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Abstract

This thesis is devoted to several exact computations in four-dimensional supersym-

metric gauge field theories.

In the first part of the thesis we prove conjecture due to Erickson-Semenoff-

Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop op-

erators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix

model. We also compute the partition function and give a new matrix model for-

mula for the expectation value of a supersymmetric circular Wilson loop operator for

the pure N = 2 and the N = 2∗ supersymmetric Yang-Mills theory on a four-sphere.

Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal

gauge theory are treated similarly.

In the second part we consider supersymmetric Wilson loops of arbitrary shape

restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmet-

ric Yang-Mills theory. We show that expectation value for these Wilson loops can be

exactly computed using a two-dimensional theory closely related to the topological

two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for

the complexified gauge group.
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Chapter 1

Introduction

String theory [1–3], born from Veneziano amplitude [4] as an attempt to describe

dynamics of strong interactions, presently is a main candidate for the unified quan-

tum field theory. Nowadays string theory incorporates ideas of grand unification,

quantum gravity, supersymmetry, compactification of extra dimensions, dualities

and many others.

The Standard Model of fundamental interactions is based on non-abelian quan-

tum gauge field theories. A coupling constant in such theories usually decreases at

high energies and blows up at low energies. Hence, it is easy and valid to apply

perturbation theory at high energies. However, as the energy decreases the pertur-

bation theory works worse and completely fails to give any meaningful results at the

energy scale called ΛQCD.

Therefore, to understand the ΛQCD scale physics, such as confinement, hadron

mass spectrum and the dynamics of low-energy interactions, we need non-perturbative

methods. The main such methods developed in string theory are based on super-

symmetry and dualities.

Like any symmetry, supersymmetry imposes some constraints on dynamics of a

physical system. The maximally supersymmetric four-dimensional gauge theory is

N = 4 supersymmetric Yang-Mills. In this theory the dynamics is severely restricted

by the large amount of supersymmetry, but it is still very non-trivial theory and thus
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is interesting for theoretical study. Besides gravity dual conjecture [5–7], the theory

is related to the geometrical Langlands program [8] and the theory of integrable

systems [9, 10] and quantum groups [11].

Duality means an existence of two different descriptions of the same physical

system. If the strong coupling limit at one side of the duality corresponds to the

weak coupling limit at the other side, such duality is especially useful to study the

theory. Indeed, in that case difficult computations in strongly coupled theory can

be done perturbatively using the dual weakly coupled theory.

A key role in string theory dualities play objects called D-branes. The D-branes

are solitonic-like non-perturbative objects in the closed sector of string theory. The

open strings end on D-branes. If we integrate out massive string modes we get

low-energy action for the massless fields [12–14]. In the leading order in α′, where

(2πα′)−1 is the string tension, the low-energy dynamics of one D-brane is described

by gauge theory coupled to scalar fields corresponding to the fluctuations of the

D-brane in transversal directions. If we take N D-branes on top of each other, the

gauge symmetry is enlarged to U(N).

On N D3-branes we actually get N = 4 supersymmetric Yang-Mills theory with

U(N) gauge group. On the other hand, recalling that D-brane is a solitonic like

object in the closed sector of string theory we can use gravity description, since

gravity is contained in the closed string sector. Hence, the dynamics of D3-branes

can be described in two different ways. The resulting duality, called nowadays

AdS/CFT duality [6, 15], is similar to the old ideas to describe QCD by strings [16,

17].

From the viewpoint of closed strings, Dp-branes carry a charge with respect to

Ramond-Ramond fields [3], which geometrically are p+ 1-forms. Due to supersym-

metry, the mass and the charge of D-brane are related in such a way, that the metric

near D3-brane is like a metric near extremal black hole extended in three-dimensions

ds2 = (1 +R4/r4)−1/2dx2 + (1 +R4/r4)1/2(dr2 + r2dΩ2
5). (1.0.1)
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Here xi for i = 1, . . . , 4 are coordinates along the world-volume of the D3-branes, and

Ω5 and r are spherical coordinates for the six transversal directions. Near horizon

the metric asymptotically is

ds2 = R2dx
2 + dy2

y2
+R2dΩ2

5, (1.0.2)

where y = R2

r
.

Hence metric near D3-brane is the metric of the AdS5×S5 space with boundary

located at y = 0. The AdS/CFT conjecture [6, 7, 15] claims exact equivalence

between the theory defined on the boundary, which is N = 4 supersymmetric Yang-

Mills, and the theory in the bulk, which is IIB string theory. The ’t Hooft coupling

constant λ = Ng2
YM relates to the string tension as T = R2

2πα′
=
√
λ

2π
, and string

coupling constant gs = eΦ = 4πg2
YM . In the planar ’t Hooft limit [16] N → ∞,

λ = const the strings do not interact. In other words, only contributions of genus

zero worldsheets do not vanish.

The ’t Hooft idea [16] on how U(N) gauge theory simplifies in the large N

limit is the following. Let us denote propagators of gluons by double lines, such

that each line corresponds to an index of the fundamental representation of U(N).

Then Feynman diagrams are equivalent to ribbon graphs. The color factor for each

Feynman diagram is equal to N f , where f is the number of faces. For each Feynman

graph we can associate a Riemann surface on which this graph can be drown without

intersections. Let coupling constant gYM enters the Yang-Mills actions as 1
4g2
YM

trF 2.

Then a Feynman diagram which has v vertices, e edges and f faces has weight

N f (λ/N)e−v. Using Euler character χ = 2−2g = f −e+v we obtain that Feynman

graph of genus g contributes with the factor N2−2gλE−V . So the genus expansion

takes form
∑

gN
2−2gFg where Fg stands for the sum of all diagrams of genus g. This

precisely corresponds to the genus expansion for the string theory, if we identify 1/N

with the string coupling constant gs = eϕ. (Here ϕ is the dilaton fields which enters

the sigma model action on world-sheet Σ as 1
2π

∫
Σ
Rϕ, where R is the scalar curvature
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of the world-sheet metric.)

Hence at the large N limit, higher genus contributions are suppressed. In

other words, the large N limit corresponds to weakly coupled strings. The string

model representing real QCD in the large N limit is still not found. However, the

AdS/CFT conjecture claims that such dual description of N = 4 supersymmet-

ric Yang-Mills theory is given by IIB string theory in the AdS5 × S5 background

[6, 7, 15].

The N = 4 supersymmetric Yang-Mills theory has global SO(4, 2) conformal

symmetry and SU(4)R symmetry. The SO(4, 2)× SU(4) symmetry corresponds to

the isometry group of AdS5 × S5.

If the coupling constant λ = Ng2
YM is small, the perturbation theory on the

gauge theory side works well. On the other hand, if λ is large, then the curvature

radius R = α′1/2λ1/4 of the space-time in the dual description is large and then

closed string, or, in the leading order, supergravity approximation works well.

This is an example of very non-trivial duality between gauge theory and gravity.

Naively it seems that gauge theory in d dimensions and gravity in d+ 1 dimension

have very different configurational space of degrees of freedom and classically it

seems they can not be dual theories. However, the key point here is that duality

swaps the weak coupling limit with the strong coupling limit. The collective degrees

of freedom at one side become fundamental degrees of freedom at the other side.

Such weak-strong coupling duality is very powerful, since it allows us to make

non-perturbative predictions for each side of the story using the other side pertur-

batively. On the other hand, the same property makes it very difficult to prove or

even test the duality conjecture. To test the duality conjecture on some physical ob-

servables we have to compute expectation value exactly, to all orders in the coupling

constant, at least in one of the theory independently from the dual description.

Some other non-perturbative methods are required to make such computation.

One of such methods of exact computation of the path integral for theories with
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suitable fermionic symmetry Q is localization on Q-invariant configurations [18,

19]. Mathematically, localization is integration of equivariantly closed forms using

Duistermaat-Heckman [20] or Atiyah-Bott-Berline-Vergne [21, 22] theorem. (See

[23, 24] for a review.) We shall use such approach for non-perturbative computations

in the gauge theory.

The basic observable in gauge theories is Wilson loop operator. Mathematically

it represents holonomy of a connection around a loop, physically it measures inter-

action between heavy quark and antiquark. Finding the expectation value of an

arbitrary set of Wilson loop operators is a formidable problem; it is equivalent to

the complete solution of the gauge theory. As mentioned above, a theory simplifies

in presence of additional symmetries, a particular kind of which is a supersymmetry.

The simplest case from the theoretical viewpoint is then maximally supersymmetric

theory, i.e. N = 4 supersymmetric Yang-Mills theory.

In supersymmetric theories the usual Wilson loop operator can be made super-

symmetric by adding coupling to some scalar fields. The simplest such operator is

supersymmetric circular loop

WR(C) = trR Pexp

∮
C

(Aµdx
µ + iΦ0ds). (1.0.3)

Here R is a representation of the gauge group, Pexp is the path-ordered exponent, C

is a circular loop, Aµ is the gauge field and Φ0 is one of the scalar fields of the theory.

All fields take values in the Lie algebra of the gauge group, i.e. in our conventions

the covariant derivative is ∇µ = ∂µ + Aµ.

In [25] Erickson, Semenoff and Zarembo conjectured that the expectation value

〈WR(C)〉 of the Wilson loop operator (1.0.3) in the four-dimensional N = 4 SU(N)

gauge theory in the large N limit can be exactly computed by summing all rainbow

diagrams in Feynman gauge. The combinatorics of rainbow diagrams can be repre-

sented by a Gaussian matrix model. In [25] the conjecture was tested at one-loop

level in gauge theory. In [26] Drukker and Gross conjectured that the exact relation
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to the Gaussian matrix model holds for any N and argued that the expectation value

of the Wilson loop operator (1.0.3) can be computed by a matrix model. However,

Drukker-Gross argument does not prove that this matrix model is Gaussian.

In the context of the AdS/CFT correspondence [6, 7, 15] the conjecture was

relevant for many works; see for example [27–51] and references there in. From the

viewpoint of string dual description, the expectation value of the Wilson loop (1.0.3)

is given by string partition function in AdS5 × S5 which lands at the contour C at

the R4 boundary of AdS5.

In chapter 2 we prove the Erickson-Semenoff-Zarembo/Drukker-Gross conjecture

for the N = 4 supersymmetric Yang-Mills theory formulated for an arbitrary gauge

group

〈WR(C)〉N = 4 on S4 =

∫
g
[da] e

− 4π2r2

g2
YM

(a,a)
trR e

2πria∫
g
[da] e

− 4π2r2

g2
YM

(a,a)
. (1.0.4)

See introduction to the chapter 2 for details on our conventions and notations.

We also get a new formula for the 〈WR(C)〉 in the N = 2 and the N = 2∗

supersymmetric Yang-Mills theory.

Our main result is

ZNS4〈WR(C)〉N =
1

vol(G)

∫
g

[da] e
− 4π2r2

g2
YM

(a,a)
ZN1-loop(ia)|ZNinst(r

−1, r−1, ia)|2 trR e
2πria .

(1.0.5)

In chapter 3 we consider more interesting Wilson loops in N = 4 Yang-Mills.

Namely, we follow [41, 52] and consider supersymmetric Wilson loops of arbitrary

shape located on a fixed two-sphere S2 in the four-dimensional theory. Such su-

persymmetric Wilson loops preserve 4 out of 32 superconformal symmetries of the

N = 4 Yang-Mills. It turns out that the localization procedure works for such

loops as well. The result is a certain two-dimensional theory resembling pertur-

bative sector of the bosonic two-dimensional Yang-Mills. From another viewpoint

this two-dimensional theory can interpreted as partially gauge-fixed two-dimensional
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Yang-Mills for complexified gauge group, or as a certain sector of topological Higgs-

Yang-Mills [53–55] theory related to the moduli space of the solutions to Hitching’s

equations [56].

The chapter 4 concludes the thesis.



Chapter 2

Circular Wilson loops

This chapter is devoted to the exact calculation of the expectation value of super-

symmetric Wilson loop in N = 4 and N = 2 superconformal gauge theories. The

main results, presented in this chapter were initially obtained in the work [57].

2.1 Introduction

Topological gauge theory can be obtained by a twist of N = 2 supersymmetric

Yang-Mills theory [18]. The path integral of the twisted theory localizes to the

moduli space of instantons and computes the Donaldson-Witten invariants of four-

manifolds [18, 58, 59].

In a flat space the twisting does not change the Lagrangian. In [60] Nekrasov used

a U(1)2 subgroup of the SO(4) Lorentz symmetry on R4 to define a U(1)2-equivariant

version of the topological partition function, or, equivalently, the partition function

of the N = 2 supersymmetric gauge theory in the Ω-deformed background [61].

The integral over moduli space of instantons Minst localizes at the fixed point set

of a group which acts on Minst by Lorentz rotations of the space-time and gauge

transformations at infinity. The partition function Zinst(ε1, ε2, a) depends on the

parameters (ε1, ε2), which generate U(1)2 Lorentz rotations, and the parameter a ∈

g, which generates gauge transformations at infinity. By g we denote the Lie algebra

8



2.1. Introduction 9

of the gauge group. This partition function is finite because the Ω-background

effectively confines the dynamics to a finite volume Veff = 1
ε1ε2

. In the limit of

vanishing Ω-deformation (ε1, ε2 → 0) the effective volume Veff diverges as well as the

free energy F = − logZinst. But the specific free energy F/Veff has a well-defined

limit, which actually coincides with Seiberg-Witten low-energy effective prepotenial

F(a) of the N = 2 supersymmetric Yang-Mills theory [62, 63]. In this way instanton

counting gives a derivation of Seiberg-Witten prepotential from the first principles.

In this chapter we consider another interesting situation where an analytical

computation of the partition function is possible. We consider the N = 2, the

N = 2∗ and the N = 4 Yang-Mills theory on a four-sphere S4 equipped with the

standard round metric.1

There are no zero modes for the gauge fields, because the first cohomology group

of S4 is trivial. There are no zero modes for the fermions. This follows from the

fact that the Laplacian operator on a compact space is semipositve and the formula

/D2 = ∆ + R
4

, where by /D we denote the Dirac operator, by ∆ the Laplacian, and

by R the scalar curvature, which is positive on S4. There are no zero modes for

the scalar fields, because there is a mass term in the Lagrangian proportional to the

scalar curvature.

Observing that there are no zero modes at all, we can try to integrate over all

fields in the path integral and to compute the full partition function of the the-

ory. In addition, we would like to compute expectation values of certain interesting

observables.

In this chapter we are mostly interested in the observable defined by the super-

symmetric circular Wilson loop operator (see Fig. 2.1)

WR(C) = trR Pexp

∮
C

(Aµdx
µ + iΦE

0 ds). (2.1.1)

Here R is a representation of the gauge group, Pexp is the path-ordered exponent,

1What we call N = 2 supersymmetry on S4 is explained in section 2.2. It would be interesting
to extend the analysis to more general backgrounds [64].
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θ=π/2

S

N θ

Figure 2.1: Wilson loop on the equator of S4

C is a circular loop located at the equator of S4, Aµ is the gauge field and iΦE
0 is one

of the scalar fields of the N = 2 vector multiplet. We reserve notation ΦE
0 for the

scalar field in a theory obtained by dimensional reduction of a theory in Euclidean

signature. Our conventions are that all fields take values in the real Lie algebra of

the gauge group. For example, if the gauge group is U(N), then all fields can be

represented by antihermitian matrices. The covariant derivative is Dµ = ∂µ + Aµ

and the field strength is Fµν = [Dµ, Dν ].

In this chapter, we prove the Erickson-Semenoff-Zarembo/Drukker-Gross con-

jecture [25, 26] for the N = 4 supersymmetric Yang-Mills theory formulated for an

arbitrary gauge group. Let r be the radius of S4. The conjecture states that

〈WR(C)〉N = 4 on S4 =

∫
g
[da] e

− 4π2r2

g2
YM

(a,a)
trR e

2πria∫
g
[da] e

− 4π2r2

g2
YM

(a,a)
. (2.1.2)

The finite dimensional integrals in this formula are taken over the Lie algebra g of

the gauge group, a denotes an element of g. By (a, a) for a ∈ g we denote an invariant

positive definite quadratic form on g. Our convention is that the kinetic term in the

gauge theory is normalized as 1
4g2
YM

∫
d4x
√
g(Fµν , F

µν). The formula (2.1.2) can be

rewritten in terms of the integral over the Cartan subalgebra of g with insertion of

the usual Weyl measure ∆(a) =
∏

α∈roots of g α · a.

We also get a new formula for the 〈WR(C)〉 in the N = 2 and the N = 2∗

supersymmetric Yang-Mills theory. As in the N = 4 case, the result can be written
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in terms of a matrix model. However, this matrix model is much more complicated

than a Gaussian matrix model. We derive this matrix model action up to all orders

in perturbation theory. Then we argue what is the non-perturbative contribution of

all instanton/anti-instanton corrections.

Our main result is

ZNS4〈WR(C)〉N =
1

vol(G)

∫
g

[da] e
− 4π2r2

g2
YM

(a,a)
ZN1-loop(ia)|ZNinst(r

−1, r−1, ia)|2 trR e
2πria .

(2.1.3)

Here ZNS4 is the partition function of the N = 2, the N = 2∗ or the N = 4

supersymmetric Yang-Mills theory on S4, defined by the path integral over all fields

in the theory, and 〈WR(C)〉N is the expectation value of WR(C) in the corresponding

theory. In particular, if we take R to be the trivial one-dimensional representation,

the formula says that the partition function ZNS4 is computed by the following finite-

dimensional integral:

ZNS4 =
1

vol(G)

∫
[da]e

− 4π2r2

g2
YM

(a,a)
ZN1-loop(ia)|ZNinst(r

−1, r−1, ia)|2. (2.1.4)

In other words, we show that the Wilson loop observable (2.1.1) is compatible

with the localization of the path integral to the finite dimensional integral (2.1.3)

and that

〈WR(C)〉4d theory = 〈trR e2πria〉matrix model , (2.1.5)

where the matrix model measure 〈. . . 〉matrix model is given by the integrand in (2.1.4).

The factor Z1-loop(ia) is a certain infinite dimensional product, which appears

as a determinant in the localization computation. It can be expressed in terms

of a product of Barnes G-functions [65]. In the most general N = 2∗ case, the

factor Z1-loop(ia) is given by the formula (2.4.48). The N = 2 and N = 4 cases

can be obtained by taking respectively limits m = ∞ and m = 0, where m is the

hypermultiplet mass in the N = 2∗ theory. For the N = 4 theory we get Z1-loop = 1.



2.1. Introduction 12

The factor Zinst(ε1, ε2, ia) is Nekrasov’s partition function [61] of point instan-

tons in the equivariant theory on R4. In the N = 2∗ case it is given by the for-

mula (2.5.12). In the limit m = ∞, one gets the N = 2 case (2.5.1), in the limit

m = 0 one gets the N = 4 case. In the N = 4 case, the instanton partition function

(2.5.15) does not depend on a. Therefore in the N = 4 case, instantons do not

contribute to the expectation value 〈WR(C)〉.

Our claim about vanishing of instanton corrections for the N = 4 theory contra-

dicts to the results of [35], where the first instanton correction for the SU(2) gauge

group was found to be non-zero. In [35] the authors introduced a certain cut-off on

the instanton moduli space, which is not compatible with the relevant supersymme-

try of the theory and the Wilson loop operator. Our instanton calculation is based

on Nekrasov’s partition function on R4. This partition function is regularized by a

certain non-commutative deformation of R4 compatible with the relevant supersym-

metry. Though we do not write down explicitly the non-commutative deformation

of the theory on S4, we assume that such deformation can be well defined. We also

assume that in a small neighbourhood of the North or the South pole of S4 this

non-commutative deformation agrees with the non-commutative deformation used

by Nekrasov [60] on R4.

Since both Zinst(ε1, ε2, ia) and its complex conjugate enter the formula, this

means that we count both instantons and anti-instantons. The formula is similar to

Ooguri-Strominger-Vafa relation between the black hole entropy and the topological

string partition function [66, 67]

ZBH ∝ |Ztop|2. (2.1.6)

Actually the localization computation is compatible with more general observ-

ables than a single Wilson loop in representation R inserted on the equator (2.1.1).

Let us fix two opposite points on the S4 and call them the North and the South

poles. Then we can consider a class of Wilson loops placed on circles of arbitrary
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radius such that they all have a common center at the North pole, and such that

they all can be transformed to each other by a composition of a dilation in the

North-South direction and by an anti-self-dual rotation in the SU(2)L left subgroup

of the SO(4) subgroup of the S4 isometry group which fixes the North pole. How-

ever, for Wilson loops of not maximal size, we need to change the relative coefficient

between the gauge and the scalar field terms in (2.1.1). Let Cθ be a circle located at

an arbitrary polar angle θ measured from the North pole (at the equator sin θ = 1).

Then we consider

WR(Cθ) = trR Pexp

∮
Cθ

(Aµdx
µ +

1

sin θ
(iΦE

0 + Φ9 cos θ)ds), (2.1.7)

where ΦE
0 and Φ9 are the scalar fields of the N = 2 vector multiplet.

Equivalently this can be rewritten as

WR(Cθ) = trR Pexp

∮
Cθ

(Aµdx
µ + (iΦE

0 + Φ9 cos θ)rdα). (2.1.8)

where α ∈ [0, 2π) is an angular coordinate on the circle C. Formally, as the size

of the circle vanishes (θ → 0) we get a “holomorphic” observable WR(Cθ→0) =

trR exp 2πrΦ(N) where Φ(N) is the complex scalar field iΦE
0 + Φ9 evaluated at the

North pole. In the opposite limit (θ → π) we get an “anti-holomoprhic” observable

WR(Cθ→π) = trR exp 2πrΦ̄(S), where Φ̄(S) is the conjugated scalar field −iΦE
0 + Φ9

evaluated at the South pole. However, in the actual computation of the path integral

we will always assume a finite size of C, so that the operator WR(C) is well defined.

Then for an arbitrary set {WR1(Cθ1), . . . ,WRn(Cθn)} of Wilson loops in the class

we described above we obtain

〈WR1(Cθ1) . . .WRn(Cθn)〉4d theory = 〈trR1 e
2πria . . . trRn e

2πria〉matrix model . (2.1.9)

The Drukker-Gross argument only applies to the case of a single circle which

can be related to a straight line on R4 by a conformal transformation, but in the

present approach we can consider several circles simultaneously.
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So far we described the class of observables which we can compute in the massive

N = 2∗ theory. All these observables are invariant under the same operator Q

generated by a conformal Killing spinor on S4 of constant norm. This operator Q

is a fermionic symmetry at quantum level.

Now we describe more general classes of circular Wilson loops which can be

solved in N = 4 theory. Thanks to the conformal symmetry of the N = 4 theory

there is a whole family of operators {Q(t)} where t runs from 0 to∞, which we can

use for the localization computation. The case t = 1 corresponds to the conformal

Killing spinor of constant norm and to the observables which we study in the N = 2∗

theory. However, for a general t in the N = 4 theory we can take

WR(Cθ, t) = trR Pexp

∮
Cθ

(
Aµdx

µ +
1

t sin θ

(
(cos2 θ

2
+ t2 sin2 θ

2
)iΦE

0

+Φ9(cos2 θ

2
− t2 sin2 θ

2
)

)
ds

)
. (2.1.10)

At t sin θ
2

= cos θ
2

we get the Wilson loop (2.1.1) with the same relative coefficient 1

between Aµ and iΦE
0 but of arbitrary size. The N = 4 theory with insertion of the

operator WR(Cθ, t) still localizes to the Gaussian matrix model.

The idea underlying localization is that in some situations the integral is exactly

equal to its semiclassical approximation. For example, the Duistermaat-Heckman

formula says [20] ∫
M

ωn

(2π)nn!
eiH(φ) = in

∑
p∈F

eiH(φ)∏
αpi (φ)

,

where (M,ω) is a symplectic manifold, and H : M → g∗ is a moment map2 for

a Hamiltonian action of G = U(1)k on M . The Duistermaat-Heckman formula

is a particular case of a more general Atiyah-Bott-Berline-Vergne localization for-

mula [21, 22]. Let an abelian group G act on a compact manifold M . We consider

the complex of G-equivariant differential forms on M valued in functions on g with

2In other words, iφω = dH(φ) for any φ ∈ g, where iφ is a contraction with a vector field
generated by φ.
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the differential Q = d−φaia. The differential squares to a symmetry transformation

Q2 = −φaLva . Here Lva represents the action of G on M . Hence Q2 annihilates

G-invariant objects. Then for any Q-closed form α, Atiyah-Bott-Berline-Vergne

localization formula is ∫
M

α =

∫
F

i∗Fα

e(NF )
,

where F
i
↪→M is the G-fixed point set, and e(NF ) is the equivariant Euler class of

the normal bundle of F in M . When F is a discrete set of points, the equivariant

Euler class e(NF ) at each point f ∈ F is simply the determinant of the representation

in which g acts on the tangent bundle of M at a point f .

Localization can be argued in the following way [18, 68]. Let Q be a fermionic

symmetry of a theory. Let Q2 = Lφ be some bosonic symmetry. Let S be a

Q-invariant action, so that QS = 0. Consider a functional V which is invariant

under Lφ, so that Q2V = 0. Deformation of the action by a Q-exact term QV can

be written as a total derivative and does not change the integral up to boundary

contributions

d

dt

∫
eS+tQV =

∫
{Q, V }eS+tQV =

∫
{Q, V eS+tQV } = 0.

As t → ∞, the one-loop approximation at the critical set of QV becomes exact.

Then for a sufficiently nice V , the integral is computed by evaluating S at critical

points of QV and the corresponding one-loop determinant.

We apply this strategy to the N = 2, the N = 2∗ and the N = 4 supersymmetric

Yang-Mills gauge theories on S4 and show that the path integral is localized to the

constant modes of the scalar field Φ0 with all other fields vanishing. In this way we

also compute exactly the expectation value of the circular supersymmetric Wilson

loop operator (2.1.1).

Remark. Most of the presented arguments in this work should apply to an

N = 2 theory with an arbitrary matter content. For a technical reasons related

to the regularization issues, we limit our discussion to the N = 2 theory with a
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single N = 2 massive hypermultiplet in the adjoint representation, also known as

the N = 2∗. By taking the limit of vanishing or infinite mass we can respectively

recover the N = 4 or the N = 2 theory.

Still we will give in (2.4.57) a formula for the factor Z1-loop for an N = 2 gauge

theory with a massless hypermultiplet in such representation that the theory is

conformal. Perhaps, one could check our result by the traditional Feynman diagram

computations directly in the gauge theory. To simplify comparison, we will give

an explicit expansion in gYM up to the sixth order of the expectation value of the

Wilson loop operator for the N = 2 theory with the gauge group SU(2) and 4

hypermultiplets in the fundamental representation (see (2.4.58))

〈e2πna〉matrix model = 1 +
3

2 · 22
n2g2

YM +
5

8 · 24
n4g4

YM +
7

48 · 26
n6g6

YM

− 35 · 12 · ζ(3)

24(4π)2
n2g6

YM +O(g8
YM), (2.1.11)

In this formula a ∈ R is a coordinate on the Cartan algebra h of g. By an integer

n ∈ h∗ we denote a weight. For example, if the Wilson loop is taken in the spin-j

representation, where j is a half-integer, the weights are {−2j,−2j + 2, . . . , 2j}.

Hence we get 〈Wj(C)〉 = 〈
∑j

m=−j e
4πma〉MM .

We shall note that the first difference between the N = 2 superconformal theory

and the N = 4 theory appears at the order g6
YM , up to which the Feynman diagrams

in the N = 4 theory were computed in [69, 70]. Therefore a direct computation of

Feynman diagrams in the N = 2 theory up to this order seems to be possible and

would be a non-trivial test of our results.

Some unusual features in this work are: (i) the theory localizes not on a counting

problem, but on a nontrivial matrix model, (ii) there is a one-loop factor involving

an index theorem for transversally elliptic operators [71, 72].

In section 2 we give details about the N = 2, the N = 2∗ and N = 4 SYM

theories on a four-sphere S4. In section 3 we make a localization argument to com-

pute the partition function for these theories. Section 4 explains the computation of
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the one-loop determinant [71, 72], or, mathematically speaking, of the equivariant

Euler class of the infinite-dimensional normal bundle in the localization formula. In

section 5 we consider instanton corrections.

There are some open questions and immediate directions in which one can pro-

ceed:

1. One can consider more general supersymmetric Wilson loops like studied

in [41, 50, 52] and try to prove the conjectural relations of those with ma-

trix models or two-dimensional super Yang-Mills theory. Perhaps it will be

also possible to extend the analysis of those more general loops to (supercon-

formal) N = 2 theories like it is done in the present work.

2. Using localisation, one can try to solve exactly for an expectation value of a

circular supersymmetric ’t Hooft-Wilson operator (this is a generalization of

Wilson loop in which the loop carries both electric and magnetic charges) [8,

73, 74]. The expectation values of such operators should transform in the right

way under the S-duality transformation which replaces the coupling constant

by its inverse and the gauge group G by its Langlands dual LG. Perhaps

this could tell us more on the four-dimensional gauge theory and geometric

Langlands [8] where ’t Hooft-Wilson loops play the key role.

3. It would be interesting to find more precise relation between our formulas,

and Ooguri-Strominger-Vafa [66] conjecture (2.1.6). There could be a four-

dimensional analogue of the tt∗-fusion [75].

2.2 Fields, action and symmetries

To write down the action of the N = 4 SYM on S4, we use dimensional reduction

of the N = 1 SYM [76] on R9,1. By G we denote the gauge group. By AM with

M = 0, . . . , 9 we denote the components of the gauge field in ten dimensions, where
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we take the Minkowski metric ds2 = −dx2
0 +dx2

1 +· · ·+dx2
9. When we write formulas

in Euclidean signature so that the metric is ds2 = dx2
0 + dx2

1 + · · · + dx2
9, we use

notation AE0 for the zero component of the gauge field.

By Ψ we denote a sixteen real component ten-dimensional Majorana-Weyl fermion

valued in the adjoint representation of G. (In Euclidean signature Ψ is not real, but

its complex conjugate does not appear in the theory.) The ten-dimensional action

S =
∫
d10xL with the Lagrangian

L =
1

2g2
YM

(
1

2
FMNF

MN −ΨΓMDMΨ

)
(2.2.1)

is invariant under the supersymmetry transformations

δεAM = εΓMΨ

δεΨ =
1

2
FMNΓMNε.

Here ε is a constant Majorana-Weyl spinor parameterizing the supersymmetry trans-

formations in ten dimensions. (See appendix A.1 for our conventions on the algebra

of gamma-matrices.)

We do not write explicitly the color and spinor indices. We also assume that in all

bilinear terms the color indices are contracted using some invariant positive definite

bilinear form (Killing form) on the Lie algebra g of the gauge group. Sometimes

we denote this Killing form by (·, ·). In Euclidean signature we integrate over fields

which all take value in the real Lie algebra of the gauge group. For example, for the

U(N) gauge group all fields are represented by the antihermitian matrices, and we

can define the Killing from on g as (a, b) = − trF ab, where trF is the trace in the

fundamental representation.

We take (x1, . . . , x4) to be the coordinates along the four-dimensional space-time,

and we make dimensional reduction in the remaining directions: 0, 5, . . . 8, 9. Note

that the four-dimensional space-time has Euclidean signature.

Now we describe the symmetries of the four-dimensional theory if we start from

Minkowski signature in ten dimensions. Note that we make dimensional reduction
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along the time-like coordinate x0. Therefore we get the wrong sign for the kinetic

term for the scalar field Φ0, where Φ0 denotes the 0-th component of the gauge field

AM after dimensional reduction. To make sure that the path integral is well defined

and convergent, in this case in the path integral for the four-dimensional theory we

integrate over imaginary Φ0. Actually this means that the path integral is the same

as in the Euclidean signature with all bosonic fields taken real.

The ten-dimensional Spin(9, 1) Lorentz symmetry group is broken to Spin(4)×

Spin(5, 1)R, where the first factor is the four-dimensional Lorentz group acting on

(x1, . . . , x4) and the second factor is the R-symmetry group acting on (x5, . . . , x9, x0).

It is convenient to split the four-dimensional Lorentz group as Spin(4) = SU(2)L×

SU(2)R, and brake the Spin(5, 1)R-symmetry group into Spin(4)R × SO(1, 1)R =

SU(2)RL ×SU(2)RR×SO(1, 1)R. The components of the ten-dimensional gauge field,

which become scalars after the dimensional reduction are denoted by ΦA with A =

0, 5, . . . , 9. Let us write the bosonic fields and the symmetry groups under which

they transform:
SU(2)L×SU(2)R︷ ︸︸ ︷
A1, . . . A4

SU(2)RL×SU(2)RR︷ ︸︸ ︷
Φ5, . . . ,Φ8

SO(1,1)R︷ ︸︸ ︷
Φ9,Φ0 .

Using a certain Majorana-Weyl representation of the Clifford algebra Cl(9, 1)

(see appendix A.1 for our conventions), we write Ψ in terms of four four-dimensional

chiral spinors as

Ψ =


ψL

χR

ψR

χL

 .

Each of these spinors (ψL, χR, ψR, χL) has four real components. Their transfor-

mation properties are summarized in the table:
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ε Ψ SU(2)L SU(2)R SU(2)RL SU(2)RR SO(1, 1)R

∗ ψL 1/2 0 1/2 0 +

0 χR 0 1/2 0 1/2 +

∗ ψR 0 1/2 1/2 0 −

0 χL 1/2 0 0 1/2 −

Let the spinor ε be the parameter of the supersymmetry transformations. We

restrict the N = 4 supersymmetry algebra to the N = 2 subalgebra by taking ε in

the +1-eigenspace of the operator Γ5678. Such spinor ε has the structure

ε =


∗

0

∗

0

 ,

transforms in the spin-1
2

representation of the SU(2)RL and in the trivial representa-

tion of the SU(2)RR.

