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Abstract

The Sommerfeld enhancement is an elementary effect in nonrelativis-
tic quantum mechanics, which accounts for the effect of a potential on the
interaction cross section. First a general formula for the Sommerfeld en-
hancement is deduced. Next this general formula is illustrated by comput-
ing the Sommerfeld enhancement in two well-known cases, the rectangular
potential well/barrier and the electromagnetic potential. Thereafter, we
compute the Sommerfeld enhancement for the electromagnetic potential
for finite interaction regions (instead of pointlike), using a Taylor expan-
sion. It turns out that the correction of this finite interaction region is
negligibly small in most cases. To conclude, a simple program is written
in Mathematica to compute the Sommerfeld enhancement for the Yukawa
potential. The results of this program are found to be consistent with
other articles in recent literature.
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1 The Sommerfeld enhancement

1.1 Introduction

The Sommerfeld enhancement is an elementary effect in nonrelativistic quantum
mechanics. To give a basic understanding of the Sommerfeld enhancement, let us
take the example of an electron-positron annihilation: a positron and an electron
collide and produce two photons. We place the positron in the origin and the
electron flying towards the positron along some axis, while at this stage we do
not take the interaction between the positron and the electron into account.
Now there is some quantum mechanical chance that the electron annihilates
with the positron or, to picture it classically, there is a chance that the positron
annihilates with the electron or that it flies by it. In physics one way to quantify
this likelihood of a process happening is the cross section. In this example
we therefore have some annihilation cross section for the annihilation process
without interaction. Now we proceed to add the interaction in the picture. In
this example this is an attractive electromagnetic (EM) potential. Therefore the
incident electron is attracted by the positron, thereby enhancing the annihilation
cross section. This enhancement is what is called the Sommerfeld enhancement.

In the above example we chose some interaction (annihilation) and poten-
tial (EM), but in general we can compute a Sommerfeld enhancement for any
interaction and any potential. To summarize: the Sommerfeld enhancement
accounts for the effect of a potential on the interaction cross section.

The Sommerfeld enhancement is named after Sommerfeld, who proposed it
in 1931 [1]. Recent studies have shown that the Sommerfeld enhancement could
be of importance in dark-matter annihilation (see for instance [2]).

1.2 A general formula

We will begin by deducing a general formula for the Sommerfeld enhancement
factor using nonrelativistic quantum mechanics [2]. To do so, we make the
following assumptions:

1. The incident particle is (essentially) a non-relativistic free particle (when
there is no added potential). This means that without the added potential we
can describe the incident particle by the following wavefunction:

ψ
(0)
k (~x) = eikz (1.1)

Without loss of generality we have taken the z-axis as the axis along which
the particle advances. ψ

(0)
k denotes the wavefunction of the incident particle

without the added potential.
2. The interaction is pointlike and takes place in the origin. This assumption

is reasonable for most interacting elementary particles. However in this thesis
we will compute the Sommerfeld enhancement for non-pointlike interactions in
an electromagnetic potential.

Assumption 2 leads to the following: the interaction cross section is propor-
tional to the squared wavefunction in the origin. In quantum-mechanics, the
squared wavefunction at some place can be interpreted as the chance that a par-
ticle is at that particular place. Because the interaction takes places only in the
origin, we know that the chance for being at the origin has to be proportional
to the chance of the interaction happening (i.e. the interaction cross section).
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3. The added potential is a central potential (a potential which magnitude
only depends on the distance from the origin). Using textbook quantum me-
chanics, we know that scattering of a central potential can only produce outgoing
spherical waves of the form [3]:

ψk → eikz + f(θ)
eikr

r
as r →∞ (1.2)

where ψk denotes the wavefunction of the incident particle with the added po-
tential.

With the above assumptions we can deduce the general formula for the
Sommerfeld enhancement. Note that we want to find the difference of the cross
section with and without potential, which in general is a multiplicative factor.
This factor is what is called the Sommerfeld enhancement factor Sk.

