)

Here 0 is an arbitrary positive parameter, called variance, which
will usually be suppressed in the notation. This choice of measure
can be justified in several ways. For example, it is not difficult to
show that it is a consequence of (i) finiteness and normalization,
u(RM) =1, (ii) orthogonal invariance, and (iii) factorizability,

du(x) = dF (x) .an(xn), (VI.3)

which corresponds to probabilistic independence.
Let C be the set of all cylinder functionals on . If F€C has
a base in E, and is in L; with respect to dug, we set

I.(F) = [ dup(F(Ppx). (V1. 4a)

If EDE, then F also has a base in ﬁ, and integration over_each re-
dundant coordinate gives unity, in view of the factor (21m0)2. Con-
sequently, I3(F)=Ig(F).
Now, if F has a base in E and in E', it follows that
IE(F) =1

papr ) = T (E).

Thus we may define an integral over K by
L.(F) = 1. (), (VI.4b)

and this definition does not depend on the choice of the base E.
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We also define, for a=1,

¢ = {Fec:r (JF%)< =}, (VI.5a)
These spaces may be equipped with the respective norms,
aN1l/a
el =[5 (IFI%) ], (V1. 5b)

and may be completed in the usual way.

B. Integration of Invariant Functionals.

The next problem is to extend the foregoing integral to more
general functionals. One way to go about it is the following. Let
[y } be an orthonormal basis and let P, be the projection onto the
linear span of [yl —— ,yn} . A system like [Pn} will be called a
basic system.

For a given functional F, we define Fg(x) = F(Ppx). The Prlf
are cylinder functionals, and they might form a Cauchy sequence in
the space Cy (with respect to the a-norm). If so, we could try to
identify F with an element of the completion of Cq . The difficulty is
that another basic system {Qm} might perhaps give us another ele-
ment of the completion of Cg.

We are thus led to the following definition. A functional F is
a-invariant if for any two basic systems {P_} and {Qm},

(i) PII:, FmQ € C, for all n, m sufficiently large, (VI.6a)
and

» . 3 Qy -

(i1) lm I, -F, I, =o. (VI.6b)

The space of all a-invariant functionals will be denoted by
£y . It follows easily from Holder's inequality (V.11) and the fact that
]|1||B =1 for all B=1, that

FESaﬁ’FESY forall v, 1l<y=<a. V1.7)

In particular, if F€&y then FEL7, and we may define the basis-
independent integral I3c(F), which will also be denoted by

I;C’(F), Js(x)e-<x’x>/20P(x), ete. (VI.8)

Invariance of the integrand is sufficient to establish inde-
pendence of the integral of the basis used in the approximations, and
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for various other desirable properties. But for some purposes it is
convenient to introduce a more restrictive notion. We say that F is
completely o -invariant if conditions (i) and (ii) above are satisfied
for arbitrary systems of projections {Pp}, {Qpm} such that
Ph.Qm~1 as n,m~ =,
Theorem. Every functional in Cq is completely o -invariant.
We do not prove this theorem, but illustrate it by an example.
Let =2, b€X, and F(n)={(b,n). For any projection P,

F(Pn) = {(b,Pm) ={(Pb,m).

The cylinder functionals are now easily integrated,

()

1, ((Pyb-Qpb, %)

2
olanb - mell — 0,

and we also find Ijc(F%) =o|| b 2 We note a slight generalization,

Fy(n) = (by.m) = L (B Fy) = 0(by by) . (vI.9)

One can also give an example of a non-invariant functional.
Let 1 be the space of square-summable sequences; let x=(x!,x2,...),
and let

Gx) = z cijxixj. (VI.1l0a)

If gij(x)=xixj, then I}C(gij)=06ﬁ by (VI.8), and it follows that

I.(@) = GZ oy = 0 Trley). (VI.10b)

But the trace is not, in general, basis-independent. Consider the
two following operators which are related by an orthogonal transfor-
mation, and are in fact Hilbert-Schmidt:
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en D
Gy | * ¢

(vVI.11)

The trace of the first vanishes, and that of the second is indetermi-
nate.

C. Connection with the Wiener Integral.

We mentioned earlier that the Wiener integral for, say, the
interval [0,t] with x(0) =0, is in fact the integral over the Hilbert
space of functions x(T) which satisfy

L 2
%(0) =0 and (x,% = Id”r % (1)< = (Vi.12)
o

and are necessarily continuous.

The identification can now be seen as follows. We can in-
troduce projection operators {Pn} which transform a function x into
the polygonal approximations as described in Section IV.A. In view
of continuity of x, P~ 1 as n—~=. Hence, if F is a completely in-
variant functional over the space defined by (VI.12), these approxi-
mations converge, independently of the chosen set {Pn}. We then
have convergence of the Wiener integral (in the sense of Section IV.A).

‘We shall not consider the possibility of existence of func-
tionals which are integrable in one sense but not in another—for
example, invariant but not completely invariant.

If we make the change of variable x=y, then we have y(0)
unrestricted, (x,%) =fd'r y%, and we can express the identification
of the two integrals as

o6 ®72%0q = (o™ 2611, wrisa

i
Gly} = P{H v}, Hyy)(r)= L dr'e(r-1")y(1) = (0., y), (VI.13b)

where 8.(7')=6(T-1'). In Section IV we took o =%, but now we can be
more general.
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Let us verify the foregoing relation for the functionals

F{x} =x@")x@t"), Gly}= (8 y2 {0,y

For the functional G, the Hilbert space Integral was evaluated in
(vI1.9),
c=1

I (G) = (o

% et,,> = min(t',t"),

t'’

in agreement with Eq. (IV.14b) for _rd HwE.

D. Some Related Integrals.

We can put the foregoing discussion into a more general con-
text as follows. Suppose that we have a functional integra] which is
characterized (in some sense) by the Gaussian weight e~ 2'n.Bn/,
with B positive and symmetric. Then, by a linear change of variable
of integration, we can transform the integral into the Hilbert space
integral in canonical form:

Jﬂ(n)e—%m ’BmF{n} ~ fs(x)e'%% X XD p g} x} . (VI.14)

This relation is only heuristic, and should be examined for each case
as needed. Sometimes one can use the right hand side to define the
left hand side.

Such relations arise in different ways. For example, in prob-
lems relating to noise,zs) one finds Gaussian weights which are
given in terms of integrals with kernels,

{(n,Bm) = Idnudnvn(u)b(u,v)n(v) = (n,ﬂ)B. (VI.15)

Then the integral can be naturally interpreted as the integral over the
Hilbert space Kp, defined by the inner product {n ,'r])B. (We repeat,
B is assumed positive and symmetric.)

One should not confuse an integral over g with an integral
over the space X, defined by (n,n). The two integrals differ by a
factor:
Jr ! (x)e_é‘<x /B F

() = f ﬂ(x)e_%<x'X)P(B'%X), (VI.16a)
Kp x

J" aD(x)e—%<x'Bx>F(x) = (det ;3)‘%r as\(x)e'%<x'x>P(B-%x),
i X (VI.16b)
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where the left hand side of Eq. (VI.16b) has as the actual integrand

e"%<x' (B'l)x>F(x). The determinant is defined for operators B such
that B-1 is of the trace class 30 by the equation

det B = exp(Tr log B). V1.17)

Other examples of analogous functional integrals arise in
quantum statistical mechanics ,31) One starts with

e 0l = exp[-s j\d3u a5 w*(u)w(u)@(u-v)w*(v)w(v)J,

where ¢ 1s the two-body potential. It can be advantageous to trans-
form this expression to

{const.) \[Q(n)e_m AN exp[—‘y d3u Y ¥ (u) v (u)n(u):l, (VI.18a)

where A is an operator, in general integro-differential, satisfying
Ad =6, (VI.18b)

In order to give a precise meaning to the integral (VI.18a) if A
involves differentiations, one has to specify the bounday conditions.
For example, for A=-d2/du2, with n{(0) =0, n(t) unrestricted, we have
the Wiener integral, and the corresponding transformation was dis-
cussed in Section VI.C.

If we also impose 71 (t) =0, then we have a special case of the
conditional integral, and in place of Hyy, Eq. (VI.13b), one should
use

t
(Hn)(r) = J[’ dT'[G('r—T')—T/tJn('r'). (VI.19)
[o]

Then HHT has as its kernel the Green's function G for -dz/du2 and
for the prescribed boundary conditions,

G{(7,m) = min(7,7") - T7'/t. (V1. 20)
On the other hand, for HWHV\',I‘ we find

GW(T,T') = min(t, T'). (VI.21)
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VII. Evaluations and Transformation Laws

In this section we give formulas primarily for the Hilbert
space integral. They can be adapted to the Wiener integral in ac-
cordance with Section VI.C. (See also Section IX.) The transforma-
tion laws include those for modifying an integral, and also functional
Fourier transforms. Further discussion of these and related topics
can be found in Reference 28.

From now on, we will usually omit the word "commutative"
when referring to the Hilbert space integral of Section VI. However,
in Section XII we shall acquaint ourselves with the anticommutative
integral, and there the qualification will be necessary.

A. Explicit Evaluations.

We give here a list of functionals whose integrals can be
given In terms of other familiar operations.

(1) Integrable cylinder functionals reduce to finite-
dimensional integrals (in view of invariance, Section VI.B). In par-
ticular, for the linear exponential we find

JPS(X)e—<x,x)/20ec(x,y) _ e%ccz(y,y) . (VIL. 1)

Here c is a constant, which can be complex, and then we cannot
write cy=y'€X.
(2) A polynomial functional is one of the form

j i ]
P(y) = P(0) +). cij +oet) TR L.y™.  (vi.2a)

If }C=L2(Rn) , the terms of a given order k can be combined into

P M} = Idnul...dnukpk(ul,...,uk)'r](ul)...'r](uk), (VIL. 2b)

where py is symmetric. The functional Py is a sum of monomials
such as shown in (VII.2a). Each monomial is a cylinder functional
whose integral can be readily found.

We observe that IT}C(PZn+1) = 0. The integral Iy (P ZK) can be
expressed in terms of the trace of an operator defined by the function
Bo.E

o We may also recall that special cases of polynomial func-
tionals were treated in Sections IV.B and VI.B.

(3) Gaussian functionals were encountered in Sections IV.B

and V.C. A general integrable Gaussian functional is

F(x) = exp(-{(x,Ax)/20)}, (VII.3)



476 JAN TARSKI

where A 1s a symmetric trace-class operator, such that 1+A is
strictly positive. Then

~(x, (1+A)x)/20 (1+)Ex ,(1+AExY/20

I.(F) LJr.\ﬁ(x)e s Jr.ﬂ(x)e

[det(1+A):|_é. (VII. 4)

We obtained this result by making a linear change of variable.
‘We shall turn to this topic presently. First, however, let us verify
that the foregoing conditions on A are fulfilled for the example of
Section IV.B, where

t
(x,A%) = f ar D(T)XZ(T). (VII.5a)
o]

This form defines implicitly a symmetric positive operator A.
We may construct A explicitly as follows. Let

t
(B%)(1) = P (T)x(7) = JF arK(T, ™ R(1),

o]
K(t, ') = p%(T)G(T-T')-

Then A=BTB (note that B is not symmetric). The kernel of BT is
KI(7,7)=K(7,7), and that of A,

t t
KA(T,TI) = Jr dT"KT(T,T")K(T" ,TI) - Jr dT"p(T")e(T"—T)e(T"—TI)
o] o]
t
= Jr dr" p(t").
max(T,T')

We see that A is a trace-class operator:

f [ g ITE
TrA—Jod'r K, (1.7) = "JodT . d p(t")< ®. (VII.5b)

B. Transformations of the Integral.
(1) Linear change of variables. Let L be a trace-class
linear operator such that (1 +L)'1 exists. Then
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1}2’(}"[(1 +1) -]) = det|l+L|_lJrﬂ(x)e_<x'x>/zc Fx)

-~ (VIL. 6)
X exp{—[((l +1) 7 %, 0+t —(x,x)]/Zc}.

We assume that both functionals are in £;. Then this equa-
tion may be confirmed in any basic system. We set |B| = (B*B)1 2.

(2) Translations. If y€%, and Py(x)=P(x+y) is in £, then
translational invariance of the approximating integrals yields

y.,v/20 Jf’s(x)e—(x,x)/Zce(x,y>/cF(x) .

1,;5 (Fy) = e (VII.7)

In this case we can be quite explicit about the integrability of the
second integrand. Let F€Lq.
" First we observe that E(Y)(x) =%, ¥)/0 satisties

||E(y)||B<°° forall B=>1. (VII. 8a)

Next, Holder's inequality (V.11) states that

=y = -1
IIPB(Y)IIYS IIFII(,LIIE(Y)IIB for ot 47t =y7h

We can choose B'l arbitrarily small but positive. It follows that
||I-‘E(Y)||Y< © forall y, l<y<a. (VL. 8b)

It also follows easily that FE(Y) is y-invariant, i.e., in £,,.
However, in general one cannot take y=a. We give a simple
counterexample for one dimension. Let

F(u) = e“2/2°(1+u2)'1. (VII.9a)

Then FE€L; (with reference to the Gaussian weight), but
(o]

[ 1=E(V)||1 = Jf’ du(l +u2) 1™ _ o, (VIL.9b)

) A historical remark may be of interest here. Cameron and
Martin carried out extensive investigations on the Wiener integral.
They showed in particular32 that for suitable functionals one may
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translate F(x)— F(x+y), provided dy/dT is of bounded variation.
(That is, provided one may write dy/dT =z4-z_, with z4(T) mono-
tonic and finite.) This was before the theory of the Hilbert space in-
tegral was developed. We now see that only a weaker condition has
to be imposed, 33)

t
Jr dTt }"2 <o,
o
Inlparticular, y may become infinite near zero like, for example,
T2, and then it 1s not of bounded variation.

(3) Integration by parts. The basic formula is

—{x,x)/20

Jraﬂ(x)e (/3% - x/0)Fx) = 0, (VII.10a)

provided the integrands are in Sl This is a consequence of mtegra—
tion by parts in the x)-coordinate, and the Gaussian exp[-(x1)4/20]
of course has to be included in the integrand. Note that 3;F might
not be bounded, and hence we cannot identify this as a Fréchet dif-
ferential.

In functional notation (VII.10a) becomes, for any h€Ly,

Jras(n) e~nm /20 JF dnuh(u)l:

We can adapt this for the Wiener integral as follows. Let n=1 and
[0,t] be the basic interval; let h(t')=6(T-7') (with T fixed), and re-
place n by y. Then the inner integral becomes

bhé(u) - é"(u)J F{n} =0. (VII.10b)

t
Jr drt 9(T—T')L6/6§/(T') - }'/(T')/O'J.

o]

The second term integrates to y(7)/c, and we want to convert the
first to a derivative with respect to y.
The chain rule for functional derivatives takes the form

t
8F_ _ [ 4, SE_ gylp)
530~ J, 9P Byle) i) - i1

In view of the condition x{(0)=0

At
y(p>=j AT 8(p-1") §(1), Sy(p)/63(r") =0(p-1").
[o]

By putting all of this together we obtain
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rt . lﬁt rt
] 4T 8= 8/83(r") = Jodp[JodT'eTepJ6/6y(p),

o
and, finally,34)
rtdp min(p,T) rdu ()5F{y}/6y(p) =0 rd (V)y(nF{y}
Jo ' J w\ y VARY J U-WYY iy Y.

(ViI.12)

We recognize the kernel min(p,T) as the Green's function associated
with the Wiener integral, Eq. (VI.21).

(4) Uniform convergence. A basic result is the following.
Let S be a set of real numbers of finite measure. Let Fg be func-
tionals, Fg€ £o for almost all s€8. Suppose that for arbitrary basic
systems {Pn} . {Qm} and €>0 we may find N, M, and C such that

Iesen O, < C. (VII.13a)

[ Fs®n ) - Fs(@p g < €, (VII.13b)

where N, M, and C are independent of s. Then:
(i) We may interchange integrations,

-{x,x)/20

Jr ds LJr&(x)e

F oG = Jrs(x)e—(x,xVZoJr

ds Ps(x).
(VII.14)

(ii) We may differentiate a Hilbert space integral under the
J'—sign if the resulting integrand satisfies the foregoing conditions
(for some a).

An integral Iy (Fg) satisfying the foregoing conditions is ap-
propriately called uniformly a-convergent.

C. Functional Fourier Transforms.
We shall refer in this way to functional transforms of the
general type

F{n} = F{x} = eru(n)echifdnuxn)F{n]. (VII.15)

The differential du(n) is symbolic. It is supposed to include the
basic weight, like the Gaussian, but no measure is implied here.
[Perhaps a more suitable notation for such differentials would be

sp(n).]
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A basic property of such transforms is that they allow one to
replace differentiation by multiplication. If P is a polynomial func-
tional, then one expects to conclude that under suitable conditions,
P{o/isx} Fix} = j du(mer XM p (n}Fin} . (VII.16)

Let us give some formulas for Ehe Hilbert space integral. It
is convenient to replace’ e1<x:y) by e‘\X:Y/ 50 as to bypass the com-
plex numbers. Then

Ply} = 1 = Foo) = 0 (VII.17)
We can now express the integral of suitable polynomials by
Te) = plo/ox) EOCH] (VII.18)

X=0

The essential condition on P is that one can interchange dif-
ferentiation and integration. Hence the theorem of Section VII.B on
uniform convergence is relevant. It is easy to see that (VII.18) ap-
plies in particular to integrable cylinder polynomial functionals.

Let us return to the transform (VII.15). It can be used some-
times as follows. Suppose that we are interested in functions
fn(uy....,upn) which are the expectation values:

fn(ul’ o ,un) = erp.(x)x(ul) .. .x(un) R (VII.19)
Then a generating functional F for the f;, can be constructed simply
as follows,

ix,y .

Fiy} = eru(y)e (VII.20)

These considerations apply at once to the Wiener integral.

The expectations f, are known, Egs. (IV.14) (where c=1), and the
generating functional can be readily found,

i t
erklw(x)eKy’x> = exp[-% fo dt dT" min(T' ,'r")y(T')y('r")].
(VII.21)
[ This evaluation follows, e.g., from I}C(eim ' '>) ] e_%<n n .] The

Fourier transform as in (VII.21) is also called the characteristic
functional of duW.



FUNCTIONAL INTEGRALS 481

The foregoing observations on the generating functional can
also be adapted to the Hilbert space integral. Here, however, one
encounters integrals which require a distribution-theoretic interpreta-
tion, e.g.,

-5{x,x)

Jrﬂ(x)e x{uxv) = du-v). (VII.22)

‘We conclude with two remarks. First, the maps F—'F some-
times are not very convenient, since they do not preserve the
2-norms. In general,

JrcmWIPI2 # eruwl'?lz, L(Fl% #0F1%. w23

We note for reference that there are related maps which do preserve
the 2-norms. They are the Fourier-Wiener transform,

P - G = [au Wrvzxriy),  Gms)

and the Wiener transform,

~x,x) /20 .

