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Abstract

These lecture notes provide a basic introduction to the framework of generalized prob-

abilistic theories (GPTs) and a sketch of a reconstruction of quantum theory (QT) from

simple operational principles. To build some intuition for how physics could be even

more general than quantum, I present two conceivable phenomena beyond QT: super-

strong nonlocality and higher-order interference. Then I introduce the framework of

GPTs, generalizing both quantum and classical probability theory. Finally, I summarize a

reconstruction of QT from the principles of Tomographic Locality, Continuous Reversibil-

ity, and the Subspace Axiom. In particular, I show why a quantum bit is described by a

Bloch ball, why it is three-dimensional, and how one obtains the complex numbers and

operators of the usual representation of QT.
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1 What kind of “quantum foundations”?

These lectures will focus on some topics in the foundations of quantum mechanics. When

physicists hear the words “Quantum Foundations”, they typically think of research that is con-

cerned with the problem of interpretation: how can we make sense of the counterintuitive

Hilbert space formalism of quantum theory? What do those state vectors and operators really

tell us about the world? Could the seemingly random detector clicks in fact be the result of

deterministic but unobserved “hidden variables”? Some of this research is sometimes regarded

with suspicion: aren’t those Quantum Foundationists asking questions that are ultimately ir-

relevant for our understanding and application of quantum physics? Should we really care

whether unobservable hidden variables, parallel universes or hypothetical pilot waves are the

mechanistic causes of quantum probabilities? Isn’t the effort to answer such questions simply

an expression of a futile desire to return to a “classical worldview”?

For researchers not familiar with this field, it may thus come as a surprise to see that large

parts of Quantum Foundations research today are not primarily concerned with the interpre-

tation of quantum theory (QT) — at least not directly. Much research effort is invested in

proving rigorous mathematical results that shed light on QT in a different, more “operational”

manner, which is motivated by quantum information theory. This includes research questions

like the following:

(i) Is it possible to generate secure cryptographic keys or certified random bits even if we

do not trust our devices?

(ii) Which consistent modifications of QT are in principle possible? Could some of these

modifications exist in nature?

(iii) Can we understand the formalism of QT as a consequence of simple physical or information-

theoretic principles? If so, could this tell us something interesting about other open
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problems of physics, like e.g. the problem of quantum gravity?

Question (i) shows by example that some of Quantum Foundations research is driven by ideas

for technological applications. This is in some sense the accidental result of a fascinating

development: it turned out that such “technological” questions are surprisingly closely related

to foundational, conceptual (“philosophical”) questions about QT. To illustrate this surprising

relation, consider the following foundational question:

(iv) Could there exist some hidden variable (shared randomness) λ that explains the ob-

served correlations on entangled quantum states?

Question (iv) is closely related to question (i). To see this, consider a typical scenario in which

two parties (Alice and Bob) act with the goal to generate a secure cryptographic key. Suppose

that Alice and Bob hold entangled quantum states and perform local measurements, yielding

correlated outcomes which they can subsequently use to encrypt their messages. Could there

be an eavesdropper (say, Eve) somewhere else in the world who can spy on their key? In-

tuitively, if so, then we could consider the key bits that Eve learns as a hidden variable λ: a

piece of data (“element of reality”, see Ekert, 1991 [32]) that sits somewhere else in the world

and, while being statistically distributed, can be regarded as determining Alice’s and Bob’s out-

comes. But Bell’s Theorem (Bell, 1964 [13]) tells us that the statistics of some measurements

on some entangled states are inconsistent with such a (suitably formalized) notion of hidden

variables, unless those variables are allowed to exert nonlocal influence. This guarantees that

Alice’s and Bob’s key is secure in such cases, as long as there is no superluminal signalling

between their devices and Eve. The conclusion holds even if Alice and Bob have no idea

about the inner workings of their devices — or, in the worst possible case, have bought these

devices from Eve. This intuition can indeed be made mathematically rigorous, and has led

to the fascinating field of device-independent cryptography (Barrett, Hardy, Kent (2005) [10])

and randomness expansion (Colbeck (2006) [25], Colbeck and Kent (2011) [26], Pironio et al.

(2010) [69]).

The preconception that Quantum Foundations research is somehow motivated by the de-

sire to return to a classical worldview is also sometimes arising in the context of question (ii)

above. It is true that the perhaps better known instance of this question asks whether QT would

somehow break down and become classical in the macroscopic regime: for example, sponta-

neous collapse models (Ghirardi, Rimini, and Weber (1986) [36], Bassi et al. (2013) [12])

try to account for the emergence of a classical world from quantum mechanics via dynamical

modifications of the Schödinger equation. However, a fascinating complementary develop-

ment in Quantum Foundations research — the one that these lectures will be focusing on — is

to explore the exact opposite: could nature be even “more crazy” than quantum? Could physics

allow for even stronger-than-quantum-correlations, produce more involved interference pat-

terns than allowed by QT, or enable even more magic technology than what we currently

consider possible? If classical physics is an approximation of quantum physics, could quantum

physics be an approximation of something even more general?

As we will see in the course of these lectures, the answer to these questions is “yes”: na-

ture could in principle be “more crazy”. The main insight will be that QT is just one instance

of a large class of probabilistic theories: theories that allow us to describe probabilities of mea-

surement outcomes and their correlations over time and space. Another example is “classical

probability theory” (CPT) as defined below, but there are many other ones that are equally

consistent.

As we will see, not only is there a simple and beautiful mathematical formalism that allows

us to describe all such theories, but the new approach to QT “from the outside” provides a very

illuminating perspective on QT itself: it allows us to understand which features are uniquely

quantum and which others are just general properties of probabilistic theories. Moreover, it
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Figure 1: Left: the “landscape” of probabilistic theories. QT is for quantum theory

and CPT for classical probability theory (as defined later). Right: as a suggestive

analogy (see main text), the “landscape of theories of (spacetime) geometry”.

gives us the right mathematical tools to describe physics in the, broadly construed, “device-

independent” regime where all we want to assume is just a set of basic physical principles.

Making sparse assumptions is arguably desirable when approaching unknown physical terrain,

which is why some researchers consider some of these tools (and generalizations thereof) as

potentially useful in the context of quantum gravity (Oreshkov et al. (2012) [64]), and, as we

will see, for fundamental experimental tests of QT.

Even more than that: as we will see in these lectures, it is possible to write down a small set

of physical or information-theoretic postulates that singles out QT uniquely within the land-

scape of probabilistic theories. We will be able to reconstruct the full Hilbert space formalism

from simple principles, starting in purely operational terms without assuming that operators,

state vectors, or complex numbers play any role in it. Not only does this shed light on the

seemingly ad-hoc mathematical structure of QT, but can also indirectly give us some hints on

how we might want to interpret QT.

There is a historical analogy to this strategy that has been described by Clifton, Bub, and

Halvorson (2003) [18] (see, however, Brown and Timpson (2006) [17] for skeptic remarks

on this perspective). Namely, the development of Einstein’s theory of special relativity can be

understood along similar lines: there is a landscape of “theories of (spacetime) geometry”,

characterized by an overarching, operationally motivated mathematical framework (perhaps

that of semi-Riemannian geometry). This landscape contains, for example, Euclidean geom-

etry (a very intuitive notion of geometry, comparable to CPT in the probabilistic landscape)

and Minkowski geometry (less intuitive but physically more accurate, comparable to QT in

the probabilistic landscape). Minkowski spacetime is characterized by the Lorentz transforma-

tions, which have been historically discovered in a rather ad hoc manner — simply postulating

these transformations should invite everybody to ask “why?” and “could nature have been dif-

ferent”? But Einstein has shown us that two simple physical principles single out Minkowski

spacetime, and thus the Lorentz transformations, uniquely from the landscape: the relativity

principle and the light postulate. This discovery is without doubt illuminating by explaining

“why” the Lorentz transformations have their specific form, and it has played an important

role in the subsequent development of General Relativity.

In these lectures, we will see how a somewhat comparable result can be obtained for

QT, and we will discuss how and why this can be useful. But before going there, we need

to understand how a “generalized probabilistic theory” can be formalized. And even before

doing so, we need to get rid of the widespread intuition that all conceivable physics must either

be classical or quantum, and build some intuition on how physics could be more general than

quantum.
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2 How could physics be more general than quantum?

Everybody can take an existing theory and modify it arbitrarily; but the art is to find a modifi-

cation that is self-consistent, physically meaningful, and consistent with other things we know

about the world.

That these desiderata are not so easy to satisfy is illustrated by Weinberg’s (1989) [85]

attempt to introduce nonlinear corrections to quantum mechanics. QT predicts that physical

quantities are described by Hermitian operators (“observables”) A, and their expectation val-

ues are essentially bilinear in the state vector, i.e. 〈A〉 = 〈ψ|A|ψ〉. (This property is closely

related to the linearity of the Schrödinger equation.) Weinberg decided to relax the condition

of bilinearity in favor of a weaker, but arguably also natural condition of homogeneity of de-

gree one, and explored the experimental predictions of the resulting modification of quantum

mechanics.

However, shortly after Weinberg’s paper had appeared, Gisin (1990) [37] pointed out that

this modification of QT has a severe problem: it allows for faster-than-light communication.

Gisin showed how local measurements of spacelike separated parties on a singlet state allows

them to construct a “Bell telephone” with instantaneous information transfer within Weinberg’s

theory. Standard QT forbids such information transfer, because bilinearity of expectation val-

ues implies (in some sense — we will discuss more details of this “no-signalling” property

later) that different mixtures with the same local reduced states cannot be distinguished. Su-

perluminal information transfer is in direct conflict with Special Relativity, showing that QT

is in some sense a very “rigid” theory that cannot be so easily modified (see also Simon et al.,

2001 [77]).

This suggests to search for modifications of QT not on a formal, but on an operational level:

perhaps a more fruitful way forward is to abandon the strategy of direct modification of any of

QT’s equations, and instead to reconsider the basic framework which we use to describe simple

laboratory situations. GPTs constitute a framework of exactly that kind. They generalize QT

in a consistent way, and do so without introducing pathologies like superluminal signalling.

To get an intuition for the basic assumptions of the GPT framework, let us first discuss

two examples of potential phenomena that would transcend classical and quantum physics:

superstrong nonlocality and higher-order interference.

2.1 Nonlocality beyond quantum mechanics

Consider the situation in Figure 2. In such a “Bell scenario”, we have two agents (usually

called Alice and Bob) who each independently perform some local actions. Namely, Alice

holds some box to which she can input a freely chosen variable x and obtain some outcome a.

Similarly, Bob holds a box to which he can input some freely chosen variable y and obtain some

outcome b. Alice’s and Bob’s boxes may both have interacted in the past, so that they may

have become statistically correlated or (in quantum physics) entangled. This will in general

lead to correlations between Alice’s and Bob’s outcomes.

While more general scenarios can be studied, let us for simplicity focus on the case that

there are two agents (Alice and Bob) who can choose between two possible inputs x , y ∈ {0, 1}
and obtain one of two possible outcomes a, b ∈ {−1,+1}. In quantum information jargon, we

are on our way to introduce the (2,2, 2)-Bell correlations, where (m, n, k) denotes a scenario

with m agents who each have n possible inputs and k possible outcomes. The resulting statistics

is thus described by a probability table (often called “behavior”)

P(a, b|x , y),

i.e. the conditional probability of Alice’s and Bob’s outcomes, given their choices of inputs. It

is clear that these probabilities must be non-negative and
∑

a,b P(a, b|x , y) = 1 for all x , y (we
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Figure 2: Schematic figure of a Bell scenario. Within any physical theory (classical

physics, quantum physics, or other), we can imagine laboratory situations in which

the causal structure is specifically as depicted (in particular, Alice and Bob cannot

communicate). Regardless of the interpretation of “probability”, we can talk about

situations in which there is data to be chosen independently (x and y) and recorded

(a and b) such that it is meaningful to talk about the probabilities of the recordings,

given the choices. Data from the past that may influence the devices will be labelled

λ. Physical theories differ in the set of probability tables (“correlations”) that they

allow in principle in this scenario.

will assume this in all of the following), but further constraints arise from additional physical

assumptions.

Let us first assume that the scenario is described by classical probability theory — perhaps

because we are in the regime of classical physics or every-day life. Then we can summarize

the causal past of the experiment — everything that has happened earlier and that may have

had some influence on the experiment, directly or indirectly — into some variable λ. Shortly

before Alice and Bob input their choices into the boxes, the variables x , y,λ are in some (un-

known) configuration, distributed according to some probability distribution P. Furthermore,

the outcomes a and b are random variables; in the formalism of probability theory, they must

hence be functions of x , y and λ, i.e. a = fA(x , y,λ), b = fB(x , y,λ). Recall that in probability

theory, random variables are functions on the sample space; and the sample space, describing

the configuration of the world, consists of only x , y and λ. We have simply made λ big enough

to contain everything in the world that is potentially relevant for the experiment.

But what if the boxes introduce some additional randomness, perhaps tossing coins to

produce the outcome? In this case, the coin toss can be regarded as deterministic if only all

the factors that influence the coin toss (properties of the coin, the surrounding air molecules

etc.) are by definition contained in λ. (Or, alternatively, we simply regard the unknown state

of the coin as a part of λ.) The “hidden variable” λ may thus be a quite massive variable, and

learning its value may be practically impossible. In other words, all randomness can, at least

formally, be considered to result from the experiment’s past (in physics jargon, the fluctuations

of its initial conditions).