σ = σ0Sk (1.3)

where

Sk =
|ψk(0)|2∣∣∣ψ(0)
k (0)

∣∣∣2 = |ψk(0)|2 (1.4)

Thus in order to find the Sommerfeld enhancement we need to find the wave-
function ψk(0), which in non-relativistic quantum mechanics basically means
that we need to solve the Schrödinger equation.

In general, the axially symmetric (about the z-axis) solutions of the Schrödinger
equation for wavefunctions of the type in equation (1.2) are of the form

ψkl =
∞∑
l=0

AlPl(cos(θ))Rkl(r) (1.5)

where Al is some to be determined parameter, Pl(cos(θ)) denote the associated
Legendre functions and Rkl(r) is the radial part of the wavefunction.

Because we assumed a central potential, the (angle dependent) parameter
Al will be independent of the choice for the potential and therefore can be
written down immediately following standard non-relativistic scattering theory
([4], p.470):

ψkl =
∞∑
l=0

ileiδl(2l + 1)
k

Pl(cos(θ))Rkl(r) (1.6)

Following equation (1.6) the remaining work to compute the Sommerfeld
enhancement is to find the radial part of the wavefunction Rkl(r) by solving
the radial Schrödinger equation. This will be done for the rectangular potential
well/barrier and the electromagnetic potential in chapters 2 and 3.

Furthermore, we note that the above analysis will be approximately valid
for an interaction which is not pointlike, but small and finite i.e. with a radius
r0 where 0 < r0 << 1. Equation 1.4 then takes the following form:

Sk =

∫ r0
0
|ψk(r)|2 dr∫ r0

0

∣∣∣ψ(0)
k (r)

∣∣∣2 dr (1.7)
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2 The rectangular potential well/barrier

As a first illustration of the computation of the Sommerfeld enhancement, let
us review the relatively simple case of the potential well/barrier [2, 5]:

V =

{
±V0 for 0 ≤ r < a,
0 for r > a.

(2.1)

with the plus sign corresponding to a potential barrier and the minus sign cor-
responding to a potential well. For simplicity it is assumed that l = 0.

To compute the Sommerfeld enhancement, we need to find ψk. The first
step in the computation of the Sommerfeld enhancement is therefore to write
down the Schrödinger equation. In this l = 0 case, following equation (1.6) we
are primarily concerned with the radial part:

1
r2

d

dr

(
r2
dR(r)
dr

)
=

{
−k2

inR(r) for 0 ≤ r < a

−k2R(r) for r > a
(2.2)

where k2
in = 2M

~2 (E ∓ V0), k2 = 2M
~2 E and the plus sign corresponding to the

potential well and the minus sign to the potential barrier.
If we make the substitution χ = rR(r) then equation (2.2) reduces to (with

the subscriptions in and out denoting the inner and outer solutions):{
d2χin
dr2 (r)− k2

inχin(r) = 0 for 0 ≤ r < a
d2χout
dr2 (r)− k2χout(r) = 0 for r > a

(2.3)

Equation (2.3) has the general solution:{
χin(r) = Asin(kinr) if 0 ≤ r < a

χout(r) = Bsin(kr) if r > a
(2.4)

We found the general solution and now we need to find the constants A and
B. First, we need to normalize χout at infinity, which we choose to do with the
condition B = 1. Second, we have to match the boundary of the two solutions,
i.e. χin(a) = χout(a) and dχin

dr (a) = dχout
dr (a), resulting in two equations.