With respect to the supersymmetry transformation generated by such ε, the

N = 4 gauge multiplet splits in two parts

• (A1 . . . A4,Φ9,Φ0, ψ
L, ψR) is the N = 2 vector multiplet

• (Φ5 . . .Φ8, χ
L, χR) is the N = 2 hypermultiplet.

So far we considered dimensional reduction from R9,1 to the flat space R4. Now

we would like to put the theory on a four-sphere S4. We denote by Aµ with µ =

1, . . . , 4 the four-dimensional gauge field and by ΦA with A = 0, 5, . . . , 9 the four-

dimensional scalar fields. The only required modification of the action is a coupling

of the scalar fields to the scalar curvature of space-time. Namely, the kinetic term

must be changed as (∂Φ)2 → (∂Φ)2+ R
6

Φ2, where R is the scalar curvature. One way

to see why this is the natural kinetic term for the scalar fields is to use the argument

of the conformal invariance. Namely, one can check that
∫
d4x
√
g((∂Φ)2 + R

6
Φ2) is
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invariant under Weyl transformations of the metric gµν → e2Ωgµν and scalar fields

Φ→ e−ΩΦ. Then the action on S4 of the N = 4 SYM is

SN=4 =
1

2g2
YM

∫
S4

√
gd4x

(
1

2
FMNF

MN −ΨγMDMΨ +
2

r2
ΦAΦA

)
, (2.2.2)

where we used the fact that the scalar curvature of a d-sphere Sd of radius r is

d(d−1)
r2 .

The action (2.2.2) is invariant under the N = 4 superconformal transformations

δεAM = εΓMΨ (2.2.3)

δεΨ =
1

2
FMNΓMNε+

1

2
ΓµAΦA∇µε, (2.2.4)

where ε is a conformal Killing spinor solving the equations

∇µε = Γµε̃ (2.2.5)

∇µε̃ = − 1

4r2
Γµε. (2.2.6)

(See e.g. [77] for a review on conformal Killing spinors, and for the explicit solution

of these equations on S4 see appendix A.2.) To get intution about the meaning of

ε and ε̃ we can take the flat space limit r →∞. In this limit ε̃ becomes covariantly

constant spinor ε̃ = ε̂c, while ε becomes a spinor with at most linear dependence

on flat coordinates xµ on R4: ε = ε̂s + xµΓµε̂c. By ε̂s and ε̂c we denote some con-

stant spinors. Then ε̂s generates supersymmetry transformations, while ε̂c generates

special superconformal symmetry transformations.

The superconformal algebra closes only on-shell. Let δ2
ε be the square of the

fermionic transformation δε generated by a spinor ε. After some algebra (see ap-

pendix A.3) we obtain

δ2
εAµ = −(εΓνε)Fνµ − [(εΓBε)ΦB, Dµ]

δ2
εΦA = −(εΓνε)DνΦA − [(εΓBε)ΦB,ΦA] + 2(ε̃ΓABε)Φ

B − 2(εε̃)ΦA

δ2
εΨ = −(εΓνε)DνΨ− [(εΓBε)ΦB,Ψ]− 1

2
(ε̃Γµνε)Γ

µνΨ +
1

2
(ε̃ΓABε)Γ

ABΨ

−3(ε̃ε)Ψ + eom[Ψ].

(2.2.7)
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Here the term denoted by eom[Ψ] is proportional to the Dirac equation of motion

for fermions Ψ

eom[Ψ] =
1

2
(εΓNε)Γ̃

N/DΨ− (ε/DΨ)ε. (2.2.8)

The square of the supersymmetry transformation can be written as

δ2
ε = −Lv −R− Ω. (2.2.9)

The first term is the gauge covariant Lie derivative Lv in the direction of the

vector field

vM = εγMε. (2.2.10)

For example, Lv acts on scalar fields as follows: LvΦA = vMDMΦ = vµDµΦA +

vB[ΦB,Φ]. Here Dµ is the usual covariant derivative Dµ = ∂µ + Aµ

To explain what the gauge covariant Lie derivative means geometrically, first

we consider the situation when the gauge bundle, say E, is trivial. We fix some

flat background connection A
(0)
µ and choose a gauge such that A

(0)
µ = 0. For any

connection A on E we define Ã = A − A(0). The field Ã transforms as a one-form

valued in the adjoint representation of E. The path integral over A is equivalent to

the path integral over Ã. Then we can write the gauge covariant Lie derivative Lv
as follows

Lv = Lv +GΦ. (2.2.11)

Here Lv is a usual Lie derivative in the direction of the vector field vµ. The action of

Lv on the gauge bundle is defined by the background connection A(0) which we set

to zero. The second term GΦ is the gauge transformation generated by the adjoint

valued scalar field Φ where

Φ = vM ÃM . (2.2.12)

The gauge transformation GΦ acts on the matter and the gauge fields in the usual

way: GΦΦA = [Φ,ΦA], GΦ · Aµ = [Φ, Dµ] = −DµΦ.
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The term denoted by R in (2.2.9) is a Spin(5, 1)R-symmetry transformation. It

acts on scalar fields as (R ·Φ)A = RABΦB, and on fermions as R ·Ψ = 1
4
RABΓABΨ,

where RAB = 2εΓ̃AB ε̃. When ε and ε̃ are restricted to the N = 2 subspace of

N = 4 algebra, (Γ5678ε = ε and Γ5678ε̃ = ε̃), the matrix RAB with A,B = 5, . . . , 8

is an anti-self-dual (left) generator of SO(4)R rotations. In other words, when we

restrict ε to the N = 2 subalgebra of the N = 4 algebra, the SO(4)R R-symmetry

group restricts to its SU(2)RL subgroup. The fermionic fields of the N = 2 vector

multiplet (we call them ψ) transform in the trivial representation of R, while the

fermionic fields of the N = 2 hypermultiplet (we call them χ) transform in the

spin-1
2

representation of R.

Finally, the term denoted by Ω in (2.2.9) generates a local dilatation with the

parameter 2(εε̃), under which the gauge fields do not transform, the scalar fields

transform with weight 1, and the fermions transform with weight 3
2
. (In other

words, if we make Weyl transformation gµν → e2Ωgµν , we should scale the fields as

Aµ → Aµ,Φ→ e−ΩΦ,Ψ→ e−
3
2

ΩΨ to keep the action invariant.)

Classically, it is easy to restrict the fields and the symmetries of the N = 4 SYM

to the pure N = 2 SYM: one can discard all fields of the N = 2 hypermultiplet

and restrict ε by the condition Γ5678ε = ε. The resulting action is invariant under

N = 2 superconformal symmetry. On quantum level the pure N = 2 SYM is not

conformally invariant. We will be able to give a precise definition of the quantum

N = 2 theory on S4, considering it as the N = 4 theory softly broken by giving a

mass term to the hypermultiplet, which we will send to the infinity in the end.

If we start from Minkowski signature in the ten dimensional theory, then clas-

sically the supersymmetry groups for the N = 4, the N = 2, and the N = 2∗

Yang-Mills theories on S4 are the following.

In the N = 2 case, ε is a Dirac spinor on S4. The equation (2.2.5) has 16

linearly independent solutions, which correspond to the fermionic generators of the
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N = 2 superconformal algebra. Intuitively, 8 generators out of these 16 corre-

spond to 8 charges of N = 2 supersymmetry algebra on R4, and the other 8

correspond to the remaining generators of N = 2 superconformal algebra. The

full N = 2 superconformal group on S4 is SL(1|2,H).3 Its bosonic subgroup is

SL(1,H) × SL(2,H) × SO(1, 1). The first factor SL(1,H) ' SU(2) generates the

R-symmetry SU(2)RL transformations. The second factor SL(2,H) ' SU∗(4,C) '

Spin(5, 1) generates conformal transformations of S4. The third factor SO(1, 1)R

generates the SO(1, 1)R symmetry transformations. The fermionic generators of

SL(1, 2|H) transform in the 2 + 2′ of the SL(2,H), where 2 denotes the fundamen-

tal representation of SL(2,H) of quaternionic dimension two. This representation

can be identified with the fundamental representation 4 of SU∗(4) of complex di-

mension four, or with chiral (Weyl) spinor representation of the conformal group

Spin(5, 1). The other representatfion 2′ corresponds to the other chiral spinor rep-

resenation of Spin(5, 1) of the opposite chirality.

In the N = 4 case we do not impose the chirality condition on ε. Hence a sixteen

component Majorana-Weyl spinor ε of Spin(9, 1) reduces to a pair of the four-

dimensional Dirac spinors (εψ, εχ), where εψ and εχ are elements of the +1 and −1

eigenspaces of the chirality operator Γ5678 respectively. Each of the Dirac spinors εψ

and εχ independently satisfies the conformal Killing spinor equation (2.2.5) because

the operators Γµ do not mix the +1 and −1 eigenspaces of Γ5678. Then we get

16+16 = 32 linearly independent conformal Killing spinors. Each of these spinors

corresponds to a generator of the N = 4 superconformal symmetry. One can check

that the full N = 4 superconformal group on S4 is PSL(2|2,H).

To describe the N = 2∗ theory on S4, which is obtained by giving mass to

the hypermultiplet, we need some more details on Killing spinors on S4. Because

mass terms break conformal invariance, we should expect the N = 2∗ theory to be

3By SL(n,H) we mean group of general linear transformation GL(n,H) over quaternions fac-
tored by R∗, so that the real dimension of SL(n,H) is 4n2 − 1.



2.2. Fields, action and symmetries 25

invariant only under 8 out of 16 fermionic symmetries of the N = 2 superconformal

group SL(1, 2|H). In other words, we should impose some additional restrictions on

ε. Let us desribe this theory in more details.

First we explicitly give a general solution for the conformal spinor Killing equa-

tion on S4. Let xµ be the stereographic coordinates on S4. The origin corresponds

to the North pole, the infinity corresponds to the South pole. If r is the radius of

S4, then the metric has the form

gµν = δµνe
2Ω, where e2Ω :=

1

(1 + x2

4r2 )2
. (2.2.13)

We use the vielbein eiµ = δiµe
Ω where δiµ is the Kronecker delta, the index µ = 1, . . . , 4

is the space-time index, the index i = 1, . . . , 4 enumerates vielbein elements. The

solution of the conformal Killing equation (2.2.5) is (see appendix A.2)

ε =
1√

1 + x2

4r2

(ε̂s + xiΓiε̂c) (2.2.14)

ε̃ =
1√

1 + x2

4r2

(ε̂c −
xiΓi
4r2

ε̂s), (2.2.15)

where ε̂s and ε̂c are Dirac spinor valued constants.

Classically, the action of N = 2 SYM on R4 with a massless hypermultiplet is

invariant under theN = 2 superconformal group, which has 16 fermionic generators.

Turning on non-zero mass of the hypermultiplet breaks 8 superconformal fermionic

symmetries, but preserves the other 8 fermionic symmetries which generate the N =

2 supersymmetry. These 8 charges are known to be preserved on quantum level [63].

The N = 2 supersymmetry algebra closes to the scale preserving transformations:

the translations on R4. These scale preserving transformations are symmetries of

the massive theory as well.

Following the same logic, we would like to find a subgroup, which will be called S,

of the N = 2 superconformal group on S4 with the following properties. The super-

group S ⊂ SL(1|2,H) contains 8 fermionic generators, the bosonic transformations
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of S are the scale preserving transformations and are compatible with mass terms

for the hypermultiplet. The group S is what we call the N = 2 supersymmetry

group on S4.

The conformal group of S4 is SO(5, 1). The scale preserving subgroup of the

SO(5, 1) is the SO(5) isometry group of S4. We require that the space-time bosonic

part of S is a subgroup of this SO(5). This means that for any conformal Killing

spinor ε that generates a fermionic transformation of S, the dilatation parameter

(ε̃ε) in the δ2
ε vanishes.

For a general ε in the N = 2 superconformal group, the transformation δ2
ε

contains SO(1, 1)R generator. Since the SO(1, 1)R symmetry is broken explicitly by

hypermultiplet mass terms, and since it is broken on quantum level in the usual N =

2 theory in the flat space4, we require that S contains no SO(1, 1)R transformations.

In other words, the conformal Killing spinors ε which generate transformations of

S are restricted by the condition that the SO(1, 1)R generator in δ2
ε vanishes. By

equation (2.2.7) this means ε̃Γ09ε = 0.

Using the explicit solution (2.2.14) we rewrite the equation (ε̃ε) = (ε̃Γ09ε) = 0

in terms of ε̂s and ε̂c

ε̂sε̂c = ε̂sΓ
09ε̂c = 0

ε̂cΓ
µε̂c −

1

4r2
ε̂sΓ

µε̂s = 0.
(2.2.16)

To solve the second equation, we take chiral ε̂s and ε̂c with respect to the four-

dimensional chirality operator Γ1234. Since the operators Γµ reverse the four-dimensional

chirality, both terms in the second equation vanish automatically. There are two

interesting cases: (i) the chirality of ε̂s and ε̂c is opposite, (ii) the chirality of ε̂s and

ε̂c is the same. The main focus of this work is on the second case.

1. In the first case we can assume that

εLs = 0, ε̂Rc = 0.

4See e.g. [62, 63] keeping in mind that if we start from the Euclidean signature in ten dimensions,
the SO(1, 1)R group is replaced by the usual U(1)R symmetry of N = 2 theory.
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Here by εLs and εRs we denote left/right four-dimensional chiral components. They

are respectively defined as the −1/ + 1 eigenspaces of the chirality operator Γ1234.

In this case the first equation in (2.2.16) is also automatically satisfied. Moreover,

the spinors ε and ε̃ also have opposite chirality over the whole S4. Hence we have

8 generators, say ε̂Rs and ε̂Lc , which anticommute to pure gauge transformations

generated by the scalar field Φ := (εΓAε)ΦA. The δε-closed observables are the

gauge invariant functions of Φ and their descendants. One could try to interpret

such δε as a cohomological BRST operator Q and to relate in this way the physical

N = 2 gauge theory on S4 with the topological Donaldson-Witten theory. That

does not work, because in the present case the conformal Killing spinor ε, generated

by such ε̂s and ε̂c necessary vanishes somewhere on S4. Of course, in the twisted

theory [18, 78] the problem does not arise, since ε is a scalar and can be set to be a

non-zero constant everywhere. However, our goal is to treat the non-twisted theory.

Moreover, the circular Wilson loop operator WR(C) is not closed under such δε.

Thus we turn to the second case.

2. The spinors ε̂s and ε̂c have the same chirality, say left, and the first equation

restricts them to be orthogonal

ε̂Rs = 0, ε̂Rc = 0, (ε̂Ls ε̂
L
c ) = 0.

The Killing vector field vµ = εΓµε, associated with the δ2
ε , generates an anti-self-dual

(left) rotation of S4 around the North pole. In addition, δ2
ε generates a SU(2)RL-

symmetry transformation and a gauge symmetry transformation. The spinor ε is

chiral only at the North and the South poles of S4, but not at any other point. At

the North pole ε is left, at the South pole ε is right. We can find circular Wilson

loop operators of the form (2.1.1) which are invariant under such δε. Conversely,

for any given circular Wilson loop WR(C) of the form (2.1.1) we can find a suitable

conformal Killing spinor δε which annihilates WR(C). (The North pole is picked

up at the center of the WR(C).) If the spinors ε̂s and ε̂c are both non zero, then
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ε is a nowhere vanishing spinor on S4. We can use such δε to relate the physical

N = 2 gauge theory on S4 to a somewhat unusual equivariant topological theory,

and apply localization methods developed for topological theories [18, 58] to solve

for 〈WR(C)〉. The relation has the simplest form if the norm of ε is constant.

Before proceeding to this equivariant topological theory, we would like to finish

our description of the supersymmetry group S of the N = 2∗ theory on S4. First

we find the maximal set of linearly independent conformal Killing spinors {εi} that

simultaneously satisfy the equations

ε(iε̃j) = ε(iΓ09ε̃j) = 0, (2.2.17)

and then we find what superconformal group is generated by this set. One can show

that the equivalent way to formulate the conformal Killing spinor equation for the

spinors in the +1 space of the chirality operator Γ5678 is the following

Dµε =
1

2r
ΓµΛε, (2.2.18)

where Λ is a generator of SU(2)RL-symmetry. For example, if we start from the ten-

dimensional Minkowski signature we can take Λ = Γ0Γij where 5 ≤ i < j ≤ 8. If we

start from the ten-dimensional Euclidean signature we can take Λ = −iΓ0Γij where

5 ≤ i < j ≤ 8. Equivalently, Λ is a real antisymmetric matrix, which acts in the +1

eigenspace of Γ5678, satisfies Λ2 = −1 and commutes with Γm for m = 1, . . . , 4, 0, 9.

The equation (2.2.18) has 8 linearly independent solutions. Let VΛ be the vector

space that they span. Then the space of solutions of the conformal Killing spinor

equations (2.2.5) is VΛ ⊕ V−Λ, where we take ε̃ = 1
2r

Λε.

The spinors in the space VΛ satisfy our requirement (2.2.17), because Λ is an-

tisymmetric and commutes with Γ9. The generators {δε|ε ∈ VΛ} anticommute to

generators of Spin(5) × SO(2)R, where Spin(5) rotates S4, and SO(2)R is a sub-

group of the SU(2)RL-symmetry group. This SO(2)R subgroup is generated by Λ.

The space VΛ transforms in the fundamental representation of Sp(4) ' Spin(5). We
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conclude that restricting the fermionic generators to the space VΛ of (2.2.18) breaks

the full N = 2 superconformal group SL(1|2,H) to the supergroup OSp(2|4), where

the choice of the SU(2)RL generator Λ defines the embedding of the SO(2)R in the

SU(2)RL .

Besides the spaces VΛ, obtained as solutions of (2.2.18), we can find other

half-dimensional fermionic subspaces of the N = 2 superconformal group satis-

fying (2.2.17). These spaces can be obtained by SO(1, 1)R twisting of VΛ. Indeed,

if the spinors ε and ε̃ satisfy (2.2.17), then so do the spinors ε′ = e
1
2
βΓ09

ε and

ε̃′ = e−
1
2
βΓ09ε̃, where Γ09 generates SO(1, 1)R′ , and β is a parameter of the twisting.

The SO(1, 1)R twisted space VΛ,β is equivalently a space of solutions to the twisted

Killing equation

Dµε =
1

2r
Γµe

−βΓ09

Λε. (2.2.19)

We summarize, that restriction to the half-dimensional fermionic subspace by

equation (2.2.17) breaks the N = 2 superconformal group SL(1|2,H) down to

OSp(2|4). The choice of OSp(2|4) is defined by the generator of SU(2)R symmetry

Λ, and the generator of SO(1, 1)R′ symmetry β.

If we require that the Wilson loop operator is closed with respect to δε with

ε ∈ VΛ,β, then the parameter β is related to the radius of the Wilson loop. In the

ten-dimensional Minkowski conventions, the Wilson loop operator has the form

WR(ρ) = trR Pexp

∮
C

((Aµ
dxµ

ds
+ Φ0)ds). (2.2.20)

Let the circular contour C be (x1, x2, x3, x4) = t(cosα, sinα, 0, 0) in the stereographic

coordinates. Here t = 2r tan θ0
2

for the Wilson loop located at the polar angle θ0.

The combination vMAM = vµAµ + vAφA is annihilated by δε, since (εΓMε)(ψΓMε)

vanishes because of the triality identity (A.1.9). Then the Wilson loop (2.2.20) is

δε-closed if (vµ, v9, v0) = (dx
µ

ds
, 0, 1). Using Γ0 = 1 and the explicit form (2.2.16) for

ε we get

ε̂c =
1

t
Γ12ε̂s. (2.2.21)
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To satisfy (2.2.18) we must have

ε̂c =
1

2r
e−βΓ09

Λε̂s. (2.2.22)

Let chirality of ε̂s, ε̂c be positive at x = 0. Then β = log t
2r

, and (Λ − Γ12)ε̂s = 0.

This equation has a non-zero solution for ε̂s only when det(Λ − Γ12) = 0. That

determines Λ uniquely up to a sign. In other words, the choice of the position of

the Wilson loop on S4 determines the way the SU(2)R symmetry group breaks to

SO(2), and the size of the Wilson loop determines the SO(1, 1) twist parameter β.

For the Wilson loop located at the equator t = 2r.

A very nice property of the conformal Killing spinor ε generating OSp(2|4) is

that it has a constant norm over S4, similarly to a supersymmetry transformation on

flat space. Since OSp(2|4) has 8 fermionic generators, contains only scale preserving

transformations, and it is generated by spinors of constant norm on S4, we call it

N = 2 supersymmetry on S4. So we have found that S = OSp(2|4).

Now we show that it is possible to add a mass term for the hypermultiplet fields

and preserve the OSp(2|4) symmetry. From now we will assume that the Wilson

loop is located at the equator, so that ε has a constant norm. To generate such mass

term in four dimensions we use Scherk-Schwarz reduction of ten-dimensional N = 1

SYM. Namely, we turn on a Wilson line in the SU(2)RR symmetry group along the

coordinate x0. TheN = 2 vector multiplet fields Aµ,Φ0,Φ9,Ψ are not charged under

SU(2)RR, therefore their kinetic terms are not changed. The hypermultiplet fields

χ and Φi with i = 5, . . . , 8 transform in the spin-1
2

representation under SU(2)RR.

Explicitly it means that we should replace D0Φi by D0Φi + MijΦj, and D0χ by

D0χ+ 1
4
MijΓijχ, where an antisymmetric 4× 4 matrix Mij with i, j = 5, . . . , 8 is a

generator of the SU(2)RR symmetry. Since F0i is replaced by [Φ0,Φi] + MijΦj, the

F0iF
0i term in the action generates mass for the scalars of the hypermultiplet.

On the flat space, the resulting action is still invariant under the usual N = 2

supersymmetry. However, on S4 we need to be more careful with the ε-derivative
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terms in the supersymmetry transformations. Let us explicitly compute variation

of the Scherk-Schwarz deformed N = 4 theory on S4. We use the conformal Killing

spinor ε in the N = 2 superconformal subsector, i.e. Γ5678ε = ε. Then ε is not

charged under SU(2)RR, so D0ε = 0. Variation of (2.2.2) by (2.2.3) gives us (we

write variation of the Lagrangian up to total derivative terms since they vanish

after integration over the compact space S4)

δε(
1

2
FMNF

MN −ΨΓMDMΨ +
2

r2
ΦAΦA) =

= 2DM(εΓNΨ)FMN + 2ΨΓMDM(
1

2
FPQΓPQε− 2ΦAΓ̃Aε̃) +

4

r2
(εΓAψ)ΦA =

= −2(εΓNΨ)DMF
MN+ΨDMFPQΓMΓPQε+ΨΓMΓPQFPQDMε−4ΨΓM Γ̃Aε̃DMΦA+

+
1

r2
ΨΓµΓ̃AΦAΓµε+

4

r2
(εΓAΨ)ΦA = . . .

Using

ΓMΓPQ =
1

3
(ΓMΓPQ + ΓPΓQM + ΓMΓPQ) + 2gM [PΓQ] (2.2.23)

and the Bianchi identity, we see that the first term cancels the second, and that the

last two terms cancel each other. Then

· · · = ΨΓµΓPQΓµε̃FPQ − 4ΨΓM Γ̃Aε̃DMΦA = 4ΨΓ̃MAε̃FMA − 4ΨΓM Γ̃Aε̃DMΦA

where we use the index conventions M,N,P,Q = 0, . . . , 9, µ = 1, . . . , 4, A =

5, . . . , 9, 0. In the absence of Scherk-Schwarz deformation we have FMA = DMΦA for

all M = 0, . . . , 9 and A = 5, . . . , 9, 0, hence the two terms cancel. After the deforma-

tion, we have F0i = D0Φi, but Fi0 = −D0Φi = −[Φ0,Φi]−MijΦj = DiΦ0 −MijΦj.

Therefore, the naively Scherk-Schwarz deformed N = 4 theory on S4 is not invariant

under arbitrary N = 2 superconformal transformation:

δε(
1

2
FMNF

MN −ΨΓMDMΨ +
2

r2
ΦAΦA) = −4ΨΓiΓ̃0ε̃MijΦj. (2.2.24)

This is the natural consequence of adding mass terms to the Lagrangian. Never-

theless, we can add some other terms to the action in such a way to make the
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action invariant under the OSp(2|4) subgroup of N = 2 superconformal group on

S4. We use the fact that ε generating a transformation in the OSp(2|4) subgroup

satisfies the conformal Killing equation with ε̃ = 1
2r

Λε, where Λ is a generator of

SU(2)RL-group normalized as Λ2 = −1. Let us take Λ = 1
4
ΓklRkl where Rkl is an

anti-self-dual matrix normalized as RklR
kl = 4, where k, l = 5, . . . , 8. Then we get

δε(
1

2
FMNF

MN −ΨΓMDMΨ +
2

r2
ΦAΦA) =

1

2r
ΨΓ0ΓiΓklεRklMijΦj =

=
1

2r
(ΨΓiε)RkiMkjΦj =

1

2r
(δεΦ

i)(RkiMkj)Φj

(2.2.25)

Hence, the addition of −1
4r

(RkiMkj)Φ
iΦj term to the Scherk-Schwarz deformed action

on S4 makes the action invariant under the OSp(2|4).

Let us summarize. The action

SN=2∗ =
1

2g2
YM

∫
d4x
√
g

(
1

2
FMNF

MN −ΨΓMDMΨ +
2

r2
ΦAΦA − 1

4r
(RkiMkj)Φ

iΦj

)
,

(2.2.26)

where D0Φi = [Φ0, ·] +MijΦ
j and D0Ψ = [Φ0,Ψ] + 1

4
ΓijMijΨ, is invariant under the

OSp(2|4) transformations, generated by conformal Killing spinors solving Dµε =

1
8r

ΓµΓ0klRklε with ε restricted to N = 2 subspace Γ5678ε = ε.

Since δ2
ε generates a covariant Lie derivative along the vector field −vM =

−εΓMε, in particular it is contributed by the gauge transformation along the 0-

th direction. After we turned on mass for the hypermultiplet by Scherk-Schwarz

mechanism, δ2
ε gets new contributions on the hypermultiplet

δ2
εΦi = δ2

ε,M=0Φi − v0MijΦj

δ2
εχ = δ2

ε,M=0χ−
1

4
v0MijΓ

ijχ.
(2.2.27)

So far we computed δ2
ε on-shell. To use the localization method we need an off-

shell closed formulation of the fermionic symmetry of the theory. The pure N = 2

SYM can be easily closed by means of three auxiliary scalar fields, but it is well

known that the off-shell closure of N = 2 hypermultiplet is impossible with a finite
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number of auxiliary fields. For our purposes we do not need to close off-shell the

whole OSp(2|4) symmetry group. Since the localization computation uses only one

fermionic generator Qε, it is enough to close off-shell only the symmetry generated

by this ε.

To close off-shell the relevant supersymmetry of the N = 4 theory on S4 we make

the dimensional reduction of Berkovits method [79] used for the ten-dimensional

N = 1 SYM, see also [80, 81]. The number of auxiliary fields compensates the

difference between the number of fermionic and bosonic off-shell degrees of freedom

modulo gauge transformations. In the N = 4 case we add 16−(10−1) = 7 auxiliary

fields Ki with free quadratic action and modify the superconformal transformations

to

δεAM = ΨΓMε

δεΨ =
1

2
γMNFMN +

1

2
γµAφADµε+Kiνi

δεKi = −νiγMDMΨ,

(2.2.28)

where spinors νi with i = 1, . . . , 7 are required to satisfy

εΓMνi = 0 (2.2.29)

1

2
(εΓNε)Γ̃

N
αβ = νiαν

i
β + εαεβ (2.2.30)

νiΓ
Mνj = δijεΓ

Mε. (2.2.31)

For any non-zero Majorana-Weyl spinor ε of Spin(9, 1) there exist seven linearly

independent spinors νi, which satisfy these equations5 [79]. They are determined

up to an SO(7) transformations. The equation (2.2.29) ensures closure on AM ,

the equation (2.2.30) ensures closure on Ψ, and the equations (2.2.29) and (2.2.31)

ensure closure on K

δ2
εKi = −(εγMε)DMK

i − (ν[iγ
MDMνj])K

j − 4(ε̃ε)Ki. (2.2.32)

5The author thanks N.Berkovits for communications.
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If EK is an SO(7)⊗ ad(G) vector bundle over S4 whose sections correspond to

the auxiliary fields Ki, then (2.2.32) can be interpreted as a covariant Lie derivative

action along the vector field vµ, or in other words as a lift of the Lv action on S4 to

the action on the vector bundle EK → S4. A conformal Killing spinor ε generating

a transformation of the OSp(2|4) subgroup can be represented in the following form

(see appendix A.2 for details)

ε(x) = exp

(
θ

2
ni(x)ΓiΓ9

)
ε̂s, (2.2.33)

where xi are the stereographic coordinates on S4, ni is the unit vector in the direc-

tion of the vector field vi = 1
r
xiωij. We use the conformal Killing spinor ε(x) such

that (ε(x), ε(x)) = 1 and Γ9ε̂s = ε̂s. The matrix ωij is the anti-self-dual generator

of SU(2)L ⊂ SO(4) rotation around the North pole in δ2
ε . We see that the con-

formal Killing spinor ε(x) at an arbitrary point x is obtained by Spin(5) rotation

exp( θ
2
ni(x)ΓiΓ9) of its value at the origin ε(0) = ε̂s.

For the closure ofN = 4 symmetry we need seven spinors νi which satisfy (2.2.29)-

(2.2.31). Following [79], at the origin we can take ν̂i = Γi8ε̂s for i = 1 . . . 7, and then

transform ν̂i to an arbitrary point on S4 as

νi(x) = exp(
θ

2
ni(x)Γi8)ε̂s. (2.2.34)

Finally, we conclude that the action

SN=2∗ =
1

2g2
YM

∫
d4x
√
g

(
1

2
FMNF

MN −ΨΓMDMΨ +
2

r2
ΦAΦA

− 1

4r
(RkiMkj)Φ

iΦj −KiKi

)
,

(2.2.35)

is invariant under the off-shell supersymmetry Qε given by (2.2.28) with νi defined

by (2.2.34). Though we will not need this fact, we remark that it is possible to

simultaneously close four fermionic symmetries generating the OSp(2|2) subgroup

of OSp(2|4). The space-time part of this OSp(2|2) subgroup consists of anti-self-dual

rotations around the North pole on S4.
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2.3 Localization

As explained in the introduction, to localize the theory we deform the action by a

Q-exact term

S → S + tQV. (2.3.1)

Since we use Q which squares to a symmetry of the theory, and since the action

and the Wilson loop observable are Q-closed, we can use the localization argument.

For Q2-invariant V , the deformation (2.3.1) does not change the expectation value

of Q-closed observables. Hence, when we send t to infinity, the theory localizes to

some set F of critical points of QV , over which we will integrate in the end. The

measure in the integral over F comes from the restriction of the action S to F and

the determinant of the kinetic term of QV which counts fluctuations in the normal

directions to F .

To ensure convergence of the four-dimensional path integral, we compute it

for a theory obtained by dimensional reduction from a theory in ten-dimensional

Euclidean signature. To technically simplify the description of the symmetries in

the previous section, we used ten-dimensional Minkowski signature. We can keep

Minkowski metric gMN and Minkowski gamma-matrices ΓM and still get the same

partition function as in Euclidean signature by making Wick rotation of the Φ0 field.

In other words, the path integral, computed with Minkowski metric gMN but with

Φ0 substituted by iΦE
0 where ΦE

0 is real, is convergent and is equal to the Euclidean

path integral. We also integrate over imaginary contour for the auxilary fields Ki,

so that Ki = iKE
i , where KE

i is real.

For localization computation we will take the following functional

V = (Ψ, QΨ). (2.3.2)

Then the bosonic part of the QV -term is a positive definite functional

SQ|bos = (QΨ, QΨ). (2.3.3)
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Explicitly we have

QΨ =
1

2
FMNΓMNε+

1

2
ΦAΓµA∇µε+Kiνi

QΨ =
1

2
FMN Γ̃MNε+

1

2
ΦAΓ̃µA∇µε−Kiνi,

(2.3.4)

where Γ̃0 = −Γ0, Γ̃M = ΓM for M = 1, . . . , 9, and ΓMN = Γ̃[MΓN ], Γ̃MN = Γ[M Γ̃N ].

Before proceeding to technical details of the computation, let us explicitly define

the conformal Killing spinor ε which we will use, and find the vector field vM = εΓMε

generated by the corresponding δ2
ε . We take ε in the form (2.2.14), where ε̂s is any

spinor such that

1. The chirality operator Γ5678 acts on ε̂s by 1

2. The chirality operator Γ1234 acts on ε̂s it by −1

3. ε̂sε̂s = 1

The first condition means that ε generates transformation inside the N = 2 super-

conformal subgroup of N = 4 superconformal group. The second condition ensures

that ε is a four-dimensional left chiral spinor on the North pole of S4. The third con-

dition is a conventional normalization. In our conventions for the gamma-matrices

(appendix A.1) we can take ε̂s = (1, 0, . . . , 0)t. Let the Wilson loop be located at the

equator and invariant under anti-self-dual rotations in the SO(4) group of rotations

around the North pole. To be concrete, let the Wilson loop be placed in the (x1, x2)

plane. Then we take ε̂c = 1
2r

Γ12ε̂s. The conformal Killing spinor ε defined by such

ε̂s and ε̂c has a constant unit norm over the whole four-sphere ((εε) = 1). At the

North pole the spinor ε is purely left, at the South pole the spinor ε is purely right.