So far, our description is completely general and does not yet take into account the assumed

causal structure of the experiment: assuming that x and y can be chosen freely amounts to

demanding that their values are statistically uncorrelated with everything that has happened

in the past, i.e. with λ. Furthermore, locality implies that a cannot depend on y and b cannot

depend on x . This means that the scenario must satisfy

P(x , y,λ) = PX (x) · PY (y) · PΛ(λ), a = fA(x ,λ), b = fB(y,λ).

For a more detailed explanation of how and why the causal structure of the setup implies these

assumptions, see e.g. the book by Pearl (2009) [66], or Wood and Spekkens (2015) [88]. These
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assumptions are typically subsumed under the notion of “local realism”, and readers who want

to learn more about this are invited to consult more specialized references. A great starting

point are the Quantum Foundations classes given by Rob Spekkens at Perimeter Institute; these

can be watched for free on http://pirsa.org.

Note that P(a, b|x , y,λ) = δa, fA(x ,λ)δb, fB(y,λ) = PA(a|x ,λ)PB(b|y,λ) (with δ the Kronecker

delta). Hence, by the chain rule of conditional probability,

P(a, b|x , y) =
∑

λ∈Λ
PA(a|x ,λ)PB(b|y,λ)PΛ(λ). (1)

What we have thus shown is that any probability table in classical physics that is realizable

within the causal structure as depicted in Figure 2 must be classical according to the following

definition:

Definition 1. A probability table P(a, b|x , y) is classical if there exists a probability space (P,Ω,Σ)

with P = PX · PY · PΛ some product distribution, Ω = X × Y × Λ, where X = Y = {0,1} and Λ

arbitrary, such that Eq. (1) holds. If this is the case, then we call (P,Ω,Σ) a hidden-variable

model for the probability table.

Denote by C2,2,2 the set of all classical probability tables.

Instead of assuming that Λ is a finite discrete set, we could also have allowed a more

general measurable space like Rn, but here this would not change the picture because the sets

of inputs and outcomes are discrete and finite (in other words, considering only finite discrete

Λ is no loss of generality here).

In the derivation above, we have obtained a model for which PA(a|x ,λ) and PB(b|y,λ)

are deterministic, i.e. take only the values zero and one. But even without this assumption,

probability tables that are of the form (1) can be realized within the prescribed causal structure

according to classical probability theory: one simply has to add local randomness that makes

the response functions PA and PB act nondeterministically to their inputs. Thus, we do not

need to postulate in Definition 1 that PA and PB must be deterministic.

It is self-evident that the classical probability tables satisfy the no-signalling conditions

(Barrett 2007 [11]): that is, PA(a|x , y) :=
∑

b P(a, b|x , y) is independent of y , and

PB(b|x , y) :=
∑

a P(a, b|x , y) is independent of x . This means that Alice “sees” the local

marginal distribution PA(a|x , y) = PA(a|x) =
∑

λ∈Λ PA(a|x ,λ)PΛ(λ) if she does not know what

happens in Bob’s laboratory, regardless of Bob’s choice of input y (and similarly with the roles

of Alice and Bob exchanged). If this was not true, then Bob could signal to Alice simply by

choosing the local input to his box. The causal structure that we have assumed from the start

precludes such magic behavior.

We can reformulate what we have found above in a slightly more abstract way that will

become useful later. Note that we have found that the classical behaviors are exactly those

that can be expressed in the form (1) with PA and PB deterministic (if we want). Thus, we

have shown that

Lemma 2. A probability table is classical if and only if it is a convex combination of deterministic

non-signalling probability tables.

Here and in the following, we use some basic notions from convex geometry (see e.g. the

textbook by Webster 1994 [86]). If we have a finite number of elements x1, . . . , xn of some

vector space (for example probability distributions, or vectors in Rm), then another element x

is a convex combination of these if and only if there exist p1, . . . , pn ≥ 0 with
∑n

i=1 pi = 1

and
∑n

i=1 pi x i = x . Intuitively, we can think of x as a “probabilistic mixture” of the x i ,

with weights pi . Indeed, the right-hand side of (1) defines a convex combination of the
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Pλ(a, b|x , y) := PA(a|x ,λ)PB(b|y,λ). These are probability tables that are deterministic (take

only values zero and one) and non-signalling (in fact, uncorrelated).

This reformulation has intuitive appeal: classically, all probabilities can consistently be

interpreted as arising from lack of knowledge. Namely, we can put everything that we do not

know into some random variable λ. If we knew λ, we could predict the values of all other

variables with certainty.

Quantum theory, however, allows for a different set of probability tables in the scenario

of Figure 2: instead of a joint probability distribution, we can think of a (possibly entangled)

quantum state that has been distributed to Alice and Bob. The inputs to Alice’s box can be

interpreted as measurement choices (e.g. the choice of angle for a polarization measurement),

and the outcomes can correspond to the actual measurement outcomes. This leads to the

following definition:

Definition 3. A probability table P(a, b|x , y) is quantum if it can be written in the form

P(a, b|x , y) = tr
�

ρAB(E
a
x ⊗ F b

y )
�

,

with ρAB some density operator on the product of two Hilbert spaces HA ⊗HB, measurement

operators Ea
x , F b

y ≥ 0 (i.e. operators that are positive semidefinite) and E−1
x + E+1

x = 1A as well as

F−1
y + F+1

y = 1B for all x and all y.

Denote by Q2,2,2 the set of all quantum probability tables.

For our purpose, we will ignore some subtleties of this definition. For example, the state

ρAB can, without loss of generality, always be chosen pure, ρAB = |ψ〉〈ψ|AB, and the mea-

surement operators can be chosen as projectors (see e.g. Navascues et al., 2015 [61]). We

will restrict our considerations to finite-dimensional Hilbert spaces; for the subtleties of the

infinite-dimensional case, see e.g. Scholz and Werner, 2008 [74], and Ji et al., 2020 [49].

Lemma 4. Here are a few properties of the classical and quantum probability tables:

(i) Both C2,2,2 and Q2,2,2 are convex sets, i.e. convex combinations of classical (quantum)

probability tables are classical (quantum).

(ii) C2,2,2 ⊂Q2,2,2.

(iii) Every P ∈Q2,2,2 is non-signalling.

(iv) C2,2,2 is a polytope, i.e. the convex hull of a finite number of probability tables. However,

Q2,2,2 is not.

Let us not prove all of these statements here, but simply explain some key ideas. Property

(i) can easily be proved directly. For (ii), note that classical probability theory can be embedded

in a commuting subalgebra of the algebra of quantum states and observables. Property (iii) is

also easy to prove directly, and shows that measurements on entangled quantum states cannot

lead to superluminal information transfer. For (iv), the convex hull of some points in a vector

space is defined as the set of all vectors that can be obtained as convex combinations of those

points. But there is only a finite number of deterministic non-signalling probability tables, and

thus we obtain the statement for C2,2,2 by using Lemma 2.

The fact that C2,2,2 is a strict subset of Q2,2,2 is a consequence of Bell’s (1964) [13] theorem,

and it can be demonstrated e.g. via the CHSH inequality (Clauser et al., 1969 [24]): if P is

any probability table, denote by Ex ,y(P) the expectation value of the product of outcomes a · b
on choice of inputs x , y , i.e.

Ex ,y(P) := P(+1,+1|x , y) + P(−1,−1|x , y)− P(+1,−1|x , y)− P(−1,+1|x , y),
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and consider the specific linear combination

E(P) := E0,0(P) + E0,1(P) + E1,0(P)− E1,1(P).

Then the CHSH Bell inequality (exercise!) states that

−2≤ E(P)≤ 2 for all P ∈ C2,2,2.

However, there are quantum probability tables that violate this inequality. These can be ob-

tained, for example, via projective measurements on singlet states (see e.g. Peres 2002 [67]).

The largest possible violation is known as the Tsirelson bound (Tsirelson 1980 [81])

max
P∈Q2,2,2

E(P) = 2
p

2.

In particular, we find that C2,2,2 (Q2,2,2: nature admits “stronger correlations” than predicted

by classical probability theory — but still not “strong enough” for superluminal information

transfer.

This simple insight has motivated Popescu and Rohrlich (1994) [71] to ask: are the quan-

tum probability tables the most general ones that are consistent with relativity? In other words, if

we interpret the no-signalling conditions as the minimal prerequisites for probability tables to

comply with the causal structure of Figure 2 within relativistic spacetime, then is QT perhaps

the most general theory possible under these constraints?

The (perhaps surprising) answer is no: there are probability tables that are not allowed by

QT, but that are nonetheless non-signalling. An example is given by the “PR box”

PPR(a, b|x , y) :=

�
1
2 if a · b = (−1)x y

0 otherwise.

It is easy to check that this defines a valid probability table which satisfies the no-signalling

conditions. If the two inputs are (x , y) = (1,1) then the outcomes are perfectly anticorrelated;

in all other cases, they are perfectly correlated. Thus

E(PPR) = 4,

which is larger than the maximal quantum value of 2
p

2 (the Tsirelson bound). Therefore

PPR 6∈Q2,2,2. But if we denote the set of all non-signalling probability tables by NS2,2,2, then

PPR ∈NS2,2,2. Thus, we have the set inclusions

C2,2,2 (Q2,2,2 (NS2,2,2.

Like the set of classical probability tables, NS2,2,2 turns out to be a polytope, with corners

(extremal points) given by the deterministic non-signalling tables as well as eight “PR boxes”,

i.e. versions of PPR where inputs or outcomes have been relabelled. This leads to the picture

in Figure 3.

Thus, we have found one possible way in which nature could be more general than quan-

tum: it could admit “stronger-than-quantum” Bell correlations. Clearly, simply writing down the

probability table PPR does not tell us anything about a possible place in the world where these

correlations would potentially fit: we do not have a theory that would predict these correla-

tions to appear in specific experimental scenarios. However, the same can be said about bare

abstract quantum states: simply writing down a singlet state, for example, does not directly

tell us what this state is supposed to represent. We need to impose additional assumptions

(e.g. that the abstract quantum bit corresponds to a polarization degree of freedom that reacts

9
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Q

NSC

Figure 3: Schematic figure of the probability tables (“behaviors”) that can be realized

within classical probability theory (C), within quantum physics (Q), or within any

non-signalling probabilistic theory (NS). In the case of (m, n, k) = (2, 2,2), these

convex sets are eight-dimensional; the 16 parameters in P(a, b|x , y) are reduced by

the normalization and no-signalling equalities to 8 free parameters. Both C and NS

are polytopes, and the extremal points of C (which are also extremal points of Q

and NS) are the deterministic non-signalling probability tables. In contrast to C and

NS, the quantum set Q is not a polytope.

to spatial rotations in certain ways) in order to extract concrete predictions for specific exper-

iments.

Further reading. The insight above has sparked a whole new field of research, asking

“why” nature does not allow for stronger-than-quantum non-signalling correlations. One short

answer is of course this: because physics is quantum. But simply pointing to the fact that the

theories of physics that we have today are all formulated in terms of operator algebras and

Hilbert spaces does not seem like a particularly insightful answer. Instead, the hope was to

find simple physical principles that would explain, without direct reference to the quantum

formalism, why nonlocality ends at the quantum boundary. An excellent overview on this re-

search is given in (Popescu, 2014 [70]). Several physical principles have been discovered over

the years which imply part of the quantum boundary, some of them including the Tsirelson

bound: for example, some stronger-than-quantum correlations would trivialize communica-

tion complexity (van Dam 2013 [84] — published 8 years after the preprint on arXiv.org),

violate information causality (Pawlowski et al., 2009 [65]), or have an ill-defined classical

limit (Navascués and Wunderlich, 2009 [62]). However, the discovery of almost quantum

correlations (Navascués et al., 2015 [61]), a natural set of correlations slightly larger than Q

that satisfies all known reasonable principles, has severely challenged this particular research

direction. An exact characterization of the quantum set, however, is achieved by the comple-

mentary program of reconstructing QT (not just its probability tables, but the full sets of states,

transformations and measurements) within the framework of generalized probabilistic theo-

ries. This will be the topic of the last part of these lectures. In the case of (m, n, k) = (2,2, 2),

the set Q can also be exactly characterized in terms of the detectors’ local responses to spatial

symmetries (Garner, Krumm, Müller, 2020 [34]).

2.2 Higher-order interference

Another way in which nature could be more general than quantum is in the properties of

interference patterns that are generated by specific experimental arrangements. In 1994,

Sorkin [79] proposed a notion of “order-n interference” which contains “no interference at

all” as its n = 1 case (as in classical physics), and quantum interference as the n = 2 case.

In principle, however, nature could admit interference of order 3 or higher, and these poten-

tial beyond-quantum phenomena can be tested experimentally (up to a small caveat to be

discussed below).

The starting point is the well-known double-slit experiment as depicted in Figure 4 (left).
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A particle impinges on an arrangement that contains two slits (S1 and S2), finally hits a screen,

and a detector clicks if the particle impinges in a particular region of the screen. The setup

involves the additional possibility of blocking a slit: for example, if a blockage is put behind

slit S2, then the particle will either be annihilated (intuitively, this happens if it tried to travel

through slit S2) or it will pass slit S1. We can now experimentally determine the probability

of the detector click, conditioned on blocking (or not) one of the slits:

P12 := Prob(click | slits S1 and S2 are open),

P1 := Prob(click | only slit S1 is open),

P2 := Prob(click | only slit S2 is open).

