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Abstract: Searches for new particles beyond the Standard Model (SM) are an important

task for the Large Hadron Collider (LHC). In this paper, we investigate the properties of

the heavy non-SM Higgs bosons in the µ-term extended Next-to-Minimal Supersymmetric

Standard Model (µNMSSM). We scan the parameter space of the µNMSSM considering

the basic constraints from Higgs data, dark matter (DM) relic density, and LHC searches

for sparticles. And we also consider the constraints from the LZ2022 experiment and the

muon anomaly constraint at the 2σ level. We find that the LZ2022 experiment has a strict

constraint on the parameter space of the µNMSSM, and the limits from the DM-nucleon

spin-independent (SI) and spin-dependent (SD) cross-sections are complementary. Then,

we discuss the exotic decay modes of heavy Higgs bosons decaying into SM-like Higgs

bosons. We find that for doublet-dominated Higgs h3 and A2, the main exotic decay

channels are h3 → ZA1, h3 → h1h2, A2 → A1h1, and A2 → Zh2, and the branching ratio

can reach to about 23%, 10%, 35%, and 10% respectively.

Keywords: µNMSSM; heavy Higgs bosons; DM

1. Introduction

In July 2012, both the ATLAS and CMS collaborations at the Large Hadron Collider

(LHC) announced a scalar with mass near 125 GeV [1–3], and recently, the combined

measurement of the muon anomalous magnetic moment by the Fermi National Acceler-

ator Laboratory (FNAL) [4] and the Brookhaven National Laboratory (BNL) [5] showed

a 4.2σ discrepancy from the prediction in the Standard Model (SM). The continuously

updated experimental results provide rich information about supersymmetry (SUSY).

As an economic realization of SUSY, the Next-to-Minimal Supersymmetric Standard Model

(NMSSM) [6–10] has attracted more attention. However, considering the recent exper-

imental constraints, the parameter space of the NMSSM with a discrete Z3-symmetry

(Z3-NMSSM) has been strictly constrained [11–14]. In order to obtain a broad parame-

ter space that agrees with the recent experimental results, we extend the Z3-NMSSM by

adding an explicit µ-term, which is called the µ-term extended NMSSM (µNMSSM) [14,15].

Compared with Z3-NMSSM, the µNMSSM can easily explain the discrepancy of the muon

anomalous magnetic moment in a broad parameter space while also coinciding with the

experimental results in Dark Matter (DM) and Higgs physics, as well as the LHC searches

for sparticles [12,16]. In addition, the µNMSSM is free from the tadpole problem and

domain-wall problem in the Z3-NMSSM. An extension of the MSSM called the µνSSM [17]

is a model similar to the Z3-NMSSM except that the singlet whose vacuum expectation
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value (VEV) gives rise to the µ term also serves the role of a right-handed neutrino, thereby

violating R-parity. Therefore, compared to the µνSSM, the µNMSSM can give a stable

Lightest Supersymmetric Particle (LSP).

Since the discovery of a 125 GeV Standard Model (SM)-like Higgs boson at the LHC,

the search for non-SM Higgs bosons has become even more pressing. In the µNMSSM,

the lightest or next-to-lightest CP-even Higgs boson can be regarded as the SM-like Higgs

boson. In addition to the SM-like Higgs boson (h1 or h2), the µNMSSM predicts another

two CP-even neutral Higgs bosons (h1/h2 and h3), two CP-odd neutral Higgs bosons (A1

and A2), and a pair of charged Higgs bosons (H±). In this paper, we explore the discovery

potential for the non-SM heavier Higgs bosons h3 and A2 in the µNMSSM at the LHC.

At present, besides the conventional search channels for heavy Higgs focusing on

the decay modes into pairs of SM particles, the heavy Higgs exotic decay modes in the

µNMSSM are kinematically open. The heavy neutral Higgs bosons can have a sizable

branching ratio into two lighter neutral Higgs bosons, or into a lighter neutral Higgs

boson and one Z boson. The relevant searches have been carried out at the LHC [18–25].

