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Abstract

This thesis is devoted to several exact computations in four-dimensional supersym-
metric gauge field theories.

In the first part of the thesis we prove conjecture due to Erickson-Semenoft-
Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop op-
erators in the N' = 4 supersymmetric Yang-Mills theory with a Gaussian matrix
model. We also compute the partition function and give a new matrix model for-
mula for the expectation value of a supersymmetric circular Wilson loop operator for
the pure N' = 2 and the NV = 2* supersymmetric Yang-Mills theory on a four-sphere.
Circular supersymmetric Wilson loops in four-dimensional ' = 2 superconformal
gauge theory are treated similarly.

In the second part we consider supersymmetric Wilson loops of arbitrary shape
restricted to a two-dimensional sphere in the four-dimensional N' = 4 supersymmet-
ric Yang-Mills theory. We show that expectation value for these Wilson loops can be
exactly computed using a two-dimensional theory closely related to the topological
two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for

the complexified gauge group.
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Chapter 1

Introduction

String theory [IH3], born from Veneziano amplitude [4] as an attempt to describe
dynamics of strong interactions, presently is a main candidate for the unified quan-
tum field theory. Nowadays string theory incorporates ideas of grand unification,
quantum gravity, supersymmetry, compactification of extra dimensions, dualities
and many others.

The Standard Model of fundamental interactions is based on non-abelian quan-
tum gauge field theories. A coupling constant in such theories usually decreases at
high energies and blows up at low energies. Hence, it is easy and valid to apply
perturbation theory at high energies. However, as the energy decreases the pertur-
bation theory works worse and completely fails to give any meaningful results at the
energy scale called Agep.

Therefore, to understand the Agep scale physics, such as confinement, hadron
mass spectrum and the dynamics of low-energy interactions, we need non-perturbative
methods. The main such methods developed in string theory are based on super-
symmetry and dualities.

Like any symmetry, supersymmetry imposes some constraints on dynamics of a
physical system. The maximally supersymmetric four-dimensional gauge theory is
N = 4 supersymmetric Yang-Mills. In this theory the dynamics is severely restricted

by the large amount of supersymmetry, but it is still very non-trivial theory and thus



is interesting for theoretical study. Besides gravity dual conjecture [5H7], the theory
is related to the geometrical Langlands program [8] and the theory of integrable
systems [9, [10] and quantum groups [11].

Duality means an existence of two different descriptions of the same physical
system. If the strong coupling limit at one side of the duality corresponds to the
weak coupling limit at the other side, such duality is especially useful to study the
theory. Indeed, in that case difficult computations in strongly coupled theory can
be done perturbatively using the dual weakly coupled theory.

A key role in string theory dualities play objects called D-branes. The D-branes
are solitonic-like non-perturbative objects in the closed sector of string theory. The
open strings end on D-branes. If we integrate out massive string modes we get
low-energy action for the massless fields [I2-14]. In the leading order in o/, where
(2ma’)~! is the string tension, the low-energy dynamics of one D-brane is described
by gauge theory coupled to scalar fields corresponding to the fluctuations of the
D-brane in transversal directions. If we take N D-branes on top of each other, the
gauge symmetry is enlarged to U(N).

On N D3-branes we actually get N' = 4 supersymmetric Yang-Mills theory with
U(N) gauge group. On the other hand, recalling that D-brane is a solitonic like
object in the closed sector of string theory we can use gravity description, since
gravity is contained in the closed string sector. Hence, the dynamics of D3-branes
can be described in two different ways. The resulting duality, called nowadays
AdS/CFT duality [6l, [15], is similar to the old ideas to describe QCD by strings [16,
17].

From the viewpoint of closed strings, Dp-branes carry a charge with respect to
Ramond-Ramond fields [3], which geometrically are p + 1-forms. Due to supersym-
metry, the mass and the charge of D-brane are related in such a way, that the metric

near D3-brane is like a metric near extremal black hole extended in three-dimensions

ds® = (1+ R*/r")"2da® + (1+ R*/r*)? (dr® + r?dQ2). (1.0.1)



Here 2% fori = 1, ..., 4 are coordinates along the world-volume of the D3-branes, and
()5 and r are spherical coordinates for the six transversal directions. Near horizon

the metric asymptotically is

dx? + dy?
2

ds® = R? + R2dQZ, (1.0.2)

2
where y = RT.

Hence metric near D3-brane is the metric of the AdSs x S® space with boundary
located at y = 0. The AdS/CFT conjecture [0, [7, 15] claims exact equivalence
between the theory defined on the boundary, which is /' = 4 supersymmetric Yang-

Mills, and the theory in the bulk, which is IIB string theory. The 't Hooft coupling

R VA and string

2! T 2w

constant A = NgZ,, relates to the string tension as T =

coupling constant g, = €® = 4mg%,,. In the planar 't Hooft limit [I6] N — oo,
A = const the strings do not interact. In other words, only contributions of genus
zero worldsheets do not vanish.

The 't Hooft idea [16] on how U(N) gauge theory simplifies in the large N
limit is the following. Let us denote propagators of gluons by double lines, such
that each line corresponds to an index of the fundamental representation of U(N).
Then Feynman diagrams are equivalent to ribbon graphs. The color factor for each
Feynman diagram is equal to N/, where f is the number of faces. For each Feynman

graph we can associate a Riemann surface on which this graph can be drown without

intersections. Let coupling constant gy, enters the Yang-Mills actions as 4931, - tr F2.
Then a Feynman diagram which has v vertices, e edges and f faces has weight
NY(X\/N)e=v. Using Euler character x = 2—2g = f —e+v we obtain that Feynman
graph of genus g contributes with the factor N?>729 P~V So the genus expansion
takes form )7 N?7% [, where Fy, stands for the sum of all diagrams of genus g. This
precisely corresponds to the genus expansion for the string theory, if we identify 1/N

with the string coupling constant g; = e¥. (Here ¢ is the dilaton fields which enters

the sigma model action on world-sheet ¥ as % fz Ry, where R is the scalar curvature



of the world-sheet metric.)

Hence at the large N limit, higher genus contributions are suppressed. In
other words, the large N limit corresponds to weakly coupled strings. The string
model representing real QCD in the large N limit is still not found. However, the
AdS/CFT conjecture claims that such dual description of NV = 4 supersymmet-
ric Yang-Mills theory is given by IIB string theory in the AdSs x S° background
6], 7, [15].

The N = 4 supersymmetric Yang-Mills theory has global SO(4,2) conformal
symmetry and SU(4)g symmetry. The SO(4,2) x SU(4) symmetry corresponds to
the isometry group of AdSs x S°.

If the coupling constant A = Ng%,, is small, the perturbation theory on the
gauge theory side works well. On the other hand, if A is large, then the curvature
radius R = a/'/2A/* of the space-time in the dual description is large and then
closed string, or, in the leading order, supergravity approximation works well.

This is an example of very non-trivial duality between gauge theory and gravity.
Naively it seems that gauge theory in d dimensions and gravity in d + 1 dimension
have very different configurational space of degrees of freedom and classically it
seems they can not be dual theories. However, the key point here is that duality
swaps the weak coupling limit with the strong coupling limit. The collective degrees
of freedom at one side become fundamental degrees of freedom at the other side.

Such weak-strong coupling duality is very powerful, since it allows us to make
non-perturbative predictions for each side of the story using the other side pertur-
batively. On the other hand, the same property makes it very difficult to prove or
even test the duality conjecture. To test the duality conjecture on some physical ob-
servables we have to compute expectation value exactly, to all orders in the coupling
constant, at least in one of the theory independently from the dual description.

Some other non-perturbative methods are required to make such computation.

One of such methods of exact computation of the path integral for theories with



suitable fermionic symmetry @ is localization on @Q-invariant configurations [I8|
19]. Mathematically, localization is integration of equivariantly closed forms using
Duistermaat-Heckman [20] or Atiyah-Bott-Berline-Vergne [21, 22] theorem. (See
[23, 24] for a review.) We shall use such approach for non-perturbative computations
in the gauge theory.

The basic observable in gauge theories is Wilson loop operator. Mathematically
it represents holonomy of a connection around a loop, physically it measures inter-
action between heavy quark and antiquark. Finding the expectation value of an
arbitrary set of Wilson loop operators is a formidable problem; it is equivalent to
the complete solution of the gauge theory. As mentioned above, a theory simplifies
in presence of additional symmetries, a particular kind of which is a supersymmetry.
The simplest case from the theoretical viewpoint is then maximally supersymmetric
theory, i.e. N/ = 4 supersymmetric Yang-Mills theory.

In supersymmetric theories the usual Wilson loop operator can be made super-
symmetric by adding coupling to some scalar fields. The simplest such operator is
supersymmetric circular loop

Wr(C) = trg Pexp % (A dx" + iDods). (1.0.3)
c

Here R is a representation of the gauge group, Pexp is the path-ordered exponent, C'
is a circular loop, A, is the gauge field and ® is one of the scalar fields of the theory.
All fields take values in the Lie algebra of the gauge group, i.e. in our conventions
the covariant derivative is V,, = 0, + A,,.

In [25] Erickson, Semenoff and Zarembo conjectured that the expectation value
(Wg(C)) of the Wilson loop operator in the four-dimensional N' =4 SU(N)
gauge theory in the large NV limit can be exactly computed by summing all rainbow
diagrams in Feynman gauge. The combinatorics of rainbow diagrams can be repre-
sented by a Gaussian matrix model. In [25] the conjecture was tested at one-loop

level in gauge theory. In [26] Drukker and Gross conjectured that the exact relation



to the Gaussian matrix model holds for any N and argued that the expectation value
of the Wilson loop operator can be computed by a matrix model. However,
Drukker-Gross argument does not prove that this matrix model is Gaussian.

In the context of the AdS/CFT correspondence [6, [7, I5] the conjecture was
relevant for many works; see for example [27H51] and references there in. From the
viewpoint of string dual description, the expectation value of the Wilson loop
is given by string partition function in AdSs x S® which lands at the contour C' at
the R* boundary of AdSs.

In chapter We prove the Erickson-Semenoff-Zarembo /Drukker-Gross conjecture

for the AV = 4 supersymmetric Yang-Mills theory formulated for an arbitrary gauge

group
_47r27"2 (a (l) )
Jlda] e a0 trg €2
<WR<C)>N =4o0nS* — An2r2 . (104>

Jidale”

See introduction to the chapter [2| for details on our conventions and notations.
We also get a new formula for the (Wx(C)) in the N' = 2 and the N' = 2*
supersymmetric Yang-Mills theory.

Our main result is

1 - 4752 2 (a,a) . — -1 - Tria
ZYE(Wr(C))y = vol(@) /[da] e vm Z{\_floop(zaﬂZﬁgt(r Lt ia)|? trg ™ |,
g

(1.0.5)

In chapter [3] we consider more interesting Wilson loops in N = 4 Yang-Mills.
Namely, we follow [41], 52] and consider supersymmetric Wilson loops of arbitrary
shape located on a fixed two-sphere S? in the four-dimensional theory. Such su-
persymmetric Wilson loops preserve 4 out of 32 superconformal symmetries of the
N = 4 Yang-Mills. It turns out that the localization procedure works for such
loops as well. The result is a certain two-dimensional theory resembling pertur-
bative sector of the bosonic two-dimensional Yang-Mills. From another viewpoint

this two-dimensional theory can interpreted as partially gauge-fixed two-dimensional



Yang-Mills for complexified gauge group, or as a certain sector of topological Higgs-
Yang-Mills [53H55] theory related to the moduli space of the solutions to Hitching’s
equations [50].

The chapter 4] concludes the thesis.



Chapter 2

Circular Wilson loops

This chapter is devoted to the exact calculation of the expectation value of super-
symmetric Wilson loop in A/ = 4 and N = 2 superconformal gauge theories. The

main results, presented in this chapter were initially obtained in the work [57].

2.1 Introduction

Topological gauge theory can be obtained by a twist of N' = 2 supersymmetric
Yang-Mills theory [18]. The path integral of the twisted theory localizes to the
moduli space of instantons and computes the Donaldson-Witten invariants of four-
manifolds [I8] 58], 59].

In a flat space the twisting does not change the Lagrangian. In [60] Nekrasov used
a U(1)? subgroup of the SO(4) Lorentz symmetry on R* to define a U (1)?-equivariant
version of the topological partition function, or, equivalently, the partition function
of the N' = 2 supersymmetric gauge theory in the Q-deformed background [61].
The integral over moduli space of instantons M, localizes at the fixed point set
of a group which acts on M;,s; by Lorentz rotations of the space-time and gauge
transformations at infinity. The partition function Z(e1,¢€2,a) depends on the
parameters (g1, &3), which generate U(1)? Lorentz rotations, and the parameter a €

g, which generates gauge transformations at infinity. By g we denote the Lie algebra



2.1. Introduction 9

of the gauge group. This partition function is finite because the 2-background

In the limit of

effectively confines the dynamics to a finite volume Vg = e
vanishing Q-deformation (g1, 9 — 0) the effective volume Vg diverges as well as the
free energy F' = —log Zi,s. But the specific free energy F/Veg has a well-defined
limit, which actually coincides with Seiberg-Witten low-energy effective prepotenial
F(a) of the N' = 2 supersymmetric Yang-Mills theory [62][63]. In this way instanton
counting gives a derivation of Seiberg-Witten prepotential from the first principles.

In this chapter we consider another interesting situation where an analytical
computation of the partition function is possible. We consider the NV = 2, the
N = 2* and the N = 4 Yang-Mills theory on a four-sphere S* equipped with the
standard round metric/[]

There are no zero modes for the gauge fields, because the first cohomology group
of S* is trivial. There are no zero modes for the fermions. This follows from the
fact that the Laplacian operator on a compact space is semipositve and the formula
D?=A+ }f, where by ) we denote the Dirac operator, by A the Laplacian, and
by R the scalar curvature, which is positive on S*. There are no zero modes for
the scalar fields, because there is a mass term in the Lagrangian proportional to the
scalar curvature.

Observing that there are no zero modes at all, we can try to integrate over all
fields in the path integral and to compute the full partition function of the the-
ory. In addition, we would like to compute expectation values of certain interesting
observables.

In this chapter we are mostly interested in the observable defined by the super-
symmetric circular Wilson loop operator (see Fig. [2.1)

Wgr(C) = trg Pexp % (A dx" +i®Fds). (2.1.1)
c

Here R is a representation of the gauge group, Pexp is the path-ordered exponent,

"'What we call N' = 2 supersymmetry on S* is explained in section It would be interesting
to extend the analysis to more general backgrounds [64].
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Figure 2.1: Wilson loop on the equator of S*

C'is a circular loop located at the equator of S*, A, is the gauge field and i®f is one
of the scalar fields of the N' = 2 vector multiplet. We reserve notation ® for the
scalar field in a theory obtained by dimensional reduction of a theory in Euclidean
signature. Our conventions are that all fields take values in the real Lie algebra of
the gauge group. For example, if the gauge group is U(N), then all fields can be
represented by antihermitian matrices. The covariant derivative is D, = d, + A,
and the field strength is F,, = [D,, D,].

In this chapter, we prove the Erickson-Semenoff-Zarembo/Drukker-Gross con-
jecture [25 26] for the NV = 4 supersymmetric Yang-Mills theory formulated for an
arbitrary gauge group. Let 7 be the radius of S%. The conjecture states that

_an?r? (a,a) .
Jlda] e 5a - trg €2

<WR<C)>N:4011 st = " in2,2 (@) . (212)
Jde]

The finite dimensional integrals in this formula are taken over the Lie algebra g of
the gauge group, a denotes an element of g. By (a, a) for a € g we denote an invariant

positive definite quadratic form on g. Our convention is that the kinetic term in the

gauge theory is normalized as — il d4x\/§(FW, F#). The formula (2.1.2]) can be

2
49y m

rewritten in terms of the integral over the Cartan subalgebra of g with insertion of

the usual Weyl measure A(a) = [[,c o0t of g

We also get a new formula for the (Wx(C)) in the N' = 2 and the N' = 2*

a - a.

supersymmetric Yang-Mills theory. As in the N' = 4 case, the result can be written
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in terms of a matrix model. However, this matrix model is much more complicated
than a Gaussian matrix model. We derive this matrix model action up to all orders
in perturbation theory. Then we argue what is the non-perturbative contribution of
all instanton/anti-instanton corrections.

Our main result is

1 747727‘2 (a7a) ) B B . A
ZH(Wg(C))n = ol /[da] e U ZN(1a)| 2 (i) P b €27 |
g

(2.1.3)

Here Z}) is the partition function of the N' = 2, the N = 2* or the N = 4
supersymmetric Yang-Mills theory on S*, defined by the path integral over all fields
in the theory, and (Wg(C)) is the expectation value of Wx(C') in the corresponding
theory. In particular, if we take R to be the trivial one-dimensional representation,
the formula says that the partition function Zé\ﬁ is computed by the following finite-

dimensional integral:

]- _45272 ava) . _ _ .
Zé\ﬁ = F(G)/[da]e QYM( Z{\_floop(mﬂZﬁ\{st(r Lr tia)l? (2.1.4)

In other words, we show that the Wilson loop observable (2.1.1)) is compatible
with the localization of the path integral to the finite dimensional integral (2.1.3))
and that

<WR(C)>4d theory — <trR 627rrm>matrix model |5 (215)

where the matrix model measure (... )matrix model 1S given by the integrand in ([2.1.4)).

The factor Zjjoop(ia) is a certain infinite dimensional product, which appears
as a determinant in the localization computation. It can be expressed in terms
of a product of Barnes G-functions [65]. In the most general N' = 2* case, the
factor Zjjo0p(ia) is given by the formula . The N = 2 and N/ = 4 cases
can be obtained by taking respectively limits m = oo and m = 0, where m is the

hypermultiplet mass in the A" = 2* theory. For the V' = 4 theory we get Zyj00p = 1.
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The factor Zis(e1,€2,1a) is Nekrasov’s partition function [61] of point instan-
tons in the equivariant theory on R*. In the N = 2* case it is given by the for-
mula . In the limit m = oo, one gets the NV = 2 case , in the limit
m = 0 one gets the N' = 4 case. In the N’ = 4 case, the instanton partition function
does not depend on a. Therefore in the N' = 4 case, instantons do not
contribute to the expectation value (Wgr(C)).

Our claim about vanishing of instanton corrections for the N/ = 4 theory contra-
dicts to the results of [35], where the first instanton correction for the SU(2) gauge
group was found to be non-zero. In [35] the authors introduced a certain cut-off on
the instanton moduli space, which is not compatible with the relevant supersymme-
try of the theory and the Wilson loop operator. Our instanton calculation is based
on Nekrasov’s partition function on R*. This partition function is regularized by a
certain non-commutative deformation of R* compatible with the relevant supersym-
metry. Though we do not write down explicitly the non-commutative deformation
of the theory on S*, we assume that such deformation can be well defined. We also
assume that in a small neighbourhood of the North or the South pole of S* this
non-commutative deformation agrees with the non-commutative deformation used
by Nekrasov [60] on R*.

Since both Zj(e1,e2,7a) and its complex conjugate enter the formula, this
means that we count both instantons and anti-instantons. The formula is similar to
Ooguri-Strominger-Vafa relation between the black hole entropy and the topological

string partition function [66] 67]
ZBH 0.8 |Zt0p’2. (216)

Actually the localization computation is compatible with more general observ-
ables than a single Wilson loop in representation R inserted on the equator (2.1.1).
Let us fix two opposite points on the S* and call them the North and the South

poles. Then we can consider a class of Wilson loops placed on circles of arbitrary
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radius such that they all have a common center at the North pole, and such that
they all can be transformed to each other by a composition of a dilation in the
North-South direction and by an anti-self-dual rotation in the SU(2) left subgroup
of the SO(4) subgroup of the S* isometry group which fixes the North pole. How-
ever, for Wilson loops of not maximal size, we need to change the relative coefficient
between the gauge and the scalar field terms in . Let Cy be a circle located at
an arbitrary polar angle § measured from the North pole (at the equator siné = 1).

Then we consider

1
Wgr(Cy) = trg Pexpj{ (A dxt + 5 (i®F + @y cos O)ds), (2.1.7)

Co né

where ®f and ®q are the scalar fields of the N' = 2 vector multiplet.

Equivalently this can be rewritten as
Wr(Cp) = trg Pexpf (Auda” + (1D + g cosO)rda). (2.1.8)
Cy

where a € [0,27) is an angular coordinate on the circle C. Formally, as the size
of the circle vanishes (# — 0) we get a “holomorphic” observable Wgr(Cy_o) =
trr exp 2mr®(N) where ®(N) is the complex scalar field i®F + @4 evaluated at the
North pole. In the opposite limit (# — 7) we get an “anti-holomoprhic” observable
Wr(Cy_r) = trgpexp 2mr®(S), where ®(S) is the conjugated scalar field —i®F + @,
evaluated at the South pole. However, in the actual computation of the path integral
we will always assume a finite size of C, so that the operator Wr(C) is well defined.
Then for an arbitrary set {Wg, (Cy,), ..., W, (Cy,)} of Wilson loops in the class

we described above we obtain

(Wp,(Ca,) ... Wr,(Co,))ad theory = (TR, €™ .. .trR, €Y matrix model |- (2.1.9)

The Drukker-Gross argument only applies to the case of a single circle which
can be related to a straight line on R* by a conformal transformation, but in the

present approach we can consider several circles simultaneously.
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So far we described the class of observables which we can compute in the massive
N = 2* theory. All these observables are invariant under the same operator
generated by a conformal Killing spinor on S* of constant norm. This operator @
is a fermionic symmetry at quantum level.

Now we describe more general classes of circular Wilson loops which can be
solved in N' = 4 theory. Thanks to the conformal symmetry of the NV = 4 theory
there is a whole family of operators {Q(¢)} where ¢ runs from 0 to oo, which we can
use for the localization computation. The case t = 1 corresponds to the conformal
Killing spinor of constant norm and to the observables which we study in the N' = 2*

theory. However, for a general ¢ in the N = 4 theory we can take

0 0
Wgr(Cy,t) = trg Pexp jie (Audx“ + T d ((cos2 3 + t*sin® 5)@'(1)65
20 o o0
+®g(cos 2 — tsin 5) ds|. (2.1.10)

At tsing = cosg we get the Wilson loop lb with the same relative coefficient 1
between A, and i®f but of arbitrary size. The N = 4 theory with insertion of the
operator Wgr(Cy,t) still localizes to the Gaussian matrix model.

The idea underlying localization is that in some situations the integral is exactly

equal to its semiclassical approximation. For example, the Duistermaat-Heckman

/ " JiH) _ gn Z ciH(9)
w 2m)nl = Tal(0)

where (M,w) is a symplectic manifold, and H : M — g* is a moment mapE| for

formula says [20]

k on M. The Duistermaat-Heckman formula

a Hamiltonian action of G = U(1)
is a particular case of a more general Atiyah-Bott-Berline-Vergne localization for-
mula |21, 22]. Let an abelian group G act on a compact manifold M. We consider

the complex of G-equivariant differential forms on M valued in functions on g with

’In other words, isw = dH(¢) for any ¢ € g, where i, is a contraction with a vector field
generated by ¢.
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the differential () = d — ¢%i,. The differential squares to a symmetry transformation
Q? = —¢*L,. Here L, represents the action of G on M. Hence Q? annihilates

G-invariant objects. Then for any @)-closed form «, Atiyah-Bott-Berline-Vergne

L“‘Lef?ﬁ)’

where F <5 M is the G-fixed point set, and e(Ng) is the equivariant Euler class of

localization formula is

the normal bundle of F' in M. When F is a discrete set of points, the equivariant
Euler class e(Np) at each point f € F'is simply the determinant of the representation
in which g acts on the tangent bundle of M at a point f.

Localization can be argued in the following way [I8, [68]. Let @ be a fermionic
symmetry of a theory. Let Q* = L, be some bosonic symmetry. Let S be a
@-invariant action, so that QS = 0. Consider a functional V' which is invariant
under Ly, so that @Q*V = 0. Deformation of the action by a Q-exact term QV can
be written as a total derivative and does not change the integral up to boundary
contributions

%/eSHQV — /{Q,V}€S+tQV — /{Q, V€S+tQV} —0.

As t — oo, the one-loop approximation at the critical set of QV becomes exact.
Then for a sufficiently nice V', the integral is computed by evaluating S at critical
points of QV and the corresponding one-loop determinant.

We apply this strategy to the N' = 2, the N' = 2* and the N/ = 4 supersymmetric
Yang-Mills gauge theories on S* and show that the path integral is localized to the
constant modes of the scalar field &, with all other fields vanishing. In this way we
also compute exactly the expectation value of the circular supersymmetric Wilson
loop operator ([2.1.1]).

Remark. Most of the presented arguments in this work should apply to an
N = 2 theory with an arbitrary matter content. For a technical reasons related

to the regularization issues, we limit our discussion to the A/ = 2 theory with a
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single N/ = 2 massive hypermultiplet in the adjoint representation, also known as
the N’ = 2*. By taking the limit of vanishing or infinite mass we can respectively
recover the N/ = 4 or the N' = 2 theory.

Still we will give in a formula for the factor Z; ,0p for an N' = 2 gauge
theory with a massless hypermultiplet in such representation that the theory is
conformal. Perhaps, one could check our result by the traditional Feynman diagram
computations directly in the gauge theory. To simplify comparison, we will give
an explicit expansion in gy, up to the sixth order of the expectation value of the
Wilson loop operator for the NV = 2 theory with the gauge group SU(2) and 4
hypermultiplets in the fundamental representation (see (2.4.58))

%nétgézw + 48426”69%1\/1

3512 ((3)
- WHQQ?VM +O0(g%y), (2.1.11)

3
<627ma>matrix model — 1 + ﬁnzg%/M +

In this formula a € R is a coordinate on the Cartan algebra h of g. By an integer
n € h* we denote a weight. For example, if the Wilson loop is taken in the spin-j
representation, where j is a half-integer, the weights are {—2j,—2j + 2,...,2j}.
Hence we get (W;(C)) = ( anfj et™may \ g

We shall note that the first difference between the A/ = 2 superconformal theory
and the N = 4 theory appears at the order ¢$,,, up to which the Feynman diagrams
in the N' = 4 theory were computed in [69} [70]. Therefore a direct computation of
Feynman diagrams in the A/ = 2 theory up to this order seems to be possible and
would be a non-trivial test of our results.

Some unusual features in this work are: (i) the theory localizes not on a counting
problem, but on a nontrivial matrix model, (ii) there is a one-loop factor involving
an index theorem for transversally elliptic operators |71, [72].

In section 2 we give details about the N' = 2, the N' = 2* and N' = 4 SYM
theories on a four-sphere S*. In section 3 we make a localization argument to com-

pute the partition function for these theories. Section 4 explains the computation of
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the one-loop determinant [71], [72], or, mathematically speaking, of the equivariant
Euler class of the infinite-dimensional normal bundle in the localization formula. In
section 5 we consider instanton corrections.

There are some open questions and immediate directions in which one can pro-

ceed:

1. One can consider more general supersymmetric Wilson loops like studied
in [41) B0, (2] and try to prove the conjectural relations of those with ma-
trix models or two-dimensional super Yang-Mills theory. Perhaps it will be
also possible to extend the analysis of those more general loops to (supercon-

formal) A = 2 theories like it is done in the present work.

2. Using localisation, one can try to solve exactly for an expectation value of a
circular supersymmetric 't Hooft-Wilson operator (this is a generalization of
Wilson loop in which the loop carries both electric and magnetic charges) [8,
73, [74]. The expectation values of such operators should transform in the right
way under the S-duality transformation which replaces the coupling constant
by its inverse and the gauge group G by its Langlands dual *G. Perhaps
this could tell us more on the four-dimensional gauge theory and geometric

Langlands [8] where 't Hooft-Wilson loops play the key role.

3. It would be interesting to find more precise relation between our formulas,
and Ooguri-Strominger-Vafa [66] conjecture (2.1.6). There could be a four-

dimensional analogue of the tt*-fusion [75].

2.2 Fields, action and symmetries

To write down the action of the A" = 4 SYM on S*, we use dimensional reduction
of the N =1 SYM [76] on R%»!. By G we denote the gauge group. By A, with

M =0,...,9 we denote the components of the gauge field in ten dimensions, where
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we take the Minkowski metric ds* = —da+dai+- - -+dx3. When we write formulas
in Euclidean signature so that the metric is ds®* = da2 + da? + -+ + da3, we use
notation AL for the zero component of the gauge field.

By ¥ we denote a sixteen real component ten-dimensional Majorana-Weyl fermion
valued in the adjoint representation of GG. (In Euclidean signature ¥ is not real, but

its complex conjugate does not appear in the theory.) The ten-dimensional action

S = [d®zL with the Lagrangian

1 1
= <§FMNFMN — \I/FMDM\I/) (2.2.1)
9y m

is invariant under the supersymmetry transformations

6€AM = €FM\II

1
9.0 = 5FMNFMNg.

Here ¢ is a constant Majorana-Weyl spinor parameterizing the supersymmetry trans-
formations in ten dimensions. (See appendix for our conventions on the algebra
of gamma-matrices.)

We do not write explicitly the color and spinor indices. We also assume that in all
bilinear terms the color indices are contracted using some invariant positive definite
bilinear form (Killing form) on the Lie algebra g of the gauge group. Sometimes
we denote this Killing form by (-,). In Euclidean signature we integrate over fields
which all take value in the real Lie algebra of the gauge group. For example, for the
U(N) gauge group all fields are represented by the antihermitian matrices, and we
can define the Killing from on g as (a,b) = — trp ab, where trg is the trace in the
fundamental representation.

