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4. Conclusions and further work
As expected, figures 4 and 6 indicate that most of the asymmetry with respect to field strength
as shown in figure 3 is actually the false asymmetry due to positrons originating from the beam
stop. One would expect that there would be no asymmetry in figure 4 at all due to the fact
that the magnetic field should be completely symmetric about the center of the tube where the
diamond sample is placed, however the muons might only interact when they hit the surface of
the diamond. Since, in the simulation, the diamond was centered at the center of the tube, the
surface where the muons would interact is slightly offset from the center and this is probably
the reason for the small asymmetry as shown in figure 4.

The way the number of muon hits increase with field strength and diamond size for the
columnated muon beam in figure 7 is exactly what is expected since, qualitatively at least,
every cross section of the 3D graph in figure 7 along the y-axis has the same shape as figure
2. It appears as though the application correctly simulates the field dependence of the e and
µ trajectories, the field dependence of the flypast, and the detection efficiency and hence the
field dependence of the false asymetry [6]. Therefore, in conclusion, it’s indeed possible that the
simulation described here can be used for advanced analysis of the experimental data produced
by those experiments. However, more still needs to be done with regards to the simulation
before such advanced analysis can be performed.

In future work, the following goals will be persued:
1. Determine the field dependence of the detector efficiency for positrons originating from

the sample.
2. Determine the field dependent distribution of impact positions of flypast muons.
3. Determine detector efficiency for positrons originating from flypast muons.
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Abstract. A short resume is given about the nature of exceptional points (EPs) followed by a
discussion about their ubiquitous occurrence in a great variety of physical problems. EPs feature
in quantum phase transition, quantum chaos, they produce dramatic effects in multichannel
scattering, specific time dependence and more. In nuclear physics they are associated with
instabilities and affect approximation schemes. EPs could be of interest for weakly bound
states such as halos and nuclei along the drip line.

1. Introduction

The topic exceptional points (EPs), in particular the physical manifestations of their occurrence
in eigenvalue problems, has found increasing interest in the ongoing literature. EPs are spectral
singularities that occur generically in eigenvalue problems depending on a parameter [1]. This
implies classical as well as quantum mechanical cases. In the simplest case they are studied
in two-dimensional matrix problems [2, 3]. They are of physical interest as there is a great
variety of physical situations where the singularities explain particular, in some cases dramatic
effects 1. Below we briefly present the formal background followed by a description of the first
physical manifestation of the mathematical properties. The subsequent sections are devoted to
some of the major physical cases where EPs play a direct role in the understanding of specific
phenomena.

2. Exceptional points

For the eigenvalues of a two-dimensional matrix the direct connection of an EP and the
phenomenon of level repulsion is easily demonstrated. Consider the problem

H(λ) = H0 + H1(λ) = H0 + λV

=

(

ω1 0
0 ω2

)

+ λ

(

ǫ1 δ
δ ǫ2

)

(1)

where the parameters ωk and ǫk determine the non-interacting resonance energies Ek =
ωk + λǫk, k = 1, 2. Owing to the interaction invoked by the matrix element δ the two levels do
not cross but repel each other. In fact, the levels turn out to be

1 see also the workshop at Stellenbosch in November 2010: http://www.nithep.ac.za/2g6.htm
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Figure 1. Perspective view of the Riemann sheet structure of two coalescing energy levels in
the complex λ−plane

E1,2(λ) =
1

2
(ω1 + ω2 + λ(ǫ1 + ǫ2) ∓ D) (2)

D =
√

CC(λ − EP1)(λ − EP2) (3)

CC = 4δ2 + (ǫ1 − ǫ2)
2 (4)

and the two levels coalesce for complex values of λ in the vicinity of the level repulsion, that is
at

EP1 =
i(ω1 − ω2)

−2δ − i(ǫ1 − ǫ2)
(5)

EP2 =
i(ω1 − ω2)

+2δ − i(ǫ1 − ǫ2)
. (6)