Now we compute the components of the vector field vM = εΓMε. If we assume
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ten-dimensional Minkowski signature, then we get

vt = sin θ

v0 = 1

v9 = cos θ

vi = 0 for i = 5, . . . , 8,

(2.3.5)

where θ is the polar angle on S4 such that the Wilson loop is placed at θ = π
2
,

the North pole is at θ = 0, and the South pole is at θ = π. The four-dimensional

space-time component vt of vM has length sin θ and is directed along the orbits of

the U(1) ⊂ SU(2)L ⊂ SO(4) group which rotates the (x1, x2) plane. If we switch

to the ten-dimensional Euclidean signature, then v0 = i while the other componens

are the same as in Minkowski signature.

To simplify SQ|bos we use the Bianchi identity for FMN , the gamma-matrices al-

gebra and integration by parts. The principal contribution to SQ|bos is the curvature

term

SFF =
1

4
(εΓ̃NΓM Γ̃PΓQε)FMNF PQ (2.3.6)

The FMNKi cross-terms vanish because νiΓ
0ΓMε = νiΓ

Mε = 0. Then we have a

simple contribution from auxiliary KK-term

SKK = −KiK
i. (2.3.7)

In the flat space limit, r →∞ the spinor ε is covariantly constant ∇µε = 0. There-

fore, in the flat space we simply have SQ|bos = SFF+SKK . Up to the total derivatives

and ∇µε-terms, using the Bianchi identity and the gamma-matrices algebra, we can

see that SFF is equivalent to the usual Yang-Mills action 1
2
FMNFMN . When the

space is curved and∇µε 6= 0 we shall make more careful computation. Using (2.2.23)

we get

SFF =
1

2
FMNFMN +

1

4
εΓ̃NΓM Γ̃PΓQε

1

3
(FMNFPQ + FPNFQM + FQNFMP ) . (2.3.8)



2.3. Localization 38

To simplify the last term, first we break the indices into two groups: M,N,P,Q =

(1, . . . , 4, 9, 0) and M,N,P,Q = (5, . . . , 8) describing respectively the fields of the

vector and hyper multiplet. Using Γ5678ε = ε we can see that the nonvanishing terms

have only zero, two or four of indices in the hypermultiplet range (5, . . . , 8). We

call the resulting terms as vector-vector, vector-hyper and hyper-hyper respectively.

First we consider vector-vector terms. For vector-vector terms we split indices to the

gauge field part (1, . . . , 4) and to the scalar part (0, 9). The nonvanishing gauge field

terms all have different values of M,N,P,Q. Then their contribution is simplified

to

1

4
·1
3
·24·εΓ1234ε(F 21F 34+F 31F 42+F 41F 23) = −1

2
εΓ1234ε(F, ∗F ) = −1

2
cos θ(F, ∗F ),

(2.3.9)

where ∗F is the Hodge dual of F . All terms in which one of the indices is 0 vanish

because ΓMPQ is antisymmetric matrix, hence εΓ0ΓMPQε = 0. Then the remaining

vector-vector terms have DµΦ9F structure. Integrating by parts and using Bianchi

identity we get

− 1

3
Dµ(εΓ9Γµνρε)Φ9Fνρ + cyclic(µνρ) = 4(ε̃Γ9Γµνε)Φ9Fµν . (2.3.10)

Doing similar algebra we get the contribution to the vector-hyper mixing terms

in SFF

− 8ε̃Γ9ΓijεΦi[Φ9,Φj]− 6ε̃ΓµΓijεΦiDµΦj (2.3.11)

We sum up all contributions to SFF and obtain

SFF =
1

2
FMNF

MN − 1

2
cos θFµν(∗F )µν + 4(ε̃Γ9Γµνε)Φ9Fµν

−8ε̃Γ9ΓijεΦi[Φ9,Φj]− 6ε̃ΓµΓijΦiDµΦj.

(2.3.12)

Next we consider the cross-terms between ΦA and FMN in SQ|bos

SFΦ = −ε̃ΓAΓ̃MΓNεΦAFMN − ε̃Γ̃AΓM Γ̃NεΦAFMN .
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We consider separately the cases when the index A is in the set {0, 9} and in the set

{5, . . . , 8}. The terms with index A = 0 all vanish because Γ̃0 = −Γ0 and because

ε̃ΓMε = 0 for our choice of ε in OSp(2|4). Next we take index A = 9. The only

nonvanishing terms are

−2ε̃Γ9ΓµνεΦ9Fµν − 2ε̃Γ9ΓijεΦ9[Φi,Φj],

where µ, ν = 1, . . . , 4 and i, j = 5, . . . , 8. Finally, we consider the case when the

index A is in the hypermultiplet range 5, . . . 8. The result is

4ε̃ΓµΓijεΦiDµΦj + 4ε̃Γ9ΓijεΦi[Φ9,Φj].

Then

SFΦ = −2ε̃Γ9ΓµνεΦ9Fµν + 4ε̃ΓµΓijεΦiDµΦj + 6ε̃Γ9ΓijεΦi[Φ9,Φj].

The ΦΦ term is easy

SΦΦ = 4ΦAΦB ε̃ΓAΓ̃B ε̃ = 4ε̃ε̃ΦAΦA.

Finally, we need the ΦK cross-term. Only Φ0 contributes

SΦK = 2KiΦ0νiΓ̃
0ε̃− 2KiΦ0νiΓ

0ε̃ = −4KiΦ0νiε̃.

The total result is

SQ|bos = SFF + SFΦ + SΦΦ + SΦK + SKK =

1

2
FMNF

MN − 1

2
cos θFµν(∗F )µν + 2ε̃Γ9ΓµνεΦ9Fµν − 2ε̃Γ9ΓijεΦi[Φ9,Φj]−

− 2ε̃ΓµΓijεΦiDµΦj + 4(ε̃ε̃)ΦAΦA − 4KiΦ0νiε̃−KiK
i (2.3.13)

The next step in the localization procedure is to find the critical points of the SQ|bos.

Our strategy will be to represent SQ|bos as a sum of semipositive terms (full squares)

and find the field configurations which ensure vanishing all of them.



2.3. Localization 40

First we combine the four-dimensional curvature terms together with the Φ9-

mixing terms

1

2
F µνFµν −

1

2
cos θF µν(∗F )µν + 2ε̃Γ9ΓµνεΦ9Fµν + 4(ε̃ε̃)Φ9Φ9 =

= cos2 θ

2
(F−µν + w−µνΦ9)2 + sin2 θ

2
(F+

µν + w+
µνΦ9)2. (2.3.14)

where

w−µν =
1

cos2 θ
2

ε̃LΓ9Γµνε
L

w+
µν =

1

sin2 θ
2

ε̃RΓ9Γµνε
R.

(2.3.15)

Next we make a full square with the terms

DmΦiD
mΦi − 2ε̃Γ9ΓijεΦi[Φ9,Φj]− 2ε̃ΓµΓijεΦiDµΦj =

= (DmΦj − ε̃ΓmΓijεΦ
i)2 − ΦiΦi(ε̃ε̃)(εε).

Finally we absorb the mixing term KiΦ0 as follows

−4(ε̃ε̃)Φ0Φ0 − 4Φ0Ki(ν
iε̃)−KiK

i = −(Ki + 2Φ0(νiε̃))
2.

We use the following relations through out the computation

(εε) = 1, (εLεL) = cos2 θ

2
, (εRεR) = sin2 θ

2
, (ε̃ε̃) =

1

4r2
,

w−µνw
−µν = w+

µνw
+µν =

1

r2
.

The final result is

SQ|bos = SQvect,bos + SQhyper,bos.

Here

SQvect,bos = cos2 θ

2
(F−µν + w−µνΦ9)2 + sin2 θ

2
(F+

µν + w+
µνΦ9)2 + (DµΦa)

2

+
1

2
[Φa,Φb][Φ

a,Φb] + (KE
i + wiΦ

E
0 )2

(2.3.16)

where the indices a, b = 0, 9 run over the scalars of the vector multiplet, the index

i = 5, 6, 7 runs over the three auxiliary fields for the vector multiplet, and wi = 2(νiε̃)

has norm wiw
i = 1

r2 .
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At this moment we also switched to the fields ΦE
0 , K

E
i which are related to the

original fields in Minkowski signature as Φ0 = iΦE
0 , Ki = iKE

i . Equivalently, we

could make the computation in the Euclidean signature from the very beginning

keeping all fields real. In this case some imaginary coefficients would appear in the

supersymmetry transformations: we would write down i in front of the fields Ki and

would replace the Γ0 matrix by iΓ0.

One could worry then that such supersymmetry transformations spoil the reality

conditions on the fields. However, our localization computation is not affected. The

Lagrangian and the theory is still invarint under such transformations if we under-

stand the action as an analytically continued functional to the space of complexified

fields. The path integral is understood as an integral of a holomorphic functional of

fields over a certain real half-dimensional “contour of integration” in the complexi-

fied space of fields. Strictly speaking, the bar in the formula (2.3.4) for QΨ literally

means complex conjugation only if we assume that we use that contour of integration

which we described before: all fields are real except Φ0 and Ki which are imaginary.

For a general contour of integration in the path integral we just use the functional

V (2.3.2) where QΨ is defined by the second line of (2.3.4). This means that the

functional V holomorphically depends on all complexified fields. The bosonic part

of QV is positive definite after restriction to the correct contour of integration.

From any point of view, we should stress that δε squares to a complexified gauge

transformation, whose scalar generator is iΦE
0 + cos θΦ9 + sin θAv, where ΦE

0 , ΦE
9

and Av take value in the real Lie algebra of the gauge group, and where Av is the

component of the gauge field in the direction of the vector field vµ. The theory is

similar to the Donaldson theory near the North pole where this generator becomes

iΦE
0 + Φ9, and anti-Donaldson theory near the South pole where this generator

becomes iΦE
0 − Φ9.

The hypermultiplet contribution is

SQhyper,bos = (D0Φi)
2 + (DmΦj − fmijΦi)2 +

1

2
[Φi,Φj][Φ

i,Φj] +
3

4r2
ΦiΦi +KE

I K
E
I ,
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where m = 1, . . . , 5, i = 5, . . . , 8, I = 1, . . . 4 and fmij = ε̃ΓmΓijε. We see that

with our choice of the “integration contour” in the space of complexified fields (all

fields are real except Ki, KI and Φ0 which are pure imaginary), all terms in the

action SQ|bos are semi-positive definite. Therefore, in the limit t → ∞ we need to

care in the path integral only about the locus at which all squares vanish and small

fluctuations in the normal directions.

For the hypermultiplet action we get a simple “vanishing theorem”: because of

the quadratic term 3
4r2 ΦiΦi, the functional SQhyper,bos vanishes iff all fields Φi vanish.

Next consider zeroes of the term SQvect,bos. The term (DµΦ9)2 ensures that the

field Φ9 must be covariantly constant. Away from the North and the South poles

and requiring that the curvature terms vanish, we get the equations

Fµν = −wµνΦ9

where wµν = w−µν +w+
µν . The curvature Fµν satisfies Bianchi identity, hence we must

have

d[λwµν]Φ9 = 0. (2.3.17)

It is easy to check that away from the North and the South poles, d[λwµν] does not

vanish, hence Φ9 and Fµν must vanish. The kinetic term (DµΦE
0 )2 ensures that ΦE

0

is covariantly constant. Since Fµν = 0 we can assume that the gauge field vanish,

then ΦE
0 is a constant field over S4. We call this constant aE and conclude, that up

to a gauge transformation, at smooth configurations we must have

SQbos = 0⇒



Aµ = 0 µ = 1, . . . 4

Φi = 0 i = 5, . . . , 9

ΦE
0 = aE constant over S4

KE
i = −wiaE

KI = 0

. (2.3.18)
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This is the key step in the localization procedure and in the proof of the Erickson-

Semenoff-Zarembo/Drukker-Gross conjecture about circular Wilson loop operators.

The infinite-dimensional path integral localizes to the finite dimensional locus (2.3.18),

and the integral over aE ∈ g is the resulting matrix model.

Let us evaluate the SYM action (2.2.35) at (2.3.18). The nonvanishing terms are

only

SYM [a] =
1

2g2
YM

∫
d4x
√
g

(
2

r2
(ΦE

0 )2 + (KE
i )2

)
=

1

2g2
YM

vol(S4)
3

r2
a2
E =

4π2r2

g2
YM

a2
E

(2.3.19)

where we used wiw
i = 1

r2 and the volume of the four-sphere 8
3
π2r4. We obtained

precisely the Drukker-Gross matrix model.

Let us check that the coefficient is correct. Recall, that the original action has

the following propagators in Feynman gauge on R4

〈Aµ(x)Aν(x
′)〉 =

g2
YM

4π2

gµν
(x− x′)2

〈ΦE
0 (x)ΦE

0 (x′)〉 =
g2
YM

4π2

1

(x− x′)2
.

Hence, the correlator functions which appear in the perturbative expansion of the

Wilson loop operator, have the structure

〈Aµ(α)ẋµAν(α
′)ẋν + iΦE

0 (α)iΦE
0 (α′)〉 = − g2

YM

4π2r2

cos(α− α′)− 1

4 sin2 α−α′
2

= − g2
YM

8π2r2
,

where α denotes an angular coordinate on the loop. That was the original moti-

vation for Erickson-Semenoff-Zarembo conjecture [25]. We see that the first order

perturbation theory agrees with the matrix model action derived by localization.

The power of the localization computation is that it actually proves the relation

between the field theory and the matrix model in all orders in perturbation theory.

It is also capable of taking into account instanton effects, which we describe shortly

after computing the fluctuation determinant near the locus (2.3.18) and confirming

the exact solution.



2.4. Determinant factor 44

We remark that for the N = 2∗ theory, the same argument about zeroes of SQ|bos
holds. To ensure that all terms are positive definite, we take the mass parameter Mij

in the Scherk-Schwarz reduction to be pure imaginary antisymmetric self-dual ma-

trix. Then the action of the mass deformed N = 2∗ theory at configurations (2.3.18)

reduces to the same matrix model action. However, as we will see shortly, when the

mass parameter Mij is non zero, the matrix model measure for the N = 2∗ theory

is corrected by a non-trivial determinant.

2.4 Determinant factor

2.4.1 Gauge-fixing complex

Because of the infinite-dimensional gauge symmetry of the action we need to work

with the gauge-fixed theory. We use the Faddeev-Popov ghost fields and introduce

the following BRST like complex with the differential δ:

δX = −[c,X] δc = −a0 −
1

2
[c, c] δc̃ = b δã0 = c̃0 δb0 = c0

δa0 = 0 δb = [a0, c̃] δc̃0 = [a0, ā0] δc0 = [a0, b0].

(2.4.1)

Here X stands for all physical and auxiliary fields entering (2.2.35). All other fields

are the gauge-fixing fields. By [c,X] we denote a gauge transformation with a

parameter c of any field X. (For the gauge fields Aµ we have δAµ = −[c,∇µ]. The

gauge transformation of Φ = vMAM is δΦ = [vµDµ+vAΦA, c] = ad(Φ)c+Lvc, where

ad(Φ)c is the pointwise adjoint action of Φ on c involving no differential operators).

The fields c and c̃ are the usual Faddeev-Popov ghost and anti-ghost. The bosonic

field b is the standard Lagrange multiplier used in Rξ-gauge, where the gauge fixing

is done by adding terms like (b, id∗A+ ξ
2
b) and (c̃, d∗∇Ac) to the action. The fields

c and c̃ actually have zero modes. To treat them systematically we add constant

fields c0, c̃0, a0, ã0, b0 to the gauge-fixing complex. The field a0 is interpreted as a
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ghost field for the ghost c. The fields a0, ã0, b0 are bosonic, and the fields c0, c̃0

are fermionic. The operator δ squares to the gauge transformation by the constant

bosonic field a0

δ2· = [a0, ·].

The gauge invariant action and observable are δ-closed

δSYM [X] = 0,

therefore their correlation functions are not changed when we add the δ-exact gauge-

fixing term.

When we combine the gauge-fixing terms with the physical action, we will see

that the convergence of the path integral requires the imaginary contour of inte-

gration for the constant field a0. This field a0 later will be identified with the zero

mode of the physical field Φ0 which is integrated over imaginary contour. To have

consistent notations we set a0 = iaE0 and assume that aE0 is integrated over the real

contour.

The δ-exact term

Sδg.f. = δ((c̃, id∗A+
ξ1

2
b+ ib0)− (c, ã0 −

ξ2

2
a0)) =

= (b, id∗A+
ξ1

2
b+ib0)−(c̃, id∗∇Ac+ic0+

ξ1

2
[a0, c̃])+(−iaE0 +

1

2
[c, c], ã0−

ξ2

2
iaE0 )+(c, ic̃0)

(2.4.2)

properly fixes the gauge.

Assuming that all bosonic fields are real, the bosonic part of gauge-fixed action

has strictly positive definite quadratic term for all fields and ghosts at ξ1, ξ2 > 0.

By general arguments the partition function does not depend on the parameters

ξ1, ξ2 in the δ-exact term. Let us fix ξ1 = 0 and demonstrate explicitly indepen-

dece on ξ2 and equivalence with the standard gauge-fixing procedure. First we do

Gaussian integral integral over aE0 and get

(iaE0 +
1

2
[c, c], iã0 −

ξ2

2
iaE0 )→ +

1

2ξ2

(ã0 −
ξ2

4
[c, c])2.
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Then we do Gaussian integral over ã0 and the above term goes away completely. The

determinant coming from the Gaussian integral over ã0 is inverse to the determinant

coming from the Gaussian integral over a0. Then we integrate the zero mode of b

against b0. Then integral over non-zero modes of b gives Dirac delta-functional

inserted at the gauge-fixing hypersurface d∗A = 0. The remaining terms are

(c̃, id∗∇Ac) + i(c̃, c0) + i(c, c̃0).

We can integrate out c0 with the zero mode of c̃, and c̃0 with the zero mode of c.

Then we are left with the integral over c and c̃ with the zero modes projected out

and the gauge-fixing term

(c̃, id∗∇Ac).

This reproduces the usual Faddeev-Popov determinant det′(d∗∇A) which we need

to insert into the path integral for the partition function after restricting to the

gauge-fixing hypersurface d∗A = 0. The symbol ′ means that the determinant is

computed on the space without the zero modes.

We summarize the gauge fixing procedure by the formula

Z =
1

vol(G, gYM)

∫
[DX]e−SYM [X] =

=
1

vol(G)

∫
[DX]e−SYM [X]

∫
g∈G′

[Dg] δDirac(d
∗Ag) det

′
(d∗∇A) =

=
vol(G ′, gYM)

vol(G, gYM)

∫
[DXDb′Dc′Dc̃′]e−SYM [X]−

∫
S4
√
g d4x(i(b,d∗A)−(c̃,id∗∇Ac)) =

=
1

vol (G, gYM)

∫
[DX DbDb0DcDc0Dc̃Dc̃0Da0Dã0]e−SYM [X]−Sδg.f.[X,ghosts],

(2.4.3)

where G ′ = G/G is the coset of the group of gauge transformations by constant

gauge transformations. We shall note that in our conventions for the gauge theory

Lagrangian 1
4g2
YM

(F, F ), where F = dA + A ∧ A, we need to take the volume of

the group of gauge transformations with respect to the measure which is rescaled
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by a power of the coupling constant gYM . In other words, we take vol(G, gYM) =

gdimGYM vol(G), where vol(G) is the volume of the gauge group computed with respect

to the Haar measure induced by the coupling constant independent Killing form (, )

on the Lie algebra.

2.4.2 Supersymmetry complex

To compute the path integral, it is convenient to bring the supersymmetry transfor-

mations to a cohomological form by a change of variables. (This change of variables

involves no Jacobian, one can think about it as a change of notations.) We use the

fact that conformal Killing spinor ε in (2.2.28) has constant unit norm at any point

on S4. Then the set of sixteen spinors consisting of {ΓMε} for M = 1, . . . , 9 and {νi}

for i = 1, . . . , 7 form an orthonormal basis for the space of Spin(9, 1) Majorana-Weyl

spinors reduced on S4. We expand Ψ over this basis

Ψ =
9∑

M=1

ΨMΓMε+
7∑
i=1

Υiν
i.

In new notations (ΨM ,Υi), the supersymmetry transformations (2.2.28) take the

following form: sAM = ΨM

sΨM = −(Lv +R +M +GΦ)AMsΥi = H i

sH i = −(Lv +R +M +GΦ)Υi,

(2.4.4)

where

H i ≡ Ki + wiΦ0 + si(AM). (2.4.5)

Now s denotes δε to distinguish it from the differential δ of the Faddeev-Popov

complex. By Lv we denote the Lie derivative in the direction of the vector field

vµ, R denotes the R-symmetry transformation in SUR
L , M denotes the mass-term
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induced transformation by Mij in SUR
R , and GΦ denotes the gauge transformation

by Φ. The functions si(AM) with i = 1, . . . , 7 are the “equations” of the equivariant

theory

si(AM) =
1

2
FMNνiΓ

MNε+
1

2
ΦAνiΓ

µA∇µε for M,N = 1, . . . , 9 A = 5, . . . , 9.

(2.4.6)

Even shorter, we can write the supersymmetry complex like

sX = X ′

sX ′ = [φ+ ε,X],
(2.4.7)

and sφ = 0, where we denoted φ = −Φ, [φ,X] = −GΦX and [ε,X] = −(Lv + R +

M)X.

All fields except Φ (2.2.12) are grouped in s-doublets (X,X ′), where the fields

X and X ′ have opposite statistics. We can think about fields X as coordinates on

some infinite-dimensional supermanifold M, on which group G acts. The fields X ′

can be interpreted as de Rham differentials X ′ ≡ dX, if we identify the operator s

with the differential in the Cartan model of G-equivariant cohomology on M

s = d+ φaiva (2.4.8)

where φa are the coordinates on the Lie algebra g of the group G with respect to

some basis {ea}, and iva is the contraction with a vector field va representing action

of ea onM. The differential s squares to the Lie derivative Lφ. In the present case,

the group G is a semi-direct product

G = Ggauge n U(1) (2.4.9)

of the infinite-dimensional group of gauge transformations Ggauge and the U(1) sub-

group of the OSp(2|4) symmetry group generated by the conformal Killing spinor ε.

In the path integral (2.4.3) for the partition function Zphys, we integrate s-

equivariantly closed form eS overM and then over φ. See [8, 78, 82] for twisted N =
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4 SYM related theories which have similar cohomological structure, and [83] where

similar integration over the parameter of the equivariant cohomology is performed.

2.4.3 The combined Q-complex

So far we constructed separately the gauge-fixing complex with the differential δ

and the supersymmetry complex with the differential s:

δa0 = 0 δX = −[c,X] δc = −a0 −
1

2
[c, c] δc̃ = b δã0 = c̃0 δb0 = c0

δX ′ = −[c,X ′] δφ = −[c+ ε, φ] δb = [a0, c̃] δc̃0 = [a0, ã0] δc0 = [a0, b0]

sa0 = 0 sX = X ′ sc = φ sc̃ = 0 sã0 = 0 sb0 = 0

sX ′ = [φ+ ε,X] sφ = 0 sb = [ε, c̃] sc̃0 = 0 sc0 = 0.

(2.4.10)

Here we summarize the anticommutators for δ and s:

{δ, δ}X(′) = [a0, X
(′)] {δ, δ}(ghost) = [a0, ghost]

{s, s}X(′) = [φ+ ε,X(′)] {s, s}(ghost) = 0

{s, δ}X(′) = −[φ,X(′)] {s, δ}(ghost) = [ε, ghost].

(2.4.11)

In this formula X(′) stands for all physical and auxilary fields X and X ′, and ghost

stands for any field of the BRST gauge fixing complex.

Now we combine the operators δ and s and define a fermionic operator Q:

Q = s+ δ.

Then we get

QX = X ′ − [c,X] Qc = φ− a0 −
1

2
[c, c]

QX ′ = [φ+ ε,X]− [c,X ′] Qφ = −[c, φ+ ε]

Qc̃ = b Qã0 = c̃0 Qb0 = c0

Qb = [a0 + ε, c̃] Qc̃0 = [a0, c̃0] Qc0 = [a0, b0]

Qa0 = 0.

(2.4.12)
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This means that Q satisfies on all fields

Q2· = [a0 + ε, ·].

In other words, Q squares to a constant gauge transformation generated by a0

and the U(1) anti-self-dual Lorentz rotation around the North pole generated by ε.

Now, since sSphys = 0 and δSphys = 0 we have

QSphys = 0.

We would like to make sure that the gauge-fixing term (2.4.2) is also Q-closed so

that we could use the localization argument.

We will take the following Q-exact gauge-fixing term:

SQg.f. = (δ+s)((c̃, id∗A+
ξ1

2
b+ib0)−(c, ã0−

ξ2

2
a0)) = Sδg.f−(c̃, s(id∗A+

ξ1

2
b+ib0))−(φ, ã0) =

= Sδg.f − (c̃, d∗ψ +
ξ1

2
[ε, c̃])− (φ, ã0 −

ξ2

2
a0) (2.4.13)

The replacement of Sδg.f. by SQg.f. does not change the partition function Zphys (2.4.3).

We can easily see this at ξ1 = 0. Integrating over a0 we get

(iaE0 +
1

2
[c, c]− φ, ã0 −

ξ2

2
iaE0 )→ 1

2ξ2

(
−ξ2

2
(
1

2
[c, c]− φ) + iã0

)2

.

After we integrate over ã0 the above term goes away completely. The determinants

for the Gaussian integrals over a0 and ã0 cancel. Then we are left with the following

gauge-fixing terms

i(b, d∗A+ b0)− i(c̃, d∗∇c+ c0) + i(c, c̃)− (c̃, d∗ψ),

where ψ is the fermionic one-form which is the superpartner of the gauge field A.

Then we note that the term (c̃, d∗ψ) does not change the fermionic determinant

arising from the integral over c, c̃, c0 and c̃0. The reason is that all modes of c are

coupled to c̃ by this quadratic action

i(c̄, d∗∇c+ c0) + i(c, c̃),
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and that there are no other terms in the gauge-fixed action which contain modes of

c. In other words, if treat the term (c̃, d∗ψ) as a perturbation to the usual gauge

fixed action, all diagrams with it vanish because c̃ can be connected by a propagator

only to c, but there are no other terms which generate vertices with c.

In other words we did the following. The action of the theory gauge-fixed in the

standard way (2.4.3) is δ-closed, but not Q-closed. We make the action Q-closed

by adding such terms to it which do not change the path integral. The fact that

the partition function does not change can be also shown by making a change of

variables which has trivial Jacobian.

We conclude that the total gauge-fixed action

S̃phys = Sphys + S ′g.f. (2.4.14)

is Q-closed

QS̃phys = 0, (2.4.15)

and that the partition function defined by the path integral over all fields and

ghosts with the action S̃phys is equal to the standard partition function with the

usual gauge-fixing (2.4.3).

It is possible to write the operator Q in the canonical form; namely Q is the

equivariant differential in the Cartan model for the G̃ = G n U(1) cohomology

generated by a0 and ε on the space of all other fields over which we integrate in the

path integral (2.4.3). The multiplets (c̃, b), (ã0, c̃0) and (b0, c0) are already in the

canonical form. To bring the transformations of (X,X ′) and (c, φ) to the canonical

form we make a change of variables

X̃ ′ = X ′ − [c,X]

φ̃ = φ− a0 −
1

2
[c, c].

(2.4.16)

Such change of variables has trivial Jacobian and does not change the path integral.

In terms of new fields, the Q-complex is canonical: all fields are grouped in doublets
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(Field, F ield′), while Q acts as

Q(Field) = (Field′)

Q(Field′) = [a0 + ε, F ield].
(2.4.17)

Moreover, Qa0 = Qε = 0.

Now recall Atiyah-Bott-Berline-Vergne localization formula for the integrals of

the equivariantly closed differential forms [21, 22]∫
M
α =

∫
F⊂M

i∗Fα

e(N )
. (2.4.18)

The numerator corresponds to the physical action evaluated at the critical locus of

the tQV term. The equivariant Euler class of the normal bundle in the denominator

is just a determinant, coming from the Gaussian integral using quadratic part of tQV

in the normal directions N . We will argue that this determinant can be expressed

as a product of weights for the group action on N defined by (2.4.17). The basic

difference with the usual localization formula (2.4.18) is that the manifoldM in our

problem is not a usual manifold, but an (infinite-dimensional) supermanifold. Hence,

the equivariant Euler class must be understood in a super-formalism [84, 85]. In

our case it is just a super-determinant. If we split the normal bundle to the bosonic

and the fermionic subspaces, the resulting determinant is the product of weights on

the bosonic subspace divided by the product of weights on the fermionic subspace.

Before making gauge-fixing procedure we argued previously that the theory local-

izes to the zero modes of the field Φ0. The localization argument for the gauge-fixed

theory remains the same, except that now we can identify the zero mode of the field

Φ0 with a0. Indeed, if we first integrate over ã0 using gauge fixing terms at ξ2 = 0

(iaE0 +
1

2
[c, c]− iφE, ã0),

we get the constraint that the zero mode of φE is equal to aE0 .
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2.4.4 Computation of the derminant by the index theory of

transversally elliptic operators

We write the linearization of the Q-complex in the form

QX0 = X ′0 QX1 = X ′1

QX ′0 = R0X0 QX ′1 = R1X1

(2.4.19)

where all bosonic and fermionic fields in the first line of (2.4.17) are denoted as X0

and X1 respectively, and their Q-differentials are denoted as X ′0 and X ′1. So X0, X
′
1

are bosonic, and X ′0, X1 are fermionic fields.

The quadratic part of the functional V is

V (2) =

 X ′0

X1

t D00 D01

D10 D11

 X0

X ′1

 , (2.4.20)

where D00, D01, D10, D11 are some differential operators. Then we have

QV (2) = (Xbos, KbosXbos) + (Xferm, KfermXferm),

where the kinetic operators Kbos, Kferm are expressed in terms of D00, D01, D10, D11

and R0, R1 in a certain way. The Gaussian integral gives

Z1-loop =

(
detKbos

detKferm

)− 1
2

. (2.4.21)

Let E0 and E1 denote the vector bundles whose sections can be identified with fields

X0, X1. Some linear algebra shows that this ratio of the determinants depends only

on the representation structure R on the kernel and cokernel spaces of the operator

D10 : Γ(E0)→ Γ(E1). Namely we have

detKbos

detKferm

=
detkerD10 R

detcokerD10 R
. (2.4.22)

The operator D10 in our problem is not an ordinary elliptic operator, but a

transversally elliptic operator with respect to the U(1) rotation of S4.
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This means the following. Let E0 and E1 be vector bundles over a manifold X

and D : Γ(E0)→ Γ(E1) be a differential operator. (In our problem X = S4.) Let a

compact Lie group G̃ act on X such that its action preserves all structures. Let π :

T ∗X → X be the cotangent bundle of X. Then pullback π∗Ei is a bundle over T ∗X.

By definition, a symbol of the differential operator D : Γ(E0) → Γ(E1) is a vector

bundle homomorphism σ(D) : π∗E0 → π∗E1, such that in local coordinates xi, the

symbol is defined by replacing all partial derivatives in the highest order component

of D by momenta, so that ∂
∂xi
→ ipi, and then taking pi to be coordinates on fibers

of T ∗X. The operator D is called elliptic if its symbol σ(D) is invertible on T ∗X \0,

where 0 denotes the zero section. The kernel and cokernel of an elliptic operator

are finite dimensional vector spaces. Using the Atiyah-Singer index theory [86–91]

one can find a formal difference of representations in which G̃ acts on these spaces,

as we will see in a moment. However, we will see as well that the operator D10 is

not elliptic, so the ordinary Atiyah-Singer index theory does not apply. There is a

generalization of Atiyah-Singer index theory for operators which are elliptic only in

directions transverse to the G̃-orbits [71, 72]. Such operators are called transversally

elliptic. In other words, for any point x ∈ X we consider the subspace T ∗
G̃
Xx of the

T ∗Xx, which consists of elements which are orthogonal to the G̃-orbit through x.

We have

T ∗
G̃
Xx = {p ∈ T ∗Xx such that p · v(g̃) = 0 ∀g̃ ∈ Lie(G̃)},

where v(G̃) denotes a vector field on X generated by an element g̃ of the Lie algebra

of G̃. Then the family of the vector spaces T ∗
G̃
X over X is defined as the union of

T ∗
G̃
Xx for all x ∈ X. The notion of a family of vector spaces over some base is similar

to the notion of a vector bundle, except that dimension of fibers can jump. The

operator D is called transversally elliptic if its symbol σ(D) is invertible on T ∗
G̃
X \0.