If we realize an experiment of this form within classical physics (think of goal wall shooting),

then we expect that P12 = P1 + P2. However, in QT, we find that in general

P12 6= P1 + P2,

and this is exactly what is called interference. Namely, we can think of S1 and S2 as two

orthonormal basis states of a two-dimensional Hilbert space that describes “which slit” the

particles passes. At the time of passage, we have a state |ψ〉= α|S1〉+β |S2〉 (more generally,

a density matrix ρ which could be |ψ〉〈ψ| but could also be a mixed state). Putting a blockage

such that only slit Si is open implements the transformation ρ 7→ P̂iρ P̂i , where P̂i = |Si〉〈Si| (if
both slots are open this is P̂12 = P̂1+ P̂2 = 1). The final detector click corresponds to a measure-

ment operator (POVM element) Q, such that the probabilities are given by PI = tr(P̂Iρ P̂IQ),

with I ∈ {1, 2,12}. Then P12 6= P1+P2 is a consequence of the off-diagonal terms (coherences)

〈S1|ρ|S2〉.

Figure 4: Interference at an M -slit arrangement, where M = 2 (left, the double-slit)

resp. M = 3 (right, the triple-slit). For a fixed initial state preparation, we can ask for

the probability of the detector click, depending on which (if any) slits are blocked.

On the left, slit S2 is blocked, and the resulting click probability is denoted P1. On

the right, slit S1 is blocked, and the resulting click probability is denoted P23. For the

double slit, P12 6= P1+P2 is an expression of interference of order n= 2. For the triple-

slit, QT predicts Eq. (2). A violation of this would be a novel physical phenomenon

beyond QT, namely third-order interference.

Let us now consider a slightly more involved situation: let us add a third slit to the ar-

rangement, as in Figure 4 (right). As before, we can block one of the slits, but now we

can also block two of the slits at the same time. This allows us to define the probabilities

P123, P12, P13, P23, P1, P2, P3 in an obvious way. For example, P13 denotes the probability of the

detector click, given that (only) slit S2 is blocked. What we now find is that the following
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identity holds according to QT:

P123 = P12 + P13 + P23 − P1 − P2 − P3. (2)

Why is that the case? First, note that Eq. (2) holds in classical physics: there, we can decompose

all terms into single-slit contributions (i.e. P123 = P1+ P2+ P3, P12 = P1+ P2 etc.). The reason

why this equation also holds in the quantum case can be demonstrated as follows. Think of

the initial “which-slit” state as a 3× 3 density matrix ρ = ρ123. Then we have





• • •
• • •
• • •



 =





• • 0

• • 0

0 0 0



+





• 0 •
0 0 0

• 0 •



+





0 0 0

0 • •
0 • •





−





• 0 0

0 0 0

0 0 0



−





0 0 0

0 • 0

0 0 0



−





0 0 0

0 0 0

0 0 •



 .

That is, ρ123 = ρ12+ρ13+ρ23−ρ1−ρ2−ρ3, whereρI = P̂Iρ123 P̂I for I ∈ {1,2, 3,12, 13,23, 123},
and the projectors P̂I are defined analogously to above.

In principle, however, we can imagine that nature produces an interference pattern that

violates Eq. (2) — in this case, we would say that nature exhibits third-order interference.

The scheme above also gives a nice illustration why classical physics (or, rather, classi-

cal probability theory) does not admit second-order interference: namely, classical states are

probability vectors, and so, for example,





•
•
•



 =





•
0

0



+





0

•
0



+





0

0

•



 .

Thus, classically, P123 = P1 + P2 + P3 (or, for two slits, P12 = P1 + P2).

From this starting point emerges an obvious idea: could there be physics in which the states

are not tensors with one component (classical probability theory) or two (QT), but three or

more? Instead of density matrices, could there be a regime of physics that is governed by

“density tensors”? This idea has first appeared in the work of Hardy (2001) [40] and Wootters

(1986) [89]. Recent work by Dakić et al. (2014) [28] constructs possible “density cube” states,

but does not give a well-defined theory or state space that contains them. However, consistent

theories that predict higher-order interference can be constructed within the framework of

generalized probabilistic theories (GPTs) that we will describe next (Ududec et al. 2010 [83]),

and the absence of third-order interference can be used as an axiom to single out QT (Barnum

et al. 2014 [9]; see however also Barnum and Hilgert 2019 [8]). Intuitively, while CPT can

arise from QT via decoherence, one might imagine that QT can similarly arise via some de-

coherence process from such a more general theory. However, as Lee and Selby (2018) [54]

have shown, any suitable causal “super-quantum” GPT of this kind must necessarily violate

the so-called purification principle.

The absence of third- or higher-order interference can in principle be tested experimentally,

and this has in fact be done by several different groups. To the best of our knowledge, the first

experimental search for third-order interference (making single photons impinge on actual

spatial slit arrangements) has been performed by Sinha et al. (2010) [78], with negative

result as expected. The relative weight of third-order contributions to the interference pattern

(which is predicted to be exactly zero by QT) has been bounded to be less than 10−3 by Kauten

et al. (2017) [50]. For other experimental approaches, see the references in this paper.

When we compare potential beyond-quantum interference with potential beyond-quantum

nonlocality, then the former has an additional problem of experimental testing that the latter
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does not have: to certify stronger-than-quantum correlations (if they exist), all that we have

to do in principle is to design an experiment in which the structure of spacetime enforces

the causal structure of a Bell scenario as depicted in Figure 2. We know how to close all

potential statistical loopholes (see the recent loophole-free Bell tests, for example Giustina

et al. 2015 [38]) to certify that an (unlikely) violation of, say, the Tsirelson bound would

unambiguously falsify QT. The absence of third-order interference in the form of Eq. (2), on

the other hand, makes a couple of additional assumptions. In particular, we need to ensure

that the different experimental alternatives (corresponding to the different slits) are physically

implemented by operations that correspond to orthogonal projectors.

If this is not ensured, then deviations from Eq. (2) can be detected even within standard

quantum mechanics (Rengaraj et al. 2018 [72]). In other words: we need a physical certificate

(without assuming the validity of QT) which, under the additional assumption that QT is

valid, implies that the blocking transformations correspond to orthogonal projectors. This

insight underlies the necessity to have a well-defined mathematical framework of probabilistic

theories that provides a formalism to describe phenomena like higher-order interference and

that tells us, for example, what the analogue (if it exists) of an orthogonal projection would

be in generalizations of QT (for approaches to this particular question, see e.g. Kleinmann

2014 [51], Chiribella and Yuan 2014 [21], Chiribella and Yuan 2016 [22], Chiribella et al.

2020 [23]). We will describe one such framework in the next section.

3 Generalized probabilistic theories

The framework of generalized probabilistic theories (GPTs) has been discovered and rein-

vented many times over the decades, in slightly different versions (see “Further reading” be-

low). The exposition below follows Hardy 2001 [40] and Barrett 2007 [11] (both excellent

alternative references for an introduction to the GPT framework). However, the mathematical

formalization will mostly follow the notation by Barnum (for example Barnum et al. 2014 [9]).

Figure 5: The paradigmatic laboratory situation that can be used to motivate the

mathematical framework of GPTs: Preparation P, transformation T, and measure-

ment M.

Consider the simple laboratory situation sketched in Figure 5. On every run of the experi-

ment, a preparation device P spits out some physical system. In the end, a measurement device

M will be applied to the physical system, yielding one of, for simplicity, finitely many outcomes

1, 2, . . . , m. In between, we may decide to apply a transformation device T (which may well

be “do nothing”). We assume that it is meaningful to speak of the probability of an outcome

a, given a choice of preparation and transformation devices: that is, we are interested in the

probabilities

P(a|P,T,M). (3)

This probability can be understood in different ways: for example, we can imagine that the

experiment is repeated a large number of times, yielding different outcomes on every run,

with a limiting relative frequency given by P. Alternatively, we might be interested in doing the
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experiment only once, and would like to place bets on the possible outcomes before performing

it (as in a Bayesian reading of probability). Regardless of the interpretation of probability,

what a GPT does is to tell us how to describe all possible preparations, transformations and

measurements of a physical system, and how to compute the outcome probabilities (3).

The following subsections will give an introduction to the formalism of GPTs. While I will

leave out many subtleties for reasons of brevity, readers who are interested in further details

are referred to the book by Holevo (2010) [45].

3.1 States, transformations, measurements

Since a GPT is only targeted at describing the probabilities (3) and nothing else, we have to

start by removing all redundancy from the description. Consider two preparation devices P

and P′. Suppose that these devices prepare a particle in exactly the same way, with the only

difference that P was manufactured by a company called Smith&Sons, while P′ was manufac-

tured by Miller&Sons. The devices have small labels with the names of the manufacturers at

their bottom. Other than that, whatever we decide to measure on the prepared particles gives

the exact same probabilities in both cases. Then, we should really consider P and P′ as “the

same” for our purpose.

More generally, we will say that two preparation procedures P and P′ are equivalent if

for all possible transformations and measurements that we can in principle perform, all outcome

probabilities will be identical. In fact, we can regard every transformation T followed by a

measurement M as a combined measurement M′. So equivalence of P and P′ can be defined

by saying that all possible measurements give identical outcome probabilities, without specifically

mentioning transformations.

Once we have introduced this equivalence relation, we can define the notion of a state:

a state is an equivalence class of preparation procedures. In other words, a state subsumes all

possible measurement statistics of a physical system, and nothing else.

As a more interesting example of equivalence of preparations, consider the following two

procedures in quantum theory:

(i) Following a coin toss, an electron is prepared either in state | ↑〉 or | ↓〉 with probability

50% each.

(ii) The entangled state (| ↑↑〉+ | ↓↓〉)/
p

2 of two electrons is prepared, and then one of the

two electrons is discarded.

Both procedures amount to the preparation of the maximally mixed state ρ = 1
21. In partic-

ular, spin measurements in any direction on the resulting physical systems will always yield

completely random outcomes.

Once we have defined the notion of a state, we can also speak about the state space of

a physical system: this is simply the collection of all possible states that can in principle be

prepared by suitable preparation procedures. We will denote states by the Greek letterω, and

state spaces by Ω (more details below).

Given that we aim at describing the probabilities of events, state spaces come with an

important additional piece of structure: convexity. That is, we can always think of the following

situation: a random number i ∈ {1,2, . . . , n} is obtained with probability pi (for example via

some measurement on some state, or by tossing coins), and then state ωi ∈ Ω is prepared,

while i is discarded. The resulting procedure will still correspond to the preparation of a

physical system that leads to well-defined measurement probabilities. Hence there will be an

associated state ω ∈ Ω. By construction, it satisfies

P(a|ω,M) =

n∑

i=1

pi P(a|ωi ,M) (4)

14

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.28


SciPost Phys. Lect.Notes 28 (2021)

for all possible outcomes a of all possible measurements M. This equation allows us to intro-

duce a natural convex-linear structure on the state space. That is, we can write

ω =

n∑

i=1

piωi , (5)

and by doing so introduce the useful convention that states are elements of some vector space

A over the real numbers R. (I am skipping several details of argumentation at this point; inter-

ested readers are again invited to look into Holevo’s book). In the following, we will always

assume for mathematical simplicity that this vector space is finite-dimensional. We will also

denote physical systems by upper-case letters like A (for example, the spin degree of freedom

of an electron), the corresponding state spaces by ΩA, and the vector space on which ΩA lives

will also be denoted A.

Before giving some examples, let us make two more physically motivated assumptions that

significantly simplify the mathematical description. Namely, let us assume that ΩA is compact,

i.e. topologically closed and bounded. Intuitively, ΩA should be bounded since probabilities

are bounded between zero and one, and probabilities are all we are ever computing from

a state. Furthermore, suppose that we have a sequence of states ω1,ω2,ω3, . . . that are all

elements of ΩA, i.e. that can be in principle prepared on our physical system A. Suppose that

limn→∞ωn =ω for some element of the vector spaceω ∈ A. Isω also a valid state? Physically,

it should be: after all, we can prepare arbitrarily good approximations to ω, and this is all we

can ever hope to achieve in the laboratory anyway. This motivates to demand that ω ∈ ΩA,

i.e. that ΩA is a closed set.

Furthermore, Eq. (5) above implies that convex combinations of valid states are again valid

states, or, in other words that state spaces are convex sets.

This gives us (almost) the following definition:

Definition 5. A state space is a pair (A,ΩA), where A is a real finite-dimensional vector space,

and ΩA ⊂ A is a compact convex set of dimension dimΩA = dim A− 1 such that there is a linear

“normalization functional” uA : A → R with uA(ω) = 1 for all ω ∈ ΩA. The state cone is

A+ := {λω | λ ≥ 0,ω ∈ ΩA}.

This definition says a couple of things. First, we want the ability to mathematically describe

the normalization of a state: basically, uA(ω) is the probability that the physical system is there.

Ifω ∈ ΩA, i.e. ifω is a normalized state (as “usual”), then this probability is one. However, it is

often useful to talk about unnormalized states — in particular, subnormalized states for which

uA(ω
′) < 1. These could come, for example, from preparing a normalized state ω and then

discarding the system with probability 1− λ, resulting in the subnormalized state ω′ = λω.

The set A+ is exactly the set of elements that can be obtained in this way, via any non-negative

scalar factor λ ≥ 0.

The dimension condition can then be interpreted as saying that we choose the vector space A

as small as possible: it contains enough dimensions to carry all normalized and unnormalized

states, and not more. We also see that ΩA = {ω ∈ A+ | uA(ω) = 1}, and dim A+ = dim A.

Furthermore, A+ is a pointed convex cone in the sense of convex geometry (Aliprantis and

Tourky, 2007 [2]): A+ + A+ ⊆ A+, λA+ ⊆ A+ for all λ ≥ 0, and A+ ∩ (−A+) = {0}.
Before turning to some examples, we introduce some further terminology:

Definition 6. A state ω ∈ ΩA is called pure if it is an extremal point of the convex set ΩA, and

otherwise mixed.