Ref. [26] has presented benchmark planes with cross-sections via gluon fusion for the exotic

decay channels of heavy Higgs bosons in the NMSSM. And some discussions about the

heavy Higgs exotic decays have also been conducted in the Two-Higgs-Doublet Model

(2HDM) [27,28]. However, there have been no relevant discussions regarding the properties

of the heavy Higgs boson in the µNMSSM. Therefore, our study aims to investigate the

properties of the heavier CP-even Higgs boson h3 and CP-odd Higgs boson A2 in the

µNMSSM. We focus on the searches for heavy Higgs bosons in final states with two lighter

scalars, or one light scalar and a Z boson.

The outline of this paper is as follows: in Section 2, we briefly describe the relevant

theoretical preliminaries of µNMSSM including the Higgs sector, the neutralino sector,

and the DM-nucleon scattering cross-section. In Section 3, we give the numerical results

considering the constraints of DM from the LZ experiment and investigate the properties

of heavy Higgs bosons. In Section 4, we list the summary of this paper.

2. Theoretical Preliminaries

2.1. The Basics of the µNMSSM

To solve the problem in the Minimal Supersymmetric Standard Model (MSSM), such

as the µ problem, the NMSSM is introduced. The NMSSM consisits of two Higgs doublet

superfields, Ĥu and Ĥd, and one singlet chiral superfield, Ŝ. After the electroweak symmetry

breaking, the Higgs fields acquire the vacuum expected values (vevs); i.e., < Hu >= vu,

< Hd >= vd, < S >= vs, and v =
√

vu
2 + vd

2, tan β = vu
vd

. The Higgs fields in the NMSSM

can be written as follows [10]:

Ĥu =

(
H+

u

vu +
1√
2
(φu + iϕu)

)
, Ĥd =

(
vd +

1√
2
(φd + iϕd)

H−
d

)
, Ŝ = vs +

1√
2
(φs + iϕs) (1)

where φu, φd, and φs denote the neutral CP-even Higgs fields; ϕu, ϕd, and ϕs denote the

neutral CP-odd Higgs fields; and H+
u and H−

d denote the charged Higgs fields.

The general form of the superpotential in the NMSSM can be given by [10,29,30]

WNMSSM = WYukawa + (µ + λŜ)Ĥu · Ĥd + ξFŜ +
1

2
µ′Ŝ2 +

κ

3
Ŝ3 (2)

where the term WYukawa is the same as that of the MSSM; µ and µ′ are bilinear mass

coefficients; λ and κ are dimensionless coupling coefficients; ξF is the supersymmetric
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tadpole term of mass square dimension; and the parameters µ, µ′, and ξF can be used to

solve the tadpole problem and domain-wall problem in the Z3-symmetry NMSSM [31–35].

In this work, we consider a specific scenario in which the parameters µ′ and ξF in

Equation (2) are equal to 0. This special scenario can be called the µ-term extended NMSSM

(µNMSSM), which is more economical than GNMSSM in explaining the SM-like Higgs

mass and the properties of DM. The superpotential and the corresponding soft breaking

Lagrangian can be written as follows [33,34]:

WµNMSSM = WYukawa + (µ + λŜ)Ĥu · Ĥd +
κ

3
Ŝ3, (3)

−Lsoft =

[
AλλSHu · Hd +

1

3
AκκS3 + BµµHu · Hd + h.c.

]
+ m2

Hu
|Hu|2 + m2

Hd
|Hd|2 + m2

S|S|2, (4)

where Hu, Hd, and S are the scalar parts of the superfields Ĥu, Ĥd, and Ŝ, respectively. By

solving the minimization equation of the scalar potential, the soft breaking mass parameters

m2
Hu

, m2
Hd

, and m2
S can be expressed in terms of the vacuum expected values of the scalar

field. To simplify the calculation, we set Bµ to be 0. Therefore, the Higgs sector is partially

determined by the following parameters:

tan β, µeff = λvs/
√

2, λ, κ, Aλ, Aκ , µ. (5)