We take (z1, ..., x4) to be the coordinates along the four-dimensional space-time,
and we make dimensional reduction in the remaining directions: 0,5,...8,9. Note
that the four-dimensional space-time has Euclidean signature.

Now we describe the symmetries of the four-dimensional theory if we start from

Minkowski signature in ten dimensions. Note that we make dimensional reduction
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along the time-like coordinate xy. Therefore we get the wrong sign for the kinetic
term for the scalar field ®(, where @, denotes the 0-th component of the gauge field
Ay after dimensional reduction. To make sure that the path integral is well defined
and convergent, in this case in the path integral for the four-dimensional theory we
integrate over imaginary ®,. Actually this means that the path integral is the same
as in the Euclidean signature with all bosonic fields taken real.

The ten-dimensional Spin(9,1) Lorentz symmetry group is broken to Spin(4) x
Spin(5,1)%, where the first factor is the four-dimensional Lorentz group acting on
(x1,...,24) and the second factor is the R-symmetry group acting on (s, . .., Zg, Zo).
It is convenient to split the four-dimensional Lorentz group as Spin(4) = SU(2)L x
SU(2)r, and brake the Spin(5,1)f-symmetry group into Spin(4)% x SO(1,1)F =
SU((2)F x SU(2)E x SO(1,1)%. The components of the ten-dimensional gauge field,
which become scalars after the dimensional reduction are denoted by ® 4 with A =
0,5,...,9. Let us write the bosonic fields and the symmetry groups under which

they transform:
SU@2)LxSU@2)r SUR)FxSUR)E SO(1,1)R

~N -~ ~ /_/\
Al,...A4 @5,...7q)8 q)g,q)o.

Using a certain Majorana-Weyl representation of the Clifford algebra CI(9,1)
(see appendix for our conventions), we write ¥ in terms of four four-dimensional

chiral spinors as

Each of these spinors (1%, ¥ %, x%) has four real components. Their transfor-

mation properties are summarized in the table:
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el U | SU@), | SU@)R | SU@)E | SU@)E | SO, 1)R
« |l | 1/2 0 1/2 0 +
0/ x®| 0 1/2 0 1/2 +
o 1/2 1/2 0 -
0 X% | 1/2 0 0 1/2 -

Let the spinor € be the parameter of the supersymmetry transformations. We
restrict the N' = 4 supersymmetry algebra to the A/ = 2 subalgebra by taking ¢ in

the +1-eigenspace of the operator ', Such spinor ¢ has the structure

*

*

transforms in the spin—% representation of the SU(2)%® and in the trivial representa-
tion of the SU(2)%.
With respect to the supersymmetry transformation generated by such &, the

N = 4 gauge multiplet splits in two parts
o (Ay... Ay, &y, &g, L YT) is the N = 2 vector multiplet
o (O5...Dg, XL, xP) is the N = 2 hypermultiplet.

So far we considered dimensional reduction from R%! to the flat space R*. Now
we would like to put the theory on a four-sphere S*. We denote by A, with yu =
1,...,4 the four-dimensional gauge field and by ®4 with A = 0,5,...,9 the four-
dimensional scalar fields. The only required modification of the action is a coupling
of the scalar fields to the scalar curvature of space-time. Namely, the kinetic term
must be changed as (09)? — (9®)?+£®?, where R is the scalar curvature. One way
to see why this is the natural kinetic term for the scalar fields is to use the argument

of the conformal invariance. Namely, one can check that [ d*z /g((0®)* + £?) is
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invariant under Weyl transformations of the metric g,, — €*?g,, and scalar fields

® — ¢ 2P, Then the action on S* of the N =4 SYM is

1 1 2
Snes = = / Vodtx (—FMNFMN — UMDy —2<1>A<1>A) , (2.2.2)
QgYM G4 2 r
where we used the fact that the scalar curvature of a d-sphere S¢ of radius r is
d(d—1)
2

The action (2.2.2)) is invariant under the N' = 4 superconformal transformations

1 1
6.0 = 5FWFM% + §FMA<I>AV“5, (2.2.4)

where ¢ is a conformal Killing spinor solving the equations

Ve =T,é (2.2.5)
N 1
Vucf = —@FH&“. (226)

(See e.g. [77] for a review on conformal Killing spinors, and for the explicit solution
of these equations on S* see appendix ) To get intution about the meaning of
€ and € we can take the flat space limit » — oco. In this limit £ becomes covariantly
constant spinor € = €., while £ becomes a spinor with at most linear dependence
on flat coordinates z# on R*: ¢ = &, + ' é.. By & and é. we denote some con-
stant spinors. Then £ generates supersymmetry transformations, while €. generates
special superconformal symmetry transformations.

The superconformal algebra closes only on-shell. Let §2 be the square of the
fermionic transformation 0. generated by a spinor €. After some algebra (see ap-

pendix |[A.3)) we obtain

62A, = —(elVe)F,, — [(eT'Pe)®p, D]

620y = —(eIe)D, @4 — [(eTPe)Pp, P 4] + 2(ET 45e) PP — 2(8) Dy
, ., 1 1 . (2.2.7)
0V = —(ele) D,V — [(e[7e)Pp, V] — é(éFuya)FW\If - E(eTAge)F \

—3(&e)V 4 eom|[V].
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Here the term denoted by eom|[¥] is proportional to the Dirac equation of motion
for fermions W

eom[¥] = %(EFNE)fND\I/ — (eD¥)e. (2.2.8)

The square of the supersymmetry transformation can be written as
6l=—-L,—R-Q. (2.2.9)

The first term is the gauge covariant Lie derivative £, in the direction of the
vector field

oM = eyMe, (2.2.10)

For example, £, acts on scalar fields as follows: L£,®4 = vMDy® = VD, DA +
vB[®p, ®]. Here D, is the usual covariant derivative D, = 9, + A,

To explain what the gauge covariant Lie derivative means geometrically, first
we consider the situation when the gauge bundle, say F, is trivial. We fix some
flat background connection A,(?) and choose a gauge such that A,(LO) = 0. For any
connection A on E we define A = A — A©. The field A transforms as a one-form
valued in the adjoint representation of E. The path integral over A is equivalent to
the path integral over A. Then we can write the gauge covariant Lie derivative £,
as follows

L, = L, + Go. (2.2.11)

Here L, is a usual Lie derivative in the direction of the vector field v*. The action of
L, on the gauge bundle is defined by the background connection A which we set
to zero. The second term Gy is the gauge transformation generated by the adjoint
valued scalar field ® where

o =ovMA,,. (2.2.12)

The gauge transformation Gg acts on the matter and the gauge fields in the usual

way: Go®y = [®,D4], Go- A, =[®,D,] =-D,P.



2.2. Fields, action and symmetries 23

The term denoted by R in is a Spin(5, 1)®-symmetry transformation. It
acts on scalar fields as (R- ®)4 = Rap®”, and on fermions as R- ¥ = I R,pI'*P 0,
where Rap = 2eT4pé. When ¢ and £ are restricted to the N' = 2 subspace of
N = 4 algebra, (I8¢ = ¢ and T'°°"®¢ = ¢), the matrix Rap with A,B =5,...,8
is an anti-self-dual (left) generator of SO(4)" rotations. In other words, when we
restrict € to the NV = 2 subalgebra of the ' = 4 algebra, the SO(4)® R-symmetry
group restricts to its SU(2)% subgroup. The fermionic fields of the ' = 2 vector
multiplet (we call them ) transform in the trivial representation of R, while the
fermionic fields of the N' = 2 hypermultiplet (we call them y) transform in the
spin—% representation of R.

Finally, the term denoted by 2 in generates a local dilatation with the
parameter 2(¢€), under which the gauge fields do not transform, the scalar fields
transform with weight 1, and the fermions transform with weight % (In other
words, if we make Weyl transformation g,,, — €*?g,,, we should scale the fields as
A, — A, & — e, U — e 220 to keep the action invariant.)

Classically, it is easy to restrict the fields and the symmetries of the N' = 4 SYM
to the pure N/ = 2 SYM: one can discard all fields of the N' = 2 hypermultiplet
and restrict € by the condition I8¢ = ¢. The resulting action is invariant under
N = 2 superconformal symmetry. On quantum level the pure N' = 2 SYM is not
conformally invariant. We will be able to give a precise definition of the quantum
N = 2 theory on S*, considering it as the N/ = 4 theory softly broken by giving a
mass term to the hypermultiplet, which we will send to the infinity in the end.

If we start from Minkowski signature in the ten dimensional theory, then clas-
sically the supersymmetry groups for the NV = 4, the N' = 2, and the N' = 2*
Yang-Mills theories on S* are the following.

In the N/ = 2 case, ¢ is a Dirac spinor on S*. The equation has 16

linearly independent solutions, which correspond to the fermionic generators of the
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N = 2 superconformal algebra. Intuitively, 8 generators out of these 16 corre-
spond to 8 charges of N' = 2 supersymmetry algebra on R* and the other 8
correspond to the remaining generators of N' = 2 superconformal algebra. The
full N = 2 superconformal group on S* is SL(1|2,H)| Its bosonic subgroup is
SL(1,H) x SL(2,H) x SO(1,1). The first factor SL(1,H) ~ SU(2) generates the
R-symmetry SU(2)%® transformations. The second factor SL(2,H) ~ SU*(4,C) ~
Spin(5,1) generates conformal transformations of S*. The third factor SO(1,1)%
generates the SO(1,1)" symmetry transformations. The fermionic generators of
SL(1,2|H) transform in the 2 4 2’ of the SL(2, H), where 2 denotes the fundamen-
tal representation of SL(2,H) of quaternionic dimension two. This representation
can be identified with the fundamental representation 4 of SU*(4) of complex di-
mension four, or with chiral (Weyl) spinor representation of the conformal group
Spin(5,1). The other representatfion 2’ corresponds to the other chiral spinor rep-
resenation of Spin(5, 1) of the opposite chirality.

In the /' = 4 case we do not impose the chirality condition on . Hence a sixteen
component Majorana-Weyl spinor € of Spin(9,1) reduces to a pair of the four-
dimensional Dirac spinors (g4, €y ), where ¢, and ¢, are elements of the +1 and —1
eigenspaces of the chirality operator I'*%7® respectively. Each of the Dirac spinors &,
and ¢, independently satisfies the conformal Killing spinor equation because
the operators I', do not mix the +1 and —1 eigenspaces of ['"®. Then we get
16416 = 32 linearly independent conformal Killing spinors. Each of these spinors
corresponds to a generator of the N' = 4 superconformal symmetry. One can check
that the full A" = 4 superconformal group on S* is PSL(2|2, H).

To describe the A/ = 2* theory on S*, which is obtained by giving mass to
the hypermultiplet, we need some more details on Killing spinors on S*. Because

mass terms break conformal invariance, we should expect the N' = 2* theory to be

3By SL(n,H) we mean group of general linear transformation GL(n,H) over quaternions fac-
tored by R*, so that the real dimension of SL(n,H) is 4n? — 1.
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invariant only under 8 out of 16 fermionic symmetries of the N/ = 2 superconformal
group SL(1,2|H). In other words, we should impose some additional restrictions on
. Let us desribe this theory in more details.

First we explicitly give a general solution for the conformal spinor Killing equa-
tion on S*. Let a# be the stereographic coordinates on S*. The origin corresponds
to the North pole, the infinity corresponds to the South pole. If r is the radius of

5%, then the metric has the form

1
20 20
y =0,e"", where 7" :i=—-o—. 2.2.13
M Iz (1 + %)2 ( )
We use the vielbein e/, = &},e” where ¢, is the Kronecker delta, the index = 1,...,4
is the space-time index, the index ¢ = 1,...,4 enumerates vielbein elements. The

solution of the conformal Killing equation (2.2.5)) is (see appendix [A.2))

£ = —— (& +2'Ti&,) (2.2.14)
2
1+ 25
1 i
¢ = (¢, — Z iz, (2.2.15)
1+ 2 "

where £, and €. are Dirac spinor valued constants.

Classically, the action of ' = 2 SYM on R* with a massless hypermultiplet is
invariant under the N/ = 2 superconformal group, which has 16 fermionic generators.
Turning on non-zero mass of the hypermultiplet breaks 8 superconformal fermionic
symmetries, but preserves the other 8 fermionic symmetries which generate the N =
2 supersymmetry. These 8 charges are known to be preserved on quantum level [63].
The N = 2 supersymmetry algebra closes to the scale preserving transformations:
the translations on R* These scale preserving transformations are symmetries of
the massive theory as well.

Following the same logic, we would like to find a subgroup, which will be called S,
of the N' = 2 superconformal group on S* with the following properties. The super-

group S C SL(1]2,H) contains 8 fermionic generators, the bosonic transformations
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of § are the scale preserving transformations and are compatible with mass terms
for the hypermultiplet. The group S is what we call the N' = 2 supersymmetry
group on S*.

The conformal group of S* is SO(5,1). The scale preserving subgroup of the
SO(5,1) is the SO(5) isometry group of S*. We require that the space-time bosonic
part of S is a subgroup of this SO(5). This means that for any conformal Killing
spinor € that generates a fermionic transformation of S, the dilatation parameter
(é¢) in the &2 vanishes.

For a general ¢ in the N' = 2 superconformal group, the transformation 42
contains SO(1,1)f generator. Since the SO(1, 1) symmetry is broken explicitly by
hypermultiplet mass terms, and since it is broken on quantum level in the usual N' =
2 theory in the flat spaceEL we require that S contains no SO(1, 1) transformations.
In other words, the conformal Killing spinors ¢ which generate transformations of
S are restricted by the condition that the SO(1,1)" generator in 62 vanishes. By
equation this means 1'% = 0.

Using the explicit solution (2.2.14)) we rewrite the equation (¢g) = (T%e) = 0

in terms of £, and &,
£, =6,I%e. =0

1
gJHE, — @&“SF“&“S =0.

(2.2.16)

To solve the second equation, we take chiral £, and £. with respect to the four-

1234 Since the operators I'* reverse the four-dimensional

dimensional chirality operator
chirality, both terms in the second equation vanish automatically. There are two
interesting cases: (i) the chirality of £, and £, is opposite, (ii) the chirality of £ and
€. 1s the same. The main focus of this work is on the second case.

1. In the first case we can assume that

eb=0, ét=o.

s

4See e.g. [62] [63] keeping in mind that if we start from the Euclidean signature in ten dimensions,
the SO(1,1)% group is replaced by the usual U(1)® symmetry of ' = 2 theory.
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Here by e and € we denote left/right four-dimensional chiral components. They
are respectively defined as the —1/ + 1 eigenspaces of the chirality operator 234,
In this case the first equation in (2.2.16|) is also automatically satisfied. Moreover,
the spinors € and & also have opposite chirality over the whole S*. Hence we have

8 generators, say € and &L, which anticommute to pure gauge transformations

P
generated by the scalar field @ := (e[''¢)®,. The d.-closed observables are the
gauge invariant functions of ® and their descendants. One could try to interpret
such J. as a cohomological BRST operator () and to relate in this way the physical
N = 2 gauge theory on S* with the topological Donaldson-Witten theory. That
does not work, because in the present case the conformal Killing spinor €, generated
by such &, and &, necessary vanishes somewhere on S*. Of course, in the twisted
theory [I8, [78] the problem does not arise, since ¢ is a scalar and can be set to be a
non-zero constant everywhere. However, our goal is to treat the non-twisted theory.
Moreover, the circular Wilson loop operator Wg(C') is not closed under such o..
Thus we turn to the second case.

2. The spinors €, and €. have the same chirality, say left, and the first equation

restricts them to be orthogonal

=0, =0 (eel)=0.

The Killing vector field v* = el*e, associated with the 62, generates an anti-self-dual
(left) rotation of S* around the North pole. In addition, §? generates a SU(2)%-
symmetry transformation and a gauge symmetry transformation. The spinor ¢ is
chiral only at the North and the South poles of S, but not at any other point. At
the North pole ¢ is left, at the South pole ¢ is right. We can find circular Wilson
loop operators of the form (2.1.1) which are invariant under such .. Conversely,
for any given circular Wilson loop Wx(C') of the form we can find a suitable
conformal Killing spinor . which annihilates Wg(C'). (The North pole is picked
up at the center of the Wgr(C).) If the spinors &, and é. are both non zero, then



2.2. Fields, action and symmetries 28

¢ is a nowhere vanishing spinor on S*. We can use such 6, to relate the physical
N = 2 gauge theory on S* to a somewhat unusual equivariant topological theory,
and apply localization methods developed for topological theories [18, 58] to solve
for (Wg(C)). The relation has the simplest form if the norm of ¢ is constant.
Before proceeding to this equivariant topological theory, we would like to finish
our description of the supersymmetry group S of the N' = 2* theory on S*. First
we find the maximal set of linearly independent conformal Killing spinors {¢'} that

simultaneously satisfy the equations
eligh = Up09z9) — g, (2.2.17)

and then we find what superconformal group is generated by this set. One can show
that the equivalent way to formulate the conformal Killing spinor equation for the
spinors in the +1 space of the chirality operator I'**"® is the following

1
D,e = gque, (2.2.18)

where A is a generator of SU(2)R-symmetry. For example, if we start from the ten-
dimensional Minkowski signature we can take A = FOFU where 5 <7 < j <8. If we
start from the ten-dimensional Euclidean signature we can take A = —i['’T';; where
5 <i < j <8 Equivalently, A is a real antisymmetric matrix, which acts in the +1
eigenspace of ['°6™8 satisfies A2 = —1 and commutes with I'™ for m = 1,...,4,0,9.
The equation has 8 linearly independent solutions. Let V) be the vector
space that they span. Then the space of solutions of the conformal Killing spinor
equations is V) @ V_j, where we take € = %Aé.

The spinors in the space V), satisfy our requirement , because A is an-
tisymmetric and commutes with T'. The generators {d.]¢ € Vj} anticommute to
generators of Spin(5) x SO(2)%, where Spin(5) rotates S, and SO(2)f is a sub-
group of the SU(2)E-symmetry group. This SO(2)" subgroup is generated by A.
The space V) transforms in the fundamental representation of Sp(4) ~ Spin(5). We
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conclude that restricting the fermionic generators to the space Vj of breaks
the full N = 2 superconformal group SL(1|2,H) to the supergroup OSp(2]4), where
the choice of the SU(2)F generator A defines the embedding of the SO(2)g in the
SU(2)E.

Besides the spaces V), obtained as solutions of , we can find other
half-dimensional fermionic subspaces of the N' = 2 superconformal group satis-
fying . These spaces can be obtained by SO(1,1)g twisting of V. Indeed,
if the spinors ¢ and £ satisfy , then so do the spinors & = 2 and

~ _ 13709z
8/26 5BIT™7e

, where I'% generates SO(1,1) g, and (3 is a parameter of the twisting.
The SO(1,1)p twisted space Vi g is equivalently a space of solutions to the twisted
Killing equation

1
Dye = 2_F#e—BF°QAg. (2.2.19)
T

We summarize, that restriction to the half-dimensional fermionic subspace by
equation breaks the N' = 2 superconformal group SL(1|2,H) down to
OSp(2]|4). The choice of OSp(2]4) is defined by the generator of SU(2)g symmetry
A, and the generator of SO(1,1)g symmetry (.

If we require that the Wilson loop operator is closed with respect to d. with
e € Vi g, then the parameter 3 is related to the radius of the Wilson loop. In the
ten-dimensional Minkowski conventions, the Wilson loop operator has the form

Wa(p) = trp Pexp 740 ((Au% 1 @g)ds). (2.2.20)

Let the circular contour C be (z!, 22, 23, 2%) = t(cos a, sin «, 0, 0) in the stereographic

coordinates. Here ¢ = 2rtan %0 for the Wilson loop located at the polar angle 6.
The combination v™ Ay; = v*A, + v, is annihilated by 6., since (eI'Me)(¢I yre)
vanishes because of the triality identity . Then the Wilson loop is
d.-closed if (v*,v%,0%) = (£2,0,1). Using I'® = 1 and the explicit form for
€ we get

1
éc - ¥F12és- (2221)
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To satisfy (2.2.18)) we must have

]_ 09
s = —e P NS, 2.2.92
é 2Te é ( )

Let chirality of &,,é. be positive at = 0. Then § = log 5=, and (A —T'j2)é, = 0.
This equation has a non-zero solution for £, only when det(A — I'ys) = 0. That
determines A uniquely up to a sign. In other words, the choice of the position of
the Wilson loop on S* determines the way the SU(2)g symmetry group breaks to
SO(2), and the size of the Wilson loop determines the SO(1,1) twist parameter (3.
For the Wilson loop located at the equator ¢t = 2r.

A very nice property of the conformal Killing spinor ¢ generating OSp(2[4) is
that it has a constant norm over S*, similarly to a supersymmetry transformation on
flat space. Since OSp(2]4) has 8 fermionic generators, contains only scale preserving
transformations, and it is generated by spinors of constant norm on S*, we call it
N = 2 supersymmetry on S*. So we have found that S = OSp(2[4).

Now we show that it is possible to add a mass term for the hypermultiplet fields
and preserve the OSp(2|4) symmetry. From now we will assume that the Wilson
loop is located at the equator, so that € has a constant norm. To generate such mass
term in four dimensions we use Scherk-Schwarz reduction of ten-dimensional N' = 1
SYM. Namely, we turn on a Wilson line in the SU(2)% symmetry group along the
coordinate xg. The N' = 2 vector multiplet fields A,,, @y, @y, ¥ are not charged under
SU(2)%, therefore their kinetic terms are not changed. The hypermultiplet fields
x and ®; with ¢ = 5,...,8 transform in the spin—% representation under SU(2)%.
Explicitly it means that we should replace Dy®; by Dy®; + M;;®;, and Dyx by
Dox + ZiMijFinv where an antisymmetric 4 x 4 matrix M;; with 7,j =5,...,8is a
generator of the SU(2)% symmetry. Since F, is replaced by [®g, ®;] + M;;®;, the
Fy; F% term in the action generates mass for the scalars of the hypermultiplet.

On the flat space, the resulting action is still invariant under the usual N' = 2

supersymmetry. However, on S* we need to be more careful with the e-derivative



2.2. Fields, action and symmetries 31

terms in the supersymmetry transformations. Let us explicitly compute variation
of the Scherk-Schwarz deformed N = 4 theory on S*. We use the conformal Killing

I‘5678

spinor ¢ in the A/ = 2 superconformal subsector, i.e. ¢ = ¢. Then ¢ is not

charged under SU(2)% so Dye = 0. Variation of (2.2.2) by (2.2.3)) gives us (we
write variation of the Lagrangian up to total derivative terms since they vanish

after integration over the compact space S*)

1 2
5€(§FMNFMN — UMDy U+ ﬁq)Aq)A) =

1 . 4
= 2Dy (eDyU)FMY 2\I/I‘MDM(§FPQI‘PQ5 —20,4078) + — (eI )04 =
r

= —2(eTN V) Dy FMN 40Dy FpoTMT PR - UTMTFC Fp D e —4UTMTAED )y @ 4+
1 A 4 A
+ SUTTARAT e + S(TH0)04 =
Using
1
rMrre — 5(PMPPQ + TPreM 4 pMpPQy 4 9 MIPTQ) (2.2.23)

and the Bianchi identity, we see that the first term cancels the second, and that the

last two terms cancel each other. Then
oo = UIHTPOT 6Fpg — 4UTMTAED) @4 = 4VTMAZEy 0 — 40TMTAED), @y

where we use the index conventions M, N,P,Q) = 0,...,9, p = 1,...,4, A =
5,...,9,0. In the absence of Scherk-Schwarz deformation we have Fy;4 = Dy P 4 for
all M =0,...,9and A =05,...,9,0, hence the two terms cancel. After the deforma-
tion, we have Fy; = Do®;, but Fjg = —Do®; = — [P, ®;] — M;;®; = D; O — M;;P;.
Therefore, the naively Scherk-Schwarz deformed A = 4 theory on S* is not invariant

under arbitrary N’ = 2 superconformal transformation:

1 2 .
5€(§FMNFMN —UTM Dy + 5@ A0 = —4UTTOM,; ;. (2.2.24)

This is the natural consequence of adding mass terms to the Lagrangian. Never-

theless, we can add some other terms to the action in such a way to make the
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action invariant under the OSp(2]4) subgroup of N = 2 superconformal group on
S%. We use the fact that e generating a transformation in the OSp(2]|4) subgroup
satisfies the conformal Killing equation with ¢ = %As, where A is a generator of

SU(2)f-group normalized as A2 = —1. Let us take A = }lelel where Ry is an

anti-self-dual matrix normalized as Ry R* = 4, where k,l =5,...,8. Then we get
1 2 1 .
6. (= Fyn FMN — WM Dy + S0 ,04) = —UTT T e Ry M @; =
2 r? 2r (2.2.25)

1 : 1 .

Hence, the addition of 22 (Ry; My;)®'®7 term to the Scherk-Schwarz deformed action
on S* makes the action invariant under the OSp(2[4).

Let us summarize. The action

1 1 2 1 -
N 53 / d*z\/g (—FMNFMN — UV Dy + S0, 0% — —(R;ﬂ-Mkj)(I)Z(Iﬂ) ,
9y m 2 T 4r

(2.2.26)

where Do®" = [®g, -] + M;;®7 and DoV = [Py, U] + }LFUMM\I’, is invariant under the
OSp(2]|4) transformations, generated by conformal Killing spinors solving D,ec =
=, T Rye with € restricted to N = 2 subspace "™ = ¢.

Since §2 generates a covariant Lie derivative along the vector field —vM =
—eI'™¢, in particular it is contributed by the gauge transformation along the 0-
th direction. After we turned on mass for the hypermultiplet by Scherk-Schwarz
mechanism, §2 gets new contributions on the hypermultiplet

020; = 62 o ®i — v M,
. ) (2.2.27)
02X = 0ZnimoX — V" My x.

So far we computed §2 on-shell. To use the localization method we need an off-

shell closed formulation of the fermionic symmetry of the theory. The pure N' = 2

SYM can be easily closed by means of three auxiliary scalar fields, but it is well

known that the off-shell closure of A/ = 2 hypermultiplet is impossible with a finite
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number of auxiliary fields. For our purposes we do not need to close off-shell the
whole OSp(2|4) symmetry group. Since the localization computation uses only one
fermionic generator ()., it is enough to close off-shell only the symmetry generated
by this €.

To close off-shell the relevant supersymmetry of the N' = 4 theory on S* we make
the dimensional reduction of Berkovits method [79] used for the ten-dimensional
N =1 SYM, see also [80, R1]. The number of auxiliary fields compensates the
difference between the number of fermionic and bosonic off-shell degrees of freedom
modulo gauge transformations. In the NV = 4 case we add 16— (10— 1) = 7 auxiliary

fields K; with free quadratic action and modify the superconformal transformations

to
(SEAM = \IIFM€
1 1 ,
55\1’ = é’yMNFMN + §7MA¢ADM€ + KZVi (2228)
0.K; = —vy™ Dy 0,
where spinors v; with ¢ = 1,...,7 are required to satisfy
My, =0 (2.2.29)
1 ~ o
§(aFNg)F§5 = ViV + €atp (2.2.30)
I/,L'FMV]' = (SijEFMg. (2231)

For any non-zero Majorana-Weyl spinor € of Spin(9,1) there exist seven linearly
independent spinors v;, which satisfy these equationsﬂ [79]. They are determined
up to an SO(7) transformations. The equation (2.2.29)) ensures closure on Ay,
the equation ensures closure on W, and the equations ([2.2.29)) and ([2.2.31))

ensure closure on K

62K; = —(eyMe) Dy K* — (v Dy ) K7 — 4(2e) K. (2.2.32)

5The author thanks N.Berkovits for communications.
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If Ex is an SO(7) ® ad(G) vector bundle over S* whose sections correspond to
the auxiliary fields K;, then can be interpreted as a covariant Lie derivative
action along the vector field v#, or in other words as a lift of the L, action on S* to
the action on the vector bundle Ex — S*. A conformal Killing spinor € generating

a transformation of the OSp(2]4) subgroup can be represented in the following form

(see appendix for details)
9 ,
e(z) = exp (gni(:p)FT9> €s, (2.2.33)

where ¢ are the stereographic coordinates on S%, n; is the unit vector in the direc-
tion of the vector field v; = T2'w;;. We use the conformal Killing spinor e(z) such
that (e(z),e(x)) = 1 and T, = &,. The matrix w;; is the anti-self-dual generator
of SU(2);, C SO(4) rotation around the North pole in §2. We see that the con-
formal Killing spinor e(x) at an arbitrary point x is obtained by Spin(5) rotation
exp(&n;(z)I'T?) of its value at the origin £(0) = &,.