Computing the symbol of D10, we will see explicitly in (2.4.30) that D10 is not an

elliptic operator, but a transversally elliptic one. The kernel and the cokernel of such
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an operator are not generally finite dimensional vector spaces, but if we decompose

them into irreducible representations, then each irreducible representation appears

with a finite multiplicity [71, 72]. So we have

kerD10 = ⊕αm(0)
α Rα

cokerD10 = ⊕αm(1)
α Rα,

(2.4.23)

where α runs over irreducible representations of G̃, and mα denotes the multiplicity

of the irreducible representation Rα. Then

detKbos

detKferm

=
∏
α

(detRα)m
(0)
α −m

(1)
α . (2.4.24)

Thus we need to know only the difference of multiplicities m
(0)
α and m

(1)
α of

irreducible representations into which the kernel and cokernel of D10 can be de-

composed. To find this difference we use Atiyah-Singer index theory [71, 72] for

transversally elliptic operators, which generalizes the usual theory [86–91]. In our

problem, Rα is an irreducible representation of the group G̃ = U(1) × G. We also

denote this U(1) group by H, so that G̃ = H ×G. The relevant representations of

G are those in which the physical fields transform (we will consider only the adjoint

representation), but all representations of H = U(1) arise. Let q ∈ C, |q| = 1 denote

an element of U(1). Irreducible representations of U(1) are labeled by integers n,

so that the character of representation n is qn. The U(1)-equivariant index of D10

is defined as

ind(D10) = trkerD10 R(q)− trcokerD10 R(q) =
∑
n

(m(0)
n −m(1)

n )qn.

Hence, if we compute the equivariant index of D10 as a series in q, we will know

m
(0)
n −m(1)

n and will be able to evaluate (2.4.24).

To compute the index of D10, first we need to describe the bundles E0, E1 and the

symbol of the operator D10 : Γ(E0)→ Γ(E1). The collective notation X0, X
′
0, X1, X

′
1
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corresponds to the original fields in the following way

X0 = (AM , ã0, b0) X1 = (Υi, c, c̃)

X ′1 = (Ψ̃M , c̃0, c0) X ′1 = (H̃i, φ̃, b).
(2.4.25)

The space of all fields decomposes in a way compatible with Q-action (2.4.19)

into direct sum of two subspaces: the fields of vector multiplet and hypermultiplet.

The vector subspace also includes fields of the gauge fixing complex. The vector

subspace consists of

Xvect
0 = (Φ9, AM , ã0, b0) for M = 1, . . . , 4 Xvect

1 = (Υi, c, c̃) for i = 5, . . . , 7

(2.4.26)

and their Q-superpartners. The hyper subspace consists of

Xhyper
0 = (AM) for M = 5, . . . , 8 Xhyper

1 = (Υi) for i = 1, . . . , 4 (2.4.27)

and their Q-superpartners. The operator D10 does not mix the vector and hyper

subspaces. So the vector bundles split as E0 = Evect
0 ⊕ Ehyper

0 , and E1 = Evect
1 ⊕

Ehyper
1 , as well as the operator D10 = Dvect

10 + Dhyper
10 , where Dvect

10 : Γ(Evect
0 ) →

Γ(Evect
1 ) and Dhyper

10 : Γ(Ehyper
0 )→ Γ(Ehyper

1 ).

First we consider the index of Dvect
10 . The constant fields (ã0, b0) are in the

kernel of Dvect
10 and have zero U(1) weights, hence their contribution to the index

is 2. The remaining fields, denoted by Xvect′
0 , are identified with sections of bundle

(T ∗ ⊕ E) ⊗ adE, where T ∗ is the cotangent bundle, and E is the rank one trivial

bundles over S4. The fields Xvect′
1 are identified with sections of (E3 ⊕ E2) ⊗ adE,

where E3 is the rank three trivial bundle of auxiliary scalar fields, and E2 is the rank

two trivial bundle of the gauge fixing fields c and c̃. Because of the difference due

to (ã0, b0) contribution we have

ind(Dvect
10 ) = ind′(Dvect

10 ) + 2. (2.4.28)

Now we compute the symbol of the operator Dvect
10 . The relevant terms are

V (2) = (c̃, d∗A) + (c,∇µLvAµ) + (Υi, (∗F0i)− F0i cos θ +∇iΦ9 sin θ), (2.4.29)
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where index i runs over vielbein elements on S4.

We chose a vielbein in such a way that i = 1 is the direction of the U(1) vector

field, and i = 2, 3, 4 are the remaining orthogonal directions. The term (c,∇µLvAµ)

comes from the term (ψµ,LvAµ) and the relation ψµ = ψ̃µ−∇µc. Then the symbol

σ(Dvect
10 ) : π∗Evect

0 → π∗Evect
1 , where π denotes the projection of the cotangent bundle

π : T ∗X → X, is represented by the following matrix

c

c̃

Υ1

Υ2

Υ3


←



cθp
2 sθ

−→p 2 −sθp2p1 −sθp3p1 −sθp4p1

0 p1 p2 p3 p4

sθp2 −cθp2 cθp1 −p4 p3

sθp3 −cθp3 p4 cθp1 −p2

sθp4 −cθp4 −p3 p2 cθp1





Φ9

A1

A2

A3

A4


. (2.4.30)

Here pi for i = 1, . . . , 4 denotes coordinates on fibers of T ∗X, −→p = (p2, p3, p4)

denotes coordinate on fibers of T ∗HX, and cθ ≡ cos θ, sθ ≡ sin θ. In other words, −→p

is a momentum orthogonal to the direction of the U(1) vector field on S4. After a

change of coordinates on fibers of bundles E0 → T ∗X and E1 → T ∗X

c→ c+ sθp0c̃

Φ9 → cθΦ9 + sθA1

A1 → −sθΦ9 + cθA1,

(2.4.31)

the matrix of the symbol of Dvect
10 takes the form

p2 0 0 0 0

sθp1 cθp1 p2 p3 p4

0 −p2 cθp2 −p4 p3

0 −p3 p3 cθp2 −p2

0 −p4 −p3 p2 cθp2.


. (2.4.32)

The term sθp1 in the first column of the second line can be also removed by sub-

tracting the first line multiplied by sθp1/p
2. Then the notrivial part of the symbol
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is represented by the following 4× 4 matrix

σ =


cθp1 p2 p3 p4

−p2 cθp2 −p4 p3

−p3 p3 cθp2 −p2

−p4 −p3 p2 cθp2.

 . (2.4.33)

The determinant of this matrix is (cos2 θp2
1 + −→p 2)2. First of all, we see that the

symbol is not elliptic at the equator of S4, since if cos θ = 0 we can take (p1 6= 0,−→p =

0) and the determinant will vanish. But the symbol is transversally elliptic with

respect to the H = U(1) group, since its determinant is always non-zero whenever

−→p 6= 0. Indeed, to check if the symbol is transversally elliptic, we need to consider

only non-zero momenta orthogonal to the U(1) orbits. In our notations that means

p1 = 0,−→p 6= 0.

In a neighborhood of the North pole (cθ = 1) the symbol is equivalent to the

elliptic symbol of the standard anti-self-dual complex (d, d−)

Ω0 d→ Ω1 d−→ Ω2−, (2.4.34)

while in a neighborhood of the South pole (cθ = −1), the symbol is equivalent to

the elliptic symbol of the standard self-dual complex (d, d+)

Ω0 d→ Ω1 d+

→ Ω2+. (2.4.35)

Intuitively one can see that from the structure of the QV -action (2.3.14).

In the elliptic case, one could use Atiyah-Bott formula [90, 91] to compute the

index as a sum of local contributions from H-fixed points on X. In the transversally

elliptic case the situation is more complicated. By definition, the index is a sum of

characters of irreducible representations. We have

ind(D) =
∞∑

n=−∞

anq
n, (2.4.36)
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where an = m
(0)
n − m(1)

n is a difference of multiplicities in which irreducible repre-

sentation n appears in the kernel and cokernel of D. In the elliptic case, only a

finite number of an does not vanish, so that the index is a finite polynomial in q and

q−1. This also means that the index is a regular function on the group H = U(1).

In the transversally elliptic case, the series (2.4.36) can be infinite, so that index is

generally not a regular function. However, Atiyah and Singer showed [71, 72] that

in the tranversally elliptic case, all coefficients an are finite, and that the index is

well defined as a distribution (a generalized function) on the group.

For example, consider the zero operator acting on functions on a circle X = S1,

so D : C∞(S1) → 0. This is a transversally elliptic operator with respect to the

canonical U(1) action on S1. The kernel of the zero operator is the space of all

functions on S1, the cokernel is zero. Then m
(0)
n = 1,m

(1)
n = 0 for all n, so the index

is
∑∞

n=−∞ q
n, which is the Dirac delta-function supported at q = 1.

The equivariant index theory can be generalized to the transversally elliptic

case [71, 72, 92, 93]. The idea is that we can cut a H-manifold X into small

neighborhoods of H-fixed points and the remaining subspace Y ⊂ X on which H

acts freely. By definition, at each H-fixed point the symbol of transversally elliptic

operator is actually elliptic, so the ordinary equivariant index theory applies. Since

H acts freely on Y , we can consider the quotient Y/H. A H-transversally elliptic

operator on Y gives us an elliptic operator on Y/H. Then we can combine the

representation theory of G and the usual index theory on the quotient Y/H to find

the index of transversally elliptic operator on Y [71].

Let R(H) be the space of regular functions on H (the space of finite polynomials

in q and q−1). Let D′(H) denote the space of distributions (generalized functions)

on H (not necessarily finite series in q and q−1). The space of distributions D′(H)

is a module over the space of regular functions R(H), since there is a well defined

term by term multiplication of series in q and q−1 by finite polynomials in q and

q−1. Some singular generalized functions such as the Dirac delta-function
∑∞

n=−∞ q
n
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can be annihilated by non-zero regular functions. For example, Dirac delta-function∑∞
n=−∞ q

n ∈ D′(H) vanishes after multiplication to (1−q). Such elements of D′(H)

which can be annihilated by non-zero regular functions in R(H) are called torsion

elements.

To find the index of transversally elliptic operator up to a distribution supported

at q = 1 (a torsion element of D′(H)), we can use the usual Atiyah-Bott formula [89–

91] (see appendix (A.4)). This formula gives a contribution to the index from each

fixed point as a rational function of q. This function is generally singular at q = 1.

For example, if H = U(1) acts on C as z → qz, then the Atiyah-Bott formula for

the index of the ∂̄-operator at the fixed point z = 0 gives

ind(∂̄)|0 =
1

1− q−1
. (2.4.37)

To get a distribution associated with this rational function, we need to expand

it in series in q and q−1. Of course, the result is not unique, but different expansions

differ only by a distribtuion supported at q = 1. For H = U(1), there are two basic

ways, or regularizations, which fix the singular part [71]. The regularization [f(q)]+

is defined by taking expansion at q = 0. This gives us a series infinite in positive

powers of q. The regularization [f(q)]− is defined by taking expansion at q = ∞.

This gives us a series infinite in negative powers of q. These two regularizations differ

by a distribution supported at q = 1. For example, for the ∂̄-operator we get as the

difference the Dirac delta-function [(1− q−1)−1]+ − [(1− q−1)−1]− = −
∑n=∞

n=−∞ q
n.

Let X = Cn be a H = U(1) module with positive weights m1, . . . ,mn, so that

U(1) acts as zi → qmizi, and let Y = {0} be the H-fixed point set. Let v be the

vector field generated by the U(1) action on X. Let σ(D) be an elliptic symbol

defined on T ∗X|Y , i.e. defined on the fiber of the cotangent bundle to X at the

origin. Atiyah showed [71] that we can use the vector field v in two different ways,

called [·]+ and [·]−, to construct a transversally elliptic symbol σ̃ = [σ]± on the

whole space T ∗HX such that σ̃ is an isomorphism outside of the origin Y . (If (x, p)
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are coordinates on T ∗X, then, loosely speaking, we take σ̃(x, p) = σ(0, p ± v). See

appendix A.4 for more precise details). Then the index of the transversally elliptic

symbol σ̃ is well defined as a distribution on H. Moreover, if ind(σ) is a rational

function of q associated at the fixed point Y to the elliptic symbol σ by Atiyah-Bott

formula, then

ind([σ]±) = [ind(σ)]±. (2.4.38)

We apply this procedure to our problem. Namely, we use the vector field gener-

ated by the H = U(1)-action on X = S4 to trivialize the symbol σ(Dvect
10 ) everywhere

on T ∗HX except at the North and the South pole. Then the index is equal to the sum

of contributions from the fixed points, where each contribution is expanded in posi-

tive or negative powers of q according to the (2.4.38). More concretely, we trivialize

the transversally elliptic symbol σ = σ(Dvect
10 ) everywhere outside the North and the

South poles on T ∗HX by replacing cθp1 by cθp1 +v on the diagonal in (2.4.33), where

v = sin θ. In other words, we deform the operator by adding the Lie derivative in

the direction of the vector field v. The resulting symbol

σ̃ =


cθp1 + sθ p2 p3 p4

−p2 cθp1 + sθ −p4 p3

−p3 p4 cθp1 + sθ −p2

−p4 −p3 p2 cθp1 + sθ

 . (2.4.39)

has determinant (−→p 2 +(cθp1 +sθ)
2)2 which is non-zero everywhere outside the North

and the South poles at T ∗HX. (To check this, take p1 = 0 and sθ > 0.) The index

of σ̃ is equal to the index of σ, since σ̃ is a continous deformation of σ. On the

other hand, since σ̃ is an isomorphism outside of the North and the South pole, to

get the index of σ̃ we sum up contributions from the North and the South pole. At

the North pole cos θ = 1. Therefore, in a small neighborhood of the North pole, the

transversally elliptic symbol σ̃ coincides with the symbol associated to the elliptic

symbol σ̃θ=0 by the [·]+ regularization. At the South pole cos θ = −1. Therefore, in
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a small neighborhood of the South pole, the transversally elliptic symbol σ̃ coincides

with the symbol associated to the elliptic symbol σ̃θ=π by the [·]− regularization.

Finally we obtain

ind′(Dvect
10 ) =

[
ind(d, d−)|θ=0

]
+

+
[
ind(d, d+)|θ=π

]
− . (2.4.40)

One could probably also derive this result following the procedure in [94], where

the index theorem for the Dirac operator was obtained using the deformation ΓµDµ →

ΓµDµ + tΓµvµ.

Let z1, z2 be complex coordinates in a small neighboorhod of the South pole,

such that the U(1) action is z1 → qz1, z2 → qz2. With respect to this action the

complexified self-dual complex is isomorphic to the Dolbeault ∂̄-complex twisted by

the bundle O ⊕ Λ2T ∗1,0. Using the fact that the index of ∂̄ operator is (1 − q−1)−2,

we get

ind′(Dvect
10 ) =

[
− 1 + q2

(1− q)2

]
+

+

[
− 1 + q2

(1− q)2

]
−
, (2.4.41)

where [f(q)]± respectively means to take expansion of f(q) in positive or negative

powers of q. In our conventions E0 corresponds to the middle term of the standard

(anti)-self dual complex (2.4.35), therefore we get an extra minus sign.

Finally,

ind(Dvect
10 ) = 2 + ind′(Dvect

10 ) =

= 2− (1 + q2)(1 + 2q + 3q2 + . . . )− (1 + q−2)(1 + 2q−1 + 3q−2 + . . . ) =

= −
∞∑

n=−∞

|2n|qn. (2.4.42)

Note that in the computation of the index for the vector multiplet, the chirality

of the complex coincides with the chirality of the U(1) rotation near each of the

fixed points.

Now we proceed to the hypermultiplet contribution to the index. The com-

putation is similar to the vector multiplet. The transversally elliptic operator
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Dhyper
10 : Γ(Ehyper

0 )→ Γ(Ehyper
1 ) can be trivialized everywhere over T ∗GX except fixed

points, where it is isomorphic to the self-dual complex at the North pole, or anti-self-

dual complex at the South pole. For the hypermultiplet the chirality of the complex

is opposite to the chirality of the U(1) rotation near each of the fixed points. Then,

using that the index of the twisted Dolbeault operator is (1+qq−1)/((1−q)(1−q−1)),

we get

indq(D
hyper
10 ) =

[
− 2

(1− q)(1− q−1)

]
+

+

[
− 2

(1− q)(1− q−1)

]
−
, (2.4.43)

which results in

indq(D
hyper
10 ) = +

∞∑
n=−∞

|2n|q−n. (2.4.44)

So far we considered the massless hypermultiplet. In this case its contribution to

the index exactly cancels the vector multiplet. Hence, the determinant factor in the

N = 4 theory is trivial. This finishes the proof that the Erickson-Semenoff-Zarembo

matrix model is exact in all orders of perturbation theory.

In the N = 2∗ case the situation is more interesting. Now the hypermultiplet

is massive. In the transformations (2.4.19) the action of R is contributed by the

SU(2)RR generator Mij. We normalize it as MijM
ij = 4m2. The hypermultiplet

fields transform in the spin-1
2

representation of SU(2)RR. Therefore, in the massive

case the index is multiplied by the spin-1
2

character relative to the massless case:

1
2
(eim+e−im). Hence all U(1)-eigenspaces split into half-dimensional subspaces with

eigenvalues shifted by ±m.

Finally, all fields transform in the adjoint representation of gauge group. Making

a constant gauge transformation we can assume that the generator a0 is in the Cartan

subalgebra of the Lie algebra g of the gauge group. Then non-zero eigenvalues of a0

in the adjoint representation are {α · a0}, where α runs over all roots of g. Hence,

combining all contributions to the index, we obtain for the N = 2∗ theory(
detKbos

detKferm

)
N=2∗

=
∏

roots α

∞∏
n=−∞

[
(α · a0 + nε+m)(α · a0 + nε−m)

(α · a0 + nε)2

]|n|
.
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Here we denote ε = r−1. The term nε comes from a weight n representation of the

U(1), the term α ·a0 is an eigenvalue of a0 acting on the eigensubspace of the adjoint

representation corresponding to root α.

We argued before that to ensure convergence of the path integral the mass pa-

rameter and the scalar field Φ0 should be taken imaginary if we work with ten-

dimensional Minkowski signature. The parameter a0 is also imaginary since it is

identified with the zero mode of Φ0. Let us denote m = imE, a0 = iaE ≡ iaE0 . Then,

recalling (2.4.21) we get

ZN=2∗

1-loop (iaE) =
∏

roots α

∞∏
n=1

[
((α · aE)2 + ε2n2)2

((α · aE +mE)2 + ε2n2)((α · aE −mE)2 + ε2n2)

]n
2

.

(2.4.45)

This product requires some regularization which we explain in a moment.

Recall the product formula for the Barnes G-function (see e.g. [65])

G(1 + z) = (2π)z/2e−((1+γz2)+z)/2

∞∏
n=1

(
1 +

z

n

)n
e−z+

z2

2n , (2.4.46)

where γ is the Euler constant. Then we introduce a function H(z) = G(1+z)G(1−z)

and obtain

H(z) = e−(1+γ)z2
∞∏
n=1

(
1− z2

n2

)n ∞∏
n=1

e
z2

n . (2.4.47)

Using this relation we obtain formally

ZN=2∗

1-loop (iaE) = exp

(
m2
E

ε2

(
(1 + γ)−

∞∑
n=1

1

n

))
×

×
∏

roots α

H (iα · aE/ε)
[H ((iα · aE + imE)/ε)H ((iα · aE − imE)/ε)]1/2

. (2.4.48)

The first factor exp(. . . ) is divergent, but it does not depend on aE. Therefore it

cancels when we compute expectation value of the operators which localize to func-

tions of aE, such as the circular supersymmetric Wilson loop operator. Therefore

we can remove this factor from the partition function. The resulting product of the

G-functions is a well defined analytic function of aE.
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Our result is consistent with the renormalization properties of the gauge theory.

To check that the β-function comes out right, we need asymptotic expansion of the

G-function at large z

logG(1 + z) =
1

12
− logA+

z

2
log 2π +

(
z2

2
− 1

12

)
log z − 3

4
z2 +

∞∑
k=1

B2k+2

4k(k + 1)z2k
,

(2.4.49)

where A is a constant and Bn are Bernoulli numbers. Then

1

2
(logG(1 + izE) + logG(1− izE)) =

1

12
− logA+

(
−z

2
E

2
− 1

12

)
log zE +

3

4
z2
E + . . .

(2.4.50)

If we take a limit of very large mass of the hypermultiplet, we expect to get

the minimal N = 2 theory at the energy scales much lower then the mass of the

hypermultiplet. At large m, we expand the denominator in (2.4.48), corresponding

to the hypermultiplet contribution to Z1-loop, and get

Zhyper
1-loop = const(mE) +

(
const+ log

mE

ε

∑
α

(α · aE)2

ε2

)
+O(

1

m2
). (2.4.51)

The important dependence on aE can be combined with the classical Gaussian action

in the matrix model

4π2r2

g2
YM

(aE, aE)→
(

4π2r2

g2
YM

− C2

ε2
log

mE

ε

)
(aE, aE), (2.4.52)

where C2 denotes the proportionality constant of the second Casimir trAd TaTb =

C2δaδb. We can write that as

1

g̃2
YM

=
1

g2
YM

− C2

4π2
log

mE

ε
(2.4.53)

where g̃2
YM has a simple meaning of the renormalized coupling constant. In other

words, the bare microscopical constant g2
YM is defined at the UV scale mE and

higher (in that region it does not run because of restored N = 4 supersymmetry).

At scales less than mE, the coupling constant runs by beta-function of pure N = 2
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theory. Recall that the one-loop beta function for a gauge theory with Nf Dirac

fermions and Ns complex scalars in adjoint representation is

∂g(µ)

∂ log µ
= β(g) = − C2g

3

(4π)2

(
11

3
− 4

3
Nf −

1

3
Nc

)
. (2.4.54)

Taking Nf = Ns = 1 for a pure N = 2 theory we get precisely the relation (2.4.53),

which says that g̃2
YM is the running coupling constant at the IR scale ε = r−1, which

is the lowest scale for the theory on S4 of radius r. This is also the scale of the

Wilson loop operator, since it is placed on the equator.

We can check that the resulting integral over aE is always convergent as long as

the bare coupling constant g2
YM is positive, in other words as long as the original ac-

tion is positive definite. First of all, the Barnes function G(1+z) does not have poles

or zeroes on the imaginary contour Rez = 0 over which we integrate. To see that

the integral also behaves nicely at infinity we use the asymptotic expansion (2.4.50).

In the pure N = 2 case the leading term in the exponent comes from the numer-

ator of Z1-loop and is equal to −1
2
z2
E log zE. This is a negative function which grows

in absolute value faster than any other terms including the renormalized quadratic

term (2.4.52) even if g̃2
YM formally becomes negative.

In the N = 2∗ case we need to take asymptotic expansion at large zE of both

the numerator and denominator of (2.4.48) to check convergence at infinity. The

leading terms (α · aE)2 log(α · aE) cancel, and the next order term is proportional to

m2
E log(α ·aE). This does not spoil the convergence insured by the Gaussian classical

factor exp(−4π2r2

g2
YM

(aE, aE)).

To summarize, in the pure N = 2 theory we need to insert the factor

ZN=2
1-loop =

∏
roots α

H (iα · aE/ε) , (2.4.55)

under the integral in the matrix model and to substitute gYM by the renormalized

coupling constant g̃YM in the Gaussian classical action.

When we set m = 0 we get the N = 4 theory. The numerator coming from the

vector multiplet exactly cancels the denominator coming from the hypermultiplet
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in the formula (2.4.48) and we get

ZN=4
1-loop = 1. (2.4.56)

We shall note that most of the above computations are generalized easily for the

N = 2 theory with a massless hypermultiplet taken in an arbitrary representation.

Let us denote this represenation by W . Analogously to the case of the adjoint

representation, one can get a formula

ZN=2,W
1−loop (iaE) =

∏
α∈weights(Ad) H(iα · aE/ε)∏
w∈weights(W ) H(iw · aE/ε)

. (2.4.57)

Strictly speaking, this formula is valid in the situations when the infinite product

of weights for the vector multiplet and hypermultiplet is proportional to the prod-

uct of Barnes G-functions with the same divergent factor. That happens for such

representations W when
∑

α(α · a)2 =
∑

w(w · a)2 for any a ∈ g. This is actually

the condition of vanishing β-function for the N = 2 theory with a hypermultiplet in

representation W . Therefore we claim that the formula (2.4.57) literally holds for all

N = 2 superconformal theories. In a general N = 2 case, the one-loop determinant

requires regularization similarly to what we did for the pure N = 2 theory.

It would be interesting to combine the factor Z1−loop with the partition function

of instanton corrections |Zinst|2 in an arbitraryN = 2 superconformal case, integrate

over aE and check predictions of the S-duality for these theories (see e.g.[73, 95]).

2.4.5 Example

Before turning to the instanton corrections, let us give a simplest example of a non-

trival prediction of the formula (2.4.57), which perhaps can be checked using the

traditional methods of the perturbation theory.

Take the N = 2 theory with with the SU(2) gauge group and 4 hypermultiplets

in the fundamental representation. We choose coordinate a on the Cartan subal-

gebra of the real Lie algebra of the gauge group SU(2), such that an element a
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is represented by an anti-hermitian matrix diag(ia,−ia). Let the invariant bilinear

form on the Lie algebra be minus the trace in the fundamental representation, and let

the kinetic term of the Yang-Mills action be normalized as 1
4gYM2

∫
d4x
√
g(Fµν , F

µν).

The weights w in the spin-j representation run from −2j to 2j. In the adjoint repre-

sentaton (j = 1) we have {α · a} = {−2a, 0, 2a}. In the fundamental representation

(j = 1
2
) we have {w · a} = {a,−a}. We also have (a, a) = 2a2. The matrix model

for the expectation value of the Wilson loop in the spin-j representation is

〈trj Pexp(

∫
Adx+iΦ0ds)〉 = Z−1

∫ ∞
−∞

dae
− 8π2

g2
YM

a2

(2a)2 H(2ia)H(−2ia)

(H(ia)H(−ia))4
(

j∑
m=−j

e4πma),

where Z is a constant independent of the inserted Wilson loop operator. The extra

factor (2a)2 is the usual Vandermonde determinant appearing when we switch to

the integral over the Cartan subalgebra from the integral over the whole Lie algebra.

At the weak coupling gYM → 0 we can evaluate this integral as a series in gYM . For

the Barnes G-function we use Taylor series expansion at small z

logG(1 + z) =
1

2
(log(2π)− 1)z − (1 + γ)

z2

2
+
∞∑
n=3

(−1)n−1ζ(n− 1)
zn

n
.

After some algebra one gets the following perturbative result for the expectation

value of e2πna in the matrix model (we write here g = gYM)

〈e2πna〉 = 1+
3

2 · 22
n2g2 +

5

8 · 24
n4g4 +

7

48 · 26
n6g6 +

35

24(4π)2
t2n

2g6 +O(g8), (2.4.58)

where t2 is the coefficient coming from the expansion of the Barnes G-function. It

is expressed in terms of Riemann zeta-function

t2 = −12ζ(3).

To get this result we expanded the determinant factor in powers of a:

log

(
H(2ia)H(−2ia)

(H(ia)H(−ia))4

)
= −8

∞∑
k=2

ζ(2k − 1)

k
(22k−2 − 1)(−1)ka2k =:

∞∑
k=2

tka
2k.
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Then for a Gaussian measure
∫
da e−

1
2σ2 a

2

with σ2 =
g2
YM

16π2 we have

〈
a2 exp

(∑
tka

2k
)
eqa
〉

gauss
=

(
∂

∂q

)2

exp

(∑
tk

(
∂

∂q

)k)
e

1
2
q2σ2

.

The perturbative result for the N = 4 SU(2) theory is given by the same formula

but with tk = 0:

〈eqa〉N=4 = (1 + σ2q2) exp(
1

2
σ2q2) = 1 +

3

2
(σq)2 +

5

8
(σq)4 +

7

48
(σq)6 +O((σq)8).

Taking q = 2πn and σ = gYM
4π

we get the result (2.4.58) for the N = 4 theory

with t2 = 0. For a superconformal N = 2 theory the Gaussian matrix model action

is corrected by the terms tka
2k. The first correction is quartic t2a

4, and at the lowest

order it gives the result (2.4.58) for the SU(2) theory with 4 hypermultiplets in the

fundamental representation.

The first difference for 〈WR(C)〉 between the N = 2 SU(2) gauge theory with

4 fundamental hypermultiplets and the N = 4 SU(2) gauge theory appears at the

order g6
YM . This is the order of the two-loop level Feynman diagram computations

which have been done in the gauge theory for the N = 4 case [69, 70].

In the matrix model it is very easy to get the higher terms in the expansion over

gYM . On the other hand, the complexity of the Feynman diagram computations

done directly in the gauge theory grows enormously with the number of loops.

Now we will argue that we can improve the matrix model by taking into account

all instanton corrections of the theory, so that the result becomes non-perturbatively

exact.

2.5 Instanton corrections

When we argued by (2.3.17) that the theory localizes to the trivial gauge field

configurations, we used the fact that d[λwµν] does not vanish everywhere except at

the North and the South poles and we assumed smooth gauge fields. Dropping the
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smoothness condition, we can only say that the gauge field strength must vanish

everywhere away from the North and South poles. If we allow field configurations

like Dirac-delta function, then the gauge field strength can be supported at the poles

and still be consistent with vanishing tQV -term. From (2.3.16) we see that F+ might

be non zero at the North pole, where sin2 θ
2

vanish, while F− might be non zero at

the South pole, where cos2 θ
2

vanish. Thus, if we allow non-smooth gauge fields in the

path integral, we should count configurations with point anti-instantons (F− = 0)

localized at the North pole, and point instantons (F+ = 0) localized at the South

pole. TheQ-complex on S4 in our problem in a neighborhood of the South/the North

pole coincides with the Q-complex of the topological (F+ = 0)/anti-topological

(F− = 0) gauge theory on R4 in the Ω-background studied by Nekrasov [60]. There

the moduli space of solutions to F+ = 0 modulo gauge transformations was taken

equivariantly under the U(1)2 action on R4 ' C2 by z1 → eiε1z1, z2 → eiε2z2, and

gauge transformations at infinity with generator a ∈ g. Making the correspondence

between the theory on S4 in a local neighborhood of the North pole and the theory

on R4 we should take ε1 = ε2 = r−1, since for the problem on S4, the chirality

of the equations at the North pole coincides with the chirality of the generator of

the Lorentz rotations d[µvν]. The same applies to the South pole: the chirality of

the equations is reversed as well as the chirality of the generator of the Lorentz

rotations.

In this section we consider only the case of the U(N) gauge group. We use the

following conventions. The solutions of the equations F+ = 0 are called instantons.

The solutions of the equations F− = 0 are called anti-instantons.
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We define the instanton charge as the second Chern class6

k = c2 = − 1

8π2

∫
F ∧ F,

and modify the action by the θ-term

SYM → SYM +
iθ

8π2

∫
F ∧ F.

At F+ = 0 we have
√
gFµνF

µνd4x = 2F ∧ ∗F = −2F ∧ F . Then the Yang-Mills

action of instanon of charge k is

SYM(k) =
1

4g2
YM

∫
√
gd4xFµνF

µν +
iθ

8π2

∫
F ∧ F =

(
4π2

g2
YM

− iθ
)
k.

Its contribution to the partition function is proportional to

exp(−SYM(k)) = exp (2πiτk) = qk,

where we introduced the complexified coupling constant

τ =
2πi

g2
YM

+
θ

2π
,

and the expansion parameter

q = exp(2πiτ).

(The expansion parameter q in this section should not be confused with the formal

generator of the U(1) group used to compute the index of the transversally elliptic

operator in the previous section).

Near the South pole the theory on S4 looks like topological theory with the

equations F+ = 0, so that only point instantons contribute. Near the North pole

the situation is opposite: the equations are replaced by F− = 0, therefore we need

6 For U(N) bundles we have the total Chern class c = det(1 + iF
2π ) =

∏
(1 + xi) = c0 + c1 + . . . ,

where F is the curvature which takes value in the Lie algebra of the gauge group, xi are the Chern
roots, and ck is polynomial of degree k in xi. We have c2 =

∑
i<j xixj = 1

2 (
∑
xi)2 − 1

2

∑
x2
i . If

c1 =
∑
xi vanishes, we get c2 = − 1

2

∫
tr iF2π ∧

iF
2π = 1

8π2

∫
trF ∧F = − 1

8π2

∫
(F,∧F ), where the trace

is taken in the fundamental representation. The parentheses (a, b) = − tr ab denote the positive
definite bilinear form on the Lie algebra which is assumed in the most of the formulas.
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to count anti-instantons. The generating function of anti-instantons is the same as

the generating function of instantons with replacement of the expansion parameter

q by its complex conjugate q̄.

For the U(N) gauge group the explicit formula for the equivariant instanton

partition function on R4 is [60, 61, 96–99]

ZN=2
inst (ε1, ε2, a) =

∑
−→
Y

q|Y |∏N
α,β=1 n

−→
Y
α,β(ε1, ε2,

−→a )
, (2.5.1)

where we sum over an ordered set of N Young diagrams {Yα} with α = 1 . . . N . By

|
−→
Y | we denote the total size of all diagrams in a set |

−→
Y | =

∑
|Yα|. The total size is

equal to the instanton number. The factor n
−→
Y
α,β(ε1, ε2,

−→a ) denotes the equivariant

Euler class of the tangent space to the instanton moduli space at the fixed point

labeled by
−→
Y . It is given by

n
−→
Y
α,β(ε1, ε2,

−→a ) =
∏
s∈Yα

(−hYβ(s)ε1 + (vYα(s) + 1)ε2 + aβ − aα)×

×
∏
t∈Yβ

((hYα(t) + 1)ε1 − vYβ(t)ε2 + aβ − aα). (2.5.2)

(We assume that an element a in the Cartan subalgebra of u(N) is represented by

a diagonal matrix (ia1, . . . , iaN).) Here s and t run over squares of Young diagrams

Yα and Yβ. Let Y is a Young diagram ν1 ≥ ν2 · · · ≥ νν′1 , where νi is the length of

the i-th column, ν ′j is the length of the j-th row. If a square s = (i, j) is located at

the i-th column and the j-th row then vY (s) = νi(Y ) − j and hY (s) = ν ′j(Y ) − i.