Asin(kina) = sin(ka)

Akincos(kina) = kcos(ka) (2.5)

Dividing both sides of the second equation by k and then squaring and adding
both equations:

A2(sin2(kina) +
k2
in

k2
cos2(kina)) = 1 (2.6)

determines that
A = ± 1√

sin2(kina) + k2
in

k2 cos2(kina)
(2.7)

So we obtained the radial part of the wavefunction:

Rkl,in(r) = ± 1√
sin2(kina) + k2

in

k2 cos2(kina)

sin(kinr)
r

(2.8)
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We insert equation (2.8) in equation (1.6) (with l = 0) to obtain the wavefunc-
tion for 0 ≤ r < a:

ψkl,in(r) = ±e
iδ0

k

1√
sin2(kina) + k2

in

k2 cos2(kina)

sin(kinr)
r

(2.9)

And to obtain the Sommerfeld enhancemnent, we put equation (2.9) in equation
(1.4) . Note that sin(kinr)

kinr
→ 1 for r → 0, so we multiply by kin

kin
to obtain

Sk =

∣∣∣∣∣∣±e
iδ0kin
k

1√
sin2(kina) + k2

in

k2 cos2(kina)

sin(kin · 0)
kin · 0

∣∣∣∣∣∣
2

=
1

k2

k2
in

sin2(kina) + cos2(kina)
(2.10)

Equation (2.10) is the final result. Let us check some limits to see how the
Sommerfeld enhancement works.

First let us consider when V0 → 0. In this case, there obviously should be
no enhancement. When V0 = 0, then kin = 2M

~2 E = k and if we put kin = k in
equation (2.10), we indeed get Sk = 1. Furthermore we note that when V0 > 0
and sin2(kina) 6= 0, then for the potential well k2

k2
in
< 1 and Sk > 1, while for

the potential barrier k2

k2
in
> 1 and Sk < 1.

Second let us review the case when kina = 1
2π+nπ with n = 0, 1, 2..... In this

case cos2(kina) = 0 and sin2(kina) = 1, resulting in a Sommerfeld enhancement

Sk =
k2
in

k2
= 1∓ V0

E
(2.11)

Third let us review the case when kina = 0 + nπ with n = 0, 1, 2..... In this
case cos2(kina) = 1 and sin2(kina) = 0, resulting in a Sommerfeld enhancement
Sk = 1.

Let us illustrate the above two cases by a figure. Let us take k2

k2
in

= 1
4 for the

potential well and k2

k2
in

= 4 for the potential barrier. If we now take kina = x, we
get figure 1. The resonant pattern following the above analysis is clearly visible.
The nodes are at kina = 1

2π + nπ and kina = 0 + nπ with n = 0, 1, 2....., where
we expected them.
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Figure 1: Sommerfeld enhancement for the rectangular potential well/barrier

3 The Coulomb Potential with r0 = 0

Let us begin to compute the Sommerfeld enhancement for the Coulomb potential
V (r) = ±αr with r0 = 0 (i.e. using equations (1.4) and (1.6)). The plus sign
refers to the repulsive case and the minus sign to the attractive case.

We assumed in section 1 that ψ(0)
k (~x) = eikz. This means that we are only

concerned with the solutions where E > 0, because we cannot compare bounded
(i.e. E < 0) solutions of ψk with the free-particle case. Solutions where E < 0
only occur in the attractive case (V (r) = −αr .)

The equation for the radial part of the Schrödinger equation obtains the
following form ([4], p. 102):

1
r2

d

dr

(
r2
dR(r)
dr

)
− l(l + 1)

r2
R(r) +

2M
~2

(E −±α
r

)R(r) = 0 (3.1)

where M is the mass of the incident particle.
There exists an analytical solution to the above equation. To obtain this

solution, let us introduce some new parameters in atomic units in which to
redefine the above equation in a more convenient form:

ρ = kr (3.2)

η =
Mα

k
=
α

v
(3.3)

χ(r) = R(r)r (3.4)

Expressed in the above parameters, equation (3.1) takes the following form:
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d2χ(ρ)
dρ2

+
(

1∓ 2η
ρ
− l(l + 1)

ρ2

)
χ(ρ) = 0 (3.5)

where the minus sign refers to the repulsive case and the plus sign to the
attractive case.