This definition uses a basic notion of convex geometry (Webster, 1994 [86]): an extremal

point of a convex set Ω is an element of that set that cannot be written as a non-trivial convex
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combination of other points. Hence, a state ω ∈ ΩA is pure if and only if

ω = λω1 + (1−λ)ω2 with 0≤ λ ≤ 1,ω1,ω2 ∈ ΩA ⇒ λ ∈ {0,1} or ω1 =ω2.

That is, if we write ω as a convex combination of ω1 and ω2, then this convex combination

must be trivial: either ω1 =ω2 (=ω), or λ is zero or one.

Figure 6: An arbitrary state space and its pure states (black points in ΩA).

Figure 6 gives a (somewhat arbitrary) example of a state space and of its pure states. In

this example, we have the vector space A = R3 that carries a state cone A+ (right); the set

of normalized states ΩA is depicted on the left. The pure states are those marked in black:

this includes the half-circle boundary and the pure states ω1 and ω2. The state ω is on the

boundary of the state space, but it is not pure: it can be written as the non-trivial convex

combination ω = 1
2ω1 +

1
2ω2. All states in the interior of ΩA are mixed states, too.

The two most important examples are given by classical probability theory (CPT) and quan-

tum theory (QT):

Example 7 (N -outcome classical probability theory). The vector space is A = RN , and the

normalized states are the discrete probability distributions:

ΩA =

¨

(p1, . . . , pN ) ∈ RN | pi ≥ 0,

N∑

i=1

pi = 1

«

.

Geometrically, this set is a simplex. The cases N = 2 and N = 3 are depicted in Figure 7. The

N = 4 case would correspond to a tetrahedron embedded in R4.

Figure 7: State spaces of classical probability (i.e. ΩA is depicted in gray). Left: the

classical bit with N = 2 outcomes. Right: The classical “trit” with N = 3.

As one can see, the normalization functional is uA(p) = p1 + p2 + . . . + pN (where

p = (p1, . . . , pN )). The state cone A+ consists of all those vectors inRN that have only non-negative

entries, i.e. the positive orthant. It is also not difficult to see that there are N pure states, namely

p(i) = (0, . . . , 0, 1
︸︷︷︸

i

, 0, . . . , 0) (with i = 1, . . . , N). These are exactly the deterministic distribu-

tions.
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Convex geometry allows us to draw some conclusions about states that are valid for every

GPT. For example, due to the Minkowski-Carathéodory theorem (Webster, 1994 [86]), every

state ω ∈ ΩA can be written as a convex combination of at most dim A pure states. In the clas-

sical case discussed above, the corresponding decomposition of ω into pure states is unique;

but in general, this is not the case, as the example of quantum theory demonstrates. To state

it, we will use the notation Mn(C) for the n×n complex matrices, and Hn(C) for the Hermitian

complex n× n matrices, i.e. those M ∈Mn(C) with M† = M .

Example 8 (N -outcome quantum theory). The vector space is A= HN (C)— note that this is a

vector space over the reals, not over the complex numbers, since it is not closed under multiplication

with the imaginary unit i. The set of normalized states is the set of density matrices,

ΩA = {ρ ∈ A | ρ ≥ 0, tr(ρ) = 1}.

Here and in the following, the notation ρ ≥ 0 denotes the fact that ρ is positive-semidefinite,

i.e. 〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉 ∈ CN . This is equivalent to ρ being Hermitian and having only

non-negative eigenvalues.

The normalization functional is uA(ρ) := tr(ρ), and the state cone becomes the positive

semidefinite cone, A+ = {M ∈ A | M ≥ 0}.

In the quantum case, the general definition of a “pure state” (Definition 6 above) reduces

to the usual definition of a pure quantum state: every density matrix can be diagonalized,

ρ =
∑N

i=1 pi |i〉〈i| for some orthonormal basis {|i〉}N
i=1, and if the pi are not all zero or one,

then this defines a non-trivial convex decomposition of ρ into other states. Hence ρ is pure

if and only if it can be written as a one-dimensional projector, i.e. as ρ = |ψ〉〈ψ| for some

suitable |ψ〉 ∈ CN .

What do the quantum state spaces look like – geometrically, as convex sets? For the case

N = 2 (the qubit), the answer is simple and easy to depict (see e.g. Nielsen and Chuang,

2000 [63]): we can write every 2× 2 density matrix ρ in the form

ρ =
1

2

�

1+ r3 r1 − ir2

r1 + ir2 1− r3

�

.

With the “Bloch vector” r = (r1, r2, r3), we have the equivalence

ρ ≥ 0 ⇔ λ1/2 =
1

2

�

1±
q

r2
1 + r2

2 + r2
3

�

=
1

2
(1± |r|)≥ 0,

where λ1/2 denotes the two eigenvalues of ρ. This parametrization identifies the qubit state

spaceΩA with the Bloch ball – the unit ball in three dimensions. It is crucial that this parametriza-

tion is linear, so that we can interpret convex mixtures in the ball as probabilistic mixtures of

states. The Bloch ball is sketched in Figure 8.

As expected, the pure states lie in the boundary of the state space – but in this case, every

boundary point is in fact a pure state. This is a very special property (called “strict convexity”

of ΩA) that is generically absent, as Figure 6 shows. Note that this property also holds for the

classical bit (a one-dimensional line segment).

What about N ≥ 3 — are these state spaces also balls, perhaps of some higher dimension?

A moment’s thought shows that this cannot be the case: all these state spaces contain mixed

states in their topological boundary. For example, for N = 3, the state ρ = diag
�

1
2 , 1

2 , 0
�

is

mixed but lies on the boundary of the set of density matrices (there are unit trace matrices

with negative eigenvalues arbitrarily close to that state). Hence these state spaces cannot be

strictly convex, and in particular, they cannot correspond to Euclidean balls. Instead, these

state spaces are compact convex sets with quite complex and intriguing structure. A beautiful
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Figure 8: The state space of a quantum bit can be represented as a three-dimensional

ball, the Bloch ball. The pure quantum states lie on the boundary (the sphere), with

orthogonal states on antipodal points of the sphere. The center represents the mixed

state 1
21. In contrast to the classical states, convex decompositions of mixed states

into pure states are not unique.

attempt to visualize the N = 3 case can be found in Bengtsson et al., 2013 [14], and a much

more comprehensive introduction to the geometry of quantum states is given in the book by

Bentsson and Życzkowski, 2017 [15].

So far, we have only talked about states; let us now see how to describe measurements

in the GPT framework. Our starting point are Eq. (4) and (5), which say that probabilistic

mixtures of preparation procedures should lead to the identical mixtures of the corresponding

outcome probabilities. In other words, outcome probabilities of measurements must be linear

functionals of the state. This motivates the following definition.

Definition 9 (Measurements). Let (A,ΩA) be a state space. A linear functional, i.e. an element

of the dual space e ∈ A∗, is an effect if it attains values between zero and one on all normalized

states, i.e. 0≤ e(ω)≤ 1 for all ω ∈ ΩA.

An n-outcome measurement (with n ∈ N arbitrary) is a collection of effects e(1), . . . , e(n) with

the property that e(1) + . . .+ e(n) = uA.

The effect cone is A∗+ = {λ · e | e is an effect, λ ≥ 0}.

If we prepare a system in state ω ∈ ΩA and perform an n-outcome measurement, then the

probability of the i-th outcome must certainly lie in the interval [0,1], and it must be a linear

functional of the state: hence it must be given by e(i)(ω), where e(i) is some effect. The total

outcome probability must be unity, so that e(1)(ω) + . . . + e(n)(ω) = 1 for all ω ∈ ΩA. Since

the normalized states span the vector space A, this is only possible if e(1) + . . .+ e(n) = uA, the

normalization functional.

The effect cone is an object of mathematical convenience. In convex geometry terminology

(Aliprantis and Tourky, 2007 [2]), this is exactly the dual cone of A+, i.e.

A∗+ = {e ∈ A∗ | e(ω)≥ 0 for all ω ∈ A+}.

Sometimes, we will call the elements of A∗+ “unnormalized effects” (since their value can be

larger than one on some states). There are a couple of interesting properties of the dual cone;

for example, in our case, A∗∗+ = A+. In other words, the unnormalized effects are exactly the

functionals that give non-negative values on all unnormalized states – and the unnormalized

states are exactly the vectors that give non-negative values on all unnormalized effects. This

expresses a certain form of duality between states and effects.

Let us now discuss the measurements in CPT and QT. In N -outcome CPT, the vector space

is A= RN , and it is convenient for us to identify it with its dual space via the dot product, A≃ A∗.
Effects are then vectors too, such that e(ω) = e ·ω. To check that a functional e = (e1, . . . , eN )

is a valid effect, it is sufficient to check that it yields probabilities in the interval [0,1] on all

18

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.28


SciPost Phys. Lect.Notes 28 (2021)

pure states (the rest follows from convexity). Clearly, this is true if and only if 0≤ ei ≤ 1 for all

i — i.e. e is a valid effect if all its entries lie in the unit interval. In particular, the normalization

functional is a valid effect (as always), and uA = (1, 1, . . . , 1). The effect cone A∗+ is thus the

set of all vectors with non-negative entries — which is the same as the state cone.

For N -outcome QT, let us also identify A= HN (C) and its dual space via some inner product,

namely 〈X , Y 〉 := tr(X Y ) the Hilbert-Schmidt inner product. For example, this means that the

normalization functional becomes the unit matrix, uA = 1, since uA(ρ) = tr(ρ) = 〈1,ρ〉. An

effect is now a self-adjoint matrix E with 0≤ tr(Eρ)≤ 1. As in the CPT case, it is sufficient to

check this on pure states ρ = |ψ〉〈ψ|, such that 0 ≤ 〈ψ|E|ψ〉 ≤ 1 for all normalized ψ ∈ CN .

But this is equivalent to 0≤ E ≤ 1 — that is, both E and 1−E must be positive-semidefinite. A

collection of n such effects, E1, E2, . . . , En with E1+ E2+ . . .+ En = 1, while each Ei is positive-

semidefinite, is known as a POVM: a positive operator-valued measure. Indeed, the set of all

possible quantum measurements are given by POVMs, and we have just rederived this fact

within the framework of GPTs.

Therefore, in this case, we also obtain that A∗+ = A+: the effect and state cones coincide.

One might be tempted to conjecture that this is true in general, but it is easy to see that it is not.

This property of strong self-duality – that there exists some inner product such that the state

and effect cones are identical – is a remarkable property that holds only under very special

conditions. It is known to be false, for example, for the case that ΩA is a square (sometimes

called a “gbit”; Barrett 2007 [11]), and it is also false for the example in Figure 6. However,

self-duality is known to follow from a strong symmetry property called bit symmetry. Call every

pair of pure and perfectly distinguishable states ω1,ω2 a bit. Suppose that for every pair of

bits (ω1,ω2) and (ϕ1,ϕ2), there is a reversible transformation T such that Tω1 = ϕ1 and

Tω2 = ϕ2 (this is true for CPT and QT, for example). Then strong self-duality follows (Müller

and Ududec, 2012 [60]).

In summary, while states and measurements are described by the same kinds of objects

(positive semidefinite matrices) in QT, they will be described by different sets of objects in

general GPTs. Moreover, measurements in GPTs can have properties that look quite unusual

from the perspective of QT. Consider the following definition:

Definition 10. Let (A,ΩA) be some state space. A set of states ω1, . . . ,ωn is called (jointly)

perfectly distinguishable if there exists a measurement e(1), . . . , e(n) with e(i)(ω j) = δi j (that is

1 if i = j and 0 otherwise).

The maximal number n ∈ N for which there exists a set of n perfectly distinguishable states is

called the capacity of the state space, and is denoted NA. On the other hand, we will denote the

dimension of the state space by KA := dim A.

In other words, n states are perfectly distinguishable if we can in principle build a detector

that, on feeding it with one of the states, tells us with certainty which of the states it was that

we have initially prepared (assuming that we are promised that we have indeed prepared one

of the states and not another one).

In QT, the ωi are density matrices, and they are perfectly distinguishable if and only if

their supports are mutually orthogonal (if all states are pure, ωi = |ψi〉〈ψi |, this means that

〈ψi |ψ j〉= δi j). The capacity NA in QT is hence equal to the dimension of the underlying Hilbert

space. The dimension of the state space, KA, is the number of real parameters in a Hermitian

NA × NA-matrix. Simple parameter counting shows that this is KA = N2
A . In particular, the

set of normalized states has dimension dimΩA = N2
A − 1, which equals three for the qubit, in

accordance with Figure 8.

In CPT, on the other hand, we have KA = NA, which is equal to the cardinality of the sample

space on which the states are defined as probability distributions.

In particular, both in CPT and in QT, if some states are pairwise perfectly distinguishable,

then they are automatically jointly perfectly distinguishable. After all, the condition of joint
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distinguishability is pairwise orthogonality of the supports. It is perhaps surprising to see that

this statement is in general false for GPTs. Let us illustrate this with an example.

Example 11 (The gbit (Barrett 2007 [11])). The generalized bit, or “gbit”, is a state space

(A,ΩA), where A= R3, and

ΩA =
�

(x , y, 1) ∈ R3 | − 1≤ x ≤ 1, −1≤ y ≤ 1
	

.

In particular, the normalization functional is uA(x , y, z) := z. If we identify A with its dual space

via the dot product, then uA = (0, 0,1). This state space has four pure states (the corners of the

square):

ω1 = (−1,−1,1), ω2 = (−1,1, 1), ω3 = (1,1, 1), ω4 = (1,−1, 1).