For convenience, we define HSM ≡ sin βRe(H0
u) + cos βRe(H0

d), HNSM ≡ cos βRe(H0
u)−

sin βRe(H0
d), and ANSM ≡ cos βIm(H0

u)− sin βIm(H0
d), where HSM is the SM Higgs field and

its vev is v/
√

2, HNSM is the other CP-even doublet Higgs field and its vev is zero, and ANSM

corresponds to the CP-odd Higgs boson in the MSSM [36,37]. In the basis (HNSM, HSM, Re(S)),

the elements of the CP-even Higgs mass symmetric matrix M2
S can be written as

M2
S,11 =

2µe f f (λAλ + κµe f f )

λ sin 2β
+

1

2
(2m2

Z − λ2v2) sin 22β,

M2
S,12 = −1

4
(2m2

Z − λ2v2) sin 4β,

M2
S,13 = − 1√

2
(λAλ + 2κµe f f )v cos 2β,

M2
S,22 = m2

Z cos 22β +
1

2
λ2v2 sin 22β,

M2
S,23 =

v√
2
[2λ(µe f f + µ)− (λAλ + 2κµe f f ) sin 2β],

M2
S,33 =

λAλ sin 2β

4µe f f
λv2 +

µe f f

λ
(κAκ +

4κ2µe f f

λ
)− µ

2µe f f
λ2v2.

(6)

And the elements of the CP-odd Higgs mass symmetric matrix M2
P under the basis

(ANSM, Im(S)) is given by

M2
P,11 =

2µe f f (λAλ + κµe f f )

λ sin 2β
,

M2
P,22 =

(λAλ + 4κµe f f ) sin 2β

4µe f f
λv2 −

3κAκµe f f

λ
− µ

2µe f f
λ2v2,

M2
P,12 =

v√
2
(λAλ − 2κµe f f ).

(7)
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By diagonalizing M2
S and M2

P using the unitary matrix V and U, we can obtain the

CP-even Higgs mass eigenstate hi(i = 1, 2, 3) with mh1
< mh2

< mh3
, and CP-odd Higgs

mass eigenstate Ai(i = 1, 2) with mA1
< mA2

, respectively [34,38,39].

hi = VNSM
hi

HNSM + VSM
hi

HSM + VS
hi

Re(S),

Ai = UNSM
Ai

ANSM + US
Ai

Im(S).
(8)

Each of the three CP-even Higgs bosons hi(i = 1, 2, 3) can be either SM-like (h), or HNSM

dominant (H), or singlet dominant (hs). Likewise, each of the two CP-odd Higgs bosons Ai

can be either singlet dominant (As), or HNSM dominant (AH).

The mass eigenstate of charged Higgs bosons is H± = cos βH±
u + sin βH±

d , and their

masses can be written as

m2
H± =

2µe f f (λAλ + κµe f f )

λ sin 2β
+ m2

W − λ2v2. (9)

For neutralino sector, the neutralino mass eigenstate in the basis of

ψ0 =
(
−iB̃0,−iW̃0, H̃0

d , H̃0
u, S̃0

)
is

MÑ =




M1 0 −mZ sin θw cos β mZ sin θw sin β 0

0 M2 mZ cos θw cos β −mZ cos θw sin β 0

−mZ sin θw cos β mZ cos θw cos β 0 −µtot − 1√
2

λv sin β

mZ sin θw sin β −mZ cos θw sin β −µtot 0 − 1√
2

λv cos β

0 0 − 1√
2

λv sin β − 1√
2

λv cos β 2 κ
λ µeff




, (10)

where µtot ≡ µ + µeff, and M1 and M2 are Bino and Wino soft breaking masses, respec-

tively. After diagonalizing the mass matrix MÑ by rotation matrix N, we can obtain the

neutralino mass eigenstate χ̃0
i (i = 1, 2, 3, 4, 5) labeled in mass-ascending order, which can

be expressed as

χ̃0
i = Nijψ

0
j (j = 1, 2, 3, 4, 5). (11)

Assuming the lightest neutralino χ̃0
1 is the LSP, which can be considered as an ideal candi-

date for DM. Evidently, N2
11, N2

12, N2
13 + N2

14 and N2
15 denote the Bino, Wino, Higgsino, and

Singlino fractions in χ̃0
1, respectively. Different from the case in the Z3-NMSSM, 2|κ| may

be much larger than λ in obtaining Singlino-dominated DM.