The solutions for equation (3.5) are in terms of confluent hypergeometric
functions ([6], p.537 et seq). The general mathematical solution is

χ(ρ) = C1F + C2G (3.6)

where F is the regular Coulomb Wave function and G is the irregular Coulomb
wavefunction. The irregular Coulomb wavefunction is eliminated in the solution
based on physical arguments: when ρ = 0 and l > 0, G is ∞ and it’s derivate is
−∞, which cannot be a physical solution. The solution then turns out to be [6]

χ(ρ) =

√
2πη

±(e±2πη − 1)
(2ρ)lρ

(2l + 1)!
eiρM(l+1±iη, 2l+2,−2iρ)

l∏
s=1

√
s2 + η2 (3.7)

where M(α, γ, z) is a confluent hypergeometric function, defined by

M(α, γ, z) = 1 +
α

γ

z

1!
+
α(α+ 1)
γ(γ + 1)

z2

2!
+ ..... (3.8)

.
The radial wavefunction is then simply obtained by dividing by r.

Rkl(ρ) =

√
2πη

±(e±2πη − 1)
(2ρ)lk

(2l + 1)!
eiρM(l + 1± iη, 2l + 2,−2iρ)

l∏
s=1

√
s2 + η2

(3.9)
We have obtained the radial part of the wavefunction and we can compute

the Sommerfeld enhancement for r = 0 by first substituting equation (1.6) in
(1.4):

Sk = |ψk(0)|2 =

∣∣∣∣∣
∞∑
l=0

ileiδl(2l + 1)
k

Pl(cos(θ))Rkl(0)

∣∣∣∣∣
2

(3.10)

The computation is facilitated by the observation that Rkl(0) = 0 for all
l 6= 0. Therefore we can put l = 0 in equation (3.10) (and equation (3.9))
leading to the following result:

Sk =

∣∣∣∣∣1k
√

2πη
±(e±2πη − 1)

k

∣∣∣∣∣
2

=
2πη

±(e±2πη − 1)
(3.11)

In the next two subsections we will evaluate this solution for the repulsive
and the attractive case.

3.1 The repulsive case

First, let us consider the repulsive case V (r) = α
r .

Figure 2 plots the speed in atomic units (in SI units v = αc
η with c the speed

of light) versus the Sommerfeld enhancement with α = 1
137
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Figure 2: Sommerfeld enhancement for the repulsive case

In the limit v → ∞, Sk → 1. This makes sense since a very high speed
of one of the particles causes a very small interaction time with the potential.
Because this is a non-relativistic treatment, Sk 6= 1 as v → c. Naturally we
expect that Sk → 1 as v → c for a relativistic treatment. We note however that
Sk ≈ 1 as v → c, thus our treatment can be a good approximation.

In the limit α >> v, Sk → 0; because this is the repulsive case, the Sommer-
feld enhancement must lead to a suppression of the interaction cross section.

3.2 The attractive case

Second, let us consider the attractive case V (r) = −αr .
Figure 3 plots the speed (in SI units, v = αc

η with c the speed of light) versus
the Sommerfeld enhancement.

In the limit v →∞, Sk → 1, for the same reasoning as in the repulsive case.
In the limit α >> v, Sk → πα

v . This is an frequently cited result, which tells
us that for small velocities the Sommerfeld enhancement is inversely propor-
tional to the velocity for EM-potentials. Furthermore it is linearly dependent
on α, which makes sense because a bigger coupling constant results in a stronger
potential.
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Figure 3: Sommerfeld enhancement for the attractive case

4 The Coulomb potential with 0 < r0 << 1

As was noted before, our analysis remains approximately valid for an interaction
radius r0 with 0 < r0 << 1. This corresponds to the physical situation that an
interaction is not pointlike, but has some finite interaction region with radius
r0. It is worth researching what kind of correction this gives to the Sommerfeld
enhancement.

The first part of the analysis remains the same as in the previous section: we
obtain the same radial wavefunction (equation (3.9)). Now we need to obtain
the wavefunction for small r. In the remainder it proves more convenient to
work with ρ, where 0 < ρ << 1. This substitution is valid for finite k.