For the closure of N’ = 4 symmetry we need seven spinors v; which satisfy
(2.2.31)). Following [79], at the origin we can take 0; = T'"®¢, for i = 1...7, and then

transform 7; to an arbitrary point on S* as

vi(x) = eXp(gni(:c)Fig)és. (2.2.34)

Finally, we conclude that the action

1 1 2
Sy=2 = 7 / d*z/g (iFMNFMN — UMDy + = 0,04
r
Fym ) (2.2.35)
— - (Brilyy) 207 — KiKi) )
r

is invariant under the off-shell supersymmetry (). given by with v; defined
by . Though we will not need this fact, we remark that it is possible to
simultaneously close four fermionic symmetries generating the OSp(2|2) subgroup
of OSp(2|4). The space-time part of this O.Sp(2]2) subgroup consists of anti-self-dual

rotations around the North pole on S*.
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2.3 Localization

As explained in the introduction, to localize the theory we deform the action by a

(Q-exact term
S — S +tQV. (2.3.1)

Since we use () which squares to a symmetry of the theory, and since the action
and the Wilson loop observable are ()-closed, we can use the localization argument.
For (Q%-invariant V', the deformation does not change the expectation value
of @-closed observables. Hence, when we send ¢ to infinity, the theory localizes to
some set [’ of critical points of QV, over which we will integrate in the end. The
measure in the integral over F' comes from the restriction of the action S to F' and
the determinant of the kinetic term of QV which counts fluctuations in the normal
directions to F'.

To ensure convergence of the four-dimensional path integral, we compute it
for a theory obtained by dimensional reduction from a theory in ten-dimensional
Euclidean signature. To technically simplify the description of the symmetries in
the previous section, we used ten-dimensional Minkowski signature. We can keep
Minkowski metric gy and Minkowski gamma-matrices ['y; and still get the same
partition function as in Euclidean signature by making Wick rotation of the &, field.
In other words, the path integral, computed with Minkowski metric g,;n but with
®y substituted by i®Y where ®F is real, is convergent and is equal to the Euclidean
path integral. We also integrate over imaginary contour for the auxilary fields K,
so that K; = iKF”, where KF is real.

For localization computation we will take the following functional
V= (¥,Q9). (2.3.2)
Then the bosonic part of the QV-term is a positive definite functional

SQ|bos = (Q\IJ7W) (233)
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Explicitly we have

1 1 .
Q\I/ = 5 MNFMNZ‘: + ECI)APMAVMZ‘: + KZVZ‘

1

2.3.4)
_ ) L | (
QU = 5FMNrMNg + 5cI>ArﬂAv“g — K'y,,

where T0 = -0 T'M =TM for M =1,...,9, and TMN = [IMPN] TMN — pIMPN],
Before proceeding to technical details of the computation, let us explicitly define

the conformal Killing spinor € which we will use, and find the vector field v¥ = eI'Me

generated by the corresponding 2. We take ¢ in the form ({2.2.14)), where & is any

spinor such that
1. The chirality operator ['*7® acts on &, by 1

2. The chirality operator I''?** acts on &, it by —1

The first condition means that e generates transformation inside the NV = 2 super-
conformal subgroup of N' = 4 superconformal group. The second condition ensures
that ¢ is a four-dimensional left chiral spinor on the North pole of S*. The third con-
dition is a conventional normalization. In our conventions for the gamma-matrices
(appendix we can take £, = (1,0,...,0)". Let the Wilson loop be located at the
equator and invariant under anti-self-dual rotations in the SO(4) group of rotations
around the North pole. To be concrete, let the Wilson loop be placed in the (z1, x2)
plane. Then we take ., = 2—17“F12£s. The conformal Killing spinor ¢ defined by such
s and €. has a constant unit norm over the whole four-sphere ((ce) = 1). At the
North pole the spinor ¢ is purely left, at the South pole the spinor ¢ is purely right.

Now we compute the components of the vector field v = eI'Me. If we assume
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ten-dimensional Minkowski signature, then we get

v; = sind
W0 =1

(2.3.5)
v? = cosf

v'=0 for i=5,...,8,

where 6 is the polar angle on S* such that the Wilson loop is placed at 6 = 5
the North pole is at & = 0, and the South pole is at § = 7. The four-dimensional
space-time component v; of vM has length sin @ and is directed along the orbits of
the U(1) € SU(2), € SO(4) group which rotates the (x,z3) plane. If we switch
to the ten-dimensional Euclidean signature, then v° = ¢ while the other componens
are the same as in Minkowski signature.

To simplify S%|,,s we use the Bianchi identity for Fyy, the gamma-matrices al-
gebra and integration by parts. The principal contribution to S%|,,, is the curvature
term

1 - -
SfF::Z@TNFMTPFQaﬂW”NFPQ (2.3.6)

The Fy;nK; cross-terms vanish because ,I°T™e = y,I'Me = (0. Then we have a

simple contribution from auxiliary K K-term
Skx = —K;K". (2.3.7)

In the flat space limit, » — oo the spinor ¢ is covariantly constant V,e = 0. There-
fore, in the flat space we simply have SQ\bDS = Srr+Skk. Up to the total derivatives
and V ,e-terms, using the Bianchi identity and the gamma-matrices algebra, we can
see that Spp is equivalent to the usual Yang-Mills action 3FNFyy. When the
space is curved and Ve # 0 we shall make more careful computation. Using

we get

1 1 s 1
SFF = iFMNFMN + ZﬁFNPMPPFQﬁg (FMNFPQ -+ FPNFQM + FQNFMP) . (238)
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To simplify the last term, first we break the indices into two groups: M, N, P, () =
(1,...,4,9,0) and M, N, P,@Q = (5,...,8) describing respectively the fields of the

678 = ¢ we can see that the nonvanishing terms

vector and hyper multiplet. Using
have only zero, two or four of indices in the hypermultiplet range (5,...,8). We
call the resulting terms as vector-vector, vector-hyper and hyper-hyper respectively.
First we consider vector-vector terms. For vector-vector terms we split indices to the
gauge field part (1,...,4) and to the scalar part (0,9). The nonvanishing gauge field
terms all have different values of M, N, P, ). Then their contribution is simplified

to

1 1
'24'€F1234€(F21F34+F31F42+F41F23) — —§€F1234€(F, *F) — —QCOSH(F, *F),

e~ =
W —

(2.3.9)

where xF' is the Hodge dual of F'. All terms in which one of the indices is 0 vanish
because I'MPQ is antisymmetric matrix, hence e[°T' @¢ = 0. Then the remaining
vector-vector terms have D, ®qF structure. Integrating by parts and using Bianchi

identity we get
1
— gDu(gFgF“””g)cbgF,,p + cyclic(uvp) = 4(ETT"e) Dy F,, . (2.3.10)

Doing similar algebra we get the contribution to the vector-hyper mixing terms
in S FF
— 8T TYe®;[Dg, ®;] — 62T Ted; D, P, (2.3.11)
We sum up all contributions to Srr and obtain
1

1
Spp = =FunFMN — = cosOF,, (xF)" + 4(eTT"e)®g F,,
2 2 (2.3.12)

—8eTTYe®; [Py, ®;] — 6T T D, D, P;.
Next we consider the cross-terms between ®4 and Fy,n in SQ|bos

Spe = —ETATMTNed 4 Foy — ETATMTNed 4 Foyr .
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We consider separately the cases when the index A is in the set {0,9} and in the set
{5,...,8}. The terms with index A = 0 all vanish because I'* = —T"° and because
elMMe = 0 for our choice of £ in OSp(2]|4). Next we take index A = 9. The only

nonvanishing terms are
—2§F9FMV€®9FuV - 2<§F9FZ]8(I)9[¢“ (I)J],

where pu,v = 1,...,4 and 4,5 = 5,...,8. Finally, we consider the case when the

index A is in the hypermultiplet range 5,...8. The result is

4ETHTYe®@; D, @; + 4T T e®;[Dg, ;).
Then

Spe = —2eTT"e®gF,, + 4eT'T7e®;D,®; + 6T T ®;[Dy, D,].
The &P term is easy
Spe = APAPPETAT P2 = 422040 ,.
Finally, we need the ® K cross-term. Only &, contributes
Sex = 2K;®g, T8 — 2K, By, T8 = —4K,;Dov;é.

The total result is

SQ|bos = Spr + Sre + See + Sorx + Skr =

1 1 3
5FMNFMN — 5 cos OF,, (xF)" 4 26T T" e®yF,, — 26TT 7 e®;[Dg, ®;]—

— 2T e®; D, ®; + 4(28) D4 D" — 4K P — K;K' (2.3.13)

The next step in the localization procedure is to find the critical points of the S%|pps.
Our strategy will be to represent S%|;,s as a sum of semipositive terms (full squares)

and find the field configurations which ensure vanishing all of them.
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First we combine the four-dimensional curvature terms together with the ®g-

mixing terms

1 1
—F"F,, — 5 Cos OF™ (xF),, + 26T T edoF,, + 4(28)Dyd? =

2
0 . o0
= cos® §(F‘;’ + w,, $9)* + sin’ §(F;I/ +wt,®9)%. (2.3.14)
where 1
w,, = COS—QQéLFQFMVgL
. 2 (2.3.15)
+ _ ~RT9 R
W, = i ge I"Tye™.
Next we make a full square with the terms
D ®; D" @' — 26T T e®,[®g, ®;] — 2:T T e®; D, ®; =
= (D, ®; — &1, T;e®")? — &' ®,(2)(ee).
Finally we absorb the mixing term K;®, as follows
—4(88) Dy Py — 4D K; (V') — KiK' = —(K; + 2®0(v46))>.
We use the following relations through out the computation
0 0 1
(ee) =1, (eleh) = cos? T (e%ef) = sin? 2 (88) = L
T (A U 77 7
W, W Y = W, W = 2
The final result is
SQ|505 = Sf}gect,bos + S}?ypenbos'
Here
Q 20, - 2 0 + + 2 2
Svect,bos = Cos §<F}U/ + U)/“/(I)g) + sin §(F;w + wqu)g) + (D,U«q)a>
1 (2.3.16)
+5 [, D) [0, ) + (KT + widg)?

where the indices a,b = 0,9 run over the scalars of the vector multiplet, the index
i = 5,6, 7 runs over the three auxiliary fields for the vector multiplet, and w; = 2(v;€)

has norm w;w’ = % .
T
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At this moment we also switched to the fields ®F, KF which are related to the
original fields in Minkowski signature as ®, = i®F K; = iKF. Equivalently, we
could make the computation in the Euclidean signature from the very beginning
keeping all fields real. In this case some imaginary coefficients would appear in the
supersymmetry transformations: we would write down ¢ in front of the fields K; and
would replace the I'° matrix by .

One could worry then that such supersymmetry transformations spoil the reality
conditions on the fields. However, our localization computation is not affected. The
Lagrangian and the theory is still invarint under such transformations if we under-
stand the action as an analytically continued functional to the space of complexified
fields. The path integral is understood as an integral of a holomorphic functional of
fields over a certain real half-dimensional “contour of integration” in the complexi-
fied space of fields. Strictly speaking, the bar in the formula (2.3.4) for QW literally
means complex conjugation only if we assume that we use that contour of integration
which we described before: all fields are real except ®; and K; which are imaginary.
For a general contour of integration in the path integral we just use the functional
V where QV is defined by the second line of . This means that the
functional V' holomorphically depends on all complexified fields. The bosonic part
of QV is positive definite after restriction to the correct contour of integration.

From any point of view, we should stress that . squares to a complexified gauge
transformation, whose scalar generator is i®f + cos 0®g + sin 0 A,, where F dF
and A, take value in the real Lie algebra of the gauge group, and where A, is the
component of the gauge field in the direction of the vector field v*. The theory is
similar to the Donaldson theory near the North pole where this generator becomes
i®Y + @y, and anti-Donaldson theory near the South pole where this generator
becomes iPE — @y,

The hypermultiplet contribution is

, 1 o 3
Spe = (Do®:)” + (Dn®; = fni®)° + 5[®:, ][, '] +

hyper,bos

0, + KFKF,
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where m = 1,...,5, ¢ =5,...,8, I = 1,...4 and f,,;; = l',,I";;e. We see that
with our choice of the “integration contour” in the space of complexified fields (all
fields are real except K;, K; and ®y which are pure imaginary), all terms in the
action SQ]bOS are semi-positive definite. Therefore, in the limit ¢ — oo we need to
care in the path integral only about the locus at which all squares vanish and small
fluctuations in the normal directions.

For the hypermultiplet action we get a simple “vanishing theorem”: because of

the quadratic term 4—32@"(1)2-, the functional S¢ vanishes iff all fields ®; vanish.

hyper,bos

Next consider zeroes of the term SUQect bos- The term (D, ®g)? ensures that the

field @9 must be covariantly constant. Away from the North and the South poles

and requiring that the curvature terms vanish, we get the equations
F,ul/ = _w,ul/(I)Q

where wy,, = w,, +w},. The curvature F),, satisfies Bianchi identity, hence we must
have

d[,\wu,,](I)g = 0. (2317)

It is easy to check that away from the North and the South poles, dpw,, does not
vanish, hence ®9 and F,, must vanish. The kinetic term (D,®§)? ensures that ®F
is covariantly constant. Since Fj,, = 0 we can assume that the gauge field vanish,
then ®f is a constant field over S*. We call this constant az and conclude, that up

to a gauge transformation, at smooth configurations we must have

(

;=0 i=5,...,9
SbQos =0= §® =ap constant over S* - (2.3.18)
KE = —W;ag

7

K]:O
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This is the key step in the localization procedure and in the proof of the Erickson-
Semenoff-Zarembo /Drukker-Gross conjecture about circular Wilson loop operators.
The infinite-dimensional path integral localizes to the finite dimensional locus ([2.3.18]),

and the integral over ap € g is the resulting matrix model.

Let us evaluate the Sy, action (2.2.35) at (2.3.18). The nonvanishing terms are

only
Syl 1 /d4 \/—(Q(CI)E)2+<KE)2) 1 1(54)3 2 Am?r? 2
al = /9| = ; = Vo —ap = —a
i 2912fM r22 0 2912/M r2 ® 912/M o
(2.3.19)

where we used w;w’ = & and the volume of the four-sphere $7°r*. We obtained

precisely the Drukker-Gross matrix model.
Let us check that the coefficient is correct. Recall, that the original action has
the following propagators in Feynman gauge on R*
Gyu 9
(Au(z)A,(2")) = ﬁﬁ

E(N\HE (o :912/M 1
(@ @) = o

Hence, the correlator functions which appear in the perturbative expansion of the

Wilson loop operator, have the structure

2 / 2
(Au(@)i Ay ()i + 0 (a)idf (o)) = -0 Cos;l((:m; f%,_ - =
where o denotes an angular coordinate on the loop. That was the original moti-
vation for Erickson-Semenoff-Zarembo conjecture [25]. We see that the first order
perturbation theory agrees with the matrix model action derived by localization.
The power of the localization computation is that it actually proves the relation
between the field theory and the matrix model in all orders in perturbation theory.
It is also capable of taking into account instanton effects, which we describe shortly

after computing the fluctuation determinant near the locus (2.3.18]) and confirming

the exact solution.
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We remark that for the N' = 2* theory, the same argument about zeroes of SQ|bOS
holds. To ensure that all terms are positive definite, we take the mass parameter M;;
in the Scherk-Schwarz reduction to be pure imaginary antisymmetric self-dual ma-
trix. Then the action of the mass deformed N' = 2* theory at configurations
reduces to the same matrix model action. However, as we will see shortly, when the
mass parameter M;; is non zero, the matrix model measure for the N' = 2* theory

is corrected by a non-trivial determinant.

2.4 Determinant factor

2.4.1 Gauge-fixing complex

Because of the infinite-dimensional gauge symmetry of the action we need to work
with the gauge-fixed theory. We use the Faddeev-Popov ghost fields and introduce
the following BRST like complex with the differential §:

1
0X = —|c, X| 5c:—a0—§[c,c] oc="> dag = Co by = ¢y

(SCZO = O 5b = [CL(), E] 560 = [CL()7 ao] 560 = [ao, bo]
(2.4.1)

Here X stands for all physical and auxiliary fields entering . All other fields
are the gauge-fixing fields. By [c, X] we denote a gauge transformation with a
parameter c of any field X. (For the gauge fields A,, we have 04, = —[c,V,]. The
gauge transformation of ® = vM Ay is §® = [v# D, +v3® 4, ] = ad(®)c+ L,c, where
ad(®)c is the pointwise adjoint action of ® on ¢ involving no differential operators).
The fields ¢ and ¢ are the usual Faddeev-Popov ghost and anti-ghost. The bosonic
field b is the standard Lagrange multiplier used in R¢-gauge, where the gauge fixing
is done by adding terms like (b, id*A + %b) and (¢, d*V 4c¢) to the action. The fields
c and ¢ actually have zero modes. To treat them systematically we add constant

fields ¢y, ¢o, ag, ag, by to the gauge-fixing complex. The field ag is interpreted as a
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ghost field for the ghost c¢. The fields ag,ag, by are bosonic, and the fields ¢y, ¢y
are fermionic. The operator § squares to the gauge transformation by the constant
bosonic field ag

6% = [ag, -]
The gauge invariant action and observable are J-closed

58y n[X] = 0,

therefore their correlation functions are not changed when we add the d-exact gauge-
fixing term.

When we combine the gauge-fixing terms with the physical action, we will see
that the convergence of the path integral requires the imaginary contour of inte-
gration for the constant field ay. This field ay later will be identified with the zero
mode of the physical field &y which is integrated over imaginary contour. To have
consistent notations we set ag = iaf’ and assume that af is integrated over the real
contour.

The d-exact term

ng = 5((6 Zd*A + élb + Zbo) (C, a/O - %ao)) =
1
= (b, zd*A+£1 b+ibo)— (¢, id* VAc+zco+£2 [ag, € ])+(—z’a§+§[c, c],dg—%ia§)+(c, ico)
(2.4.2)

properly fixes the gauge.
Assuming that all bosonic fields are real, the bosonic part of gauge-fixed action
has strictly positive definite quadratic term for all fields and ghosts at &;,& > 0.
By general arguments the partition function does not depend on the parameters
&1,& in the d-exact term. Let us fix £ = 0 and demonstrate explicitly indepen-
dece on & and equivalence with the standard gauge-fixing procedure. First we do

Gaussian integral integral over af and get

(iad + %[c, cl,iay — %iaOE) —|—i(d0 — é[c, c])?.
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Then we do Gaussian integral over ay and the above term goes away completely. The
determinant coming from the Gaussian integral over ag is inverse to the determinant
coming from the Gaussian integral over ag. Then we integrate the zero mode of b
against by. Then integral over non-zero modes of b gives Dirac delta-functional

inserted at the gauge-fixing hypersurface d*A = 0. The remaining terms are
(€,id"V ac) + (¢, co) + i(c, Co).

We can integrate out ¢y with the zero mode of ¢, and ¢y with the zero mode of c.
Then we are left with the integral over ¢ and ¢ with the zero modes projected out
and the gauge-fixing term

(5, id*VAC).

This reproduces the usual Faddeev-Popov determinant det’(d*V 4) which we need
to insert into the path integral for the partition function after restricting to the
gauge-fixing hypersurface d*A = 0. The symbol ' means that the determinant is
computed on the space without the zero modes.

We summarize the gauge fixing procedure by the formula

1
J=—" / DX e SymlX] —
vol(G, gy ) | |

- voll(g) /[DX]@‘SYM[X] /geg' [Dg) Opirac(d” A%) et (d"V ) =
= % / [DX DY D' D& )% mIX]=[sa /g d'ali(bd” A)=(@id"V ac))
= m /[DX Db Dby Dc Deg Dé Déy Dag Ddo]ef»SyM[X]ng.f.[X,ghosts],
(2.4.3)
where G’ = G/G is the coset of the group of gauge transformations by constant

gauge transformations. We shall note that in our conventions for the gauge theory

Lagrangian %(F, F), where F' = dA + AN A, we need to take the volume of

2
4 Y M

the group of gauge transformations with respect to the measure which is rescaled
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by a power of the coupling constant gy,s. In other words, we take vol(G, gyar) =
g#mG vol(G), where vol(G) is the volume of the gauge group computed with respect
to the Haar measure induced by the coupling constant independent Killing form ()

on the Lie algebra.

2.4.2 Supersymmetry complex

To compute the path integral, it is convenient to bring the supersymmetry transfor-
mations to a cohomological form by a change of variables. (This change of variables
involves no Jacobian, one can think about it as a change of notations.) We use the
fact that conformal Killing spinor ¢ in has constant unit norm at any point
on S*. Then the set of sixteen spinors consisting of {I"™e} for M = 1,...,9 and {v;}
fori =1,...,7 form an orthonormal basis for the space of Spin(9, 1) Majorana-Weyl

spinors reduced on S*. We expand U over this basis

9 7
U= UyTMe+y Tl
M=1 =1

In new notations (W,, T;), the supersymmetry transformations (2.2.28) take the

following form:
(

SAM = ‘IIM
sUy=—(Ly+R+M+Go)Au
) (2.4.4)
STi = Hz
\SHZ‘ =—(L,+R+M+Gs)Yy,
where

Now s denotes d. to distinguish it from the differential § of the Faddeev-Popov
complex. By L, we denote the Lie derivative in the direction of the vector field

v*, R denotes the R-symmetry transformation in SUF, M denotes the mass-term
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induced transformation by M;; in SUE, and G4 denotes the gauge transformation

by ®. The functions s;(Ays) with ¢ = 1,...,7 are the “equations” of the equivariant

theory
1 MN 1 A
SZ(AM) = §FMNV7LF €+ EQ)AVZ'FH v“&f for M,N = 1, . ,9 A= 5, e ,9.
(2.4.6)
Even shorter, we can write the supersymmetry complex like

sX =X’
(2.4.7)

sX'=[¢+e X],

and s¢ = 0, where we denoted ¢ = —®, [p, X] = —GoX and [, X]| = —(L, + R+
M)X.

All fields except ® are grouped in s-doublets (X, X’), where the fields
X and X' have opposite statistics. We can think about fields X as coordinates on
some infinite-dimensional supermanifold M, on which group G acts. The fields X’
can be interpreted as de Rham differentials X’ = dX, if we identify the operator s

with the differential in the Cartan model of G-equivariant cohomology on M
S = d + ¢aiva (248)

where ¢® are the coordinates on the Lie algebra g of the group G with respect to
some basis {e,}, and i, is the contraction with a vector field v* representing action
of e, on M. The differential s squares to the Lie derivative £,. In the present case,

the group G is a semi-direct product
g = ggauge X U(l) (249)

of the infinite-dimensional group of gauge transformations G,q,4. and the U(1) sub-
group of the OSp(2|4) symmetry group generated by the conformal Killing spinor e.

In the path integral for the partition function Z,s, we integrate s-
equivariantly closed form e over M and then over ¢. See [, [78,[82] for twisted N =
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4 SYM related theories which have similar cohomological structure, and [83] where

similar integration over the parameter of the equivariant cohomology is performed.

2.4.3 The combined ()-complex

So far we constructed separately the gauge-fixing complex with the differential §

and the supersymmetry complex with the differential s:
1

dag =0 66X = —[c, X] 50:—a0—§[c,c] 0c=1"b dag = Co 0bg = ¢o

0X'=—[e,X']  d¢p=—[ct+e,d] db=]a,& ¢ = [ao,a0] dco = [ao,bo]

sap=0 sX =X’ sc=¢ sc=0 sag =0 sbp =0
sX'=[p+e,X] sp=0 sb=[e,d] s¢=0 sco = 0.
(2.4.10)

Here we summarize the anticommutators for ¢ and s:
{6,03X Y = [ag, X {6, 0} (ghost) = [ag, ghost]
{5,5}X") = [p+e,XV] {s,s}(ghost) =0 (2.4.11)
{s,0}X" = —[6, X" {s,6}(ghost) = [¢, ghost].

In this formula X() stands for all physical and auxilary fields X and X', and ghost

stands for any field of the BRST gauge fixing complex.

Now we combine the operators ¢ and s and define a fermionic operator Q):

Q=s+0.
Then we get
OX = X' — [, X] Qc:qﬁ—ao—%[c,c]
QX'=[¢p+¢e X]—[c, X Qp=—[cd+¢
Q=10 Qo = & Qb = ¢ (2.4.12)
Qb = [ag + ¢, Qéy = [ao, ] Qco = [ao, bo)

QCLQ =0.



2.4. Determinant factor 50

This means that () satisfies on all fields
QQ' = [aO +&, ]

In other words, @) squares to a constant gauge transformation generated by ag
and the U(1) anti-self-dual Lorentz rotation around the North pole generated by e.

Now, since sSpnys = 0 and d.Sp,ys = 0 we have

QSphys = 0.

We would like to make sure that the gauge-fixing term (|2.4.2)) is also @)-closed so
that we could use the localization argument.

We will take the following -exact gauge-fixing term:

52, = (549 (@. i A+-Sbibo)— (e, o~ 2a0)) = 7 (@, s(id” A+ SEb4iy)) (6. 0) =
&1

zgf—@f¢+5hayw¢%—%%>@45)

The replacement of Sg' 7. by S;?f. does not change the partition function Z,,, (2.4.3)).

We can easily see this at & = 0. Integrating over ay we get

. E ~ 52 . B 1 52 1 i~ 2
(tay +5le,d = ¢, a0 — Fiay) = o= | =5 (5le.d —¢) +iao |
2&5 22
After we integrate over ag the above term goes away completely. The determinants
for the Gaussian integrals over ay and @y cancel. Then we are left with the following

gauge-fixing terms
i(b,d* A+ by) —i(¢,d"Ve+ o) +i(c, ¢) — (¢, d™Y),

where 1 is the fermionic one-form which is the superpartner of the gauge field A.
Then we note that the term (¢, d*i) does not change the fermionic determinant
arising from the integral over ¢, ¢, ¢y and ¢;. The reason is that all modes of ¢ are

coupled to ¢ by this quadratic action

i(¢,d"Ve+ o) +i(c, ¢),
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and that there are no other terms in the gauge-fixed action which contain modes of
c. In other words, if treat the term (¢,d*)) as a perturbation to the usual gauge
fixed action, all diagrams with it vanish because ¢ can be connected by a propagator
only to ¢, but there are no other terms which generate vertices with c.

In other words we did the following. The action of the theory gauge-fixed in the
standard way is d-closed, but not @-closed. We make the action @-closed
by adding such terms to it which do not change the path integral. The fact that
the partition function does not change can be also shown by making a change of
variables which has trivial Jacobian.

We conclude that the total gauge-fixed action

Sphys — Ophys + S;f (2414)

is Q-closed
QSphys = 0, (2.4.15)

and that the partition function defined by the path integral over all fields and
ghosts with the action gphys is equal to the standard partition function with the
usual gauge-fixing (2.4.3).

It is possible to write the operator () in the canonical form; namely () is the
equivariant differential in the Cartan model for the G = G x U (1) cohomology
generated by ag and € on the space of all other fields over which we integrate in the
path integral (2.4.3). The multiplets (¢,b), (do, o) and (b, co) are already in the
canonical form. To bring the transformations of (X, X’) and (¢, ¢) to the canonical

form we make a change of variables

X=X —|e,X
A (2.4.16)

gb:gb—ao—%[c,c].

Such change of variables has trivial Jacobian and does not change the path integral.

In terms of new fields, the ()-complex is canonical: all fields are grouped in doublets
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(Field, Field'), while @ acts as

Q(Field) = (Field

( )= ) (2.4.17)
Q(Field) = [ag + ¢, Field].

Moreover, Qay = Qe = 0.

Now recall Atiyah-Bott-Berline-Vergne localization formula for the integrals of

the equivariantly closed differential forms [21], 22]

/M o= /FCM % (2.4.18)

The numerator corresponds to the physical action evaluated at the critical locus of
the tQV term. The equivariant Euler class of the normal bundle in the denominator
is just a determinant, coming from the Gaussian integral using quadratic part of tQV
in the normal directions A/. We will argue that this determinant can be expressed
as a product of weights for the group action on N defined by . The basic
difference with the usual localization formula is that the manifold M in our
problem is not a usual manifold, but an (infinite-dimensional) supermanifold. Hence,
the equivariant Euler class must be understood in a super-formalism [84, 85]. In
our case it is just a super-determinant. If we split the normal bundle to the bosonic
and the fermionic subspaces, the resulting determinant is the product of weights on
the bosonic subspace divided by the product of weights on the fermionic subspace.

Before making gauge-fixing procedure we argued previously that the theory local-
izes to the zero modes of the field 3. The localization argument for the gauge-fixed
theory remains the same, except that now we can identify the zero mode of the field

®( with ag. Indeed, if we first integrate over ay using gauge fixing terms at & =0
- B 1 - B~
(iay + 5[0’ o —i¢”, ag),

we get the constraint that the zero mode of ¢ is equal to af’.
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2.4.4 Computation of the derminant by the index theory of

transversally elliptic operators
We write the linearization of the ()-complex in the form

QX = X QX =X;
(2.4.19)
QXy = RoXo QX|=RX,
where all bosonic and fermionic fields in the first line of (2.4.17)) are denoted as X
and X respectively, and their @)-differentials are denoted as X|, and X7j. So X, X]

are bosonic, and X, X; are fermionic fields.