We use the term coalesce as the pattern is distinctly different from a usual degeneracy
encountered for hermitian operators. Note that H(λ) is not hermitian for complex values of
λ. An approach in the laboratory of an EP therefore requires an open system. The difference
between the hermitian and the non-hermitian case is clearly manifested by the occurrence of
only one eigenvector (instead of the two in the case of a genuine degeneracy). The only one
eigenvector is here given by

|φEP1� =

(

1
i

)

at the EP1, and (7)

|φEP2� =

(

1
−i

)

at the EP2 (8)

independent of parameters. Note that the norm - that is the scalar product �φ̃EPk|φEPk�, k = 1, 2
- vanishes. It is the square root type of behaviour of the eigenvalues - implying an infinite
derivative in the variable λ - and the vanishing norm of the likewise coalescing eigenfunctions
that invoke specific observable effects.

3. Observable effects

Many cases of specific effects have been reported in the literature during the past ten years. We
here can discuss only a few in some detail.
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Figure 2. Exceptional points in the complex λ-plane for the Lipkin model with N = 8 (blue),
N = 16 (red) and N = 32 (black).

3.1. Microwave cavity

Probably the first time ever the direct encircling of the square root branch point - that is
the manifestation of the two Riemann sheets (see Fig.1) - was accomplished with a microwave
resonator [4].

The realisation of the complex parameter λ was implemented in the laboratory by two real
parameters: (i) the coupling between the two halves of the cavity and (ii) the variation of the
one level in one half of the cavity. In the experiment the direct approach of the EP was avoided
while the encircling was done at close distance. One encirclement clearly swapped the levels and
so did the corresponding wave functions that were measured as well. Moreover, one of the wave
function picks up a phase, i.e. after one round one obtains |φ1� → −|φ2� and |φ2� → |φ1�. As a
consequence, it needs four rounds for the wave functions to recover the original configuration,
in other words one obtains the pattern for subsequent encircling

(

φ1

φ2

)

→

(

−φ2

φ1

)

→

(

−φ1

−φ2

)

→

(

φ2

−φ1

)

→

(

φ1

φ1

)

.

This sequence has been predicted and was established experimentally. It confirms a fourth order
root for the normalised wave functions (recall: the norm vanishes at the EP, the leading order
is ∼

√
λ − λEP ). Note that the sequence has a chiral property: going clockwise yields a result

different from the one going counterclockwise.
This chiral property of the wave function at the EP has been confirmed in a second experiment

[5] where the phase difference of π/2 between the two components (see (7) or (8)) has been
confirmed in a direct approach of an EP. For further details see [4, 5].

The same results have been reconfirmed with two coupled electronic circuits [6].

3.2. Quantum phase transitions, chaos

The Lipkin model [7] is a toy model often used to study quantum phase transitions. The
interaction of the two level model lifts or lowers a Fermion pair between the two levels. For N
particles it can be formulated in terms of the angular momentum operators and reads

H(λ) = Jz +
λ

N
(J2

+ + J2
−) (9)
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with Jz, J± being the N -dimensional representations of the SU(2) operators. There is a phase
transition at λ > 1 that moves toward λ = 1 in the thermodynamic limit. The Hamiltonian has
an inherent symmetry: even and odd numbers k of the levels Ek do not interact. The phase
for λ < 1 is the ’normal’ phase where the symmetry of the problem is preserved by the levels
and wave functions. In the ’deformed’ phase for λ > 1 the symmetry is broken in that even and
odd k become degenerate. Here the role of the EPs is crucial to bring about the phase change
in the spectrum [8]. In Fig.2 the pattern of the EPs is illustrated for low values of N . It is
clearly seen how the EPs accumulate for increasing N on the real axis with the tendency to
move towards the point λ = 1. The spectrum remains unaffected by singularities in the region
of the normal phase while it is strongly affected around the critical point. For finite temperature
these singularities feature in the partition function as is discussed explicitly in [9]. If the model
is perturbed the regular pattern of the EPs is destroyed and so is the spectrum accordingly. The
onset of chaos [10] is clearly discernible in the region of the phase transition while the model
remains robust outside the critical region for sufficiently mild perturbation.