In other words, vY (s) and hY (s) is respectively the vertical and horizontal distance

from the square s to the edge of the diagram Y . We can rewrite the product in the

denominator of (2.5.1) as

N∏
α,β=1

n
−→
Y
α,β(ε1, ε2,

−→a ) =
N∏

α,β=1

∏
s∈Yα

Eαβ(s)(ε1 + ε2 − Eαβ(s)), (2.5.3)

where

Eαβ(s) = (−hYβ(s)ε1 + (vYα(s) + 1)ε2 + aβ − aα). (2.5.4)
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We will give a few simplest examples of evaluation of this formula. First consider

U(1) case. Then we sum over all Young diagrams of one color. At one instanton

level k = 1, there is only one diagram Y = (1). Then E11 = ε2, so that

ZN=2
k=1 (ε1, ε2, a) =

q

ε2ε1

. (2.5.5)

At two instanton level k = 2, there are two diagrams Y = (2, 0) and Y = (1, 1).

Their contribution is

ZN=2
k=2 (ε1, ε2, a1) =

1

(2ε2)(ε1 − ε2)(ε2)(ε1)
+

1

(−ε1 + ε2)(2ε1)(ε2)(ε1)
=

1

2(ε1ε2)2

(2.5.6)

At three instanton level k = 3, there are three diagrams Y = (3, 0), Y = (2, 1) and

Y = (1, 1, 1). Their contribution is

ZN=2
k=3 (a, ε1, ε2) =

1

(ε2)(ε1)(2ε2)(ε1 − ε2)(3ε2)(ε1 − 2ε2)
+

+
1

(ε2)(ε1)(2ε2 − ε1)(2ε1 − ε2)(ε2)(ε1)
+

1

(ε2)(ε1)(ε2 − ε1)(2ε1)(ε2 − 2ε1)(3ε2)
=

=
1

6(ε1ε2)3
(2.5.7)

At an arbitrary instanton level k, the sum of all Young diagrams of order k simplifies

to

ZN=2
k (ε1, ε2, a) =

1

k!(ε1ε2)k
, (2.5.8)

hence

ZN=2
U(1) (ε1, ε2, a) =

∞∑
k=1

qk

k!(ε1ε2)k
= exp

(
q

ε1ε2

)
. (2.5.9)

Now we consider a few instantons for the U(2) gauge group. At one instanton there

are two colored Young diagrams ((1), 0) and (0, (1)) contributing

ZN=2
k=1 (ε1, ε2, a1, a2) =

1

ε1ε2(a2 − a1 + ε1 + ε2)(a1 − a2)
+

+
1

(a1 − a2 + ε1 + ε2)(a2 − a1)ε1ε2

=
2

ε1ε2((ε1 + ε2)2 − a2)
, (2.5.10)
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where we denoted a = a2 − a1. As the instanton number grows, its contribution

becomes more and more complicated rational function of ai. For example, at k = 2

we get (we set a = iaE, where aE is real)

ZN=2
k=2 (ε1, ε2, iaE) =

(2a2
E + 8ε2

1 + 8ε2
2 + 17ε1ε2)

((ε1 + 2ε2)2 + a2
E)((2ε1 + ε2)2 + a2

E)((ε1 + ε2)2 + a2
E)ε2

1ε
2
2

.

(2.5.11)

Generally, instanton contributions are certain rational functions of ai and εi. Con-

trary to the case ε1 = −ε2 = ~, which is often taken in the literature to simplify

the instanton partition function [60, 61, 99], in our problem we get the same signs:

ε1 = ε2 = 1
r
. Looking at the examples above, one can note an important property of

the instanton contributions at ε1 = ε2; they do not have poles at the integration con-

tour for ai. Recall that in the matrix integral we integrate over imaginary a = iaE,

while ε1 and ε2 is real. Generally, the denominator contains factors n1ε1 +n2ε2 + a,

where n1 and n2 are some numbers. There is a pole at the integration contour only

if n1ε1 + n2ε2 = 0. Though it happens regularly at ε1 = −ε2, it never happens at

ε1 = ε2. (This fact was checked explicitly up to k = 5 instantons for U(2) gauge

group and actually one can show it in general.7) Therefore the integrand in (2.1.3)

is a smooth function everywhere at the integration domain and it also decreases

rapidly at infinity. Thus the integral is convergent and well defined.

In the N = 2∗ case, each instanton contribution is multiplied by a new factor.

This factor is equal to the product of the same weights as in the denominator, but

shifted by the hypermultiplet mass m = imE:

ZN=2∗

inst (ε1, ε2,m, a) =
∑
−→
Y

q|
−→
Y |

N∏
α,β=1

∏
s∈Yα

(Eαβ(s)−m)(ε1 + ε2 − Eαβ(s)−m)

Eαβ(s)(ε1 + ε2 − Eαβ(s))
.

(2.5.12)

7The author thanks H. Nakajima for a discussion.
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For example,

ZN=2∗

k=1 (ε1, ε2, a1, a2) =
(ε1 −m)(ε2 −m)(a2 − a1 + ε1 + ε2 −m)(a1 − a2 −m)

ε1ε2(a2 − a1 + ε1 + ε2)(a1 − a2)
+

+
(a1 − a2 + ε1 + ε2 −m)(a2 − a1 −m)(ε1 −m)(ε2 −m)

(a1 − a2 + ε1 + ε2)(a2 − a1)ε1ε2

=

=
2(m− ε2)(m− ε1)(m2 − a2 −m(ε1 + ε2) + (ε1 + ε2)2)

((ε1 + ε2)2 − a2)ε1ε2

(2.5.13)

The integrand is still a smooth function on the whole integration domain and de-

creases sufficiently fast at infinity.

Hence, we conclude that the matrix integral, with all instanton corrections in-

cluded, is well defined in the N = 2, the N = 2∗ and the N = 4 cases, and that it

gives the exact partition function of these theories on S4. The expectation value of

a supersymmetric circular Wilson operator on S4 in an arbitrary representation is

equal to the expectation value of the operator trR e
2πira in this matrix model.

In the general N = 2∗ case there is the non-trivial one-loop determinant factor

and the non-trivial instanton corrections. However, in the N = 4 theory, the nu-

merator and the denominator cancel each other both in Z1-loop and in each of the

fixed point instanton contribution to Zinst. More precisely, ZN=4
1−loop = 1, and

ZN=4
inst (U(N)) =

∑
−→
Y

q|
−→
Y | =

∞∏
k=1

1

(1− qk)N
(2.5.14)

is the generating function for the number of N -colored partitions.

Since ZN=4
inst does not depend on a, it gives the same contribution to the partition

function and to the partition function with inserted Wilson loop operator WR(C).

Therefore |ZN=4
inst (q)|2 factors out of the Gaussian integral and cancels in the expec-

tation value for 〈WR(C)〉. In other words, we conclude that in the N = 4 theory

there are no instanton corrections to the Gaussian integral conjecture (2.1.2).

Using the definition of the Dedekind eta-function η(τ) = q1/24
∏∞

k=1(1 − qk) we

can write

ZN=4
inst =

(
1

q−1/24η(τ)

)N
. (2.5.15)
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Then the partition function of the N = 4 theory on S4 with U(N) gauge group is

ZN=4
S4 =

1

vol(U(N))

∣∣∣∣∣
(

1

q−1/24η(τ)

)N ∣∣∣∣∣
2 ∫

g

[da]e
− 4π2r2

g2
YM

(a,a)
(2.5.16)

The natural measure on the gauge group U(N) includes gYM coupling constant,

so that vol(U(N)) ∝ gN
2

YM . This factor is cancelled by the determinant coming from

the Gaussian integral over a. Then the N = 4 partition function on S4 as a function

of the coupling constant is

ZN=4
S4 =

∣∣∣∣∣
(

1

q−1/24η(τ)

)N ∣∣∣∣∣
2

(2.5.17)

This function does not transform well under S-duality τ → −1/τ . However, we

might recall that the theory can have c-number gravitational curvature terms which

shift the action by a constant [78]. For example we can add the following R2-term:

SYM → SYM − 2πτ2
1

24

N

32π2

∫
S4

RµνρλR
µνρλ. (2.5.18)

Such R2 terms generally appear as gravitational corrections to an effective action

on a brane in string theory [100].

This R2 term cancels the extra factor q−1/24 in the partition function, so that we

finally get

ZN=4
S4 =

1

|η(τ)|2N
. (2.5.19)

This function transforms as a modular form of the weight (N/2, N/2) under the

S-duality SL(2,Z) transformations generated by τ → − 1
τ

and τ → τ + 1.

So far we discussed instanton corrections only to the partition function. Now

we consider corrections to the Wilson loop operator. One can show that the Wilson

loop W (C) which we consider is in the same δε cohomology class as the operator

trR exp(2π
ε

Φ) inserted at the North pole, where Φ = iΦE
0 +Φ9. Instanton corrections

to the operator exp(βΦ) in the N = 2 equivariant theory on R4 for a given asymp-

totic of Φ at infinity were computed in [61, 99, 101, 102]. Using these results, one
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can actually see that if β = 2πn
ε

where n is integer, there are no instanton corrections

to the operator trR exp(βΦ). In other words, the operator trR exp(βΦ) in the field

theory is replaced simply by the operator trR exp(2πira) in the matrix model.

This is exactly the case of Wilson loop operator which we consider. In other

words, even after taking into account the instanton corrections, we still conclude

that the Wilson loop operator W (C) corresponds to the operator trR exp(2πira) in

the matrix model. However, the expectation value of W (C) in a generic N = 2

theory receives corrections because the measure in the matrix integral (2.1.3) is

corrected by the insertion of the instanton factor |Zinst(ia, ε, ε)|2.



Chapter 3

Wilson loops on S2

3.1 Wilson loops on S2 subspace in four-dimensional

N = 4 super Yang-Mills

In this chapter we consider supersymmetric Wilson loops of arbitrary shape located

on S2 subspace in the four-dimensional N = 4 supersymmetric Yang-Mills theory.

Such Wilson loops were constructed in [41, 52] and there it was conjectured that

expectation value of such Wilson loops can be computed by perturbative sector of

the two-dimensional bosonic Yang-Mills theory.

In this chapter we prove that correlation functions of such Wilson loop opera-

tors are indeed computed by certain two-dimensional gauge theory closely related

to the perturbative Yang-Mill theory and constrained topological Higgs-Yang-Mills

theory[53–55] for the moduli space of solutions of Hitchin’s equations [56].

3.1.1 The geometrical set up

Let Xi for i = 1 . . . 5 be coordinates in R5 into which the S4 is embedded as the

hypersurface
∑
X2
i = r2. By xi for i = 1 . . . 4 we denote the standard coordinates

on the stereographic image of S4 on R4 such that the point N := (0, 0, 0, 0, r) maps

78
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to the origin

Xi =
xi

1 + x2

4r2

X5 = r
1− x2

4r2

1 + x2

4r2

.

(3.1.1)

We define the S3 subspace of the S4 by the equation X5 = 0. Equivalently, in the

xi coordinates on R4, this three-sphere is defined by the equation x2 = 4r2. Further

we define the two-sphere S2 ⊂ S3 by the additional equation X1 = 0. In the xi

coordinates, the S2 is described by the equations {x1 = 0, x2
2 + x2

3 + x2
4 = 4r2}.

We call the point P = (0, r, 0, 0, 0) the North pole of the S2. By yi, i = 1 . . . 4

we denote the standard coordinates on the stereographic image of S4 such that the

point P maps to the origin:

Xi =
yi

1 + y2

4r2

i = 1, 3, 4

X5 =
−y2

1 + y2

4r2

X2 = r
1− y2

4r2

1 + y2

4r2

.

(3.1.2)

In xi coordinates, the point P is (0, 2r, 0, 0).

The SO(5) isometry group of S4 can be broken to SO(2)× SO(3) where SO(2)

acts on (X1, X5) and SO(3) acts on (X2, X3, X4). The two-sphere S2 is the fixed

point set of this SO(2). Sometimes it is convenient to use the SO(2) × SO(3)

spherical coordinates on S4 in which metric has the form

ds2 = r2(dθ2 + sin2 θ dτ 2 + cos2 θ dΩ2
2) (3.1.3)

In other words, we represent the S4 as a warped S2 × S1 fibration over the interval

θ ∈ [0, π/2], such that at θ = 0 the S1 shrinks to zero and the S2 is of maximal size,

while at θ = π/2 the S2 shrinks to zero and the S1 is of maximal size. We will also

use the reversed to θ coordinate ξ = π/2 − θ. In the following, the SO(2) acting

on (X1, X5), will be denoted as SO(2)S, and the SO(3) acting on (X2, X3, X4) will
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be denoted as SO(3)S. (We shall use the subscript ”S” to denote subgroups of

the space-time symmetries, and the subscript ”R” do denote subgroups of the R-

symmetry. We also remark that the SO(3)S subgroup of the SO(4) isometry group of

R4 is not a chiral SU(2)L subgroup in the decomposition SO(4) = SU(2)L×SU(2)R,

but rather a diagonal embedding.)

3.1.2 Superconformal symmetries and conformal Killing spinors

Following [52] we shall study the following Wilson loops located on the three-sphere

S3 and, specifically, the more specialized case: Wilson loops restricted to the maxi-

mal two-sphere S2 embedded into the S3. Here we shall work in the R4 stereographic

coordinates xi (3.1.1). The definition of such Wilson loops and the condition for

supersymmetry was found in [41, 50, 52]:

WR(C) = trR Pexp

∮ (
Aµ + iσAµν

xν

2r
ΦA

)
dxµ. (3.1.4)

Here ΦA runs over three of six scalar fields of the N = 4 super Yang Mills theory.

In our conventions index A takes values 6, 7, 8. The µ, ν are the space-times indices

running over the range 1, . . . 4. The σAµν are the ’t Hooft symbols: three 4 × 4

anti-self-dual matrices satisfying su(2) commutation relations. Explicitly we choose

σi+4
1i = 1 σi+4

jk = −εijk for i = 2, 3, 4, (3.1.5)

where εijk is the standard antisymmetric symbol with ε234 = 1. The SO(6) R-

symmetry group is broken into SO(3)A × SO(3)B. Our conventions are that the

SO(3)A acts on scalars Φ6,Φ7,Φ8 which couple to the Wilson loops (3.1.4). The

SO(3)B acts on the remaining scalars Φ5,Φ9,Φ0. The Wilson loop (3.1.4) is ex-

plicitly invariant under the SO(3)B symmetry, because the scalar fields Φ5,Φ9,Φ0

do not appear in (3.1.4). In the case when the Wilson loop (3.1.4) is restricted to

the two-sphere S2 by the constraint x1 = 0, it is also invariant under the diagonal
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SO(3) subgroup of the SO(3)S × SO(3)A, i.e. under the simultaneous rotation of

the coordinates xi and the scalars Φi+4 for i = 2, 3, 4.

Let us find the supersymmetries which are preserved by the Wilson loops (3.1.4).

The conformal Killing spinor on R4 is parameterized by two constant spinors

which we call ε̂s and ε̂c, where ε̂s generates the usual Poincare supersymmetries,

and ε̂c generates the special superconformal symmetries

ε(x) = ε̂s + xρΓρε̂c. (3.1.6)

The variation of the bosonic fields of the theory is

δAM = ψΓMε. (3.1.7)

The variation of generic Wilson loop (3.1.4) vanishes iff ε satisfies

(Γµ + iΓAσ
A
µν

xν

2r
)(ε̂s + xρΓρε̂c)ẋ

µ = 0 (3.1.8)

for any point x ∈ S3 and the tangent vector ẋ constrained by ẋx = 0. The terms

linear in x give the equation

xµẋρ(ΓµΓρε̂c + iΓAσ
A
µρ

ε̂s
2r

) = 0. (3.1.9)

Since the vectors xµ and ẋµ are constrained only by xµẋµ = 0, we get

Γµρε̂c + iΓAσAµρ
ε̂s
2r

= 0. (3.1.10)

The constant and quadratic in x terms give the equation

ẋµ(Γµε̂s + iΓAλ
σAµν
2r

xνxλε̂c) = 0. (3.1.11)

Multiplying by non-degenerate matrix xρΓρ we get

ẋµxρ(Γρµε̂s + iΓρΓAλ
σAµν
2r

xνxλε̂c) = 0. (3.1.12)

Using xµxµ = 4r2 and ẋµxµ = 0 we get

Γµρε̂s + iΓAσ
A
µρ(2r)ε̂c = 0. (3.1.13)
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The equation (3.1.13) is actually equivalent to (3.1.10) and to

2rε̂c = iσAµρΓAµρε̂s. (3.1.14)

If Wilson loop is restricted to S2, then (3.1.14) amounts to three maximally or-

thogonal projections in the spinor representation space S+ ⊕ S−. Each projection

operator reduces the dimension of the space of solutions by half. Starting from the

dimension 32 of S+⊕S− we get 32/23 = 4-dimensional space of solutions for (ε̂s, ε̂c).

For generic Wilson loops on S3 the dimension of the space of solutions is further

reduced by two, so there are only 2 supersymmetries left.

For explicit computation we shall use the following 16 × 16 gamma-matrices

representing Clifford algebra on S+:

ΓM =

 0 ET
M

EM 0

 , M = 2 . . . 9

Γ1 =

18×8 0

0 −18×8

 ,

Γ0 =

i18×8 0

0 i18×8

 ,

(3.1.15)

Here EM for M = 2 . . . 8 are 8 × 8 matrices representing left multiplication of the

octonions and E9 = 18×8. (Let ei for i = 2, . . . , 9 be the generators of the octonion

algebra O. We chose e9 to be identity. Let ckij be the structure constants of the

left multiplication ei · cj = ckijek. Then (Ei)
k
j = ckij. The multiplication table can be

chosen by specifying cyclic triples (ijk) such that eiej = ek. We define the cyclic

triples to be (234), (256), (357), (458), (836), (647), (728).)
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Explicitly, the four linearly independent solutions of (3.1.14), i.e. supersymme-

tries of Wilson loops on the S2 are the following

ε̂s1 =


1

0

−1

0

⊗ |1〉 ε̂s2 =


0

1

0

1

⊗ |1〉 ε̂s1̄ =


1

0

1

0

⊗ |1〉 ε̂s2̄ =


0

1

0

−1

⊗ |1〉

ε̂c1 =
1

2r


0

i

0

i

⊗ |1〉 ε̂c2 =
1

2r


−i

0

i

0

⊗ |1〉 ε̂c1̄ =
1

2r


0

−i

0

i

⊗ |1〉 ε̂c2̄ =
1

2r


i

0

i

0

⊗ |1〉
.

(3.1.16)

In more generic case of Wilson loops on S3, we get only the two-dimensional space

of solutions, which is spanned by ε1, ε2. We use indices 1, 2 and 1̄, 2̄ to enumerate

the basis elements of the solutions to (3.1.14), but it is not assumed that ε1̄ or ε2̄ is

complex conjugate to ε1 or ε2. Sixteen components of the spinors are written in the

4× 4 block notations, where

|1〉 =


1

0

0

0

 . (3.1.17)

Let Q1, Q2, Q1̄, Q2̄ be the four conformal supersymmetries generated by confor-

mal Killing spinors (3.1.6) with ε̂s, ε̂c given by (3.1.16). Let RAB be matrices in the

fundamental representation of the SO(6) R-symmetry generators. On scalar fields

the generators RAB act as

(δRABΦ)A = RABΦB. (3.1.18)

The fermionic symmetries anti-commute according to (A.3.3),(A.3.6) as

δ2
εΦA = 2(ε̃ΓABε)ΦB, (3.1.19)
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hence the R-symmetry part of the anti-commutators is

Q{αQβ} = 2(ε̃{αΓABεβ})RAB (3.1.20)

For space-time rotations we have similar equation except for the sign. Let us consider

a fixed point of the space-time rotation. Then, assuming that the SO(4)S generators

Rµν act on tangent space R4 in the same way as the SO(6)R generators RAB act

on the scalar target space R6, we get the space-time symmetry part of the anti-

commutators

Q{αQβ} = −2(ε̃{αΓµνεβ})Rµν , (3.1.21)

where ε and ε̃ are taken at the fixed point set of the space-time rotation. To

summarize,

Q{αQβ} = 2(ε̃{αΓABεβ})RAB − 2(ε̃{αΓµνεβ})Rµν . (3.1.22)

At a fixed point of space-time rotation, the SO(4)S × SO(6)R generators act on

spinors in the S+ representation of SO(10) as

δRMN
Ψ =

1

4
RMNΓMNΨ. (3.1.23)

Then there are the following anti-commutation relations

{Q1, Q1} =
2

r
R05 −

2

r
iR59 {Q1̄, Q1̄} =

2

r
R05 +

2

r
iR59

{Q2, Q2} = −2

r
R05 −

2

r
iR59 {Q2̄, Q2̄} = −2

r
R05 +

2

r
iR59

{Q1, Q2} =
2

r
R09 {Q1̄, Q2̄} = −2

r
R09

{Q1, Q1̄} = −2

r
R12 {Q1, Q2̄} = 0

{Q2, Q1̄} = 0 {Q2, Q2̄} = −2

r
R12

. (3.1.24)

These anticommutation relations can be packed into

{Qα, Qβ} =
2

r
(CσI)αβRI

{Qᾱ, Qβ̄} =
2

r
(CσI)ᾱβ̄RI

{Qα, Qβ̄} =
2

r
δαβ̄R0,

(3.1.25)
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where σI for I = 1, 2, 3 are the Pauli matrices

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 . (3.1.26)

The C denotes “the charge conjugation” matrix C = iσ2, the triplet of the SO(3)B

generators is denoted by RI such that (R1, R2, R3) := (R05,−R59,−R09), and the

SO(2)S generator is called R0 := −R12.

The fermionic generators Qα and Qᾱ transform naturally in the representation

2 and 2̄ of the SO(3)B, while SO(2)S mixes them

[RIQα] = −1

2
iσIαβQβ [R0Qα] = −1

2
iCαβ̄Qβ̄

[RIQᾱ] =
1

2
iσ̄Iᾱβ̄Qβ̄ [R0Qᾱ] =

1

2
iCᾱβQβ.

(3.1.27)

The relations (3.1.25) and (3.1.27) are the commutation relations of the Lie

algebra su(1|2) of the SU(1|2) subgroup of the superconformal group [52]. The

bosonic part of su(1|2) is so(2)S × so(3)B, spanned by R0, RI , the fermionic part is

four-dimensional, spanned by Qα, Qᾱ.

If we take an arbitrary linear combination of the fermionic generators with com-

plex coefficients εα, εᾱ ∈ C,

Q = εαQα + εᾱQᾱ, (3.1.28)

we will find that Q squares to a real generator of the SO(3)B × SO(2)S if εᾱ is

actually complex conjugate to εα. Such Q will be called hermitian. We will use

this fact in the following in our choice of a nice generator Q for the localization

computation. We shall also notice that if Q is hermitian, i.e. if εᾱ is complex

conjugate to εα, then the norm of the SO(2)S generator and SO(3)B generator in

Q2 is proportional to the norm of ε. Hence, a non-zero hermitian Q always squares

to a non-zero rotation generator in both SO(2)S and SO(3)B.

For explicit computations we shall use the following generator Q

Qε =
1

2
(Q1 +Q1̄). (3.1.29)
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It corresponds to the conformal Killing spinor associated with

ε̂s =


1

0

0

0

⊗ |1〉 ε̂c =
1

2r


0

0

0

i

⊗ |1〉 . (3.1.30)

By (3.1.25) we have

Q2 =
1

r
(R05 −R12). (3.1.31)

Clearly, since [Q2, Q] = 0 we have

[R05 −R12, Q] = 0 ⇒ (Γ05 − Γ12)ε(P ) = 0. (3.1.32)

The last equality is written for the conformal Killing spinor ε associated with Q at

the point P in coordinate patch yµ (3.1.2). The rotation of (y1, y2) plane corresponds

in the global coordinates to the rotation of (X5, X1) plane, or the vector field ∂
∂τ

in

the polar coordinates (3.1.3). Geometrically, the equation (3.1.32) means that the

conformal Killing spinor ε is invariant under simultaneous rotation of the (X5, X1)

plane and (Φ5,Φ0) plane.

From the condition (3.1.14) on ε and (3.1.5) it follows that ε is also invariant

under diagonal rotations in the SO(3)S × SO(3)A. Indeed, from (3.1.14) one has

Γj+4Γkiε̂s = Γi+4Γjkε̂s (3.1.33)

for distinct i, j, k in the range 2, 3, 4. Multiplying by Γj+4Γjk both sides of this

equation we get

Γj,iε̂s = −Γj+4,i+4ε̂s, (3.1.34)

which shows that ε is invariant under SO(3)S rotation of (X2, X3, X4) and equal

SO(3)A rotation of (X6, X7, X8) using the isomorphism R3 → R3 : Xi 7→ Xi+4.

We shall remark that a generic supersymmetric Wilson loop on the S3 is invari-

ant only under the OSp(1|2,C) subgroup of the complexified superconformal group
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PSU(2, 2|4,C). The fermionic part of OSp(1|2,C) is spanned by Qα, i.e. by half

of generators of SU(1|2,C). The bosonic part of osp(1|2,C) is sp(2,C) ' su(2,C)

spanned by RI . The commutation relations are represented by the first equation in

(3.1.25) and in (3.1.27). However, there is no real structure on OSp(1|2,C) such

that it could be a subgroup of compact unitary SU(1|2,R).1

So there exists no fermionic element Q in OSp(1|2,C) such that Q2 generates

a unitary transformation in SU(2)B . Since the localization method, which we are

going to use in this work, requires that global transformation generated by Q2 is

unitary, we cannot treat the OSp(1|2,C) case and generic Wilson loops on S3 in the

same way. So we restrict the detailed study to the case of Wilson loops on S2 ⊂ S3.

Let us summarize. We shall study supersymmetric Wilson loops on the S2 ⊂ S3

of the form (3.1.4). These Wilson loops are invariant under the subgroup SU(1|2)

of the superconformal group, where U(1) = SO(2)S rotates (X1, X5) plane, and

SU(2) = SU(2)B rotates (Φ5,Φ9,Φ0). The Wilson loops are also invariant under

the diagonal of SO(3)S × SO(3)A, where SO(3)S acts on (X2, X3, X4) and SO(3)A

acts on (Φ6,Φ7,Φ8), i.e. on scalar fields entering the Wilson loop.

We choose hermitian generator Q, generated by the conformal Killing spinor ε as

(3.1.29). The spinor ε is invariant under the diagonal subgroup of SO(3)S×SO(3)A

by (3.1.34) and the diagonal subgroup of SO(2)S × SO(2)B by (3.1.32), where the

SO(2)B ⊂ SO(3)B acts on (Φ5,Φ0)-plane. .

Remark on 1/4 BPS circular Wilson loops

As discussed above, a Wilson loop (3.1.4) of an arbitrary shape on S2 preserves 4

out of 32 superconformal symmetries, so it can be called 4/32 = 1/8 BPS Wilson

loop. In [40, 52] it was noted that a circular loop preserves more supersymmetries.

1 If we use signature for (5, 9, 0) directions (+,+,−), then, since in this case gamma-matrices
can be chosen real, we can get a real structure on OSp(1|2,R) by taking all generators to be real.
However, in this case, Q2 is always light-like generator of the bosonic part of SO(2, 1) ' SL(2,R)
.



3.1. Wilson loops on S2 subspace in four-dimensional N = 4 super Yang-Mills 88

A Wilson loop on an arbitrary circle on S2 preserves 8 supersymmetries. A Wilson

loop on the equator preserves 16 supersymmetries. The Wilson loop on the equator

actually is that circular supersymmetric loop which was studied in [25, 26]. There

it was conjectured that expectation value of such operator can be computed in a

Gaussian matrix model. In [26] an argument was given that the field theory localizes

to matrix model, however that argument does not show that the matrix model is

Gaussian. In [57] the Gaussian matrix model was obtain by localization.

In [49] it was conjectured that 1/4 BPS circular Wilson loops also can be com-

puted using the Gaussian matrix model but with a rescaled coupling constant. Such

1/4 BPS circular Wilson loops can be considered as an intermediate case between

maximally supersymmetric 1/2 BPS Wilson loops and 1/8 BPS Wilson loops of an

arbitrary shape on S2.

One may ask whether it is possible to directly localize field theory for 1/4 BPS

circular Wilson loops to the Gaussian matrix model? We shall note that a new

localization computation, different from localization computation for generic Wilson

loops on S2, might be possible only for a single 1/4 BPS Wilson on S2. In other

words, if we take two 1/4 BPS loops located at two distinct lattitudes β1 and

β2 on S2, then each Wilson loop preserves eight supesymmetries, but only four

supersymmetries are preserved by both loops simultaneously. These four common

supersymmetries are actually the same as for a generic 1/8 BPS Wilson loop on S2.

Hence, if we want to compute the connected correlator of two latitudes on S2, we

are back to the case of generic 1/8 BPS loops on S2, where the four-dimensional

theory localizes to a certain two-dimensional theory on S2.
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3.2 Localization

3.2.1 Introduction

We would like to show that expectation value of the Wilson loops (3.1.4) on the S2 in

four-dimensional N = 4 Yang-Mills can be computed by a certain two-dimensional

theory localized to S2. The fermionic symmetry Q (3.1.29) is BRST-like generator

of equivariantly cohomological field theory, thanks to the fact that Q squares to

global unitary transformation and gauge transformation. This is valid off-shell after

adding to the theory the necessary auxiliary fields. Then Q2 is an off-shell symmetry

of the theory and the Wilson loop observable. By well-known arguments, see e.g.

[18, 23] for a general review and [57] for technical details on using localization to solve

supersymmetric circular Wilson loops in d = 4 N = 4 SYM, the theory localizes

to the supersymmetric configurations QΨ = 0, where Ψ denotes fermionic fields of

the theory. One can argue localization by deforming the action of the theory by Q-

exact term SYM → S(t) = SYM + tQV with V = (Ψ, QΨ) and sending t to infinity.

Since the bosonic part of the deformed action is SbosY M + t|QΨ|2, at the t = +∞

limit the term t|QΨ|2 dominates. So, at the t = +∞ limit, in the path integral we

shall integrate only over configurations solving QΨ = 0 with the measure coming

from the one-loop determinant. On the other hand, the partition function and the

expectation value of observables do not depend on the t-deformation. Indeed, let

the partition function be Z(t) =
∫
eS(t). Then, if S(t) is Q-closed and ∂tS(t) is

Q-exact, we can integrate by parts in ∂tZ(t). If the space of fields is essentially

compact (all fields decrease sufficiently fast at infinity) the boundary term vanishes

and we obtain ∂tZ(t) = 0.

In the present situation we use V = (Ψ, QΨ). We recall, that Ψ is fermion

of N = 4 super Yang-Mills obtained by dimensional reduction of chiral sixteen-

component Spin(10) spinor transforming in the S+ irreducible representation. The

other irreducible spin representation S− of Spin(10) is dual to S+. Therefore, there
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is a natural pairing S+ ⊗ S− → C, so that if ψ ∈ S+ and χ ∈ S− are spinors of the

opposite chirality, the bilinear (χ, ψ) is Spin(10)-invariant. (In components (χ, ψ)

should be read as
∑16

α=1 χαψα with no complex conjugation operations).

In the Euclidean signature the representations S+ and S− of Spin(10,R) are

unitary, and therefore are complex conjugate to each other. Hence, if χ ∈ S+

and ψ ∈ S+ are spinors of the same chirality, the bilinear (χ̄, ψ) =
∑16

α=1 χαψα

is invariant under Spin(10,R). So, because of our choice of hermitian Q (3.1.29)

and because Q squares to unitary global transformation in SO(2)S × SO(2)B, the

deformation term V = (Ψ, QΨ) is Q2-invariant and can be used for the localization.

The localization from the four-dimensionalN = 4 SYM on S4 to two-dimensional

theory on S2 ⊂ S4 is done essentially in two steps. It is convenient to represent S4

as S2 × S1 warped fibration over an interval I as in (3.1.3).

Step 1. We argue that QΨ = 0 field configurations are invariant under the

SO(2)S rotations which act by translations along the S1 fibers: τ → τ + const.

Hence, the N = 4 SYM on S4 localizes to some three-dimensional theory on the

manifold D3 represented as a warped S2 fibration over I. The metric on D3 is

ds2 = r2(dξ2 + sin ξ2dΩ2
2) where 0 ≤ ξ ≤ π/2. (3.2.1)

One can see that D3 = (S4 \ S2)/SO(2)S is a half of three-dimensional ball. Under

the projection π : S4 → D3 the S2 ⊂ S4 maps to the boundary of D3, which is

located at ξ = π/2.

The resulting three-dimensional theory on the manifold with boundary D3 re-

minds a deformed version of certain cohomological field theory for extended Bogo-

molny equations which appeared in [8]. The interesting observables, i.e. the Wilson

loops (3.1.4), are located at the boundary ∂D3 ' S2.

Step 2. We show that physical action SYM for the theory on D3 can be repre-

sented as a total derivative term modulo the equations QΨ = 0. Therefore, at the

supersymmetric configurations, the value of the physical action SYM is determined
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by the boundary conditions at S2. The integral over the moduli space of solutions

to QΨ = 0 reduces to an integral over boundary conditions on S2. This is essentially

the way how the two-dimensional theory appears. It turns out that the resulting

two-dimensional theory is closely related to topological Higgs-Yang-Mills theory on

S2 studied in [53–55].