The quadratic part of the functional V' is

t
X Doy D X

ve — [ 70 0 o (,) : (2.4.20)
Xy Dy Dn X

where Dqg, Do1, D1o, D11 are some differential operators. Then we have
QV(Q) = (Xbosa Kbostos) + (XfeTM7 Kfermeerm)a

where the kinetic operators Ky, K ferm are expressed in terms of Dyg, Do, Dig, D11

and Ry, R; in a certain way. The Gaussian integral gives

dethOS -
Zitoen = | ——2bos ) 2.4.21
1-loop (dethewm) ( )

NI

Let Ey and E; denote the vector bundles whose sections can be identified with fields
Xo, X1. Some linear algebra shows that this ratio of the determinants depends only

on the representation structure R on the kernel and cokernel spaces of the operator

Dy : T'(Ey) — I'(E7). Namely we have

det Kbos _ detker Do R
det Kferm detcoker Do R

(2.4.22)

The operator Do in our problem is not an ordinary elliptic operator, but a

transversally elliptic operator with respect to the U(1) rotation of S*.
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This means the following. Let Ey and E; be vector bundles over a manifold X
and D : ['(Ey) — ['(E;) be a differential operator. (In our problem X = S%.) Let a
compact Lie group G act on X such that its action preserves all structures. Let 7 :
T*X — X be the cotangent bundle of X. Then pullback 7*F; is a bundle over T* X
By definition, a symbol of the differential operator D : T'(Ey) — T'(E}) is a vector
bundle homomorphism (D) : 7*Ey — 7*E}, such that in local coordinates x;, the

symbol is defined by replacing all partial derivatives in the highest order component

o)
oz’

of T*X. The operator D is called elliptic if its symbol o(D) is invertible on 7% X \ 0,

of D by momenta, so that — 1ip;, and then taking p; to be coordinates on fibers
where 0 denotes the zero section. The kernel and cokernel of an elliptic operator
are finite dimensional vector spaces. Using the Atiyah-Singer index theory [86-91]
one can find a formal difference of representations in which G acts on these spaces,
as we will see in a moment. However, we will see as well that the operator Dy is
not elliptic, so the ordinary Atiyah-Singer index theory does not apply. There is a
generalization of Atiyah-Singer index theory for operators which are elliptic only in
directions transverse to the G-orbits [71} [72]. Such operators are called transversally
elliptic. In other words, for any point x € X we consider the subspace T: X, of the
T*X,, which consists of elements which are orthogonal to the G-orbit through z.

We have

T:X, ={peT"X, such that p-v(g) =0 Vge Lie(G)},

where v(G) denotes a vector field on X generated by an element g of the Lie algebra
of G. Then the family of the vector spaces T%X over X is defined as the union of
T%X, for all z € X. The notion of a family of vector spaces over some base is similar
to the notion of a vector bundle, except that dimension of fibers can jump. The
operator D is called transversally elliptic if its symbol (D) is invertible on T:X \ 0.
Computing the symbol of D, we will see explicitly in that Dy is not an

elliptic operator, but a transversally elliptic one. The kernel and the cokernel of such
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an operator are not generally finite dimensional vector spaces, but if we decompose
them into irreducible representations, then each irreducible representation appears
with a finite multiplicity [71, [72]. So we have

ker D10 @am(O)R
(2.4.23)

coker Do = @amS)Ra,
where a runs over irreducible representations of G, and m,, denotes the multiplicity

of the irreducible representation R,. Then

det Kbos
= | |(det R,) 2.4.24
det Kferm H ¢ ( )

Thus we need to know only the difference of multiplicities m® and mY of

irreducible representations into which the kernel and cokernel of Dy can be de-
composed. To find this difference we use Atiyah-Singer index theory [71} [72] for
transversally elliptic operators, which generalizes the usual theory [86H91]. In our
problem, R, is an irreducible representation of the group G=U (1) x G. We also
denote this U(1) group by H, so that G = H x G. The relevant representations of
G are those in which the physical fields transform (we will consider only the adjoint
representation), but all representations of H = U(1) arise. Let ¢ € C, |¢| = 1 denote
an element of U(1). Irreducible representations of U(1) are labeled by integers n,
so that the character of representation n is ¢". The U(1)-equivariant index of Dy
is defined as
ind(D1o) = tTker 1o £2(q) — treoker D1y 12(q) = Z(mff) —m{)q".

Hence, if we compute the equivariant index of D as a series in ¢, we will know
m'Y — m{ and will be able to evaluate .

To compute the index of D, first we need to describe the bundles Ey, F/; and the
symbol of the operator Dy : I'(Ey) — I'(E1). The collective notation Xy, X{, X1, X
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corresponds to the original fields in the following way

Xo = (An, ao,bo) X1 = (Ts,¢,0)
3 o (2.4.25)
Xi = (\IJMJE()?cO) X{ = (Hz7¢7b)
The space of all fields decomposes in a way compatible with @-action (2.4.19)
into direct sum of two subspaces: the fields of vector multiplet and hypermultiplet.

The vector subspace also includes fields of the gauge fixing complex. The vector

subspace consists of

X = (®g, Apr, G0, bg) for M =1,...,4 X" = (Yy,c,¢) fori=5,...,7
(2.4.26)

and their ()-superpartners. The hyper subspace consists of
X[ = (Ay) for M =5,...,8 X" =(T,) fori=1,...,4  (2.4.27)

and their Q-superpartners. The operator Diq does not mix the vector and hyper
subspaces. So the vector bundles split as Ey = E2° @ E}P" and B, = EV @
EMYPTas well as the operator Dyg = DV + DMWP" \where DVt . T(Eyect) —
D(BY) and DIgP™ : T(ERP) — T(E),

First we consider the index of D}. The constant fields (ag,bg) are in the
kernel of Dy and have zero U(1) weights, hence their contribution to the index
is 2. The remaining fields, denoted by Xg¢!' are identified with sections of bundle
(T"® &) ®@ad £, where T* is the cotangent bundle, and £ is the rank one trivial
bundles over S*. The fields Xv** are identified with sections of (£ @ £?) ® ad F,
where £2 is the rank three trivial bundle of auxiliary scalar fields, and £2 is the rank
two trivial bundle of the gauge fixing fields ¢ and ¢. Because of the difference due

to (ap, bp) contribution we have
ind(D}5) = ind’ (DY) + 2. (2.4.28)
Now we compute the symbol of the operator Di. The relevant terms are

V@ — (¢, d"A) + (¢, V LyA,) + (T4, (xFy;) — Foicos 0 4+ V;®gsinf),  (2.4.29)
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where index 7 runs over vielbein elements on S*.

We chose a vielbein in such a way that ¢ = 1 is the direction of the U(1) vector
field, and ¢ = 2, 3,4 are the remaining orthogonal directions. The term (¢, V,L,A,)
comes from the term (¢, £,A,) and the relation v, = 1% — V,c. Then the symbol
o (DY) : m* Eyet — n*EYe, where 7 denotes the projection of the cotangent bundle

m: 1" X — X, is represented by the following matrix

c cop® so P2 —sepap1 —sepsp1 —sepapr | [ Po
¢ 0 P D2 D3 yZ! Ay
T | < | sop2 —cop2  com — P4 Ps3 A, (2.4.30)
Ty SoPs  —CoP3s  Pa Cop1 —P2 Az
T3 SoPa —CoPs  —P3 P2 Cop1 Ay

Here p; for i = 1,...,4 denotes coordinates on fibers of T*X, 7 = (pa2, p3, D4)
denotes coordinate on fibers of 73X, and ¢y = cos#, sy = sinf. In other words, p’
is a momentum orthogonal to the direction of the U(1) vector field on S*. After a

change of coordinates on fibers of bundles Fy — T*X and F; — T*X

c — C+ SgpoC

Dy — cpDg + spA; (2.4.31)
Ar — —s9Pg + co Ay,
the matrix of the symbol of DY5 takes the form
P 0 0 0 0
SeP1 Cp1 P2 D3 P4
0 —p2 cop2 —ps D3 (2.4.32)
0 —ps ps Cop2 —D2
0 —ps —p3 D2 Copa

The term sgp; in the first column of the second line can be also removed by sub-

tracting the first line multiplied by sgp; /p?. Then the notrivial part of the symbol
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is represented by the following 4 x 4 matrix

Cop1 D2 D3 D4
—_— C —

o — P2 CoP2 Ps D3 ‘ (2‘4‘33)
—P3 P3  Cop2 —DP2

—P4 —P3 P2 Copa.

The determinant of this matrix is (cos?@p? + p2)2. First of all, we see that the
symbol is not elliptic at the equator of S%, since if cos § = 0 we can take (p; # 0, P =
0) and the determinant will vanish. But the symbol is transversally elliptic with
respect to the H = U(1) group, since its determinant is always non-zero whenever
P # 0. Indeed, to check if the symbol is transversally elliptic, we need to consider
only non-zero momenta orthogonal to the U(1) orbits. In our notations that means
p1=0, 5) # 0.

In a neighborhood of the North pole (¢ = 1) the symbol is equivalent to the
elliptic symbol of the standard anti-self-dual complex (d,d™)

R LN o Eol (2.4.34)

while in a neighborhood of the South pole (¢y = —1), the symbol is equivalent to
the elliptic symbol of the standard self-dual complex (d, d™)

00 4t 9% g (2.4.35)

Intuitively one can see that from the structure of the QV-action ([2.3.14)).

In the elliptic case, one could use Atiyah-Bott formula [90, O1] to compute the
index as a sum of local contributions from H-fixed points on X. In the transversally
elliptic case the situation is more complicated. By definition, the index is a sum of

characters of irreducible representations. We have

ind(D) = i anq”, (2.4.36)

n=—oo
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where a,, = m — mtY is a difference of multiplicities in which irreducible repre-

sentation n appears in the kernel and cokernel of D. In the elliptic case, only a
finite number of a,, does not vanish, so that the index is a finite polynomial in g and
q~'. This also means that the index is a regular function on the group H = U(1).
In the transversally elliptic case, the series can be infinite, so that index is
generally not a regular function. However, Atiyah and Singer showed [71], [72] that
in the tranversally elliptic case, all coefficients a,, are finite, and that the index is
well defined as a distribution (a generalized function) on the group.

For example, consider the zero operator acting on functions on a circle X = S*,
so D : C*°(S') — 0. This is a transversally elliptic operator with respect to the
canonical U(1) action on S'. The kernel of the zero operator is the space of all
functions on S!, the cokernel is zero. Then m = 1, m< =0 for all n, so the index
is > 07 ¢", which is the Dirac delta-function supported at ¢ = 1.

The equivariant index theory can be generalized to the transversally elliptic
case [71, 72, 92, ©3]. The idea is that we can cut a H-manifold X into small
neighborhoods of H-fixed points and the remaining subspace Y C X on which H
acts freely. By definition, at each H-fixed point the symbol of transversally elliptic
operator is actually elliptic, so the ordinary equivariant index theory applies. Since
H acts freely on Y, we can consider the quotient Y/H. A H-transversally elliptic
operator on Y gives us an elliptic operator on Y/H. Then we can combine the
representation theory of G and the usual index theory on the quotient Y/H to find
the index of transversally elliptic operator on Y [71].

Let R(H) be the space of regular functions on H (the space of finite polynomials
in ¢ and ¢7'). Let D'(H) denote the space of distributions (generalized functions)
on H (not necessarily finite series in ¢ and ¢!). The space of distributions D'(H)
is a module over the space of regular functions R(H), since there is a well defined
term by term multiplication of series in ¢ and ¢~! by finite polynomials in ¢ and

¢~ '. Some singular generalized functions such as the Dirac delta-function >~ ¢"
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can be annihilated by non-zero regular functions. For example, Dirac delta-function
Yo . q" € D'(H) vanishes after multiplication to (1 —g). Such elements of D'(H)
which can be annihilated by non-zero regular functions in R(H) are called torsion
elements.

To find the index of transversally elliptic operator up to a distribution supported
at ¢ = 1 (a torsion element of D'(H)), we can use the usual Atiyah-Bott formula [89-
91] (see appendix (A.4])). This formula gives a contribution to the index from each
fixed point as a rational function of ¢. This function is generally singular at ¢ = 1.

For example, if H = U(1) acts on C as z — ¢z, then the Atiyah-Bott formula for
the index of the J-operator at the fixed point z = 0 gives

o 1
ind(9)]p = =

(2.4.37)

To get a distribution associated with this rational function, we need to expand
it in series in ¢ and ¢~!. Of course, the result is not unique, but different expansions
differ only by a distribtuion supported at ¢ = 1. For H = U(1), there are two basic
ways, or regularizations, which fix the singular part [71]. The regularization [f(q)]+
is defined by taking expansion at ¢ = 0. This gives us a series infinite in positive
powers of q. The regularization [f(q)]_ is defined by taking expansion at ¢ = oc.
This gives us a series infinite in negative powers of g. These two regularizations differ
by a distribution supported at ¢ = 1. For example, for the -operator we get as the
difference the Dirac delta-function [(1 —¢ 1), = [(1—¢ ) o = =212 g™

Let X = C" be a H = U(1) module with positive weights my,...,m,, so that
U(1) acts as z; — ¢™iz;, and let Y = {0} be the H-fixed point set. Let v be the
vector field generated by the U(1) action on X. Let o(D) be an elliptic symbol
defined on T*X |y, i.e. defined on the fiber of the cotangent bundle to X at the
origin. Atiyah showed [71] that we can use the vector field v in two different ways,
called []; and []_, to construct a transversally elliptic symbol & = [o]+ on the

whole space Tj; X such that ¢ is an isomorphism outside of the origin Y. (If (x,p)
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are coordinates on T* X, then, loosely speaking, we take &(x,p) = o(0,p £ v). See
appendix for more precise details). Then the index of the transversally elliptic
symbol & is well defined as a distribution on H. Moreover, if ind(o) is a rational
function of ¢ associated at the fixed point Y to the elliptic symbol o by Atiyah-Bott
formula, then

ind([o]+) = [ind(0)]+. (2.4.38)

We apply this procedure to our problem. Namely, we use the vector field gener-
ated by the H = U(1)-action on X = 5% to trivialize the symbol o (DY) everywhere
on T} X except at the North and the South pole. Then the index is equal to the sum
of contributions from the fixed points, where each contribution is expanded in posi-
tive or negative powers of ¢ according to the . More concretely, we trivialize
the transversally elliptic symbol o = o (D}5) everywhere outside the North and the
South poles on T}, X by replacing cgp; by cgp1 +v on the diagonal in (2.4.33)), where
v = sinf. In other words, we deform the operator by adding the Lie derivative in

the direction of the vector field v. The resulting symbol

Cop1 + S D2 D3 D4
- Cop1 + S -
5 — D2 oP1 0 P4 D3 . (2‘4‘39)
—Dp3 Da CoP1 + So —P2
—DP4 —D3 D2 CoP1 + So

has determinant ( 2+ (cop1+59)?)? which is non-zero everywhere outside the North
and the South poles at 77, X. (To check this, take p; = 0 and sy > 0.) The index
of & is equal to the index of o, since ¢ is a continous deformation of ¢. On the
other hand, since & is an isomorphism outside of the North and the South pole, to
get the index of ¢ we sum up contributions from the North and the South pole. At
the North pole cosf = 1. Therefore, in a small neighborhood of the North pole, the
transversally elliptic symbol ¢ coincides with the symbol associated to the elliptic

symbol Gy—g by the [, regularization. At the South pole cos@ = —1. Therefore, in
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a small neighborhood of the South pole, the transversally elliptic symbol & coincides
with the symbol associated to the elliptic symbol Gy—, by the [-]_ regularization.

Finally we obtain
ind’ (DY) = [ind(d, d”)[p=o] , + [ind(d,d")]o=x] - (2.4.40)

One could probably also derive this result following the procedure in [94], where
the index theorem for the Dirac operator was obtained using the deformation I'*D,, —
I'*D, + tT'*v,,.

Let z1, 2o be complex coordinates in a small neighboorhod of the South pole,
such that the U(1) action is z; — qz1,29 — qzo. With respect to this action the
complexified self-dual complex is isomorphic to the Dolbeault d-complex twisted by
the bundle O & AQTl*yo. Using the fact that the index of d operator is (1 — ¢~')72,

we get

et 0%) = |- 2]+ [ (244D

where [f(q)]+ respectively means to take expansion of f(q) in positive or negative
powers of ¢q. In our conventions Ej corresponds to the middle term of the standard
(anti)-self dual complex , therefore we get an extra minus sign.

Finally,

ind(D}5Y) = 2 + ind'(DJ5") =
=21+ +2¢+332+...)—(1+¢HA+2¢  +3¢7%2+...) =
=— ) [2n]¢". (2.4.42)
Note that in the computation of the index for the vector multiplet, the chirality
of the complex coincides with the chirality of the U(1) rotation near each of the
fixed points.
Now we proceed to the hypermultiplet contribution to the index. The com-

putation is similar to the vector multiplet. The transversally elliptic operator
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DIPer - T(EMPy — T(EMP") can be trivialized everywhere over T5X except fixed
points, where it is isomorphic to the self-dual complex at the North pole, or anti-self-
dual complex at the South pole. For the hypermultiplet the chirality of the complex
is opposite to the chirality of the U(1) rotation near each of the fixed points. Then,
using that the index of the twisted Dolbeault operator is (14+qq~1)/((1—¢q)(1—q¢71)),

we get
2 2
ind, (D"rery = | — ] + {— , 2.4.43
o(Pi™) (1—q)(1—g¢ ], (1—q)(1—q¢ )] (24.43)
which results in
indy(DP") =+ > [2nlg™". (2.4.44)

So far we considered the massless hypermultiplet. In this case its contribution to
the index exactly cancels the vector multiplet. Hence, the determinant factor in the
N = 4 theory is trivial. This finishes the proof that the Erickson-Semenoff-Zarembo
matrix model is exact in all orders of perturbation theory.

In the N/ = 2* case the situation is more interesting. Now the hypermultiplet
is massive. In the transformations the action of R is contributed by the
SU(2)% generator M;;. We normalize it as M;;M*% = 4m?. The hypermultiplet
fields transform in the spin-3 representation of SU(2)%. Therefore, in the massive

case the index is multiplied by the spin—% character relative to the massless case:

2(e™+¢e7"™). Hence all U(1)-eigenspaces split into half-dimensional subspaces with

eigenvalues shifted by +m.

Finally, all fields transform in the adjoint representation of gauge group. Making
a constant gauge transformation we can assume that the generator a is in the Cartan
subalgebra of the Lie algebra g of the gauge group. Then non-zero eigenvalues of ag
in the adjoint representation are {« - ag}, where a runs over all roots of g. Hence,
combining all contributions to the index, we obtain for the N = 2* theory

det Kpos B H ﬁ (a-ag+ne+m)(a-ag+ne—m)
det Kferm N=2% B (O./ s ag + n6)2

roots o« n=—00

n|




2.4. Determinant factor 64

Here we denote € = r~!. The term ne comes from a weight n representation of the
U(1), the term «a-ay is an eigenvalue of ag acting on the eigensubspace of the adjoint
representation corresponding to root a.

We argued before that to ensure convergence of the path integral the mass pa-
rameter and the scalar field ®; should be taken imaginary if we work with ten-
dimensional Minkowski signature. The parameter ag is also imaginary since it is

identified with the zero mode of ®y. Let us denote m = img, ag = tag = zao Then,

recalling (2.4.21)) we get

w3

((a-ag)® +e°n?)
zN
1- loop (iag) roga}_[l [ (- ag +mp)?+e2n2)((a - ag — mp)? + £2n2)
(2.4.45)
This product requires some regularization which we explain in a moment.
Recall the product formula for the Barnes G-function (see e.g. [65])
0 n Z2
G(1 + z) = (2m)2e (@022 (1 + 5) s (2.4.46)
n

n=1
where v is the Euler constant. Then we introduce a function H(z) = G(1+2)G(1—=)

and obtain

oo 2\ N ©© 22
H(z) = o~ (147)22 H (1 _ Z_> en . (2.4.47)

FN=2" — m_?E 1 _ - l
1-loop (ZG’E) = exp 52 ( + 7) n X
n=1

X H H(ia - ap/e) . (2.4.48)

(ia-ag +img)/e) H ((ia - ag — img) /)]

roots o
The first factor exp(...) is divergent, but it does not depend on ag. Therefore it
cancels when we compute expectation value of the operators which localize to func-
tions of ag, such as the circular supersymmetric Wilson loop operator. Therefore
we can remove this factor from the partition function. The resulting product of the

G-functions is a well defined analytic function of ag.
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Our result is consistent with the renormalization properties of the gauge theory.
To check that the G-function comes out right, we need asymptotic expansion of the
G-function at large z
1 21 Bog+2
log G(1 = — —log A+ = log?2 CHNNE I F IV
0g G(1+ 2) 15— log A+ 7 log 7r—|—(2 12) 0g 2 Z+Z4kk+1z2k’
(2.4.49)

where A is a constant and B,, are Bernoulli numbers. Then

Z?E + ...
(2.4.50)

: : 1 21 3
(logG(1+izg) +1logG(1 —izg)) = T3 —log A+ (—? — E) log zp + 1

1
2

If we take a limit of very large mass of the hypermultiplet, we expect to get
the minimal A/ = 2 theory at the energy scales much lower then the mass of the

hypermultiplet. At large m, we expand the denominator in (2.4.48]), corresponding
to the hypermultiplet contribution to Zi.50p, and get

m a-ap)? 1
Zfﬁ’fj; = const(mpg) + (const + log TE Z (5—2E)> + O(ﬁ> (2.4.51)

«
The important dependence on ag can be combined with the classical Gaussian action

in the matrix model

47?2 47*r? C m
3 (CLE,CLE) — (2— — —;log —E) (CLE,(IE), (2452)
9y M 9y M € €

where C5 denotes the proportionality constant of the second Casimir traq 7,7, =

C50,0,. We can write that as

1 1 C
-~ g E (2.4.53)
Gyv  Gym AT €

where g%, has a simple meaning of the renormalized coupling constant. In other
words, the bare microscopical constant ¢Z,, is defined at the UV scale mg and
higher (in that region it does not run because of restored N' = 4 supersymmetry).

At scales less than mp, the coupling constant runs by beta-function of pure N' = 2
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theory. Recall that the one-loop beta function for a gauge theory with N; Dirac

fermions and Ny complex scalars in adjoint representation is

dg(p) . . Chg® (11 4 1
Slogn = "9 = ~aap (3 — 3N - ch) . (2.4.54)

Taking Ny = Ny = 1 for a pure N = 2 theory we get precisely the relation (2.4.53)),

which says that g%, is the running coupling constant at the IR scale ¢ = r~!, which
is the lowest scale for the theory on S* of radius r. This is also the scale of the
Wilson loop operator, since it is placed on the equator.

We can check that the resulting integral over ap is always convergent as long as
the bare coupling constant g3, is positive, in other words as long as the original ac-
tion is positive definite. First of all, the Barnes function G(1+ z) does not have poles
or zeroes on the imaginary contour Rez = 0 over which we integrate. To see that
the integral also behaves nicely at infinity we use the asymptotic expansion (2.4.50)).

In the pure N' = 2 case the leading term in the exponent comes from the numer-
ator of Zj,0p and is equal to —%z% log zg. This is a negative function which grows
in absolute value faster than any other terms including the renormalized quadratic
term (2.4.52) even if g&,, formally becomes negative.

In the N' = 2* case we need to take asymptotic expansion at large zp of both
the numerator and denominator of to check convergence at infinity. The
leading terms (o -ag)?log(a - ag) cancel, and the next order term is proportional to

m%log(a-ag). This does not spoil the convergence insured by the Gaussian classical

o 4722
2
9y m

factor exp( (ap,ap)).

To summarize, in the pure /' = 2 theory we need to insert the factor

zos = [[ Hlia-ag/e), (2.4.55)

roots «

under the integral in the matrix model and to substitute gy, by the renormalized
coupling constant gyj; in the Gaussian classical action.
When we set m = 0 we get the N’ = 4 theory. The numerator coming from the

vector multiplet exactly cancels the denominator coming from the hypermultiplet
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in the formula (2.4.48) and we get

ZNE =1 (2.4.56)

1-loop =

We shall note that most of the above computations are generalized easily for the
N = 2 theory with a massless hypermultiplet taken in an arbitrary representation.
Let us denote this represenation by W. Analogously to the case of the adjoint
representation, one can get a formula

HaEWeights(Ad) H(ZQ ) aE/€>

ZNZQ,W
Hw€weights(W) H(lw ) CLE/&‘)

1—loop (ZG’E) =

(2.4.57)

Strictly speaking, this formula is valid in the situations when the infinite product
of weights for the vector multiplet and hypermultiplet is proportional to the prod-
uct of Barnes G-functions with the same divergent factor. That happens for such
representations W when > (a-a)® = > (w-a)? for any a € g. This is actually
the condition of vanishing 3-function for the N' = 2 theory with a hypermultiplet in
representation W. Therefore we claim that the formula literally holds for all
N = 2 superconformal theories. In a general N’ = 2 case, the one-loop determinant
requires regularization similarly to what we did for the pure N' = 2 theory.

It would be interesting to combine the factor Z;_;,, with the partition function

of instanton corrections |stt]2 in an arbitrary A/ = 2 superconformal case, integrate

over ap and check predictions of the S-duality for these theories (see e.g.[73], 95]).

2.4.5 Example

Before turning to the instanton corrections, let us give a simplest example of a non-
trival prediction of the formula (2.4.57), which perhaps can be checked using the
traditional methods of the perturbation theory.

Take the NV = 2 theory with with the SU(2) gauge group and 4 hypermultiplets
in the fundamental representation. We choose coordinate a on the Cartan subal-

gebra of the real Lie algebra of the gauge group SU(2), such that an element a
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is represented by an anti-hermitian matrix diag(ia, —ia). Let the invariant bilinear

form on the Lie algebra be minus the trace in the fundamental representation, and let

ig 1M2 Jd'z/g(Fu, F*).

The weights w in the spin-j representation run from —275 to 2j. In the adjoint repre-

the kinetic term of the Yang-Mills action be normalized as

sentaton (j = 1) we have {a-a} = {—2a,0,2a}. In the fundamental representation
(j = %) we have {w - a} = {a, —a}. We also have (a,a) = 2a®. The matrix model

for the expectation value of the Wilson loop in the spin-j representation is

=—J

where Z is a constant independent of the inserted Wilson loop operator. The extra
factor (2a)? is the usual Vandermonde determinant appearing when we switch to
the integral over the Cartan subalgebra from the integral over the whole Lie algebra.
At the weak coupling gy — 0 we can evaluate this integral as a series in gy ;. For
the Barnes G-function we use Taylor series expansion at small z

n

logG(1+2) = %(log(Qﬂ) —1z—(1+ 7)%2 + Z(—l)"‘lf(n - 1)%

After some algebra one gets the following perturbative result for the expectation

2mna

value of e in the matrix model (we write here g = gy )

) 7
2mna\ __ 6 6 2 6 8 2'4'
(e7™) ST Y ntg* g Y +24(47T)2t2n g +0(g°), (2.4.58)

where ¢, is the coefficient coming from the expansion of the Barnes G-function. It

is expressed in terms of Riemann zeta-function

ty = —12¢(3).

To get this result we expanded the determinant factor in powers of a:

H(2ia)H (—2ia) 92k—2 _ 1)ka2 = a2
log ((H(z'a)H(—za ) Z 1 Zt

k=
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. 12 2
Then for a Gaussian measure f dae 22" with ¢% = %% we have

< 2 2%\ _qa (9 ’ O\"\ 1 252
a” exp (Z tra )eq >gauss = (8_q> exp (Z t (6_q> >e2q )

The perturbative result for the N = 4 SU(2) theory is given by the same formula
but with ¢, = 0:

()t = (1+ 0% expl50%) = 1+ 5(00)° + 2(00)* + 1:(00)° + O((00)").

Taking ¢ = 27n and o = £ we get the result for the N' = 4 theory
with ¢, = 0. For a superconformal N/ = 2 theory the Gaussian matrix model action
is corrected by the terms t;a?*. The first correction is quartic t,a?, and at the lowest
order it gives the result for the SU(2) theory with 4 hypermultiplets in the
fundamental representation.

The first difference for (Wx(C')) between the N' = 2 SU(2) gauge theory with
4 fundamental hypermultiplets and the N’ = 4 SU(2) gauge theory appears at the
order ¢¥-,,. This is the order of the two-loop level Feynman diagram computations
which have been done in the gauge theory for the N' = 4 case [69, [70].

In the matrix model it is very easy to get the higher terms in the expansion over
gyn- On the other hand, the complexity of the Feynman diagram computations
done directly in the gauge theory grows enormously with the number of loops.

Now we will argue that we can improve the matrix model by taking into account

all instanton corrections of the theory, so that the result becomes non-perturbatively

exact.

2.5 Instanton corrections

When we argued by ([2.3.17) that the theory localizes to the trivial gauge field
configurations, we used the fact that djyw,,) does not vanish everywhere except at

the North and the South poles and we assumed smooth gauge fields. Dropping the
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smoothness condition, we can only say that the gauge field strength must vanish
everywhere away from the North and South poles. If we allow field configurations
like Dirac-delta function, then the gauge field strength can be supported at the poles
and still be consistent with vanishing tQV-term. From we see that F'" might

26

be non zero at the North pole, where sin” g vanish, while /'~ might be non zero at

2 g vanish. Thus, if we allow non-smooth gauge fields in the

the South pole, where cos
path integral, we should count configurations with point anti-instantons (F~ = 0)
localized at the North pole, and point instantons (F* = 0) localized at the South
pole. The Q-complex on S in our problem in a neighborhood of the South /the North
pole coincides with the @Q-complex of the topological (F™ = 0)/anti-topological
(F~ = 0) gauge theory on R* in the Q-background studied by Nekrasov [60]. There
the moduli space of solutions to F* = 0 modulo gauge transformations was taken
equivariantly under the U(1)? action on R* ~ C? by 2, — €121, 290 — €225, and
gauge transformations at infinity with generator a € g. Making the correspondence
between the theory on S* in a local neighborhood of the North pole and the theory
on R* we should take €; = &5 = r~!, since for the problem on S*, the chirality
of the equations at the North pole coincides with the chirality of the generator of
the Lorentz rotations d,v,). The same applies to the South pole: the chirality of
the equations is reversed as well as the chirality of the generator of the Lorentz
rotations.