2.2. The Heavy Higgs Bosons

In this work we require the lightest CP-even Higgs boson h1 is SM-like, and investigate

the properties of the heavy Higgs bosons h3 and A2. At the LHC, the heavy Higgs boson

H (h3 or A2) is mainly produced through gluon-gluon fusion (ggF), and the production

cross-section can be obtained by

σ(ggF → H)

σ(ggF → hSM)
=
∣∣∣CH

ggF

∣∣∣
2
, (12)

where hSM denotes the SM-like Higgs boson, and CH
ggF is the reduced coupling coefficient

relative to the prediction in the SM. In the µNMSSM, the exotic decay modes of heavy

Higgs bosons are open and heavy Higgs bosons h3 and A2 can have sizable branching

ratio into two lighter Higgs bosons, e.g., h3 → h1h2, A2 → A1h1, which can be called

Higgs-to-Higgs decays. In addition, heavy Higgs bosons h3 and A2 may decay into one

light Higgs boson and a Z boson, e.g., h3 → A1Z, A2 → h1Z. The branching ratio of the

Higgs-to-Higgs decays depends on trilinear Higgs couplings. For the typical case with
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vs, Aλ ≫ vu, vd ≈ MZ, the relevant trilinear Higgs couplings relative to Higgs-to-Higgs

decays can be expressed by (neglecting contributions of O(MZ)) [10,26] the following:

(1)HNSMHSMRe(S) : − λ√
2
(2κvs + Aλ),

(2)ANSMHSMIm(S) :
√

2λ sin β cos β(−2κvs + Aλ).

(13)

For the decays hi → Aj + Z and Aj → hi + Z, the relevant couplings are

hi(p)Aj(p′)Zµ : −igVNSM
hi

UNSM
Ai

(p − p′)µ (14)

where VNSM
hi

is the HNSM component of the physical state hi; and UNSM
Ai

is the ANSM

component of the physical state Aj.

2.3. The Anomalous Magnetic Moment of the Muon in the µNMSSM

The recent measurement of the muon anomalous magnetic moment a
exp
µ by the FNAL

has been updated, and its value is [4]

a
exp
µ (FNAL) = 116592040(54)× 10−11. (15)

The result a
exp
µ (FNAL) is in full agreement with the BNL E821 result a

exp
µ (BNL) [5]:

a
exp
µ (BNL) = 116592080(63)× 10−11. (16)

And the combined experimental average a
exp
µ is [40–57]

a
exp
µ = 116592061(41)× 10−11. (17)

The latest lattice calculations have led to a prediction that differs from the experi-

mental result of aµ by only 0.9σ [58]. While the current value for the anomaly, combining

the latest Standard Model prediction [40] and the improved experimental result [59], is

∆a
exp
µ = (249 ± 48)× 10−11. In our analysis, we use the same value for the discrepancy

between theory and experiment as used in ref. [60], namely, ∆a
exp
µ = (251 ± 59)× 10−11 [4],

in order to make the comparison systematic.

In SUSY, the contributions to aSUSY
µ mainly originate from the loops mediated by a

smuon and a neutralino or a chargino and a muon-type sneutrino [61–71]. In the µNMSSM,

the one-loop contributions to aSUSY
µ can be written as [72]

aSUSY
µ = a

χ̃0µ̃
µ + a

χ̃± ν̃
µ ,

a
χ̃0µ̃
µ =

mµ

16π2 ∑
i,l

{
− mµ

12m2
µ̃l

(∣∣∣nL
il

∣∣∣
2
+
∣∣∣nR

il

∣∣∣
2
)

FN
1 (xil) +

mχ̃0
i

3m2
µ̃l

Re
(

nL
iln

R
il

)
FN

2 (xil)

}
,

a
χ̃± ν̃
µ =

mµ

16π2 ∑
k

{
mµ

12m2
ν̃µ

(∣∣∣cL
k

∣∣∣
2
+
∣∣∣cR

k

∣∣∣
2
)