Fly) ~ FWV(y) = Jraﬁ(x)e (VZx+iy). (VII.24b)

The exponential factor exp(-i{x,y)//20), or with {X,y), appears if
we make a translation, as described in Section VII.B.

As our second remark, we observe that one sometimes intro-
duces heuristic functional Fourier transforms and & -functions, which
are supposed to satisfy the familiar relations for finite-dimensional
spaces. Symbolically,

F(x) = Fly) ~ Jrs(x)ei<x’Y>F(x), (VII. 25a)
LJPL)(x)ei(x'y> ~ {const.)8(y), (VII.25b)
JFS(X)B(X)P(X) = F(0). (VII.26)

To the best of our knowledge, there is no rigorous basis for manipu-
lations such as in Eqs. (VII.25a) and (VII.25b).
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VIII. Functional Differential Equations

The equations in gquestion previde an interesting field of ap-
plication of functional integrals. Our present interest is in exact
solutions to such equations, rather than in approximate solutions, or
in manipulations such as in Sections III.C and III.D. However, the
study of this subject is still in its infancy. In fact, only a few spe-
cific equations have been investigated. These studies (with very few
exceptions) have not been at all systematic.

A. Simple Examples.

We start with several equations which can be discussed inde~
pendently of functional integration. All except the first relate to
statistical mechanics.

(1) The most elementary functional differential equation is of
the form

sF{7}/6T(w) = H{Ru}, (VIII. 1)

where H 1s a given u-dependent, sufficiently smooth functional. If a
twice-differentiable solution F exists, then commutativity of func-
tional derivatives implies

sHA{T;ul /87(v) = 6H{Jv}/8](u). (VIII. 2)
It turns out that this condition is not only necessary but also suffi-
cient for solubility.

To solve the equation, we start with the definition of the
functional derivative and (VIII.1):

(d/de)F{S+en}| _, = ernvn(v)H{E;v}.

Let §=5J, n=J. Then

(d/ds) F{sJ} = ernVI(V)H{sI;v}, (VIII.3)
and by integration,
1
F{1} =r{0} + JF ds erHVI(V)H{SI:v}. (VIII.4)
o)

Equation (VIII.2) is needed in order to verify that F is indeed
a solution. In evaluating the functional derivative of the right hand
side, we use moreover (VIII.3) with F replaced by H, and H by
6H/6sT, and integrate by parts.
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If for suitable arguments J, H has a Volterra expansion (see
(III1.1)), then so does F, and we may write the solution immediately
in the form

e - ( .
fn+1\u1,...,un+l> b (up e >|u=un+1. (VIIL. 5)

Symmetry of the f,,; follows from (VIII.2).

(2) Our next example is due to Brittin and Chappell,36) and
refers to the vibrating string. Suppose that we have m coupled oscil-
lators, described by the variables

t, Vg Yo = Vg where @ =1,...,m.

We can introduce a statistical distribution function f; depending on
t, Yo .V, . and which satisfies the equation of continuity,

3t of 3,

e LI g —_— =

=2+ (g Sy g ) = O (VIII. 6)
a

In the limit of a continuous distribution, yy and vy become
functions y(u) and v(u) respectively, satisfying

y=v. v=claly. (vIII. 7)

Furthermore, f, becomes a functional f{y,v;t} which satisfies, In
place of (VIII.6) and in view of (VIII.7),

f =

5f 2
= + Jo dul:v(u)m + c

y" () ai(fu)J =0. (VII.8)

We now recall that for (VIII.7) the general solution is
y = glu+ct) + h{u-ct),

where g and h are arbitrary twice-differentiable functions. One may
also verify that (VIII.8) has the solution

f=Q {v(u—ct) +cy'{u-ct), viut+ct) -cy’ (u+ct)} , (VIII.9)

where ) is an arbitrary differentiable functional. It can, in fact, be
shown that this is the general solution, under the additional assump-
tion that v, y', and also f are analytic. This solution has not
proven useful so far.

(3) Let us consider the generating functional F{x} of Sec-
tion III.D. Suppose that the potential & vanishes. Then Eq. (III.35)
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reduces to

3F{x} 6 23 &F
5ot d raz_l = & 6X(r)>x(r) = 0. (VIII.10)
This equation has solutions of the form
F{x} =exp ersr £, )% () (VIII.11)

where f is any solution of the equation of continuity,

of et _
S +z T 0. (VIII.12)

(Since &=0, the terms p*3£/3p* do not contribute.)
The reduced distributicn functions implied by (VIII.11) fac-
torize,

(b = T ¢t or,
e(tir oo, nlf(t,rJ), (VIII.13)

in agreement with ;;hysical intuition. Similar factorizations have
been encountered3 ) in various attempts to solve equations such as
(I11.35).

Since Eq. (VIII.10) is linear, one can obtain other solutions
as linear superpositions of the elementary solutions (VIII.11l). We
leave open the question, whether every solution can be obtained in
this way.

(4) Let us take the differential equationslg)’ 20) for F{C} and
G, as described in Section III.D. We introduce the notation

Hqp...qpl¢) = " H{C}/8C(ay). . .60 qy,). (VIII. 14)

For 0 =0, Eq. (I11.36) can be written as
3 o [.3, 2lqg-gl OrlC
L 3¢ (@)

This equation is similar to (VIII.10), and has solutions for which Fc?
has the form

C(q') = 0. (VIII.15)

F;{Q} = (const.)exp ersq' hig.q')¢la").

Compare now Eq. (VIII.1). The corresponding distribution functions
fg are proportional to the Boltzmann factors

- erlaay)
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Next, the equation for G, with 0 #0, is

an/aq“ + Ber3q'(a@/aq°°)(c;qq.+Gqu.)[§(q')+o] =0,
(VIII.16)

In this equation, we recall, the shift Q=E—c is permissible. The
solutions to the zero-density equation are of the form G0=Log FO,
and for 0 #0 we then find

G{¢} = log P°{a(g +o)} +b. (VIII.17)

The arbitrary constants (a, b, and those in F°) are determined by
physical considerations.

B. Applications of Functional Fourier Transforms.

Among the basic tools for the solution of ordinary and of par-
tial differential equations are the integral transforms, especially
those of Fourier and Laplace. For example, an ordinary equation with
constant coefficients can be transformed in this way into an algebraic
equation.

One may expect that functional Fourier transforms will become
similarly important for functional differential equations. We describe
several examples in the remainder of Section VIII. In two of these, a
part of the problem is to find an equation which is satisfied by a
given functional, as a preliminary to more general investigations.

(1) For completeness we mention here that variants of
Eq. (II1.26) for the time-ordered generating functional can be solved
by a Fourier transformation.38) We postpone further discussion to
Sections XII.A to XII.C. There we shall also encounter another
functional differential equation,39) which however is rather trivial.

(2) Our second exam§1e is based on the approach of Hopf
to hydrodynamic turbulence. 7).40) We start with a nonlinear deter-
ministic equation,

an(t,u)/at = P(n), (VIII.18)

where P is a polynomial functional in 1, not depending explicitly on
time. We consider the space spanned by the solutions . Suppose

that we have an integral defined on this space, and that we introduce
the expectations and their generating functional F as in Section VII.C:

F{x;t} = eru(n)exp[ifd3ﬁx(3)n(t,J)J. (VIII.19)
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[ We would like to have a measure which 1s ergodic, i.e., conserved

along the motion, but for our purposes Eq. (VIII.19) is sufficient.]
Let us find the equation of motion for F. We will not concern

ourselves with the detailed justification of the steps. Thus

o= eru(n)Cij'dsﬁ'x %Dexp(ij a®3'xn)

[ 32, T /op 3o
J d uix du{n)P(n) exp\\lfd u xn)
and the desired equation is

dF/3t = ersﬁ’ixp(é/iax)l-"{x;t}. (VIII.20)

For stationary turbulence, we set 3F/3t=0. One particular
equation of interest is:

Jr d3k| _____5_, rdskuk IIX;r(kl+kll)

6 —
sxp k') J B ]F{X} =0, (VIII.21)

6X0'. {k "

where k' and k" are the Fourier transform variables, x=f is a
vector-valued function, and xtr its transverse part:

TR = X(K) - [E-Q(E)/E'ZJE. (VIII.22)

(We do not consider the familiar ambiguity which arises if ¥ is the
gradient of a harmonic function.)
Equation (VIII.21) has solutions of the form

Fix} =fQ{x}), Qix} = ergﬂitr(f)-itf(-i'), (VIII.23)

where f is any twice-differentiable function defined on [ 0,®). This
solution, however, does not have the singularities which should
characterize turbulence.

(3) The third example is due to Donsker and Lions J41) we
follow these authors, and consider the solution y{q;t,v} for t>0 to

dy/d3t - %3 2y/a 9 = -3 vzy + iva(t)y, (VIII.24a)
y— 0 as v - two, (VIII. 24b)

yla:t=0, v} = 8(v). (VIII.24c)
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We recognize (VIII.24a) as the diffusion equation with the harmonic
oscillator potential, and with another term involving an arbitrary
function q. We express y as in the Feynman-Kac formula (IV.28).
The resulting Wiener integral over x has the form of a functional
Fourier transform, in view of the factor exp(ifd TXq).

Our plan now is to express 8y/8q in terms of the Wiener in-
tegral, and to transform this expression so as to obtain a functional
differential equation for y. The procedure may be clarified by the
following example. Consider

2
flu) = Jr dpe P oPY,

f'(u) = —%ier eiPu - %1er(elpu P - -% uf(u).

More generally, if V(p) is a polynomial of an even degree with
leading coefficient positive, and

= [*

g = | dp e VPl IPu (VIIL.25a)
- 00
then we obtain the differential equation
V' (i~1d/du) g(u) = iugl). (VIII. 25b)

Let us return to the Wiener integral. We derive the differen-
tial equation in a heuristic fashion. We first convert the conditional
integral into an unrestricted integral containing the factor

@
slv-x(t)] = 2—1— [ quetnlvx®l, (VIII. 26)
L
and obtain for the derivative by/dq,
1 = uv [

sylq:t,vl/6a(T) = (2m) J due JduW(X)ix(T)F{x},

t t
Fixd = exp[-3 | apxl(e+ 1] dpx(olale) - tuxtt)].

o (o]

With the help of (VII.12), with o=1, 8y/8q can be transformed to
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o«

BF %
bxlv) °

s

[ iuv [
J due J

-

by 4
dq(T) 21

' [
dv min(v,T) J duw(x)
0]

The last derivative gives three terms, each of which may be ex-
pressed in terms of y or 8§y/8q. The following equation results:

oyla;t, vl _ rt (’t 5y
-zggq-m— = —[JO dv min(v,'r)q('r)]y - Jo dv min(v,T) 5q(9)

-iT3y/dv. (VIII.27)

A question of interest now is the following. What further con-
ditions must be imposed on y in order that the solution be unique,
and that it be characterized by (VIII.24a)-(VIII.24c)? The cited
authors give the following subsidiary conditions as a possibility:

limT_,t_ﬁy{q;t,v}/éq(T) = ivy, (VIII.28a)
and for q=0,
2 2 _ 2
dy/d3t -%d3%/dve = -2 vTy, (VIII. 28b)
y{0;t=0,v} = 8(). (VIII. 28c)

The uniqueness can be shown in two ways: first, by em-
ploying the functional Fourier transform and, second, by utilizing a
Volterra expansion, as in example (1) of Section VIII.A. The second
method is in a sense the more natural one, since the problem as ex-
pressed by Egs. (VIII.27) and (VIII.28) makes no reference at all to
the Wiener integral. But the first seems easier to adapt to other
situations.

For future reference we also make the following remark. Sup-
pose that we had in (VIII.24a) in place of -% v? a polynomial -V{v),
of even degree, and V large for large |v|. Then Eq. (VIII.27) should
be modified by replacing

~8y/5q(v) by —iV'[i'lf)/éq(v)Jy. (VIII.29)

C. Static Model of Quantum Field Theory.

The preceding example may be summarized as follows. We
started with a given differential equation; we modified it by intro-
ducing a term with an auxiliary function, and then we investigated
the functional derivatives with respect to this function. This kind of
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procedure was used extensively by Schwinger in quantum field theory.
The auxiliary functions can then be thought of as external sources or
fields.

For instance, the nucleon Green's function S, in case of in-
teraction with pseudoscalar neutral mesons, satisfies the equation

[ti'au +m —gvsﬂ(u)+igY5j'd4u'Z(n:u,u')é/én(u')] S(n;u,v)
= S(u-v). (VIII.30)

Here mn is a given external field, and 5 is the meson Green's func-
tion.

There is also a second equation, which is derived from the
equation for the meson field, and which likewise contains A and S.
Thus together we have a coupled system. Since S and A occur mul-
tiplied together (in each equation), the system is nonlinear. The
field 1 has no known physical interpretation, and should be set equal
to zero at the end of the calculations.

We will now solve a simplified problem, which is adapted
from the work of Edwards and Peterls.42) We assume , first, that the
mesons are scalar, and we neglect the nucleon recoil. Then only the
time dependence is relevant for interaction, and we set n(u)=n@u°).
We restrict n to be real and sufficiently smooth, e.g., continuous.
Our next assumption is that

Afnsu,u’) = 18( -u')Aw®-u'®), (VIII.31)

where & is a given function, which is sufficiently smooth.

We present two methods of solution. For the second, which
has heuristic elements, we will also assume that A€ L andjs real,
even, and of positive type, i.e., that the Fourier transform A is non-
negative. We introduce the real Hilbert space ¥p with the norm

(.0 = J__dw T (w)T(-w)/E(w. (VIII.32)

If & vanishes over an interval, then C(w) and E(—w)=€*(w) must
vanish there likewise, and we set the quotient equal to zero. We
will also assume, for the second method, that {n,n)< =.

The factor i in (VIII.31) eliminates oscillatory behavior in
the interaction, and will enable us to use the Hilbert space Integral.
The net effect is analogous to what would be obtained by continuing
analytically, t—it, and then smearing the interaction to remove di-
vergences.
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Schwinger's equation now becomes
[iat+m—gn(t)—ng do A(t-0)6/6n(0) | S(n;t, T) = 8(t-7). (VIIL.33)

Ordinary and partial differential equations of this type can be simpli-
fied by familiar transformations, and this also applies to the equation
at hand.

The terms mS and 8 may be eliminated by introducing as a
factor the free~-field function

im(t-7)

cO-r) = i lo@-1)e (VIII.34a)
which satisfies
(12 +mGc @ g -) = 6(t-1). (VIII. 34b)
Thus, let
stnit, 1) = ¢ -ns (n;t, 1)
where S1(n;7,7)=1 and
rcb
]:iat-gn(t) —gJ_mdcrA(t-c)zs/zsn(cr)Js1 = 0.
Next we eliminate the term gn8; by setting
rt
s, = Szexp[—lg J'r den (P)]-
Then again Sp(n;7,T)=1, and
t oo
Fi3 +ia2 [ o) =g [ , Is, =
13, +ig ) do At -0) gJ_QdoA(t 0)6/57](0)_]82 0.
(VIII.35a)
This equation has a solution independent of 1,
t t
N P [ ] =
s, = exp[-}g" | dp | doAlp o)] = 8,(t-7). (VIII.35b)

T T

We assumed here that A is even. Otherwise (VIII.35b) has to be
trivially modified. We have nothing to say about the uniqueness of
the solutions of (VIII.35a).
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If we now put together the various factors, we obtain

t )
S(n;t,T) = exp[-—ig Jr dpn(p):l Sz(t-T)G(°>(t—'r). (VIII.36)
T

The previous solution4z) to this problem made extensive use
of heuristic Fourier transforms, and is also of interest. There one
first removes the term gnS by introducing Gy,

8 = Glexp<—% (n ,‘ﬂ>A>. (VIII.37)

Next one sets
(-]

Gy(itm) ~ [atensft | don(e)C(p)] Gy (mit.n.

Then in place of the term involving 8/87 we get another, proportional
to

ero Mt-0)C(o) = Q).

One is led in this way to the equation

[ibt+m—gQ(t)_]G(Q;t,T) = 8(t-T), (VIII. 38a)

and G may be interpreted as the one-particle Green's function in the
external field Q. For our problem, we easily find:

t
G(a;t,T) = exp[-ig Jr do Q(O)J G(o)(t—'l'). (VIII.38b)
T

One now goes back to the original function S by integrating G func-
tionally. The result can be written as follows,

1
s(it,1) = [ 0@ D8 gaen;t,r). (VIII. 39)

b

The functional integral can be easily evaluated, and shown to agree
with (VIII.36).

IX. Measures Assoclated with the Integrals

We introduced both the Wiener integral and the Hilbert space
integral as limits of sequences of finite-dimensional integrals. Now
we are about to discuss measure-theoretic bases for these integrals.
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These bases clarify some paradoxes, and are otherwise useful as
well., We have already referred, for example, to the measure for the
Wiener integral.

The approaches which we introduce have the virtue of simplic~
ity, and of not requiring an extensive background. We should say
that other approaches are usually adopted in the current literature.

A. The Hilbert Space Integral and Product Measures.

Let us first point out that it is impossible to construct a fi-
nite, orthogonal (or unitary) invariant measure in a Hilbert space.
Consider a ball of radius # around each element of an orthonormal
basis. All balls should have the same measure by orthogonal invari-
ance, and are disjoint, so the total measure is lee =» if €>0,
(Recall that by definition a measure must be countably additive.) But
% € =« contradicts finiteness and, in particular, we cannot have
I}C(l) =1.

This non-existence of a finite and invariant measure leads to
paradoxes like the following. Consider the functional

Pod = o %P = T exp[ -6 ?/0]. (X.1)

One sees that

I}C(F) = ﬂ’jc

where c< 1, hence this product diverges to zero. But F is smooth
and positive everywhere on .

One way of constructing a measure for the Hilbert space inte-
gral is the following. 26)-28 (Of course, this measure will not be
orthogonal-invariant.) We fix an orthonormal basis, and consider the
space of all sequences (x1 ,x2,...) without the restriction Txl)l<cw,
This space is called a corona of I, and is the infinite Cartesian
product of real lines,

[+] [»]
h

R=R = X, . R

- (IX. 2)

g

On each line Ry we have the normalized Gaussian measure,
uj(le)=l. Fubini's theorem gives a measure on the Cartesian
product of a finite number of factors. It is significant for us that
this theorem extends to an infinite number of factors, if the measure
of each is unity.