We will use a Taylor series in ρ to reformulate equation (3.9):

Rkl(ρ) =
∞∑
n=0

[
dnR(ρ)
dρ

]
ρ=0

ρn

n!
(4.1)

To compute dnR(0)
dρ , we first compute all the separate derivatives:[

dnM(l + 1 +±iη, 2l + 2,−2iρ)
dρ

]
ρ=0

=
i

2

n∏
s=1

l + 1± iη + n− 1
2l + 2 + n− 1

(4.2)

(If n = 0,
∏n
s=1

l+1±iη+n−1
2l+2+n−1 = 1)[

dn(2ρ)l

dρ

]
= 2

l!
(l − n)!

(2ρ)l−n (4.3)

9



Equation (4.3) has the interesting feature that
[
dneiρ(2ρ)l

dρ

]
ρ=0

= 0, when n 6= l.

[
dneiρ

dρ

]
ρ=0

= in (4.4)

We have a product of functions, so we have to use Leibniz rule (the general
product rule):

(fg)(n) =
n∑
q=0

(
n

q

)
f (q)g(n−q) (4.5)

Now we have (using here x(n) as a short notation for the n-th derivate of x)

(((2ρ)l)(eiρM(l + 1 +±iη, 2l + 2,−2iρ)))(n) =
n∑
q=0

(
n

q

)
((2ρ)l)(q)(eiρM(l + 1 +±iη, 2l + 2,−2iρ))(n−q) (4.6)

where
(eiρM(l + 1 +±iη, 2l + 2,−2iρ))(n−q) =

n−q∑
w=0

(
n− q
w

)
(M(l + 1 +±iη, 2l + 2,−2iρ))(w)(eiρ)(n−q−w) (4.7)

Following the analysis of equation (4.3), we know that if ρ = 0, then l = q,
so that [

n∑
q=0

((2ρ)l)(q)
]
ρ=0

= 2(l!) (4.8)

Now we can evaluate equation (4.6) for ρ = 0 (and l = q set):[
(((2ρ)l)(eiρM(l + 1 +±iη, 2l + 2,−2iρ)))(n)

]
ρ=0

=

2(l!)
(
n

l

) n−l∑
w=0

(
n− l
w

)
in−l−w

i

2

w∏
s=1

l ± iη + w

2l + 1 + w
(4.9)

With the above equations[
dnR(ρ)
dρ

]
ρ=0

=

√
2πη

±(e±2πη − 1)
k(l!)

(2l + 1)!

(
n

l

)[ l∏
s=1

√
s2 + η2

]
·

n−l∑
w=0

(
n− l
w

)
in−l−w+1

w∏
s=1

l ± iη + w

2l + 1 + w
(4.10)

So using equation (4.1) our final result is

Rkl(ρ) =
∞∑
n=0

ρn

n!

√
2πη

±(e±2πη − 1)
k(l!)

(2l + 1)!

(
n

l

)[ l∏
s=1

√
s2 + η2

]
·

n−l∑
w=0

(
n− l
w

)
in−l−w+1

w∏
s=1

l ± iη + w

2l + 1 + w
(4.11)
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Inserting this result in equation (1.6), we obtain the desired wavefunction:

ψkl(ρ) = i

√
2πη

±(e±2πη − 1)

∞∑
l=0

ileiδl l!
(2l)!

Pl(cos(θ))

[
l∏

s=1

√
s2 + η2

]
·

∞∑
n=0

ρn

n!

(
n

l

) n−l∑
w=0

(
n− l
w

)
in−l−w

w∏
s=1

l ± iη + w

2l + 1 + w
(4.12)

Obviously, expression (4.12) is not easily evaluated. The point however of
the Taylor expansion is clear: we can limit the summation over n to n = 1 or
n = 2, so that we only evaluate the linear and quadratic terms in ρ. This will
give a good approximation since ρ << 1. Since there is a term

(
n
l

)
in equation

(4.12), only terms with l ≤ n are nonzero:
l = 0 Let us take for l = 0, n = 0→ 1:

ψkl(ρ) = i

√
2πη

±(e±2πη − 1)
eiδ0(1 + ρ(i+ 1± iη)) (4.13)

l = 1 Let us take for l = 1, n = 1→ 2:

ψkl(ρ) = −

√
2πη

±(e±2πη − 1)
eiδ1
√

1 + η2
cosθ

2
(ρ+ ρ2(i(1± η

4
) +

1
2

)) (4.14)

To compute equation (1.7), we furthermore need ψ
(0)
k (ρ) This is standard

textbook quantum mechanics. The exact result is ([4], p.112)

ψ
(0)
k (ρ) =

∞∑
l=0

il(2l + 1)Pl(cos(θ))jl(ρ) (4.15)

And we make the approximation that for ρ << 1, jl(ρ) = ρl

(2l+1)! :

ψ
(0)
k (ρ) =

∞∑
l=0

ilPl(cos(θ))
ρl

(2l)!
(4.16)

Using equation (1.7), we can now compute the Sommerfeld enhancement (be-
cause Pl(cos(θ)) is independent of r = ρ

k , it comes out of both integrals and is
therefore eliminated):

l = 0

Sk =

∫ ρ0
0

2πη
±(e±2πη−1) ((1 + ρ)2 + (ρ± ρη)2) dρ

ρ0

=
2πη

±(e±2πη − 1)
(1 + ρ0 +

1
3
ρ2
0(1 + (1± η)2)) (4.17)

l = 1

Sk =

∫ ρ0
0

2πη
±(e±2πη−1)

1+η2

4 ((ρ+ 1
2ρ

2)2 + (ρ2((1± η
4 ))2)), dρ∫ ρ0

0
ρ2

4 dρ

Sk =
2πη

±(e±2πη − 1)
(1 + η2)(1 +

3
4
ρ0 +

3
5
ρ2
0(

1
4

+ (1± η

4
)2)) (4.18)
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Let us first check the limits of equation (4.17) to see if it is correct. Fill in
r0 = ρ0

k = 0, then it reduces to

Sk =
2πη

±(e±2πη − 1)
(4.19)

which is the correct Sommerfeld enhancement for r = 0 and l = 0 (see
equation (3.11)).

4.1 Evaluation of the results

In figures 4 and 5 the Sommerfeld enhancement is plotted versus the speed.
Figure 4 corresponds to the repulsive case, figure 5 to the attractive case. Note
that our analysis was only valid for ρ << 1, so the reason that large values
for ρ0 have been chosen in the graphs is to exaggerate the effect in order to
clearly show it. In both cases, the Sommerfeld enhancement is multiplied by
some factor. In the repulsive case this multiplicative factor is smaller than in
the attractive case.

Figure 4: Sommerfeld enhancement for the repulsive case with l = 0

A quick view at equation (4.17) tells us the dependence on ρ0 is positive and
that this ρ0 dependence does not include a speed dependence. Both features
are also seen in figures 4 and 5. A consequence of the second feature is that
the Sommerfeld enhancement is not equal to 1 for high speeds, which may
seem odd intuitively. It is however easily understood algebraically when we
take a look at our primary radial wavefunction with potential, equation (3.9),
compared to the one without potential, equation (4.16). We see that (for small
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Figure 5: Sommerfeld enhancement for the attractive case with l = 0

ρ) the wavefunction with potential has an additional positive ρ dependence,
which means that it obtains a larger value for bigger ρ. Therefore the chance
of the incident particle being near the origin with EM-potential is boosted with
respect to the chance without potential, independent from its speed. Thus
the fact that the EM potential is added results to an overall increase of the
Sommerfeld enhancement. Due to the positive ρ dependence, it is also logical
that a bigger interaction radius leads to a bigger overall boosting factor than a
smaller interaction radius.

The actual interaction radius cannot however be arbitrary large, because it
is governed by the physical dimensions of the interaction. In this case the chosen
values for ρ0 are way too big in most physical situations. For example, let us
take some interaction with an atomic nucleus, where r ≈ 10−14m, M ≈ 10−26kg
and v ≈ 10−3m

s , which gives ρ0 ≈ 10−37. This effect can therefore be neglected
in most practical applications.