FC
1 (xk) +

2mχ̃±
k

3m2
ν̃µ

Re
(

cL
k cR

k

)
FC

2 (xk)

}
,

(18)

where i = 1, 2, 3, 4, 5, j = 1, 2, l = 1, 2 represent the neutralino, chargino, and smuon index,

respectively. And

nL
il =

1√
2
(g2Ni2 + g1Ni1)X∗

l1 − yµNi3X∗
l2, nR

il =
√

2g1Ni1Xl2 + yµNi3Xl1,

cL
k = −g2Vc

k1, cR
k = yµUc

k2, xil = m2
χ̃0

i
/m2

µ̃l
, xk = m2

χ̃±
k

/m2
ν̃µ

,
(19)
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where X denotes the smuon mass rotation matrices; and UC and VC denote the chargino

mass rotation matrix. F1(x) and F2(x) are loop functions of the kinematic variables xil and

xk, and their expressions are written as [73,74] follows:

FN
1 (x) =

2

(1 − x)4

[
1 − 6x + 3x2 + 2x3 − 6x2 ln x

]
,

FN
2 (x) =

3

(1 − x)3

[
1 − x2 + 2x ln x

]
,

FC
1 (x) =

2

(1 − x)4

[
2 + 3x − 6x2 + x3 + 6x ln x

]
,

FC
2 (x) = − 3

2(1 − x)3

[
3 − 4x + x2 + 2 ln x

]
.

(20)

For the scenario with mass-degenerate sparticles, the relationship

FN
1 (1) = FN

2 (1) = FC
1 (1) = FC

2 (1) = 1 holds.

2.4. DM-Nucleon Scattering Cross-Section

In the µNMSSM, the lightest neutralino χ̃0
1 as the LSP can be considered as a DM

candidate [75,76]. The Higgsino fraction of χ̃0
1 plays an important role in elastic scattering

between χ̃0
1 and nucleon. In the scenario with massive squarks, the Spin-Dependent (SD)

scattering of χ̃0
1 with nucleons is mediated by exchanging a Z boson, and the scattering

cross-section is approximated given by [77,78]

σSD
χ̃0

1−N
≃ CN ×

(
N2

13 − N2
14

0.1

)2

, (21)

where N = p(n), denoting protons (neutrons), Cp ≃ 4 × 10−4 pb, Cn ≃ 3.1 pb, and

N2
13 − N2

14 = (
λv√
2µtot

)2 N2
15 cos 2β

1 − (mχ̃0
1
/µtot)2

. (22)

The spin-independent (SI) scattering of χ̃0
1 with nucleons is mainly produced by

exchanging CP-even Higgs bosons through the t-channel, and the cross-section is as

follows [15,79,80]:

σSI
χ̃0

1−N
=

4µ̃2
R

π

∣∣∣ f (N)
∣∣∣
2
, (23)

where µ̃R ≡ mNmχ̃0
1
/(mN + mχ̃0

1
), denoting the reduced mass of the DM-nucleon system.

The expressions of the effective couplings f (N) are

f (N) = ∑
hi=h,H,hS

f
(N)
hi

= ∑
hi=h,H,hS

Cχ̃0
1χ̃0

1hi
CNNhi

2m2
hi

, (24)

with CNNhi
being the coupling coefficient between the CP-even Higgs bosons and nucleon,

CNNhi
= −mN

v

[
F
(N)
d (VSM

hi
− tan βVNSM

hi
) + F

(N)
u

(
VSM

hi
+

1

tan β
VNSM

hi

)]
, (25)

where F
(N)
d = f

(N)
d + f

(N)
s + 2

27 f
(N)
G and F

(N)
u = f

(N)
u + 4

27 f
(N)
G . The form factors

f
(N)
q = m−1

N

〈
N|mqqq|N

〉
(q = u, d, s) denote the normalized light quarks contribution

to the nucleon mass, and f
(N)
G = 1 − ∑q=u,d,s f

(N)
q represents other heavy quarks mass

fraction in the nucleon.
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3. Numerical Results