In this section we consider only the case of the U(N) gauge group. We use the
following conventions. The solutions of the equations F'* = 0 are called instantons.

The solutions of the equations F'~ = 0 are called anti-instantons.
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We define the instanton charge as the second Chern clasq

1
k= Cy = 87‘(‘2 F A F
and modify the action by the #-term
16
SYM_NS’YM‘}‘ﬁ F AF.

At F* = 0 we have \/§FWF’“’d4x =2F ANxF' = —2F AN F. Then the Yang-Mills
action of instanon of charge k is

42
/\/_d4xF o 829 FAF = (f —w)k.

Sy (k)
9y m

YM

Its contribution to the partition function is proportional to
exp(—Syn(k)) = exp (2mitk) = ¢*,

where we introduced the complexified coupling constant

271 0

gy 27

T =

and the expansion parameter

q = exp(2miT).

(The expansion parameter ¢ in this section should not be confused with the formal
generator of the U(1) group used to compute the index of the transversally elliptic
operator in the previous section).

Near the South pole the theory on S* looks like topological theory with the
equations F'* = 0, so that only point instantons contribute. Near the North pole

the situation is opposite: the equations are replaced by F'~ = 0, therefore we need

6 For U(N) bundles we have the total Chern class ¢ = det(1+:£) = [[(1+z;) =co+c1 +...,
where F' is the curvature which takes value in the Lie algebra of the gauge group, x; are the Chern

roots, and ¢, is polynomial of degree kin x;. We have C2 =i Ti x] =1 @)Lt If
¢1 = Y x; vanishes, we get co = —1 [trif = - ZF 87r2 Jtr FAF = *sﬂz (F AF), where the trace
is taken in the fundamental representatlon The parentheses (a,b) = —trab denote the positive

definite bilinear form on the Lie algebra which is assumed in the most of the formulas.
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to count anti-instantons. The generating function of anti-instantons is the same as
the generating function of instantons with replacement of the expansion parameter
q by its complex conjugate q.

For the U(NN) gauge group the explicit formula for the equivariant instanton
partition function on R* is [60] 61, 96-99]
g

ZN=2(e1,69,a) = Z ~ = — (2.5.1)
- [1o.5-1 0 5(E1, 82, @)
where we sum over an ordered set of N Young diagrams {Y,} witha=1... N. By
|}_/>] we denote the total size of all diagrams in a set |}_/>] = > |Ya|- The total size is
equal to the instanton number. The factor nzﬂ(sl, g9, @) denotes the equivariant
Euler class of the tangent space to the instanton moduli space at the fixed point

labeled by Y. It is given by

niﬁ(al,gz, ) = H (—hy,(s)er + (vy, (s) + 1)ea + ag — aq) ¥
s€EYy

< [T ((hy, () + Vg1 — vy, (H)ez + a5 — an). (2.5.2)

(We assume that an element a in the Cartan subalgebra of u(/N) is represented by
a diagonal matrix (iai,...,iay).) Here s and ¢ run over squares of Young diagrams
Y, and Y3. Let Y is a Young diagram v; > vy--- > Vuls where v; is the length of
the i-th column, v} is the length of the j-th row. If a square s = (3, j) is located at
the i-th column and the j-th row then vy (s) = v;(Y) — j and hy(s) = vj(Y) —i.
In other words, vy (s) and hy(s) is respectively the vertical and horizontal distance

from the square s to the edge of the diagram Y. We can rewrite the product in the

denominator of (2.5.1)) as
N N
[ rlsteren, @)= [ ] Eos(s)(e1 + 22 — Eap(s)), (2.5.3)

o,f=1 o,B=15€Yy
where

Eaﬂ(S) = (—hyﬁ(S)ﬁl + (Uya(S) + 1)82 + ag — CLQ). (254)
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We will give a few simplest examples of evaluation of this formula. First consider
U(1) case. Then we sum over all Young diagrams of one color. At one instanton
level k = 1, there is only one diagram Y = (1). Then FEj; = &, so that

ZNT2 ey, 69,0) = é (2.5.5)

At two instanton level £ = 2, there are two diagrams Y = (2,0) and Y = (1,1).

Their contribution is

N=2 _ 1 ! = !
fisz e ) = e T e E) T et @) E) | 2mm)
(2.5.6)

At three instanton level k = 3, there are three diagrams Y = (3,0), Y = (2,1) and

Y = (1,1,1). Their contribution is

N=2 a = !
R el 4T [ [ e = g =
1 1
e )@ - @) E)E) | EE)E - e E e
- e (2.5.7)

At an arbitrary instanton level k, the sum of all Young diagrams of order k simplifies

to
_ 1
Z]‘i\/72(51762;a/) = _k'<5152)k’ (258)
hence
o k
ZN=2(e1,69,a) = T e <L) 2.5.9
U(l)( 1,€2 ) ; k!(€1€2>k p P ( )

Now we consider a few instantons for the U(2) gauge group. At one instanton there

are two colored Young diagrams ((1),0) and (0, (1)) contributing

1
Z/\£22€,5,a,a = +
k=1 ( bz 2) 8152(@2 —ay+é&;+ 62)(&1 — CLQ)
1 2
_ . (2510
(CLl — Qg+ &1+ 62)<6L2 — (11)8182 €1€2((€1 -+ 52)2 — a2) ( )
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where we denoted @ = as — a;. As the instanton number grows, its contribution
becomes more and more complicated rational function of a;. For example, at k = 2
we get (we set a = iag, where ag is real)

(2a%, + 82% + 8¢5 + 17212)

((51 + 252)2 + CLzE)((Q(:"l + 82)2 + CL2E)((€1 + 52)2 + a%)?e% ' )
2.5.11

Z]?i:22(€1, 9, zaE) =

Generally, instanton contributions are certain rational functions of a; and ;. Con-
trary to the case ¢y = —e9 = h, which is often taken in the literature to simplify
the instanton partition function [60] 61, Q9], in our problem we get the same signs:
€1 =€E9 = % Looking at the examples above, one can note an important property of
the instanton contributions at €; = €9; they do not have poles at the integration con-
tour for a;. Recall that in the matrix integral we integrate over imaginary a = iag,
while £ and &5 is real. Generally, the denominator contains factors nie; 4+ nses + a,
where n; and ny are some numbers. There is a pole at the integration contour only
if n1e; + noey = 0. Though it happens regularly at €; = —e9, it never happens at
g1 = €9. (This fact was checked explicitly up to k& = 5 instantons for U(2) gauge
group and actually one can show it in general.[[) Therefore the integrand in
is a smooth function everywhere at the integration domain and it also decreases
rapidly at infinity. Thus the integral is convergent and well defined.

In the N = 2* case, each instanton contribution is multiplied by a new factor.
This factor is equal to the product of the same weights as in the denominator, but

shifted by the hypermultiplet mass m = img:

inst i1 st Ea5(8> (51 + &9 — Eaﬂ<5))

2 ey epmaa) = 3™ T T o)L= mer e = Busls) —m)

(2.5.12)

"The author thanks H. Nakajima for a discussion.
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For example,

(e1 —m)(eg —m)(ag — ay + &1 + €2 — m)(a; — ag — m)
e162(ag — ay + &1 + €2) (a1 — as)
(a1 —agy +e1+e3 —m)(ag —ay —m)(er —m)(e2 —m)
(ay — ag + &1+ &2)(az — ar)e1e9 N
2(m — &3)(m — &1)(m? — a® — m(ey + &2) + (1 + £2)?)

_ e —es, (2.5.13)

Z;?EQ*(EhSQ,ahaz) =

The integrand is still a smooth function on the whole integration domain and de-
creases sufficiently fast at infinity.

Hence, we conclude that the matrix integral, with all instanton corrections in-
cluded, is well defined in the A" = 2, the A/ = 2* and the N/ = 4 cases, and that it
gives the exact partition function of these theories on S*. The expectation value of
a supersymmetric circular Wilson operator on S* in an arbitrary representation is

2mira in this matrix model.

equal to the expectation value of the operator trge
In the general NV = 2* case there is the non-trivial one-loop determinant factor
and the non-trivial instanton corrections. However, in the N' = 4 theory, the nu-

merator and the denominator cancel each other both in Zj ., and in each of the

fixed point instanton contribution to Zj,s. More precisely, Z{\f ?j‘op =1, and
— OO 1
ZNZHU(N)) = VI T[] ——~ 2.5.14
nst ( ( )) Z:q ;Cl_‘[l(l_qk)N ( )
7 =

is the generating function for the number of N-colored partitions.

ZN

Since Z;)

does not depend on a, it gives the same contribution to the partition
function and to the partition function with inserted Wilson loop operator Wg(C).
Therefore | ZN7%(q)|? factors out of the Gaussian integral and cancels in the expec-
tation value for (Wgr(C)). In other words, we conclude that in the N' = 4 theory
there are no instanton corrections to the Gaussian integral conjecture .
Using the definition of the Dedekind eta-function n(7) = ¢"/* =, (1 — ¢*) we

can write

=L )" (2.5.15)
st q71/2477(7') . ..
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Then the partition function of the ' = 4 theory on S* with U(N) gauge group is

ZN=4 — 1 1 " /[da}e_jg;\f (@) (2 5) 16)
S vol(U(N)) [\g V24 (r) g -

The natural measure on the gauge group U (V) includes gy coupling constant,
so that vol(U(N)) o gi¥y;. This factor is cancelled by the determinant coming from
the Gaussian integral over a. Then the N = 4 partition function on S* as a function

of the coupling constant is

(2.5.17)

N
ZN:4 — 1
5 q/*n(T)

This function does not transform well under S-duality 7 — —1/7. However, we
might recall that the theory can have c-number gravitational curvature terms which

shift the action by a constant [78]. For example we can add the following R?-term:

1 N

S Sy — 27Ty~
VM T OYM AT i 3on

Ry RPN (2.5.18)
4

Such R? terms generally appear as gravitational corrections to an effective action

on a brane in string theory [100].

This R? term cancels the extra factor ¢~'/?* in the partition function, so that we
finally get
1
ZH = (2.5.19)
° n(T)[*N

This function transforms as a modular form of the weight (N/2, N/2) under the
S-duality SL(2,7Z) transformations generated by 7 — —% and 7 — 7+ 1.

So far we discussed instanton corrections only to the partition function. Now
we consider corrections to the Wilson loop operator. One can show that the Wilson
loop W(C') which we consider is in the same J. cohomology class as the operator
trp exp(2X®) inserted at the North pole, where ® = i®f 4 ®o. Instanton corrections
to the operator exp(3®) in the N' = 2 equivariant theory on R* for a given asymp-
totic of ® at infinity were computed in [61], Q9] 101, T02]. Using these results, one
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can actually see that if § = 2”7” where n is integer, there are no instanton corrections
to the operator trg exp(®). In other words, the operator trg exp(8®) in the field
theory is replaced simply by the operator trg exp(2mira) in the matrix model.
This is exactly the case of Wilson loop operator which we consider. In other
words, even after taking into account the instanton corrections, we still conclude
that the Wilson loop operator W (C') corresponds to the operator trg exp(2mira) in
the matrix model. However, the expectation value of W(C) in a generic N' = 2
theory receives corrections because the measure in the matrix integral is

corrected by the insertion of the instanton factor | Zi.(ia, €, €)|>.



Chapter 3

Wilson loops on 5?2

3.1 Wilson loops on S? subspace in four-dimensional
N = 4 super Yang-Mills

In this chapter we consider supersymmetric Wilson loops of arbitrary shape located
on S? subspace in the four-dimensional ' = 4 supersymmetric Yang-Mills theory.
Such Wilson loops were constructed in [41) [52] and there it was conjectured that
expectation value of such Wilson loops can be computed by perturbative sector of
the two-dimensional bosonic Yang-Mills theory.

In this chapter we prove that correlation functions of such Wilson loop opera-
tors are indeed computed by certain two-dimensional gauge theory closely related
to the perturbative Yang-Mill theory and constrained topological Higgs-Yang-Mills
theory[53H55] for the moduli space of solutions of Hitchin’s equations [56].

3.1.1 The geometrical set up

Let X; for i = 1...5 be coordinates in R® into which the S* is embedded as the
hypersurface > X? = r%. By x; for i = 1...4 we denote the standard coordinates
on the stereographic image of S* on R* such that the point N := (0,0,0,0,7) maps

78
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to the origin

Xi=- Ti
+Jf_
", (3.1.1)
1 - m
X5 =r—0.
1+ 2

We define the S? subspace of the S* by the equation X5 = 0. Equivalently, in the
x; coordinates on R*, this three-sphere is defined by the equation 22 = 472. Further
we define the two-sphere S? C S® by the additional equation X; = 0. In the z;
coordinates, the S? is described by the equations {z; = 0, 2% + 23 + 23 = 4r?}.

We call the point P = (0,7,0,0,0) the North pole of the S*. By y;,i = 1...4
we denote the standard coordinates on the stereographic image of S* such that the

point P maps to the origin:

X, = =134
1+ 5
—Y2

X: =

5 1+% (3.1.2)
_ v

Xo=r a

2 1+%

In 2* coordinates, the point P is (0,2r,0,0).

The SO(5) isometry group of S* can be broken to SO(2) x SO(3) where SO(2)
acts on (X7, X5) and SO(3) acts on (Xo, X3, X4). The two-sphere S? is the fixed
point set of this SO(2). Sometimes it is convenient to use the SO(2) x SO(3)

spherical coordinates on S* in which metric has the form
ds® = r*(d6? + sin® 0 dr* + cos® 0 dQ23) (3.1.3)

In other words, we represent the S* as a warped S? x S! fibration over the interval
6 € [0,7/2], such that at § = 0 the S* shrinks to zero and the S? is of maximal size,
while at § = /2 the S? shrinks to zero and the S! is of maximal size. We will also
use the reversed to # coordinate & = 7/2 — 6. In the following, the SO(2) acting
on (X1, X5), will be denoted as SO(2)g, and the SO(3) acting on (X», X3, X4) will
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be denoted as SO(3)s. (We shall use the subscript ”S” to denote subgroups of
the space-time symmetries, and the subscript "R” do denote subgroups of the R-
symmetry. We also remark that the SO(3)s subgroup of the SO(4) isometry group of
R* is not a chiral SU(2), subgroup in the decomposition SO(4) = SU(2), x SU(2)g,
but rather a diagonal embedding.)

3.1.2 Superconformal symmetries and conformal Killing spinors

Following [52] we shall study the following Wilson loops located on the three-sphere
S3 and, specifically, the more specialized case: Wilson loops restricted to the maxi-
mal two-sphere S? embedded into the S?. Here we shall work in the R* stereographic
coordinates x; (3.1.1). The definition of such Wilson loops and the condition for
supersymmetry was found in [41], 50, 52]:

Wr(C) = trg Pexpj{ (Au + ial‘fyg—r@A) dz*. (3.1.4)

Here ® 4 runs over three of six scalar fields of the N = 4 super Yang Mills theory.
In our conventions index A takes values 6,7,8. The u, v are the space-times indices
running over the range 1,...4. The afy are the 't Hooft symbols: three 4 x 4

anti-self-dual matrices satisfying su(2) commutation relations. Explicitly we choose
ot =1 0;'2;_4 = —¢jp for 1=2,3,4, (3.1.5)

where €, is the standard antisymmetric symbol with €34 = 1. The SO(6) R-
symmetry group is broken into SO(3)4 x SO(3)p. Our conventions are that the
SO(3)4 acts on scalars ®g, &7, &g which couple to the Wilson loops . The
SO(3)p acts on the remaining scalars ®5, g, &g. The Wilson loop is ex-
plicitly invariant under the SO(3)p symmetry, because the scalar fields @5, ®g, P
do not appear in (3.1.4). In the case when the Wilson loop is restricted to

the two-sphere S? by the constraint x; = 0, it is also invariant under the diagonal
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SO(3) subgroup of the SO(3)s x SO(3)4, i.e. under the simultaneous rotation of
the coordinates z; and the scalars ®;,4 for i = 2,3, 4.
Let us find the supersymmetries which are preserved by the Wilson loops .
The conformal Killing spinor on R* is parameterized by two constant spinors
which we call £, and €., where £, generates the usual Poincare supersymmetries,

and £, generates the special superconformal symmetries
e(x) = €+ 2T €. (3.1.6)
The variation of the bosonic fields of the theory is
0Apy = YT ye. (3.1.7)

The variation of generic Wilson loop (3.1.4]) vanishes iff ¢ satisfies

v

(I, + iFAafy%)(és + 2PT,8,)ik = 0 (3.1.8)

for any point x € S® and the tangent vector 4 constrained by iz = 0. The terms

linear in z give the equation

~

23 (D08, + il ac),=5) = 0. (3.1.9)
T

Since the vectors z# and %, are constrained only by x#z, = 0, we get

Lypée + 00,22 = 0. (3.1.10)

The constant and quadratic in x terms give the equation
A

o
i (T s + iFAA%x”xAéc) = 0. (3.1.11)
T
Multiplying by non-degenerate matrix 21", we get
oA
it 2P (T pués + inFAA%:c”:c’\éc) = 0. (3.1.12)
r

Using a#z,, = 4r* and i*z, = 0 we get

Typés + il a0/, (2r)é. = 0. (3.1.13)
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The equation (3.1.13)) is actually equivalent to (3.1.10)) and to
27‘58 = iUAppFAppés- (3114)

If Wilson loop is restricted to S2, then amounts to three maximally or-
thogonal projections in the spinor representation space ST @& S~. Each projection
operator reduces the dimension of the space of solutions by half. Starting from the
dimension 32 of ST& S~ we get 32/23 = 4-dimensional space of solutions for (£, &.).
For generic Wilson loops on S? the dimension of the space of solutions is further
reduced by two, so there are only 2 supersymmetries left.

For explicit computation we shall use the following 16 x 16 gamma-matrices

representing Clifford algebra on S™*:

0o ET
Ty = M1 M=2...9
Ey 0
1 0
r,=| > : (3.1.15)
0 —lgxs
il 0
FO: 88
0 ilgxs

Here Ej; for M = 2...8 are 8 x 8 matrices representing left multiplication of the
octonions and Fy = lg.s. (Let e; for i = 2,...,9 be the generators of the octonion

algebra . We chose eg to be identity. Let cfj be the structure constants of the

left multiplication e; - ¢; = cfjek. Then (Ez)f = cfj The multiplication table can be

chosen by specifying cyclic triples (ijk) such that e;e; = e,. We define the cyclic
triples to be (234), (256), (357), (458), (836), (647), (728).)
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Explicitly, the four linearly independent solutions of (3.1.14)), i.e. supersymme-

tries of Wilson loops on the S? are the following

1 0 1 0
N 0 A8 1 AS 0 A8

€l = X ®) &= . ®) &= ) ®|1) &= ® 1)

0 1 0 -1

0 —1 0 1

1|z 1 0 1 | —¢ 110
Ac:_ 1 /\C:_ 1 AQ:— 1 Ag:_ 1
o, ®[1) &= Z, ®[1) = . @) &= Z, ® |1)

1 0 1 0

(3.1.16)

In more generic case of Wilson loops on S%, we get only the two-dimensional space
of solutions, which is spanned by £;,e5. We use indices 1,2 and 1,2 to enumerate
the basis elements of the solutions to , but it is not assumed that €7 or €3 is
complex conjugate to €1 or 5. Sixteen components of the spinors are written in the

4 x 4 block notations, where

(3.1.17)

o O =

0

Let @1, Q2, Q1,3 be the four conformal supersymmetries generated by confor-

mal Killing spinors (3.1.6) with &g, . given by (3.1.16). Let R4p be matrices in the

fundamental representation of the SO(6) R-symmetry generators. On scalar fields

the generators R p act as

(ORap®)a = Rap®p. (3.1.18)
The fermionic symmetries anti-commute according to (A.3.3)),(A.3.6) as

62D 4 = 2(éT 4pe) P, (3.1.19)
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hence the R-symmetry part of the anti-commutators is

QaQpy = 2(E(al'aBesy) Ran (3.1.20)

For space-time rotations we have similar equation except for the sign. Let us consider
a fixed point of the space-time rotation. Then, assuming that the SO(4)g generators
R,, act on tangent space R* in the same way as the SO(6)r generators Rap act
on the scalar target space RS we get the space-time symmetry part of the anti-
commutators
Qia®@p = =26l wes) Ruvs (3.1.21)
where ¢ and € are taken at the fixed point set of the space-time rotation. To
summarize,
QaQpy = 2(E(al aBesy) Rap — 2(E(al’wepy) Ry (3.1.22)
At a fixed point of space-time rotation, the SO(4)s x SO(6)r generators act on

spinors in the S representation of SO(10) as
1
Spyn ¥ = ZRMNFMN\D. (3.1.23)

Then there are the following anti-commutation relations

2 2. 2 2
{@1,@1} = ;ROS - ;1359 {Q1,Q1} = ;305 + ;ZR59

{Qq, @2} = _2R05 - giR59 {Q2,Qa} = —2R05 + gz'R59
T T r r
{Q1,Q2} = %Rog {Q1, Q) = —gRog : (3.1.24)
(@1.Q1) = 2R {Qu@Qa} =0
(@201} =0 Q2 Qs = R

These anticommutation relations can be packed into
2 I
{QaaQﬁ} = ;(CO )aﬂRI
P
{Qa, @} = ~(Col)aplts (3.1.25)

(Qu, Q3) = ba3Ro,
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where of for I = 1,2, 3 are the Pauli matrices
ol = o= o’ = : (3.1.26)

The C denotes “the charge conjugation” matrix C' = ioy, the triplet of the SO(3)p
generators is denoted by R; such that (R;, Rs, R3) := (Ros, —Rs9, —Ro9), and the
SO(2)s generator is called Ry := —Rys.

The fermionic generators (), and Q)5 transform naturally in the representation

2 and 2 of the SO(3)p, while SO(2)g mixes them

[R1Qa] = _%iaéﬁQﬁ [RoQa] = _%iCaBQﬁ
1

RiQul = 5ioL5@5  [Ro@] = 5iCasQs

The relations (3.1.25) and (3.1.27) are the commutation relations of the Lie

(3.1.27)

algebra su(1|2) of the SU(1]|2) subgroup of the superconformal group [52]. The
bosonic part of su(1]2) is s0(2)g x s0(3)p, spanned by Ry, Ry, the fermionic part is
four-dimensional, spanned by Q,, Q5.

If we take an arbitrary linear combination of the fermionic generators with com-

plex coefficients €%, € C,
Q = *Qq + €%Qs, (3.1.28)

we will find that @ squares to a real generator of the SO(3)p x SO(2)g if €% is
actually complex conjugate to €“. Such @ will be called hermitian. We will use
this fact in the following in our choice of a nice generator () for the localization
computation. We shall also notice that if ) is hermitian, i.e. if €% is complex
conjugate to €%, then the norm of the SO(2)s generator and SO(3)p generator in
Q)? is proportional to the norm of €. Hence, a non-zero hermitian ) always squares
to a non-zero rotation generator in both SO(2)g and SO(3)p.

For explicit computations we shall use the following generator ()

Q.= (@ + Q). (3.1.20)
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It corresponds to the conformal Killing spinor associated with

1 0
0 110
£y = ®|1) é.=— ® 1) . (3.1.30)
0 2r 1o
0 )
By (3.1.25)) we have
1
Q= ;(R05 — Ri2). (3.1.31)
Clearly, since [Q?, Q] = 0 we have
[R05 — ng, Q] =0 = (F05 — Flg)S(P) = 0. (3132)

The last equality is written for the conformal Killing spinor € associated with @) at
the point P in coordinate patch y* . The rotation of (yi, y2) plane corresponds
in the global coordinates to the rotation of (X5, X;) plane, or the vector field % in
the polar coordinates . Geometrically, the equation ((3.1.32) means that the
conformal Killing spinor ¢ is invariant under simultaneous rotation of the (X5, X7)
plane and (@5, ®() plane.

From the condition on ¢ and it follows that ¢ is also invariant
under diagonal rotations in the SO(3)g x SO(3) 4. Indeed, from (3.1.14) one has

T alhiés = Dipaljiés (3.1.33)

for distinct 7,7,k in the range 2,3,4. Multiplying by I';;4I';; both sides of this
equation we get
[i€s = —Tjairaés, (3.1.34)
which shows that ¢ is invariant under SO(3)g rotation of (X, X3, X4) and equal
SO(3) 4 rotation of (Xg, X7, Xg) using the isomorphism R? — R? : X; — X, 4.
We shall remark that a generic supersymmetric Wilson loop on the S? is invari-

ant only under the OSp(1]2, C) subgroup of the complexified superconformal group
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PSU(2,2|4,C). The fermionic part of OSp(1|2,C) is spanned by Q,, i.e. by half
of generators of SU(1|2,C). The bosonic part of osp(1]2,C) is sp(2,C) ~ su(2,C)
spanned by R;. The commutation relations are represented by the first equation in
and in (3.1.27). However, there is no real structure on OSp(1]2,C) such
that it could be a subgroup of compact unitary SU(1/2,R)][]

So there exists no fermionic element @ in OSp(1]2,C) such that Q? generates
a unitary transformation in SU(2)p . Since the localization method, which we are
going to use in this work, requires that global transformation generated by @? is
unitary, we cannot treat the OSp(1|2,C) case and generic Wilson loops on S? in the
same way. So we restrict the detailed study to the case of Wilson loops on S? C S3.

Let us summarize. We shall study supersymmetric Wilson loops on the S? C S3
of the form (3.1.4). These Wilson loops are invariant under the subgroup SU(1|2)
of the superconformal group, where U(1) = SO(2)g rotates (X, X5) plane, and
SU(2) = SU(2)p rotates (P5, Py, Py). The Wilson loops are also invariant under
the diagonal of SO(3)s x SO(3)4, where SO(3)s acts on (Xa, X3, X4) and SO(3)4
acts on (g, 7, Pg), i.e. on scalar fields entering the Wilson loop.

We choose hermitian generator (), generated by the conformal Killing spinor ¢ as
(3.1.29). The spinor ¢ is invariant under the diagonal subgroup of SO(3)g x SO(3) 4

by (3.1.34) and the diagonal subgroup of SO(2)s x SO(2)g by (3.1.32), where the
SO(2)p C SO(3)p acts on (P35, Py)-plane.

Remark on 1/4 BPS circular Wilson loops

As discussed above, a Wilson loop (3.1.4)) of an arbitrary shape on S? preserves 4
out of 32 superconformal symmetries, so it can be called 4/32 = 1/8 BPS Wilson

loop. In [40], 52] it was noted that a circular loop preserves more supersymmetries.

L If we use signature for (5,9,0) directions (4, +, —), then, since in this case gamma-matrices
can be chosen real, we can get a real structure on OSp(1]2,R) by taking all generators to be real.
However, in this case, Q? is always light-like generator of the bosonic part of SO(2,1) ~ SL(2,R)
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A Wilson loop on an arbitrary circle on S? preserves 8 supersymmetries. A Wilson
loop on the equator preserves 16 supersymmetries. The Wilson loop on the equator
actually is that circular supersymmetric loop which was studied in [25, 26]. There
it was conjectured that expectation value of such operator can be computed in a
Gaussian matrix model. In [26] an argument was given that the field theory localizes
to matrix model, however that argument does not show that the matrix model is
Gaussian. In [57] the Gaussian matrix model was obtain by localization.

In [49] it was conjectured that 1/4 BPS circular Wilson loops also can be com-
puted using the Gaussian matrix model but with a rescaled coupling constant. Such
1/4 BPS circular Wilson loops can be considered as an intermediate case between
maximally supersymmetric 1/2 BPS Wilson loops and 1/8 BPS Wilson loops of an
arbitrary shape on S2.

One may ask whether it is possible to directly localize field theory for 1/4 BPS
circular Wilson loops to the Gaussian matrix model? We shall note that a new
localization computation, different from localization computation for generic Wilson
loops on S?, might be possible only for a single 1/4 BPS Wilson on S%. In other
words, if we take two 1/4 BPS loops located at two distinct lattitudes (; and
By on S?, then each Wilson loop preserves eight supesymmetries, but only four
supersymmetries are preserved by both loops simultaneously. These four common
supersymmetries are actually the same as for a generic 1/8 BPS Wilson loop on S2.
Hence, if we want to compute the connected correlator of two latitudes on S2, we
are back to the case of generic 1/8 BPS loops on S?, where the four-dimensional

theory localizes to a certain two-dimensional theory on S2.
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3.2 Localization

3.2.1 Introduction

We would like to show that expectation value of the Wilson loops on the S? in
four-dimensional N' = 4 Yang-Mills can be computed by a certain two-dimensional
theory localized to S?. The fermionic symmetry @ is BRST-like generator
of equivariantly cohomological field theory, thanks to the fact that @) squares to
global unitary transformation and gauge transformation. This is valid off-shell after
adding to the theory the necessary auxiliary fields. Then (? is an off-shell symmetry
of the theory and the Wilson loop observable. By well-known arguments, see e.g.
[18, 23] for a general review and [57] for technical details on using localization to solve
supersymmetric circular Wilson loops in d = 4 N' = 4 SYM, the theory localizes
to the supersymmetric configurations Q¥ = 0, where ¥ denotes fermionic fields of
the theory. One can argue localization by deforming the action of the theory by Q-
exact term Sy — S(t) = Sy +tQV with V = (¥, QU¥) and sending ¢ to infinity.
Since the bosonic part of the deformed action is S¥%, + t|QW¥|?, at the t = +o0
limit the term ¢|QW|* dominates. So, at the t = +oo limit, in the path integral we
shall integrate only over configurations solving Q¥ = 0 with the measure coming
from the one-loop determinant. On the other hand, the partition function and the
expectation value of observables do not depend on the t-deformation. Indeed, let
the partition function be Z(t) = [eS®. Then, if S(t) is Q-closed and §;S(t) is
Q-exact, we can integrate by parts in 0,Z(t). If the space of fields is essentially
compact (all fields decrease sufficiently fast at infinity) the boundary term vanishes
and we obtain 0;Z(t) = 0.