3.2.2 Equations

Metric on S4 is represented as a warped product: S4 = D3 ×w S1. Here w(x̃) is

the warp function w(x̃) = r2 cos2 ξ = r2(1 − x̃2/(4r2))2/(1 + x̃2/(4r2))2. On D3 we

introduce the R3 stereographic projection coordinates x̃i. The metric in coordinates

x̃i, τ has the form

ds2(S4) = ds2(D3 ×w S1) =
dx̃idx̃i

(1 + x̃2

4r2 )2
+ r2 (1− x̃2

4r2 )2

(1 + x̃2

4r2 )2
dτ 2 i = 2, 3, 4 (3.2.2)

We shall remark that the R4 stereographic coordinates xi for i = 1 . . . 4 and the

D3 ×w S1 coordinates (x̃i, τ) for i = 2, 3, 4 are related simply at the hypersurface

x1 = τ = 0, there xi = x̃i for i = 2, 3, 4. The generic relation between xi and (τ, x̃i)

are the following. From (3.1.1) we have

xi =
2

1 +X5/r
Xi for i = 1 . . . 4 (3.2.3)

The SO(2)S orbits are labeled by (X2, X3, X4). The τ is the coordinate along SO(2)S

orbits, and we have

X1 = R sin θ sin τ

X5 = R sin θ cos τ.
(3.2.4)

So, from (3.2.3) we get the SO(2)s orbits in the R4 coordinates xi, and hence, the

transformation from coordinates (τ, x̃i) to coordinates (x1, xi)

xi(τ, x̃i) = x̃i
1 + sin θ

1 + sin θ cos τ
for i = 2, . . . , 4

x1(τ, x̃i) = R
2 sin θ sin τ

1 + sin θ cos τ

(3.2.5)
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where

sin θ =
1− x̃2

4r2

1 + x̃2

4r2

. (3.2.6)

These SO(2)S orbits are actually round circles in the R4 coordinates xi, which link

with the two-sphere S2 = {xi|x2
2 +x2

3 +x2
4 = 4r2, x1 = 0}. The orbits are labeled by

points on D3 = {x̃i, x̃2 < 4r2}. For each x̃i the corresponding circle orbit in R4 is

located along the two-plane spanned by vector (1, 0, 0, 0) and vector (0, x̃2, x̃3, x̃4).

The distance from the origin to the nearest point of the orbit is |x̃|, the distance to

the furthest point is 4r2

x̃2 . The center is located at the point x1 = 0, xi = x̃i(
1
2

+ r2

x̃2 ).

The diameter is (4r2 − x̃2)/|x̃|.

The supersymmetry equations QΨ = 0 are Weyl invariant. Indeed, given that

under Weyl transformation of metric gµν → e2Ωgµν the bosonic fields transform as

Aµ → Aµ,ΦA → ΦAe
−2Ω, Ki → Kie

−4Ω and the conformal Killing spinor transform

as ε → e
1
2

Ωε, one gets that QεΨ → e−
3
2

ΩQεΨ which is a correct scaling dimension

for fermions. Therefore, the localization procedure is essentially the same for two

theories defined with respect to the metrics related by a smooth Weyl transforma-

tion. (We ask transformation to be smooth so that no conformal anomaly related

to the infinity can appear).

In the coordinates (x̃i, τ) the SO(2)S ×SO(3)S symmetry is explicit, so we shall

start from the metric in the form (3.2.2). Since x̃ is bounded |x̃| < 2r, the scale

factor (1+ x̃2/(4r2) is non-zero and smooth everywhere over the D3. It is convenient

to get rid of this factor in the equations by making Weyl transformation of the metric

gµν → g̃µν = (1 + x̃2/(4r2))2gµν . So we shall study the equations QΨ = 0 on the

space D3 ×w̃ S1 with the metric

ds2(B3 ×w̃ S1) = dx̃idx̃i + r2

(
1− x̃2

4r2

)2

dτ 2 where x̃2
i ≤ 4r2 (3.2.7)

Here

w̃(x) = r(1− x̃2/(4r2)) (3.2.8)
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is the warp factor for the warped product of the flat ball B3 ⊂ R3 (with coordinates

x̃i) and the circle S1 (with coordinate τ ∈ [0, 2π)). For explicit computations we

will use the following vielbein (an orthonormal basis in the cotangent space)

(ei) = (w̃(x)dτ, dx̃i). (3.2.9)

At τ = 0 the coordinates x̃i and corresponding vielbein coincide with coordinates

xi. So we use the conformal Killing spinor ε on D3

ε(x̃, τ = 0) = ε̂s + x̃iΓiε̂c (3.2.10)

to write equations at τ = 0 and then U(1) ⊂ SO(2)S×SO(2)B symmetry to extend

them to arbitrary τ . (The spinor ε on the whole space D3 ×w̃ S1 is invariant under

the diagonal U(1) ⊂ SO(2)S × SO(2)B, i.e. under simultaneous rotation of the

(X5, X1) and the (Φ5,Φ0) planes.) A convenient change of variables with respect to

this symmetry is

ΦT = cos τΦ0 − sin τΦ5

ΦR = sin τΦ0 + cos τΦ5.
(3.2.11)

Conformal Killing spinor ε satisfies equation

∇µε = Γµε̃. (3.2.12)

The off-shell transformation of fermions is given by

QΨ =
1

2
FMNΓMNε− 2ΦAΓ̃Aε̃+ iνiKi. (3.2.13)

Explicitly, our choice of ε in components is

ε =


1

0

0

0

⊗


1

0

0

0

−
1

2r


0

i

0

0

⊗


0

x̃2

x̃3

x̃4

 (3.2.14)
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and for ε̃ we have

ε̃ =
1

2r


0

0

0

i

⊗


1

0

0

0

 . (3.2.15)

Also we need 7 auxiliary spinors νi which are used to write off-shell closure of the

supersymmetry transformations (3.2.13) like in [79, 81]. It is easy to find such set

of νi because only top 8 components of ε are non-zero. More invariantly, ε satisfies

(Γ1 + iΓ0)ε = 0, (3.2.16)

i.e. it is chiral with respect to the SO(8) acting on the vector indices 2, . . . , 9. Then,

as a set of 7 spinors νi, one can choose

νi = Γ9iε for i = 2, . . . 8. (3.2.17)

Such spinors νi also have non-zero only 8 top components.

To computeQΨ in components it is convenient to split sixteen component spinors

into two eight-component spinors on which Γ1 acts by +1 or −1 respectively. (We

will use interchangeably space-time index 1 or τ to denote direction along the co-

ordinate τ in (3.2.7).) According to our choice of gamma-matrices (3.1.15) the

eight-component spinors will be called Ψt and Ψb, so that

Ψ =

Ψt

Ψb

 . (3.2.18)

Then we also have

ε =

εt
0

 ε̃ =

 0

ε̃b

 . (3.2.19)

Next, we will represent eight-component spinors Ψt and Ψb by octonions O. The
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spinor

Ψt =


Ψ1

Ψ2

. . .

Ψ8

 (3.2.20)

we shall write as

Ψt = Ψt
1e9 + Ψt

2e2 + · · ·+ Ψt
8e8, (3.2.21)

where e9, e2, . . . , e8 are the basis elements of O, see explanation after (3.1.15). Sim-

ilarly,

Ψb = Ψb
1ẽ9 + Ψb

2ẽ2 + · · ·+ Ψb
8ẽ8, (3.2.22)

where ẽ9, ẽ2, . . . , ẽ8 are the basis elements in the second copy of O representing

bottom components of Ψ. In these notations

ε = e9 −
i

2r
x̃iei+4 (3.2.23)

and

ε̃ =
i

2r
ẽ5. (3.2.24)

3.2.3 Bottom equations

First we consider the bottom components of the equations (3.2.13).

Taking into account the chiral structure of gamma-matrices (3.1.15) and spinors

ε, ε̃ as in (3.2.19), we get

QΨb =
∑

m=2̂...9̂

(F0̂m̂Γ0̂m̂ + F1̂m̂Γ1̂m̂)ε− 2Φ0Γ̃0ε̃ =

− (iF0̂m̂ + F1̂m̂)Em̂ε+ 2iΦ0ε̃ = −(iF0̂m̂ + F1̂m̂)em̂(e9 −
i

2r
x̃iei+4) + 2iΦ0

i

2r
ẽ5

(3.2.25)

We use indices with hat to denote vector components with respect to the orthonor-

mal vielbein (3.2.9), e.g. F1̂m̂ = w̃(x)−1Fτm̂. For simplicity we consider equations
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along the radial line (τ, x̃) = (0, x̃2, 0, 0). Using SO(2)S and SO(3)S symmetry we

can extend them to the whole space B3×w̃S1. At x̃2 < 2r six equations correspond-

ing to the components m̂ = 3, 4, 6, 7, 8, 9 are linearly independent and imply

iF0̂m̂ + F1̂m̂ = 0 for m̂ = 3, 4, 6, 7, 8, 9. (3.2.26)

We can make diagonal transformation in SO(2)S × SO(2)B like in (3.2.11) to

transform (3.2.26) to an arbitrary τ

iFm̂T +
1

r(1− x̃2

4r2 )
Fm̂τ = 0 m̂ = 3, 4, 6, 7, 8, 9 (3.2.27)

where we replaced index 1̂ by τ using the scaling function w̃(x̃), and where FTm̂ =

[ΦT ,∇m̂] = −∇m̂ΦT . Next we consider the remaining two components in (3.2.25)

for basis elements e2 and e5. At τ = 0 we have

iF0̂2̂ + F1̂2̂ −
i

2r
x̃2(iF0̂5̂ + F1̂5̂) = 0 (on e2)

iF0̂5̂ + F1̂5̂ +
i

2r
x̃2(iF0̂2̂ + F1̂2̂)− 1

r
Φ0 = 0 (on e5)

(3.2.28)

Again we shift to an arbitrary τ by making diagonal U(1) ∈ SO(2)S × SO(2)B

(iFT 2̂ + w̃−1Fτ 2̂)− i

2r
x̃2(iFTR + w̃−1(FτR − ΦT )) = 0

(iFTR + w̃−1(FτR − ΦT )) +
i

2r
x̃2(iFT2 + w̃−1Fτ2) +

1

r
ΦT = 0

(3.2.29)

The first line plus the second multiplied by ix̃2/2r is

i(1− x̃2

4r2
)FT2 +

1

r
Fτ2 + i

x̃2

2r2
ΦT = 0 (3.2.30)

Introducing a rescaled field

Φ̃T = r(1− x̃2

4r2
)ΦT , (3.2.31)

the equation (3.2.31) is rewritten as

i∇2Φ̃T + F2τ = 0 (3.2.32)
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The remaining equation from (3.2.29) is then

i(1− x̃2

4r2
)FTR +

1

r
FτR = 0 (3.2.33)

We can summarize the 8 equations (3.2.27),(3.2.31),(3.2.33) resulting from QΨb = 0:

[∇m̂,∇τ + iΦ̃T ] = 0 for m̂ = 2, 3, 4, R, 6, 7, 8, 9. (3.2.34)

One can introduce complexified connection ∇C
τ = ∇τ + iΦ̃T and interpret the equa-

tions (3.2.34), as vanishing of the electric field (three equations FC
τ î

= 0 for i = 2, 3, 4)

and covariant time independence of the remaining five scalars (∇C
τ ΦR,6,7,8,9 = 0), as-

suming τ is the time coordinate.

Since Q2 generates translations along τ , we can interpret Q2 as the Hamilto-

nian. The equations (3.2.34) say that momenta of all fields vanish and that the

theory localizes to some three-dimensional theory. This three-dimensional theory is

defined on a three-dimensional ball B3 whose boundary is the two-sphere S2 where

interesting Wilson loop operators are located.

The supersymmetric configurations in this three-dimensional theory are deter-

mined by the top eight components of the equations QΨ = 0.

3.2.4 Top equations

For the top eight components of QΨ we get

QΨt = F0̂1̂Γ0̂1̂εt +
∑

2≤m<n≤9

FmnΓmnεt − 2ẼAΦAε̃
b +

∑
1≤I≤8

iKIΓ
9Iεt =

= −iF0̂1̂ε
t + (F9I + iKI)EIε

t −
∑

2≤I<J≤8

FIJEIEJε
t − 2ẼAΦAε̃

b (3.2.35)

In the following we shall use indices I, J = 2, . . . , 8 and i, j, k, p, q = 2, . . . , 4.

In this section we put r = 1/2 to avoid extra factors. We also do not write tilde

over x understanding that xi for i = 2, 3, 4 are the coordinates on the flat unit ball
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B3 ⊂ R3. The antisymmetric symbol εijk is defined as ε234 = 1. The following

multiplication table of octonions is helpful

eiej = εijkek − δije9

ei+4ei = e5 eie5 = ei+4 e5ei+4 = ei

ekei+4 = −εkijej+4 − δike5 ei+4ej+4 = −εijkek − δije9 ej+4ek = δjke5 − εjkiei+4

(3.2.36)

After some algebra we get the first term

QΨt(1) = −iF0̂1̂ε = −iF0̂1̂(e9 − ixjej+4), (3.2.37)

the second term

QΨt(2) = (F9I + iKI)EIε = (F9I + iKI)eI(e9 − ixjej+4) =

(F9i + iKi)(ei + ixjεijkek+4 + ixjδije5)+

(F95 + iK5)(e5 − ixjej)+

(F9 i+4 + iKi+4)(ei+4 + ixjεijkek + ixjδije9), (3.2.38)

the third term

QΨt(3) = −FI<JEIEJε =

=

[
−1

2
(Fij − Fi+4 j+4)εijkek + Fi j+4εijkek+4 + Fi i+4e5 − F5 k+4ek − Fk5ek+4

]
+ i

[
Fijxiej+4 +

1

2
Fijxkεijke5

+ Fi5xkεikjej − Fi5xie9 − Fi j+4xiej − Fi j+4xjei + Fi i+4xkek + Fi j+4xkεijke9

+ F5,i+4xkεikjej+4 − F5j+4xje5 + Fi+4 j+4xiej+4 −
1

2
Fi+4j+4εijkxke5

]
(3.2.39)

and the fourth term

QΨt(4) = −2ẼAΦAε̃
b = −2i(Φ9e5 + Φ5e9 + Φi+4ei). (3.2.40)

Now we analyze the equations. We have eight complex (sixteen real) equations

on eight physical fields A2,3,4,ΦR,6,7,8,9 and seven auxiliary fields Ki. Here we shall
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impose the reality condition on all fields. That is also clear from the localization

argument. Indeed, the action is deformed by t|QΨ|2 which vanishes on the real

integration contour iff both imaginary and complex parts of QΨ vanish. Hence, the

top equations QΨt = 0 naively imply 16 real equations. We shall see shortly that

only 15 equations are independent. Seven auxiliary fields can be easily integrated

out. Then we are left with eight equations. One of these eight equations gives real

constraint on the complexified time connection:

[∇τ , Φ̃T ] = 0. (3.2.41)

(This equation together with (3.2.34) completes our claim that the field configura-

tions are all τ -invariant up to a gauge transformation).

What remains is the system of seven first order differential equations on three

components of the gauge field and five scalars. The equations are gauge invariant.

Modulo gauge transformations, the system is elliptic in the interior of the three-

dimensional ball B3. The system is closely related to the extended three-dimensional

Bogomolny equations studied in [74].

Now we shall give technical details on the equations. First we eliminate ImQΨt|e9

by adding to it −xi ReQΨ|ei+4

ImQΨ|e9 − xi ReQΨ|ei+4
= −F0̂1̂ + F9 i+4xi − Fi5xi + Fij+4xkεijk − 2Φ5

− (−F0̂1̂x
2 + F9 i+4xi − Fi5xi + Fi j+4xkεijk) =

= −F0̂1̂(1− x2)− 2Φ5 = 2[∇τΦT ] (3.2.42)

This is the real equation which completes the system of time-invariance equations

(3.2.34).

Next we consider ReQΨt|e9 :

ReQΨt|e9 = −Ki+4xi (3.2.43)

This equation is one constraint on the auxiliary fields Ki. We are left with 14 more

equations ImQΨt|eI = 0 and ReQΨt|eI = 0 for I = 2, . . . , 8. Using ImQΨt|eI = 0
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we shall solve for KI in terms of the physical fields A and Φ, and we will see actually

that the constraint (3.2.43) is automatically implied.

The seven equations ImQΨt|eI = 0 imply

Kk = F95xk − F9 i+4εijkxj − Fi5xjεijk + Fi k+4xi + Fk i+4xi − Fi i+4xk + 2Φk+4

K5 = −F9ixi −
1

2
Fijxkεijk + F5 j+4xj +

1

2
Fi+4 j+4xkεijk + 2Φ9

Kk+4 = −F9iεijkxj − Fikxi − F5 i+4xjεijk − Fi+4 k+4xi.

(3.2.44)

The seven components ReQΨt|eI = 0 are

ReQΨt|ek = F9k −
1

2
(Fij − Fi+4 j+4)εijk − F5 k+4 +K5xk −Ki+4xjεijk

ReQΨt|e5 = F95 + Fi i+4 −Kixi

ReQΨt|ek+4
= F9 k+4 + Fi j+4εijk − Fk5 + 2Φ5(1− x2)−1xk −Kixjεijk

(3.2.45)

After plugging in (3.2.45) the expressions for KI (3.2.44) we get

ReQΨt|ek = F9k(1− x2)− 1

2
Fijεijk(1 + x2) +

1

2
Fi+4 j+4εijp(δpk − x2δpk + 2xpxk)−

F5 j+4(δjk + x2δjk − 2xjxk) + 2Φ9xk

ReQΨt|e5 = F95(1− x2) + Fi j+4(δij + δijx
2 − 2xixj)− 2Φj+4xj

ReQΨt|ek+4
= F9 i+4(δik + xixk − x2δik)− Fi5(δik − xixk + x2δik) + 2Φ5(1− x2)−1xk

+Fi j+4(εijk − xixpεjpk − xjxpεipk)− 2Φi+4εijkxjek+4

(3.2.46)

The above calculations are done at the slice τ = 0. For an arbitrary τ the field Φ5

should be replaced by ΦR as in (3.2.11).

Let us analyze the equations ReQΨt|eI = 0 using (3.2.46). At the origin, i.e. at

x = 0, the equations are

− ∗ (F − Φ ∧ Φ)− dAΦ9 + [Φ,Φ5] = 0 (3.2.47)

∗dAΦ− dAΦ5 − [Φ,Φ9] = 0 (3.2.48)

dA ∗ Φ + [Φ9,Φ5] = 0 (3.2.49)
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where we identified the three scalar fields Φi+4 with components of one-form on R3,

i.e. Φ = Φi+4dx
i, and ∗ is the Hodge operator on R3 with the standard metric.

Let us combine the gauge field A and the one-form Φ into a complexified con-

nection Ac = A+ iΦ, and similarly combine the scalars Φ5 and Φ9 into complexified

scalar Φc = Φ5 + iΦ9. Then the equations (3.2.47)(3.2.48) can be written as

− ∗ ReFc − Re dAcΦc = 0 (3.2.50)

∗ ImFc − Im dAcΦc = 0. (3.2.51)

This pair of real equations can be combined into the complex equation

∗ Fc + dAcΦc = 0. (3.2.52)

The equation (3.2.52) was called extended Bogomolny equation in [8].

Hence, we see that at the origin of R3, the equations (3.2.46) resemble some

known system of elliptic equations. Away from x = 0 the equations are deformed

into more complicated system. We shall try to make some simple rescaling of vari-

ables to convert the equations to more standard form on the whole domain.

For this purpose we make a change of variables for the scalar fields Φi+4 for

i = 2, 3, 4

Φi+4 = Φ̃j

(
δij +

2xixj
1− x2

)
. (3.2.53)

This change of variables is smooth in the interior of the ball B3. In terms of Φ̃i+4

the first equation in (3.2.46) becomes

− 1

2
(1 + x2)εijk(Fij − [Φ̃i, Φ̃j])−∇k((1− x2)Φ9) + (1 + x2)[Φ̃k,Φ5] = 0. (3.2.54)

The second equation in (3.2.46) becomes

(1− x2)εijk∇iΦ̃j −∇k((1− x2)Φ5)− 1− x2

1 + x2

(
(1− x2)δik +

4xixk
1− x2

)
[Φ̃i, Φ̃9] = 0.

(3.2.55)

Finally, the third equation in (3.2.46) is

(1 + x2)∇iΦ̃i + 2
x2 + 3

1− x2
xiΦ̃i + (1− x2)[Φ9,Φ5] = 0 (3.2.56)
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In the localization computation we need to integrate over the moduli spaceM of

smooth solutions to (3.2.54)(3.2.55)(3.2.56) with finite Yang-Mills action. Clearly,

the zero configuration A = Φ̃ = 0,Φ5 = Φ9 = 0 is a solution. Let us analyze the

linearized problem near the zero configuration, in other words, let us find the fiber

of the tangent space TM0. The linearized equations (3.2.54),(3.2.55),(3.2.56) are

(1 + x2) ∗R3 dA+ d((1− x2)Φ9) = 0 (3.2.57)

(1− x2) ∗R3 dΦ̃− d((1− x2)Φ5) = 0 (3.2.58)

(1 + x2)d∗R3Φ̃ + 2
x2 + 3

1− x2
(x, Φ̃) = 0 (3.2.59)

Here we by ∗R3 we denoted the Hodge star operation with respect to the standard

metric on R3. It is possible to absorb extra (1 ± x2) factors in the Hodge star

operation using a rescaled metric. We will use the metric

ds2(S3) =
dxidxi

(1 + x2)2
, |x| < 1 (3.2.60)

which is a metric on a half of round three-sphere S3, and

ds2(H3) =
dxidxi

(1− x2)2
, |x| < 1 (3.2.61)

which is a metric on hyperbolic space H3 in Poincare coordinates. Then the first

two equations in (3.2.57) turn into

∗S3dA+ dΦ̃9 = 0 (3.2.62)

∗H3dΦ̃− dΦ̃5 = 0, (3.2.63)

where

Φ̃5 = (1− x2)Φ5 (3.2.64)

Φ̃9 = (1− x2)Φ9. (3.2.65)

The equation (3.2.62) implies that Φ̃9 is harmonic for the S3 metric

∆S3Φ̃9 = 0, (3.2.66)
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and the equation (3.2.63) implies that Φ̃5 is harmonic for the H3 metric

∆H3Φ̃5 = 0. (3.2.67)

We need to consider only such solutions that the fields Φ5,Φ9 are not singular at

the boundary. (Singular solutions can be considered too, but they correspond to

the disorder surface operator [103] inserted on the two-sphere S2 = ∂B3. In this

work we aim to compute the expectation value of Wilson loop operators on S2 in

the absence of any surface operators. Hence we require Φ5 and Φ9 fields to be finite

at the S2.) If Φ5 and Φ9 fields are finite at |x| = 1, then Φ̃5 and Φ̃9 vanish there

by (3.2.66),(3.2.67). Hence we have the Laplacian problem (3.2.66)(3.2.67) with

Dirichlet boundary conditions

Φ̃5|∂B3 = Φ̃9|∂B3 = 0. (3.2.68)

Since a harmonic function Y (x) vanishing on the boundary must vanish (it can be

shown integrating by parts
∫
B
dY ∧ ∗dY =

∫
∂B
Y ∧ ∗dY ), we conclude that there is

no nontrivial finite solution for the fields Φ5,Φ9, so

Φ5 = Φ9 = 0. (3.2.69)

One might worry that this argument might fail for the H3 space where we have to

deal with the infinite boundary. However, the explicit solution of the Laplace equa-

tion in spherical coordinates on the H3 space shows that all radial wave-functions,

which are smooth in the interior of H3, do not vanish at the boundary. In spherical

coordinates, the H3 metric is

ds2 =
dξ2 + sin2 ξdΩ2

2

cos2 ξ
(3.2.70)

where ξ is the radial coordinate 0 ≤ ξ < π/2 and dΩ2
2 is the standard metric on the

unit two-sphere. Then

∆H3f =
1
√
g
∂i(
√
ggij∂j)f =

cos3 ξ

sin2 ξ
∂ξ

(
sin2 ξ

cos ξ
∂ξf

)
+

cos2 ξ

sin2 ξ
∆S2f (3.2.71)
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If fs(ξ) is the radial wave-function for the angular momentum s on the S2 then

∆S2fs = −s(s + 1)fs. So the equation (3.2.71) is a special case of the Laplace

equation in the (p, q) polyspherical coordinates (see e.g. [104] p.499)

1

cosp ξ sinq ξ

∂

∂ξ

(
cosp ξ sinq ξ

∂u

∂ξ

)
−
(
r(r + p− 1)

cos2 ξ
+
s(s+ q − 1)

sin2 ξ
− l(l + p+ q)

)
u = 0

(3.2.72)

for q = 2, p = −1, r = 0, l = 0. The solutions of (3.2.72) non-singular at ξ = 0 are

u = tans ξF

(
s− l + r

2
,
s− l − r − p+ 1

2
, s+

q + 1

2
;− tan2 ξ

)
, (3.2.73)

where F (α, β, γ; z) is the 2F1 hypergeometric function. In our case we have

fs(ξ) = tans ξF (s/2, s/2 + 1, s+ 3/2,− tan2 ξ). (3.2.74)

Using identity

F (α, β, γ, z) = (1− z)−αF (α, γ − β, γ;
z

z − 1
) (3.2.75)

we can rewrite (3.2.74) as

fs(ξ) = sins ξF (s/2, s/2 + 1/2, s+ 3/2, sin2 ξ) (3.2.76)

The function fs(ξ) has asymptotic ξs at ξ → 0 and a finite non-zero value at ξ = π/2:

lim
ξ→π/2

fs(ξ) =
Γ(s+ 3/2)Γ(1)

Γ(s/2 + 3/2)Γ(s/2 + 1)
. (3.2.77)

This confirms our argument that there are no non-trivial solutions to the Laplace

equation on H3 with zero asymptotic at the boundary.

Now, given that Φ5 and Φ9 vanish, the linearized equations (3.2.62)(3.2.63) turn

into

dA = 0 (3.2.78)

dΦ = 0. (3.2.79)
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That means that the complexified gauge connection Ac = A+ iΦ is flat. The third

equation in (3.2.57) is effectively a partial gauge fixing condition on the imaginary

part of Ac. It is actually possible to rewrite this partial gauge fixing condition in

terms of the d∗ operator with respect to a rescaled metric. Namely, for this metric

on R3

gij = f(|x|)δij (3.2.80)

the d∗f operator acts on one-form Φ̃ as

d∗f Φ̃ = f−1(∂iΦ̃i +
1

2
f−1f ′Φ̃ixi/|x|), (3.2.81)

where f ′ = df(|x|)/dx. Comparing (3.2.81) with (3.2.59) we get the scale factor.

The result is

gij = f(|x|)δij where f(|x|) =
(1 + x2)2

(1− x2)4
. (3.2.82)

Hence, the partial gauge fixing equation (3.2.59) is rewritten as

d∗f Φ̃ = 0 (3.2.83)

Now we can find all solutions to the linearized problem as follows. From (3.2.79)

we solve Φ̃ in terms of some scalar potential p

Φ̃ = dp. (3.2.84)

The gauge fixing equation (3.2.83) implies then

d∗fdp = 0, (3.2.85)

i.e. that p is a harmonic function with respect to the metric (3.2.82). We can find

explicitly the harmonic modes in spherical coordinates. The metric (3.2.80) is

ds2 =
dξ2 + sin2 ξdΩ2

2

cos4 ξ
, (3.2.86)

so the Laplacian equation (3.2.85) on spherical mode ps(ξ) with angular momentum

s is

cot2 ξ
∂

∂ξ

(
tan2 ξ

∂ps(ξ)

∂ξ

)
− s(s+ 1)

sin2 ξ
ps(ξ) = 0. (3.2.87)
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Again, this is the Laplacian equation in the (p, q) polyspherical coordinates

(3.2.72) with p = −2, q = 2, r = 0, l = 0. The solution regular at ξ = 0 is

ps(ξ) = tans ξF (s/2, s/2 + 3/2, s+ 3/2,− tan2 ξ) =

= sins ξF (s/2, s/2, s+ 3/2, sin2 ξ).
(3.2.88)

The solution is finite at ξ = 0 for any s, hence the components of Φ̃ tangent to the

boundary ∂B3 are also finite. To find asymptotic of the normal component of Φ̃ we

need to know expansion of (3.2.88) at θ = π/2 − ξ at θ = 0. For this purpose we

rewrite (3.2.88) using identity on hypergeometric functions (see e.g. [105] p.160)

F (α, β, γ, z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
F (α, β, α + β − γ + 1, 1− z)

+
Γ(γ)Γ(α + β − γ)

Γ(α)Γ(β)
(1− z)γ−α−βF (γ − α, γ − β, γ − α− β + 1, 1− z).

(3.2.89)

We get

ps(ξ) = sins(ξ)

(
Γ(s+ 3/2)Γ(3/2)

Γ(s/2 + 3/2)2
F (s/2, s/2,−1/2, cos2 ξ)

+
Γ(s+ 3/2)Γ(−3/2)

Γ(s/2)2
(cos2 ξ)3/2F (s/2 + 3/2, s/2 + 3/2, 5/2, cos2 ξ)

) (3.2.90)

Near θ = 0 we obtain

ps(θ) = coss θ(A+B sin2 θ + C sin3 θ + . . . ), (3.2.91)

where A,B,C some constants. Therefore

Φ̃θ =
∂ps(θ)

∂θ
= (−As+B)θ +O(θ2). (3.2.92)

This means that the normal component of Φ̃ at the boundary vanishes as the first

power of θ or (1− x2). Hence, the original scalars, related to Φ̃ by (3.2.53), are all

finite at the boundary S2.

So all solutions of the linearized equations (3.2.57)(3.2.58)(3.2.59) modulo gauge

transformations are parametrized by the scalar potential p (modulo zero modes of
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p), which is a harmonic function in the three-dimensional ball with respect to the

metric (3.2.86). A harmonic functions p is uniquely defined by its boundary value

on the S2. Hence we see that that tangent space to the moduli space of solutions

at the origin TM0 is equal to the space of adjoint-valued scalar functions on the S2

modulo zero modes.

Now we consider the full non-abelian equations (3.2.54)(3.2.55)(3.2.56). Looking

back at our solution of the linearized problem (3.2.69), we shall suggest an ansatz

Φ5 = Φ9 = 0 for the exact solution. Then the remaining equations on the complex-

ified connection Ac = A+ iΦ̃ are

FA − Φ̃ ∧ Φ̃ = 0 (3.2.93)

dAΦ̃ = 0 (3.2.94)

d
∗f
A Φ̃ = 0, (3.2.95)

which can be combined into the complex equation of flat curvature

F (Ac) = 0 (3.2.96)

and a partial gauge-fixing equation using the metric (3.2.86)

dA ∗f Φ̃ = 0. (3.2.97)

The first equation can be solved in terms of a scalar function valued in the complex-

ified gauge group gc : B3 → GC

Ac = g−1
c dgc. (3.2.98)

The partial gauge-fixing condition can be complemented by a real gauge fixing d∗A =

0. That gives a non-linear analogue of the harmonic equation (3.2.85)

dA ∗f (g−1
c dgc) = 0. (3.2.99)

The solutions of this second order differential equation are parameterized by the

boundary value of gc. Hence, the tangent space of solutions to the full non-abelian
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equations constrained by Φ5 = Φ9 = 0 coincides with the moduli space of the

linearized problem.

We conclude, that the solutions of (3.2.99) represent complete moduli spaceM of

finite solutions of the supersymmetry equations (3.2.46). Hence, the space of gauge

orbits M/Ggauge can be parameterized by the boundary value of the GC/G-valued

potential function gc.

Equivalently, we can parameterizeM/G by the space of complex flat connections

on the boundary S2 modulo the gauge transformations restricted on S2

Ac|S2 = g−1
c dgc|S2 . (3.2.100)

Hence, the localization of the path integral of the four-dimensional N = 4 SYM

theory to the moduli space M/G can be represented by a path integral over the

space of complex flat connections on the B3 boundary S2. The action of this two-

dimensional theory is determined by values of the four-dimensional Yang-Mills func-

tional on the field configurations representing points on M.

We will show, that the N = 4 Yang-Mill action restricted to the fields con-

figurations in M is actually a total derivative. Hence the Yang-Mills action SYM

restricted toM can be represented in terms of a two-dimensional functional on the

boundary S2d.

We conclude that the result of the localization procedure for the partition func-

tion of the four-dimensional theory is a two-dimensional path integral over the space

of complex flat connections on S2.

Now we will find the two-dimensional action S2d. The measure of integration in

the two-dimensional theory is then exp(−S2d) times the induced volume form from

the four-dimensional theory on the moduli space M.
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3.3 Two-dimensional theory

The bosonic part of the N = 4 Yang-Mills action on S4 in coordinates (3.2.2) is

SYM =
1

2g2
YM

∫ 2π

0

dτ

∫
|x|<1

d3x
√
g(

1

2
FµνF

µν +DµΦAD
µΦA

+
1

2
[ΦA,ΦB]2 +

R

6
Φ2
A +K2).

(3.3.1)

Here R is the scalar curvature. For S4 of radius 1/2 we have R = 12/(1/2)2 = 48.