The parameter space of the µNMSSM has been scanned by EasyScan_HEP [81] with

the Metropolis–Hastings algorithm:

|M1| ≤ 1.5 TeV, 100 GeV ≤ M2 ≤ 1.5 TeV,

0 ≤ λ ≤ 0.75, |κ| ≤ 0.75, 1 ≤ tan β ≤ 60, 2 TeV ≤ |At| ≤ 5 TeV,

10 GeV ≤ µ ≤ 1 TeV, 100 GeV ≤ µtot ≤ 1 TeV, |Aκ | ≤ 700 GeV,

100 GeV ≤ mµ̃L
≤ 1 TeV, 100 GeV ≤ mµ̃E

≤ 1 TeV.

(26)

For other supersymmetric parameters, we fix them at 2 TeV. We use the package

SARAH-4.14.3 [82–85] to generate the model files in the µNMSSM, use the program

SPheno-4.0.4 [86,87] to obtain the particle spectrum, and use the package MicrOMEGAs-

5.2.13 [88–97] to calculate the DM observables.

To be specific, we require the samples to satisfy the following basic constraints:

1. The lightest CP-even Higgs boson h1 should be SM-like, and its mass should

be between 121 GeV and 129 GeV. We utilize the code HiggsSignals-2.2.3 [98] to fit the

properties of the SM-like Higgs boson to LHC Higgs data and utilize the code HiggsBounds-

5.3.2 [99] to implement the constraints from the direct search for extra Higgs bosons at the

LEP and Tevatron.

2. We assume the lightest neutralino is one of the DM candidates, so when comparing

the dark matter scattering cross-section below with the experimental limit, we need the

DM relic density Ωh2 < 0.120 [100]. The SI and SD DM cross-sections should be scaled by

a factor Ωh2/0.120.

3. We consider the constraints from the direct detection experiments for sparti-

cles at the LHC, and use SModelS-2.3.2 [101–104] to decompose the spectrum including

these processes:

pp → χ̃+
1 χ̃−

1 , pp → χ̃±
1 χ̃0

1,2,3, pp → µ̃Lµ̃∗
L, pp → µ̃Rµ̃∗

R. (27)

The Next-to-Leading Order (NLO) cross-sections of these processes at
√

s = 13 TeV are

calculated by Prospino2.1 [105]. In the following discussions, all the surviving samples

satisfy these basic constraints.

3.1. Properties of Dark Matter

We project all the surviving samples from the scan onto a two-dimensional diagram,

as shown below. The surviving samples are divided into three categories by three different

colors: the purple samples satisfy the basic constraints mentioned above; the yellow

samples satisfy not only the basic constraints but also the muon anomaly constraint within

the 2σ level; and the red samples satisfy the basic constraints, the muon anomaly constraint

within the 2σ level, and also the LZ experiment constraint in the year 2022 (LZ2022) [106].

Figure 1 shows the surviving samples on the plane mχ̃0
1
−σSI

p and mχ̃0
1
−σSD

n . The green

line on the left (right) plot is the upper limit of SI (SD) nucleon-DM cross-sections, which

comes from the results of the recent LZ2022 experiment. The samples above the green line

are excluded by the LZ2022 experiment. From this figure, we conclude that the results

of recent nucleon-DM experiments impose strong constraints on the parameter space in

the µNMSSM, and the SD limit is complementary to the SI limit in limiting the parameter

space in the µNMSSM. The figure also reveals 100 GeV ≲ mχ̃0
1
≲ 400 GeV considering the

constraints from the recent LZ2022 experiment.
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Figure 1. SI (left plot) and SD (right plot) nucleon-DM cross-section versus the mass of DM. The green

lines stand for limits from LZ2022. Purple samples satisfy the basic constraints; yellow samples satisfy

the anomaly of (g − 2)µ within the 2σ level further, and red samples satisfy the basic constraints,

muon anomaly constraint within the 2σ level, and also the LZ2022 experiment constraint.