In the present situation we use V = (¥, QV). We recall, that ¥ is fermion
of N' = 4 super Yang-Mills obtained by dimensional reduction of chiral sixteen-
component Spin(10) spinor transforming in the S irreducible representation. The

other irreducible spin representation S~ of Spin(10) is dual to S*. Therefore, there
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is a natural pairing ST ® S~ — C, so that if ¢» € ST and xy € S~ are spinors of the
opposite chirality, the bilinear (x, ) is Spin(10)-invariant. (In components (x,)
should be read as Ziﬁzl XaoVa With no complex conjugation operations).

In the Euclidean signature the representations S* and S~ of Spin(10,R) are
unitary, and therefore are complex conjugate to each other. Hence, if x € ST
and ¢ € ST are spinors of the same chirality, the bilinear (y,) = Z(llﬁzlya@/)a
is invariant under Spin(10,RR). So, because of our choice of hermitian @ (3.1.29)
and because () squares to unitary global transformation in SO(2)g x SO(2)g, the
deformation term V = (¥, QW) is Q*-invariant and can be used for the localization.

The localization from the four-dimensional A" = 4 SYM on S* to two-dimensional
theory on S? C S* is done essentially in two steps. It is convenient to represent S*
as S? x St warped fibration over an interval I as in (3.1.3)).

Step 1. We argue that QU = 0 field configurations are invariant under the
SO(2)s rotations which act by translations along the S* fibers: 7 — 7 + const.
Hence, the N = 4 SYM on S* localizes to some three-dimensional theory on the

manifold D? represented as a warped S? fibration over I. The metric on D? is
ds® = r*(d€? +sin £2dQ5) where 0 < ¢ < 7/2. (3.2.1)

One can see that D3 = (S*\ S%)/SO(2)s is a half of three-dimensional ball. Under
the projection 7w : S* — D3 the S? C S* maps to the boundary of D3, which is
located at & = /2.

The resulting three-dimensional theory on the manifold with boundary D? re-
minds a deformed version of certain cohomological field theory for extended Bogo-
molny equations which appeared in [§]. The interesting observables, i.e. the Wilson
loops , are located at the boundary D3 ~ S2.

Step 2. We show that physical action Syj; for the theory on D? can be repre-
sented as a total derivative term modulo the equations QW = 0. Therefore, at the

supersymmetric configurations, the value of the physical action Sy, is determined
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by the boundary conditions at S%. The integral over the moduli space of solutions
to Q¥ = 0 reduces to an integral over boundary conditions on S2. This is essentially
the way how the two-dimensional theory appears. It turns out that the resulting
two-dimensional theory is closely related to topological Higgs-Yang-Mills theory on
52 studied in [53-55)].

3.2.2 Equations

Metric on S* is represented as a warped product: S* = D3 x,, S'. Here w(Z) is
the warp function w(z) = r?cos*& = r*(1 — 22/(4r*))?/(1 + 22/(4r*))%. On D? we
introduce the R? stereographic projection coordinates ;. The metric in coordinates

Z;, 7 has the form

dz;dz; 1- Iy
TR >2d72 i=23,4 (322

ds*(S*) = ds*(D? x,, S*) = = .
(1 + m) (1 + m)

We shall remark that the R* stereographic coordinates z; for i = 1...4 and the
D3 x,, S coordinates (Z;,7) for i = 2,3,4 are related simply at the hypersurface
x1 =71 =0, there z; = &; for i = 2,3,4. The generic relation between z; and (7, Z;)
are the following. From (3.1.1)) we have

2

=~ X, for i=1...4 3.2.3
1+ Xy /r 0 00! (323)

Z;

The SO(2)g orbits are labeled by (X2, X3, X4). The 7 is the coordinate along SO(2)s

orbits, and we have

X; = RsinfsinTt
(3.2.4)

X5 = RsinfcosT.

So, from ([3.2.3) we get the SO(2), orbits in the R* coordinates z;, and hence, the

transformation from coordinates (7, Z;) to coordinates (z1, ;)

1 ind
sz‘(ﬂ@)Z%& for 1=2,...,4
1 +sinfcost (3.2.5)
- 2sin@sin T e
21 (7T, &;) =

1 +sinfcosT
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where .
sinf = —42 (3.2.6)
1+ £

These SO(2)g orbits are actually round circles in the R* coordinates x;, which link
with the two-sphere S? = {x;|2% + 23 + 23 = 4r?, 2y = 0}. The orbits are labeled by
points on D3 = {7;, % < 4r?}. For each &; the corresponding circle orbit in R* is
located along the two-plane spanned by vector (1,0,0,0) and vector (0, Zy, T3, T4).
The distance from the origin to the nearest point of the orbit is |Z|, the distance to
the furthest point is ‘;L;. The center is located at the point a1 = 0, z; = Z;(5 + ;—z)
The diameter is (4r* — z2)/|z|.

The supersymmetry equations Q¥ = 0 are Weyl invariant. Indeed, given that
under Weyl transformation of metric g, — €*!g,, the bosonic fields transform as
A, — AL, 04— Dpe ! K; — Kie ™ and the conformal Killing spinor transform

Q¢ one gets that Q.U — e_%QQE\I/ which is a correct scaling dimension

as € — e2
for fermions. Therefore, the localization procedure is essentially the same for two
theories defined with respect to the metrics related by a smooth Weyl transforma-
tion. (We ask transformation to be smooth so that no conformal anomaly related
to the infinity can appear).

In the coordinates (Z;, 7) the SO(2)s x SO(3)s symmetry is explicit, so we shall
start from the metric in the form (3.2.2)). Since Z is bounded |Z| < 2r, the scale
factor (1+2%/(4r?) is non-zero and smooth everywhere over the D3. Tt is convenient
to get rid of this factor in the equations by making Weyl transformation of the metric
G — G = (1 +7%/(4r%))%g,. So we shall study the equations Q¥ = 0 on the
space D? x4 S! with the metric

~2

2
ds*(B® x4 SY) = di;dz; + r* (1 - %) dr® where 7 < 4r? (3.2.7)
r

Here

w(x) =r(l —3*/(4r?)) (3.2.8)
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is the warp factor for the warped product of the flat ball B3> C R3 (with coordinates
#;) and the circle S* (with coordinate 7 € [0,27)). For explicit computations we

will use the following vielbein (an orthonormal basis in the cotangent space)
(e;) = (w(z)dr,dz;). (3.2.9)

At 7 = 0 the coordinates Z; and corresponding vielbein coincide with coordinates

x;. So we use the conformal Killing spinor € on D?
e(Z,7=0) =&+ i'Té, (3.2.10)

to write equations at 7 = 0 and then U(1) C SO(2)s x SO(2)p symmetry to extend
them to arbitrary 7. (The spinor € on the whole space D? x5 S is invariant under
the diagonal U(1) C SO(2)s x SO(2)p, i.e. under simultaneous rotation of the
(X5, X1) and the (®5, ®g) planes.) A convenient change of variables with respect to

this symmetry is

O = cos TPy — sin 7P5

(3.2.11)
®r =sin 7Py + cos 7Ps.
Conformal Killing spinor ¢ satisfies equation
V,.e=T,¢ (3.2.12)
The off-shell transformation of fermions is given by
1 ~
QU = 5FMNrMNg — 20,14 + iy K;. (3.2.13)
Explicitly, our choice of € in components is
1 1 0 0
0 0 1|1 To
€= ® S — ® (3.2.14)
0 of 2710 Fs
0 0 0 T4
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and for € we have

0 1

_ 110 0
€= — ® (3.2.15)

2r 0 0

1 0

Also we need 7 auxiliary spinors v; which are used to write off-shell closure of the
supersymmetry transformations (3.2.13)) like in [79, 81]. It is easy to find such set

of v; because only top 8 components of € are non-zero. More invariantly, ¢ satisfies
(T +iIT%e =0, (3.2.16)

i.e. it is chiral with respect to the SO(8) acting on the vector indices 2, ...,9. Then,

as a set of 7 spinors v;, one can choose
V; = ngéf for = 2, ..U 8. (3217)

Such spinors v; also have non-zero only 8 top components.

To compute Q¥ in components it is convenient to split sixteen component spinors
into two eight-component spinors on which I'! acts by +1 or —1 respectively. (We
will use interchangeably space-time index 1 or 7 to denote direction along the co-
ordinate 7 in (3.2.7)).) According to our choice of gamma-matrices the

eight-component spinors will be called ¥ and ¥’ so that

\I/t
U = ) (3.2.18)
\Ifb
Then we also have
SANE 0
€= €= . (3.2.19)
0 ~b

Next, we will represent eight-component spinors ¥! and W° by octonions Q. The
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spinor
v,y
L
gt — | 2 (3.2.20)
Vg
we shall write as
\Ijt — \11369 + \11562 _|_ e + \:[12687 (3221)

where eg, es, ..., eg are the basis elements of O, see explanation after (3.1.15[). Sim-
ilarly,
Wb = Wheg + Whey + - - - 4 Wheés, (3.2.22)

where ég, €, ...,6g are the basis elements in the second copy of O representing

bottom components of . In these notations
(.
E = €9 — 2—r$i€i+4 (3223)

and

E=—és. (3.2.24)

3.2.3 Bottom equations

First we consider the bottom components of the equations .
Taking into account the chiral structure of gamma-matrices and spinors
e, € as in (3.2.19)), we get
QU = N (Fy, IO + Fy, T — 201 =
m=2..9 ‘ .
— (iFy;, + Fi ) Ee + 2i®0F = —(iFy, + Fy- e (eo — %:@eiﬂ) + 2i<1>022—ré5
(3.2.25)

We use indices with hat to denote vector components with respect to the orthonor-

mal vielbein (3.2.9), e.g. F;, = w(x) ' F,;. For simplicity we consider equations
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along the radial line (7,%) = (0,Z2,0,0). Using SO(2)s and SO(3)s symmetry we
can extend them to the whole space B? x 3 S'. At %5 < 2r six equations correspond-

ing to the components m = 3,4,6,7,8,9 are linearly independent and imply
il + Fip =0 for m=3,4,6,7,809. (3.2.26)

We can make diagonal transformation in SO(2)g x SO(2)p like in (3.2.11)) to
transform (|3.2.26]) to an arbitrary 7

1
iFop + ———~
r(l - 52)

where we replaced index 1 by 7 using the scaling function w(Z), and where Frpy;, =

Far=0 1m=3,4,6,7,8,9 (3.2.27)

(@7, V] = —Vu®r. Next we consider the remaining two components in ([3.2.25))
for basis elements e, and e5. At 7 = 0 we have
. (N
1Fys + Fis — 2—x2(zF05 + Fjz) =0 (on eg)
; " 1 (3.2.28)
iF@g) + Fié + ng(iFOQ + Fii) — ;q)o =0 (OIl 65)
Again we shift to an arbitrary 7 by making diagonal U(1) € SO(2)s x SO(2)p

. L (A L
(iFps + @ Fp) = 5-82(iFrg + @ (Frr — ®1)) = 0

; 1 (3.2.29)
(iFrg + 0 Y (Frp — ®7)) + gig(z’Fn + 0 o) + ;@T =0
The first line plus the second multiplied by iZo/2r is
(1 532)1? e ifze, —0 (3.2.30)
1 - — I 91— = ..
qp2/7 T2 T2 g T
Introducing a rescaled field
- 72
Sr=r(l—-—)P 3.2.31
r=r(l— ), (3:231)

the equation (3.2.31)) is rewritten as

iVydp + Fyr =0 (3.2.32)
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The remaining equation from (|3.2.29)) is then

72 1

Z(l — @)FTR + ;FTR =0 (3233)

We can summarize the 8 equations (3.2.27)),(3.2.31)),(3.2.33)) resulting from Q¥ = 0:

Vi,V +i®Pr] =0 for m=23,4,R,6,7,8,09. (3.2.34)

One can introduce complexified connection V¢ = V. + i®r and interpret the equa-
tions , as vanishing of the electric field (three equations Fg =0fori=2,3,4)
and covariant time independence of the remaining five scalars (fob R6789 =0), as-
suming 7 is the time coordinate.

Since (Q? generates translations along 7, we can interpret Q* as the Hamilto-
nian. The equations say that momenta of all fields vanish and that the
theory localizes to some three-dimensional theory. This three-dimensional theory is
defined on a three-dimensional ball B* whose boundary is the two-sphere S? where
interesting Wilson loop operators are located.

The supersymmetric configurations in this three-dimensional theory are deter-

mined by the top eight components of the equations QW = 0.

3.2.4 Top equations

For the top eight components of Q¥ we get

QU = Fyule' + Y B 0™t —2B,0.8" + Y K TYe! =

2<m<n<9 1<I<8

= —iFye' + (Foy +iK)Ere' — Y FryEEje’ —2E,9,48" (3.2.35)

2<I<J<8

In the following we shall use indices I,J = 2,...,8 and ¢,7,k,p,q = 2,...,4.
In this section we put r = 1/2 to avoid extra factors. We also do not write tilde

over z understanding that x? for i = 2,3, 4 are the coordinates on the flat unit ball
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B3 C R3 The antisymmetric symbol €, is defined as €34 = 1. The following

multiplication table of octonions is helpful

eiej = €k — 04j€9

€i+4€; = €5 €i€s = €14 €5€i+4 = €4
€L€ita = —€kij€j44 — dikes €it+4€j44 = —E€jk€E — 5ij€9 €j+4€k = 5jk€5 — €jki€ita
(3.2.36)
After some algebra we get the first term
) — e — i (pa — in.p.
QU = —iFye = —iFyi(e9 —ixjejiq), (3.2.37)

the second term
QU'® = (Fy; 4+ iK;)Ere = (For +iKp)er(eg — ixjejiq) =
(ng + ZKZ)(& + ixjfijk€k+4 + i$j5ij€5)+
(F95 + iK5)(€5 — il’j@j)"’
<F9i+4 + iKi+4)(6i+4 + iZEjEijka + ia:j(Sijeg), (3238)
the third term
Q‘I’t(s) = —lFijErEe =
= —§(sz — Fitajra)€ijrer + Fijracijrenra + Fiyaes — Fypyaep — Fk5€k:+4:|
. 1
+o | Fijrie g + §Fij$k€ijk€5
+ Fisapepje; — Fiswieg — Fiyjiaxie; — Fijaxje; + Fypaxpey + FyjraTpeijrey
1
+ F5iraTr€injeira — Fsjparjes + Fipajiaviejg — §F’i+4j+4€ijkxke5} (3.2.39)
and the fourth term

Q\Dt(4) = —QEACDAéb = —2i(¢9€5 + @569 + (I)i+4€i)- (3240)

Now we analyze the equations. We have eight complex (sixteen real) equations

on eight physical fields As 34, Prers9 and seven auxiliary fields K;. Here we shall
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impose the reality condition on all fields. That is also clear from the localization
argument. Indeed, the action is deformed by ¢|QW|* which vanishes on the real
integration contour iff both imaginary and complex parts of QW vanish. Hence, the
top equations QW' = 0 naively imply 16 real equations. We shall see shortly that
only 15 equations are independent. Seven auxiliary fields can be easily integrated
out. Then we are left with eight equations. One of these eight equations gives real

constraint on the complexified time connection:
V., &7] = 0. (3.2.41)

(This equation together with completes our claim that the field configura-
tions are all 7-invariant up to a gauge transformation).

What remains is the system of seven first order differential equations on three
components of the gauge field and five scalars. The equations are gauge invariant.
Modulo gauge transformations, the system is elliptic in the interior of the three-
dimensional ball B3. The system is closely related to the extended three-dimensional
Bogomolny equations studied in [74].

Now we shall give technical details on the equations. First we eliminate Im QW?|eq

by adding to it —x; Re QW

€it+4

ImQVleg — z; Re QU

eia = — o1 + Fyipar; — Fiswy + Fijaxpesjp — 205
— (—Fy310” + Fyiraw; — Fisxi + Fjpatpein) =
= —Fpi(1 — 2%) — 205 = 2[V,®7] (3.2.42)
This is the real equation which completes the system of time-invariance equations

32.34).
Next we consider Re QU]

Re Q\I/t|€9 = — I\ 1475 (3243)

This equation is one constraint on the auxiliary fields K;. We are left with 14 more

equations Im QV¥*'|,, = 0 and ReQU¥*|,, =0 for I = 2,...,8. Using ImQ¥?*|,, =0
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we shall solve for K in terms of the physical fields A and ®, and we will see actually
that the constraint (3.2.43)) is automatically implied.
The seven equations Im QU!|., = 0 imply

Ky = Fosxy, — Fyipa€ijnx; — Fisvj€in + Fippa®i + Fiipa®y — Fiipaxy + 2P 14

1 1
K5 = —Fyz; — §Fijl‘k€ijk + F5j+496j + §Fi+4j+4$k€ijk + 2Pq

Kiya = —ngfijkl'j — Fipx; — F5i+437j€ijk — Fitanqa;.
(3.2.44)
The seven components Re QU!|., = 0 are
1
Re Q‘Ift|e,c = For — E(FZ - Fz’+4j+4)€ijk; — F5pya + K5z — Kz‘+490j€ijk
Re QU = Fos + Fiipa — K (3.2.45)

Re QU'|.,., = Forya + Fijia€ij — Fis +205(1 — 2°) oy — Kizjeqgn,
After plugging in (3.2.45)) the expressions for K (3.2.44]) we get

Re QU'|, = Fyr(1 —2°) — %waijk(l + %) + %Fi+4j+4€ijp(5pk — &8, + 20pTk) —
Fs5i44(0j + x25jk —2xjxy) + 2Qgzy,

Re QU'|,, = Fos(1 — 2%) + Fj1a(6:5 + 5,~j:172 —2x,15) — 2@ 475

Re QU'|., ., = Foira(Op + iy — 2%031) — Fis (0 — @iy, + 705%) + 2@5(1 — 2*) 'y,

+Fz'j+4(€z'jk — LiTp€ipk — IjIpEipk) - 2q)i+4€ijkxj€k+4

(3.2.46)

The above calculations are done at the slice 7 = 0. For an arbitrary 7 the field ®;
should be replaced by ®5 as in (3.2.11]).

Let us analyze the equations Re Q¥*|., = 0 using . At the origin, i.e. at

x = 0, the equations are
— % (F =P AND) —dgdy + [, P5] =0 (3.2.47)
dg* D+ [Py, P5] =0 (3.2.49)
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where we identified the three scalar fields ®,, 4 with components of one-form on R3,
i.e. ® = ®; 4dz’, and * is the Hodge operator on R? with the standard metric.
Let us combine the gauge field A and the one-form & into a complexified con-

nection A. = A+i®, and similarly combine the scalars &5 and ®g into complexified

scalar @, = ®5 + iPg. Then the equations (3.2.47))(3.2.48) can be written as
—xReF, —Reds,®. =0 (3.2.50)

«Im F, —Imdy, ®. = 0. (3.2.51)
This pair of real equations can be combined into the complex equation
* F,+dy®.=0. (3.2.52)

The equation ([3.2.52)) was called extended Bogomolny equation in [§].

Hence, we see that at the origin of R3, the equations resemble some
known system of elliptic equations. Away from x = 0 the equations are deformed
into more complicated system. We shall try to make some simple rescaling of vari-
ables to convert the equations to more standard form on the whole domain.

For this purpose we make a change of variables for the scalar fields ®;,4 for

i=234

- 0L
iy =, (5-- Mled ) . (3.2.53)

Y1 — 2
This change of variables is smooth in the interior of the ball B3. In terms of @M

the first equation in (3.2.46)) becomes

— 1(1 + 1) en(Fy — (i, @5)) — Vi((1 — 2%)®g) + (1 4 22)[®g, @] = 0. (3.2.54)

2
The second equation in (3.2.46|) becomes
- 1 — 22 4dx;x < =
2 2 2 Lk o
(1 — X )Eijkvi(l)j - Vk«l — X )@5) - 1+ 22 ((1 — X )5zk + 1——ZEZ> [(I)Z', (I)g] = 0.
(3.2.55)
Finally, the third equation in ([3.2.46|) is
2 = SE2 + 3 = 2
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In the localization computation we need to integrate over the moduli space M of

smooth solutions to (3.2.54))(3.2.55))(3.2.56)) with finite Yang-Mills action. Clearly,

the zero configuration A = ® = 0,5 = ®y = 0 is a solution. Let us analyze the
linearized problem near the zero configuration, in other words, let us find the fiber

of the tangent space 7M. The linearized equations (3.2.54)),(3.2.55)),(3.2.56|) are

(14 27) #gs dA + d((1 — 2%)Pg) = 0 (3.2.57)

(1 — 22) s d® — d((1 — 2%)®5) = 0 (3.2.58)
~ 2 ~

(1 -+ 2)di + 27 _*;; (2,®) = 0 (3.2.50)

Here we by *gs we denoted the Hodge star operation with respect to the standard
metric on R3. Tt is possible to absorb extra (1 & z?) factors in the Hodge star
operation using a rescaled metric. We will use the metric

ds*(S°) = m,

2| < 1 (3.2.60)

which is a metric on a half of round three-sphere S3, and

dsz(Hg) = m,

lz| < 1 (3.2.61)

which is a metric on hyperbolic space H? in Poincare coordinates. Then the first

two equations in (3.2.57]) turn into

xgsdA 4 ddy = 0 (3.2.62)
sp3d® — dds = 0, (3.2.63)
where
Dy = (1 — 2%) D5 (3.2.64)
Dy = (1 — 22)Dy. (3.2.65)

The equation (3.2.62) implies that ®q is harmonic for the $* metric

Ags®y =0, (3.2.66)
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and the equation (3.2.63) implies that ®5 is harmonic for the H; metric
Aps®s = 0. (3.2.67)

We need to consider only such solutions that the fields ®5, 9 are not singular at
the boundary. (Singular solutions can be considered too, but they correspond to
the disorder surface operator [103] inserted on the two-sphere S? = 9B3. In this
work we aim to compute the expectation value of Wilson loop operators on S? in
the absence of any surface operators. Hence we require ®5 and ®y fields to be finite
at the S2.) If ®5 and ®y fields are finite at |z| = 1, then ®5 and ¢ vanish there
by (3.2.66)),(3.2.67). Hence we have the Laplacian problem with

Dirichlet boundary conditions

D5 |ops = Polops = 0. (3.2.68)

Since a harmonic function Y (z) vanishing on the boundary must vanish (it can be
shown integrating by parts fB dY AxdY = faB Y A*dY'), we conclude that there is

no nontrivial finite solution for the fields ®5, ®g, so
Dy =Dy = 0. (3.2.69)

One might worry that this argument might fail for the H?® space where we have to
deal with the infinite boundary. However, the explicit solution of the Laplace equa-
tion in spherical coordinates on the H? space shows that all radial wave-functions,
which are smooth in the interior of H3, do not vanish at the boundary. In spherical
coordinates, the H?3 metric is

€2 + sin® €9

ds?
cos? &

(3.2.70)

where ¢ is the radial coordinate 0 < £ < 7/2 and d©)3 is the standard metric on the

unit two-sphere. Then

cos? &

agf) + —2£A52f (3.2.71)

sin

cos® & 5 (Sil’l2 £

sin? ¢ ¢ cos &

1 ) f —
Apsf = ﬁai(\/gg ay)f
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If f,(¢) is the radial wave-function for the angular momentum s on the S? then
Ag2fs = —s(s + 1)fs. So the equation (3.2.71) is a special case of the Laplace
equation in the (p, q) polyspherical coordinates (see e.g. [104] p.499)

ou rir+p—1) s(s+qg—1)
8_5) a < cos? ¢ N sin? ¢

—l(l+p+q))u:0

(3.2.72)

1 0
- Z P ¢ gind
cosP & sin? € O€ <COS Esin’e

forq=2,p=—1,r=0,1 = 0. The solutions of (3.2.72]) non-singular at £ = 0 are

(3.2.73)

—1 —l—r— 1 1
u:tanS§F<8 s TPt —|—Q+ ;—tan2§),

7 Y S
2 2 2
where F'(a, 3,7; 2) is the o F7 hypergeometric function. In our case we have

fs(&) = tan®EF (s/2,s/2 4+ 1, s + 3/2, — tan®§). (3.2.74)

Using identity
z

F(a7ﬁ7772> = (1_2)7(1F<a77_ﬁu/‘y;z_1) (3275>
we can rewrite as
fs(&) =sin®€F(s/2,5/2 4+ 1/2,5 4+ 3/2,sin? ) (3.2.76)

The function f,(£) has asymptotic £* at £ — 0 and a finite non-zero value at £ = 7/2:

lim f.(¢) = I(s+3/2)I'(1)

/2 T(s/2+3/2)T(s/2+ 1)’ (8:2.77)

This confirms our argument that there are no non-trivial solutions to the Laplace
equation on H? with zero asymptotic at the boundary.
Now, given that ®; and ®g vanish, the linearized equations (3.2.62))(3.2.63|) turn

into

dA =0 (3.2.78)
dd = 0. (3.2.79)
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That means that the complexified gauge connection A. = A + i® is flat. The third
equation in (3.2.57)) is effectively a partial gauge fixing condition on the imaginary
part of A.. It is actually possible to rewrite this partial gauge fixing condition in
terms of the d* operator with respect to a rescaled metric. Namely, for this metric

on R3
gij = f(|x])dy; (3.2.80)

the d} operator acts on one-form P as
* - T L, 4
d;® = f 1(0,9; + §f YD/ |x]), (3.2.81)

where f' = df(|x|)/dz. Comparing (3.2.81)) with (3.2.59)) we get the scale factor.

The result is
14 22%)?
5 = £(al)dy where f(lel) = 5 3252)

Hence, the partial gauge fixing equation (3.2.59)) is rewritten as
dy® =0 (3.2.83)

Now we can find all solutions to the linearized problem as follows. From (3.2.79)

we solve ® in terms of some scalar potential p
® = dp. (3.2.84)

The gauge fixing equation ((3.2.83)) implies then
dydp =0, (3.2.85)

i.e. that p is a harmonic function with respect to the metric (3.2.82]). We can find
explicitly the harmonic modes in spherical coordinates. The metric (3.2.80)) is
d€* + sin® £dO3
B cost &

so the Laplacian equation (3.2.85)) on spherical mode p,(§) with angular momentum

ds?

: (3.2.86)

s 18

0 Ops(§) s(s+1) B
cot? 58_5 (tan2§ o ) — ey ps(&) = 0. (3.2.87)
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Again, this is the Laplacian equation in the (p,q) polyspherical coordinates
(13.2.72) with p = —2,9q = 2,r = 0,1l = 0. The solution regular at £ =0 is
ps(§) = tan® £F(s/2,5/2 + 3/2,5 + 3/2, — tan® &) =
(3.2.88)
= sin® ¢F(s/2,5/2,5 +3/2,sin? £).
The solution is finite at &€ = 0 for any s, hence the components of ® tangent to the
boundary B3 are also finite. To find asymptotic of the normal component of ® we
need to know expansion of (3.2.88)) at § = 7/2 — £ at § = 0. For this purpose we
rewrite ([3.2.88)) using identity on hypergeometric functions (see e.g. [105] p.160)

NIy —a—p)

F = o — _
(aaﬁfy’ Z) F(P)/_OC)F('}/_ﬂ> (avﬁaa_l_ﬂ Py—i_ 1?1 Z) (3289)
+F(7)I1j((§);—(g>_ ’Y) (1 - Z)’y*aiﬁp(’y -,y — 577 — Q= ﬁ + 17 1- Z)'
We get
(6 =sin'(©) (Fpe o O s /2, 512,12, o)
['(s/243/2)? (3.2.90)
L(s +§’(/82/)2F)(2_3/ 2) (cos €2 (52 + 3/2,5/2 + 3/2,5/2, cos? 5))
Near # = 0 we obtain
ps() = cos®* (A + Bsin?0 + Csin®0 +...), (3.2.91)
where A, B, C' some constants. Therefore
Py = apgéﬁ) = (=As+ B)0 + O(6°). (3.2.92)

This means that the normal component of ® at the boundary vanishes as the first

power of § or (1 — z2). Hence, the original scalars, related to ® by (3.2.53)), are all
finite at the boundary S2.

So all solutions of the linearized equations (3.2.57))(3.2.58)) (3.2.59) modulo gauge

transformations are parametrized by the scalar potential p (modulo zero modes of
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p), which is a harmonic function in the three-dimensional ball with respect to the
metric . A harmonic functions p is uniquely defined by its boundary value
on the S2. Hence we see that that tangent space to the moduli space of solutions
at the origin T M, is equal to the space of adjoint-valued scalar functions on the S?
modulo zero modes.