We recall a few definitions. A measure space is a triple
(Y,S,H) where S is the family of measurable subsets of Y, i.e.,



FUNCTIONAL INTEGRALS 493

1 (B) is defined for B€S. The family S is a o-ring. For us suffices
the case where S is a o-algebra, i.e., closed under complements
and countable unions. We now have the following result.43

Theorem. If {(Yj,Sj . uj}} is a sequence of measure spaces
with uj{YJ} =1, then there exists a unique measure K on the v-algebra
s=X Sj. having the following property: For every setl of the form

@
Ax Xj-p41Y;, where A is a measurable subset of Y1 X ... X ¥y,

n(ax X7 v =(k x oxu ) @, (X.3)

Sets of this type are called e¢ylinders, and we denote the
class of all cylinders by C. Clearly, 4 as given by (IX.3) is a finite,
non-negative, and finitely additive function on C. For M to be a
measure, it suffices to show that | 1s continuous from above at the
null set ¢. This means that if we have an .?rbitrary decreasing se-
quence [EY'} of eylinders such that lim G =¢, then limu(E[ﬁ)=U.
An equivalent statement is, if 0<espu(E 4 ) for all j, then NE () #a.

The theorem can b{g proved fairly easily by actually exhibiting
apoint (v, yv2,...)ENE ]), if O<e<u(E j)). We refer to the cited
book of Halmos43) for details.

We recall that a set A has measure zero if for every €> 0, one
can cover A with a denumerable family of sets whose total measure
is <e. Let us show that for the infinite product measure 4 on R, we
have M(XC)=0.

Given €>0, let 8§ be such that

6 2 .
(2110)_% A due /20 e,< min(}¢,%).

J_s

‘We construct the following cylinders,
c, = {xer:|xl <5},
= . Z 3
c, = {xen:1x¥, [¥® <5},
and, in general,

Cp = {x ER ¢ |xn1| , |xnl+1 | ,...,|xn2| < 6}, (IX.4a)

where =$n(n-1)+1 and ny=#n(n+l). Since each x €3 has
|xj| <8 except for at most a finite number of components, KC UC,.
But J
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p‘(cl)=€ol"'lu(cn)=€gl-'-u
and

Zu(cn) = 6ot e i = eo/(l -e )< e, (IX. 4b)

It follows that p{iC) =0. Note that this resolves the dilemma
of the Integral of F(x)= e={x.X)/P  This functional is nonzero only
if (x,x)<%, i.e., only on a set of measure zero.

B. Measure for the Wiener Integral.

In the discussion of Section IX.A, we circumvented the possi-
ble realization of the underlying Hilbert space, as a space of func-
tlons. Moreover, we do not know if elements of the corona ® can be
identified as functions on RT. It is therefore instructive to see
another construction of a measure, where the function-theoretic as-
pects of the underlying space are very much in the foreground.

The construction which we outline depends on establishing a
correspondence between "quasi-intervals" of a function space and
subintervals of the unit interval. Then the Lebesque measure du im-
plies a measure for the function space. We should point out that
this approach, while simple in principle, does not easily adapt to
other related problems.

This construction was used by Wiener in his original work on
the integral, and a detailed treatment appeared recently.q‘q Here we
confine ourselves to indicating the main points.

For each positive integer n, we construct the following. We
first subdivide the real axis into two semi-infinite intervals and
(2n)2" intervals of length 277:

(-@,-n], (-n,-n+277], ..., (0n-2"",n], (n,=). (1X.5)

We call these intervals Akn) , 1<k = (2n)2"+2. {-‘m‘ the given n, we
also subdivide the interval [0,t] by the points t;¥ = jt/2". We now
define the guasi-intervals in the space & of all real-valued functions
on[0,t] by

Jj(]?) = {xes :x(tj(n)) € A]i“)}. (IX.. 6)

We replace j and k by the single index 4, which ranges from
one to [ (2n)2R+2]12". For the 4™, we have the probability function
P given by integrals like (IV.6). Obviously,
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s =5, T () = 1.

Uy 2 (™) =1 (X.7)
For the given n, we next divide the unit inte val into sutsun—

tervals, and establish a correspondence }h the ¢\, To J,f

):

J&(n)é‘)h(n) a [u}c(n)l'u& J = G &(n)> = o ‘“L(P% .

must associate an interval of length P(JL

(IX.8)

The details of this correspondence are not significant, except that we
must have

(n)

(n+1) =
3{’ - U{/le)\]}(,l .

_ ) (n+1)
= Uvex‘%('n = T

so that to a shrinking sequence of quasi-intervals there corresponds a
shrinking sequence of intervals.

Consider now a continuous function on [ 0,t]. It defines a
shrinking sequence of quasi-intervals as n—*, hence a shrinking se-
quence of intervals, and hence a real number. Conversely, to every
real number except for a set of measure zero, there corresponds a
unique continuous function. The points to be excluded are, first, the
endpoints of intervals, to which there may correspond two functions
(defined by shrinking sequences of intervals from left and from right).
Second, one has to exclude points for which the sequence of quasi-
intervals does not define a continuous function. In fact, one can
have two (completely distinct) sequences of binary rationals such that
lim t =lim T, and a sequence of quasi-intervals such that, e.g.,

x(tj)> 1, x('rk)< 0 forall j, k.

The crux of the construction is to show that such points (in
[0,1]) indeed form a set of measure zero. The precise statement that
one has is the following.

Theorem. Given €>0, dh such that all functions on [0,t]
which satisfy

|x(t,) - x(t)] > blty -1, ", (X.9)

where the tj are binary fractions times t, and where 4 is fixed,
0<u<4%, belong to quasi-intervals whose total probability is <e.
Thus, the measure for the Wiener integral is concentrated on
the space 3™ of Holder continuous functions. For simplicity, one
often takes the space c[O,t] of all continuous functions on [0,t]
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(corresponding to L =0), and which satisfy x(0)=0, as the space of
integration.

We now present a sample calculation, to give an idea how the
foregoing theorem can be proved. Let

N ! - n _ _ n
L jit/2", ty G+1)t/2°, so ty =t t/2,
and consider the functions x(T) for which
|x(t,) - x(t))| > hit/2M", (IX. 10)

where h also satisfies ht=(B-H)2-%21 (see Eq. (IX.12c) below).

Functions satisfying (IX.10) can be classified aC(:?rdingly as
x(t1) or x(ty) lies in a finite or in an infinite interval Amn , for the
given n (see (IX.5)). Suppose that x(t;) lies in the first finite in-
terval from the left, and x(tz) in any finite interval. Then the proba-
bility of the quasi-intervals which include all the functions x in
question, is

-n
-3 pnt2 _B3on-1 n (1 V25Nl
2n> Jr dule w2tV [ s (uz=u,)°2 /t/

-n -n+2 Tk

P=<41‘r2jt2/2

(x.11)

where k is the least integer such that h(t/2%)4> 27k,
Let us obtain an estimate for the integral over ug, which we
call P,. We set uy ~uj =u, and observe that

uzhi/2MM o2 = u,.- (IX.12a)

We treat the interval [uy,ug+2™"] separately. Thus

re 2 DL @ »
I gque™ 2 7ts £h,n) + o Jf’ ave™, (IX.12b)

|
“ug Vo

-n —y<2n-i - )
f(h,n) =2 Ne Hig2 /t, co=2 #(n 1)té‘

‘

vo=ht_(%—“)2_%2n(%—u) )
(IX.12c)

The need for 4<% is now apparent. This is needed in order to have
Vo ® with n.
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Let us find more explicitly the dependence of the last integral
on h and n. In view of the condition on h made previously, v>1 in
the range of integration, so

2
e 4 =f(h,n) +% c e Vo

P < fl,n) +% c, Jr 2d(v2) (IX.124)

Vo

We see that the second term, as well as the first, decrease very
rapidly with increasing h and n. The proof of the theorem is now a
matter of combinatorics and of additional calculations of this sort.

C. Consequences of the Wiener Measure.

The existence of the measure for the Wiener integral allows us
to use the full apparatus of measure theory, e.g., Fubini's theorem,
et cetera. We should also like to point out some more specific con-
sequences of this measure. Various of these consequences were pre-
supposed in the previous sections.

(1) One can define a measure for the conditional Wiener inte-
gral by a similar construction, or in terms of the Radon-Nikodym de-
rivative dupyy/d[x(t)]. Then the Wiener measure is the product meas-
ure, cf. Eq. (Iv.24).

(2) 1t follows directly from the foregoing construction that a
Wiener cylinder functional is Wiener measurable. [We refer here to
functionals f{x(t]),... ,x(ty)} such that f is measurable in R™.]
Moreover, one can show easily that any continuous functional g {x}
on C[g,t]. i.e., depending continuously on continuous functions x(1),
is Wiener measurable.45) The second assertion, or both, applies in
particular to the following functionals which we encountered previ-
ously:

e—fd'rv{x}' eifd'rxy.

x(t) . . . x (), (IX.13)

(3) By way of recapitulation, we observe that we have availa-
ble three ways for defining the Wiener integral: (i) directly as a limit,
as in Section IV.A; (ii) as a Hilbert space integral over the space }CW,
and (ili) as a measure-theoretic integral. Still another way, (iv) in
terms of semigroups,will be indicated in Section XI.B.

For some functionals, these definitions are not equivalent.
However, in various important cases, at least the first three are.
Consider, e.g., methods (i) and (ii). For a given functional F, they
define approximating functionals FS. Suppose that all such F® are
bounded by a functional which is integrable in the measure-theoretic
sense. Then the dominated convergence theorem implies that
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[

s [
Jd“WF m— J duyy, F

if PPM{x}~ p{x} for all x€Cpq ], and the definition (iii) agrees with
(i) and (ii). This applies obviously to the last two functionals in
(IX.13), for which |P| IF | =1 (if v20), and for which a variety of
other approximating sequences could also be employed. See, e.qg.,
Section IV.B. For the functional x(t;)...x(t}), we may argue simi-
larly.

However, one can give an example45) of a functional for
which (i) and (iii) give unambiguous but different results. Therefore,
the term Wiener integral is reserved by convention for the measure-
theoretic integral.

(4) A gen ral theorem46) implies that the characteristic func-
tional fduW{x]e X,y) depends continuously on y, where y may
range over the dual to C[g ] (This dual includes all measures over
[0,t].) This fact is confirmed by the evaluation (VII.21). Another
result is the following.

If F is bounded and continuous on c[O,t] and

ilx,y

eruw(x)e Fix} =0 (IX.14)

for every y€C[p,t] . Thr—:n‘“)| F= G (on Clo, t]) We note that if we
were to replace in (IX.14) the r\}er mtegral by the Hilbert space in-
tegral, then the functional e~ /0 would give a counterexample.

X. Some Related Measures

A. Examples Based on the Smoluchowski Equation.

In the remainder of these notes we shall modify the two func-
tional integrals in various ways. The first possibility that we dis-
cuss is to generalize the construction of the Wiener integral. In par-
ticular, we proceed as in Section IV.A, but do not insist on the con-
nection with the diffusion equation.

Thus, for the probability that aj< x(T;)<b;, we generalize
(Iv.6) to

r by r by, p :
J dul...‘Ja dumP\0|u1;'rl>P ulluz;'rz—'rl> 5

a m
P op i Ty =Ty )- x.1)
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The function P defines the conditional probabilities, and it will be
assumed positive and continuous for Ty, -7y~ 0. It must, moreover,
satisfy the compatibility condition for all 7, 0<T<t,

@

P(vliut) = ,_]r dEP(v|&;T)P(E|u;t-T). x.2)

This equation is known as the Smoluchowski equation.zz)

If we have such a function P, we can compute expectations of
integrable cylinder functionals, and can also try to define a func-
tional integral. See the remarks at the end of this section (X.A), and
also Section X.B.

We now give two examples of functions P. First, let

Polvlwrt) = @m™ [ ag expfisuw-tls* ] 6.

One can show47) that Py is positive for 0<a <2, and (X.2) follows if
we recognize the Fourier integral for the & -function. For a =2, we
get the solution to the diffusion equation and also the Wiener inte-
gral.

For a =1, the integral (X.3) is elementary,

P lvlut) = v/m[2+@-v)2 | (x.4)

The cylinder functional x(tj)x(ty) is not integrable now. For

_ |e161X(t1) B e-iBQX(ta)[ 2

f{x} , (X.5a)
we easily find the expectation E. If tj<ty,
B = 2-2exp| -18,] (t,-t) - 18,8, It; |. (X. 5b)

The second example that we mention corresponds to the
Brownian motion of the one-dimensional harmonic oscillator. In
the presence of an external force, the diffusion process is described
by the Fokker-Planck equation, here

/ot = D% /au’ - £ a(pv)/du, (X.6)

where F is the external force and -fV is the force of friction, V
being the velocity. For P=-u)2mu, we may write
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2
34/3t = Dd2y/3u’ + k3 (uy)/du, .7)
where k=w2m/f, k> 0. For the fundamental solution Pk satisfying
k c1=0) =
P (v]|ust=0) = 8(u-v),

we find

Pk(v|u; t) = k%l:ZWD(l _e—Zkt)]‘%'

X exp[—(k/ZD)(u—ve'kt)z(l —e‘Zkt)_I]. (X.8)

We see a Gaussian distribution. The mean is also the expec-
tation value of x(t1),

£{x} = x(t;) = E@® =ve <, x.9)

provided we redefine the probabilities [ (X.1), et ceteral, so that the
paths satisfy x{(0) = v.

In order to verify (X.2), we first set p= Ee_kT . Then we ob-
serve that the integrand can be put into the same form as for the dif-
fusion equation, with the time t replaced by e~2kt

Now let us consider the functional

f{x} = [x(ti) - ve-ktll[x(tz) = ve_ktg] . (X.10a)

i.e., we subtracted the mean values. To find the expectation of f
we make some obvious changes of variables, and obtain

E(f) = (D/k)(e'klta'tll —e_k(t”tl)). (X.10b)

Note that as k— 0 this reduces to 2Dmin(t],tp), in agreement with
(Iv.14b).

This example relates to the solution of a model for a one-
dimensional many-body system., There the basic potential is
—e” V1Tl it modified by a hard core . 49

One would still like to know if the Py and the P¥ in fact de-
fine measure-theoretic integrals. The answer is yes. For Py, a<2,
one integrates over the space of functions with jump discontinui-
ties.22) Note, however, that the expectation (X.5b) does not reflect
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any discontinuity. On the other hand, for the PK one can easily re-
late the integral to the Wiener integral, and it suffices to take the
‘Wiener spaceso) c[O,t] .

B. Product Measures. A Theorem of Kolmogorov.
The theorem of Section IX.A on infinite product measures al-
lows us to construct, quite generally,

anta =Tl ad .6, x.11)
where p20 and Idxj py= 1. We give two examples.
First, let
ij(xj) = (ZTTG)_% exp]:—(xj —aj)Z/ZOJ. (X.12)

If each al=0 , then we obtain the measure of Section IX.A. This
example relates to the question of unitari/ equivalence of the two sets
of canonical systems of operators:za)'33

preqtepiuat:... and plyqEims where qV=d’+a' (X.13a)

and where
[:pj,qk:] =[‘:pj,q'k_-] =17 edk, (X.13b)
For the second example, we take
p6d) = 8.6 -a)), (x,14a)

which 1n fact corresponds to the limit 0= 0 of pj0 . Then
[ dux) Fix) = Fla), (X.14b)

where a=(al ,a2,...), and a is not restricted K.

The following theorem of Kolmogorov can be considered a
generalization of the theorem on product measures, and can be proved
in a similar way:51

Thecrem. Suppose that we have an index set S (which need
not be denumerable), and for any finite set of indices i1s/eeesipy € 8
there exists a real-valued function Fil...im[“ oo, u™) on RM, These

functions must be non-negative, non-decreasing, continuous from the
right, and must satisfy:
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, B g Sl k kLN
(1) Flk(u) 1 as u~e and Fy;, 4, (U e > 0

k+1
as u - -o,
" 1 k  kHN /1 k
(ii) Fil"'ik+1<u sty tld ) Fil...ik\u AEEawil )
k+1

as u - ®,

71 m 7 .a(1) g (m)

iii) F iU, .., =F i U seess U ),
(111) i1 .0\ ) 10‘(1)"'10(111)\

where 0 is any permutation on {1,...,m}. Then there exists a meas-
ure di{x) on the (perhaps non-denumerably infinite) product space

R = Xjes®Y), (X.15)
such that
il my\ _ [
Pil...imcu feee U )— J duly), (X.16a)
P
where
i, ,
P={ye&:yJSu’ for 1Sj5m}. (X.16b)

The product measure corresponds to the factorizations

1 myN _ . /1 o /m
Pil...im\u s e, U ) Fll\u )...Flm\u > X.17)
This theorem also applies to the integrals of P{v|u;T) as in (X.1),
bj by

1 m
EE “_Tm<b1,...,bm>= er vy ... Jr dva<0|vl:T11>...

7 . e >
P\vm—llvm’Tim Tim-1./" x.18)
where the Tj,,...,Tj{_ are now in chronclogical order, Ti;< Tij+1 . In
this case, (il) is equivalent to the Smoluchowskl equatljon. However,

the measure implied in the present theorem is then over the space of
all functions, without regard to continuity [but satisfying x(0)=0].
Often, and for us, this is not the measure of interest.
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We make a final observation. Let us take the integrals of
P(v|u;T) for the case of the Wiener integral, and restrict T to binary
rationals, multiplied by t. Kolmogorov's theorem then allows us to
bypass the correspondence with subintervals of the unit interval, in
the construction of the Wiener measure.

XI1. Representation of Operators of Evolution

The interrelation between the diffusion equation and the
Wiener integral has been prominent in the previous sections. We
also saw in Section X.A that a functional integral may be associated
with the Fokker-Planck equation for the case of a spring force.

In this section we will discuss the possibility of relating cer-
tain other partial differential equations to functional integrals. OQur
special interest is in the Schrddinger equation.

A. Parabolic Equations of Higher Order.sz)
The complications which occur with the Schrddinger equation
can be seen, perhaps more easily, if one examines

r+1 2r

dy/dt = (-1) 1/3u? (X1.1)

where r2 2. The fundamental solution p, defined by the initlal con-
dition

p(t=0,u) = 8(u),

can be expressed as follows,

plt,u) = (21'r)-1 Jr dg exp(igu—t§2r> , (X1.2)

and satisfies, in view of the Fourier integral for the &-function,

[

| aup(tw =1, all tzo0. (XI.3)

-]

We could try to use p to define measures of quasi-intervals,
as in Section IX.B:

_r [
W) = | duj.. g dug M s (XI. 4a)
al am k=1
P
Pe = Pt teors Y Y 1) KI. 4b)

and we set t5=0, us=0. We could then hope to express solutions to
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equations like 1 o .
+
Y yau + vy (XI.5)

dy/d3t = (-1

by means of functional integrals constructed in this way.