3.3. The role of EPs in approximation schemes

The well known Random Phase Approximation (RPA) used in many body problems yields an
effective Hamiltonian that is non-hermitian [11]. As a result, eigenvalues are not necessarily real.
Depending on the strength of the, say, particle-hole interaction two real eigenvalues Ω and −Ω
coalesce at Ω = 0 and then move into the complex plane when the interaction is increased. Often
this instability point is associated with one or more phase transition of the underlying mean
field [12]. It is an EP with all its characteristics: square root branch point in the interaction
strength and the vanishing norm of the wave function.

A perturbative approach in shell model calculations can be hampered by singularities
associated with intruder states [13]. These singularities are EPs where two levels coalesce thus
limiting the radius of convergence of the perturbation series.

Recent approaches to model nuclei on the drip line [14] use resonance states to describe the
continuum. The coalescence of two resonances can invoke specific physical effects owing to the
strong increase of the associated spectroscopic factors being caused by the vanishing norm of
the wave functions at the EP.

3.4. The symmetry breaking point for PT -symmetric Hamiltonians

It has been suggested to extent the class of the traditional hermitian Hamiltonians by a specific
choice of non-hermitian operators [15]. Hamiltonians that are symmetric under the combined
operation of parity and time reversal transformation, i.e. PT -symmetric operators, can have
a real spectrum even though the operators can be non-hermitian. It turns out that if the
eigenstates preserve the symmetry, the eigenvalues are real, while for symmetry breaking the
eigenvalues are complex [16]. The points where this symmetry is broken are the EPs of the
problem. In the meantime, while there is plenty of theoretical literature on this subject - specific
[17] and more general [18] -, there is beautiful experimental evidence with optical cavities [19],
optical lattices [20] and propagation of light [21].

3.5. EPs and Feshbach resonance in atomic/molecular physics

Using Feshbach resonance techniques there are recent proposals for resonant dissociation by
lasers of H+

2 molecules or alkali dimers, where the effects of EPs are expected to feature
prominently [22]. Similar in spirit, a Bose-Einstein condensate of neutral atoms with induced
electromagnetic attractive (1/r) interaction has been discussed recently as another system
allowing a tunable interaction [23]. The critical value - an EP - where the onset of the collapse of
the condensate occurs is interpreted as a transition point from separate atoms to the formation
of molecules or clusters [24].
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3.6. Special effects in multichannel scattering

Depending on a judicious choice of parameters the proximity of EPs can invoke dramatic effects
in multichannel scattering such as a sudden increase of the cross section in one channel, even by
orders of magnitude. In turn, a second channel is suppressed and can show a resonance curve
that deviates substantially from the usual Lorentz shape [25]. Related to this behaviour is the
pattern in the time domain [26]. Depending on the initial conditions the wave function displays
characteristic features such as very fast decay or the opposite, i.e. very long life time. At the EP
the wave function typically has a linear term in time besides the usual exponential behaviour.

4. Summary

The ubiquitous occurrence of EPs in all eigenvalue problems that depend on a parameter
can have significant and often dramatic effects on observables in a great variety of physical
phenomena. A few decades ago, these singularities appeared as a purely mathematical feature
that could cause problems in approximation schemes. It was only about ten years ago that
their physical manifestation has been demonstrated in experiments that were basically classical
in nature (recall that an EP can be approached in the laboratory only in an open system).
At present definite theoretical and experimental proposals are found in the literature relating
to atomic and molecular physics, using lasers for triggering and measuring specific transitions.
In nuclear physics, where there is now great interest in open systems, that is in nuclei on the
drip line, the coalescence of resonance states is expected to produce specific effects such as
enhancements of particular reactions.
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