First we make Weyl transformation to get the action on the space with metric (3.2.7)

g[S4] = e2Ωg[R3 ×w̃ S1] (3.3.2)

ΦA[S4] = e−ΩΦA[R3 ×w̃ S1] (3.3.3)

KI [S
4] = e−2ΩKI [R3 ×w̃ S1] (3.3.4)

where

e2Ω = (1 + x2)−2. (3.3.5)

In terms of the fields on R3 ×w̃ S1 the bosonic action is

SYM =
1

2g2
YM

∫ 2π

0

dτ

∫
|x|<1

d3x

(
1

2
(1− x2)×

(
1

2
F 2
ij + gττF 2

τi + gττ (DτΦA)2 + (DiΦA)2 +
2

(1− x2)
Φ2
A +

1

2
[ΦAΦB]2 +K2)

+Di

(
1− x2

1 + x2
xiΦ

2
A

)) (3.3.6)

The last term is the total derivative which vanishes because the factor (1 − x2)

vanishes at the integration boundary |x| = 1. The action on R3 ×w̃ S1 can be

also written starting from (3.3.1) and substituting the metric (3.2.7). The scalar

curvature on R3×w̃ S1 can be computed easily using a general formula for the scalar

curvature on a warped product of two manifold M ×f N , see e.g. [106]. If gM and

gN are the metrics on M and N , and if gM ⊕ f 2gN is the metric on M ×f N , then

RM×fNu = − 4n

n+ 1
∆Mu+RMu+RNu

n−3
n+1

where n = dimN, u = f
n+1

2 , ∆M is Laplacian on M

(3.3.7)
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In the case R3 ×w̃ S1 we get n = dimN = 1, so u = f = 1
2
(1 − x2). Then, for

the radius 1/2, we get

R[R3 ×w̃ S1] = −u−1∆u =
12

1− x2
, (3.3.8)

which agrees with (3.3.1) and (3.3.6).

Next we rewrite the action in terms of the twisted scalars ΦT ,ΦR and Φm for

m = 6, 7, 8, 9 (3.2.11)

SYM =
1

2g2
YM

∫ 2π

0

dτ

∫
|x|<1

d3x
1

2
(1− x2)(gττF 2

iτ + (DiΦT )2

+gττ (DτΦR − ΦT )2 + [ΦT ,ΦR]2 + gττ (DτΦm)2 + [ΦT ,Φm]2

gττ (DτΦT + ΦR)2 +
1

2
F 2
ij + (DiΦm)2 + (DiΦR)2 +

1

2
[Φm,Φn]2 + [ΦR,Φm]2

+
2

(1− x2)
(Φ2

m + Φ2
T + Φ2

R) +K2
I ).

(3.3.9)

Then we restrict the action onto the U(1) ⊂ SO(2)SSO(2)B invariant configura-

tions using (3.2.34) and (3.2.41). We also assume that ΦT = 0 in the supersymmetric

background, otherwise ΦT has first order singularity near the S2 which would mean

insertion of surface operator. Removing all commutators with ∇τ and ΦT from the

action (3.3.9), we arrive to this three-dimensional action for the gauge field Ai and

five scalars ΦR,Φm for m = 6, 7, 8, 9

Sinv
YM(B3) =

1

2g2
YM

2π

∫
|x|<1

d3x
1

2
(1− x2)(

4

(1− x2)2
Φ2
R +

1

2
F 2
ij + (DiΦm)2

+(DiΦR)2 +
1

2
[Φm,Φn]2 + [ΦR,Φm]2 +

2

(1− x2)
(Φ2

m + Φ2
R) +K2

I ).

(3.3.10)

Now let us show that modulo supersymmetry equations the action (3.3.10) is a
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total derivative. We try the following ansatz

Sinv
susy(B

3) =
1

4g2
YM

2π

∫
|x|<1

d3x

((−1

2
(Fij − [Φi+4Φj+4])εijk +K5xk −Ki+4xjεijk)·

· (−1

2
(Fij − [Φi+4Φj+4])εijk −K5xk +Ki+4xjεijk)

+ (∇iΦi+4 −Kixi)(∇jΦj+4 +Kjxj)

+ ((∇iΦj+4 −Kixj)εijk)(δkk̃ − xkxk̃)((∇ĩΦj̃+4 +Kĩxj̃)εĩj̃k̃)

+ (Kk − (xi∇iΦk+4 + xi∇kΦi+4 − xk∇iΦi+4 + 2Φk+4))·

· (Kk + (xi∇iΦk+4 + xi∇kΦi+4 − xk∇iΦi+4 + 2Φk+4))

+ (K5 +
1

2
xkεijk(Fij − [Φi+4Φj+4]))(K5 −

1

2
xkεijk(Fij − [Φi+4Φj+4]))

+ (Kk+4 + xi(Fik + [Φi+4Φk+4]))(Kk+4 − xi(Fik + [Φi+4Φk+4]))

− (xiKi+4)2) (3.3.11)

Each term above corresponds to one of the top supersymmetry equations (3.2.43),(3.2.44)

and (3.2.45) multiplied by a suitable factor to match the kinetic term of the re-

duced Yang-Mills action (3.3.10). Therefore at the supersymmetric configurations

Sinv
susy(B

3) vanishes. On the other hand, after some algebra , one can show that the

actions (3.3.10) and (3.3.11) differ on a total derivative

Sinv
susy(B

3) = Sinv
YM(B3) +

2π

4g2
YM

∫
d3x|x|<1(∇i((1− x2)Φi+4∇jΦj+4 − Φj+4∇jΦi+4)

− 4∇j(xixkΦk+4∇iΦj+4 − xixjΦi∇k+4Φk+4)

− 6∇j(xiΦi+4Φj+4)) (3.3.12)

Integrating the total derivative term we get a boundary action

Sinv
YM(B3) = Sinv

susy(B
3)+

2π

4g2
YM

∫
S2: |x|=1

dΩ (4Φn(∇nΦn−∇iΦi+4)+6Φ2
n), (3.3.13)

where Φn is the normal component to the S2 of the one-form Φ, i.e. Φn = niΦi+4,

and ∇n is the derivative in the normal direction, ni = xi/|x|. Using the equation
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(3.2.45) for ReQΨt|e5 with Ki substituted from (3.2.44) we get a constraint on Φn

on the boundary

∇nΦn −∇iΦi+4 = −Φn. (3.3.14)

Hence, the boundary action (3.3.13) simplifies to

Sinv
YM(B3) = Sinv

susy(B
3) +

π

g2
YM

∫
S2:|x|=1

dΩ Φ2
n, (3.3.15)

where dΩ is the standard volume form on S2. On supersymmetric configuration

Sinv
susy(B

3) vanishes, thus the N = 4 Yang-Mills localizes to the two-dimensional

theory on S2 with the action

S2d =
π

g2
YM

∫
S2:|x|=1

dΩ Φ2
n. (3.3.16)

Equivalently we can express the action in terms of the tangent to S2 components of

Φ using the constraint (3.3.14)

S2d =
π

g2
YM

∫
S2:|x|=1

dΩ (d∗2dA Φt)
2. (3.3.17)

We recall that the scalar fields in (3.3.2) - (3.3.17) are the fields for the four-

dimensional theory on R3 ×w̃ S1. In terms of the original fields of the N = 4

Yang-Mills on S4 we have Φ[R3 ×w̃ S1] = (1 + x2)−1Φ[S4], so

S2d =
π

4g2
YM

∫
S2:|x|=1

dΩ(d∗2dA ΦS4

t )2. (3.3.18)

Above was assumed that the radius r = 1
2
. To restore r we need to insert a power

of factor (2r) to get the correct dimension

S2d = (2r)2 π

4g2
YM

∫
S2:|x|=2r

√
gS2d2σ(d∗2dA ΦS4

t )2. (3.3.19)

The Wilson loop operator (3.1.4) descends to the Wilson loop operator in the

two-dimensional theory

WR(C) = trR Pexp

∮
(A− i ∗ Φ) (3.3.20)
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We introduce complexified connection

Ãc = A− i ∗ Φ, (3.3.21)

so the Wilson loop operator (3.3.22) is holonomy of Ãc

WR(C) = trR Pexp

∮
Ãc (3.3.22)

Let FÃc be the curvature of Ãc, then

F(Ãc) = dÃc + Ãc ∧ Ãc = FA − Φ ∧ Φ− idA ∗ Φ (3.3.23)

By (3.2.93) at the localized configurations we have FA − Φ ∧ Φ = 0, then

dA ∗ Φ = iFÃc for localized configurations (3.3.24)

Then the action of the two-dimensional theory (3.3.19) is equivalent to the action

of the bosonic Yang-Mills for complexified connection Ãc

S2d = − 1

2g2
2d

∫
S2

dΩF 2
Ãc
, (3.3.25)

where the two-dimensional coupling constant is denoted g2d

g2
YM = 2πr2g2

2d. (3.3.26)

So the original four-dimensional problem has been reduced to complexified two-

dimensional bosonic Yang-Mills theory (3.3.25) with the standard Wilson loop ob-

servables (3.3.22). However, the complexified connection Ãc = A−i∗Φ is constrained

to the localization locus by (3.2.93)

ReFÃc = 0 (3.3.27)

dRe Ãc
∗ Im Ãc = 0. (3.3.28)

The two real constraints remove two real degrees of freedom from the four real

degrees of freedom of complex one-form Ãc (we do not subtract gauge symmetry in
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this counting). Therefore, the path integral is taken over a certain half-dimensional

subspace of complexified connections Ãc.

We can interpret the path integral for the usual two-dimensional Yang-Mills for

real connections as a contour integral in the space of complexified connections, where

the contour is given by the constraint that the imaginary part of the connection

vanishes: Im Ãc = 0.

Our assertion is that the complexified theory (3.3.25) with constraints (3.3.27)

is equivalent to the real theory by a change of the integration contour in the space

of complexified connections.

Since perturbative correlation functions of holomorphic observables do not de-

pend on deformation of the contour of integration, we conclude that the expectation

value of Wilson loop observables (3.3.22) perturbatively coincides with the expec-

tation values of Wilson loops in the ordinary two-dimensional Yang-Mills.

We shall look at the complexified two-dimensional Yang-Mills theory with con-

straints from the slightly broader viewpoint of so called topological Higgs-Yang-Mills

theory [53–55] which deals with then moduli space of solutions to Hitchin equations.

3.3.1 Higgs-Yang-Mills theory

Here we will review Higgs-Yang-Mills theory following [8, 53–55]. Let Σ be a Rie-

mann surface, A be a gauge field for the gauge group G (G is a compact Lie group)

and Φ be a one-form taking value in the Lie algebra g of G.

Let ϕ be a scalar field taking value in g. The field ϕ can be thought as an element

of the Lie algebra ggauge of the infinite-dimensional group of gauge transformations

Ggauge. Let M be the space of fields (A,Φ). Using the invariant Killing form on g

we identify g with g∗. Then locally M is T ∗Ω1(Σ, ad g).

We notice (see [8, 53–55, 83]) that the space M can be equipped with a triplet of

symplectic structures ωi and a triplet of corresponding Hamiltonian moment maps

µi for Ggauge acting on M .
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Explicitly we define the symplectic structure ωi as follows. Let δ be the differ-

ential on M . Then

ω1(δA1, δΦ1; δA2, δΦ2) = tr

∫
Σ

δA1 ∧ δA2 − δΦ1 ∧ δΦ2 (3.3.29)

ω2(δA1, δΦ1; δA2, δΦ2) = tr

∫
Σ

δA1 ∧ δΦ2 − δA2 ∧ δΦ1 (3.3.30)

ω3(δA1, δΦ1; δA2, δΦ2) = tr

∫
Σ

δA1 ∧ ∗δΦ2 − δA2 ∧ ∗δΦ1, (3.3.31)

where ∗ is the Hodge star on Σ. (Here subscripts 1, 2 denote an argument of the

functional two-form ω and they should not be confused with world-sheet indices,

e.g. δA1 should be read as one-form on Σ.)

A functional µ : M → g∗gauge is called a moment map if

iφω = µ(φ) for all φ ∈ ggauge, (3.3.32)

where iφ denotes a contraction with a vector field generated on M by an element

φ ∈ ggauge.

The group Ggauge acts on M by the usual gauge transformations

δA = −dAφ

δΦ = [φ,Φ].
(3.3.33)

One can check that the functionals

µ1(φ) = tr

∫
(φ, F − Φ ∧ Φ) (3.3.34)

µ2(φ) = tr

∫
(φ, dAΦ) (3.3.35)

µ3(φ) = tr

∫
(φ, dA ∗ Φ) (3.3.36)

are the moment maps for the symplectic structure ω1, ω2, ω3 correspondingly.

The space M has natural linear flat structure and the corresponding flat metric

is

g(δA1, δΦ1; δA2, δΦ2) = tr

∫
δA1 ∧ ∗δA2 + δΦ1 ∧ ∗δΦ2. (3.3.37)
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Using the metric g on M , to each symplectic structure ωi we can associate a

complex structure Ii in the usual way ω(·, ·) = g(I·, ·).

Comparing

tr

∫
Σ

I(δA1) ∧ ∗δA2 + I(δΦ1) ∧ ∗δΦ2 (3.3.38)

with (3.3.29)- (3.3.31) we get

I1(δA) = ∗δA I1(δΦ) = − ∗ δΦ (3.3.39)

I2(δA) = ∗δΦ I2(δΦ) = ∗δA (3.3.40)

I3(δA) = −δΦ I3(δΦ) = δA (3.3.41)

Notice that the following linear combinations span the holomorphic subspaces

(+i-eigenspaces) of the corresponding complex structures:

I1(A− i ∗ A) = i(A− i ∗ A)

I2(A− i ∗ Φ) = i(A− i ∗ Φ)

I3(A+ iΦ) = i(A+ iΦ).

(3.3.42)

One can also check that the complex structures satisfy I3 = I2I1, I1 = I3I2, I2 =

I1I3. Hence the space M is the hyperKahler space.

We can use four-dimensional notations. Let us denote

Φ1 ≡ A4 Φ2 ≡ A3, (3.3.43)

then the three moment maps (3.3.34) correspond to the components of the self-dual

part F+
A of the four-dimensional curvature FA:

F − Φ ∧ Φ = (F12 + F34)dx1 ∧ dx2

dAΦ = (F13 − F24)dx1 ∧ dx2

dA ∗ Φ = (F14 + F23)dx1 ∧ dx2

(3.3.44)

Clearly, the space R4 (or more generally T ∗Σ) is hyperKahler, so it is equipped

with CP1 family of complex structures. Let z1, z̄1, z2, z̄2 be complex coordinates with
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respect to some complex structure, e.g. z1 = x1 + ix2, z2 = x3 + ix4. Then, in terms

of Az̄1 = 1
2
(A1 + iA2), etc, we can write

Fz1z̄1 + Fz2z̄2 =
i

2
(F12 + F34) =

i

2
µ1

Fz̄1z̄2 =
1

4
(F13 − F24) +

i

4
(F23 + F14) =

1

4
(µ2 + iµ3)

(3.3.45)

Constrained Higgs-Yang-Mill theory

For the related story see [53, 54].

Consider the following path integral over φ and the space M of fields (A,Φ)

ZcHYM =

∫
M |µ1=µ2=0

Dφei(ω3−µ3(φ))− t2
2

∫
trφ2

. (3.3.46)

Later we will insert Wilson loop observables for the holomorphic part of the

complexified connection with respect to the complex structure I2. Explicitly such

observables have form

WR(C) = trR Pexp

∮
C

(A− i ∗ Φ), (3.3.47)

were C is a contour on Σ and R is representation of G.

We would like to look at this theory as a hyperKahler rotation of another theory

ZYM =

∫
M |µ2=µ3=0

Dφei(ω1−µ1(φ))− t2
2

∫
trφ2

, (3.3.48)

which is almost equivalent to bosonic two-dimensional Yang-Mills. Let Σ be a

Riemann sphere. The constraint µ2 = µ3 = 0 means d∗AΦ = dAΦ = 0. For a generic

connection A, the only solution to these constraints is Φ = 0. Then the path integral

(3.3.48) reduces to the 2d bosonic Yang-Mills integral over A and φ written in the

first order formalism as in [83].

We can insert Wilson loop observables (3.3.47) into the path integral. Since Φ

vanishes because of the constraint, the Wilson loop (3.3.47) reduces to the ordinary

Wilson loop of the connection A. Therefore, the expectation value of Wilson loops
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(3.3.47) naively is computed by the standard formulas of the two-dimensional Yang-

Mills theory [83, 107, 108] modulo subtleties which are related to non-generic con-

nections for which there are non-trivial solutions of the constraint d∗AΦ = dAΦ = 0.

Such connections precisely correspond to unstable instantons, i.e. configurations

with covariantly constant curvature FA. It is well known that the partition function

of bosonic two-dimensional Yang-Mills can be written as a sum of contributions from

such unstable instantons [83, 109, 110]. A contribution of a classical solution with

nontrivial curvature F enters with a weight exp(−1
2
g2ρ(Σ)F 2) where ρ(Σ) is the

area of Σ. In the weak coupling limit such instanton contributions are exponentially

suppressed and do not contribute to the perturbation theory.

Hence, we conclude that perturbatively the constrained Higgs-Yang-Mills theory

(3.3.48) is equivalent to the ordinary two-dimensional Yang-Mills.

In [83] Witten has related the physical two-dimensional Yang-Mills theory (3.3.48)

with the topological two-dimensional Yang-Mills. The key point is that the path

integral for the physical Yang-Mills theory can be represented as an integral of the

equivariantly closed form with respect to the following operator Q

QA = ψ

Qψ = −dAφ

Qφ = 0.

(3.3.49)

In other words, the ω1 − µ1(φ) is the equivariantly closed form constructed from

the symplectic structure ω1 and the Hamiltonian moment map µ1 for the gauge

group acting on the space of connections. Then localization method can be used to

compute the integral of such equivariantly closed form [20–22, 83].

Though the Wilson loop observable is not Q-closed, its expectation value can

be still solved exactly. That gives a hope that we can also find exact expectation

value of Wilson loops (3.3.47) in constrained Higgs-Yang-Mills theory (3.3.48) and

its rotated version (3.3.46). See [53–55] for computation of correlation functions for

the Q-closed observables trφn.
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First let us focus on the partition function (3.3.46). We can try to proceed in

two directions. The first one is to try to use the localization method and relate the

theory to some topological theory and computations with Q-equivariant cohomology.

Though the Wilson loop operators are not Q-closed, we can try to solve for at least

non-intersecting Wilson loops {C1, . . . , Ck} by: (i) finding topological wave-function

Ψ(U1, . . . , Uk) on the boundary of the Riemann surface with Wilson loops deleted

Σ\{C1∪. . . Ck}, and (ii) then integrating over the space of holonomies {U1, . . . , Uk}.

For the study of wave-functions in Higgs-Yang-Mills theory see [53, 54].

The second approach is to explicitly solve the constraint µ1 = µ2 = 0, which

means that the complexified connection Ac = A+ iΦ is flat, in the form

A+ iΦ = g−1
c dgc, (3.3.50)

where gc takes value in the complexified gauge group GC. The gauge transformations

A+ iΦ→ g−1(A+ iΦ)g + g−1dg (3.3.51)

can be represented by the right multiplications gc → gcg, where g takes value in the

compact gauge group G. Hence the configurational space of the theory is the same

as of gauged WZW model on the coset GC/G.

We shall not proceed these ideas further in this work. Instead we will give one

more argument why the perturbative expecation value of Wilson loop (3.3.47) in

the theory (3.3.48) and its hyperKahler rotated version (3.3.46) is the same.

First we rewrite the path integral of a constrained theory by means of Lagrangian

multipliers. Consider the theory (3.3.48). We introduce scalar auxiliary fields H2, H3

and their superpartners χ2, χ3. The superpartners of A and Ψ are fermionic adjoined

valued one-forms on Σ. Then we consider the usual complex for equivariant coho-

mology

QA = ψA Qχ2,3 = H2,3

QψA = −dAφ QH2,3 = [φ, χ2,3]
(3.3.52)
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with

Qφ = 0. (3.3.53)

The theory (3.3.48) can be rewritten as

Z =

∫
DφDADψADΦDψΦDHDχ

exp(

∫
i(ψA ∧ ψA − ψΦ ∧ ψΦ − (F − Φ ∧ Φ))φ− t2

2
φ ∧ ∗φ

+ Sc, ) (3.3.54)

where

Sc = iQ(

∫
dAΦ ∧ χ2 + dA ∗ Φ ∧ χ3) =

i

∫
(dAψΦ + [ψA,Φ]) ∧ χ2 + (dA ∗ ψΦ + [ψA, ∗Φ]) ∧ χ3 + dAΦ ∧H2 + dA ∗ Φ ∧H3

(3.3.55)

If we integrate out the Lagrange multipliers H2, H3 and Φ, and their fermionic

partners χ2, χ3 and ψA, the resulting determinants cancel, while Φ becomes re-

stricted to the slice dAΦ = d∗AΦ = 0, and similarly ψΦ is restricted to dAψΦ +

[ψA,Φ] = 0 and dA ∗ ψΦ + [ψA, ∗Φ] = 0. Since Φ = 0 we get ψΦ = 0. Then what

remains is

Z =

∫
DADψADφ exp(

∫
i(ψA ∧ ψA − Fφ)− t2

2
φ ∧ ∗φ), (3.3.56)

which is the usual action of bosonic Yang-Mills in the first order formalism [83].

Now consider the constrained Higgs-Yang-Mills theory (3.3.46) . Actually we

shall consider slightly different version:

ZcHYM =

∫
M |µ1=µ2=0

Dφei(ω3+iω1−(µ3(φ)+µ1(φ))− t2
2

∫
trφ2

. (3.3.57)

Here we added to the action the term µ1(φ) and its supersymmetric extension ω1.

Since µ1(φ) = 0 by constraint, classically this is the same theory as (3.3.46). The
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symplectic structure ω1 − iω3 is holomorphic (2, 0) two-form with respect to the

second complex structure in (3.3.42).

Let us make a change of variables from (A,Φ) to the variables (Ãc,Φ) where

Ãc = A− i ∗ Φ (3.3.58)

Perturbatively we can rotate the integration contour for Φ to the imaginary axis,

then Ãc is real valued. The jacobian for this change of variable is trivial.

The symplectic structure ω1 − iω3 can be written as

ω1 − iω3 = tr

∫
Σ

δÃc ∧ δÃc, (3.3.59)

and the moment map µ1 − iµ3 is actually the curvature of Ãc

µ1 − iµ3 = F (Ãc) (3.3.60)

One can see that if Σ is a sphere, than constraints µ1 = 0, µ2 = 0 determine Φ

uniquely for each Ãc. Hence, the path integral (3.3.57) reduces to the integral over

the fields Ãc with the measure induced by the symplectic structure (3.3.59). That is

the standard bosonic Yang-Mills theory in the first order formalism for the connec-

tion Ãc. The correlation function of Wilson loop operators (3.3.47) perturbatively

are computed as in the usual bosonic two-dimensional Yang-Mills.



Chapter 4

Conclusion

In this thesis we considered the basic non-local observables in supersymmetric gauge

theories – Wilson loop operators. We have shown that correlation function for

certain supersymmetric Wilson loops in N = 2 and N = 4 superconformal four-

dimensional gauge theories can be computed exactly using the localization method.

In particular we prove Erickson-Semenoff-Zarembo/Drukker-Gross conjecture which

relates circular supersymmetric Wilson loops in the N = 4 supersymmetric Yang-

Mills theory to correlation function in Gaussian matrix models. We consider the

four-dimensional field theory on compact Euclidean space-time S4, and we show that

the matrix in the matrix model can be simply interpreted as the constant mode of

one of the scalar fields of the theory.

We generalize Erickson-Semenoff-Zarembo/Drukker-Gross conjecture about cir-

cular Wilson loops to an arbitrary superconformal N = 2 theory. In that case the

computations are again localized to matrix model but with much more complicated,

but still explicit potential. The potential combines Nekrasov’s ε-deformed parti-

tion function of instantons and certain one-loop factor expressed in terms of Barnes

G-functions.

We also generalized ESZ/DG conjecture to the more complicated case of super-

symmetric Wilson loops of arbitrary planar shape in four-dimensional N = 4 super-

symmetric Yang-Mills. By planar shape we mean an arbitrary contour restricted to
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some two-sphere in the four-dimensional space-time. In this case the theory localizes

to a certain two-dimensional theory which is closely related to the partially gauge-

fixed version of two-dimensional Yang-Mills for the complexified gauge group, or,

topological Higgs-Yang-Mills theory related to the Hitchin’s equations on Riemann

surface.

All-order exact results in gauge theory are interesting on its own, as well as they

shed some more light on the central topic in string theory – gauge/string duality

conjecture.



Appendix A

Appendix

A.1 Clifford algebra

We use the following conventions to denote symmetrized and antisymmetrized ten-

sors:

a[ibj] =
1

2
(aibj − ajbi)

a{ibj} =
1

2
(aibj + ajbi),

(A.1.1)

where a and b are any indexed variables.

Let us summarize here our conventions on gamma-matrices in ten dimensions.

We start with Minkowski metric ds2 = −dx2
0 +dx2

1 + . . . dx2
9. Capital letters from the

middle of the Latin alphabet normally are used to denote ten-dimensional space-time

indices M,N,P,Q = 0, . . . , 9. Let γM for M = 0, . . . , 9 be 32 × 32 matrices rep-

resenting the Clifford algebra Cl(9, 1). They satisfy the standard anticommutation

relations

γ{MγN} = gMN , (A.1.2)

where gMN is the metric. The corresponding representation of Spin(9, 1) has rank

32 and can be decomposed into irreducible spin representations S+ and S− of rank

16. The chirality operator

γ11 = γ1γ2 . . . γ9γ0

124
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acts on S+ and S− as multiplication by 1 and −1, respectively. The gamma-matrices

ΓM reverse chirality, so ΓM : S± → S∓. We can write γM in the block form

γM =

 0 Γ̃M

ΓM 0

 , (A.1.3)

assuming that we write the rank 32 spin representation of Spin(9, 1) asS+

S−

 . (A.1.4)

Let ΓM and Γ̃M be the chiral “half” gamma-matrices appearing in (A.1.3). Then

Γ̃{MΓN} = gMN , Γ{M Γ̃N} = gMN . (A.1.5)

We define γMN ,ΓMN and Γ̃MN as follows

γMN = γ[MγN ] =

Γ̃[MΓN ] 0

0 Γ[M Γ̃N ]

 =:

ΓMN 0

0 Γ̃MN

 . (A.1.6)

Using anticommutation relations we get

ΓMΓPQ = 4gM [PΓQ] + Γ̃PQΓM . (A.1.7)

For computations in the four-dimensional theory, we will often need to split the

ten-dimensional space-time indices into two groups. The first group contains four-

dimensional space-time indices in the range 1, . . . , 4, which we denote by Greek

latter in the middle of the alphabet µ, ν, λ, ρ. The second group contains the indices

for the normal directions, running over 5, . . . , 9, 0, which we denote by capital letters

from the beginning of the Latin alphabet A,B,C,D. As usual, the repeated index

means summation over it. Then we have the following identities

ΓµAΓ̃µ = −4Γ̃A

ΓµΓνρΓ̃µ = 0

ΓµΓνAΓ̃µ = 2Γ̃νA

ΓµΓABΓ̃µ = 4Γ̃AB

(A.1.8)
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We choose matrices ΓM and Γ̃M to be symmetric:

(ΓM)T = ΓM (Γ̃M)T = Γ̃M .

Then we get (ΓMN)T = −Γ̃MN , so the representations S+ and S− are dual to each

other.

There is a very important “triality identity” which appears in the computations

involving ten-dimensional supersymmetry:

(ΓM)α1{α2(ΓM)α3α4} = 0, (A.1.9)

where α1, α2, α3, α4 = 1, . . . , 16 are the matrix indices of ΓM .

All gamma-matrices relations above are valid both for Minkowski and Euclidean

signature.

The difference between gamma-matrices for Minkowski and Euclidean signature

is the following. In Minkowski signature we choose ΓM to be real. In Euclidean

signature we use the following matrices {iΓ0,Γ1, . . . ,Γ9}. Therefore all Euclidean

gamma-matrices are real except Γ0, which is imaginary. In Euclidean signagure the

representation S+ and S− are unitary. Since in Euclidean signature they are also

dual to each other, we conclude that in Euclidean signature S+ and S− are complex

conjugate representations.

It is convenient to use octonions to explicitly write down ΓM . In Minkowski

signature we choose

Γi =

 0 ET
i

Ei 0

 , i = 1 . . . 7

Γ9 =

 18×8 0

0 −18×8

 ,

Γ0 =

 18×8 0

0 18×8

 ,

(A.1.10)

where Ei for i = 1 . . . 8 are 8 × 8 matrices representing left multiplication of the

octonions.
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Let ei with i = 1 . . . 8 be the generators of the octonion algebra with the oc-

tonionic structure constants ckij defined by the multiplication table ei · ej = ckijek.

Then (Ei)
k
j = ckij. The element e1 is the identity. To be concrete, we define the

multiplication table by specifying the triples which have cyclic multiplication ta-

ble: (234), (256), (357), (458), (836), (647), (728) (e.g. e2e3 = e4, etc.). Then one can

check that Ei have the following form

Eµ =

 Jµ 0

0 J̄µ

 , µ = 1 . . . 4

EA =

 0 −JTA
JA 0

 , A = 5 . . . 8,

(A.1.11)

where Jµ for µ = 1 . . . 4 are the 4×4 matrices representing generators of quaternion

algebra by the left action, while J̄µ are the 4 × 4 matrices representing generators

of quaternion algebra by the right action. Concretely we obtain

(J1, J2, J3, J4) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 ,


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0



 , (A.1.12)

with the relations

JiJj = εijkJk, i, j, k = 2 . . . 4,

and

(J̄1, J̄2, J̄3, J̄4) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 ,


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 ,


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0



 , (A.1.13)

with the relations

J̄iJ̄j = −εijkJ̄k, i, j, k = 2 . . . 4.

Similarly,

(J5, J6, J7, J8) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 ,


0 1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 ,


0 0 1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 ,


0 0 0 1

0 0 1 0

0 −1 0 0

1 0 0 0



 . (A.1.14)
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We choose orientation in the (1 . . . 4)-plane and the (5 . . . 8)-plane by saying that

1234 and 5678 are the the positive cycles.

Then the matrices Γµν for µ, ν = 1 . . . 4 and Γij for i, j = 5 . . . 8 have the following

block decomposition:

Γµν =

 ET
[µEν] 0

0 E[µE
T
ν]

 =


J−µν 0 0 0

0 J̄+
µν 0 0

0 0 −J+
µν 0

0 0 0 −J̄−µν

 ,

Γij =

 ET
[iEi] 0

0 E[iE
T
i]

 =


−J̄−ij 0 0 0

0 −J+
ij 0 0

0 0 −J̄−ij 0

0 0 0 −J+
ij

 ,

(A.1.15)

where the ±-superscript denotes the self-dual and anti-self-dual tensors; J12 =

JT1 J2 = J1, etc.

Then we define the four-dimensional chirality operator acting in tangent direc-

tions to the four-dimensional space-time :

Γ(14) = Γ1Γ2Γ3Γ4.

It is represented by the matrix

Γ(14) =


14×4 0 0 0

0 −14×4 0 0

0 0 −14×4 0

0 0 0 14×4

 . (A.1.16)

Similarly, we define the four-dimensional chirality operator

Γ(58) = Γ5Γ6Γ7Γ8,
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acting in four normal directions M = 5 . . . 8. It is represented by the matrix

Γ(58) =


14×4 0 0 0

0 −14×4 0 0

0 0 14×4 0

0 0 0 −14×4

 . (A.1.17)

Finally, we define the eight-dimensional chirality operator

Γ9 = Γ(14)Γ(58).

It is represented by the matrix

Γ9 =


14×4 0 0 0

0 14×4 0 0

0 0 −14×4 0

0 0 0 −14×4

 . (A.1.18)

The representation 16 = S+ (a sixteen component Majorana-Weyl fermion of

Spin(9, 1)) then splits as 16 = 8+8′ with respect to the Spin(8) ⊂ Spin(9, 1) acting

in the directions M = 1, . . . , 8. Then we brake Spin(8) as Spin(8) ←↩ Spin(4) ×

Spin(4)R, where the group Spin(4) acts in the directions M = 1, . . . , 4, while the

group Spin(4)R acts in the directions M = 5, . . . , 8. We write the Spin(4) as

Spin(4) = SU(2)L × SU(2)R and the Spin(4)R as Spin(4)R = SU(2)RL × SU(2)RR.

With respect to these SU(2)-subgroups, the representation 16 = S+ of Spin(9, 1)

transforms as

16 = (2,1,2,1) + (1,2,1,2) + (1,2,2,1) + (2,1,1,2).

As we mentioned before, the only difference between the gamma-matrices in the

Euclidean and Minkowski case is that we multiply the matrix Γ0 by i ≡
√
−1, so
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the Euclidean gamma-matrices are:

ΓM =

 0 ET
M

EM 0

 , M = 1 . . . 7

Γ9 =

 18×8 0

0 −18×8

 ,

Γ0 =

 i18×8 0

0 i18×8

 .

(A.1.19)

A.2 Conformal Killing spinors on S4

The explicit form of the Killing spinor on S4 depends on the vielbein. For solution in

spherical coordinates see [111]. In stereographic coordinates the solution has simpler

form and is easily related to the flat limit.

Pick up a point on S4, call it the North pole, and call the opposite point the

South pole. Let xµ be the stereographic coordinates on S4 in the neighborhood of

the North pole. The metric has the following form

gµν = δµνe
2Ω, where e2Ω :=

1

(1 + x2

4r2 )2
. (A.2.1)

By θ we denote the polar angle in spherical coordinates measure from the North pole.