However, the difficulty is that p can take on negative values.
In fact, the integral (XI.2), with ng replaced by lila, is positive for
0<a< 2, but not for &> 2 (cf. Section X.A). We do not know of any
elementary proof of this fact, but one can easily see that for suffici-
ently large @ or r, the integral will become negative. Indeed, if t
is fixed and r—~=, then exp(-t&2’) becomes the step-function
a(1 462) , whose Fourier transform is

P e .8
J dge'™Y = 2(sin u)/u. (X1.6)
-1

This evaluation will be changed by arbitrarily little if r is suffici-
ently large.
One might try to remedy this situation by writing (see (XI.4a))

M) = ny(9)-uld), X1.7)

where the two contributions correspond respectively to the two re-
gions of R™M where IIpy is positive and negative. Then, if 44 and
(i _ should define independent functional integrals, the procedure
could be essentially unchanged.

We could use such a decomposition if each of the two meas-
ures My defined a finite measure on the space of all functions. (Then
we would say that ¢ is of bounded variation, in analogy with the
finite~dimensional theory.) But this is not the case, as the following
argument shows.

Consider u (J9)+u_(J9). This quantity results if we replace
Opy by N|pk| in (XI.4a). Furthermore, let J now be the space ¥ of
all functions, i.e., let (a; ,bj)-' -, ) for all j. Then the integral

over each uy yields the factor

@

JF duj|p(t,uj)| = 2m)? J[’ dv J[’ dne M HM 2 o1, @ie)

. - -
We changed variables, v=ut 1”2 and n=&t*/2T and have thus shown

that ¢ does not depend on t. Moreover, ¢> 1, since j'dujp=1, and
p becomes negative. Thus

L (F) +u_(F) = M, (X1.9)

and cM-® as m—-«. Consequently, our previous constructions of
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functional integrals cannot be easily adapted to the present
circumstance.

53A similar argument applies to the modified Schrodinger equa-
tion,

3y/3t = (1+€)d 2y /ou’. (XI.10)

We included the real and positive increment €. At one time it was
hoped that the presence of € would enable us to use an integral like
the Wiener integral, and we could let €= 0 at the end of the manip-
ulations.

Let us return to Eq. (XI.5) with the potential V. It is possi-
ble to construct the analogue to the Feynman-Kac formula (IV.28), and
we turn to this problem presently. However, one can also study the
"generalized measure" defined by (XI.1) and show, e.g., that it is
concentrated on a space of Holder continuous functions.

B. Semigroups of Operators.

First, we give an example from ordinary differential equations.
Suppose that we have a system of equations

dy/dt = Aft)y, (X1.11)

where A(t) is a matrix depending smoothly on time t. If
[A(T]), A(1)) =0 for 0s7),Tyst, (XI.12a)
then we have the solution

yit) = exp[ Ith A(rr)]y(o). (XI.12b)
O

In the general case, we can use a familiar procedure. We
break the interval [0,t] into m equal parts, set At=t/m, and the
solution is given by

ylt) = {nmmw[l + Ot A(t)][l + At A((m-1) At)] [1 + AtA(At):l} v(0)

t
= { exp Jr dr A(T)>+y(0), (X1.13)
o

(cf. (111.16) and (1I1.17)). This time-ordered exponential is also
called a multiplicative integral. 54) 1t has various useful properties
analogous to those of, say, the Riemann integral.
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The remainder of Section XI.B is based largely on an article
by Nelson.55)

In the case of the Schrddinger equation,
_ i _1 . - _ —
b = [T, ~V]E, b0, W) = (@), xi.19)

the situation is somewhat different from (XI.11l). For the two simpler
equations,

apc = 12w T agx, 3y = ~iV@)y, (XI.15a,b)

we can write the solution immediately,

~o -t/ 2~ o - -tV -
x(t.k) = e / X090, yitu)=e y(0,u), (XI.15¢,d)
where X is the Fourier transform of x.

Since A and V do not commute, we again have to use a
limiting relation. We have the following. If

pt = exp(itd/2u), Qt = exp(-itV), (XI.16a,b)

then, under suitable restrictions on V,

y, = lim (Pt/mot/m>m . (XI.16¢)

m— o

We have here an example of Trotter's formula. Its applicability to
the Schrodinger equation will be discussed in Section XI.C.

Let us now give a more precise and also more general formula-
tion of such relations. A contraction semigroup on a Banach space
B is a semigroup {Kt} , t=0, of bounded operators mapping 8—-+8 and
satisfying

k°=1, k% =", k=1, 1imt_'01<t¢=¢, (X1.17)

for all § €B. The infinitesimal generator A of [Kt] is defined by

Ay = limt Ot—l(Kt\b -, (X1.18)

and its domain D(A) consists of all § €8 for which this limit exists.
In particular, if A is a self-adjoint operator on a Hilbert

space, then the ut=elt® form a unitary group, and a fortiori a con-

traction semigroup. However, semigroups rather than groups
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ordinarily apply to the diffusion equations, where, e.g., the initial
condition §,_4(u) =6 (u) does not define a solution for t<0.

We can now state a weak form of Trotter's theorem.

Theorem. Let A, B, and A+B be the infinitesimal generators
of the contraction semigroups (X!}, {Yt}, and {Zt}, respectively,
acting on the Banach space . Then for all y €8,

zt = lim (xt/myt/m>m¢. (X1.19)

m-— e

This theorem can be proved in an elementary fashion. The key
step is to use the principle of uniform boundedness in order to show
that

. Sl ohoh hNOT g
lim b “(x Y-z )z v = o,

the limit being uniform in T for 0<T<t.

This theorem applies in particular to the diffusion equation
with a potential V{)=0. If we take Ly (RM) as the basic space, then
clearly V20, Hy= -420, and V+H,20. Recall that

Az20 <= (y,Ay) =20 forall y €L,. (X1.20)
Hence

1™l ooy, e oW s 2100

However, we can also employ the space Ll(RnI}I. Then (XI.2la) re-
mains obvious, while XI.21b-c), in fact ||e_t °|=1, are implied in
Section 1V.

For the diffusion equation with potential, the successive ap-
proximations in (XI.19) correspond just to the approximations used in
the construction of the Wiener integral in Section IV.A (except for in-
tegration over the final endpoint). Now, as we implied in Section
IX.C, Trotter's formula might serve to give still another definition of
the Wiener integral. Such a definition would be much more limited in
scope than the previous ones. Moreover, it might possibly lead to
different results, e.g., for some functionals which depend on x as
well as on x.

Finally, we note that the foregoing theorem also applies to the
higher order parabolic equations like (XI.5).

C. The Path Integral.zs)fss)
Let us now apply Trotter's formula to the Schrodinger equation.
The solution (XI.15c) in coordinate space, in n dimensions, takes
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the form

x(t,3) = (2mit/w " E" er“?,exp@mm-?,lz/t)x(o,?,) ,

T £Zim ) )
where 1 =e . This equation is valid for x€L{N Ly. However,
the operator here represented is unitary, and so can be extended to

all of Ly. The m-th approximation in (XI.16c) becomes

v ™5 = (am At/u>_%nerdn\71 d™ M y0,7)),

(X1.22a)

-

it |;j+l = Vj P

8 = Xj kD —a - Vv | at, (x1.22b)

with V41 = U-

In the limit m—®, 8, tends to the classical action S {x},
Eq. (I.5b) (we suppress the t~dependence). We now denote the limit
of the approximation (XI.22a) as follows:

v,y = (a5 [ s S y0 9. &2
J Jemd T

The integral here introduced will be called the Feynman path integral
(or simply, the path integral). We continue to use the symbol
C(v.4), but no relation to continuous functions is implied here.

If we recall the definition of the propagation kernels,

Glt,u) = ern\';'l((?zm;t)q;(o,v), (XI.24a)
we see that
K(v|ust) = Jr e sF(?c)eiS G} | (XI.24b)
Cv,u)

A basic question now is, for what potentials are these formu-
las valid. In view of the fact that Eqs. (XI.15a-d) already define
unitary groups, and in particular contraction semigroups, this will be
the case if (2 u)_lA -V is self-adjoint. We state one set of criteria
due to Kato. Let V be a real multiplicative operator, with V(Q)
measurable. Then V will be self-adjoint on a domain D({V).

Theorem. If D(V)=2 D(A) and there exist constants a<1l and
b such that
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Ivill<aw™ av] +blell, (XI. 25)

for all § € D(A), then (2u)~}a -V is self-adjoint.

Note that if V is bounded, then we can take b=max|V|, and
the theorem will apply.

However, this theorem does not apply to various functionals
of interest, For example, if V=-k/r®, with k sufficiently large,
then (2 u)_lb -V is not unambiguously defined. In particular, it
might not be a self-adjoint operator. In such a case, Zt in (X1.19) is
not unitary, and so cannot be approximated (in the sense of strong
convergence) by unitary operators. Moreover, some functionals, like
F{x} =x(t0) , are not associated with contraction semigroups in a
natural way.

We therefore mention two other possibilities for defining the
path integral. First, we may start with the measure-theoretic integral
for an imaginary mass, i/u>0, and continue analytically in u. Sec-
ond, we may define the path integral directly as a limit,53 as in
Section IV.A. We do not consider the questions, which functionals
would then be integrable and when do the various definitions agree.

For evaluating the path integral, the following formula may be
useful:

[opb0et T E R e o [ 0o M E D p g
(X1.26)

This formula is valid if x(0)=0, x(t) is unrestricted, or if x(0)=x(t)=0.
Other conditional integrals may be brought to this latter form by a
change of variables. (Suitable restrictions on F are understood.)

In the remainder of Section XI we describe some applications
of the path integral.

Suppose first that AV is a perturbing potential, and let
f=exp(—i‘fd'r AV). Then the probability of trangition from ¢ at time
t=0 to x at time t will be the following matrix element,

<f>wE | £]xd

e eran(LT)ern?;w(\—/)Jr a . SP(x)els{X}f{x}. (X1.27
Clv,u)
If we expand f in powers of AV, wc can easily obtain the familiar

perturbation series. Equation (XI.27) also can give a convenient rep-
resentation for other matrix elements, e.g., of x, p, et cetera.
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We now indicate some heuristic manipulations. For suitable
functionals F we should have, as in the examples of Section VII.B,

f _(x) 0 |-eiS{X}I-‘{x}_ =0 (X1.28a)
Jo@am T o) J

and

(61=/6x°‘(¢)>w= —1<Pas/6x°‘(fr)>¢x. (X1.28b)

One can interpret 6S/5XG‘(T) with the help of Green's functions, as
in (VII.12), or by using the rules of Section I.B,

Equation (XI.28b) is a special case of Schwinger's action
principle.56 This principle asserts that, quite generally,

(6F), = -i{F88)

o T (XI.29)

For example, let F and S depemi on a suitably-behaving function of
position m. Then also n(1)=n(x(T)), and the chain rule

5 _ v 632 (1) 6
671(9) za JdT (S'rl(p) éxc‘('r} (XI.SO)

implies (XI.29) for varlations with respect to 1.

We can also give an example from quantum field theory. If
we have an electromagnetic field which depends (at least partially)
on a given external current I“, and

s =gy er4v'Au(v')]p(v'), (X1.31)

where S(o) does not depend on I“, then

BAV() v _ i eaVi) <88y = it aVfurat
( 57 1 (v) Y= -1(A"(u) 5.Tp(’v'}> = -i(A (A" (v) ). (XI.32)

The expectations refer to arbitrarily chosen states.

D. Classical Limit of Quantum Mechanics .57)

The path integral elucidates the nature of the stationary
phase (or WKB or JTWKB) approximation in quantum mechanics. We
start with Eq. (XI.24b) for the propagation kernel, but we do not set
h=1:
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is{x}/n .

K(v]u;t) = Jf’ 8_(x)e (XI.33)

—_ — P
C(v,u)
We are interested in deriving an approximation for K, which is
valid if h is small compared with other parameters of the system.
Now, for small h, the exponential will oscillate rapidly, and the

principal contribution will correspond to minimal oscillations. These
are the paths near the classical path X(7), which of course satisfies

cs{Q}/axa(¢)|;=;( = 0. (XI.34)

We therefore proceed as follows. Let

§=>?+h’35{, (XI.35a)
where x(0)=X(0)=v and x(t)=X{)=u. Thus
X(0) =X () =0, (XT.35b)

Let us assume a Volterra expansion for S and take the first two non-
vanishing terms:

s{x} ~8{X} +#1n8,{x}, (X1.36a)
'\t 2
s,ixi="Y | OyP “xF
o o B‘Jo % BXBI x=X (1) *X T axasf x=X(T)X ‘
At . o . B, .-
= d'r[ui'z(T) - g plmIx ()X (T)J . (X1.36b)

(o]

Here qgpg is a known function insofar as we can solve the classical
problem, i.e., find X(7).

We now insert (XI.36a) into (XI.33) and define the approximate
kernel,

N = N L1 — i —_
K, = Ji8{X1/n J[‘ L QP(X)elgsz b o gsixd/my
c(0,0) ,
Note that the two integrals, in (XI.33) and (XI.37), refer to different
variances, hu~! and u™! respectively (aside from factors i). Still,
the formal manipulations lead to a correct expression.

The integral J is manifestly independent of h. There appears
to be a correction to Ky of order hl/Z, but this is an integral of an

(X1.37)
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odd functional, hence zero. Consequently, K-Kj; is of order h.
Let us look at the integral J more closely. Equation (XI.26)
implies
At
a B
exp(%j dTaggX X )
o

n

o U JLED
T= ., 8(xe
Je@sy W
(XI1.38a)

For simplicity, let us now consider one-dimensional motion, and let

w_r AR g 2
77 = 8., (x)e exp(% i dTax 3. (XI.38b)
Jowo,o) W ( o N

As a typical example, we may have

v =?,  q(r) = 122%x%(7) = 0. (X1.39)

This is in contrast to (IV. 15; , where we specified q=-p<0. How-
ever, 3{x} has a minimum®/ at x=X, so Sy is positive definite.
With reference to (VII.3)-(VII.4), this means that 1+A>0, as re-
quired there. The fact that perhaps A<0 is of no consequence.

In Section IV.B we described the evaluation of an integral like
I(l) in (XI.38b), but unrestricted. The method used there can also be
adapted to the conditional integral, and the answer is as follows .28
If

f () +q(ni(t) =0, £ft) =0, £@) =-1, (XI.40a)

then

wjH

I(l) = [m£(0)]~ (XI.40b)

The expression (XI.37) for K, is in agreement with the results
of the stationary phase approximation. There one writes, with an
error of order h,
elS{X}/heSl . (XI.41a)
S,

by =

In the cited reference, 57) indirect arguments were given that J=e
It does not seem easy to compare the evaluation (XI.40b) with the
standard time-independent solution,

(3" (u) = const. |E-v(u)| _%. (XI.41b)
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XII. Two Special Functional Integrals

In this section we describe the Feynman history integral and
an anticommutative integral. Both of these have been introduced pri-
marily to deal with situations which so far are peculiar to quantum
field theory. However, it is not at all unusual to introduce an inte-
gral which may be of a rather limited applicability. We may quote, in
this connection, the title of a recent review article:sg) "Integrals
devised for special purposes.”

A. A Simple Model.

We are interested in constructing a functional integral repre-
sentation for time-ordered vacuum expectation values. Here we pre-
sent a trivial model, and the treatment that follows can easily be
made rigorous.

We consider a system with a denumerable number of excita-
tions, e.g., an oscillator. We employ the standard annihilation and
creation operators,

0 1 0 0 0
_ 0 V2 N 1 0
a = 0o /3 |. a = /20 ,  (XII.la)
0 e 0
- _+
la ,a] =1, (XII.1b)

which are supposed to relate to the excitations in the usual way. We
now define
+

olt) =a --Ta (X11.2)

Here T has the interpretation of imaginary time, i'lt, and
various standard field-theoretic relations should be modified ac-
cordingly. As a result, we will be able to use the Wiener integral
rather than the Feynman path integral, and for the former a more ex-
tensive theory is available.

We see that ¢ = —a+, and that the equation of motion and the
"equal time" commutation relations are as follows,

¢ =0, [¢p,0]=1. (X11.3a,b)

The T-dependence, or evolution, of ¢ can be described in terms of a
"Euclidean Hamiltonian,"

H= %cbz = %(a+)2, (XII.4a)
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p(r) = e"Hp(0)e TH, (XI1. 4b)

Of course, we are dealing here with unbounded operators, and ques-
tions of domain should be carefully considered.
Let us determine some vacuum expectation values:

Grwlry)) = @ 1" =1, (X11.5a)

and with reference to "Euclidean time ordering,"

<<cp('rl)Cp(Tz)>+)

min('rl, TZ)
K

J drwlmnlrynlry), KII.5b)

in view of (IV.14b). (There and here we take c=1.) One may verify
the corresponding relation for higher order vacuum functions. We
conclude that for functionals restricted to a suitable class,

(Eloh),), = [auynrin. (x11.6)

‘We note that we may take [0,) as the basic interval for the Wiener
integral.

As in Section III.C, we can construct the generating func-
tional,

of{1}

< <eij‘chpI>+>o= exp[_é Jr Jr dTldTII min(’l",'r")]'('r')]'('r"):l
o]
' (XII.7a)

(see (VII.21)). This functional satisfles an equation analogous to
(111.26),

(a®/ar®)[satn1/81(n ] = 3(ma . (1. 7b)

B. The History Integral.

We will now adapt the foregoing considerations to the free
scalar field. We will be led in this way to an integral, whose mathe-
matical structure is as yet imperfectly understood.

Here we present a heuristic discussion, which is based on the
approach of Bogolubov and Shirkcv.39) Our short summary should be
regarded as a supplement to the clear and concise exposition in the
cited text.
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First we evaluate the vacuum expectation value which is the
free field generating functional, cf. Section III:

O)U} = ((exp ier4pcp(0)(p)I(—p)>+ 2o (XII.8)

(We suppress the tildes which would indicate Fourier transforms.) In
general, a time-ordered product can be reduced to the normal form by
replacing, in momentum space,

21 @) - 18%0 6/6 9 (-1, (X1I.9a)

AS(k) = —(kz-u2+ie & gy, (XII. 9b)

More precisely, if (Fl{cp(o)})+ = :Fz{cp(o)}:, then, in an obvious nota-
tion,

pi¢ ) = Fi{c, -1a58/8¢ )1 (X11. 9c)

This rule may be verified directly for polynomial functionals.