We display the characteristics of DM components in Figure 2. The upper left plot

exhibits the Bino-component N2
11, the upper right plot exhibits the Wino-component N2

12,

the lower left plot shows the Higgsino-component N2
13 + N2

14, and the lower right plot

shows the Singlino-component N2
15. Considering the constraints from the anomaly of

(g − 2)µ and the recent LZ2022 experiment, the dark matter are mainly Wino-dominated

or Higgsino-dominated. A few samples are Bino-dominated, but no samples are Singlino-

dominated. The mass of Wino-dominated DM is less than 300 GeV, the mass of Higgsino-

dominated DM is less than 350 GeV, and the mass of Bino-dominated DM is less than

400 GeV.

Figure 2. Similar with Figure 1, but shows the DM components versus the the mass of DM.

To investigate the properties of the surviving parameter space, we pick out the red sam-

ples in Figures 1 and 2 and project them onto |µtot/µe f f | − 2|κ|/λ, mχ̃0
1
− tan β, M2 − µtot

planes in Figure 3. For the Higgsino-dominated DM, 2|κ|/λ is much larger than |µtot/µe f f |
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as can be seen from the left plot, which is significantly different from the scenario in the

Z3-NMSSM. In the Z3-NMSSM, Higgsino-dominated DM only requires 2|κ|/λ are larger

than 1. The middle plot shows that tan β is greater than 20 for the Wino-dominated or

Higgsino-dominated DM. From the right plot, we can see that the survival samples mainly

tend to be 850 GeV ≲ M2 ≲ 1500 GeV and 100 GeV ≲ µtot ≲ 300 GeV for Higgsino-

dominated DM, and 100 GeV ≲ M2 ≲ 300 GeV and 800 GeV ≲ µtot ≲ 1000 GeV for the

Wino-dominated DM.

Figure 3. Survived samples projected onto |µtot/µe f f | − 2|κ|/λ, mχ̃0
1
− tan β and M2 − µtot planes.

The yellow points denote the Bino-dominated DM, light purple points denote the Wino-dominated

DM, and blue points denote the Higgsino-dominated DM.

3.2. Properties of Heavy Higgs Bosons

We pick out the survival samples satisfying the basic constraints mentioned above,

and also the constraints from the anomaly of (g − 2)µ and the limit of SI (SD) nucleon-

DM cross-sections to investigate the properties of heavy Higgs bosons h3 and A2. In

Figure 4, we show the singlet component of the non-SM CP-even and CP-odd Higgs

bosons. From the upper plots, we can see that for most of the survival samples, the next-to-

lightest CP-even Higgs boson h2 can be mostly singlet-dominated or doublet-dominated.

Correspondingly, the heaviest CP-even Higgs boson h3 can be mostly doublet-dominated

or singlet-dominated. But for a portion of the samples, singlet-doublet mixing can be large.

The lower plots show that for most of the surviving samples, the lightest CP-odd Higgs

boson A1 is mostly singlet-dominated and the heaviest CP-odd Higgs boson A2 is mostly

doublet-dominated. However, for a part of the samples, singlet-doublet mixing can be

large. And for a small fraction of the samples, A2 can be mostly singlet-dominated.

As discussed above, the exotic decay channels of heavy Higgs bosons h3 and A2 are

open. In Figures 5 and 6 we show the exotic decay channels of h3 and A2, and we only

consider the decay channels of heavy Higgs boson decaying into lighter Higgs boson.

The left (right) plot of Figure 5 shows that h3 is doublet-dominated (singlet-dominated),

and the left (right) plot of Figure 6 shows A2 is doublet-dominated (singlet-dominated).

For the doublet-dominated Higgs boson h3, the main decay channels are h3 → ZA1 and

h3 → h1h2, and the branching ratio can reach about 23% and 10%, respectively. The decay

h3 → ZA1 is proportional to the ANSM component of the physical state A1. The large

branching ratio of h3 → ZA1 just corresponds to the scenario that the doublet component

of A1 is relatively large. The decay h3 → h1h2 is proportional to the Higgs trilinear coupling

shown in the first equation of Equation (13), which is usually relatively large when the

mixing between doublet and singlet scalar fields is large. The singlet-dominated Higgs

boson h3 mainly decays into A1 A1, and the branching ratio of h3 → A1 A1 can reach to

about 1.
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Figure 4. The singlet component of the non-SM CP-even and CP-odd Higgs bosons versus

their masses.