It is a simple exercise to work out the set of effects and the effect cone. Writing ω = (x , y, z)

and demanding that e(ω) ∈ [0, 1] for all ω ∈ ΩA, we find in particular the following effects:

e(x)(ω) = 1
2(z + x), ē(x)(ω) = 1

2(z − x), e(y)(ω) = 1
2(z + y), ē(y)(ω) = 1

2(z − y). Writing these

as vectors, we get

e(x) =
1

2
(1, 0,1), ē(x) =

1

2
(−1, 0,1), e(y) =

1

2
(0,1, 1), ē(y) =

1

2
(0,−1,1).

It turns out that the set of effects is the convex hull of these effects, the “unit effect” (normalization

functional) uA, and the zero effect 0. Geometrically, this can be depicted as in Figure 9. Note that

A+ and A∗+ are not identical. Even if we had chosen another inner product (rather than the dot

product) to represent the effects, then the two cones would never align. This is because the gbit is

not strongly self-dual (Janotta et al., 2011 [46]).

Figure 9: The “gbit” state space (generalized bit). Left: the state cone, with the

normalized states in gray. Right: the effect cone, with the set of effects in gray.

More importantly, we now see that every two distinct pure states are perfectly distinguish-

able. For example, consider the pure states ω1 and ω2, and consider the two effects e(y) and

ē(y). Note that these two effects constitute a valid measurement: e(y) + ē(y) = uA. Moreover, we

have e(y)(ω1) = 0 and e(y)(ω2) = 1, and hence ē(y)(ω1) = 1 and ē(y)(ω2) = 0. That is, the

measurement (e(y), ē(y)) perfectly distinguishes the states (ω1,ω2).

A similar construction can be made for all other pairs of pure states. However, one can check

that no three states of ΩA are jointly perfectly distinguishable. On the one hand, this shows

that the capacity of this state space is NA = 2, hence the name “gbit” (and not gtrit etc.); on the

other hand, it demonstrates that pairwise perfect distinguishability does not in general imply joint

perfect distinguishability.
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The final ingredient of Figure 5 that we have not yet discussed so far are the transforma-

tions. Clearly, a transformation T maps an ingoing state ω to some outgoing state ω′ = Tω.

In general, we can think of transformations from one physical system to another one (for ex-

ample, mapping the spin state of an electron to the state of a quantum dot, or maps between

Hilbert spaces of different dimensions), but for simplicity, let us focus on transformations for

which in- and outgoing systems are the same. Consider the following two scenarios, where

λ1, . . . ,λn are probabilities summing to unity, and ω1, . . . ,ωn are normalized states:

(i) A preparation device prepares the state ωi with probability λi , resulting in the mixed

state ω =
∑

i λiωi . This mixed state is sent into the transformation device, resulting in

some final state ω′ = Tω.

(ii) With probability λi , a preparation device prepares the state ωi , which is then sent into

the transformation device, resulting in the final state ω′
i
= Tωi .

Clearly, (i) and (ii) are different descriptions of one and the same laboratory procedure; they

must hence result in the exact same statistics of any measurements that we may decide to

perform in the end, and therefore lead to the same final state ω′. But this implies that

T

�
n∑

i=1

λiωi

�

=

n∑

i=1

λi T (ωi): transformations must be linear. This motivates the following

definition.

Definition 12 (Transformation). Let (A,ΩA) be some state space. A transformation is a linear

map T : A → A with T (ΩA) ⊆ ΩA, i.e. every normalized state is mapped to another normal-

ized state. A transformation T is reversible if it is invertible as a linear map and if T−1 is a

transformation, too.

A dynamical state space is a triplet (A,ΩA,TA), where (A,ΩA) is a state space, and TA is a

compact (or finite) group of reversible transformations.

This definition subsumes several properties of transformations that are either necessary or

desirable. First, transformations T must map valid input state to valid output states; second,

they should preserve the normalization. This leads to the demand that T (ΩA) ⊆ ΩA. It also

implies that uA◦T = uA for every transformation T : the normalization after the transformation

is the same as before. In some situations, it is important to allow a larger class of normalization-

nonincreasing transformations; for example, when we are interested in filters and projections

as in the case of higher-order interference. For more details on this, see e.g. Barrett 2007 [11]

or Ududec et al., 2010 [83].

Of particular significance are transformations that can be physically undone after they have

been implemented: these are the reversible transformations. Namely, after applying T to some

state, we can apply T−1 to the resulting state, with the total effect of doing nothing. In the

following, we will restrict our attention to those, because they will turn out to be particularly

important in the context of axiomatic reconstructions of QT. By definition, reversible transfor-

mations satisfy T (ΩA) ⊆ ΩA and T−1(ΩA) ⊆ ΩA — but this is only possible if T (ΩA) = ΩA. In

other words, every reversible transformation is a linear symmetry of the state space.

If we write down any transformation T , then it satisfies all the conditions that we need

for a map to be a physically implementable operation on some state — as long as the state

space is considered in isolation. In many cases, however, state spaces are subsystems of larger

state spaces; this is certainly the case in standard laboratory situations, where a bit or qubit

is usually embedded into some sort of infinite-dimensional Hilbert space or operator algebra.

Further below, we will discuss how GPT state spaces can be combined via generalizations of

QT’s tensor product rule to form larger state spaces. In these cases, additional conditions may

arise from the demand that the transformations are also valid processes when the state spaces

on which they act are part of a larger state space.
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Definition 12 incorporates this insight by introducing the formal possibility that not all

mathematically valid transformations are in fact physically allowed. Among the reversible trans-

formations in particular, a dynamical state space comes with an additional choice of a set TA

of allowed reversible transformations. The only demand is that if T is an allowed reversible

transformation and so is T ′, then T ′ ◦T is too: after all, we can implement one transformation

after the other. Similarly, “do nothing” should be an allowed transformation, i.e. 1 ∈ TA; and

the meaning of reversibility demands that T−1 ∈ TA whenever T ∈ TA. This makes TA a group.

The demand that TA should be topologically closed and bounded can be motivated similarly

as we did in the case of the state space. Hence TA is a compact matrix group.

Example 13 (Reversible transformations in QT). In Example 8, we have defined the N-outcome

quantum state space as the set of N×N density matrices. Based on this definition, we have already

derived the most general form of measurements in QT: these are the POVMs. Let us now use the

GPT framework to deduce the most general form of reversible transformations.

As discussed above, a reversible transformation T is an (invertible) linear map

T : HN (C) → HN (C) which is a linear symmetry of the state space. That is, it must map

the set ΩA of N × N density matrices onto itself, and it must be linear in the sense of preserving

real-linear combinations of Hermitian matrices. (A priori this is completely unrelated to linearity

on state vectors in the Hilbert space.) Determining the most general transformations T with this

property is hence a mathematical exercise. Its solution is known as Wigner’s theorem (see e.g.

Bargmann 1964 [4]). Namely, these turn out to be the transformations of the following form:

ρ 7→ UρU−1,

where U is a unitary or antiunitary map. Which of these transformations can actually be imple-

mented physically depends on auxiliary assumptions. If we only consider single quantum state

spaces in isolation, then there is no a priori reason to regard antiunitary transformations as phys-

ically impossible. However, if — as in actual physics — we consider a full theory of state spaces,

combining via the usual tensor product rule, then only the unitary transformations can be imple-

mented. This is because antiunitary maps like the transposition, ρ 7→ UρU−1 = ρ⊤, are known

to generate negative eigenvalues when applied to half of an entangled state. In other words, uni-

tary transformations are completely positive while antiunitary transformations are not (Nielsen

and Chuang 2000 [63]).

Thus, in our physical world, quantum systems come as dynamical state spaces (A,ΩA,TA),

where A and ΩA are as defined in Example 8, and TA is the group of unitary conjugations,

ρ 7→ UρU†. This is a subgroup of the full group of reversible transformations.

The argumentation so far yields a very interesting perspective on the superposition prin-

ciple of QT. Usually, the superposition principle is seen as some kind of fundamental (and

mysterious) principle or axiom of QT. In our case, however, we can see it as some kind of

accidental mathematical consequence of the shape of the state space. It just so happens to be

the case that the pure states are of the form |ψ〉〈ψ|, and applying reversible transformations

to them yields |ψ〉〈ψ| 7→ U |ψ〉〈ψ|U†. Restricting our attention to the pure states only, we

can thus simplify the mathematical description by “taking the square root” in some sense, and

consider the map |ψ〉 → U |ψ〉 only (without forgetting that we have to disregard arbitrary

phase factors).

But doesn’t this argumentation defer the question of “why the superposition principle” to

“why the density matrices”? At first sight it seems so, but we will see later that we can derive

the shape of the state space — that is, that it must correspond to the set of density matrices

— from simple information-theoretic principles. The superposition principle will then indeed

follow as an accidental consequence in the way just described.
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We leave it for the reader as an exercise to check that the reversible transformations in

CPT are the permutations: (p1, . . . , pN ) 7→ (pπ(1), . . . , pπ(n)), where π : {1, . . . , n} → {1, . . . , n}
is one-to-one. For the gbit as defined in Example 11, those transformations are of the form

T =

�

D 0

0 1

�

∈ M3(R), where D ∈ M2(R) is any element of D2, the dihedral group of order

4 (the symmetry group of the square).

Above, we have admitted the possiblity that not all mathematically well-defined transfor-

mations are in fact “physically” allowed, but further above, our formalism has forced the state

cone A+ and the effect cone A∗+ to be full duals of each other. In other words, we are implicitly

working under the so-called “no-restriction hypothesis” (Chiribella, d’Ariano and Perinotti,

2010 [19]): for any given set of states, all mathematically well-defined effects can in princi-

ple be implemented (and vice versa). Here we make this assumption mainly for reasons of

simplicity, but there are situations in which a more general approach is warranted, e.g. in the

context of stabilizer quantum mechanics or Spekkens’ toy theory (Spekkens 2007 [80]). In

this case, one could define, for example, a “sub-cone” of physically allowed effects (though

this is not the only possibility). For more details on such a more general approach, see e.g.

Janotta and Lal, 2013 [48].

In the example of QT, we have seen that we can represent a quantum bit in two ways:

either as the set of 2× 2 density matrices, or as the three-dimensional Bloch ball. In fact, all

probabilistic predictions are exactly identical for both descriptions. This is an example of a

general freedom that we have in representing GPTs:

Definition 14 (Equivalent state spaces). Two state spaces (A,ΩA) and (B,ΩB) are called equiva-

lent if there exists an invertible linear map L : A→ B such that ΩB = L(ΩA). Two dynamical state

spaces (A,ΩA,TA) and (B,ΩB,TB) are called equivalent if they additionally satisfy TB = LTAL−1.

Equivalent state spaces are indistinguishable in all of their probabilistic properties: to every

state ωA ∈ ΩA, there is a corresponding state ωB = LωA ∈ ΩB; to every effect eA ∈ A∗+ there is

a corresponding effect eB = eA ◦ L−1 ∈ B∗+. Finally, to every transformation TA ∈ TA there is a

corresponding transformation TB = LTAL−1 ∈ TB, such that the outcome probabilities are the

same: eB TBωB = eAL−1 LTAL−1 LωA = eATAωA. Intuitively, equivalent state spaces are of the

same convex shape. In particular, equivalent state spaces must have the same dimensions.

Example 15. As illustrated in Example 8, the Bloch ball representation and the density matrix

representation of the quantum bit are equivalent. In more detail, the dynamical state spaces

(A,ΩA,TA) and (B,ΩB,TB) are equivalent, where

A = R4, ΩA =

��

1

r

� �
�
�
�

r ∈ R3, |r| ≤ 1

�

, TA =

��

1 0

0 R

� �
�
�
�

R ∈ SO(3)

�

,

B = H2(C), ΩB = {ρ ∈ B | tr(ρ) = 1, ρ ≥ 0}, TB =
�

ρ 7→ UρU† | U is unitary
	

,

and an invertible linear map L : A→ B that establishes this equivalence is given by

L(r0, r1, r2, r3) :=
1

2

�

r0 + r3 r1 − ir2

r1 + ir2 r0 − r3

�

.

In many places in the literature (for example in Barrett 2007 [11]), one finds an alterna-

tive route to the GPT framework. This alternative approach begins with the same laboratory

situation as in Figure 5, but argues less abstractly. It postulates in a more concrete manner

that states are “lists of probabilities”, corresponding to a set e1, . . . , en of “fiducial effects” —

a bunch of outcome probabilities that are sufficient to fully characterize the state. For example,

for a qubit, these four effects might correspond to the normalization effect, and to the prob-

abilities of measuring “spin-up” in x-, y- and z-directions. (Note that these effects do not in
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general constitute a “measurement” in the sense of Definition 9, i.e. they cannot in general be

jointly measured). Knowing these probabilities determines the state and hence all the outcome

probabilities of all other possible measurements.

According to this prescription, a state is then simply a list of probabilities

(e1(ω), . . . , en(ω)).

How does this fit our definition? To see this, consider any state space (A,ΩA) in the sense of

Definition 5. Since ΩA is a compact convex set, we can always find some invertible linear map

L : A→ A (in fact, many) that maps ΩA into the unit cube C := {(x1, . . . , xn) ∈ A | 0 ≤ x i ≤ 1

for all i}, where n= dim A. Thus, (A,ΩA) is equivalent to (B,ΩB), where B = AandΩB = L(ΩA).

Now, every state ω = (ω1, . . . ,ωn) ∈ ΩB satisfies ei(ω) := ωi ∈ [0,1] by construction, for all

i ∈ {1, . . . , n}. Hence, in particular, the ei are valid effects, and they fit Barrett’s definition of

“fiducial effects”.

So far, we have only considered single state spaces. In the next subsection, we will see how

GPT state spaces can be combined in a way that generalizes the tensor product rule of QT.