In other words, θ = 0 is the North pole, θ = π
2

is the equator, and θ = π is the South

pole. We have |x| = 2r tan θ
2

and eΩ = cos2 θ
2
. Fix the vielbein1 eµ̂λ = δµ̂λe

Ω. The spin

connection ωµ̂ν̂λ induced by the Levi-Civita connection can be computed using the

Weyl transformation of the flat metric δµν 7→ e2Ωδµν . Under such transformation

ωµ̂ν̂µ 7→ ωµ̂ν̂λ + (eµ̂λe
ν
ν̂Ων − eν̂λeµ̂νΩν). Since in the flat case ωµ̂ν̂λ = 0, we get

ωµ̂ν̂λ = (eµ̂λe
ν
ν̂Ων − eν̂λeµ̂νΩν), (A.2.2)

1In this section we use the indices µ̂, ν̂ = 1, . . . , 4 to enumerate the vielbein basis elements,
that is eµ̂λe

ν̂
ν = δµ̂ν̂ where δµ̂ν̂ is the four-dimensional Kronecker symbol. Then Γµ̂ are the four-

dimensional gamma-matrices normalized as Γ(µ̂Γν̂) = δµ̂ν̂ ,
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where Ων := ∂νΩ.

The conformal Killing spinor equation takes the explicit form

(∂λ +
1

4
ωµ̂ν̂λΓ

µ̂ν̂)ε = Γλε̃

(∂λ +
1

4
ωµ̂ν̂λΓ

µ̂ν̂)ε̃ = − 1

4r2
Γλε;

(A.2.3)

At the flat limit r =∞ the equations simplify as ∂λε = Γλε̃ and ∂λε̃ = 0; hence the

flat space solution is

ε = ε̂s + xµ̂Γµ̂ε̂c

ε̃ = ε̂c,
(A.2.4)

where ε̂s, ε̂c are constant spinors on R4. The spinor ε̂s generates usual supersymme-

try transformations, the spinor ε̂c generates special superconformal transformations.

For an arbitrary r the solution is

ε =
1√

1 + x2

4r2

(ε̂s + xµ̂Γµ̂ε̂c) (A.2.5)

ε̃ =
1√

1 + x2

4r2

(ε̂c −
xµ̂Γµ̂
4r2

ε̂s), (A.2.6)

where ε̂s and ε̂c are arbitrary spinor parameters.

Consider the case when ε is the conformal Killing spinors generating a transfor-

mation of an OSp(2|4) subgroup. We take chiral ε̂s and ε̂c, such that Γ9ε̂s = ε̂s and

Γ9ε̂c = ε̂c, so

ε =
1√

1 + x2

4r2

(ε̂s + xµ̂Γµ̂Γ9ε̂c). (A.2.7)

Moreover, for such spinor ε we have ε̂c = 1
2r

1
4
ωµ̂ν̂Γ

µ̂ν̂ ε̂s, where ωµ̂ν̂ is an anti self-dual

generator of SO(4) normalized ωµ̂ν̂ω
µ̂ν̂ = 4.

This means that δε squares to a rotation around the North pole generated by ω.

Then (ε̂c, ε̂c) = 1
4r2 (ε̂s, ε̂s), and thus (ε, ε) is constant over S4.

Take (ε̂s, ε̂s) = 1. Then we get the vector field vν̂ = εΓν̂ε = 2ε̂sΓν̂Γµ̂x
µ̂ε̂c =

2ε̂sΓν̂Γµ̂x
µ̂ 1

2r
1
4
ωρ̂λ̂Γ

ρ̂λ̂ε̂s = 1
r
xµ̂ωµ̂ν̂(ε̂sε̂s) = 1

r
xµ̂ωµ̂ν̂ . Using this identity we can rewrite
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conformal Killing spinor ε ≡ ε(x) as

ε(x) =
1√

1 + x2

4r2

(ε̂s +
1

2r

1

4
xµ̂Γµ̂ωρ̂λ̂Γ

ρ̂λ̂Γ9ε̂s) =
1√

1 + x2

4r2

(ε̂s +
1

2r
xρ̂Γλ̂ωρ̂λ̂Γ

9ε̂s) =

(A.2.8)

=
1√

1 + x2

4r2

(ε̂s +
1

2
vλ̂Γ

λ̂Γ9ε̂s) =
1√

1 + x2

4r2

(ε̂s +
|x|
2r
nλ̂(x)Γλ̂Γ9ε̂s) =

(A.2.9)

=

(
cos

θ

2
+ sin

θ

2
(nλ̂(x)Γλ̂Γ9)

)
ε̂s = exp

(
θ

2
nλ̂(x)Γλ̂Γ9

)
ε̂s,

(A.2.10)

where nλ̂ is the unit vector in the direction of the vector field vλ̂. The aim of these

manipulations was to represent the spinor ε(x) at an arbitrary point x by an explicit

Spin(5) rotation R(x) = exp θ
2
(nλ̂(x)Γλ̂Γ9) of its value at the origin ε(0) = ε̂s.

A.3 Off-shell supersymmetry

Let δε be the supersymmetry transformation generated by a Killing spinor ε. Then

the square of δε is computed as follows

δ2
εAM = δε(εΓMΨ) = εΓM(

1

2
ΓPQεFPQ +

1

2
ΓµAΦADµε). (A.3.1)

Since

εΓMΓPQε = εΓTPQΓMε = −εΓ̃PQΓMε =
1

2
ε(ΓMΓPQ − Γ̃PQΓM) = 2gM [P εΓQ]ε,

the first term for δ2
εAM gives −εΓNεFNM . The second term is

1

2
εΓMΓµAΦADµε = −2εΓM Γ̃AεΦ

A.

Then

δ2
εAM = −(εΓNε)FNM − 2εΓM Γ̃AεΦ

A. (A.3.2)
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Restricting the index m to the range of µ or A we get respectively

δ2
εAµ = −vνFνµ − [vBΦB, Dµ]

δ2
εΦA = −vνDνΦA − [vBΦB,ΦA]− 2εΓ̃AB ε̃Φ

B − 2εε̃ΦA,
(A.3.3)

where we introduced the vector field v

vµ ≡ εΓµε, vA ≡ εΓAε. (A.3.4)

Therefore

δ2
ε = −Lv −GvMAM −R− Ω. (A.3.5)

Here Lv is the Lie derivative in the direction of the vector field vµ. The transfor-

mation GvMAM is the gauge transformation generated by the parameter vMAM . On

matter fields G acts as Gu ·Φ ≡ [u,Φ], on gauge fields G acts as Gu ·Aµ = −Dµu. The

transformation R is the rotation of the scalar fields (R ·Φ)A = RABΦB with the gen-

erator RAB = 2εΓ̃AB ε̃. Finally, the transformation Ω is the dilation transformation

with the parameter 2(εε̃).

The δ2
ε acts on the fermions as follows

δ2
εΨ = DM(εΓNΨ)ΓMNε+

1

2
ΓµA(εΓAΨ)Dµε =

= (εΓNDMΨ)ΓMNε+ ((Dµε)ΓNΨ)ΓµNε+
1

2
ΓµA(εΓAΨ)Dµε. (A.3.6)

From the “triality identity” we have ΓNα2(α1ΓNα3)ξ = −1
2
ΓNα2ξ

ΓNα1α3 . Then the first

term gives

(εΓNDMΨ)(ΓMNε)α4 = (εΓNDMΨ)((Γ̃MΓNε)α4 − gMNεα4) =

= εα1ΓNα1α2DMΨα2Γ̃Mα4ξ
ΓNξα3

εα3 − (εΓNDNΨ)εα4 =

= −1

2
(εα1ΓNα1α3ε

α3)(Γ̃Mα4ξ
ΓNα2ξ

DMΨα2)− (εΓNDNΨ)εα4 =

= −1

2
(εΓNε)(Γ̃

MΓNDMΨ)α4 − (εΓNDNΨ)εα4 =

= −1

2
(εΓNε)(−Γ̃NΓMDMΨ + 2DNΨ)α4 − (εΓNDNΨ)εα4 =

=
1

2
(εΓNε)Γ̃

N(/DΨ)α4 − (εΓNε)(DNΨ)α4 − (ε/DΨ)εα4 . (A.3.7)
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The first and the third term in the last line vanish on-shell. When we add auxiliary

fields, they will cancel the first and the third term explicitly. Then we get

δ2
εΨ = −(εΓNε)DNΨ + (ΨΓNDµε)Γ

µNε+
1

2
ΓµA(εΓAΨ)Dµε+ eom[Ψ], (A.3.8)

where eom[Ψ] stands for the terms proportional to the Dirac equation of motion for

Ψ. Then we rewrite the last two terms as follows

(ΨΓNΓµε̃)Γ
µNε+

1

2
ΓµA(εΓAΨ)Γµε̃ =

= (ΨΓNΓµε̃)(Γ̃
µΓN−gµN)ε−2(εΓAΨ)Γ̃Aε̃ = (ΨΓNΓµε̃)Γ̃

µΓNε−4(Ψε̃)ε−2(εΓAΨ)Γ̃Aε̃

triality
= −(ε̃Γ̃µΓNε)Γ̃

µΓNΨ− (εΓNΨ)Γ̃µΓNΓµε̃− 4(Ψε̃)ε− 2(εΓAΨ)Γ̃Aε̃ =

= −(ε̃Γ̃µΓνε)Γ̃
µΓνΨ−(ε̃Γ̃µΓAε)Γ̃

µΓAΨ+2(εΓνΨ)Γν ε̃+4(εΓAΨ)Γ̃Aε̃−4(Ψε̃)ε−2(εΓAΨ)Γ̃Aε̃ =

− (ε̃Γµνε)Γ
µνε− 4(εε̃)Ψ − (ε̃ΓµAε)Γ

µAε+ 2(εΓνΨ)Γ̃ν ε̃+ 2(εΓAΨ)Γ̃Aε̃− 4(Ψε̃)ε =

= −1

2
(ε̃Γµνε)Γ

µνΨ− 1

2
(ε̃Γµνε)Γ

µνΨ− 4(εε̃)Ψ− (ε̃ΓµAε)Γ
µAε− 1

2
(ε̃ΓABε)Γ

ABΨ+

+
1

2
(ε̃ΓABε)Γ

ABΨ + 2(εΓNΨ)Γ̃N ε̃− 4(Ψε̃)ε =

=

(
−1

2
(ε̃Γµνε)Γ

µνΨ +
1

2
(ε̃ΓABε)Γ

ABΨ

)
+

+

(
−1

2
(ε̃ΓMNε)Γ

MNΨ− 4(εε̃)Ψ− 4(Ψε̃)ε+ 2(εΓNΨ)Γ̃N ε̃

)
(A.3.9)

The first term is a part of the Lie derivative along the vector field vµ = (εΓµε)

acting on Ψ. The second term correspond to the rotations of the scalar fields ΦA by

the generator RAB and the properly induced action on the fermions.

In the N = 4 case we use Fierz identity for ΓMN
α1α2

ΓMN α3α4 in the last line

of (A.3.9) to see that all term in the second pair of parentheses are canceled except

for −3(εε̃)Ψ, so that

δ2
εΨ = −(εΓNε)DNΨ−1

2
(ε̃Γµνε)Γ

µνΨ−1

2
(εΓ̃AB ε̃)Γ

ABΨ−3(ε̃ε)Ψ+eom[Ψ]. (A.3.10)

To achieve off-shell closure in the N = 4 case we add seven auxiliary fields Ki
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with i = 1, . . . , 7 and modify the transformations as

δεΨ =
1

2
ΓMNFMN +

1

2
ΓµAΦADµε+Kiνi

δεKi = −νiΓMDMΨ.

(A.3.11)

Here we introduced seven spinors νi. They depend on choice of the conformal Killing

spinor ε and are required to satisfy the following relations:

εΓMνi = 0 (A.3.12)

1

2
(εΓNε)Γ̃

N
αβ = νiαν

i
β + εαεβ (A.3.13)

νiΓ
Mνj = δijεΓMε. (A.3.14)

The equation (A.3.12) ensures closure on AM , the equation (A.3.13) ensures closure

on Ψ.

The new term in the transformations for Ψ modifies the last line of (A.3.7) as

δε(K
iνi) = −(νi/DΨ)νi.

Then the terms in δ2
εΨ which were not taken into an account in (A.3.18) are

− (νi/DΨ)νi +
1

2
(εΓNε)Γ̃

N/DΨ− (ε/DΨ)ε. (A.3.15)

This expression is identically zero because of (A.3.13). Hence, after inclusion of the

auxiliary fields Ki, the formula (A.3.10) for δ2
εΨ is valid off-shell.

For the transformation δ2
εKi we get

δ2
εKi = −νiΓM [(εΓMΨ),Ψ]−νiΓMDM(

1

2
ΓPQFPQε+

1

2
ΓµAΦADµε+Kiνi). (A.3.16)

Using the gamma matrix “triality identity” the first term is transformed to

1
2
(νiΓ

Mε)[(Ψ,ΓMΨ)], which vanishes because of (A.3.12). The second term with

derivative acting on F is equal by Bianchi identity to (νiΓNε)DMF
MN and vanishes
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because of (A.3.12). Then we use (A.1.8) to simplify the remaining terms

δ2
εKi = −1

2
νiΓ

µΓPQΓµε̃FPQ−
1

2
(νiΓ

MΓµAΓµε̃)DMΦA−
1

2
(− 1

4r2
)ΦAνiΓ

νΓµAΓµΓνε−

− νiΓM(DMK
j)νj − (νiΓ

µDµνj)K
j =

= −1

2
(4)νiΓ̃

MB ε̃DMΦB −
1

2
(−4)νiΓ̃

MB ε̃DMΦB + (
2

r2
)νiΓ

AεΦA+

− (νiΓ
Mνj)DMK

j − (νiΓ
µDµνj)K

j = −(εΓMε)DMK
j − (νiΓ

MDMνj)K
j =

= −(εΓMε)DMK
i − (ν[iΓ

µDµνj])K
j − 4(ε̃ε)Ki. (A.3.17)

To get the last line we use the differential of (A.3.14), i.e. ν(i/Dνj) = 4(εε̃)δij.

Now we consider separately the case of pure N = 2 Yang-Mills. First we rewrite

the last terms in (A.3.9) as follows (here d is the dimension of uncompactified theory)

(ε̃ΓMNε)Γ
MNΨ = (ε̃Γ̃MΓNε)Γ

MNΨ = (ε̃Γ̃MΓNε)Γ̃
MΓNΨ− d(ε̃ε)Ψ

triality
=

− (εΓNΨ)Γ̃MΓN Γ̃M ε̃− (ΨΓN Γ̃M ε̃)Γ̃
MΓNε− d(ε̃ε)Ψ =

= (d− 2)(εΓNΨ)Γ̃N ε̃− (ΨΓN Γ̃M ε̃)Γ̃
MΓNε− d(ε̃ε)Ψ. (A.3.18)

For the pure N = 2 theory in four-dimensions we take d = 6 and get(
−1

2
(ε̃ΓMNε)Γ

MNΨ− 4(εε̃)Ψ− 4(Ψε̃)ε+ 2(εΓNΨ)Γ̃N ε̃

)
=

− 1

2

(
4(εΓNΨ)Γ̃N ε̃− (ΨΓN Γ̃M ε̃)Γ̃

MΓNε− 6(ε̃ε)Ψ
)
−

− 4(εε̃)Ψ− 4(Ψε̃)ε+ 2(εΓNΨ)Γ̃N ε̃ =
1

2
(ΨΓN Γ̃M ε̃)Γ̃

MΓNε− (εε̃)Ψ− 4(Ψε̃)ε =

=
1

2
(Ψ(−ΓM Γ̃N + 2gMN)ε̃)Γ̃MΓNε− (εε̃)Ψ− 4(Ψε̃)ε =

= −1

2
(ΨΓM Γ̃N ε̃)Γ̃

MΓN + 6(Ψε̃)ε− (εε̃)Ψ− 4(Ψε̃)ε =

= −1

2
(ΨΓM Γ̃N ε̃)Γ̃

MΓNε+ 2(Ψε̃)ε− (εε̃)Ψ. (A.3.19)

We express the first term in terms of the triplet of matrices Λi, which are defined
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as a set of three antisymmetric matrices such that

Λi
α1α3

Λj
α2α3

= εijkΛk
α1α2

+ δij1α1α2 , i, j, k = 1, . . . , 3. (A.3.20)

[Λi,Γ
M ] = 0 (A.3.21)

1

2
ΓMα1α2

Γ̃M α3α4 = δα2(α1δα3)α4 − Λi
α2(α1

Λi
α3)α4

. (A.3.22)

Then we get

(ΨΓM Γ̃N ε̃)Γ̃
MΓNε = 4(Ψε̃)ε+ 4(εε̃)Ψ + 4(εΛiε̃)ΛiΨ, (A.3.23)

and finally the equation (A.3.19) turns into

−2(Ψε̃)ε−2(εε̃)Ψ−2(εΛiε̃)ΛiΨ+2(Ψε̃)ε−(εε̃)Ψ = −2(εΛiε̃)ΛiΨ−3(ε̃ε)Ψ. (A.3.24)

That completes simplification of δ2
ε acting on fermions

δ2
εΨ = −(εΓNε)DNΨ− 1

2
(ε̃Γµνε)Γ

µνΨ− 1

2
(εΓ̃AB ε̃)Γ

ABΨ− 2(εΛiε̃)ΛiΨ− 3(ε̃ε)Ψ.

(A.3.25)

It has the structure

δ2
εΨ = −LvΨ−GvNANΨ−RΨ−R′Ψ− ΩΨ, (A.3.26)

where the notations for the generators are the same as in the bosonic case. The

only new generator here is R′, corresponding to the term δ2
εΨ = −2(εΛiε̃)ΛiΨ. It

generates an SU(2)L R-symmetry transformation of N = 2 which acts trivially on

the bosonic fields of the theory, and as Ψ 7→ eriΛiΨ on fermionic fields.

To achieve off-shell closure in N = 2 case we add a triplet of auxiliary fields Ki

and modify the transformations as

δεΨ =
1

2
ΓMNFMN +

1

2
ΓµAΦADµε+KiΛiε

δεKi = εΛiΓ
MDMΨ,

(A.3.27)

The new term in the transformations for Ψ modifies the last line of (A.3.7) as

δε(K
iΛiε) = (εΛi/DΨ)Λiε.
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Then the terms in δ2
εΨ which were not taken into an account in (A.3.18) are

(εΛi/DΨ)Λiε+
1

2
(εΓNε)Γ̃

N/DΨ− (ε/DΨ)ε. (A.3.28)

This expression is identically zero because of the relation (A.3.20). Hence, after

inclusion of the auxiliary fields Ki, the formula (A.3.10) for δ2
εΨ is valid off-shell.

Remark. The second equation (A.3.13) follows from the first equation (A.3.12)

and the third equation (A.3.12) as follows. Let

Mαβ = νiαν
i
β + εαεβ.

We want to show that Mαβ = 1
2
vN Γ̃Nαβ, that is the matrix Mαβ can be expanded

over the matrices Γ̃Nαβ with the coefficients 1
2
vN . Fix the positive definite metric on

the space R16×16 of 16 × 16 matrices as (M,M) := MαβMαβ. Since Γ̃N = ΓN and

ΓαβM Γ̃Nαβ = 16δNM , the set of 10 matrices 1
4
ΓN is orthonormal in R16×16. Complete this

set to the basis of R16×16. Then the coefficient mN of 1
4
ΓN in the expansion of M

over this basis is given by the scalar product

mN = (M,
1

4
ΓN) =

1

4
(νiΓNν

i + εΓNε) = 2vN .

Therefore we have M = 2vN(1
4
ΓN) + (. . . ), where (. . . ) stands for possible other

terms in the expansion over the completion of the set {1
4
ΓN} to the basis of R16×16.

To prove that all other terms vanish, compare the norm of M

(M,M) = (εε)(εε) + (vivj)(vivj) = (εε) + δij(εε)δij(εε) = 8(εε)(εε)

with the
∑

N m
2
N∑

N

m2
N = 4vNvN = 4(εΓNε)(εΓ̃

Nε) = 4((εΓNε)(εΓ
Nε) + 2(εε)(εε)) = 8(εε)(εε).

Since the norms are the same, (M,M) =
∑

N m
2
N , and the metric is positive definite,

we conclude that all other coefficients vanish.
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A.4 Index of transversally elliptic operators

Here we collect some facts about indices of transversally elliptic operators mostly

following Atiyah’s book [71]. See also [72].

Let · · · → Ei Di→ Ei+1 → . . . be an elliptic complex of vector bundles over a

manifold X. Let a Lie group G act on X and bundles Ei. This means that for

any transformation g : X → X, which sends a point x ∈ X to g(x), we are given a

vector bundle homomorphisms γi : g∗Ei → Ei. Then we have natural linear maps

γ̂i : Γ(Ei) → Γ(Ei) defined by γ̂i = γi ◦ g∗. On any section s(x) ∈ Γ(Ei) the map

γ̂i acts by the formula (γ̂s)(x) = γxs(g(x)). We assume that γ̂ commutes with the

differential operators Di of the complex E. Then γ̂ descends to a well-defined action

on the cohomology groups H i(E).

The G-equivariant index is defined as

indg(E) =
∑
i

(−1)i trHi γ̂i. (A.4.1)

In the case when the set of G-fixed points is discrete and the action of G is nice

in a neighborhood of each of the fixed point, the Atiyah-Bott fixed point formula

says [89–91]

indg(E) =
∑

x∈fixed point set

∑
(−1)i tr γix

| det(1− dg(x))|
. (A.4.2)

This formula can be easily argued in the following way (see [112] for a derivation

using supersymmetric quantum mechanics). For an illustration we consider the case

when the complex E consists of two vector bundles E0 D→ E1, and we assume that the

bundles are equipped with a hermitian G-invariant metric. Let D : Γ(E0)→ Γ(E1)

be the differential. Then we consider the Laplacian ∆ = DD∗ + D∗D. The zero

modes of the Laplacian are identified with the cohomology groups of E, which are in

this case: H0(E) = kerD and H1(E) = cokerD. Hence, the index can be computed

as

indg(E) = lim
t→∞

strΓ(E) γ̂e
−t∆.
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Here the supertrace for operators acting on Γ(E) is defined assuming even parity

on Γ(E0) and odd parity on Γ(E1). However, the expression under the limit sign

actually does not depend on t because [∆, γ̂] = 0. Taking the limit t → 0 we get

supertrace of γ̂. The trace can be easily taken in the coordinate representation. By

definition, the operator γ̂ has kernel γ̂(x, y) = γxδ(g(x) − y) if we write (γ̂s)(x) =∫
X
γ̂(x, y)s(y). Here δ(x) is the Dirac delta-function. Taking the trace we get

Atiyah-Bott result

indg(E) = lim
t→0

strΓ(E) γ̂e
−t∆ =

∫
dx strEx γ̂(x, x) =

∫
dx strEx γxδ(g(x)− x) =

=
∑
g(x)=x

strEx γx
| det(1− dg(x))|

. (A.4.3)

Let X be a complex manifold of dimension n. Consider the complex of (0, p)-

forms with the differential ∂̄. Let G = U(1) acts on X holomorphically. In a

neighborhood of a fixed point we can choose such coordinates z1, . . . , zn that an

element g ∈ G acts by zi → qiz
i. If zi transforms in a U(1) representation mi ∈ Z,

and we parameterize U(1) by a unit circle {|q| = 1, q ∈ C}, then qi = qmi . One-

forms fī transform as fī → q̄−1
i fī. Since |q| = 1 we have fī → qifī. Computing the

supertrace for the numerator on external powers of the anti-holomorphic subspace

of the fiber of the cotangent bundle at the origin, we get strΩ0,• q =
∏n

i=1(1 − qi).

The denominator is
∏n

i=1(1− qi)(1− q−1
i ). Then contribution of a fixed point with

weights {q1, . . . , qn} to the index of ∂̄ is

indq(∂̄)|0 =
1∏n

i=1(1− q−1
i )

.

Let π : T ∗X → X be the cotangent bundle. Then π∗Ei are the bundles over

T ∗X. The symbol of the differential operator D : Γ(E0) → Γ(E1) is a vector

bundle homomorphism σ(D) : π∗E0 → π∗E1. In local coordinates xi it is defined by

replacing all partial derivatives in the highest order component of D by momenta,

so ∂
∂xi
→ ipi, and then taking pi to be coordinates on fibers of T ∗X. Let the family

of the vector spaces T ∗GX be a union of vector spaces T ∗GXx over all points x ∈ X,



A.4. Index of transversally elliptic operators 141

where T ∗GXx denotes a subspace of T ∗X transversal to the G-orbit through x. The

operator D is transversally elliptic if its symbol σ(D) is invertible on T ∗GX \0, where

0 denotes the zero section.

We need a few notions of K-theory [113]. Let Vect(X) be the set of isomorphism

classes of vector bundles on X. It is an abelian semigroup where addition is defined

as the direct sum of vector bundles. For any abelian semigroup A we can associate

an abelian group K(A) by taking all equivalence classes of pairs (a, b) ∼ (a+c, b+c),

where a, b, c ∈ A. Taking Vect(X) as A we define the K-theory group K(X). Its

elements are pairs of isomorphism classes of vector bundles (E0, E1) over X up to

the equivalence relation (E1, E1) ∼ (E0 ⊕H,E1 ⊕H) for all vector bundles H over

X. If X is a space with a basepoint x0, then we define K̃(X) as a kernel of the map

i∗ : K(X)→ K(x0) where i : x0 → X is the inclusion map. Next we define relative

K-theory group K(X, Y ) for a compact pair of spaces (X, Y ). Let X/Y be the space

obtained by considering all points in Y to be equivalent and taking this equivalence

class as a basepoint. Then K(X, Y ) is defined as K̃(X/Y ). Equivalently, K(X, Y )

consists of pairs of vector bundles (E0, E1) over X such that E0 is isomorphic to

E1 over Y , and considered up to the equivalence relation (E0, E1) ∼ (E0 ⊕H,E1 ⊕

H) for all vector bundles H over X. For a non-compact space, such as a total

space of vector bundle V → X, we define K(V ) as K̃(XV ), where XV is a one-

point compactification of V , or equivalently B(V )/S(V ), where B(V ) and S(V ) is

respectively a unit ball and unit sphere on V .

If a group G acts on X we can consider the set of isomorphism classes of G-vector

bundles over X. It is an abelian semi-group, to which we associate an abelian group

KG(X). All constructions above can be done in G-equivariant fashion.

Since the symbol of a transversally elliptic operator is an isomorphism σ(D) :

π∗E → π∗F of vector bundles over T ∗GX outside of zero section, by definition it

represents an element of KG(T ∗GX). One can show that the index of transversally

elliptic operator does not depend on continuous deformations of it symbol, hence it
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depends only on the homotopy type of the symbol. The index vanishes for a symbol

which is induced by an isomorphism of vector bundles E and F . Therefore the index

of D depends only on an element of KG(T ∗GX) which represents symbol σ(D).

The equivariant index was defined for any group element g as an alternating sum

of traces of g in representations Ri in which G acts on the cohomology groups H i of

the complex E. One can show that for transversally elliptic operators the represen-

tations Ri can be decomposed into a direct sum of irreducible representations where

each irreducible representation enters with a finite multiplicity. In the elliptic case

the number of irreducible representations which appear is finite since cohomology

groups H i have finite dimensions. Let χα be a character for each irreducible repre-

sentation α. Then the index of transversally elliptic operator is
∑

αmαχα where mα

are finite integer multiplicities. Thus the index can be regarded as a distribution on

G, so that the multiplicities mα are coefficients in its Fourier series expansion. Let

D′(G) be the space of distributions on G.

Consider an example. Let X be a circle S1 on which group G = U(1) acts in a

natural way. Let E0 be the trivial rank one bundle E over S1, and E1 be the zero

bundle. Let D : Γ(E)→ 0 be the zero operator. Then the cohomology group H0 is

the space of all functions on a circle, and H1 vanishes. Functions on a circle can be

decomposed into Fourier modes labeled by integers, so that each mode corresponds

to an irreducible representation of U(1). If q = eiα for α ∈ [0, 2π) denotes an element

of U(1), then we obtain the index

ind 0 =
∞∑
−∞

qn =
∞∑
−∞

einα = 2πδ(α).

We see that the index is not a smooth function on U(1), but a distribution – the

Dirac delta-function.

We learned that the index is a map from K-theory group of T ∗GX to distributions

on G

ind : KG(T ∗GX)→ D′(G).
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Moreover, the index is a group homomorphism with respect to the abelian group

structure on KG(T ∗GX) and the addition operation on D′(G). The abelian groups

D′(G) and KG(T ∗GX) are modules over the character ring R(G). Indeed, KG(pt) =

R(G) since elements of R(G) are formal linear combinations of irreducible represen-

tations of G, and KG(X) has a module structure over KG(pt), since we can take

tensor products of vector bundles representing KG(X) with trivial vector bundles

representing KG(pt). The module D′(G) has a torsion submodule. For example, the

Dirac delta-function on a circle supported at q = 1 is a torsion element of D′(U(1)),

because it is annihilated by q − 1. One can show that the support of the index is a

subset of points g ∈ G for which Xg 6= ∅, where Xg ⊂ X is the g-fixed set. If G

acts freely on X then the index is supported at the identity of G, hence it is a pure

torsion element.

From now we consider the case G = U(1). We can find torsion free part of the

index if we know it as a function on a generic group element g 6= Id. If Xg consists

of non-degenerate points, then we can repeat the argument used in the elliptic case

and obtain the formula (A.4.3). In the elliptic case, separate contributions from

fixed points are not well defined at q = 1, but the total sum is well defined, since the

index is a finite polynomial in q and q−1. In the transversally elliptic case, if we add

contributions of fixed points formally defined by the formula (A.4.3), we will obtain

correctly only the torsion free part of the index. In other words, we will obtain the

index up to a singular distribution supported at q = 1.

To fix the torsion part, we should find a way in which we associate distributions

to rational functions given by the formula (A.4.3). This procedure is explained in

details in [71]. For example, the contribution to the index of ∂̄ operator from the

origin of C as a rational function is

indq(∂̄)|0 =
1

1− q−1
. (A.4.4)

There are two basic ways to associate a distribution to it, which we call expansions
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in positive or negative powers of q:[
1

1− q−1

]
+

= − q

1− q
= −

∞∑
n=1

qn (A.4.5)[
1

1− q−1

]
−

= −
∞∑
n=0

q−n. (A.4.6)

These two regularizations differ by a torsion element (a distribution supported at

q = 1): [
1

1− q−1

]
+

−
[

1

1− q−1

]
−

= −
∞∑

n=−∞

qn = −2πiδ(q − 1).

The decomposition of KG(T ∗GX) to the torsion part and the torsion free part can

be described by the exact sequence

0→ KG(T ∗G(X \ Y ))→ KG(T ∗GX)→ KG(T ∗X|Y )→ 0, (A.4.7)

where Y is the fixed point set in X. Since G acts freely on X \ Y , the image of

KG(T ∗G(X \ Y )) under the index homomorphism is a torsion submodule of D′(G).

The last term of the sequence is the torsion free quotient determined completely by

the fixed point set Y . Using a vector field v on X generated by action of G, it is

possible to construct two homomorphisms

θ± : KG(T ∗X|Y )→ KG(T ∗GX),

where ± signs correspond to a choice of the direction of the vector field. First, given

a symbol σ : π∗E0 → π∗E1, representing an element of KG(T ∗X|Y ), we extend it

to an open neighborhood U of Y . It is an isomorphism outside of the zero section.

Second, we define a symbol σ̃, restricting symbol σ to fibers of T ∗GX shifted in the

direction of the vector field v

σ̃(x, p) = σ(x, p+ ve−p
2

),

where (x, p) are local coordinates on T ∗X in a neighborhood of Y . Outside of Y the

symbol σ̃ is an isomorphism for all points on fibers of T ∗GX (not only outside of zero
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section). In other words, σ̃ is an isomorphism everywhere in the neighborhood U

outside of the fixed point set Y . Hence σ̃ represents an element of KG(T ∗GU). Since

U is open in X, using the natural homomorphism KG(T ∗GU) → KG(T ∗GX) we get

an element of KG(T ∗GX).

Applying this construction to the space X = Cn on which U(1) acts with positive

weights m1, . . . ,mn, and taking generator of K(T ∗Cn|0) associated with ∂̄ operator,

we get its images under θ± in KG(T ∗GCn). A direct computation shows that

ind θ±[∂̄] =

[
1∏

(1− q−mi)

]
±
.

Now assume that using the vector field v it is possible to trivialize a transversally

elliptic operator everywhere on T ∗GX outside of the fixed point set Y , and that in a

neighborhood of the fixed point set the trivialization is isomorphic to just described

with some choice of ± signs for each fixed point. Then the index is computed

by summing contributions from the set of fixed points, where each contribution is

regularized by an expansion in positive or negative powers of q, according to the

choice of sign for the θ homomorphism.

For example in this way we get the U(1) index of the following operator on CP1:

ind(f(θ)∂̄ + (1− f(θ))∂) =

[
1

1− q−1

]
+

+

[
1

1− q−1

]
−
. (A.4.8)

Here θ denotes the polar angle on CP1 measured from the North pole, and f(θ) =

cos2(θ/2), so that the operator is approximately ∂̄ at the North pole and ∂ at the

South pole. It fails to be elliptic at the equator, but it is transversally elliptic with

respect to the canonical U(1) action on CP1 whose fixed points are the North and

South poles.
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