In the l = 1 case, the figures have the same shape (see Appendix B). In
comparison to the l = 0 enhancement, the l = 1 enhancement has an extra η
dependence (see equation (4.18). ) This gives it a little boost with respect to
l = 0, but this extra factor is more than compensated by the other extra factors
in the l = 1 case.
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5 The Yukawa potential

In the electromagnetic potential the force exchanging particles of the potential
are massless photons. In general, the force exchanging particles of the potential
can have mass. This is accounted for in the Yukawa potential:

V (r) = ±α
r
e−mφr (5.1)

where the minus sign corresponds to the attractive case and the plus sign to the
repulsive case. mφ is the mass of the exchange particle. The above potential
reveals clearly that the Yukawa potential is a generalization of the EM potential,
because as mφ → 0, Yukawa potential → EM Potential.

Now, using natural units (the same simplification as in equation (3.5)), the
Schrödinger equation becomes:

d2χ(ρ)
dρ2

+
(

1∓ 2ηe−ζρ

ρ
− l(l + 1)

ρ2

)
χ(ρ) = 0 (5.2)

wherein
ζ =

mφ

αM
(5.3)

Note that ζ = 0 for the EM case.
The above Schrödinger equation (equation (5.2)) does not possess analytical

solutions. A numerical solution does exist and has been studied extensively in
the literature (see in recent literature for instance [7] and [8]). Here we do not
try to obtain the most accurate or fastest solution to the Yukawa potential.
Instead, we give a simple program in Mathemathica for the l = 0 case (see
Appendix A), which in the following we use to illustrate the main features of
the Yukawa potential. Also, because we did not encounter an actual instant
usable program for solving the Yukawa potential in the literature, hopefully
this will also enable others to easily get a solution to the Yukawa potential.

Let us now look at the attractive Yukawa potential and take the values of the
constants the same as in [5] i.e. α = 1

30 , mφ = 90GeV. We obtain figure 6, where
the mass of the incident particle is plotted versus the Sommerfeld enhancement.
This is the exact same figure as figure 2 in [5], confirming that our method for
solving the Yukawa potential is in accordance with the literature.

Figure 6 contains all relevant information about the Yukawa potential. The
first thing to notice is the series of resonances, similar to the resonances in
a potential well. At small velocites and at particular values of the particle
mass, Sommerfeld enhancements can be as big as 106. Furthermore, note that
if a specific particle mass is chosen, the Sommerfeld enhancement rises as the
velocity drops, as expected. For an in depth-discussion of figure 6 we refer to
[5].

As a concluding remark we note that in principle the computation of the
Sommerfeld enhancement for the Yukawa potential can also be extended to
non-pointlike interaction regions. If the result was analagous to the result of
the EM-potential i.e. a multiplicative factor, then the absolute effect of this
non-pointlike interaction region is a lot bigger in the Yukawa potential (due to
the bigger Sommerfeld enhancement). Under the right circumstances this could
possibly be a way to find this effect. We defer the actual computation to future
work due to its high complexity.

14



Figure 6: Sommerfeld enhancement for the Yukawa potential

6 Conclusion

The Sommerfeld enhancement is an elementary effect in nonrelativistic quantum
mechanics, which accounts for the effect of a potential on the interaction cross
section. To compute this Sommerfeld enhancement we used standard nonrela-
tivistic quantum mechanics theory to derive a general formula, which in essence
breaks down to finding the wavefunction in the point where the interaction takes
place, using the Schrödinger equation.