3.2 Composite state spaces

Given two state spaces (A,ΩA) and (B,ΩB), then how can we define a meaningful composite

AB? The philosophy of the GPT framework is not to ask for a formal rule in the first place, but

to strive for the representation of fundamental operational properties that should be captured

by such a formalism.

Let us therefore imagine two laboratories that are each locally holding systems which are

described by state spaces (A,ΩA) and (B,ΩB). If these are two separated distinguishable lab-

oratories, then we ought to be able to imagine that Alice performs a local experiment, and

Bob independently performs another local experiment. For example, what Alice can do is to

prepare a state ωA and ask whether the outcome (effect) eA happens in her subsequent mea-

surement; the probability of this is eA(ωA). Similarly, Bob can prepare a state ωB and observe

whether outcome eB happens, which has probability eB(ωB). Now we can regard this as a sin-

gle joint experiment, asking whether both outcomes have happened. The independent joint

preparations should correspond to some valid state ωAB ∈ ΩAB of the two laboratories, and

the independent joint measurement (or rather its “yes”-outcome) should correspond to a valid

effect eAB. Due to statistical independence, the joint probability must be

eAB(ωAB) = eA(ωA) · eB(ωB).

Without loss of generality, this allows us to introduce a particular piece of notation: let us

write ωAB := ωA ⊗ωB for the independent preparations of the two states, and eAB = eA ⊗ eB

for the independent measurements. Statistical mixtures (i.e. convex combinations) of states

on A (or on B) must lead to the corresponding statistical mixtures on AB, which tells us that

⊗ must be a bilinear map. Thus, reading ⊗ as the usual tensor product of real linear spaces,

this will reproduce the correct probabilities.

What we have found at this point is that the joint vector space AB that carries the composite

state space must contain the tensor product space A⊗B as a subspace. This is because for every

ωA ∈ ΩA and for everyωB ∈ ΩB, we postulate that there is a stateωA⊗ωB ∈ ΩAB that describes

the independent local preparation of the two states. This implies, on the one hand, that the

convex hull of ΩA⊗ΩB is contained in ΩAB, and, on the other hand, that KAB ≥ KAKB, where

we have used the notation KA := dim A of Definition 10. But this neither tells us what the set

ΩAB is, nor does it tell us the vector space AB or its dimension KAB.

To narrow the possibilities down in an operationally meaningful way, let us make an ad-

ditional assumption that is often (but not always) made in the GPT framework. This is a
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principle called Tomographic Locality (Hardy, 2001 [40]): all states ωAB ∈ ΩAB are uniquely

determined by the joint statistics of all local measurements.

Fundamentally, this amounts to a claim of what we even mean by a joint state: the joint

state is the thing that tells us all there is to know about the outcomes of local measurements

and their correlations (but not more). Formally, this means the following. Take any two states

ωAB,ϕAB ∈ ΩAB. If

eA⊗ eB(ωAB) = eA⊗ eB(ϕAB)

for all local effects eA ∈ A∗+ and eB ∈ B∗+, then ωAB = ϕAB. In other words, state tomography

can be performed locally, hence the name of the principle.

Due to linear algebra, this implies that A∗+ ⊗ B∗+ linearly spans all of the dual space (AB)∗

— or, in other words, that AB = A⊗ B. This is also equivalent to the claim that KAB = KAKB.

This still does not tell us what the joint state space ΩAB is — and this is in fact the generic

situation in GPTs: given two state spaces, there are in general infinitely many inequivalent pos-

sible composites that satisfy the principle of Tomographic Locality. The full range of possibilities

is captured by the following definition.

Definition 16. Let (A,ΩA) and (B,ΩB) be state spaces. A (tomographically local) composite is a

state space (AB,ΩAB), where AB = A⊗ B and ΩAB is some compact convex set satisfying

Ω
min
AB ⊆ ΩAB ⊆ Ωmax

AB .

The composites (AB,Ωmin
AB ) and (AB,Ωmax

AB ) are called the minimal and maximal tensor products

of (A,ΩA) and (B,ΩB), and they are defined as follows:

Ω
min
AB := conv{ωA⊗ωB | ωA ∈ ΩA, ωB ∈ ΩB},
Ω

max
AB := {ωAB ∈ AB | uA⊗ uB(ωAB) = 1, eA⊗ eB(ωAB)≥ 0∀ eA ∈ A∗+, eB ∈ B∗+}.

In the case of dynamical state spaces, we demand that TA ⊗ TB ⊆ TAB. As a consequence, the

normalization functional on AB is uAB = uA⊗ uB.

In other words, Ωmin
AB is the smallest possible composite: it only contains the product states

and their convex combinations and not more. This is the necessary minimum to describe in-

dependent local state preparations. On the other hand, Ωmax
AB is the largest possible composite:

it contains all vectors that lead to non-negative probabilities on local measurements. This is

the maximal possible state space that still admits the implementation of all independent lo-

cal measurements. Any compact convex state space that lies “in between” these two extreme

possibilities is a possible composite in the GPT framework.

Example 17 (Composition of quantum state spaces). Consider the M-outcome quantum state

space (A,ΩA), and the N-outcome quantum state space (B,ΩB). The usual tensor product rule of

QT tells us that the composite state space should be (AB,ΩAB), where

AB = HM (C)⊗HN (C)≃ HMN (C), ΩAB = {ρ ∈ AB | tr(ρ) = 1, ρ ≥ 0}.
In other words, the usual tensor product rule of QT tells us that the composite is simply the (MN)-

outcome quantum state space. This composite satisfies the principle of Tomographic Locality. This

can be checked, for example, by noting that dimHM (C) = M2, and thus

KAB = (MN)2 = M2N2 = KA · KB.

This is strictly in between the minimal and maximal tensor products. Namely, Ωmin
AB corresponds

to the set of states that can be written as convex combinations of product states: the separa-

ble states. On the other hand, Ωmax
AB corresponds to the set of operators that yield non-negative

probabilities for all local measurements, which includes operators that are not density matrices:

so-called witnesses or POPT states (Barnum et al., 2010 [6]). These operators have negative

eigenvalues, but these would only be manifested on performing entangled measurements.

25

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.28


SciPost Phys. Lect.Notes 28 (2021)

The composition of classical state spaces (those of Example 7) satisfy Tomographic Locality,

too. In fact, if A and B are classical state spaces of M resp. N outcomes, then Ωmin
AB = Ω

max
AB ,

and so there is a unique composite: the classical state space of MN outcomes. It has recently

been shown (Aubrun et al., 2019 [3]) that this property characterizes classical state spaces: if

Ω
min
AB = Ω

max
AB then necessarily one of A or B must be classical, i.e. ΩA or ΩB must be a simplex.

What is more, composite state spaces automatically satisfy the no-signalling principle. In

this sense, GPTs are generalizations of QT that avoid some of the problems of ad-hoc modifi-

cations discussed in Section 2.

Lemma 18 (No-signalling principle). Bell scenarios as in Figure 2 are modelled in GPTs with the

prescription

P(a, b|x , y) = e(a)x ⊗ e(b)y (ωAB);

that is, ωAB represents the initial global preparation procedure on the composite state space (see

Definition 16); for every choice of input x for Alice (resp. y for Bob) there is a corresponding

measurement {e(a)x }a with outcomes labelled by a (resp. a measurement {e(b)y }b with outcomes

labelled by b), and the local measurements are performed independently. These probability tables

satisfy the no-signalling principle.

Proof. This is very easy to demonstrate: note that the effects of any measurement sum up to

the normalization functional, hence, by linearity,

∑

b

P(a, b|x , y) =

�

e(a)x ⊗
∑

b

e(b)y

�

(ωAB) = e(a)x ⊗ uB(ωAB).

This is manifestly independent of y . An analogous argumentation can be applied with Alice

and Bob interchanged, showing that P(a, b|x , y) satisfies the no-signalling conditions.

This calculation can also be used to define a local reduced states that generalize the partial

trace of quantum mechanics:

ωA = 1A⊗ uB(ωAB), ωB = uA⊗ 1B(ωAB).

There are some further intuitive and less trivial consequences of the definition of a composite in

GPTs. For example, ifωA andωB are both pure states then so isωA⊗ωB. This can be shown by

considering the local conditional states, see Janotta and Hinrichsen 2014 [47]. Note however

that this property fails in general if the principle of Tomographic Locality is not assumed, see

e.g. Barnum et al., 2016 [7].

Another simple consequence of the definition is that the capacity is supermultiplicative (re-

call Definition 10):

Lemma 19. For any composite (AB,ΩAB) of two state spaces (A,ΩA) and (B,ΩB), it holds

NAB ≥ NA · NB.

Proof. Let ωA
1, . . . ,ωA

NA
be some maximal set of perfectly distinguishable states in ωA, and

e
(1)
A , . . . , e

(NA)

A be the corresponding measurement that distinguishes these states. Similarly, let

ωB
1 , . . . ,ωB

NB
be some maximal set of perfectly distinguishable states in ΩB, and e

(1)
B , . . . , e

(NB)

B

be the corresponding measurement. Then

e
(i)
A ⊗ e

( j)

B (ω
A
k
⊗ωB

l
) = δikδ jl = δ(i j),(kl),

hence the (NANB) product states ωA
k
⊗ωB

l
∈ ΩAB are perfectly distinguishable.

In the final example, we will see how the GPT framework reproduces some of the beyond-

quantum phenomena that we have discussed in Section 2: it admits superstrong nonlocality.
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Example 20 (Composition of two gbits). Let (A,ΩA) and (B,ΩB) be the gbit state spaces defined

in Example 11. Consider the maximal tensor product of these two state spaces, (AB,Ωmax
AB ).

Since A = B = R3 and AB = A⊗ B, this shows that Ωmax
AB is an eight-dimensional compact

convex set. What is this set? By definition, the maximal tensor product contains all vectors that

give non-negative probabilities on the product measurements (and normalization is automatic).

Recall Lemma 18: these probabilities are nothing but the probability tables in a Bell experiment.

Now, as we have seen in Example 11, there are only two “pure” measurements of the gbit, which

we have denoted (e(x), ē(x)) and (e(y), ē(y)). Thus, it is sufficient to check non-negativity for these

two possible local measurements, which yield binary outcomes.

But this leads us to conclude that the states in Ωmax
AB are in linear one-to-one correspondence

to the set of all non-signalling (2,2,2)-probability tables. In other words, we conclude that the

maximal tensor product of two gbits is equivalent to the no-signalling polytope of Figure 3.

And this argumentation can indeed be made rigorous by slightly more careful mathematical for-

malization.

In particular, PR-boxes are valid states on AB. Actually, if we defined an entangled state ωAB

as a state that cannot be written as a convex combination of product states, i.e.ωAB ∈ ΩAB \Ωmin
AB ,

then PR-boxes are entangled states, similarly as the singlet is an entangled state in QT.

We can say more about this composite state space Ωmax
AB . In Subsection 3, we have claimed

that the no-signalling polytope has 24 extremal points, including 8 versions of the PR-box.

While the latter claim is somewhat cumbersome to verify, we can now easily understand the

role of the remaining 16 extremal points: these are the pure product states. As illustrated in

Figure 9, a single gbit has four pure states ω1, . . . ,ω4. Therefore, Ωmax
AB must contain the 16

pure product states {ωA
i
⊗ωB

j
}i, j=1,...,4.

The construction above can be generalized in an obvious way to more than two parties,

and also to local systems with more than two pure measurements and two outcomes (Barrett

2007 [11]). What would our world look like if it was described by this kind of theory (some-

times colloquially called “boxworld”) instead of QT? For example, what kind of reversible

transformations would be possible? While QT admits a large group of reversible transforma-

tions (the unitaries), it can be shown that boxworld admits only trivial reversible transfor-

mations: local operations and permutations of subsystems. In particular, no correlations can

be reversibly created, and no non-trivial computation can ever be reversibly performed (Gross

et al., 2010 [39]). It also means that no reversible transformation can map a pure product

state to a PR-box state. This is in contrast to QT, where we can certainly engineer unitary time

evolutions that map a pure product state to, say, a singlet state. In some sense, entanglement

in a boxworld universe would represent a scarce resource which cannot be regained reversibly

once it is spent.

Further reading. We have restricted our considerations to compositions of pairs of state

spaces, and to tomographically local composites. In this case, there is an obvious list of re-

quirements for composition, and we have incorporated all these requirements in Definition 16:

product states and product measurements should be possible, and (as enforced by the tensor

product rule) independent local operations should commute. In general, however, we may be

interested in multipartite systems similar to the circuit model of quantum computation. There,

it becomes very cumbersome to work out the set of constraints that arise from the multipartite

structure. In this case, category theory becomes the tool of choice, see (Coecke and Kissinger,

2017 [27]) for an introduction. Moreover, some of the abstract linear algebra and convex

geometry formalism can be traded for a more picturesque diagrammatic formalism which al-

lows to prove results in QT and beyond in particularly intuitive ways, see e.g. Chiribella et

al., 2010 [19]. As an example, the old problem of how to deal with the tensor product of

quaternionic quantum systems (which also falls into the GPT framework) can be resolved by
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constructing dagger-compact categories of such systems, in which case composition becomes

well-defined and well-behaved (Barnum et al., 2016 [7]).

4 Quantum theory from simple principles

After this formal tour de force, we are ready to understand how QT can be derived from some

simple physical or information-theoretic principles. This section sketches one such possible

derivation published by Masanes and Müller, 2011 [56]. It relies on axioms that have first

been written down by Hardy (2001) [40]. However, there are many alternative routes. Please

see the “Further reading” paragraph at the end of this section for an overview.