Now we consider the full non-abelian equations (3.2.54))(3.2.55)) (3.2.56)). Looking

back at our solution of the linearized problem (3.2.69)), we shall suggest an ansatz
®; = &g = 0 for the exact solution. Then the remaining equations on the complex-

ified connection A, = A + i® are

Fyr—dAND=0 (3.2.93)
ds® =0 (3.2.94)
di{® =0, (3.2.95)

which can be combined into the complex equation of flat curvature
F(A) =0 (3.2.96)
and a partial gauge-fixing equation using the metric (|3.2.86|)

The first equation can be solved in terms of a scalar function valued in the complex-

ified gauge group g. : B> — G©
A. = g-'dg.. (3.2.98)

The partial gauge-fixing condition can be complemented by a real gauge fixing d*A =

0. That gives a non-linear analogue of the harmonic equation ([3.2.85))
da x5 (9. 'dg.) = 0. (3.2.99)

The solutions of this second order differential equation are parameterized by the

boundary value of g.. Hence, the tangent space of solutions to the full non-abelian
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equations constrained by ®5 = ®¢9 = 0 coincides with the moduli space of the
linearized problem.

We conclude, that the solutions of represent complete moduli space M of
finite solutions of the supersymmetry equations . Hence, the space of gauge
orbits M /Gyauge can be parameterized by the boundary value of the G© /G-valued
potential function g..

Equivalently, we can parameterize M /G by the space of complex flat connections

on the boundary S? modulo the gauge transformations restricted on S?
Ac’SQ = ggldgc|52. (32100)

Hence, the localization of the path integral of the four-dimensional N' =4 SYM
theory to the moduli space M /G can be represented by a path integral over the
space of complex flat connections on the B boundary S2?. The action of this two-
dimensional theory is determined by values of the four-dimensional Yang-Mills func-
tional on the field configurations representing points on M.

We will show, that the A/ = 4 Yang-Mill action restricted to the fields con-
figurations in M is actually a total derivative. Hence the Yang-Mills action Sy,
restricted to M can be represented in terms of a two-dimensional functional on the
boundary Ss,.

We conclude that the result of the localization procedure for the partition func-
tion of the four-dimensional theory is a two-dimensional path integral over the space
of complex flat connections on S2.

Now we will find the two-dimensional action S;;. The measure of integration in
the two-dimensional theory is then exp(—Ssq) times the induced volume form from

the four-dimensional theory on the moduli space M.
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3.3 Two-dimensional theory

The bosonic part of the N' = 4 Yang-Mills action on S* in coordinates is

SYM =

o 1
5 / dr / d3x\/§(§FWFW+DM(I>AD“<I>A
9y m Jo |z|<1 (3.3.1)

1 R
+5[Pa, Pp) + S5+ K7).
Here R is the scalar curvature. For S* of radius 1/2 we have R = 12/(1/2)* = 48.

First we make Weyl transformation to get the action on the space with metric ((3.2.7))

g[S = e*g[R? x5 S'] (3.3.2)
D[S = e DA[R? x5 5 (3.3.3)
Ki[S% = e X K [R? x5 S (3.3.4)
where
= (1+2%)72 (3.3.5)

In terms of the fields on R? x; S' the bosonic action is

/ dT/ ( (1—2?)x
293 s lz|<1

(%Ff; G+ g (D ®4) + (Di®Pa) + = )CD ;[@Ach] + K?) (3.3.6)

1 — 22 9
+D; (1+ 21'1(1) ))

The last term is the total derivative which vanishes because the factor (1 — z?)

SYM -

vanishes at the integration boundary |x| = 1. The action on R3 x5 S* can be
also written starting from and substituting the metric (3.2.7). The scalar
curvature on R? x 3 S' can be computed easily using a general formula for the scalar
curvature on a warped product of two manifold M x; N, see e.g. [106]. If gy and

gn are the metrics on M and N, and if gy & f?gy is the metric on M X ; N, then
in

RMXfNUZ— 1AMU+RMU+RNU27:L?

(3.3.7)

where n=dimN, wu= fnTH, A,y is Laplacian on M
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In the case R® x4 S! we get n = dim N =1, so u = f = (1 — 2?). Then, for

1
2
the radius 1/2, we get

RR? x4 S = —v 'Au= — (3.3.8)

which agrees with (3.3.1]) and (3.3.6)).

Next we rewrite the action in terms of the twisted scalars &, ® and ®,, for
m=26,7,89 (3.2.11]
1
29% s

+g7(D,®g — Or)? + [Or, Pp|* + g7 (D, D,,)2 + [Br, D]

SYM =

2m 1
/ dT/ dr=(1 —2?)(¢"" F2 + (D;®r)?
0 <1 2

(3.3.9)

1 1

97 (D- 01 + ®p)* + S Fj + (Di)” + (Di®g)* + 5[, @] + [0, &)
2

HOEral

P2 4+ P2+ dE) + K7).

Then we restrict the action onto the U(1) C SO(2)sSO(2)p invariant configura-

tions using (3.2.34]) and (3.2.41)). We also assume that &7 = 0 in the supersymmetric

background, otherwise ®; has first order singularity near the S? which would mean
insertion of surface operator. Removing all commutators with V., and ® from the
action ([3.3.9)), we arrive to this three-dimensional action for the gauge field A; and
five scalars @z, ®,, for m =6,7,8,9

: 1 4 1
vir(BY) = o 2”/ Ao (1= 2*) (5 @k + 5 F + (Di®m)?
20y m o<1 2 (1 —a2?) 2 (33.10)
1 3.
+(Di®R)* + =[P, @u]’ + [Pr, Pr)” + (@2 + B2) + K2).

2 (1 —22)

Now let us show that modulo supersymmetry equations the action (3.3.10)) is a
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total derivative. We try the following ansatz

S, (BY) = 49;/M 2 /| y &z

((—%(Fz“ — [Pira®jra])eijn + Koz — Kipazjeije)-

: (—%(Fi' — [Pira®ja]) e — K5y + Kipazjein)

+ (Vi®ips — Kiz;)(V; @504 + Kjz;)
+ (Vi@ — Kiwj)eijn) (0 — wrw) (V@544 + KG5)€57)
+ (K — (2Vi®prps + 2,V @iy — 2, ViPiy +2Pp4))-
(KA (2 Vi®rys + 2V @iy — 21 ViPigy + 2Ppy4))
+ (K5 + %Ikﬁz‘jk(ﬂj — [Pira®jia])) (K5 — %l’k%k(ﬂj — [Pira®j1a]))
+ (ks + 2i(Fits + [PiraPrya])) (Kira — 2i(Fip + [PigaPrra]))

— (7:Ki14)?) (3.3.11)

Each term above corresponds to one of the top supersymmetry equations (3.2.43)),(3.2.44)
and (13.2.45) multiplied by a suitable factor to match the kinetic term of the re-
duced Yang-Mills action (3.3.10)). Therefore at the supersymmetric configurations

Sim,(B?) vanishes. On the other hand, after some algebra , one can show that the

actions (|3.3.10) and (3.3.11)) differ on a total derivative

. : 2
Sy (BY) = S¥5/(B) +

susy

12 /d3$|az<1(vz’((1 —2%) Py V@ 1y — PjyaVPigy)
Iy m

— AV (232, Pp1aVi®j s — 229V 14 Prya)

- 6vj<$icbi+4q)j+4)> (3312)

Integrating the total derivative term we get a boundary action

inv inv 2m
SYM<B3) = Ssusy(B3)+ 4 2
Iy m

/ dQ (49, (V,®, — V;®;,4) +6P2), (3.3.13)
S2:|z|=1

where ®,, is the normal component to the S? of the one-form @, i.e. ®, = n;®;,4,

and V,, is the derivative in the normal direction, n; = x;/|z|. Using the equation
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(3.2.45) for Re QU'|.. with K; substituted from (3.2.44]) we get a constraint on @,
on the boundary

V@, — Vibiyg = —,. (3.3.14)

Hence, the boundary action (3.3.13)) simplifies to

Sy (B?) = S (B%) 4+ —— dQ @2, (3.3.15)

ey 9y m J52:|z|=1
where dfQ is the standard volume form on S?. On supersymmetric configuration

Siv (B3) vanishes, thus the A/ = 4 Yang-Mills localizes to the two-dimensional

susy

theory on S? with the action

Spa = —— dQ 02, (3.3.16)
9y m J52:|z|=1

Equivalently we can express the action in terms of the tangent to S? components of

® using the constraint (3.3.14))

Spa = —— dQ (d°2D,)?. (3.3.17)
9y pm J 52 z|=1

We recall that the scalar fields in (3.3.2) - (3.3.17)) are the fields for the four-

dimensional theory on R3 x4 S!. In terms of the original fields of the N = 4
Yang-Mills on S* we have ®[R? x; S| = (1 + 2?)7'®[S?], so

Sog = —2 / dQ(d*24 D5 )2, (3.3.18)

Above was assumed that the radius r = % To restore r we need to insert a power

of factor (2r) to get the correct dimension

T
4912/M

The Wilson loop operator (3.1.4) descends to the Wilson loop operator in the

Sgd = (27“)2

/S s Vis o (d5225")?. (3.3.19)

two-dimensional theory

Wr(C) = trg Pexp %(A —ix D) (3.3.20)



3.3. Two-dimensional theory 113

We introduce complexified connection
A, =A—ix®, (3.3.21)
so the Wilson loop operator is holonomy of A,
Wr(C) =trg Pexpj{flc (3.3.22)
Let F5_be the curvature of A., then
FA)=dAc+ A NA, =Fy—OND —idy+® (3.3.23)
By at the localized configurations we have Fiy — ® A & = 0, then
dax ® =iF; for localized configurations (3.3.24)

Then the action of the two-dimensional theory (3.3.19) is equivalent to the action

of the bosonic Yang-Mills for complexified connection A,

1
Sog = ——— dQ) F? , 3.3.25
2 Zg%d 52 Ae ( )

where the two-dimensional coupling constant is denoted go4
G2 = 21 g3, (3.3.26)

So the original four-dimensional problem has been reduced to complexified two-
dimensional bosonic Yang-Mills theory (13.3.25)) with the standard Wilson loop ob-
servables (3.3.22). However, the complexified connection A, = A—i® is constrained

to the localization locus by (|3.2.93))
ReF; =0 (3.3.27)
dge 1, *Im A, = 0. (3.3.28)

The two real constraints remove two real degrees of freedom from the four real

degrees of freedom of complex one-form A, (we do not subtract gauge symmetry in
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this counting). Therefore, the path integral is taken over a certain half-dimensional
subspace of complexified connections A,.

We can interpret the path integral for the usual two-dimensional Yang-Mills for
real connections as a contour integral in the space of complexified connections, where
the contour is given by the constraint that the imaginary part of the connection
vanishes: Im Ac = 0.

Our assertion is that the complexified theory with constraints
is equivalent to the real theory by a change of the integration contour in the space
of complexified connections.

Since perturbative correlation functions of holomorphic observables do not de-
pend on deformation of the contour of integration, we conclude that the expectation
value of Wilson loop observables perturbatively coincides with the expec-
tation values of Wilson loops in the ordinary two-dimensional Yang-Mills.

We shall look at the complexified two-dimensional Yang-Mills theory with con-
straints from the slightly broader viewpoint of so called topological Higgs-Yang-Mills
theory [53H55] which deals with then moduli space of solutions to Hitchin equations.

3.3.1 Higgs-Yang-Mills theory

Here we will review Higgs-Yang-Mills theory following [8, 53-55]. Let ¥ be a Rie-
mann surface, A be a gauge field for the gauge group G (G is a compact Lie group)
and ® be a one-form taking value in the Lie algebra g of G.

Let ¢ be a scalar field taking value in g. The field ¢ can be thought as an element
of the Lie algebra gyq.4. of the infinite-dimensional group of gauge transformations
Ggauge- Let M be the space of fields (A, ®). Using the invariant Killing form on g
we identify g with g*. Then locally M is T*Q'(X, ad g).

We notice (see [8, [53H55], [83]) that the space M can be equipped with a triplet of
symplectic structures w; and a triplet of corresponding Hamiltonian moment maps

t; for Ggquge acting on M.
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Explicitly we define the symplectic structure w; as follows. Let ¢ be the differ-
ential on M. Then

w1(5A1, 5@1, 51427 5(1)2) = tl"/ (5A1 VAN 5A2 - (5(131 A 5@2 (3329)
DN

w2(5A1, (5@17 5/42, (5@2) = tr/ 6141 A 5(192 — 5142 A (Sq)l (3330)
%

Cdg((SAl, 5(1)1, (5142, 5(1)2) = tI‘/ (5141 VAN *(SCI)Q — 5142 A *5(1)1, (3331)
b

where * is the Hodge star on . (Here subscripts 1,2 denote an argument of the
functional two-form w and they should not be confused with world-sheet indices,
e.g. 0A; should be read as one-form on X.)

A functional p: M — g7, is called a moment map if

ipw = p(¢) forall ¢ € gyauge, (3.3.32)

where 74 denotes a contraction with a vector field generated on M by an element

¢ € ggauge .

The group Gyauge acts on M by the usual gauge transformations

0A = —da¢
(3.3.33)
o = [¢, D).
One can check that the functionals
pi(p) = tr/(gb, F—dND) (3.3.34)
p2(¢) = tr / (¢, da?®) (3.3.35)
ps(9) = tl"/(¢7 da* ) (3.3.36)

are the moment maps for the symplectic structure wy, ws, w3 correspondingly.
The space M has natural linear flat structure and the corresponding flat metric
is

g((;Al, 5@1, 5A2, (5(1)2) = tr / 5A1 A *5A2 + 5@1 A *5(132 (3337)
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Using the metric g on M, to each symplectic structure w; we can associate a
complex structure I; in the usual way w(-,-) = g(I-,-).
Comparing

by

with (3.3.29)- (3.3.31) we get

[,(6A) = 5 A L(6®) = — # 6O (3.3.39)
L(5A) = +5® L,(5®) = x5 A (3.3.40)
I;(6A) = —60 I;(60) = 6A (3.3.41)

Notice that the following linear combinations span the holomorphic subspaces

(+i-eigenspaces) of the corresponding complex structures:

L(A—ixA)=i(A—ixA)
L(A—ix®)=i(A—ixd) (3.3.42)
L(A+i®) =i(A+iD).
One can also check that the complex structures satisfy I3 = Iy, [} = I3]5, I5 =

I, 15. Hence the space M is the hyperKahler space.

We can use four-dimensional notations. Let us denote
(I)l = A4 q)Q = Ag, (3343)

then the three moment maps (3.3.34]) correspond to the components of the self-dual

part F'{ of the four-dimensional curvature Fj:
F—®A®=(Fyy+ F3)da' Ada?
da® = (Fi3 — Fo)da' A da? (3.3.44)
dA *d = (F14 + Fgg)dl'l VAN dZL’Q

Clearly, the space R* (or more generally T*Y.) is hyperKahler, so it is equipped

with CP! family of complex structures. Let 21, Z1, 22, Z2 be complex coordinates with
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respect to some complex structure, e.g. 21 = xy + 122, 290 = x3 +ix4. Then, in terms

of Az, = 3(A1 +iA,), etc, we can write

l
2

1 1 1 .
Fazn = Z(Fl?) — Foy) + Z(FQS + Fy) = Z(M + ips)

7
Fon+Fosn==(Fia+ F3) = 5#1

(3.3.45)

Constrained Higgs-Yang-Mill theory

For the related story see [53], [54].
Consider the following path integral over ¢ and the space M of fields (A, @)

ZcHYM = / D¢6i<w3_“3(¢))_%'ftr¢2. (3346)
M|p1=p2=0

Later we will insert Wilson loop observables for the holomorphic part of the
complexified connection with respect to the complex structure I,. Explicitly such
observables have form

Wgr(C) = trg Pexp ?{ (A—ix®), (3.3.47)

were (' is a contour on » and R is representation of G.

We would like to look at this theory as a hyperKahler rotation of another theory

Zyar — / Deeir—m@)=3 [twe? (3.3.48)
M|p2=p3=0

which is almost equivalent to bosonic two-dimensional Yang-Mills. Let > be a
Riemann sphere. The constraint py = s = 0 means d%® = d4® = 0. For a generic
connection A, the only solution to these constraints is ® = 0. Then the path integral
(3.3.48]) reduces to the 2d bosonic Yang-Mills integral over A and ¢ written in the
first order formalism as in [83].

We can insert Wilson loop observables into the path integral. Since ®
vanishes because of the constraint, the Wilson loop reduces to the ordinary

Wilson loop of the connection A. Therefore, the expectation value of Wilson loops
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(3.3.47)) naively is computed by the standard formulas of the two-dimensional Yang-
Mills theory [83], 107, T08] modulo subtleties which are related to non-generic con-
nections for which there are non-trivial solutions of the constraint d{® = d,® = 0.
Such connections precisely correspond to unstable instantons, i.e. configurations
with covariantly constant curvature F4. It is well known that the partition function
of bosonic two-dimensional Yang-Mills can be written as a sum of contributions from
such unstable instantons [83] (109, 110]. A contribution of a classical solution with
nontrivial curvature F enters with a weight exp(—3¢2p(3X)F?) where p(X) is the
area of . In the weak coupling limit such instanton contributions are exponentially
suppressed and do not contribute to the perturbation theory.

Hence, we conclude that perturbatively the constrained Higgs-Yang-Mills theory
(3.3.48) is equivalent to the ordinary two-dimensional Yang-Mills.

In [83] Witten has related the physical two-dimensional Yang-Mills theory
with the topological two-dimensional Yang-Mills. The key point is that the path
integral for the physical Yang-Mills theory can be represented as an integral of the

equivariantly closed form with respect to the following operator @)

QA =1
QU = ~d.ao (3.3.49)
Qo =0.

In other words, the w; — p1(¢) is the equivariantly closed form constructed from
the symplectic structure w; and the Hamiltonian moment map pu, for the gauge
group acting on the space of connections. Then localization method can be used to
compute the integral of such equivariantly closed form [20-22] [83].

Though the Wilson loop observable is not ()-closed, its expectation value can
be still solved exactly. That gives a hope that we can also find exact expectation
value of Wilson loops in constrained Higgs-Yang-Mills theory and
its rotated version (3.3.46)). See [53H55] for computation of correlation functions for
the @)-closed observables tr ¢™.
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First let us focus on the partition function . We can try to proceed in
two directions. The first one is to try to use the localization method and relate the
theory to some topological theory and computations with (Q-equivariant cohomology.
Though the Wilson loop operators are not ()-closed, we can try to solve for at least
non-intersecting Wilson loops {C1, ..., Cy} by: (i) finding topological wave-function
U(Uy,...,U) on the boundary of the Riemann surface with Wilson loops deleted
Y\{C1U...C}, and (ii) then integrating over the space of holonomies {Uy, ..., Uy }.
For the study of wave-functions in Higgs-Yang-Mills theory see [53] [54].

The second approach is to explicitly solve the constraint pu; = pus = 0, which

means that the complexified connection A¢ = A + i® is flat, in the form
A+id® = g ldg,, (3.3.50)
where g, takes value in the complexified gauge group G¢. The gauge transformations
A+i® — g ' (A+i®)g+g 'dg (3.3.51)

can be represented by the right multiplications g. — g.g, where g takes value in the
compact gauge group GG. Hence the configurational space of the theory is the same
as of gauged WZW model on the coset G¢/G.

We shall not proceed these ideas further in this work. Instead we will give one
more argument why the perturbative expecation value of Wilson loop in
the theory and its hyperKahler rotated version (3.3.46) is the same.

First we rewrite the path integral of a constrained theory by means of Lagrangian
multipliers. Consider the theory . We introduce scalar auxiliary fields Hs, H3
and their superpartners y», x3. The superpartners of A and ¥ are fermionic adjoined
valued one-forms on . Then we consider the usual complex for equivariant coho-
mology

QA =14 QX2,3 = H2,3

Qg = —dag QH2,3 = [¢7 X2,3]

(3.3.52)
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with
Qo = 0. (3.3.53)

The theory (3.3.48)) can be rewritten as
Z = /qu DADvy, D®DYe DH Dy

expl [ ia Ao = o At — (F = @ A )0 = 2650

+5..) (3.3.54)

Sc:zQ(/dA<I>Ax2+dA*¢>Ax3>=

Z'/(dAwq)—i- [wA,q)])/\Xg—i- (dA*Q/}q>+ [QZJA,*(I)D/\Xg—l-dACI)/\HQ—FdA*(I)/\Hg
(3.3.55)
If we integrate out the Lagrange multipliers Hs, H3 and ®, and their fermionic
partners xs, x3 and 14, the resulting determinants cancel, while ® becomes re-
stricted to the slice dy® = d%® = 0, and similarly g is restricted to davs +

[Ya,®] =0 and da * Vg + [ta,*P] = 0. Since & = 0 we get 1 = 0. Then what

remains is

7 = /DAD¢AD¢ exp(/i(l/JA Apa — Fo) — %qs A %), (3.3.56)

which is the usual action of bosonic Yang-Mills in the first order formalism [83].
Now consider the constrained Higgs-Yang-Mills theory (3.3.46) . Actually we

shall consider slightly different version:
ZeHY M = / D¢ei(w3+iwl*(M3(¢)+#1(¢))*%2ftr¢2. (3357)
M|p1=p2=0

Here we added to the action the term p;(¢) and its supersymmetric extension wy.

Since p1(¢) = 0 by constraint, classically this is the same theory as (3.3.46)). The
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symplectic structure w; — iws is holomorphic (2,0) two-form with respect to the
second complex structure in ([3.3.42)).

Let us make a change of variables from (A, ®) to the variables (A,, ®) where
A=A—ix® (3.3.58)

Perturbatively we can rotate the integration contour for ® to the imaginary axis,
then A, is real valued. The jacobian for this change of variable is trivial.

The symplectic structure w; — iw3 can be written as
wy — iwg = tr / 0A, NOA,, (3.3.59)
b
and the moment map p; — ius is actually the curvature of A,
p —ipg = F(A,) (3.3.60)

One can see that if Y is a sphere, than constraints p; = 0, o = 0 determine ®
uniquely for each A.. Hence, the path integral reduces to the integral over
the fields A, with the measure induced by the symplectic structure . That is
the standard bosonic Yang-Mills theory in the first order formalism for the connec-
tion A.. The correlation function of Wilson loop operators 1} perturbatively

are computed as in the usual bosonic two-dimensional Yang-Mills.



Chapter 4

Conclusion

In this thesis we considered the basic non-local observables in supersymmetric gauge
theories — Wilson loop operators. We have shown that correlation function for
certain supersymmetric Wilson loops in A/ = 2 and N = 4 superconformal four-
dimensional gauge theories can be computed exactly using the localization method.
In particular we prove Erickson-Semenoff-Zarembo/Drukker-Gross conjecture which
relates circular supersymmetric Wilson loops in the N' = 4 supersymmetric Yang-
Mills theory to correlation function in Gaussian matrix models. We consider the
four-dimensional field theory on compact Euclidean space-time S*, and we show that
the matrix in the matrix model can be simply interpreted as the constant mode of
one of the scalar fields of the theory.

We generalize Erickson-Semenoff-Zarembo /Drukker-Gross conjecture about cir-
cular Wilson loops to an arbitrary superconformal N/ = 2 theory. In that case the
computations are again localized to matrix model but with much more complicated,
but still explicit potential. The potential combines Nekrasov’s e-deformed parti-
tion function of instantons and certain one-loop factor expressed in terms of Barnes
G-functions.

We also generalized ESZ /DG conjecture to the more complicated case of super-
symmetric Wilson loops of arbitrary planar shape in four-dimensional N' = 4 super-

symmetric Yang-Mills. By planar shape we mean an arbitrary contour restricted to
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some two-sphere in the four-dimensional space-time. In this case the theory localizes
to a certain two-dimensional theory which is closely related to the partially gauge-
fixed version of two-dimensional Yang-Mills for the complexified gauge group, or,
topological Higgs-Yang-Mills theory related to the Hitchin’s equations on Riemann
surface.

All-order exact results in gauge theory are interesting on its own, as well as they
shed some more light on the central topic in string theory — gauge/string duality

conjecture.



Appendix A

Appendix

A.1 Clifford algebra

We use the following conventions to denote symmetrized and antisymmetrized ten-

SOTS: 1
agby) = 5(aib; — a;bi)
1 (A1.1)
agibyy = 5(aib; + a;bi),

where a and b are any indexed variables.

Let us summarize here our conventions on gamma-matrices in ten dimensions.
We start with Minkowski metric ds* = —daj+dazi+. .. dx3. Capital letters from the
middle of the Latin alphabet normally are used to denote ten-dimensional space-time
indices M, N,P,Q = 0,...,9. Let v™ for M = 0,...,9 be 32 x 32 matrices rep-
resenting the Clifford algebra CI(9,1). They satisfy the standard anticommutation
relations

{M

MY = gMN, (A.1.2)

where ¢g™¥ is the metric. The corresponding representation of Spin(9,1) has rank
32 and can be decomposed into irreducible spin representations St and S~ of rank

16. The chirality operator

11 1.2 9.0
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acts on ST and 8~ as multiplication by 1 and —1, respectively. The gamma-matrices

'™ reverse chirality, so '™ : §* — SF. We can write v in the block form

0
M = : (A.1.3)
M 0
assuming that we write the rank 32 spin representation of Spin(9,1) as
S+
S_

(A.1.4)

Let I'™ and '™ be the chiral “half” gamma-matrices appearing in 1} Then
PPN} _ MV pUIEN) _ N (A15)
We define vMN TMN and TMN as follows

M N MN
0 [MN] 0 IMN

Using anticommutation relations we get
rMTPQ — ygMIPP@ 4 TPOPM, (A.1.7)

For computations in the four-dimensional theory, we will often need to split the
ten-dimensional space-time indices into two groups. The first group contains four-
dimensional space-time indices in the range 1,...,4, which we denote by Greek
latter in the middle of the alphabet u, v, A, p. The second group contains the indices
for the normal directions, running over 5, ...,9,0, which we denote by capital letters
from the beginning of the Latin alphabet A, B, C, D. As usual, the repeated index

means summation over it. Then we have the following identities
DalH = —4T 4
rr,,r, =0
e (A.1.8)
PET AT, =214

T 45T, = 40 4p
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We choose matrices I'y; and T to be symmetric:
(MM =Ty (T =T

Then we get (TMN)T = —_I'"MN o the representations ST and S~ are dual to each
other.
There is a very important “triality identity” which appears in the computations

involving ten-dimensional supersymmetry:

(FM)al{a2 (FM)asoul} = O? (A19)

where oy, s, 3,04 = 1,...,16 are the matrix indices of I'M.

All gamma-matrices relations above are valid both for Minkowski and Euclidean
signature.

The difference between gamma-matrices for Minkowski and Euclidean signature
is the following. In Minkowski signature we choose I'M to be real. In Euclidean
signature we use the following matrices {iI'°,T'!,... T9}. Therefore all Euclidean
gamma-matrices are real except I'°, which is imaginary. In Euclidean signagure the
representation ST and S~ are unitary. Since in Euclidean signature they are also
dual to each other, we conclude that in Euclidean signature ST and S~ are complex
conjugate representations.

It is convenient to use octonions to explicitly write down I'M. In Minkowski

signature we choose

0 ET
T — =17
E, 0
1 0
o= | ¢ , (A.1.10)
0 —lsxs
o _ Isxs 0
0 lgxs

where F; for i = 1...8 are 8 x 8 matrices representing left multiplication of the

octonions.
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Let e; with ¢ = 1...8 be the generators of the octonion algebra with the oc-

tonionic structure constants cj; defined by the multiplication table e; - e; = c}jex.

j
Then (E;); = cf;. The element e; is the identity. To be concrete, we define the
multiplication table by specifying the triples which have cyclic multiplication ta-
ble: (234), (256), (357), (458), (836), (647), (728) (e.g. eze3 = ey, etc.). Then one can

check that E; have the following form

Ju 0
E,= B , p=1...4
0 J,
(A.1.11)
0 —JT
Ey= , A=5...8,
Ja 0

where J,, for 1 = 1...4 are the 4 X 4 matrices representing generators of quaternion
algebra by the left action, while J_u are the 4 x 4 matrices representing generators

of quaternion algebra by the right action. Concretely we obtain

1 0 0 0 0 —1 0 0 0 —1 0 0 0 0 —1
0 1 0 0 1 0 0 0 0 0 1 0 0 —1
(J1,J2,J3,J4) = , (A1.12)
0 0 1 0 0 0 0 —1 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 -1 0 0 1 0 0 0
with the relations
JiJj :sijkr]k, Z,],k: 4,
and
1 0 0 0 0 —1 0 0 0 0 —1 0 0 0 0 —1
- - - - 0 1 0 0 1 0 0 0 0 0 0 —1 0 0 1 0
(J1,J2, J3, Ja) = , (A.1.13)
0 0 1 0 0 0 0 1 1 0 0 0 0 —1 0 0
0 0 0 1 0 0 —1 0 0 1 0 0 1 0 0 0
with the relations
i jz—éijkjk, Z,j,/{?ZQ...4.
Similarly,
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 —1 0 0 1 0 0 0 0 0 0 —1 0 0 1 0
(Js5, Js, J7, Jg) = - (A1.14)
0 0 -1 0 0 0 0 1 1 0 0 0 0 -1 0 0
0 0 0 —1 0 0 —1 0 0 1 0 0 1 0 0 0
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We choose orientation in the (1...4)-plane and the (5...8)-plane by saying that
1234 and 5678 are the the positive cycles.
Then the matrices I'* for p,v = 1...4and I'¥V for 7,7 = 5. .. 8 have the following

block decomposition:

Jon 0 0 0
. ,
[ ELE, 0 o gL oo 0
ny - ’
0 EpE) 0 0 —=Ji, 0
0o 0 0 —J,
) (A1.15)
—J; 0 0 0
EfE; 0 0 —J5 0 0
9y - _ )
0  EE] o 0 —J; 0
o 0 0 —JF

where the +-superscript denotes the self-dual and anti-self-dual tensors; Jio =
JlTJg = Ji, etc.
Then we define the four-dimensional chirality operator acting in tangent direc-

tions to the four-dimensional space-time :
I = 01,51y,

It is represented by the matrix

lisa 0 0 0
_ 0 -1 0 0
@ — b . (A.1.16)
0 0 —lys O
0 0 0 Lo

Similarly, we define the four-dimensional chirality operator

%8 = 7T, T,
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acting in four normal directions M =5...8. It is represented by the matrix

laxa 0 0 0

_ 0 -1 0 0
T8 — b . (A.1.17)

0 0 Laxa 0
0 0 0 —14x4

Finally, we define the eight-dimensional chirality operator

9 = rtopes),

It is represented by the matrix

lisa 00 0
0 1 0 0

9= b . (A.1.18)
0 0 —lya O
0 0 0 —lpy

The representation 16 = St (a sixteen component Majorana-Weyl fermion of
Spin(9,1)) then splits as 16 = 848’ with respect to the Spin(8) C Spin(9,1) acting
in the directions M = 1,...,8. Then we brake Spin(8) as Spin(8) < Spin(4) x
Spin(4)%, where the group Spin(4) acts in the directions M = 1,...,4, while the
group Spin(4)f acts in the directions M = 5,...,8. We write the Spin(4) as
Spin(4) = SU(2);, x SU(2)g and the Spin(4)f as Spin(4)% = SU(2)F x SU(2)%.
With respect to these SU(2)-subgroups, the representation 16 = S* of Spin(9,1)

transforms as
16 =(2,1,2,1)+(1,2,1,2) +(1,2,2,1) + (2,1,1, 2).