Figure 5. The exotic decay channels of the heavy CP-even Higgs boson h3. The (left plot) denotes

h3 being doublet-dominated (MSSM-like), and the (right plot) denotes h3 being singlet-dominated

(singlet-like).

Figure 6. The exotic decay channels of heavy CP-odd Higgs boson A2. The (left plot) denotes A2

being doublet-dominated (MSSM-like), and the (right plot) denotes A2 being singlet-dominated

(singlet-like).



Universe 2025, 11, 103 11 of 16

Figure 6 shows that for the doublet-dominated Higgs boson A2, the main decay

channels of the Higgs boson A2 are A2 → A1h1 and A2 → Zh2, and the branching ratio

can reach to about 35% and 10%, respectively. The decay A2 → A1h1 is proportional to the

Higgs trilinear coupling shown in the second equation of Equation (13), which is usually

relatively large when the mixing between doublet and singlet pseudoscalar fields is large,

as the off-diagonal element M2
P,12 shown. The decay A2 → Zh2 is proportional to the HNSM

component of the physical state h2. The large branching ratio of A2 → Zh2 just corresponds

to the scenario that the doublet component of h2 is relatively large. The branching ratio of

the decay A2 → Zh1 approaches 0 because the HNSM component of the SM-like h1 is much

lower. The main decay channels of the singlet-dominated Higgs boson A2 are A2 → A1h1

and A2 → Zh2.

Since the production cross-section of singlet-dominated Higgs bosons at the LHC is

very small, we only consider the production of doublet-dominated Higgs bosons h3 and

A2. In Figures 7 and 8, we show the production cross-section of the Higgs bosons h3 and

A2 with h3 and A2 decaying into the SM-like Higgs at
√

s = 13 TeV LHC. We find that the

cross-sections ggF → h3 → h1h2 and ggF → A2 → A1h1 can reach to about 10−11 pb and

10−10 pb, respectively.

Figure 7. The cross-section of the heavy CP-even Higgs boson h3 decaying into the SM-like Higgs

boson at 13TeV LHC.

Figure 8. The cross-section of the heavy CP-odd Higgs boson A2 decaying into the SM-like Higgs

boson at 13 TeV LHC.

4. Summary

In this paper, we have performed phenomenological studies on the properties of

dark matter and heavy Higgs bosons h3 and A2 in the µNMSSM. Considering the ba-

sic constraints from Higgs data, DM relic density, and LHC searches for sparticles, we

have scanned the parameter space of the µNMSSM. We find that the LZ2022 experiment

has a strict constraint on the parameter space of the µNMSSM, and the limits from the
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DM-nucleon SI and SD cross-sections are complementary. Samples surviving the LZ2022

experiment and the muon anomaly constraint at the 2σ level are mainly featured by

tan β ≲ 20, 850 GeV ≲ M2 ≲ 1500 GeV, and 100 GeV ≲ µtot ≲ 300 GeV for Higgsino-

dominated DM, or 100 GeV ≲ M2 ≲ 300 GeV, and 800 GeV ≲ µtot ≲ 1000 GeV for

Wino-dominated DM.

The detections of heavy Higgs bosons through exotic decay modes into SM-like

Higgs bosons are important for analyzing the Higgs signals. We find that for doublet-

dominated Higgs h3, and A2, the main exotic decay channels are h3 → ZA1, h3 → h1h2,

A2 → A1h1 and A2 → Zh2, and the branching ratio can reach about 23%, 10%, 35%,

and 10%, respectively. At the 13 TeV LHC, the production cross-section of processes

ggF → h3 → h1h2 and ggF → A2 → A1h1 can reach to about 10−11 pb and 10−10 pb,

respectively. This spectrum is hardly tested, but it is free from current constraints from

the LHC on exotic Higgs. It is unfortunate that these heavy Higgs still cannot be tested

at the High-Luminosity LHC (HL-LHC) [107]; one has to wait for the next-generation

hadron colliders (such as the SPPC [108] and FCC-hh [109]) in order to investigate this

parameter space.
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