As before, we will restrict ourselves to finite-dimensional state spaces, we will work under

the “no-restriction hypothesis”, and we will assume the principle of Tomographic Locality (see

Definition 16). In addition, we will postulate two further principles:

• Subspace Axiom. For every N ∈ N, there is a dynamical state space (AN ,ΩN ,TN ) of

capacity N (e.g. for N = 2 a bit, for N = 3 a trit etc.) Moreover, if e(1), . . . , e(N) is any

measurement that perfectly distinguishes N states in ΩN , then the subset of states ω

with e(N)(ω) = 0 is equivalent to ΩN−1, and the subset of transformations T ∈ TN that

preserve this subset is equivalent to TN−1.

• Continuous Reversibility. The group of reversible transformations TN is connected

(“continuous”), and for every pair of pure state ϕ,ω ∈ ΩN there is some reversible

transformation T ∈ TN that maps one state to the other, i.e. Tω = ϕ.

In all of the rest of this section we will assume that these two principles hold.

The principle of Continuous Reversibility expresses the physical intuition that time evolu-

tion should be continuous and reversible, and that “all pure states are equivalent” under such

time evolution. The Subspace Axiom is particularly well-motivated from scientific practice:

whenever we claim to have a quantum bit (or even a classical bit) in the laboratory, then this

bit is not a free-floating stand-alone system, but it is embedded into a larger system (the rest

of the world). Our description of the state space of the bit, and of its reversible transforma-

tions, should be independent of the rest of the world, and in particular independent of other

zero-probability events.

For example, if we have a three-level atomic system in the laboratory, and we are sure (say,

due to constraints arising from the experimental setup) that we will never find the particle in

the third level, then we should be able to treat this system as a two-level system. In the notation

above, the three-level system would be described by some state space Ω3 (the 3 × 3 density

matrices in the quantum case). There would be some measurement e(1), e(2), e(3) that perfectly

distinguishes the three levels (the measurement operators |1〉〈1|, |2〉〈2|, |3〉〈3| in the quantum

case), and the set of states

Ω̃2 := {ω ∈ Ω3 | e(3)(ω) = 0}

would be equivalent to a two-level system (the density matrices ρ =

�

ρ̃ 0

0 0

�

with ρ̃ a 2×2

density matrix in the quantum case).

It turns out that these principles are sufficient to uniquely determine the quantum state

space. In this section, we will sketch a strategy to reconstruct QT from these postulates alone.

This is quite remarkable, given that neither the GPT framework nor any of the postulates makes

use of any mathematical elements that are typically considered to constitute the basic structure

of QM: complex numbers, wave functions, operators, or multiplication (a priori, GPTs do not

carry any algebraic structure). That is, we will show the following theorem:
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Theorem 21. In the framework described above (which presumes Tomographic Locality), under

the Subspace Axiom and the postulate of Continuous Reversibility, the dynamical state space of

capacity N must be equivalent to (A
QT
N ,Ω

QT
N ,T

QT
N ), where

• A
QT
N = HN (C) is the real vector space of Hermitian N × N-matrices,

• Ω
QT
N = {ρ | tr(ρ) = 1,ρ ≥ 0} is the set of N × N density matrices,

• T
QT

N = {ρ 7→ UρU† | U†U = 1} is the group of unitary conjugations.

Arguably, we can thus see the resulting reconstruction as some sort of explanation for

“why” QM has these counterintuitive structural elements in the first place. It also reinforces

the earlier insight that QM is in some sense a very “rigid” theory which is hard to modify

without breaking some cherished physical principles. For more discussions on this, see e.g.

Koberinski and Müller, 2018 [52], and the references therein.

We will proceed in a couple of steps. Our first step will be to understand why the quantum

bit (or, rather, any capacity-two-system Ω2 that satisfies the postulates) must be equivalent to

a Euclidean ball. This will also provide a quite illuminating explanation for the Bloch ball and

its properties.

4.1 Why is the qubit described by a Bloch ball?

Let us begin with the most boring and trivial case: Ω1, the state space with capacity N = 1. In

the quantum case, this corresponds to the 1× 1 density matrices – containing only the trivial

state ρ = (1) on the trivial Hilbert space C1. But we do not know this yet, so let us only work

with the postulates above.

Lemma 22. The state space of capacity N = 1 is equivalent to the trivial state space (R, {1}). In

other words, Ω1 contains only a single state.

We will not formally prove this lemma, but instead give some intuition for why it is true.

Consider any state space (Rd ,Ω) (with d ∈ N arbitrary) that contains more than one state. If

ϕ1,ϕ2 are two different states in Ω, then the line segment {λϕ1 + (1− λ)ϕ2 | 0 ≤ λ ≤ 1} is

also contained in Ω, hence dimΩ ≥ 1, and so d ≥ 2.

Now, convex geometry (Webster 1994) tells us that we can always find some pure state

ω1 ∈ Ω that is an exposed point: namely, there is a hyperplane H1 (of dimension d − 1) that

touches Ω in exactly that point:

H1 ∩Ω = {ω1}.

Figure 10: State spaces Ω that contain more than one state have capacity at least

N = 2 (for argumentation see main text). The plane here is the affine space

{x ∈ A | uA(x) = 1}.

SinceΩ contains more than one state, there must be other states ofΩ that are not contained

in H1, but that are contained in hyperplanes parallel to H1. In particular, there will be one

such hyperplane (call it H2) that touches Ω on the “opposite side” as depicted in Figure 10.
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Hence all of Ω is contained in H1 and H2 and in between, and H2 ∩Ω is not empty. Pick now

any state ω2 from this intersection.

Now every hyperplane is the level set of an affine functional (which becomes linear if we

add in the normalization degree of freedom). That is, we can find some linear functional

e(1) ∈ (Rd)∗ such that e(1)(x) = 1 for all x ∈ H1 and e(1)(x) = 0 for all x ∈ H2. Since all ω ∈ Ω
lie in between the two hyperplanes, we have 0 ≤ e(1)(ω) ≤ 1 for all ω ∈ Ω. Thus, e(1) is a

valid effect (recall that we assume the no-restriction hypothesis in all of these lecture notes;

otherwise, we would need an additional argument to show that e(1) is physically allowed).

Define e(2) := u− e(1), where u is the normalization functional. Then (e(1), e(2)) constitutes a

measurement that perfectly distinguishes the two states ω1 and ω2. Therefore the capacity is

N ≥ 2.

This shows that state spaces with capacity N = 1 contain only a single state.

Next, let us use similar reasoning to say something slightly more interesting:

Lemma 23. The state space Ω2 of capacity N = 2 is strictly convex, i.e. does not contain any

lines in its boundary.

Again, we will not really give a formal proof, but appeal to geometric intuition. Suppose

thatΩ2 was not strictly convex. Then, with a similar construction as above, we could find some

hyperplane H1 that touches Ω2 in more than one point, see Figure 11. Pick any ω1 ∈ H1 ∩Ω.

Furthermore, let H2 be the “opposite” hyperplane, and pick some ω2 ∈ H2 ∩Ω. As above, we

can associate a measurement (e(1), e(2)) to these two hyperplanes that perfectly distinguishes

ω1 and ω2.

Figure 11: Assuming the Subspace Axiom, the bit state space Ω2 must be strictly

convex, i.e. cannot contain lines in its boundary like the convex set depicted on the

left. Instead, it could look like the convex set on the right.

Let us now invoke the Subspace Axiom. It tells us that the set

{ω ∈ Ω2 | e(2)(ω) = 0}= {ω ∈ Ω2 | e(1)(ω) = 1}= H1 ∩Ω

must be linearly equivalent to Ω1. But this set contains infinitely many states, whereas Ω1

contains only a single state. This is a contradiction.

We thus conclude that Ω2 must roughly look like the convex set in the right of Figure 11.

Formally, this means that all of its boundary points must be pure states. Let us now additionally

invoke the postulate of Continuous Reversibility and show the following:

Lemma 24. The state space Ω2 is equivalent to a Euclidean unit ball of some dimension.

In other words, we will now derive the fact that a quantum bit is described by the Bloch

ball. However, we will not (yet) be able to say that this ball must be three-dimensional.

Let us start by defining what one may call the “maximally mixed state” ofΩ2: pick any pure

state ω ∈ Ω2, and define µ :=
∫

T2
TωdT ; that is, we integrate over the invariant (Haar) mea-

sure of the group of reversible transformations T2 (group averaging). It follows that Tµ = µ

for all T ∈ T2, and it is easy to check that µ is in fact the unique state with this property.
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Figure 12: Left: The definition of Bloch vectors embeds the normalized states into

a linear space (of one dimension less than the linear space on which the state cone

lives). Right: If any point on the sphere does not correspond to a valid state, then

this contradicts the strict convexity of Ω2.

For statesω ∈ Ω2, we define the corresponding “Bloch vector” ~ω :=ω−µ (see Figure 12).

Hence, Tω = ϕ if and only if T ~ω = ~ϕ, and ~µ = 0. Then T2 acts on the linear space that con-

tains the Bloch vectors. Now we can use a well-known trick from group representation theory

(Simon 1996 [76]), and construct an invariant inner product. Namely, if “·” is an arbitrary

inner product on the space of Bloch vectors, then we can define

〈~x , ~y〉= α
∫

T2

(T ~x) · (T ~y)dT,

where α > 0 is some normalization constant to be fixed soon. It follows that 〈T ~x , T ~y〉= 〈~x , ~y〉
for all T ∈ T2. This tells us that we can choose coordinates in the Bloch space such that

the T are orthogonal matrices. Moreover, if ω and ϕ are arbitrary pure states, then, due to

Continuous Reversibility, there is some transformation T ∈ T2 such that Tω = ϕ. Thus

‖ ~ϕ‖2 = 〈 ~ϕ, ~ϕ〉= 〈T ~ω, T ~ω〉= 〈 ~ω, ~ω〉= ‖ ~ω‖2.

The Bloch vectors of all pure states have the same Euclidean length, and we can fix it to

‖ ~ϕ‖ = 1 by a suitable choice of α. Hence, all pure states lie on the unit sphere surrounding µ,

see Figure 12 right. Could there be any states on the sphere which do not correspond to pure

states? This is only possible if the topological boundary of Ω2 contains lines, contradicting the

strict convexity of Ω2.

4.2 Why is the Bloch ball three-dimensional?

We have now reconstructed the Bloch ball representation of a qubit, but not its dimensionality.

If the dimension of the bit state space is d = 1, then we recover an old friend from Figure 7:

the classical bit. But, as we have seen in Subsection 3.2, composing classical bits will give us

classical state spaces with a discrete (not connected) group of reversible transformations. The

Bloch ball dimension must thus be d ≥ 2.

We can say more about its dimension by considering composites of several bits.

The first step is to prove that the capacity is multiplicative:

NAB = NANB. (6)

This follows from two lemmas that are proven by making use of all the postulates (see the

paper by Masanes and Müller, 2011 [56] for details): first, that the maximally mixed state

composes as µAB = µA ⊗ µB; and second, that the maximally mixed state on any system A

can be written µA =
1

NA

∑NA

i=1
ωA

i
, where ωA

1, . . . ,ωA
NA

is a maximal set of pure and perfectly

distinguishable states of A. In light of Eq. (6), we can now view the dimension K of the state
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space as a function of the capacity N . As first argued by Hardy (2001), the fact that K is also

multiplicative on composition, i.e. KAB = KAKB, enforces that we must have the relation

K = N r , (7)

where r ∈ N is some integer. This fits quite nicely out observation after Definition 10: CPT has

K = N (i.e. r = 1) and QT has K = N2 (i.e. r = 2). This suggests that the unknown exponent

r is somehow related to the “order of interference” of the corresponding theory as introduced

in Subsection 2.2.

Since dimΩ = K − 1, the dimension d of the Bloch ball must be one of

d = 2r − 1 ∈ {1, 3,7,15, 31, . . .}.

We have already excluded d = 1, and we would like to show that d = 3 is the unique pos-

sibility consistent with the postulates. To this end, let us consider the group of reversible

transformations T2 of a single bit. What can we say about it? We know that it must be a

compact connected group, and we also know that it must satisfy the principle of Continuous

Reversibility: all pure states are connected by some reversible transformation. In other words,

T2 must act transitively on the sphere.

What groups satisfy these requirements? In fact, for arbitrary ball dimensions d ∈ N, there

are many such groups. For example, for d = 6, it can be SO(6), SU(3) or U(3) (see Masanes et

al., 2014, for a complete list). However, if d is odd (as we have shown above) then the answer

is pretty simple, but with a surprising twist:

• If d 6= 7 then we must have T2 = SO(d).

• If d = 7 then we either have T2 = SO(7) or T2 = G2, the exceptional Lie group.

For simplicity, let us in the following ignore the G2-case (how to treat this case, and all other

details of the proof, can be found in the paper by Masanes and Müller, 2011 [56]). To under-

stand why d = 3 follows from our postulates, we have to consider a pair of two bits. Due to

Eq. (6), its state space Ω2,2 is equivalent to Ω4. Consider two perfectly distinguishable states

ω0 and ω1 of a single bit (as points of the state space, they must lie on opposite sides of the

d-dimensional Bloch ball), and two corresponding effects e0 and e1 with ei(ω j) = δi j . Then

the four states ωA
i
⊗ωB

j
∈ Ω2,2 are perfectly distinguishable. Now consider the subset

Ω
′
2 := {ω ∈ Ω2,2 | eA

0 ⊗ eB
1 (ω) = eA

1 ⊗ eB
0 (ω) = 0}.