Such rules express the combinatorial features of the ordering
prescriptions. We can give another example. Suppose that we have
a free field whose annihilation and creation parts are so adjusted that
they satisfy

[x(_)(g), x(+)(\7)] = 6(0-7). (XII.10a)

Let F{x(7),x™)} be an arbitrary functional. If we want to reduce F
to the normal form, F=:H:, then we set

n{g™,g"} = rfeT+ose8T, 87} 1, (XII.10b)
Let us return to T(®). We introduce
e {CiA) = exp{ierd“p[g(p)—iAC(p)é/sc(—p)]x(fp)} ‘1, (.1la)

and TO){1}=138 {0 1} (since, in general, { F{cp(o)} Do =F{0}). We
differentiate w1th respect to \:

2 r ,
S alend =] e -10°m s IR g lenl. )
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We see a differential equation, which resembles those that we solved
in Section VIII. We find @I, by trial and error, or otherwise, and ob-
tain

1(1) = exp[3 ier4pI(p)Ac(p) 1) (X1I.12)

Thus the vacuum expectation value of a linear exponential
gives a Gaussian. This is in analogy with the formulas for the two
basic integrals. We therefore write T(O){]} (heuristically) as a func-
tional integral, with a suitable Gaussian weight. Explicitly,

s 4 (o) _ i (0) i 4 -
<<e1j'd polleIory ) ~ Jrs(n)em {n} 1[d*pn(p)I(-p),
(X11.13)

where A(9) is the free-field action,

r

Ay = ] d*onE) (0% -u2) n(-p). (XII.14)

As in (XII.9b), the prescription p2~ u2-ie near p2=u2 is implied.
Moreover, the obvious normalization of the functional integral is to
be understood, i.e., to unity for J=0. We call the new functional

integral the Feynman history integral. More generally,

<<F {Cp(o)}>+ >~ Jrs(n)em(o){”}lv{n} ) (XII. 15)

The history integral has the basic form of the Hilbert space
integral with a modified weight, as in the examples of Section VI.D.
To see more clearly the interrelation of the various integrals, the fol-
lowing diagram may be helpful:

Comm. H. s. integral

Commutative Hilbert/With modified weight ——> history integral

i al
space integr: T Weiner integral —> path integral

The two arrows on the left indicate specialization, and we re-
fer to Section VI. The horizontal arrows indicate analytic continua-
tion. See Sections XI.C and XII.C, where we mention continuation in
it and in t, respectively. Finally, one can try to interrelate the two
Feynman integrals as follows.60) We choose an orthonormal basis for
the one-particle sector of {p(o), and in this way separate the degrees
of freedom. TFor each degree of freedom, we describe the time
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evolution by means of the path integral. When the path integrals are
combined, one obtains a history integral. But this approach remains
to be worked out more fully.

C. Time-Ordered Functions and Functionals. 39),61) ‘We can now de-
rive easily (but of course heuristically) some interesting formulas for
interacting fields. We consider the Lagrangian

L(O)

L{v) = (v) + Ll(v), (XII.16a)

where, e.g., L1(v)= ch4(v). All questions of renormalization will be
ignored here. The total action is

el a
a=2a = Ma%r©@ s Tafr . (XII. 16b)
1 J 1
We also write L{ep), Af{p}, et cetera. The S-matrix corresponding to
L, is given by

S = <exp1' Jf’ s Ll(v)>+. (XI1.17)

For the time-ordered function 79 =((p 9)4+)o we have the ex-
pression

'rz(u—v)

(o ©) (1)o@ wS), ),/ (8), (XII.18a)

iA{n}

N‘lj”mme neniv), (XI1. 18b)

in view of (XII.15)-(XII.17). Here N=({8),. More generally, we see
that we can construct the generating functional T, Eq. (III.16), as
follows,

T{1} = N"lJrs(n)eiA{n]exp[ier‘lv n(v)](v):l. (XII.19)

If we combine the two exponents, we can think of the sum as
determined by a new Lagrangian,

L(0)

L].(V) = W) + Ll(v) +oo(V)Tv). (XII.20a)

It follows that T{J} is the vacuum-to-vacuum transition function for
the field which satisfies the equation

@ -u2)pW) = Li(e)E) +IE). (XII.20b)
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We thus see that the function J, which was introduced merely as the
argument for a functional, in fact has the natural interpretation as an
external source.

It is remarkable that the strictly heuristic expression (XII.19)
can be given a rigorous meaning (for, e.g., Li=Xeg ) if three modifi-
cations are made:

(i) A transition is made to the Euclidean region, t—it, so
that the integral becomes a commutative Hilbert space
integral, with a modified weight.

(ii) The Klein-Gordon operator is replaced by a product of
such operators so that the Green's function

1 r 4k eik(u—v)
emd Jd T nk2+pd)

Glu-v) = (X11.21)

is everywhere finite. The Lagrangian and the action must
be modified accordingly.

(ii1) The system is restricted to a finite volume of space-time.

Under these modifications, the integral analogous to (XII.19)
converges to a generating functional for Euclidean time-ordered func-
tions. This functional satisfies the analogue to Eq. (III.26). Hope-
fully, one could continue analytically the Euclidean functions and
functionals to the Minkowski space-time. But at present this is of
secondary interest, since the solution to the Euclidean problem is
still so incomplete. [In particular, one would like to be able to dis-
pense with modifications (ii) and (iii).]

We make another comment about the integral (XII.19). This
integral is the Fourier transform of an exponentiated polynomial, if L;
is a polynomial in ¢. It may be worth noting that we encountered
several times before the Fourier transforms of such functions or func-
tionals and the corresponding differential equations. Compare with
(VIII.25), (VIII. 29), and (XI.2).

Let us now consider, again in (XII.19), the two terms in A{n}.
By interchanging operations, we can obtain

T{j} = N lexp A1{6/16]}T(O){I}. (XII.22)

See (XII.12) for T(0), We have here one form of solution to the field
theory defined by Lj. Unfortunately, this solution still contains all
the standard divergences, and it is not easily manageable otherwise
(except by an expansion in series).

For the case of the trilinear boson-fermion couplings, it is not
difficult to derive the following expression for the two-point fermion
time-ordered (i.e., Green's) function:
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- ia )
S(u-v) = N, lJrﬂ(Q)elA [Q}G(Q;u,v)(S>Q, (X11.23a)
N, = J[“D(Q)em@){n}(S)Q_ (XII.23b)

Here G(Q;u,v) is the one-particle Green's function, and (S)Q is the
vacuum expectation value of the S-matrix, both in the presence of the
external field Q.

If one assumes a given external field m, then he should re-
place 0 by Q+m In G and in (S)Q. If, moreover, there are no anti-
fermions in the theory, then <S>Q+n =1, and we obtain an expression
analegous to (VIII.39).

D. Exterior Algebras. 62)

It is natural to try to extend the functional approach of the
preceding section to fermi fields. We can only make a very modest
beginning in this direction. To start with, we will develop some
techniques for handling antisymmetric tensors.

We recall that the exterior algebra (or Grassmann algebra)
over R, which we denote by E/(R1), is the algebra of skew-

symmetric tensors. If (e1,...,ep) is an orthonormal basis for R,
and i,... 'ik are any integers with 1< ijS n, we define
=il
i) Aenh € = z (k1) “sgnoeg(i) ®...® eg(iy) - (XII.24a)

where we sum over all permutations. We also adjoint the unity to the
algebra. Then such elements for

lsil<...<iksn; k=0,1,...,n, (X11.24b)

where the unity corresponds to k=0, form a basis for the exterior al-
gebra. It is obvious that

= - /\ A =
e1 A ez eZ el, e1 e1 0, etc.

The normalization of the vectors (XII.24a) is as follows,
-1
(eill\...l\eik, eill\.../\eik) = (k!) . (XII.24c)

The total dimension of the algebra is

l+n +#n@m-1) + -+- +n+1 = 2", (XII. 25)
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The algebra E; (R™) has a natural complex extension, which we denote
by ERD).
Suppose that we have an antisymmetric function,

F(s,t) = yl(S)yz(t) - yl(t)yz(S). (XII.26)

A natural way to look at F 1s as a functional, which is also a skew-
symmetric tensor in the space of functions y;. Let us restrict our-
selves for the time being to an n-dimensional space of functions,
n<®, Then we may identify F as an element of the algebra E(RD).
The most general such functional depending on x = inei is

Ax) =A(0) + ZAixlei + Z Aijxixjei ey +ee
i<

TR X uuXTe Aeelh o (XII.27a)

or, if xi=xiei (do not sum), then

Ax) =A(0)+ZAixi+z Aijxi /\xj+._,+A1
i<j .

XA+ ARp .

(X11.27b)

We have here a very close analogy with the polynomial func-
tionals (VII.2a). In fact, the latter may be identified with the sym-
metric tensors over X, or over its complex extension. One has the
natural correspondence (do not sum):

j k l(]’ k - k i
y'y <—>2 yej®yek+yek®yej>. (XII.28)

We now introduce three new operations. TFirst, we define a
linear map on E(RM) by its action on the elements (XII.24) of the
basis,

e B k+1
(eill\eizl\. <A eik> =ej A---hej,hey = (-1) ejyAeeh ey

(X11.29)

for k>0, and (1)' =1 for k=0.
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Second, we define left and right differentiation:

1

apxq & xqap = qu, Bpl = 1ap =0, (X11.30a)

3], A A(x):l = 5 AK) - x; A AK), <A ij>ap = 6ij—<Aap>xj.
(XI1.30b)
It follows that

, = = 5 = / !
23 = -o38, A3 = (). (X11.31)

Third, let x,y € RP, let {(x,y)=(x!,y!.x2,...,y"). We de-
fine Gaussian functionals as elements of E(R21) by their expansion:

/T ) = -
exp(x,y) exp( ) % A yj> exp(-y ,x)

1+X Ay, +eetX Ay, AX, Ay, + +/\n (x. Ay.)
1 1 1 1 2 2 "7 j=1""] J
(X11.32a)

/\j exp(xj A yj). (XII.32Db)

We may observe that the functional exp(% Zi,joy uil\uj) can always
be brought to the form (XII.32) by a suitable choice of basis.

E. The Anticommutative Integral. 62)

We outline here the construction of the anticommutative ana-
logue to the commutative Hilbert space integral. Various extensions,
like to the history integral, must await future developments.

Qur discussion is based on exterior algebras, and follows the
presentation of Berezin. Another possibility is to use Clifford alge-
bra563) (see below). There has also been an attempt to construct a
functional integral for spinor fields in terms of the more familiar com-
muting functions. 6

We now define the formal rules of integration for antisymmet-
ric functionals as in (XII.27):

erjdxj = dejx =1, (X11.33a)
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JFA(x)dx = 0 if A is independent of x (X11.33Db)

k k*
We emphasize that these rules are formal, and no summations or
limits are implied here. The first of these means, in particular,

[ _ ~ r
J Aijxi/\ xjclx:i Aijxi Aij J dxjxi /\xj, etc.

Note that it is consistent to set, for i#j,

dxidxj = —dxjdxi , dxixj = —xjdxi. (X11.34)

(One could also write dxj Axj, et cetera, if he desired.) With ref-
erence to the expansions (XII.27), we have

[agnz = [ _
JAd X = JAdxn...dxzdxl—Al'

We do not investigate here the detailed properties of the in-
tegral, e.g., the transformation implied by a change of basis. How-
ever, we give a rule for integration by parts to indicate the analogy
with the commutative integral:

- (XII.35)

n
I

JFA(x) [3pB60) |am% = ] (603, | B . (XI1.36)

Let us now consider Gausslan integrals,

A

] exp(x,y) C(x,y)dyndxn. . .dyldx1 . (X11.37a)

It 1s easy to see that those terms of C will contribute which contain,
for each j, either (i) both X and y,;, or (ii) neither xj nor yj. A
consequence of this is the formula

JneXP(XIY) [A*(x)]IB(Y) ﬂdyjdxj . Z A’;.l...ikBi]_...ik *
(XII.37b)

The final sum is the scalar product of the elements in E(R?) which we
may associate with the functionals A and B respectively, e.g.,
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ne; + ..

A(x)%a=A(0)+ZAiei+z'<.Aij(2!)é‘ei §
1<)

+ (n!)%A

Al pe1heeihep. (X1I.38)

n

(Compare the normalization (XII.24c).)

The exterior algebra, as well as the integral, can be extended
to Hilbert spaces. We will not discuss such an extension in detail,
except to point out the following. For the product of the Gaussian
factor and a cylinder functional, the integral will become finite-
dimensional, as in the case of the commutative integral. The
Gaussian factor alone will integrate to unity.

‘We will now make some remarks about the Clifford algebra
C(R2V). For the moment we assume even dimensionality 2v and v<®
for the basic space. The algebra is to be gver the complex numbers .

We recall that this algebra is generated by elements f,....f3 .,
corresponding to an orthonormal basis for RZV. The products of these
elements obey the rule

[fi,ij = 25;. (XII.39)

The elements of C(R?V) can be represented irreducibly by 2V x2V
matrices. .

In terms of such a representation, we can define on C(RZ\))
the following linear form: if g€ C(RZY),

T(g) = 2" Vir g. (XI1.40a)

This functional satisfies, independently of the specific representation
(if irreducible):

T(1) =1, T(fil...fik) =0 (XII.40b)

if the i, are all different. Thus, T picks out from g the coefficient
of the unit element.

Suppose that we now have an antisymmetric functional A(x) as
in (XII.27). There A was a map into E(R). We may also introduce a
map into CRM):

’ i P
A ) = A0) + ) Apcfy + Xi<injX K1g +

1 n
+A1‘“nx A 4 fl...f (XI1.41)
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(n can be assumed even, but this is not essential here).

We shall not attempt to construct rules for integrating A (x);
however, we note the following. If, in analogy to a € E(RD), (XII.38),
we define

a, = A0) +) Afi+...+A £, (XIL.42a)

and bg refers similarly to B(x), then we can recover the evaluation
(XII.37b) by utilizing the trace form:

Tagbg) = Tcad) = ) A, .1 Bij ..y (XII. 42b)

As in the case of the exterlor algebra and the anticommutative
integral, the foregoing construction extends to infinite-dimensional
Hilbert spaces. In particular, the trace form T satisfying (XII.40b)
can be defined.

F. TFree-Field Vacuum Expectation Values.
We first consider the free boson field cp(o) . For definiteness
of functional form, let cp(o) depend on three-vectors p, so that

9 =901 45, ol (), 0 N@)] = 5(3-3).
(X11.43)

An arbitrary vector in the Fock space of cp(o) can now be written in
two ways,

plp@ M} o) ana  Ho©} 0. (XII. 44)

The correspondence of the two functional forms, for boson and for
fermion fields, is analyzed in detail in two theorems of Segal .63)165)
For the boson fields, the scalar products corresponding to the
two forms in (XII.44) may be conveniently represented in terms of the
commutative Hilbert space integra.l.28 62) For the first form,

- F
(r{p N}, folo M}y = Jrﬁ(n')ﬂ(n+)e'(n e Y E, 0.
(XII.45)

Here we integrate over a complex Hilbert space, i.e., separately
over the ’I;eal and over the imaginary components. Furthermore,
1" =(nH", so that

"

- N + +
(n ,n+>= jd3p|‘n I2> 0, for 1 #0.
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Second, we have

(£{pl0) b, J e 2Ny (XII.46a)

The quantity (f)o can also be expressed as follows,

(£{e@])_ = £{n to/ent| L (XII.46b)

in view of (XII.10b). It is a remarkable fact that in (XII.44) the func-
tion f can be obtained from F by a Weiner transform, Eq. (VII.24b).

For the free spinor field, the situation is analogous. We con-
sider a neutral field,

IB) = ¢ NE) +e @) =[]

The discussion of Sections XII.D and XII.E does not include the func-
tional formalism, and restricts us to using coordinates. Therefore,
we assume an orthonormal basis for LZ(R3) , and then

(©0) - (0, %) (o,-) (o) . (o) =
2l L P L™ ey .= 285

(XI1.47a,b)

rw (ol ):'«II(O +):|+ = 6jk' [¢j(o’i)l¢]§01i)]+ = 0. O(II.47C,d)

Again, a vector in the Fock space of 1|J(°) may be written in
two ways,

2 D1 0) and h{¥}]0). (XII.48a)

The corresponding scalar products may be represented as follows,

(/') :+)
Cu (ule }Hz{¢(° b,

n

= Jew . cm i Tac] ag), aras

<h{¢(°)}>o = T(h). (XII.48c)

Note that, in view of (XII.47b), h{lll(o)} can be taken as an element
of a Clifford algebra over Lz(R3). In {(XII.48b), it is natural to iden-
tify €7 = (¢t)*, as in (X11.45).
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The two functionals H and h can be related simply as A and
A respectively in Eqs. (XII.27a) and (XII1.42a). There is also an
analogue to (XII.46b),

(h{q;l(o),q;z(o),,,_}) =h{g1+§ C.+3 }1

o]

11 ¢=0"
a CJ

(XII.49)

The last equation is an example of the realization of a Clifford
algebra, say C(R2V), as operators on functionals in E(RY). In par-
ticular, we take the (left or right) multiplicative and differentiation
operators, and observe that

[?cj,‘a'klr =5, = [Ej,'ék_|+. (XII.50a)

Thus we may realize (XIL.39) by setting, for 1<j<v,

._l — -
1

f=§'<.+‘a'j, foy =1 (x-3). (XII.50Db)

j ] J+v
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LECTURES ON NONLINEAR RATE EQUATIONS, ESPECIALLY THOSE
WITH QUADRATIC NONLINEARITIEST#

Elliott W. Montroll
Department of Physics
University of Rochester
Rochester, New York

I. Introduction

This is a discussion of a number of rate equations which ap-
pear in a variety of disciplines, chemistry, physics, population dy-
namics, fluid dynamics, et cetera, and which have been selected
because of their nonlinear character. In trying to develop some ex-
perience in the relation of nonlinear equations to qualitative process
such as growth to saturation, competition, diffusion, and stability,
it was decided to emphasize quadratic nonlinearities with the hope
that, after enough examples are investigated, some features of a
general theory will become evident. '

‘While our main interest will be in partial differential equa-
tions and integral equations governing rate processes, the presenta-
tion starts with some examples which are ordinary differential equa-
tions. Some interesting ideas already appear in these cases, and in
some solvable partial differential equations the solution finally
evolves from solving ordinary differential equations which come from
Fourier transforms or after other schemes are used.

A prototype of a nonlinear rate process of the class which will
interest us is that which describes a chain of chemical reactions

A, i=1,2,3 ...
Al AJ A& i=1,2,3
where i, j, and £ run over an appropriate set of integers which are

used to identify the various species. The appropriate rate equations
might be written

tPresented at the THEORETICAL PHYSICS INSTITUTE, University of
Colorado, Summer 1967.

¥This work was partially supported by the Air Force Office of
Scientific Research Grant No. AF OSR 1314-67.
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) b0) G)
—L =y Cj + z kL,mchm - cJ,Zk& c, (1)
L,m £

where c¢; is the concentration of the jth species. The first term on
the right hand side represents the rate at which species AJ- disappears
without participating in the chain of reactiong. The second term rep-
resents the growth of species j through the interaction of all species
£ and m which might lead to the formation of j, and the third term is
the loss of species j through the combination of species 4.