As we mentioned before, the only difference between the gamma-matrices in the

Euclidean and Minkowski case is that we multiply the matrix I'Y by i = v/—1, so
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the Euclidean gamma-matrices are:

0o ET
™ — My o M=1...7
Ev 0
1 0
- 5:8 1 , (A.1.19)
—18x8
o _ tlgxg 0
0 ilgxs

A.2 Conformal Killing spinors on S*

The explicit form of the Killing spinor on S* depends on the vielbein. For solution in
spherical coordinates see [IT1]. In stereographic coordinates the solution has simpler
form and is easily related to the flat limit.

Pick up a point on S*, call it the North pole, and call the opposite point the
South pole. Let a# be the stercographic coordinates on S* in the neighborhood of
the North pole. The metric has the following form

1
G = Wem, where €= —— (A.2.1)

C(L+ )2
By 6 we denote the polar angle in spherical coordinates measure from the North pole.
In other words, ¢ = 0 is the North pole, 6 = 7 is the equator, and § = 7 is the South
pole. We have |z| = 2r tan £ and e = cos? £. Fix the Vielbei e = 6%e?. The spin
connection w‘;}\ induced by the Levi-Civita connection can be computed using the
Weyl transformation of the flat metric J,, eméw. Under such transformation

j B (O o o N po_
Wh, = Why + (eher, — epnet”Q),). Since in the flat case wj, = 0, we get

why = (eher, — enne™Q,), (A.2.2)

n this section we use the indices i, = 1,...,4 to enumerate the vielbein basis elements,
that is ele’ = 6" where /7 is the four-dimensional Kronecker symbol. Then I'* are the four-
dimensional gamma-matrices normalized as I'(AT?) = §A7,
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where Q, := 0,1).

The conformal Killing spinor equation takes the explicit form
1 .
(EA + Zwﬂml““”)s =TI,é
Lo pinys— _Lpo..
((9,\ + Zw/g,g)\r )8 = —@FA&“,

At the flat limit 7 = oo the equations simplify as dye = I'\é and 0,& = 0; hence the

(A.2.3)

flat space solution is
g = és + ZEuFﬂEAC
(A.24)
€ =¢&,,
A A . 4 . A
where £, £, are constant spinors on R*. The spinor £, generates usual supersymme-

try transformations, the spinor €, generates special superconformal transformations.

For an arbitrary r the solution is

1 .
e = ——— (G + 2" Tpe,) (A.2.5)
1+ 5=
1 T,
Fo (@—Zj%g, (A.2.6)
2
1+ % "

where £, and €. are arbitrary spinor parameters.

Consider the case when ¢ is the conformal Killing spinors generating a transfor-
mation of an OSp(2[4) subgroup. We take chiral £, and &, such that %¢, = £, and
Y, = é., so

a:—;L—@+ﬂmW@. (A.2.7)
1+
Moreover, for such spinor € we have £, = Tlr}lwﬂgFﬂ”és, where wy; is an anti self-dual
generator of SO(4) normalized wpw™” = 4.

This means that J. squares to a rotation around the North pole generated by w.
Then (£, £.) = 15 (&5, €5), and thus (g,¢) is constant over S*.

Take (£5,€5) = 1. Then we get the vector field vy, = elye = 26,1 afec =

QéngFﬂxﬂ%iwﬁ;\Fﬁ’\és = Loiw;,(64€s) = 2afwpy. Using this identity we can rewrite
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conformal Killing spinor ¢ = ¢(x) as

1 11, 5 1 1

e(7) = ——=(& + 5 7 T [7T,) = = (o + 52 T w8, =

1+ 2 14 25
(A.2.8)
1 1 1 ;
=—(&+ §v;rkr%s) = (65 + finﬁ(x)rkr%s) =
1+ 2 1+ % r
(A.2.9)
= Cosg+sin€(nA(a:)F5‘F9) £s = €x b i ( )I‘;\FQ 3

= 5 5 i s = P 27’L)\ Xz Es,

(A.2.10)

where nj5 is the unit vector in the direction of the vector field v5. The aim of these
manipulations was to represent the spinor £(z) at an arbitrary point x by an explicit

Spin(5) rotation R(z) = exp g(n;\(x)F;\Fg) of its value at the origin £(0) = &;.

A.3 Off-shell supersymmetry

Let 0. be the supersymmetry transformation generated by a Killing spinor €. Then

the square of d. is computed as follows
2 1 PQ 1 A
5gAM = (SE(SFM\I/) = EFM(§F SFPQ + §F CDADMS). (Agl)
Since
- 1 -
€FMFPQ8 = 5F£QFM€ = —8FPQFM8 = §E(FMFPQ — FPQFM) = QgM[pé'FQ}&',

the first term for 62 Ay, gives —el'VeFyys. The second term is

1 A = A

§€FMF“ DD, e = =2l I yed”.

Then
5?AM = —(5I‘N5)FNM — 26Ty T 4e®?. (A.3.2)
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Restricting the index m to the range of 1 or A we get respectively

62A, = —v"F,, — [vP®g,D,]

. (A.3.3)
62Dy = —0"D, Dy — [VPOp, B 4] — 2eT 40P — 2e6D,
where we introduced the vector field v
vt = elThe, vt =ele (A.3.4)
Therefore
62 = —L, — Gyua,, — R— (A.3.5)

Here L, is the Lie derivative in the direction of the vector field v#. The transfor-
mation G, 4,, is the gauge transformation generated by the parameter v A,;. On
matter fields G acts as G- ® = [u, |, on gauge fields G acts as G,,- A, = —D,u. The
transformation R is the rotation of the scalar fields (R-®)4 = R p®? with the gen-
erator Rap = 2eT 4pE. Finally, the transformation €2 is the dilation transformation
with the parameter 2(£é).

The 62 acts on the fermions as follows
1
62U = Dy (eT )M Ve 1 5rﬂf“(gr AV)D,e =
1
= (eTn Dy V) IMNe + (Do) Dy 0TV e + §F“A(€F AV)D,e. (A.3.6)

From the “triality identity” we have FNQZ(MFC]:Q))S = —%FN I'Najas- Then the first

a2

term gives

(eDNDy ) (T MNe),, = (DN Dy W) (TMTVe),, — ¢MVey,) =

= e T Naya, Dar U T TN, 6% — (TN Dy W)e,, =
1 -
— _5(gaeralagg%)(FggrgVQgDM\W) — (T DyT)e,, =

1 -
= —§(ng5)(erNDMxp)a4 — (TN DyV)e,, =
1 ~

= —5(5PN5)(—FNFMDM\II +2DNV)o, — (TN DyV)e,, =

= SN (W), — (DY) Dy ), — (DW)ew,. (A3
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The first and the third term in the last line vanish on-shell. When we add auxiliary
fields, they will cancel the first and the third term explicitly. Then we get

1
62U = —(eINe) Dy + (UT'y Do) Ve + §FNA(gFAqJ)Dus +eom[V¥], (A.3.8)

where eom[V¥] stands for the terms proportional to the Dirac equation of motion for

U. Then we rewrite the last two terms as follows

1
(UTNT 6T e + §F“A(5FA\II)FH€

= (UTNT,E) (THTN —g"N)e—2(eT g U)T4E = (UTNT 6 THT N e—4(WE)e—2(eT 4, U) T
(7 T ne) TN — (eDp0)DHTNT 6 — 4(WE)e — 2(eT 4 W) T =

= —(ET T, e)TFTY U — (1, T ae) DT AU 2(eT, W) TV EH4(eT 4 W) TAE—4(WE)e—2(eT 4 W)T4E =

— (BT, e)T"e — 4(e8) U — (ET,48) T4 + 2(eT, U)TVE + 2(eT 4 U)TAE — 4(Té)e =

1 1 1
— _§(grwg)w\p - 5(51“”,,5)1“””\1! — 4(e8)W — (ET ae)TH4e — 5(51“1435)1“‘43\11—1—

+ = (0 4pe) [ ABW 4 2(eDy W)V E — 4(VE)e =

N | —

1 1
= (_ﬁ(grwg)rw + §(§FAB€)FAB\I’) +
1 ~
+ (—5(5TMN5)FMN\IJ — 4(e8) U — 4(Vé)e + 2(5FN\IJ)FN5) (A.3.9)

The first term is a part of the Lie derivative along the vector field v = (el'*¢)
acting on W. The second term correspond to the rotations of the scalar fields ®* by

the generator R4p and the properly induced action on the fermions.

FMN

In the NV = 4 case we use Fierz identity for T'}!Y

'y asa, In the last line
of (A.3.9) to see that all term in the second pair of parentheses are canceled except
for —3(e€)V, so that

1 1, -
62U = —(ePNs)DN\I/—§(5r,wg)rquf—§(gPABé)PABxIJ—s(és)\1f+eom[\1:]. (A.3.10)

To achieve off-shell closure in the N' = 4 case we add seven auxiliary fields K
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with ¢ = 1,...,7 and modify the transformations as

1 1 A
6.V = TN Fyn + ~T*4®, D, + K'y;
2 2 (A.3.11)
6. K; = =TV Dy 0.
Here we introduced seven spinors v;. They depend on choice of the conformal Killing

spinor € and are required to satisfy the following relations:

My, =0 (A.3.12)
1 ~ o
5( Tne)ls = vivh + eacs (A.3.13)

The equation (|A.3.12)) ensures closure on A,;, the equation (A.3.13|) ensures closure
on V.

The new term in the transformations for ¥ modifies the last line of as
0-(K'vy) = —(v:D¥)y;.
Then the terms in 620 which were not taken into an account in are
— (v:DW)y; + %(J‘Ne)fwl)\ll — (eDV)e. (A.3.15)

This expression is identically zero because of ((A.3.13|). Hence, after inclusion of the
auxiliary fields K;, the formula (A.3.10) for §2W is valid off-shell.

For the transformation 02K; we get
1 1 ,
62K; = —u M [(eT 1), W] — yiFMDM(érpQFPQH 5Fﬂf‘cp aDe+K'v;). (A.3.16)

Using the gamma matrix “triality identity” the first term is transformed to

(1, TMe)[(U, M P)], which vanishes because of (A.3.12). The second term with

FMN

derivative acting on F is equal by Bianchi identity to (v, ye) Dy and vanishes
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because of (A.3.12)). Then we use (A.1.8) to simplify the remaining terms

1 N 1 N 1,1 ,
02K; = —§ViF“FPQFM5FpQ—§(ViTMTMAF“»s)DMCDA—5(—4—72)®Auif AL, T, e—
— v (Dy K9y — (v D) K9 =
1 ~ 1 - 2
= —5(4)uiFMB§DM<I>B — 5(—4)uiFMB§DM<I)B + (5 uledat+
.

— (viTMv)) Dy K7 — (il D) K7 = —(eTMe) Dy K7 — (vTM Dyyvy) K7 =

= —(eI™e) Dy K" — (V" D,y ) K7 — 4(e) K. (A.3.17)

To get the last line we use the differential of (A.3.14)), i.e. vDvy) = 4(€)dy;.
Now we consider separately the case of pure NV = 2 Yang-Mills. First we rewrite

the last terms in ((A.3.9)) as follows (here d is the dimension of uncompactified theory)

_ (5FN\I’)f‘MFNf‘M§ o (\PFNfMé)fMFNg . d(ég)\IJ _

= (d — 2)(eDyU)TNE — (WD NT ) 8)TMTNe — d(2e)W. (A.3.18)
For the pure N = 2 theory in four-dimensions we take d = 6 and get

(‘%@FMN@FMN‘I’ —4(e8) ¥ — 4(Te)e + 2<eer>fNé> -

1 By .
- (4(5anIf)rN5 (WD T )M Ve — 6(55)\1}) -

2
- 1 - -
— 4(e8)U — 4(V&)e + 2(eTyU)TVe = §(WFNPM5)PMFN5 — () — 4(Vé)e =
1 . N
= 5(\11(—FMFN + 290 n)E)TMT Ve — (e8)U — 4(Vé)e =

1 - -
= —i(quMrNg)erN + 6(VE)e — (e8)U — 4(Vé)e =

1 - ~
— _5(\perNg)erNg +2(Wé)e — (e6)W. (A.3.19)

We express the first term in terms of the triplet of matrices A?, which are defined
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as a set of three antisymmetric matrices such that

N N = @A 6, g k=1, 3, (A.3.20)

[A;, TM] =0 (A.3.21)

%rg{ csL M azas = Oan(arOan)as — Mag(ar Moo (A.3.22)
Then we get

(T T &) TMTNe = 4(VE)e + 4(e8)U + 4(e A&, (A.3.23)

and finally the equation (A.3.19)) turns into
—2(U&)e—2(e8)U—2(e A'E) N U+2(VE)e—(e8)¥ = —2(eA'E) A" U —3(Ze) V. (A.3.24)
That completes simplification of 62 acting on fermions

1 1, - o
62U = —(eIVe) Dy — 5(5rwg)rwf — é(gI‘ABé)I‘AB\I! — 2(eN"E)AW — 3(22) V.
(A.3.25)

It has the structure
820 = —L,¥ — Gyny ¥ — RV — RV — QU, (A.3.26)

where the notations for the generators are the same as in the bosonic case. The
only new generator here is R, corresponding to the term §2W0 = —2(eA’8)A"W. It
generates an SU(2); R-symmetry transformation of A = 2 which acts trivially on
the bosonic fields of the theory, and as ¥ +— e"*¥ on fermionic fields.
To achieve off-shell closure in N' = 2 case we add a triplet of auxiliary fields K
and modify the transformations as
5.V = %PMNFMN + %F“A(I)ADMS + K'Ae

(A.3.27)
6. K; = eNTM Dy 0,

The new term in the transformations for ¥ modifies the last line of (A.3.7) as
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Then the terms in 620 which were not taken into an account in (A.3.18)) are
1 .
(eNDV)Aje + 5(5FN6)PN]D\1/ — (eDW)e. (A.3.28)

This expression is identically zero because of the relation (A.3.20). Hence, after
inclusion of the auxiliary fields Kj;, the formula for 020 is valid off-shell.

Remark. The second equation follows from the first equation (|A.3.12))
and the third equation as follows. Let

Maﬁ = VZYVZ; + Eakp-

We want to show that M,z = %vaéVﬁ, that is the matrix M,z can be expanded
over the matrices fjavﬁ with the coefficients Jvy. Fix the positive definite metric on
the space R'6*16 of 16 x 16 matrices as (M, M) := M,3Mgp. Since TV = I'y and
/TN, = 165}, the set of 10 matrices 1I'y is orthonormal in R'*1%. Complete this
set to the basis of R'*16 Then the coefficient my of iFN in the expansion of M

over this basis is given by the scalar product

1 1 :
my = (M, ZFN) = Z(I/ZFNVZ + SFNS) = 21}]\[.

Therefore we have M = 2un(3Tn) 4 (...), where (...) stands for possible other
terms in the expansion over the completion of the set {3y} to the basis of R'6*16.

To prove that all other terms vanish, compare the norm of M
(M, M) = (ee)(eg) + (viv;)(vivy) = (e€) + 0;5(c€)dij(ec) = 8(ee)(g¢)
with the >y m3%

Z m3 = duyoy = 4(eDye)(elNe) = 4((eDye) (eTNe) + 2(ee) (e€)) = 8(ee)(ee).

Since the norms are the same, (M, M) = Y~ m3;, and the metric is positive definite,

we conclude that all other coefficients vanish.
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A.4 Index of transversally elliptic operators

Here we collect some facts about indices of transversally elliptic operators mostly
following Atiyah’s book [71]. See also [72].

Let --- — E 20 B+l . be an elliptic complex of vector bundles over a
manifold X. Let a Lie group G act on X and bundles E*. This means that for
any transformation g : X — X, which sends a point = € X to g(z), we are given a
vector bundle homomorphisms 7% : ¢*E* — E?. Then we have natural linear maps
4t T(EY) — T(E") defined by 4" = 4% o g*. On any section s(x) € T'(E*) the map
4% acts by the formula (¥s)(z) = v.s(g(x)). We assume that 4 commutes with the
differential operators D; of the complex E. Then 4 descends to a well-defined action
on the cohomology groups H'(E).

The G-equivariant index is defined as

indy(E) =Y (—1) try: 4" (A.4.1)

In the case when the set of G-fixed points is discrete and the action of GG is nice
in a neighborhood of each of the fixed point, the Atiyah-Bott fixed point formula
says [89-01]

. (=)t
ind,(E) = > ot (1= dg(o]] (A.4.2)

This formula can be easily argued in the following way (see [112] for a derivation

zefixed point set

using supersymmetric quantum mechanics). For an illustration we consider the case
when the complex E consists of two vector bundles E° ) 1 and we assume that the
bundles are equipped with a hermitian G-invariant metric. Let D : T'(E°) — T'(E!)
be the differential. Then we consider the Laplacian A = DD* + D*D. The zero
modes of the Laplacian are identified with the cohomology groups of E, which are in
this case: H°(E) = ker D and H'(FE) = coker D. Hence, the index can be computed
as

ind,(E) = tlim strrg) ye '8
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Here the supertrace for operators acting on I'(E) is defined assuming even parity
on I'(EY) and odd parity on I'(E'). However, the expression under the limit sign
actually does not depend on ¢ because [A,4] = 0. Taking the limit ¢ — 0 we get
supertrace of 4. The trace can be easily taken in the coordinate representation. By
definition, the operator 4 has kernel 4(x,y) = v,0(g(x) — y) if we write (¥s)(x) =
Jx Y@, y)s(y). Here 6(x) is the Dirac delta-function. Taking the trace we get
Atiyah-Bott result

ind,(E) = lim strpg Je 2 = /d:r; strg, Y(x,x) = /dx strg, 1.0(g9(x) —x) =

t—0
Strp, Vo
= z . (A4.3
Z et - gy A

Let X be a complex manifold of dimension n. Consider the complex of (0, p)-
forms with the differential 9. Let G = U(1) acts on X holomorphically. In a

neighborhood of a fixed point we can choose such coordinates z!,

., 2" that an
element g € G acts by z* — ¢;2°. If 2* transforms in a U(1) representation m; € Z,
and we parameterize U(1) by a unit circle {|q| = 1,q € C}, then ¢; = ¢™i. One-
forms f; transform as f; — ¢; ' f;. Since |g| = 1 we have f; — ¢;f;. Computing the
supertrace for the numerator on external powers of the anti-holomorphic subspace
of the fiber of the cotangent bundle at the origin, we get strgoe ¢ = [[I—,(1 — g;).
The denominator is [[/_,(1 — ¢)(1 — ¢;'). Then contribution of a fixed point with
weights {q1,...,¢,} to the index of 9 is

B 1
CITL =gt

Let m : T*X — X be the cotangent bundle. Then 7*F; are the bundles over
T*X. The symbol of the differential operator D : I'(Ey) — I'(E;) is a vector

ind,(9)|o

bundle homomorphism o (D) : 7*Ey — 7*FE;. In local coordinates x; it is defined by

replacing all partial derivatives in the highest order component of D by momenta,

o)
Ox?

SO — ip;, and then taking p; to be coordinates on fibers of T*X. Let the family

of the vector spaces T5X be a union of vector spaces T5X, over all points x € X,
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where T¢X, denotes a subspace of T*X transversal to the G-orbit through z. The
operator D is transversally elliptic if its symbol (D) is invertible on 775X \ 0, where
0 denotes the zero section.

We need a few notions of K-theory [I13]. Let Vect(X') be the set of isomorphism
classes of vector bundles on X. It is an abelian semigroup where addition is defined
as the direct sum of vector bundles. For any abelian semigroup A we can associate
an abelian group K (A) by taking all equivalence classes of pairs (a, b) ~ (a+c¢, b+c),
where a,b,c € A. Taking Vect(X) as A we define the K-theory group K (X). Its
elements are pairs of isomorphism classes of vector bundles (Ey, £) over X up to
the equivalence relation (FE4, Ey) ~ (Ey @ H, Ey @ H) for all vector bundles H over
X. If X is a space with a basepoint x, then we define K(X) as a kernel of the map
i*: K(X) — K(xg) where ¢ : xg — X is the inclusion map. Next we define relative
K-theory group K (X,Y) for a compact pair of spaces (X,Y). Let X/Y be the space
obtained by considering all points in Y to be equivalent and taking this equivalence
class as a basepoint. Then K (X,Y) is defined as K(X/Y). Equivalently, K(X,Y)
consists of pairs of vector bundles (Ey, Ey) over X such that FEj is isomorphic to
E; over Y, and considered up to the equivalence relation (Fy, Ey) ~ (Eq® H, E1 &
H) for all vector bundles H over X. For a non-compact space, such as a total
space of vector bundle V' — X, we define K(V) as K(X"), where X" is a one-
point compactification of V', or equivalently B(V)/S(V), where B(V) and S(V) is
respectively a unit ball and unit sphere on V.

If a group G acts on X we can consider the set of isomorphism classes of G-vector
bundles over X. It is an abelian semi-group, to which we associate an abelian group
K (X). All constructions above can be done in G-equivariant fashion.

Since the symbol of a transversally elliptic operator is an isomorphism o(D) :
™ E — m*F of vector bundles over 75X outside of zero section, by definition it
represents an element of Ko (75X). One can show that the index of transversally

elliptic operator does not depend on continuous deformations of it symbol, hence it
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depends only on the homotopy type of the symbol. The index vanishes for a symbol
which is induced by an isomorphism of vector bundles E and F'. Therefore the index
of D depends only on an element of K¢(7T5X) which represents symbol o (D).

The equivariant index was defined for any group element g as an alternating sum
of traces of ¢ in representations R’ in which G acts on the cohomology groups H® of
the complex E. One can show that for transversally elliptic operators the represen-
tations R’ can be decomposed into a direct sum of irreducible representations where
each irreducible representation enters with a finite multiplicity. In the elliptic case
the number of irreducible representations which appear is finite since cohomology
groups H* have finite dimensions. Let x, be a character for each irreducible repre-
sentation . Then the index of transversally elliptic operator is ) maxq Where m,
are finite integer multiplicities. Thus the index can be regarded as a distribution on
G, so that the multiplicities m,, are coefficients in its Fourier series expansion. Let
D'(G) be the space of distributions on G.

Consider an example. Let X be a circle S* on which group G = U(1) acts in a
natural way. Let Ey be the trivial rank one bundle £ over S!, and E; be the zero
bundle. Let D : T'(£) — 0 be the zero operator. Then the cohomology group HY is
the space of all functions on a circle, and H' vanishes. Functions on a circle can be
decomposed into Fourier modes labeled by integers, so that each mode corresponds
to an irreducible representation of U(1). If ¢ = €™ for a € [0, 27) denotes an element

of U(1), then we obtain the index

ind0 = iq" = iema =210 ().

We see that the index is not a smooth function on U(1), but a distribution — the
Dirac delta-function.
We learned that the index is a map from K-theory group of 75X to distributions
on G
ind : Kg(T5X) — D'(G).
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Moreover, the index is a group homomorphism with respect to the abelian group
structure on K¢ (75 X) and the addition operation on D'(G). The abelian groups
D'(G) and K¢(T;:X) are modules over the character ring R(G). Indeed, K¢ (pt) =
R(G) since elements of R(G) are formal linear combinations of irreducible represen-
tations of G, and K¢(X) has a module structure over K¢(pt), since we can take
tensor products of vector bundles representing Kq(X) with trivial vector bundles
representing K¢ (pt). The module D'(G) has a torsion submodule. For example, the
Dirac delta-function on a circle supported at ¢ = 1 is a torsion element of D'(U(1)),
because it is annihilated by ¢ — 1. One can show that the support of the index is a
subset of points g € G for which X9 # &, where X9 C X is the g-fixed set. If G
acts freely on X then the index is supported at the identity of GG, hence it is a pure
torsion element.

From now we consider the case G = U(1). We can find torsion free part of the
index if we know it as a function on a generic group element g # Id. If X9 consists
of non-degenerate points, then we can repeat the argument used in the elliptic case
and obtain the formula . In the elliptic case, separate contributions from
fixed points are not well defined at ¢ = 1, but the total sum is well defined, since the
index is a finite polynomial in ¢ and ¢~!. In the transversally elliptic case, if we add
contributions of fixed points formally defined by the formula , we will obtain
correctly only the torsion free part of the index. In other words, we will obtain the
index up to a singular distribution supported at ¢ = 1.

To fix the torsion part, we should find a way in which we associate distributions
to rational functions given by the formula (|A.4.3)). This procedure is explained in
details in [71]. For example, the contribution to the index of d operator from the

origin of C as a rational function is

ind,(9)]o = (A.4.4)

1—g¢q

There are two basic ways to associate a distribution to it, which we call expansions
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in positive or negative powers of ¢:

[1 —1q1L B _1;iq - iqn (A.4.5)

{ 1 _1} = iq”- (A.4.6)

l—q
These two regularizations differ by a torsion element (a distribution supported at

g=1):

[1—1611} {1_61 } = Z ¢" = —2mid(q —1).

n=—oo

The decomposition of K¢ (T5X) to the torsion part and the torsion free part can

be described by the exact sequence
0— Ke(THX\Y)) = Kg(TEX) — Ka(T"X|y) — 0, (A.4.7)

where Y is the fixed point set in X. Since G acts freely on X \ Y, the image of
Ko(TEH(X \ Y)) under the index homomorphism is a torsion submodule of D'(G).
The last term of the sequence is the torsion free quotient determined completely by
the fixed point set Y. Using a vector field v on X generated by action of G, it is

possible to construct two homomorphisms
0% : Ka(T*X|y) — Ka(ThX),

where = signs correspond to a choice of the direction of the vector field. First, given
a symbol o : 7 Ey — w*Fj, representing an element of Ko (T*X|y), we extend it
to an open neighborhood U of Y. It is an isomorphism outside of the zero section.
Second, we define a symbol &, restricting symbol o to fibers of T X shifted in the

direction of the vector field v
o(x,p) =o(x,p+ ve_pz),

where (z,p) are local coordinates on 7* X in a neighborhood of Y. Outside of Y the

symbol & is an isomorphism for all points on fibers of T..X (not only outside of zero
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section). In other words, & is an isomorphism everywhere in the neighborhood U
outside of the fixed point set Y. Hence & represents an element of K¢ (T5U). Since
U is open in X, using the natural homomorphism Kq(TiU) — Ko(T5X) we get
an element of K¢ (T5X).

Applying this construction to the space X = C™ on which U (1) acts with positive
weights my, ..., m,, and taking generator of K (T*C"|y) associated with J operator,

we get its images under 0% in Kq(T3C"). A direct computation shows that

[ —qm)

Now assume that using the vector field v it is possible to trivialize a transversally

ind 6%[0] = {;} R

elliptic operator everywhere on T X outside of the fixed point set Y, and that in a
neighborhood of the fixed point set the trivialization is isomorphic to just described
with some choice of + signs for each fixed point. Then the index is computed
by summing contributions from the set of fixed points, where each contribution is
regularized by an expansion in positive or negative powers of ¢, according to the
choice of sign for the # homomorphism.

For example in this way we get the U(1) index of the following operator on CP*:

ind(£(0)0+ (1 — £(6))0) = L _1q_1} -+ L _1q_1} - (A48)

Here 6 denotes the polar angle on CP! measured from the North pole, and f(#) =
cos?(6/2), so that the operator is approximately 0 at the North pole and O at the
South pole. It fails to be elliptic at the equator, but it is transversally elliptic with
respect to the canonical U(1) action on CP' whose fixed points are the North and

South poles.
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