This subset contains two of the product states, ωA
0 ⊗ωB

0 ∈ Ω′2 and ωA
1 ⊗ωB

1 ∈ Ω′2. Using the

Subspace Axiom twice, it follows that Ω′2 is again equivalent to a bit – it also corresponds to

a d-dimensional Bloch ball that somehow sits inside the joint vector space AB = Rd+1 ⊗Rd+1.

And it must contain at least one (actually, many) non-product pure states ω — these will be

entangled states.

Returning to bit A, consider rotations R ∈ SO(d) that preserve the axis that connects ω0

andω1; these will be rotations with ei◦R= ei for i = 0, 1. The subgroup of such R is equivalent

to SO(d − 1). We can also perform such rotations on bit B. But since they preserve the two

effects ei , they also preserve the bit Ω′2:

R⊗ S(Ω′2) = Ω
′
2 for all R, S ∈ SO(d − 1).

Now, Ω′2 spans a pretty small affine subspace (we can turn it into a linear subspace L2 by

substracting the maximally mixed state of Ω′2): we have dim L2 = d. On the other hand,

SO(d − 1) ⊗ SO(d − 1), where each factor acts in its fundamental representation, is a pretty
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large group. It acts on a large subspace Rd−1⊗Rd−1 that sits inside AB. We have just seen that

it must preserve the small d-dimensional subspace L2. Is this possible at all?

The answer comes from group representation theory. It turns out that the fundamental rep-

resentation of SO(d−1) is complex-irreducible if d ≥ 4. Thus, it follows that SO(d−1)⊗SO(d−1),

as a representation of two copies of this group, also acts irreducibly: but this implies that there

cannot be any proper invariant subspaces like L2. This rules out the possibility that d ≥ 4.

Why is the case d = 3 different? This is due to the fact that SO(3− 1) is an Abelian group.

Hence all its irreducible representations must be one-dimensional, and so its acts reducibly on

C
2. This is the reason why the argumentation above does not apply in this case. We can hence

summarize our finding with the following slogan:

The Bloch ball of Quantum Theory is three-dimensional “because” SO(d −1) is non-trivial

and Abelian only for d = 3.

There is a surprising twist to this insight. Garner et al., 2017 [35], consider a thought

experiment in which the two arms of a Mach-Zehnder interferometer are described by a d-

dimensional Bloch ball state space. They study the question for which d this “fits into rela-

tivistic spacetime” (under some background assumptions), in the sense that relativity of simul-

taneity is satisfied. Under one set of assumptions, it turns out that only d = 3 is possible —

and the reason is, once again, that SO(d − 1) is only non-trivial and Abelian for d = 3. This

is the same “mathematical reason” as above, but with a different physical interpretation: now

SO(d − 1) corresponds to “local phase transformations” that do not alter the global statistics,

and commutativity of this group is enforced by relativity. This points to a fascinating interplay

between information-theoretic and spacetime properties of QT; see also Müller and Masanes

2013 [59] and Dakić and Brukner 2013 [30] for further insights into this relation.

The d = 7 Bloch ball with its transitive group G2 appears as a curious special case. While

the above argumentation shows incompatibility with our postulates also for this case, there

was some hope for a while that one can construct a non-quantum composite state space of

7-balls that satisfies the principles of Tomographic Locality and Continuous Reversibility, but

not the Subspace Axiom, see e.g. Dakić and Brukner, 2013 [30]. Unfortunately, this possibility

has since been ruled out for the case of two bits in Masanes et al., 2014 [57]. However, it

is not known whether such a construction might be possible in the case of n ≥ 3 bits. While

Krumm and Müller, 2019 [53], rule out such non-quantum state spaces for SO(d) with d 6= 3,

it remains open whether there is a curious post-quantum G2-related theory on more than two

bits.

4.3 How do we obtain the quantum state spaces for N ≥ 3?

The next step is to show that the state space of k bits, for any k ≥ 2, is equivalent to the state

space of k quantum bits. We begin with the case k = 2. From the argumentation above, we

know that the two-bit dynamical state space can be written as (R4 ⊗ R4,Ω4,T4), i.e. Ω4 is a

15-dimensional compact convex set.

We already know that the states and transformations of single bits are equivalent to those

of the quantum bit. Let us use this fact to introduce an equivalent representation in the sense

of Definition 14. Recall the linear map L from Example 15, mapping the Bloch vector repre-

sentation of a qubit to its density matrix representation. Let us now apply the invertible linear

map L⊗ L to map R4⊗R4 into H2(C)⊗H2(C))≃ H4(C). In this representation, the elements

of Ω4 become self-adjoint unit-trace matrices. We know that Ω4 contains all quantum product

states and their convex combinations (the separable states), but we do not yet know that Ω4

is exactly the set of 4× 4 density matrices.
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To show that it is, we have to return to the previous subsection. The sub-bit Ω′2 contains

the two antipodal product states ωA
0 ⊗ωB

0 and ωA
1 ⊗ωB

1 , but there is a 2-sphere of pure states

“in between”. Mapping out the action of SO(2)⊗SO(2) on these states, and analyzing how the

SO(3)-rotations ofΩ′2 have to interact with those, one can show with some tedious calculations

that these pure state must correspond to |ψ〉〈ψ| for |ψ〉= α|00〉+β |11〉. Acting on those states

via local rotations produces all pure quantum states of Ω4. Since we can similarly generate all

quantum effects, and since these are full duals of each other, there cannot be any further states.

This shows thatΩ4 is equivalent to the two-qubit quantum state space. Moreover, the rotations

that we have just described turn out to generate the full group of unitary conjugations.

If we now have k ≥ 3 bits, then we can repeat the above argumentation for every pair

among the k bits. Since the unitary gates on pairs of qubits generate all unitaries, this implies

that T2k must contain all unitary conjugations. These generate all quantum states and effects.

Furthermore, any additional non-unitary transformation would map outside of the quantum

state space.

This reconstructs QT for N = 2k. For capacities that are not a power of two, we can

simply invoke the Subspace Axiom to derive the quantum state space (and the group of unitary

conjugations) also in this case. For example, Ω3 is embedded in the two-bit state space Ω4,

and the Subspace Axiom tells us that it must have the form that we expect.

This concludes our proof of Theorem 21, and our reconstruction of finite-dimensional

quantum theory.

Further reading. The search for alternative axiomatizations of QT dates back to Birkhoff

and von Neumann (1936) [16]. It was followed by foundational work on Quantum Logic

(Piron 1964) [68] as well as mathematical work on the characterization of the state spaces of

operator algebras (Alfsen and Shultz, 2003 [1]) and several attempts to pursue a derivation of

QT as above, for example in the operationally motivated work of Ludwig (1983) [55] and in

the description of “relational quantum mechanics” by Rovelli (1996) [73]. The rise of quantum

information theory has shifted the focus: it became clear that the main features of quantum

theory are already present in finite-dimensional systems, and that the notion of composition

plays an extraordinarily important role in its structure. This shift of perspective has led to a

new wave of attempts to derive the quantum formalism from simple principles, pioneered by

Hardy (2001) [40]. Despite the importance and ingenuity of Hardy’s result, there remained

some problems to be cured — in particular, one of the postulates from which he derived the

quantum formalism was termed the “simplicity axiom”, stating that the state space should be

in some sense the smallest possible for any given capacity. In particular, this left open the

possibility that there is in fact an infinite sequence of theories, characterized by the “order of

interference” parameter r, see Eq. (7), and QT is just the r = 2 case. This was excluded ten

years later, see Dakić and Brukner 2011 [29], Masanes and Müller 2011 [56], and Chiribella

et al. 2011 [20] (see also d’Ariano, Chiribella, and Perinotti, 2017 [31]). These works gave

complete reconstructions of the formalism of QT. A lot more progress and insights have been

gained since then. For example, there is now a new reconstruction by Hardy (2011) [41]

which does not make use of the Simplicity Axion, a diagrammatic reconstruction based on

category theory (Selby et al., 2018 [75]), a reconstruction “from questions”, i.e. based on the

complementarity structure of propositions (Höhn and Wever 2017 [44], and Höhn 2017 [42,

43]); there are several beautiful works by Wilce on deriving the more general Jordan-algebraic

state spaces from the existence of “conjugate systems” resembling QT’s maximally entangled

states (e.g. Wilce 2017 [87]); and there is now a derivation of QT from single-system postulates

only, namely spectrality and strong symmetry (Barnum and Hilgert, 2019 [8]), an immensely

deep result that significantly improves on earlier work by Barnum et al, 2014 [9]. This list is

far from complete, and it certainly excludes important work that does not fall into the GPT
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framework but relies, for example, more on the device-independent formalism mentioned at

the end of Subsection 2.1.

5 Conclusions

The framework of Generalized Probabilistic Theories (GPTs) yields a fascinating “outside per-

spective” on QT. It tells us that QT is just one possible theory among many others that could

potentially describe the statistical aspects of nature. These theories share many features with

QT, like entanglement or the no-cloning theorem (see Barnum et al., 2007 [5]), but they also

differ in some observable aspects, e.g. in the set of Bell correlations that they allow, in the

group structure of their reversible transformations, or in the interference patterns that they

generate on multi-slit arrangements.

However, we have seen that QT is still special: it is the unique GPT that satisfies a small set

of simple information-theoretic principles. These principles are formulated in purely opera-

tional terms, without reference to any of the mathematical machinery of QT like state vectors,

complex numbers, operators, or any sort of algebraic structure of observables. Thus, recon-

structing QT from such principles can tell us, in some sense, “why” QT has its counterintuitive

mathematical structure.

These results give us arguably important insights into the logical structure of our physical

world. But then, what exactly do they tell us? Can we learn anything about how to interpret QT,

and about the nature of the quantum world? The hope for a positive answer to this question

has been famously raised by Fuchs (2003) [33]. Fuchs’ hope was that a reconstruction of

QT would ground it in large parts on information-theoretic principles, but not completely. He

wrote: “The distillate that remains — the piece of quantum theory with no information theoretic

significance — will be our first unadorned glimpse of ‘quantum reality’. Far from being the end of

the journey, placing this conception of nature in open view will be the start of a great adventure.”

However, the recent reconstructions, including the one summarized in these lecture notes,

seem to have given us derivations of QT from purely information-theoretic principles, full

stop. What do we make of this? At the conference “Quantum Theory: from Problems to

Advances” in Växjö, 2014, Časlav Brukner argued as follows: “The very idea of quantum states

as representatives of information — information that is sufficient for computing probabilities of

outcomes following specific preparations — has the power to explain why the theory has the very

mathematical structure that it does. This in itself is the message of the reconstructions.” It is

possible to acknowledge this beautiful insight while remaining completely agnostic about the

problem of interpretation. Or one may contemplate a bolder possibility: perhaps our world is

at its very structural bottom fundamentally probabilistic and information-theoretic in nature

(Müller, 2020 [58])? Whatever this may mean, or whichever position one may want to take,

information-theoretic reconstructions of QT can be a fascinating and enlightening piece of

puzzle in the great adventure to make sense of our quantum world.
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bounds on higher-order interferences with a 5-path interferometer, New J. Phys. 19, 033017

(2017), doi:10.1088/1367-2630/aa5d98.

[51] M. Kleinmann, Sequences of projective measurements in generalized probabilistic models,

J. Phys. A: Math. Theor. 47, 455304 (2014), doi:10.1088/1751-8113/47/45/455304.

[52] A. Koberinski and M. P. Müller, Quantum theory as a principle theory: insights from

an information-theoretic reconstruction, in Physical Perspectives on Computation, Com-

putational Perspectives on Physics, Cambridge University Press, ISBN 9781316759745

(2018), doi:10.1017/9781316759745.013.

[53] M. Krumm and M. P. Müller, Quantum computation is the unique reversible circuit model

for which bits are balls, npj Quantum Inf. 5, 7 (2019), doi:10.1038/s41534-018-0123-x.

[54] C. M. Lee and J. H. Selby, A no-go theorem for theories that decohere to quantum mechanics,

Proc. R. Soc. A. 474, 20170732 (2018), doi:10.1098/rspa.2017.0732.

[55] G. Ludwig, Foundations of quantum mechanics I, Springer Berlin Heidelberg, ISBN

9783642867538 (1983), doi:10.1007/978-3-642-86751-4.

[56] L. Masanes and M. P. Müller, A derivation of quantum theory from physical requirements,

New J. Phys. 13, 063001 (2011), doi:10.1088/1367-2630/13/6/063001.

[57] Ll. Masanes, M. P. Müller, D. Pérez-García and R. Augusiak, Entanglement and

the three-dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014),

doi:10.1063/1.4903510.

[58] M. P. Müller, Law without law: from observer states to physics via algorithmic information

theory, Quantum 4, 301 (2020), doi:10.22331/q-2020-07-20-301.

[59] M. P. Müller and L. Masanes, Three-dimensionality of space and the quantum bit: an

information-theoretic approach, New J. Phys. 15, 053040 (2013), doi:10.1088/1367-

2630/15/5/053040.

[60] M. P. Müller and C. Ududec, Structure of reversible computation determines

the self-duality of quantum theory, Phys. Rev. Lett. 108, 130401 (2012),

doi:10.1103/PhysRevLett.108.130401.

[61] M. Navascués, Y. Guryanova, M. J. Hoban and A. Acín, Almost quantum correlations, Nat.

Commun. 6, 6288 (2015), doi:10.1038/ncomms7288.

[62] M. Navascués and H. Wunderlich, A glance beyond the quantum model, Proc. R. Soc. A.

466, 881 (2009), doi:10.1098/rspa.2009.0453.

[63] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum infor-

mation, Cambridge University Press, Cambridge, ISBN 9780511976667 (2009),

doi:10.1017/CBO9780511976667.
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