Once one has the confidence that equations such as (1) are
appropriate to describe some process of interest, there are two prob-
lems. One is to find the appropriate rate constants and the other is
to solve the nonlinear equations. The two are sometimes intimately
connected because experimental data might be given in terms of some
function of the solution of the equations so that without the solution
the rate constants cannot be deduced from the data.

In a few cases the rate constants can be determined from first
principles. For example, the Navier-Stokes equation for the flow of
a viscous fluid is

-1 2
u, + (u'v)u = -p "vp +vvlu (2a)
where u(r,t) is the velocity vector at point r at time t, p the pres-
sure at space~-time point, p the density and v the viscosity. This
equation is to be combined with the continuity equation which, in the
case of an incompressible fluid, has the form

veu = 0. (2b)

In the case of an incompressible fluid, the pressure term can be re-
moved by taking the curl of (2a). The resulting equation has a quad-
ratic nonlinearity and the viscosity is the only quantity which must
be determined from an auxiliary experiment or calculated by statisti-
cal mechanics. In the final rate equation the appropriate "rate con-
stants" are completely determined.

The lectures will be concerned with both the construction of
the nonlinear equation to fit various situations, as well as with the
solution of some of them. It should be emphasized at the beginning
that it is seldom that the equations are derived from first principles.
They are usually produced out of thin air to be used as a model of
some phenomenon.
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1I. Some Ordinary Differential Equations of Population Growth
and Demise

We trust that the physical scientist will allow us to start our
mathematical discussion with ideas concerning population growth.
Actually many of the nonlinear equations of physics describe the vari-
ation of occupation numbers in various energy levels associated with
some system and the chemist is often interested in the population of
various atomic or molecular species in the course of some reaction.

The pessimist, Malthus, in 1798 was concerned with the ex-
ponential population growth (and linear growth of resources) and,
therefore, with the rate equation which describes such a growth

dn/dt = kn.

The more optimistic Belgian, Verhulst, introduced a "coeffi-
cient of retardation" which would limit the population growth to a
saturation level N so that the growth rate of the population would be
given by

%Erl = kn(N - n) (3)
which has the solution
n(®)/n(0) = N{n(0) + [N-n(©)] ¥} ~*, @)

In words, Eq. (3) states that the growth rate is proportional to the
population and to the resources that remain for the future population.

The population growth of the United States is fitted by a lo-
gistic curve in Figure 1. Now Eq. (3) can be considered as an equa-
tion for the first moment in some random process which would be de-
rived from the as yet unknown dynamics of human behavior. In ex-
periments on the growth of bacteria, fruit flies, rats, et cetera, on
limited media a good agreement with (4) is also obtained. However,
there are occasional experiments in which the population starts to
oscillate in time as saturation is reached. One can argue that the
members of the population are not identical. As saturation is reached,
it is harder for the individual to find sustenance. Aggressive mem-
bers of the society are worried and stock pile resources; more timid
members give up the fight. The population then declines and oscilla-
tion might start.

The more detailed equations of population growth should in-
volve the competitive process between individuals or groups. A
number of models of competition have been investigated by Volterral)
and Lotka. 2) vyolterra's work was motivated by observations made by
D'Ancona in his statistical study of the Adriatic fisheries over the
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period 1905-1923. It seemed that members of a voracious species
preved on smaller fish to the extent that the survival of the larger de-
pended on a plentiful supply of the smaller. As this supply dimin-
ished, the population of the larger species would diminish so that
more of the smaller prey could grow and reproduce. Volterra charac-
terized this process in the following manner.

If Np(t) is the population of the prey and Np(t) that of the
predator, then this process can be described by the rate equations

le/dt klNl-—xlNZNl (5a)

sz/dt A NlN -k,N_. (5b)

2 2 272

In the absence of predator (Nz =0), the prey population would grow
exponentially while, in the absence of prey (Nl =0), the predator
population would decrease in an exponential manner with rate con-
stant ky. Since the eating process is the result of a binary encounter,
the rate of loss of Ny is proportional to NNy as is the rate of in-
crease of the predator.

For convenience we let

fl(t) = )\le(t)/k2 H fz(t) = XlNz(t)/kl. (6)
Then
dfl/dt = klfl(l—fz) (7a)
dfz/dt = szz(l'fl) (7b)
so that
df -df
dt e = 2 @)

k£ (1-E) kB, (1-F))

from which we see that
-f~ 1/k -foN\1/k
<f1e 1) /k (fze 2> /ka = constant, 9)

the value of the constant depending on the initial conditions.

The pericdic character of the solution of Volterra's equations
can easily be seen in terms of the relation between f] and {3 ac-
cording to (9) through the aid of the four diagrams in Figure 2.
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(a) (b)

f2

Figure 2. Geometric scheme used to prove the periodicity of the so-
lution (10) of Volterra's equations {5). The discussion of
the scheme is given in the text.

Let ' l/k
=] = j i =
u, (fj exp fj> with j=1,2. (10)

Then (9) is equivalent to the hyperbola
wu, = constant (11)

which is plotted in Figure 2a. Figures 2b and 2c show the behavior of
u; plotted as a function of f,. An important feature of Eq. (10) and
these two figures is that uj and u, attain maximum values which are
identified by M1 and Mz in the figures. Hence the relevant region
of the hyperbola (11) in Figure 2a is bounded by points A and B in the
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figure. Note that a typical point 0 between A and B corresponds to
two values of fy (a and b), and to two values of f;, a' and b'.
Hence, on the graph (2d) which relates f; and {9, it is clear that the
point 0 corresponds to the four points C, D, E, F. As one goes from
A to B in (2a), one traces out the closed curve in (2d}. The end
points A and B correspond respectively to extrema in fg and f1, re-
spectively, on (2d).

A family of closed curves exists, each member of which is
related to a possible set of initial values f;(0) and fz(O). The points
on the closed curve can be identified with the time by integrating (8):

f, (t)
t = J dfl/klfl (l—fz). (12)
f,(0)

Since £, is given as a function of f; on the curve (3d), one could
start at the initial valuyes (f](0), £5(0)), integrate numerically along
the curve a short distance to a pre—chosen point f;(t) and, from the
value of t determined by (12), one would identify the time appro-
priate for that value fl(t). The period would be determined as the
time required to return to the starting point (f;(0), £5(0)).

Lanchester'sS) equations of combat between two opposing
forces

I

le/dt -a,N, ->\1N1N2 (13a)

—CLZNl —)\2N1N2 (13b)

dN,/dt
2

are similar to the Volterra equations except that the strength of both
forces [ Ny(t) being the strength of the 1t force] diminishes with
time. Lanchester emphasized two cases. When each side is visible
to the other and every man on each side is able to fire on any op-
posing individual, the loss rate is proportional to the number of indi-
viduals firing. Hence, if reinforcements arrive at rates Py (t), these
equations reduce to

le/dt . —alN +P_(t); dNZ/dt= -a

2 TPy N1+P2(t). (14)

2

Some examples of this case are aerial dogfights, naval battles and
open land battles of the classical type. When each side is invisible
to the other and each fires into the area occupied by the other, the
loss rate on one side is proportional to the number of men on the
other and to the number of men in the area under fire,
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le/dt = -\,N,N, and sz/dt = -

a7 NN (15)

2
Artillery attacks are examples of this type of combat.

Mixed cases can also be described in which part of the force
is hidden and the remainder is in the open. The ambush situation in
which one side is hidden and administers an attack from ambush to
the other who is in the open leads to the equations

le/dt = —)\lN N, and dNZ/dt= -a

1Nz Nz (16)

2

The relationship between Nj and N, for these various combat
models can be obtained by equating various expressions for dt. For
example, in the first case in the absence of reinforcements

le/alNz = dNZ/ale (17)
so that
2 21 & 2 2]
OLZNl - c‘lNZ —GLZNIO— “INZO = constant, (18)

Nj-o being the initial strength of the jth combat force. This equation
is represented. in Figure.,3a. It is to be noted that force 2 is annihi-
lated when o.zéNm > a)"Nog.

In Lanchester's second case characterized by (15), the popu-
lation of the two forces are linearly related:

)‘1N2 = )‘ZNI = )\lNZO - )‘ZNIO = A& = constant (19)

which is plotted in Figure 3b.

The mixed case (16) has been discussed by S. Y. Deitchman.4)
A detailed analysis of the Battle of Iwo Jima has been made by J.
Engel.s)

Autocatalytic chemical reactions20):21) are also characterized
by equations such as (5). Let an infinite reservoir of material S
exist and suppose that it decomposes slowly into §; with 8; being a
catalyst necessary for its own formation. Let us also suppose that
S1 is connected to Sy with S, also being the catalyst required for
its own formation. Finally, suppose that Sg is withdrawn from the
system at a rate proportional to its concentration. Then variation in
the cohcentration of S} and Sy is governed by (5).

A good review of the topological theory (i.e., stability, perio-
dicity, et cetera) of equations in two variables

x =Plx,y) , yv=Q&.,y),
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of which the above are examples, is given in Reference 6. L. Markus7)
has developed an algebraic theory for the case of P(x,y) and Q(x,y)
being quadratic forms and has sketched extensions to more than two
variables .

(a) (b)

ango-a.Nf!o) 0 A0
@pNio= @ N3, A=0
| Aco
Nia, agNip=aiNz>0 AN,
1 ' AN
Nga|2 1'"Ng

Figure 3. Schematic solutions of Lanchester's equation of combat.
The numbers Nj and Ny represent the strength of forces on
each side; the a's and A's are parameters which depend on
firepower, accuracy of firing, et cetera. Case (a) corre-
sponds to the situation in which each side is invisible to
the other and the firing is random into a region. Case (b)
corresponds to the situation in which each side is visible
to the other and each man on one side can fire on any op-
posing individual.

III. Some Examples of Partial Differential Eguations with Quadratic
Nonlinearities

1. Population Growth and Diffusion.

In this section we list a number of typical nonlinear partial
differential equations which correspond to a variety of physical situa-
tions.

We start with a generalization of the growth equation (3). One
way a growing population can fight the saturation which is inherent in
(3) is to diffuse into neighboring unoccupied space. The equation
which describes the combination of population growth and diffusion
was first proposed by R. A. FisherB) (see, also, Kolmogorov,
Petrovsky, and Pisccunoffg)l »
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®n

= + kn(6-n)/9, (20)
X

[e%
(%

_t=D

[o¥
o/

8 representing the saturation population per unit length. This equa-
tion was introduced in the context of a virile mutant which appears in
a population and finally saturates it. Of course, the two-dimensional
and three-dimensional generalization of (20) are

2*?‘ = szn +kn(6-n)/8 (20a)

where 0 is now the saturation population per unit area (or volume in
the 3D case) and D the diffusion constant.

If the two competing species whose population variation de-
velops according to Volterra's equation (5) are allowed to roam, a
diffusion term should be added to (5a) and (5b)

N1 bog2 K 21
5t = DVN, +k N, -1 NN, (21a)
57 = DV N, +A, NN, - k,N,. (21b)

2. Clannish Random Walkers.

An equation similar to (20) can be derived for the motion of
two interacting populations which tend to be clannish and wish to live
near those of their own kind. We discuss only the one-dimensional
case here.

Consider two species A and B of random walkers whose walks
are limited to a line. Let p be a uniform stationary distribution of
walkers (of either species) on the line. The line might be divided
into a set of equal length segments, each of length a. The number of
walkers per segment 1s then N=pa. If T is the average time required
per step of length a, we define N(ja;vr) as the number of walkers of
species A on the jth segment at a time vT after the walk begins and
f(Ja; vr) as the fraction of walkers on the jth segment which are A's.

We postulate the "home" of the A's to be segments of large
positive j and that of the B's to correspond to large negative j's.

The clannishness is characterized by a parameter ¢, which on our
segmented line we write as

v =o0a/T. (22)

We choose o, so that the probability of an A walker at segment k
stepping to segment k+1 is
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-;- {1 + a[l - N'lN(ka;v'r):l}.

A walker who finds himself completely surrounded by members of his
own group [ such that N(ka; vr)=N] steps with equal probability in
either direction. One in the midst of strangers steps toward his home
region with a probability %(l+a) and in the opposite direction with

probability # (1-a). The number of A's on the kth segment after (v+1)
steps is

541

N(ka: [v+1] )= #n(T k—l]a;w){l +af 1-N"!N(Lk-1]a; v }

+ %N<[k+1]a; vr){l —a]:l—N_lN([kﬂ]a; v 'T'):l} ,

(23)
{N(ka;[vﬂ]'r) - N(ka;VT)}/T -
<a2/2 T){N([k—l]a; v'r> - 2N(ka; v1) +N@k+1]a; v*r)}/az
- (0a/T) {N@kﬂ]a; v'r><1 - N_1N<[k+1]a; v'D
- N([ k-1]a; vrr)(l —N_lN([k—l]a;vTD} 2aN,

This equation becomes a differential equation in the limit
T=dt=0, a=dx—~0, a0 if the limit is taken so that D and § de-
fined by

D = aZ/Z'r and v =aa/T (24)

are finite. It is convenient to introduce the density of A's at x and
T

fx,T) = N 'N,T) (25)
to obtain the nonlinear partial differential equation

%=§;{D %+¢f(f—l)}. (26)

A symmetry exists between the walk of species A and that of B. The
density of B's, 1-f, can easily be shown to satisfy exactly the same
equation as f provided that x is replaced by -x.
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This equation can be reduced to one without parameters by
letting

= TIIJZ/D, y =x{/D, and g = f-%. (27)

Then
d3g/dt =a/ay[ag/ay+g2:]. (28)

3. BSeparation Cascades.

A physical application of (26) is in the theory of separation
cascades.0)-12) Such a cascade is sketched schematically in
Figure 4. A mixture of two materials A and B is separated by an

Yn+t Cn+2

\\\\\ | n+f
\\\\\\\ S x+dx

'wz(nﬂ) w(n)Ayn

cn4~|f \\\\\\\\ .
o e, " 1

RSN .
P

Yn-2

=

Figure 4. Schematic flow chart for cascade separation process. The
input mixture of concentration fj, of component A flows into
the n-th black box and is separated into two streams; the
enriched one of concentration y, of A flows upward in the
cascade and the depleted one of concentration cp in A
flows downward. The w's represent flow rates in the di-
rections indicated.
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operation performed in the black boxes of the figure. If, for example,
the mixture is fed into the nth black box through the feed inlet f,
two streams of material are emitted from the black box, one somewhat
enriched in A in concentration in y,, the other somewhat depleted in
A in concentration cp. When components A and B are very similar, as
is the case in isotopic mixtures, one stage of separation does not do
very much so that a cascade of separators must be employed. In the
cascade of Figure 4, the depleted material from the (n+l)-st separator
is combined with the enriched material from the (n-1)-st to feed into
the nth one. I believe the first cascade separation of gases was done
by Lord Rayleigh employing a triangular array rather than a linear
set of separators to separate argon from nitrogen in his investigation
of the gases of the atmosphere. His elementary separation process
was the passage of the gas through dried clay or rubber membranes,
his clay membranes being flower pots and clay tobacco pipes and the
lighter gas component passing more easily through the membrane. The
membranes used in isotope separation processes at Oak Ridge and
elsewhere are undoubtedly somewhat more sophisticated.

We will use Rayleigh's separation formula to relate cp to y,:

I:Yn/(l = yn)J/[Cn/(l - cn)] =exp V. (29a)

When the separation factor ¥ is very small, we find
—— - 2
Y cn+ ‘i’cn(l cn) + 0(¥4). (29b)

We also let w; (n) represent the flow rate upward from the nth stage
to the (n+1)-st, and, wy(n) that of the depleted stream from the nth
stage downward to the (n-1)-st. If material is withdrawn at a rate P
from the top of the cascade, then the net flow upward past each stage
is also P so that

P = wl(n)—w (n+1). (30)

2

th

The rate of accumulation of component A at the n*! stage is then

Hpop /3T = yp_1wyln-1) + cp1wyntl) - cywy(n) - yowy (n).
(31)

We limit ourselves to the special case in which all flow rates wj and
wyp and all stage holdups Hy are independent of n and in which the
separation factor ¥ is very small so that many stages are required for
the separation process. The length of a stage becomes short com-
pared to the total length of the cascade. If the nth stage is at point
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x, the (n+1)'st is at x+a and we let
{en-cn-1)/a = delx,T)/3x as a-— 0,

Then, after substituting (29) and (30) into (31) with wj(n)=w; for
all n, we find

3¢/3T = D(3/3%) {ac/ax- ¥'ell-c) - pc} (32a)

where

D_l N H:/wlaz, ¥ ={'/a and p=P/aw1. (32b)

This can be transformed into (26) by making the substitutions
c =fp+y')/y' and ¥ = D{y'+p). (33)

Equation (26) is also valid for continuous separation proc-
esses such as thermal diffusion and distillation processes. Similar
equations exist for centrifugal separation and chromatographic analy-
sis.

4., Equation of Burger's Model of Turbulence and Those of Molecular
Recombination.

The main equation of Burger's model of turbulencel4) also has
the form (28) He considers the one-dimensional version of the
Navier-Stokes equation (2a) after omitting the pressure term and the
continuity equation (2b):

u, +uu, = vu (34)

which can be transformed into (28) by the substitutions

%

x = yv® and u = -2gV°. (35)

ol

The growth equation (20) can be turned into an equation for
spreading of particles by diffusion and loss by recombination. Let
a=k/6 and take the limits k=0 and 8- 0 in such a manner that the
ratio remains o. Ther (20a) becomes!®

on _ 2 _ o2 i
o Dv“n - an®. (36)

An example of the recombination processes is the recombination of
free radicals. If an electric arc is passed through a gas such as 02
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or Ng, the free radicals 0 or N are formed which diffuse away from
the arc and which also recombine by collision. Equation (36) gives a
description of the process if n(r,t) represents the free radical den-
sity at point r at time t.

5. Introduction of Mobility into Lanchester's Equations of Combat.

Mobility can also be introduced into Lanchester's equations
(13a) and (13b) by adding a diffusion term. The existence of speci-
fied points that are to be attacked and defended can be treated
through attractions and repulsions from fixed points or regions. A
form of generalization of {13) is then

= di i . N
BNl/Bt div Dngrad N1 +BlN1 grad U1] alNZ X1N1N2+P1(.t,r)

(37a)

BNZ/Bt = div Dzl:grad NZ+BZN2 grad UZJ -ale - )\ZNIN2 +Pz(t,r).

(37b)

The diffusion "constants" may vary with position of population in a
more complicated model. For ground or naval warfare, these equa-
tions would have two space variables. Military strategy is the proper
choice of the quantities Bjgrad U; and Bggrad Uy and choice of the
reinforcement functions Pj(,t,r) .