Using this formula, we first computed the Sommerfeld enhancement for the
rectangular potential well/barrier, where we found a resonant pattern. We
continued with the computation of the Sommerfeld enhancement for the elec-
tromagnetic potential with r0 = 0, both the repulsive and the attractive case.
For both cases Sk → 1 as v →∞, while for the repulsive case Sk → 0 as α >> v
and for the attractive case Sk → πα

v as α >> v.
With the result for the Sommerfeld enhancement for the electromagnetic

potential with r0 = 0 in hand, we attempted to compute the Sommerfeld en-
hancement for the electromagnetic potential with 0 < r0 << 1 We used an Tay-
lor expansion and then took only the first and second order terms. The result
was an overall multiplicative factor dependending on the size of the interaction
region. This factor is however negligibly small in most practical applications.

To conclude, a simple program was written in Mathematica to compute the
Sommerfeld enhancement for the Yukawa potential, which produced consistent
results with results in recent literature.
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7 Appendix A

To obtain the solution to the Yukawa potential, we apply the procedure outlined
in [9] for l = 0.

We use Wolfram Mathematica 7.0 ( c©Copyright 1988-2009 Wolfram Re-
search, Inc.), in which we designed the following program (where a is a constant
and the solution is computed from b = ζ ∗X to b = ζ ∗Y with X and Y positive
integers):

For[i = X, i < Y, i++,With[{a = η/2, b = ζ ∗ i},

sol = NDSolve[{y”[x] + (2/x)y′[x] + (1 + (2a/x)e∧(−b ∗ x))(y[x]) == 0,

y[0.000001]==1, y′[0.000001]==−a}, y, {x, 0.000001, 60},MaxSteps→ Infinity]]

Print[1/Evaluate[((30 ∗ y[30]))∧2 + (((30− 0.5Pi) ∗ y[30− 0.5Pi]))∧2/.sol[[1]]]]]

For instance, to plot the region from 1 to 10 TeV in figure 6 for v = 10−5,
one enters:

For[i = 100, i < 1000, i++,With[{a = (1/60)∗(10∧(5)), b = 90∗(10∧(5))/(i∗10)},

sol = NDSolve[{y”[x] + (2/x)y′[x] + (1 + (2a/x)e∧(−b ∗ x))(y[x]) == 0,

y[0.000001]==1, y′[0.000001]==−a}, y, {x, 0.000001, 60},MaxSteps→ Infinity]];

Print[1/Evaluate[((30 ∗ y[30]))∧2 + (((30− 0.5Pi) ∗ y[30− 0.5Pi]))∧2/.sol[[1]]]]]

Note that you need to use the ’Merge cells’ function in Mathematica to
obtain a vector, which can be copy and pasted in a plotting program to make
the figures.

A few approximations/simplifications have been made:
1. We use a for loop, limiting our range in so far that if a large range is

chosen the steps in some regions are relatively bigger than in other regions (for
instance the 100Gev region and the 1 Tev region). This problem can be solved
manually by computing the solution for the different regions individually.

2. Technically, the initial conditions are y[0] == 1 and y’[0] == -a. Due to
the involved singularities, we have chosen to take x very small, thereby making
a good appromixation.

3. The above procedure tries to correct for oscillations by implementing
(x ∗ y[x]))2 + (((x− 0.5Pi) ∗ y[x− 0.5Pi]))2, involving a 0.5 Pi difference. The
choice to evaluate the solution in the point 30 is arbitrary. However, as is seen
in figure 7, (x ∗ y[x]))2 + (((x− 0.5Pi) ∗ y[x− 0.5Pi]))2 remains constant within
our accuracy range, so that in principle we can choose any point x > 10.

For figure 7 the same values have been used as in figure 1 of [9] (i.e. η = 103

and ζ = 10, assuming that the v = 2 ∗ 105 in the article is a clerical, instead
we use v = 2 ∗ 10−5). Consequently, we get (except for the fact that we chose
a smaller x range, in part due to simplification 2) exactly the same value as in
the above article, confirming that our implementation is consistent with it.
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Figure 7: ((x ∗ y[x]))2 + (((x− 0.5Pi) ∗ y[x− 0.5Pi]))2

8 Appendix B

Figure 8: Sommerfeld enhancement for the repulsive case with l = 1
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Figure 9: Sommerfeld enhancement for the attractive case with l = 1
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