6. Two-Dimensional Navier-Stokes Equation.

The last example of a nonlinear partial differential equation
which we shall exhibit in this section is the two-dimensional version
of the Navier-Stokes equation (2). The velocity has two components

u = (up,uy) (38a)
which satisfy three equations derivable from Eq. (2):

. =) 2
aul/at + ulaul/ax1 +u23ul/ax2 =-p ap/ax1 +VViu, + 8L1 ,t)
(38b)

! 2
au2/6t+ ulauz/Bx1 +u23uz/ax2 =-p ap/ax2 + VvV u2+glz(r,t)
(38¢c)

Bul/ax1 +Bu2/6x2 =0 (38d)

where Bzi is a driving force acting in the ith direction,
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The pressure term can be eliminated by taking the derivative
of the first equation with respect to x2 and the second with respect
to xq and subtracting the second resulting equation from the first.
These equations can be simplified through the introduction of the
scalar potential ¢ which is related to the flow velocities by

u = —BQ)/BXZ and u, = a¢/ax1. (39)
Then
d3vep 3V
3 2 2, 2N _ | ¥ 9% ail azfz
—Ev¢+vv<v ¢>— +ax el (40)
3¢ 3¢ 2 1

9X, OXg

This equation can be put into a form which looks more like equations
with which one has had experience by defining a new function f such
that

v2¢ =i (41)

which has the appearance of the Poisson equation of electromagnetic
theory while (40) has the form

Fe 0
af _ 2,20 of 3¢ 3t M1 AUz

dt dxp 3%  3x) 3Xy  dxy  3xy

‘When the viscosity v is very large, one would expect the first term
on the right hand side of (42) to dominate over the second so that in
the absence of a driving force, the resulting equation would be the
diffusion equation. Its solution would be substituted into (41) to find
¢ as the solution of "Poisson's equation."

IV. A Cheap Trick for Manufacturing Nonlinear Differential Eguations
with Built-In Solutions

1, Transformation of Dependent Variables.

One way of solving certain nonlinear equations is to construct
them from linear equations. For example, let us generate several
classes of nonlinear equations from the diffusion equation

£, = Df,. (43)

Let g{u) be an arbitrary function of a new dependent variable u whose
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appropriate derivatives exist. Then let

f= gl (44)
so that
f, = g'(u)ut, f = g'(wu, (45)
fo = 9" + gt (46)
where .
g'(u) = dg/du. (47)

Then the diffusion equation becomes
u, = Du + Du){zg" {u)/g'@). ‘ (48)
If we wished to solve the differential equation
u, = Du_, + usz(u), (49)
we would set
Dg"(u) = g' ()P () (50)

and solve for g(u). For example, if F(u)=XA, then

f = glu) = (D/\)exp(Au/D) (51)
so that
u = (D/X)log(rf/D). (52)
Generally, .
f=gl) = Jruexp{Jr 1 D 'Flugdugfdu . (53)

We see then that the solution of the nonlinear equation with
quadratic nonlinearity uy':

u, = Du +)\ux2 (54)

is given by (52) where f(x,t} is the solution of the diffusion equation.
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If the initial conditions of u(x,t) are known in an unbounded space,
then

f(x,0) = (D/X)exp{)\u(x,O)/D} (55)
and
fx,t) = —1-——1 A (D/X)expl:ku(x',O)/D = (x—x')2/4Dt:]dx' (56)
Z(HtD)E -0
so that

u(x,t) = (D/A)log {l—é [ exp|:)\u(x‘ ,0)/D - (x—x')2/4Dt:| dx'} .
2(mtD) J_m
(57)
2. Exponential Integral Transformation of Dependent Variable.

Another class of nonlinear equations can be generated from the
diffusion equation by the transformation

x
f = exp Jr g(u)dx (58)

where g(u) is again an arbitrary function. Here

X
ft = er utg'(u)dx and f = fg(u) (59)
fex = 19" (W + F07 (). (60)
Hence
P o C 2
J o (wWdx = Dg'(u)uy + g~ (u). (61)

If this is differentiated with respect to x, one finds
= Dluy +g"(hu’/g'w) | + 20 (62)
u, LUk ¥ 9 /9 g, .

As a special case let
gu) = $u. (63a)

Then we have the equation with quadratic nonlinearity
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u, = Du,, +uuy (63b)

which is equivalent to the equation which described our friendly ran-
dom walkers as well as the Burgers equation. The linearization of
Burgers equation was first accomplished by E. Hmpflﬁ) and J. Cole.! 7)
That of the thermal diffusion equation by Majumdarl8) and of separa-
tion cascades with production by Montroll and Newell,

The solution of this equation can be expressed in terms of f,
the solution of the diffusion equation by observing that (58) implies

u = 2(log f)y. (64)

Consider first the case of an infinite range of x and an initial rela-
tion between u and x:

u(x,0) = u ). (64a)

Then the initial dependence of f on x is

X

f(x,0) = exp Jr ug(x')dx'. (64b)

%o
Since f(x,t) is a solution of the diffusion equation, on our unbounded
line
@

f(x,t) = m Jr_ mf(x" ,0)[:exp - (x—x")2/4Dt:| dx" (65a)
= —1——- l‘)m - - ! 2 4Dt + rx" ] d ] d "
2(mtD)® J_mexP{ bex)"/ S, uolk!)dx!y dx o5

and

T U B w2
u(x,t) _ZBX[log\z(ntD)% LJ_mexp{—(x—x V°/4Dt +

x" .
+ Jr uo (e} ax') | (66)
%o
Notice that x5 can have any convenient value since, if it is changed
from xg to xg, the change in the value of the integral is a quantity
which is independent of x, say I(x'o,xo) . It yields a factor
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exp {I{x5,%Xo)} in the integrand of the x integral. After one takes the
logarithm and differentiates with respect to x, one sees that u(x,t) is
independent of I(x§.xg) and, therefore, of x.

3. Population Growth and Diffusion.
Still another class of equations follows from transforming the
diffusion equation withl9)

£ = e Mg) (67;
so that
£, = ke g(w) + g'e ™, (67a)
fo = e o g+ g" (2} (67b)
Then
u, = D[uxx & g“(u)uxz/g'(u)] + kg(u)/g' () . (67¢)

If we wish the term proportional to k to have the form F{u), then

u, = D{uxx +[l%()1—lljuxz} + kF(u) (68a)
with
ru
gl) = J du/F(u). (68b)

By choosinglg)
F(u) = u(®-u)/9, (69)

the right hand term becomes the same as Fisher's, but the full equa-
tion has the form

u, = D{uxx + Zuxz/(e-u)} + ku(6-u)/0 (70)
where g(u) was chosen to be

gl) = uw/(6-u) (71)

and u is related to the function f which satisfies the diffusion equa-
tion through
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ux,t) = Sf(x,t)/[e_kt +

fx, 1] (72)
It is interesting to note that while Eq. (70) differs from Fisher's equa-
tion by the term involving uy , one might expect initial distributions
of a certain type to develop in essentially the same way according to
(70) as they would have according to the Fisher equation.

Suppose that initially u(x,0)<< 6 for all x. Thenas 8-«
both the Fisher equation and ours have the form ut=Duyy +ku, which
corresponds to unlimited growth. On the other hand, we know that as
t—~« the solution u(x,t) (72) of our equation approaches saturation at
all points, as would be the case with (20). Hence, at both early and
late times (70) and (20) are equivalent under the initial condition
given above. We will show at the end of this section that for certain
initial conditions, the solution of (70) is practically the same as
Fisher's eqguation. 19)

We now solve Eq. (70) subject to several initial conditions.
If u(x,0) is known, one can employ (72) to find f(x,0) (the function
f(x,t) is, of course, the solution of the diffusion equation (43)).

The first initial distribution which we discuss is one in which
saturation exists on the negative half line to within a distance of
about 1/B from the origin and no mutant population exists at points
beyond a distance of about 1/B to the right of the origin. A represen-
tation of such an initial distribution is

ulx,0) = 6/(1+ePx), : (73)
Then
f(x,0) = e P, (74)

If this is substituted in (65a) one finds that

fc 1) = o B (x-BD) (75)
and
uGe,t) = 8/{1+expBlx - (BD +k/B)t]} . (76)
The rate at which the mutant front propagates is
dx/dt = (BD + k/B). (77)

In this case in which saturation exists behind the mutant front, the
shape of the diffusion front remains invariant as the wave propagates.
It is interesting to note that the propagation rate is determined by the
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initial slope at x=0. If the initial front is sharp (B large), the pro-
pagation is dominated by diffusion while, if it is broad (small B), it

is dominated by saturation development. When both processes make

the same contribution, the propagation velocity has a minimum value

which is

(Ax/dt) iy = (2 kp)? (78)

and which corresponds to B =(k/D)%. A similar result was noted by
Pisher8) in connection with Eq. (20). He found that no solution of
the form p=f(x+vt) could be found for (20) for which |v[ < {ZkD)%.

As a second example we discuss an initial distribution of
mutant which is peaked at the origin at a fraction n of the saturation
level 6, and which extends over a length a. Then

u(x,0) = ne/[n +(Q1 —n)exp(xz/ZaZ)] (79)
so that
£x,0) = [n/(1-n) |exp(-x2/2a2), (80a)
and from (65a)

_ na expl —x2/2{62 +2Dt)]

fx,t)
* (1 -1)(@?+2Dt)?

(80b)

Therefore, from (72)

ulx,t) = 6na[na+ (1—n)(az+2Dt)%exp{—kt+x2/2(a2+2Dt)}]_l. (81)

When |x| << {2kt(a? + 2Dt)}% the exponential term in the de-
nominator can be neglected and one has saturation. The propagating
population front at any time can be identified with the value of x
which makes the argument of the exponential vanish, i.e.,

x = :t{Zkt(a2+2Dt)}% (82a)

so that with increasing t the velocity of propagation approaches
1
dx/dt = +2(kDy® (82b)
independently of a; i.e., of the dispersion of initial distribution.

This case differs from (77) in which a saturation region exists
initially, for in that case the propagation velocity depends on the
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initial shape of the wave while in the everywhere unsaturated case it
becomes independent of the initial distribution. It is interesting to
note that (82b) is just the minimum propagation velocity which can be
achieved by an initial distribution which has a saturated region (see
Eq. (78)).

The manner in which the initial distribution (79) propagates
seems to be typical of that of any initial distribution of h(x,0) whose
Fourier transform exists. For further discussion of this, see
Reference 19.

4, Using the Wrong Eguation to Find the Right Solution,

Even when a transformation cannot be found to linearize a
nonlinear equation, one can sometimes find another nonlinear equa-
tion which has an extra term which does not appear in the equation of
interest, but which can be transformed to a linear one. This new
equation might have the feature that, for certain initial conditions,
the extra term is always very small so that the solution of the new
equation under those initial conditions is in all space time a good ap-
proximation to the original one.

While no one has succeeded in finding a scheme for linear~
izing Fisher's equation, the solution of our more complicated Eq. (70)
mimics that of Fisher's equation when the initial condition is such
that no region is near saturation. We demonstrate this possibility
through a detailed examination of the solution (81) which corresponds
to the almost Gaussian initial condition (79).

Equation (81) will be substituted into the right hand side of
(70) and the contribution of each term to the rate u; of increase in
population will be calculated. In all space-time regimes, our extra
term 2Dux/( 8-u) will be small compared to the sum of the other two
contributions to ug.

First, at early times in the growth process before saturation
develops, the linearized versions of both our equation and Fisher's
are valid. However, the linearized versions are identical so, in the
early stages of the population buildup, the solutions of both equa-
tions are identical.

Now let us consider the later stages of the process when
2Dt>>a2. We examine the contribution of each of the three terms on
the right hand side of (70) as determined from (81) to d3u/dt, in the
three regimes

2

2 - 4Dkt2| « 4Dt; x° < 4Dt2.

%2 - 4Dkt? > 4Dt; |x2

In all three regimes at all times
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x2 3
@) uyy = -F{na [l + a2+2m] + (1-1)(a® +2Dt)
2
1-—*— : 8
" [ a2+2Dt:lE} 6]
(b) 2u2/(8-w) = F{2anx2/(@2+2D1)}, (83b)

(c) ku(8-u)/6 = P{(az +2Dt) l:na+(1—n)(a2+2Dt)% E}k/D} ,

(83c)

where E and the common factor F are defined by
E = exp{-kt +x2/2a% +2D1)} (83d)

and

. ?824;£>t;§ {na+ (1-n)(a2+2Dt)%E}_3. (83¢)
a st 3

Since we postulate 2Dt> az, the a2 can be neglected com-
pared with 2Dt in all the formulae above. In the first regime with
x2 - 4Dkt2> 4Dt

E~ exp{(x2 -4Dkt2)/4Dt} (84)

is very large so the non-exponential terms in (@), (b) and (c) can all
be neglected. Since our extra diffusion term (b) does not contain E,
it is negligible compared with the regular diffusion term (@). The ex-
ponential term in (@) has a factor x2/4Dt2 to be compared with
{4Dt)3/2k/D in (c). The definition of our regime then implies that the
regular diffusion term is the most important contribution to du/3t.
Actually, since F is proportional to E'Z/(ZDt)z, du/dt is very small
in this regime.

As we move toward the center of the population wave with
|x2-4Dt2| < 4Dt, E~1 so that

(a) w. = F(1-men¥ ?kpl/?, (85a)

XX
(b) 2u2/(6-u) = 4maktF, (85b)

(©) ku(8-u)/0 ~ (1-n)Fk(2t)> 2pY/2, (85¢)
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Hence, in the regime where the action is, (a) and (c) contribute the
same amount to du/dt. Since both exceed our extra term by a factor
t?, our extra diffusion term becomes less and less important with in-
creasing time.

Finally, let us examine the influence of our extra term in our
saturation region behind the population wave. In this regime with
x2< 4Dkt? the exponential term E is negligible. The main contribu-
tion comes from the growth term (c¢) which is of erder 2FnaDt com-
pared with Fna, the main term in (@), and Fa'r]x?'/Dt in our extra dif-
fusion term. However, all terms are small in the regime.

In conclusion, we see that in each of the regimes considered
the extra diffusion term contributes very little to u; compared with the
effect of either normal diffusion or population generation. Hence, it
seems that as long as a region is not initially saturated, the genera-
tion and diffusion of an initial distribution as described by our rate
equation (70) should be essentially the same as that which would be
derived by solving Fisher's Equation (20).

V. Integral Equations with Quadratic Nonlinearities

We now show how certain of the partial differential equations
discussed in the last section can be converted to integral equations.
Those differential equations which are solvable then correspond to
integral equations which are also solvable.

Let us consider the two-dimensional analogue of (54)

u, = Dv2u +<u2+u2> (86a)
t X y

whose solution
ufr,t) = log f(r,t) (86b)

is related through f to the solution of the 2D diffusion equation

£, = Dv2f, (86¢)

If we define
(-]

ule,t) = Jr ju(k,t)e'ik"dzk, (87)

- 0o

then
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w’e,1 = _Jf’ Mkau e, DU, e tK KT 420 42,
- ‘J[.‘ Jrk)‘{(kx-k)'()U(k',t)U(k—k',t)e_ik'rdzk' %k (88)
while
- rrL2 -ik-r
Uy (r,t) = =) ka(k,t)e d7k. (89)

If we substitute these expressions and the corresponding y deriva-
tives into (86a), we find

Jr Jre_ik‘rdzk{Ut+Dk2U+Jr Jrk'-(k-k')U(k,t)U(k—k',t)dzk'} =0.

(90)

Hence, our original differential equation (86a) is equivalent to the
integral equation

%U(k,t) = -DK2U(k, 1) - Jr Jrk'-(k—k')U(k,t)U(k—k',t)dzk'.
- (91)

The solution of the integral equation is then

«©

Uk,t) = % Jr Jr[log f(r,t)] exp ik-r dzr (93)

where f(r,t) is the solution of the diffusion equation (86¢c). The 1D
and 3D generalizations of this equation are clear.

An equation similar to (91), but with a simpler kernel is that
which occurs in Smoluchowski's theory of coagulation of colloids and
Schumann's theory of cloud formation. In these theories it is as-
sumed that two particles, one of mass k and the other of mass k',
collide and form a new one of mass (k+k'}). If n(k)dk is the number of
particles of mass between k and k+dk at time t, then the rate equa-
tion, which describes the growth of particles, is

k
o -20m(k,t)N(t)+0tJr nk-k', tnlk' t)dk". (54)

0
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The first term on the right of (94) represents the rate at which parti-
cles of mass k are lost through collision and combination of other
particles. The collision rate is proportional to the total number of
particles
(-]
N(t) = j’ n(k, t)dk (95)
o

with which any one of mass k might collide. The factor 2 is included
because either of the two particles which collide might be of mass k.
The integral term on the right of (94) represents the gain in the number
of particles of mass k due to collisions of those of mass k' and
k-k'. The constant & is a rate constant for the process.

Instead of solving (94), we solve a more complicated equation
from whose solution that of (94) can be deduced. Let k now be a
vector, say a 2D one, and let a(t) be an arbitrary function of t. Then
consider (with A constant)

@

ﬂ%%i)=-a&m&;ﬂ+kLYIn&Hﬂn&4C¢MZW. (96)

-

If initially n(k,0) =0 unless kx>0 and k>0, then, through colli-
sions, the resulting k's can only increase so that at all times
n(k,t)=0 if k>0 and ky>0. Under these circumstances, the inte-
gration limits in (96) could be taken over the range (0,0;kx,ky). In
view of the Faltung form of the integrand of (96), we multiply both
sides of (96) by

exp ik+0 = expli(k-k')-0] exp(ik'-9).

Then
AR = —a@n(e,t) N2 (8,0 (97)
where -
N(8,1) = fjlﬂkxm“°ed2k. (98)
If we let
g(8,t) = 1/N(6,1), (99a)
then

-dg/dt + alt)g = A, {99Db)
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Since

= %- {g expl:- jﬁ:a(t')dt']} ={“ %f' + c,(t)g} expl:_Jr:a(tl)dtI]

rt rt rt
g(8,t) g(G,O)epr a(r)dT -XJ [epr a(t')dt':ld'r
o

o) T

so that finally

N(B,t) = N(0,0) (100a)

expj‘;a(T)dT —>\.N(e ,O)I;[exp J‘ta(t')dtI]dT
T

and
[--]

1 TP N(8,0)e 3 kg2y
(2m)?2 JJ [expj';a('r)d'r] —XN(0,0)J'g[expf:ot(t')dt']d"r

-

n(k,t) =

(100b)

The solution of the Smoluchowski equation is obtained by first
integrating (94) with respect to k so that

g ) L k
dgtt = -2an’ () +°‘Jr dk Jr n(k-k',t)n(k',t)dk’
o o

= —ZaNz(t) + A n(k',t)dk’ A n(k-k',t)dk = —och(t)
Jg I

and
N(t) = N(0)/[1+ atN(0)]. (101)
Then (94) is the 1D equivalent of (96) if one sets
aft) = 2aN(0)/[1+atN(0)] and A =a. (102)

From the 1D analogue of (100) we find the solution of Smoluchowski's
equation to be

-]

nfkt) = == [ N(8,0) exp(-18k)dk _
‘ (i) J-w [1+tonN(0)]2—atN(e,O)[1+taN(0)]

(103)
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Several special initial size distributions are of interest.
Schumann used the initlal Poisson distribution in his theory of cloud
formation24) ,25)

_ (N(0)e™Pk if k>0
nk,0 = {°00 i reo (104a)
Then
N(6,0) = BN(0)/(B -16) (104b)
so that
BN(0) re e1%q0
k,t) = 0
nlk.t) 2ml1 +atN(0)]2 J_m B[1 +atN(0)]~! - 16 b0SE)
BN(0) exp[-Bk(l +atN(o) 1T
1f k>0
- { 21 +atN(0)]2 . (105b)
0 if k<O

Hence an initlal Polsson distribution retains its Polsson character at
all times. Similarly, one can show that the initlal exponential distri-
bution

n(k,0) = #BN(0)e” Bl k| (106a)
also retains its character. One finds25)/26)

BN(0)
2[ 1 +atn(0)]3/2

n(k,t) = exp[-B|k|/(1 +atN(0)E]. (106b)

Of course, since particle sizes cannot be negative (106a) is not a
possible initial distribution for the Smoluchowski problem. On the
other hand, one can define a stochastic process which is character-
ized by the integral equation (94) such that variable k ranges from
-@ tp <,

It can also be shown that any initial distribution such that if
n(k,0)=n(-k,0), with the initial second moment?6

©

M, = [N(0)]~L Jf’ k%n(k,0)dk (107a)

- 00

then, as t—w®
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Ak 1) ~ (at)'3/2[2N(0) uzj'%exp {-1xI[#atn(0) uzj'é} -
(107b)

An initially unsymmetrical distribution with first moment

o«

W) = [N(o)],'l Jr kn(k,0)dk # 0 (108a)

approaches the Poisson distribution as t—:

(k1) ~ {[at(l +atN(0))] _lexp[ ~k/atuN()]  if k>0

if k< 0.

(108b)

The momentum representation of Burger's equation has two

equivalent forms
<]

AU, 1)/ot = —vk2U(k, 1) +1 Jr (k-k")U (', 1)U (k-k' , t)dk’

-

(109a)
or

dUKk,t)/dt = —vsz(k,t) +1 ,_Jr k'U(k't)Uk-k',t)dk'. (109b)

The solution of these equations is known because it is essentially the
Fourier transform of (66).
The momentum representation of the 2D Fisher equation is

%U(k,t) = -(Dk®-M)U(k,t) - (A/9) Jf’ JrU(k',t)U(k—k',t)dzk'.

-

(110)

VI. 2D Integral Equation for Incompressible Flow
The Navier-Stokes equations for a 2D incompressible fluid
were written in Eqs. (41) and (42) in the form

3f _ 2. d¢ df dp of azfl agfz
= = vvf+ —-— - — + - . (111a)
ot axl Bxl Bxl dxp axz axl

v2p = £ (111b)
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In the case of an unbounded fluid, these equations can be converted
to an integral equation through the introduction of the Fourier trans-

forms
Fk,t) = Jrf( VB 0
B(k,t) = Jrq)(r il g2n
Fk,t) = LJrgl(r,t)eilcl-dzr
so that
fr,t) = —2— [ Fe,ne T a2k
(2m)? J
_ 1.0 -ik-r |2
ol t) = - J¢(k e d“k
gt = 1 r&(k e KT g%,
(2m)? J

Then (111b) is equivalent to
-k @(k t) = F(k,t),

and, if we substitute (112) into (111a), we find

O

er
I

-ik.r de{Bg‘tgk}+ kaF(k) n

@

+

L[
(2m)? J_;J
so that

9F(k) , 1 2p(k)

N U L ST S
St _(Zn)z J J[ka]ZF(k 13 (k-k")dk +1(kX3)Z

If we employ (114a) the resulting equation for the potential is

(112a)

(112b)

(112¢)

(113a)

(113b)

(113¢)

(114a)

r(kzk'1 ~ K KY)F (k') 8 (k-K")ak! + 1(Fx K} =0

(114b)



562 ELLIOTT W. MONTROLL

aa—tQ(k,t) —ravk?a (k1)

2

L [l eizptrdh o T
+ (211)2 J J (k /k )[kaJZQ(k ) e(k-k',t)d"k' -i(k x 3)z/k

(115)

which, in the absence of the driving force &, is a continuum exam-
ple of the chemical rate equation discussed in the introduction. The
"rate constants" are (k'z/kz)[kxk']z/ZTrz.

In the case of a driven disturbance, it is useful to extend the
definition of the various relevant Fourier transforms so that

Flk,w) = J“qf(r,t)ei(k.r_wt)dzr at (116)
sk, w) = Jrqs(r,t)ei(k'r'“’t) a?r at (117)
F(k,w) = Jrgl(r,t)ei(k'r'“’t)dzrdt (118)

with the appropriate inverses so that

e—l(k r-wt) 2

rP(k,w) d"k dw, etc. (119)

fr,t) =
d (2m)3

Then the analogue of (115) is

(kx &) n [kxk'] k'2

i(kx &), xk!' !
z_ o, 1 Frr z

k2wtvk?)  2m3 J JJ KkZ@Ee+vk?)

-0

d(k,w) = -

X @(k',w')@(k—k',w—w‘)dzk' dw'. (120)

VII. 2D Incompressible Fluid Driven by Two Fourler Exponentials
Let us now see if we can find some driving force for which we
can solve this integral equation.
The simplest driven disturbance which we might consider is

i(r,t) = Aexp iltwg~-r-q). (121)

However, as we see from (41) and (42) the response of the scalar po-
tential to such a disturbance is
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-2, -1 i
¢ = 1A-(a, -aylk ({wg+va?) " exp iftwy -r-q)
with
f= —¢k2.

Since this driven disturbance does not create a shear flow, the non-
linear term in (42) vanishes identically under its influence.

The simplest driving force which induces a shear flow is the
sum of two Fourier exponentials

2
Bl(r,t) = A z cxjexp i(two—r-qj) (122a)
j=1

which, in (w,k) space, ylelds the term
(kx3), = (kxA), 8(w-wg)[a d(k-qp) +o,8k~ap)|.  (122b)

Through the nonlinearity in (116) we expect to be able to generate
vectors of the form I.]ql +Lgqy by successive combinations of g

and gy. The first combination of g} and qp is (ql +qg) which corre-
sponds to the lattice point ({.1 Ao)=(1,1) in Figure 5. Then, {ql-F-qz)
can combine with g, to form (2,1) and with qg to form (1,2). By
continuing this process the whole lattice of wave vectors {{-l ,«’.2}
with {’1 =1,2,... and 49=1,2,... can be generated. The lattice

q e o o o o
quO e & o o
l

Figure 5. Lattice of wave numbers (41qy,49q5) for excitation of a 2D
fluid driven by two Fourier exponentials. Through the non-
linearity in the Navier-Stokes equation, any two wave
vectors combine and form a new one which is the sum of
the two.
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points (£,0) and {(0,4) with 2> 1 do not correspond to possible wave
vectors because of the term [k xk'], in the integrand of (120); two
vectors in the same direction cannot combine since

[/(,q1 x&'qu = 0.
The frequency of the wave vector (1(,1q1 + quz) is
w = (Ll +1;2)w0. (123)

Notice that a given wave vector £1q3 +£9q7 can only be ob-
tained by combining pairs of wave vectors closer to the origin since
no negative wave vectors are included in our driving force. Hence we
can expect to be able to find the amplitude associated with a given
wave vector in terms of those closer to the origin through a recursion
formula. This will be done in detail in the next section.

Before proceeding with that analysis it should be pointed out
that the driving force (122) does not lead to a real physical flow since
contrary to the technique used in the investigation of linear equations
we cannot associate the real part of the response potential of the
fluid with the real part of the driving force. To obtain a physical flow
we would have to use a driving force

(kx3), = (kxA), {6(w-wga 60c-a;)+ayd(k-ap) ]
+ 6wl & bkrap) +aslkray) |} (124)

Such a driving force would yield a feedback mechanism such that one
would no longer have a simple recurrence formula for the amplitude of
the various wave numbers. We will make a few remarks about this
more complicated case after our investigation of the response to (124).

On the basis of our observation of the formation of large wave
vectors from smaller ones we seek a solution of (116) (with (122) in-
serted into the driving term) of the form

[+ [+-]
Bk, w) = Z Z a(t 4,8k ~1yq) ~4,a,) 8 w—[&1+L2]wo>.
4,=0 4,=0

(125)

Then our problem will be to determine the amplitudes a(&l ,Lz). Let
us define

B 2
BJ. = ocj(qj ><A)Z/qj (126)

and
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A = <ql X q2>z/(21'r)3. (127)

In order to reduce later complications we make the following abbre-
viations for a number of combinations of 47.,49,q7,92,v and , will
appear at every stage of our calculations.

gty = (119 +,8, )" (26ay

9%, b, = 1<L1+L2>wo +v<&lq1+{,2q2>z (128b)

hy ity = qzz—[l;lq1+(&2—1)q2]z = qzz— le'LZ"l (128c)
Kyt ° al [y -Da; + 4,0, P =af-g e, 0280)

Then if we substitute (125) into our fundamental integral equa-
tion (120) with the driving term (122), we find

Za@l '*’z>6<k -t ‘quzy’(‘” - [t +L2]‘”o>
z

= 1) o blk-ay) + azb(k-qz)]/kz(iw +vk?)

. |
+ (2117)3 JF mdzk' dw’ L{Z%a@' ey )s(k-tiay-4,a, )

1 [} / « 1" ) " n
x 6w -[a]+Lylug) a(ty Ly ) 8(k-k'-t{a; L5, )

X &(w-w'- [{,{+{,;]wo> (kxk')zk'z/kz(iw +vk2). (129)

If we set k=qu]+L2q2 and w=(£1+{-2) and eguate the coefficients
of 8§(k=41q;-~Lyqgy) on both sides of (129), we find, remembering the
definitions of the B's and » (Egs. (126) and (127),
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a(JLl,L2> = _iB16L1:16L2:0/91,0 —iBfol 1[06{,2,0 /90,1

vy
s -
N o B JORDLCENTEN)
nl—O n,=0
7 B e 2

x(F1my *’2“1)\“1‘11+n2q2>/f’¢1'*919£1:&2' (130)
We have used the fact that negative values of neither 4] nor 43 can
be achieved from our initial conditions.

Certain scaling factors are immediately apparent from the

quadratic form of (130). Suppose that (£y,22) is neither (1,0) nor
(0,1). Then it is clear that we can express a(41,49) in the form

a(t ity )= [a(l,O)J&l[a(O,l)]L%)CLl,&2> (131)

where
b(1,0) = b(0,1) = 1, (132)

For (£ .,49) vectors other than (0,1) and (1,0), b(%;.,47) satisfies

Ly 4
bO’l’LZ) =X Z_ Z_ b(“l'“z> bCLl—nl’LZ_n2>
n;=0 ny=0

e _
x(4n, &2n1>fn1n2/fL11LZg&l’L2. (133)

An alternative form for this equation can be obtained by making the
change in variable nj=%;-n; in the summation, then removing the
prime and averaging the resulting expression with (133). Then

11 12
b(2y2,) = 5 an=0 n;o b(aymg )bty 0y tyom, )
x[&l(an—Lz) - &Z(an—Ll)J [(an—/cl)ql + (2n2—&2)q2]

X [(qul ‘”/2012)]/9)(,11{,2 (134)
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which has the vector form

b(1) = % zb(n)b(L—n)l:& X (2n-L)JZE-(zﬁ-£)/£-£ glt)

£

o (135)
where

L=t q1+JL

e ] -
1 and 4 —\&l’LZD so that [LXm]z L. m, -4, m

172 7271
(136)

292

For later reference we note that

a(1,0) = -18,/9, o= ~18, fwgrval) = (8, /ug ) /(1 -mT)

(137a)
_ _ / 2N L ) 7y _ap-l
20.1) = ~18,/5y ) = =18, Lwg+vay )= (8,/w,) /(1 - R,
(137b)
where Rj is the Reynolds number defined by
_ _ 2
R, = (u,/ 19, )(1 /1) /v =g /va (138)

when 4 =45=1, (133) and (132) yield

b(l1,1) = {2 . ]2}<qIXq2> /(ZTT) (139)
it 1 2

When £1>1 and £2>1, Eq. (133) can be written in a manner
in which its being a recursion formula is clear. We must remember
that b{4,0) and b(0,£) both vanish when £>1. Then
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r -
b\{'l’{'2> -
=0t plertp-Dhy 4o ~1,b(Ly =Lt )ky ,&2}/L1 2290 4,
L1-1 Lp-1
+1
niEl =l

Ab “1'“2>b@1 ‘bl'Lz'“z><n1q1+“zq2>2@1nz'&2“1 /ftl,x;z%l,x;z .

(140)

This is a recurrence formula from which we can systematically find
each a(4; ,Lz) from those which are closer to the origin of our lattice
of Figure 5.

A systematic scheme for the analytical solution of the recur-
rence formula is discussed by the lecturer in Reference 27. The nu-
merical solution of the formula has been programmed by B. Parekh for
an IBM 360-50 computer. Some gualitative idea of the results can be

obtained from Figures 6a and 6b. The choices of parameters In these
calculations are, respectively,

4 4 0.4%x 1071 casea
a(l,0]* =[a(0,1)]* = kx =
la@, 07" =Taf0,1)] k 0.3 x10°!  caseb,

2

B 2 B
q, =10, a, =20, R, =wo/\)q1 =10, v=5x10 Smeterz/sec,
w = qulz =5x 10_3/sec

and the angle chosen between ¢, and qg is 90”. The absolute values
of the amplitudes a(t,%9) are exhibited in the figures through the
lines of constant |a(41.49)].

Certain topological features of these lines of constant
la(ty ,JLZ)| are immediately apparent and can be understood in terms
of the manner in which various wave vectors combine to form new
wave vectors. First we know that as |Ly+44|~ = for any finite
Reynolds number |a(4;,£9)| =0 since viscosity and dissipation into
heat takes over at the very small eddy sizes, i.e., large wave num-
bers. Hence, if a minimum exists near the origin and |a(&1 ,&2)\ '
gets small for large |a(4‘,1 L2}, there must be at least one maximum



NONLINEAR RATE EQUATIONS 569

Figure 6a. An example of curves of constant amplitude associated with
various wave numbers, choice of parameters given in text.
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of |a(&1 49)| in some intermediate range. Such a maximum is clear
in Figures 6a and 6b.

Now, in order to put a semblance of rigor into further remarks,
we should consider |a(qit1+qyly)| to be a continuous function of
continuous variables x;=4)|q;| and xp=4,|qy|. This would cor-
respond to a physical situation in which the driving amplitudes oy
both become very large while the lengths of the driving vectors |q1|
and |q2|--' 0 so that the lattice points become dense or, alternatively,
the viscosity v becomes very small (large Reynolds numbers) so that
peaks occur at such great distances from the origin compared with
(|q1+q2| 2% that for all practical purposes our lattice can be con-
sidered to be a continuum.

As is evident from Eq. (140), the lattice point (£1,49) can be
occupied through the combination of any other pair of lattice points
(n1,ny) and (L;-n;,49-n3). Indeed, the weight b(£;,49) is a sum
over all "marriages" of pairs of wave numbers which add up to
(£1.42). We can ask which "marriages" are most fruitful in their
contribution to b(il,{,z): Are they those involving almost like cou-
ples (nj,np) = (% 11 R LZ) or are they those of unlike couples such as
(2,49-2) and (4;-2,2)? An analytical discussion of this gquestion is
given in Reference 27 where it is shown that when 4; and &9 are
large, the greatest contribution comes from almost alike pairs (identi-
cal pairs do not contribute since, in that case, the cross-section
factor (£1ny-2yn;) in (140) would vanish if ny=4,/2 and ny=1,/2),
with very dissimilar pairs contributing practically nothing.

This optimum pairing rule implies that if a first peak appears
at (£.49), another subsidiary peak should appear at (247,245),
another at (447,449), et cetera. The peaks more distant from the
origin than the first may not be noticeable if the viscosity and dissi-
pation cause such a rapid drop in the amplitude that, while the second
peak exists, it is so small that it cannot be noticed. This 1s the case
in the choice of the parameters used to calculate the curves in
Figure 6b. The first peak in Figure 6b is near the point (11,11) and
the second near (21,21) as expected. In Figure 6a, the peak at (8,7)
is very flat and one does not yet seem to be in the "large" (41,47)
regime in which our argument is valid.

VIII. Some Remarks on the Influence of Two Periodic Driving Forces

on a 2D Incompressible Fluid

While we have not yet made any detailed calculations or

analysis of the response to the physically interesting driving force
(124), we can make a few conjectures about the nature of the lines of
constant energy in our wave number space (k-space). In this case we
must consider the amplitude a(4; .49) at all lattice points on the in-
finite lattice. Here
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014 <013

Figure 6b. A second example of curves of constant amplitude asso-
ciated with various wave numbers, cholce of parameters,
given in text.
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a(tydy) = a*(-4),-1y)
the (47 ,47) component of the velocity is related to a4, 29) by

U1 (£ ,w) = —i&2q2<1> (£ ,w)

U (¢ ,w) = (L ,w).

ityq

Hence the energy associated with that wave number is

(¢ ,w)

1 2 2
E(qu +4 q2>|§({, w)lz

1/, 2 2
'z'@lq +1 q2>|a(£1, 2.

The curves of constant energy are the objects we now examine
rather than a(&l A9). However, the qualitative remarks about both
are essentially the same. We can imagine two possible situations
developing, one in which some isolated peaks develop in the manner
in which they did in Figure 6b.

If a peak exists at (L, Lo ) then, if our optimum pairing rule is
still valid here, several higher wave number peaks at {Ztl 248 2),
(4&1 4%4), et cetera, again would develop. One would also have
saddle points as are exhibited in Figure 6b. A second possibility is
that of a ring of points where one finds a closed curve of maxima. In
this case a sequence of further rings of maxima would appear, as in
the case discussed in the last section. These higher wave numbers
and frequency maxima might not show themselves when dissipation
into heat developed just after the first maxima.

The discussion of the topology of the lines of constant energy
given above is somewhat similar to that which appears in the theory
of lattice vibrations of crystals.

Detailed analyses of these questions, as well as a search for
a Kolmogorov type regime, will be discussed elsewhere. An
investigation of various aspects of the 2D Navier-Stokes equation has
also been made by Kraichnan.31
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